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Abstract

Aeroelastic phenomena are long studied, important issues for structural in-
tegrity of many applications in aerospace engineering and even in some other
environments (like civil engineering) where flexible structures undergo unsteady
fluid-dynamic loads. Aeroelasticity in turbomachines is of great interest as well
and it has been scientifically studied by many authors for many years now, even
if, up to now, the typical aerospace engineer’s approach, i.e. a fluid-structure
interaction, has seldom been implemented. In this work, after a large theo-
retical review of methods required to deal with these issues in turbomachines,
numerical examples have been made to present proper structural, aerodynamic
and fluid-structure interaction modeling using well-known softwares, namely
Matlab, Nastran / Patran, Abaqus and Fluent. The focus is on structural
self-induced instability (i.e. flutter) of single-stage, tuned, rigid-disk rotors,
meaning that elastic flexibility is concentrated in a single row (a.k.a. cascade)
of blades that are all structurally and aerodynamically equal to each other.
The unsteady load model is given by LINSUB, which is a well-known subsonic,
linearized two-dimensional potential flow code for turbomachine aeroelasticity.
Despite the rather restrictive assumptions, the LINSUB-based aeroelastic code
that has been implemented is a very effective preliminary analysis tool due to
its simplicity and versatility. Aeroelastic eigenvalue calculation has been per-
formed using traditional (for aircraft flutter) but also accurate “p-k” iterative
method and, for some conditions, a modern time-domain, state-space approach
has also been implemented to prove its feasibility and advantages. Following
recent trends, in addition to the traditional, analytical model, unsteady aero-
dynamic loads have also been studied using linearized CFD analysis for invis-
cid two-dimensional flows and, specifically, it has been assessed the promising
effectiveness of transient simulations for aerodynamic frequency response iden-
tification.

Keywords: aeroelasticity; flutter; tuned rotor; cascade; inter blade phase
angle; travelling wave



Sommario
I fenomeni aeroelastici sono problemi a lungo studiati per garantire l’integrità
strutturale (anche nel tempo) di molte realizzazioni dell’ingegneria aerospazia-
le e persino in differenti contesti (come l’ingegneria civile) nei quali si trovano
strutture deformabili soggette a carichi fluidodinamici (inevitabilmente non sta-
zionari). Anche nelle turbomacchine l’aeroelasticità è di grande interesse ed è
stata studiata sistematicamente da diversi autori da molti anni ormai, benché,
fino ad ora, il tipico approccio dell’ingegnere aerospaziale, ovvero di modellare
l’interazione fluido-struttura, è stato raramente implementato. In questo lavo-
ro, dopo un’ampia rivisitazione dei metodi necessari per trattare queste tema-
tiche nelle turbomacchine, sono stati preparati esempi numerici per mostrare la
corretta modellazione strutturale, aerodinamica e interazione fluido-struttura
servendosi di software ben noti, come Matlab, Nastran / Patran, Abaqus e
Fluent. L’attenzione è focalizzata sull’instabilità dinamica auto-indotta, cioè
il flutter, dei rotori in un singolo stadio accordati e a disco rigido; ciò signi-
fica che la deformabilità elastica del sistema omogeneo è concentrata in una
singola schiera di palette, tutte strutturalmente e aerodinamicamente identi-
che tra loro, e l’interazione statore-rotore (per quanto importante in generale
e per la risposta aeroelastica) non è significativa per prevedere oscillazioni in-
stabili. La modellazione dei carichi non stazionari è implementata grazie a
LINSUB, che è un algoritmo ben noto per l’aeroelasticità delle turbomacchine
ed è fondato sulla teoria di flusso subsonico, bidimensionale a potenziale linea-
rizzato. Nonostante le ipotesi piuttosto restrittive, il codice aeroelastico basato
su LINSUB che è stato applicato è un potente strumento di analisi preliminare
grazie alla sua semplicità e versatilità. Il calcolo degli autovalori aeroelastici
è stato eseguito servendosi del tradizionale (per l’ala fissa) metodo iterativo
“p-k” e, per alcune condizioni, un moderno approccio agli stati nel dominio
del tempo è stato implementato per dimostrarne la fattibilità e i vantaggi. In
aggiunta al tradizionale modello analitico, i carichi aerodinamici non stazionari
sono stati studiati anche servendosi di un’analisi CFD linearizzata per flussi
bidimensionali non viscosi e, in particolare, è stata valutata la promettente ef-
ficacia della simulazione di transitori per identificare la risposta in frequenza
dell’aerodinamica.

Parole chiave: aeroelasticità; flutter; rotore accordato; schiera; angolo di fase
tra palette; onda viaggiante





Chapter 1

Introduction: Aeroelasticity in
turbomachines

Figure 1.1: Rolls-Royce Trent 800 (ref. [43])

Figure 1.2: EJ200 from Eurojet consortium: Rolls-Royce, FiatAvio, ITP and
MTU (ref. [45])
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Aircraft jet propulsive systems and, more generally, turbomachines share many
important features and design requirements that are typically encountered in
the engineering analysis of the aircraft, specifically the main airframe. Similarly
to a fixed wing or a lifting rotor, a turbomachine blade is an aerodynamic
surface that needs to be lightweight and efficient. At the same time the whole
system is required to achieve a high degree of safety, reliability and availability,
in order to yield a cost-effective aircraft. Nowadays requirements also include
a reduction of fuel consumption, pollutant emissions and noise level.
In this context, blade and rotor designs need to be optimized, leading to a highly
stressed flexible structure that undergoes aeroelastic phenomena and therefore
possible failure due to instability or fatigue. Part life assessment is a critical
issue: 40% of the aircraft maintenance cost to air companies is due to the
engine and 70% of this percentage is due to part replacement. Fan, compressor
and turbine blades and other rotating elements represent the 80% of the whole
engine part replacement cost (50% is due to turbine first two stages rotor and
stator blades only, as they undergo severe aero-thermo-elastic loads). The
importance of aeroelastic vibrations analysis and control is therefore evident.
Turbomachine aeroelasticity involves single blade-row flutter instability and
limit cycle oscillations and multiple rows interaction, or forced response. In
the present work the efforts are focused on flutter instabilities using linearized
inviscid aerodynamic theory (potential flow) and ANSYS Fluent-solved Euler’s
equations, using a linearized approach with respect to the steady flow condi-
tions.
Since the early development of the jet engine during World War II, compressors
and later turbofans, open rotors and low pressure turbines, have always been
affected by flutter problems in many forms. The most complex instabilities
are positive incidence stall flutter (near the surge line), negative incidence stall
flutter (near the choke line) and supersonic flutter (both stalled and unstalled)
at high rotational speed.
The instability often involves a single structural degree of freedom per blade
(torsional or bending). In addition the aeroelastic mode is often (but not
always, especially with modern composite-construction and high aspect-ratio
fan blades) very similar to the “in-vacuo” rotating structural mode, which is
affected by centrifugal stiffening but is not air-loaded. This has led in the past
to the “assumed-mode” unsteady aerodynamic analysis: at a given structural
frequency and amplitude oscillation it is possible to evaluate the work done by
aerodynamic loads in a two-dimensional airfoil cascade. This energy input is
usually represented by a normalized aerodynamic damping, which is positive
for stable motions but may become negative in some flow conditions, therefore
forcing the structure into an unstable mode. Aerodynamic loads may be small
compared to elastic and inertial forces but, in case of instability, they can easily
counter the effect of the weak structural damping (which is even lower than
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usual in modern blade integrated disk, or “blisk”, rotor designs). This approach
may be questionable for modern applications, but it is nonetheless a very useful
starting point, as it is easily and rapidly implemented, especially if a linearized
potential flow method is used.
Presently the state-of-the-art aeroelastic analysis in turbomachinery requires a
fluid-structure interaction and again a linearized air loads model is a powerful
asset for preliminary flutter investigations over a wide range of operating con-
ditions without the excessive cost of a Computational FluidDynamics analysis.
The structural model (comprehensive of the pre-load stiffening) can be easily
and accurately assembled using Finite Element Method softwares, e.g. Abaqus
or Nastran supported by Patran pre/post-processor. For many applications the
pre-stiffened modal analysis of a single cantilevered blade is adequate, but if
it is necessary to simulate the hub interaction/elastic behaviour Nastran cyclic
symmetry serves this purpose efficiently and, in case of lack of symmetry (i.e.
mistuned rotors), a modern pre-processor like Patran allows to rapidly build
the complete model of the whole rotor. Mode shapes and modal mass and stiff-
ness matrices can then be splined over a range of rotational speed and coupled
to the aerodynamic system (with a strip-theory approach, in case of 2D cascade
model) in a modern programming environment like Matlab.
The fundamental unsteady aerodynamic theory for turbomachinery is, as an-
ticipated, a linearized potential flow model of a two-dimensional cascade in
which airfoils are treated as flat plates operating at zero incidence (just like in
Theodorsen’s theory). It was first published by D.S. Whitehead in 1960 (ref.
[7]) and it has since been updated several times to include more problem de-
tails and phenomena (such as compressible and supersonic flows). The subsonic
“LINSUB” program based on Smith’s (ref. [8]) and Whitehead’s work may be
found in the AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
Vol.1 (ref. [1]), cpt. 3, written in FORTRAN language; it has been translated
into a flexible Matlab code for the purpose of this work. As it will be shown,
LINSUB, despite being limited to unstalled subsonic flows, is not only a fast
and effective aerodynamic code for preliminary aeroelastic simulations, but also
a powerful tool to understand the key features and issues of turbomachinery
aeroelasticity allowing to treat them in a rational and efficient way.
The most advanced theories for modern unsteady aerodynamic simulations are
obviously CFD-based. The two main methods are the linearized analysis of un-
steady flows and the harmonic balance technique, both using 2D or 3D inviscid
Euler’s equations or Reynold’s Averaged Navier-Stokes (Spalart-Allmaras tur-
bulence model is typically employed). The harmonic balance is a non-linear
frequency-domain approach which is usually combined with a discrete Fourier
transform of the conservation variables for best efficiency; it is capable of yield-
ing accurate results for transonic flows even when few unknown harmonics are
modeled. This is also the typical method to predict limit cycle oscillations.

3



Chapter 1

The linearized techniques have been developed both for time-domain and frequency-
domain simulations with deforming meshes in order to cut down the compu-
tational cost of the unsteady analysis: with this approach, especially when
using Euler’s equations, it is easy to perform fast and accurate CFD simula-
tions and it is possible to obtain good results even for transonic flows (at least
if the chord-wise shock motion is adequately small). Both shock fitting and
shock capturing algorithms have been used for this purpose but up to now it
is still under discussion (and development) which one is more appropriate for
turbomachinery applications.
With the assumption of small perturbations from the steady solution, the lin-
earization approach allows to use a CFD solver like Fluent as a virtual wind
tunnel in order to obtain a numerical model of the aerodynamic loads transfer
matrix in some peculiar conditions (such as transonic flows). This information
can then be used in aeroelastic simulations which require better accuracy than
linear potential-flow methods or anyway when non-linearities (shock waves) be-
come important (at least on the mean flow, given the fact that the unsteady
model is still linear). In addition, aerodynamic damping due to an assumed-
mode motion may be easily computed using the CFD solver.
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Figure 1.3: Compressor map with possible types of flutter (ref. [3])

Figure 1.4: Example of two-dimensional cascade (ref. [15])
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Figure 1.5: Glossary of terms (ref. [28])
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Chapter 2

Aeroelastic formulations for
turbomachines

2.1 Periodicity in aeroelastic analysis of turbo-
machines and InterBlade Phase Angle Defi-
nition

E.F. Crawley’s chapter 19 of AGARD Manual (ref. [2]) presents a complete
overview of all common aeroelastic formulations and their usage by synthesizing
the works of many authors. F. Lane (ref. [10]) and, for the aerodynamic the-
ory, Whitehead were the first ones to approach the problem analytically with
the purpose of creating an efficient model of what is generally a very large and
complex system that represents turbomachinery aeroelastic behaviour. More
recently an important alternative approach has been developed by J. Dugundji
and D. J. Bundas (ref. [12]) who originally fitted Whitehead’s theory in a
modern time-domain state-space aerodynamic model and solved the aeroe-
lastic problem by using a new formulation, known as standing wave modes.
The aeroelastic formulations for rotors are therefore based on three approaches
which focus on different physical variables: the individual blade displacements
(or influence coefficients representation), the travelling wave modes and the
standing wave modes. The simplest (and most physical) way to represent the
aero-structural behaviour of a rotor is to describe the motions of all blades, es-
pecially when (as it usually happens) the disk is assumed to be perfectly rigid
and blades are thus independent single structures which interact each other
due to aerodynamic loads. The motion of one blade generates unsteady loads
on the neighbouring blades and these in turn affect the reference one with a
linear superposition (for small perturbation theory) of forces which arise from
the same kind of motion:
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Chapter 2 Subsection 2.1.0

Figure 2.1: Physical explanation of influence coefficients (ref. [41])

Lane exploited the inherent cyclic symmetry of the problem to prove that a dra-
matic reduction in the number of system variables is rigorous for linear analysis
and actually the same approach is effective even for non-linear phenomena (like
stall flutter), as the interest is usually focused on the onset of flutter. Lane’s
theory also introduced the concept of InterBlade Phase Angle (IBPA, σ or
βn in Crawley’s chapter and related literature), which is the most important
parameter in turbomachinery aeroelasticity (along with the more traditional
reduced frequency, k = ω c

2U
or λ = ω c

U
in this work) and is the core of the

travelling wave definition:

σ =
2π

N
(2.1)

is the fundamental IBPA value for a rotor with N blades (or passages).
It is the non-dimensional spatial frequency of a periodic disturbance that travels
circumferentially down-rotor or up-rotor from blade to blade. The allowable
(significant) N discrete values of IBPA are (n=0,1...N-1):

σn =
2π n

N
= 0,

2π

N
,

4 π

N
, ...,

2 π (N − 1)

N
(2.2)

or alternatively from −π to π − 2π
N

and the positive values are associated
to forward (in the direction of rotation) travelling waves, while the negative
values are associated to backward travelling waves. As it will be shown, the
nodal diameter representation is also useful to visualize the meaning of IBPA.
In the travelling wave assumption all blades are equal to each other due to
cyclic symmetry and they vibrate harmonically (for example in pitch or plunge
at each spanwise station) with the same frequency but with a time-lag which
is constant and uniform from blade to blade and it is the phase angle σ ( β in
Whitehead’s theory and Crawley’s cpt. 19 AGARD):
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Figure 2.2: InterBlade Phase Angle (ref. www.energy.kth.se)

Figure 2.3: Phase-lagged computational domain (ref. [4])

Figure 2.4: Computational grid for a cascade of airfoils vibrating in pitch with
an IBPA of 180° (ref. [18])

9
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As it will be shown, for small perturbation theory the linear superposition of
all possible travelling waves is equivalent to the influence coefficients approach.
Therefore the travelling wave assumption is the starting point of all aerody-
namic theories aimed at the calculation of unsteady loads on turbomachinery
stage blades, including stator-rotor (or anyway multiple rows) interaction.
So far rotors have been assumed to be tuned, implying a perfect cyclic sym-
metry of the problem; however it is of practical interest the study of mistuned
rotors as well, i.e. blades do not exactly share the same dynamic structural
behaviour (e.g. eigenfrequencies are slightly different). Mistuning is actu-
ally unavoidable due to manufacturing process, but, as Crawley and Hall (ref.
[11]) demonstrated, it is possible to exploit and optimize this phenomenon to
decrease vibrations and even suppress flutter when relatively few aeroelastic
eigenvalues would otherwise result unstable. For mistuned rotors the travelling
wave assumption is still valid and useful but it needs to be treated carefully
in order to yield the correct aeroelastic model, as the approach loses physical
meaning (for example it is no longer true that all blades vibrate phase-shifted
in time by the IBPA).
Whitehead’s linear potential flow theory for bidimensional (cascade) geome-
tries is thus based on the travelling wave approach: this was the first aerody-
namic model that introduced the IBPA and analytically treated the travelling
wave disturbance propagation, given the previous experimental evidence that,
when rotors encountered flutter or anyway sustained large-amplitude vibra-
tions, blades were out of phase by specific values.
The IBPA is a parameter also used to analyze forced response. In such cases,
the IBPA represents the unsteady flow field phase shift attached to adjacent
blades in the same assembly resulting from the relative motion of the blade-
rows. The IBPA is determined by the pitch ratio (or gap-to-chord ratio) of
neighbouring blade-rows as follows:

σn =
2π nBu

Bc

(2.3)

where n is an integer, and Bu and Bc are the number of blades in the upstream
and current blade-rows respectively.
Thus the phase angle divided by the angular speed of the perturbation is the
characteristic time lag of the disturbance in one blade passage. This remark has
led to the possibility of dramatically decreasing the size of computational do-
main in CFD analysis, including linearized Euler’s or Navier-Stokes equations
and non-linear harmonic balance techniques for unsteady flows, both methods
extensively studied by K.C. Hall and presented in numerous works and books
(including the most recent version of “A Modern Course in Aeroelasticity”, ref.
[3]). Steady flows in turbomachines may be studied by reducing the computa-
tional domain to a single blade passage by applying periodic conditions that
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allow a circumferential truncation of the problem without introducing any ap-
proximation. This is true for unsteady flows at zero-phase angle as well, but
simulations for different phase angles generally require phase-lagged periodic
boundary conditions and, once accomplished, the computational domain is still
one blade passage only:

U (x, y +G, t) = U (x, y, t+ ∆T ) (2.4)

where U are the conservation variables, G is the blade-to-blade gap (assuming
a reference frame with axial and circumferential axes) and ∆T is the time lag
which is associated with the IBPA and the vibration frequency (for self-excited
motion): ∆T = σn

ω
, assuming a time-periodic flow. In case of rotor-stator

interaction, the perturbation frequency would instead be given not only by the
vibration but also by relative reference velocity, which is the rotational speed.
The implementation of this phase lag is actually complex and computationally
expensive (ref. [3], [4], [5] synthesize the main approaches): one method, pro-
posed by J.I. Erdos, E. Alzner, and W. McNally, is the direct storage of flow
variables (or, more conveniently, their Fourier coefficients) for one time-period
so that the stored parameters and the current solution correct each other ac-
cording to the phase-shifted periodicity . Another, less expensive approach (M.
B. Giles) features a space-time transformation (time-inclination) method to im-
plement the phase-shifted periodic condition. In his method the time plane in
computational domain is inclined along the blade pitchwise direction according
to a given interblade phase angle. The phase-shifted periodic condition can
then be directly applied by equating flow variables at the periodic boundaries
on the transformed computational plane. Therefore, no extra storage is re-
quired, and the convergence rate is much faster because the solution procedure
is less influenced by the initial guess, compared to the direct store method.
However, the time-inclination angles (and therefore allowed interblade phase
angles) are very severely restricted by the characteristics of the governing equa-
tions. A third approach, known as shape correction method, has been proposed
by L. He and by G.A. Gerolymos and V. Chapin. Both works describe the in-
troduction of the time lag by temporal Fourier decomposition of the boundary
points. When doing the transformation from frequency to time domain the
time shift can be applied easily. Also the numerical stability can be controlled
easily by the Fourier coefficients. The method is very low memory-consuming
and offers the possibility of decomposing the perturbations into the portions
of different frequencies and thus, in principle, may be applicable to multi-stage
calculations with more than one frequency involved.
For the Fourier analysis of the flow, the conservation variables at the lower
(UL ) and upper (UU ) periodic boundaries would thus be:
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UL(x, t) = U (x) +
∑N

n=1 [An(x) sin(nω t) +Bn(x) cos(nω t)]

UU(x, t) = U (x) +
∑N

n=1 [An(x) sin [n (ω t+ σ)] +Bn(x) cos [n (ω t+ σ)]]

(2.5)

Unfortunately available commercial CFD solvers (like Fluent) do not implement
phase-lagged boundary conditions and their modeling would require extensive
modification of the software (similarly to a direct fluid-structure interaction
with the solver). Thus it is necessary to model more blade passages by exploit-
ing the fact that the blade-to-blade phase angle is constant and uniform and
therefore after a certain number of passages the total time-shift (with respect
to a reference blade) returns to zero and perfect spatial periodicity is rigorous.
For example if blades are assumed to vibrate at a given frequency but they are
180° out of phase the computational domain requires two blades (or passages);
four blades allow to model σ = ±90° , eight blades for σ = ±45° or σ = ±135°
and so on. This still decreases the size of the mesh compared to modeling the
whole rotor (which usually comprises tens if not hundreds of blades), especially
if small (but greater than zero) phase angles and their odd multiples may be
overlooked. The main disadvantage of this simulation is that it does not allow
to rigorously treat flows featuring a generic time-lag which is not associated to
a single specific phase angle between blades undergoing sinusoidal motion.

