POLITECNICO DI MILANO
Scuola di Ingegneria dell’'Informazione
Master of Science in

Computer Engineering

DESIGN SPACE EXPLORATION METHODOLOGY
FOR COMPILER PARAMETERS
IN VLIW PROCESSORS

Supervisor: Prof. Cristina Silvano
Co-Advisor: Prof. Vittorio Zaccaria
Co-Advisor: Dr. Sotiris Xydis

M.Sc Thesis of:
Amir Hossein Ashouri
10327573

Academic Year: 2011- 2012

DESIGN SPACE EXPLORATION METHODOLOGY
FOR COMPILER PARAMETERS
IN VLIW PROCESSORS

A Thesis
Submitted to the Department of
Computer Engineering
at Politecnico di Milano
in Partial Fulfillment of
the Requirements
for the Degree of

Master of Science in Computer Engineering

Supervisor: Cristina Silvano, Ph.D.
Co-Adviser: Vittorio Zaccaria, Ph.D.
Co-Adviser: Sotirios Xydis, Ph.D.

Amir Hossein Ashouri
DECEMBER 2012

ABSTRACT IN ENGLISH

Embedded systems can be considered as specialized computing systems which can be used for multi-purpose
application varying from mobile-phone to military and home-automation devices. Although the functionalities of
these devices are differed, the computational structure and design is tightly connected with the platform and
programmability in which they rely on. Consequently, by introducing the VLSI technology, designing complex
systems-on-chip (SoC) platform and related Network-on-Chip (NoC) has to be finely tuned.

The target is a multi-objective optimization problem: to maximize the performance of the platform and minimize the
power consumption or other non-functional metrics. During this design phase, Design Space Exploration (DSE)
plays a major role to benefit the designer, to prune the large design space and support the designer during the

analysis phase.

The research thesis targets the exploration of compiler options parameters, in order to automatically explore the
design space and analyze the compiler-architecture co-design in VLIW processor by applying random design of
experiment algorithm. The thesis tackles the aforementioned problem by proposing an automatic methodology based
on a tool-chain including the MOST tool(Multi-Objective System Tuner), a Ubuntu wrapper and two open-source
compilers; namely, LLVM and VEX. The proposed tool-chain enables the designer to automatically explore,
optimize and analyze the options by using several standard benchmarks for both high-end embedded and signal

processing applications.

The analysis could be used as a tool-chain for benchmarking the compiler options and expanded to architectural
options in the near future. The optimization phase could be done as a further step of the research to generalize the

explored trends in the results' analysis.

In this dissertation, the thesis is supported by a large set of experimental results relying on solid sets of statistical
analysis which clearly shows the characteristics and the effects of each transformation. We targeted benchmarking
with MOST software, VEX and LLVM simulator to provide solid experimental setup. In addition, the Appendix

provided a complete hand-manual for designers in order to use as a multiple-purpose reference.

Keywords: Compiler Options, Design Space Exploration, VLIW processors, Compiler Optimizations, DoE, Tool chain

Benchmarking

I|Page

ABSTRACT IN ITALIAN

I sistemi embedded possono essere considerati come sistemi di calcolo specializzati che possono essere usati per
applicazioni multi-purpose che possono spaziare da telefoni cellulari fino ad applicazioni militari o di domotica.
Sebbene le funzionalita di questi dispositivi siano diverse, la struttura di calcolo e il relativo progetto ¢ strettamente
collegato con la piattaforma e il paradigma di programmazione utilizzato. Di conseguenza, introducendo la
tecnologia VLSI, il progetto di piattaforme complesse di tipo System-on-Chip (SoC) e della relativa rete di
interconnessione on-chip (Network-on-Chip) deve essere dettagliatamente raffinato.

L'obiettivo ¢ massimizzare le prestazioni della piattaforma e minimizzare la potenza dissipata e altre metriche non
funzionali del sistema. In tale fase di progetto, 1'esplorazione dello spazio di progetto (Design Space Exploration)
gioco un ruolo fondamentale per filtrare automaticamente i punti dello spazio di progetto e supportare il progettista
nella fase di analisi.

La presente tesi di ricerca ha come obiettivo principale I'eplorazione dei parametri del compilatore, in modo da
esplorare automaticamente lo spazio di progetto e analizzare in modo congiunto i paramteri del compilatore e
architetturali nei processori VLIW applicando tecniche casuali per il progetto degli esperimenti (Design of
Experiment).

La tesi affronta il problema proponendo una metodologia automatica basata su una tool-chain che include il tool
MOST (Multi-Objective System Tune), un wrapper Ubunti ¢ due compilatori open-source: LLVM e VEX. La tool-
chain proposta consente al progettista di esplorare automaticamente, di ottimizzare e di analizzare le opzioni dello
spazio di progetto usando diversi benchmark standard per applicazioni high-end embedded e di elaborazione dei
segnali.

La metodologia di analisi proposta puo essere usata come tool-chain di benchmarking per valutare i parametri del
compilatore e come sviluppo futuro per valutare i paramteri architetturali. La fase di ottimizzazione puo essere
eseguita come sviluppo futuro del progetto di ricerca per generalizzare gli andamenti evidenziati nell'analisi dei
risultati sperimentali.

Nel presente lavoro di tesi, 'approccio proposto ¢ supportato da un ampio insieme di risultati sperimentatli che si
basano su un insieme solido di analisi statistiche che evidenziano chiaramente le carattersitiche e gli effetti di ogni
trasformazione applicata. L'analisi presenta risultati ottenuti utilizzando la metodologia proposta basata sui tool
MOST, VEX e LLM che forniscono un solido ambiente di sperimentazione. Inoltre, nell'Appendice sono raccolti
tutti 1 risultati sperimentali ottenuti nella presente tesi da utilizzare come rifermento per analisi successive.

Parole chiave: Opzioni del compilatore, Esplorazione dello Spazio di Progetto, Processori VLIW, Ottimizzazioni
del Compilatore, progettazione degli esperimenti, Tool-chian Benchmarking.

H|Page

ACKNOWLEDGMENTS

This Master of Science thesis has been carried out at the Department of Electronics and Computer at
Politecnico di Milano University. The work has been performed within System Architecture Engineering
Group of professors Cristina Silvano and Vittorio Zaccaria who introduced the topic and provided

limitless support during the course of the project.

The team work was truly fun and challenging at the same time. I learned a lot and met engineers who
shared their knowledge and experience which I am very grateful and would like to thank.

First I would very much like to thank my supervisors at Politecnico di Milano, Cristina Silvano and
Vittorio Zaccaria whom always had the answer to all my questions and guided me to the right way. Their

constant encouragement and support throughout the project made it possible for me to complete the work.

I would also like to thank Dr. Sotirios Xydis, Post-Doc researcher in the System Architecture

Engineering Group; it was a pleasure having his advices and excellent experiences in the field.

Last but not least, I would like to appreciate lifetime support of my perfect family; Mother, Father and
younger brother whom always been backbone for me during the hard-times and good-times. Thank you
for keep giving me the positive energy to carry-on and thanks for urging me to choose this path for my

life.

Finally, I would like to thank everyone in Politecnico Di Milano University circle, from my colleagues,

secretaries to the professors, whom got involved in such a way to let this checkpoint of my life happens.

Thank you all,

Amir-Hossein Ashouri

OI|Page

Contents

ABSTRACT IN ENGLISHooitiiiiiiiieiete sttt ettt sae st st esaessessaensesessaensesseessensesseensensesseensans I
ABSTRACT IN ITALLAN ...ttt sttt et b e et e st s bt et e st e sbe et e nbesbeentenbeeaeenee I
ACKNOWLEDGMENTS ..ottt ettt ettt ettt ettt et este et e e s aeeat e seeseeneenseestensansesseensesesneensenes I
TADIE OF FIGUIESvieuvieiieiieriiecite ettt ettt et et et e e e s teestaesseessaessseesseesseenseessaessaesseeseesssesssesnsesssesnsennsenns VIl
LISt OF tADIES ...ttt et et e b e bt a e a et e st eat e et e e be e be e bt e naeenae IX
(O] E:1 o173 S USSP 13
G418 o4 LTt)3 BTSSR 13
1-1 Dissertation CONtITDULIONccviiiiiieiieeciie et etee et et e et e sreestreeeeteeeseveeseseeesbeeesseessreaanseeans 14
1-2 Dissertation OTZANIZATIONccuvervrereeereeireeireesteesseesseesseesseesaessesssessseasseesseesseessesssesssessseesssessessses 15
CRAPLET 2.ttt ettt ettt e sttt e ettt e e bt e e tbeeeabeeease e sbeaasbeeeasseeesbaeesseeessseeasseeanseeesseeassaeanseeesseennres 16
Main BaCKGIOUNA.coiuiiiiiiiiieie ettt ettt ettt e bt e s teesaaeeabeeabeenseenseenseenseensaessaessnesnsennns 16
2-1 BACKGIOUNG. ..ottt ettt ettt et e st e et e e b e e ssbeeestaeessseeesseeassaeesssaeassaesnsseenssesnnses 16
2-1-1 TLP QICRITECTUIEveeevieeiie ettt ettt ettt et et e v e e et eeete e e abeeeebeeeataeesseesaseeensaeesneas 16
2-1-2 VLIW Processor ATCRItECIUTEeeuieiiieeieieiieiieieeie ettt ettt este et eseeeneeeesneeneas 17
2-1-3 Design Space EXPIOrationccueiiiiiiciiiiiiieciieciee et ettt e et e eeve e e aaeeseaeessbaesabaeesaseessseas 19
2-1-4 COMPIIET OPLIONIS ...vvveuerereieiiieeieete et et ettesteseesseesseestaesssessseassessseasseesseesseesseessesssessseesssesssensses 20
2-1-5 Performance Model and Floating POINt...........ccoeovviiiciieiiiieciie et 23

