
Politecnico di Milano
Facoltà di Ingegneria dell’Informazione

Master of Science Degree in Computer Engineering

Dipartimento di Elettronica e Informazione

EXTENDING CLOUDSTUDIO WITH

COLLABORATIVE REMOTE DEBUGGER

Supervisor: Elisabetta DI NITTO

Co-supervisor: Martin NORDIO

Graduation thesis of: Rand NEZHA matr. 764284

Mert TÜFEKÇİ matr. 763076

Academic Year 2011-2012

Sommario

Il soggetto di questa tesi è estendere il CloudStudio con un JavaScript debug-
ger il quale è incapsulato in un debugger collaborativo e remoto. Il debugger
incapsulente è stato disegnato a poter funzionare con altre implementazioni
dei debugger. L’aspetto più importante del soggetto di questa tesi è che il
Collaborative Remote debugger abilita gli sviluppatori, che sono distribuiti
geograficamente, a fare il debugging insieme di un’applicazione in un modo
collaborativo tramite un web browser. Molti debugger oggi sono integrati negli
Integrate Development Environments (IDE) che girano sul locale. Dato che i
debugger vengono usati ampiamente e visto la loro necessità, c’è il problema
della cooperazione fra gli sviluppatori. Sempre più sviluppatori distribuiti ge-
ograficamente sviluppano diverse parti degli stessi moduli che interagiscono fra
di loro. Un blocco di codice che è stato scritto da uno sviluppatore potrebbe
causare errori in un altro blocco di codice che è stato scritto da un altro svilup-
patore. In questo caso gli sviluppatori devono fare il debugging insieme per
trovare il problema e risolverlo. Tradizionalment queste sessioni di collabora-
tive debugging vengono effettuate tramite la condivisione dello schermo dello
sviluppatore che ha il controllo del debugger. La comunicazione viene di solito
effettuato tramite le applicazioni VoIP o IM. Questo riduce la collaborazione
fra gli sviluppatori dato che soltanto uno di loro ha il controllo del debug-
ger e l’altro invece guarda lo schermo. Il CloudStudio Collaborative Remote
JavaScript Debugger è stato disegnato e implementato per abilitare sempre di
più la collaborazione fra gli sviluppatori distribuiti geograficamente.

E’ stato disegnato un case study per valutare la prestazione e l’efficienza del
tool implementato. Il case study è stato condotto con alcuni gruppi d’utenti
e i dati sono stati raccolti dai partecipanti e dai system log. Questi dati sono
stati analizzati per riassumere gli andamenti e per arrivare a una conclusione.

Table of Contents

List of Figures ix

1 Introduction 1

2 State of art 5

2.1 Introduction . 5
2.2 Computer-Supported Cooperative Work 5
2.3 Collaborative software (Groupware) 8
2.4 Collaborative integrated development environments 10

2.4.1 IBM Jazz- Rational Team Concert 11
2.4.2 Cloud9 . 13
2.4.3 CodeRun . 14

2.5 Collaborative debugger . 15
2.5.1 Microsoft Visual Studio 2010 15
2.5.2 IBM rational debugger 17
2.5.3 JS Bin . 19
2.5.4 DebugLive . 20
2.5.5 IBM patent: collaborative software debugging in a dis-

tributed system with symbol locking 25
2.6 Summary . 27

3 Analysis of the problem and the solution 29

3.1 CloudStudio . 29
3.2 Rhino JavaScript engine . 31

3.2.1 Introduction . 31
3.2.2 Advantages and disadvantages 32

3.3 GWT - Google Web Toolkit . 33

TABLE OF CONTENTS

3.4 Requirement analysis . 34
3.4.1 CloudStudio JavaScript debugger 35
3.4.2 CloudStudio debugger 35

3.5 Analysis of the application: goals and characteristics 37
3.5.1 CloudStudio JavaScript debugger 37
3.5.2 CloudStudio debugger 38

3.6 Complexity of implementation cycle 42
3.7 Summary . 43

4 Project and the implementation of the solution 45

4.1 The implementation . 45
4.2 CloudStudio JavaScript debugger 46
4.3 GWT RPC communication services 47

4.3.1 Models and events . 50
4.3.2 Java components . 53

4.4 Backend . 55
4.5 Processing sequence . 55
4.6 Summary . 63

5 Case study 65

5.1 Introduction . 65
5.2 JavaScript projects . 66
5.3 Setting of assignments . 66
5.4 Setting of groups . 68
5.5 Logs . 69
5.6 Questionnaire . 71
5.7 Preparing the groups . 73
5.8 Case study challenges and problems 74

5.8.1 Organizing the groups 74
5.8.2 Duration of the assignment 75

5.9 Results . 76
5.9.1 Analysis of the logs . 76
5.9.2 Analysis of the questionnaire responses 76

5.10 Threats to validity . 84
5.10.1 Internal validity . 84

vi

TABLE OF CONTENTS

5.10.2 External validity . 85
5.11 Summary . 85

6 Conclusions and Future Works 87

6.1 Conclusion . 87
6.2 Future works . 88

6.2.1 Implementations for more languages 88
6.2.2 Improvement for tablets 88
6.2.3 Extend the case study 89

Appendices 91
.1 Assignment 1 - Debugging using a shared screen 93
.2 Assignment 1 - Debugging using CloudStudio Collaborative Re-

mote Debugger . 96
.3 Assignment 2 - Debugging using a shared screen 101
.4 Assignment 2 - Debugging using CloudStudio Collaborative Re-

mote Debugger . 104
.5 Cloudstudio collaborative remote debugger guide 108
.6 Case study questionnaire . 113
.7 Communication templates . 120

.7.1 Email Sent to group’s members one day before the as-
signments date . 120

.7.2 Email sent to group’s members before assignments start-
ing time . 122

Bibliography 125

vii

List of Figures

3.1 User roles and matching functionalities 39
3.2 Debugging modes and matching user roles 40
3.3 Debugging modes . 41

4.1 JavaScriptDebugger class . 47
4.2 GWT RPC Class Diagram . 48
4.3 Class Diagrams . 49
4.4 Invitation phase sequence diagram 57
4.5 Object creation phase sequence diagram 58
4.6 Thread creation phase sequence diagram 59
4.7 Debugging response sequence diagram 60
4.8 CloudStudio IDE debugging session 61
4.9 CloudStudio IDE variables tab 62
4.10 CloudStudio IDE expressions tab 62

5.1 Assignments types matrix . 68
5.2 Groups types matrix . 69
5.3 Missing Collaborative variable evaluation 77
5.4 Collaborative variable evaluation efficiency 77
5.5 Missing Individual code visualization 78
5.6 Individual code visualization efficiency 78
5.7 Collaborative breakpoint efficiency 78
5.8 Missing Collaborative breakpoint 79
5.9 Collaborative expression evaluation efficiency 79
5.10 Missing collaborative expression evaluation 79
5.11 Debugger mode with users multi control 80
5.12 Debugger mode with users single control 80

LIST OF FIGURES

5.13 How much the participants control the debugger 81
5.14 How much the participants tell the controller what to do 81
5.15 Involving in the debugger during CloudStudio collaborative de-

bugging . 82
5.16 Involving in the debugger during shared screen debugging 82
5.17 CloudStudio collaborative debugger efficiency 82
5.18 Debugging used shared remote screen efficiency 83
5.19 Users preference between the two collaborative debugging expe-

rience . 83

x

Chapter 1

Introduction

The subject of this thesis is extending the CloudStudio with a JavaScript
debugger which is encapsulated in a Collaborative Remote debugger. The
encapsulating debugger is designed to work with other debugger implemen-
tations. The most important aspect of the subject of this thesis is that the
Collaborative Remote debugger enables developers, that are in a geographically
distributed environment, to debug an application together in a collaborative
way through any web browser. Most of the debuggers today are inside the
integrated to Integrated Development Environments (IDE) that run locally.
Because of widely usage of debuggers and the necessity, it becomes becomes
a co-operation problem between developers. More and more geographically
distributed developers are writing different parts of the same modules that
interact with each other. A block of code that a developer wrote may cause
an error in another block of code that another developer wrote. In such a
case both developers might need to debug together to find the problem and
resolve it. Traditionally these debugging sessions are made through sharing
the screen of the developer in control of the debugger with other developers
and comunicating through some VoIP or IM applications. This reduces the
collaboration between debuggers since only one of them has the actual con-
trol over the debugger and the other is only watching the debugging session
or dictating through some application to the other developer without having
any actual control over the debugger. The CloudStudio Collaborative Remote
JavaScript Debugger is designed and implemented to enable more and more
the debugging collaboration between geographically distributed developers.

A case study is designed to evaluate the performance and the efficiency of

Introduction

the implemented tool. The case study is driven with several user groups and
data are collected from the participants and the system logs. These data are
then analyzed to get the trends and to come to a conclusion.

Contributions

This thesis is distinguished in these original contributions:

• We searched the current implementations and/or designs of collaborative
programming/debugging environments. We then compared these tools
with our ideas of a collaborative remote debugger.

• We searched and investigated existing technologies that we can use to
implement our collaborative remote debugger.

• We studied the requirements of a collaborative remote debugger and
pointed the features of this debugger.

• We implemented the collaborative remote debugger according to the re-
quirements and design by using the tecnologies that we selected.

• We designed a case study to experiment the new innovative aspects of
our collaborative remote debugger and we drived it with people that
come from the computer engineering background.

• We studied the possible future works and extensions of the collaborative
remote debugger that we implemented.

Organization

This thesis is organized as described below.

• In chapter 2 already existing tools that aim to increase the debugging
collaboration between geographicaly distributed users are introduced.

• In chapter 3 technologies that are chosen in the implementation of the
CloudStudio Collaborative Remote JavaScript debugger are introduced.
The requirement analysis, the design and the complexity of the solution
is introduced.

2

• In chapter 4 the actual implementation is introduced.

• In chapter 5 the case study which is made with the implemented applica-
tion with the participation of many geographically distributed developers
is introduced.

The thesis concludes with chapter 6. Some possible future works on the
tool are presented.

3

Chapter 2

State of art

2.1 Introduction

Nowadays the world became more united using technologies, therefore loca-
tions of the workers is not the first important thing anymore. Many com-
panies use many different type of computer-supported cooperative tools to
manage the work flow among the workers that involve in different projects.
Actually there are many tools designed to realize this concept, to let it be
easier working in international projects where the workers are spread over the
borders of countries. Cloud computing play a main rule in development CSCW
(Computer-Support collaborative work) tools. It is evident that the software
development world is going towards the cloud solution in a cooperative way,
and with the enhancement of cloud computing year after year, and specially
PaaS (platform as a service), it becomes very necessary to search for very
advanced solutions that make cloud computing more usable.

2.2 Computer-Supported Cooperative Work

CSCW is a term coined by Irene Greif and Paul M. Cashman in 1984 [47],
they organized a workshop contains twenty people from different fields, but in
standard interest in how people work, gathered to explore the technology’s role
in the work environment. CSCW started as an effort by technologists to learn
from economists, social physiologists, anthropologists, organizational theorists,
educators, and anyone else who could shed light on group activity. CSCW

State of art

focuses on the study of tools and techniques of collaborative software (also
called groupware) and their psychological, social, and organizational effects.
The most common definition of CSCW The definition of Wilson [63]: CSCW
is a generic term, which combines the understanding of the way people work in
groups with the enabling technologies of computer networking, and associated
hardware, software, services and techniques. In the last years it was evident
that there is a strong immigration to new forms of teleworking which include
the following main features [45]:

• Working with groups rather than individuals.

• Induction, synthesis and dialog rather than deduction analyze and one-
way transmissions.

• Not co-located with peers, management or factory.

• Mean rules of telecommunication technologies in supporting the works.

• More collaboration in working, as the knowledge becomes more special-
ized.

The ACM digital library organizes [4] conference every year in different
cities of the world for discussing CSCW [5], these conferences are a leading
forum for presenting and discussing research and development achievements
concerning the use of computer technologies to support collaborative activities,
as well as the impact of digital collaboration on users, groups, organizations
and society. In these conferences there are presented research in the design
and the use of technologies that affect groups, organizations, and communi-
ties. The conferences include both the technical approaches of CSCW and
social challenges presented when supporting collaboration. The conference
brings together top researchers and practitioners from academia and industry
who are interested in both technical and social aspects of collaboration. The
last conference took place in February 2012 in Bellevue, CSCW 2012 was the
fifteenth CSCW conference. where were included 15 workshops and a doctoral
colloquium.

One interesting publication presented in these conference a paper that
study one of the most important challenge in CSCW which is the different time
zone among the collaborators, and how they use the technologies to schedule

6

2.2 Computer-Supported Cooperative Work

their work [59]. They actually conducted interviews with sixteen members
of teams that worked across global time zone differences. Despite time zone
differences of about eight hours, collaborators still found time to synchronously
meet, The interviews identified the diverse strategies teams used to find time
windows to interact, which often included times outside the normal workday
and connecting from home to participate. Recent rends in increased work con-
nectivity from home and blurred boundaries between work and home enabled
more scheduling flexibility. The tools Supported time-shifted collaboration in
this case study: while the teams used a variety of tools to support their cross-
site collaboration, there was a heavy reliance on email, a range of reactions to
using video, and a number of other tools used to support their collaboration
such us social networking and other modern collaboration tools. As a conclu-
sion of reviewing the observations from the interviews of globally distributed
teams, they identified several design implications to better support working
across global time zone differences. Here in the following a brief description of
the main improvements can be done for supporting more the working across
different time zones.

Remove firewall access constraints for collaboration tools: Firewall
often prevent the usage of collaboration tools from home (video, data access).

Integrated tools: Several of the participants mentioned the desire to inte-
grate the tools needed to collaborate together. Several teams had to manage
tools for video conferencing, phone, IM, email, scheduling, computer window
sharing, shared file repositories, etc. Totally separately. The use of those
tools had to be coordinated together, often in the context of a synchronous
cross-time zone meeting.

Pervasive difficult of video capacity: There are still obstacles to rou-
tinely using the video. Usability and reliability of video conferencing remain as
obstacles to use, especially outside the typical workday when technical support
resources may not be readily available.

7

State of art

Increased calendaring support: A rather simple design implication of
shared on-line calendars is to allow more subtle and fine-grained support for
finding time windows to interact with time zone-shifted collaborators

Supporting temporal isolates: Many of the teams leveraged temporal
isolates either as an isolated participant at a site or as a temporal ambassador
for the site. this pattern may be prevalent among time zone-shifted teams,
and such temporal isolates may benefits from tools tailored to their roles as
individuals at a remote site.

2.3 Collaborative software (Groupware)

The collaborative software is a computer software designed to help group of
workers who involve in a common task to reach defined goals. Basically this
software facilitates the organization between the members of a group working
together spread over the geographic distances, by providing tools which offer
way to communication , collaboration and managing the rules. The groupware
is part of CSCW. It addresses how collaborative activities and their coordina-
tion can be supported by means of computer systems.

Levels of collaboration

The collaborative software can be divided into three categories depending on
the level of collaboration [44]:

1. Communication: Interchanging information among the workers. ex-
amples : phone calls, voice mail, Im Chat, e-mail, revision control, etc.

2. Conferencing: Interactive work to achieve a shared goal, example: in-
ternet forums, video conferencing, application sharing, etc.

3. Co-ordination: Collaborative management tools. examples : electronic
calendars, project management systems , online proofing, social software,
etc.

8

2.3 Collaborative software (Groupware)

Problems and challenges for designing groupware software

Because of the social and political factors at work in group settings, achieving
groupware acceptance is much trickier than single-user product acceptance. In
addition to technical challenges, groupware poses this fundamental problem
for product developers: Because individuals interact with a groupware appli-
cation, it has all the interface design challenges of single-user applications,
supplemented by a host of new challenges arising from its direct involvement
in group processes. Here there are the main challenges of designing groupware
software [48]:

The disparity between who does the work and who gets the benefit:

A groupware application never provides precise the same benefit to every group
member. Costs and benefits depend on preferences, prior expressions, roles,
and assignments. Most groupware requires some people to do additional work
to enter or process information that the application requires or produces.

Critical mass and prisoner’s dilemma problems: Most groupware is
only useful if a high percentage of group members use it. Different individuals
may choose to use different work tools, but two co-authors must agree to use
the same co-authoring tool. Achieving a critical mass of users is essential of
communication system. Even one or two defection may cause problems for
meeting scheduling, decision support, or project management applications.

Social, political and motivational factors: Groupware may be resisted
if it interferes with the subtle and complex social dynamics that are common
to groups. Often unconsciously, persons actions are guided by social conven-
tions and by his awareness of the personalities and priorities of people around
them. Tacitly understood personal priorities are tactfully left unspoken, yet
unless such information is made explicit, groupware will be insensitive to it.
Developers need sophisticated understandings of prospective users workplaces.
Working with representative users whenever possible is standard advice for
developing interactive systems. It is particularly good advice for groupware
developers.

9

State of art

Exception handling in workgroups: In general the work processes can
usually be described in two ways: the way things are supposed to work and
the way they do work. Software designed to support standard procedures
can be too fragile. A wide range of error handling, exception handling and
improvisation are characteristic of human activity [58]. Designing software
that help the worker in their work should start from base specifications done
by interviewing the working themselves, but it is not an easy task to determine
the actual standard procedure for the work, since the actual work of the worker
is not standardized. However, no standard procedure done by a groupware can
be complete specially because of unpredictable situations.

Designing for infrequently used features: Work has important social
elements that can use support, but groupware features will be used less fre-
quently than many features supporting individual activity. This has two im-
portant implication: the first groupware features will be more effective if in-
tegrated with features that support individual activity. Second, design to be
inconspicuous yet accessible. Infrequently used groupware features must not
obstruct more frequently used features, yet they must be known and accessible
to users. However, This is a difficult balancing act

The underestimated difficulty of evaluating groupware: Task analy-
sis, design, and evaluation are more difficulty for multi-user applications than
for single-user applications. A worker’s success with a particular process is
not affected by the backgrounds or personality of the group members, while
groupware is affected by them, often groupware collect worker with different
backgrounds, personalities , roles, and preference. There are many other fac-
tors make designing groupware more complex than what it seems to be.

2.4 Collaborative integrated development envi-

ronments

There is a wide set of collaborative software in the market, specially those
which use cloud computing solutions. Some of them are free and others are
licensed, some of these tools are open source projects. Examples of collabora-

10

2.4 Collaborative integrated development environments

tive IDE on the cloud: web2project [40], codeBeamer [13], GForge Advanced
Server [24],Kodingen [34], Amy Editor [8], EXO IDE [23], Codiad [15],
Shift Edit [38], Ecoo [22], Compilr [19], Collide [18], ideone [30], Collabode
[16, 17] , and many other more, each one have different level of collaboration
and cloud activities. in the following section are described three of collabora-
tive software that offer collaborative development platform for the developers
to implement software and applications.

2.4.1 IBM Jazz- Rational Team Concert

IBM Jazz [29] is a collaborative technology platform for software delivery. It
is an extensible framework, IBM Jazz can integrate and synchronize people,
processes, and assets related to software projects. IBM Jazz offers the following
main features:

• Team awareness through automatic notifications (team members can see
the work of the other members).

