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Abstract - In un sistema distribuito il numero di entità che

collaborano per raggiungere un obiettivo comune può crescere in

maniera notevole. In queste situazioni, il turnover degli elementi

può essere elevato, e i requisiti di coordinamento possono diventare

complicati anche da attuare. In questi scenari le soluzioni centraliz-

zate non garantiscono la scalabilità.

A-3 è uno stile architetturale per l'implementazione di sistemi in

cui ci sono grandi volumi di componenti e molta dinamicità tra le

entità.

A3JG è un'implementazione Java dello stile A-3 che mira a fornire

agli sviluppatori un tool che permette la creazione di sistemi self-

adaptive in cui i nodi sono suddividi in gruppi in grado di coordinarsi

da soli. Ho testato A3JG in un ambiente simulato di un ospedale, in

cui il numero delle entità che necessitano di coordinamento è elevato

e la sicurezza e l'e�cienza sono requisiti stringenti.

Abstract - In a distributed system, the number of entities that

work together to achieve a common goal, can grow considerably.

In these situations, element churn can be high, and the coordina-

tion requirements can become too complicated to design. In these

scenarios, centralized solutions can not guarantee scalability.

A-3 is an architectural style for the implementation of systems

with high volume and high dynamism.

A3JG is a Java implementation of the style A-3, which aims to

provide developers with a tool for creating self-adaptive systems

in which the nodes are divided into coordinated groups. I tested

A3JG in a simulated hospital environment, in which the number

of entities that need coordination is high, and safety and e�ciency

requirements are stringent.
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Estratto

Negli ultimi vent'anni si è svolto molto lavoro di ricerca per quanto

riguarda i sistemi distribuiti, in particolare ci si è concentrati sul

rendere questi sistemi in grado di rispondere ai cambiamenti, che

avvengono nell'ambiente in cui operano, in modo automatico. Si

vogliono quindi sistemi in grado di adattarsi autonomamente, rispet-

tando comunque i requisiti con cui sono stati implementati.

Si possono identi�care 3 fasi in questa lunga ricerca: la prima

dal 1991 al 2000, l'architettura software è usato come uno stru-

mento nella fase di progettazione per i sistemi che hanno bisogno

di essere adattabili; la seconda dal 2001 al 2008, ha visto l'utilizzo

di un'architettura software per sistemi auto-adattivi; l'ultima a par-

tire dal 2009 �no ad oggi, vi è una continua ricerca sull'architettura

software.

I contributi collaborativi di questa tesi si collocano in quest'ultima

fase, in particola si è concetrata sullo studio di A-3, uno stile ar-

chitetturale innovativo per la realizzazione di sistemi distribuiti di

elevato volume e altamente volatili. A-3 permette di gestire sistemi

in cui le entità in gioco sono molteplici e in cui anche il dinamismo

di questi partecipanti è molto elevato.

Il concetto principale di questa soluzione è il gruppo, un'astrazione

per organizzare un'applicazione in sezioni semi indipendenti, of-

frendo una visione unica e coerente di tali aggregati, e coordinare le

diverse entità. In ogni gruppo, è presente sempre un nodo (super-

visor) che coordina le attività degli altri nodi (follower). La suddi-

visione in gruppi è de�nita liberamente dello sviluppatore che può

anche decidere di aggiungere, rimuovere e modi�care i gruppi anche

mentre il sistema è già al lavoro. In questo modo, le singole entità

possono entrare e uscire liberamente dal sistema, e il problema si

riduce alla più semplice gestione di un gruppo.

I diversi nodi all'interno del gruppo possono comunicare tramite
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messaggi asincroni, in particolare il supervisore può inviare messaggi

in broadcast, multicast e unicast ai sui follower, mentre ogni follower

è in grado solo di mandare messaggi al supervisore, e la comuni-

cazione tra follower non è consentita (o deve essere fuori banda). La

comunicazione tra i gruppi è resa possibile dal fatto che un singolo

nodo può collaborare con più gruppi, si creano così degli intrecci tra

i vari team (di qualsiasi tipo, sia gerarchici che annidati), in parti-

colare un nodo può avere il ruolo di supervisor in un gruppo e di

follower in un altro. Altra caratteristica di A-3 è quella di perme-

ttere un ribilanciamento automatico dei gruppi quando questi sono

troppo grandi o piccoli, tramite operazioni di split e merge, in modo

tale che la suddivisione sia solo a livello del middleware ma non a

livello applicativo.

Data l'importanza del ruolo del supervisore, ogni gruppo è sempre

in grado di sostituirlo non appena questo dovesse lasciare il sistema,

infatti un'elezione viene gestita da tutti i partecipanti in modo tale

da individuare il miglior candidato possibile per succedere al super-

visore. Ogni coordinatore ha la possibilità di fare un backup del

suo stato così quando lascia il gruppo, il suo sostituto è in grado di

recuperare il suo stato interno e ripartire senza una grossa perdita

di tempo.

A3JG è l'implementazione in Java dello stile A-3, ed ne include

tutte le caratteristiche principali, come il concetto di gruppo, di di-

versi ruoli e il tipo di comunicazione. A3JG fornisce allo sviluppatore

alcuni semplici metodi da implementare per sfruttare pienamente lo

stile di A-3, senza spendere più tempo nella progettazione di mid-

dleware.

Utilizzando il middleware JGroups per gestire i gruppi e le comu-

nicazioni, il framework A3JG ha tra i sui metodi anche la funzione

di elezione, che è gia implementata e che consente di superare le

criticità dovute al falure di un supervisore. Inoltre, permette a ogni

viii



supervisore di salvare il suo stato in modo conddiviso nel gruppo,

in modo tale che quando viene sostituito per e�etto dell'elezione,

il nuovo eletto è in grado di recuperare lo stato del lavoro senza

perdite di tempo.

Una delle caratteristiche di A3JG è quella di fornire al designer

del sistema, un metodo di elezione già de�nito, che viene attivato

automaticamente non appena il supervisore lascia il gruppo.

Le performance di A3JG, sono state veri�cate in un ambiente

simulato di un ospedale, dove i requisiti di e�cienza e sicurezza sono

molto stringenti, e in cui i nodi (che corrispondono ognuno a una

persona che entra nell'edi�cio) sono molto dinamici e presentano un

ampio turnover.

Grazie all'uso di A3JG è stato possibile guidare le diverse per-

sone all'interno dell'ospedale in modo e�ciente evitando congestioni

all'interno dei singoli corridoi, e intervenendo in modo tempestivo

anche nel caso in cui ostacoli improvvisi hanno bloccato dei passaggi.

Per avere dati più precisi sulle capacità di A3JG si è passati da

un analisi dello scenario nella sua interezza, a quello del singolo caso

pessimo, ovvero quando tanti utenti raggiungono lo stesso schermo

con la stessa destinazione.

Dall'analisi delle performance si è notato che può rivelarsi molto

utile nei lavori futuri realizzare un sistema di comunicazione appos-

ito, che migliori lo scambio delle informazioni tra i nodi sostituendo

la mappa condivisa con più elementi divisi in base alla funzionalità

dei dati inseriti. Porterebbe bene�ci anche l'inserimento all'interno

del supervisore di un ciclo di controllo MAPE (Monitor, Analyze,

Plan, Execute), ossia un ciclo di controllo composto di quattro fasi

che dal monitoraggio dell'ambiente esterno permette di eseguire de-

cisioni prese dall'analisi dei valori ricavati dall'ambiente. Questo

infatti può contribuire nel migliorare il coordinamento dei singoli

gruppi, fornendo al designer nuovi metodi già implementati e solo
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da estendere, con l'avvertenza di non rendere tra loro dipendenti i

vari cicli, evitndo così che il rallentamento del lavoro di un gruppo

non causi un rallentamento genereale del sistema.
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1 Introduction

The use of distributed systems to achieve goals that are common

between the entity of the network is now a common use practice,

and this system are often required to be self-adaptive, so also the

research is now focused on this �eld.

These applications can have di�erent complexities, and their en-

tities must be properly coordinated to reach the goal. Coordination

can be di�cult to reach when the distributed systems are high vol-

ume and highly volatile, and when they need to adapt to frequent

changes in the execution. In particular their participants must be

able to enter or leave the application freely. In centralized solutions,

the increasing number of entities, with the consequent increase of

di�culty in handling their coordination, may create bottlenecks.

There has been a lot of research in the �eld of self-adaptive sys-

tems. It is possible to identify three di�erent phases in literature.

In the �rst phase the software architecture is seen as a tool for the

design of applications in which there is the need of adaptation (for

these phase are described Weaves, C2 [6], Darwin and Regis [7],

and a research about the need of self-adaptation [8]). In the second

phase, software architecture is used to develop self-adaptive systems

(here are proposed the studies of Gomaa and Hussein [9], Garlan et

al. [10], Hawthorne and Perry [11], and Kramer and Magee [12]),

and �nally in the third phase, that is still in progress, the focus is

on the ideation of software architecture styles (the works presented

are by Weynes and Holvoet [13], Georgas et al. [14], and Cheng et
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al. [15]).

Obviously, what we want, is the possibility to build systems that

can be coordinated and managed e�ciently, without introducing

downtime. It's also necessary to guarantee an e�cient and e�ec-

tive exchange of information between participants. Therefore, the

system must have reliable delivery that doesn't cause congestion.

Often, is also required that some messages be read by entities that

have temporarily left the systems. They need to be able to recover

these messages once that they return active.

An approach is to manage these di�culties at the software archi-

tecture level, and the A-3 middleware helps in this [1][2]. In fact,

A-3 is a model for self-organizing distributed systems that have high

volume and are highly volatile distributed, system that can easily

tolerate the continuous turnover of elements and scale to accommo-

date increasing numbers of participants. In particular, in this work

presents A3JG, that is an implementation of A-3.

The main concept of this solution is the group, an abstraction for

organizing an application into semi independent slices, providing

a single and coherent view of these aggregates, and coordinating

the di�erent entities. In each group, there is a supervisor node

that coordinates all the other supervised entities. New components

can be added, removed and reorganized dynamically, and all the

communication is asynchronous. This subdivision of elements in

groups allows the designer to concentrate on coordinating a lower

number of elements that are also less dynamic in their behavior.

Each group is able to manage a shared state that, in particular,

helps its components to recover the internal coordination without

downtime. The overall coordination is achieved by allowing nodes

to participate in more than one group at a time, with di�erent roles,

so they can pass information from one group to another.

A3JG is a Java-based middleware that I've implemented to sup-
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port A-3. It includes all the major characteristics of A-3, including

concepts such as groups, di�erent roles and di�erent types of com-

munication.

This work also shows how A3JG uses JGroups [17], a toolkit

for communication, in order to reach the requirement of a reliable

communication, and to provide several possibilities of messaging

between nodes. In fact, the requirements for message exchanges

include the possibility to send messages in unicast, multicast and

broadcast. Moreover, A3JG also allows us to communicate with

nodes that are temporarily disconnected, saving messages loss of

time by the parties concerned.

The developer is free to implement the system as he/she prefers,

in fact he/she can decide how to group nodes, what information

they have to exchange inside and outside their group. A group can

be created as soon as the system starts to work or can be created

(destroyed) when they are necessary (not more necessary). Nodes

are free to enter or leave the group without restriction (with the

exception of those imposed by the developer of the system), making

it possible to manage a high turnover of entities.

Another feature that A3JG provides ready to use for developers

is the administration of supervisor elections for when supervisors

suddenly leave them group.

In this thesis I present various test in a simulated hospital's sce-

nario. A �rst simulation was done using the Siafu tool [18]. With

this context-simulator I recreated a �oor of a hospital where people

move to reach their destinations through a system of signs managed

by A3JG.

However, other tests were also designed to measure A3JG's per-

formance. These tests analyze in worst case scenario. In particular,

one studies how and how much communication is a�ected in this

situation. The results show that the main problem due is to the size
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of messages which may require more network capacity, but some

solutions are proposed. I also performed a test to understand the

importance of choosing the correct supervisor election strategy. This

is the only time when a group remains without coordination, and

it is therefore good to try to reduce the number of times that is

activated and its total duration.

