
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

Automatic recommendation survey system: Movish

Relatore: Prof. Paolo Cremonesi

Correlatore: Prof. Leonardo Bruni

Tesi di Laurea di:

Vincenzo Ampolo

Matricola n. 750336

Anno Accademico 2012–2013

A tutte le persone che hanno contribuito alla mia crescita, in particolare alla mia

famiglia, mio padre, mia madre, mia sorella e mio fratello che mi hanno sempre

sostenuto soprattutto nei momenti più difficili.

Ringraziamenti

Questa tesi non sarebbe stata possibile se non grazie a tutte le persone

che in un modo o in un altro hanno collaborato alla sua realizzazione. In

un anno di lavoro sono tante le persone che andrebbero ringraziate.

Grazie al prof. Paolo Cremonesi che ha creduto nelle mie capacità e

nella mia voglia di fare ed ha accettato di assistermi nella tesi pur sapendo

che per la maggior parte del tempo sarei stato in California per una intern-

ship in Riverbed Technology. I suo corso di impianti informatici in laurea

triennale e di digital and internet television in specialistica sono stati di ispi-

razione per la mia carriera lavorativa che ha mosso i primi passi durante

la mia carriera universitaria. Rimpiango di non avere più la possibilità di

partecipare alle lezioni interattive tipiche del modo di insegnare del prof.

Cremonesi. Lo ringrazio anche della pazienza, di tutte le risposte per mail e

di tutto il tempo passato su skype per prendere le decisioni più importanti

riguardo il sistema da implementare e la ricerca che ne è seguita.

Ringrazio il prof. Leonardo Bruni per avermi seguito costantemente

in questo anno di ricerca e sviluppo del sistema aiutandomi con le deci-

sioni quotidiane ed esplorando nuove soluzioni e nuove ottimizzazioni.

Le mail celeri e gli incontri informali al NECSTlab del Politecnico di Mi-

lano sono stati fondamentali nella realizzazione del sistema. Sarò sempre

riconoscente di tutto il tempo che ha dedicato a questo lavoro.

Ringrazio i prof. Marco D. Santambrogio, Stefano Zanero e Federico

Maggi per avermi offerto ospitalità al NECSTlab durante il periodo di tesi.

iii

iv

Per avermi fatto sentire a mio agio nel laboratorio che è stata la mia sec-

onda casa durante il mio ultimo anno di permanenza a Milano, per tutte

le varie NECST-pizze e per aver offerto spazio ed assistenza per il server

che ha ospitato l’applicativo sviluppato durante questo lavoro di tesi. Il

NECSTlab sarà di sicuro uno dei luoghi che più ha segnato la mia carriera

universitaria.

Ringrazio i miei amici più cari: Daniela Stefan, Andrea Parola, Ali Ba-

hadori, Rodia, Andréia Cha, Luca Galliani, Emil Gavatta e Cristina di Santo

che mi sono stati vicino ed hanno reso piacevole la mia permanenza a Mi-

lano. Non verranno dimenticati facilmente tutti i momenti di gioia condi-

visi insieme e spero di condividere molte altre esperienze insieme in futuro.

Infine ringrazio tutte le persone che hanno partecipato alla ricerca com-

pilando il questionario. Anche grazie a voi questo lavoro è stato possibile.

Una volta che abbiate conosciuto il volo, camminerete sulla terra guardando il

cielo, perchè là siete stati e là desidererete tornare. Leonardo Da Vinci

Sommario

I sistemi di raccomandazione sono, al giorno d’oggi, componente fon-

damentale di tutti i nuovi servizi di successo come Facebook, Amazon,

Google, Netflix e Hulu. Tutti questi servizi collezionano in maniera piú o

meno pervasiva tutte le nostre preferenze, ovvero tutti i like con cui cata-

loghiamo i contenuti che ci vengono proposti. Queste informazioni sono

gestite ed utilizzate in maniera differente che dipende dal servizio: per es-

empio un servizio di ecommerce come Amazon utilizza i dati su che oggetti

ci interessano per selezionare altri oggetti di nostro interesse e proporli du-

rante l’acquisto o la visualizzazione del sito in modo di massimizzare le

vendite e quindi i profitti.

I sistemi di raccomandazione sono anche utilizzati per diminuire il nu-

mero di oggetti visualizzati in caso di sistemi con un vasto catalogo. Infatti,

se Amazon dovesse mostrare tutto il suo catalogo in una pagina l’utente

sarebbe molto disorientato. Un sistema di raccomandazione è in grado di

scegliere gli oggetti piú pertinenti per un utente e quindi visualizzare quelli

in primo piano in modo da non disorientare l’utente e suscitare interesse

nell’utente.

I sistemi di raccomandazione sono anche utilizzati nel campo del mar-

keting. Aziende come Google utilizzano le preferenze degli utenti per vi-

sualizzare o meno una determinata pubblicità in modo da massimizzare,

anche in questo caso, le vendite e quindi i profitti.

I vari sistemi di raccomandazione si differenziano principalmente per

v

vi

gli algoritmi utilizzati. Gli algoritmi di raccomandazione sono il cuore di

una raccomandazione e decidono quali elementi selezionare tra quelli in

catalogo. Ogni algoritmo ha come input gli utenti, gli elementi e le pref-

erenze o ratings degli utenti sugli elementi. Ogni algoritmo ha come out-

put una lista di elementi consigliati per ogni utente. Il processo di gener-

azione di una raccomandazione è molto oneroso dal punto di vista com-

putazionale per questo gli algoritmi di raccomandazione generano prima

un modello e poi riuntilizzano il modello generato con il profilo dell’utente,

ovvero la lista di tutti i rating dell’utente, per generare una raccoman-

dazione. La creazione del modello è il task piú oneroso per una raccoman-

dazione e richiede molta Central Processing Unit (CPU) e Random Access

Memory (RAM).

Un buon algoritmo è talmente importante per una raccomandazione

che il gigante del noleggio di film online, Netflix, ha nel 2006 aperto una

competizione per trovare un algoritmo che riuscisse a suggerire vari film

in maniera migliore dell’algoritmo usato all’epoca. La competizione è nota

come il NetFlix prize [1] e aveva un monte premi di un milione di dol-

lari. La competizione è inziata il 2 Ottobre 2006 ed è stata conclusa il 26

Luglio 2009. L’algoritmo vincente migliorava del 10% le raccomandazioni

dell’algoritmo ufficialmente utilizzato da NetFlix all’epoca.

Il lavoro di questa tesi si basa in un lavoro precedente mio e di Andréia

Coronado Cha di nome Milo che a sua volta si basava su uno studio del

software ContentWise [2] di Moviri.

ContentWise è un innovativo sistema di raccomandazione per provider

di servizi televisivi. Il sistema é adottato dai maggiori player di telecomuni-

cazioni in Europa e ha ricevuto diversi riconoscimenti come l’IPTV World

Series Awards 2008. Nel 2007 Moviri ha vinto la prima edizione del con-

corso Start Up of the year award, promosso da PNICube (associazione ital-

iana di incubatori universitari) per il business innovativo e crescita poten-

vii

ziale. Recentemente Moviri ha stretto partnerships con HP, BMC, IBM, Or-

acle e VMware. Nel 2008 Moviri è stata nomitata HP BTO Partner of the

year.

Anche se ContentWise si comporta molto bene per l’ambito per il quale

è stato pensato il sistema risulta poco flessibile nel campo della ricerca. La

necessità di un sistema più flessibile per svolgere ricerche sui sistemi di

raccomandazione è stata necessaria. Il primo progetto che ha provato a dar

vita ad un sistema simile a ContentWise ma pensato per far ricerca è stato

sviluppato durante il corso di digital and internet television del Politec-

nico di Milano. Così è nato il progetto Milo che però è risultato fragile du-

rante i suoi primi utilizzi a causa delle diverse tecnologie utilizzate nello

stesso applicativo e a causa della mancanza di varie ottimizzazioni atte a

ridurre il consumo di CPU e RAM degli algoritmi di raccomandazione.

Con l’esperienza maturata durante il progetto Milo, questo elaborato

presenta un nuovo sistema di raccomandazione per film chiamato Movish

che si differenzia dal precedente per le seguenti caratteristiche

• Tecnologia. Movish si basa principalmente sul framework web2py

[3], un framework open source per lo sviluppo rapido di applicazioni

web veloci, scalabili e sicure. Tutta la parte computazionale è basata

su Matlab [4] che comunica con il framework web2py e quindi con

l’applicazione tramite la libreria pymatlab [5]. Pymatlab è essenzial-

mente un layer che traduce le strutture dati python in strutture dati

matlab e viceversa.

• Integrazione. Il sistema è una singola applicazione e non due progetti

separati che collaborano tra di loro come in Milo. Questo permette un

migliore controllo del sistema ed un singolo punto di intervento per

le modifiche. Tuttavia l’applicazione rimane comunque modulare ma

non esiste una separazione netta come in Milo per quanto riguarda

l’applicazione web che si occupa dell’interfaccia utente con il sistema

viii

di raccomandazione che si occupa di generare le raccomandazioni.

• Flessibilità. Il sistema è in grado di riconoscere se l’amministratore

aggiunge nuovi algoritmi al sistema e automaticamente importa il

nuovo algoritmo nel sistema. L’amministratore di sistema è quindi

in grado di aggiungere un nuovo algoritmo senza dover modificare

il codice dell’applicazione e abilita la possibilità di fare facilmente

ricerca su nuovi algoritmi.

• Indipendenza. Il sistema ha funzionalità di auto importazione di nuovi

film da imdb.com e youtube.com per quanto riguarda i trailers degli

stessi. Ogni settimana il sistema importa automaticamente tutti i film

che sono stati rilasciati o che verranno rilascitati in un intervallo di 5

anni prima o 5 anni dopo della data in cui avviene l’import. Quando

il sistema deve visualizzare un film in cui alcune infomazioni sono

incomplete automaticamente prende le informazioni da imdb.com.

L’amministratore può ordinare il refresh di tutto il dataset o importare

i coming soon attuali o i più popolari selezionando la relativa fun-

zione nel pannello di amministrazione.

• Scalability. Il sistema è stato sviluppato per evolversi nel cloud. L’intero

sistema è contenuto in una macchina virtuale di tipo KVM che può

facilmente essere spostata da infrastruttura ad infrastruttura come

Amazon EC2 o Rackspace. Inoltre l’applicazione utilizza in maniera

estensiva anche lo scheduler di web2py per permettere l’esecuzione

di task asincroni. Ogni operazione che richiede un lavoro computazionale

non indifferente è incapsulata in un task che viene eseguito in maniera

asincrona rispetto alle richieste web.

Grazie a questi fattori e alla conoscenza sviluppata durante un intero

anno nel campo della raccomandazione, Movish risulta essere un sistema

flessibile ed efficiente per sviluppare e testare nuovi algoritmi di raccoman-

ix

dazione. Inoltre, affinchè sia possibile testare nuovi algoritmi in maniera

efficace un sottosistema di questionari è stato integrato in modo da avere

feedback puntuali sulle performances o altri aspetti degli algoritmi di rac-

comandazione testati.

Il sottosistema di questionari è stato pensato per essere il più modu-

lare possibile in modo da permettere l’inserimento di nuove tipologie di

questionario in maniera semplice. La creazione di nuovi questionari la cui

tipologia è già definita è invece facilmente gestibile interamente grafica-

mente dal pannello di amministrazione.

Il capitolo 1 illustra una overview della tesi che è una traduzione di

questo sommario; il capitolo 2 espone lo stato dell’arte di un sistema di

raccomandazione; il capitolo 3 analizza ContentWise, Milo e Movish ed

evidenzia le differenze tra i diversi sistemi; nel capitolo 4 Movish è analiz-

zato a livello architetturale e nel dettaglio; nel capitolo 5 il sottosistema dei

questionari è analizzato ed infine nel capitolo 6 la prima ricerca utilizzando

Movish è esposta.

La ricerca, sempre pubblicata in questo elaborato, che vuole correlare

la capacità di una raccomandazione di essere percepita come utile da un

utente in relazione al numero di film della raccomandazione stessa e rileva

risultati interessanti.

