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ABSTRACT IN ENGLISH

Embedded systems can be considered as specialized computing systems which can be used for multi-purpose
application varying from mobile-phone to military and home-automation devices. Although the functionalities of
these devices are differed, the computational structure and design is tightly connected with the platform and
programmability in which they rely on. Consequently, by introducing the VLSI technology, designing complex
systems-on-chip (SoC) platform and related Network-on-Chip (NoC) has to be finely tuned.

The target is a multi-objective optimization problem: to maximize the performance of the platform and minimize the
power consumption or other non-functional metrics. During this design phase, Design Space Exploration (DSE)
plays a major role to benefit the designer, to prune the large design space and support the designer during the

analysis phase.

The research thesis targets the exploration of compiler options parameters, in order to automatically explore the
design space and analyze the compiler-architecture co-design in VLIW processor by applying random design of
experiment algorithm. The thesis tackles the aforementioned problem by proposing an automatic methodology based
on a tool-chain including the MOST tool(Multi-Objective System Tuner), a Ubuntu wrapper and two open-source
compilers; namely, LLVM and VEX. The proposed tool-chain enables the designer to automatically explore,
optimize and analyze the options by using several standard benchmarks for both high-end embedded and signal

processing applications.

The analysis could be used as a tool-chain for benchmarking the compiler options and expanded to architectural
options in the near future. The optimization phase could be done as a further step of the research to generalize the

explored trends in the results' analysis.

In this dissertation, the thesis is supported by a large set of experimental results relying on solid sets of statistical
analysis which clearly shows the characteristics and the effects of each transformation. We targeted benchmarking
with MOST software, VEX and LLVM simulator to provide solid experimental setup. In addition, the Appendix

provided a complete hand-manual for designers in order to use as a multiple-purpose reference.

Keywords: Compiler Options, Design Space Exploration, VLIW processors, Compiler Optimizations, DoE, Tool chain

Benchmarking
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ABSTRACT IN ITALIAN

I sistemi embedded possono essere considerati come sistemi di calcolo specializzati che possono essere usati per
applicazioni multi-purpose che possono spaziare da telefoni cellulari fino ad applicazioni militari o di domotica.
Sebbene le funzionalita di questi dispositivi siano diverse, la struttura di calcolo e il relativo progetto ¢ strettamente
collegato con la piattaforma e il paradigma di programmazione utilizzato. Di conseguenza, introducendo la
tecnologia VLSI, il progetto di piattaforme complesse di tipo System-on-Chip (SoC) e della relativa rete di
interconnessione on-chip (Network-on-Chip) deve essere dettagliatamente raffinato.

L'obiettivo ¢ massimizzare le prestazioni della piattaforma e minimizzare la potenza dissipata e altre metriche non
funzionali del sistema. In tale fase di progetto, 1'esplorazione dello spazio di progetto (Design Space Exploration)
gioco un ruolo fondamentale per filtrare automaticamente i punti dello spazio di progetto e supportare il progettista
nella fase di analisi.

La presente tesi di ricerca ha come obiettivo principale I'eplorazione dei parametri del compilatore, in modo da
esplorare automaticamente lo spazio di progetto e analizzare in modo congiunto i paramteri del compilatore e
architetturali nei processori VLIW applicando tecniche casuali per il progetto degli esperimenti (Design of
Experiment).

La tesi affronta il problema proponendo una metodologia automatica basata su una tool-chain che include il tool
MOST (Multi-Objective System Tune), un wrapper Ubunti ¢ due compilatori open-source: LLVM e VEX. La tool-
chain proposta consente al progettista di esplorare automaticamente, di ottimizzare e di analizzare le opzioni dello
spazio di progetto usando diversi benchmark standard per applicazioni high-end embedded e di elaborazione dei
segnali.

La metodologia di analisi proposta puo essere usata come tool-chain di benchmarking per valutare i parametri del
compilatore e come sviluppo futuro per valutare i paramteri architetturali. La fase di ottimizzazione puo essere
eseguita come sviluppo futuro del progetto di ricerca per generalizzare gli andamenti evidenziati nell'analisi dei
risultati sperimentali.

Nel presente lavoro di tesi, 'approccio proposto ¢ supportato da un ampio insieme di risultati sperimentatli che si
basano su un insieme solido di analisi statistiche che evidenziano chiaramente le carattersitiche e gli effetti di ogni
trasformazione applicata. L'analisi presenta risultati ottenuti utilizzando la metodologia proposta basata sui tool
MOST, VEX e LLM che forniscono un solido ambiente di sperimentazione. Inoltre, nell'Appendice sono raccolti
tutti 1 risultati sperimentali ottenuti nella presente tesi da utilizzare come rifermento per analisi successive.

Parole chiave: Opzioni del compilatore, Esplorazione dello Spazio di Progetto, Processori VLIW, Ottimizzazioni
del Compilatore, progettazione degli esperimenti, Tool-chian Benchmarking.
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Chapter 1

Introduction

Increase in speed at which processor are clocked have led to higher performance benefits - applications
now run faster; it is now possible to run realistic graphics, interactive games and simulators. This is
primarily because of improvements in semiconductor technology in terms of both speed and technology.
These processors seek out independent operations/instructions in a sequential program and execute them
in parallel to expose what is commonly called instruction level parallelism (ILP). On one hand we could
have a processor with large and complex control path and relatively small data path while on the other
hand we could have a processor with vice versa configurations. The VLIW processors use the latter

approach; making it easy for parallelism and simpler control systems [1].

It is often very difficult to find a single modeling approach or analysis tool which is capable of fulfilling
all the challenges of systems-on-chip design. There is a certain need for tuning the chip in order to have
the best outcome. Configurable simulation models are used to accurately tune the on-chip architectures
and to satisfy the requirements of the target application in terms of performance versus intensity trade-off,

battery lifetime and area.

The performance indicators (such as power consumption, delay, area, etc.) are impacted considerably by
altering the parameters. The design space exploration (DSE) is an optimization phase which aims at
tuning the configurable system parameters to find the best trade-off in terms of the selected figures of
merit. The DSE generally consists of a multi objective optimization (MOOQ) problem and pruning a large
design space of parameters. In addition, DSE can be used in the compiler level, tuning the compiler-
options in order to exploit the best possible trade-off and even mix those with the architectural parameters

such as Cache size, word size, etc.
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The overall goal of the DSE phase is to find the optimal parameterized configurations of either
architectures and/or applications in order to minimize the number of executing simulations during the
exploration phase. So far, several heuristic techniques have been proposed to address this problem;
however, they were not efficient enough for identifying the Pareto front of feasible solutions in a
reasonable amount of time. That is exactly the main objective and contribution of the dissertation which is

going to be elaborated in the following section.

1-1Dissertation Contribution

The aim of this thesis is to define an efficient tool-chain to explore and analyze the design space formed

by the compiler option parameters for ILP processors.

The main contribution presented in this thesis consists of the definition of a multi-objective

benchmarking, analysis methodology for compiler options in VLIW processors.

Our study will show a clear way, how to calculate performance and do analysis on these compiler options
which is definitely necessary for many purposes such as graphic AGP cards, embedded systems, etc.
Within this dissertation, we focus on VLIW (Very Long Instruction Word) processors, which are suitable

for low-power embedded high-end computers.

In order to introduce the methodology, first it starts by explaining the status-quo and the background work
already presented about DSE and compiler options. Consequently, the tool-chain details will be
introduced. In addition, the final methodology and test-bed which has designed to test the performance of
these compiler options will be clarified. Furthermore, the experimental results will be introduced,

Followed by conclusion and future works and the complete hand-manual appendix.

This dissertation focused on exploration of research field not yet well faced with as a methodology
analysis, it describes the performance metrics of the most common compiler options introduced by

LLVM in several standard and useful benchmarks.

In order to exploit the best benefits of VLIW processors, there is certainty for tuning the configuration
tree based on design space exploration. Therefore, understanding the performance and the pros and cons

of each compiler option could play an important role in the era of computational lower-orders tasks.
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The methodology proposed, in Chapter 3, has main target to provide best and complete information
regarding the compiler options and their benchmarking. Given the increasing complexity of multi-
processor system on-chip architectures, a wide range of architecture parameters must be explored at
design time to find the best trade-off in terms of multiple competing objectives (such as energy, delay,
bandwidth). Therefore, the design space of the target architectures is huge because it should consider all
possible combinations of each parameter. The experimental tool in which we used, MOST: Multi-
Objective System Tuner [2], under proprietary of Politecnico Di Milano, helps driving the designer

towards near-optimal solutions to the architectural exploration problems.

1-2 Dissertation Organization

The structure of this dissertation is as follows; first, the state-of-art and background of the topic is going
to be illustrated in Chapter 2. In Chapter 3, the selected compiler option is going to be bolded, then the
two open-sourced compilers LLVM [3] and VEX [4] are going to be introduced. In Chapter 4, by
introducing the tool-chain and MOST, the methodology is going to be illustrated. Finally in Chapter 5, the
experimental results will be shown and will have the conclusion and future works on Chapter 5 and 6. At

the end of this dissertation, there will be an Appendix representing the overall results in classified mode.
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Chapter?2

Main Background

To better understand the work and methodology, some theoretical points regarding the topic of the
dissertation reviewed. In 2-1 Theoretical Background, the main background of the topic such as VLIW
architecture, Design Space Exploration (DSE), Performance Models, etc are going to be represented at a
glance. Afterwards, in section 2-2 State of Art, recent works regarding the performance evaluation of the
compiler options are referred.

2-1 Background

2-1-1 ILP architecture

Instruction level parallelism (ILP) is a family of processors and compiler design techniques that speed-up
execution by causing individual machine operations, such as memory load and stores, integer addition and
floating point multiplications, to execute in parallel. [5] The operations in which they involve are the
normal RISK-style operations, and the program is performing a single program written with a sequential
processor in mind. The intrinsic of this technique could lead to improvements in speed, but unlike the
traditional multiprocessor parallelism, this action is totally transparent to the users. The prominent

example of ILP usage could be found in VLIW [6] architecture and superscalar systems.

The end result of ILP is that multiple operations are simultaneously in execution, either due to the result

of having been issued simultaneously in the issue phase or because of having a greater time for

16 |Page



completing the execution phase than issuing the successive operation. The classification of ILP could be

as following [5]:

e Sequential Architectures (without the necessity of conveying any explicit information

regarding parallelism. i.e. superscalar processors )

e Dependence Architectures (By indicating the dependencies which exist between the

operations. i.e. Data flow processors)

o Independence architectures (In this architecture, the program provide information as

which operation are independent from one another. A good example could be VLIW

processors.)

4 Frontend & Optimizer )
1 ok Sequential
o : (Superscalar) : i ,
( Determine Dependences ) ( Determine Dependences )
. L - Dependence ‘

.. Architecture : i Y '
(Determine Independences) v (Datafiow) ":_CDetermine |"d°P°“d°"°°$J
o N edwendece _ | b ]

: G Architecture : _} : 1
( Bind Resources ) (Horizon) ( Bind Resources '
[ ; Independence !
S Architecture
(VLIW)

Compiler Hardware

Figure 1- ILP architecutre classifications [7]

2-1-2 VLIW Processor Architecture

Since introducing ILP in 80’s, there were lots of systems taking advantage of it. VLIW (Very Long
Instruction Word) was more like a design philosophy for a long time. A succinct statement of VLIW

philosophy could be “Expose instruction-level parallelism in the architecture” [7] . But it could apply to
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many levels of the system, including compiler, instruction-set architecture, etc. In addition, parallelism
should be revised as it could refer just to run independent task separately rather than in sequentially. We
have to take into account lots of interconnection between VLIW and superscalar, VLIW and Compilers,

etc.