• Collaboration features such as project integrated presence and messag-
ing.

• Extensible infrastructure through open Web standards for including new
plug-ins.

• Process awareness guiding team workflow and automating process steps.

• Flexible process definition by specifying and modifying process rules for
different subjects or projects.

• Connector framework for integrating other source control and change
management systems, such as subversion.

IBM Rational Team Concert [37] is one of the IBM Jazz based products
that provides planning, source code, work item, building, and project health
management. To carry out these tasks, this tool integrates modules to support
process and team awareness, work item tracking, and agile planning, providing
tools to create plans for teams and continuous build integration. Here in the
following are describe the main features of IBM Rational Team Concert :

11

State of art

Item tracking: IBM RTC offers Web based tools for tracking work items
(events, errors, exceptions, any time of team activities), as create new work
item from zero or from predefined template print, import, query, and events
logs for the work item to track the changes. RTC has a way to address the
members of the team in a work item comment in social way to be notified the
addressed one. And a member can capture a part of the screen, annotate the
image with a line drawings, arrows and text, and attach it to a new or existing
work item.

Source control: The Source Control component of Rational Team Concert
is a component-based version control system built on the Jazz platform. Its
focus is on supporting geographically distributed teams, to track and manage
changes in the source files.

Planning: IBM provide tools to create products, release and sprint backlogs
for teams, to create individual plans for developers, and to track the progress
during an iteration and to balance the work load of developers. It offers ways
for Planning a Sprint, Managing a Release Backlog, Planning the Daily Work,
and tracking the progress of the release and its sprints.

Team organization: Rational team concert has tools to manage team-
related information or performing team-related operations. For example, Set
up a team, Join a team, Presence and chat in context, configure the Team
Artifacts, build events for team members, and others

Builds awareness: RTC provides build awareness, control, and tractability
to the team. Team members can track build progress, view build alerts and
results, request builds, and trace builds to other artifacts like change sets and
work items.

Problems tracking: RTC has an automatic way to detect violations of the
team’s process and the instant they happen, and report this information for
further uses.

12

2.4 Collaborative integrated development environments

2.4.2 Cloud9

Cloud9 [11] is a commercial open source development as a service (DaaS)
platform, It is web based IDE (integrated development environment), founded
in 2010, supports several programming languages for editing, and a subset of
languages for executing and smaller subset for debugging and testing is written
in JavaScript. It provides a free version and a version with costs.

Here in the following are described the main Cloud9 features:

Management and version control functionality: Cloud9 is designed to
integrate tightly with source doe repository sites GitHub [26] and BitBucket
[9]. But it also supports other repositories like mercurial [36], Git [25], and
FTP servers offers the developer a way to clone, edit, push code.

Support for deployment: Cloud9 supports application deployment to
Heroku [28], joyent [31], or Windows Azure [41].

Interactive code editor: Which include basically syntax highlighting, op-
tional support for Vim key bindings, code completion (for JavaScript/Node.js).
The editor of cloud9 can be used also for offline editing, which allows the
developers to continue working without internet connection. To use offline
editing in cloud 9 the developer has to install a special client application on
their computer that can handle synchronization between the local file and the
cloud-exciting one. Cloud9 editor offers real-time collaborative editing in the
browser allowing multiple developers to edit the same file at the same time so
the developers can pair the program and review code, chat windows to let the
developer to chat while developing.

Run-time environment: Cloud9 offers run-time environment for Javascip-
t/Node.js, Python, Ruby, and Apache+php applications, Cloud9 also offers the
possibility to execute basic linux commands by its console. Cloud9 provides
for every workspace an apache server. With it a web project can be tested.

Debugging in Cloud9 Actually Cloud9 offers a debugger to the devel-
oper of javascript/Node.js applications with all the debugger functionalities
(debugging navigation, callstack, expressions evaluation, variables inspection,

13

State of art

breakpoint management). The debugger of Cloud9 can be used individually by
each developer, and a debugging session can’t be shared among the members
of a specific project. So it is not included in the collaborative solutions which
cloud9 offers, like shared code reviews and others. It can be seen as a debugger
that runs in the browser and lives in the cloud, which is a part of web based
IDE.

2.4.3 CodeRun

CodeRun Studio [14] is a cross-platform open source integrated development
Environment(IDE) designed for the cloud. Here in the following are described
the main features of CodeRun tool:

Projects creations: CodeRun offers ways for developers to create a project
from the existing one (Visual Studio projects) or start from one of the built-in
templates [3]. It supports C# /.NET (3.5), PHP (5.1), JavaScript, HTML
and CSS. C# support includes ASP.NET, WCF, Silverlight and WPF browser
application development and deployment. Database support includes SQL
Server 2005 and Amazon SimpleDB [7].

Code editing: Code Run offers real-time syntax-coloring and automatic
code-completion for C# / ASP.NET, C# / WPF, C# / Silverlight.

Compile code: CodeRun offers server-side compilation for Microsoft .NET
managed code applications. The output console and error list window reports
the standard messages.

Project collaboration: The developers can share their codes since each
project is assigned with a unique URL which can be sent to others. The
project can be shared also on some social networking websites. The invited
developers can receive a separate, modifiable, and runnable version of the
code. The owner of the project can, using the team collaboration mode, set
read/write permissions for different users. There is also integrated Meebo chat
rooms [35] for group chatting.

14

2.5 Collaborative debugger

Run and debug code: CodeRun offers a debugger which contains the main
functionalities, navigating the code, adding breakpoints, inspecting the call
stack, and adding watch items. Since the developers can choose to share
their code, so they can allow the code to be debugged by others. but still the
debugging activity is performed individually and separately by each developer.

2.5 Collaborative debugger

Most of the described or mentioned Collaborative IDE in the previous sections
have very limited features for offering a collaborative debugging. Most of
them offer the collaborativity as a consequence of the possibility of sharing the
code and the project, so each developer can debug the same shared code, but
they still can’t share the debugging sessions itself. However, there are some
solutions in the market that tries to offer a collaborative way for debugging
codes and projects. Some of these solutions are similar in how they let the
developers to share the debugging activity, and others introduced new types of
debugging. However, by collecting feedback experience from developers who
use most of these tools plus our own experiences of using them as well, none of
these solutions offer a complete collaborative debugger that help efficiently the
developers to find the bugs together in a real-time collaborative way. In the
following sections are described the most important solutions we have found
as collaborative debuggers, about their features and limitations.

2.5.1 Microsoft Visual Studio 2010

Visual Studio [39] is an integrated development environment from Microsoft.
It has different versions. Its 2010 version offers the possibility of sharing the
debugging session information among the developers. It can be useful when
a developer who starts the debugger gets stuck and decides to ask help from
another developer exporting his/her session information. So the other user
can just pick up where the first user left off. In other words, the the whole
process can be described as switching the debugging session between the de-
velopers. The best way to describe all the collaborative functionalities that
this tool offers, is to provide a scenario where it can be usable. Here in the

15

State of art

following example is described a scenario with each step shows when and how
the collaborative approach of Visual Studio can be used.

1. Developer A starts the debugger and then end up at point where he
thinks the bug exist, but he gets stuck and wants to ask help from de-
veloper B.

2. Developer A exports breakpoint information as an XML file, which con-
tains the current debugger code line and all the breakpoints on developer
A code. Developer A can pin some variables (commenting of a variable
status) which he thinks that are causing the bug and exports this infor-
mation also as an XML file.

3. Developer A sends the files by any communication channel to developer
B.

4. Developer B after receiving the generated files can save them into his
machine, and import them and then can start at the break point that
developer A exported, and can read the comments of the pined variables.

Limitations

• The developers should have the same code version. So the breakpoint
will end up on the code of B in the same position as A exported them.

• The developers still have to use the traditional connection way to share
the files which save the state of the debugging sessions.

• The control is still single, meaning that the collaborativity is just pre-
sented in sharing debugging related information. None of other develop-
ers can influence the debugger flow when it is controlled by one developer
at a time.

• The whole operation is asynchronous, so it depends on the channel which
the developers communicate. A real time collaborative debugging is
provided just in case the developers organized that, in other word the
synchronization is not provided in an automatic way.

16

2.5 Collaborative debugger

• VisualStudio is a desktop platform, and it doesn’t offer online versions.
So if a developer want to use it just for collaborative debugging he and
all the involved developers have to install and configure it in their ma-
chines. In other words it is not platform/operating system/language
independent.

• It is not free.

2.5.2 IBM rational debugger

IBM Rational Team Concert, described in the previous section 2.4.1, is a
software development team collaboration tool based on Jazz platform. It is
developed by the Rational brand of IBM. It offers a collaborative environment
which the developers can organize their work in.

For collaborative debugging feature, IBM offers an extension for the RTC
server. The extension allows Team debug by sharing the debugging session
between Rational team concert team members. it has more or less the same
approach of Visual Studio of transferring the debugging session information,
but with more advanced features.

As a general idea IBM RTC debugger extension works as the following:
When a new team debug session is launched by client developer, the remote
system which hosts the debugger establishes the communication to the RTC
server which connects back to the client. So all the communication between
the client and the remote debugger is now done by the RTC server.

There are two basic aspects the IBM Rational debug extension for RTC
offers for debugging collaboratively, here in the following are described briefly

Transferring the debugging session: A developer as a member of a team
can transfer the debugging session to another team member. For example,
the developer A which is a team member of a specific repository can start
debugging an application and insert some breakpoints. But at some point the
developer A decides to ask help or review from the developer B which is also
a team member of the same application. The developer A sends to the devel-
oper B a transfer request which goes through the RTC server. The transferred
debugging session holds the current state, breakpoints and monitors. And
further comments can be added by developer A to the request. Developer B

17

State of art

gets notified to respond the developer A’s request. Once accepted the request,
the communication between the developer A and the RTC server is termi-
nated and another communication between the developer B and RTC server
is established. He will become the owner of the debugging session and can
continue from the same point where the developer A left off. The developer B
can transfer the debug session to another developer as well by performing the
same operations. There is just one debugging session owner at a time, and the
debug session can be switched among the members of the team at anytime.

Parking the debug sessions: A developer can decide to suspend the de-
bugging session temporarily for further user. For example, if the developer A
of the previous example wants to ask for help or review but he doesn’t know
yet who actually could help. Developer A can ‘park’the debugging session
to the team repository which will be suspended at its current state. Unlike
transferring the park, the debugging session does not belong to any developer
in the team, and it remains in its current state until someone of the team
retrieve it from the team repository. Then the developer B who is interested
in continuing debugging the developer A’s debugging session can search for
it in a particular area of the team repository, by performing a query for all
the parked debugging sessions in this repository. He should make sure that
no one is currently using this debugging session, then the developer B can
continue debugging at the point where it is lifted off, and can also add his own
breakpoints.

Limitations

The limitations of this tool are almost the same of the previous tool Visual
studio described in section 2.5.1, since they offer nearly the same solution
approach. Here also the control is still single. A developer can’t see the changes
made by the others real time, he can’t neither influence their debugging flow.
It is actually like dividing the debugging tasks by developer, each one debugs
the piece of code which is familiar with by continuing to debug at the point
where the last developer left off.

18

2.5 Collaborative debugger

2.5.3 JS Bin

JS Bin [33] is a web-based tool for collaboratively testing, executing, and
debugging JavaScript, CSS, and HTML applications. This type is a new way
for collaborative testing and debugging. It is a live output rendered in the
browser of the testers and users who are sharing the same URL. It is a free
and open source project. The idea of JS Bin is to create test and debug cases
and then collaboratively debug these cases. JS Bin allows the developer to
edit and test JavaScript and HTML reloading the URL and also maintains the
state of the code.

To describe well this tool it is better to provide a simple scenario where it
can be used: The developer A is working on a project (JS/HTML/css) and at
some point he needs help or reviews from some of his colleagues. He can send
them either a URL to see the code being updated by him, or a URL to see the
live output rendered of his code in real time as he types. The sent URL will be
his same URL but instead of ending with /edit will end with /watch. Then all
the developers who have the link can see in real-time the code and application
output as well. They also can edit the code but the further changes will be
saved in a new milestone, ie new version and not in the origin one.

How JS Bin works in general

As typing the code, the tool sends an Ajax save request on the server side.
This triggers an event which says ‘the bin with this URL has just changed ’,
now when viewing the code or the output URLs, each one is connected to the
Spike application. It listens for the event that says that a bin has changed and
when this happens it just finds all the users watching this particular URL and
sends the updated panel an event. Source maintains a persistent connection
with the server and it is listening for those events in the browser. When the
event is received, depending on the content type , it’ll either inject the content
live, or refresh the page providing user the latest version of the code [32].

Limitations

• Based on personal experience sometimes the changes doesn’t receive up-
dates automatically. There is the need to refresh the page.

19

State of art

• There are some delays in the automatically reloading the pages, since it
reloads the page every time the developer changes the code.

• It is just for HTML/CSS/JavaScript applications. The project which
the developer can test, using this tool, is just a HTML/CSS/JavaScript
application. However this solution of debugging is suitable just on these
types of applications since they are already web languages.

• It doesn’t provide the traditional way for debugging (navigating the code,
breakpoints, expressions evaluation, etc.)

• Two developers can’t edit the same version of the project. So if some
developer wants to show some changes’ effects, the changes will be saved
in a new version and will not be visible to the original code owner.

• The developers still need to use the traditional communication tools to
share the link of the code.

2.5.4 DebugLive

DebugLive [20] is a web based, collaborative remote debugging solution de-
veloped by DebugLive.com Inc. It offers a way to the developers to debug
their applications remotely in real time. It also offers the possibility of col-
lecting information to continue debugging offline. DebugLive basically helps
to developers to solve the software troubleshooting on remote sites .

DebugLive offers the following features:

1. Shared platform for debugging information.

2. DebugLive debugger can be configured for email notifications when cer-
tain events occur, and maybe package files created by the debugger and
uploaded to the DebugLive server. This allows the developer to monitor
his/her applications.

3. DebugLive can be configured to collect automatically specific type of
information as an action at a specific type of events.

4. Remote debugging session between the developer and a target machine
which host the target application.

20

2.5 Collaborative debugger

5. Debugging windows applications.

6. Creating memory dumps for local or remote machine.

To initialize the debugging session the developer should navigate to the
start debugger page. Then an executable is downloaded to the system and
saved in the browser’s cache which contains the DebugLive debugger compo-
nents. It is stored in a compressed form. Then when the developer launches
the executable it creates a DebugLive directory, uncompresses the component
into the directory and launches the main DebugLive executable. The main
executable, in return, opens the DebugLive debugger webpage. It loads the
necessary debugger components, and makes them available to the debugger
web page as a set of ActiveX control

The basic idea of DebugLive is to help the specialists to solve collaboratively
reliability and performance issues in the following kind of applications:

• native windows applications(c++/win32)

• .NET applications

• ASP.NET applications

To describe how and where DebugLive can be used we describe a scenario
which uses DebugLive as the solution: An application is crashed on the cus-
tomer site, so instead if asking to the customer to create the crash dump and
send it back to the specialists, Debuglive offers a way that lets the customer
to login in the browser (or by DebugLive add-in of Visual studio) on a specific
DebugLive account who is known also by the specialist who is trying to solve
the problem. From this point on a remote debugging session is started. Now
the specialist by navigating a specific DebugLive URL with a browser, and
then joining to the debugging session, can take the control. Then he can list
the processes, debug them in real time, create crash dump, and create differ-
ent kinds of troubleshooting information like log files, registry settings event
log entries. DebugLive offers also the possibility to upload the information
collected to this specific account for further analysis

The participant can belong to the following categories: organizer, observer
or leader. Every remote debugging session has exactly one organizer, one
leader, and unlimited number of observers. Only the current leader can send
commands to the debugging session.

21

State of art

Organizer

The Organizer is the person who starts the remote debugging session. The
organizer is in complete control of the remote debugging session. Then he can
specify the list of the users that are allowed to participate in the session and
can at any time lock the session to prevent all the other participants from
accessing it. The organizer can perform the following tasks :

1. Starting a new debugging session: Using the session windows he
should specify the debugging session name, which will be (in addition to
session ID) used by the observers as identifier to connect to this session.
He can specify if someone can participate in this session or not. Making
the session private so only this current user is able to connect to it .
After starting the session a session ID will be assigned. It contains the
unique ID of the remote debugging session. It can be sent to a specific
developer to be able to precisely identify the session and connect to it.

2. Controlling who is allowed to access the session: The organizer
can at anytime add or remove users which can access the debugging
session.

3. Close the session: Observer can uniquely close the remote debugging
session. Then after the remote debugging session has been closed by
the organizer, all the other participants of the session are immediately
notified.

4. Locking and unlocking the session: The observer uniquely can at
anytime lock the debugging session. Locking the session prevents the
observers from sending commands. The organizer can as well unlock
the session at anytime. After locking or unlocking the remote debug-
ging session by the organizer all the other participants of the session are
immediately notified about it.

Observer

The observer is a specialist who joins to an existing debugging session. The
observers observe the whole process, receive outputs of commands sent by the

22

2.5 Collaborative debugger

debugging session leader, and can ask to be the leader of the debugging session.
The Observer can perform the following tasks :

1. Joining to a session: To join to the session, it is necessary to know
either the name of the remote debugging session, its ID, or both in order
to be able to identify it.

2. Leaving the session: The observer can leave the remote debugging
session at anytime, and after a participant has left the debugging session
all other participants are immediately notified about it.

3. Leading the session: Since just an observer can be a leader at a time,
so the observer can ask to be the leader of the remote debugging session.
After a participant becomes the leader of the remote debugging session,
all other participants of the session are immediately notified about it

Leader

The leader is an observer registered himself as the leader of the session, the
leader is the observer who can uniquely send commands to the Organizer’s
instance of DebugLive debugger, which processes the commands and returns
the output back to the observers. The organizer and the others observers who
participate in the debugging session will also be able to see the commands and
their outputs. The leadership can be moved from one observer to another at
anytime.

The leaders can send commands to the DebugLive server then, if the remote
debugging session is not locked by the organizer, the server stores the command
in the command message queue associated with this remote debugging session.
The organizer’s instance of DebugLive debugger contacts the server periodi-
cally to fetch the commands from the message queue. Once the command is
fetched from the server the debugger executes it, collects its output and sends it
back to DebugLive server. When the DebugLive server receives the command
output messages, stores them in the output message queue associated with
this remote debugging session. The observer instances of DebugLive debugger
(including the leader) contact the server periodically to fetch the command
output from the message queue, to be displayed to the observers.

23

State of art

DebugLive offers the following collaborative features to the participants to
collaborate among each other:

• Sending message to all the participant or to just the organizer.

• Checking the session status: When the observer checks the session sta-
tus, the reported information will be the session id and the list of users
which are currently participating in the session (with their rules such as
organizer, leader, etc.). In addition to this information the organizer will
be informed about the list of the users which are allowed to participate
in the session.

• Data exchange: A participant can upload some files from the remote
machines to Debuglive server and share them with the other participants.