Contents

1 Overview 1

2 Recommendation system state of the art 6

2.1 Introduction . 6

2.2 Analysis . 9

2.2.1 Comparison . 13

2.2.2 Input . 13

2.2.3 Stack . 15

2.3 Output . 17

2.4 Presentation . 18

2.5 Conclusions . 18

3 Movish system background 20

3.1 Introduction . 20

3.2 ContentWise . 20

3.3 Milo . 21

3.4 Movish . 28

3.4.1 State of the art issues 36

3.5 Conclusions . 37

4 Movish system 38

4.1 Introduction . 38

x

CONTENTS xi

4.2 Architecture . 38

4.2.1 Graphical Engine . 42

4.2.2 Admin interface . 46

4.2.3 Scheduler . 50

4.2.4 Importer . 55

4.2.5 Crawler . 56

4.2.6 Recommendation engine 57

4.3 Structure . 59

4.4 Dataset . 62

4.5 Conclusions . 63

5 Survey management 65

5.1 Introduction . 65

5.2 Survey creation . 66

5.2.1 Algorithm performance 69

5.2.2 Algorithm strength . 70

5.3 Adding new survey type to Movish 71

5.4 Crowdsourcing . 73

5.5 Conclusions . 75

6 Research 77

6.1 Introduction . 77

6.2 Sources . 78

6.3 Survey . 81

6.4 Analysis . 86

6.5 Conclusions . 90

List of Figures

2.1 ICM . 14

2.2 URM . 15

2.3 Stack . 17

3.1 ContentWise . 21

3.2 URM creation code . 22

3.3 Code for the pythonmatlab communication 23

3.4 Milo architecture . 24

3.5 Milo recommendation slider 26

3.6 Milo homepage . 27

3.7 Milo movie description page 27

3.8 Database definition (part 1) 30

3.9 Database definition (part 2) 30

3.10 Database definition (part 3) 30

3.11 Database definition (part 4) 31

3.12 Database definition (part 5) 31

3.13 Database ER diagram . 32

3.14 Schedule movie update code 34

4.1 Movish architecture . 39

4.2 Admin and normal mode . 43

4.3 Movish homepage . 44

xii

LIST OF FIGURES xiii

4.4 Movie detail . 45

4.5 Movish admin mode homepage 46

4.6 Actions menu . 47

4.7 Algorithms menu . 48

4.8 Algorithm detail . 48

4.9 Matrices menu detail . 49

4.10 Surveys menu . 49

4.11 Bisect menu . 51

4.12 Scheduler 1/2 . 52

4.13 Scheduler 2/2 . 53

4.14 Importer core function . 55

4.15 Importer setting the crawler as a gateway code 56

4.16 URM and ICM creation . 57

4.17 Create model code . 58

4.18 Matlab algorithm tree structure 60

4.19 Automatically schedule a movie information update 63

5.1 Survey creation . 66

5.2 Survey architecture: relation between functions 68

5.3 Algorithm performance flow chart 70

5.4 Adding new algorithm: algorithm_strength example 72

5.5 Amazon Mechanical Turk survey link type 74

5.6 Surveys on Amazon Mechanical Turk 75

6.1 Facebook post to participate to a survey 79

6.2 Google plus post to participate to a survey 80

6.3 Survey phase 1 . 81

6.4 Survey phase 2 . 82

6.5 Survey phase 3 . 83

6.6 Survey phase 4 . 84

LIST OF FIGURES xiv

6.7 Survey phase 5 . 85

6.8 Survey having two displayed movies 86

6.9 Survey having five displayed movies 87

6.10 Survey having ten displayed movies 88

6.11 Signal to noise ratio for the three surveys 89

List of Tables

6.1 Average and standard deviation of the ratings in the three

different surveys . 88

6.2 Signal to noise of the three surveys 90

xv

List of acronyms and

abbreviations

ICM item content matrix

URM user rating matrix

DEI Dipartimento di Elettronica e Informazione

GUI Graphical User Interface

MVC Model View Controller

DAL Database Abstraction Layer

SQL Structured Query Language

ER Entity Relationship model

RAM Random Access Memory

nltk Natural Language Toolkit

HIT Human Intelligence Tasks

csv Comma separated values

http Hypertext Transfer (or Transport) Protocol

https Hypertext Transfer Protocol Secure

xvi

LIST OF TABLES xvii

RESTful Representational State Transfer

html Hypertext Markup Language

RAM Random Access Memory

CPU Central Processing Unit

Chapter 1

Overview

Recommendation systems are the ground in which successful social

and e-commerce website are based. The concepts of ‘Like‘ and ‘Suggested‘

heavily used in services like Facebook, Amazon, Google, Netflix, Hulu are

based on the concept that users of a system may like or dislike an item. The

collection of this preferences or ratings is the basic data for any recommen-

dation algorithms which goal is to find the next item that the user may like.

This feature is used in different ways depending from the business model

that the service uses: for example on an e-commerce website such as Ama-

zon it is used to let the user think about adding the recommended item in

cart to maximize profits, on Netflix the recommendation are used to keep

people using the system and thus increase user fidelity.

Recommendation systems are used also to restrict the number of items

to display to the user to overcome to information overloading problems. In

big e-commerce website, having a big catalogue of thousands of items may

disorient the user. Using a recommendation the e-commerce site may still

offer a way to navigate through a thousand item catalog, maybe with the

support of a search engine, and show the items that the user may look for

based on previous purchases of the same user.

Recommendation systems are also used for marketing purposes. Com-

1

CHAPTER 1. OVERVIEW 2

panies like Google use the information of what the user searched to pro-

mote some advertisements in respect of others. In this scenario what the

user ‘liked‘ is what the user searched for and since the user took an active

part in looking for something the advertisement will be much more effec-

tive and likely to convince the user in selecting the advertised item.

Recommendation systems differentiate between each other from the

used algorithm. The recommendation algorithm is the basic software that

makes a recommendation system perform better than another one. It takes

three sets of elements: users, items and ratings. It then outputs a list of

items for each user. The output is also called recommendation. The pro-

cess of running an algorithm to generate a recommendation is a compu-

tational intensive process and thus complex algorithms elaborate a model

and then they use this model to generate the actual recommendation. Cre-

ating a model is a very intense process that requires a lot of computation

power and Random Access Memory (RAM) for several days. After a model

is created it can be used quickly on demand to get the list of suggested items

for an user.

Algorithms that do recommendations are very important. It is how the

algorithm performs that will make a recommendation system be valid or

not. Netflix made an open competition [1] to find the best user profile based

algorithm for their needs in suggesting movies to users. The competition

had a prize of one million dollars. The competition started on October 2nd

2006 and ended on July 26th 2009. The winning algorithm had an improve-

ment of 10% from the original Netflix algorithm.

The work of this thesis is based on a previous recommendation sys-

tem developed by me and AndrÃ¨ia Coronado Cha which was previously

based on the ContentWise [2] software by Moviri.

ContentWise is and innovative content recommendation engine for IPTV

providers. Contentwise has been adopted by a major European triple-player

CHAPTER 1. OVERVIEW 3

Telco and shortlisted at the IPTV World Series Awards 2008 at the IPTV

World Forum. In 2007 Moviri won the first edition of the Start Up of the

Year Award, promoted by PNICube, (the Italian Association of Universi-

ties Incubators) for its innovative business and potential growth. More re-

cently, Moviri has partnered with major vendors and service providers as

HP, BMC, IBM, Oracle and VMware. In 2008 Moviri has been named HP

BTO Partner of the year.

Even if ContentWise has been successfully adopted by a wide range

of companies it is not suitable for researches in new recommendation al-

gorithms. To overcome this limitation the first system, called Milo, was

developed during the digital and internet television Politecnico di Milano

course. Milo was a first attempt in experimenting a new graphical interface

for the user and was relaying in too many different technologies that made

the overall system really fragile.

Based on the knowledge developed during the coding of Milo, I’ve de-

veloped another recommendation system called Movish which differenti-

ate from the previous one by the following factors:

• Technology. Movish is built on top of web2py [3], a free open source

full-stack framework for rapid development of fast, scalable, secure

and portable database-driven web-based applications under the GPLv3[6]

license. All the computational part is managed by Matlab [4] which

talks with the web2py powered web application thanks to the py-

matlab [5] library. Pymatlab is basically a layer that translates python

data structures in Matlab ones.

• Integration. The system is a single application and not two separate

projects like in Milo. This allows a better control of the system and a

single entry point for interventions. The application is still modular

but there is not a project level separation between the web application

and the recommendation engine.

CHAPTER 1. OVERVIEW 4

• Flexibility. The system is able to recognize if the administrator adds

new algorithms to the source tree and updates the admin panel ac-

cordingly. The administrator is thus able of generating a model for a

given algorithm and create new survey without modifying the sys-

tem code. This allows researches to be able to use the system for their

tests without caring about the implementation of the system that is

going to use the algorithm they implemented. This makes Movish an

effective recommendation system for researching new algorithms or

improving existing ones.

• Independence. The system has an embedded crawler that crawls the

information about movies from imdb [7]. Every week the system au-

tomatically fetches all the movies that have been released or that are

scheduled to be released in an interval of 5 years from the given

week. When displaying a movie if some information about the movie

is missing the system tries to retrieve the missing information from

imdb. The administrator can order to update a movie, the whole dataset

or retrieve the most popular movies or the coming soon movies from

imdb anytime thanks to the administration interface.

• Scalability. The system has been developed with the cloud in mind.

Everything is self contained in a virtualized KVM image which can

be easily deployed on popular cloud infrastructure like Amazon EC2

and Rackspace. It uses the web2py scheduler heavily to allow asyn-

chronous tasks. Every time a consuming operation is encapsulated in

an asynchronous task which is executed by a list of workers without

affecting web users with slow navigation through the movie catalog.

Thanks to this factors and to the knowledge developed during a full

years in working with recommendation systems, Movish is an effective and

flexible system to do research in the field of algorithms for recommendation

CHAPTER 1. OVERVIEW 5

systems. In order to test algorithms effectively a flexible survey subsystem

was integrated also.

The survey system has been thought to be more modular as possible

and allowing easy modifications and adding of new type of surveys. Sur-

vey creations is also made trivial thanks to the easy menu in the admin

interface.

Chapter 2 exposes the state of the art of a recommendation system;

in chapter 3 ContentWise, Milo and Movish are compared between each

other; in chapter 4 Movish is being bisected in order to analyze its archi-

tecture and features; in chapter 5 the survey subsystem is exposed and dis-

cussed and in chapter 6 the first research in Movish is exposed.

The research correlates the number of recommended movies that the

user gets displayed with the perception of a useful recommendation with

interesting results.

Chapter 2

Recommendation system state

of the art

2.1 Introduction

This chapter will simply expose to the reader some backgrounds about

recommendation systems. Basic concepts of recommendation systems, its

algorithms, explanations and layouts might be of knowledge of the one in

hand of this project description, but a brief review could be useful to un-

derstand the whole application design. The state of the art of a recommen-

dation system is also analyzed in order to give to the reader a meaningful

idea of that a recommendation system is supposed to work and reach its

goals in the optimal way.

With the emerging of hardware resources and computational power

recommendation system have grown and diversified. Just decades ago a

recommendation would have taken hundreds of mainframes to be com-

pleted. Nowadays with hardware as a commodity and all the emerging

cloud solutions that allows to have the amount of desired computational

power, RAM and storage for just the time requested, deploying recom-

mendation system has never been faster and cheaper. Also big companies

6

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 7

like Netflix completely run on cloud systems like the one by Amazon or

Rackspace. As soon as internet and computers evolved and more informa-

tion was available and interconnected, search engine started to arise and

being adopted by the newborn internet community. These early search en-

gines were basically of two types [8]:

• Information retrieval. A keyword is the base concept of this type.

Keyword or a set of keywords are used to look for the desired con-

tent. The points of failure of this kind of search may be the chosen

keyword. In fact the content could have been categorized used a set

of different keywords that the one the user is looking for, thus the

content is not selected even if it is relevant to the user.

• Information filtering. Preferences established by the user are used as

a background knowledge to select the relevant items for the user or,

alternatively, properties of a item or a subset of items can be used to

lead to another set of relevant items.

Recommendation systems are basically of the second type or informa-

tion retrieval and they evolved heavily under all the 90’. Nowadays search

engine giants like Google or Yahoo use both types in integrated system to

lead to stronger and valuable results. Lately with the adoption of smart

phones and tablets which have a small screen size and different human-

computer interaction than a traditional personal computer with a mouse

and a keyboard, recommendation systems to surf content on those devices

are critical applications and under heavily development.

Recommendation system are widely adopted in all the most known

website and web applications. They may be based on:

• User profile: the recommendation is based on information gathered

from the user. The information can be explicit or implicit. An example

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 8

of explicit information is the set of ratings. Supposing we are in the

case of a movie web application the user profile is the list of all the

ratings that the user made for each movie in the database. An exam-

ple of implicit is the set of pages or items that the user viewed, in the

case of a movie web application this can be just the list of items that

the user viewed during the continuous navigation of the website.

• Item content: the recommendation is based on the current item or

set of item displayed. In this case no information about the user is

used by the algorithm. As and example of this scenario for a web

application abut movies, the item content for the recommendation

can be the name of the actors, the genre, the release date or the plot

description.

The reader should see a recommendation system as a complementary

system of a search engine and not a different implementation of a concept

of a search engine. They solve two different problems. Search engines are

really powerful when the user knows or has an idea of what he or she is

looking for. The user types a keyword or a set of keyword in a text field and

the algorithms involved select the contents relevant for that search.

Recommendation system are useful when the user actually does not

know what she or he is looking for. Their added value is in suggesting an

item that may be interesting from the user perspective. The user has not a

keyword to start his/her navigation with. The user will just receive the new

item, maybe without even asking about it. Since search engines and recom-

mendation systems solve different problems they are often implemented

one aside the other to keep the user in the web application or to satisfy

user’s needs. From a research [9] at RecSys [10], 45% of users will likely

shop in a web application that employs recommendation technology and

69% of users in the highest spending category are more likely to desire the

support of recommendation technology during their web application nav-

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 9

igation or shopping. So recommendation systems are valuable from both

user and web application. It offers the benefit of an easy way to navigate

and find items for an user and a better service and/or a better shopping

experience for the web application.