Figure 2.5: Multi-blade computational domain (ref. [27])
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Figure 2.6: IBPA and blades per group (ref. [31])

This approach basically exploits the definition of nodal diameter (ND) which
is sometimes used to represent different travelling waves instead of the IBPA,
as it is visually very clear. Assuming harmonic motion which is phase-shifted
along the rotor, the wave will present nodes (i.e. zero-displacement points) at
diametrically opposite locations:
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Figure 2.7: Nodal diameter explanation (ref. [26], [2])

σ =
2π ND

N
(2.6)

for example in an 8-blade rotor perturbations will propagate through four char-
acteristic forward travelling waves and four backward travelling waves. One
wave is a mean displacement which features zero nodal diameters (σ = 0° );
the second wave features 1 nodal diameter (σ = 45° ) as there are two oppo-
site nodes, which are those blades shifted±90° if the motion is assumed to be
a cosine at zero-time. σ = 90° yields 2 nodal diameters, σ = 135° 3 nodal
diameters and σ = 180° 4 nodal diameters.
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2.2 Aeroelastic formulations: travelling wave, in-
dividual blade and standing wave

The following formulations, with their reciprocal relationships, allow to cor-
rectly treat the aeroelastic problem, specifically flutter. For practical appli-
cations, the travelling wave formulation is the easiest and by far the most
numerically efficient one to be implemented when problem complexity is at
basic level (tuned structurally independent blades), especially if few significant
phase angles need to be investigated.
The individual blade formulation is a powerful tool to understand the physical
meaning of the aeroelastic problem and it is also convenient to correctly model
more complex situations in which the rotor is mistuned.
The standing wave formulation is easily related to the individual blade coor-
dinates when the whole rotor structural behaviour is modeled through modal
analysis and, actually, in this case the computed assembly modes become the
standing modes. Another advantage of this approach is that, unlike the trav-
elling wave one, it allows to switch from physical degrees of freedom to coordi-
nates in which it is convenient to express aerodynamic loads without using a
complex transformation. It is thus the best starting point to correctly model
a time-domain aerodynamic theory for arbitrary blade motion (and not just
harmonic oscillations).

2.2.1 Single degree of freedom per blade

Firstly, it is assumed that the motion of each blade may be described by one
d.o.f. only, as conversion between travelling waves and individual blade coor-
dinates is very simple in this case.
lβn aerodynamic coefficient for inter-blade phase angle: βn = 2π n

N
, n=0...N -1,

N blades in rotor row:

 �
lβn

�


N,N

=

 lβ0 0 . . .

0
. . .

... lβN−1

 (2.7)

[E] =
1√
N


e0,0 e0,1 . . . e0,N−1

e1,0 e1,1 . . .
...

... . . . ...
eN−1,0 . . . eN−1,N−1


N,N

ek,l = exp(j
2π k l

N
) (2.8)
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due to this definition (with 1√
N

as a normalization factor) [E] is a complex
unitary matrix ( [...]∗ stands for transpose and complex conjugate):

[E][E]∗ = [E]∗[E] = [I] (2.9)

Example of
√
N [E] for N=8:

Figure 2.8: Example of Fourier coefficient matrix

[E] represents the coefficients of a discrete Fourier series in complex matricial
form. The fundamental frequency is the first non-null value of the possible
inter-blade phase angles: β1 = 2π

N
. This is also the angular displacement of one

blade-to-blade passage, due to the physical meaning of the phase angle, which
is actually the spatial frequency of a disturbance in the flow that propagates
from one blade to the others. Higher harmonics are associated to the effect
that one blade has on another one far up-rotor or down-rotor, as it will result
evident from the influence coefficients matrix.
In the travelling wave formulation all blades are assumed to vibrate harmoni-
cally in time (with no damping, which is exact only in flutter conditions) and
thus the terms e0,0 , e0,1 , ... are simply complex operators that represent the
time-shift in oscillations between blades for different waves. Therefore the mo-
tion of the individual blades is described by the linear superposition (small
perturbation theory) of all waves through the [E] matrix; the waves are said
to be travelling as there is one (rotating) reference blade which is unshifted
(first row of ones in [E] ) for all disturbances:

{qi(t)} = [E] {qβ(t)} = [E] {q̄β} exp(j ω t) (2.10)
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{qi} are the individual blade coordinates (one coordinate for each blade in the
one-d.o.f. case) and {qβ} are the travelling wave coordinates (which oscillate
in time with amplitudes: {q̄β} ).
Tuned rotors, uncoupled blades: mmass and k stiffness of each blade:

[E]∗

 �
mi

�

 [E] = m[E]∗[I][E] = m[I] (2.11)

[E]∗

 �
ki

�

 [E] = k[E]∗[I][E] = k[I] (2.12)

Aerodynamic inter-blade influence coefficients circulant matrix:

[L] = [E]

 �
lβn

�

 [E]∗ =


L0 LN−1 . . . L2 L1

L1 L0 LN−1 . . . L2
...

... . . . ...
LN−1 LN−2 LN−3 . . . L0


N,N

(2.13)
This is a similarity transformation that does not alter the eigenvalues of the
matrix, leading to the fact that the aerodynamic coefficients for different phase
angles, lβn , are the eigenvalues of [L] .
Alternative expression using discrete Fourier series representation:

LK =
1

N

N−1∑
n=0

lβn exp(j
2 πK n

N
) (2.14)

lβn =
N−1∑
K=0

LK exp(−j 2 πK n

N
) (2.15)

which shows that lβn coefficients (and eigenvalues) may be obtained by any
row (or column) of [L] due to the circulant property.
As anticipated, the Fourier representation also allows to physically interpret
the harmonics of the phase angle: high harmonics are associated to influence
coefficients LK between blades that are distant from each other and therefore
rapidly decrease in amplitude, compared to the effect that each blade has on
itself (L0 diagonal terms) or on the neighbouring blades (L1 and LN−1 ).
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Figure 2.9: Example of influence coefficient matrix using LINSUB with Stan-
dard Configuration 1 data for torsional motion (CMα ) about midchord, N=4

Figure 2.10: Amplitudes of [L] for N=8 (SC1)

The relationship between [L] and lβn is convenient to obtain the influence
coefficients for generic (including mistuned) rotors when, as it typically hap-
pens, the available aerodynamic theory is defined for travelling waves. However
it must be remembered that this is true for small perturbations: if the rotor
were severely mistuned or the real part of the aeroelastic eigenvalues grew pre-
dominant (implying strong damping), the travelling wave formulation and its
simple equivalence to the influence coefficients would become questionable or
completely void. Fortunately these situations are very unlikely in practice.
To better understand the following generic cases in which blades feature multi-
ple degrees of freedom, it is first presented the simple aeroelastic relationships
for each degree of freedom:

 �
mi

�

 {q̈i}+

 �
ki

�

 {qi} =
1

2
ρV 2c2∆r [L]{qi} (2.16)

 �
mi

�

 [E]{q̈β}+

 �
ki

�

 [E]{qβ} =
1

2
ρV 2c2∆r [E]

 �
lβn

�

 {qβ}
(2.17)
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for tuned rotors:

m [I]{q̈i}+ k [I]{qi} =
1

2
ρV 2c2∆r [E]

 �
lβn

�

 [E]∗{qi} (2.18)

m [I]{q̈β}+ k [I]{qβ} =
1

2
ρV 2c2∆r

 �
lβn

�

 {qβ} (2.19)

2.2.2 Matrices for multiple degrees of freedom per blade

The generic multiple-d.o.f. case is now presented; without any theoretical lim-
itations, a sectional approach will often be employed, meaning that degrees of
freedom are organized not only by blade number, but also by spanwise station.
This is most convenient for 2D strip theory and for geometrical reasons (cas-
cade properties usually change spanwise, as it will be seen in the Aeroelastic
Eigenvalue Calculation chapter). It is still correct but not advisable to model
complex aero-structural interactions and indeed it will be dropped in the stand-
ing wave formulation. In addition, again without any theoretical limitations, a
modal approach is almost always employed as it is usually done in practice.
Aerodynamic coefficients for , i=0...N -1, blades (phase angles), g=1...G de-
grees of freedom per station, m=1...M stations per blade:

[l̃β]mi =

 lg1g1β lg1g2β . . .

lg2g1β lg2g2β
... . . .


m

iG,G

(2.20)

For two-degree-of-freedom (plunge and pitch) strip theory:

[l̃β]mi =

[
lhhβ lhαβ
lαhβ lααβ

]
2, 2

=

[
CLh CLα
CMh

CMα

]
(2.21)

where the load coefficients may be computed with a 2D theory like LINSUB
for a given phase angle βi and for the properties (Mach number, reduced fre-
quency...) of the station.

[Ẽ] =
1√
N

 e0,0[I]G,G e0,1[I] . . .
e1,0[I] e1,1[I]

... . . .


G·N,G·N

(2.22)
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[Ẽ] =
1√
N


e0,0 0 e0,1 0 e0,2 0 . . .
0 e0,0 0 e0,1 0 e0,2

e1,0 0 e1,1 0 e1,2 0
0 e1,0 0 e1,1 0 e1,2
... . . .

 two d.o.f. (2.23)

From modal coordinates ηp of i -th blade to physical qm , m=1...M sections,
p=1...P modes:

{qm}i =

[
ϕ(1) ϕ(2) . . . ϕ(P )

...
...

...
...

]
i


η1

...
ηP


i

i− th blade

{{qm}i} =


[ϕp]i=0

. . .

[ϕp]i=N−1

{ {ηp}i } all blades

(2.24)

 [ϕp]i=0
. . .

[ϕp]i=N−1

 =


�  [ [ϕp=1

m=1]G, 1 · · · [ϕp=Pm=1] ]
...

[ [ϕp=1
m=M ] · · · [ϕp=Pm=M ] ]


i

�


G·M ·N,P ·N

(2.25)
Inner loop to pick m-th section of i -th blade:

{qi}m=1
...

{qi}m=M

 = [T ]G·M ·N,G·M ·N


{qm}i=0

...
{qm}i=N−1

 (2.26)

[T ] =



 [I]G,G [0]G,G . . .
[0] [0] · · ·
...


 [0] [0] . . .

[I] [0] · · ·
...

 . . .

 [0] [0] [0] . . .
[0] [I] [0]
...


G·N,G·M

...


(2.27)
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[T ] is a unitary Boolean matrix ( [T ]T [T ] = [T ][T ]T = [I] ) that reorders degrees
of freedom from an inner loop on sections first and then an outer loop on blades
to the opposite situation in which the inner loop is performed on all blades at
the same spanwise station. This is due to the fact that aerodynamic loads
are conveniently expressed in the latter formulation (at least when a 2D strip
theory is employed) but, physically, each blade (even in modal representation)
is forced by the superposition of the loads acting on all blade sections.

Tuned rotors, uncoupled blades: inertia [Ms]
m
i = [Ms]

m, ∀i = 0...N − 1 and
stiffness [Ks]

m
i = [Ks]

m, ∀i = 0...N − 1 of each blade at m-th section (which

are equal to
[
Mhh Mhα

Mαh Mαα

]m
and

[
Khh Khα

Kαh Kαα

]m
in case of G=2 strip the-

ory) with [...]mn structural interaction between stations m and n:

 [Ẽ]∗

. . .
[Ẽ]∗





[Ms]
1 [Ms]

12

[Ms]
1 . . .

. . .
[Ms]

1

[Ms]
12 [Ms]

2

. . . . . .
[Ms]

M



 [Ẽ]
. . .

[Ẽ]

 =

=
1

N



. . .
...

· · ·

 e∗0,0[Ms]
mn e∗1,0[Ms]

mn . . .

e∗0,1[Ms]
mn e∗1,1[Ms]

mn

...
. . .

 · · ·

...
. . .




 e0,0[I] e0,1[I] . . .
e1,0[I] e1,1[I] · · ·

...


. . .

 =

=
1

N


[Ms]

1(e∗0,0e0,0 + e∗1,0e1,0 + · · · ) [Ms]
1(e∗0,0e0,1 + e∗1,0e1,1 + · · · ) . . .

... [Ms]
1(e∗0,1e0,1 + e∗1,1e1,1 + · · · )

... . . .
[Ms]

12(e∗0,0e0,0 + e∗1,0e1,0 + · · · )
...

 =
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=



 [Ms]
1 [0] · · ·

[0] [Ms]
1

... . . .


G·N,G·N

 [Ms]
1m [0] · · ·

[0] [Ms]
1m

... . . .


... . . . [Ms]

1m [0] · · ·
[0] [Ms]

1m

... . . .


 [Ms]

m

[Ms]
m

. . .


. . .


(2.28)

By applying the [T ]T ...[T ] transformation the same identity relationship may
be written in a simpler and clearer form:

1

N

 e∗0,0[I]G·M,G·M e∗1,0[I] . . .
e∗0,1[I] e∗1,1[I]

...
. . .





[Ms]

1 [Ms]
12 · · ·

[Ms]
12 [Ms]

2

...
. . .

[Ms]
M


. . .


 e0,0[I] . . .
e1,0[I] · · ·

...

 =

=



 [Ms]
1 [Ms]

12 · · ·
[Ms]

12 [Ms]
2

... . . .


G·M,G·M  [Ms]

1 [Ms]
12 · · ·

[Ms]
12 [Ms]

2

... . . .


. . .


(2.29)

Each mass matrix is therefore multiplied by an identity matrix and a Fourier
coefficient: from blade to blade only the coefficient changes and the matrix
multiplication results in the product of rows and columns of the original [E]
matrix, leading to unitary diagonal terms and null extra-diagonal terms. The
same expression may be obtained for stiffness [Ks] when all blades share the
same structural properties. Moreover the same conclusion may be inferred for
the matrix [∆r] , which re-sizes the load coefficients, when all aerodynamic
strips are equal at the same spanwise location :
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[∆r] =

 �
1
2
ρV 2c2∆rm [I]G·N,G·N

�

 =


∆r1 [I]G,G

∆r1 [I]
. . .

∆rM [I]


(2.30)

(the definition of [∆r] actually depends on the way aerodynamic coefficients
are obtained and normalized; here it is assumed it is possible to write loads in
general as 1

2
ρV 2c2∆r CLh

h
c
...as if a strip theory were implemented even though

it is not necessarily so. In case of a 3D theory, if one wished to explicate the
complete interactions in this matrix, [∆r] would feature the same pattern of
the structural matrices).

This leads to the fact that the travelling wave transformation
[

[Ẽ]∗

. . .

]
...

[
[Ẽ]

. . .

]
leaves the aeroelastic system unaltered for tuned rotors, just like in the single
degree of freedom case. Therefore the eigenvalues and eigenvectors computed
in the travelling wave formulation are exactly the physical aeroelastic ones of
a single equivalent blade.
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2.2.3 Aeroelastic equations for individual blade (influ-
ence coefficients) formulation, whole rotor, in modal
coordinates

For all individual blades, modal mass, [mp]i , and stiffness, [kp]i , matrices of
each i -th blade are employed and loads are projected into modal coordinates
using eigenvectors [ϕp]i :


�  �

mp

�


i

�


P ·N,P ·N

{
{η̈p}i

}
+


�  �

kp
�


i

�

{ {ηp}i } =

=

 [ϕp]i=0
. . .

[ϕp]i=N−1


T

[T ]T


1
2
ρV 2c2∆r1 [I]

. . .
1
2
ρV 2c2∆rM [I]

 ...

...

 [Ẽ]
. . .

[Ẽ]




�  �
[l̃β]i

�


m

�


 [Ẽ]∗

. . .
[Ẽ]∗

 ...

...[T ]

 [ϕp]i=0
. . .

[ϕp]i=N−1

{ {η̄p}i } exp(j ω t) (2.31)

simplified notation:

[m]{η̈}+ [k]{η} = [ϕ]T [T ]T [∆r] [E] [lβn ] [E]∗ [T ] [ϕ]{η} (2.32)

these are the flutter equations for the individual blade coordinates (with a
general modal approach).
This is the most physical formulation due to the influence coefficients matrix
and it is very practical to use when blades are mistuned but structurally un-
coupled. The extension to forced response is simple and straightforward, as the
inhomogeneous terms feature similar properties and definition to the homoge-
neous part of the equations.
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If a 2D theory is employed, the aerodynamic loads [lβn ] are block-diagonal with
respect to the structural coordinates at different spanwise stations. In case of
a 3D complete aerodynamic interaction between all degrees of freedom (such
as a vortex lattice method), loads are represented by an influence coefficient
matrix which is now a block-circulant matrix:

[L̂] =

 [L0]G,G [LN−1] . . . [L1]
[L1] [L0] [LN−1] · · ·
...

... . . . ...


G·N,G·N

(2.33)

where G are the degrees of freedom per blade; [L0] represents the interactions
between different degrees of freedom of one blade only, while [L1] contains the
effect that the degrees of freedom of one blade have on those of the neighbouring
up-rotor blade and so on; using a 2D theory [L0] , [L1] , ... matrices are block-
diagonal and they become perfectly diagonal if one degree of freedom only per
blade is modeled at different spanwise stations (as an example when a strip
theory in torsion, α , forced by a moment, CMα α , is employed):

[Ms]{q̈i}+ [Ks]{qi} = [T ]T [∆r] [T ] [L̂] {qi} (2.34)

[m]{η̈}+ [k]{η} = [ϕ]T [T ]T [∆r] [T ] [L̂] [ϕ]{η} (2.35)

where in the [L̂] matrix degrees of freedom are listed with an internal loop on
one blade and then an external loop on all blades. If aerodynamic loads were or-
dered as it has been done so far (i.e. by transforming [L̂] in: [L̃] = [T ] [L̂] [T ]T ),
the block-circulant property would be lost, as spanwise degrees of freedom
would no longer feature a diagonal behaviour (meaning lack of coupling), com-
pared to the d.o.f. of one station. Similarly the travelling wave load matrix[ [

[l̃β]i
]
m

]
=
[

[Ẽ]∗
]

[L̃]
[

[Ẽ]
]

would no longer be block-diagonal, but
there would be non-null blocks spread in the main matrix to couple different
stations. This also means that [L̃] in strip theory is block-diagonal and each
sub-matrix is block-circulant. Therefore, in order to restore the block-circulant
property of the influence coefficients and the block-diagonality of the travel-
ling wave coefficients with 3D aerodynamics, it is necessary to list degrees of
freedom for one blade at once. In this case the travelling wave coordinates
associated to the different motions of one equivalent blade at a given phase
angle interact with each other (but, by definition, not with the coordinates of
another phase angle value). The degrees of freedom of the blade will share
the same (harmonic) time law, suggesting an assumed modal set of blade dis-
placements, which is actually the fundamental hypothesis (supported by ex-
perimental evidence) of the travelling wave formulation. Thus it is reinforced
the idea that this formulation is convenient for aerodynamic modeling, but
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it is not very appropriate (or at least not very physical) when the structure
shows a generic complex behaviour that is influenced by the whole rotor, and
not just a single blade. Moreover the travelling wave assumption is rigorous
for frequency-representation of undamped harmonic motion only. These lim-
its are actually shared along with the individual blade coordinates: they are
defined by a (complex) similarity transformation of the travelling waves (imply-
ing harmonic motion) and, even if the influence coefficients could theoretically
be obtained by a different (non-harmonic) model, the very definition of blade
coordinates implies an assumed blade behaviour instead of a whole-rotor one.
Indeed the modal matrix

[
[ϕp]i

]
employed so far is block-diagonal as modes

are associated to each blade, uncoupled to each other. Mass, stiffness and
modal shapes matrices may actually be full and therefore completely coupled,
but explicating these interactions is neither simple nor convenient in the indi-
vidual blade coordinates (or in the travelling wave ones). For these reasons the
standing wave formulation is more appropriate for the most complete aeroelas-
tic models, even if nothing theoretically prevents from rigorously modeling the
same physical problem in the other formulations.