Recent high performance processors have depended on Instruction Level Parallelism (ILP) to achieve
high execution speed. ILP processors achieve their high performance by causing multiple operations to
execute in parallel, using a combination of compiler and hardware techniques. Very Long Instruction
Word (VLIW) is one particular style of processor design that tries to achieve high levels of instruction

level parallelism by executing long instruction words composed of multiple operations. [8]

As an example of differences between superscalar and VLIW, could be the scheduling process; in which
superscalar does in via hardware but VLIW have compiler rearrange the code to be executed without
changing the hardware. In some processor, there is a special control hardware that examines the operation
as it comes from instruction streams. A principal of VLIW has been said as “don’t wastes silicon, avoid
hardware that computes anything other than the intended computation on the critical path of every

instruction” [7]

Superscalar VLIW

Instruction
Stream

Instructions are issued from
a sequential stream of scalar
operations.

Instructions are issued from
a sequential stream of multiple
operations.

Instruction Issue
and Scheduling

The instructions that are issued
are scheduled dynamically by
the hardware.

The instructions that are issued
are scheduled statically by
the compiler.

Issue Width The number of issued The number of issued
instructions is determined instructions is determined
dynamically by the hardware. statically by the compiler.

Instruction Dynamic issue allows in-order Static scheduling allows only

Ordering and out-of-order. in-order issue.

Architectural
Implications

Superscalar is a micro-
architecture technique.

VLIW is an architecture
technique. Hardware details are
more exposed to the compiler.
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2-1-3 Design Space Exploration

By introducing the VLSI [9] technology, designing complex systems-on-chip (SoC) platform parameters
and the network infrastructure on the chip (NoC) of these devices has to be finely tuned. The target is to
maximize the performance of the platform and minimize the non-functional costs of the system like
Power Consumption, etc. Mapping programs onto configurable architectures is a difficult problem. The
set of design choices from which a designer must perform trade-offs in enormous. The designer must
detect and exploit characteristics in the sequential application to manage the data movement within the
program, determine the data movement in the memory subsystem, and assign system resources to
program components to maximize system performance. The large number of degrees of freedom creates a
complex design space [10]. This is where Design Space Exploration (DSE) plays the main role to benefit
the designer, to prune the large amount of unnecessary design space and actuate the multi-objective

problem for the best trade-offs.

Figure 3- (Design Space Exploration General Flow) shows the flow of applying design space exploration.
In general, we are interested in finding the solution on each architecture we applied the method. However,
quite often it happens that we won’t reach the exact and complete solution. There are possibilities in
which we reach the succinct point via some algorithms i.e. Simulated Annealing [11], Design of

experiment (DOE) [12], etc.

Starting
Configuration(s)

Evaluator
(Simulator)

New
Configuration{s)

' Performance
Indexes

R 3
Dacision Design
Confs

Figure 3- Design Space Exploration General Flow (Courtesy of sciencedirect.com)
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2-1-4 Compiler Options

Using more optimized compilers have been always a goal in computer science, however, reaching this
goal has its own tolerance and trade-off. Occasionally it happens to sacrifice the code size for better
performance or portability versus code size. Consequently, there should be a precaution when using these

options otherwise it ends up heavier and less-usable.

Without any optimization option, the compiler's goal is to reduce the cost of compilation and to make
debugging produce the expected results [13]. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or change the program

counter to any other statement in the function and get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or code size at

the expense of compilation time and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the program. Compiling multiple
files at once to a single output file mode allows the compiler to use information gained from all of the

files when compiling each of them. Not all optimizations are controlled directly by a flag.

Most optimizations are only enabled if an -O level is set on the command line. Otherwise they are
disabled, even if individual optimization flags are specified. Generally, there are some levels of
optimizations defined in which it could be specified the level and the routine of optimization. The main

classifications of GNU [14] C family compilers’ optimizations are as following:
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e -O1
Optimizing compilation takes somewhat more time, and a lot more memory for a large function.
With -O, the compiler tries to reduce code size and execution time, without performing any

optimization that takes a great deal of compilation time.

e -02
Optimize even more. GCC performs nearly all supported optimizations that do not involve a
space-speed tradeoff. As compared to clean -O, this option increases both compilation time and

the performance of the generated code.

e -03
Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on some of the
other optimization flags like “inline” and “loop unswitch”. The complete list of Compiler

parameters involves with LLVM is being described completely in the following section.

e -0O0

Reduce compilation time and make debugging produce the expected results (the default option)

Still there are lots of more optimization flags to be mentioned, but in main stream, the role of using these

flags depends on the compiler architecture and its behaviors.

In this dissertation, 15 compiler parameters which aggregated to the popular LLVM capabilities of
compiler flags have selected to be used for our analysis on the benchmarks. These are taken from and

listed in Table 1-(List of compiler transformations in LLVM) [15]:
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Compiler Full Unabbreviated Lo
Description
Transformation Name
Constant It looks for instructions involving only constant operands and replaces
Constprop . : . . .
Propagation them with a constant value instead of an instruction.
D Dead Code Dead code elimination is similar to dead instruction elimination, but it rechecks
ce
Elimination instructions that were used by removed instructions to see if they are newly dead
) Function
Inline . . Bottom-up inlining of functions into callees.
Integration/Inlining
Combine o ) ) ) ) )
) Combine instructions to form fewer, simple instructions. This pass does
Instcombine Redundant . . . o
) not modify the CFG This pass is where algebraic simplification happens.
Instruction
Loop Invariant Attempting to remove as much code from the body of a loop as possible.
Licm Code Motion It does this by either hoisting code into the pre-header block, or by

sinking code to the exit blocks if it is safe.

Loop Strength

This pass performs a strength reduction on array references inside loops that

Loop reduce Reduction , . . .
have as one or more of their components the loop induction variable.
Loop_rotate Rotates Loops A simple loop rotation transformation.
Loop unroll Unroll Loops This pass implements a simple loop unroller.
) ) This pass transforms loops that contain branches on loop-invariant
Loop_unswitch Unswitch Loops

conditions to have multiple loops

Promote Memory

This file promotes memory references to be register references. It

MemZ2reg ) ) ) )
To Register promotes alloca instructions which only have loads and stores as uses.
Memcpy This pass performs various transformations related to eliminating
Memcpyopt S . .
Optimizations memcpy calls, or transforming sets of stores into memset's.
) Reassociate This pass reassociates commutative expressions in an order that is
Reassociate ) ] )
Expressions designed to promote better constant propagation
Scalar This transform breaks up alloca [16] instructions of aggregate type
Scalarrepl Replacement of (structure or array) into individual alloca instructions for each member if
Aggregates (DT)
possible.
Sparse .
" Assumes values are constant, Basic Blocks are dead unless proven
Conditional
Scep Constant otherwise, Proves values to be constant, and replaces them with
Propagation constants and Proves conditional branches to be unconditional.
Simplifycfg Simplify the CFG Performs dead code elimination and basic block merging.
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2-1-5 Performance Model and Floating Point

Similar to every other science, the whole attempts should lead to a better performance and lower
functional cost. Therefore, there have been lots of different models for performance evaluations regarding
the design space and all the matters. Regardless of what model we choose, there is a possibility of
misleading us to the fine goal, justifying the right result and mapping them to the experimental one could

be the hardest task of each researcher.

Stochastic analytical models [17] and statistical performance models [18] can predict program
performance on multiprocessors accurately; however, it is rarely to suggest an insight on how to improve

these measurements either for compilers, programs or computers.

In the Section 2-2 (State of Art), some of the recent performance models are going to be introduced, but
meanwhile an important model in which the dissertation has been illustrated.

For a given kernel, we can find a point on the X-axis based on its operational intensity. If we draw a
vertical line through that point, the performance of the kernel on that computer must lie somewhere along

that line.

The horizontal and diagonal lines give this bound model its name. The Roofline [19] sets an upper bound
on performance of a kernel depending on its operational intensity. If we think of operational intensity as a
column that hits the roof, either it hits the flat part of the roof, which means performance is compute

bound, or it hits the slanted part of the roof, which means performance is ultimately memory bound.
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Figure 4-Roofline Model [19]

Consequently, we have to make sure the way we traverse in these areas will be on the verge of higher
levels of performance versus intensity; otherwise we hit the roof either in the straight or slanted line and

end up being compute and memory bound.

2-2 State of Art

In the field of Design Space Exploration for compilers in VLIW processors, there have been some quality
works done recently which in this section are going to be illustrated. However, none of those are exactly
applied to the very current topic of this dissertation. This section is presented combinatorial like as for the

most important works could be viewed chronologically.

24| Page



2-2-1 Design Space Exploration for Compiler Options

David. Fischer et al. [20] in their co-exploration work tried to characterize the design space of both
compiler frontend (intermediate code optimization) and backend (architecture-specific code generation)
that is used in order to do Architecture/Compiler Co-Exploration for the search of optimal
architecture/compiler combinations. Their results have been published as a framework entitled,

“BUILDABONG”.

A. Halambi et al. in their 2001 work [21], namely “Expression”, designed and introduced a language
supporting architectural design space exploration for embedded Systems-on-Chip (SoC) which was
capable of automatic generation of a retargetable compiler/simulator toolkit. As a key feature of their
work, it could be explicitly being specified for the memory subsystem, therefore some new ways of
memory organization and hierarchies were possible. Meanwhile the work wasn’t being self-adaptive for

architectural-based compiler flow for each architecture it had the need of specifying the dependencies.

B. So et al. [22] described an automated approach to hardware design space exploration, through
collaboration between parallelizing compiler technology and high-level synthesis tool. Their algorithm
was to be said to have a quicker search space exploration and could derived a closely matched to best

performance model.

M. O’Boyle et al. [23] defined an iterative optimization using machine learning which it uses predictive
modeling from the domain of machine learning to automatically focus search on those areas likely to give
greatest performance. This approach was independent of search algorithm, search space or compiler

infrastructure and scales gracefully with the compiler optimization space size

O. Mencer et al. [24] defined a stream compiler (ASC) which allows users to express and reason about the
design space, extract parallelism at each level and quickly evaluate different design choices. They have
tested their work with benchmarks like wavelet compression and Kasumi encryption and had optimization

in latency and memory usage on both.

C. Dubach et al. [25] went for another solution on the DSE tree. They used machine learning techniques
to rapidly explore and predict the design space since it costs a lot of time to explore the tree for each
application. This architecture-centric approach used prior knowledge from off-line training and applies it
across benchmarks which allowed the model to predict the performance of any new program across the

entire micro-architecture configuration space with just 32 further simulations.
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2-2-2 Design Space Exploration in VLIW Processors

In the recent years, there have also some works done with the new coming open-sourced compiler for
VLIW architecture, namely VEX [4]. One of the benefits of using this compiler is to have degree of
freedom in changing the architecture based-on the needs and have the detailed compilation log. It
supports 32 bits compilation for native C language with the standard of -C89 and -C99 [26]. As a matter
of fact, by introducing the pre-defined scenarios, VEX compiler is capable if evaluating good

architectural parameters i.e. total cycles, cache usages, etc.

P. K. Saraswat et al. [27] used simulated annealing for finding the best custom VLIW architecture for
GSM decoder application using mentioned VEX compiler. The suitability and the efficiency of the
simulated annealing-based Design Space Exploration Algorithm is evaluated and compared against the

exhaustive exploration of the complete design space.

In addition, there has been a digital signal processing application done with VEX for a custom VLIW
architecture. D. Saptono et al. [28] presented a design space exploration experience for an embedded
VLIW processor that allows finding out the best architecture for given application. The proposed method
has been implemented and tested using an image processing chain for direct photo printer. The results
show a considerable improvement in hardware cost and performance, after identifying the best
architecture, they applied a technique to optimize the code in VEX system that uses “inlining” function in

order to reduce execution time.