• Watching what is going on the remote machine by taking a snapshot of
the remote machine screen, or by remote video recording.

• Sending files to the remote machines: A participant can send files to the
remote machine .

Here are some of the commands that can be sent by the particpants are:
ProcessList command, PrccessDetach, GO , Break, stepIn, stepOver, stepOut,
breakpointList, eventSetting, dumpOpen, fileUpload, GetValue, Memory, reg-
isterList, callStack, disAssemply, moduleList, Threads. Each command has a
rule in the debugging activity.

Limitations

• Single control debugging: Even though it is a collaborative debugger,
it is still single control at a time, since just the leader of remote debugging
session can send commands at a time.

• Operating system dependent: Even though DebugLive is a web-
based tool, it is not operating system independent. DebugLive can be
used just on a machine which has Windows as the operating systems.
There is no support for Linux or MacOS.

24

2.5 Collaborative debugger

• Command-based communication mode: The communication be-
tween the observer’s and the organizer’s session is based on the com-
mands and command output. Then all accessing debugger information
performing operation are done by sending command by the participants
and receiving back output, so sending commands/receiving output is not
a transparent process to the participant, indeed, this is the unique way
to perform the debugging and collaborative operations.

• Asynchronous communication: The communication between the or-
ganizer and observers is completely asynchronous [21], and there is no
reliable way to determine the debugger state at any moment of time
from the observer’s machine, so observer can send inappropriate com-
mand with respect to debugger state and then will be refused to avoid
harms.

• DebugLive is designed just for debugging 32-bit Windows application
code [21].

• DebugLive is not for free.

2.5.5 IBM patent: collaborative software debugging in a

distributed system with symbol locking

There is a set of theoretical patents [43] released by IBM by the inventor
Cary L. Bates [10] who works at IBM . The patents introduce together a
collaborative debugger, but this invention doesn’t have any corresponding real
tool that realize the introduced features. These patents introduce the dis-
tributed system as the compositions of a debug server, a plurality of debug
clients, and a data communication network. The debug servers is coupled
for data communications to the plurality of debug clients through the data
communication network and the debug server includes a debug administrator,
a message router, a back-end debugger, and a debuggee.

From debugger server prospective

From the perspective of the debug server, collaborative software debugging in
the distributed system includes:

25

State of art

• Receiving, by the debug server from the debug clients asynchronously
during a debugging session of the debuggee, a number of application-
level messages and a request to the desirable command/operation.

• Routing, by the message router in accordance with an application-level
message passing protocol, the application-level messages among the de-
bug clients, the debug administrator, and the back-end debugger, thereby
providing distributed control of the back-end debugger to the debug
clients with application-level messages routed to the back-end debugger.

• Returning, by the debug server to the debug clients in response to
the application-level messages routed to the back-end debugger, client-
specific debug results including, returning, responsive to a request o the
desirable command/operation.

From debugger client prospective

From the perspective of the debug clients, collaborative software debugging in
accordance with embodiments of this patent invention includes:

• Presenting, by each debug client to a user of the debug client, a client-
specific graphical user interface.

• Detecting, by each debug client, user input through the client-specific
GUI, including detecting, by requesting debug client, user input specify-
ing the desired command/operation and one or more events.

• Generating, by each debug client in dependence upon the detected user
input, one or more application-level messages, including generating one
or more application-level messages that form the request to the desirable
command/operation.

• Sending, by each debug client, the application-level messages to the de-
bug server, including sending to the debug server the request to the
desirable command/operation.

• Receiving, by each debug client responsive to the application-level mes-
sages, client-specific debug results, including receiving by a requesting
debug client responsive to a request of the desired command/operation.

26

2.6 Summary

• Displaying, by each debug client in the client-specific GUI, the client-
specific debug results.

2.6 Summary

Most of the collaborative debugging softwares, described in this chapters or
already exist in the market, suffer from wasting time problems. The extra
time is actually wasted on activities that are not, in fact, central to solving
the core problem. These wasteful and costly activities include emailing others
in the team, spending time on phone calls and conference calls, sending files,
organizing information from various sources, and other distractions that do not
help to solve the task in the hand. CloudStudio collaborative debugger removes
these bottlenecks and allows team members to focus entirely on solving the
problem in the hand in a collaborative team-focused real-time environment.

With the most of the existent collaborative debuggers the debugging ses-
sions can be divided by the developers but in fact it cannot be shared in
real collaborative way. Indeed, the control of debugger is still single as well as
browsing the debugger status, navigating the variables, and adding expressions.
Two developers in the same time cannot control the debugger or even watch
the debugger status at the same time. While with CloudStudio collaborative
debugger all the developers can browse the debugger status in the real time,
and can influence its flow as well. Also CloudStudio collaborative debugger
offers the possibility of the single control mode if a specific developer need to
be the master of the debugger session at a specific time, and the others can
involve as watchers of the debugger status navigating the local variables and
adding expression. However, the mastership of the debugger session can be
moved form a developer to another at anytime.

In most cases, the collaborative debuggers are parts of a larger development
environment which, in most cases, embrace the old desktop paradigm and pro-
vide only a limited capacity for remoting and collaboration. So the developer
who needs to use the debugger should install the entire environment, all his
team’s members do so as well. It would be convenience if the developers al-
ready use this environment in their project, but what if they don’t! While with
CloudStudio collaborative debugger, since it is a web-based tool and lives on
the cloud, there is no need for any installation or extra work. All the developer

27

State of art

needs is internet connection and then the tool can be accessed in any part of
the world by computer, smart phones, or tablets.

Most of the existing tools are language dependent, since most of them are
a part of IDE, so the collaborative debugger is limited to the languages offered
from this IDE. While CloudStudio collaborative debugger can be implemented
for any language, it is actually language independent. Currently CloudStudio
collaborative debugger is implemented for JavaScript, but it can be easily
implemented for other languages with minimum efforts.

The most of the existing tools still need the use of the traditional com-
munication tools for sending files, sending URLs, communicating among the
members to synchronize the operations. While with CloudStudio collaborative
debugger everything is already provided to the developers, and there is no need
to send any file of URL, and the developers are automatically synchronized and
they don’t need to use other tools to help them in synchronizing the tasks.

Actually analyzing the state of art of existing collaborative debuggers, al-
most no products or services on the market that compete directly with Cloud-
Studio collaborative debugger. We have leveraged the Internet in a pioneering
way that achieves a completely new approach to enable teams in real collabo-
rative way to find software bugs.

28

Chapter 3

Analysis of the problem and the

solution

3.1 CloudStudio

This thesis is a part of CloudStudio project [53]. CloudStudio is an Integrated
software Development Environment (IDE) developed by a team of develop-
ers from different universities supervised by ETH university of Zurich. The
motivation of CloudStudio kays in the challenges introduced in distributed
projects [55], where teams collaborate in a geographically distributed setting.
Such distribution introduces new challenges [51, 55]. For example how to
design an API, how to write requirement documents or how to manage a
project. The CloudStudio project is a result of the experiences from a course
on distributed software development, DOSE [52, 53], taught at ETH Zurich.
During the course, software projects are implemented in a collaborative fashion
by students from several universities in Asia, South America, and Europe. A
lack of integrated tools that support distributed software engineering has been
identified during the course, enabling distributed projects to produce software
on the cloud.

CloudStudio enables every developer to work on a common project repos-
itory [12], shared on the cloud. One of the main differences with traditional
IDEs is that configuration management becomes unobtrusive; instead of the
explicit update-modify-commit cycle, CloudStudio keeps track of successive
versions and maintains the history automatically. Direct modification of a

Analysis of the problem and the solution

shared repository avoids raising spurious conflict notifications even when two
developers are working on the same module; actual conflicts are detected
early, and resolved through prevention rather painful post-hoc reconciliation
of changes.

CloudSudio includes many collaborative features needed for IDE used
teams, and in the features :

• Compilation tools: plus a way lets the developers to display and compile
the changes introduced by other developers, actually the tool also lets
the developers to compile the code using or ignoring the changes of other
developers.

• Code explorer: the developer can see the changes introduced by other
developers, actually the tool lets the user to display or hide the changes
introduced by other developers

• Testing on the Cloud: CloudStudio supports testing on the cloud. it
integrates AutoTest on the cloud. AutoTest is an automatic contract-
based testing tool developed by the Chair of SE - ETH.

• Proofs on the Cloud CloudStudio also supports formal verification on
the cloud. CloudStudio integrates a tool called Eve Proofs. This tool
translates Eiffel to Boogie and uses the Boogie verifier.

Integration of verification tools in CloudStudio CloudStudio IDE of-
fers verification tools which are static as well as dynamic to verify the Cloud-
Studio projects, here there are the verification tools CloudStudio offers:

• A static auto proof tool which offers the possibility of automatically
proofing Eiffel code [50, 61, 60] . The idea is basically testing the post
conditions against preconditions to determine the cases where satisfac-
tory preconditions yield unsatisfactory post conditions.

• An automated unit-testing suite which concludes tests based off contracts
[62, 49]. This Auto Test test the bound of the contracts of a given class
and reports failures.

30

3.2 Rhino JavaScript engine

• Auto Fix, working on this tools is in progress. Auto fix tries to generate
fixes for the errors found [56]. Fixes are generated analyzing both stat-
ically and dynamically, then the generated fixes are tested by regression
tests to see if they are suitable fixes to the error found.

3.2 Rhino JavaScript engine

3.2.1 Introduction

Rhino is an open source implementation of JavaScript written entirely in Java.
It is managed by Mozilla Foundation. Rhino can be embedded into any Java
application.
Rhino works in two modes : compiled mode and interpretive mode. In compiled
mode Rhino compiles all JavaScript code to Java bytecode in general Java class
files, but this mode suffer from two limitations. First, long compilation time
since generating/loading Java bytecode is a very resource intensive process.
Second, leaked memory since most Java Virtual Machine (JVM) don’t collect
unused classes or the strings that are interned as a result of loading a class file.

Rhino offers the following main features:

1. Direct scripting of Java

2. Features of JavaScript 1.7

3. A JavaScript shell for executing JavaScript scripts

4. A JavaScript compiler to transform JavaScript source files into Java class
files

5. A JavaScript debugger: for scripts executed with rhino

6. Java Adapter: allows JavaScript to implement any Java interface or ex-
tend any Java class with a JavaScript object.

The debugger which Rhino offers, is a stand alone application and can be
used only locally. So, for our purpose it was necessary to build our debugger
which is remote and collaborative, getting the benefit from the classes and
interfaces of Rhino core. In chapter 4 will be discussed with more details how

31

Analysis of the problem and the solution

we implemented Rhino interfaces.

3.2.2 Advantages and disadvantages

Rhino comparing with other options

Before starting our implementation we did some research to be sure that we
will choose the most suitable JavaScript Engine that fully meets our needs and
will work efficiently
Other JavaScript engine options in addition to Rhino:

• Spidermonky: is also open source JavaScript interpreter managed by
Mozilla and has also embedding APIs. Written in C.

• V8(JavaScript Engine) : is an open source JavaScript Engine managed
by Google. It is written in C++ and have embedding APIs. It offers a
special protocol for client-server debugging. It is needed to implement a
bridge to be used in Java applications.

Why Rhino?

• It is written in Java so we can embed it simply to our application which
is also written entirely in Java.

• It has embedding API that meets all our needs.

• It has JavaScript Debugging interfaces that can be freely implemented
depends on our needs.

• It has an elegant solution for multithreading (a specific object called
context used to store thread-specific information about the execution
environment).

• It is open source.

• Mozilla license is compatible with closed-source projects.

32

3.3 GWT - Google Web Toolkit

Rhino limitations

• Performance issues compared with other JavaScript engines.

• Very few documentations.

3.3 GWT - Google Web Toolkit

Google Web Toolkit is a development toolkit for building and optimiz-
ing complex browser-based applications. GWT is used by many products at
Google, including Google AdWords and Orkut. It’s open source, completely
free, and used by thousands of developers around the world [27].

With GWT SDK, developers write AJAX front-end in Java which is then
compiled by GWT cross-compiler into JavaScript that automatically works
across different web browsers. Developing with GWT, developers doesn’t have
to think about the low level details of client-server communication. It is pos-
sible to use other languages than Java to write the server code since GWT
works with many standard communication protocols. GWT creates a separate
compiled version of the application, so a Firefox browser displaying an appli-
cation in German doesn’t have to download extra code for other browsers or
languages. It is possible to create widgets by composting other widgets and to
lay them automatically on the panels. It is possible to pack the widgets into
JAR packages.

Client server communication

Whether using GWT RPC or getting JSON over HTTP, all the calls from
the HTML page to the server are asynchronous. This means they do not
block while waiting for the call to return. The code following the call executes
immediately. When the call completes, the callback method that is specified
when making the call will execute.

Asynchronous calls are a core principle of AJAX (Asynchronous JavaScript
And XML) development. The benefits of making asynchronous calls rather
than simpler (for the developer) synchronous calls are in the improved end-
user experience:

• The user interface remains responsive.

33

Analysis of the problem and the solution

• It is possible to perform other work while waiting on a pending server
call.

• It is possible to make multiple server calls at the same time.

Remote Procedure Calls (GWT RPC)

The very important difference between AJAX and HTML web applications is
that AJAX applications doesn’t need to fetch new HTML pages while they
execute. Since AJAX runs more like application within the browser, it doesn’t
require to request new HTML from the server to update the user interface. The
mechanism for interacting with a server across a network is called making a
Remote Procedure Call (RPC). GWT RPC makes it easy for client and server
to pass Java objects back and forth over HTTP.

Retrieving JSON data via HTTP

If the application talks to a server that cannot host Java servlets, or one
that already uses another data format like JSON or XML, it is possible make
HTTP requests to retrieve the data. GWT provides generic HTTP classes
that can be used to build the request, and JSON and XML client classes that
can be used to process the response. It is possible also to use overlay types
to convert JavaScript objects into Java objects that can interact with in IDE
while developing.

Cross-Site requests for JSONP

While creating a mashup application that needs to use data from one or more
remote web servers, there is a need to work around SOP (Same Origin Policy)
access restrictions.

3.4 Requirement analysis

In a distributed and collaborative software development environment like
CloudStudio, it is not enough implementing a debugger with basic debugger
functionalities such as step into, step over, etc. More functionalities for a

34

3.4 Requirement analysis

collaborative remote debugger are studied to facilitate the collaboration be-
tween users and the remote communication between client and server during
a debugging session.

The extension consists of two different implementations. The first one is
the implementation of a CloudStudio JavaScript Debugger with basic
debugging functionalities using Rhino JavaScript implementation. The second
implementation is CloudStudio Debugger which will orchestrate the under-
lying debuggers of CloudStudio with collaboration and remoteness properties.

3.4.1 CloudStudio JavaScript debugger

CloudStudio JavaScript Debugger is implemented as a debugger for JavaScript
which implements the Debugger interface of Rhino JavaScript implementation.
It’s a no-collaborative, no-remote, pure debugger with the basic debugging
functionalities. This debugger is one of the debuggers of CloudStudio IDE. It
is designed to run on the server-side and have no direct communication with
the client side nor any direct request can come to it from the client side.

Requirements

• Basic debugging functionalities should be implemented. These function-
alities are start, step into, step over, step out, resume, terminate.

• The debugger should return all updated variables on each line change.

• It should be possible to send expressions to be executed. Execution of
these expressions should not change the state of the debugger and should
not have effect on the flow of debugging.

3.4.2 CloudStudio debugger

CloudStudioDebugger is the orchestration of the pure debugger that lays under
it. Since all of the underlying pure debuggers have the same unique interface,
this debugger makes no operational distinction between them. CloudStudio
Debugger enriches the underlying debuggers with collaborative and remote
properties.

35

Analysis of the problem and the solution

Collaboration requirements

• More than one user should be able to share the same debugging session.
The meaning of this is that users can see real-time the changes of the
state of the debugger.

• Users should be able to control the flow of the debugging together.

• Users should see the variables of the script, and these variables should
be updated on each execution of line.

• Users should be able to execute expressions during a debugging session.
Execution of an expression should have no effect on the flow of the de-
bugger and should not break the current debugging session.

• It should be possible to add users to an active debugging session.

• A user which is not a developer of a project should not be added to a
debugging session. It should not be even possible to send a debugging
invitation to it.

• Only the users who are logged in the project can share a debugging
session. Even though a user is a developer of the project, if it is not
online in that project, it cannot join to the debugging session of that
project. Though, it is possible to send an invitation to the user to inform
it to log in the project.

• In an application wide sense it should be possible to have more than one
debugging sessions at the same time. Different debugging sessions should
have no effect neither on the work of other users nor on the different
debugging sessions of other users.

• A user should be active only in one debugging session.

Remote requirements

Since the technology used for the development of the CloudStudio, CloudStu-
dio Collaborative Remote debugger should follow the design keys that GWT
imposes. First of all GWT converts the client side code into JavaScript which
has no threading support.

36

3.5 Analysis of the application: goals and characteristics

• Since the client side cannot be multi threaded and because of the col-
laboration requirements the CloudStudio JavaScript Debugger should be
placed on the server side.

• Client side should send the commands to the debugger and receive in-
formation about the state of the debugging session.

• Server should inform client via push notifications since because of the
design of GWT RPC communication, right after a request is sent from
client to server, client doesn’t wait for the reply and continues its execu-
tion.

• Server should inform all of the users that participate in a debugging
session about the state of a it.

3.5 Analysis of the application: goals and char-

acteristics

For a distributed and collaborative environment, Rhino is integrated into the
CloudStudio and a JavaScript debugger is implemented as the underlying
JavaScript debugger. However the overall design of the debugger is generic
to CloudStudio. The underlying JavaScript debugger is in charge of executing
the script and providing the basic controls that are explained in debugger flow
controls and common debugger tools sections.

3.5.1 CloudStudio JavaScript debugger

Flow controls

CloudStudio JavaScript Debugger has all the basic debugger functionalities.
These functionalities are:

• Step Into: If the current line contains a function, the debugger enters
in the function. In the lack of a function, the debugger steps on the next
line in the current function. On the last executable line of the program,
the debugger terminates.

37

Analysis of the problem and the solution

• Step Over: Execution will resume and the debugger steps on the next
line of the script. On the last executable line of the program, the debug-
ger terminates.

• Step Out: Execution will resume until the current function returns or
a breakpoint hits.

• Resume: Execution will resume until a breakpoint hits or the script
completes.

• Terminate: Execution of the debugger will be terminated.

Tools

Some tools are designed to give information on variables and expressions within
the context of the current active debugging session. They don’t have effect
neither on the state of the debugger nor on the flow of debugging. These
functionalities are:

• Variables: On each line change the CloudStudio JavaScript Debugger
returns back all of the variables of the entire script with the updated
values. Variables that are not defined in the function where the debugger
waits in are shown as undefined. It is not possible to control the variables
from outside, it’s a read only structure.

• Expressions: It is possible to provide any expression to the debugger.
The expression provided will be executed within the current context of
the current active debugging session.