This thesis is structured in the following way. First, in section

1, I describe the relevant works and the research done in this area

of self-adaptive system. In section 2 I present the A-3 style, with

all its features. In section 3 there is the description of my project,

A3JG, and in section 4 there are the results of the test done with it.
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2 Related Work

2.1 Self-adaptive software

When a software system is used in a distributed context where

changes are the norm, it expects a continuous help by a human

in order to be able to operate in the new condition.

[3] A Self-adaptive software aims to adjust various artifacts and

attributes in response to

• internal changes, in the software system's self, that is, the whole

body of the software, usually implemented in several layers;

• external changes, in the context, that is, everything in the op-

erating environment that a�ects the system's properties and its

behavior.

The response to these changes must be run-time in order to keep

an high level of performance, then the software must have certain

characteristics, grouped under the name of self-* properties.

The self-* properties, introduced by IBM, can be divided into

three hierarchical levels:

1. General level: in this level there is the self-adaptiveness, that is

a global properties that can be divided in some di�erent subset
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(self-managing, self-governing, self-maintenance, self-control, and

self-evaluating).

2. Major level: here are identi�ed four properties which are a

standard de facto, and that are the desired properties for a

system:

• Self-con�guration: when there is a change, such as mod-

i�cation of components, the system must recon�gure and

adapt itself.

• Self-optimization: the system has to do with resources and

requirements by di�erent users, and the goal is manage

them in order to always have the best performance.

• Self-healing: the system must be able to �nd and correct

errors in order to avoid, and prevent, failure.

• Self-protection: is the capability of managing the security

system.

3. Primitive level: the properties of this layer are the awareness,

by the system, of itself (self-awareness) and of the environment

in which it operates (context-awareness).

Figure 1: Self-* properties
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When you go to create a self-adaptive software, there are several

issues to consider, which are requirements that have to be considered

in the development.

The �rst decision to make is whether to create a open or closed

system. In a closed system, there is the consideration that there

isn't in�uence from the external environment, so we work with a

�nite number of elements, and the adaptation has to deal only with

this feature in order to implement the adaptation. Instead, in a open

system, the system doesn't know what elements there are, because

they can enter or leave the work environment, so the system has to

�nd all the features that should in�uence its performance.

Another consideration is how to implement adaptation: it can

be anticipated or un-anticipated. In the �rst, the system knows all

the situations in which has to implement the adaptation, and there

isn't the possibility to add new behaviors (closed adaptive). Instead,

in the other solution, the situations are measured runtime, so the

system can perform new behaviors that are computed by using self-

awareness and environmental context information (open adaptive).

It's also possible manage the adaptation externally: the system is

monitored from outside by an application, and some of its model

are maintained at runtime by the observer, which uses this models

when there is a con�ict in order to resolve problems. Changes are

described as operations on the model and imply changes onto the

underlying system.

Other characteristics that the developer must analyze concern,

for example, the level of autonomy that must have the system, if

fully automatically or with human support. Also costs have to be

evaluated when the system implements the adaptation, because can

be signi�cantly to the performance. Must also be selected the infor-

mation that the system will use to make the decision to do or not

the adaptation, and what needs to be changed in each situation.
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2.2 Software architecture

In the embodiment of a self adaptive system, the architecture is a

key part of the software design and has to satisfy di�erent needs

from di�erent point of view:

• Topology: there can be di�erent interactions among the same

elements, and there is the possibility that new elements enter

the system.

• Behavior: same elements start behaving di�erently, new ele-

ments are injected in the system.

• Control: MAPE elements must be added, and reliability and

robustness must be enforced.

The architecture focuses on the topology of the system and also on

quality attributes (e.g., performance) and on non-functional require-

ments (e.g., cost). It provides an abstract view of a system and its

components are clearly identi�ed. When we de�ne an architecture,

we have to specify also something about components:

• interface (actions that can perform)

• communications and dependencies (how communicate)

• responsibilities (how reacts when it is questioned)

The architecture is not only the structure of the system, but is any

elements of it, and includes the way with which its components are

integrated and how interact.

The main parts of an architecture are the components and the

connectors. A component is an element that is on the system, and
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can have di�erent levels of detail and granularity. Each component

has a role in the architecture in which it is, and encapsulate related

functions and related data.

A connector is always between components, and model the in-

teractions among them. It separate computation from interaction,

and minimize component interdependencies, and �nally it support

the evolution of the software.

Figure 2: Components and connector

Combining components and connector we create the structure of

our architecture, but, in order to avoid bottleneck, is better avoid

too many dependencies, in particular, the components that change

frequently, must have less dependencies.

The structure built by software architecture is complex and needs

more views, and a possibility is the �4+1� view model [4]:

• Logical view: describes architecturally signi�cant elements of

the architecture and the relationships between them

• Process view: describes the concurrency and communications

elements of an architecture
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• Physical view: depicts how the major processes and compo-

nents are mapped on to the applications hardware

• Development view: captures the internal organization of the

software components as held in e.g. a con�guration manage-

ment tool

• Architecture use cases: capture the requirements for the archi-

tecture

There are di�erent architectural styles, for example:

• Object-Oriented: objects, that know each other, are related

through messages and method invocations

• Client-Server: some clients share the server, and connect through

their interfaces. The roles are well-de�ned

• Pipe and Filter: components are independent and connected

through pipes, and act like �lters that transform input data

streams into output data streams

• Blackboard: there is a central data structure that is used by

the components for their work

• Rule-based: is composed by a list of rules and an inference

engine that parses input. It searches the knowledge base for

applicable rules and attempts to resolve the input.

• Mobile-code: components outsource the execution of code, that

is represented as a data.

• Publish-Subscribe: the subscriber is put waiting to receive a

certain message or content, and the publisher produces mes-

sages. The information has a one-way �ow
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• Event-based: independent components produce and receive events

asynchronously, that pass through event buses, so the commu-

nication isn't direct

• Peer-to-Peer: peers are independent entities, each component

in the architecture can act as a client or server for the others,

so the topology can vary arbitrarily and dynamically

• Service-oriented: business functionality is grouped into self con-

tained and reusable units called services, which are autonomous

and discrete units of functionality that are usually accessed re-

motely

2.3 Research

Is possible to identify three di�erent eras in the development of self-

adaptive systems. In the �rst phase, from 1991 to 2000, the software

architecture is used like a design-time tool for systems that need to

be adaptive. The second phase, from 2001 to 2008, has seen the use

of software architecture for self-adaptive systems. Finally, in the

last phase, from 2009 until today, there is an ongoing research on

software architecture.

Now we will see some projects example for each eras.
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2.4 Phase 1

Figure 3: Phase 1 timeline

2.4.1 Weaves

Weaves, solution proposed by Gorlick and Razouk, are network in

which the components (tool fragments) communicate using objects

in a low-overhead transmission. In this interconnected network, the

data objects are the heart of the information exchange. Each tool

fragment is able to perform a single and well-de�ned action, and

is a thread that receives object as input and produces object as

output. The information in the form of objects can be exchanged

thanks to ports that are attached to queues. Each port is used in

order to connect a tool fragment to queues, which in turn bu�er and

synchronize communication among tool fragments. The queues use

a FIFO role for the stream.

The structure of this architectural style is a pipe and �lter, but

with some di�erences.
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Figure 4: Weave's snapshot

• A component in weave can be made by more routine that can-

not be separated

• Weave allows the construction of multigraph in which a tool

fragment can implements a many-to-many communications, so

it can have multiple inputs and outputs

• Tool fragments process object streams (no byte streams), and

each object can encapsulate a large amount of data

• Weave allows the use of di�erent languages for the components

implementation

• Each component execute from hundreds to thousands of in-

struction for each data object

• The same information may be processed simultaneously by

more components

• Connectors are explicitly sized queues

Ports and queues are blind, type indi�erent, two-layer transport ser-

vice. Each object is encapsulated in an envelop when it is in a queue,

so all datum have the same form. Moreover, a components isn't able

to de�ne the source/destination of the objects it receives/sends.
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The fact to be blind, increases the �exibility of interconnectivity.

Since the transport mechanism is indi�erent to the type, it is easy

to ensure greater compatibility between components. Weave, also

allows for location transparency. Specialized ports help solve out-

put/input incompatibilities, so when a data is sent through a port,

its delivery is guaranteed (an object can be or inside a component

or in a queue at the same time). When a queue is full, sends an

error to the sender, which waits and tries again.

Tool fragment is the active agent in weaves, and its lifecycle man-

agement include: start, suspend, resume, sleep and abort. There

are two families of tool fragments: one for the inclusion of foreign

routine, and the other for the one that are implemented as weave

components.

The method that can be used in order to analyze weave are three:

1. Self-metric tool fragments

2. Instruments (specialized tool fragments) inserted in the weav-

ing

3. Observers (separation between data capture and analysis)

2.4.2 C2

The new architectural style proposed by Taylor, Medvidovic and

Anderson, is intended for applications that have special require-

ments for the graphical user interface. The main goal is to allow

a more simple reuse of UI's components, but it also achieves other

goals, for example the possibility to write the components in di�er-

ent languages, a dynamic change of the architecture, and some other.

C2 obtains the bene�ts of MVC in a distributed and heterogeneous

setting.
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This style is a layered network of concurrent components hooked

together by explicit message-based connectors. The basic concept

is to limit the visibility of components, in fact each component in

the hierarchy has only knowledge about what is above it, instead is

unaware of components beneath it. Each component has a thread

of control, but there isn't a shared address space.

Figure 5: A C2 architecture example for an audio-visual stack ma-
nipulation system

A component has a top domain, that contains the noti�cation

to which it must respond, and a bottom domain in which there are

the noti�cation that it send down. In each component there is a

wrapped object, that can have di�erent complexity, and that have

an interface used for the noti�cation.

Components are bound thanks to connector: the top of a compo-

nent may be connected to the bottom of a single connector, instead

the bottom may be connected to the top of a single connector. For

a connector there isn't a limit of numbers of elements that can be

15



attached to it.

The communication is asynchronously, and use noti�cations and

requests as messages. Noti�cations �ow from up to down, and are

sent when there is a mutation in the component. Instead, requests

are sent upward in order to require the perform of an action on the

above components.

C2 brings some bene�ts, like the substrate independence, more-

over C2 can easily support for component substitution, support for

concurrent components and for network-distributed systems, and �-

nally, smart connectors can support �ltering policies.

2.4.3 Darwin and Regis

Regis is a programming environment designed by Magee, Dulay

and Kramer, to support the work on distributed programs, espe-

cially with programs consisting of multiple parallel computational

components that cooperate for a common goal. Regis separates the

description of the program structure from the programming of the

functional components, and gives a support in dynamic program

structures managing the increasing complexity.

The computational components in Regis interact via communi-

cation objects, that are executed in a framework programmed in

Darwin. Darwin is a notation that speci�es the high-level organiza-

tion of computational elements and the interactions between those

elements. Components, in Darwin, are composed by services that

they provide and services that they require.

Regis is able to manage the complexity of components intercon-

nection thanks to Darwin that allows construction from hierarchi-

cally structured con�guration descriptions of the set of component

instances. The component interface is based on the notion of pro-

vided and required interfaces.
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Figure 6: Composite component type

The goal of Darwin is to allow developers to work both with basic

computational components and with other composite components.

The obtained program has a hierarchy of composite components,

which at run-time, is a set of concurrently instances of computa-

tional component. Moreover, hierarchical con�guration allows for a

scalable solution.

Regis provides C++ automatically generated templates for im-

plementing communication and processing components, and this

components incorporate a thread of control. Regis also allows for dy-

namic con�guration, and this means that the system's structure can

change over time through dynamic instantiation (allows dynamic

structures maintaining information in con�guration of the structure

being created) and lazy instantiation (components are not instanti-

ated until another component demand them).

2.4.4 The Need for Self-Adaptation

Oreizy et al. have done a reasoning on self-adaptive software.

Their work starts with a simple example: imagine a �eet of UAVs

(unmanned air vehicles) that is used to disable an enemy �eld. In
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the brie�ng the mission is planned for an air�eld without defense. In

the midway, intelligence �nds that SAMs are defending the airspace,

so the �eet has to replanning autonomously the mission, and this

lead to two groups of UAVs (a SAM-suppression unit and a air�eld

suppression unit). So, during the �ight, there must be an auto-

matic deploy of new SAM recognition algorithms. In this scenario

components are added to �elded and heterogeneous systems with

no downtime, and from this example is de�ned what a self-adaptive

system is and what it needs. The replanning can be autonomous,

with more distributed planners and can require the human pres-

ence in some case, but always required, as assurances, consistency,

correctness and distributed change coordination.