22 SEALE OF AT .. eeenieteeitete ettt ettt ettt b et e st h et e bt e h et b e e et et e bt e a et e sh e et e be bt et et bt et e 24
2-2-1 Design Space Exploration for Compiler OptionsS..........cceccveeveevieeriienieesieesiesieeseeseesreseneseneeens 25
2-2-2 Design Space Exploration in VLIW ProCessors........cccccvveverirrrirerieesiiesieeieesieesieesnesenesnessnennns 26

(O] 1T 0] 1< g PRSP RRRPS 27
Proposed MeEthOAOIOZYcovviiiieiieiieiieierte ettt ettt st e st e saaessbesnbeesseesseessaesseessaessnesssennsennns 27
3-1 Problem DESCIIPLIONviiiiiiiiieeciieetie ettt e eteeetteeste e st e e tbeesebeessbaeessaeessseessseeessaeenssessssesassseessses 27
3-2 DEeSIZNEA MOMEL......ccouiiiiieiieieee ettt ettt ettt e st e st e st e enteenteenteebeebeesneenneenneas 30
3-2-1 MOST Generic Wrapper (IMGW)cccociiiiiiiieieeie ettt estesaestaeseaessvessvessvessseessaessaesses 31

IV|Page

3-2-2 Multi-Objective System Tuner (MOST)c.ccoviiviieriieriieieiert et ereereereesre s eseenees 33

3223 L VMot ettt ettt en b beatt b e st st et e st ensenteeseenaeseeseensenns 35
3274 HP-VEX ..ttt ettt ettt et h e ettt h ettt h et e et e be et e bt ene e e nes 36

3-3 BENCRMATKS ..ottt ettt et sttt et e beenaeas 37
3-4 ANALYSIS TYPES .veervieeiieeieeiieiieie et et esteesttesttesetessbeesbeesseesseesseessaesseesseesssessseansesnseenseessaenseeseenseensees 38
3-4-1 ANOVA ANALYSIS viecuvieiiieeiiiesiieeitteeitteesteeeteesstteessteessseessseeessseassseessseeessssessseesssesassssssssesssseenns 38
3-4-2 KrUuSKal-WAILLSoueiiiiiiiieieie ettt ettt sttt sttt 39
3-4-3 Correlation ANALYSIS......ccveevierieriieriesieeteeteereeseeseesseessaessaesssesssessseesseesseesseessesssessssesssesssessses 40
3-4-4 Principal Component ANALYSIS.......ceeiierieriirieiieeie ettt ettt et e st e st e st e eeteesteeneeenteeneeeneean 41

(O T 0173 U S USRS 43
EXPerimental RESUILSccuiiiiiiiii ettt ettt ettt e s b e s te e eaaeesebeeeabaeenbaeeseseessseeenees 43
41 IMIOTIVALION 1.uttiientietietete et te ettt ettt et e b e st e eat e bt e et emt e bt eaeem e e e bt e st et e sbeemeembeebeemeenseeneensenseeneensesteeneentens 44
4-2 Benchmark NO.T = GSM . ..ottt et sb e sb e st st sttt et e 46
4-2-T ANOVA ..ottt ettt ettt ettt e st e e st e b e s teesa e s e e seessesseessensesseessenseeseassenseeseensanss 47
4-2-2 KIUSKAI-WALLES ..ottt ettt ettt et et e et en b et e e st et eeeeneeeeneas 48
4-2-3 DISHIIDULIONSvvieiiieciieeeiiee ettt ettt e et e e e tb e e et e eeteeesabeeeateeetaeeseseeenseeesseesaseesnsesensseesnsesenses 48
4-2-4 SCALET PLOTS ...ttt ettt ettt ettt ettt s et e st eb et e bt et et b e nees 52
4-2-5 Principal Component ANALYSIS.......ccccueiiieeiiieriiieiirieeiieesieesreeeteeeseeeesbeeereeessreessseassseessseeessnes 53
4-2-6 COITElation ANALYSIS.......cccvieerieeiieiierieereeseeseestesaesreeseeseeseesseesseesseesseesssesssesssesssesssesssessseenes 55
4-2-T MALTIX PLOT. .ttt ettt sttt et ettt b e b e s bt e bt e st e eate e 62
4-4-8 GSM CONCIUSIONeeeuiiiiiiiieiieeiie ettt ettt e et e et e e sbeeebeeestaeeseseeebeeessseessseeensasessseesnseeenses 67

4-3 Benchmark INO.2 AESooiieeeeee ettt ettt ettt et e bt et e e e bt et enaeseeeneenens 68
43T ANOVA ettt ettt ettt e b et e e et et e be e et et e st eas et e e Rt et eteeat et e seentenseaseenrantes 69
4-3-2 KIUSKAI-WALLES ...eeiiiiieieiee ettt ettt ettt ettt et et e bt et e e e s eeenees 69
4-3-3 DISIITDULIONS .ttt ettt ettt ettt e et e bt ea e et s bt e st e bt s bt et e sbeebtenteebeeatenseebeeneeneas 70
T o N RSO TRPRR 74
G-3-5 DICNISTLIES .veeeuveeeirieieiieeiee ettt e et e e eteeestteesteeeteeestbeesabeaassseessseeaasesansaeasseesssesesseessseesstesesseenssaeanses 75
4-3-6 AES Synthesis CONCIUSION........c.cccviirierierieiieeteeteeteeteeseesseesseesseesseesssesssesssessseessessseessessseenns 78

(O] E:1 o173 TSP 79
COMCIUSIONS ...ttt ettt b ettt b et e bt e bt et e bt e bt en e e bt eat et e e bt e st et e sbeeat et e sbeestenbeebe et enbeeneennes 79
R B 1 o e B 5 010) £S5 o USSR 79
5-2 APPIOACH REVIEWcuviieiiieiiieiieieeitesiee ettt ettt et e et e s e e s seesnsesnbeenseenseenseansaeseeseenseennnes 79
5-3 Analysis ReSult CONCIUSIONcccuiiiiiiiiiiieriie ettt e eee et eesree e e eebeesebeeesteeeseseesssaesnsaeensseesssens 80

V|Page

5-3-1 per BeNCRMATKS........cccviiiiiiiciieiiectecee sttt ettt e tb e s bestbessbeesseesseesbeesseesssessseenas 80

INO. T = GSM ettt ettt ettt et e b e s et e st e besseense s e essensesseansenseeseensensenaeenseeseensents 80

DA (TN TSRS 82
NO0.3 = NO.5 BENCHMATKScotiiiiiieiie ettt sttt st st sttt e ebeeneeens 83
5-3-2 Cross BenChmArkscoceoiiiiiiiiiiiieee et 83
5-3-3 ANOVA Cross-Benchmarkccoccoiiiiiiiiiiiiiiee et 83
5-3-4 Kruskal-Wallis Cross-Benchmarkccccooiiiiiiiriiiiiiniiieieeeeceeteeeeee e 84
5-3-5 Parameters EFECtcoooiiiiieeeee e 85
CRAPLET Bttt ettt ettt e et e e bt e e tbeeeabeeesbae e tseessbeeessseessseessseeessaeeasseeassesensaeessaaasseeesseesees 87
FULUIE WOTKS ...ttt ettt et ettt ettt a et e e bt e a e e bt e st en b e ste e st e b e sbeeneenseeneeneenes 87
6-1 Combining Architectural Parameterscccceiiiiiiiiiieiiieieee ettt 87
6-2 Extended BenChmarksccooiiiiiiiii e 88
6-3 Further Algorithms of OPtiMIZAtIONSccccieerciiiiiiiecieecciee et e e e e e ssbeeeseeessaeenenes 88
BIBHOZIAPIY ..ttt ettt sttt et s h e et ebe e 89
PN o] 0153116 1 TR SRPRRUPRSRP 93