3.5.2 CloudStudio debugger

Collaboration roles

The need of collaboration between users of the CoudStudio IDE brings along
with itself the distinction between them. Users that participate in the debug-
ging session will be separated into two roles. Later on, these roles are used
to design the debugging modes which is discussed in this section. These roles
are:

38

3.5 Analysis of the application: goals and characteristics

• Normal user: This user doesn’t have control over the commands that
affect the flow of the debugger. These roles are explained under the
debugger flow controls section. This user has the functionalities that
has no effect over the flow of the debugger such as visualizing variables,
adding breakpoints or executing expressions. In a debugging session
there can be zero or more normal users.

• Master user: This user has full control over the debugger, including
the commands that affect the flow of the debugger. Furthermore, this
user can add other users to the current active debug session or set another
user which participates in the current active debugging session as the
master user. In a debugging session there can be one or more master
users.

Master User

Normal User

stepInto

stepOver

stepOut

resume

terminate

setMasterUser

addBreakpoint

addExpression

visualizeVariables

CloudStudio JavaScript Debugger

Figure 3.1: User roles and matching functionalities

Debugging modes

To maximize the collaboration of debugging between users, the CloudStudio
Collaborative Remote Debugger is designed in a way to alow users to work in
three different modes as illustrated in Figure 3.3. These modes are:

39

Analysis of the problem and the solution

• Single user mode: The only user of the debugging session is the user
which runs the debugger. It is the master user by default, since then it
has full control over the debugger. This user can send invitation to other
users and eventually add them to the current active debugging session.
Doing so, the debug mode becomes multi user single control.

• Multi user single control mode: In this mode there are more than
one user in the debugging session and only one of them is the master
user. All other users are normal users. Either the debugging session
starts in this mode or a single user debugging session enters into this
mode by adding a second user to the debugging session.

• Multi user single control mode: In this mode all of the users in
the debugging session are master users, since then all of them have full
control over the debugger.

Master

Master Normal Normal Normal

Master Master Master

Multi User Single Control Debugging

Multi User Multi Control Debugging

Single User
Debugging

Figure 3.2: Debugging modes and matching user roles

Collaboration controls

Collaboration controls give users the possibility of managing the collaborative
debugging session. These functionalities are:

40

3.5 Analysis of the application: goals and characteristics

• Add User: Users that are logged into CloudStudio IDE and not par-
ticipating in the current active debugging session can be selected and an
invitation to join to the current active debugging session will be sent to
them. Though, the user can join a debugging session if and only if it
is logged in the project of the debugging session. Otherwise both the
inviter and the invitee receive a message which informs them that it is
not possible to add the user to the current active debugging session. This
option is enabled in every debugging mode. In case of a multi user single
control debugging mode, only the master user can invite other users. In
case of a multi user multi control debugging mode, since all users will
have the full control over the debugger, all of them can invite other users.

• Set Master User: This functionality is enable only in the multi user
single control debugging mode where there exists only one master user.
The master user of the debugging session can assign another user as the
master user. Doing this it will loose its role and become a normal user.

single user

multi user single control

multi user multi control

/ add user

/ debug

/ debug with users (single control)

/ debug with users (multi control)

Figure 3.3: Debugging modes

Remoteness

• GWT defines an asynchronous communication between client and server.

• GWT defines a client side and another server side service should be
defined. The client side service is in charge of sending asynchronous
messages to the corresponding server side service.

• The communication of the client to the server is made only through these
services described above.

41

Analysis of the problem and the solution

• The communication of the server to the client is made through push
notifications. GWT imposes that the server cannot call methods on the
client side.

3.6 Complexity of implementation cycle

Extending the CloudStudio with a debugger which is collaborative and re-
mote and for JavaScript comes along with many difficulties. The solution has
different construction steps. First of all a JavScript debugger should be im-
plemented. Then over this debugger, the collaborative and remote debugger
should be implemented. Since the CloudStudio IDE supports several lan-
guages, the collaborative and remote debugger should be designed to work
also with a future implementation of the debugger of another language. The
JavaScript debugger should be exposed as if it was an API to the Collaborative
Remote debugger. Doing so, another debugger can be implemented exposing
the same methods to the Collaborative Remote debugger.

CloudStudio uses GWT RPCmechanism to make calls from client to server.
GWT RPC is an asynchronous method to make the calls. Because of the
the client requests are made through calling the methods on the server side
asynchronously. The server replies by a callback to the user who made the
request. However in a debugging session with many clients, a command comes
only from one user and the server has to inform all other users about the
state of the debugging session. Because of this requirement server has to use
long-polling push to inform each user. This is enabled by using events that
are described in chapter 4. Clients can handles the events that are pushed
by the server and each event is handled in its block of code. Events should
be designed in a very careful way to make it enable to update correctly the
state of the debugging session on the client side. Each event has a different
task to perform. For example a breakpoint hit should inform the clients about
the line where the breakpoint is hit, so that the client can update the editor.
Differently, an event about a user joining to a debugging session has to pop an
information page which will disappear automatically.

GWT converts the client Java code into JavaScript and within the browser
of the users there is only JavaScript code running for the client side. GWT
RPC enables highly responsive user interfaces. While on the server side the

42

3.7 Summary

debugger is waiting on a breakpoint, actually a thread is waiting a notify
from outside. However the same thing cannot be done on the client side
since JavaScript has no support for threading and client side code cannot
be suspended. Because of this, non debugger logic should be implemented on
the client side. All the actual debugger mechanism should be on the server
side. Otherwise it is not possible to implement a correct working debugger.

3.7 Summary

A JavaScript debugger extension which is encapsulated in a Collaborative Re-
mote debugger is described in this chapter. The design is made to make
possible extending the CloudStudio with another debugger without changed
the Collaborative Remote debugger design. According to this design the im-
plementation of the pure underlying debugger will be enough to integrate it
as a collaborative remote debugger. To extend the CloudStudio, technologies
such as GWT and Rhino are studied for the integration.

43

Chapter 4

Project and the implementation of

the solution

CloudStudio is an IDE for several languages. These languages are currently
Eiffel, JavaScript, Java and C#. So the IDE has to have a debugger of each
language, and the encapsulating debugger which enriches them with collab-
oration and remote properties. The subject of this thesis is implementing a
JavaScipt debugger within the CloudStudio and implementing a collaborative
remote debugger which is supposed to orchestrate the underlying debuggers
enriching them with collaboration and remoteness properties. The UML di-
agrams displayed in this chapter may be simplified compared to the actual
implementation to improve the comprehensibility.

In section 4.2 the implementation of the JavaScript debugger is described.
In sections 4.3 and 4.4 the implementation which enriches the JavaScript
debugger with collaboration and remote properties are described. In section
4.5 the processing sequence of the requests are described.

4.1 The implementation

Since the solution described in section 3.5 divides the entire solution into
two different components as CloudStudio JavaScript Debugger and
CloudStudio Collaborative Remote Debugger, a bottom up strategy
is followed for the implementation of the CloudStudio JavaScript debugger.

Project and the implementation of the solution

JavaScriptDebugger class is created to live on the server side and to serve as the
JavaScript debugger. This debugger is tested alone for its functionalities.

For the implementation of the CloudStudio Collaborative Remote
JavaScript debugger a top down strategy is followed. The key points of the
collaboration and remote requirements, the integration with the CloudStudio
components are studied carefully. The CloudStudio Collaborative Remote
Debugger is composed of several classes that are created to live on the
server. CloudStudio GUI and the controllers are changed to be enriched with
functionalities to enable the CloudStudio Collaborative Remote Debugger.

4.2 CloudStudio JavaScript debugger

Since there will be other debuggers within the CloudStudio IDE, the debug-
ger class is designed polymorphically. CSDebugger is the class which will be
extended by each debugger later on. JavaScriptDebugger is the JavaScript de-
bugger implementation which extends CSDebugger. This class has the basic
debugger features described in 3.5.1. The classes which extend this class has
to implement these methods in order to implement a complete debugger.

The implementation of the JavaScript debugger is realized by implementing
the Debugger, DebugFrame, ContextAction, and ContextFactory.Listener interfaces
of Rhino by JavaScriptDebugger class. JavaScriptDebugger receives start, step
into, step over, step out, resume, terminate, evaluate expression, set breakpoint
and get variables from outside and elaborates the operations.

Each JavaScriptDebugger instance runs in its own thread. RunProxy class
which implements Runnable interface is in charge of starting a new thread and
calling JavaScriptDebugger.start() method. For each debugging session a de-
bugger is created, and for each debugger a thread is started. Because of this
property, there occurs no interference problem between different debugging
threads.

The default behaviour of the debugger is to start, execute the entire script
and terminate if no breakpoint is set. When a debugger object is created with
valid breakpoints, a monitor object is used to wait.

46

4.3 GWT RPC communication services

+start() : void
+stepInto() : void
+stepOver() : void
+stepOut() : void
+resume() : void
+terminate() : void
+evaluateExpression(in expression : String) : void
+setBreakpoint(in user : UserMiniModel, in lineno : int, in value : bool) : Boolean
+getVariables() : void
+getDebugSession() : DebugSession
+setDebugSession(in debugSession : DebugSession) : void

CSDebugger

JavaScriptDebugger JavaDebugger EiffelDebugger

Figure 4.1: JavaScriptDebugger class

4.3 GWT RPC communication services

The server-side code that gets invoked from the client is often referred to as
a service. The implementation of a GWT RPC service is based on the well-
known Java servlet architecture. Within the client code, the developer uses
an automatically-generated proxy class to make calls to the service. GWT
handles serialization of the Java objects passing back and forth the arguments
in the method calls and the return value. [27].

There are three steps of setting up a GWT RPC. The service that runs
on the server whose methods are called by the clients, the client code which
invokes the services, the Java data objects that pass between the client and
server. Both the server and the client can serialize and deserialize objects.

In order to defined the RPC interface, the three components below should
be written:

1. Defining the DebuggerService interface for the service which extends com.

google.gwt.user.client.rpc.RemoteService and lists all of the RPC meth-
ods. This should be defined under the client package.

2. Defining the DebuggerServiceImpl class which extends com.google.gwt.user
.server.rpc.RemoteServiceServlet and implements the interface created
above.

47

Project and the implementation of the solution

3. Defining the asynchronous DebuggerServiceAsynch interface to the service
to be called from the client-side code.

«interface»
ServiceDefTarget

«interface»
RemoteService

«interface»
RemoteServiceServlet

«interface»
DebugServiceAsync

«interface»
DebugService

DebugServiceImp

debugService = GWT.create(DebugService.class)
 (service proxy class)

Translatable Java code
(runs as JavaScript on client)

Standard Java code
(runs as bytecode on server)

Figure 4.2: GWT RPC Class Diagram

The client side defines synchronous and asynchronous codes which are
toghether in charge of sending asynchronous requests to the server side. The
corresponding server side service which is an extendion of com.google.gwt.

user.server.rpc.RemoteServiceServlet receives these requests and elaborates
them. For this purpose DebugService and DebugServiceAsynch classes are cre-
ated on the client side, and DebugServiceImpl class is created on the server side.
DebugServiceImpl is the entry point of the server. The client sends its requests
to this service on the server. The comunication back to the clients are made
via long-polling server push.

48

4.3 GWT RPC communication services

+s
ta

rt
()

 :
vo

id
+s

te
p

In
to

()
 :

vo
id

+s
te

p
O

ve
r(

)
: v

o
id

+s
te

p
O

u
t(

)
: v

o
id

+r
es

u
m

e(
)

: v
o

id
+t

er
m

in
at

e(
)

: v
o

id
+e

va
lu

at
eE

xp
re

ss
io

n
(i

n
 e

xp
re

ss
io

n
 :

St
ri

n
g)

 :
vo

id
+s

et
B

re
ak

p
o

in
t(

in
 u

se
r

: U
se

rM
in

iM
o

d
el

, i
n

 li
n

en
o

 :
in

t,
 in

 v
al

u
e

: b
o

o
l)

 :
B

o
o

le
an

+g
et

V
ar

ia
b

le
s(

)
: v

o
id

C
SD

e
b
u
gg
e
r

+g
et

D
eb

u
gg

er
()

 :
C

SD
eb

u
gg

er
+.

..
()

-d
eb

u
gS

es
si

o
n

Id
 :

st
ri

n
g

-d
eb

u
gS

es
si

o
n

M
o

d
el

 :
D

eb
u

gS
es

si
o

n
M

o
d

el
-d

eb
u

gg
er

 :
C

SD
eb

u
gg

er

D
e
b
u
gS
e
ss
io
n

+.
..

()

-d
eb

u
gS

es
si

o
n

 :
D

eb
u

gS
es

si
o

n
-.

..

Ja
va
Sc
ri
p
tD
e
b
u
gg
e
r

+.
..

()

-d
eb

u
gS

es
si

o
n

Id
 :

St
ri

n
g

-m
as

te
rU

se
r

: U
se

rM
in

iM
o

d
el

-a
llU

se
rs

 :
Li

st
<U

se
rM

in
iM

o
d

el
>

-o
th

er
U

se
rs

 :
Li

st
<U

se
rM

in
iM

o
d

el
>

-f
ile

P
at

h
 :

St
ri

n
g

-s
o

u
rc

e
: S

tr
in

g
-b

re
ak

p
o

in
ts

 :
Li

st
<I

n
te

ge
r>

-c
u

rr
en

tB
re

ak
p

o
in

t
: i

n
t

-e
xp

re
ss

io
n

s
: L

is
t<

Ex
p

re
ss

io
n

M
o

d
el

>
-c

fm
 :

C
o

m
b

in
ed

Fi
le

M
o

d
el

-d
eb

u
gM

o
d

e
: i

n
t

D
e
b
u
gS
e
ss
io
n
M
o
d
e
l

1
1

1 1

1

1

+c
re

at
eD

eb
u

gg
er

()
 :

D
eb

u
gS

es
si

o
n

+c
sD

eb
u

gg
er

Fa
ct

o
ry

 :
C

SD
eb

u
gg

er
Fa

ct
o

ry

C
SD

e
b
u
gg
e
rF
ac
to
ry

+i
n

vi
te

()
+r

es
p

o
n

d
To

In
vi

ta
ti

o
n

()
+s

ta
rt

()
+s

te
p

In
to

()
+s

te
p

O
ve

r(
)

+s
te

p
O

u
t(

)
+r

es
u

m
e(

)
+t

er
m

in
at

e(
)

+e
va

lu
at

eE
xp

re
ss

io
n

()
+r

em
o

ve
Ex

p
re

ss
io

n
()

+r
em

o
ve

A
llE

xp
re

ss
io

n
s(

)
+a

d
d

U
se

r(
)

+r
em

o
ve

U
se

r(
)

+s
et

M
as

te
rU

se
r(

)
+s

et
B

re
ak

p
o

in
t(

)
+g

et
V

ar
ia

b
le

s(
)

-c
sD

eb
u

gg
er

Fa
ct

o
ry

 :
C

SD
eb

u
gg

er
Fa

ct
o

ry
-s

es
si

o
n

To
D

eb
u

gg
er

 :
M

ap
<S

tr
in

g,
 D

eb
u

gS
es

si
o

n
>

D
e
b
u
gS
e
rv
ic
e
Im

p
l

F
ig
ur
e
4.
3:

C
la
ss

D
ia
gr
am

s

49

Project and the implementation of the solution

4.3.1 Models and events

In GWT the data is represented as models and they are serialized for trans-
mission. Two models are created for transmitting the useful debugging data
to the clients.

DebugSessionModel

DebugSessionModel is a serializable object and keeps the state of a debugging ses-
sion. A DebugSessionModel object cannot be shared among different debugging
sessions. It is created during the initialization of the debugging session and
updated continuously during the lifetime of the debugging session. It keeps
information about what is the unique ID of the debugging session, who is the
master user, who are the other users, what is the file path of the debugging
script, what is the source script, which lines contain breakpoints, which line
the debugger currently waits on, what are the expressions that the debugger
has to evaluate, what is the debugging mode.

ExpressionModel

ExpressionModel is a serializable object which contains information about each
JavaScript expression added by the users. It holds a string of the expression
and the results. It is updated continuously during the lifetime of the debugging
session. Indeed, it is updated whenever the line of JavaScript code being de-
bugged is changed. ExpressionModel is not specific to the JavaScript debugger.
It can be used as a model for the expressions for any future implementation of
another debugger.

JavaScriptVariableModel

JavaScriptVariableModel is a serializable object which contains information
about each JavaScript variable in the JavaScript code being debugged. It
holds the name of the JavaScript variable, the value, and a boolean that de-
termines if it is an object or a primitive variable. JavaScriptVariableModel is
encapsulated in the JavaScriptVariableTreeModel.

50

4.3 GWT RPC communication services

JavaScriptVariableTreeModel

JavaScriptVariableTreeModel is a serializable object which implements N-tree
data structure. This tree represents the JavaScript variable as a tree,
where the primitive variable is represented as a tree with just a root,
and the object variables are represented as N-tree where the children are
the field of the JavaScript object variable, which can have children as
well if they are objects. JavaScriptVariableTreeModel is encapsulated in the
JavaScriptVariablesCollectionModel

JavaScriptVariablesCollectionModel

JavaScriptVariablesCollectionModel is a serializable object which contains the
list of all the JavaScript variables of the JavaScript code being debugged. It
actually contains list of list, where the first one is the list of all the frames of
the JavaScript code and each element of this list (which represent a frame)
carries a list of the local variables of this frame of the JavaScript code.
JavaScriptVariablesCollectionModel object is created during the initialization
of the debugging session, actually it is belong to DebugSessionModel object, and
is updated continuously during the lifetime of the debugging session. Indeed,
it is updated whenever the line of JavaScript code being debugged is changed.

JavaScriptExpressionModel implements VariablesCollectionModel interface.
For any future implementation of another debugger it will be enough imple-
menting this interface and the rest of the code won’t need any modification by
this polymorphic design.

Events

Clients invoke the methods of the services on the server to make a request. In a
traditional web application, mostly only the user who makes the request gets
the response. However in the CloudStudio Collaborative Remote Debugger
the clients form a debugging session and all of the users who participate in the
same debugging session should receive the response of the request of a single
client of the same debugging session. Server informs the CloudStudio clients
about the updates via long-polling push. The clients open up a request which
the server will not answer immediately but wait until there are events to push.

51

Project and the implementation of the solution

• BreakpointHitEvent: Whenever the debugger hits a breakpoint, all the
clients receive the updated DebugSessionModel so that they can update
their screens to show the current state of the debugging session. All
users of the debugging session get informed of this event.

• BreakpointSetOtherUsersEvent: During and active debugging session, if a
user sets or resets a breakpoint on some line the client sends this request
to the server and after handling the request the server fires this event to
inform other clients. All other users except the user who performed the
action get informed of this event.

• DebugCompletedEvent: When a debugging session terminates, all users of
the debugging session get informed of this event.

• DebugInvitationEvent: When a user invites some other users to join a
debugging session, the invited users get informed of this event.

• DebugInvitationResponseEvent: When the invited users respond to a de-
bugging session invitation, the user who invited gets informed of this
event.