Reasoning on self-adaptive software, the questions to made, are

di�erent:

• what conditions require the adaptation?

• the adaptation should be open or closed?

• what type of autonomy from human is necessary?

• what are the frequencies of adaptation?

• when the adaptation is cost-e�ectiveness?

• what type of information should be used and with what accu-

racy?

The proposed methodology extends from a small adaptation to one

in large, and develops the technology needed in the entire range of

adaptation.
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Figure 7: Adaptation methodology

The upper half represents the life-cycle of adaptive software sys-

tems, and in this loop there can be the human presence. The lower

half focuses on the mechanism employed to change the application

software, and the approach is architecture-based.
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2.5 Phase 2

Figure 8: Phase 2 timeline

2.5.1 Software Product Families

The work of Gomaa and Hussein envolves software product fam-

ily, that is a software architecture that characterizes the similarities

and variations that are allowed among the members of a product

�family�. Their work is part of dynamic recon�guration of software

of the same family. The software con�guration is the process of

adapting the architecture of the product family to create the archi-

tecture of a speci�c product member, and is a solution when there

is an update of the con�guration with the system still working.

The main requirements of the dynamic software recon�guration

are the non interference with the parts that are not a�ected, compo-

nents should complete their activities prior to recon�guration, and

�nally the separation of recon�guration and application concerns.
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Figure 9: Recon�gurable evolutionary product family life cycle

Each component has an operating statechart (operational trans-

actions), a main recon�guration statechart (explains how the com-

ponent passes through active, passivating, passive, and quiescent

states during recon�guration), one or more operating with recon�g-

uration statecharts (for handling recon�guration events in the oper-

ating statechart), and �nally one or more neighbor component state

tracking statecharts. Everything is brought together by a change

management model.

The proposed change management model, used to de�ne region

in which the recon�guration scenario may be executed, is composed

by two elements:

• Extended Change Rules: a component can only be removed

if quiescent, and the interconnections can be unlinked if the

component is quiescent with respect to those links

• Change Transaction Model: de�nes the actions to do in order

to recon�gure application. Is composed by:
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1. Impacted Sets: sets of components that must be brought

to quiescence

2. Recon�guration Commands: actions used for the required

changes, are: passivate, checkpoint, unlink, remove, create,

link, activate, restore, reactivate

2.5.2 Architecture-based Self-Repair

With their work, Garlan, Cheng and Schmerl want to realize a

mechanism that allows a run-time adaptation of the system, in order

to increase the dependability of the system. The real problem found

is the determination of the moment in which start the adaptation.

They provides a generalization of architecture-based self-adaptation

by making the choice of architectural style an explicit design param-

eter in the framework.

The architectural style becomes a �rst-class run-time entity, and

his formalization provides a number of important capabilities for

run time adaptation. This kind of use of the style allows to tailor

the framework to the application domain. The style determines:

• what needs to be monitored

• what constraints need to be evaluated

• what to do when there is a violation

• how to perform the repair

In order to make the style useful at run time, it is augmented with

a set of architectural operators for the style, and with a collection

of repair strategies written in terms of these operators.
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Figure 10: Adaptation Framework

The generic model comprises Components and Connectors with

explicit interfaces: ports (component interfaces) and roles (connec-

tor interfaces). Components can be further re�ned through repre-

sentations, that are more detailed description of the architecture.

Semantic properties are described through graph annotation, that

have the advantage of being general.

Are also de�ned repair strategies that correspond to selected con-

straints of the style. The function of a repair strategy is to determine

a problem's cause and how to �x it, and its form is a transactional

sequence of tactics. Each tactic has a pre-condition and a repair

script.

2.5.3 Operations and Strategies

Hawthorne and Perry focused their research on prescriptive ar-

chitecture, which derives the implementation architecture from the

requirements. The goal of this work is to bridge the gap between

requirements engineering and software architecture. The system re-
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quirements are modeled as a set of goals, which are divided in func-

tional goals (describe functionality of the system) and constraints

(are the quantitative or qualitative properties).

Once de�ned the goals and constraints, the system is modeled

as a set of activities to be performed in order to satisfy the func-

tional goals. Activities are decomposed in a lower-level until they

are �atomic� enough to be ful�lled by few roles, that are the abstrac-

tions of the roles the objects play to reach a goal. Context-speci�c

behavior is speci�ed by the role and the constraints associated with

that role.

An intent framework is used in order to classify and model imple-

mentation object functionality. So, the intents capture the essence

of an object's purpose and functionality. Activities, roles and in-

tents express formally the kind of information about how to use a

component.

Intents specify an object type's behavior using a state change

model to describe functions the object can perform, so any two ob-

jects with the same intent can be used interchangeably to accomplish

the same implementation domain purpose.

Figure 11: Implementation rei�cation process

2.5.4 An Architectural Challenge

The goal, of an architecture-based self-managed system, is to
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minimize the degree of explicit management necessary for construc-

tion and subsequent evolution whilst preserving the architectural

properties implied by its speci�cation. Architecture provides the re-

quired level abstraction and generality to deal with self-management,

and also can help with the scalability, can be combined with existing

work, and has a potential for an integrated approach. The solution

proposed by Kramer and Magee is a three-layer architecture, based

on Gat's three layer architecture.

Figure 12: Three-layer architecture

Component Control Layer: this is the bottom layer and concerns

with preserving safe application operation during change. It must

ensure that the change doesn't generate undesirable transient be-

havior, so the goal is to preserve safe application operation during

the change. Also, during that change, must be ensured that the

safety properties aren't violated.

Change Management Layer: is responsible for executing changes

in response either to changes in state reported from the lower layer

are in response to goal changes. A challenge is to deal with distri-

bution and decentralization, and also to preserve global consistency

and guarantee local autonomy.
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Goal Management Layer: the problem is to have a precise spec-

i�cation of the goals required of a system, and the challenge is to

achieve goal speci�cation such that it is both comprehensible by hu-

man and machine. There are also challenges in the decomposition

of goals and in the generation of operationalized plans.

2.6 Phase 3

Figure 13: Phase 3 timeline

2.6.1 Situated Multi-Agent Systems

Weynes and Holvoet, proposed a solution in which the software

is structurated in autonomous entities (agents) situated in an envi-

ronment, (situated MAS) and is valuated the ability of the agents

to adapt themselves during the change. The agents employ the en-

vironment to share information and coordinate their behavior. The

control, in this solution, is decentralized, because is divided among

the agents. Instead, the self-management is the system's capabil-

ity to manage dynamism and change autonomously, that are the

variables that a�ect the system during operation.
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Figure 14: Types of architectural approaches

Each agent is composed by three subcomponent:

• Perception: is a �ltered sensing of the environment, collects

runtime information

• Decision Making: is responsible for action selection through the

in�uence-reaction model

• Communication: is responsible for communicative interaction

with other agents

Communication and decision making are kept separate because in

this way there is a clear separation of concerns, and both functions

can act in parallel and proceed at di�erent paces.

The decomposition of the application can be considered in two

dimension: horizontal (based on the distinct ways agents can access

the environment) and vertical (based on the distinction between the

high-level and the low-level interactions).

2.6.2 Management and Visualization

A continuous control of a runtime adaptive software system is

nearly impossible, so the work of Georgas, van der Hoek and Taylor,
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wants to realize the vision of an operations control center through

which human users can understand and manage runtime adaptive

software systems. This operations control center can contextualize

current and past behavior with respect to the system con�gurations

that resulted in these behaviors, support retroactive analysis of his-

torical information about a system's composition and behavior, and,

�nally, connect to operator-driven proactive management of the sys-

tem.

Figure 15: ARCM visualization tool

The main result is a historical graph of architectural con�gura-

tions organized along three dimension:

• visibility: to see what happened

• understandability: to improve adaptation

• management: to rollback or push the system into an existing

con�guration

ARCM graph is a directed cyclic graph G=(N,E) with N the set of
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nodes and E the set of unidirectional edges between nodes. Each n

in N de�nes a speci�c architectural con�guration, and each e in E

is de�ned by a head and a tail node, capturing an adaptation that

modi�ed the tail con�guration in the one of the head.

2.6.3 Stitch

Is a language for de�ning and automating the execution of adap-

tation strategies in an architecture-based self-adaptation framework

made by Cheng, Garlan and Schmerl.

The requirements for Stitch are:

• adaptation decision processes should be able to choose the next

action depending on the outcome of previous ones

• when evaluating the result of an adaptation action the language

should take into account that e�ects could be susceptible to

delay

• strategies should be �guarded� by activation conditions

• should be possible to determine the best strategy to execute if

there is more than one

• past successes or failures to adapt should contribute to the

overall process

Stitch de�nes adaptation strategies as decision trees built up from

adaptation tactics, which are in turn de�ned in terms of more prim-

itive operators. The most primitive unit of execution for an adapta-

tion process is the operator, that is determined by the architectural

style. A tactic is an abstraction that packages operators into larger

units of change. A tactic contains a sequence of operator calls, acti-

vation preconditions, a de�nition of e�ects that it is attempting to
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achieve, and an impact vector that speci�es how it will impact the

system's quality dimensions. In a strategy, each step is the condition

execution of a tactic, and it's characterized as a tree of condition-

action-delay decision nodes. Each strategy has a context-based ac-

tivation condition, and allows for the calculation of an aggregate

utility function.

The strategy selection is made choosing the strategy with the

highest utility. This is achieved through the de�nition of quality

dimensions, utility preferences, impact vectors and branch proba-

bilities.

2.7 Open issues

How we have just seen, the years of work in self-adaptive systems

are many but, despite this, the work in this area is still a challenging

task.

For example the development of patterns that give guarantees

of e�ciency in some areas [16]. A system often needs to perform

a trade-o� analysis between several potentially con�icting goals, so

there is the need of practical techniques to de�ne utility functions.

There is also a need for more research in the de�nition of lightweight

monitoring techniques, in order to avoid that the e�ort in monitor-

ing exceeds the bene�ts of improvements in QoS after an adaptation.

Control-loops are essential for self-adaptive systems and the applica-

tion of the centralized control-loop pattern to a large-scale software

system may su�er from scalability problems, so is necessary an ap-

proach that integrates both control-loop and decentralized agent.

The research has to focus also on more advanced and predictive

models of adaptation in order to avoid a system to fail after a change

to satisfy his requirements. The characteristics of self-adaptive sys-

tems create new challenges for developing high-assurance systems,
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and novel veri�cation and validation methods are required to pro-

vide assurance in this system.

A-3 focuses on high-volume and highly volatile distributed sys-

tems, that have very strong coordination requirements, and are hard

to design. This kind of system has the need to be �exible to adapt

to frequent changes in the execution environment or in the system's

available resources. A-3, and so also A3JG, is able to coordinate the

behaviors of multiple elements, so that they can reach a common

goal.
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3 Dynamic Group Management

The idea is to create a middleware that allows the realization of

distributed high-volume and highly volatile systems. These systems

need to be able to self-adapt and to disseminate new con�guration

tasks, depending on the needs and availability of its components.

A simple environment that allows to de�ne an example to better

understand the characteristics of A-3, is a supermarket. Imagine a

system in which the nodes are the shopping carts, the checkouts,

and a �controller�. Our goal is to coordinate these entities in order

to optimize checkouts, and to reduce the amount of waiting time

that customers pays in the queue.

3.1 Group view

The main idea of A-3 is to reason on groups of node, instead of

on single entities. More clearly, the individual entities are grouped

on (eg) similar characteristics and behaviors (the policy is left open

and decided by the system designer). Then a developer needs to

coordinate the groups, which are seen as entities that are easier to

coordinate. This allows for an easier de�nition of the interactions

between entities. In fact a group allows multiple elements to be

treated as a single less dynamic block. In this way, each entity may

enter or leave the system freely, and the problem is reduced to the

smaller one of managing groups.
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To develop a system with A-3 it is therefore necessary to de�ne

what groups that will be present, and characterizes them. To do

this, we need to de�ne the roles the nodes will play within a group.