2.2 Analysis

Recommendation systems, like search engines, are very complex sys-

tems with a strong time constraints. From a recent study [11] users often

leave web pages in 10-20 seconds but pages with a clear value proposi-

tion can hold people’s attention for much longer because visit-durations

follow a negative Weibull distribution. Due to this nature of the web user

pages should load as quick as possible and thus search results or recom-

mendation results should be displayed in no more than few seconds or the

user will leave the page without even looking at the results. These kind of

constraints have influenced the way recommendation systems have been

developed and evolved through time. From a black box point of view a

recommendation system is just a tool that given the proper input returns

an output. No matter which algorithm, programming language, or added

feature the recommendation system applies, all recommendation system

analyzed respect this constraint. Given that we will explore the input of a

recommendation system and its stack. The algorithms can be categorized

in two families depending from the requested input:

• Content based. The elaboration of the suggested items listed are based

on the content of the available object options [12]. Therefore the only

needed input for this family of algorithms is the item content ma-

trix (ICM). Due to the fact that these algorithms do not know any-

thing about the user they are exposed to some limitations:

– the list of metadata influences the recommendation directly. If the list

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 10

of metadata is not selected properly the recommendation can

lead to very poor results for the user perspective.

– cold start problem [13]. without knowing anything about the user

the system will may suggest items that are completely not rele-

vant for the user. A solution for this kind of problem may be to

shuffle the recommendation with the top popular items of the

system. The top popular items of the system may be the most

rated or the ones with best ratings.

– User will always take suggestion based on a set of preferences that

he/she set on the system even if a totally not related item may be inter-

esting for the user. Usually this problem is overcome by ‘Surprise

me‘ or ‘I feel lucky‘ buttons that the user can click that use dif-

ferent ways to select items that are not strictly dependent from

the user preferences.

– Item overlapping. the algorithm can treat two different items from

the database as if they were the same one. This may happen if

the metadata associated to the two movies are similar. In this

case the algorithm may hide one of the two items to the user.

• Collaborative. This kind of algorithm resemble one of the best algo-

rithm for recommendation ever designed: the word of mouth [14]. If

one of your friends suggests to see a movie, maybe with him/her,

we will likely do that. No matter if we already know that we may

not like the genre or the actor involved, we will still go to see that

movies. This continuously happen, even nowadays, every week. In

fact movie producers in particular, invest a lot of money and effort

in trying to have a good critics. Having a good critics influences the

number of people that will watch a movie and thus the income of that

movie. The same concept of ‘word of mount‘ is applied on these fam-

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 11

ily of algorithms: based on the ratings, the user is inserted in a cluster

of users with similar tastes, movies with good ratings from users in

the same cluster are thus selected for the recommendation [15]. Two

main concepts behind these algorithms must be clarified [16]:

– Proximity between users. Two users with similar tastes and inter-

ests tend to rate items in the same patterns. This property is one

of the most exploited by the recommendation systems. It seems

quite straightforward that if two users like horror movies and at

both of them a good horror movie is proposed they will likely

rate it the same way with small differences.

– Proximity between items. Two related items are usually rated by

the same cluster of users at the same way. As in the previous

case it seems quite straightforward that if two movies have the

same actors and the same genres two similar users will rate the

two movies almost in the same way.

As for the content based algorithms, collaborative algorithms have

the following problems:

– Cold start problem [13]. This problem is much more evident here

than in content based algorithms. When a user is inserted in the

system there is no way to determine in which cluster the user

belongs. There are multiple ways to overcome this problem: the

user, at first login, may be forced in rating some movies, this

action will define an initial cluster for the users; another solution

may be the one of using the top popular items to populate an

initial recommendation.

– Recommendation freshness. New items that are added to the database

and thus have no ratings will not be suggested in any recom-

mendation in the system. This problem can be solved shuffling

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 12

the recommendation with some new items that have not recom-

mendation.

– Incomplete user profile. If the user rated few items, they are not

enough to mold a profile and thus the user cannot be associated

to any cluster. This happens because the ratings are not enough

for the algorithm to decide to which cluster the user belongs.

This can be avoided forcing the user, at first login, to rate a fixed

amount of items, maybe from the most popular ones. This is the

approach taken from Milo and then Movish to overcome this

problem. When the user is going to obtain the first recommen-

dation he/she is forced to rate five movies.

– Singular taste. If the user has a very singular taste the algorithm

may be not able to create a cluster if not a single user cluster.

This will make really hard for any recommendation system to

suggest a relevant item for the user.

Problems related to the algorithms can be overcome thanks to smart de-

cisions taken by recommendation system in terms of user interface. In Mo-

vish the cold start problem, and the incomplete user profile problems are

solved by forcing the user in rating some movies before the first recommen-

dation. The recommendation freshness and the item overlapping problems

are overcome displaying newest movies in the homepage and letting the

user rating them.

Collaborative algorithms have another categorization:

• User based. The main focus of the algorithm is the user itself. In

this kind of algorithms the model is usually created using a “user x

user” matrix in which both rows and columns are composed by users.

Therefore, each user from the URM will be represented as a vector in

a space with N dimensions, being N the number of items present on

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 13

the database. The proximity between users is then found by the an-

gle between vectors: small angle means that the two user profiles are

similar.

• Item based. The main focus of the algorithm is the item. In this kind

of algorithms the model is usually created using a “item x items” ma-

trix in which both rows and columns are composed by items and each

cell represents the similarity level between the items that intersect.

After this, the generation proceeding of suggestions are easily done,

multiplying the user profile and the model just created which will

result in the rating list to all database items to a certain profile.

2.2.1 Comparison

Collaborative algorithms are able to advice an user to see a totally un-

related item in relation to his/her previous ratings enabling a surprise effect

for the user [17]. As a side effect collaborative algorithms tend to mess the

user ability to understand the relation between his or her tastes and the

suggested item. Content based algorithms tends to be more clear from the

user’s perspective, shrinking the probability of confusion by the user. Thus

collaborative algorithms tend to be more “aggressive” when compared to

content based ones.

2.2.2 Input

There are two kind of inputs for a recommendation system [18]:

• Item content matrix. It is used in content based algorithms. It is a

matrix which has all the items as columns and all the metadata as

rows. A metadata is a specific characteristic or feature which may

be present or may not be present for the given item. In case of the

metadata being present in the given item the corresponding cell is set

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 14

Figure 2.1: ICM

to 1, 0 otherwise. In a case of a recommendation system for movies

the metadata could be the presence of an actor, the set of genres and

keywords extracted from the plot. Figure 2.1 shows how items and

metadata correlate in the composition of the item content matrix.

• User rating matrix. It’s used for collaborative algorithms. It is a ma-

trix which has all the items as columns and all the users as rows. The

cell identified by a item and a user contains the rating that the user

gave to that movie. It has the value of 0 if there is not any rating for

the given item. To better clarify the composition of an user rating ma-

trix, the figure 2.2 explains how it is composed.

The rating can be collected in two different ways:

– Explicitly. The user is aware that he/she is rating an item. The

rating can be provided in different scales. The most common

scales are: binary, 3-scale or 5-scale. Binary is a two value rating

usually referred as ‘like‘ or ‘dislike‘. 3-scale is usually referred as

3 stars or 3 thumbs up. 5-scale is usually referred as 5 stars or a

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 15

Figure 2.2: URM

slicer in the 0-5 range. In all the scales, low rating means that the

user disliked the item, high values mean that the user liked the

item.

– Implicit. The user is not aware that he/she is rating an item.

While browsing the system collect navigation information like

clicks on links or displayed pages and based on this information

implies ratings for the items. This way of collecting data is very

used nowadays with pervasive web applications. Information is

key point in business. The more a company know about its cus-

tomers the better it will be able in satisfy their expectations.

2.2.3 Stack

To make this possible recommendation system evolved in a stack like

way that can be summarized in three phases [19]:

• Batch or model creation. This is a very computational intensive task.

Given an ICM or URM it will create a model that will be used later

during the recommendation. In this phase most of the computation is

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 16

performed in order to reduce the computational resources of the next

step. Due to the nature of this phase it is seldom run. Usually this

kind of operations are run once a week or once a month.

• Real time or recommendation generation. Given the model elabo-

rated in the previous step and a user or a set of users this task pro-

duces the recommendation or a list of items for the user or set of

users. The main requirement in this phase is a fast response since it

has to run in real-time during page generation. A late response leads

in dissatisfaction of the user and a high probability of losing users just

because they wait too much the page to be generated. The algorithm

should be robust enough to prevent error condition and still gives a

valid set of items.

• Anti reshuffling or recommendation update. Even after recommen-

dation generation, user can choose a suggested item and thus evalu-

ate it. A good recommendation system is able to react actively under

those circumstances and operate in order to generate a new recom-

mendation taking into account the fact that new ratings are added.

The new recommendation should thus based on the previous one

with small modification. That is why it is called anti reshuffling, to

avoid the cycle of the same items.

Figure 2.3 summarize the stack of a recommendation algorithm to

better clarify the concept. In the figure there is a clear distinction be-

tween what is batch and thus computational intensive and what is

not. After that the model is ready the recommendation can be per-

formed which generates the Top N List or the recommendation.

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 17

Figure 2.3: Stack

2.3 Output

As anticipated in the previous section the output of a recommendation

system can be of two types:

• Individual scoring. Given a user the algorithm returns all the rat-

ing forecast for this user. This is then turned to a recommendation

thanks to the following assumption: recommendation should select

items relevant for the user or items that the user will like, since we

have user rating forecast we can use the items with the greatest fore-

casts for our recommendation since the user will probably like them.

• Top-N recommendation. The algorithm output a list of the Top-N

items most suitable for a certain user. This can also be reproduced

starting from the Individual scoring output and ordering that list in

descending order of preference..

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 18

2.4 Presentation

The recommendation algorithm is essential in selecting a relevant sub-

set of items for the user but it’s not enough to create a credible recommen-

dation [20]. For the recommendation to be useful to the user it must be cor-

rectly exposed to the user attention. The way the information is displayed

is fundamental and contribute in making a recommendation system suc-

cessful or not. From recent studies it is also confirmed that the way a rec-

ommendation is displayed may affect the items selected by the user [21].

Usually recommendation come in a list like form which is a natural way

to display a vector of items. A study shows that a text structured overview

with concise text and graphics not only facilitates the creation of a trustful

relationship between the system and the user but increases user efficiency

in selecting a recommended object [22].

All these studies have been taken in consideration while designing both

ContentWise and Milo. They have also been considered in Movish too but

the style has been modified taking into account that almost 10 years are

passed from that studies and that web application such as Facebook [23],

Twitter [24] and Pinterest [25] have been gained popularity among users.

They provide new ways to explore and display a very big amount of data

using a list like, in case of Facebook and Twitter or a catalog like in case

of Pinterest, styles. Since movies can be easily represented by their poster

which resembles the movie atmosphere, Movish uses a Pinterest like layout

to display movie poster, title and genres.

2.5 Conclusions

Recommendation systems are currently a very active research field. The

integration with social networks like Facebook, Pinterest, Twitter and Google+

are now opening new ways for them to be more pervasive and be able to

CHAPTER 2. RECOMMENDATION SYSTEM STATE OF THE ART 19

match the user tastes better than ever. Also new algorithms are under de-

velopment that are able to use this new amount of data that was unavail-

able just five years ago. Not only algorithms and datasets are important,

as we demonstrated in this chapter also presentation and usability deter-

mine the success or the failure of a recommendation system, especially on

e-commerce websites.

Recommendation systems are definitively a kind of technology that will

evolve in the future with search engines and other systems in order to in-

crease user satisfaction. In the following chapter we will continue analyz-

ing how Movish has been implemented and how all the challenges that

implementing a recommendation system implies have been solved.

Chapter 3

Movish system background

3.1 Introduction

In this chapter the reader can understand the basic architecture of Mo-

vish. Since implementing a recommendation system is a challenging pro-

cess the reader will be guided through all the problems encountered and

will receive explanations in how those issues have been addressed either

by design or by system architecture in Movish. This chapter is thus funda-

mental to all the readers that want to understand the basic functions and

architecture of the system. We will start from the basic systems that inspired

Movish: ContentWise and Milo. We will analyze Movish itself later on.

3.2 ContentWise

ContentWise is a well known recommendation system developer by the

Dipartimento di Elettronica e Informazione (DEI) of Politecnico di Milano

university. This product basically exposed a movie catalog and makes the

use able to perform ratings and obtain recommendations using different

algorithms. The user is able to change the recommendation system by it-

self and the interface is designed to be used by recommendation system

20

CHAPTER 3. MOVISH SYSTEM BACKGROUND 21

Figure 3.1: ContentWise

professionals. The figure 3.1 shows ContentWise home page.

From a first look it is clear that the Graphical User Interface (GUI) has

a late 90’ style. The architecture of ContentWise is also very rigid: the al-

gorithms are embedded in the GUI and this makes the action of adding

a new algorithm really troublesome. The application is mainly written in

Java programming language.

The inability of adding a new algorithm easily and the overcomplicated

user interface of ContentWise made the system not suitable for a system

that is able to research on new algorithms on unaware users.

3.3 Milo

During the 2011/2012 course of digital and internet television a new

recommendation system for movies that wanted to be similar to Content-

Wise but more modular and flexible such that it was easy to add new algo-

rithms was implemented.

Since there wanted to be clear distinction between the engine and the

presentation a Model View Controller (MVC) [26] paradigm has been used.

CHAPTER 3. MOVISH SYSTEM BACKGROUND 22

Figure 3.2: URM creation code

Due to the python programming language popularity and emerging web

frameworks, it has been chosen as base language. Among all the available

frameworks, Pyramid [27] has been selected thanks to its flexibility and

easy to use.