M. Kumar et al. [29] have verified SIM-A Simulator with VLIW based Vex Simulator. Their work
discussed the working and configurationally issues involve in Vex Simulator. They have compared the
results obtained from VEX and SIM-A simulator in various levels and claimed some inconsistency

between those.

Taking into considerations all these appreciated efforts, in the following section, the proposed work is

going to be presented.
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Chapter 3

Proposed Methodology

The ongoing advances in computer architectures and processors have been led to create a necessity of
walking on the right trend in order to comply with the wave. Therefore, applying design space exploration
in a right manner plays a vital role in that matter. Therefore, the main contribution presented in this
direction is based on the definition of a multi-objective benchmarking, analysis methodology for compiler

options in VLIW processors.

As explained in 2-1-3 Design Space Exploration, the variety of parameters both in architectural and
compiler side, have made the DSE a huge complex tree to traverse. There is the need to apply further
optimizations algorithms to prune the unpromising branches and leafs in-order approach toward the
succinct optimal solution. The leaf nodes are the configurations, reaching these points is not as easy as it

sounds like, even with the best supercomputers so-far, it takes a lot to calculate the space tree.

3-1 Problem Description

Optimization problems are very common in many design phases of each engineering phases.
Nevertheless, understanding the current situation, analyzing the trend and try to find a solution could be

pre-phases toward the latter matter.
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When we face compiler and architectural options in design space for VLIW processors, we are accounting
thousands of parameters in a giant complex tree to traverse. As an example, provided with 15 compiler
optimization options, each there are possibilities either to “take” or “exclude”, in addition there are 18
more architectural levels in which there could be a range to taking. Provided with the constraint of taking
the integer numbers in between those ranges, we are going to end up having the Table 2- (Our Problem

Design Space Exploration Example):

No. Parameters Possible Values Final
(Integer Range) Outcome
1 Compiler Optimization 25 32768
Parameters

2 lg2CacheSize [11,30] 22
3 1g2Sets [0,3] 4

4 lg2LineSize [5,9] 5

5 1g2ICacheSize [11.30] 22
6 1g2ICacheSets [0,3] 4

7 lg2ICacheLines [5,9] 5

8 CoreCkFreq [300,500] step=50 5

9 BusCkFreq [200,400] step=50 5
10 NumCaches [1,2] 2
11 NumClusters [1,4] 4
12 IssueWidth [1,16] 16
13 NumAlus [1,16] 16
14 NumMuls [1,4] 4
15 MemlLoad [1,8] 8
16 MemStore [1,8] 8
17 Memory [1,8] 8
18 PFT [0,8] 9

Table 2-Our Problem Design Space Exploration _ Example

The so far mentioned design simply has 5.9868 * 10 '® space size to be explored to each benchmark.

Therefore, not applying the right method, definitely leads us to suboptimal leafs. In addition, when we are
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dealing with these multiple parameters, there is a necessity of using DOE (for design of experiment) in
order to sampling the tree. For instance, when it is said, expanding the “inline” compiler parameter, the
designer has to take into account the possible manners for each and every design when the inline has been
chosen or not (excluded). That is 2 multiply the type of compiler options (which is here 15) added to the

exploration problem. Taking into accounts the 15 compiler option each having two phases, it will be

2%X2 X x 2 =21
N——
No. of compiler Options

In this dissertation, the main focus were on the compiler options parameters, therefore the architectural

parameters have been assumed as fixed with the values reported in Table 3:

No. Parameters Values (Integer
Range)
2 1g2CacheSize 16
3 1g2Sets 2
4 1g2LineSize 5
5 1g21CacheSize 16
6 Ig21CacheSets 2
7 lg21CacheLines 6
8 CoreCkFreq 500
9 BusCkFreq 300
10 NumCaches 1
11 NumClusters 2
12 IssueWidth 8
13 NumAlus 8
14 NumMuls 2
15 MemLoad 4
16 MemStore 4
17 Memory 4
18 PFT 4

Table 3-Our Design Space Exploration Fixed Arch Parameters
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Many different DoEs have been studied for design space exploration; some of them are as follows [12]:

1- Full Factorial: experiment all the factors included in the experiment.

2- Fractional Factorial: runs a fractioned factored randomly based on the predefined heuristics.

3- Screening Factorial: more extreme way of factorial.

4- Response Surface: is an off-line optimization, two factors studied usually.

5- EVOP : online evolutionary experiments

6- Mixture : Based on the context it will add the constraints

Given the large size of our design space, in this dissertation, Fractional factorial which has the
randomized selection of experiments has been used. For instance, by running 500 times for each and
every compiler options, the system has a good estimation of the whole design space. The algorithm will
sample the space equal to the N defined in the script, then by using the Random Effects option in the
scripts, the system divide the sample nodes (here is 500) to two 250 and allocate them for each of the
phases (here is two: exclude or include) the interested compiler parameter which to be explored. The

other points are being chosen randomly.

3-2 Designed Model

As it abstracted in the section “ 1-1-1 Analyzing Compiler parameters “, the opposed methodology of
benchmarking the design space exploration for compiler options in VLIW processor was consisted of a
built tool-chain ( a generic-wrapper), MOST [2] (for Multi-objective system tuner), two open-sources C
compilers, namely, LLVM [3] and VEX [4] and some sets of standard benchmarks inside the HP-VEX,
namely, GSM [30] and some benchmarks of Chstone series [31], namely, Jpeg, Aes, Adpsm and
Blowfish. The very first benchmark was used for mostly focus on the intensity which is caused to system
and the latter’s one were mostly used in order to see the high level gate filled up with embedded

applications of multimedia.

In this chapter, the detail of the methodology is going to be illustrated. Wherever it is needed for further
mathematical backgrounds, there would be a section with that title. The high-level schema of the

proposed tool-chain is as following:
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Proposed Tool-Chain (High Level View)
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Figure 5- High-level View of Proposed Tool-Chain

3-2-1 MOST Generic Wrapper (MGW)

This Perl, Bash wrapper gets to manage the whole system in order to feed MOST based on the defined
settings, i.e. design space exploration settings for compiler and architectural, iterations inputting the
benchmarks, etc, and subsequently get the output results and import it to the database of MOST, initiating
the next run for that matter. It has a randomized function which randomly generates the input points
MOST needs for running the benchmark. As it mentioned in the Section 3-1 (Problem Description), the
DoE methodology in which it has been used was randomized factorial, therefore in order to avoid the
gigantic design space tree caused by the parameters calculated in the Section 3-1 (Problem Description),

there should have been a generator for these points at the beginning.

MOST GENERIC WRAPPER [32] (MGW) is a Perl wrapper designed to simplify the integration of tools
for the design space exploration (DSE) phase by using MOST. It hides most of the integration details in
term of MOST XML input/output files (except for the XML Design Space description file) providing to
the designer a simpler way to integrate its problem in MOST. The execution config file includes 3 main

sections:

o Input files declaration: This section is used to let the MGW what are the input parameters and

where to include the values in those files.

¢ OQutput files declaration: This section is used to let the MGW what are the output files where to

read the metrics and how to read the values. The section is composed by several lines, one for
each metric declared in the XML design space definition file.

o Execution script: It should include all the commands needed for the generation of the output

files (including the metrics).

A simple example of initiating the MGW is shown below:

31|Page



Input File Declaration Output File- Coordinates Execution script
[...] #1/bin/sh

Core numeber = 4 type;hitRate[%];Accesses; power [mw]; | set -e

ICache size = 2048 icache; 97.9; 10401; 145; echo "requests 438 " > output.txt

DCache size = 4096 dcache; 83.1; 8300; 132; echo "accesses

Bus size = 64 L2cache; 76.3; 3219; 347; @__MOST_GENERIC_WRAPPER__paraml__ @
[...] " >> output.txt

Table 4- MGW sections's Example

A simple schematic view of the system is drawn as in Figure 6 - (Proposed Tool-Chain Schematic):

Automated System Schema (Component View)

Benchmarks

MIOST

LLW A

Transfarmed JC code

Simulatizn
Execution

LG file

Figure 6-Proposed Tool-Chain Schematic
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The proposed methodology has been defined and designed for multiple-benchmarks and only inputs the
benchmark and settings for the faster and cleaner explorations. In other word, as it will be shown in the
Experimental Results, it is able to input multiple benchmarks from high level synthesis to high

performance and explore, analyze and synthesize the system.

3-2-2 Multi-Objective System Tuner (MOST)

MOST is a tool for architectural and compiler design space exploration [2] [33]. It is an interactive
program that lets the designer explore a design space of configurations for a particular architecture for
which an executable model or driver exists. It can be also extended by introducing new optimization
algorithms such as Monte Carlo optimization, sensitivity based optimization, etc. For instance, Taguchi

design of experiments [34].

The overall goal of this framework aims at providing a methodology and a re-targetable tool to drive the
designer towards near-optimal solutions to the architectural exploration problem, with the given multiple
constraints. The final product of the framework is a Pareto curve of configurations within the design
evaluation space of the given architecture. To meet this goal it has been implemented a skeleton for an

extendible and easy to use framework for multi-objective exploration.

The strength of MOST is that drivers and optimization algorithms can be dynamically linked within
MOST at run-time, without the need of recompiling the entire code base. This is supported by well
defined interfaces between the driver and the optimization algorithms versus the kernel of MOST. The

proposed DSE framework is flexible and modular in terms of: target architecture, system-level models

and simulator, optimization algorithms and system-level metrics.

3-2-2-1 MOST Structure

The Overall structure of MOST can divide its modules into three different categories: [33]
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1. MOST internal modules: They are represented in blue in figure 2. Those modules are internal

to the MOST structure. They are composed by the MOST Kernels, the MOST shell, the MOST

internal database management and the design of experiments and optimization modules. In the

following, each module is described more in detail:

a.

The MOST Kernel engine represents the core of the design space exploration tool. It

orchestrates the optimization process by invoking the constituent and inter-changeable

blocks of the framework.

The MOST shell is the command line interpreter. By using this shell (or equivalent
batch scripts) it is possible to specify the optimization problem and the related
exploration strategy. This particular interface is suitable for remote execution of design
space exploration on server farms. The MOST interpreted language gives now the
possibility to define complex objective functions.

The MOST Internal Database Manager is used to store all the results coming from

simulations. Moreover, it is used for combining metrics values (as estimated by the
simulator) into objective functions, to train analytical models (RSM) and to generate
output reports of the exploration process.

The design of experiments and optimization modules are the basic components for
building the exploration strategies. The internal organization of the software has been
factored in order to provide standard and common APIs for the various modules
associated with the fundamental functionalities of MOST. The standard API consists of a
corresponding dynamic linkable object interface which can be used to develop new

models, aside from the existing ones.

2. MOST External Modules: Those modules are within the MOST packages but are composed of

external executables that will be called through the MOST interfaces. In particular, they are

represented by the response surface models.
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a.

The response surface models (RSM) are used for building analytical models of the

target system response. A similar standard data interchange format (as previously done
for DoE and optimizers) is used for supporting the introduction of response surface

models in MOST.
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Figure 7- MOST Schematic (Courtesy of Dr. Vittorio Zaccaria, Politecnico Di Milano)

As mentioned in the Section 3-1 (Problem Description), the DoE used in this dissertation was based on
Random factors which generated a set of random designed points. In addition, the optimization algorithm
used here was parallel DoE (PDoE) [12] which was based on the possibility of performing concurrent
evaluation of the different design points. Consequently, in these experimental analyses, for each
benchmark compiler option, the number of exploration was 500. It would enough points for the system to

use for DoE and Optimizer to generates the effects and metrics beside the Pareto points (if exists).