In particular, A-3 allows two di�erent kinds of roles: supervisor and

follower. In each group there is only one supervisor and one or more

followers (as many as required and as supported by the network).

The supervisor's task is to coordinate the followers, which join a

group for advice on how to behave depending on the situation at

hand. Each entity can be both supervisor and follower in more than

one group, but they can have only one active role for each group in

which they participate.

By comparison with the C2 project, the roles of A-3 correspond

to the components of the �rst, while there is a single connector that

enables the exchange of messages in each group (see 3.2). Also in

Weaves there is the distinction between components and connector,

but there aren't speci�c di�erent roles between components.

In A-3, while the supervisor has knowledge of the group's struc-

ture and of its members, the follower node may not know how the

group is structured.

In the example of supermarket we can, for example, de�ne a

group �CHECKOUTS�, in which the supervisor is the controller and

the followers are all the active checkouts. Another group could be

the �CARTS� that run in the supermarket; once again the controller

could be the supervisor. We have N other groups �CHECK_#�, in

which the checkout number # is the supervisor, and the carts in the

queues are the followers.
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Figure 16: Group view in supermarket's example

Figure 16 shows groups. Triangle indicates controller, squares

represent checkouts, and circles represent carts. Each color corre-

sponds to one of the groups we de�ned before.

3.2 Communication

In order to achieve coordination A-3 allows nodes inside each group

to communicate. The kind of communication is di�erent based on

role.

The supervisor can send messages:

• in broadcast, to each member of the group

• in multicast, to some members of the group

• in unicast, to only one follower of the group

Instead, a follower can only send message to its supervisor; commu-

nication between followers isn't allowed (it must be out of band). All
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messaging is asynchronous. Moreover, the supervisor can communi-

cate with its followers even when they are o�ine, because messages

can be saved in memory, such that they can be delivered it when

followers join the group. The message remain available for a cer-

tain amount of time, so after this period the message is deleted.

Followers can also send updates to their supervisors. For example,

They can send messages to allow to know that the sender joined

the group or that its status changed. The kinds of noti�cations are

optional. The developer can use them, for example, to keep trace of

each group's population.

In the work of Taylor at al., the communication is more limited,

in one direction making requests, the other noti�cations, and the

messages can only move one step at a time, but we can imagine the

separation between components of two di�erent level as a separa-

tion between groups, but in A-3 components of the same group can

communicate. This is, also, di�erent from Weaves, where a message

is an object, but no component knows the source (destination) of

a received (sent) object. It is more free respect to A-3, where each

component knows the sender (receiver) of its messages.

In the case of the supermarket, for example, the controller may

send messages to the crates to tell them to stay open/closed based

on the amount of waiting customers, while the carts can tell the

controller the amount of objects that are carrying, so that the su-

pervisor can better manage also checkouts and send them to the

most appropriate queue.

3.3 Group collaboration

So far we have seen how the individual groups are coordinated inter-

nally with A3, but in a large-scale system, groups may wish to work
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together. In order to realize the collaboration, A-3 allows to group

composition. This is achieved by allowing single element to work in

di�erent groups, with di�erent roles. This allow for di�erent com-

positions in which each single element that is shared between two or

more groups can, therefore, share information between these groups.

Figure 17: Group composition

Figure 17 shows three groups (red, green and blue). Two follower

nodes of the �red� group, are also supervisors in the other groups,

this because for a node, you can have di�erent roles in di�erent

groups. These two node are also responsible for the coordination

between groups �red-green� and �red-blue�, and their work in the

beneath clusters in�uences the working cycle of the �red� group.

Instead the �green� and �blue� groups share follower. Moreover, a

follower of the �blue� group is also supervisor in the �red� group,

and this creates a nested composition.

The possible type of composition are three.
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3.3.1 Shared Followers

We can have a supervised component that simultaneously belongs

to two groups, and the supervisors of these groups can collaborate

using the shared follower as an intermediary for messages. The fol-

lower can also receives con�icting coordination directives from the

two supervisor, and in this case it is up to the component itself

to manage and resolve the con�ict, since the con�guration doesn't

support explicit coordination between the two supervisors. In the

supermarket's example, each cart is a follower in both the groups

in which it participates, so they are shared follower (�gure 16, cir-

cles are shared supervised components). Figure 17 shows this com-

position between groups �green� and �blue� which have a node in

common.

3.3.2 Hierarchical composition

Another possible composition is the hierarchical one, in which a su-

pervisor has a follower that is supervisor in another group. This

component contributes to the top group with a digest of the knowl-

edge it collects from the bottom group. This allows the top group's

supervisor to have a complete view of the system, without having

to interact with all the components in the system. In this case, the

supervisor in the high level is a centralized coordinator. This case is

shown in the example of the supermarket between the controller and

all its checkout followers, because each checkout is also supervisor

in the group �CHECK_#�.

3.3.3 Nested composition

In A-3 is allowed to have a structure in which all the supervisor

are also follower in another group, so there isn't only one node able

to see the entire system, but all supervisor nodes in a circle struc-

ture have a complete view of the system. To avoid in�nite nesting
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coordination directives, each supervisor only sends directives to its

own supervised components using multicast messages, and avoids

sending them to the other supervisor. The resulting coordination is

completely distributed. In �gure 17 there is this kind of composition

thanks to the two �red� followers that are supervisors in �green� and

�blue�, and the �blue� follower that is supervisor in �red�. In this

example �red� and �blue� supervisors have a complete view of the

system.

3.4 Safe Group Management

A-3 also allows supervisor to store important data, or anything else

that needs to be tolerant to fault and easily recoverable when nec-

essary, to distributed memory in a redundancy fashion.

The architecture, supports continuous node exchanges. If a fol-

lower enters/exits, no problems arise, because the other nodes are

not actually interested in knowing who is in the group, while the su-

pervisor will change the workload of those who are connected. The

extreme case is the one in which the entry of a new node makes

the size of the group too large, requiring the group to split. In this

situation the supervisor must decide which nodes should migrate

to the new subgroup, because is the only one that has knowledge

about the group's structure. Vice versa, when the size of the group

is too small, the supervisor has to merge multiple groups. All this

movement of nodes and changes of the structure aren't visible at

the application layer, because the user of the system can see only

one group with all his nodes.

In the supermarket environment, follower tra�c is due, for ex-

ample, to the opening or closing of a checkout, or to the arrival of a

new cart in the payzone.

If a supervisor leaves the group we have a delicate situation:

since there is only one supervisor in a group, and it must always be
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present. When it dies the followers must take the responsibility of

keep the group alive. How? Simply by starting an election to �nd

the new supervisor, who can use the information saved from pre-

vious supervisor in the replicated memory to immediately update

its status and continue to manage the group as if nothing had hap-

pened. Otherwise, without replacement, the group has no reason

to exist because there would be no coordination of internal nodes.

The possibility to elect and save data in memory is very important,

because it avoids the supervisors from becoming single points of fail-

ure. In fact, if it periodically stores important data in the group,

when it fails, the new supervisor can retrieve these information and

continue the coordination of the followers with minimum delay.
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4 The A-3 Framework

A3JG is an open-source implementation of A-3 made by me, that

allows the implementation of self-adaptive systems. It is built using

JGroups, that is a group communication middleware. In this work,

JG is also used for managing groups.

Now we will see how A3JG is implemented, and what a developer

needs to do in order to use it for his/her application.

4.1 Architecture

Figure 18: A3JG Architecture

40



In the lowest level of the architecture, we have JGroups which is an

open source project that provides tools for managing groups and,

in particular, in this work it is responsible for all the connections

and the transfer of messages exchanged. In the middle there are

all the nodes that are distributed, also in di�erent locations. Each

node is unique and is responsible for managing its roles, that are

stored in two distinct map (one for the supervisor and one for the

follower). An application needs to implement the nodes (e.g. one

for each distributed host) and the roles, and then to connect them

to a group.

4.2 JGroups

As already said, A3JG uses di�erent features of JGroups, in partic-

ular to manage the groups (which in JG are called clusters) and the

communication between groups.

4.2.1 What is JG?

JGroups is a project that aims to build a reliable communication

between members of a group. The communication is in multicast

and it can use both IP and TCP as transport (the protocol stack is

�exible to every need).

JG allows developers to create (automatically when a node joins

a group that doesn't exist) and delete clusters. Each group can be

populated with members coming from LANs and WANs. It also pro-

vides tools to receive noti�cations about changes that occur within

the cluster. Each group is distinguishable thanks to the name.

4.2.2 Main features

The channel allows the nodes to join a group, and then to work with
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the other members. Through the channel, each member sends and

receives its messages, and can be used only by one node. To be able

to see the messages and the noti�cations, it is necessary to pass a

receiver (ReceiverAdapter) to the channel.

A channel can be connected only to one group so, if a node has

to work in multiple groups, it needs more channels. Each channel

is distinct thanks to a unique address, and has a view with the

addresses of the other members in the cluster.

You can use an XML �le to pass con�guration parameters of the

channel, and this happens when a channel is created (if you do not

pass the �le, JG uses the default con�guration).

JGroups provides building blocks to make the most of what it

o�ers the channel, without having to rewrite the code base. From

an architectural point of view, they are on a layer above the channel,

and they are used when the developers need high-level interface. A

building block widely used in A3JG is the ReplicatedHashMap.

Finally, the protocol stack plays an important asset in JGroups.

In fact, it is so �exible that can adapt to any application. It's com-

posed by many levels of protocols, that are passed in a bidirectional

way, then any message that is sent or is received, has to cross all the

layers. The realization of the stack depends on the XML �le that

the developer can use to create the channel. This thing shows how

you can create di�erent con�gurations based on need.

4.2.3 JG in A3JG

A3JG uses di�erent features of JGroups. To connect to a group,

a node uses a JChannel, and the active channels are saved in a

map on the node (the map's key is the name of the group). The

channel is used to create a new cluster (group) or to connect to an

existing one. Through the channel all the communication between

the nodes �ows. It's possible to pass a speci�c con�guration of the
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protocol stack through a XML �le, but if no �le is passed, the default

con�guration is used.

In order to save information about the current state of the group,

save messages and manage the election of a new supervisor, A3JG

uses the ReplicatedHashMap, that is a concurrent hashmap shared

between each member of the cluster. Indeed, A3JG makes use of a

modi�ed version of RHM, in fact, to be able to freely manage the

function viewAccepted, it was necessary to create a copy (viewAc-

ceptedOriginal) that is invoked whenever there is a change in the

group. Keys, which are already used by A3JG on the map, not to be

used for a correct work are: �A3Supervisor�, �A3SupBackupState�,

�A3SharedState� + int, �A3Message�, �A3MessageInMemory_� +

int, and all JChannel address.

It's possible to share a state, on the map, between supervisor and

followers using:

and save a supervisor backup state using:

Both A3JGSupervisorRole and A3JGFollowerRole implement Re-

ceiverAdapter, to allow them to send messages to other members of

the group and to receive updates on changes of the structure of the

group. The ReceiverAdapter is used in order to receive message sent
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to the channel, and to see when the View is changed. The View is a

list that contains all the active nodes in the cluster at the moment

it is called.

A3JGRHMNoti�cation class, instead, implements Noti�cation of

ReplicatedHashMap, and can be used to see all the modi�cation of

the RHM and how change its entirety.

4.3 A3JGNode.class

This is the �rst class that the developer needs to extend (it's an ab-

stract class). A3JGNode identi�es a single and autonomous device

that is connected in the distributed system, and that has its own

features and functionality. As already said, in A-3 every node can

be inserted in one or more groups, and this property also occurs in

A3JGNode, because it is possible to de�ne multiple roles which the

node can employ and the groups in which it can work.

4.3.1 How de�ne a node

Therefore every node is an independent unit of work, for this reason

each A3JGNode has an unique identi�er, and this �ID� is de�ned

at the creation time, through the constructor (is a String). Being a

physical unit, it is also characterized by a �resourceThreshold�, that

cannot be exceeded (is an integer). This last value can be changed

using getter and setter. Two other attributes that the developer can

modify are �timeout� and �inNodeSharedMemory�, but we will see

their function later.