In fact Pyramid allows to have a base MVC framework skeleton and

plug it with all the libraries you need for your application. Also modifying

the base components it is easy and suggested by developers to fully satisfy

the application needs. In particular Milo had to communicate with a mat-

lab [4] based set of algorithms. Thanks to pymatlab [5], python is able to

talk directly to matlab in a way that reminds a server-client socket commu-

nication.

As stated in chapter 2, recommendation systems perform recommenda-

tions using a model. This model requires a lot of computational power and

time. Web applications have a better user experience if they have a lower

page load delay instead. To overcome this conflicting needs a asynchronous

task manager framework has been integrated to allow the web application

to trigger some events that add new tasks. These tasks are thus run on a

separate process.

In order to make the administrator able to add unmodified Matlab [4]

algorithms the pymatlab [5] library has been used. Pymatlab makes python

be able to communicate with matlab via the matlab shell using accessible

via a socket like interface. Figure 3.2 shows a piece of code of the creation

of the user rating matrix (URM) from the python side.

The self.create_urm() method generates the urm picking the data from

CHAPTER 3. MOVISH SYSTEM BACKGROUND 23

Figure 3.3: Code for the pythonmatlab communication

the database. That python function returns a numpy array of users, movies,

rating e and array indicating the dimension of the the matrix. The dimen-

sion is needed to create a sparse matrix of the right size. In fact the self.create_urm()

function only returns actual data, skipping all the zeros. This avoid not nec-

essary usage of ram due to too big matrices. Line from 2 to 5 put the vari-

ables in the matlab environment. Line 6 creates the sparse matrix into the

matlab environment. The matrix created so is then stored as a .mat file for

later use during the creation of the model.

As you can see all the communication is handled by running string like

commands. Variables are stored and retrieved from the matlab environ-

ment thanks to the get and put functions of Figure 3.3.

This allows a clean separation of the python environment and the mat-

lab environment. All the variables are transferred as strings or as floats.

This is a limitation of the pymatlab library which is not able to handle in-

tegers variable correctly. Also all variables from python to matlab must be

numpy [28] arrays.

NumPy is the fundamental package for scientific computing with Python.

It contains useful function and data structures for easy management of ma-

trices and numerical data arrays. Together with scipy [29], numpy wants to

be an open source alternative to matlab providing software for mathemat-

ics, science and engineering. Scipy is built on top of numpy.

Milo was developed in a modular way and was the union of two sub-

systems [18]: a graphical engine and a recommendation engine called Whis-

CHAPTER 3. MOVISH SYSTEM BACKGROUND 24

Figure 3.4: Milo architecture

perer. Whisperer was in charge of communicating with matlab through the

just exposed pymatlab interface. The graphical engine was able to commu-

nicate with Whisperer thanks to a rest interface. In order to clarify reader

understanding of Milo architecture the user can refer to Figure 3.4.

The system is composed by a cherokee webserver. Each requests that

arrives to the webserver spawns a new worker or is assigned to an exist-

ing one. Each worker is as instance of pyramid web framework with the

application running. The frontend database is based on the NoSQL [30]

MongoDB [31] databases.

NoSQL is a broad class of database management systems identified by

non-adherence to the widely used relational database management system

model. NoSQL databases are not built primarily on tables, and generally do

not use structured query language for data manipulation. NoSQL database

CHAPTER 3. MOVISH SYSTEM BACKGROUND 25

systems are often highly optimized for retrieve and append operations and

often offer little functionality beyond record storage (e.g. key, value stores).

The reduced run-time flexibility compared to full SQL systems is compen-

sated by marked gains in scalability and performance for certain data mod-

els.

In short, NoSQL database management systems are useful when work-

ing with a huge quantity of data when the data nature does not require

a relational model. The data can be structured, but NoSQL is used when

what really matters is the ability to store and retrieve great quantities of

data, not the relationships between the elements. Usage examples might be

to store millions of key, value pairs in one or a few associative arrays or to

store millions of data records. This organization is particularly useful for

statistical or real time analyses of growing lists of elements (such as Twitter

posts or the Internet server logs from a large group of users).

When the graphical engine needs to do a recommendation it makes

a Hypertext Transfer (or Transport) Protocol (http) Representational State

Transfer (RESTful) request to another web application, whisperer, that cares

about creating the item content matrix (ICM), URM and all the data struc-

tures needed for the recommendation. The recommendation engine relays

on a PostgreSQL [32] database for storing the data for the users and the

items. Notice that the recommendation engine has only the concept of users

and items, this means that it flexible enough to recommend any kind of

item to a user. The fact that it was used for movies is thus just a particu-

lar case. This was one of the biggest improvements from ContentWise [2].

The recommendation system developed could be reused for any kind of

recommendation.

The recommendation was exposed to the user through a slider placed

on top of the page such that the user was likely to watch the slider for first.

This has been accomplished using animations in the slider that capture the

CHAPTER 3. MOVISH SYSTEM BACKGROUND 26

Figure 3.5: Milo recommendation slider

user attention. The result can be see in Figure 3.5

The rest of the homepage of Milo can be seen in Figure 3.6. As studies

recall [20], the best way to expose items is an image and a brief description

of the item.

This has been accomplished in milo displaying the cover of the movie,

its title, and its genres. Doing so in very few words the user has a clue about

the movie and can thus decide if he/she is interested or not in the movie. If

the user is interested, he/she can click on the movie cover to have see the

movie description shown in Figure 3.7

The movie description page is thought to show mainly the poster of

the movie in full dimension and its trailer. The user then gets two kinds

of recommendation: the content dependent one and a user recommended

one using a content based or a user based algorithm that the administrator

decided. The user can then read the comments about a movie.

In order to simplify the usage and the administration task, Milo inte-

grated an admin interface to generate the algorithm models, download the

relative model files, download the ICM and URM matrices and manage

the surveys. For the first time the admin was able of placing the right mat-

lab file in a directory, load the admin page, create a model for the newly

CHAPTER 3. MOVISH SYSTEM BACKGROUND 27

Figure 3.6: Milo homepage

Figure 3.7: Milo movie description page

CHAPTER 3. MOVISH SYSTEM BACKGROUND 28

added algorithm and create a survey for that algorithm without modifying

one line of code in the system. This was the major improvement of all the

previous systems of this kind.

Milo had a two main problems: the first problem was that it had not a

clear idea of what it was going to be, that resulted in a hard to maintain

code and set of hacks to make things work as fast as possible. This also

made the system weak due to many software bottlenecks caused by dif-

ferent databases and mainly by the available hardware for the project that

was way limited. Also the matlab part was not optimized in order to re-

duce memory and free up space as soon as possible. The second problem

was mainly the framework chosen, pyramid, that resulted hard to maintain

and over complicated in the template section.

Beside those limitations, Milo was an effective and useful system that

was able to correctly manage users and generate new surveys.

3.4 Movish

Movish is a step forward from Milo in the fact that it has a clear vision of

the fact that it’s a platform for research on new recommendation system al-

gorithms. The system is developed in python and uses web2py [3] as main

framework. Web2py has been chosen over pyramid because it included all

the feature Movish needed:

• MVC. Web2py has a strong MVC concept. The structure of the project

defines the paths to reach each single function of the application.

Models are easy to define thanks to the Database Abstraction Layer

(DAL) which has a direct mapping to Structured Query Language

(SQL). Web2py is also capable of doing automatic migrations: as soon

as the code that defines a database table is changed, the application

recognizes that and runs a SQL ALTER TABLE query to update the

CHAPTER 3. MOVISH SYSTEM BACKGROUND 29

database to have the same schema defined by the DAL. The DAL code

of the database can be seen in Figures 3.8, 3.9, 3.10, 3.11, 3.12. The

Entity Relationship model (ER) diagram can be seen on Figure 3.13.

This diagram shows all the relations between the various data struc-

ture. The real database is much bigger though. All the data structures

used by the web2py framework have been disabled in the graph in

order to allow an easy reading of the most important ones.

• Scheduler. Web2py has a power scheduler built in that has been heav-

ily used in Movish. The use of that component is so deep that I have

also found some bugs while coding the various tasks. All bugs promptly

reported have been fixed in few days after submission. The scheduler

allows the requests to be dispatched as fast as they can while allow-

ing longer tasks to be scheduled. After registering the different tasks

the framework itself can also trigger them if some conditions are sat-

isfied. This is heavily used to update movies that have incomplete

information.

The main data structures are the one for storing information about the

user called auth_user and users, the one for storing the movies called movies

and the one for the surveys. auth_user is web2py specific while users is an

extension of auth_user in order to support additional field while keeping it

separated from the web system. This is so because there are two kind of

users in the system. The ones that have registered from the web interface

and the ones that have been added from the crawler that gets data from

imdb.com [7]. We will talk about this later. For now just mind that we don’t

want to pollute the auth_user table with crawled user that will likely never

use the system.

The movies data structure stores all the information about a movie and it

is i a many-to-many relationship with either features, genres and persons_in_movies.

ratings are also a central data structure that stores all the rating in a relative

CHAPTER 3. MOVISH SYSTEM BACKGROUND 30

Figure 3.8: Database definition (part 1)

Figure 3.9: Database definition (part 2)

Figure 3.10: Database definition (part 3)

CHAPTER 3. MOVISH SYSTEM BACKGROUND 31

Figure 3.11: Database definition (part 4)

Figure 3.12: Database definition (part 5)

CHAPTER 3. MOVISH SYSTEM BACKGROUND 32

Figure 3.13: Database ER diagram

CHAPTER 3. MOVISH SYSTEM BACKGROUND 33

0 to 1 float number where 0 is not rated, and 1 is rated as the most awesome

movie. Since various algorithms use different scales, this representation al-

lows to use a common scale and then do the required conversion then the

URM is generated for a particular algorithm. The surveys data structure

takes into account the users allowed to perform a survey, the user answers

and the algorithm used. The comments data structure stores the informa-

tion about the comments that are associated to a movie and a rating. The

persons_in_movies in Figure 3.10 links the persons that can be an actor or

a director to a movie. The recommendations data structure stores the latest

recommendation for a given user and it is the only table that uses the em-

bedded serialization of fields available from DAL. In particular storing a

list of references in a table like on Figure 3.12 it is possible to compress a

set of many-to-many entries in a single entry. It is the DAL that will care of

serializing and deserializing the objects.

As shown in the previous figures the DAL makes really easy to define

new tables using the db.define_table function which accept the table name as

first parameter and then a variable number of Field objects. The Field object

take at least one parameter which is the name of the field and optionally

a type which describes the kind of data. The data can be of the follow-

ing types: string, text, blob, boolean, integer, double, decimal, date, time,

datetime, password, upload, reference, list:string, list:integer, list:reference,

bigint, big-id, big-reference.

As stated before, one of the main advantages of Movish is the heavy use

of the scheduler in order to:

• Update the dataset. It can be updated in two ways: by administrator

action or automatically. The administrator can perform the update

of all the dataset or import the most popular movies of imdb.com,

the coming soon movies or in cinema now movies by clicking the

corresponding button in the admin panel. The click will add a task to

CHAPTER 3. MOVISH SYSTEM BACKGROUND 34

Figure 3.14: Schedule movie update code

the scheduler that as soon as it detects a free worker will assign the

task. While a movie is displayed, if there are not enough information

about that movie, the system automatically generates a task to update

that movie.

The relevant code about the auto update of a movie is in Figure 3.14.

It is part of the view which is the last piece of code executed before

sending the output back to the user browser.

Web2py allows to put pure python code into the Hypertext Markup

Language (html) pages in order to perform any kind of operation and

also embed small logic related to the view. This flexibility is used to

detect that if the movie has no year set and the poster is set to the

default unknown poster which is images/unknown then schedule to

retrieve a movie by its id and parse all the reviews of the movie in

imdb.com.

• Create model. As explained in Chapter 2, the creation of a model is

an expensive operation. This characteristic allows it to be suitable for

a scheduled task. In fact the administrator can create the model for

each supported algorithm clicking the associated button in the ad-

ministrator interface. Alternatively, the model for a single algorithm

is generated as soon as a survey is generated to include the new users

that may have been added for the survey. In fact, doing a recommen-

dation for an user which was not in the URM at the moment of model

creation will cause an error. This is why it is mandatory to schedule a

new model for every newly submitted survey that adds new users to

CHAPTER 3. MOVISH SYSTEM BACKGROUND 35

the system.

• Create of the ICM and URM. The creation of the two matrices is also

an expensive query for the database this is why there is also a task for

creating and storing them into matlab as a sparse matrices for easy

retrieval.

• Features and titles vectors. For conformity also the two features and

title vectors of all the items in the database are created using a task.

The titles vector is a simple vector with the id and all the titles of the

movies in the database. The features vector lists, for each item in the

database all the metadata, or features, for that item.

• Survey creation. The creation of a survey is composed by different

steps: adding of the new users to the system with an auto generated

password, the creation of the model, and an informational mail to

each user of the survey telling that the survey is ready and that they

can login and perform the survey.

Another main component of Movish that was missing in previous sys-

tems is the presence of a full featured crawler that uses many sources to re-

trieve all the needed information for a movie. The crawler is build in a mod-

ular and extensible way in order to allow the adding of different sources in

the future. As from the time this thesis is being written, the crawler sup-

ports the following sources: imdb.com [7] via imdbpy [33] library or by

raw html parsing via the lxml [34] library and youtube.