VI|Page

Table of Figures

Figure 1- ILP architecutre classifiCations [7]......ccieccueeecireriiieiiieeitieeriteeeteesreeeteeeseveesebeeetaeessseessseessaeenes 17
Figure 2- VLIW and Superscalar Differences [7]......cccoccverieriinieiieiienie ettt e e s 18
Figure 3- Design Space Exploration General Flow (Courtesy of sciencedirect.com)cceceeeeeeeeennnne 19
Figure 4-Rooflineg MOAEL [19]..c.uuiiuiiiieiieeiieie ettt ettt e st esb e et e et e e staessaessnessseessessseasseesseenns 24
Figure 5- High-level View of Proposed TOoI-Chain............ccceevieririiiiiniiniiienieneeieteesee e 31
Figure 6-Proposed Tool-Chain SChematiC...........coouiiiiiiiiiiiieierie et 32
Figure 7- MOST Schematic (Courtesy of Dr. Vittorio Zaccaria, Politecnico Di Milano)............ccccceee..... 35
FAgUure 8- ANOV A ..ottt et e bt e et e e s bt e e a e e s at e e ateeateeabe e bt e bt e sbeesneeeneesaeeenteenseenseenne 39
Figure 9- ANOVA EXAMPIEuiiiiiiiiiiiiiieie ettt sttt ettt ettt et e b e be e b e e 39
Figure 10- Kruskal Wallis EXamPIe........cocoeoiiiiiiiiiiiiiieieee ettt 40
Figure 11- Correlation Matrix GSM_Inline EXample.........ccccoooviiieiiiiiiiiniieiiiecee e 41
Figure 12- PCA O GSM_ININEoouiiiiiiiiieieieee ettt sttt st ene e 42
Figure 13 - GSM_dce 4000 iteration_ Roofline Certificationcovceerueriieiiieiieieerieereesee e 44
Figure 14-GSM_Mem2reg EITECL.......c.iiiiiiiieeeiiecee ettt ettt e et e e be e sbeeeteeessbeessseeenneenes 45
Figure 15-GSM_Mem2reg EFfECt 2cooiiiiiiiiiiiieieee ettt 45
Figure 16-GSM_Inline DiStribULION.ccciiiiiiiiieiieiiete ettt ettt ettt e s e s et e saeeens 49
Figure 17-GSM_INlne BOXPIOt.....cc.oeiiiiiiieieiieee ettt ettt 49
Figure 18-GSM_Lo0p UNTOIL DIST....iiiiiiiiiiiiiii ettt ettt 50
Figure 19-GSM_Lo0p UNTOIL BOX....icciiiiiiiiiieciieciie ettt ettt e et e e e sveesstaeessaeesssaesnneeesnseenns 50
Figure 20-GSM_Mem21EZ DIST.....ceueiiiriiriiiiiriiiteteste ettt ettt ettt sttt b et e sbe e 51
Figure 21-GSM_Inline ScCatterPlOtcouiiiiiiiiieeee ettt st s 52
Figure 22-GSM_ ScatterPlot Loop UNTOlL.........c.coviiriiiiiiiieriisieeie ettt 52
Figure 23--GSM_mem2reg_ SCAtteIPIOLcevuiriiiiiriiiieiete sttt st 53
Figure 24-GSM _ININE PCAoiiiiiiee ettt sttt ettt ettt et e sbe e sbeesaeesaee s 54
Figure 25-GSM_Loop UNTOIL PCAc.oiiiiiieiece ettt sttt et e st eseaesnnesnneenns 54
Figure 26-GSM_MEem2reg PCA ..ottt ettt ettt et e et e e s v e e s teeeaaeessbeesasaesnsaeensseessseeennes 55
Figure 27-GSM_Inline Corr TaW _data.........cceecviriiiiiiiieieeiieieesieesieesieeseeeseeseresenesssessnesssessseesseesseesseesnes 56
Figure 28- GSM_Lo0p UNTOIL COIT TAWiiuiiiiiiiiieieiieeiteie ettt st s s 57
Figure 29-GSM_Mem2reg COrT RAWccociiiiiiiiiiieciee ettt e eiee et eesveesteeeeaeessseessseeessaeessseessseennes 58
Figure 30-GSM_Inline Corr_DEILaSceueeiiiiiiieiiiieee sttt st e e e 58
Figure 31-GSM_Loop Unroll Corr Deltacccuieiiiiiiiieieeieeseeseeee ettt 59
Figure 32-GSM_Mem2reg Corr DEIta........ccoeiiiiiiiiieiiie ettt et et e e e sbeesbeeetaeeseseessneeenes 60
Figure 33-GSM_Inline Corr PCA ..ottt st 61
Figure 34-GSM_Loop Unroll Corr PCAoooiiiieeeee ettt 61

VII|Page

Figure 35-GSM_Mem2reg Co0 PCAooo ittt ettt st e e ee e s eesteesseeessseesnneeenes 62

Figure 36-GSM_INline MatrixPlOt.......c.ceoiiiiiiiiiieeieeie ettt ettt ettt ettt seee et eneeeee e 63
Figure 37-GSM_Loop Unroll MatriXplotcccuiiiiieeiiieiieecieesiee ettt e eiee e sveesveeeeaeeseveessneeenes 63
Figure 38-GSM_Mem2reg MatrixPlOtcoiiiiiiiiiiiiiieeeee ettt 64
Figure 39-GSM _INlNE DENSIEIESccueeruieeiiieiieiieieeieesieesitestteette et et e et eteebeesbeesseesseesaeesntesnseenseenseenseenne 65
Figure 40-GSM_Loop UNTOIL DENSILIESccuverevieiieeiieiieiieiiesieesteesteeseeeseressresesesssesssessseesseessesssesssessssesns 65
Figure 41-GSM_Mem21€Z DENSIHIESc..eoueruteiiitieiieiertieiieie sttt ettt sttt ettt st e e b et e e enbeseeenee 66
Figure 42-AES DISIIIDULIONSoccviiiiieeiieeiiieeteeeieeesteeeveeeteeesaeesbeessbeeessseessseessseesssseesssesssseessessssseeses 71
Figure 43-AES BOXPIOt ..uviiiiiiiiiiiiieiieiiesie sttt ettt et esteesteestaeseaessbessbeassaesseassaessaesssesssesssesssenssessseessennes 71
Figure 44-AES LOOP TEAUCEeeiuieitieeiieeie ettt ettt ettt ettt et et et et e e sbe e s bt e saeesaeesnteeaeeenseenseenseenne 72
Figure 45-AES LOOP r€dUCE BOX...uiiiiiiiiiiiiieiiieiieie ettt steeseesae s e sebessseesseesseesseesseesseesseesseesens 72
Figure 46-AES Mem2reg DiStriDULIONScovertiiiiiiiiiitieiesie ettt sttt 73
Figure 47-AES MemM2IEZ BOX ..ccutiitiiiieitieitieiie ettt ettt ettt et sbt e sttt eat e et e et e beenbeenbeeaes 73
Figure 48-AES ININE PCAoooiiiiieiecie sttt ettt et et te e te et e e e s tbestaessbessseasseesseesseesseasseesses 74
Figure 49-AES Loop 1educe PCA ...ttt et ettt b e st 74
Figure 50-AES Mem2reg PCAooooiieiee ettt sttt et s vt e et e e st e e ssteessteeessbeessseesnseeessseensseesnseennes 75
Figure S1-AES Inlie DENSIHES ...c..eoutriieiintiriieierieetetert ettt ettt ettt st st st nbe s 76
Figure 52-AES LoOP 1edUCE DENSILIESeecvuviiriieiiieeiieeriieeiieesiteesteesteeeeeeesereessseessseeessseesssasssseesnsseees 76
Figure 53-AES Mem21eg DENSIHEScccueeuieieriiriieierieeiieieste ettt ettt ettt ettt sttt e e st eaeeeesbeeneenes 77
Figure 54- Transformations Bubble Effects...........ccooiiiiiiiiiiiiiii e 86

VIl |Page

List of tables

Table 1-List of compiler transformations in LLVMcccciiiiiiiiiiiiiiiieeie ettt 22
Table 2-Our Problem Design Space Exploration EXample...........cccecvveviiiviieniienienieieniesee e sne e 28
Table 3-Our Design Space Exploration Fixed Arch Parametersccocevererienininienineeieneceeeene 29
Table 4- MGW Sections's EXAMPIC........ccccuiiiiiiiiiiiiiieciee ettt ettt e st e eeaeesebeesabeesssaeesseessneeenns 32
Table 5- GSM_ANOV A ..ttt et ettt sttt e bttt et et e ene e testeent e sesbeentenseeseeneesene 47
Table 6- GSM_KTUSKAL......oooiiiiieieeee ettt ettt ettt et et e s beesaeesaeeeneeenees 48
Table 7T-AES ANOV A ... ettt ettt et e e et et e eesat et e seeseenseseeseanseaseeneensesneeneenseneas 69
Table 8-AES Kruskal WalliS.......cccccviiiiiiiiiiiiieie ettt sttt ettt et e sseesaaessaesnnesnseennes 70
Table 9-ANOVA_Cross-benchmak Performance.............cccveevieiiieeciiiniieeiie e eeeeereeeveeeeee e e s 84
Table 10- Kruskal-Wallis_Cross-benchmark Performancec.cocceevveviieviienienienieniesiecie e 85

IX|Page

Chapter 1

Introduction

Increase in speed at which processor are clocked have led to higher performance benefits - applications
now run faster; it is now possible to run realistic graphics, interactive games and simulators. This is
primarily because of improvements in semiconductor technology in terms of both speed and technology.
These processors seek out independent operations/instructions in a sequential program and execute them
in parallel to expose what is commonly called instruction level parallelism (ILP). On one hand we could
have a processor with large and complex control path and relatively small data path while on the other
hand we could have a processor with vice versa configurations. The VLIW processors use the latter

approach; making it easy for parallelism and simpler control systems [1].