After its creation, a node needs to be �lled with something else

by the developer, in particular he/she has to work with three maps:

�supervisorRoles�, �followerRoles� and �groupInfo�. In order to make

the node able to work, the roles of supervisor and follower must be

added, which are stored in the two separated maps. Each node must
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be able to act in di�erent groups with di�erent behaviors depending

on the situation, so it's necessary to de�ne the instructions of the

behavior that the node must implement in each group which can

participate. In these maps there are only the instruction (the keys

are names of role's classes) that can be shared between multiple

groups.

In order to connect the node to one group is also necessary to pass

the information relating to the cluster where you want to join. This

is done using A3JGroup, and this information is saved in �groupInfo�

with the name of the group as key.

In �gure 19 there is an example of a node after the insertion of

information of some roles and groups (for simplicity, from now on,

the groups will be named with color).
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Figure 19: A3JGNode

In the node represented i �gure 19, in �supervisorRoles�, four

di�erent A3JGSupervisorRole (A-Sup, B-Sup, C-Sup and D-Sup are

the keys) were added, and, the same happens in �followerRoles�

with four A3JGFollowerRole (A-Fol, B-Fol, C-Fol and D-Fol are the

keys). The colors in background of these two maps are the groups

in which the role content can be used. Instead in �groupInfo� there

are information of the four di�erent group in which the node can

work.

Attributes �channels�, �activeRoles� and �waitings� must not be

changed manually, otherwise A3JG won't behave properly.
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4.3.2 Join a group

After these steps, it is possible to connect the node to a group using

the join function. Now, depending on the type of the application to

be implemented, the value to assign to �timeout� must be evaluated,

which is by default 10000. This attribute indicates the milliseconds

in which JGroups try to fetch the state of the ReplicatedHashMap

used in the group. In order to modify the value, you can use the

setter.

To call the �joinGroup� function, it is only necessary pass the

name of the group that you want to join.

Another possibility is the joinAsSupervisor function (compared

to regular join it has also a boolean as input), that force the election

of the node as the supervisor of the group.

With this function it is possible for the node to be directly elected

as a supervisor (passing it the parameter �challenge� equal to False)

or take a challenge with the supervisor in charge, if any (passing

it the parameter equal True). In the �rst case, the old supervisor

tries to become a follower of the group if it has the role, otherwise

it terminates. In the second case, the winner of the challenge will

be the supervisor of the group, instead the loser tries to become a

follower of the group if it can.
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Both the functions work in the same way. At the beginning

there is a control on the list of existing active channels, that are

saved in the �channels� map (the key is the name of the group). If

already exists a channel with key equal to �groupName�, the function

end. Then there is a control on groupInfo, if the node doesn't have

information about the group to join, the function ends.

Now we know that we can join the group, so the channel must be

created and, before the creation, there is a control on �groupInfo�

in order to recover the XML con�guration �le of the channel (if it

exists). After the creation, the channel is put on �channels� map,

and the key is �groupName�. Before connecting the channel, the

ReplicatedHashMap is created, then the function tries to connect

the channel to the group referred, �nally, after the connection, the

RHM is updated.

After these steps the role that the node will use to work in the

group in which it's connected is activated (�true� if the node has

joined the group, false otherwise).

The return of both functions is the success of the join operation.
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Figure 20: A3JGNode after two call to joinGroup

Figure 20 shows the previous node after the call of joinGroup(�red�)

and joinGroup(�green�). In the �red� cluster this node has the super-

visor role, instead �green� doesn't have an active role because there

is an election in the �green� group, so the node is waiting the end

of the election before activating a role. In both cases, the respective

channel is put on �channels� map, but, in the �red� case, the role

is active and for this reason, it is in �activeRoles�, instead in the

�green� case there is a genericRole in the �waitings� map.
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4.3.3 Activation of the role

When a node joins a group, there is an automatic activation of a

role for the new node in the cluster. The role that is activated (with

a regular join) depends on the situation of the group, and there are

3 cases:

1. The group doesn't yet exist: in this case, only a node that can
be able to be a supervisor can create the group. The node that
creates the cluster is the �rst supervisor of the group, so if a
node tries to join a group that doesn't yet exist, and it isn't
able to be a supervisor for that group, the cluster isn't created
and the join of the node doesn't succeed.

Figure 21: Group doesn't exist

2. The group exists and it works correctly: in this case, if the
node, that wants to join the group, can be a follower of it, the
join succeed, otherwise the node doesn't join the cluster.
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Figure 22: Group exists

3. The group is already existing, but there is the supervisor elec-
tion: in this case a new comer has to wait until the end of
the election to receive the assignment. The role of this node
during the election is the GenericRole (it can receive messages
and participate to the election). At the end of the election, if
the node won the election, it becomes the new supervisor oth-
erwise, if it is capable, becomes a follower. If no one is able
to become a supervisor, the group is destroyed, because there
must always be a supervisor.
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Figure 23: Join during election

4.3.4 Communication between groups

Previously, we have seen how the communication between groups

is via roles that are implemented in the same node. This thing is

realized here through a shared memory space saved in the node,

it can be used by any active role of the group, and can be seen,

obviously, by all the active followers and supervisors of the same

node.

This space is �inNodeSharedMemory�, an it is where an object,

that will be de�ned by the developer depending on the application
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that wants to realize, can be saved. Roles access it using getter and

setter.

4.3.5 Leave the group

When a node no longer wants to be part of a group, it can call the

terminate function, that terminates the role's thread and closes the

JChannel.

From �channels� and from �activeRole� the values that have key

equal to �groupName� are removed.

Now, if the node wants to participate to the work of that group,

it needs to recall the joinGroup.

4.4 A3JGSupervisorRole.class

The developer must extend beyond the node, other two classes,

which are used to de�ne the behavior of the supervisor and of the

follower. These two (abstract) classes are A3JGSupervisorRole and

A3JGFollowerRole, which extend ReceiverAdapter and implement

Runnable.

4.4.1 The supervisor role

This class must be extended every time you want to de�ne a new

kind of supervisor.

As already seen, the supervisor is the leader of the group, and

the one that controls the work of the followers giving them informa-

tion through messages. It is the core of the cluster, and everything
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revolves around it, so it is necessary to have always an active super-

visor in each group, and when it dies, it must be replaced otherwise

the cluster is closed.

The supervisor is also the one that can create a new group when

this doesn't exist yet, while the follower, as we have seen, doesn't

have this capacity.

So the idea in A-3 is that it is the supervisor the node with

capacities for managing the fate of the group through its decision,

for this reason it's the one that can implement the MAPE control

loop. An automatic manager uses this loop, that is composed by

four parts (Monitoring, Analysis, Planning and Execution), in this

way: �rst information are captured from the external environment

and the agent analyzes them in order to identify the best behavior

to be taken to achieve its goal in this situation, then it performs

the chosen actions. In fact, only the supervisor has the tool to

receive information by all the members of the group, and to send

the directives to all other participants. The MAPE control loop

isn't yet deployed in A3JG, but is a future work.

4.4.2 Structure

The supervisor has di�erent attributes. There is a boolean (�active�)

that is used in order to de�ne the status of the role, an integer that

represent the cost of the role (�resourceCost�), a long that is used

to indicate the time to split the group and by default it is equal to

1000 milliseconds (�splitTime�), the channel used to connect to the

cluster (�chan�), the A3JGNode membership of the role (�node�),

the ReplicatedHashMap used to exchange some information with

the other members (�map�), an instance of MessageDelete (�deleter�)

and an integer (�index�) used by the message �deleter� and we will

see later its function, an A3JGRHMNoti�cation to get notify from

RHM (�noti�er�), and the last is a boolean used when the group is
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splitted.

Of all these attributes, the only two that must be set by the

programmer are those related to the costs (it's passed with the con-

structor, and it can be changed with the setter) and to the split

time, the others are managed by A3JG.

4.4.3 Functions to extend

This class implements Runnable, so the run function of the thread

and must be extended, in addition to it, also other three functions.

The run function is the one where the developer will put the

behavior of the supervisor, and here the MAPE control loop (or the

control can substitute the run function) can be put.

The �rst and the second function in the picture, are used in

order to implement the communication between members of the

same group.

The �rst is called whenever a follower sends a message to the

supervisor, so in it there must be the code necessary to enable the

supervisor to manage the received message (�msg�). For example,

the supervisor can react to every received message, or can save the

messages in memory and read them in a di�erent moment, both the

behaviors can be implemented in �messageFromFollower�.

Instead, the second function is called whenever an update from

a follower arrives to the supervisor. Also here the content of the

update is �msg�, and the kind of the update depends on how the
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application is implemented by the programmer. The developer can

manage the update as preferred according to the type of system that

he/she wants to realize.

Both the functions are called by the implementation of the �re-

ceive� function of JGroups, that is present in A3JGSupervisorRole

class.

The last function in the picture is the �tness function that is used

when there is a supervisor election or someone outside the group

calls a �joinAsSupervisor�. The function must return an integer

that indicates how much is convenient to choose a node to be the

new supervisor with respect to the others (for nodes which cannot

be a supervisor in the group of the election, this value is set to 0

by default). This value is very important because it let the node to

be the supervisor of the group, and the goal is to have as the leader

a node that doesn't slow down the work of other members. You

should consider in this function, for example, how much free space

there is in the node.

4.4.4 Send message to followers

In order to send message to the other members, there are two func-

tions available for the supervisor.

These two methods are very similar. The A3JGMessage (see 4.6)

is set as content of a message de�ned by JGroups, and it is sent with

the send method of the channel. The �rst is used when you want to
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send a message (�mex�) in broadcast or multicast or unicast. The

three types of communication are achieved thanks to the parameter

�dest�, that is a list of address. If it is equal to null or contains the

addresses of all members, we have a broadcast communication, if

there is only one address we have a unicast case, otherwise it is a

multicast.

The second function works in the same way, the di�erence is

that the message �mex� will be saved in memory on the Replicated-

HashMap for a time de�ned by the three integers that are passed

(how many days, hours and minutes the message will be saved be-

fore its deletion). The message is sent only to the addresses in he

list, but from the ReplicatedHashMap it can be read by anyone.

When a new message must be saved on the map, �rst recovers

from RHM the object saved with the key �A3Message�, which is

a HashMap which uses as keys the �index� of the message, while

the other �eld is the Date of end validity of that message, then the

A3JGMessage is saved in the RHMwith the key equal to �A3Message-

InMemory_� + the variable �index� of this class. You can save a

message with an in�nite time by passing 0 as value of �days�, �hours�

and �minutes�.

In order to delete a message saved in memory, A3JG uses an

automatic deleter, that is an instance of MessageDelete (see 4.8.3).

This tool checks the message every tot milliseconds, and deletes

each message found with an expired life time. There is also the

opportunity to delete a message manually, using:

This function forces the �deleter� to eliminate the message with

index equal to the integer passed. Messages with an in�nite lifetime
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can be deleted only using this function. The attribute �index� is

always equal to the integer following the highest number currently

used in RHM.

4.4.5 Other supervisor methods

The functions �supChallenge� and �submission� are used automati-

cally by A3JG after a �joinAsSupervisor�. The �rst, activated when

the parameter of the join is �true�, checks if the current supervisor

has the highest �tness value, and so it has to remain the supervisor,

otherwise tries to change the current behavior with a follower role.

The second instead tries to activate a follower role, and if it fails, it

terminates the participation of the node in the group.

The function �changeRoleInGroup� is used by the supervisor when

it wants to switch its current behavior with another supervisor role

allowed for the group in which it participates. Here must be passed

the number equal to the key of the chosen role as it is set in the

group information. The function deactivates the current role and

activates the new behavior.

The last two functions available are �split� and �merge� and they

are obviously used in order to split a group that is too big, or merge

two groups that were previously divided.
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4.5 A3JGFollowerRole.class

4.5.1 The follower role

This class is used to de�ne the behavior of followers. In a group

there may be more than one follower, but all of them talk only with

the supervisor. We can see the follower as units of work coordinated

by the decisions of the supervisor. The goal is to make sure that the

followers are able to send the information that the supervisor needs

to de�ne the strategy of work. Followers must also understand and

implement what they are told by the supervisor of the group.