• DebugMasterUserSetEvent: When the master user of the debugging session
is changed, all users get informed of this event.

• DebugRequestedResponseEvent: When a user starts a debugging session all
users of the debugging session, or when a user adds other users to an
active debugging session the added users get informed of this event.

• ExceptionThrownEvent: If the JavaScript script that is being debugged
throws an exception, all users of the debugging session get informed of
this event. The exception thrown is not an exception of CloudStudio but
an exception of the JavaScript script that users debug.

• ExpressionRemovedEvent: When a user removes an expression from its
view, since all users share the same view all other users get informed
of this event.

• UserLeftDebugSessionEvent: When a user leaves the debugging session,
other users get informed of this event.

52

4.3 GWT RPC communication services

4.3.2 Java components

Several methods that the clients need to invoke to control the debugging session
and the debugger are defined in the DebugService interface. The implementa-
tion within the server side class DebugServiceImpl does not contain the actual
implementation but they pass the request to the objects (which are described
in section 4.4) that are in charge of handling the requests. The methods are:

• invite(String projectId, String debugSessionId, String filePath,

UserMiniModel masterUser, List<UserMiniModel> users): When master
user tries to start a debugging session with multiple users or tries to
add a user to an existing debugging session, this method is invoked to
send an invitation to the invited user.

• respontToInvitation(String debugSessionId, UserMiniModel user, String

response, UserMiniModel masterUser): When a user receives an invitation
to join a debugging session it has the possibility to ACCEPT or REJECT it.
This is the case if it was logged in to the same project which it was
invited to. If it wasn’t logged in to the project which it was invited to,
it is not added to the debugging session and it receives a message that
it was invited to a debugging session and in order to join to the session
it has to log in to the project of the invitation. Also the inviting user
receives a similar message.

• start(ProjectModel project, CombinedFileModel cfm, UserMiniModel

currentUser, List<UserMiniModel> selectedUsers, String filePath,

String source, List<Integer> breakpoints, int debugMode): This method
is invoked in two cases, when a user requests a single user debugging
session, or when it requests one of the multiple users debugging sessions
and receives a positive or negative response from all of the users. This
method fires the starting of the actual debugging session. The file, source
script, master user, other users, file path, breakpoints and debugging
mode information are transmitted.

• stepInto(String debugSessioId): Requests from DebugSession a step into
command.

53

Project and the implementation of the solution

• stepOver(String debugSessioId): Requests from DebugSession a step over
command.

• stepOut(String debugSessioId): Requests from DebugSession a step out
command.

• resume(String debugSessioId): Requests from DebugSession a resume com-
mand.

• terminate(String debugSessioId): Requests from DebugSession a terminate
command.

• evaluateExpression(String debugSessioId, String expression): Requests
from DebugSession to execute the expression on the debugger.

• removeExpression(String debugSessionId, int index): Requests from
DebugSession to remove the expression at index on the debuger.

• removeAllExpressions(String debugSessionId): Requests from
DebugSession to remove all the expressions on the debugger.

• addUser(String debugSessioId, UserMiniModel user): This method is in-
voked when a user accepts an invitation to an active debugging session.
Requests from DebugSession to add the user to the debugging session.

• removeUser(String debugSessioId, UserMiniModel user, boolean

hideDebugToolbar): This method is invoked when a user leaves the
active debugging session. Requests from DebugSession to remove the user
from the debugging session.

• setMasterUser(String debugSessioId, UserMiniModel masterUser, boolean

masterUserLeft): This method is invoked either when the master user
leaves an active debugging session or passes the role to a user it chose.
Requests from DebugSession to set the new master user.

• setBreakpoint(UserMiniModel user, String debugSessioId, int lineno,

boolean value): A breakpoint is set or an existing breakpoint is reset on
the line. Requests from DebugSession to perform the operation on the
debugger.

54

4.4 Backend

• getVariables(String debugSessioId): Returns all of the variables of the
debugging session. Requests from DebugSession to get all the variable
from the debugger.

4.4 Backend

CloudStudio Collaborative Remote Debugger is implemented on top of the
debuggers to enrich them with collaboration and remote properties. Clients
see only one debugger with more functionalities than a traditional debugger.
However in the implementation the CloudStudio JavaScript Debugger is en-
capsulated with the CloudStudio Collaborative Remote Debugger.

Entry point for the collaborative remote debugger is the services described
in section 4.3. There can be either a single user debugging or multiple user
debugging. In the latter case the initialization of the debugging session starts
immediately. In the multiple user debugging once the invitations are sent to
the users, and each user responded to the invitation, the initialization of the
debugging session can start.

4.5 Processing sequence

Starting a debugging session

As described in section 3.5.2 the solution for the CloudStudio Collaborative
Remote Debugger foresees the implementation of a debugging session in three
different modes. They are single user mode, multi user single control mode
and multi user multi control mode. Starting a debugging session in each mode
has a different workflow between client or clients and the server.

Prerequisites

A user cannot request a second debugging session or join to a second debugging
session before terminating the active debugging session. However a user can
receive a debugging session request while being is an active debugging session.
In the last case, if the user accepts joining to the debugging session three
scenarios can happen:

55

Project and the implementation of the solution

• If the active debugging session is a single user mode debugging session
then the client automatically sends a termination request of the session.

• If the active debugging session is a multi user single/multi control mode
debugging session and if the user is the master user of the debugging
session then the client automatically sends a master user set request. The
next user in the users list becomes the new master user of the debugging
session.

• If the active debugging session is a multi user single/multi control mode
debugging session and if the user is not the master user of the debugging
session then the client automatically sends a remove user request.

Phases

Debugging session starting has 3 phases.

• Invitation phase: Debugging session invitations and responses take
place in this phase. In a single user debugging mode this is not the case
since there is only one user for the debugging session.

• Object creation phase: Objects that are required to start a debug-
ging session are created in this phase. These objects are DebugSession,
DebugSessionModel and JavaScriptDebugger

• Thread creation and starting the debugger phase: In that phase a
new thread is created for the debugging session and the debugger’s start
method is invoked.

Invitation phase

This phase takes place if and only if the user requests a multi user single/multi
control debugging. The user can invite only online users. The steps of this
phase are:

• The client invokes DebugServiceImpl.invite(...) method to send an invi-
tation to the selected users.

• DebugServceImpl sends an invitation to each user by a push notification
through DebugInvitationEvent event.

56

4.5 Processing sequence

• Here there are two scenarios:

– The invited user is logged in to the project it was invited

to: The invited user can ACCEPT or REJECT the invitation. The
client invokes DebugServiceImpl.respondToInvitation(...) method to
send the response back to the user who invited by a push notification
through DebugInvitationResponseEvent.

– The invited user is not logged in to the project it was

invited to: When the client receives the invitation, it show to
the invited user the message below and Automatically invokes
DebugServiceImpl.respondToInvitation(...) passing NOT_ONLINE
argument. A push notification is sent to the user who invited by a
push notification through DebugInvitationResponseEvent

“You are invited to debug session of project: Project X of file:
/src/Main.js by userA. In order to join the debugging session you
have to log in the project and ask master user to add you to the
debugging session.”

After that DebugServiceImpl sends the information to the user who
invited by a push notification and on it’s screen the message below
is shown:

“userB cannot be added to the debug session because the user is
not logged in this project ”

Inviter DebugServiceImpl Invitee

invite()

new DebugInvitationEvent()

respondToInvitation()

new DebugInvitationResponseEvent()

Figure 4.4: Invitation phase sequence diagram

57

Project and the implementation of the solution

When for each user a response comes back from the server, the object
creation phase starts. The object creation phase starts by the client’s invoking
DebugServiceImpl.start(...) method.

Object creation phase

DebugServiceImpl calls CSDebuggerFactory.createDebugger(...) method.
CSDebuggerFactory is a singleton. For the object creation phase,
CSDebuggerFactory does these steps:

• An instance of JavaScriptDebugger is created and assigned to a CSDebugger

reference.

• An instance of DebugSession is created and its debugger is set as the previ-
ously created debugger. DebugSession then creates the DebugSessionModel

object which will be returned to the client then.

DebugSession and CSDebugger::JavaScriptDebugger contain references to each
other. The reason is that the debugging session object controls the debugger
object and the debugger object asks to the debugging session object to fire
events on the server to the clients.

CSDebuggerFactory keeps in a map all of the alive DebugSession objects
and handles them as the requests come from DebugServiceImpl. The alive
DebugSession ojbect is removed from the map when the DebugSession tells
CSDebuggerFactory that the debugging session has terminated and there is no
need to keep the object.

Client DebugServiceImpl CSDebuggerFactory DebugSession JavaScriptDebugger DebugSessionModel

start()

debugSessionModel

createDebugger()

debugSessionModel

<<create>>

<<create>>

<<create>>

Figure 4.5: Object creation phase sequence diagram

58

4.5 Processing sequence

Thread creation and running the debugger phase

After the creation of the objects that are needed, the creation of the thread
and running the debugger takes place. These steps are followed:

• CSDebuggerFactory creates a new instance of RunProxy. RunProxy imple-
ments Runnable interface.

• A new Thread object is created by passing the RunProxy object as argu-
ment.

• Within RunProxy.run() method JavaScriptDebugger.start() is invoked.

CSDebuggerFactory RunProxy Thread JavaScriptDebugger

<<create>>

<<create>>

start()

run()

start()

Figure 4.6: Thread creation phase sequence diagram

DebugSession has references to DebugSessionModel and CSDebugger. It receives
the request from DebugServiceImpl. For the basic debugger operations like step
into or resume it controls the debugger. DebugSession handles alone the collab-
oration related operations like adding a new user to the debugging session. All
of the events directed to the clients are fired by DebugSession. Other objects
can request DebugSession to fire the events.

Listing 4.1: Java Pseudo Code: Initialization of the debugging session
1 String debugSessionId =

2 project.getPid () + "_" + users.hashCode ();

3

4 CSDebugger debugger = null;

5 DebugSession debugSession = new DebugSession(debugSessionId ,

debugger , masterUser , users , filePath , source ,

breakpoints , -1, cfm , debugMode);

59

Project and the implementation of the solution

6

7 if(project.getLanguage ().equals("JavaScript")) {

8 debugger = new JavaScriptDebugger(debugSession , source ,

breakpoints);

9 }

10 debugSession.setDebugger(debugger);

11 sessionToDebugger.put(debugSessionId , debugSession);

12

13 RunProxy proxy = new RunProxy(debugger);

14 new Thread(proxy , debugSessionId).start();

15

16 return debugSession.getDebugSessionModel ();

When a JavaScriptDebugger starts running the debugger within its own
thread, it requests from DebugSession to send a DebugRequestedResponseEvent

event which transmits an instance of DebugSessionModel to the users of the
debugging session. Doing so, all users that joined to the debugging session
update their state of debugging.

JavaScriptDebugger DebugSession Client

sendDebugRequestResponseEvent()

new DebugRequestedResponseEvent()

Figure 4.7: Debugging response sequence diagram

60

4.5 Processing sequence

F
ig
ur
e
4.
8:

C
lo
ud

St
ud

io
ID

E
de
bu

gg
in
g
se
ss
io
n

61

Project and the implementation of the solution

F
ig
ur
e
4.
9:

C
lo
ud

St
ud

io
ID

E
va
ri
ab

le
s
ta
b

F
ig
ur
e
4.
10

:
C
lo
ud

St
ud

io
ID

E
ex
pr
es
si
on

s
ta
b

62

4.6 Summary

4.6 Summary

The implementation of the CloudStudio Collaborative Remote JavaScript de-
bugger is composed of several sub-implementations. First of all a pure under-
lying JavaScript debugger is implemented. The encapsulating Collaborative
Remote debugger has the responsibility of passing the data from client to server
and vice versa. Client requests are made through asyncronoush RPC calls to
the server and the server responses are made via long-poll push mechanism.

63

Chapter 5

Case study

5.1 Introduction

The main aspect of the CloudStudio Collaborative Remote Debugger is its en-
abling the collaboration between users on a geographically distributed software
development environment. Traditionally the collaborative debugging, which is
a session in a distributed environment, is realized through a remote connection
program such as TeamViewer. The user who has the IDE shares his screen with
other users and they all together drive the debugging session. To analyze the
effects and the usability of the CloudStudio Collaborative Remote Debugger
over the traditional collaborative debugging methods a case study is designed.

The case study is basically designed to measure how innovative and efficient
CloudStudio Collaborative Remote Debugger is. This case study is not for
measuring the performance of this tool, since the collaborative debugger is a
part of the CloudStudio IDE, so it is very difficult to measure the performance
of this tool independently from the whole CloudStudio project.

Basically the idea is to be able to respond to the following main questions:

1. What is the advantage to use CloudStudio Collaborative Remote Debug-
ger over using the existing technologies which can help the collaborative
worker in their shared work? For example video conference, chatting,
remote desktop sharing.

2. A platform that offers debugging in a collaborative way in real time, is
it really what the developers need in their real projects?

Case study

3. Does the Cloudstudio Collaborative Remote Debugger respond efficiently
to the needs of the collaborative workers and help them to collaboratively
find the bugs in their codes?

4. How can a collaborative tool, like the CloudStudio Collaborative Remote
Debugger, affect the activities of team’s members when they try to reach
together a shared goal?

The case study began in a cool way. We organized an event on Facebook
to invite the developers to join us and try the tool. The event was called
"let’s try debugging collaboratively" to make the persons more curios about
the tool. Then the participants were grouped into several groups to perform
two assignments (one using CloudStudio multi user collaborative debugger,
and the other using CloudStudio single user and remote shared screen), each
assignment contains several debugging tasks.

5.2 JavaScript projects

In order to perform a valid case study the JavaScript projects, which are used in
the assignments, should be chosen carefully. The projects should have the same
level of the complexity. So, for that reason the choice of JavaScript projects
is directed into known algorithms that implement famous data structures. In
this way the developers will be familiar a bit with the code which they should
found the bugs in.

The JavaScript projects implement: linked list and binary search tree

data structures. Each one contains many functions such as add, remove, get,
and traverse. The JavaScript project is organized in 4 scripts, and in each
script a bug is inserted. The bugs don’t have extreme difficulty level, that’s to
avoid the developers to get stuck in the code rather than trying the tool.

5.3 Setting of assignments

The assignments use the JavaScript projects described above, there are two
type of assignment. The matrix types of the assignments depends on:

66

5.3 Setting of assignments

JavaScript project: The project used as code sample which contains bugs
to be recognized by the group’s members: Linked list or binary search tree
projects.

Collaborative tools: The tool used to collaborate among the group’s mem-
bers to find the bugs in the codes:

• CloudStudio Collaborative Remote Debugger: The group’s mem-
bers can use all the collaborative functionalities of the CloudStudio Col-
laborative Remote Debugger.

• CloudStudio Collaborative Remote Debugger single user and

shared screen: One developer from the group logs in to the CloudStu-
dio to use the single user debugger, the other developers connect remotely
to the desktop of the developer who is logged in to CloudStudio (using
Team Viewer).

The duration of the assignments is determined to be 90 minutes, but in
any case a timeout is determined for each assignment. The timeout for the
first assignment is 1:15h and the timeout for the second assignment is 1:00h.
So when the group reaches the timeout while performing an assignment, the
group’s members have to finish the current task which they are working on,
for then moving to the next step of the case study (second assignment or the
questionnaire). The difference in the duration between the first assignment
and the second one is for the expectation that the participants will spend
more time in the first assignment where in the next one will be more familiar
with the tool, the tasks style, and the whole process in general.

The assignment can be one of the following types:

• Assignment uses linked list project and CloudStudio Collaborative Re-
mote Debugger.

• Assignment uses Linked list project and CloudStudio Collaborative Re-
mote Debugger single user and shared remote screen.

• Assignment uses Binary search tree project and CloudStudio Collabo-
rative Remote Debugger.

67

Case study

• Assignment uses Binary search tree project and CloudStudio Collabora-
tive Remote Debugger single user and shared remote screen.

Figure 5.1: Assignments types matrix

Assignment’s tasks

Each assignment has 5 tasks to be solved by the team members. The tasks are
organized in a gradual level of complexity. In this way the members become
more familiar with the tool during the assignments. The first task of each
assignment is designed to be primitive, where are asked exercises to let the
participants play with the features of the tool, and to guarantee that the
participants know where they can find what they need, and they have been
introduced well to all the parts of the tool.

The first task of each assignment contains exercises such as: navigate in
the code until the line L, search for the variable V, evaluate the expression E,
pass the control to the next user, and so on.

The later tasks are more complex, is asked to evaluate some variables at a
specific lines, and see if they contain the correct provided values, if not they
have to search for the cause of the bug by using the debugger, and report
it briefly by specifying the line of the bug in the code. Other tasks ask the
participants to search for the cause of an exception thrown by a piece of code,
like null pointer exceptions.

5.4 Setting of groups

After collecting developers distributed in different countries to join us, groups
are created to begin the case study. Actually the groups are designed in efficient
way that produce valid results. A group can be one of the following types:

68

5.5 Logs

Group A: This group performs the assignments in the following order. First:
Assignment uses Linked list project and CloudStudio Collaborative Remote
Debugger single user and shared remote screen. Next: Assignment uses Binary
search tree project and CloudStudio Collaborative Remote Debugger.

Group B: This group performs the assignments in the following order.
First: Assignment uses linked list project and CloudStudio remote col-

laborative debugger. Next: Assignment uses Binary search tree project and
CloudStudio remote debugger single user and shared remote screen.

The matrix of group types depends on: The number of the members and
the type of the group (A or B).

Any group should be one of the following categories:

• Group type A and contains 2 members.

• Group type A and contains 3 members.

• Group type B and contains 2 members.

• Group type B and contains 3 members.

Figure 5.2: Groups types matrix

5.5 Logs

A logging mechanism is integrated to the CloudStudio to monitor the behavior
of the users during the case study. The reason of keeping the logs is analyzing
the user behavior trends during shared screen and collaborative assignments.
For each debugging session a log file is created. Every communication from
client to server is inserted to log files. This is made to monitor the commands of

69

Case study

the clients. However the communication from server to clients are not logged.
In the log file these information can be found:

• Starting time of the debugging session

• Debugging mode

• Initial master user

• Initial other users

• Script path

• Initial breakpoints

• Command time

• Command name

• User who performed the command

• End time

Each log file is inserted in the corresponding folders. The folders are struc-
tured as:

GroupName

— Assignment1
— Assignment2

An analyzing tool is implemented to parse all of the log files and give the
aggregated data for each group, assignment, and task. The analyzer produces
a CSV file. Doing so, the data that is produced during the case study became
easy to analyze. After having inserted all of the log files to their corresponding
folders, the analyzer program is run and the CSV file is produced.