2.2.4 Aeroelastic equations for travelling wave formula-
tion, in modal coordinates

Modal matrices for all blades:

[m]P ·N,P ·N = [ϕ]T



[M̄s]0

[M̄s]1

[M̄s]2
. . .

[M̄s]N−1


[ϕ] = [ϕ]T [Ms] [ϕ]

[k]P ·N,P ·N = [ϕ]T



[K̄s]0

[K̄s]1

[K̄s]2
. . .

[K̄s]N−1


[ϕ] = [ϕ]T [Ks] [ϕ]

(2.36)
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[T ] [Ms] [T ]T =



[Ms]
1
0 [Ms]

12
0

[Ms]
1
1

. . .
. . .

[Ms]
12
0 [Ms]

2
0

. . . . . .
[Ms]

M
N−1


= [M̃s] (2.37)

[m] = [ϕ]T [T ]T [E] [E]∗ [T ] [Ms] [T ]T [E] [E]∗ [T ] [ϕ] (2.38)

[ϕ]T [T ]T ([M̃s] [E] [E]∗ [T ][ϕ]{η̈}+[K̃s] [E] [E]∗ [T ][ϕ]{η}−[∆r] [E] [lβn ] [E]∗ [T ] [ϕ]{η}) = 0
(2.39)

{q̃β} = [E]∗ [T ] [ϕ]{η} (2.40)

⇒ [ϕ]T [T ]T ([M̃s] [E]{¨̃qβ}+ [K̃s] [E]{q̃β} − [∆r] [E] [lβn ] {q̃β}) = 0

[M̃s] [E]{¨̃qβ}+ ([K̃s] [E]− [∆r] [E] [lβn ]) {q̃β} = 0 (2.41)

these are the flutter equations for travelling wave coordinates.

For tuned rotors:

[ϕ]T [T ]T [E] ([E]∗ [M̃s] [E]{¨̃qβ}+ [E]∗ [K̃s] [E]{q̃β}− [E]∗ [∆r] [E] [lβn ] {q̃β}) = 0
(2.42)

[E]∗...[E] transformation leaves unaltered matrices: [M̃s] , [K̃s] , [∆r]

[ϕ]T [T ]T [E] ([M̃s]{¨̃qβ}+ [K̃s]{q̃β} − [∆r] [lβn ] {q̃β}) = 0 (2.43)

[M̃s]{¨̃qβ}+ [K̃s]{q̃β} − [∆r] [lβn ] {q̃β} = 0 (2.44)

Typically, the structural analysis actually yields modal mass and stiffness ma-
trices instead of sectional properties and the degrees of freedom of the problem
are modal coordinates (for each blade, or phase angle). Thus the true travelling
wave coordinates that account for the (modal) degrees of freedom are {qβ} :

{qβ} =
{ {

q1
β0
· · · qPβ0

}
· · ·

{
q1
βN−1

· · · qPβN−1

} }T (2.45)
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{q̃β} = [T ] [ϕ]{qβ} (2.46)

⇒ [ϕ]T [T ]T ([M̃s][T ] [ϕ]{q̈β}+ [K̃s][T ] [ϕ]{qβ} − [∆r] [lβn ] [T ] [ϕ]{qβ}) = 0
(2.47)

[m]{q̈β}+ [k]{qβ} = [ϕ]T [T ]T [∆r] [lβn ] [T ] [ϕ]{qβ} (2.48)

these are the flutter equations for tuned rotors in travelling wave coordinates
(with modal approach).
This is the most convenient formulation when using a strip theory approach
for tuned rotors, as the aeroelastic system is actually one equivalent blade
which is forced (at different spanwise stations on multiple d.o.f.) by loads
that may assume different values for different phase angles. The equations (for
tuned rotors) can also be written showing repeating blade structural properties
(
[
mp

]
, [ϕp] ... ) explicitly:


[
mp

]
P, P [

mp

]
. . .

{{q̈pβ}i}+


[
kp
] [

kp
]

. . .

{ {qpβ}i } =

=

 [ϕp]
[ϕp]

. . .


T

[T ]T


1
2
ρV 2c2∆rm=1 [I]

. . .
1
2
ρV 2c2∆rm=M [I]

 ...

...


�  �

[l̃β]i
�


m

�

 [T ]

 [ϕp]
[ϕp]

. . .

{{q̄pβ}i} exp(j ω t)

(2.49)
as said before, the load matrix

[ [
[l̃β]i

]
m

]
may also be semi-full to account

for aerodynamic coupling between different spanwise stations (using a 3D the-
ory).
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2.2.5 Aeroelastic equations for standing wave formulation

So far it has been assumed that the sinusoidal motion of the degrees of freedom
of one blade may be expressed as a linear superposition of travelling wave
modes:

{qi} =
N−1∑
r=0

({q̄Rβr}+ j {q̄Iβr}) exp[j (ω t+ i βr)] (2.50)

i=0...N -1 blades, r=0...N -1 phase angles βr .
Alternatively, the arbitrary motion of each blade may be characterized by su-
perposition of standing wave modes:

{qi} =

N
2∑

r=0

[{qcr(t)} cos(i βr) + {qsr(t)} sin(i βr)] (2.51)

For each degree of freedom, N blades:

[P ] =
[
pk,l

]
N,N

=


c0,0 c0,1 s0,1 c0,2 · · ·
c1,0 c1,1 s1,1 c1,2
...

...
...

...
cN−1,0 cN−1,1 sN−1,1 cN−1,2

 (2.52)

ck,l = cos(
2π k l

N
) sk,l = sin(

2π k l

N
) (2.53)

pk,N = ck,N
2

N even pk,N = sk,N−1
2

N odd (2.54)


q0

q1
...

qN−1

 = [P ]


qc0
qc1
qs1
...

 (2.55)

[P ] features an orthogonal-like property (similarly to the unitary Fourier co-
efficient matrix [E] ) which makes [P ] simply require a diagonal scale matrix
to become truly orthogonal:

[P ]T [P ] = [D]⇒ [P ]−1 = [D]−1 [P ]T (2.56)
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[D] =


N

N
2

. . .
N
2

N

 N even [D] =


N

N
2

. . .
N
2

 N odd

(2.57)

Figure 2.11: Example of [P ] for N=6

G degrees of freedom per blade (the sectional approach is no longer of interest,
except in the definition of [∆r] which is thus used here as [∆̂r] = [T ]T [∆r] [T ] ):

[P̂ ] =

 p0,0[I]G,G p0,1[I] · · ·
p1,0[I] p1,1[I]

... . . .

 (2.58)

[D̂] =

 N [I]
N
2

[I]
. . .

 (2.59)

individual blades coordinates:

{qi}G·N, 1 =
{ {

q1
i0
· · · qGi0

}
· · ·

{
q1
iN−1

· · · qGiN−1

} }T (2.60)

travelling wave coordinates:

{qβ} =
{ {

q1
β0
· · · qGβ0

}
· · ·

{
q1
βN−1

· · · qGβN−1

} }T (2.61)
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standing wave coordinates:

{qcs} =
{ {

q1
c0
· · · qGc0

} {
q1
c1
· · ·
} {

q1
s1
· · ·
} {

q1
c2
· · ·
}
· · ·
}T

(2.62)

{qi} = [P̂ ]{qcs} (2.63)

{qβ} = [Ê]∗[P̂ ]{qcs} (2.64)

The travelling wave formulation is actually the complex representation of the
standing wave modes in the special case in which the motion is assumed to be
harmonic:

{qi} = [P̂ ]{qcs} ⇒ {qi(t)} = {qcr(t)} cos(i βr) + {qsr(t)} sin(i βr) (2.65)

{qcr(t)} = {q̄βr} exp(j ω t) {qsr(t)} = j {q̄βr} exp(j ω t) (2.66)

{qi} = {q̄βr} cos(i βr) exp(j ω t) + j {q̄βr} sin(i βr) exp(j ω t) =

= {q̄βr} exp(j i βr) exp(j ω t)
(2.67)

which is exactly the relationship between individual blade and travelling wave
coordinates. However, the meaning of the two systems of coordinates is dif-
ferent due to the distinction of real and imaginary parts: as said before, in
the travelling wave formulation the reference is a (rotating) unshifted-in-time
blade, while for the standing modes there is a space-fixed reference frame in
which the rotor displacements are projected as a function of angular position
at each blade passing.
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Figure 2.12: Reference frame for standing wave formulation (ref. [12])

For structurally uncoupled blades:

[Ms] [P̂ ]{q̈cs}+ [Ks] [P̂ ]{qcs} = [T ]T [∆r] [T ] [L̂] [P̂ ]{qcs} (2.68)

[D̂]−1 ([P̂ ]T [Ms] [P̂ ]{q̈cs}+ [P̂ ]T [Ks] [P̂ ]{qcs} − [P̂ ]T [∆̂r] [L̂] [P̂ ]{qcs}) = 0
(2.69)

if the rotor is tuned, [P̂ ]T ...[P̂ ] transformation leaves the structural system
unaltered and uncoupled, exactly like the travelling wave transformation: thus
in this case the eigenvectors are different in the three formulations but their
physical interpretation is immediately clear, as the coordinates in which they
are written are true blade coordinates.
For the most general case in which structural coupling is present, a modal ap-
proach is again favorable and appropriate using the standing wave formulation:

{qi} = [Φ]{qn} modal coordinates (2.70)

An important remark is suggested by comparing the modal relationship to the
standing wave one, {qi} = [P̂ ]{qcs} : for perfect sine and cosine modes (a.k.a.
twin orthogonal modes) [P̂ ] matrix is just a special case of the normal modal
vector matrix [Φ] under the assumption of sinusoidal motion.
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{qcs} = [D̂]−1 [P̂ ]T [Φ]{qn} (2.71)

[Φ]T [Ms] [Φ]{q̈n}+ [Φ]T [Cs] [Φ]{q̇n}+ [Φ]T [Ks] [Φ]{qn} = [Φ]T [∆̂r] [L̂] [Φ]{qn}
(2.72)

[m]{q̈n}+[c]{q̇n}+[k]{qn} = [Φ]T [P̂ ]
[
[D̂]−1 [P̂ ]T [∆̂r] [L̂] [P̂ ]

]
[D̂]−1 [P̂ ]T [Φ]{qn}

(2.73)
where now structural damping forces have been explicitly written. This is the
most complete and versatile formulation for flutter: standing modes are ac-
tually the whole assembly modes (computed, for example, by a FEM code)
and physical displacements are written as functions of modal coordinates. The
bracketed terms are the aerodynamic loads which have been modeled in sinu-
soidal standing wave coordinates. This allows an efficient time-domain state-
space aerodynamic computation as it has been studied by Dugundji and Bun-
das, who indeed fit Whitehead’s complex load coefficients (given in travelling
waves) by first applying the standing wave transformation to them.
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2.3 Eigenvalues centroid and effect of mistuning

Another important issue should be mentioned about general, theoretical treat-
ment of the aeroelastic problem. A simple example of flutter analysis is here
presented to show the effects of mistuning by using the influence coefficients,
as the rest of this work will be focused on tuned rotors (the validation of the
algorithm is treated in the Aeroelastic eigenvalue calculation chapter). The
complex aeroelastic eigenvalues have been computed for a simple fictitious ro-
tor (with some data taken from Standard Configuration 10) using LINSUB.
There are 24 blades with one torsional (CMαα ) degree-of-freedom each and
the following results and data:

Figure 2.13: Example of tuned and mistuned rotor eigenvalues (complex plane)
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Machnumber 0.7
Stagger 45°

Gap− to− chord ratio 1
Inflow velocity 232m/s
Inflow density 1 kg/m3

chord 0.1m
span 1m

pitch axis chordwise location 0.5
inertia 0.01 kg m2

stiffness 3364N m/rad

Table 2.1: Data for example of tuned and mistuned rotor eigenvalues

The tuned rotor eigenvalues are compared with those of the same rotor with
alternate stiffness mistuning equal to -0.1, meaning that half blades have sus-
tained a 10% decrease in stiffness in a symmetrical pattern. Despite the fact the
tuned rotor is stiffer, it encounters flutter as some eigenvalues become unstable,
while the mistuned rotor is completely stable. Thus this simple example shows
why there has been an increasing interest in optimal mistuning to suppress
flutter or anyway to mitigate blade vibrations. However, it is also evident that
typical mistuning (which always involves a small structural modification and
often decreases the eigenfrequencies) cannot significantly move the real part of
the eigenvalues centroid and therefore it cannot stabilize the system when too
many degrees of freedom are in flutter conditions. Crawley’s and Hall’s work
on optimal mistuning in cascades (ref. [11]) indeed demonstrated that, for
small mistuning and with the typical assumption of small aerodynamic loads
compared to elastic and inertial forces in rotors, the real part of the eigenvalues
centroid is controlled by the imaginary part of [L0] (single blade self-excitation)
terms only. Thus, under small perturbation hypothesis, any possibility to arti-
ficially stabilize the system is excluded if the single blade aeroelastic system is
unstable. In other words, for rotor stability it is necessary, but not sufficient,
that each blade is self-damped. The demonstration has been extended to the
case of multiple degrees of freedom per blade and is here presented:

s2
 [M ]

[M ]

. . .


 (1 + ε0)[I]

(1 + ε1)[I]

. . .

 +

 [K]
[K]

. . .

− [∆̂r] [L̂]

 {qi} = 0

(2.74)

The mistuning effect has been assumed to be concentrated in εi mass-terms
which affect equally all G degrees of freedom of each of the N blades; eigen-
values are represented by the complex Laplace variable s = σ + j ω . The
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equations can thus be rearranged by exploiting the relationship between the
trace of a matrix and its eigenvalues:

1

N

N−1∑
i=0

G∑
k=1

s2
ki =

= 1
N trace

−
 ( 1

1+ε0
)[I]

( 1
1+ε1

)[I]

. . .


 [M ]−1

[M ]−1

. . .

([ [K]
. . .

]
− [∆̂r] [L̂]

)
(2.75)

The system is block-circulant except for the mistuning perturbations:

1

N

N−1∑
i=0

G∑
k=1

s2
ki =

1

N
trace

(
−[M ]−1 ([K]− [∆r] [L0])

) N−1∑
i=0

1

1 + εi
(2.76)

and this highlights the importance of [L0] already: −[M ]−1 ([K]− [∆r] [L0]) is
the aeroelastic system of one isolated blade. Eigenvalues and mistuning terms
are then linearized, assuming that both aerodynamic loads and mistuning affect
structural eigenfrequencies with a small variation:

s2
ki ' s̄2

k + 2 s̄k s̃ki = −ω̄2
k + j 2 ω̄k (σ̃ki + j ω̃ki) (2.77)

1

1 + εi
' 1− εi (2.78)

G∑
k=1

s̄2
k = trace

(
−[M ]−1 [K]

)
(2.79)

⇒

∑G
k=1

1
N

∑N−1
i=0 2 s̄k s̃ki =

= −
(∑G

k=1 s̄
2
k

)
1
N

(∑N−1
i=0 εi

)
+ 1

N
trace ([M ]−1 [∆r] [L0])

∑N−1
i=0 (1− εi)

(2.80)
centroid of the eigenvalues of all blades (for each degree of freedom k):

< s̃k >=< σ̃k + j ω̃k >=
1

N

N−1∑
i=0

s̃ki (2.81)

36



Chapter 2 Subsection 2.3.0

average mistuning:

< ε >=
1

N

N−1∑
i=0

εi (2.82)

⇒
2
∑G

k=1 j ω̄k < s̃k >=

=
∑G

k=1 ω̄
2
k < ε > +trace

(
[M ]−1 [∆r] [L0]

)
(1− < ε >)

(2.83)

[ ω̄1 ω̄2 · · · ]

j

< s̃1 >

< s̃2 >
...

− 1
2 < ε >


ω̄1

ω̄2
...


 =

= [ ω̄1 ω̄2 · · · ]

 1
2G


1
ω̄1
1
ω̄2...

 trace
(
[M ]−1 [∆r] [L0]

)
(1− < ε >)


(2.84)

for each degree of freedom the equation may be separated into real part and
imaginary part:

< ω̃k >= −1

2
< ε > ω̄k −

1

2G ω̄k
trace

(
[M ]−1 [∆r] [LR0 ]

)
(1− < ε >) (2.85)

as expected with the current definitions, the real part of the equation shows that
an increase in average mass and the mean effect of the real part of aerodynamic
self-excited loads tend to decrease the imaginary part of the eigenvalues.

< σ̃k >=
1

2G ω̄k
trace

(
[M ]−1 [∆r] [LI0]

)
(1− < ε >) (2.86)

The imaginary part of the equation demonstrates what was anticipated, which
is that the real part of the eigenvalues centroid is controlled by [LI0] : in ab-
sence of self-damping, when the effect of [LI0] becomes de-stabilizing, mistuning
cannot avoid flutter ( 1− < ε >' 1 ).
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Chapter 3

Aerodynamic two-dimensional
theory

3.1 References and general assumptions for aero-
dynamic model

The AGARD Manual (ref. [1]) contains a wide set of unsteady aerodynamic
models which may be exploited for aeroelastic computations. Chapter 2, by
J.M. Verdon, reviews the classical 2D linearized potential-flow methods for gen-
eral applications, while Chapter 3, by D.S. Whitehead, is a complete and de-
tailed report on the same approach applied to turbomachinery. As anticipated,
the LINSUB code is the numerical implementation of these methods and it
may be found in the appendix of cpt. 3, written in FORTRAN language. The
unsteady potential-flow approach for cascades is also reviewed in the recent
version of “A Modern Course in Aeroelasticity”. Whitehead’s original work
involved incompressible flows, but the model was then extended to subsonic
problems and the AGARD also contains the theory for supersonic potential
flow. The method is a straightforward specialization of thin-airfoil theory to
cascade effect, with some peculiar aspects that are not usually encountered in
traditional wing aerodynamic models. The approach is not entirely analytical
as it requires the numerical integration of bound vorticity along the chord of
the airfoil: the cascade kernel function is a series that has analytical solution
(found by Whitehead, ref. [7]) for the incompressible problem, but not for com-
pressible flows and numerical summation has never yielded satisfactory results.
Therefore for generic Mach numbers the solution was first found by S.N. Smith
(published in 1972, ref. [8]), whose approach is to superpose “wave” solutions of
the flow equations (continuity and momentum) that describe the propagation
of pressure and vorticity perturbations.
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Figure 3.1: Reference frames for aerodynamic model (ref. [1])

General assumptions:

• The system considered is two-dimensional, so that the bending modes
of actual blades are represented by a translational motion of the two-
dimensional airfoils, and the torsional modes of actual blades are repre-
sented by rotation of the two-dimensional airfoils about a known axis.
Only translational motion perpendicular to the chord line has been con-
sidered, since motion parallel to the chord line gives rise to second order
effects only.