3-2-3 LLVM

LLVM is a collection of modular and reusable compiler and tool-chain techniques. LLVM began as
aresearch project at the University of Illinois, with the goal of providing a modern, SSA-based
compilation strategy capable of supporting both static and dynamic compilation of arbitrary programming
languages. Since then, LLVM has grown to be an umbrella project consisting of a number of different
subprojects, many of which are being used in production by a wide variety of commercial and open
source projects as well as being widely used in academic research. Code in the LLVM project is licensed

under the "UIUC" BSD-Style license [3].

The LLVM Core libraries provide a modern source- and target-independent optimizer, along with code
generation support for many popular CPUs. Therefore, for this dissertation research it was chosen as the
C code optimizer which transformed the native C codes of the benchmarks to transformed.c and let the

second compiler in chain (HP-VEX) used it as the feed.
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As an overview, some of the LLVM features could be as following [35]:

e Front-ends for C, C++, Objective-C, Fortran, etc

e A stable implementation of the LLVM instruction set, which serves as both the online and offline
code representation, together with assembly (ASCII) and byte-code (binary) readers and writers,
and a verifier.

e A powerful pass-management system that automatically sequences passes (including analysis,
transformation, and code-generation passes) based on their dependences, and pipelines them for
efficiency

e A wide range of global scalar optimizations

e An easily re-targetable code generator

e APIs and debugging tools to simplify rapid development of LLVM components

e A test framework with a number of benchmark codes and applications

e  64bits C code transformer

3-2-4 HP-VEX

VEX ("VLIW Example" [4]) is a compilation-simulation system that targets a wide class of VLIW
processor architectures, and enables compiling, simulating, analyzing and evaluating C programs for

them.
VEX system include three main components [36]:

1. The VEX Instruction Set Architecture. VEX defines a 32-bit clustered VLIW ISA that is
scalable and customizable to individual application domains. Scalability includes the ability to
change the number of clusters, execution units, registers and latencies; customizability enables
users to define special-purpose instructions in structured way.

2. The VEX C Compiler. It is a robust, ISO/C89 compiler that uses Trace Scheduling [37] as its
global scheduling engine. A very flexible table-like machine model determines the target
architecture. For VEX, we selectively expose some of the parameters to allow architecture
exploration by changing the number of clusters, execution units, issue width and operation

latencies, without having to recompile the compiler.
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3. The VEX Simulation System. The VEX simulator is an architecture-level (functional) simulator
that uses compiled simulator technology to achieve a speed of many equivalent "MIPS'. A simple
built-in cache simulator (level-1 cache only), and an API that enables other plug-ins used for

modeling the memory system.

VEX has the capability of writing output log files based on the architectural parameters; i.e. No. of cycles,

No. of stalls, etc. This is the base of mathematical calculations and metrics for MOST databases.

Got to be mentioned there is a problem aroused by using VEX after LLVM since LLVM compiler feed
the VEX with 64 bits of compiled, transformed code. In some of the benchmarks, lots of efforts have been

issued to fix and make those in-chain output-inputs compatible to each other.

3-3 Benchmarks

As mentioned in the Section 3-2 (Designed Model), there is variety of benchmarks that have been used to
expand the usability of the proposed methodology in this dissertation. The higher level embedded

applications like JPEG to more complex ones like GSM. The selected set of benchmarks is composed of:

1. GSM

2. AES

3. ADPCM

4. JPEG

5. BLOWFISH

There is a necessity of explanation here about some of the differences of “Intensity” the parameter in the
next chapter results which are the difference between the target applications. In another word, those
ChStone benchmark applications [31] are high level synthesis field, therefore the input data is not so large
in-order to be able to simulate at the gate level. For these applications, in this dissertation, the impact of

compiler transformation on performance is more interested rather than intensity itself.
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3-4 Analysis Types

Taking into account the multi-objective facet and complexity of the problem, in this dissertation, for each
benchmark explored, there have been several strong statistical analyses performed in order to support the
evaluation process. All have been done by powerful open-sourced statistical software R [38]. The types of

analysis are:

e ANOVA

o Kruskal-Wallis

e Principal Component Analysis (PCA)
e Correlation Plots

e Box-Plots, Scatter Plots, Matrix Plots

e Densities

For each benchmark, the type analyses mentioned in section Experimental Results of the Chapter - 4 have

been elaborated. In the following section, the definitions of these analyses are being illustrated.

3-4-1 ANOVA Analysis

One of the best tests for evaluating the obtained results in the normal parametric distributions could be

ANOVA [39] (for ANalysis OF VAriances).

ANOVA is a collection of statistical models, and their associated procedures, in which the
observed variance in a particular variable is partitioned into components attributable to different sources
of variation. In its simplest form, ANOVA provides a statistical test of whether or not the means of
several groups are all equal, and therefore generalizes #-test [40] to more than two groups. T-test gets a
significant acceptance value as (o), and then decides to accept or reject the model if the acceptance is
lower or higher than the calculated value. ANOVA is a particular form of statistical hypothesis
testing heavily used in the analysis of experimental data. A statistical hypothesis test is a method of
making decisions using data. A test result (calculated from the null hypothesis and the sample) is called
statistically significant if it is deemed unlikely to have occurred, assuming the truth of the null hypothesis.
A statistically significant result (when a probability (p-value) is less than a threshold (significance level))

justifies the rejection of the null hypothesis. The computer method calculates the probability (p-value) of
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a value of F greater than or equal to the observed value (Pr). The null hypothesis is rejected if this
probability is less than or equal to the significance level (o). The two methods produce the same result. In
this dissertation, the significance level (o) is equal to 5%, therefore, for accepting a model (Pr) should be

greater than F.

alpha

: e

Figure 8- ANOVA

As an example, for GSM benchmark and the mem2reg compiler option, we have this ANOVA result for

performance value:

Ops

Df sSum sSgq Mean Sg F value Pr (>F)
mem2reqg 1 21368 21368 11.46 0.000766 *=*=*
Residuals 494 920663 1864

Figure 9- ANOVA Example

As it may be seen, the (Pr) is greater than (F) and the value is lower than 5%, so the test will be accepted
and it is possible the declare existence of significant impact of mem2reg on the performance metric on the

model.

3-4-2 Kruskal-Wallis

Unlike ANOVA, this analysis test is for non-parametric data. Kruskal-Wallis [41] compares between the
medians of two or more samples to determine if the samples have come from different populations.
Firstly, it has to be checked if the data are independent from each other and the distribution do not have to
be normal and the variance do not have to be equal. The more important thing is that the individuals must
have equal chance of being selected.

As an example, just like the last method, the acceptance test has to be based on the significance level (a)

which is supposed to be 5% in this dissertation. By having:
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Ops

Kruskal-wallis chi-squared = 8.3994, df = 1, p-value =
0.003753

Figure 10- Kruskal_Wallis_Example

3-4-3 Correlation Analysis

In this dissertation a couple of different correlation analyses have been made in order to better elaborate

the experimental results.

First, the Correlation Matrix, which is similar to the Covariance Matrix of the standardized random
variables [42] is going to be illustrated. In this matrix, maximum correlation in the same way of the
parameter is going to be shown by (+1) and vice-versa in the opposite way will be (-1). In between those
points, the correlation will be distributed and of course on the main diagonal of the matrix the value will

be zero as of NO correlation for each same couple.

Second, by varying the parameters with the metrics, the deltas for each parameters will be reached.
Therefore, this type of correlation matrix could be used in order to illustrate the impact of the other

parameters on both the metrics and the other parameters

Third, the Correlation matrix of PCAs, is just like the normal correlation matrix with this different in
which the main parameters for making correlation to will be the principal components of the metrics. For
instance, for GSM benchmark and the mem2reg compiler parameter, the experimental result led to have

the following correlation plot:
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Figure 11- Correlation Matrix_GSM_Inline Example

As it may be seen, Performance (ops) seems positively correlated with mem2reg, code size, inline,
loop reduce, reassociate while it is negatively correlated with loop_rotate.

3-4-4 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components. In addition, the number of principal
components is less than or equal to the original values, or in another word, is less than or equal to the
number of eigenvalues of the matrix [43]. PCA is a way of identifying the patterns in data and expressing

the data in such a way as to highlight their similarities and differences.

In the metrics of the analysis, it is been tried to focus on finding and analyzing the most influential
patterns regarding the performance and intensity in the experimental results, therefore using PCA could
be a good tool in order to define new levels for the analysis. As an example, again for GSM_Inline

parameter, the PCA plot is defined as Figure 12- (PCA for GSM_ Inline):
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Figure 12- (PCA for GSM_Inline) shows strong impact of performance component (around 98%) to the

PC2
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Figure 12- PCA for GSM_Inline

model, and it is the main or the first principal component of the model.
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Chapter 4

Experimental Results

In this chapter of dissertation, the achieved experimental results are going to be illustrated. The procedure
of elaboration will be benchmark by benchmark, and then some of the selected diagrams of each are

going to be introduced. Finally, the whole experimental of each benchmark will be classified via a table.
All the selected benchmarks have been evaluated and explored with the following scenario:

1- Fixed architectural parameters with the value mentioned in the section

2- 500 iterations under RandomDoE algorithm for each compiler parameter designed and executed
by MOST [33]

3- Optimized with the Parallel Doe and being transformed.

4- Being measured regarding the metrics of the roof-line model, the basic metrics have been
generated by VEX, then calculated for each iteration by the roof-line model equations [19]

5-  Further analysis has been done with open-source software R [38] which the selected of them is

going to be illustrated for each benchmark. The Analysis are :

a. “ANOVA” test, defined in Section 3-4-1 (ANOVA Analysis)

b. “KRUSKAL” test, defined in Section 3-4-2 (Kruskal-Wallis)

c. “Box Plots” of Intensity, Performance for enabling/excluding each compiler parameter
d. “Correlation Analysis”, defined in the Section 3-4-3 (Correlation Analysis)

“Scatter Plots” of the effects obtained by varying each compiler parameter

e
[ “Principal Component Analysis”, defined in Section 3-4-4 (Principal Component)

g “Average Increment of Performance and Intensity” for each compiler parameter option
h

Densities regarding the performance and intensity and activating the specified compiler

parameter and the second chosen parameter.
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4-1 Motivation

There are several facets to be taken into considerations when we deal with design space in VLIW
processors. First, as it was mentioned in the Section 2-1-5 (Performance Model and Floating Point), the
roof-line model defines the limits in which it won’t be possible to surpass this line. To certify the theory,
as it has been illustrated in Figure 13, the GSM benchmark has been explored 4000 times with total

random architectural options and the dce random effect.

Vex simulator - intensity vs performance

A “FULL_DB-dce-excluded”
"FULL_DB-dce-phasel1"

1024

Performance [Mops/s]

N
)]
(=2}

0.25 4 (5] 64
Intensity [ops/B]

Figure 13 - GSM_dce_ 4000 iteration_ Roofline Certification

Second, since there are quite a lot of parameters involved in the problem, even with analyzing the effect
of activating each transformation, it won’t be easy classification of the results. In Figure 14-
(GSM_Mem?2reg Effect), by exploring 500 times GSM with mem2reg effect and filtering the
configuration point both before and after activations with their metrics (Intensity and Performance), the
effectual arrows have been drawn. As it could be observed, still lots of parameters have been involved

affecting the trends and behaviors of the system.
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Vex simulator - intensity vs performance
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Figure 14-GSM_Mem2reg Effect

A meaningful visualization about the effect of varying the compiler option, the traversing under the roof-
line could be vital since being either memory bound or computation bound could be resulted in refraining

the further progression of the system resources.