Imdbpy is a python package useful to retrieve and manage the data of

the imdb movie database about movies, people, characters and companies.

It is well maintained an documented and saves the duty to parse the imdb

pages by hand. Unfortunately it does support imdb users and reviews so

in order to get the reviews of the users from imdb also a raw html parser

has been implemented using the lxml library.

CHAPTER 3. MOVISH SYSTEM BACKGROUND 36

lxml is the most feature-rich and easy-to-use library for processing XML

and HTML in python. Benchmarks available on their website shows that

the library performs better than any known library in generating and pars-

ing xml streams. It is also the library suggested by the python community.

Youtube is accessed via the http RESTful api in order to search movie trail-

ers. It simply searches for the title of the movie appending the word trailer

to it and picks up the first non sponsored result of the search if any.

3.4.1 State of the art issues

In section 2.2 we discussed about the issues that may affect a recom-

mendation system. Every real world recommendation system has to ad-

dress those problems. Movish tries to solve them in this way:

• list of metadata. Movish uses a tagger on the whole plot to retrieve

the maximum number of metadata. It only removes all the conjunc-

tions and stopwords.

• cold start. In Movish the user is forced, during survey mode that will

be exposed in chapter 5, to perform a number of ratings that the ad-

ministrator set at survey creation.

• recommendation freshness, thanks to the importer we will analyze

on chapter 4.2.4, Movish answer to this issue being able to automati-

cally fetch new movies from imdb.com including the ratings and thus

the system will have new movies with also ratings. This makes the al-

gorithms be able to use the new movies also at model creation even if

the movies have never being displayed on Movish.

Other issues are algorithm specific and unable to be solved from Mo-

vish. Movish goal is to provide the best up to date environment of URM,

ICM, titles and features vector for an algorithm that has to perform a rec-

ommendation.

CHAPTER 3. MOVISH SYSTEM BACKGROUND 37

3.5 Conclusions

Movish is the first fully automatic recommendation system survey plat-

form. It allows to test different algorithms via surveys without editing any

source file of the system. It is inspired by ContentWise and Milo but it intro-

duces a completely new flexible architecture to minimize the administrator

workload in keeping the system up to date and ready for testing new algo-

rithms. Movish represent a innovative and fresh approach to the problem

of an up to date dataset and optimized environment for recommendation

generation.

Chapter 4

Movish system

4.1 Introduction

In this chapter we will analyze the Movish automatic recommendation

system deeply in all its aspects and we will show how the various chal-

lenges of implementing a real world recommendation system can be solved

by either architecture or smart intuitions.

The reader will be guided on a tour that will include the project architec-

ture, the project directory structure, the mechanism for automatic discovery

of algorithms, the item crawler and the mechanism to hide the generated

traffic in order to do not cause traffic throttling by the contacted servers.

4.2 Architecture

Differently from ContentWise, a monolithic application, and from Milo,

a fully separated and modular application, Movish sits in the middle: it is

a modular application. The Graphical User Interface (GUI) and the recom-

mendation engine are in the same application but are two different mod-

ules that cooperate in order to limit the point of failures (that were too

spread on Milo) and allow flexibility.

38

CHAPTER 4. MOVISH SYSTEM 39

Figure 4.1: Movish architecture

CHAPTER 4. MOVISH SYSTEM 40

The architecture of the system can be see on Figure 4.1. The system is

exposed to internet(working) thanks to a cherokee web server [35]. Chero-

kee is an innovative, feature rich, and yet easy to configure open source

web server. Its goal is to be as fast as it can and serve as many user as the

hardware can hold. It is also C10K problem [36] aware. The C10k problem

is the problem of serving 10.000 concurrent connections with commodity

hardware, it has been well studied and only few webservers have been de-

signed to address this problem.

Cherokee has been chosen for this project because it resulted to be both

flexible and fast. Other webserver have been evaluated like nginx [37] and

apache werbserver [38]. The first one was very good in benchmarks but

lacked in flexibility, the latter was very modular but less likely to scale as

soon users grow or the system is under heavy load, which is the case while

a recommendation is performed while a model is being created.

Movish core modules are the graphical engine and the scheduler which

have their basis on the web2py [3] framework. The graphical engine speaks

to the webserver thank to an application handler called uWSGI [39]. uWSGI

is an extremely advanced, sysadmin-friendly, highly-modular application

container server written in POSIX-compatible C. It is the glue that connect

the webserver with the application. As for the webserver, uWSGI has been

chosen for its benchmarks and its lightweight.

The application relays in two other software and two services to work:

• A matlab [4] engine executable installed in the local appliance. This

is needed to perform the various operations with the algorithms that

are written in matlab.

• A PostgreSQL [32] database either remote or local. The database is the

primary source of information for various parts of the executable. It

is mainly used by the graphical engine, to get information to display

about movies and users, and from the scheduler to coordinate all the

CHAPTER 4. MOVISH SYSTEM 41

workers for all the tasks. The importer also uses the database in order

to store the crawled data.

• Imdb.com. An internet access is required to access imdb.com as a

primary source for new movies and useful information like release

dates, plot, reviews and thus ratings. In fact the whole basic dataset

has been built from the ground up crawling information about popu-

lar e latest movies of Imdb.com

• Youtube.com or youtu.be. As for imdb.com, an internet connection is

required to reach this service. The youtube source is used to search

and retrieve the correct trailer to bind to the movie at database level.

Movish is a complex application that can be divided in different areas:

• Graphical engine. This is the core of the Model View Controller (MVC)

structure. It is responsible of answering the requests from the user,

elaborate data and display the output.

• Admin interface. This is the administrator specific part that is used

to administrate the whole application from model creation, data re-

trieval, configuration of the algorithms, importing of new movies,

administrate the scheduler, create new surveys and retrieve system

information and status.

• Scheduler. This component has the main task of taking computa-

tional intensive operations and execute in a separate process, then

populate the database with the result of the computation. Since most

of the operations with matrices are very computational intensive this

module is heavy used by all the parts of the application.

• Importer. It is the component that calls the crawler and manages the

information from the crawler in an ordered way for storing into the

database.

CHAPTER 4. MOVISH SYSTEM 42

• Crawler. It is responsible for getting all the information it can from

imdb.com and youtube.com based on a movie or a set of movies. It is

also able to parse imdb user pages and their ratings. It is most used

by the task that update a movie given a movie id.

• Recommendation engine. This component takes care of managing

the communication with the Matlab engine. Since most of the opera-

tions of this module are very computationally expensive, this module

is very used by the scheduler.

• Recommendation algorithms. Those are all the matlab algorithms

placed in a specific folder of the project. There is a logic to detect all

the algorithms in a sub tree of directories.

• Models. As described in section 2.2.3, models need to be created to

perform the recommendation. This component manages all the cre-

ated models for each algorithm in the system.

4.2.1 Graphical Engine

The graphical engine takes advantage of the web2py [3] framework.

A request is taken by the controller, the correct function to be executed is

selected thank to the automatic route that find the function based on the

project directory structure. When the function is executed it retrieves data

from the database and populates a html template that is thus sent back to

the user browser.

The graphical engine has two modes: normal and admin mode. Only

users that have been promoted to admin are allowed to see the admin

mode. To switch from one mode another the user can click on the admin

link right after the login. The link is visible in figure 4.2.

In Figure 4.3 the reader can see the movish.co homepage as seen by a

normal logged in or not logged in user which resembles the normal mode.

CHAPTER 4. MOVISH SYSTEM 43

Figure 4.2: Admin and normal mode

The layout has been inspired by pinterest, a popular social network for

images but it has some peculiarities that makes it different for different rea-

sons. The main difference from pinterest is the presence of a slider placed

exactly at line of sight of the user, in the right position after the header

and the Movish logo. The slider displays two sets of data: if the user is not

logged in, it displays the most popular movies, if the user is logged in, it

displays a recommendation generated by a random algorithm or a admin-

istrator defined one. So the user is forced, at first, to have a look at the rec-

ommendation or at the most popular movies. Scrolling down the page the

user can start browsing the catalog via a search field or by seeing the dif-

ferent pages of the newly added items. In fact, by default, the list of movies

that appears in the homepage represent the recently updated or inserted

movies.

The fact that having a picture and a small text is the best way to display

items [15] has been kept displaying the movie cover, the title, the release

year and the genres. This allows to fit a movie in a small portion of the

page but display enough amount of information to the user.

The user can then click on a single cover of a movie or a title to open a

second page that displays the details about a movie like on figure 4.4.

The movie detail page will display the title, the imdb reference the gen-

res, the plot, the members of the cast and the directors. On the side there is

a big version of the movie cover that is used also in the listing of the catalog

page. If there are comments of the users about the movie those are shown

at the bottom of the page. If there is a trailer of the movie it will be also

displayed but not played by default.

CHAPTER 4. MOVISH SYSTEM 44

Figure 4.3: Movish homepage

CHAPTER 4. MOVISH SYSTEM 45

Figure 4.4: Movie detail

CHAPTER 4. MOVISH SYSTEM 46

Figure 4.5: Movish admin mode homepage

The detail page has been designed to be as clear and simple as possible

displaying all the information about the movie in a single page. There is

also a share button to share the link of a specific movie to a social network

of your choice including Facebook, Twitter and Google plus.

4.2.2 Admin interface

The admin mode is shown in figure 4.5. The admin has a different lay-

out with a big menu on the left and a white space on the right in order to

display information and content. One of the main features of Movish is that

the whole system can be managed by this admin interface.

The main page, or the dashboard, shows useful information of the sta-

tus of the system. It displays the number of users in the system, the number

of movies with full information, the number of movies that lack some infor-

mation, the number of ratings in the system, the number of active and total

workers and the number of pending tasks/jobs. In the dashboard there is

CHAPTER 4. MOVISH SYSTEM 47

Figure 4.6: Actions menu

also a table that is automatically generated with all the running worker and

the task that they are working on. So the admin can see in which state is the

system just loading a single page.

Every menu self expands as soon as the user clicks on it using a javascript

function that enables a light animation.

The actions menu in figure 4.6 shows all the possible actions that the

admin can do to the system. The admin can launch an update all movies

task, a get top 250 movies on imdb task, a get coming soon movies from

imdb task or get in cinema now movies task. Each click will generate and

Ajax [40] call that will add the respective task to the scheduler. For each ac-

tion the user receives a message saying that the operation has been added

to the system. Each task will then be picked up by a worker selected by

the scheduler and will execute it. The output of the task is directly writ-

ten in the database and it is basically an insert or update operation on the

database.

When the Algorithms menu in figure 4.7 is clicked, a list of all the al-

gorithms located in the modules/algorithms sub-directory of the project is

created and displayed. Each algorithm can be clicked. As soon as it is, the

information about that specific algorithm is displayed. Figure 4.7 displays

all the algorithms that are available in the system as for now.

Adding a new algorithms is easy: the administrator has to add all the

CHAPTER 4. MOVISH SYSTEM 48

Figure 4.7: Algorithms menu

Figure 4.8: Algorithm detail

CHAPTER 4. MOVISH SYSTEM 49

Figure 4.9: Matrices menu detail

Figure 4.10: Surveys menu

relevant files about an algorithm to the modules/algorithms directory. The

system in fact has automatic discovering facilities to detect all the available

algorithms. The algorithms should respect a common set of input and a

common set of output. The reader can discover more about how to add an

algorithm on section 4.3.

Figure 4.9 shows the detail of the matrices in the system. It is displayed

if the administrator clicks on the Matrices menu item. It shows the pres-

ence of the item content matrix (ICM), user rating matrix (URM), titles an

features vector. From the action column the user can select to download the

matrice or vector, to schedule the creation of a new one or to delete it.

Clicking on the Surveys button in the menu will open a sub menu for

creating a new survey, called Create new survey, and will show all the

surveys in the system. As for the Matrices menu, there is a Actions column

to download the data about the survey, or to delete it from the system.

Clicking on Create new survey will cause the content portion of the page

CHAPTER 4. MOVISH SYSTEM 50

to load a form for submitting a new survey. The reader can find more about

the survey subsystem including survey creation or adding a new survey

type on chapter 5.

Figure 4.11 shows the last menu item, Bisect. This is for meant for de-

bugging purposes. In Bisect the administrator can see the total complete

tasks and the failed ones. For the last ten failed tasks there is a detailed

traceback with useful information about the error and hopefully in how to

fix it. In the figure there is a problem with a timed out connection for exam-

ple. Of course the Bisect section is not meant to do be a full debugger but

it may be really helpful to discover bad uses of the software without even

opening an code editor.

4.2.3 Scheduler

The scheduler is a fundamental part of the system. It is embedded in

the web2py [3] framework and is formed by workers that implement a dis-

tributed way to assign task to each worker and solve it. It is perfectly in-

tegrated with the underlying database which allows easy monitoring and

modifying like exposed in section 4.2.2 in the admin dashboard.

The scheduler is mainly configured in file models/scheduler.py which is

shown in Figure 4.12 and Figure 4.13. It mainly imports the importer mod-

ule of which we will talk in section 4.2.4 and encapsulates the most impor-

tant functions in scheduler tasks. The defined functions are:

• create_model. This function takes a name of an algorithm as its input

and creates a model for the given algorithm. If the URM and the ICM

are not in the system, they are created too.