• The fluid is assumed to be inviscid , irrotational and isentropic.

• It is assumed that the blades do not stall, so that the flow always follows
the blade surface.

• Effects due to blade camber and thickness are neglected so that the blades
are assumed to be flat plates.
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• It is assumed that the blades operate at zero mean incidence, so that the
mean deflection is zero.

• The amplitude of vibration is assumed to be small. It follows that the
wakes of the blades, which are vortex sheets in which the strength varies
sinusoidally with distance from the trailing edge, can be taken to be
straight. It also follows that the theory becomes linear, so that results
for any two types of vibration can be superposed to give a third type of
vibration.

• It is assumed that all blades vibrate with the same amplitude, and with
a constant phase angle (the InterBlade Phase Angle) between one blade
and the next. This involves no loss of generality, since any required
motion of the blades can be obtained by superposing solutions of the
type considered (travelling wave approach).

The cascade may be described by two reference frames, both with their origins
located at the leading edge of the reference airfoil (which may be any blade
in the row): the x axis is in the chord-wise direction and thus the y axis is
normal to the chord and it is the natural reference for expressing aerodynamic
loads, since the blade is at zero-incidence. Axes ξ and η represent axial
and circumferential directions and they are useful to locate blades (and lifting
vortices) within the cascade and to separate in-row and inter-row effects. The
geometry of the cascade is thus defined by blade chord c, inter-blade spacing
(or gap) s in circumferential direction and stagger angle θ . The symbols used
in this part will be the same as in AGARD, cpt. 3, so harmonic motions will
be expressed as exp(i ω t) and λ = ω c

U∞
.
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3.2 Unsteady thin-airfoil theory for bound and
free vorticity

Figure 3.2: Vorticity distribution in travelling wave approach (ref. [7])
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Total vorticity is given by bound vorticity and free (shed) vorticity:

γt = V −x − V +
x = γ + ε (3.1)

ε(x1) = − i ω
U∞

x1ˆ

0

γ(x) exp(i ω
x− x1

U∞
) dx (3.2)

Multiplying by exp(i ω x1
U

) and differentiating w.r.t. x1 :

dε

dx
+
i ω

U
(γ + ε) = 0 (3.3)

Linearized momentum equation:

(
∂

∂t
+ U∞

∂

∂x
) ((V −x − V +

x ) exp(i ω t)) = −1

ρ̄

∂

∂x
(p− − p+) exp(i ω t) (3.4)

−1

ρ̄

∂

∂x
(p− − p+) exp(i ω t) = (i ω (γ + ε) + U∞

dγ

dx
+ U

dε

dx
) = U∞

dγ

dx
exp(i ω t)

(3.5)
This leads to the well-known Kutta-Joukowski expression:

(p− − p+) = −ρ̄U∞γ(x) (3.6)

The airfoil is assumed to move in plunge hy and pitch α and is forced by a
lift fy and a moment m (anti-clockwise about L.E.):

fy = −ρ̄U∞

cˆ

0

γ(x) dx mz = −ρ̄U∞

cˆ

0

γ(x)x dx (3.7)

vy(x
′) = ḣy + αz (U∞ + i ω x′) (3.8)

The unsteady boundary conditions on the airfoil will be satisfied by the velocity
induced by total vorticity (free vorticity is a function of bound vorticity) and
this may be written as a function of a kernel K :

vy(x
′) =

1

c

cˆ

0

K(
x′ − x
c

) γ(x) dx (3.9)
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3.3 Kernel function for incompressible flow

For zero Mach number, the kernel is simply given by Biot-Savart law applied
to a cascade in sinusoidal travelling wave motion, meaning that the velocity
field is induced by an infinite row of vortices (each on the m-th blade) whose
intensity in time is phase-lagged by the IBPA σ :

vy(x
′) =

+∞∑
m=−∞

Γm
2 π

x′ − xm
(x′ − xm)2 + y2

m

=
Γ0

c
V (
x′ − x
c

) (3.10)

Γm = Γ0 exp(imσ) (3.11)

xm = ms sin θ + x ym = ms cos θ (3.12)

V (z) =
1

2 π

+∞∑
m=−∞

exp(imσ) (z −m s/c sin θ)

(z −m s/c sin θ)2 + (m s/c cos θ)2
=

=
c

4 s

[
exp [−(π − σ) (cos θ + i sin θ) c/s z + i θ]

sinh [π (cos θ + i sin θ) c/s z]
+

exp [(π − σ) (cos θ − i sin θ) c/s z − i θ]
sinh [π (cos θ − i sin θ) c/s z]

]
(3.13)

The analytical solution (found by Whitehead) is correct for 0 < σ < 2π , but
it differs from numerical summation at zero phase angle. Moreover in this
case, the induced velocity does not disappear at infinite distance upstream,
thus it is necessary to compute the numerical solution and subtract the value
of V (−∞) = −1

2
(cos θ + i sin θ) c/s , which is also the error between analytical

and numerical solutions far upstream at σ = 0 :

V σ=0
(z) = V (z)− V (−∞) (3.14)

This leads to the conclusion that, for incompressible flows in cascades, the
kernel is:

K(z) = V (z)− i λ exp(−i λ z)

zˆ

−∞

exp(i λ z1)V (z1) dz1 (3.15)

which accounts both for bound vorticity and free vorticity.
For all flows (including compressible ones) vorticity for cascades can alterna-
tively be written as:
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γ =
∞∑

m=−∞

Γ0 exp(imσ) δ(η −ms) (3.16)

by exploiting the discrete Fourier analysis, the usage of the Dirac’s function
δ in circumferential direction η allows to express vorticity (and actually any
flow property in the cascade) in an effective form:

γ = Γ0 exp(i η σ
s
)
∑+∞

m=−∞ exp
[
−i (η −ms) σ

s

]
δ(η −ms) =

= Γ0 exp(i η σ
s
)
∑+∞

m=−∞ δ(η −ms)
(3.17)

⇒ γ = Γ0 exp(i η
σ

s
)

1

s

+∞∑
r=−∞

exp(−i 2π r
η

s
) =

Γ0

s

+∞∑
r=−∞

exp
[
i (σ − 2 π r)

η

s

]
(3.18)

β = σ−2π r
s

thus represents the phase-lag between two blades in the row and
this expression will be convenient for the wave approach, as β is actually a
spatial frequency of propagating disturbance.

3.4 Compressible flow theory

3.4.1 Acoustic wave solution

For linearized compressible flows the fundamental equations (continuity and
momentum) are:

∂ρ

∂t
+ Vξ

∂ρ

∂ξ
+ Vη

∂ρ

∂η
+ ρ̄(

∂vξ
∂ξ

+
∂vη
∂η

) = 0 (3.19)

∂vξ
∂t

+ Vξ
∂vξ
∂ξ

+ Vη
∂vξ
∂η

= −1

ρ̄

∂p

∂ξ
(3.20)

∂vη
∂t

+ Vξ
∂vη
∂ξ

+ Vη
∂vη
∂η

= −1

ρ̄

∂p

∂η
(3.21)

p = a2
∞ρ (3.22)

using axial-circumferential reference frame ( ξ, η ) :{
ξ
η

}
=

[
cos θ − sin θ
sin θ cos θ

]{
x
y

}
(3.23)
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reference airfoil : y = 0

{
ξ
η

}
=

{
cos θ
sin θ

}
x′ (3.24)

Vξ = U∞ cos θ Vη = U∞ sin θ (3.25)

and small perturbation quantities ( ρ, p, vξ, vη ):

ρ̂(ξ, η, t) = ρ̄+ ρ(ξ, η, t) p̂(ξ, η, t) = p̄+ p(ξ, η, t) (3.26)

V̂ξ(ξ, η, t) = Vξ + vξ(ξ, η, t) V̂η(ξ, η, t) = Vη + vη(ξ, η, t) (3.27)

Similarly, the well-known linearized potential equation for thin airfoils may be
written in chord-reference and axial-reference frames (using Mξ = M cos θ , Mη =
M sin θ ):

(1−M2)φ/xx + φ/yy −
2 i ω

a∞
M φ/x +

ω2

a2
∞
φ = 0 (3.28)

(1−M2
ξ )φ/ξξ+(1−M2

η )φ/ηη−2MξMη φ/ξη−
2 i ω

a∞
(Mξ φ/ξ+Mη φ/η)+

ω2

a2
∞
φ = 0

(3.29)
The solution (assumed to be harmonic in time) may be written as a function
of propagating waves with spatial frequencies (or wave numbers) α and β in
the two directions :

φ(ξ, η, t) = Φ exp(i ω t+ i α ξ + i β η) (3.30)

⇒ α2 + β2 − (αMξ + βMη +
ω

a∞
)2 = 0 (3.31)

The solution is phase-lagged by the IBPA at discrete locations in circumferen-
tial direction, as the motion of each blade is shifted w.r.t the next blade by:
exp(i σ) , thus, as anticipated, the circumferential wave number is:

β =
σ − 2π r

s
r = 0, 1, 2..., −1, −2, ... (3.32)

It is therefore possible to find the solution of the propagation of pressure waves:

α =
Mξ(βMη + ω

a∞
)±

√
(βMη + ω

a∞
)2 − (1−M2

ξ )β2

1−M2
ξ

(3.33)
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Energy transfer due to pressure waves in axial direction is important for forced
response, while for flutter the main interest is in the circumferential waves.
However, the condition of null energy transfer in axial direction, known as cut-
off or acoustic resonance, is critical for the rotor, as waves propagate around the
machine in circumferential direction and no energy is lost by radiation in axial
direction. The wave solution becomes singular at this point and in practice the
rotor will sustain large amplitude vibrations due to minimal (theoretically null
with a linearized analysis) aerodynamic damping. The wave solution actually
encounters this situation whenever zero phase angle is combined with zero
Mach number or zero reduced frequency; thus in this case for unsteady loads
calculation the actuator disc theory (also described in the AGARD, cpt.3) is
more appropriate, as it applies when the phase angle and the reduced frequency
are adequately small.
Acoustic propagation and resonance may also be studied by equating the time
of propagation of a disturbance along the cascade to the time for an integral
number of oscillations to take place plus the time lag associated with the in-
terblade phase angle:

s

V +
p

=
2π r

ω
− σ

ω

s

V −p
=

2π r

ω
+
σ

ω
(3.34)

V ±p = a∞(
√

1−M2
ξ ±Mη) (3.35)

Figure 3.3: Explanation of acoustic resonance (ref. [3], [14])
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Phase angles that cause acoustic resonance are:

σ = (Mη ±
√

1−M2
ξ )

M λ s/c

(1−M2)
resonance (3.36)

The (discrete) inter-blade phase angles of interest actually rarely match these
values in practice, even so when they become similar the aeroelastic response
usually presents a negative peak in damping. Between these values of phase
angle (one negative and one positive) axial waves propagate and multiple-row
interaction due to pressure waves occurs. Outside this range of phase angles
axial waves decay:

Mη −
√

1−M2
ξ

1−M2
<
a∞β

ω
<
Mη +

√
1−M2

ξ

1−M2
M < 1⇒ waves propagate

(3.37)
there are two real roots for α , which correspond to waves travelling upstream
and downstream in axial direction; the otherwise complex roots indicate one
growing and one decaying waves which unaffect adjacent rows in steady con-
ditions. In case of supersonic flow the situation is similar, provided that axial
Mach number is subsonic, and propagation occurs outside a range of circum-
ferential waves:


a∞β
ω <

−Mη−
√

1−M2
ξ

M2−1

a∞β
ω >

−Mη+
√

1−M2
ξ

M2−1

M > 1, Mξ < 1⇒ waves propagate

(3.38)
If even the axial flow is supersonic Mξ > 1 , waves always propagate (down-
stream only) and there is no resonance condition.
At this point it is possible to determine directions of energy transfer due to
pressure waves and apply boundary conditions; for this purpose it is convenient
to use an auxiliary reference frame which is fixed with the flow and thus is
convected downstream:

ξ′ = ξ −Mξa∞t η′ = η −Mηa∞t (3.39)

⇒ φ = Φ exp [i (ω + αMξa∞ + βMηa∞) t+ i α ξ′ + i β η′] (3.40)
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ω′ = ω + αMξa∞ + βMηa∞ intrinsic frequency (moving reference)
(3.41)

α = − ω′

a∞
cosψ β = − ω′

a∞
sinψ (3.42)

⇒ φ = Φ exp

[
i ω′ (t− ξ′

a∞
cosψ − η′

a∞
sinψ)

]
(3.43)

ω′ =
ω

1 +M cos(θ − ψ)
(3.44)

where ψ is the wavefront angle w.r.t. axial direction (yet it is not the energy
transfer direction) and in subsonic flows it may assume any value:

Figure 3.4: Wave propagation (ref. [1])

The rate of axial energy transfer is thus given by convection and pressure wave
propagation:

cξ = Mξa∞ + a∞ cosψ =
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= Mξa∞ −
a2
∞α

ω′
=
α a2
∞(M2

ξ − 1) +Mξa∞(βMηa∞ + ω)

ω + αMξa∞ + βMηa∞
=

=
∓a∞

√
(βMηa∞ + ω)2 − (1−M2

ξ )β2a2
∞

ω′
(3.45)

which demonstrates what has just been stated about wave propagation and
specifically that in acoustic resonance conditions axial energy transfer is null
and thus waves carry energy in circumferential direction only.
Using any of the two momentum equations it is now possible to express the
unsteady pressure load:

vξ =
∂φ

∂ξ
= i α φ vη =

∂φ

∂η
= i β φ (3.46)

(
∂

∂t
+Mξa∞

∂

∂ξ
+Mηa∞

∂

∂η
)
∂φ

∂ξ
= −1

ρ̄

∂p

∂ξ
(3.47)

(ω + αMξa∞ + βMηa∞) i vξ = −1

ρ̄

∂p

∂ξ
(3.48)

1

ρ̄

∂p

∂ξ
= −i ω

′

i α

∂

∂ξ
(
∂φ

∂ξ
) (3.49)

⇒ p

ρ̄
= −ω

′ vξ
α

= −ω
′ vη
β

(3.50)

It is also possible to evaluate the effect due to a given pressure disturbance
incoming from another row, pi(ξ, η, t) = p̃i exp(i ω t+ i α ξ+ i β η) : in this case
the upwash terms that represent boundary conditions are the sum of vorticity
induced velocity and velocity perturbation (normal to chord) due to incoming
pressure waves:

vy(x
′)− vξi sin θ + vηi cos θ = 0 (3.51)

vy(x
′) = −p

ρ̄

α

ω′
sin θ +

p

ρ̄

β

ω′
cos θ (3.52)

⇒ vy(x
′) =

p̃i
ρ̄U∞

β c cos θ − α c sin θ

λ+ α c cos θ + β c sin θ
exp [i (ω t+ α cos θ + β sin θ)x′]

(3.53)
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3.4.2 Vorticity wave solution

In order to account for shed vorticity, which causes additional unsteady loads, a
wave propagation approach is again employed. The continuity and momentum
equations admit a wake solution in which vorticity is convected downstream at
the mean flow velocity. As it is well known, this surface is unloaded, i.e. density
and pressure perturbations are null ρ = 0, p = 0 , and it represents a velocity
potential discontinuity in the flow field. Again referring to axial properties (but
nothing would change if circumferential equations were used), the sought wave
solution for vorticity is thus:

vξ(ξ, η, t) = vξ exp(i ω t+ i α ξ + i β η) (3.54)

momentum : ω + αVξ + β Vη = 0 (3.55)

⇒ α = −ω + β Vη
Vξ

(3.56)

continuity :
∂vξ
∂ξ

+
∂vη
∂η

= 0 (3.57)

⇒ α vξ + β vη = 0 (3.58)

vη =
ω + β Vη
β Vξ

vξ (3.59)

Similarly to pressure waves, the effect of an incoming vorticity wave, vi(ξ, η, t) ={
ṽξi
ṽηi

}
exp(i ω t+i α ξ+i β η) , may be taken into account in the upwash term:

vy(x
′)− vξi sin θ + vηi cos θ = 0 (3.60)

vy(x
′) =

= (ṽξi sin θ − ω+β U∞ sin θ
βU∞ cos θ

ṽξi cos θ) exp(i ω t− i ω+β U∞ sin θ
U∞ cos θ

cos θ x′ + i β sin θ x′) =

= − ω

βU∞
ṽξi exp(i ω t− i ω x′

U∞
) = − λ

β c
ṽξi exp(i λ

x− x′

c
) (3.61)

for a given velocity perturbation normal to chord, vW :

vy(x
′) = −vW exp(−i λ x

′

c
) (3.62)

51



Chapter 3 Subsection 3.4.3

3.4.3 Kernel function for subsonic cascade

In the incompressible flow section it has already been anticipated that bound
vorticity may be expressed (for any Mach number) as:

γ(η, t) =
Γ0(t)

s

+∞∑
r=−∞

exp
[
i (σ − 2π r)

η

s

]
=

Γ0(t)

s

+∞∑
r=−∞

exp(i β η) (3.63)

with harmonic assumption: Γ0(t) = Γ̄0 exp(i ω t) ; this series is sinusoidal in
circumferential direction and may actually represent all wave solutions, thus
allowing to exploit pressure waves and vorticity waves in order to find the
kernel function. Upstream of the cascade the flow is disturbed by the axial
upstream-travelling pressure wave (which may actually decay in some condi-
tions, as it has been shown) and the associated flow properties will be labeled
as vξ1 , ρ1, α1....Similarly, downstream of the cascade the downstream-travelling
pressure wave ( vξ2 , ρ2, α2...) and shed vorticity wave ( vξ3 , ρ3, α3...) affect the
airfoils.
Since to express the kernel function induced velocities are required, the gov-
erning flow equations may be exploited to find the unknowns; firstly, finite
continuity between upstream and downstream is used (in a linearized form):

(Vξ + vξ1)(ρ̄+ ρ1) = (Vξ + vξ2 + vξ3)(ρ̄+ ρ2) (3.64)

⇒ ρ̄vξ1 + Vξρ1 = ρ̄vξ2 + ρ̄vξ3 + Vξρ2 (3.65)

due to the relationships that have been found:

p1,2

ρ̄
= −

ω′ vξ1,2
α1,2

= −
ω′ vη1,2
β

(3.66)

p1,2

ρ1,2

= a2
∞ (3.67)

vη3 =
ω + β Vη
β Vξ

vξ3 = −α3

β
vξ3 (3.68)

it may be obtained that:

(α1−
Vξ
a2
∞

(ω+α1 Vξ+β Vη))vη1 = (α2−
Vξ
a2
∞

(ω+α2 Vξ+β Vη))vη2−
β2

α3

vη3 (3.69)
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The next step is given by the fact that the velocity jump in the η-direction as
the cascade-wave is crossed must be equal to the strength of the wave itself:

vη2 + vη3 − vη1 = γ (3.70)

In addition, the convected vorticity (which is labeled here as ζ3 ) is related to
bound vorticity which is shed in a time interval dt :

− d

dt
(γ dη) dt = ζ3 dη (Vξ dt) (3.71)

ζ3 = −i ω γ
Vξ

=
∂vη3
∂ξ
− ∂vξ3

∂η
= i α3 vη3 − i β vξ3 (3.72)

⇒ α3 vη3 − β vξ3 = −ω γ
Vξ

(3.73)

(α3 +
β2

α3

) vη3 = −ω γ
Vξ

(3.74)

Now velocity perturbations may be explicated as a function of vorticity (which
will be the unknown of the aerodynamic problem, just like for isolated airfoils):

vη3 = γ
λ2 + λβc sin θ

λ2 + 2λβc sin θ + β2c2
(3.75)

vη1,2 = γ
βc (∓(βc+ λ sin θ) + iλβc cos θ√

E
)

2(λ2 + 2λβc sin θ + β2c2)
(3.76)

E = β2c2 −M2(λ2 + 2λβc sin θ + β2c2) < 0 waves propagate (3.77)

It is now possible to express induced velocity normal to chord due to each
vortex row:

vy(x
′) =

Γ0

s

+∞∑
r=−∞

(vη1 cos θ − vξ1 sin θ) exp [i (α1 cos θ + β sin θ)x′] x′ < 0

(3.78)
and thus the kernel function is:

K(z) =


c
s

∑+∞
r=−∞(vη1 cos θ − vξ1 sin θ) exp [i (α1 cos θ + β sin θ) c z] z < 0

c
s

[∑+∞
r=−∞(vη2 cos θ − vξ2 sin θ) exp [i (α2 cos θ + β sin θ) c z] +Kε(z)

]
z > 0

(3.79)
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The series associated to shed vorticity has analytical solution (found by Smith):

Kε(z) =
+∞∑
r=−∞

(vη3 cos θ − vξ3 sin θ) exp [i (α3 cos θ + β sin θ) c z] =

=
λ

2

sinh(λ cos θ s/c) exp(−iλz)

cosh(λ cos θ s/c)− cos(σ + λ sin θ s/c)
(3.80)

vy(x
′) =

1

c

cˆ

0

K(
x′ − x
c

) γ(x) dx (3.81)

The two cases ( z ≶ 0 ) are due to the fact that, along the chord of the refer-
ence blade, the upwash velocity in x’ is induced by two sources: one is given
by upstream-travelling pressure waves radiated by a vortex row which is at a
position x downstream of x’ ( z < 0 ); the second source is given by downstream-
travelling pressure waves and shed vorticity waves radiated from an upstream
source ( z > 0 ).