4.5.2 Structure

The structure of the class is similar to that of the supervisor. The

attributes, that a follower has, are: a boolean for the activation sta-

tus (�activate�), an integer for the cost (�resourceCost�), the channel

used to connect the role to a cluster (�chan�), the A3JGNode mem-

bership (�node�), the ReplicatedHashMap shared between the other

members (�map�), an ElectionManager (see 4.8.1) used when the su-

pervisor dies (�em�), an A3JGRHMNoti�cation to get noti�cations

from RHM (�noti�er�), an integer to take into account the number

of attempts to carry out the election (�attempt�), an integer that

de�nes the maximum number of attempts (�maxAttempt�) that by

default is set to 3, and �nally a long variable that indicates the

milliseconds within conduct the election (�electionTime�) that by

default is equal to 1000.

The developer has to manage the cost variable (assigned with the

constructor), and has the possibility to modify the number of allow

attempts and the value of the election time, which need to be well

calibrated with respect to the type of application and the system

to be realized, because these two values indicate the time in which

the group will be without supervisor, so without a coordination of
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the followers. The importance of these values can be seen on section

5.3.2.

4.5.3 Functions to extend

Compared to the previous class, here, in addition to the run function

of the thread, you should extend only another method.

In the run function should be put the conduct which the follower

must have within the working group but, unlike the supervisor, here

there is no need to insert a MAPE control, because this type of

membership is ideally less clever, and it just needs to do what it is

asked by the group leader.

Instead, in the above method, there must be the code necessary

to understand what it's asked to do by the supervisor, and any coun-

termeasures to implement the actions required. With this function,

the follower receives the messages sent by the supervisor when it's

online. In order to get the messages that leader saves on the RHM,

the follower can use the method �getMessageOverTime� that returns

a list of all A3JGMessage stored at the moment.

As in the supervisor's case, also �messageFromSupervisor� is called

by the implementation of the �receive� function of JGroups, that is

present in A3JGFollowerRole class.

4.5.4 Send messages to supervisor

In order to send information to the supervisor, each follower can use

two di�erent ways:
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In both functions, the A3JGMessage is set as content of a mes-

sage de�ned by JGroups, and it is sent with the send method of

the channel. A follower can send messages only in unicast, and

the recipient is, obviously, the supervisor (the exchange of messages

between followers is not allowed in the A3JG's network).

As you can guess, the messages sent by the �rst method are re-

ceived by the supervisor with �messageFromFollower�, while those

sent by the second reach their destination through �updateFromFol-

lower�.

With �sendMessageToSupervisor�, you can send, for example, in-

formation to respond to requests made by the supervisor, and in

most of the cases this will be used more than the �sendUpdateToSu-

pervisor�, which is more suited for example to notify the entry and

the exit from the group, or the end of an important task. Of course

it is up to the developer to decide how to use them to obtain the

best possible results compared to the system that he/she intends to

achieve.

4.5.5 Other follower methods

As in the supervisor's case, also the follower can change its active

role in a group, for example, in order to better meet the needs of the

moment, and the function that allows this is �changeRoleInGroup�.

This allows the follower to switch its current behavior with another

that is allowed for the group it participates in. The follower must

pass the number equal to the key of the chosen role as it is set in

the group's information. The function deactivates the current role
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and activates the new behavior, so it works as the one that uses the

supervisor.

An interesting method used by the follower is the �viewAccepted�,

which is a function made available by JGroups and that is activated

every time there is a change between the members of the cluster. In

A3JG it's used in order to get the moment when a supervisor election

should be taken. The election is initiated by the �rst follower present

in the list of members of the group (the list is the same for all nodes).

The election begins by starting the ElectionManager thread (see

4.8.1).

4.6 A3JGMessage.class

When you want to send a message to another node, you must use

the functions implemented by the supervisor and followers, which

are prepared to achieve the communication between members of

the same cluster. The body of the sent message is de�ned by the

A3JGMessage class.

A3JGMessage is the object used to achieve the communication

between nodes of the same group, but the developers may decide to

use it also for the communication between active roles of the same

A3JGNode, that, as already seen, occurs through a shared space of

memory.

In fact, we can see A3JGMessage as a container, inside which we

will put the information that the supervisor and the followers have

to be exchanged, and it is, therefore, thought and realized in such a

way as to support any type of content, leaving the designer free to

decide its shape.

4.6.1 Structure

A3JGMessage implements Serializable because it's a JGroups re-
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quirement in order to perform the exchange of object on the net-

work. The are three variables: a boolean to indicate the type of the

message making a distinction between normal message and update

(�type�), but if the send functions available in A3JG are used you

don't have to worry about the assignment of this value; an Object,

that is the space where we put all the information to exchange (�con-

tent�) and this must be a Serializable object, otherwise the message

won't arrive to destination; and the last is a String used to recognize

the message (�valueID�), you can use it as a unique ID (but if the

message are so many may be not comfortable) or as a category ID

(can act as a �lter when it is received by the role).

The content of �valueID� is also checked by the reception function

present in the roles, and depending on its value it is handled di�er-

ently (application message and user message). For this reason, the

developer must avoid using as identi�er the following strings that

are yet in use by A3JG in order to perform its work:

�A3FitnessFunction�, �A3NewSupervisor�, �A3Deactivate�, �A3Sp-

litNewSupervisor�, �A3SplitChange�, �A3MergeGroup�, �A3StayFol-

lower�, �A3SupervisorChallenge� and �A3SupervisorChange�.

In order to create a new message, two constructors are available:

As you can see, you have in both cases the string identi�er, that

must be present because, as already said, it's always checked when

it comes in the recipient's function. Instead the Object to be put in

�content� is optional.

Getter and setter allow to manage and change the value of these

attributes.
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4.7 A3JGroup.class

A3JGroup is used to de�ne the information relating to a group of A-

3. For each group, you must create an instance of A3JGroup, with

the respective information. A node, in order to be able to connect

itself to a group, must have the information about it.

Therefore, before a node tries to join, it must have received the

information concerning the group, and the developer has to give

the same data to all the nodes that will participate in the work of

the cluster. If the information are di�erent, two nodes of the same

group may con�ict because they use roles that are not compatible, so

the developer has to be careful when he/she gives the information to

the node and must ensure the consistency of these, otherwise he/she

won't get the desired results.

4.7.1 Structure

As already mentioned several times, there can be more behaviors

available for each role, then in this class must be stored all these

possibilities, and this let us say that A3JG is used in the imple-

mentation of open-adaptive system, because it is always possible

to add new behaviors. In order to save this information, there

are two maps that store the canonical name of the classes that ex-

tend A3JGSupervisorRole and A3JGFollowerRole with the behav-

ioral code. The key of both maps is an integer, and, for the default

role, the key is 0, instead all values are de�ned by the developer.

The name of these two attributes are �supervisor� and �follower�.

Another variable is a String used to save the path to the XML

�le with the con�guration of the channel (�groupConnection�). Ob-

viously, all nodes must have the same con�guration to be able to

recover them in the same group. The last attribute (�groupDescrip-

tor�) can be used to save information and a description about the
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group identi�ed by A3JGroup.

For each group of the system, the developer has to create an

instance of A3JGroup using the constructor.

The constructor requires the canonical name of the two behav-

ioral classes that will be used as default role for the group. This two

roles will be used when the node joins the group, so if the node has

all the (eg follower) role available in a group, but it doesn't have the

default (follower) role it can't join the group (as follower, but it can

as supervisor if it has the default supervisor role).

All the others behavior are added to the group information through

add function, in which you have to pass an integer, that will be the

key, and the canonical class name of the role as String.

4.8 Other features

So far we have seen the part of application of A3JG that is visible

by the developers, but there is another part that is hidden, or bet-

ter, that doesn't require code's changes, because it concerns some

automatic mechanisms that are used to implement some features of

A-3 announced in section 3.
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4.8.1 ElectionManager.class

The ElectionManager is called into action whenever a supervisor

leaves the group, and it is therefore necessary to �nd a substitute

for it. This mechanism is one of the strengths of A3JG, because it is

able to �nd the best possible replacement for the role of supervisor

without the developer has to write a single line of code. In fact, once

the �tness functions have been de�ned, it will be the same A3JG to

deal with the automatically retrieve of these values and to decide

which is the best.

Then, using A3JG, there is no more need to worry about having

to manage the replacement of a supervisor that leaves the group,

and this leads to a greater ease of use.

The ElectionManager is a Thread, so the class implements a

Runnable. In order to achieve the election, four variables are used.

There is a boolean (�decide�) that by default is set to true, and

changes its value to false if during the election a new member joins

the group from the outside, and so a new election process must be

activated; a long attribute (�electionTime�) that represent the mil-

liseconds that the EM has to wait in order to obtain �tness value,

and can be changed depending on the type of the application and of

the system that the developer wants to realize, through the same at-

tribute that there is in A3JGFollowerRole; the ReplicatedHashMap

(�map�) shared between nodes and that will be used to get the value

of �tness; and the last is an instance of the channel (�chan�) of the

node that creates the Thread, which is necessary to let the EM to

send messages to nodes of the group.

As we have seen, each group has an instance of View, which

contains a list of the members of that cluster, and this view can be

retrieved through the channels of the roles, so all nodes can have

the same list with the same items and, because the members are

added in the order they join the group, in the exact same order.
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The election process takes advantage of this common list.

As seen in 4.5.5, each follower implements�viewAccepted� that is

activated every time there is a change in the member list, and when

this happens, every follower controls in the list of members of the

group if the supervisor is still present. When the leader leaves the

group, its address disappears from the list, and the �rst follower on

it is the one that takes the job of starting the election of the new

supervisor.

Each time a new node tries to join the group that is unsupervised,

the chief election relaunched the process to include the new comer,

as it could be the best candidate to become a supervisor, but to

prevent this to be repeated inde�nitely, the number of attempts is

de�ned, and can be changed by the follower. Since in the list the

order of group membership is maintained, the follower in charge of

starting the election will be the same.

When the thread ElectionManager starts, it begins its work by

sending a A3JGMessage to all nodes, with �valueID� equal to �A3Fit-

nessFunction�. When a follower receives this message, an automatic

behavior already set starts, which loads in the shared RHM the

�tness value of that node using as key the address of its channel. If

a node can act only like a follower in this group, his �tness value is

equal to 0, otherwise it depends on the developer's implementation

of the supervisor's ��tnessFunction�.

After sending, EM waits for a time in milliseconds equal to the

value of the variable �electionTime�, and if, in this amount of time,

a new node has joined the group, this instance of ElectionManager

ends and it is replaced by another thread that started with the entry

of the new member, as seen before, otherwise it starts the actual

search of the new supervisor. From this moment, if a new member

come, it can't participate to the election. With a simple �for� loop,

the manager controls all the �tness values stored in RHM, and saves
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the address (which is the key values) of the node with the highest

�tness. When there is equality of values is chosen the node that has

been in the group longer (the for loop uses the order of the list of

members of the View).

If the �tness value of the node chosen to be the new supervisor

is equal to 0 (that is the lowest possible value), this means that

there isn't a node able to take the burden of being the new coordi-

nator of the group, so the ElectionManager sends a A3JGMessage

with �valueID� equal to �A3Deactivate� that gives the order to the

followers to terminate themselves and, consequently, the group is

deleted. Instead, if the �tness value is greater than 0, the manager,

before cleans the map by the �tness value added for the election,

then sends a message to the node chosen as new supervisor, with

�valueID� equal to �A3NewSupervisor�, that starts the process of

deactivation of the role of follower and activates the supervisor role

in that group, instead to all other nodes is made know, with another

A3JGMessage, with �valueID� equal to �A3StayFollower�, that the

election is over and that they should continue to behave as they did

up to that moment.

Figure 24 shows the election process with the supervisor that

left the group, the follower that starts the ElectionManager which

sends messages to nodes, the writing and reading from RHM, and

�nally the selection of the new supervisor with the last sending of

A3JGMessage.
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Figure 24: Election process
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4.8.2 GenericRole.class

This class has been made to have a dummy role in order to not block

a node when it can not start up a behavior for the group to which

it wants to combine, typically when there is an ongoing election in

the group or the node called a �joinAsSupervisor� with challenge.

When a node has activated the GenericRole, it has limited ca-

pacity for action in the group: it is able to receive messages, but

includes only those related to the A3JG application, and can use

a method needed to perform the challenge with the supervisor to

contend the role of coordinator.