It is often very difficult to find a single modeling approach or analysis tool which is capable of fulfilling
all the challenges of systems-on-chip design. There is a certain need for tuning the chip in order to have
the best outcome. Configurable simulation models are used to accurately tune the on-chip architectures
and to satisfy the requirements of the target application in terms of performance versus intensity trade-off,

battery lifetime and area.

The performance indicators (such as power consumption, delay, area, etc.) are impacted considerably by
altering the parameters. The design space exploration (DSE) is an optimization phase which aims at
tuning the configurable system parameters to find the best trade-off in terms of the selected figures of
merit. The DSE generally consists of a multi objective optimization (MOOQ) problem and pruning a large
design space of parameters. In addition, DSE can be used in the compiler level, tuning the compiler-
options in order to exploit the best possible trade-off and even mix those with the architectural parameters

such as Cache size, word size, etc.

13|Page

The overall goal of the DSE phase is to find the optimal parameterized configurations of either
architectures and/or applications in order to minimize the number of executing simulations during the
exploration phase. So far, several heuristic techniques have been proposed to address this problem;
however, they were not efficient enough for identifying the Pareto front of feasible solutions in a
reasonable amount of time. That is exactly the main objective and contribution of the dissertation which is

going to be elaborated in the following section.

1-1Dissertation Contribution

The aim of this thesis is to define an efficient tool-chain to explore and analyze the design space formed

by the compiler option parameters for ILP processors.

The main contribution presented in this thesis consists of the definition of a multi-objective

benchmarking, analysis methodology for compiler options in VLIW processors.

Our study will show a clear way, how to calculate performance and do analysis on these compiler options
which is definitely necessary for many purposes such as graphic AGP cards, embedded systems, etc.
Within this dissertation, we focus on VLIW (Very Long Instruction Word) processors, which are suitable

for low-power embedded high-end computers.

In order to introduce the methodology, first it starts by explaining the status-quo and the background work
already presented about DSE and compiler options. Consequently, the tool-chain details will be
introduced. In addition, the final methodology and test-bed which has designed to test the performance of
these compiler options will be clarified. Furthermore, the experimental results will be introduced,

Followed by conclusion and future works and the complete hand-manual appendix.

This dissertation focused on exploration of research field not yet well faced with as a methodology
analysis, it describes the performance metrics of the most common compiler options introduced by

LLVM in several standard and useful benchmarks.

In order to exploit the best benefits of VLIW processors, there is certainty for tuning the configuration
tree based on design space exploration. Therefore, understanding the performance and the pros and cons

of each compiler option could play an important role in the era of computational lower-orders tasks.

14|Page

The methodology proposed, in Chapter 3, has main target to provide best and complete information
regarding the compiler options and their benchmarking. Given the increasing complexity of multi-
processor system on-chip architectures, a wide range of architecture parameters must be explored at
design time to find the best trade-off in terms of multiple competing objectives (such as energy, delay,
bandwidth). Therefore, the design space of the target architectures is huge because it should consider all
possible combinations of each parameter. The experimental tool in which we used, MOST: Multi-
Objective System Tuner [2], under proprietary of Politecnico Di Milano, helps driving the designer

towards near-optimal solutions to the architectural exploration problems.

1-2 Dissertation Organization

The structure of this dissertation is as follows; first, the state-of-art and background of the topic is going
to be illustrated in Chapter 2. In Chapter 3, the selected compiler option is going to be bolded, then the
two open-sourced compilers LLVM [3] and VEX [4] are going to be introduced. In Chapter 4, by
introducing the tool-chain and MOST, the methodology is going to be illustrated. Finally in Chapter 5, the
experimental results will be shown and will have the conclusion and future works on Chapter 5 and 6. At

the end of this dissertation, there will be an Appendix representing the overall results in classified mode.

15|Page

Chapter?2

Main Background

To better understand the work and methodology, some theoretical points regarding the topic of the
dissertation reviewed. In 2-1 Theoretical Background, the main background of the topic such as VLIW
architecture, Design Space Exploration (DSE), Performance Models, etc are going to be represented at a
glance. Afterwards, in section 2-2 State of Art, recent works regarding the performance evaluation of the
compiler options are referred.

2-1 Background

2-1-1 ILP architecture

Instruction level parallelism (ILP) is a family of processors and compiler design techniques that speed-up
execution by causing individual machine operations, such as memory load and stores, integer addition and
floating point multiplications, to execute in parallel. [5] The operations in which they involve are the
normal RISK-style operations, and the program is performing a single program written with a sequential
processor in mind. The intrinsic of this technique could lead to improvements in speed, but unlike the
traditional multiprocessor parallelism, this action is totally transparent to the users. The prominent

example of ILP usage could be found in VLIW [6] architecture and superscalar systems.

The end result of ILP is that multiple operations are simultaneously in execution, either due to the result

of having been issued simultaneously in the issue phase or because of having a greater time for

16 |Page

completing the execution phase than issuing the successive operation. The classification of ILP could be

as following [5]:

e Sequential Architectures (without the necessity of conveying any explicit information

regarding parallelism. i.e. superscalar processors)

e Dependence Architectures (By indicating the dependencies which exist between the

operations. i.e. Data flow processors)

o Independence architectures (In this architecture, the program provide information as

which operation are independent from one another. A good example could be VLIW

processors.)

4 Frontend & Optimizer)
1 ok Sequential
o : (Superscalar) : i ,
(Determine Dependences) (Determine Dependences)
. L - Dependence ‘

.. Architecture : i Y '
(Determine Independences) v (Datafiow) ":_CDetermine |"d°P°“d°"°°$J
o N edwendece _ | b]

: G Architecture : _} : 1
(Bind Resources) (Horizon) (Bind Resources '
[; Independence !
S Architecture
(VLIW)

Compiler Hardware

Figure 1- ILP architecutre classifications [7]

2-1-2 VLIW Processor Architecture

Since introducing ILP in 80’s, there were lots of systems taking advantage of it. VLIW (Very Long
Instruction Word) was more like a design philosophy for a long time. A succinct statement of VLIW

philosophy could be “Expose instruction-level parallelism in the architecture” [7] . But it could apply to

17|Page

many levels of the system, including compiler, instruction-set architecture, etc. In addition, parallelism
should be revised as it could refer just to run independent task separately rather than in sequentially. We
have to take into account lots of interconnection between VLIW and superscalar, VLIW and Compilers,

etc.

Recent high performance processors have depended on Instruction Level Parallelism (ILP) to achieve
high execution speed. ILP processors achieve their high performance by causing multiple operations to
execute in parallel, using a combination of compiler and hardware techniques. Very Long Instruction
Word (VLIW) is one particular style of processor design that tries to achieve high levels of instruction

level parallelism by executing long instruction words composed of multiple operations. [8]

As an example of differences between superscalar and VLIW, could be the scheduling process; in which
superscalar does in via hardware but VLIW have compiler rearrange the code to be executed without
changing the hardware. In some processor, there is a special control hardware that examines the operation
as it comes from instruction streams. A principal of VLIW has been said as “don’t wastes silicon, avoid
hardware that computes anything other than the intended computation on the critical path of every

instruction” [7]

Superscalar VLIW

Instruction
Stream

Instructions are issued from
a sequential stream of scalar
operations.

Instructions are issued from
a sequential stream of multiple
operations.

Instruction Issue
and Scheduling

The instructions that are issued
are scheduled dynamically by
the hardware.

The instructions that are issued
are scheduled statically by
the compiler.

Issue Width The number of issued The number of issued
instructions is determined instructions is determined
dynamically by the hardware. statically by the compiler.

Instruction Dynamic issue allows in-order Static scheduling allows only

Ordering and out-of-order. in-order issue.

Architectural
Implications

Superscalar is a micro-
architecture technique.

VLIW is an architecture
technique. Hardware details are
more exposed to the compiler.

18|Page

Figure 2- VLIW and Superscalar Differences [7]

2-1-3 Design Space Exploration

By introducing the VLSI [9] technology, designing complex systems-on-chip (SoC) platform parameters
and the network infrastructure on the chip (NoC) of these devices has to be finely tuned. The target is to
maximize the performance of the platform and minimize the non-functional costs of the system like
Power Consumption, etc. Mapping programs onto configurable architectures is a difficult problem. The
set of design choices from which a designer must perform trade-offs in enormous. The designer must
detect and exploit characteristics in the sequential application to manage the data movement within the
program, determine the data movement in the memory subsystem, and assign system resources to
program components to maximize system performance. The large number of degrees of freedom creates a
complex design space [10]. This is where Design Space Exploration (DSE) plays the main role to benefit
the designer, to prune the large amount of unnecessary design space and actuate the multi-objective

problem for the best trade-offs.

Figure 3- (Design Space Exploration General Flow) shows the flow of applying design space exploration.
In general, we are interested in finding the solution on each architecture we applied the method. However,
quite often it happens that we won’t reach the exact and complete solution. There are possibilities in
which we reach the succinct point via some algorithms i.e. Simulated Annealing [11], Design of

experiment (DOE) [12], etc.