3.4.4 Solution for subsonic cascade

The numerical solution is now obtained with the same approach that is typically
employed in isolated thin-airfoil theory. For flutter the important inputs to un-
steady aerodynamic loads are structural modes (bending and torsion: ḣy, αz ),
but this solution is easily extended to given pressure and vorticity waves, which
are implemented in LINSUB and are useful for forced response simulations.

x =
1

2
c(1− cos Ψ) Ψ =

πl

Np

l = 0, 1, ...Np − 1 (3.82)

x′ =
1

2
c(1− cos ε) ε =

π(2m+ 1)

2Np

m = 0, 1, ...Np − 1 (3.83)

The trailing edge location ( x = c, Ψ = π ) is not included as the Kutta condi-
tion requires zero vorticity. At the leading edge the typical thin-airfoil singular-
ity arises, but Whitehead (by numerical integration) and Smith (by analytical
approach) found a solution to this issue as well (ref. [1] and [8]).

vy(ε) =
1

2

πˆ

0

K(
1

2
(cos Ψ− cos ε)) γ(Ψ) sin ΨdΨ (3.84)
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fy = −1

2
ρ̄U∞c

πˆ

0

γ(Ψ) sin ΨdΨ mz = −1

4
ρ̄U∞c

2

πˆ

0

γ(Ψ) sin Ψ(1−cos Ψ)dΨ

(3.85)

ḣy, αz → [U ]Np,2 = [K]Np,Np [Γ]Np,2 (3.86)

Upwash matrix of the given structural modes:

[U ] =

 1 1 + iλ
x′0
c

1 1 + iλ
x′1
c...

...

 (3.87)

For each input (e.g. bending motion) there is a vorticity solution and thus a
column of discrete vortices at given chord-wise locations:

[Γ] =


π

4Np

γh0
U

sin Ψ0
π

4Np

γα0
U

sin Ψ0

π
2Np

γh1
U

sin Ψ1
π

2Np

γα1
U

sin Ψ1

π
2Np

γh2
U

sin Ψ2
π

2Np

γα2
U

sin Ψ2

...
...

 (3.88)

[C] = [X][Γ]⇒ [C] = [X][K]−1[U ] (3.89)

[X]2,Np =

[
−1 −1 · · ·

−1
2
(1− cos Ψ0) −1

2
(1− cos Ψ1) · · ·

]
(3.90)

[C] =

[
fy

ρ̄U∞cḣy

fy
ρ̄U2
∞cαz

mz
ρ̄U∞c2ḣy

mz
ρ̄U2
∞c

2αz

]
(3.91)

The unsteady aerodynamic solution here presented is valid for subsonic flows,
under the assumption of two-dimensional linearized flow undergoing small per-
turbations. The same approach has been been employed for supersonic flows
by different authors, including T. Nagashima and D. S. Whitehead (1977, ref.
[9]), and for transonic flows. In the latter case, which is of great interest in
turbomachinery, results have never been very satisfactory, just like for isolated
airfoils, due to the importance of shockwave motion and possible flow detach-
ment, leading to the need of non-linear methods. For linearized supersonic
flows the methods are again an extension of isolated airfoils theory, meaning
that loads are due to flow turning 4ϑ at each Mach wave:
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p

ρ̄U2
∞

= ± 4ϑ
M2 − 1

(3.92)

but in turbomachinery there is a number of possible situations in which blades
interact each other in a different way due to wave reflection; the problem may
be graphically synthesized with the governing parameters that are given by the
relationship between Mach number and cascade geometry:

d1 = s [sin θ + (M2 − 1) cos θ]

d2 = s [sin θ − (M2 − 1) cos θ]
(3.93)

Figure 3.5: Blade interactions in supersonic cascade (ref. [9])
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3.4.4.1 Examples of unsteady loads computed by LINSUB

LINSUB output comprises a 5×5 (or 3×3 ) matrix and phase angles for reso-
nance. The first two columns and rows are the ones which are required by flut-
ter analysis and that have been explicitly obtained in the theoretical approach
(torsional rotation is by default positive anti-clockwise, or pitch down, about
leading edge); the remaining terms give aeroelastic interaction with other blade
rows through vorticity (coming from upstream and shed toward downstream)
and pressure waves. When the latter decay there is no associated output, as
computed phase angle is in super-resonant range. In sub-resonant conditions,
there are two outgoing pressure waves, one travelling upstream and one down-
stream, and two incoming waves from the upstream row and the downstream
one.

[C] =



fy

ρ̄U∞cḣy

fy
ρ̄U2∞cαz

fy
ρ̄U∞cw

fy
c p+

i

fy
c p−i

mz

ρ̄U∞c2ḣy
mz

ρ̄U2∞c2αz
mz

ρ̄U∞c2w
mz

c2 p+
i

mz

c2 p−i
ε
ḣy

ε
U∞αz

ε
w

ρ̄U∞ε
p+
i

ρ̄U∞ε
p−i

p+
o

ρ̄U∞ḣy

p+
o

ρ̄U2∞αz
p+
o

ρ̄U∞w
p+
o

p+
i

p+
o

p−i
p−o

ρ̄U∞ḣy

p−o
ρ̄U2∞αz

p−o
ρ̄U∞w

p−o
p+
i

p−o
p−i


(3.94)
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Figure 3.6: Standard Configuration 1, σ = 0° and σ = 72° , LINSUB
output [C] and phase angles for resonance
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Figure 3.7: Incompressible isolated thin-airfoil theory check, LINSUB output

Lift coefficient for bending and torsional modes, real and imaginary parts at
different phase angles:

Machnumber 0.7
stagger −45°

gap− to− chord ratio 0.75
reduced frequency 1.

Table 3.1: Data for example of unsteady loads computed by LINSUB (ref. [26])
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Figure 3.8: Example of lift coefficient (real part) due to bending computed by
LINSUB for different phase angles

Figure 3.9: Example of lift coefficient (imaginary part) due to bending com-
puted by LINSUB for different phase angles
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Figure 3.10: Example of lift coefficient (real part) due to torsion computed by
LINSUB for different phase angles

Figure 3.11: Example of lift coefficient (imaginary part) due to torsion com-
puted by LINSUB for different phase angles
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Chapter 4

Aerodynamic energetic approach

4.1 Aerodynamic work per cycle and damping
for assumed structural mode motion

The simplest approach in unsteady flow analysis for flutter calculation is the so-
called “assumed mode” method: in order to evaluate the effect of aerodynamic
loads on the structure and to determine when these loads become destabiliz-
ing an energy approach is employed. If the blade moves according to a given
harmonic time-law (such as a sectional bending or torsion mode), it is possible
to evaluate the energy input due to aerodynamic loads. If structural damping
is assumed to be null, when the work per cycle becomes positive the structural
motion is self-sustained and flutter occurs. Aerodynamic damping is a conve-
nient normalization of the work per cycle (ref. [14]), as, for a linearized theory,
it is completely independent of the motion amplitude, the true value of which
is usually unknown. This method is not a rigorous aeroelastic investigation,
as complete interaction between unsteady loads and structural motion is not
modeled, but it is very practical to implement, especially in CFD analysis, and
allows to clearly identify a range of possible critical conditions. The main as-
sumption of this method is that flutter occurs involving one degree of freedom
only per blade and that the imaginary part of the aeroelastic eigenvalue (and
thus the oscillation frequency, for small damping) is practically the structural
eigenfrequency, unaffected by unsteady loads. Moreover this approach typically
applies to tuned rotors in travelling wave mode and therefore the IBPA σ is
the main governing parameter and it has a clear physical meaning.
Even if typically one mode only at a time is investigated with this method,
it can also be applied to multiple-degree-of-freedom problems, but, without a
fluid-structure interaction, phenomena like traditional (for fixed-wing) bending-
torsional coupling cannot be modeled, as vibration frequencies are assumed
constant. However, an energetic approach could also be profitably exploited
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in true fluid-structure interaction: for aircraft aeroservoelasticity, E. Nissim
(ref. [17]) expressed the work per cycle done by the aeroelastic system in
terms of eigenvalues and generalized energy modal coordinates. This proved
to be effective for stability analysis and control implementation, as the effects
of unstable motions (and their relative weight) could be separated from stable
motions.
LINSUB may be used for unsteady loads computation; the inputs to the algo-
rithm are non-dimensional and they are gap-to-chord ratio and stagger angle
of the cascade, Mach number, reduced frequency and inter-blade phase angle;
these values are generally different for each m-th spanwise section:

[C(τm, γm, Mm, λm, σ)] =

[
fy

ρ V c ḣ

fy
ρ V 2 c α

mz

ρ V c2 ḣ

mz

ρ V 2 c2 α

]
=

1

2

[
CLḣ CLα
CMḣ

CMα

]
(4.1)

Assuming a given sinusoidal motion, it is possible to calculate the energy input
per cycle due to each force Fg acting on its work-conjugate displacement xg :

W =

ˆ

T

Fg dxg =

2π
ωˆ

0

Fg(t) ẋg(t) dt (4.2)

For aerodynamic loads acting on the structure, it is convenient to separate
dimensional terms and use non-dimensional coefficients:

W =
1

2
ρ V 2 c2 ∆r Cw aerodynamicwork per cycle (4.3)

Using, for example, plunge h and pitch α degrees of freedom of the typical
two-dimensional approach, (with load coefficients given by any possible method,
including CFD simulation) it is possible to define the Aerodynamic Damping,
positive for stable motion:

Ξh = − Cw
π h̄2

Ξα = − Cw
π ᾱ2

(4.4)

which is thus a normalization of the aerodynamic work per cycle for a given non-
dimensional displacement amplitude (e.g. h̄ , ᾱ ). The other non-dimensional
quantities can easily be explicated:
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Cw =

2πˆ

0

[Re{CL(t′)}Re{Cḣ(t
′)}+Re{CM(t′)}Re{Cα̇(t′)}] dt′ (4.5)

t′ = ω t x true pitch axis (chord fraction from leading edge) (4.6)

LINSUB
α = −θ

h = y + x c θ
StandardConfigurations (4.7)

θ(t) = θ̄ exp(j ω t+ j ϕθ) (4.8)

y(t) = ȳ c exp(j ω t+ j ϕy) (4.9)

CL(t′) = CLḣ j λ [ȳ exp(j t′+ j ϕy) +x θ̄ exp(j t′+ j ϕθ)]−CLα θ̄ exp(j t′+ j ϕθ)
(4.10)

CM(t′) = CMḣ
j λ [ȳ exp(j t′+j ϕy)+x θ̄ exp(j t′+j ϕθ)]−CMα θ̄ exp(j t′+j ϕθ)

(4.11)

Cḣ(t
′) = jȳ exp(j t′ + j ϕy) + j x θ̄ exp(j t′ + j ϕθ) (4.12)

Cα̇(t′) = −j θ̄ exp(j t′ + j ϕθ) (4.13)
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4.1.1 Examples of aerodynamic damping computation with
LINSUB for Standard Configurations

The report by A. Bölcs and T.H. Fransson, Aeroelasticity in Turbomachines
Comparison of Theoretical and Experimental Cascade Results (ref. [14]), re-
views many aerodynamic models available for turbomachinery aeroelasticity
(including LINSUB) and it is a very large database of results of the different
methods applied to unsteady flow calculation, compared with experimental re-
sults. Standard Configurations feature given flow, cascade geometry data and
structural motion; for example SC1 comprises all data that are necessary to
run LINSUB and perform an aerodynamic work calculation (for pitching mode
in this case). Some information (dimensional frequency, vibration amplitude,
true angle of attack, incidence...) has not been used, as it is not required by
linearized non-dimensional analysis.

Figure 4.1: Example of cascade data and aerodynamic damping reported results
for Standard Configuration 1 (ref. [14])
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The comparison between the reported aerodynamic damping computed with
LINSUB and the same computed in this work validates LINSUB (written in
Matlab code) and thus the aerodynamic model for subsequent flutter calcula-
tion (the error is due to reported graph digitalization):

Figure 4.2: Aerodynamic damping vs. IBPA for SC1, computed results and
reported data from [14]

Machnumber M 0.18
Stagger γ 55°

Gap− to− chord ratio τ 0.75
pitch axis chordwise location x 0.5

reduced frequency λ 0.244

Table 4.1: Data for SC1, torsional mode (ref. [14])

The vaguely sinusoidal law of the aerodynamic damping as a function of IBPA
is no mere chance, as it is indeed due to the predominance of the first harmonic
in the Fourier series of the phase angle (described in Aeroelastic Formulations).
This simple example also allows to appreciate that negative aerodynamic damp-
ing (and thus flutter instability) may occur for some IBPA values (associated
to forward travelling waves) even if torsional degree per freedom only has been
investigated. Indeed, since Whitehead’s first work publication, torsion has al-
ways proved to be a potentially unstable motion in turbomachines, even when
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using a linearized flat-blade model. For bending the situation is more complex,
as again Whitehead (ref. [44]) showed that bending flutter is possible, but it
cannot be predicted unless finite flow deflection effects are taken into account
in the model (both with unstalled and stalled flow).

Another example which has been exploited to validate LINSUB is Standard
Configuration 5, in which aerodynamic damping is computed for a given phase
angle at different reduced frequencies (pitching mode). It can be appreciated
that aerodynamic damping (and thus stability) tends to increase (as it usually
happens in other testcases as well) along with the reduced frequency: tur-
bomachines (just like aircraft) typically sustain flutter at rather low reduced
frequencies.

Figure 4.3: Aerodynamic damping vs. reduced frequency for SC5, computed
results and reported data from [14]

Machnumber M 0.5
Stagger γ 59.3°

Gap− to− chord ratio τ 0.95
pitch axis chordwise location x 0.5

IBPA σ 180°

Table 4.2: Data for SC5, torsional mode (ref. [14])

68



Chapter 4 Subsection 4.1.1

4.1.1.1 Note on reference quantities

As it has been seen, LINSUB computes non-dimensional coefficient derivatives
with some reference quantities that are not standard or very practical in some
situations. Lift and moment, and similarly plunge and pitch displacements,
are assumed to take effect at the leading edge with rotations that are positive
anti-clockwise (pitch down); in addition plunge derivatives are normalized with
plunge speed (rather than displacement), which is not convenient when the
aeroelastic model is modal-based and eigenvalues need to be computed. Thus,
for generic pitch axis x, LINSUB output [C] may be converted into a more
traditional (non-dimensional) aerodynamic loads matrix with pitch-up-positive
rotation:

[Ham] =

[
CLy CLθ
CMy CMθ

]
= 2

[
1 0
x −1

]
[C]

[
jλ 0
0 1

] [
1 x
0 −1

]
(4.14)
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Chapter 5

Finite Element structural models

5.1 Rotational effects and centrifugal load pre-
stiffening

Rotating structures like turbomachine blades are loaded in steady conditions by
a centrifugal force which gives rise to a high static stress σs in radial direction
r :

σs(r) =
ρs Ω2

2
(r2
t − r2) (5.1)

where Ω is the rotational speed, ρs is the construction material density and
rt is the tip radius. The effects due to rotation are not only a critical matter for
fatigue analysis and part life assessment, but they also modify the structural be-
haviour (specifically eigenfrequencies and thus modal stiffness) of the blade on
which aeroelastic loads act as a perturbation of the trimmed conditions. Using
a linearized approach with a beam-model the equation for bending mode may
be found analytically (reported for example in Bisplinghoff’s Aeroelasticity):

EJ wIV − mΩ2

2
(r2
t − r2)w′′ +mΩ2r w′ −mω2w = 0 (5.2)

where w(r) is the spanwise bending translational displacement, ω is the eigen-
frequency, EJ and m are the sectional structural properties.
In order to correctly model the structural behaviour of blades of generic geom-
etry and construction material, a Finite Element Method may be employed to
characterize the structure using the output of a modal analysis. Pre-stiffening
due to centrifugal load is usually the dominant effect in steady conditions and
it is easily implemented in typical FE codes by enforcing a given rotational
speed to the structure about a spin axis and thus generating the required force
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field. However, it must be mentioned that the complete dynamic problem
comprises different additional terms due to displacements occurring in rotating
coordinates:

{x} = {x0}+ [R] {∆x̄0}+ [R] [∆R̄] (r̄ + ū+ ∆ū) (5.3)

where the position {x} of each structural point is expressed in fixed coordi-
nates using a moving reference frame: the origin is located in {x0} and the
rotation matrix is [R] . Perturbations occur both as a variation of the loca-
tion {∆x̄0} and orientation [∆R̄] of the moving frame (written in its own
unperturbed coordinates, hence pre-multiplied by [R] ) and as relative struc-
tural displacement. Thus, in the moving reference, the position is given by
static location r̄ and displacement, which is separated into a trimmed (steady
conditions) contribution ū and a perturbation contribution ∆ū . This leads to
the dynamic equations:

[Ms] {q̈}+ ([Cs] + [CC ]) {q̇}+ ([Ks] + [KL] + [KC ] + [KG]) {q} = {P (t)} (5.4)

where rotational effects have been added to the static structural problem [Ms] {q̈}+
[Cs] {q̇}+[Ks] {q} = {P (t)} : in the most generic case, there are pseudo-elastic
terms due to centrifugal force ( [KC ] ), pre-strain ( [KL] ) and geometrical non-
linear interactions ( [KG] , a.k.a. differential stiffness). Gyroscopic effects due to
Coriolis’ force yield a fictitious damping matrix ( [CC ] ), which is not symmetric
and actually does not dissipate energy. Complete and detailed structural anal-
ysis (including FE modeling) comprehensive of all these effects may be found
in ref. [19], [20] and [45].
ABAQUS and NASTRAN solvers allow to perform modal analysis in which
the structure is pre-stiffened by a non-linear interaction between the centrifu-
gal load (in steady rotational conditions) and the generic out-of-plane displace-
ment. NASTRAN presents two possibilities to compute the differential stiffness
matrix; for practical applications the results are very similar in both methods
and there is no significant difference in the implementation, unless large dis-
placements or anyway important non-linearities occur. The traditional normal
modes analysis (SOL103) may be run with a static subcase that, before the
eigenvalues computation, produces the additional stiffness term by lineariza-
tion of the virtual work in which second-order displacements are included as
work-conjugate of the initial stress (computed with a linear analysis). This
is exactly the same method which is employed in linear buckling (SOL105).
Alternatively it is possible to run a completely non-linear analysis (SOL106)
in which all non-linear effects may be accounted for in static conditions and
include an eigenvalue extraction using the stiffness matrix computed at the
completion of the final load step.
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5.1.1 Example of FEM modal analysis of a rotating blade

The problem under investigation is a simple cantilevered blade which is stud-
ied at different rotational speeds to yield the Campbell diagram (eigenfrequen-
cies dependant of rotational speed). Both NASTRAN SOL103 and SOL106
have been used in addition to ABAQUS. Results have been compared with
those found in Zucchi’s thesis (ref. [19]), who thoroughly analyzed the dy-
namic behaviour of rotating blades, including gyroscopic and spin softening
effects, and used different finite element types (shells and bricks with under-
integration of element matrix). Presently all these aspects cannot be controlled
in NASTRAN-solved modal analysis (though for non-linear frequency response
analysis gyroscopic effects may be included); Rotor Dynamics allows to ac-
count for all rotational effects but it is only applied to beam-model rotors and
rigid disks. Given the typical geometry of blades and the lack of possibility of
under-integration, shell elements are favored, but it is necessary to introduce
a spatial shell-thickness law for generic blade airfoil; this is possible thanks to
a modern pre-processor like Patran, but it gives rise to possible errors due to
geometrical discretization.