70

5.6 Questionnaire

5.6 Questionnaire

Besides analyzing the logs during the assignments, we decided to analyze the
group opinions as well. A questionnaire is designed to be filled in by the
participants after finishing the assignments. The questionnaire focuses on
the difference between using CloudStudio Collaborative Remote Debugger and
CloudStudio Collaborative Remote Debugger single user plus shared remote
screen. Many questions are asked to receive feedback of the efficiency of the
collaborative aspect of CloudStudio Collaborative Remote Debugger, and how
the participants feel the difference between the two experiences of the both
tools. The questionnaire is divided into 4 sections, in the following they are
described briefly:

General information: This section contains questions asked to get general
information about the participant, for example the participant is asked for
his name, his email, his group letter (A, B) which will be provided to the
participants in the preparing emails (see the section .6), and the number of
the members in the participant’s group.

Experiences: This section contains questions asked to get information about
the experience level of the participant. We believe that the experience level of
the participants can effect how they involve in the whole process, for example if
the participant has no experience in debugging software, so he will prefer being
observer rather than controller of the debugger. In addition, a participant who
has a higher Javascript experience level will encourage him to involve more than
the others who don’t have such a high level, even if the projects implement
general algorithms and don’t contain specific JavaScript code.

In this section the participant is also asked if he participate in any type
of collaborative debugging session before, and if so he is asked to provide
the kind of this collaborative debugging used (together in front of the same
computer, software that allows to watch another person’s screen, remote access
to a machine, and other)

Debugging using a shared screen: This section contains questions about
the participant’s experience in the collaborative debugging using shared remote

71

Case study

screen during the assignments. It focuses mainly on how the participants
missed collaborative tools that let them work in a real collaborative way.

The questions asked in this section are for example: The role of the partic-
ipant, if he was the controller or the observer, how often the participant told
the person who controlled the debugger what to do by using chatting tools,
how much the participant actively involved in the debugging session. There are
similar questions asked to see how much the participant missed the presence
of actual collaborative tool like: everybody can add breakpoints, everybody
can see variables, everybody can browse the code individually, everybody can
control the debugger, etc. At the end of this section the participant is asked
a question about how much efficient the collaborative debugging using remote
shared screen is.

Debugging using CloudStudio Collaborative Remote Debugger:

This section contains questions about the participant’s experience in the col-
laborative debugging using the CloudStudio Collaborative Remote Debugger
during the assignments. it focuses on how the participants feel the efficiency
of the collaborative tools that let them work in real collaborative way.

The questions asked in this sections are for example: how much the par-
ticipant actively involved in the debugging session, how often the participant
controlled the debugger, e.g. add breakpoints, investigate expressions, etc.
There are similar questions asked to see how efficient the collaborative tool is,
for example: how much useful that everybody can add breakpoints, everybody
can see variables, everybody can browse the code individually, everybody can
control the debugger, etc. The participant is also asked about the efficiency
of the several CloudStudio collaborative debugger modes (single control, multi
control). At the end of this section the participant is asked a question about
how much efficient the collaborative debugging using remote shared screen is.

Other information: In this section the participant is asked simply to choose
which tool he preferred during the assignments between shared screen debug-
ging and CloudStudio Collaborative Remote Debugger, and if he has another
comments to provide.

The questionnaire can be found the appendix .5.

72

5.7 Preparing the groups

5.7 Preparing the groups

To get valid results from this case study, we prepared the groups for the partic-
ipating in a very careful way. We were very careful about making sure that the
participants don’t know the subject of the case study before the starting date,
making sure that the participants don’t know about the second assignment
before finishing the first one, making sure that the participants don’t know
about the questionnaire before finishing the second assignment, making sure
that the participants have already installed all the required tools before the
starting time, and others standards to make sure about the validity of the case
study results. The members of each group received an email one day before
their scheduled time for participation. The email contains the following main
information:

• The time and the date of the participation.

• Group member’s names to be able to contact each other before the start-
ing time.

• Required tools, and an encouragement to prepare them before the start-
ing time.

• CloudStudio Collaborative Remote Debugger guide. This guide is de-
signed just for this purpose which introduces the main technical aspect
of the tool. It explains how to use the buttons, the tool bars, and the
tabs in the CloudStudio Collaborative Remote Debugger. (the guide can
be found in the appendix .5)

• Some important notes that guarantee the validity of the whole process,
for example to not to change the JavaScript code, since by changing it
they will utilize another tools of the CloudStudio which is not an aspect
of this case study.

Then Members of the group received 5 minutes before the starting time
another email, to guide them how to start the process. This email contains
the following main information:

• How to proceed: explaining in general the whole process, that they have
to perform two assignments, and when they finish the first one they will

73

Case study

receive the second assignment and when they finish it they will receive
the questionnaire.

• Information about the duration and timeout of the assignments.

• Their group letter (A or B) they don’t know what this letter mean, they
just use it in the questionnaire.

• The link to the first assignment and how they can access it (all the case
study documents were hosted on Google Docs)

• Reminder for the required tools.

• Our contact information to contact us if they need any help.

The templates of the emails can be found in the appendix .6.

5.8 Case study challenges and problems

This case study is designed in a very careful way that can we can obtain
valid and efficient results and analysis. We were very careful in preparing
every single step, writing the assignments and tasks, choosing the JavaScript
projects, writing the guide tool, how to prepare the groups, designing the
questionnaire, and each detail. During the preparation of this case study we
faced some of problems and challenges, some of them depended on the nature
of the tool and others on the nature of the assignments, and others depended
even on the participants. In the following are described some of the main
problems we faced during the case study design, and the actual performing by
the participants.

5.8.1 Organizing the groups

The main problem was collecting the participants and scheduling them in
groups. This case study is designed in very standard way, that can be applied
on any number of participants without any additional efforts. We believe that
more the participants are, more the result are real and valid. So we managed
to collect at least 20 persons (for the thesis case study) to participate and
organize them in the following way:

74

5.8 Case study challenges and problems

2 groups of 2 members of the Type Group A
2 groups of 2 members of the Type Group B
2 groups of 3 members of the Type Group A
2 groups of 3 members of the Type Group B
But unfortunately, it was very difficult to collect 20 persons who can give

us 2 hours easily, so the final participants number in this case study is 13.
In addition to the difficulty of collecting persons, there was the difficultly of
arranging them in suitable time schedules which should be based on their
preferences. To resolve this problem we created a time table for determined
days and let the participants fill it in as for their availability. Then we organized
the groups based on the matching in time stamps. But as it is expected it was
impossible to get the groups as we wanted, so we were forced to organize the
groups like following:

2 groups of 2 members of the Type Group A
3 groups of 2 members of the Type Group B
0 groups of 3 members of the Type Group A
1 groups of 3 members of the Type Group B

5.8.2 Duration of the assignment

Each assignment is designed to be performed in 45 minutes, but actually this
duration can take place just in perfect cases, where all the participants start
in a synchronized way, the participants don’t lose time in external stuff like
connection problems, the participants take a reasonable time in finding the
bugs since they are developers, the participants had already installed all the
required tools before starting, the participants have already read the guide
of the tool so they don’t lose time in discovering how the buttons work, and
other unexpected behavior can effect the duration of the assignments. Since
the participants were volunteers, so we couldn’t expect that they will perform
everything in the perfect cases. for that reason we expected that they will
take more than the determined time for finishing the assignments, and for
not to "steal" persons’ time we decided to determine a timeout as an initial
solution for this problem. Even if the timeout resolve the problem of stealing
persons’ time, but it creates another type of problems, with timeout some
groups will finish more tasks than others, and it depends on many factors.

75

Case study

Actually we resolved this problem by tracking the logs which allow us to see
when they start/finish each task, and we took this information into account
when evaluating the case study results.

5.9 Results

5.9.1 Analysis of the logs

Logs that were recorded automatically during the case study are analyzed
to get some trends on how the CloudStudio Collaborative Remote Debugger
effects the behavior of the users.

• Total time spent for the shared screen debugging is more than the col-
laborative debugging.

• Number of actions performed in the collaborative debugger is evenly dis-
tributed. It is possible to say that the CloudStudio Collaborative Remote
Debugger enables the collaboration between geographically distributed
developers while debugging the same code.

• There are more actions performed during the collaborative debugging
than the shared screen debugging.

• There are more breakpoints for the shared screen debugging.

• During the shared screen debugging there were initialized more debug-
ging sessions than the collaborative debugging mode.

5.9.2 Analysis of the questionnaire responses

The results say that the participants in the shared screen debugging missed the
collaborative features that the CloudStudio Collaborative Remote Debugger
offers, which help them debugging the code in a real collaborative way like
everyone can add breakpoints, every one can see the code individually, everyone
can add expressions, and others. Most of the participants felt the efficiency
of the collaborative features that CloudStudio collaborative debugger offers.
Here in the following the responses of the participant are analyzed, where in

76

5.9 Results

some of questions they are asked to give a votes for several aspects, all the
votes are from 1 to 5 (’not at all’ to ’very much’).

Seeing the variables individually: With CloudStudio collaborative de-
bugging The 46% of the participants gave 5/5 for the efficiency of the fact
that everyone can see the variable individually, and other 46 % gave 4/5.

While with shared screen debugging 23% of the participants gave 1/5 for
how much they missed that every body can see variables individually, 23%
gave 2/5, 15% gave 3/5, 23% gave 4/5, and 15% gave 5/5

Figure 5.3: Missing Collaborative variable evaluation

Figure 5.4: Collaborative variable evaluation efficiency

Seeing the code individually: With CloudStudio collaborative debugging
the 69 % of the participants gave 5/5 for the efficiency of the fact that everyone
can see the code individually.

While with shared screen debugging, 15% gave 2/5 for how much they
missed that everybody can browse the code individually, 15% gave 3/5, 8%
gave 4/5, and 23% gave 5/5.

77

Case study

Figure 5.5: Missing Individual code visualization

Figure 5.6: Individual code visualization efficiency

Adding/sharing breakpoints: With CloudStudio collaborative debugging
the 15 % of the participants gave 2/5 for the efficiency of the fact that everyone
can add/share breakpoints, 23% gave 3/5, 23% gave 4/5, 38% gave 5/5.

While with shared screen debugging, 23% gave 1/5 for how much they
missed that everyone can add/share breakpoints, 23% gave 2/5, 15% gave 3/5,
23% gave 4/5, and 15% gave 5/5.

Figure 5.7: Collaborative breakpoint efficiency

78

5.9 Results

Figure 5.8: Missing Collaborative breakpoint

Adding/sharing expressions: With CloudStudio collaborative debugging
the 15% of the participants gave 3/5 for the efficiency of the fact that everyone
can add/share expressions, 54% gave 4/5, and 31% gave 5/5.

While with shared screen debugging, 15% gave 1/5 for how much they
missed that everyone can add/share expressions, 8% gave 2/5, 31% gave 3/5,
31% gave 4/5, and 15% gave 5/5.

Figure 5.9: Collaborative expression evaluation efficiency

Figure 5.10: Missing collaborative expression evaluation

With users multi control debugger mode: With CloudStudio collabo-
rative debugging the 8% of the participants gave 2/5 for the efficient of the
debugger mode with users multi control, 15% gave 3/5, 46% gave 4/5, and
31% gave 5/5.

79

Case study

Figure 5.11: Debugger mode with users multi control

With users, single control debugger mode: With CloudStudio collabo-
rative debugging the 23% of the participants gave 2/5 for the efficient of the
debugger mode with users, single control, 23% gave 3/5, 46% gave 4/5, and
8% gave 5/5.

Figure 5.12: Debugger mode with users single control

Controlling the debugger: During the collaborative debugging using
CloudStudio collaborative debugger 46% controlled the debugger 4-7 times,
15% controlled the debugger 8-12 times, and 38% controlled the debugger
more than 12 times.

While during the Shared screen debugging 23% of the participants were the
controller of the debugger(the participant who loged in to CloudStudio from
his own machine), 31% of the participants tell the controller what to do 1-3
time, 23% 4-7 times, 15% 8-12 times, and 8% more than 12 times.

So the all participants during collaborative debugging, using CloudStudio
Collaborative debugger, involved in controlling the debugger in collaborative
way, where in the shared screen debugger were busy in telling the controller
what to do rather than being able to intervene in the work by themselves.

80

5.9 Results

Figure 5.13: How much the participants control the debugger

Figure 5.14: How much the participants tell the controller what to do

Involving in the debugging session: As a vote form 1 to 5 (’not at all’
to ’very much’) for how much they were involving in the debugging session.
During the debugging using CloudStudio collaborative debugger 15% gave the
vote 3, 38% gave the vote 4, and 46% gave the vote 5.

While during the shared screen debugging 8% gave the vote 2, 46% gave
the vote 3, 23% gave the vote 4, and 23% gave the vote 5

It is evident that the participants during CloudStudio collaborative de-
bugging have involved more than during the shared screen debugging. As an
important note the percentage of participants (23%) who gave 5/5 - which
mean that they involved very much- during shared screen debugging is the
same of the percentage of participants who were controlling the debugging
during shared screen debugging (who has the debugger session active uniquely
on his machine)

81

Case study

Figure 5.15: Involving in the debugger during CloudStudio collaborative de-
bugging

Figure 5.16: Involving in the debugger during shared screen debugging

Efficiency of the collaborative tools: As a vote form 1 to 5 (’not at all’
to ’very much’) for the efficiency of each collaborative tool used during the
assignments. For CloudStudio collaborative debugging 8% of the participants
gave 2/5, 8% gave 3/5, and 85% gave 4/5.

While for shared screen debugging 8% of the participants gave 1/5, 46%
gave 2/5, 15% gave 2/5, and 31% gave 4/5. Evidently we can see how the par-
ticipants saw the difference of the efficiency between CloudStudio collaborative
debugging and shared screen debugging.

Figure 5.17: CloudStudio collaborative debugger efficiency

82

5.9 Results

Figure 5.18: Debugging used shared remote screen efficiency

Collaborative debugging preference: 85% of the participants preferred
CloudStudio collaborative debugging over Shared screen Debugging.

Figure 5.19: Users preference between the two collaborative debugging expe-
rience

Users comments: During the shared screen debugging session, the users
complained about some restrictions of this kind of debugging session. Some
users complained the fact that while watching the debugging session during
the shared screen debugging, the screen sharing was interfering with the work,
meaning that the screen sharing had a negative effect on the productivity of
the work done.

Another complaint was about having to use an IM for communication.
Since the tools for screen sharing do not provide a messaging tool they had
to use other tools for communication. They had to switch the IM and shared
screen windows back and forth to communicate and to work.

Every programmer has its own way to work. During the case study we
noticed that some of our participants are not very collaborative and since then
they were not quite happy using a collaboration tool where the participants
can control the debugger and perform actions, it depends strongly on the
personality of the participants.

83

Case study

5.10 Threats to validity

Threats to the validity of this case study are internal and external. Internal
validity is whether the case study supports the outcome. External validity is
whether the outcomes can be applied to different domains.

5.10.1 Internal validity

The outcome showed us that the amount of data is not sufficient to answer the
questions of the case study. However we found some significant trends from
the data that we collected during the case study. There are two sources that
the data comes from. The first one is the logs which cannot be manipulated by
the participant users, so these log data cannot present a threat to the validity.
However the second source, which is the questionnaire which each participant
has to fill, it can be manipulated by the participants. This data presents a
threat to the validity.

We asked participants to use some instant messaging program to commu-
nicate between them. They are then asked to send the chat logs to us. Doing
so we could see their behavior. At this point we cannot be sure about whether
they used some other communication tools during the case study other than
the logs they sent. These logs present a threat to the validity.

This case study is driven by a group of non pre-selected computer engi-
neering students. Not all the students come from the same background and
they have different levels of experience in debugging. Some are familiar with
debugging, and on the other hand some don’t use usually debugging tools. We
overcame this difference by asking them in the questionnaire their experience
of debugging.

This case study is driven to see how the CloudStudio Collaborative Remote
Debugger helps developers to debug in a collaborative way in a geographically
distributed environment. As for the human nature, not all participants were
willing to collaborate and this might prevent us to see the real efficiency of the
tool.

84

5.11 Summary

5.10.2 External validity

The setting of the case study is sufficient to monitor the behavior of the par-
ticipants in a shared screen and CloudStudio collaborative environment. How-
ever, this case study is made with university students. Thus, this case study
should be driven with developers that are more experienced with debugging
and programming.

5.11 Summary

After all, we can say that the participants feel the efficiency of the features
that CloudStudio collaborative debugger offers. They took the advantage of
these features to collaboratively find the bugs inserted in the scripts. The par-
ticipants did more actions during the assignment which uses the CloudStudio
Collaborative Remote Debuger since they were all able to control the debugger
from his own machine and browser.

85

Chapter 6

Conclusions and Future Works

6.1 Conclusion

This thesis extends CloudStudio a web based IDE with a collaborative remote
debugger. Using collaborative debugger the users who share the same projects
can share a debugging session as well. by sharing the debugging session each
involved user can individually see the code and how the debugger is navigating
the code in real time, browse the local variables and search for specific one, see
the others expressions in real time and add new expressions as well which will
be seen by the others. The collaborative debugger has 3 modes of debugging,
the first mode is single user debugger, in this mode the user can debug the
code individually on the cloud without any collaborative actions, but in any
time can move it to one of the other modes. The second mode is debugging
with users single control, here just one user (master user) at a time can do
debugging actions (step into, step out, step over, resume, terminate), but still
all the others can individually add breakpoints, view the variables, evaluate
expressions, see the how the master is navigating in the code in real time. The
master can in anytime pass the control to other user(who should be online
and share the same project). The third debugger mode is with users multi
control, here every user is a master. So, all the users can control the flow of
the debugger and do the other actions. Any user, who is sharing the debugger
session, can invite in anytime users to the debugger session (the invited user
should be online and loged to the shared project).

The collaborative debugger is designed in a standard way, that can be used

Conclusions and Future Works

to implement any debugger for other languages. In this thesis the Collaborative
debugger is implemented for JavaScript.

After finishing the implementation of this tool a case study is designed to
see how efficient the collaborative debugger is, and what is the advantage of
using it instead of using the exiting tools that help the users to collaborate as
chatting, remote shared screen, and others.

6.2 Future works

The work presented in this thesis offers several opportunities for further re-
search and enhancement. Here in the following are introduced the main pos-
sibilities.

6.2.1 Implementations for more languages

CloudStudio collaborative remote debugger is designed in standard way, so
it can be easily implemented for another languages without additional ef-
forts. Currently CloudStudio collaborative remote debugger is allowed just
for JavaScript, so just the users of JavaScript projects can use this tool. High
recommended extension is to implement CloudStudio collaborative remote de-
bugger for another language, that Cloudstudio IDE includes, like Java or Eif-
fel. The efforts of developing this extension are not complicated, rather it is
very forward since it should just adapt the language of the debugger with the
CloudStudio collaborative remote debugger.

6.2.2 Improvement for tablets

One of the advantage of cloud applications is that the cloud unite the users of
pc with those with mobiles. So, another high recommended enhancement is to
improve cloudStudio collaborative remote debugger to be adapted to tablets. It
would be a great that a developer can perform collaborative debugging when
he is going to his work from his tablet or ever his smart phone. Currently
Cloudstudio collaborative remote debugger is working on tablets and even on
smart phones since it is web based application, but it misses the enhancement
to be adapted to the tablets screens and other stuffs related to the tablets and
smart phones.