• import_or_update_movie. This is one of the most important sched-

uler tasks. It gets scheduled as soon as a movie with no title, no cover

or no year information is displayed to the user. It fetches the infor-

CHAPTER 4. MOVISH SYSTEM 51

Figure 4.11: Bisect menu

CHAPTER 4. MOVISH SYSTEM 52

Figure 4.12: Scheduler 1/2

CHAPTER 4. MOVISH SYSTEM 53

Figure 4.13: Scheduler 2/2

CHAPTER 4. MOVISH SYSTEM 54

mation about a movie from imdb, surfs between all the reviews and

collects them, also includes all the imdb users that gave a review to

the movish system. It thus queries youtube in order to find a trailer

for the movie and it if finds it, updates the movie info. Given all the

operations that this function is capable of it resembles the core part of

the auto updating feature of the system.

• import_popular_movies. This function surf the imdb popular movies

page and add schedules all the movies in that page for an update

thanks to import_popular_movies.

• create_features_vector. This function simply creates the feature vec-

tor. It’s is scheduled from the admin mode under the action menu as

described in section 4.2.2.

• create_title_vectors. Like the previous function, this creates the titles

vector and it’s scheduled from the admin mode.

• create_matlab_matrices. This task creates the URM and ICM to be

used for the model creation.

• update_all_movies. Using import_or_update_movie this task cycles in

all the movies in the system and schedule them for a update.

• start_survey. When a survey is added to the system this function is

responsible of setting up the survey and send a mail to each user that

has been indicated to perform the survey to let them know that the

survey is ready.

• do_recommendation. Given an algorithm, a userid and a integer N,

this task stores on database a recommendation for the given algo-

rithm of N movies. This function is the core function for the recom-

mendation engine. It has been performed as a task because it can take

CHAPTER 4. MOVISH SYSTEM 55

Figure 4.14: Importer core function

more than 40 seconds in the given hardware which is a Xenon quad

core at 3Ghz with 16gb of ram. 40 seconds are not feasible for a web

application that has to be as fast as it can. Thus this task has been

added.

4.2.4 Importer

The importer is the part of the system that implements all the automa-

tism and makes the system able to auto update with new movies. The im-

porter is defined in file modules/importer.py. This file defines a Importer and

MediaRetriever class. The MediaRetriever class is able to perform parsing

from pages of imdb.com and youtube.com that are fetched by the crawler

of section 4.2.5. The Importer class uses the MediaRetriever to get the trailer

and the cover for a movie, it also uses the imdbpy [33] library to retrieve

information about the movie and store into database. The Importer is capa-

ble to parse all the imdb.com reviews, to generate metadata for each movie

and add them to database.

The core function of the importer is shown in Figure 4.14. It is basically

the code called by the import_or_update_movie of the scheduler exposed

in secion 4.2.3.

The importer connects to the crawler via a proxy service installed in the

same server at port 8118. The crawler talks with the importer via a trans-

parent Hypertext Transfer (or Transport) Protocol (http) proxy such that the

CHAPTER 4. MOVISH SYSTEM 56

Figure 4.15: Importer setting the crawler as a gateway code

crawler can be disabled at any time without affecting the overall system.

4.2.5 Crawler

As soon as the system started getting information from both youtube

and imdb the incoming traffic to these application have been throttled. In

order to be able to access those sources a Tor based proxy has been set up.

Tor [41] is a network of virtual tunnels that allows people and groups

to improve their privacy and security on the Internet. It also enables soft-

ware developers to create new communication tools with built-in privacy

features. Tor provides the foundation for a range of applications that allow

organizations and individuals to share information over public networks

without compromising their privacy.

In movish, tor represent the crawler thanks to whom the importer can

communicate to imdb.com and youtube.com in an anonymous way using

different ip addresses every 10 minute in order to overcome to the band-

width limitation that those two website impose to their users. Without this

proxy the required time to create a useful dataset would require almost a

year.

Figure 4.15 shows a small snippet of code from the Importer that sets up

the Crawler as a proxy to reach both youtube and imdb. The code exposed

is located at file named modules/importer.py at line 125. Thanks to the urllib2

python library flexibility it is possible to configure each request to use a

proxy creating an opener object. Last line adds an user agent signature to

each request to act like a real user opening the requested page.

CHAPTER 4. MOVISH SYSTEM 57

Figure 4.16: URM and ICM creation

4.2.6 Recommendation engine

The recommendation engine is the section of the application responsi-

ble of making and retrieve recommendations using a Matlab [4] engine. It

was one of the constraints of the system since Milo because all the algo-

rithms developed by the research group at Politecnico di Milano are im-

plemented using that program. Matlab is heavily used in many courses at

Politecnico di Milano and many other universities around the world, the

Netflix competition [1] was also released using Matlab .mat files.

There is one single file in which matlab is imported and used in the

entire system and it is in the modules/matlab_wrapper.py. The file contains

mainly a object called Whisperer. This object exports all the function to cre-

ate the matlab matrices ICM and URM, the titles and features vectors, the

model for each supported algorithm and the recommendation for a given

user. The object is also able to talk with the database in order to retrieve the

correct data.

Figure 4.16 shows a snippet used for the URM and ICM generation. The

variables are inserted in the matlab environment thanks to the self._put()

function while the matlab commands are run thanks to the self._run() func-

tion. One of the big improvements of this piece of the application compared

to Milo is the optimization performed at memory level by replacing matri-

ces with sparse matrices. This change imposed a change in the whole way

CHAPTER 4. MOVISH SYSTEM 58

Figure 4.17: Create model code

the matrices are managed but it was able to drop memory requirements

from 80Gb to 3Gb of Random Access Memory (RAM). After the matrices

are computed they are stored in Matlab .mat files for easy retrieval from the

admin interface exposed in section 4.2.2.

Each function that deals with matlab uses a @matlab python decorator.

A decorator in python is a function that is applied to other functions. In

this case the @matlab decorator ensures that the function that will be called

using matlab will find a clear environment from other variables. This en-

hancement prevent the system from keep loading and unloading matlab

environments for each function to call. The system keeps a single matlab

session ready for each function, each function that is called cleans the envi-

ronment after it exits thanks to the decorator instead.

Figure 4.17 shows the code to create a model. As you can see the ac-

tion is performed by two functions. The first one called create_model en-

sures that the URM and the ICM are created. It thus calls the _create_model

function that manages a matlab session, this is why it has the @matlab dec-

orator, and performs the actual recommendation calling the right function

name for the given algorithm in order to create the model.

The recommendation is done in a similar way of the model creation

from the get_rec function. It accepts three parameters being the algorithm

CHAPTER 4. MOVISH SYSTEM 59

name and the user id. It then retrieve the user profile and performs the

recommendation for the given algorithm if a model exists.

The recommendation engine has also an auto discovery functionality

of new algorithms. When generating the lists of algorithms it simply looks

in the modules/algorithms/recsys_matlab_codes/algorithms/ directory and look

for files which name that starts with onLineRecom. In fact all the algorithm

have the form of onLineRecom_algorithm.m. For each algorithm found, the

relative model creation function is looked up searching in the same direc-

tory of the algorithm for a createModel_algorithm.m. That file contains the

function to generate the model for a given algorithm. Figure 4.18 shows

the matlab algorithms tree structure. Each algorithm is categorized to be

collaborative, content based or non personalized. For each class of algo-

rithms, there are all the relevant sub classes.

All the computations that result in a creation of a file for matlab store

the newly created file in the modules/elaborated_models/.

4.3 Structure

The project structure is based on web2py [3] one. The project has been

published on GitHub [42]. GitHub defines itself like “the best place to share

code with friends, co-workers, classmates, and complete strangers. Over

two million people use GitHub to build amazing things together”. GitHub

is a webapp designed to share code using the git [43] revision control sys-

tem. The application is composed mainly by the controllers, views, static,

modules and models directory. All the other directories are the basic tem-

plate of a web2y application.

• controllers directory contains all the controllers of the application.

admin.py defines the controllers of the admin interface 4.2.2 with all

the functions and the actions that the administrator can perform. de-

CHAPTER 4. MOVISH SYSTEM 60

Figure 4.18: Matlab algorithm tree structure

CHAPTER 4. MOVISH SYSTEM 61

fault.py is the default controller which is called when the homepage is

called. it has the index function that perform the basic visualization of

the list of movies. movie.py is the controller for displaying the details

of a movie. rating.py is the controller that takes care of performing rat-

ings for a movie. This last controller is different from the other since

it is designed to works as a module for other controllers. In fact the

rating of a movie is always associate with a movie, so this controller

is responsible of generating the correct stars indicating the rating and

load the previous rating for a movie if the user already gave a rating

for that movie. survey.py is the controller that handles all the survey

creation.

• models directory contains all the data structures used in the applica-

tion. The db.py defines all the database structure the reader can have

a look to the ER diagram on section 3.4. menu.py defines the context

menu that is displayed to the user. It is the menu on top on the black

line which never changes and is the landmark for the user. scheduler.py

this file defines the scheduler tasks. It uses the web2py automatic task

discovering features to add the functions to the scheduler. We ana-

lyzed the code of the scheduler on secion 4.2.3. whisperer.py contains

all the function that are called by the application to schedule tasks of

the scheduler. Thanks to this file adding a task to the scheduler is easy

like calling a function.

• modules directory contains all the matlab algorithm under the algo-

rithms directory and all the models under elaborated_models. The coun-

tries.py file defines the list of all countries in the world used by the

surveys while asking the demographic data. importer.py defines the

Importer we talked in section 4.2.4. matlab_wrapper.py is the only file

that interact with the matlab engine, thus is the only file that imports

CHAPTER 4. MOVISH SYSTEM 62

pymatlab [5]. metadata.py is the file used to set up the python Natural

Language Toolkit (nltk) [44]. Nltk is a leading platform for building

Python programs to work with human language data. It provides

easy-to-use interfaces to over 50 corpora and lexical resources such

as WordNet, along with a suite of text processing libraries for classi-

fication, tokenization, stemming, tagging, parsing, and semantic rea-

soning. Nltk is used by Movish to perform plot tagging and extract

the metadata for the movie. These metadata are useful for the ICM

generation as explained in section 2.2.2.

• static directory contains all the static content of the application. Mainly

all the css the the images.

• views directory contains all the html files that are used for outputting

the data generated by the controllers to the user.

4.4 Dataset

The initial dataset used for milo was the one used for the netflix com-

petition [1] but since it was released in 2001 it was soon figured out that it

was pretty outdated and not useful for real recommendations with users.

This is why in milo there were a basic importer to get the information from

the imdb.com website. That importer was only able to retrieve basic infor-

mation. In movish the importer is now able to parse imdb.com directly, to

talk to imdb thanks to the imdbpy [33] library and to parse youtube pages

directly. It is also able to parse all reviews in different pages of a movie and

get the ratings.

Having this powerful importer, during three continuous months of scrap-

ing the imdb.com website, the majority of movies from the 1950 until now

have been imported in the system. Resulting in 154606 distinct titles and

106266 distinct users as for Nov 23th 2012. In order to keep the datased

CHAPTER 4. MOVISH SYSTEM 63

Figure 4.19: Automatically schedule a movie information update

up to date, the admin can create a task of updating all the movies via the

admin interface explained in secion 4.2.2. The system is also able to auto-

matically detect if a movie has not all the information and schedules a task

for updating the movie information as explained in figure 4.19.

When the movie is displayed if the year field is missing or if the poster

of the movie is not defined, the movies is then scheduled for an update. The

system also provide a cronjob to automatically fetch new reviews and new

movies that are going to be released in the next five years or that have been

released in the past five years. This ensures that the system has up to date

movies an reviews from imdb distributing the load of updating the dataset

during time.

This is one of the biggest improvement from ContentWise [2] and en-

ables new scenario and integration with other real time or up to date system

such as Facebook and Twitter.

4.5 Conclusions

Movish is an extensible fully automatic recommendation survey sys-

tem for movies. Thanks to its fundamental in bleeding edge technologies

and features it is able of self updating the dataset, perform asynchronous

recommendations, and having a good look and feel thanks to the simple

interface. It’s architecture is composed by many independent pieces that

collaborates each other as explained in section 4.2 minimizing the point of

failures that were one of the main problems in Milo.

There are some factor that may limit the evolution of Movish in the long

CHAPTER 4. MOVISH SYSTEM 64

term:

• Matlab dependence. Having a matlab engine to support existing al-

gorithms was a goal of the project but matlab has been proved, dur-

ing the movish implementation, that it is not suitable for real time

recommendation systems since it requires too many resources and it

is too slow compared to native python implementation. In fact if the

recommendation algorithms were implemented in python the sys-

tem would require much less resources and be much faster than it

is now. So in the future developing an alternate recommendation en-

gine, maybe in python, would be very helpful and would not impact

with the overall system.

• Improved security. As for now all the communication with the server

is performed via insecure http connections. Switching to Hypertext

Transfer Protocol Secure (https) would protect user data transferred

over the internet and block password hijacking attempts.

• Improve sources. As for now only imdb.com and youtube.com are

used as sources. Even if they are the most comprehensive sources

available there are many more sources with ratings online that could

be imported in the system to perform better recommendations.

In this chapter we didn’t talk about survey management. Since it is an-

other big feature of the web application, chapter 5 will explain how Movish

handles surveys, how to create one and how to add a new type of survey.