Figure 5.1: Geometry of rotating blade example (ref. [19])
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a 0.305m
b 0.305m
Ry 0.61m
h 0.00305m

constructionmaterial :
Y oungmodulusEs 206.01GPa
shearmodulusGs 0.76518GPa
material density ρs 7850 kg/m3

mesh 8× 8CQUAD4

Table 5.1: Data of rotating blade example (ref. [19])

Figure 5.2: Campbell diagram (eigenfrequencies vs. rotational speed) for a ro-
tating blade: comparison between computed results (Nastran SOL103, SOL106
and Abaqus) and reported data (ref. [19])
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Figure 5.3: Rotating blade example, mode 1 computed by Nastran, 85.137 Hz
at 0 RPM

Figure 5.4: Rotating blade example, mode 2 computed by Nastran, 138.72 Hz
at 0 RPM
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Figure 5.5: Rotating blade example, mode 3 computed by Nastran, 250.48 Hz
at 0 RPM

Figure 5.6: Rotating blade example, mode 4 computed by Nastran, 346.54 Hz
at 0 RPM
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Figure 5.7: Rotating blade example, mode 5 computed by Nastran, 384.19 Hz
at 0 RPM

Figure 5.8: Rotating blade example, mode 1 computed by Abaqus, 84.952 Hz
at 764 RPM
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Figure 5.9: Rotating blade example, mode 2 computed by Abaqus, 136.40 Hz
at 764 RPM

Figure 5.10: Rotating blade example, mode 3 computed by Abaqus, 248.74 Hz
at 764 RPM
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Figure 5.11: Rotating blade example, mode 4 computed by Abaqus, 338.16 Hz
at 764 RPM

Figure 5.12: Rotating blade example, mode 5 computed by Abaqus, 379.69 Hz
at 764 RPM
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5.2 Comparison between shell and solid elements
for blade modeling

As anticipated, NASTRAN does not allow to control the integration points of
the element properties. Under-integration could be exploited to counter in-
creased numerical stiffness due to stretched geometry of solid elements near
leading edge or the trailing edge. However in some situations a proper dis-
cretization of the structure leads to adequate results, even if the employed
element type is solid and some elements do not feature optimal geometric prop-
erties. In order to prove this, modal analysis of a non-rotating blade has been
performed using both shell elements CQUAD4 (with variable thickness from
shell to shell to match true geometry) and solid elements CHEXA.
The blade is unconstrained (meaning that the first six eigenfrequencies will
be null); the airfoil is a double parabolic-arc with no camber and maximum
thickness at midchord:

span 0.1m
chord 0.025m

thickness 0.0025m

constructionmaterial : Ti alloy
Y oungmodulusEs 106GPa
Poisson ratio ν 0.34

material density ρs 4450 kg/m3

mesh 1 32× 8CQUAD4
mesh 2 40× 20× 4CHEXA

Table 5.2: Data of double parabolic-arc blade using shell and solid elements

Given the wedge-shape of the edges, these have been trimmed in solid analysis,
so that the blunt faces could be correctly meshed with CHEXA: thus in this
case the real chord is 0.0233 m.
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Figure 5.13: Double parabolic-arc blade solid mesh

Figure 5.14: Double parabolic-arc blade mode 1, 1038.8 Hz (solid mesh)

Figure 5.15: Double parabolic-arc blade mode 2, 2855.7 Hz (solid mesh)
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Figure 5.16: Double parabolic-arc blade mode 3, 3207.8 Hz (solid mesh)

[Hz] shell solid
1 flap 1.033207E + 03 1.038844E + 03
2 flap 2.838847E + 03 2.855710E + 03

1 torsion 3.048122E + 03 3.207802E + 03
3 flap 5.531682E + 03 5.572694E + 03

2 torsion 6.144578E + 03 6.489520E + 03
1 lag 8.907708E + 03 8.611533E + 03

4 flap 9.050846E + 03 9.147716E + 03
3 torsion 9.331367E + 03 9.915068E + 03

Table 5.3: Eigenfrequencies (Hz) of double parabolic-arc blade using shell and
solid elements

This proves that at least for the lower modes and for beam-like blades the solid
element structural approach is feasible.
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5.3 Cyclic symmetry and full rotor analysis

In order to evaluate differences between the cantilevered blade model and the
complete wheel FEM model, pre-stiffened modal analysis of a simple rotor has
been performed. The blade is the same parabolic-arc of the precedent case with
shell element model only and here it has been constrained and loaded with cen-
trifugal force. A coarse mesh ( 16 × 4 shell elements) has been employed as
well and the latter model has been used as a starting point to build both a disk
sector to perform cyclic symmetry analysis and the full rotor (which is eas-
ily achieved in Patran). The hub is a simple shell-model too with a constant
thickness of 2.5 mm. The rotor has been assumed to be composed of eight
blades with zero stagger angle. Cyclic symmetry modal analysis in Nastran
is performed through SOL115, which is simply the extension of SOL103 that
implements cyclic boundaries. Presently, there is no non-linear cyclic solution
available. Rotational symmetry is of interest for rotors and the implementa-
tion in Nastran consists of a finite Fourier series which is exactly the same
that has been seen in aeroelastic formulations, particularly the standing mode
formulation.

number of blades 8
span 0.1m
chord 0.025m

blade thickness 0.0025m
stagger 0°

hub− tip ratio 0.5
hub thickness 0.0025m
rotational speed 3000RPM

constructionmaterial : Ti alloy
Y oungmodulusEs 106GPa
Poisson ratio ν 0.34

material density ρs 4450 kg/m3

blademesh 16× 4CQUAD4
blade finemesh 32× 8CQUAD4

hubmesh 10× 4CQUAD4 per sector

Table 5.4: Data of double-parabolic-arc-bladed rotor for comparison between
single blade model, cyclic symmetry and full rotor
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Figure 5.17: Double-parabolic-arc-bladed full rotor model, shell mesh

[Hz] blade fine blade coarse disk sector (cyclic) full rotor
1 flap 1.77579E + 02 1.75360E + 02 1.72264E + 02 1.72256E + 02
2 flap 1.04378E + 03 1.03214E + 03 1.01368E + 03 1.01362E + 03

→ 1 torsion 1.57247E + 03 1.42481E + 03 1.41873E + 03 1.41847E + 03
→ 1 lag 1.53463E + 03 1.63999E + 03 1.47569E + 03 1.47560E + 03

3 flap 2.87550E + 03 2.86078E + 03 2.81148E + 03 2.81133E + 03
2 torsion 4.74561E + 03 4.28766E + 03 4.26955E + 03 4.26900E + 03

4 flap 5.56971E + 03 5.59205E + 03 5.50176E + 03 5.50144E + 03
3 torsion 7.99741E + 03 7.19808E + 03 7.16876E + 03 7.16787E + 03

Table 5.5: Eigenfrequencies (Hz) of double-parabolic-arc-bladed rotor, compar-
ison between single blade model (fine and coarse mesh), cyclic symmetry and
full rotor

By watching the results of the different analysis, a peculiar aspect may be
noted: the finer mesh does not yield lower eigenfrequencies, as it could be
expected due the higher number of degrees of freedom and thus decreased model
stiffness. This is due to geometrical discretization which is performed by Patran
to assign shell properties to the given mesh: element thickness is assumed to
be constant and the theoretical possibility of defining different thickness at
the nodes is not exploited. Thus, the automatic thickness distribution (from

84



Chapter 5 Subsection 5.3.0

element to element) in the case of the coarse mesh leads to a a less structurally-
efficient material distribution and indeed true maximum thickness is slightly
lower (2.34375 mm) than in the finer mesh case (2.46094 mm). The effect shows
some relevance in the torsional mode, but the error is within 10%. Nonetheless,
this proves that FEM modeling (including geometrical discretization) may be
an issue with complex-shaped blades. Significant discrepancies may also be
seen for the lag-bending mode, but this motion is usually of little interest in
aeroelasticity as it occurs in drag-direction. This is also the only eigenfrequency
which shows some change between blade and whole-rotor assembly: all the
others are practically the same due to the stiffness of the rotor and of the
constraint (more realistic models of complex assemblies may not be reducible
to the cantilevered blade). Cyclic symmetry analysis and whole rotor analysis
yield perfectly equal results, confirming the efficiency and exactness of the
cyclic truncation. The whole-rotor assembly model is clearly necessary when
not only disk behaviour is required, but blades are also mistuned. In this tuned
example, Nastran has simply found eight nearly-coincident eigenfrequencies for
each of the single blade eigenfrequency. The modal shapes are associated to
blades that are activated one at a time or, in some cases, displacements of
different blades interact in a manner which resembles the standing modes of
the aeroelastic formulations, but actually this is not very realistic due to the
fact that the whole rotor numerical model is never perfectly cyclic-symmetric.
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Figure 5.18: Double-parabolic-arc-bladed full rotor mode 1 (flap-bending),
172.26 Hz at 3000 RPM

Figure 5.19: Double-parabolic-arc-bladed full rotor mode 19 (torsion), 1418.5
Hz at 3000 RPM
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Figure 5.20: Double-parabolic-arc-bladed cyclic disk sector mode 2 (flap-
bending), 1013.7 Hz at 3000 RPM

Figure 5.21: Double-parabolic-arc cantilevered blade (fine mesh) mode 3 (lag-
bending), 1534.6 Hz at 3000 RPM
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5.3.1 Nastran code for pre-stiffened modal analysis and
cyclic symmetry

SOL 106
TIME 600
CEND
SUBCASE 1
NLPARM = 1

METHOD = 1
SPC = 1
LOAD = 1
DISPLACEMENT(SORT1,REAL)=ALL

BEGIN BULK
PARAM,GRDPNT,0
PARAM POST −1
PARAM AUTOSPC NO
PARAM COUPMASS 1
PARAM LGDISP 1
PARAM PRTMAXIM YES
NLPARM 1 10 AUTO 10 25 UPW

NO 1.−4 .001 1.−4 PARAM NMLOOP 1
EIGRL 1 50 0

MASS
.
.
.
SPC1 1 123456 17 34 51 68 85
$ ARTIFICIAL NODE THROUGH WHICH ROTATION VECTOR ACTS
GRID 1086 0 . 0 . −.1

123456
RFORCE 1 1086 1 50 . 0 . 0 . 1 .

2
$ Referenced Coordinate Frames
CORD2C 1 0 . 0 . −.1 0 . 1 .

−.1 0 . 0 . . 9
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SOL 115
CEND
SPC = 1
SET 1000 = 1

SET 1 = 0
HARMONICS = 1
NOUTPUT = 1000

SUBCASE 1
LOAD = 1
STRESS(SORT1,REAL,VONMISES, BILIN)=ALL

SUBCASE 2
STATSUB(PREL)=1

METHOD = 1
VECTOR(SORT1,REAL,PRINT)=ALL

BEGIN BULK
EIGRL 1 12 0

CYSYM,8 ,ROT
CYJOIN, 1 ,T2,91 ,97 ,103 ,109 ,115
CYJOIN, 2 ,T2,120 ,119 ,118 ,117 ,116

PARAM POST −1
PARAM COUPMASS 1
PARAM PRTMAXIM YES
.
.
.
SPC1 1 123 34 68 93 94 95 96

97 105 106 107 108 109 117 119
122 124 127 129 132 134 137 139

LOADCYH, 1 , 1 . , ,RFORCE, 1 . , 2
GRID 141 0 . 0 . −.1

123456
RFORCE 2 141 1 50 . 0 . 0 . 1 .

2
CORD2C 1 0 . 0 . −.1 0 . 1 .

−.1 0 . 0 . . 9
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Chapter 6

Aeroelastic eigenvalues calculation

6.1 Aeroelastic eigenvalues with blade modal ap-
proach and strip theory

Flutter analysis using a fluid-structure interaction is accomplished by com-
puting aeroelastic eigenvalues. The method is practically the same which is
typically employed for fixed-wing aircraft, with the main difference that aero-
dynamic loads (and thus eigenvalues) need to be computed for different phase
angles. The approach is thus to use a travelling wave formulation which ap-
plies to a single equivalent blade and this is rigorous for tuned rotors with
structurally uncoupled blades. Other than that, the only additional peculiar
aspect is given by rotation, which modifies the structural matrices (discrete
FEM results may easily be splined for generic rotational speed) and yields
different sectional flow velocity (and thus Mach number and reduced frequen-
cies). To correctly model aerodynamic loads dependant of reduced frequency,
a “p-k” iterative method has been employed (as described in NASTRAN Man-
ual of Aeroelasticity), although a state-space approach is possible, provided a
time-model of aerodynamic loads.
Structural modal matrices, function of rotational speed Ω [rad/s] (mass nor-
malization):

[m] =

 1 0
. . .

0 1


nm,nm

[k(Ω)]nm,nm =

 ω2
01

ω2
02

. . .

 (6.1)
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sectional plunge h normal to chord; sectional pitch α positive counterclockwise
about leading edge, [U ] modal shape matrix:

m−th sectionalmodalmatrix
[
h
α

]
m

= [Um]2, nm qnm,1 nmnumber of modes

(6.2)

Mm =
Vm√

1.4× 287 J
kgK

T
sectionalMachnumber (6.3)

M̄1 incoming flowMachnumber Vin = M̄1

√
1.4× 287

J

kg K
T (6.4)

β̄1 incoming flow angle, positive in direction of rotation fromaxis

Vm(Ω, zm) =
√
V 2
in + (Ω zm)2 − 2Vin (Ω zm) sin(β1) sectional flow velocity

(6.5)

¯̄βm(Ω, zm) = −γm+arctan(
Ω zm

Vin cos(β1)
−tan(β1)) steady sectional angle of attack

(6.6)
Using LINSUB output and the FEM-supplied modes it is possible to express
the aeroelastic problem in terms of equivalent mass, damping and stiffness and
thus compute the eigenvalues sk for flutter (stability) analysis with an iterative
( s0

k, s
1
k, ..., s

it
k ) method to match the imaginary part to reduced frequency :

[Ham(τm, γm, Mm, λm, σ)] =

[
fy

ρ V c ḣ

fy
ρ V 2 c α

mz
ρ V c2 ḣ

mz
ρ V 2 c2 α

]
(6.7)

[KAm ]2,2 = ρ V 2

[
Im{Ham1,1}λ −Re{Ham1,2} c
Im{Ham2,1}λ c −Re{Ham2,2} c2

]

[CAm ]2,2 = ρ V c

[
−Re{Ham1,1}

−Im{Ham1,2} c
λ

−Re{Ham2,1} c
−Im{Ham2,2} c

2

λ

] (6.8)

[m] q̈ + [k(Ω)] q = −
M∑
m=1

[Um]T [KAm ] [Um] q∆rm −
M∑
m=1

[Um]T [CAm ] [Um] q̇∆rm

(6.9)
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[AAE] =

[
[0]nm,nm [I]nm,nm

−[m]−1[KAE] −[m]−1[CAE]

]
([AAE]− s [I]) q

AE
= 0 (6.10)

k̄ = 1, .., 2nm [C k̄
Am ] = [CA(λk̄m)] [K k̄

Am ] = [KA(λk̄m)] (6.11)

[Ak̄AE] = [AAE(λk̄)] ⇒ sit+1
k̄

p− k iterations : λk̄m =
Im{sit+1

k̄
} cm

Vm
(6.12)

6.1.1 Example of aeroelastic stability analysis using LIN-
SUB for a compressor rotor

LINSUB and the aeroelastic algorithm to compute eigenvalues are written in
MATLAB code; the modal shape matrix (assumed to be practically the same
at all rotational speeds of interest) and structural modal matrices are com-
puted with NASTRAN SOL106. The problem under investigation is given in
NASA/TM—2004-212978 (ref. [13]), in which aeroelastic analysis was per-
formed using linearized Euler’s equations and compared with the results of an-
other linear method. In this report eigenvalues were computed for eight phase
angles only (every 45°) and were not iterated to match the correct reduced
frequency (an assumed frequency was used to compute aerodynamic loads).
Structural data presented some incoherence with aerodynamic data and modal
analysis results differ from those that have been computed (using both Nastran
and Abaqus), probably because of the data issue and the different method
employed: the first two rotating modes computed by Nastran are at 1177.4
Hz and 2123.5 Hz (output by Abaqus is 1177.3 Hz and 2124.7 Hz and higher
modes are very similar to those computed by Nastran as well), while reported
values are 822 Hz and 1882 Hz.
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Figure 6.1: Original blade model for aeroelastic eigenvalue calculation, bending
mode computed by Abaqus, 1177.3 Hz at 16926 RPM