If we look at the class in detail, we see that it is an extension of a

ReceiverAdapter, and that there are the variables needed to be con-

nected to the group and receive information. These variables are the

A3JGNode (�node�), the channel (�chan�), the ReplicatedHashMap

(�map�) and the A3JGRHMNoti�cation (�noti�er�), namely those

that serve to the role, that will be activated, in order to work in the

group, and their values are set automatically during the join.

The situations in which the genericRole is created are two, and

as can be seen, one is with the �joinGroup� and the other with the

�joinAsSupervisor�.

In the �rst case, this role is activated when the node tries to join

a group that has an election in place. This happens to make sure

that new members can participate in the elections. To do this, when

the GenericRole is created, the method �waitElection� is activated.

This function, �rst of all, try to determine if the election is still in

progress, and if so, it contributes sending its �tness value, but there

is no guarantee that its value will be considered, but if a message

arrives that requires the value of �tness, then it will be compared

with other followers. Instead, if it �nds the value �A3Deactivate�

on the RHM, it means that the election is already over without

�nding a new supervisor, and in this case the node terminates its
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role and exits from the group which must be closed. This class has

implemented the receive function in the same way as a follower, this

is because the generic must be able to understand the messages that

the application A3JG sends, then, if it enters the group when the

election has not yet been completed, it will be able to receive the

message with the role to be activated at the end of the poll.

In the second case, the GenericRole is activated in order to per-

form the challenge. When the �joinAsSupervisor� creates the role, it

calls the �supervisorChallenge� function, that implements the �rst

part of the duel. First, this method retrieves the �tness value of the

node, and then it sends to the supervisor a A3JGMessage with the

�tness value as the content and valueID equal to "A3SupervisorChal-

lenge". At this point, the supervisor, after having received the

message, it evaluates the winner of the challenge, and sends the

result to the generic using a message. If the identi�er is equal to

"A3NewSupervisor", then the new member has won the challenge

and becomes the supervisor, if it is equal to "A3StayFollower", it

means that it lost the challenge and tries to activate the role of

follower, in the negative case it exits from the group.

Thus, the GenericRole is thought of as a temporary state for a

node, and after a short time, it will be replaced by one of the two

main roles of A3.

4.8.3 MessageDelete.class

As seen, the skills of a supervisor include the ability to save A3JGMes-

sage on the ReplicatedHashMap, in such a way that even nodes

which aren't online at the time of transmission, can read its con-

tents. These messages can remain in memory for a long time, but

after this period can be no longer valid and should be removed so

that new members can not read them, and then take actions that

are no longer needed.
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As already said, the supervisor can manually delete these mes-

sages, via the function �removeMessage�, but A3JG provides also

an automatic deleter that is able to delete messages from the RHM

when they are no longer valid.

In detail, the deleter available to supervisors is a thread that

is activated only when there are A3JGMessage on the map then,

when the supervisor sends messages to be saved in memory, and it

remains active as long as there are messages on the RHM, or when

the supervisor role is taken by another node and there are messages

stored by its predecessor. In the class there is a boolean variable

(�active�) in order to keep alive the thread until there are messages

on the RHM; the ReplicatedHashMap (�map�) that is the same used

by the supervisor; an integer (�waitTime�) that is the period of time

with which it repeats the search of the messages to be deleted; an

HashMap<Integer, Date> (�chiavi�) whose value is taken by the

RHM; and the last variable is an arraylist of integer (�deleteKey�)

which is �lled in each cycle with the message keys to be deleted from

the map.

With each cycle, MessageDelete takes the value of the A3Message

and saves it in the variable �chiavi�, then �ows across this map

and controls which objects have the expiration date earlier than

the current time, they are marked by inserting the value of their

key in �deleteKey�. At this point, the deleter research on RHM

objects with key �A3MessageInMemory_� + each value that is in

�deleteKey�, deleting them from the ReplicatedHashMap (they are

also removed from �A3Message�). Now, if the size of the map saved

in �A3Message�is equal to 0, this means that there are no more mes-

sage saved in the RHM, so the MD ends automatically, otherwise it

waits �waitTime� milliseconds before re-cycle.

The MessageDelete class also contains a method to remove a sin-

gle message, and it is called by the supervisor to delete A3JGMessage
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manually (�toDelete�).

4.8.4 SplitManager.class

This is the last feature of A3JG, and serves to rebalance a group

when it is too large and, for example, the internal coordination

between nodes becomes di�cult. This procedure is initiated by the

supervisor of the group, then the developer can de�ne the maximum

size of the cluster based on the application that he wants to make.

The e�ect of this action is to split the group into two, balanced

in such a way to have the same number of members, and with a

follower of the �rst group that is the supervisor in the second. Of

course is also available the inverse function (merge) that combines

two groups previously separated.
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Figure 25: Split function

In order to achieve the separation, the SplitManager is used. This

class (that implements Runnable) has only three variables: a long

(�splitTime�) number that takes its value from the variables with the

same name in A3JGSupervisorRole; the RHM (�map�); and the last

is a channel (�chan�) for the communication between the members

of the group.

When the SplitManager is activated, �rst of all sends a message

to all those present to take their �tness value to locate the node

that will make a bridge between the two future groups. Then, after

a time de�ned by �splitTime�, if there isn't a node able to do both

follower and supervisor, the split fails, otherwise the member with

the highest �tness value receives a A3JGMessage with �valueID�
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equal to �A3SplitNewSupervisor� and becomes the supervisor of the

new group (that will be created by it). To some other member is sent

the message saying �A3SplitChange�, and those will be the followers

of the new group. In the received message, as content there is the

new con�guration to be adopted.

in order to join groups, it must be the supervisor of the second

group to call the merge function.

In �gure 11 we can see an example of how the split function

works. Initially, the group �orange� has a supervisor (�SUP�) and

seven followers (�F1�, �F2�, an so on up to �F7�). Then, �SUP� call

the �split� and A3JG identi�es �F6� as a node shared between the

two groups, so it remains follower of �SUP� as well as �F1�, �F3� and

�F4�, but becomes supervisor of the new group and has as followers

�F2�, �F5� and �F7�

4.9 Support material

The source code of the A3JG project is hosted by GoogleCode and

is available at http://code.google.com/p/a3-jgroups/. There is also

the support material for people wishing to develop a system using

A3JG. There is the javadoc of the code, and a manual with guide-

lines for understanding what A3JG is and how to make a project

with it. The manual also contains two guided examples to learn how

to use this implementation of A-3.

In the source code, there are also other examples ranging from

the creation of a simple group with 3 nodes, to the use of all the

features of A3JG. These examples have been also used as a �rst test

of the functionality of the project.
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5 Performance Evaluation

5.1 Hospital's scenario

The scenario used to evaluate A3JG's performance takes place in

a hospital. In this context, we need to manage a high number of

people (sta�, patients and visitors), to reach a good level of e�ciency

and safety in the environment. All these people have di�erent needs

and di�erent departments to visit, so even getting everyone to their

desired destination can be a complex problem. Therefore we use

A3JG to guide people as they travel through the hospital. Moreover

this guidance is self-adaptive.

The experiment simulates the hospital's environment. Each per-

son is give a wristband is given to each person when they enter the

hospital. It has information about the person's destination and can

be used to show the person the path to follow (in this work, each

destination is identi�ed by a color). Through the hospital there are

screens placed at each corridor intersection. They are used to com-

municate directions to the wristband. These screens can adapt what

they show based on the people who are close to them, so they have

to monitor all the movement near them.

We created the following A-3 groups:

• Screen: in this group there are all the screens (as followers),

plus the hospital's server (as the supervisor)

• Color(i): for each screen(i), there is a group for each possible
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color (destination). The screen(i) is the supervisor and one

person is a follower

• SubColor(i): for each color(i) group, there is a cluster in which

people that are near the screen(i) are connected, that have

�color� as their destination (the supervisor is the one that is

also follower in Color(i), all the other are followers)

Figure 26: Group composition

The scenario also has the following types of nodes:
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• the Hospital's server: that is the supervisor of the Screen's

group; it is replicated for fault-tolerance

• Screen: is a screen, and it has the follower role for the Screen's

group, and the supervisor roles for all groups Color(i) that are

activated by the screen

• Human: is a person, without distinction between sta�, visitor

and patients, because this distinction is made by the destina-

tion. Human can be a follower in group Color(i), and both a

supervisor and a follower in group SubColor(i)

5.2 Siafu

The �rst simulation was made using Siafu, an open-source context-

simulator written in Java. Siafu provides models for agents, places

and the context, and by altering these values we can in�uence the

scenario.

For the simulation of the hospital scenario, I mapped a hypo-

thetical �oor plan, in which the signi�cant places, those used as

destinations for the test, are two access point (that are identi�ed

by the GREEN color), a laboratory for blood's analysis (this des-

tination has the RED color), a room for radiology (BLUE color)

and, �nally, the physiotherapy room (which destination's color is

YELLOW). There are also six screens placed at six crossing corri-

dors. For this simulation I used a single PC (Intel core i7 with 8

GB of RAM), so all the connections are on the local network, and

communication is performed using the UDP protocol.

I created the screens group (�SCREEN�), in which the hospi-

tal's server acts as a supervisor and the six screens act as follow-

ers. Each screen is also the supervisor of four local groups, one

for each possible destination (�RED0�, �BLUE0�, �GREEN0�, �YEL-

LOW0�, ..., �RED5�, �BLUE5�, �GREEN5�, �YELLOW5�). Each of
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these groups has only one person as its follower. This person cre-

ates the corresponding subgroup in which he is the supervisor and

all the other people, with the same direction and near the same

screen, are followers (�SUBRED0�, �SUBBLUE0�, �SUBGREEN0�,

�SUBYELLOW0�, ..., �SUBRED5�, �SUBBLUE5�, �SUBGREEN5�,

�SUBYELLOW5�). The groups are therefore 1 for the screens, 4 for

each screen, and a subgroup for each group created by the screen,

in total: 1 + 4*6 + 4*6 = 49. however the subgroups, are created

only when there is a person near a screen that has to go to that des-

tination. So, there were 25 groups always active, and other 24 that

were created and destroyed according to the position of the people

in the map.

The nodes are:

• 1 hospital's server (with one connection)

• 6 screen (with 5 connection for each screen, for a total of 30)

• 50 human (with one active connection for each, except for those

that are also in the color's group created by the screen, and that

can be, maximum, 24).

The total number of nodes that there are in this experiment is 57,

with a maximum of 1 + 30 + 74 = 105 active connections at the

same time.

In this simulation, the number of people entering the hospital

depends on the time of day, like in a real case. They enter using

one of the two access point, with a destination that is assigned in

a random way. Once that a person reaches his destination, a new

destination is assigned, until he leaves the hospital.

During the setup of the environment, the screen's group is cre-

ated, and as soon as a screen joins it, it gets information about the

general route from the hospital's server. At the same time, each
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screen creates its color groups, and waits for people to arrive. When

a person is near a screen, he/she tries to connect to the color sub-

group of his destination. If he/she is connected as a follower, he/she

asks his/her supervisor for information about the path. Otherwise,

if he is connected as a supervisor (and so he is the creator of the

subgroup), he/she tries to connect to the color group of his/her des-

tination, and then asks the screen that is the supervisor in the group

about the path. When a person leaves the area near the screen, he

disconnects from the screen's network. If it was the supervisor of

the subgroup, an election between the other people in the group

takes place. As a consequence, each screen only needs to supervise

a small group of representatives to be able to manage high-volumes

of people.

I have also added an obstacle in one corridor, that it is activated

manually. This way is possible to see if the system can promptly

react to guarantee the safety of the people. The screens have the

task of monitoring the corridors in search of obstacles, and of noti�es

central server, so that it can send the new path for each destination

to all screens.

The simulation shows that people that enter with no knowledge

about the route and disposition of the rooms, are able to reach

their destination following only the instructions given by the screen,

minimizing their waiting time, even when an obstacle appears.

A video clip of this simulation is available on GoogleCode, to-

gether with the source code.

This test shows that A3JG can be used in this kind of scenario,

but, in order to understand its performance, I have other worst case

scenario test. In these scenarios all the people arrive at the same

screen, and with the same needs.
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Figure 27: Siafu screenshot

5.3 Worst case scenario

In this test we only consider one screen, and all the people that

enter the system have the same destination. Like in the Siafu sim-

ulation, the system must ensure e�ciency and safety, so e�cient

message exchanges must be guaranteed.