Chapter 5

Survey management

5.1 Introduction

In this chapter we will analyze, in depth, how to perform, create and

add a new type of survey in the system. Movish is indeed a complex system

that can be used as a plain movie catalog or as a survey system. When in

survey mode, the system changes smoothly the layout in order to guide the

user through the questions and removes many not useful links that would

bring the user out of the application or in some undefined states that are

only valid when browsing the catalog without performing a survey.

Guiding a user while performing a survey is a challenge. The survey

must be designed such that the user doesn’t waste time in not useful oper-

ation but it is still free to browse, search and rate any content the user wants

in order of not alter the recommendation. The user must be guided in or-

der to focus his/her attention in what is the survey goal also. This makes

planning a new type of survey a challenge and a task that requires a lot of

thinking before being able to implement one.

Movish simplifies the process of adding a new type of survey, that i ex-

posed in secion 5.3 while survey creation is exposed in section 5.2 with the

two types of survey supported, the algorithm performance and the algo-

65

CHAPTER 5. SURVEY MANAGEMENT 66

Figure 5.1: Survey creation

rithm strength.

5.2 Survey creation

The creation of a survey is the action of adding a survey to the sys-

tem and perform all the necessary operations that make the system able to

accept new user or existing ones to perform the survey. A user with ad-

ministration privileges is needed to make a new survey. After logged in the

user has to go to the admin interface explained in secion 4.2.2.

Figure 5.1 shows the form to create a new survey. The administrator

has to pick up a name, an algorithm name (from the list), a number of rat-

ings representing the number of ratings that will be displayed to the user

while being in the recommendation part of a survey; the scale of the rat-

ing, the number of free ratings the user is able to perform before receiving

CHAPTER 5. SURVEY MANAGEMENT 67

the recommendation; the survey type that can be algorithm_performance

or algorithm_strength. We will talk about these two types in the next sub-

sections. The administrator can optionally add a set of comma separated

emails of the user that will be notified with a mail that there is a survey

for them. Users that are not in the system will be added and a mail will be

sent as well. After submitting the form the task of creating a new survey is

created.

In general, any user can perform the surveys that are in the system if

the user knows the id of the survey. The entry point for each user is in fact

survey/demographic/ID where ID is the id of the survey. The user must be

logged in to access that resource. In the case the user is not registered, it

has to register first. To remove this additional step which is mandatory for

the recommendation engine to work but may be a problem for a user that

is just on the site to perform a survey a special handler that creates a user

to the system and start the survey has been created. It can be accessed from

http://movish.co/survey/amazonturk/ID where ID is the id of the survey. The

administrator can see the id of the survey looking at the last number of the

amazon turk link column in the survey menu in figure 4.10.

Users have not be bounded to a particular survey in order to allow the

administrator to select other users while the survey in progress and to al-

low the Amazon Mechanical Turk [45] cooperation. We will talk more about

amazon mechanical turk on secion 5.4. As for now the reader can think of

amazon mechanical turk as a service offered by amazon to provide human

workforce for tasks that are able to be performed with a computer. Online

surveys are a typical case of this kind of work.

Result of the surveys can be retrieved in the survey admin page shown

in figure 4.10. Clicking on the small icon with a pencil with a label of down-

load result the administrator can get the results of the survey in Comma

separated values (csv) format.

CHAPTER 5. SURVEY MANAGEMENT 68

Figure 5.2: Survey architecture: relation between functions

CHAPTER 5. SURVEY MANAGEMENT 69

Figure 5.2 shows the survey subsystem architecture. The user starts

from the start box and ends in the end box. The start can happen from

the amazonturk link ad described earlier or by direct invite at survey cre-

ation, in that case the user goes directly to demographic. After filling the

form the user is redirected in a modified homepage without the possibility

to logout and without a the main slider with only the possibility to surf

the catalog and search for movies. This step is called free ratings and the

user has to rate the number of ratings that the admin specified as number of

free ratings in survey creation. After the user has to answer a series of ques-

tion regarding the catalogue. This phase is performed by the function cata-

logue_questions. From now the behaviour of the system depends from the

type of survey. As for now two types of surveys are implemented and they

are performed by algorithm_strength and algorithm_performance respec-

tively. catalogue_questions is able to fetch the survey type and redirect the

user to the correct page generated by the correct survey type. All survey

types, after performing the recommendation must redirect to the local_info

function that take cares of asking the last questions to the user and redirect

him/her to the end_survey page. The end survey page exposes the Ama-

zon Mechanical Turk confirmation code that the user has to submit to the

amazon form in order to claim the survey that is just being completed.

5.2.1 Algorithm performance

Algorithm performance is the first type of survey that has been imple-

mented. It shows the recommendation to the user displaying one movie at

time and asking him/her subsequent questions. The questions that the user

answers are contextual, it means that they vary depending from the previ-

ous questions. The main goal is to give to the user all the information in

order to make him/her able to rate the movie even if he/she did not actu-

ally watched the movie. This was the first type of survey and the only one

CHAPTER 5. SURVEY MANAGEMENT 70

Figure 5.3: Algorithm performance flow chart

implemented in Milo [18]. The flow chart in figure 5.3 shows the questions

that the user has to answer and their order.

The user starts from the start box and ends at the end box. As the reader

can verify the user may not answer all the questions or get all the informa-

tion before getting to the end box.

5.2.2 Algorithm strength

Algorithm strength is the second type of survey that Movish supports.

It has been deployed to perform the research of chapter 6. In this type of

survey the user gets a recommendation and the user can see the first Nth el-

ements where N is the number of ratings that the administrator set at survey

creation. The system then asks some question about the recommendation

to the user, the questions are:

• How many movies in this list have you ever watched?

CHAPTER 5. SURVEY MANAGEMENT 71

• How many movies in this list have you never heard of?

• From the movies in this list that you have already watched, if any,

how many do you like?

• From the movies in this list that you have already watched, if any,

how many do you dislike? (leave 0 if no one)

• From 1 (low interesting) to 5 (very interesting) how interesting did

you find the given recommendations?

• How many movies in this list will you likely watch in the future?

This kind of survey is used to test how the perception of a good rec-

ommendation relates with the number of item shown to the user in order

to understand how strong is an algorithm and in general how the num-

ber of items displayed to the user influences his/her perception of a good

recommendation.

5.3 Adding new survey type to Movish

Adding a new survey to the system is a easy task which needs a bit

of understanding in how the movish system works. Movish support a set

of predefined questions that are the same for each survey and a variable

set of questions and recommendation pages that can be composed and

chained easily by the administrator. All the survey subsystem is defined

in controllers/survey.py. Each survey page is generated by three steps:

• form definition. Where the form that the user has to answer is de-

fined using web2py [3] helpers. Web2py helpers are function that pro-

duce a html code snippet accordingly. They are used to generate html

on the controller or in the view itself.

CHAPTER 5. SURVEY MANAGEMENT 72

Figure 5.4: Adding new algorithm: algorithm_strength example

• form submission. Where the form that the user answered get submit-

ted and saved in a database.

• data retrieval. Where the data that is shown to the user during a par-

ticular survey page is retrieved.

Figure 5.4 shows how the algorithm_strength survey type is implemented.

It shows clearly where the different parts of the survey page are composed.

The first 13 lines, from 192 to 206 are for data retrieval. In those lines the

recommendation for the given algorithm of the survey is retrieved. If there

is no recommendation available for the current user in the given algorithm

a new recommendation is scheduled and the system waits 5 seconds before

reloading the same page and check that there is a recommendation. Lines

from 207 to 215 are for form definition. The form is mainly formatted with a

table in which there are select fields. The _name property is very important

because it defines the name that will be displayed when the administrator

retrieves the survey results.

Last lines, from 216 to 224, are for form submission. If the form is recog-

nized to have valid data (accepted) the form data is added to the database

using the special _form_in_db function that having a form and a survey id

adds the answers that the user provided to the database. Using this func-

CHAPTER 5. SURVEY MANAGEMENT 73

tion every form created with web2py helpers can be recognized, parsed

and stored into database. After saving the data to the database the user is

redirected to the last question with the redirect(URL(’local_info’)) line. Each

algorithm type, after processing the data must call this redirect in order to

let the user finish the survey.

5.4 Crowdsourcing

Crowdsourcing [46] is a process that involves outsourcing tasks to a

distributed group of people. This process can occur both online and offline.

The difference between crowdsourcing and ordinary outsourcing is that a

task or problem is outsourced to an undefined public rather than a specific

body, such as paid employees.

Amazon Mechanical Turk [45] is a marketplace for work. It gives busi-

nesses and developers access to an on-demand, scalable workforce. Work-

ers select from thousands of tasks or Human Intelligence Tasks (HIT) and

work whenever it is convenient. The service has two kind of users: workers

and requester.

• Requester. Asks workers to completer HITs and gets results. Requesters

have access to a global 24x7 workforce, get thousands of HITs com-

pleted in minutes, and pay only when you are satisfied with the re-

sults.

• Worker. Are the people that perform the HITs. Workers can work

from everywhere with an internet connection, choose their work hours

and get paid for doing good work.

Movish has been designed to work with Amazon Mechanical Turk. Af-

ter the survey has been created, in the survey list page of figure 4.10, the

administrator has an Amazon Turk link which is the link to provide to the

CHAPTER 5. SURVEY MANAGEMENT 74

Figure 5.5: Amazon Mechanical Turk survey link type

Amazon Mechanical Turk interface. The suggested way of integrating Mo-

vish with the amazon service is by survey link which is described in their

webpage as figure 5.5 shows. The administrator has to create a new survey

link and use the link provided from the movish admin interface.

After the HIT has been started from Amazon Mechanical Turk, the ad-

ministrator can monitor the status of all the HITs from the management

console shown in figure 5.6. In that picture the status of the three surveys

that I performed during this thesis are shown. We will talk more about

them on chapter 6.

Thanks to the integration with Amazon Mechanical Turk, Movish is

able to be a platform to perform surveys without the admin having to

worry in promoting the survey which is usually a time consumptive tasks.

Based on the amount of work for a survey and the time spent on it (5 min-

utes and 31 seconds average) the correct pay for a Movish survey HIT is

CHAPTER 5. SURVEY MANAGEMENT 75

Figure 5.6: Surveys on Amazon Mechanical Turk

about $1.50. Having set $2 as pay for each survey made the system get 10

surveys in less than 3 hours. This has an effective hourly rate for the worker

of $21.687. Having set $1 as pay for each survey made the system collect 10

surveys after three days with an average of 6 minutes and 56 seconds per

survey and an effective hourly rate of $8.654.

5.5 Conclusions

Movish implements a flexible and easy to update survey system. It has

being designed in order to support continue modification of the survey

types and creation of new surveys. The survey creation has been thought

to be performed by an administrator in order to do not modify any line of

code. New survey types are easily added with a slightly edit of source code.

The integration with Amazon Mechanical Turk makes Movish able to also

promote itself to reach users thus have completed survey. Using Movish an

recommendation system professional can deliver survey without worrying

about seeking for users and visibility.

These features make Movish the best system to deploy survey for rec-

CHAPTER 5. SURVEY MANAGEMENT 76

ommendation system available today.

Chapter 6

Research

6.1 Introduction

The visualization has been proven to be an essential part in the recom-

mendation since it can determine if it is useful or not from the user point of

view [22]. There have been studies to determine how an item should be pre-

sented to the user in order to gain his/her attention as described in section

2.4 but there are not been much documented studies about the number of

items that a recommendation system should display in order to maximize

the user perception of a good recommendation.

Thus the proposal of this research is to evaluate how the number of

movie visualized alter the user perception of a good or bad recommen-

dation. To be scientific valid only one variable of the system should vary

between all the test groups. In this case the number of items displayed has

been chosen to vary between 2, 5 and 10 with at least 25 samples (or com-

pleted surveys) each. This is also the first research done using the Movish

automatic recommendation survey system.

As for algorithm pureSVD has been chosen because it has been proved

to have the best performances between all the algorithms supported by the

Movish system [47]. PureSVD was the top performer in both Movielens

77

CHAPTER 6. RESEARCH 78

[48] and Netflix [1] datasets beating more detailed and sophisticated latent

factor models even if it is one of the simplest algorithms available.

In section 6.2 the reader will be guided in analyzing the various sources

used, in section 6.3 a complete survey for this research is exposed. Then in

section 6.4 the analysis of the data is published and section 6.5 exposes the

conclusions.

6.2 Sources

For this research a number of different resources has been used in or-

der to collect the maximum number of surveys with the minimum budget.

Aside of Amazon Mechanical Turk of which we discussed on section 5.4,

also Facebook and Google plus have been used in order to test if a survey

can go viral on social networks.

In order to maximize the user attention a whiteboard rewarding an el-

igibility of prize to the ones that perform the survey has been used. The

Facebook post that promoted one of the three surveys that have been per-

formed is displayed in figure 6.1.

The whiteboard message is: Win an Amazon Kindle or $50, complete the

survey below and make Vincenzo happy. The message had two goals: stimulate

all my close friends in taking action in order to help me in my research and

to stimulate all the not close friends in performing the survey due to the

prize they could win. In order to be eligible for the prize the user/friend

had to write the Amazon Mechanical Turk code that is displayed at the end

of the survey as comment to the post. The same message has been posted

on Google plus and can be seen in figure 6.2.

The facebook post was able to retrieve a total 13 users performing the

survey of which 7 of them can be categorized as not close friends. The

Google plus post wasn’t able to stimulate any user.