Figure 6.2: Original blade model for aeroelastic eigenvalue calculation, torsional
mode computed by Abaqus, 2124.7 Hz at 16926 RPM
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Thus blade thickness has been adjusted to match the reported eigenfrequencies
and these are eventually used for modal stiffness. The blade is weakly swept
and twisted (both effects have very little effect on eigenfrequencies); sweep is
negligible for effective sectional Mach number, while twist causes a more rele-
vant (but still small) error both in aerodynamic computation (stagger slightly
changes spanwise) and in structural interaction, due to displacement projection
in the local sectional reference frame (NASTRAN RBE3 are used to extrapo-
late plunge and pitch from nodal displacements). Ten spanwise stations and
two modes only (flexural and torsional) are used, as higher eigenfrequencies
are associated to chordal modal shapes that cannot be properly modeled using
LINSUB (in which the 2D section is assumed to be rigid).
Part of the discrepancies in aeroelastic eigenvalues is clearly due to the dif-
ferent structural model, but also because in this work all required inter-blade
phase angles were investigated using the p-k method and usually high positive
or negative phase angles are those associated with noticeable errors between
different aerodynamic models. However, the differences between the the two
reported sets of results and between these and the computed eigenvalues prove
that the problem is complex and that it is not clear yet when some modeling
assumptions are valid or on the contrary when they yield misleading results.

axialMachnumber M̄1 0.495
axial flow angle β̄1 0°
temperature T∞ 301.67K
flow density ρ∞ 0.9461 kg/m3

blade chord c 0.0254m
blade thickness th 0.00026m
hub radius rh 0.0862m
tip radius rt 0.10778m

sweep (aboutmidchord) Λ 1.3°
stagger, hub γ1 41.9°

stagger, tip γM=10 47.06°
number of bladesN 24

constructionmaterial : Ti alloy :
Y oungmodulusEs 110.3GPa
Poisson ratio ν 0.3

material density ρs 4428.785 kg/m3

rotational speedΩ 16926RPM
rotating eigenfrequencies (reported) :

bending
ω01

2π 822Hz
torsion

ω02

2π 1882Hz
FEM mesh 24× 20CQUAD4

Table 6.1: Data for aeroelastic eigenvalue calculation and comparison with ref.
[13]
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Figure 6.3: Aeroelastic critical damping ratio vs. IBPA, torsion and bending,
discrete computed values and continuous splined values

Figure 6.4: Aeroelastic eigenvalues (complex plane) at 16926 RPM and com-
parison with two reported data sets from [13]
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Figure 6.5: Bending aeroelastic eigenvalues (complex plane) at 16926 RPM and
comparison with two reported data sets from [13]

Figure 6.6: Torsional aeroelastic eigenvalues (complex plane) at 16926 RPM
and comparison with two reported data sets from [13]
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IBPA [°] bending torsion
−180 −496.22 + 5399.1i −1332.8 + 11104i
−165 −456.86 + 5414i −1267.7 + 11087i
−150 −412.28 + 5420.2i −1243.6 + 11125i
−135 −364.9 + 5417.2i −1229.8 + 11181i
−120 −316.9 + 5405.7i −1214.5 + 11245i
−105 −270.11 + 5386.4i −1193.4 + 11310i
−90 −226.1 + 5360.6i −1167.4 + 11373i
−75 −186.36 + 5329.1i −1144.1 + 11438i
−60 −152.73 + 5292.9i −1146 + 11530i
−45 −128.34 + 5253i −1095 + 12011i
−30 −119.64 + 5214.7i −564.63 + 11730i
−15 −74.735 + 5150.8i −519.84 + 11610i

0 −146.27 + 5131.9i −469.13 + 11531i
15 −182.22 + 5137.3i −427.54 + 11466i
30 −213.67 + 5156.5i −397.34 + 11410i
45 −242.27 + 5190.2i −379.62 + 11365i
60 −247.71 + 5250.6i −375.17 + 11331i
75 −343.62 + 5385i −384.4 + 11312i
90 −542.93 + 5331.2i −407.04 + 11309i
105 −561.52 + 5293.7i −440.5 + 11330i
120 −566.54 + 5301i −490.14 + 11400i
135 −563.3 + 5323.2i −605.58 + 11517i
150 −550.64 + 5350.4i −760.12 + 11694i
165 −528.06 + 5377i −1063.2 + 11607i

Table 6.2: Aeroelastic eigenvalues computed for different phase angles

Figure 6.7: Nastran blade model for aeroelastic eigenvalue calculation
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Figure 6.8: Corrected blade model for aeroelastic eigenvalue calculation, bend-
ing mode computed by Nastran SOL106, 868.53 Hz at 16926 RPM

Figure 6.9: Corrected blade model for aeroelastic eigenvalue calculation, tor-
sional mode computed by Nastran SOL106, 1824 Hz at 16926 RPM
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Chapter 7

State-space aeroelastic system
models

7.1 Time-domain modeling of complex aerody-
namic loads for blade modal approach and
strip theory

The traditional frequency-domain aerodynamic model leads to an aeroelastic
system which is non-linear w.r.t. the frequency. The aeroelastic eigenvalue cal-
culation thus requires an iterative “p-k” (or similar) algorithm which is complex
and numerically expensive and is not easily made compatible with aeroelastic
control. A modern approach is to obtain a time-domain aerodynamic model
or, equivalently, a rational-polynomial aerodynamic transfer function which is
much more flexible than the frequency-domain model. A part from the fact
that this approach allows to model transient aeroelastic loads, discarding the
sinusoidal motion hypothesis, it also makes possible to describe the problem
as a linear state-space system characterized by eigenvalues that are now easily
computed.
In order to prove the feasibility of this approach, LINSUB forces, for given cas-
cade conditions and phase angle, have been fitted to an expression that exploits
Roger’s parameters (or Padé’s approximants), exactly as it could be done with a
fixed-wing aircraft using a traditional aerodynamic model (like Theodorsen’s).
As anticipated in the aeroelastic formulation chapter, Dugundji and Bundas
were the first to thoroughly study the possibility of a time-domain aeroelastic
model in turbomachinery (usable both for flutter and forced response simula-
tions) and to this purpose they exploited the standing wave formulation, which
proved to be flexible and effective, even for mistuned rotors. In this work a
simpler model has been used to compare the aeroelastic eigenvalues for zero-
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IBPA (thus using a travelling wave approach) of the state-space model and of
the p-k model of the problem presented in the chapter of Aeroelastic eigenvalue
calculation using LINSUB.
Starting from the virtual work of aerodynamic loads (as computed by LINSUB):

δW = δ
[

h
c

α
]

[Ham(τ, γ, M, λ, σ)]

[
ḣ
V

α

]
ρV 2c2∆r =

= δ
[

h
c

α
]

[Ham]

[
jλ 0
0 1

] [
h
c

α

]
ρV 2c2∆r =

= δ
[
y θ

] [ 1
c

0
0 1

]
[Ta]

T [Ham]

[
jλ 0
0 1

]
[Ta]

[
1
c

0
0 1

] [
y
θ

]
ρV 2c2∆r =

= δ
[
y θ

]
[d]T [H̃am][d]

[
y
θ

]
ρV 2c2∆r (7.1)

( [Ta] is a reference-conversion matrix, e.g. =

[
1 x
0 −1

]
, but here it is an

identity matrix as the definition of modal displacements that have been used
is coherent with LINSUB)

[H̃am]nh, nh = [Ta]
T [Ham]

[
jλ 0
0 1

]
[Ta] =

w [D0] + [D1] jλ+ [D2] (jλ)2 +
[A1]

p1 + jλ
+

[A2]

p2 + jλ
+ · · ·+ [Ana]

pna + jλ
(7.2)

This expression is convenient to approximate as the original Whitehead’s co-
efficients (defined as damping on plunge instead of stiffness) would lead to a
third derivative with Roger’s parameters.
The aeroelastic system may again be modeled with a modal, sectional approach:

[m]nm q̈ + [k]nm q =

=
M∑
m=1

[Um]T [d]T [D0][d][Um](ρV 2c2∆r)m q+
M∑
m=1

[Um]T [d]T [D1][d][Um](ρV c3∆r)m q̇+

+
M∑
m=1

[Um]T [d]T [D2][d][Um](ρc4∆r)m q̈ +
M∑
m=1

[Um]T [d]T {fa}m (ρV 2c2∆r)m

(7.3)
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{fa}m =

(
[A1]

p1 + jλ
+

[A2]

p2 + jλ
+ ...

)
[d][Um]q =

=
[

[I]nh [I] ...
] 

[I]nh
p1+jλ

[I]
p2+jλ

. . .


 [A1]

[A2]
...

 [d][Um]q (7.4)

⇒

[Aa]m = −Vm
cm

 p1[I]
p2[I]

. . .



[Ba]m = Vm
cm

 [A1]
[A2]
...

 [d][Um] [Ca] =
[

[I] [I] ...
]

(7.5)

{
{ẋa}m = [Aa]m {xa}m + [Ba]mq

{fa}m = [Ca] {xa}m
(7.6)

[MAE] = [m]−
∑M

m=1[Um]T [d]T [D2][d][Um](ρc4∆r)m

[CAE] = −
∑M

m=1[Um]T [d]T [D1][d][Um](ρV c3∆r)m

[KAE] = [k]−
∑M

m=1[Um]T [d]T [D0][d][Um](ρV 2c2∆r)m

(7.7)

AAE =
[0]nm [I]nm [0]nm,nh·na·M

−[MAE ]−1[KAE ] −[MAE ]−1[CAE ] [MAE ]−1[Um]T [d]T (ρV 2c2∆r)1[Ca] · · ·
[Ba]1 [0]nh·na·M,nm [Aa]1

... [Aa]2

[Ba]M
. . .


(7.8)

In order to evaluate the parameters, given the theoretical [H̃am(λ)] in a certain
frequency range {λ̄}nk, 1 , the numerical solution of a nonlinear problem needs
to be formulated: a first-order approximation of the (ideal) equality [H id

am(λ)] =
[H̃am(λ)] leads to a Newton-Raphson’s algorithm in which the variations of the
parameters are the unknowns of a linear problem that has to be iterated to
converge to the solution. The variations need to be arranged into an array
{∆c} and the updated parameters modify [H id

am(λ)] at each step. A convenient
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stopping criterion is based on the norm of the relative variations, which is to
be compared to a given tolerance.

[J( ¯{λ},{c0})] {∆c} = {r({λ̄},{c0})} (7.9)

{c} = {∆c}+ {c0} (7.10)

The problem is over-determined, which leads to the symbolic solution: {∆c} =
([J ]T [J ])−1[J ]T {r} and this is actually solved via a more effective algorithm
(such as a QR decomposition) which is employed by Matlab’s ” \ ” command.
It may be convenient to first activate the sparse option of [J ].

residual array {r}2nk nhnh×1 =

=



Re{Ham(λ̄1)1,1 −D01,1 −D11,1j λ̄1 −D21,1(j λ̄1)2 − A11,1

p1+j λ̄1
− A21,1

p2+j λ̄1
− · · · }

Im{Ham(λ̄1)1,1 −D01,1 −D11,1j λ̄1 −D21,1(j λ̄1)2 − A11,1

p1+j λ̄1
− A21,1

p2+j λ̄1
− · · · }

Re{Ham(λ̄2)1,1 −D01,1 −D11,1j λ̄2 −D21,1(j λ̄2)2 − A11,1

p1+j λ̄2
− A21,1

p2+j λ̄2
− · · · }

...
Im{Ham(λ̄nk)1,1 −D01,1 −D11,1j λ̄nk −D21,1(j λ̄nk)

2 − A11,1

p1+j λ̄nk
− A21,1

p2+j λ̄nk
− · · · }

Re{Ham(λ̄1)1,2 −D01,2 −D11,2j λ̄1 −D21,2(j λ̄1)2 − A11,2

p1+j λ̄1
− A21,2

p2+j λ̄1
− · · · }

...
Im{Ham(λ̄nk)2,2 −D02,2 −D12,2j λ̄nk −D22,2(j λ̄nk)

2 − A12,2

p1+j λ̄nk
− A22,2

p2+j λ̄nk
− · · · }


(7.11)

Jacobianmatrix [J ]2nk nhnh×(3nhnh+nanhnh+na) =

=



Re
{

1 j λ̄1 (j λ̄1)2 1
p1+j λ̄1

1
p2+j λ̄1

[0] − A11,1

(p1+j λ̄1)2
− A21,1

(p2+j λ̄1)2
· · ·

}
Im
{

1 j λ̄1 (j λ̄1)2 1
p1+j λ̄1

1
p2+j λ̄1

[0] − A11,1

(p1+j λ̄1)2
− A21,1

(p2+j λ̄1)2
· · ·

}
Re
{

1 j λ̄2 (j λ̄2)2 1
p1+j λ̄2

1
p2+j λ̄2

[0] − A11,1

(p1+j λ̄2)2
− A21,1

(p2+j λ̄2)2
· · ·

}
...

Im
{

1 j λ̄nk (j λ̄nk)
2 1

p1+j λ̄nk

1
p2+j λ̄nk

[0] − A11,1

(p1+j λ̄nk)2
− A21,1

(p2+j λ̄nk)2
· · ·

}
Re
{

[0] 1 j λ̄1 (j λ̄1)2 1
p1+j λ̄1

1
p2+j λ̄1

[0] − A11,2

(p1+j λ̄1)2
− A21,2

(p2+j λ̄1)2
. . .

}
...

Im
{

[0] 1 j λ̄nk (j λ̄nk)
2 1

p1+j λ̄nk

1
p2+j λ̄nk

− A12,2

(p1+j λ̄nk)2
− A22,2

(p2+j λ̄nk)2
· · ·

}


(7.12)
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{∆c}(3nhnh+nanhnh+na)×1 =



∆D01,1

∆D11,1

∆D21,1

∆A11,1

∆A21,1

∆D01,2
...

∆A22,2

∆p1

∆p2
...



(7.13)

Although a simple Gauss-Newton’s algorithm was implemented, it must be no-
ticed that the identification problem may also be solved via a more refined least-
square method such as Levenberg-Marquardt’s algorithm. This is an adaptive
method that switches from a full gradient scheme to fast Gauss-Newton’s al-
gorithm depending on the problem and on the residual yielded by the approx-
imated solution. For complex problems LM’s method is more robust and it
may be implemented through Matlab’s lsqnonlin command by providing it a
function that is comprehensive of the proper residual and Jacobian expressions
as discussed above.
Whatever method is elected, it is important to choose a proper multiplicative
weight factor to force the correct solution at low frequency, especially on those
terms that generate no aerodynamic loads at zero frequency (e.g. H̃am(0)1,1 =
CLh(0) = 0 ). This value greatly affects the identified parameters and therefore
needs to be carefully evaluated by re-running the algorithm until the desired
effect is reasonably achieved and combined with a suitable solution at higher
frequencies. The choice of which terms should be multiplied by the weight factor
is also critical: in this case, it has successfully been applied to the real part only
of the equations (i.e. single rows of both J and r ) at zero-frequency, but it could
also multiply the first non-zero frequency value, to ensure a correct modeling
of the first derivative. Checking that the aerodynamic time-lags p1, p2... stay
positive (and thus stable) is also important, thus it is convenient to decrease the
computed variation ∆p1... at each iteration by a multiplying factor 0 < α ≤ 1 ,
in case this would otherwise result in negative lag.
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7.1.1 Example of time-domain aeroelastic eigenvalue cal-
culation by approximating LINSUB with Roger’s
parameters

The problem under investigation is the same of the aeroelastic eigenvalues

chapter for zero-phase angle; LINSUB output as: [Ham(λ)]

[
jλ 0
0 1

]
has been

identified using two aerodynamic lags for different reduced frequencies with the
other parameters fixed: τ = 1, γ = 45°, M = 0.7, σ = 0° .
Results of eigenvalues calculation and comparison between identified transfer
function and LINSUB force coefficients:

p− k p− k constant cascade state− system
bending −146.27 + j 5131.9 −136.27 + j 5131.4 −136.79 + j 5132
torsion −469.13 + j 11531 −431.35 + j 11517 −428.79 + j 11536

Table 7.1: Aeroelastic eigenvalues for σ = 0° computed with the p-k method
(variable and constant cascade properties) and with the state-space system for
the problem presented in the Aeroelastic eigenvalues calculation chapter (ref.
[13])

Figure 7.1: Lift coefficient due to bending, real and imaginary part, vs. re-
duced frequency, comparison between LINSUB and approximation with iden-
tified Roger’s parameters
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Figure 7.2: Lift coefficient due to torsion, real and imaginary part, vs. re-
duced frequency, comparison between LINSUB and approximation with iden-
tified Roger’s parameters

Figure 7.3: Moment coefficient due to bending, real and imaginary part, vs.
reduced frequency, comparison between LINSUB and approximation with iden-
tified Roger’s parameters
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Figure 7.4: Moment coefficient due to torsion, real and imaginary part, vs. re-
duced frequency, comparison between LINSUB and approximation with iden-
tified Roger’s parameters

These results prove that the two methods are equivalent for flutter calculation
and there is only a small error due to the fact that stagger, Mach number and
gap-to-chord ratio slightly change spanwise, while the identified parameters are
computed for the cascade at approximately mid-span with constant sectional
properties. The implementation is simpler and the computational time is dra-
matically lower for the state-space system, as most of the effort is now focused
on the identification of the transfer function.
However, with this approach complications arise for generic phase angles over
a wide range of reduced frequencies, due to the rather irregular behaviour of
forces in some conditions (for example near acoustic resonance). To deal with
this behaviour, additional terms (specifically sinusoidal) would be necessary, as
Roger’s time lags are not sufficient to model aerodynamic states. In addition,
as it has already been explained, the travelling wave formulation is not conve-
nient for mistuned rotors. This is why Dugundji and Bundas’ approach (using
standing waves) is more general and versatile. However they analytically fit-
ted Whitehead’s coefficients for certain values of reduced frequencies in order
to solve a determined system and the method was applied to torsional flut-
ter only; the numerical approach presented here has been applied to multiple
degrees of freedom at once and for a generic number of data to fit.
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Computational Fluid-Dynamic
analysis

8.1 Aerodynamic damping for assumed structural
mode using CFD

Fluent may be used to perform a steady time-simulation in which the blades
oscillate (for example in plunge) according to a given motion (applied through
a User Defined Function). For small amplitudes of perturbation, when the nu-
merical transient solution is expired and the lift (or moment) output in time
is practically iso-frequential w.r.t. structural vibration, aerodynamic damping
may be computed with the same method that has been shown with LINSUB.
The method is thus a linearization about a steady-state condition which is com-
puted with a non-linear solver (using for example inviscid Euler’s equations).