Starting
Configuration(s)

Evaluator
(Simulator)

New
Configuration{s)

' Performance
Indexes

R 3
Dacision Design
Confs

Figure 3- Design Space Exploration General Flow (Courtesy of sciencedirect.com)

19|Page

2-1-4 Compiler Options

Using more optimized compilers have been always a goal in computer science, however, reaching this
goal has its own tolerance and trade-off. Occasionally it happens to sacrifice the code size for better
performance or portability versus code size. Consequently, there should be a precaution when using these

options otherwise it ends up heavier and less-usable.

Without any optimization option, the compiler's goal is to reduce the cost of compilation and to make
debugging produce the expected results [13]. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or change the program

counter to any other statement in the function and get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or code size at

the expense of compilation time and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the program. Compiling multiple
files at once to a single output file mode allows the compiler to use information gained from all of the

files when compiling each of them. Not all optimizations are controlled directly by a flag.

Most optimizations are only enabled if an -O level is set on the command line. Otherwise they are
disabled, even if individual optimization flags are specified. Generally, there are some levels of
optimizations defined in which it could be specified the level and the routine of optimization. The main

classifications of GNU [14] C family compilers’ optimizations are as following:

20| Page

e -O1
Optimizing compilation takes somewhat more time, and a lot more memory for a large function.
With -O, the compiler tries to reduce code size and execution time, without performing any

optimization that takes a great deal of compilation time.

e -02
Optimize even more. GCC performs nearly all supported optimizations that do not involve a
space-speed tradeoff. As compared to clean -O, this option increases both compilation time and

the performance of the generated code.

e -03
Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on some of the
other optimization flags like “inline” and “loop unswitch”. The complete list of Compiler

parameters involves with LLVM is being described completely in the following section.

e -0O0

Reduce compilation time and make debugging produce the expected results (the default option)

Still there are lots of more optimization flags to be mentioned, but in main stream, the role of using these

flags depends on the compiler architecture and its behaviors.

In this dissertation, 15 compiler parameters which aggregated to the popular LLVM capabilities of
compiler flags have selected to be used for our analysis on the benchmarks. These are taken from and

listed in Table 1-(List of compiler transformations in LLVM) [15]:

21| Page

Compiler Full Unabbreviated Lo
Description
Transformation Name
Constant It looks for instructions involving only constant operands and replaces
Constprop . : . . .
Propagation them with a constant value instead of an instruction.
D Dead Code Dead code elimination is similar to dead instruction elimination, but it rechecks
ce
Elimination instructions that were used by removed instructions to see if they are newly dead
) Function
Inline . . Bottom-up inlining of functions into callees.
Integration/Inlining
Combine o)))))
) Combine instructions to form fewer, simple instructions. This pass does
Instcombine Redundant . . . o
) not modify the CFG This pass is where algebraic simplification happens.
Instruction
Loop Invariant Attempting to remove as much code from the body of a loop as possible.
Licm Code Motion It does this by either hoisting code into the pre-header block, or by

sinking code to the exit blocks if it is safe.

Loop Strength

This pass performs a strength reduction on array references inside loops that

Loop reduce Reduction , . . .
have as one or more of their components the loop induction variable.
Loop_rotate Rotates Loops A simple loop rotation transformation.
Loop unroll Unroll Loops This pass implements a simple loop unroller.
)) This pass transforms loops that contain branches on loop-invariant
Loop_unswitch Unswitch Loops

conditions to have multiple loops

Promote Memory

This file promotes memory references to be register references. It

MemZ2reg))))
To Register promotes alloca instructions which only have loads and stores as uses.
Memcpy This pass performs various transformations related to eliminating
Memcpyopt S . .
Optimizations memcpy calls, or transforming sets of stores into memset's.
) Reassociate This pass reassociates commutative expressions in an order that is
Reassociate)])
Expressions designed to promote better constant propagation
Scalar This transform breaks up alloca [16] instructions of aggregate type
Scalarrepl Replacement of (structure or array) into individual alloca instructions for each member if
Aggregates (DT)
possible.
Sparse .
" Assumes values are constant, Basic Blocks are dead unless proven
Conditional
Scep Constant otherwise, Proves values to be constant, and replaces them with
Propagation constants and Proves conditional branches to be unconditional.
Simplifycfg Simplify the CFG Performs dead code elimination and basic block merging.

22|Page

Table 1-List of compiler transformations in LLVM

2-1-5 Performance Model and Floating Point

Similar to every other science, the whole attempts should lead to a better performance and lower
functional cost. Therefore, there have been lots of different models for performance evaluations regarding
the design space and all the matters. Regardless of what model we choose, there is a possibility of
misleading us to the fine goal, justifying the right result and mapping them to the experimental one could

be the hardest task of each researcher.

Stochastic analytical models [17] and statistical performance models [18] can predict program
performance on multiprocessors accurately; however, it is rarely to suggest an insight on how to improve

these measurements either for compilers, programs or computers.

In the Section 2-2 (State of Art), some of the recent performance models are going to be introduced, but
meanwhile an important model in which the dissertation has been illustrated.

For a given kernel, we can find a point on the X-axis based on its operational intensity. If we draw a
vertical line through that point, the performance of the kernel on that computer must lie somewhere along

that line.

The horizontal and diagonal lines give this bound model its name. The Roofline [19] sets an upper bound
on performance of a kernel depending on its operational intensity. If we think of operational intensity as a
column that hits the roof, either it hits the flat part of the roof, which means performance is compute

bound, or it hits the slanted part of the roof, which means performance is ultimately memory bound.

23| Page

128 | : 128 | ;

Opteron X4

84 + . 3 4 84 + . 3 . . . N . . . 4
32 - L 1 32 - 1
&
\5\\ peak floating=paint performance p Cpteronxe
2 16 & Y w 16| ¥ - {
w i w s
& , 8 .
[o 4
U] | U] F
o B = ig o B ’
E 13 13] 4
c =} +
8 i ¥ s |,
< 4 I g 13 1< 4 ¥ il
a0
1 g []
1E 18
- o
2r | F=y = 1 2r 1
oW w
1£ e
ig ig
1= =
| o T
1 s i 1
g Ig
13 13
a ‘e : : .
149 10 10 i 149 i i
174 1/2 1 2 4 8 16 1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte)

Figure 4-Roofline Model [19]

Consequently, we have to make sure the way we traverse in these areas will be on the verge of higher
levels of performance versus intensity; otherwise we hit the roof either in the straight or slanted line and

end up being compute and memory bound.

2-2 State of Art

In the field of Design Space Exploration for compilers in VLIW processors, there have been some quality
works done recently which in this section are going to be illustrated. However, none of those are exactly
applied to the very current topic of this dissertation. This section is presented combinatorial like as for the

most important works could be viewed chronologically.

24| Page

2-2-1 Design Space Exploration for Compiler Options

David. Fischer et al. [20] in their co-exploration work tried to characterize the design space of both
compiler frontend (intermediate code optimization) and backend (architecture-specific code generation)
that is used in order to do Architecture/Compiler Co-Exploration for the search of optimal
architecture/compiler combinations. Their results have been published as a framework entitled,

“BUILDABONG”.

A. Halambi et al. in their 2001 work [21], namely “Expression”, designed and introduced a language
supporting architectural design space exploration for embedded Systems-on-Chip (SoC) which was
capable of automatic generation of a retargetable compiler/simulator toolkit. As a key feature of their
work, it could be explicitly being specified for the memory subsystem, therefore some new ways of
memory organization and hierarchies were possible. Meanwhile the work wasn’t being self-adaptive for

architectural-based compiler flow for each architecture it had the need of specifying the dependencies.

B. So et al. [22] described an automated approach to hardware design space exploration, through
collaboration between parallelizing compiler technology and high-level synthesis tool. Their algorithm
was to be said to have a quicker search space exploration and could derived a closely matched to best

performance model.

M. O’Boyle et al. [23] defined an iterative optimization using machine learning which it uses predictive
modeling from the domain of machine learning to automatically focus search on those areas likely to give
greatest performance. This approach was independent of search algorithm, search space or compiler

infrastructure and scales gracefully with the compiler optimization space size

O. Mencer et al. [24] defined a stream compiler (ASC) which allows users to express and reason about the
design space, extract parallelism at each level and quickly evaluate different design choices. They have
tested their work with benchmarks like wavelet compression and Kasumi encryption and had optimization

in latency and memory usage on both.

C. Dubach et al. [25] went for another solution on the DSE tree. They used machine learning techniques
to rapidly explore and predict the design space since it costs a lot of time to explore the tree for each
application. This architecture-centric approach used prior knowledge from off-line training and applies it
across benchmarks which allowed the model to predict the performance of any new program across the

entire micro-architecture configuration space with just 32 further simulations.

25| Page

2-2-2 Design Space Exploration in VLIW Processors

In the recent years, there have also some works done with the new coming open-sourced compiler for
VLIW architecture, namely VEX [4]. One of the benefits of using this compiler is to have degree of
freedom in changing the architecture based-on the needs and have the detailed compilation log. It
supports 32 bits compilation for native C language with the standard of -C89 and -C99 [26]. As a matter
of fact, by introducing the pre-defined scenarios, VEX compiler is capable if evaluating good

architectural parameters i.e. total cycles, cache usages, etc.