Vex simulator - intensity vs performance
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Figure 15-GSM_Mem2reg Effect_2

Figure 15- (GSM_Mem?2reg Effect 2) shows the exact effects of Figure 14, provided with the points have
been transformed to the relative origin point of O (0, 0) of the Cartesian. If we split the diagram into

fourth, it is going to be seen that the majority of the points are located in the section fourth (minus

45|Page



intensity, minus performance). This will be base of starting the analysis (PCA, etc) which is going to be

illustrated in the following.

4-2 Benchmark No.1 - GSM

It is one of the high intensity benchmarks available for testing the compiler performance at a high and low
level; it has an Encoder/Decoder which is capable of sending and receiving the signals [30]. The GSM
benchmark could place a good and reliable load into the system which is definitely needed to exemplify

the use of the designed methodology.

In this section of dissertation, some of the most important results achieved by running the proposed
methodology are going to be presented for GSM. Since the results and figures are pretty high and varied
for all the 15 compiler options (named in section 2-1-4 Compiler Option), for some of the selected
parameters the experimental results are going to be illustrated and the end of the section the whole table
will be shown. In order to be complete, the whole results have been put in the section Appendix. For
GSM, the parameters chosen were Inline, Loop Unroll and Mem2reg because those were good
representative of all the space combination depicted in the Table 5- (GSM_ANOVA). More in detail we
have that:

o [nline passes both tests for Intensity and performance,
e Joop unroll failed the both,

e memZreg have only passed the impact on Performance.

Therefore, selecting these three could be a good representation of the whole sets of transformations

available.
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4-2-1 ANOVA

ANOVA Analysis _ Inline

Intensity
Df Sum Sg Mean Sqg F wvalue Pr (>F)
inline 1 12847 12847 66.81 2.52e-15 **x*
Residuals 496 95380 192
Ops
Df Sum Sg Mean Sg F value Pr (>F)
inline 1 41832 41832 22.8 2.37e-06 ***
Residuals 496 910193 1835
ANOVA Analysis _ Loop_Unroll
Intensity

Df Sum Sg Mean Sqg F wvalue Pr (>F)
loop unroll 1 0 0.08 0 0.984
Residuals 492 100129 203.51

Ops
Df Sum Sg Mean Sqg F wvalue Pr (>F)

loop unroll 1 2 1.7 0.001 0.976
Residuals 492 913735 1857.2

ANOVA Analysis _ Mem2reg

Intensity

Df Sum Sg Mean Sqg F wvalue Pr (>F)
mem2reg 1 70 69.91 0.35 0.555
Residuals 494 98740 199.88

Ops

Df Sum Sg Mean Sg F value Pr (>F)
mem2reg 1 21368 21368 11.46 0.000766 **x*
Residuals 494 920663 1864

Table 5- GSM_ANOVA

Provided with the Table 5, it could be seen that:
e Inline: a significant impact on Intensity is being observed based on the ANOVA test.

e Loop_ Unroll: No significant changes observed

e Mem2reg: a significant impact on performance (Ops) could be observed.
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4-2-2 Kruskal-Wallis

Kruskall-Wallis_Inline
Intensity

Kruskal-Wallis chi-squared = 55.0613, df 1, p-value = 1.168e-13

Ops

Kruskal-Wallis chi-squared = 23.3781, df = 1, p-value = 1.331le-06

Kruskall-Wallis_Loop_unroll
Intensity

Kruskal-Wallis chi-squared = 0.0022, df = 1, p-value = 0.9625

Ops

Kruskal-Wallis chi-squared = 0.007, df = 1, p-value = 0.9332

Kruskall-Wallis Mem2reg
Intensity

Kruskal-Wallis chi-squared = 0.1376, df 1, p-value = 0.7107

Ops

Kruskal-Wallis chi-squared = 8.3994, df = 1, p-value = 0.003753

Table 6- GSM_Kruskal

Provided with the Table 6, it could be seen that:
e Inline: a significant impact on Intensity is being observed based on the kruskal test.
e Loop_ Unroll: No significant changes observed

e Mem2reg: a significant impact on performance (Ops) could be observed.

4-2-3 Distributions
In this section, presented on each page, there will be the densities of the transformations both in plot and

box view. ANOVA, Kruskal-Wallis analyses can be certify the median lines of the figures.
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Figure 17-GSM_Inline_BoxPlot

It can be observed from the Figure 17, there are significant impacts on the median of Performance and

Intensity by activating the Inline transformation. This statement could be certifies by ANOVA as well.
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Figure 19-GSM_Loop_unroll_Box

As we could guess by ANOVA (refer to 4-4-8 GSM Conclusion), there are no significant change in the

medians of loop_unroll. The Figure 19 certifies this hypothesis. Here as well, it could be observed that

the medians are the same, so no significant impact on metrics.
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Figure 21-GSM_Mem2reg_Box

Ilustrated by Figure 21, mem2reg transformation has significant impact on Performance metrics.
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4-2-4 Scatter Plots

By drawing intensity and performance in a same figure, it can be possible to have a plot which shows the

variety of data and experimental points scattered in the figure as in Figure 21:
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Figure 22-GSM_ScatterPlot_Loop_unroll
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Figure 23--GSM_mem2reg_Scatterplot

Figures 21-23 are a good representation of the deltas while seeing the both metrics together. Distributions
could be seen easily and the trends (if any) could be extracted.

4-2-5 Principal Component Analysis

As explained in the section 3-4-4 Principal Component, using this analysis will re-coordinate the way we
look at the figures in such a way that the more important components based on the highest variety are

categorized as the first and second components. Therefore, the figure can be analyzed by the better
knowledge of knowing the main affected factor.
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Figure 24-GSM_Inline_ PCA
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Figure 25-GSM_Loop_unroll_PCA

As it can be observed by the figure the principal component is performance. The second component is the



With a low slope, the first principal component is related to intensity here and slopped performance is the

second key.
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Figure 26-GSM_Mem2reg PCA

As it can be observed by the figure the principal component is performance. The second component is the

Intensity.

4-2-6 Correlation Analysis

In this section of experimental result, three types of correlation are going to be presented.

1. Correlation on raw data: Simply by having the output data and the metrics, there is a
possibility of calculating the correlation between each two component of the performance and

compiler parameters

2. Correlation on deltas: As it was depicted in Figure 12-GSM_Mem?2reg Effect and Figure 13-

GSM_Mem2reg Effect 2, by filtering the specified compiler parameter and their metrics
(Performance and Intensity), there will be derived four points which was the result of exclusion
and inclusion of that compiler parameter with the results. This kind of correlation is calculated

based on these deltas of the points.
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3. Correlation of the Principal Component: After defining the PCA of the exploration, it is also

possible to do the correlation with respect to the first and second principal component.

1- Correlation on raw data

Inline

w
2 3 gt £
3 B = § b S‘I @ B oo £
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memcpyopt
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dce
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DCacheAccess [ ] | [ ] -0
instcombine
scop Fr-0.2
scalarrepl
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execution_cycles ]
ICacheAccess HE B
num_operations BEE B -06
reassociate >< W =]
loop_rotate | .>.< 08
loop_unswitch ><>OO< W E : P : : ; : b4
simplifycfg |

Figure 27-GSM_Inline_Corr_raw_data

As it could be seen from the result:

e Performance (opt); seems positively correlated with loop reduce, inline, mem2reg,
reassociate, memcpyopt. Licm while it is negatively correlated with loop-rotate and
instcombine.

o Intensity (ints); positively correlated with loop-rotate, reassiciate and scalarrepl and
negatively with loop-reduce and inline

e Small negative correlation between Intensity and performance in the table
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Loop Unroll
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Figure 28- GSM_Loop _unroll_Corr_raw

e Performance (opt); seems positively correlated with loop_reduce, inline, mem2reg,
reassociate. Licm while it is negatively correlated with loop-rotate

o Intensity (ints); positively correlated with loop-rotate, reassociate and scalarrepl and
negatively with loop-reduce and inline

e THERE IS NO correlation between Intensity and performance
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Mem2reg
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Figure 29-GSM_Mem2reg_Corr_Raw

2- Correlation on Deltas

Inline
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Figure 30-GSM_Inline_Corr_Deltas
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It can be observed in the figure that:

e No significant impact on Intensity

e Performance is modified positively by both the activation of inline and mem2reg and
loop_reduce, instcombine and dce. It can negatively modified by activation of inline and

simplifycfg and licm

Loop_Unroll

g _ 2 % o8 . 28
ScessissgEgEiags
performance XXXXXXXX XXXXX I
tem PR OXIXXXIX XEXIXXXX X 08
memZ2reg XX XXXXX XXXXXXX
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toop_rotate XX XX XIXXXOXIXOXEXIX | 102
loop_unswitch >< ><><><><>< ><><><><><>< >< 0
seer X XXXXX XXXX XXX
smpliyeig XXX XX XX XX XX | o2
loop_reduce XXXXXXXXXX ><><>< ><
constprop XXXXXXXXXXX XXXX o

instcombine ><><><>< ><><><><><><>< ><><>< -06
memcpycthXXXXXXXXXXXX XX

intensity XXX XX XX XXX 08

inline >< XXXXXXXXXX

Figure 31-GSM_Loop_Unroll_Corr_Delta

o Intensity can be decreased by activating loop_unroll and inline and loop_reduce. and negatively
by activating loop_unroll and scalarrepl and dce.
e Performance is modified negatively by both the activation of loop_unroll and inline. Also

positively with loop_unroll and simplifycfg
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Mem2reg
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Figure 32-GSM_Mem2reg_Corr_Delta

3- Correlation of the PCA

Inline

Since it was shown on Figure 22-GSM_Inline PCA, the PCA for the GSM_Inline were depicted. Based

on these data, the correlation between the data and the components can be shown as Figure 33:
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Figure 33-GSM_Inline_Corr_PCA

For the PCA correlation, it can be observed that the transformation mem2reg has positive correlation with

the first principal component and simplifycfg has negative correlation with performance.
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Figure 34-GSM_Loop_Unroll_Corr_PCA
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Figure 35-GSM_Mem2reg Coo_PCA

Regarding the above correlation plot, it can be said that,

e Loop_reduce seems positively impacting the first component (represented by Performance). The
second component (Intensity) is negatively impacted by loop_reduceb and positively impacted

by reassociate.

4-2-7 Matrix Plot

After calculation of the metrics, another way of presenting the information could be by matrix-plot. In this
plot “tdta” stands for Total Data Across Bus, “ebw” stands for Effective bandwidth and “int” and “ops”

are representatives of Intensity and Performance.
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Inline

Loop_Unroll
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Seatter Plot Matrix

Figure 36-GSM_Inline_MatrixPlot
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Figure 37-GSM_Loop_Unroll_Matrixplot



As it could be guessed, since the first principal component has high dependency with intensity, so the
majority of the points have been indicated by pink, which refers to the intensity.

For the other two figures, the issue is vice-versa, thus there are enormous blue points in the system have
been observed.

Mem2reg
160 ints 160 —
140

22000 23000 22000
| |
Scatter Plot Matrix

Figure 38-GSM_Mem2reg_MatrixPlot

Densities

When the benchmark has been explored with respect to the specified compiler parameter, there will also a
possibility to see the effects of adding the second parameter (include/exclude) with respect of having the
first parameter activated already, i.e. in this scenario now there is “Inline” option activated already for

exploration, we can see the effect of having a second parameter meanwhile.
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In the Figure 39, Inline parameter have been already activated, for the infensity metric we are interested in

seeing the effect of activating “scalarrepl” as well. Therefore for both case of including and excluding the

parameter, the following figure is drawn:

Inline
0 1
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g iz
=] L 1
1 1 =5 -20 -10
intensity
Figure 39-GSM_Inline_Densities
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Figure 40-GSM_Loop_Unroll_Densities
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Figure 41-GSM_Mem2reg_Densities
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4-4-8 GSM Conclusion

The results which have been illustrated, was for the compiler parameter “Inline”. Since the compiler
parameters explored in this dissertation were 15, for being abstract regarding the results publications and
figures in this text, the author assumed it suffice to present only one parameter out of those 15. For the
sake of completeness, at the end of each benchmark there will be a conclusion section which presents all

the complete data in a quantitative table.