8.1.1 Aerodynamic damping calculation using Euler’s equa-
tions in Fluent for subsonic Standard Configuration
10

The problem under investigation is the Standard Configuration 10, which rep-
resents a high subsonic and transonic compressor cascade and it has been stud-
ied by many authors using different methods; the website www.rpmturbo.com
presents a comparison of some of the results for this case. Specifically, assumed
bending mode in subsonic flow has been investigated here using an inviscid
simulation and results have been compared with those of the RPMTurbo al-
gorithm, which is one of the most advanced CFD code currently available for
unsteady flows in turbomachinery.
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stagger γ 45°
gap− to− chord ratio τ 1
reduced frequency λ 0.5

chord c 0.1m
pitch axis chordwise location (not used in bending) (x = 0.5, y = 0.05)

non− dimensional airfoil thickness t and camber C :
t(s) = 0.06(2.969 s½ − 1.26 s− 3.516 s2 + 2.843 s3 − 1.036 s4)

0 ≤ s ≤ 1
C(s) = −2.475 + [r2 − (s− 0.5)2]½

r = 2.525

inlet flow angle β̄1 -55°
inletMachnumber M̄1 0.7
inlet total pressure p1T 101300Pa

inlet total temperature T1T 300K
outflow static pressure p2 88000Pa∗

Table 8.1: Standard Configuration 10 data for CFD analysis (ref. [15] and
www.rpmturbo.com)

* the outflow pressure needs to be set in Fluent’s pressure outlet boundary con-
ditions to match the required inflow Mach number; however this value changes
in dependance of the exact computational domain model and flow conditions.
The mesh (built using Gambit) is triangular and there are 60 elements on the
blade and on the projected chord-length of the periodic boundary up-rotor and
down-rotor; the domain is extended by one chord with 46 elements both up-
stream and downstream and the inlet and outlet are meshed with 46 elements,
leading to a total value of 12824 cells in one passage. The mesh is deformed by
structural motion, which is applied to the airfoil (solid wall) through the UDF.
Boundary conditions are pressure inlet, pressure outlet and periodic boundaries
that truncate the cascade in circumferential direction. Simulations have been
performed for eight phase angles (every 45°) and thus different domains with
multiple passages are necessary to rigorously set periodic conditions (specifi-
cally 2, 4 and 8 passages).
The plunge amplitude is 0.1% of the chord (equal to 0.1 mm) and the dimen-
sional frequency is 184.56 Hz; the time step used in Fluent is 5 · 10−5 s. The
average (steady-state) lift coefficient is 0.66239, with minimal discrepancies
(less than 0.5% error) between simulations with different phase angles (and
thus different number of meshed passages). At zero phase angle the unsteady
lift coefficient amplitude is 0.0027; in order to verify the linearization hypoth-
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esis the analysis has been repeated with double and half motion amplitudes,
obtaining 0.00625 and 0.0011088 as lift coefficient amplitudes. The error on
linearity is therefore +15.7% and -17.9%.
In order to ensure that the solver is converging to a solution which is practically
the input signal with different amplitude and phase, a Fast Fourier Transform
analysis has been been performed in Matlab: in steady conditions, the re-
assembled signal from FFT spectrum is characterized by one harmonic with
minimal disturbance (the highest-energy harmonic is less than 2% in amplitude
of the main one) and it matches the output from Fluent (an example of output
has been plotted for σ = 180° ).
For Nt time steps equally spaced:

{fn} =
{

0 1
Nt4t

2
Nt4t · · ·

1
24t

}T
(8.1)

CLn exp(jϕn) =
2

Nt

FFT{CL(t)} (8.2)

C̃L(t) =

Nt/2∑
n=0

[
CLn cos(2π fn t+ ϕn)

]
(8.3)

Figure 8.1: Single blade passage computational domain in Fluent for σ = 0°
computation (SC10)
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Figure 8.2: SC10 unsteady analysis, subsonic bending case, σ = 0°, λ = 0.5 ,
Mach number

Figure 8.3: SC10 unsteady analysis, subsonic bending case, σ = 45°, λ = 0.5 ,
pressure coefficient
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Figure 8.4: SC10 unsteady analysis, subsonic bending case, σ = 180°, λ = 0.5
Fluent output: lift coefficient in time and sinusoidal approximation using FFT

Figure 8.5: SC10 unsteady analysis, subsonic bending case, σ = 180°, λ = 0.5
lift coefficient sinusoidal approximation using FFT and displacement in one
cycle
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Figure 8.6: SC10 unsteady analysis, subsonic bending case, λ = 0.5 aero-
dynamic damping vs. IBPA using LINSUB and Fluent and comparison with
reported data (www.rpmturbo.com)

Even though the output of Fluent is practically iso-frequential w.r.t. the struc-
tural motion, the error on linearity (computed on amplitudes) and the im-
portant discrepancy with LINSUB suggest that non-linear effects are not com-
pletely negligible in this test-case. This is clearly due to high (though subsonic)
Mach number and relatively complex blade shape, which may also require more
careful geometric definition and meshing at the leading edge, especially when
using a deforming mesh. In addition, such small displacements may represent
another computational issue, as it will be discussed in the subsequent chapter.
However, the discrepancies between different methods (or anyway different cal-
culations) reported by many authors (including Hall and rpmturbo.com) prove
the difficulty in finding a definitive solution to unsteady flow in realistic condi-
tions. Indeed different approaches (such as 3D analysis or viscous simulation)
may be required to predict relevant phenomena: reported results on SC10 show
that torsional flutter may be encountered for some phase angles only with a 3D
viscous simulation, while many other methods never yield negative (unstable)
damping.
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8.2 Aerodynamic frequency response identifica-
tion by linearization of CFD model

The traditional unsteady aerodynamic model due to structural motion is ob-
tained as a small, linear perturbation about reference steady-flow conditions
(which, as anticipated, may even comprise important non-linearities such as
shock waves). In order to gain a numerical model of the unsteady loads fre-
quency response, instead of running the CFD solver for individual frequencies,
it is possible to study the transient response to a given input which activates a
wide range of the aerodynamic system eigenfrequencies. For a two-dimensional
airfoil, this is accomplished by moving the boundary conditions according to
a time-step law and performing a Fourier analysis of the input signal (plunge
or pitch motion) and the output forces (lift and moment perturbations about
steady values):

[Ham(jλ)] =

[
CLh CLα
CMh

CMα

]
(8.4)

identification through Fourier analysis of the input and output signals (sub-
tracting steady values of the perturbed system) with time sampling 4t :

[
CLq(jλ)
CMq(jλ)

]
=

FFT{
[
Cq
L(t)− Cq

L∞

Cq
M(t)− Cq

M∞

]
} jω4t+

[
Cq
L∞

Cq
M∞

]
FFT{q(t)− q∞} jω4t+ q∞

(8.5)

structural displacement:

q(t) =


Aq
2

t = t0
Aq
2

[
1− cos[ π

τq
(t− t0)]

]
t0 < t < τq + t0

Aq t > t0

(8.6)

Using these equations it is possible to identify the load transfer matrix with
excellent accuracy, even if the signals are actually transient and not periodic
in time and are affected by numerical error. The theoretical time-step law
is corrected by a sinusoidal term in order to avoid Gibbs’ oscillations in the
discrete Fourier analysis. The sinusoidal correction period τq represents the
fraction of chord which is covered by the convected flow and thus its value
should be chosen in order to ensure the quality of results in a certain range of
reduced frequencies. This transient also needs to be properly time-sampled by
the CFD solver for best accuracy using the Fourier analysis and to ensure the
correct steady value of boundary conditions displacement in mesh updating.

115



Chapter 8 Subsection 8.2.0

For turbomachines, an important complication arises when this method is im-
plemented: if unsteady aerodynamic loads are to be investigated in travelling
wave approach (as it is usually done), simulations need to be performed with
a time-lag in the structural displacement law between different blades. Unlike
the sinusoidal single-frequency motion, a time-lagged multiple-frequency signal
(like a time-step) is associated to phase lags (or IBPAs) that are different for
each frequency. Therefore the identified load transfer function for a given time-
lag would be valid for different phase angles at different reduced frequencies,
making this method a rather unpractical way to linearize the CFD model (in
travelling wave approach). The solution to this issue is to model one blade
passage only using phase-lagged periodic boundary conditions with a Fourier
analysis (as it has been mentioned in the Periodicity and IBPA section), so
that each harmonic may be shifted in time of the required IBPA value.
Moreover in a multiple-frequency simulation the periodic boundary conditions
cannot be rigorously set unless it is possible to implement phase-lagged pe-
riodic boundary conditions. Multiple-passage computational domain cannot
overcome the problem in this case as the required number of blades in a group
vary along with the IBPA and thus with frequency. Therefore, if periodic
boundary conditions available do not feature a phase-lag algorithm (like one
of those mentioned in the Periodicity and IBPA section), it is necessary to
include many blades in a computational domain and accept a circumferential
truncation error due to lag-missing periodicity near boundaries.
One possibility to overcome some of these limitations is to use an influence
coefficient approach instead of the typical (for tuned rotors) travelling waves.
By moving one blade only and recording forces in time on the blade itself and
on the neighbouring blades, it is possible to obtain the aerodynamic influence
coefficients for all the desired reduced frequencies in a very practical and physi-
cal way. However this method is valid for small perturbation only and periodic
boundary conditions are never exact, as repeating cyclic sectors in which one
blade only moves and affects the neighbouring ones (including other sectors)
are unphysical.
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8.2.1 Linearization of 2D Euler’s equations for low sub-
sonic symmetric-airfoil cascade at zero-phase angle
and comparison with LINSUB

An example of linearization in Fluent is here presented. The CFD modeling is
similar to the SC10 case presented earlier for aerodynamic damping calculation,
but the problem is now simpler. The airfoil is NACA0006 and the geometry
and mesh have been carefully built in order to avoid a blunt trailing edge and
corner points at the leading edge. The model is compressible and inviscid
but practically the solution is incompressible as Mach number is about 0.145.
The computational domain comprises 22862 triangular cells. The motion is a
time-step (with sinusoidal correction in an interval of 2π/20000 s ) and different
simulations were performed for plunge and pitch in order to obtain the unsteady
lift and moment coefficients and compare them with LINSUB output.

NACA0006
stagger γ 0°

gap− to− chord ratio τ 1
IBPAσ 0°
chord c 0.1m

pitch axis chordwise location x 0.5
inlet flow angle β̄1 0°

inletMachnumber M̄1 0.145
reference inlet flow velocity V1 50.46m/s

inlet total pressure p1T 101300Pa
inlet total temperature T1T 300K
outflow static pressure p2 99870Pa

structural motion : time− step
plunge amplitude 1% chord, 0.5% chord

pitch amplitude (anti− .c.w.) 0.01, 0.005 rad
simulation time step size 5 · 10−6 s

Table 8.2: Data of low subsonic symmetric-airfoil cascade for CFD linearized
analysis

Even if the problem is low subsonic, the transient simulation output shows
typical oscillations that are associated to compressibility effects and limited
disturbance propagation velocity. Perfectly incompressible simulations do not
feature this oscillatory behaviour due to lack of aerodynamic elasticity and the
transient time to steady conditions is practically the same as the structural dis-
placement transient due to lack of disturbance propagation time lag. Unsteady
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aerodynamic simulation is thus more physical in case of compressible flow and
indeed incompressible solution has led to results that do not match LINSUB
output as well as compressible simulation (at least at relatively high reduced
frequencies).
The choice of displacement amplitude is critical as, even if there are no physical
non-linearities in this problem, relatively large displacement cause an impor-
tant mesh deformation (and loss of symmetry of cells between upper and lower
surface) which may affect the solution. Very small displacements can also lead
to poor results due to numerical error that becomes comparable with the the
physical computed output, especially in steady conditions. Perturbations of
less than 0.1% chord have yielded lower-quality results than relatively larger
displacements. Even so it was possible to obtain an aerodynamic frequency
response that matches LINSUB output over a wide range of reduced frequen-
cies. This simple problem thus proves both the effectiveness of LINSUB, if no
significant non-linear phenomena occur, and the feasibility of linearized CFD
analysis, which is a very useful tool even in complex problems when linearized
potential flow methods are not sufficient.

Figure 8.7: Single blade passage computational domain in Fluent for σ = 0°
computation, low subsonic symmetric-airfoil cascade
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Figure 8.8: Low subsonic symmetric-airfoil cascade, deformed mesh after pitch-
down

Figure 8.9: Low subsonic symmetric-airfoil cascade, static pressure after pitch-
down
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Figure 8.10: Low subsonic symmetric-airfoil cascade, velocity magnitude after
pitch-down

Figure 8.11: Low subsonic symmetric-airfoil cascade, transient simulation, load
coefficient output due to bending and due to torsion

120



Chapter 8 Subsection 8.2.1

Figure 8.12: Lift coefficient due to bending, real and imaginary part, vs. re-
duced frequency, comparison between LINSUB and linearization in Fluent;
simulation step amplitude: 1% , 0.5% chord

Figure 8.13: Moment coefficient due to bending, real and imaginary part, vs.
reduced frequency, comparison between LINSUB and linearization in Fluent;
simulation step amplitude: 1% , 0.5% chord
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Figure 8.14: Lift coefficient due to torsion, real and imaginary part, vs. reduced
frequency, comparison between LINSUB and linearization in Fluent; simulation
step amplitude: 0.01, 0.005 rad

Figure 8.15: Moment coefficient due to torsion, real and imaginary part, vs.
reduced frequency, comparison between LINSUB and linearization in Fluent;
simulation step amplitude: 0.01, 0.005 rad
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8.2.1.1 UDF for Fluent

Two examples of useful UDFs are presented: one is for sinusoidal bending mo-
tion (phase-shifted byσ = 45° ), used for aerodynamic damping computation;
the second is for torsional rotation about a given axis and the time-law is a
step for aerodynamic frequency response identification. UDFs are written in C
code and are compiled by Microsoft Visual Studio C++, in case of Windows
operating system.

#include "udf . h"

DEFINE_GRID_MOTION( plunge1_p45 , domain , dt , time , dtime )
{

Thread ∗ t f = DT_THREAD( dt ) ;
r e a l AMPLITUDE = 0 . 0001 ; /∗ ampl i tude ∗/
r e a l OMEGA = 1159 . 65 ; r e a l PI=3.141592654;
face_t f ;
Node ∗v ;
double law ;

int n ;

SET_DEFORMING_THREAD_FLAG(THREAD_T0( t f ) ) ;

law = AMPLITUDE ∗ ( cos (OMEGA ∗ ( time + dtime )+PI /4)− cos (OMEGA ∗ time+PI
/4) ) ;

begin_f_loop ( f , t f )
{

f_node_loop ( f , t f , n )
{

v = F_NODE( f , t f , n ) ;
i f (NODE_POS_NEED_UPDATE (v ) )

{
NODE_POS_UPDATED(v ) ;
NODE_X(v ) = NODE_X(v ) + 0 . ;
NODE_Y(v ) = NODE_Y(v ) + law ;

}
}

}
end_f_loop ( f , t f ) ;

Message ( "\nTime␣=␣%f , ␣Omega␣=␣%f , ␣y␣ po s i t i o n ␣=␣%f ␣ , ␣Displacement ␣=␣%f , ␣dt=%f ␣
. " , time , OMEGA , NODE_Y(v ) , law , dtime ) ;

}
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#inc lude "udf . h"

DEFINE_GRID_MOTION( pitch_step005 , domain , dt , time , dtime )
{

Thread ∗ t f = DT_THREAD( dt ) ;
r e a l AMPLITUDE = 0 .005 ; /∗ amplitude rad ∗/
r e a l PI=3.141592654;
r e a l tau=2∗PI /20000;
r e a l kq=PI/ tau ;
r e a l t0 =2. ;
r e a l c =0.1 ;
r e a l x0=0.5∗ c ;
r e a l y0=0.0∗ c ;
f l o a t x1 ;
f l o a t y1 ;

face_t f ;
Node ∗v ;
double law ;

i n t n ;
SET_DEFORMING_THREAD_FLAG(THREAD_T0( t f ) ) ;

i f ( ( time>t0 ) && ( time<=(tau+t0 ) ) )
{
law=0.5∗AMPLITUDE∗((1− cos ( kq ∗( time+dtime−t0 ) ) )
− (1− cos ( kq ∗( time−t0 ) ) ) ) ;
}
e l s e

{
law=0;

}
begin_f_loop ( f , t f )
{

f_node_loop ( f , t f , n )
{

v = F_NODE( f , t f , n ) ;
i f (NODE_POS_NEED_UPDATE (v ) )
{

NODE_POS_UPDATED(v ) ;
x1=NODE_X(v ) ;
y1=NODE_Y(v ) ;

NODE_X(v ) = x0 + (x1−x0 ) ∗ cos ( law )−(y1−y0 ) ∗ s i n ( law ) ;
NODE_Y(v ) = y0 + (x1−x0 ) ∗ s i n ( law )+(y1−y0 ) ∗ cos ( law ) ;

}
}

}
end_f_loop ( f , t f ) ;

Message ("\nTime = %f , x po s i t i o n = %f , y po s i t i o n = %f , dy
disp lacement = %f , dt=%f . " , time , NODE_X(v ) , NODE_Y(v ) , NODE_Y(v )
−y0 , dtime ) ;

}
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Conclusions and Future work

The effort of this work has been focused on presenting aeroelastic problems
in turbomachines, specifically flutter, under many aspects. Both theoretical
and numerical approaches, including practical implementation and examples,
have been followed to deal with issues like unsteady aerodynamics, structural
modeling and fluid-structure interaction. The implemented aerodynamic meth-
ods comprise two-dimensional, analytically linearized potential-flow theory and
inviscid computational fluid-dynamics linearized simulation using well-known
softwares. Previously studied theoretical aspects (like aeroelastic formulations)
have been reviewed and slightly extended. In addition, the work of many dif-
ferent authors has been exploited to mention issues and possible solutions of
many more aspects that have not been deepened here.
The computed numerical results prove that linearized unsteady aerodynamic
models are effective and efficient tools to deal with aeroelastic problems, even
if, up to now, there are still very few reported data of true fluid-structure in-
teraction computations. For flutter calculation, LINSUB potential-flow code
has been implemented to rapidly compute aeroelastic eigenvalues using Nastran
for modal analysis and Matlab for fluid-structure interaction (including modern
state-space approach). For more realistic modeling of unsteady flows that may
cause rotor flutter, Fluent-solved Euler’s equations have been used for aerody-
namic work-per-cycle assessment and to obtain a numerical frequency response
of loads acting on blades. When the problem is linear, Fluent results match
LINSUB output, but if significant non-linear phenomena (like shock waves) oc-
cur, the linearized CFD analysis can effectively correct the aerodynamic model
to be used in fluid-structure interaction.
Although the effort has been focused on tuned rotors with multiple (modal)
degrees of freedom per blade, the finite element examples using Nastran and
Abaqus and the extensive theoretical work on aeroelastic formulation have laid
the foundations of modeling generic aeroelastic problems in turbomachines, in-
cluding mistuned rotors with complex interactions between all possible degrees
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of freedom. The effects and the optimization of mistuning should be deepened
as it has been shown that this phenomenon may be exploited to increase the
aeroelastic stability of the rotor.
Using modern FEM solvers and pre-processors, the structural model can easily
comprise complex shaped blades made of generic construction materials like
composite laminates in order to perform aeroelastic analysis of all kinds of
modern propulsive rotors, including turbofans and open rotors. However, a
more specific finite element code would be appropriate for rotating structures
in order to better simulate all rotational effects (including gyroscopic forces and
spin softening) and overcome the limitations of Nastran and similar softwares.
The linearized potential flow aerodynamic model which has been used here
may be extended to supersonic cascades, three-dimensional problems and finite-
thickness, cambered blades (using a singularity theory). Even without modifi-
cations, for subsonic flows the original LINSUB code can also be exploited to
perform forced response simulations and to model multiple rows interaction. In
addition, time-domain aerodynamic modeling can be studied more extensively
and the starting point is again a linearized method.
Computational fluid-dynamic solution is the most advanced aerodynamic model
for aeroelastic analysis and it should be deepened as transonic and stalled flows
are of great interest in turbomachines and in these complex conditions danger-
ous types of flutter may arise. For this purpose, the linearized approach which
has been presented may be profitably exploited, but for estimation of limit-
cycle oscillations a non-linear method (such as harmonic balance) is required.
The flow model also needs to be carefully chosen as some important phenomena
cannot be investigated but using a viscous simulation, with all its theoretical
and practical complications, but, in many situations, inviscid analysis is more
efficient (by implementing traditional Euler’s equations or non-linear potential
flow theory). Fluid-structure interaction using a CFD code is still a complex
approach which should be deepened as, especially in turbomachines, it has been
employed very seldom so far. However, for computational aeroelastic analysis
in turbomachines the first urgent need is to implement phase-lagged periodic
boundary conditions using the methods that have been mentioned.
In the end it is also worth adverting the possibility of cascade aeroservoelasticity
flutter and vibration control using smart structures in order to decrease the
entity of dynamic stress due to unsteady loads on blades and thus increase
engine service life.
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