88

6.2 Future works

6.2.3 Extend the case study

As mention in the before in the section which describes the problems and
challenges of the case study 5.8, we had problems with the case study in
collecting persons and creating the groups. Actually to reach more realistic
results the case study should contain about 100 persons or even more, and in e
perfect cases described in this section 5.8.1, in this way the results will reflect
more the efficiency of CloudStudio collaborative remote debugger. Currently
the case study contains 13 persons organized in 6 groups. The goal is to arrive
to at least 100 persons grouped in well organized groups (the same number of
each type of group matrix shown in this section 5.4) The idea is: in future
the case study can be insert in a course in which the student can participates
as a part of course project or something similar. in this way we can guarantee
large number of participants, standard background of the participants, and
specially motivated participants. Then the results will be more realistic.

89

Appendices

.1 Assignment 1 - Debugging using a shared screen

In this appendix the assignments that are sent to users are attached. These
assignments are used to drive the case study.

.1 Assignment 1 - Debugging using a shared

screen

In this assignment, you and your colleagues have to debug a set of JavaScript
programs using a Shared Screen. One user should connect to CloudStudio, log
in and use the debugger. This user is called the masterUser in this document,
the other users (called otherUsers in this document) should connect to the
masterUser’s computer (using Skype-Shared-Screen or TeamViewer, etc).

Settings Instructions

masterUser should open cloudstudio (http://cloudstudio.ethz.ch/), then
login using the following user name and password:

username: username

password: password

Then, select the project "ProjectA". In this project there are several
files: Example1_Script1.js Example1_Script2.js Example1_Script3.js Exam-
ple1_Script4.js

The examples Example1_Script1.js . . . Example1_Script4.js are similar.
However, they have different issues to solve and they have some minor modi-
fications.

Goal of the assignment

The assignment consists of debugging different programs in collaboration with
the other users. In these tasks, you do NOT need to fix the problem of the
program, i.e. you do not need to modify the program. To avoid errors, please
do not write in the editor.

Different tasks will use different files. We will mention explicitly which file
to use in each task.

93

Conclusions and Future Works

Tasks

In the following tasks, you will perform some simple debugging. This will
help you to get familiar with the debugging tool. We recommend that the
masterUser performs the tasks, but if you use a Remote Desktop program
(i.e. everybody has control over masterUserâĂŹs mouse and keyboard)
the otherUsers can also perform the operations. This is a collaborative

debugging session and the masterUser and the otherUsers should work
together to solve the tasks. When you start the tasks, please write down your
starting time. When you finish the task, also write down the finish time.
When you finish each task or sub-task, fill in the reports section at the end
of each task with the solution of the tasks and the times it took you to solve
them. You all have a space for yourselves.

Task 1: Open the file “Example1_Script1.js”. Put breakpoint at line 73,
and start the debugger. Debug -> Debug (i.e. in the normal mode not with
other users):

Apply “step over” until the debugger reaches line 77.

• Task1.1: Take a look to the variable list from the variables tab. What
is the value of the field “_length” of the variable “ list”. Hint: you find
this information in the variables tab.

• Task1.2: Using the expression tab, evaluate the expression “ list.item(1
)”, “ list.item(2)”, “ list.item(3)” and “ list.item(4)” (still at line 77).

• Task1.3: At line 77, step into the the function “add”. Then, evaluate
the variable “current” at line 40.

• Task1.4: Finally, step out, to return to the main program (line 78).
What is the value of the field “_length” of the variable “ list”at line 81?
Then terminate the debugger by terminate button.

The following tasks are of increasing complexity. In general, the tasks will
request you to find some problem or perform some action. You can decide
whether the masterUser executes the tasks of the otherUsers.

94

.1 Assignment 1 - Debugging using a shared screen

Task 2: Open the file “Example1_Script1.js”. Evaluate the variables red,
yellow and st at Line 81. Their values should be:

red = “red”
yellow = “yellow”
st = “red,orange, yellow,green,black,brown,pink”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix
the problem).

Task 3: Open the file “Example1_Script2.js”. Insert breakpoints in places
that let you see the following variables orange, st, st2 and yellow. The values
should be:

orange = “orange”
st = “red,orange,yellow”
st2 = “yellow, orange, red”
yellow = “yellow”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix
the problem).

Task 4: Open the file “Example1_Script3”. Start debugging the program
and the program will give you an exception with the type of the exception
and the line-number where it is thrown. The debugger will terminate when
the exception is thrown so you can start the debugger again to find the cause
of the problems. Find out which function produces the exception and which
line produces the bug. Briefly mention how it could be fixed (you do not need
to fix the problem).

Task 5: Open the file “Example1_Scrip4”. Start the debugger after
putting breakpoints in suitable places that let you see the following variables
tostring, tostring1, yellow, orange, pink and pink1. The values should be:

95

Conclusions and Future Works

tostring = “red,orange,yellow”
tostring1 = “pink,pink,black”
yellow = “yellow”
orange = “orange”
pink = “pink”
pink1 = “pink”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

.2 Assignment 1 - Debugging using CloudStudio

Collaborative Remote Debugger

In this assignment, you and your colleagues have to debug a set of JavaScript
programs using the collaborative debugger. Using this tool, several users can
share the debugging session, add expressions, break points, etc. Take a look
to Introduction to Collaborative Remote Debugger .

The debugger has two options: debug with user single control and debug
with users multi control.

Note: You should NOT use a shared desktop. You will share the debugging
session using the CloudStudio tool. You have to solve the tasks using the
collaborative debugger using singleControl andmultiControl, and you are NOT
allowed to use the debugger alone.

Settings Instructions

All the users, from now on User1, User2 (and for some cases User3 and User4)
should open cloudstudio. Then login using the following user names and pass-
words:

For User 1: username password
For User 2: username password
For User 3: username password
For User 4: username password

96

.2 Assignment 1 - Debugging using CloudStudio Collaborative
Remote Debugger

Then, select the project “ProjectA”. All the users will see the same project.
In this project there are several files:

Example1_Script1.js
Example1_Script2.js
Example1_Script3.js
Example1_Script4.js

The examples Example1_Script1.js . . . Example1_Script4.js are similar,
however, they have different issues to solve and they have some minor modifi-
cations.

Goal of the assignment

The assignment consist of debugging different programs in collaboration

with the other users. The tool letâĂŹs you see the expressions of other
users and share the debugging session. In these tasks, you do NOT need to fix
the problem of the program, thus you do not need to modify the program. To
avoid errors, please do not write in the editor.

Different tasks will use different files. We will explicitly mention which file
to use in each task.

Tasks

In the following tasks, you will perform simple assignments, this will help you
to get familiar with this new tool. We will first suggest who performs which
tasks (if there are more than 2 users, the tasks can be performed by the other
users too). When you start the tasks, please write down your starting time.
When you finish the task, also write down the finish time. When you finish
each task or sub-task, fill in the reports section at the end of each task with
the solution of the tasks and the times it took you to solve them. You all have
a space for yourselves.

Task 1: Open the file “Example1_Script1.js”. User1 puts a breakpoint at
line 73. User1 should start the debugger. Debug -> debug with users single
control :

97

Conclusions and Future Works

User1 will see a dialog and can add the other users (user2, . . .) to the
debugging session. The other users should accept the invitation. Once every-
body is sharing the debugging session, apply “step over” until the debugger
reaches line 77.

• Task1.1: ALL USERS: Take a look to the variable list from the variables
tab. What is the value of the field “_length” of the variable “ list”. Hint:
you find this information in the variables tab.

• Task1.2: Using the expression tab, you need evaluate the expressions
“ list.item(1)”, “ list.item(2)” “ list.item(3)” and “list.item(4)” (still at line
77). To do it, each user should go to the expression tab, and each user
should add at least one expression.

• Task1.3: Now, user1 should pass the control of the debugger to user2.
(users ->Set master user) a dialog will open, then select user2 from the
list. At line 77, the new master (user2) steps into the the function “add”.
Then, evaluate the variable “current” at line 40.

• Task1.4: Finally, step out, to return to the main program (line 78).
What is the value of the field “_length” of the variable “ list” at line 81?
Then terminate the debugger by terminate button.

The following tasks are of increasing complexity. In general, the tasks will
request you to find some problem or perform some action.

For Task2 and Task3 use Debug -> debug with users single con-

trol.

For Task4 and Task5 use Debug -> debug with users multiple

control.

Task 2: User1: Open the file “Example1_Script1.js”. User1 should start
the debugger. (Debug -> Debug with users (single control)) :

User1 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, evaluate the variables red, yellow
and st at Line 81. Their values should be:

98

.2 Assignment 1 - Debugging using CloudStudio Collaborative
Remote Debugger

red = “red”yellow = “yellow”st = “red,orange, yellow,green,black,brown,pink”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

Task 3: User2: Open the file “Example1_Script2.js”. User2 should start
the debugger. (Debug -> Debug with users (single control)) :

User2 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, insert breakpoints in places that
let you see the following variables orange, st, st2 and yellow. The values should
be:

orange = “orange”
st = “red,orange,yellow”
st1 = “yellow, orange, red”
yellow = “yellow”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

Task 4: User2: Open the file “Example1_Script3.js”. User2 should start
the debugger. (Debug -> Debug with users (multiple control)) :

User2 will see a dialog and there you can add the other users (user1, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, the program will give you an ex-

99

Conclusions and Future Works

ception with the type of the exception and the number of line where it is
thrown. The debugger will terminate when the exception is thrown so you can
start the debugger again to find the cause of the problems.

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

Task 5: User1: Open the file “Example1_Script4.js”. User2 should start
the debugger. (Debug -> Debug with users (multiple control)) :

User2 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, insert breakpoints in places that
let you see the following variables orange, st, st2 and yellow. The values should
be:

tostring = “red,orange,yellow”
tostring1 = “pink,pink,black”
yellow = “yellow”
orange = “orange”
pink = “pink”
pink2 = “pink”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

100

.3 Assignment 2 - Debugging using a shared screen

.3 Assignment 2 - Debugging using a shared

screen

In this assignment, you and your colleagues have to debug a set of JavaScript
programs using a Shared Screen. One user should connect to CloudStudio, log
in and use the debugger. This user is called the masterUser in this document,
the other users (called otherUsers in this document) should connect to the
masterUser’s computer (using Skype-Shared-Screen or TeamViewer, etc).

Settings Instructions

masterUser should open cloudstudio (http://cloudstudio.ethz.ch/), then
login using the following user name and password:

username: username

password: password

Then, select the project "ProjectB". In this project there are several
files: Example2_Script1.js Example2_Script2.js Example2_Script3.js Exam-
ple2_Script4.js

The examples Example2_Script1.js . . . Example2_Script4.js are similar.
However, they have different issues to solve and they have some minor modi-
fications.

Goal of the assignment

The assignment consists of debugging different programs in collaboration with
the other users. In these tasks, you do NOT need to fix the problem of the
program, i.e. you do not need to modify the program. To avoid errors, please
do not write in the editor.

Different tasks will use different files. We will mention explicitly which file
to use in each task.

Tasks

In the following tasks, you will perform some simple debugging. This will
help you to get familiar with the debugging tool. We recommend that the

101

Conclusions and Future Works

masterUser performs the tasks, but if you use a Remote Desktop program
(i.e. everybody has control over masterUserâĂŹs mouse and keyboard)
the otherUsers can also perform the operations. This is a collaborative

debugging session and the masterUser and the otherUsers should work
together to solve the tasks. When you start the tasks, please write down your
starting time. When you finish the task, also write down the finish time.
When you finish each task or sub-task, fill in the reports section at the end
of each task with the solution of the tasks and the times it took you to solve
them. You all have a space for yourselves.

Task 1: Open the file “Example2_Script1.js”. Put breakpoint at line 106,
and start the debugger. Debug -> Debug (i.e. in the normal mode not with
other users):

Apply “step over” until the debugger reaches line 110.

• Task1.1: Take a look to the variable list from the variables tab. What is
the value of the field “data”of the field “root” of the variable “bst”. Hint:
you find this information in the variables tab.

• Task1.2: Using the expression tab, evaluate the expres-
sion “bst.root.right.data”, “bst.root.left.data”, “bst.contains(17)”,
“bst.contains(106)” (still at line 110).

• Task1.3: At line 110, step into the the function ’insert ‘. Then, evaluate
the variable “currentNode.data” at line 26.

• Task1.4: Finally, step out, to return to the main program (line 111).
What is the value of the field “datarq’ of the variable “bst.root.left.left”
at line 111? Then terminate the debugger by terminate button.

The following tasks are of increasing complexity. In general, the tasks will
request you to find some problem or perform some action. You can decide
whether the masterUser executes the tasks of the otherUsers.

Task 2: Open the file “Example2_Script1.js”. Add a breakpoint on line
122 and evaluate the variable traverse1 at Line 120. Its value should be:

traverse1 = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”

102

.3 Assignment 2 - Debugging using a shared screen

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix
the problem).

Task 3: Open the file “Example2_Script2.js”. Insert breakpoints in places
that let you see the following variables before, after1 and after2 . The values
should be:

before = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”
after1 = “5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”
after2 = “5, 6, 10, 11, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix
the problem).

Task 4: Open the file “Example2_Script3”. Evaluate the variable before
at Line 121. Its value should be:

before = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix
the problem).

Task 5: Open the file “Example2_Scrip4”. Start the debugger after
putting breakpoints in suitable places that let you see the following variables
before. The values should be:

before = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

103

Conclusions and Future Works

.4 Assignment 2 - Debugging using CloudStudio

Collaborative Remote Debugger

In this assignment, you and your colleagues have to debug a set of JavaScript
programs using the collaborative debugger. Using this tool, several users can
share the debugging session, add expressions, break points, etc. Take a look
to Introduction to Collaborative Remote Debugger .

The debugger has two options: debug with user single control and debug
with users multi control.

Note: You should NOT use a shared desktop. You will share the debugging
session using the CloudStudio tool. You have to solve the tasks using the
collaborative debugger using singleControl andmultiControl, and you are NOT
allowed to use the debugger alone.

Settings Instructions

All the users, from now on User1, User2 (and for some cases User3 and User4)
should open cloudstudio. Then login using the following user names and pass-
words:

For User 1: username password
For User 2: username password
For User 3: username password
For User 4: username password
Then, select the project “ProjectB”. All the users will see the same project.

In this project there are several files:

Example2_Script1.js
Example2_Script2.js
Example2_Script3.js
Example2_Script4.js

The examples Example2_Script1.js . . . Example2_Script4.js are similar,
however, they have different issues to solve and they have some minor modifi-
cations.

104

.4 Assignment 2 - Debugging using CloudStudio Collaborative
Remote Debugger

Goal of the assignment

The assignment consist of debugging different programs in collaboration

with the other users. The tool letâĂŹs you see the expressions of other
users and share the debugging session. In these tasks, you do NOT need to fix
the problem of the program, thus you do not need to modify the program. To
avoid errors, please do not write in the editor.

Different tasks will use different files. We will explicitly mention which file
to use in each task.

Tasks

In the following tasks, you will perform simple assignments, this will help you
to get familiar with this new tool. We will first suggest who performs which
tasks (if there are more than 2 users, the tasks can be performed by the other
users too). When you start the tasks, please write down your starting time.
When you finish the task, also write down the finish time. When you finish
each task or sub-task, fill in the reports section at the end of each task with
the solution of the tasks and the times it took you to solve them. You all have
a space for yourselves.

Task 1: Open the file “Example2_Script1.js”. User1 puts a breakpoint at
line 106. User1 should start the debugger. Debug -> debug with users single
control :

User1 will see a dialog and can add the other users (user2, . . .) to the
debugging session. The other users should accept the invitation. Once ev-
erybody is sharing the debugging session, apply “step over”until the debugger
reaches line 110.

• Task1.1: ALL USERS: Take a look to the variable list from the variables
tab. What is the value of the field “data” of the field “root” of the variable
“bst”. Hint: you find this information in the variables tab.

• Task1.2: Using the expression tab, evaluate the expres-
sion “bst.root.right.data”, “bst.root.left.data”, “bst.contains(17)”,
“bst.contains(106)” (still at line 110). To do it, each user should
go to the expression tab, and each user should add at least one
expression.

105

Conclusions and Future Works

• Task1.3: Now, user1 should pass the control of the debugger to user2.
(users ->Set master user) a dialog will open, then select user2 from the
list. At line 110, step into the the function “insert”. Then, evaluate the
variable “currentNode.data” at line 26.

• Task1.4: Finally, step out, to return to the main program (line 111).
What is the value of the field “data” of the variable “bst.root.left.left” at
line 111? Then terminate the debugger by terminate button.

The following tasks are of increasing complexity. In general, the tasks will
request you to find some problem or perform some action.

For Task2 and Task3 use Debug -> debug with users single con-

trol.

For Task4 and Task5 use Debug -> debug with users multiple

control.

Task 2: User1: Open the file “Example2_Script1.js”. User1 adds a break-
point on line 122 and should start the debugger. (Debug -> Debug with users
(single control)) :

User1 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, evaluate the variable traverse1 at
Line 120. Its value should be:

traverse1 = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

Task 3: User2: Open the file “Example2_Script2.js”. User2 adds a break-
point on line 222 and should start the debugger. (Debug -> Debug with users
(single control)) :

106

.4 Assignment 2 - Debugging using CloudStudio Collaborative
Remote Debugger

User2 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, insert breakpoints in places that
let you see the following variables before, after1 and after2. The values should
be:

before = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”
after1 = “5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”
after2 = “5, 6, 10, 11, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

Task 4: User1: Open the file “Example2_Script3.js”. User1 adds a break-
point on line 122 and should start the debugger. (Debug -> Debug with users
(multiple control)):

User1 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, evaluate the variable before at
Line 121. Its value should be:

before = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

107

Conclusions and Future Works

Task 5: User2: Open the file “Example2_Script4.js”. User2 adds a break-
point on line 123 and should start the debugger. Debug -> (Debug with users
(multiple control)):

User1 will see a dialog and there you can add the other users (user2, . . .)
to the debugging session. The other users should accept the invitation. Once
everybody is sharing the debugging session, start the debugger after putting
breakpoints in suitable places that let you see the following variables before.
The values should be:

before = “3, 5, 6, 10, 11, 12, 13, 17, 21, 30, 32, 36, 37”

After doing the evaluation, you will find that there is a bug in this program.
Find out which function has the bug, and locate the lines that might produce
this bug. In a short sentence, report what is wrong (you do not need to fix the
problem).

Do it in a collaborative way with the other users. Remember

you can always pass the control to other users; all the users can add

expressions, breakpoints, etc.

.5 Cloudstudio collaborative remote debugger

guide

In this appendix the guide which is sent to the participants of the case study
is attached.

108

Introduction into JavaScript Cooperative

Remote Debugger
JavaScript debugger is a part of the web-based IDE Cloudstudio.

 is a cooperative debugger among multi users that can share debugging session remotely.

Debugging modes
You can start JavaScript debugger in three different modes. in the following there are brief
description of each one of them:

1.Single user debugging
After putting a number of break point on the code, you can choose the option debug

in the debug menu.The code that is going to be debugged is the code that you are visualizing
at that moment. And you will be the only user who is controlling and observing the debugging
session. It is possible to add users to the debug session later on.