In the following page, the classification of results for GSM is being illustrated.
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- instcombine (.05)
- scalarrepl (.05)

ANOVA (<5%) KRUSKAL (<5%) CORR Corr on delta (5%) CORR (PCA) 5% DATA summmary
Parameters INT OPS INT OPS INT OPS INT OPS INT OPS AVG increment of INT Average increment of OPS
Mean: 159.2 Mean: 671.3 pc2=.25 pcl=.75
constprop 0.937 0.997 0.9249 0.9804 Min:129.3 Max:191.6 |Min:576.2 Max:754.8 +'m?m2reg(.09) - Ifﬁstcomblne(.19) 0.1 -0.02
-inline(.8) - licm(.07)
+ scalarrepl (.005) - loop_unswitch(.06)
PC2=.12 PC1=.88
Mean: 158.7 Mean: 669.6 . . .
dce 0.986 0.996 0.9851 0.9858 Min:126.3 Max:191.6 |Min:575.3 Max:751.3 +instcombine (.13) No accepted result regading -0.02 -0.02
I T T e +loop_rotate - licm (.12) sig-level 5%
-constprop - licm
2 .54
I.”Qi: rreedgu(ce( )01) pC2=.09 PC1=.91
- Mean: 158.2 Mean: 667.3 ted It - ) +simplifycfg (.28 -
inline 2.52E-15 2.37E-06 1.176-13 | 133606 | . V52" Mean noaccepted resulits | yce (.08) simplifycfg (.28) - loop_reduce (.14) -10.15 18.33
Min:129.2 Max:191.6 |Min:575.7 Max:753.7 |for 5% sig-level . R
- simplifycfg (.11)
- licm(.08)
Mean: 158.3 Mean: 670.0 pc2=.13 PC1=.86
i i 0.612 0.145 0.4239 0.03213 | X ! X No accepted result o 0.69 -5.17
instcombine Min:129.2 Max:191.6 [Min:575.3 Max:753.7 |+ performance(.56) |+ intensity(.39) cepte u "+inline (.31)
regading sig-level 5%
- licm(.34) - licm(.3)
PC2=.05 PC1=.95
licm ol 3 GIEGS 0.0364 5. 09E-05 . Mean: 157.3 . Mean: 670.0 no acce}?)ted results +.Io<.3p_reduce (.52) No accepted result regading 255 15.54
Min:129.3 Max:191.6 |Min:575.3 Max:747.6 for 5% sig-level -inline (.16) sig-level 5%
+loop_unswitch
-mem?2reg (.42 PC2=.05 PC1=.95
loop_reduce 1.10E-11 1.20E-16 1.71E-09 1.15E-15 Mean: 157.5 Mean: 669.6 scalarre gl(( 38)) no accepted results No accepted result +mem?2reg (.36) 8.54 31.3
p_redu : : : : Min:129.2 Max:191.6 |Min:575.3 Max:751.6 P for 5% sig-level cepte | g1 : :
- reassociate (.15) regading sig-level 5% - instcombine (.15)
Mean: 157.5 Mean: 678.8 no accepted results pC2=.05 PC1=.95
loop_rotate 4.73E-13 1.20E-16 1.19E-11 2.20E-16 § i R} i +1 d .49 - 8.92 -52.14
P Min:129.2 Max:191.6 |Min:575.3 Max:753.7 |+ mem2reg for 5% sig-level oop_reduce (.49) +mem?2reg (.26)
- simplifycfg - mem2reg (.12)
Mean: 156.4 Mean: 665.8 PC2=.31 PC1=.68
loop_unroll 0.984 0.976 9.63E-01 0.9332 . . - K 0.02 -0.11
P Min:129.2 Max:191.6 [Min:576.1 Max:753.2 +inline -inline (.43) -inline (.41) - licm (.17)
Mean: 158.3 Mean: 668.0 no accepted results pc2=.10 PC1=.90
i 0.825 0.896 0.8139 0.9337 § : . : : . +inli .24 - -0.28 0.51
loop_unswitch Min:129.3 Max:191.6 |Min:575.5 Max:754.8 |for 5% sig-level +instcombine inline (.24) +loop_reduce (.17)
+mem2reg - mem2reg (.26)
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i .2 PCl=.
2 0.555 0.000766 0.7107 | 0.003753 Mean: 157.7 Mean: 668.3 +sr:aalzsr?§alte2(6) ® pC2=.05 N(c:) accS:e5 ted result regadin 0.75 13.12
memeareg : - : : Min:129.5 Max:191.6 |Min:575.3 Max:753.7 | -2 orrepil +scalarrepl (.11) X P gading : :
-inline(.14) +intensity(.54) sig-level 5%
- sccp(.03) - scep(.16)
M :157.0 M :677.5 ted It ted It
memcpyopt 1 1 1 1 i ean ) ean no acce? ed resufts no accer? ed resufts Zero variance ?? Zero Variance ?? 0 0
Min:130.2 Max:188.5 [Min:576.1 Max:754.8 |for 5% sig-level for 5% sig-level
+ performance (.96) [+ intensity (.96)
M 1574 M 6675 +scalarrepl(.42) +scalarrepl(.42) PC2= 01 PC1=.99
ean: . ean: . . . . . =.
reassociate 1.20E-16 1.07E-11 2.20E-16 5.21E-11 ) . n - instcombine (.11) - instcombine (.11) No accepted result regading| 19.88 26.11
Min:129.2 Max:191.6 [Min:575.3 Max:753.7 + loop_rotate (.38) .
- dce (.09) - dce (.09) sig-level 5%
- loop_reduce (.08) - loop_reduce (.08)
+ performance (.82) ( )
+intensity (.82
Mean: 157.3 Mean: 669.8 +loop_rotate(.24) PC2=.04 PC1=.96
0.00033 0.0255 0.0001392 0.1392 +loo otate(.19 4.52 8.46
scalarrepl Min:129.4 Max:190.8 [Min:575.3 Max:753.2 |*+!0op_unroll (.12) | p_rota |e|( ) |+ reassociate (.13) +inline (.12)
-loop_reduce (.32) |*!oop_unroll (.14)
-mem2reg (.15)
+instcombine (.35) pC2= 21 PC1=.79
Mean: 157.1 Mean: 668.3 no accepted results [+ scalarepl(.08) ’ - simplifycfg(.19)
0.893 0.91 0.8956 0.9124 No accepted result 0.17 -0.46
scep Min:129.2 Max:191.6 |Min:576.2 Max:751.3 |for 5% sig-level ~inline (.38) e azinp o rlevl; 5oz - licm (.14)
- simplifycfg (.19) & & 58 ° - mem?2reg (.13)
- dce (.08)
+intensity (.84)
- - Mean: 156.9 Mean: 672.5 +loop_unswitch(.27) |PC2=.04 PC1=.96
simpifycf; 0.491 0.905 0.5474 0.8483 + performance (.84 - -0.88 -0.47
pifycfg Min:129.2 Max:191.6 [Min:575.3 Max:747.5 P (-84) | inline (.06) +loop_unswitch (.07) -inline (.13)
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4-3 Benchmark No.2 AES

As it was mentioned in the section 3-3 Benchmarks, the explored benchmarks from No.2 to No.5 have
been used from the CHStone benchmark package [31], and are some quality ones in order to see the
impact of compiler parameters to performance but rather to I/O and intensity. These benchmarks are from

high level synthesis field, so the input data is not so large in order to be simulated in the gate level.

Therefore, unlike GSM (refer to section 4-2 GSM Results), just the figures with meaningful results have
been mentioned here. The overall focus was mostly dedicated to watch the Performance altering by using
compiler parameters and draw a possible sketch of explaining why and how. Keep in mind that, no one
could generalize rules easily out of 4-5 benchmarks what so ever, but the trend of altering the metrics

might deliver a meaningful pattern in order to draw attention to.
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4-3-1 ANOVA

ANOVA Analysis _Loop_Reduce

Intensity

Df Sum Sg Mean Sg F value Pr (>F)
loop reduce 1 0.196 0.19629 24.64 9.52e-07 ***
Residuals 496 3.951 0.00797

Ops

Df Sum Sg Mean Sg F value Pr (>F)
loop reduce 1 94018 94018 123.2 <2e-16 ***
Residuals 496 378399 763

ANOVA Analysis _ Inline

Intensity

Df Sum Sg Mean Sg F value Pr (>F)
inline 1 0.433 0.4334 55.53 4.14e-13 ***
Residuals 494 3.855 0.0078

Ops

Df Sum Sgq Mean Sqg F value Pr (>F)
inline 1 657 657.1 0.731 0.393
Residuals 494 444251 899.3

ANOVA Analysis _ Mem2reg

Intensity

Df Sum Sg Mean Sqg F value Pr (>F)
mem2reg 1 0.139 0.13880 15.72 8.4e-05 **x*
Residuals 498 4.396 0.00883

Ops

Df Sum Sg Mean Sqg F wvalue Pr (>F)
mem2reg 1 142418 142418 218.4 <2e-16 ***
Residuals 498 324714 652

Table 7-AES_ANOVA

Regarding the above table, provided with 5% of acceptance rate, it can be said:

o Intensity: all three have been passed and shows a significant impact on the intensity while using

these benchmarks.

o Performance (Ops): a significant impact could be seen on Loop_reduce and mem2reg while

inline was left non-impacted.

4-3-2 Kruskal-Wallis
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Kruskal Analysis _ Inline
Intensity

Kruskal-Wallis chi-squared = 31.7114, df = 1, p-value = 1.789%e-08
Ops

Kruskal-Wallis chi-squared = 1.2454, df = 1, p-value = 0.2644

Kruskal Analysis _ Loop_reduce
Intensity

Kruskal-Wallis chi-squared = 13.8727, df = 1, p-value = 0.0001956
Ops

Kruskal-Wallis chi-squared = 66.6889, df

1, p-value = 3.179e-16

Kruskal Analysis _ MemZ2reg
Intensity

Kruskal-Wallis chi-squared = 10.9974, df = 1, p-value = 0.0009124
Ops

Kruskal-Wallis chi-squared = 124.5624, df = 1, p-value < 2.2e-16

Table 8-AES_Kruskal Wallis

Defined by Table 8, it could be observed that:

e Intensity: all three have been passed and shows a significant impact on the intensity while using
these benchmarks.
e Performance (Ops): a significant impact could be seen on Loop_reduce and mem2reg while

inline was left non-impacted.

4-3-3 Distributions
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Figure 43-AES_Boxplot

As it was suggested on ANOVA test as well, a significant impact on the intensity metrics could be
observed by inline transformation. In Figure 43 - (AES_Boxplot) as well, there is the box-plot of Inline.

The medians could be seen impacted.
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Figure 45-AES_Loop_reduce_Box

As it was suggested on ANOVA test as well, a significant impact on the both metrics could be observed

by loop reduce transformation in both Figure 44- (AES Loop reduce) and Figure 45-

(AES_Loop reduce Box)
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Distribution “Mem2reg”
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Box-Plots “Mem2reg”
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Figure 47-AES_Mem2reg_Box

Relying on ANOVA test on Table 7- (AES_ANOVA), a significant impact on the Performance metrics

could be observed by mem2reg transformation
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4-3-4 PCA

Provided with the pre-knowledge defined at the beginning of the benchmark, it was expected that the
performance could be the first principal as the high level synthesis field mostly focus on the optimizing

the performance, not the intensity at the gate level. The figures are as bellow:
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Figure 48-AES_Inline PCA
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PC1

low intensity

benchmarks, all three have the Performance as the first principal component and intensity as the second

with more or less the same degree between the first PCA and the second.