P. K. Saraswat et al. [27] used simulated annealing for finding the best custom VLIW architecture for
GSM decoder application using mentioned VEX compiler. The suitability and the efficiency of the
simulated annealing-based Design Space Exploration Algorithm is evaluated and compared against the

exhaustive exploration of the complete design space.

In addition, there has been a digital signal processing application done with VEX for a custom VLIW
architecture. D. Saptono et al. [28] presented a design space exploration experience for an embedded
VLIW processor that allows finding out the best architecture for given application. The proposed method
has been implemented and tested using an image processing chain for direct photo printer. The results
show a considerable improvement in hardware cost and performance, after identifying the best
architecture, they applied a technique to optimize the code in VEX system that uses “inlining” function in

order to reduce execution time.

M. Kumar et al. [29] have verified SIM-A Simulator with VLIW based Vex Simulator. Their work
discussed the working and configurationally issues involve in Vex Simulator. They have compared the
results obtained from VEX and SIM-A simulator in various levels and claimed some inconsistency

between those.

Taking into considerations all these appreciated efforts, in the following section, the proposed work is

going to be presented.

26| Page

Chapter 3

Proposed Methodology

The ongoing advances in computer architectures and processors have been led to create a necessity of
walking on the right trend in order to comply with the wave. Therefore, applying design space exploration
in a right manner plays a vital role in that matter. Therefore, the main contribution presented in this
direction is based on the definition of a multi-objective benchmarking, analysis methodology for compiler

options in VLIW processors.

As explained in 2-1-3 Design Space Exploration, the variety of parameters both in architectural and
compiler side, have made the DSE a huge complex tree to traverse. There is the need to apply further
optimizations algorithms to prune the unpromising branches and leafs in-order approach toward the
succinct optimal solution. The leaf nodes are the configurations, reaching these points is not as easy as it

sounds like, even with the best supercomputers so-far, it takes a lot to calculate the space tree.

3-1 Problem Description

Optimization problems are very common in many design phases of each engineering phases.
Nevertheless, understanding the current situation, analyzing the trend and try to find a solution could be

pre-phases toward the latter matter.

27| Page

When we face compiler and architectural options in design space for VLIW processors, we are accounting
thousands of parameters in a giant complex tree to traverse. As an example, provided with 15 compiler
optimization options, each there are possibilities either to “take” or “exclude”, in addition there are 18
more architectural levels in which there could be a range to taking. Provided with the constraint of taking
the integer numbers in between those ranges, we are going to end up having the Table 2- (Our Problem

Design Space Exploration Example):

No. Parameters Possible Values Final
(Integer Range) Outcome
1 Compiler Optimization 25 32768
Parameters

2 lg2CacheSize [11,30] 22
3 1g2Sets [0,3] 4

4 lg2LineSize [5,9] 5

5 1g2ICacheSize [11.30] 22
6 1g2ICacheSets [0,3] 4

7 lg2ICacheLines [5,9] 5

8 CoreCkFreq [300,500] step=50 5

9 BusCkFreq [200,400] step=50 5
10 NumCaches [1,2] 2
11 NumClusters [1,4] 4
12 IssueWidth [1,16] 16
13 NumAlus [1,16] 16
14 NumMuls [1,4] 4
15 MemlLoad [1,8] 8
16 MemStore [1,8] 8
17 Memory [1,8] 8
18 PFT [0,8] 9

Table 2-Our Problem Design Space Exploration _ Example

The so far mentioned design simply has 5.9868 * 10 '® space size to be explored to each benchmark.

Therefore, not applying the right method, definitely leads us to suboptimal leafs. In addition, when we are

28| Page

dealing with these multiple parameters, there is a necessity of using DOE (for design of experiment) in
order to sampling the tree. For instance, when it is said, expanding the “inline” compiler parameter, the
designer has to take into account the possible manners for each and every design when the inline has been
chosen or not (excluded). That is 2 multiply the type of compiler options (which is here 15) added to the

exploration problem. Taking into accounts the 15 compiler option each having two phases, it will be

2%X2 X x 2 =21
N——
No. of compiler Options

In this dissertation, the main focus were on the compiler options parameters, therefore the architectural

parameters have been assumed as fixed with the values reported in Table 3:

No. Parameters Values (Integer
Range)
2 1g2CacheSize 16
3 1g2Sets 2
4 1g2LineSize 5
5 1g21CacheSize 16
6 Ig21CacheSets 2
7 lg21CacheLines 6
8 CoreCkFreq 500
9 BusCkFreq 300
10 NumCaches 1
11 NumClusters 2
12 IssueWidth 8
13 NumAlus 8
14 NumMuls 2
15 MemLoad 4
16 MemStore 4
17 Memory 4
18 PFT 4

Table 3-Our Design Space Exploration Fixed Arch Parameters

29| Page

Many different DoEs have been studied for design space exploration; some of them are as follows [12]:

1- Full Factorial: experiment all the factors included in the experiment.

2- Fractional Factorial: runs a fractioned factored randomly based on the predefined heuristics.

3- Screening Factorial: more extreme way of factorial.

4- Response Surface: is an off-line optimization, two factors studied usually.

5- EVOP : online evolutionary experiments

6- Mixture : Based on the context it will add the constraints

Given the large size of our design space, in this dissertation, Fractional factorial which has the
randomized selection of experiments has been used. For instance, by running 500 times for each and
every compiler options, the system has a good estimation of the whole design space. The algorithm will
sample the space equal to the N defined in the script, then by using the Random Effects option in the
scripts, the system divide the sample nodes (here is 500) to two 250 and allocate them for each of the
phases (here is two: exclude or include) the interested compiler parameter which to be explored. The

other points are being chosen randomly.

3-2 Designed Model

As it abstracted in the section “ 1-1-1 Analyzing Compiler parameters “, the opposed methodology of
benchmarking the design space exploration for compiler options in VLIW processor was consisted of a
built tool-chain (a generic-wrapper), MOST [2] (for Multi-objective system tuner), two open-sources C
compilers, namely, LLVM [3] and VEX [4] and some sets of standard benchmarks inside the HP-VEX,
namely, GSM [30] and some benchmarks of Chstone series [31], namely, Jpeg, Aes, Adpsm and
Blowfish. The very first benchmark was used for mostly focus on the intensity which is caused to system
and the latter’s one were mostly used in order to see the high level gate filled up with embedded

applications of multimedia.

In this chapter, the detail of the methodology is going to be illustrated. Wherever it is needed for further
mathematical backgrounds, there would be a section with that title. The high-level schema of the

proposed tool-chain is as following:

30|Page

Proposed Tool-Chain (High Level View)

. Compilation Verifications — DB Performance
o] e i .
r ConfigiGeneration Phase Update Evaluation - Analysis

Figure 5- High-level View of Proposed Tool-Chain

3-2-1 MOST Generic Wrapper (MGW)

This Perl, Bash wrapper gets to manage the whole system in order to feed MOST based on the defined
settings, i.e. design space exploration settings for compiler and architectural, iterations inputting the
benchmarks, etc, and subsequently get the output results and import it to the database of MOST, initiating
the next run for that matter. It has a randomized function which randomly generates the input points
MOST needs for running the benchmark. As it mentioned in the Section 3-1 (Problem Description), the
DoE methodology in which it has been used was randomized factorial, therefore in order to avoid the
gigantic design space tree caused by the parameters calculated in the Section 3-1 (Problem Description),

there should have been a generator for these points at the beginning.

MOST GENERIC WRAPPER [32] (MGW) is a Perl wrapper designed to simplify the integration of tools
for the design space exploration (DSE) phase by using MOST. It hides most of the integration details in
term of MOST XML input/output files (except for the XML Design Space description file) providing to
the designer a simpler way to integrate its problem in MOST. The execution config file includes 3 main

sections:

o Input files declaration: This section is used to let the MGW what are the input parameters and

where to include the values in those files.

¢ OQutput files declaration: This section is used to let the MGW what are the output files where to

read the metrics and how to read the values. The section is composed by several lines, one for
each metric declared in the XML design space definition file.

o Execution script: It should include all the commands needed for the generation of the output

files (including the metrics).

A simple example of initiating the MGW is shown below:

31|Page

Input File Declaration Output File- Coordinates Execution script
[...] #1/bin/sh

Core numeber = 4 type;hitRate[%];Accesses; power [mw]; | set -e

ICache size = 2048 icache; 97.9; 10401; 145; echo "requests 438 " > output.txt

DCache size = 4096 dcache; 83.1; 8300; 132; echo "accesses

Bus size = 64 L2cache; 76.3; 3219; 347; @__MOST_GENERIC_WRAPPER__paraml__ @
[...] " >> output.txt

Table 4- MGW sections's Example

A simple schematic view of the system is drawn as in Figure 6 - (Proposed Tool-Chain Schematic):

Automated System Schema (Component View)

Benchmarks

MIOST

LLW A

Transfarmed JC code

Simulatizn
Execution

LG file

Figure 6-Proposed Tool-Chain Schematic

32|Page

The proposed methodology has been defined and designed for multiple-benchmarks and only inputs the
benchmark and settings for the faster and cleaner explorations. In other word, as it will be shown in the
Experimental Results, it is able to input multiple benchmarks from high level synthesis to high

performance and explore, analyze and synthesize the system.