CHAPTER 6. RESEARCH 79

Figure 6.1: Facebook post to participate to a survey

CHAPTER 6. RESEARCH 80

Figure 6.2: Google plus post to participate to a survey

CHAPTER 6. RESEARCH 81

Figure 6.3: Survey phase 1

6.3 Survey

In order to fulfill the goal of this research a survey type of algorithm_strength

with 5 free ratings using pureSVD algorithm has been chosen. The reason

of this choice are explained in section 6.1. The survey starts asking general

demographic information as shown in figure 6.3.

The user is asked to put the age, the gender, the education type, the

nationality and the average numbers of movies watched per month. The

goal of those questions is to associate the user with a cluster of users since

the preference for a special category of movies change in respect of the age

CHAPTER 6. RESEARCH 82

Figure 6.4: Survey phase 2

and the nationality. The average number of movies watched per month is

an indicator to test if the user likes, in general, watching movies.

After the demographic questions the user is able to perform the free

ratings from the page shown in figure 6.4. From this page the logout link

in the top right part of the page disappear: the user which is performing

the survey is not supposed to logout anymore. Beside this also all the not

useful links that may lead the user out of the Movish system are removed in

order to force the user in completing the survey before leaving the system.

To facilitate the user in starting rating movies, the top 15 movies with

ratings in the system are chosen and displayed: they represent the top

popular movies in the system. The user can rate directly in the homepage

thanks to the star system under each movie poster or by going to the movie

detail page and rate again from there using the same star system. Option-

ally the user can also see the trailer and read the plot of a movie in the

movie detail page shown in figure 4.4.

User is also allowed to use the search box to look for any movie he/she

CHAPTER 6. RESEARCH 83

Figure 6.5: Survey phase 3

wants. In fact this way of looking to the items is suggested by the top mes-

sage of the page. It is so to test the completeness of the catalog. After the

user rated the number of free ratings chosen by the administrator at survey

creation discussed in section 5.2, the system automatically redirect the user

to the next page of the survey, the catalogue questions.

These questions are shown in figure 6.5. The user is asked to answer

some questions related to the catalogue he/she just browsed doing the

free ratings. He/she has to answer questions about the browsing experi-

ence: looking for specific movies or not, if some movies were not found, to

CHAPTER 6. RESEARCH 84

Figure 6.6: Survey phase 4

list their names, the completeness of the catalogue and what he/she liked

about the website about color palette, text readability, organization and ori-

entation guidelines. After submitting the form the user is redirected to the

next phase, the recommendation.

It is shown in figure 6.6. In order to have a better image for this paper,

the survey with only two recommendation has been chosen. The number of

movies displayed in this phase are 2,5 or 10 depending from which specific

survey the user is performing. All the not necessary links are removed. The

user cannot see the details of a movie either or click on the genres of a movie

CHAPTER 6. RESEARCH 85

Figure 6.7: Survey phase 5

to perform a search. Given the poster and the title of the movies in the list

only the user has to ask question regarding the number of movies watched,

the number of movie the user have heard of, the number of watched movies

the user likes or dislikes, the recommendation sentiment or if the recom-

mendation is useful for the user or not, which is the main question leading

this research and the number of movies from the recommendation that the

user will be likely to watch.

After submitting the recommendation form the user is redirected to the

last questions shown in figure 6.7. The user is asked of inserting the place

in which the survey is taking place and why the user is performing the

CHAPTER 6. RESEARCH 86

Figure 6.8: Survey having two displayed movies

survey.

6.4 Analysis

The data of the survey can be retrieved from the survey list of the admin

interface described in section 4.2.2 by clicking on the download results icon

after the Amazon Turk link column.

For this kind of research the feeling of a good recommendation, such as

the rating of the recommendation list, is the driver value of the research.

So the first way to look at the data is to count the number of equal ratings

and plot them in a barchart, one for each survey. This data is available from

the questions of the survey at the question regarding the usefulness of the

recommendation.

Figure 6.8 shows the number of users grouped by the rate on the rec-

ommendation or the usefulness of the recommendation. The first results

CHAPTER 6. RESEARCH 87

Figure 6.9: Survey having five displayed movies

that highlights in that graph is the fact that over 25 surveys, displaying 2

movies resulted in a very bad recommendation for 5 users. It was also very

good for 12 users (summing the good and optimal columns). The average of

all the ratings is 2.96, the standard deviation is 1.84.

Figure 6.9 shows the same graph for the second survey, the one display-

ing 5 movies at time while the user has to answer the question about the

usefulness of the recommendation. A big amount of users thinks that the

recommendation has medium usefulness. The big difference with the pre-

vious data is that the number of very bad recommendation is down to only

one case and that the number of users that declare that the recommenda-

tion is optimal (score of 5) is significantly dropped. The average of all the

ratings is 2.87 and the standard deviation is 1.24.

Figure 6.10 shows the same graph for the third survey instead, the one

in which the user sees 10 movies at the time the user has to rate the rec-

CHAPTER 6. RESEARCH 88

Figure 6.10: Survey having ten displayed movies

Movies in survey Average Standard deviation

2 2.96 1.84

5 2.87 1.24

10 2.65 1.41

Table 6.1: Average and standard deviation of the ratings in the three different surveys

ommendation he/she received. In this graph the number of user that rate

the recommendation very bad is low like in the survey with 5 movies dis-

played but the number of people that rated the recommendation as poor is

the same as the people that rated the recommendation to be medium. The

average of all the ratings is 2.65 and the standard deviation is 1.41.

The collected averages and standard deviations are in table 6.1.

As the reader can see, the survey with 10 movies displayed is the one

that has been disliked the most. Its standard deviation is also higher of the

CHAPTER 6. RESEARCH 89

Figure 6.11: Signal to noise ratio for the three surveys

one with 5 movies displayed. So we can exclude the 10 movies recommen-

dation as being the best way, according to the data of this surveys to be the

best way to display a recommendation. Analyzing the surveys with 2 and 5

movies displayed is more challenging though since in the 2 movies survey

the average is higher of the one of 5 movies survey but the standard devi-

ation is bigger than the one with 5 movies. In order to compare this data

to have a singular number to measure the effectiveness of a survey against

another the signal to noise ratio can be useful.

We can consider the average as the primary driver or signal and a stan-

dard deviation as a noise factor because it indicates how much the ratings

of the recommendation deviate from the average.

The signal to noise ratio is defined as SNR = µ/σ . Using it, every sur-

vey can be reduced to a single scalar indicating which survey that had a

different number of displayed movie was the best for the users. This leads

to data in figure 6.11

This last graph shows how each survey performs in terms of user likeli-

ness of the recommendation based on the number movies displayed during

CHAPTER 6. RESEARCH 90

Movies in survey SNR

2 1.61

5 2.31

10 1.88

Table 6.2: Signal to noise of the three surveys

the recommendation phase. The higher is the bar, the better is the survey.

Table 6.2 shows the signal to noise ratio of the three surveys instead.

As for the graph, the numeric value highlights the survey with 5 displayed

movie to be the best in terms of average and standard deviation.

6.5 Conclusions

This research wanted to prove if the usefulness of a recommendation

depends on the number of items that are displayed to the user. In order to

perform the research three surveys with the same recommendation algo-

rithm have been submitted to 90 different users using Amazon Mechanical

Turk and Facebook. The only difference between the surveys was the dif-

ferent number of movies displayed during the recommendation. The first

survey had two displayed movies, the second one had five movies and the

third one had ten movies. The collected data showed a relation between the

different number of movie displayed and the usefulness of the recommen-

dation itself. After further study, considerations and calculating the mean

and the standard deviation the three surveys have been compared using

the signal to noise ratio. This lead the survey with five movies displayed

to be the one that the user prefer compared to the one with two or ten. If

there wouldn’t be any relation between the number of displayed movies

and usefulness of the recommendation there wouldn’t be any significant

difference in the average usefulness of the recommendation and its stan-

CHAPTER 6. RESEARCH 91

dard deviation.

Bibliography

[1] Wikipedia. Netflix prize. http://en.wikipedia.org/wiki/Netflix_Prize.

[2] Moviri. Contentwise. http://www.moviri.com/.

[3] Massimo Di Pierro. Web2py. http://www.web2py.com/.

[4] Mathworks. Matlab. http://www.mathworks.com/products/matlab/.

[5] Joakim Moller. pymatlab. http://pypi.python.org/pypi/pymatlab.

[6] Free Software Foundation. http://www.gnu.org/licenses/gpl.html.

[7] imdb.com. Internet movie database. http://imdb.com/.

[8] Turrin R. Chiodi L., Cremonesi P. Spiegazioni e confidenza nei sistemi

di raccomandazione. Master’s thesis, Politecnico di Milano, 2010.

[9] Li Chen and Pearl Pu. A user-centric evaluation framework of recom-

mender systems. workshop of RecSys’10, 2010.

[10] Recsys. http://recsys.acm.org/.

[11] Jakob Nielsen’s Alertbox. How long do users stay on a webpage.

http://www.useit.com/alertbox/page-abandonment-time.html.

[12] M. J. Pazzani and Daniel Bilsus. Content based recommendation systems.

Springer, 2007.

92

BIBLIOGRAPHY 93

[13] Paolo Cremonesi and Roberto Turrin. Analysis of cold-start recom-

mendations in iptv systems. RecSys, 2009.

[14] P. Maes and Shardanand U. Social information filtering: Algorithms

for automating "word of mouth". ACM CHI, 1995.

[15] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative

filtering to weave an information tapestry. ACM, 1992.

[16] E. Campochiaro, P. Cremonesi, and R. Turrin. Analysis of recom-

mender systems based on implicit datasets. Technical report, 2008.

[17] Jonathan L. Herlocker, Konstan Joseph A., Terveen Loren G., and Riedl

John T. Evaluating collaborative filtering recommender systems. ACM

Trans. Inf. Syst., 2004.

[18] Andreia Coronado Cha. Implementation of a subjective evaluatio applica-

tion for recommender systems. PhD thesis, Politecnico di Milano, 2011.

[19] Achille, Niccolo, Cremonesi Paolo, and Turrin Roberto. Realizzazione

di un sistema di raccomandazione in Matlab. PhD thesis, Politecnico di

Milano, 2010.

[20] K. Nagaswara Rao and V. G. Talwar. Application domain and func-

tional classification of recommender systems - a survey. DESIDOC J.

Libr. Inf. Technol., 2008.

[21] J. Leino and K. Raiha. Case amazon: ratings and reviews as part of

recommendations. RecSys, 2007.

[22] L. Chen and P. Pu. Trust building in recommender agents. ICETE,

2005.

[23] Facebook inc. Facebook. http://www.facebook.com.

[24] Twitter inc. Twitter. http://twitter.com.

BIBLIOGRAPHY 94

[25] Pinterest inc. Pinterest. http://pinterest.com.

[26] Wikipedia. Mvc. http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller.

[27] Pyramid. http://www.pylonsproject.org/.

[28] Numpy developers. Numpy. http://numpy.scipy.org/.

[29] John Hunter. Scipy. http://www.scipy.org/.

[30] Wikipedia. Nosql. http://en.wikipedia.org/wiki/NoSQL.

[31] 10gen. Mongodb. http://www.mongodb.org/.

[32] The PostgreSQL global development group. Postgresql database.

http://www.postgresql.org/.

[33] Davide Alberani. Imdbpy. http://imdbpy.sourceforge.net/.

[34] Stefan Behnel. Lxml. http://lxml.de/.

[35] Alvaro Lopez Ortega. Cherokee. http://www.cherokee-project.com/.

[36] Wikipedia. C10k problem. http://en.wikipedia.org/wiki/C10k_problem.

[37] nginx. Nginx. http://nginx.org/.

[38] Apache Foundation. Apache webserver. http://httpd.apache.org/.

[39] unbit. uwsgi. http://uwsgi-docs.readthedocs.org/en/latest/.

[40] Wikipedia. Ajax. http://en.wikipedia.org/wiki/Ajax_(programming).

[41] TorProject. Tor. https://www.torproject.org/index.html.en.

[42] PJ Hyett Tom Preston-Werner, Chris Wanstrath. Github.

https://github.com/.

[43] Junio Hamano Linus Torvalds. Git revision control system. http://git-

scm.com/.

BIBLIOGRAPHY 95

[44] NLTK Project. Python natural language toolkit. http://nltk.org/.

[45] Amazon inc. Amazon mechanical turk.

https://www.mturk.com/mturk/welcome.

[46] Wikipedia. Crowdsourcing. http://en.wikipedia.org/wiki/Crowdsourcing.

[47] Paolo Cremonesi, Yehuda Korem, and Roberto Turrin. Performance of

recommender algorithms on top-n recommendation tasks. recSys2010,

2010.

[48] University of Minnesota. Movielens. http://movielens.umn.edu.

	Overview
	Recommendation system state of the art
	Introduction
	Analysis
	Comparison
	Input
	Stack

	Output
	Presentation
	Conclusions

	Movish system background
	Introduction
	ContentWise
	Milo
	Movish
	State of the art issues

	Conclusions

	Movish system
	Introduction
	Architecture
	Graphical Engine
	Admin interface
	Scheduler
	Importer
	Crawler
	Recommendation engine

	Structure
	Dataset
	Conclusions

	Survey management
	Introduction
	Survey creation
	Algorithm performance
	Algorithm strength

	Adding new survey type to Movish
	Crowdsourcing
	Conclusions

	Research
	Introduction
	Sources
	Survey
	Analysis
	Conclusions