4-3-5 Densities

In this section the densities of the so-far explained parameters are going to be illustrated while the second

parameter, namely, scalarrepl, is activated as well.
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As it could be observed, by activating the second parameter (scalarepl) the performance of the whole

compilation system will be reduced.
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4-3-6 AES Synthesis Conclusion

Just like the other benchmark, in this section the whole synthesis table will be illustrated for the reference.
The intensity quantitative will be as expected low comparing with GSM, but the effect of activating the

optimization parameters could be observed on each and every compiler parameters.

In each section the values have been calculated and reported. The passed parameters in the ANOVA and

Kruskal-Wallis test have been marked with green box in order to be distinguished.
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ANOVA (<5%)

KRUSKAL (<5%)

Corr on delta [5%)

CORR (PCA) 5%

DATA summmary

Parameters INT OFS INT OPs INT OPS INT OFS INT QOFS ANG increment of OPS Average increment of INT
1st Qu.o0 Min. 0
Median 0 1st Qu..0
Mean 0 Median 0 PC1
constprop 1 1 1 1 2rd QU0 Mean 0 MA MA A MNA 0.1 0.02
Max. 0 Srd Qu.o0
Pin. 0 Pzx o0
Min. 0.0000000 Min. 0.00000
1st Qu.:0.0000000 1st Qu.:0.00000
Median :0.0000000 Median :0.00000 PC1
dce 0.976 0.997 0.9701 0.9987 Mean -0.0002475 Mean -0.01109 MNA on 5% MNA on 5% MNA on 5% NA 3 0.02
Srd Qu.:0.0000000 3rd Qu.:0.00000
Max. 00611400 Max. 273900
mMin. -0.27196 Min. =4.505 . PC1
1st Qu.-0.076935 1st Qu.-1.043 _loop_rotate -licm _ ) +intensity
inline 4.14E-13 3.93E-01 1.796-08 | 2.64E-01 Median -0.02740 Median :2.111 +simplyfycfg -loop_rotate Fsimplifycrg -loop_rotate 2 -0.08
Mean -0.05912 Mean :2.302 +intensity +performance R -
3rd Qu.: 0.00035 3rd Qu.: 5.486 +performance +loop_rotate ~licm
Max. :0.05463 Max. :8.220 —
Min. 023282 Min. -10.285 PC1
1st Qu.-0.01834 1st Qu.: -0.063 _liem -LIcmM +performance +intensity
instcombine 0.0717 0.129 0.07315 0.01573 Median : 0.01037 Median : 1.651 -loop_reduce _ 0.69 -5.17
. . +performance . B -loop_rotate -licm
Mean :0.01435 Mean : 4138 +intensity
Srd Qu.- 0.06256 Srd Qu.: 7.989
Min. —0.196930 Min. =~19 295 +loop_rotate o PC1
. 1st Qu.-0.028790 1st Qu.-11.066 — -inline +loop_rotate —inline
licm 0.768 F.26E-02 0.5413 5.57E-04 Median -0.006050 Median - -B.641 +performance tintensity +performance sintensity 24.5 -0.01
Mean -0.002445 Mean :-5.020
Min. -0.32081 Min. -90.43
1st Qu.-0.09598 1=t Qu.-66.06 pC1
loop_reduce 9.52E-07 <2e-16 1.96E-04 3.18E-16 Median : 0.00000 Median -34.41 -inline NA on 5% -inline NA on 5% 60.5 0.05
Mean 003971 Mean =-27.48
3rd Qu.:0.01170 3rd Qu.: 0.00
Min. -0.23934 Min. -43.110 PC1
1st Qu.-0.14654 1st Qu.-38.345
loop_rotate <2e-16 3.18E-16 <2.2e-16 <2.2e-16 Median ~0.07540 Median —28 870 MA on 5% MA on 5% MA on 5% MA on 5% -17.5 -0.07
Mean 007274 Mean -Z2Z2.049
Min. 20.000000 Min. =1.112000
1st Qu.20.000000 1st Qu.: 0.000000 PC1
Median :0.000000 Median : 0.000000
loop_unroll 0.979 0.999 9.66E-01 0.9965 Mean D.000188 Mean ~0.004466 MA on 5% MNA on 5% MA on 5% NA on 5% 0.02 -0.03
3rd Qu.:0.000000 3rd Qu.: 0.000000
Max. 0.046820 Max. :0.000000
Min. =0.0702900 Min. -1.87400
1st Qu.: 0.0000000 1st Qu.-0.20675 PC1
loop_unswitch 0.907 0.992 0.8921 0.9515 Median : 0.0000000 Median : 0.00000 MA on 5% 'IO_Op—r_Otate MA on 5% -loop_rotate 0.001 0.02
Mean :0.0009852 Mean :-0.02866 -simplifycfg . i
-simplifycfg
3rd Qu.: 0.0091600 3rd Qu.: 0.16925
Min. =0.322500 Min. =-90.47400
1st Qu.-0.088130 1st Qu.-67. 77700
Median -0.000125 Median -39.71900 PCc1
mem?22reg 8.40E-05 <2e-16 0.0009124 2.20E-16 Mean —0.033323 Mean =-33.75415 -inline 'instcombine -inline -instcombine -32.3 -0.03
3rd Qu.: 0.023410 3rd Qu.: 0.00375
Max. 0.239420 Max. :11.73500
Min. O Min. 0
1=t Qu.o 1st Qu.0
memcpyopt 1 1 1 1 Median 0 Median 20 A A NA PCl 0 o
Mean 0 Mean 0 MA
Srd Qu.o0 Srd Qu.0
Mg ) PAzmw 0
Min. =-0.0100800 Min. =1.01000
1st Qu.: 0.0000000 1st Qu.: 000000 . . -loop_rotate . . PC1
reassociate 9.85€-01 9.87E-01 2.20E-16 | 9.29e-01 | Median:0.0000000 Median : 0.00000 Finstcombine -instcombine *instcombine -loop_rorate -1.5 -0.01
Mean ~0.0001611 Mean —0.04526 +performance sintensity +performance -instcombine
3rd Qu.: 0.0000000 3rd Qu.: 0.00000 +intensity
na -nnnTIann na -naonnn
Min. =0.20737 Min. =-15.40700
1st Qu.: 0.00000 1=t Qu.: -0.03975
Median : 0.00000 Median : 0.00000 PC1
scalarrepl 0.146 0.855 0.2368 0.7468 Mean -0.01298 Mean --0.52311 MNA on 5% MNA on 5% MNA on 5% NA on 5% -3.1 0.04
3rd Qu.:0.02166 3rd Qu.: 0.00000
Max. 0.19692 Max. 1491700
Min. =0.0468200 Min. =0.32900
1st Qu.: 0.0000000 1st Qu.: 0.00000
Median : 0.0000000 Median : 0.00000 PC1
sCcCcp 0.985 0.999 0.9645 0.9967 Mean —-0.0001463 Mean :0.00317 MA MA MNA on 5% NA on 5% o o
3rd Qu.: 0.0000000 3rd Qu.: 0.00000
Max. :0.0106900 Max. :1.11200
Min. =0.04990 Min. =-1.6020
1st Qu.: 0.00000 1st Qu.: 0.0000
Median : 0.00000 Median : 0.0000 _licm PC1
simpifycfg 0.205 0.898 0.4234 0.6828 Mean :0.01117 Mean :0.3735 MA on 5% NA on 5% 3 0.02
3rd Qu.: 0.04052 3rd Qu.: 1.1490 -seep NA on 5%
Max. 0.06376 Max. 21560
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Chapter 5

Conclusions

Based on the experimental results mentioned in the previous chapter, in this chapter of the thesis the
conclusions and final evaluations of the results will be illustrated. Finally, the next chapter will describe

future evaluation of the thesis work.

5-1 Targeted Problem

The main contribution of this dissertation was focused on explore, evaluate and analyze the compiler
options parameters in VLIW processor. As showed in Chapters 3 and 4, the methodologies and tool-chain
were designed, implemented and exploited. Design space exploration was used in order to benefit the
designer, to prune the large amount of unnecessary design space and actuate the multi-objective problem

for the better best trade-offs .

5-2 Approach Review

As it was depicted in Figure 5-Tool-chain Schematic, the designed methodology is able to explore multi-

benchmark system starting from high level synthesis to high performance applications. MOST (refer to 3-
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2-2 Multi-Objective System Tuner (MOST)) is able to set the type of DoE and the sampling mode which
is needed in order to explore the benchmarks. Using two powerful open-sourced compilers, namely,
LLVM and VEX (refer to 3-2-3 LLVM and 3-2-4 HP-VEX), resulted in transforming the source codes
using the interested optimization parameters. Consequently we evaluated the performance of the
compilation and calculate the needed metrics in order to be fit in the performance model, namely,

Roofline (refer to 2-1-5 Performance Model and Floating Point).

Figures have been drawn by open-source statistical software R in Linux for synthesizing. Using hundreds
of results for five explored benchmarks, there could be common explanations in order to derive a trend of
activities regarding the mentioned compiler parameters which is going to be elaborated in the following

section.

5-3 Analysis Result Conclusion

5-3-1 per Benchmarks

No. 1 - GSM

In this dissertation (refer to the section 4-1 Benchmark No. 1- GSM) three out of fifteen compiler
parameters have been illustrated by figures and explanations. For the complete review of the benchmark

please refer to the section 4-4-8 GSM Conclusion. Regarding the depicted figures it can be observed that:

Looking at the benchmark results, having acceptance value a set equal to 5%,

1. For ANOVA:
a. Inline, Licm, Loop reduce, Loop rotate, reassociate and scalarrepl have passed the
ANOVA test for intensity metrics
b. Inline, instcombine, licm, loop_reduce, loop_rotate, mem2reg, reassociate and scalarrepl

have passed the ANOVA performance metric test.

2. For Kruskal-Wallis:
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a. Inline, Licm, Loop reduce, Loop rotate, reassociate and scalarrepl have passed the
Kruskal test for intensity metrics
b. Inline, instcombine, licm, loop reduce, loop rotate, mem2reg and reassociate have

passed the Kruskal performance metric test

3. The maximum intensity observed in those 15 compiler parameters was 191.6 (flops/byte) which
belongs to constprop, dce, inline, instcombine, licm, loop reduce, loop rotate, loop unroll,

loop_unswitch, mem2reg, reassociate, sccp, simplifycfg.

4. The maximum performance value observed for this metrics in those 15 compiler parameters

was 754.8 (Gflops/s) which belongs to constprop, loop_unswitch and memcpyopt.

5. Performance and intensity metrics have been observed impacted by each other in the same

direction for compiler parameters instcombine, mem2reg, reassociate, scalarrepl and simplifycfg

6. Performance metrics have been observed as the most impressing component in Principal

Component Analysis for all the 15 compiler parameters with 99% as the highest value for

reassociate. In addition, the highest proportion value of valiance for intensity was seen as 31% for

loop unroll.

7. Regarding the average increment, reassociate has 19.88 and inline has -10.15 as the highest

decrement one for intensity, in addition, for performance, the highest observed was 26.11 for

reassociate and -52.14 for loop rotate.
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No.2 AES

Looking at the benchmark results, having acceptance value a set equal to 5%,

1.

2.

For ANOVA:
a. Only Inline, Loop reduce and Loop rotate have passed the ANOVA test for intensity
metrics
b. Only licm, loop_reduce, loop rotate and mem?2reg have passed the ANOVA performance

metric test.