2.Debugging with users single control (Master logic)

Master logic: in this debugging mode. at a time one user can have the control of

the debugging flow (step into , over, out, resume and terminate) However, other users can
still add breakpoints and expressions, they can also see variables and observe the flow of the
debugger. the master of the debugger session can pass the control at anytime to anther user.
and so on

how-to: when you choose to start debugging with users single control , you will be
asked to select from the online users, that are already logged in for the same project, to share
with you the debugging session. Users will receive an invitation for the debug session. After
the positive/negative responses of all invited users, if the user has accepted the invitation
a new-non editable tab will be opened with the code that master user visualizes at that
moment. and from now all the invited users are connected to the debugger session.

note: even if you started with single user debugging mode you can transform it to “with
users single control ” mode by adding users in the add menu at anytime.

Changing the master user: master user can decide at any point of the debugging to
pass the control to another user who is in the debug session. You can do this by choosing “set
Master user” from Users menu and then by choosing a user from the list. the new user will be
notifed about the fact that s/he become the master of the debugger session.

3. Debugging with users multi control.
This debugging mode is actually the same of above but the difference here that there is no
master. There is just the user who start the debugging with him/here code version and invite
the initial users, but whenever the debugger is started, anyone of users, that is sharing the
debugger session ,is able to act any debugger command.

JavaScript debugger tool bar

Breakpoint : to set a break point at the row at which there is the cursor currently .
Step Into: to single step interring any function call
Step Over: to single step to the next line in the current function.
Step Out: to continue execution until the current function returns.
Resume : to resume execution of a script.
Terminate: to terminate the debugging session.
Leave: to leave the session, if the debugger mode is Single control , and the user who
is leaving the session is the master , so the control will be moved automatically to the
next user, who will be notified of that.
all other users who is sharing the same debug session will be notified of that the user

has leaved the session.
Users-Add User : To invite users to the debugging
session. any user who is sharing the debugger
session in any mode can do that. the invited user
should be online and already share the project.
Users-Debug Session User List : to get the list of
the users who is sharing the current debugger
session.
Users-Set master User : to passing the debugger control to
another user who is sharing the debugger session

Debug-Debug : to start the
debugger in local mode(without
users)
Debug-Debug with users (single
control) : to start the debugger
with users with master logic mode
Debug-Debug with users(multi control): to start the debugger with users without
master logic mode

Notes:
1.When add new user, this user will receive an invitation to accept :

2.If the debugging mode is single control the new user will have the debugger toolbar with
the button of the debugger disabled :

Java Script debugger Watch tabs :
1. Variables Tab

This tab is initially disabled, but whenever the debugger is started this table become able and
focused for all the users who are sharing the debugging session. all the variables, which are
defined after the debugger current point, hold as a value “Undefined”. the variables initially
are ordered alphabetically by their name. but it is able to order them also by the values.

2. Expressions evaluation:

this tab is initially disabled, but whenever the debugger is started this tab become able for
the users who are sharing the debugging session.

Add Expression: will create new row in the expressions list for add the new one for
evaluating.
Remove: removing a specific expression
Remove all : remove all the expression in the list.

any user who is sharing the debugger session can add expressions, and also see the
expressions added by the other users. The expressions are synchronized with the debugger
flow.

Errors/Exceptions handling :

Whenever the code contains error or
exception. the debugger will show error
notification which contain the type of the
exception, the line of exception and a brief
description. after an exception is thrown the
debugger will terminate for all the users which
are sharing the debugger session.

.6 Case study questionnaire

.6 Case study questionnaire

In this appendix the questionnaire that the participants filled in after the case
study is attached.

113

JavaScript Debugger-Cloudstudio

Thank you for participating in our Case Study.

We would like you to answer a few questions about your experience of

using

a) a Shared Screen for debugging

b) the CloudStudio (CS) debugger

* Required
Your complete name *

General Information

Please provide your group's Letter: *
(Your group letter was part of the instruction-email you received.)

 A

 B

 Don't know

Provide your Email address if you'd like to be informed about the results of this study:

Optional.

How many people were in your team for this study (including you)? *

 2

 3

 4

 Don't know

Experience

What is your experience level as a programmer? *

1 2 3 4 5

No experience Years of experience

What is your experience level with debugging software? *
(Any type of debugging, including different tools and languages.)

1 2 3 4 5

No experience Years of experience

What is your experience level with the JavaScript language? *

1 2 3 4 5

No experience Years of experience

How often have you participated in a collaborative debugging session before? *

That means debugging software together with >1 other person, either remotely or on the same computer.

 0 times

 1 - 3 times

 3 - 10 times

 10 - 20 times

 > 20 times

What kind of collaborative debugging sessions did you have?
You can skip this question if you answered "0 times" for the previous question.

 Together in front of the same computer

 Software that allows to watch another person's screen

 Remote access to a machine (all participants cloud control mouse, keyboard and debugger)

 Other:

Debugging using a Shared Screen

This section is about collaboratively debugging software using a Shared Screen (e.g. through
TeamViewer, Skype etc.).

What was your role when debugging using Shared Screen? *
For example, suggesting breakpoints or expressions.

 I controlled the debugger

 I was watching the debugging

Considering your role, how actively were you involved in the debugging session (using Shared
Screen)? *

Role is either "watching the debugging" or "controlling the debugger".

1 2 3 4 5

Not at all Very much

How often did you tell the person who controlled the debugger what to do? *

For example, telling the person to add a breakpoint, or investigate an expression.

 Nerver, as I was the person in control of the debugger

 0 times

 1 - 3 times

 4 - 7 times

 8 - 12 times

 > 12 times

How much did you miss that everybody can add breakpoints (using Shared Screen)? *

1 2 3 4 5

Not at all Very much

How much did you miss that everybody can add expressions (using Shared Screen)? *

1 2 3 4 5

Not at all Very much

How much did you miss that everybody can see variables (using Shared Screen)? *

1 2 3 4 5

Not at all Very much

How much did you miss that everybody can browse the code individually (using Shared
Screen)? *
That is, you can only see whatever person controlling the debugger is seeing.

1 2 3 4 5

Not at all Very much

How much did you miss that everybody can control the debugger (using Shared Screen)? *
That is, everybody has control over "step over", "step into" etc.

1 2 3 4 5

Not at all Very much

How efficient is collaboartive debugging using a Shared Screen? *

1 2 3 4 5

Not at all Very much

Did you miss any other type of feature during Shared Screen debugging?
Optional.

Debugging using CloudStudio Collaborative Debugger

This section is about collaboratively debugging software using the CloudStudio debugger with its full
functionality.

How actively were you involved in the debugging session (using the CS debugger)? *
For example, setting breakpoints, adding expressions etc.

1 2 3 4 5

Not at all Very much

How often did you control the debugger, e.g. add breakpoints, investigate expressions etc.? *

 0 times

 1 - 3 times

 4 - 7 times

 8 - 12 times

 > 12 times

How useful was it that everybody could add/share breakpoints (using the CS debugger)? *

1 2 3 4 5

Not at all Very much

How useful was it that everybody could add/share expressions (using the CS debugger)? *

1 2 3 4 5

Not at all Very much

How useful was it that everybody could navigate variables individually (using the CS
debugger)? *

1 2 3 4 5

Not at all Very much

How useful was it that everybody can browse the code individually (using the CS debugger)? *

Compare this to Shared Screen where everybody is looking at the same code.

1 2 3 4 5

Not at all Very much

How useful do you consider the "with users single control" mode of the CloudStudio
debugger? *

"with users single control" mode: one person (the master) controls the debugger ("step", "step into");
others can add breakpoints, expression etc.

1 2 3 4 5

Not at all Very much

How useful do you consider the "with user multi control" mode of the CloudStudio debugger? *

"with user multi control" mode: every person in the debugging session has full control over the debugger.

1 2 3 4 5

Not at all Very much

How efficient is collaboartive debugging using the CloudStudio debugger? *

1 2 3 4 5

Not at all Very much

Did you miss any other type of feature during CloudStudio debugging session?
Optional.

Other Information

Which collaborative debugging do you prefer? *

 Shared Screen debugging

 CloudStudio collaborative debugging

Any other comment or feedback about this case study or the CloudStudio debugger?

Optional.

Submit

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

Conclusions and Future Works

.7 Communication templates

In this appendix mails that are sent to the participants before the case study
are attached.

.7.1 Email Sent to group’s members one day before the

assignments date

120

Hi all:

Thank you very much for accepting to participate in the evaluation our tool. We have organized the
groups; the exercise will be done:

ADD DATE and TIME HERE

You will participate in this exercise with

ADD the NAMES Here

Please, make sure you share the Skype IDs, or any other chat program.

REQUIRED TOOLS FOR THE EXERCISE:
Here is a list of the required tools. Please make sure to install them before the exercise.
1. Chrome. You can install it from:

http://support.google.com/chrome/bin/answer.py?hl=en&answer=95346

2. TeamViewer (or any desktop remote sharing). To install it:

http://www.teamviewer.com/en/download/windows.aspx

3. Skype account or any chat program. Please add each other before the exercise.

NOTES:
Here are some important notes about the exercise:

1. We appreciate the time you take for helping us. Please, be careful about all the provided documents and
notes. Follow the tasks and steps EXACTLY as we describe it.
2. We did not developed the whole cloudstudio framework. Please do not use other tools besides the
debugger. using other tools might lead to errors or unexpected behavior that we cannot fix.
3. DO NOT change the JavaScript code we will provide.
4. During the exercise, some operation like opening the Javascript files or starting the debugger and
terminating it, it takes time (it is performance issue for the cloudstudio in general) so please be patient in
these cases. Do not execute the commands several times..
5.Do not forget to use Google Chrome.

DEBUGGER INFORMATION:
The debugger is easy to use. In case you need more information, here is a short guide:
https://docs.google.com/document/d/1Zlr8ef_UFURYOf8MnrYCwzwTXjSKvRySoj-4BBOAiIk/edit?
pli=1
NEXT STEPS:
5 minutes before the exercise start, you will get an e-mail from us with two documents explaining the
assignments. These documents describe what you should do during the exercise.

Please confirm us your participation; we had already organized the groups based on your preferences.
Thank you very very much for your time,
cheers
Rand&Mert

Conclusions and Future Works

.7.2 Email sent to group’s members before assignments

starting time

122

Hi guys,

Before you start the assignment, please check you have installed:
1. Chrome: http://support.google.com/chrome/bin/answer.py?hl=en&answer=95346
2. TeamViewer (or any desktop remote sharing). http://www.teamviewer.com/en/download/
windows.aspx
3. Skype account or any chat program. Please add each other before the exercise.

HOW TO PROCEED: :
You have to solve 2 different assignments. Below, you find a link to the first assignment; the second
assignment will be sent once you finish the first one.

The solving of the assignments will take about 90 minutes (depending of each team, it might take more or
less time. If you have not finished the FIRST assignment after 1:15hs, finish the task you are solving and
do not continue with the other tasks. In a similar way, if you have not finished the SECOND assignment
after 1:00hs, finish the task you are solving and do not continue with the other tasks.

When you finish the Assignmet 1, you can go to your shared documents in google drive and you will find
the document of assignment2. After finishing the 2 assignments, we will send you an e-mail with a link to
a questionnaire. Please, fill it in. It will request your group, you are:

Group [ADD GROUP LETTER HERE]

ASSIGNMENT 1:
Here is the link to assignment 1:

ADD HERE THE LINK TO THE GOOGLE DOC
Please when you finish everything remember to send us you skype chat logs
We will be online during the case study, In case of any help, you can contact us via mail, facebook,
skype, etc.

Email
Rand:
Mert:

Skype:
Rand:
Mert:

Mobile numbers
Rand:
Mert:

PLEASE DON’T EDIT THE JAVASCRIPT CODE PROVIDED IN THE PROJECTS.

We appreciate a lot your collaboration for our thesis,
Thank you very much

Rand&Mert

Bibliography

[1]

[2] AceGWT - An integration of the Ajax.org Code Editor (ACE) into GWT.
http://github.com/daveho/AceGWT.

[3] AceGWT - coderun. http://www.coderun.com/.

[4] Acm. http://www.acm.org/.

[5] Acm conferences for cscw. http://dl.acm.org/event.cfm?id=

RE169&CFID=208279252&CFTOKEN=57895217/.

[6] Ajax.org Cloud9 Editor. http://ace.ajax.org/.

[7] Amazon simpledb. http://aws.amazon.com/simpledb/.

[8] Amy editor. http://www.amyeditor.com/.

[9] Bitbucket. https://bitbucket.org/.

[10] Cary l bates. http://patent.ipexl.com/inventor/Cary_L_Bates\

_1.html.

[11] Cloud9. https://c9.io/.

[12] Cloudsibiboduction. http://se.inf.ethz.ch/research/

cloudstudio/.

[13] codebeamer. https://codebeamer.com/cb/user.

[14] Coderun. http://www.coderun.com/.

[15] Codiad. http://codiad.com/.

BIBLIOGRAPHY

[16] Collabode. http://groups.csail.mit.edu/uid/collabode/.

[17] Collabode phd thesis. http://groups.csail.mit.edu/uid/

other-pubs/maxg-thesis.pdf.

[18] Collide. http://code.google.com/p/collide/.

[19] Compilr. https://compilr.com/.

[20] Debuglive. http://www.breakpoints.com/.

[21] Debuglive launches first web-based debugging environment.
http://pilot.us.reuters.com/article/2010/02/16/idUS79252+

16-Feb-2010+BW20100216.

[22] ecco. http://ecco.sourceforge.net/.

[23] Exo ide. http://cloud-ide.com/.

[24] Gforge advanced serve. http://gforge.org/gf/.

[25] Git. http://git-scm.com/.

[26] Github. https://github.com/.

[27] Google Web Toolkit (GWT). http://developers.google.com/

web-toolkit/.

[28] heroku. http://www.heroku.com/.

[29] Ibm jazz. https://jazz.net/.

[30] ideone. http://ideone.com/.

[31] joyent. http://joyent.com/.

[32] Js bin: Built for sharing, education and real-time render-
ing. http://coding.smashingmagazine.com/2012/07/23/

js-bin-built-for-sharing-education-and-real-time/.

[33] Jsbin. http://jsbin.com/.

[34] Kodingen. https://kodingen.com/.

126

BIBLIOGRAPHY

[35] Meebo. https://www.meebo.com/.

[36] Mercurial. http://mercurial.selenic.com/.

[37] Rational team concert. https://jazz.net/products/

rational-team-concert/.

[38] Shiftedit. http://shiftedit.net/.

[39] Visual studio. http://www.microsoft.com/visualstudio/ita.

[40] Web2project. http://web2project.net/.

[41] Windows azure. http://www.windowsazure.com/it-it/.

[42] Cary L. BATES. Collaborative software debugging in a distributed system
with collaborative step over operation, 04 2012.

[43] MN US) Bates, Cary L. (Rochester. Collaborative software debugging in
a distributed system with symbol locking, October 2012.

[44] Lotus Development Corporation. Groupware: Communication, Collabo-
ration and Coordination. Lotus Development Corporation, 1995.

[45] Charles A. Findley. Computer-supported cooperative work: history and
focus. 1994.

[46] Jonathan Grudin. Why cscw applications fail: problems in the design and
evaluationof organizational interfaces. In Proceedings of the 1988 ACM
conference on Computer-supported cooperative work, CSCW ’88, pages
85–93, New York, NY, USA, 1988. ACM.

[47] Jonathan Grudin. Computer-supported cooperative work: history and
focus. 1994.

[48] Jonathan Grudin. Human-computer interaction. chapter Groupware and
social dynamics: eight challenges for developers, pages 762–774. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[49] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and
Emmanuel Stapf. Programs that test themselves. IEEE Computer,
42(9):46–55, 2009.

127

BIBLIOGRAPHY

[50] Martin Nordio, Cristiano Calcagno, Bertrand Meyer, Peter Müller, and
Julian Tschannen. Reasoning about Function Objects. In Jan Vitek,
editor, TOOLS-EUROPE, LNCS. Springer-Verlag, 2010.

[51] Martin Nordio, H.-Christian Estler, Bertrand Meyer, Julian Tschannen,
Carlo Ghezzi, and Elisabetta Di Nitto. How do Distribution and Time
Zones affect Software Development? A Case Study on Communication. In
6th International Conference on Global Software Engineering. IEE, 2011.

[52] Martin Nordio, Carlo Ghezzi, Bertrand Meyer, Elisabetta Di Nitto, Gior-
dano Tamburrelli, Julian Tschannen, Nazareno Aguirre, and Vidya Kulka-
rni. Teaching Software Engineering using Globally Distributed Projects:
the DOSE course. In Collaborative Teaching of Globally Distributed Soft-
ware Development - Community Building Workshop (CTGDSD), New
York, NY, USA, 2011. ACM.

[53] Martin Nordio, Bertrand Meyer, and H.-Christian Estler. Collaborative
Software Development on the Web, 2011.

[54] Martin Nordio, Roman Mitin, and Bertrand Meyer. Advanced Hands-on
Training for Distributed and Outsourced Software Engineering. In ICSE
’10: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, New York, NY, USA, 2010. ACM.

[55] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisa-
betta Di Nitto, and Giordano Tamburelli. The Role of Contracts in Dis-
tributed Development. In Software Engineering Approaches for Offshore
and Outsourced Development, volume 35 of LNBIP, Berlin, Heidelberg,
2009. Springer-Verlag.

[56] Yu Pei, Yi Wei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Code-based automated program fixing. In Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 392–395. IEEE, 2011.

[57] J.P. RodriÌĄ andguez, C. Ebert, and A. Vizcaino. Technologies and tools
for distributed teams. Software, IEEE, 27(5):10 –14, sept.-oct. 2010.

128

BIBLIOGRAPHY

[58] Lucy A. Suchman. Office procedure as practical action: models of work
and system design. ACM Trans. Inf. Syst., 1(4):320–328, October 1983.

[59] John C. Tang, Chen Zhao, Xiang Cao, and Kori Inkpen. Your time zone or
mine?: a study of globally time zone-shifted collaboration. In Proceedings
of the ACM 2011 conference on Computer supported cooperative work,
CSCW ’11, pages 235–244, New York, NY, USA, 2011. ACM.

[60] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Usable verification of object-oriented programs by combining static and
dynamic techniques. In Proceedings of the 9th International Conference
on Software Engineering and Formal Methods, SEFM ’11. Springer, 2011.

[61] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Verifying Eiffel Programs with Boogie. In First International Workshop
on Intermediate Verification Languages (BOOGIE 2011), 2011.

[62] Yi Wei, Hannes Roth, Carlo A. Furia, Yu Pei, Alexander Horton, Michael
Steindorfer, Martin Nordio, and Bertrand Meyer. Stateful Testing: Find-
ing more errors in code and contracts. In Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 440–443. IEEE, 2011.

[63] P. Wilson. Computer Supported Cooperative Work:: An Introduction.
Springer, 1991.

129