3-2-2 Multi-Objective System Tuner (MOST)

MOST is a tool for architectural and compiler design space exploration [2] [33]. It is an interactive
program that lets the designer explore a design space of configurations for a particular architecture for
which an executable model or driver exists. It can be also extended by introducing new optimization
algorithms such as Monte Carlo optimization, sensitivity based optimization, etc. For instance, Taguchi

design of experiments [34].

The overall goal of this framework aims at providing a methodology and a re-targetable tool to drive the
designer towards near-optimal solutions to the architectural exploration problem, with the given multiple
constraints. The final product of the framework is a Pareto curve of configurations within the design
evaluation space of the given architecture. To meet this goal it has been implemented a skeleton for an

extendible and easy to use framework for multi-objective exploration.

The strength of MOST is that drivers and optimization algorithms can be dynamically linked within
MOST at run-time, without the need of recompiling the entire code base. This is supported by well
defined interfaces between the driver and the optimization algorithms versus the kernel of MOST. The

proposed DSE framework is flexible and modular in terms of: target architecture, system-level models

and simulator, optimization algorithms and system-level metrics.

3-2-2-1 MOST Structure

The Overall structure of MOST can divide its modules into three different categories: [33]

33|Page

1. MOST internal modules: They are represented in blue in figure 2. Those modules are internal

to the MOST structure. They are composed by the MOST Kernels, the MOST shell, the MOST

internal database management and the design of experiments and optimization modules. In the

following, each module is described more in detail:

a.

The MOST Kernel engine represents the core of the design space exploration tool. It

orchestrates the optimization process by invoking the constituent and inter-changeable

blocks of the framework.

The MOST shell is the command line interpreter. By using this shell (or equivalent
batch scripts) it is possible to specify the optimization problem and the related
exploration strategy. This particular interface is suitable for remote execution of design
space exploration on server farms. The MOST interpreted language gives now the
possibility to define complex objective functions.

The MOST Internal Database Manager is used to store all the results coming from

simulations. Moreover, it is used for combining metrics values (as estimated by the
simulator) into objective functions, to train analytical models (RSM) and to generate
output reports of the exploration process.

The design of experiments and optimization modules are the basic components for
building the exploration strategies. The internal organization of the software has been
factored in order to provide standard and common APIs for the various modules
associated with the fundamental functionalities of MOST. The standard API consists of a
corresponding dynamic linkable object interface which can be used to develop new

models, aside from the existing ones.

2. MOST External Modules: Those modules are within the MOST packages but are composed of

external executables that will be called through the MOST interfaces. In particular, they are

represented by the response surface models.

34|Page

a.

The response surface models (RSM) are used for building analytical models of the

target system response. A similar standard data interchange format (as previously done
for DoE and optimizers) is used for supporting the introduction of response surface

models in MOST.

Response

Surface
Design Mo'dels
> of
MOST = Experiments
= .
Shell = 4
= -
=
2 a Optimization L X
g Algorithm Architecture
= A database
XML XML
Design Space i v
Definition File Use Case M3E
Simulator |
HTML
Report

Figure 7- MOST Schematic (Courtesy of Dr. Vittorio Zaccaria, Politecnico Di Milano)

As mentioned in the Section 3-1 (Problem Description), the DoE used in this dissertation was based on
Random factors which generated a set of random designed points. In addition, the optimization algorithm
used here was parallel DoE (PDoE) [12] which was based on the possibility of performing concurrent
evaluation of the different design points. Consequently, in these experimental analyses, for each
benchmark compiler option, the number of exploration was 500. It would enough points for the system to

use for DoE and Optimizer to generates the effects and metrics beside the Pareto points (if exists).

3-2-3 LLVM

LLVM is a collection of modular and reusable compiler and tool-chain techniques. LLVM began as
aresearch project at the University of Illinois, with the goal of providing a modern, SSA-based
compilation strategy capable of supporting both static and dynamic compilation of arbitrary programming
languages. Since then, LLVM has grown to be an umbrella project consisting of a number of different
subprojects, many of which are being used in production by a wide variety of commercial and open
source projects as well as being widely used in academic research. Code in the LLVM project is licensed

under the "UIUC" BSD-Style license [3].

The LLVM Core libraries provide a modern source- and target-independent optimizer, along with code
generation support for many popular CPUs. Therefore, for this dissertation research it was chosen as the
C code optimizer which transformed the native C codes of the benchmarks to transformed.c and let the

second compiler in chain (HP-VEX) used it as the feed.

35|Page

As an overview, some of the LLVM features could be as following [35]:

e Front-ends for C, C++, Objective-C, Fortran, etc

e A stable implementation of the LLVM instruction set, which serves as both the online and offline
code representation, together with assembly (ASCII) and byte-code (binary) readers and writers,
and a verifier.

e A powerful pass-management system that automatically sequences passes (including analysis,
transformation, and code-generation passes) based on their dependences, and pipelines them for
efficiency

e A wide range of global scalar optimizations

e An easily re-targetable code generator

e APIs and debugging tools to simplify rapid development of LLVM components

e A test framework with a number of benchmark codes and applications

e 64bits C code transformer

3-2-4 HP-VEX

VEX ("VLIW Example" [4]) is a compilation-simulation system that targets a wide class of VLIW
processor architectures, and enables compiling, simulating, analyzing and evaluating C programs for

them.
VEX system include three main components [36]:

1. The VEX Instruction Set Architecture. VEX defines a 32-bit clustered VLIW ISA that is
scalable and customizable to individual application domains. Scalability includes the ability to
change the number of clusters, execution units, registers and latencies; customizability enables
users to define special-purpose instructions in structured way.

2. The VEX C Compiler. It is a robust, ISO/C89 compiler that uses Trace Scheduling [37] as its
global scheduling engine. A very flexible table-like machine model determines the target
architecture. For VEX, we selectively expose some of the parameters to allow architecture
exploration by changing the number of clusters, execution units, issue width and operation

latencies, without having to recompile the compiler.

36|Page

3. The VEX Simulation System. The VEX simulator is an architecture-level (functional) simulator
that uses compiled simulator technology to achieve a speed of many equivalent "MIPS'. A simple
built-in cache simulator (level-1 cache only), and an API that enables other plug-ins used for

modeling the memory system.

VEX has the capability of writing output log files based on the architectural parameters; i.e. No. of cycles,

No. of stalls, etc. This is the base of mathematical calculations and metrics for MOST databases.

Got to be mentioned there is a problem aroused by using VEX after LLVM since LLVM compiler feed
the VEX with 64 bits of compiled, transformed code. In some of the benchmarks, lots of efforts have been

issued to fix and make those in-chain output-inputs compatible to each other.

3-3 Benchmarks

As mentioned in the Section 3-2 (Designed Model), there is variety of benchmarks that have been used to
expand the usability of the proposed methodology in this dissertation. The higher level embedded

applications like JPEG to more complex ones like GSM. The selected set of benchmarks is composed of:

1. GSM

2. AES

3. ADPCM

4. JPEG

5. BLOWFISH

There is a necessity of explanation here about some of the differences of “Intensity” the parameter in the
next chapter results which are the difference between the target applications. In another word, those
ChStone benchmark applications [31] are high level synthesis field, therefore the input data is not so large
in-order to be able to simulate at the gate level. For these applications, in this dissertation, the impact of

compiler transformation on performance is more interested rather than intensity itself.

37|Page

3-4 Analysis Types

Taking into account the multi-objective facet and complexity of the problem, in this dissertation, for each
benchmark explored, there have been several strong statistical analyses performed in order to support the
evaluation process. All have been done by powerful open-sourced statistical software R [38]. The types of

analysis are:

e ANOVA

o Kruskal-Wallis

e Principal Component Analysis (PCA)
e Correlation Plots

e Box-Plots, Scatter Plots, Matrix Plots

e Densities

For each benchmark, the type analyses mentioned in section Experimental Results of the Chapter - 4 have

been elaborated. In the following section, the definitions of these analyses are being illustrated.

3-4-1 ANOVA Analysis

One of the best tests for evaluating the obtained results in the normal parametric distributions could be

ANOVA [39] (for ANalysis OF VAriances).