For Kruskal-Wallis:

a. Inline, Loop reduce, Loop_rotate, mem2reg and reassociate have passed the Kruskal test
for intensity metrics
b. instcombine, licm, loop reduce, loop rotate, mem2reg and reassociate have passed the

Kruskal performance metric test

The maximum intensity observed in those 15 compiler parameters was 0.19692 (flops/byte)
which belongs to scalarrepl. (as it was expected the intensity in these benchmark suits are low
since they are high level synthesis application and the effect of performance is more interested in

exploring these application rather than intensity)

The maximum performance value observed for this metrics in those 15 compiler parameters

was 31.87 (Gflops/s) which belongs to loop reduce.

Performance and intensity metrics have been observed impacted by each other in the same

direction for compiler parameters inline, instcombine, licm and reassociate

Performance metrics have been observed as the most impressing component in Principal

Component Analysis for all the 15 compiler parameters with near 100% as the highest value for

reassociate. In addition, the highest proportion value of valiance for intensity was seen as 0.260 %

for loop_unswitch.

Regarding the average increment, loop reduce has 60 value and mem2reg has -32.3 as the

highest decrement one for performance metric, in addition, for intensity, the highest observed was

0.05 for loop_reduce and -5.17 for instcombine.
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No.3 — No.5 Benchmarks

For the sake of synthesis in this dissertation, the results and synthetic conclusions for the remaining

benchmarks have been moved to the appendix chapter at the end.

5-3-2 Cross Benchmarks

Extracting the trends in each and every science could be a difficult and complicate task which needs to be
taken into account hundreds of factors such as induction rules, enough samples, risk and error evaluation,

etc.

In this dissertation, the main goal was designing and implementing a methodology for setting benchmarks
and performance evaluation of compiler options in VLIW processor, therefore, the generalization has to

be taken care in a future defined work which will be mentioned in the following chapter.

e As first hypothesis, it could be observed that all the transformations of the AES, have the
Performance by far as their principal component.
e In the GSM benchmark, the latter result is the same with little mixture of intensity to the PCA, as

the benchmark have put a large load on the system in the gate.

In both explored benchmarks; only loop reduce and loop rotate have had significant impact on both

metrics (Intensity and Performance), while:

e Inline, licm, mem2reg and reassociate have at least two metrics impacted in both two
benchmarks.

e Instcombine and scalarrepl have only one metric impacted.

5-3-3 ANOVA Cross-Benchmark

Using ANOVA and Kruskal-Wallis Analyses defined in Sections 4-2-1 ANOVA and 4-2-2 Kruskal-

Wallis, hereby there is going to be the cross-benchmark review of the experimental results:
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GSM AES ADPCM JPEG Blowfish
Constprop
Dce
Inline v v v
Instcombine v v v v
Licm v v v v v
Loop_reduce v v v v v
Loop_rotate v v v v
Loop unroll
Loop unswitch
MemZ2reg v v v v v
Memcpyopt
Reassociate v
Scalarrepl v v
Scep
simplifycfg

Table 9-ANOVA_Cross-benchmak_Performance

The acceptance rate of (ct) variable has been set to 5% as it has been defined in the Section 3-4-1 ANOVA
Analysis, therefore, the transformation which have pass this threshold acceptance rate have been marked
with a tick checkmark sign (v ). This shows the Performance metric (Ops) has had the significant impact

on the medians of the transformation in that specific benchmark.

Observing Table 9- (ANOVA_Cross-benchmak Performance), it could be seen that four transformations,
namely, licm, loop _reduce and memZ2reg have the same trend on all the explored benchmarks. Relying on
their own intrinsic behaviors, these transformations could impact the performance in the proposed

methodology.

5-3-4 Kruskal-Wallis Cross-Benchmark

The overall cross-benchmark view of the Kruskal-Wallis analysis have been mentioned in the Table 10-
(Kruskal-Wallis_Cross-benchmark Performance):
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GSM AES ADPCM JPEG Blowfish

Constprop

Dce

Inline

Instcombine

Licm

Loop_reduce

| | € |

] €] |

| €| | |
<

Loop_rotate

Loop unroll

Loop unswitch

MemZ2reg v v v v v

Memcpyopt

Reassociate v v

Scalarrepl v

Scep

simplifycfg

Table 10- Kruskal-Wallis_Cross-benchmark_Performance

As it could be observed in the Table 10- (Kruskal-Wallis Cross-benchmark Performance), in this
analysis, three transformations, namely, instcombine, loop reduce and memlreg have passed all

benchmark test regarding impacts on performance metric.

5-3-5 Parameters Effect

Similar to what we have done with the correlation matrix on deltas defined in 3-4-3 (Correlation
Analysis), in order to have useful cross-benchmark high-level view between the parameter interactions, a
interaction table could be calculated with transformation parameters on the sides, therefore it will be
diagonal, and number of positive-negative interaction between parameters and metric (Performance) in
each transformation per benchmark could be add up to sketch a disk bubble. So the quantity of
transformations multiply number of benchmarks could estimate the maximum number of interactions.

The more the number of interaction is the higher the diameter of the bubble. In this case, the researcher
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could have a conclusive high level view to extract information out of the explorations. This analysis will
show the effect of activation of the second transformation parameter on performance metric with respect

to have the main transformation being activated already.

constprop  dee  inline instcombine liom  loop_reduce loop rotate loop unroll loop unswitch mem2reg memcpyopt reassodate scalamepl  scp  simplifycfg

constprap
dee

infine
insteombine
fiem
loap_reduce
loop_rotate
loap_unroll
loop_unswitch
mem2reg
memcpyopt
reassociate
scalarrepl
scep

simplifycf

Figure 54- Transformations Bubble Effects

In the Figure 54- (Transformations Bubble Effects), four levels of effects have been illustrated:

1- No effects: no signs

2- Degree of effects equal to 1 : the white fill small ovals

3- Degree of effects equal to 2: medium size cross patterns ovals
4- Degree of effects equal to 3: large red filled ovals

It could be observed that having reassociate activated already, by adding inline transformation, we could
expect to impact the performance. This phenomenon is also true for simplifycfg and inline.
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Chapter 6

Future Works

As it mentioned on Chapter 5, the main objective of this dissertation was focus on using DSE for
compiler parameters in VLIW processors. Consequently, the benchmarks used in order to be explored
were mostly elaborated on seeing the effects of using these options in the issue. Due to the complexity

and size of the topic, there are some future ideas that could be taken care of as following.

6-1 Combining Architectural Parameters

In Table 2-Our Problem Design Space Exploration Example, the range of these architectural parameters

have been mentioned already. Combining the so-far topic with architectural parameters will add
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complexity and bigger orders of explorations to the problem; therefore, it could be an interesting future

work which needs to be elaborated in near future.

Indeed, architectural parameters involved the infrastructures and hardware machines to the problem
which could be really interesting for the industry and enterprise partners in order to be researched on.

Choosing the best suit of architectural configurations

6-2 Extended Benchmarks

Since multiple benchmark usage was one of the key features of the designed methodology in this
dissertation, it could be used with so many great and more sophisticated benchmarks i.e. high

performance video applications, Encoder/Decoder applications, etc.

By the date of writing this dissertation, the efforts of embedding a new benchmark, namely H264
Decoder [44], have been started for a while. Hopefully finishes exploring soon to have better reasoning

about the phenomena of impacting metrics.

6-3 Further Algorithms of Optimizations

There are bunch of other interesting problems still on the course of research which actuate the need of
extending the current work for future. Phase Ordering in compilers Optimization, which has been an
interesting target for researchers. A single sequence of optimization phases is highly unlikely to produce
optimal code for every application (or even each function within an application) on a given machine. The
problem of ordering optimization phases can be more severe when generating code for embedded

applications. [45]
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Appendix

For the sake of abstractness in this dissertation, only two out of the 5 explored benchmarks have been
mentioned during the content (refer to Experimental Results). One high intensity GSM and one out of the

CHStone benchmark suits, namely 4AES.

In this section all the results are going to be classified based on the benchmark-transformation, in this case
the reader could get a clear idea of what have we done in this dissertation to analyze the compiler options

for VLIW processors.

The trend of this section will be as following:

e Benchmark Name
o Distributions
o Box-Plots
o Correlations
= Raw Data
=  On Deltas
o Scatter-Plot

o Principal Component Analysis
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nereent XXX K X o XXX XXXN XXXXXX XX XXX st XK KKK KKKKK XXX ente XXX KKK KXKKXKK XXX ss XXRXK T XXIKKK XXX | omer XIKKKXKKKKX
e XXX X w><><><><><x><><><><><x>< XXXXXHXX XXX X e XXX e XX RN IHAH XXXXXX XXX e XXRXXXX KKK
o et XXX ] pomares | B XXXHXHXKX XXX of semncs XX XXXX .l XX XXXX .. o e XX -
srirres XXX . TS S i XXXXXXXX | e & fogiose™ S e XX S S , XX XXXX g e X XXX .
Loop_unroll | ‘ Loop_unswitch | ‘ mem?2reg ‘ ‘ | reassociate ‘ ‘ scalarrepl ‘ scep ‘ simplifycfg
H g
i i : : . ) sl i )
MWJX % e % XXX XXX RRRXHK X X RRRRRRRRRKRRNN % %%
i, % ‘"””’??XX§§§§§§XXXXXX N R 000 %% Lm ORI %% %% XX 5
= ¥ Py o B I s et rred B o 2l B o
E X = XXXX ><><><><><><><><><><>< g o of e XXX T XXXXXX XXX o XX X of
X < XXXXK XXX XXX XX X
i SRR o o o IR KIIIIKKKK | . X XK+ XX o
X[ e XXXXXKXXK XXXKXKXXK | . . XXXXXXXX e XXX XXXX  XXXXXX XX |, ww»><><><><><>< .
X prn XXX XXX XXXXXKX XXRXXKKXX $O50000%8% e XXX KK
m~~><><><><><><><x>< XX Xt XX XX XX XX [ y - o X » . XXXX | e XXX -
s SR XXXXKX X s XXXKKK XXX XXXXX | " XX XHXXRXK KKK XKXXX XXXXX rereoen XX XXX X
mu.m><><><><x><><><><x K Y e XXXXKXKAXKKK XXX - - XX XXX XXX XXX X XXX B X o BEEREE y
eennie XXX XXXR KKK KL s XXX XXX XX KKK XXX . o R R RK XXX X OXxxH . - XXKKKKK
e XK XK X s XX XXX XX X e SOOKAHAHXHAK MK s X XXXIXKKIKK KK =-==w-=x><><><><><><><><><><x><
o XXX XXXKK s wv><><><><><><><><><><><><><><.l o s XX 2 XX XXXX W - - BeSessesssesestotete o e 5
a2 S o XXX XXX XXX XXX XN X XXX XXX R B m R S fod te oo oY
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APPENDIX SECTION

| constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate
BLOWFISH - S —_— X A -
Scatter-plot \J \\\ R L / ‘\‘Lv e
| minl| ‘EEE : ‘g /QDUUJL
’ Loop_unroll | ‘ Loop_unswitch | ‘ meméreg ‘ ‘ memci)yop ‘ |
L ESNE AR
| inline ’_| instcombine ’_‘ licm ’_‘ Loop_reduce H Loop_rotate
BLOWFISH : . : P R
Principal N & T
Component r— o = pewemp] B B
Analysis (PCA) I | _, l | | 1.
Loop_unroll | ‘ Loop_ur?switch | ‘ mem?2reg ‘ ‘ memcpyopt ‘ | reassociate ‘ ‘ scalarrepl ‘ ‘ scep ‘ ‘ simpli;ycfg
m e e =
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