The groups created in this test are:

• Color: the groups created by the screen, also behaves as their

supervisor. Since this is a worst case scenario, here there are

four di�erent color/destination (�RED�, �BLUE�, �GREEN�,

�YELLOW�)

• SubColor: these are the groups that are created when a person
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is near a screen. Since all the people have the same direction,

we have only one group (�SUBRED�)

The number of groups is 5; three of them will be practically empty

since all the people will have the same direction. The �SCREEN�

group isn't created because, in this test, We assume that the screen

already knows the path for each destination, and that no obstacle

will appear in the environment.

For this test I used 5 PCs: one with an Intel Core i7 and 8 GB

of RAM, three with Intel Core 2s and 4 GB of RAM and one with

an Intel Core i5 and 4 GB of RAM. The �rst PC hosted the screen.

The PCs were connected in LAN through a wi� router, and the

messaging is achieved using the UDP protocol.

The test is made up of two phases.

5.3.1 Phase 1

Phase 1 evaluated how A3JG performed in evaluating the nodes

�tness functions. To obtain the best result from the election process,

and to reach all the safety goals, we need to be able to �nish the

election chores. This would allow more nodes to participate in the

election process, ensuring the best possible choice was made.

The ElectionManager class was modi�ed so that when a supervi-

sor leaves its group, the election manager collects a timestamp when

the �rst message is sent to the followers (START), a timestamp for

when the last write into the ReplicatedHashMap (LAST_MSG) oc-

curs, and a timestamp for when the last election request message is

sent to the followers (END).

The number of messages sent depends, obviously, on the number

of nodes in the system. So, if N is the number of nodes, the messages

sent for the election are:
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• 1 message from the election manager for each follower request

their �tness function (N messages)

• 1 update of the ReplicatedHashMap for each node after each

update (N2 messages)

• 1 noti�cation message after the electionTime has elapsed for

each node (N messages)

If the election starts at time t = 0, and the electionTime ends at

time t = te, between 0 and te we sent N + N2 messages; while after

te we send N more messages. In total, in the entire process, the

number of messages that are sent is:

N + N2 + N = 2N + N2

To save time during each update on the map to determine how

many �tness function are considered by the election manager, it was

necessary to send this timestamp from each node to the manager

in order to have synchronized information of the entire process, so

between 0 and te, other N messages are sent, but this allow us to not

underestimate the time necessary for the entire process. However,

the binding value is given by the N2.

I used the 5 PCs described previously, to simulate the scenario

with increasingly high numbers of people near the screen. I started

with 1 person per each screen at the �rst step, and went up to 40

people per screen in the fourteenth test.

The election policy was to use only 1 attempt to �nd the new

supervisor (so all the new nodes that enter the group during the

election are not taken into account), and 1 second was the allowed

election time.

This simulation was done in two di�erent situations:
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1. Stable: in this case, during the election, no node tried to join

or leave the group.

2. Unstable: this is the more realist case. The people are mov-

ing around the screen without a de�ned pattern, so during an

election nodes can join or leave the group freely.

Once I captured all the data, I calculated the time between the

beginning of the election and the last save to the RHM (S - LM)

and the time between the beginning and the end of the election (S

- E). Table 1 illustrates the result for the stable case.

In the unstable case, each person can stay in the group from 19

to 48 seconds (the value is assigned randomly) and when one leaves

the group, after two seconds it rejoins it. Table 2 shows the results

in this case.

The two diagrams in �gures 28 and 29 show a comparison between

the results obtained in the two di�erent cases.

From the diagram in �gure 28, it is possible to notice that, in the

stable situation, until the number of people is under 100, the time

(in milliseconds) to complete the data sending is in the same order

of magnitude. Beyond 100 people, the value increases exponentially.

Moreover in the unstable version, the values for cases in which there

are less than 100 nodes have the same order of magnitude. In partic-

ular, the value obtained with 5 people is the same in the two cases.

For all the other steps, the values obtained in the unstable case are

much bigger. In particular there are nodes that, in situations with

more than 100 nodes, are not able to return their �tness value in

less than 1 seconds (7 nodes out of 125 for the 5.6%, 9 out of 150

for the 6%, and 14 out of 200 for the 7%).

In the step with 200 nodes, 40200 messages are sent in the �rst

phase of the election (before t = electionTime). Considering the

stable case, in which only messages regarding the election itself are
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Table 1: Stable case

Table 2: Unstable case
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Figure 28: S - LM diagram

Figure 29: S - E diagram
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sent, and where the maximum message size is 4KB (due to the

size of the RHM), we need a network capable of sending 157 MB/sec.

The diagram in �gure 29 shows the total time necessary for the

entire election at each step. One second of this time is due to the

election time. Also it is possible to notice that the best results are

obtained with less than 100 nodes, and that the high values in the

unstable case, for steps over 100 node, are caused by the increasing

message tra�c due to that are not able to send their �tness value

in time.

5.3.2 Phase 2

Phase 2 evaluated A3JG's performance using di�erent strategies

for the election process. In fact, A3JG allows developers to im-

plement di�erent policies; they are not forced to use the election

manager with its preset default values.

Once again the groups that are created are 4(the four possible

direction), and there is 1 subgroup for the red direction, for a total

of 5 groups. The number of active nodes is 41 (1 is the screen, and

40 people that cross the area).

The values that can be modi�ed manually are the number of

attempts that take place and the election time, that is the time that

the election manager waits before choosing the new supervisor. In

particular, the developer must also implement the �tness function,

which is the core of the election policy.

For the test, I've compared four di�erent strategies:

• Case A: maxAttempt = 1, electionTime = 1 sec, �tness func-

tion that chooses the person that will stay in the group for the

most time.

• Case B: maxAttempt = 3, electionTime = 1 sec, �tness function

that chooses the person that will stay in the group for the most
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time.

• Case C: maxAttempt = 1, electionTime = 1 sec, �tness function

that chooses the new supervisor randomly.

• Case D: maxAttempt = 3, electionTime = 1 sec, �tness func-

tion that chooses the new supervisor randomly.

With these con�gurations, it is possible to compare how di�erent

choices a�ect the result. For all four cases I set 1 second as the

election time because, in the environment, I need the election process

to �nish as quickly as possible.

I tried each case three times. In particular, each simulation had

a duration of �ve minutes and each person could be connected to

the screen for a time between 19 to 48 seconds, and after that one

leaves the group, he must wait 2 seconds before rejoining the group.

The results of my tests are shown in Table 3. The �rst column

is the case, the second is the total number of supervisors that were

activated (one is the �rst that arrives to the screen and he is ac-

tivated as supervisor without election), then there is the medium

time spent in the election process. The fourth column is the total

time spent without an active supervisor, and the last column is the

average life time.

Comparing the values between cases A and B, and cases C and

D, couples that have the same �tness function but di�erent number

of attempts, we can see that cases B and D spend more time without

coordination. However, the number of elected supervisor is smaller.

Therefore, in situations in which the recovery process is critical, it

is preferable to have a greater number of attempts.
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Table 3: Comparison of strategies

Instead, comparing cases A and C, and cases B and D, which

use di�erent �tness functions, the results show that a good �tness

strategy greatly reduces the number of performed elections. It is

an important feature that must be implemented in the best way

possible to improve the general performance.

5.4 How can we improve?

From these tests, it is clear that the main limiting factor is the net-

work. It's necessary, �rst of all, to have a network that can support

the system and its workload. Unfortunately it's not always possible

to have a good network. Some tricks can be used, however, when

the situation is critical. For example, if we consider the hospital, in

which people join the group to set the information about their desti-

nation, we can improve the performance by disconnecting a follower

as soon as he gets the information he/she needs. This way, if there

are 200 people near the screen, the number of active connections

remains lower, since we only need to connect the supervisor and the
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few people that just arrived near the screen.

Another possibility is to use more groups, so that when there

is an election, a lower number of followers will participate in the

process, and thus the tra�c on the network will be reduced.

There is also some work that can be done on A3JG to improve its

performance. For example, future work could develop a dedicated

communication network that replaces JGroups. This substitution

can improve the A3JG's capacity because now it is using the Repli-

catedHashMap of JGroups, but this feature is not guaranteed to

operate well, and it also increases the size of the messages during

the election. In fact, for the moment, the RHM is used to achieve

di�erent characteristics of A3JG, but all this can lead to excessive

slow down in the election process. So, in the new connection and

communication substrate, it should be possible to distinguish the

di�erent areas in which the map is currently being used, so that

di�erent elements of the network.

Future work should also consider the development of a MAPE

control loop that will complement (or replace) the current coordi-

nation process, and which may provide better tools for managing

the supervisor, and consequently the followers. In fact, for the mo-

ment the control cycle does not have distinct phases, and this may

require the developer to create a control part, with probable lower

performance. However, inserting the MAPE control loop within in-

dividual supervisors (who seem to be the most suitable entity), we

should also be careful to not tie the overall coordination of the sys-

tem to the individual groups. If this should happen a single group

could cause delays to the whole system.
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6 Conclusion

Research on self-adaptive systems started about twenty years ago,

and in these years many solutions and ideas have been proposed. A-

3 is an innovative solution for the realization of distributed systems

with a high number of components that can freely join and leave the

system, and where the coordination and management requirements

are very strong. A-3 proposes the use of groups to de-centralize the

management of the nodes, so that the designer can concentrate on

the coordination of elements that are less dynamic. This also allows

nodes to move freely; in fact, individual entries and exits do not

cause problems for the general management of the system.

This work presented A3JG, a Java-based implementation of A-3,

that allows distributed nodes to collaborate to reach a common goal

using the A-3 style. It allows the creation of groups, and the policy

of grouping can be freely decided by the developer of the application.

Each node can assume a role in each group in which it can work,

and for each group an entity can be a supervisor (only one for each

group) or a follower. These two roles are obtained in the middleware

extending the A3JGSupervisorRole and A3JGFollowerRole classes.

Thanks to these two, the developer is able to use all the features

of A-3, such as di�erent types of message exchange on the election

process.

This thesis presented several tests to verify the actual usefulness

of A3JG as a middleware. In particular, these tests focused on the

realization of a self-adaptive hospital environment, in which people
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are guided inside the building to reach their destinations e�ciently

and safely. In an environment such as a hospital, each day thou-

sands of people between sta�, patients and visitors that move inside

it, and if each of these represents a node in our network, a central-

ized management is not able to ensure crucial requirements such as

security.

The �rst test, showed how systems that use A3JG are able to

easily manage the task of providing the directions and guiding people

through the corridors without problems. Even in the case in which

an accident occurs in a corridor, entities predisposed to monitor

the environment for possible dangers are able to notice the problem

immediately and report it to the server so that the hospital can

adapt its paths to ensure the safety of persons.

The second test was designed to measure the performance of the

system, and it concerned on the worst case scenario, given that the

requirements can be very stringent as when human lives are at stake.

From this simulation, it was clear that a �rst limit, which is not eas-

ily surmountable, is given by the capacity of the network. However

I have proposed possible solutions to be able to operate also in these

conditions. The tests also emphasized the need to work on A3JG's

connection-level and node communication capabilities, in such a way

to have a network designed speci�cally for its characteristics. This,

in turn, should allow us to reduce the tra�c generated by message

exchanges, and to improve its performance.

Finally, it was shown that the designer's choices can greatly a�ect

the overall performance of the system. In fact, the developer is

required to provide some details on how to evaluate the nodes during

election, enable the system to recover a supervisor when it leaves the

network. From the tests I noticed that when the developer uses an

optimal strategy for assigning the �tness value, and he �ts correctly

the parameters of the election manager, this can signi�cantly reduce
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the periods in which a group remains without a guide.

As for future work, there is the need to correctly insert MAPE

control loops inside the supervisor, providing even simple methods

to the developer, so that through these he/she can organize the

coordination within the group. A problem can be given by the

possibility of a node to join more than a group, and then to create

an information exchange between these groups. In fact, must be

avoid that the slowing down of the MAPE loop of a shared node

can be propagated within the other groups, and then that the overall

coordination of the system is slowed down.
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