ANOVA is a collection of statistical models, and their associated procedures, in which the
observed variance in a particular variable is partitioned into components attributable to different sources
of variation. In its simplest form, ANOVA provides a statistical test of whether or not the means of
several groups are all equal, and therefore generalizes #-test [40] to more than two groups. T-test gets a
significant acceptance value as (o), and then decides to accept or reject the model if the acceptance is
lower or higher than the calculated value. ANOVA is a particular form of statistical hypothesis
testing heavily used in the analysis of experimental data. A statistical hypothesis test is a method of
making decisions using data. A test result (calculated from the null hypothesis and the sample) is called
statistically significant if it is deemed unlikely to have occurred, assuming the truth of the null hypothesis.
A statistically significant result (when a probability (p-value) is less than a threshold (significance level))

justifies the rejection of the null hypothesis. The computer method calculates the probability (p-value) of

38|Page

a value of F greater than or equal to the observed value (Pr). The null hypothesis is rejected if this
probability is less than or equal to the significance level (o). The two methods produce the same result. In
this dissertation, the significance level (o) is equal to 5%, therefore, for accepting a model (Pr) should be

greater than F.

alpha

: e

Figure 8- ANOVA

As an example, for GSM benchmark and the mem2reg compiler option, we have this ANOVA result for

performance value:

Ops

Df sSum sSgq Mean Sg F value Pr (>F)
mem2reqg 1 21368 21368 11.46 0.000766 *=*=*
Residuals 494 920663 1864

Figure 9- ANOVA Example

As it may be seen, the (Pr) is greater than (F) and the value is lower than 5%, so the test will be accepted
and it is possible the declare existence of significant impact of mem2reg on the performance metric on the

model.

3-4-2 Kruskal-Wallis

Unlike ANOVA, this analysis test is for non-parametric data. Kruskal-Wallis [41] compares between the
medians of two or more samples to determine if the samples have come from different populations.
Firstly, it has to be checked if the data are independent from each other and the distribution do not have to
be normal and the variance do not have to be equal. The more important thing is that the individuals must
have equal chance of being selected.

As an example, just like the last method, the acceptance test has to be based on the significance level (a)

which is supposed to be 5% in this dissertation. By having:

39|Page

Ops

Kruskal-wallis chi-squared = 8.3994, df = 1, p-value =
0.003753

Figure 10- Kruskal_Wallis_Example

3-4-3 Correlation Analysis

In this dissertation a couple of different correlation analyses have been made in order to better elaborate

the experimental results.

First, the Correlation Matrix, which is similar to the Covariance Matrix of the standardized random
variables [42] is going to be illustrated. In this matrix, maximum correlation in the same way of the
parameter is going to be shown by (+1) and vice-versa in the opposite way will be (-1). In between those
points, the correlation will be distributed and of course on the main diagonal of the matrix the value will

be zero as of NO correlation for each same couple.

Second, by varying the parameters with the metrics, the deltas for each parameters will be reached.
Therefore, this type of correlation matrix could be used in order to illustrate the impact of the other

parameters on both the metrics and the other parameters

Third, the Correlation matrix of PCAs, is just like the normal correlation matrix with this different in
which the main parameters for making correlation to will be the principal components of the metrics. For
instance, for GSM benchmark and the mem2reg compiler parameter, the experimental result led to have

the following correlation plot:

40| Page

num_operations

DCacheAccess
instcombine
execution_cycles
ICacheAccess
reassociate
loop_rotate

ints
loop_unswitch

loop_unroll
constprop

loop_reduce
licm

memcpyopt

memz2reg
ebw

tdta
simplifycfg

code size
inline
sccp

dece

ops
scalarrepl

mem2reg
tdta
code_size
inline
scop 06
dce
ops [| u
loop_reduce | |l
DCacheAccess HE []
instcombine L o2
ints
execution_cycles]
ICacheAccess
num_operations
reassociate
loop_rotate H m
loop_unswitch l 04
loop_unroll |
consprep XX XX XX XX "
icm -
smpityt 3| SO | XK XK

memacpyopt | 08

cbw XXX XXX X

scalarrepl |

08

r 04

Figure 11- Correlation Matrix_GSM_Inline Example

As it may be seen, Performance (ops) seems positively correlated with mem2reg, code size, inline,
loop reduce, reassociate while it is negatively correlated with loop_rotate.

3-4-4 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components. In addition, the number of principal
components is less than or equal to the original values, or in another word, is less than or equal to the
number of eigenvalues of the matrix [43]. PCA is a way of identifying the patterns in data and expressing

the data in such a way as to highlight their similarities and differences.

In the metrics of the analysis, it is been tried to focus on finding and analyzing the most influential
patterns regarding the performance and intensity in the experimental results, therefore using PCA could
be a good tool in order to define new levels for the analysis. As an example, again for GSM_Inline

parameter, the PCA plot is defined as Figure 12- (PCA for GSM_ Inline):

41 |Page

Figure 12- (PCA for GSM_Inline) shows strong impact of performance component (around 98%) to the

PC2

100

-50

—0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
1 1 1 1 | 1 1 1
intensity
A
|
III
III‘
/ - ™
[128 77
. . SN B
187 ﬁf &1 1z
1 T [— 188
T s 1m Py —— s s
= 8 o —
! s 199 - performa
T T T T
—50 4] 50 100
PC1

Figure 12- PCA for GSM_Inline

model, and it is the main or the first principal component of the model.

42| Page

-02 00 02 04 06 08 10

-04

Chapter 4

Experimental Results

In this chapter of dissertation, the achieved experimental results are going to be illustrated. The procedure
of elaboration will be benchmark by benchmark, and then some of the selected diagrams of each are

going to be introduced. Finally, the whole experimental of each benchmark will be classified via a table.
All the selected benchmarks have been evaluated and explored with the following scenario:

1- Fixed architectural parameters with the value mentioned in the section

2- 500 iterations under RandomDoE algorithm for each compiler parameter designed and executed
by MOST [33]

3- Optimized with the Parallel Doe and being transformed.

4- Being measured regarding the metrics of the roof-line model, the basic metrics have been
generated by VEX, then calculated for each iteration by the roof-line model equations [19]

5- Further analysis has been done with open-source software R [38] which the selected of them is

going to be illustrated for each benchmark. The Analysis are :

a. “ANOVA” test, defined in Section 3-4-1 (ANOVA Analysis)

b. “KRUSKAL” test, defined in Section 3-4-2 (Kruskal-Wallis)

c. “Box Plots” of Intensity, Performance for enabling/excluding each compiler parameter
d. “Correlation Analysis”, defined in the Section 3-4-3 (Correlation Analysis)

“Scatter Plots” of the effects obtained by varying each compiler parameter

e
[“Principal Component Analysis”, defined in Section 3-4-4 (Principal Component)

g “Average Increment of Performance and Intensity” for each compiler parameter option
h

Densities regarding the performance and intensity and activating the specified compiler

parameter and the second chosen parameter.

43| Page

4-1 Motivation

There are several facets to be taken into considerations when we deal with design space in VLIW
processors. First, as it was mentioned in the Section 2-1-5 (Performance Model and Floating Point), the
roof-line model defines the limits in which it won’t be possible to surpass this line. To certify the theory,
as it has been illustrated in Figure 13, the GSM benchmark has been explored 4000 times with total

random architectural options and the dce random effect.

Vex simulator - intensity vs performance

A “FULL_DB-dce-excluded”
"FULL_DB-dce-phasel1"

1024

Performance [Mops/s]

N
)]
(=2}

0.25 4 (5] 64
Intensity [ops/B]

Figure 13 - GSM_dce_ 4000 iteration_ Roofline Certification

Second, since there are quite a lot of parameters involved in the problem, even with analyzing the effect
of activating each transformation, it won’t be easy classification of the results. In Figure 14-
(GSM_Mem?2reg Effect), by exploring 500 times GSM with mem2reg effect and filtering the
configuration point both before and after activations with their metrics (Intensity and Performance), the
effectual arrows have been drawn. As it could be observed, still lots of parameters have been involved

affecting the trends and behaviors of the system.

44|Page

Vex simulator - intensity vs performance

"FULL_DB-mem2reg” using 1:2:($3-$1):($4-2) — =
e

740

720

700

Performance [Mops/s]
[=1]
[=]
[=]

120 130 140 150 160 170 180 190 200
Intensity [ops/B]

Figure 14-GSM_Mem2reg Effect

A meaningful visualization about the effect of varying the compiler option, the traversing under the roof-
line could be vital since being either memory bound or computation bound could be resulted in refraining

the further progression of the system resources.

Vex simulator - intensity vs performance

140 7 T i T T
"FULL_DB-mem2reg" using ($3-$1):(34-$2) +
+
120
-
100 * +
% 80 e Bt N o ey i
+
i 60 =5
§ -+ . -+ A + -
=] i + + o
40 -
g + + 4 "
2 _—
o 20 T + o +
e ¥ For * : -
0 + 4+ +_'t+ o o
R &
N . ™ %"ﬁ
20 = T N
- e
Py 4 T
-
40
-20 -156 -10 -5 0 5 10 15 20 25 30

Intensity [ops/B]

Figure 15-GSM_Mem2reg Effect_2

Figure 15- (GSM_Mem?2reg Effect 2) shows the exact effects of Figure 14, provided with the points have
been transformed to the relative origin point of O (0, 0) of the Cartesian. If we split the diagram into

fourth, it is going to be seen that the majority of the points are located in the section fourth (minus

45|Page

intensity, minus performance). This will be base of starting the analysis (PCA, etc) which is going to be

illustrated in the following.

4-2 Benchmark No.1 - GSM

It is one of the high intensity benchmarks available for testing the compiler performance at a high and low
level; it has an Encoder/Decoder which is capable of sending and receiving the signals [30]. The GSM
benchmark could place a good and reliable load into the system which is definitely needed to exemplify

the use of the designed methodology.

In this section of dissertation, some of the most important results achieved by running the proposed
methodology are going to be presented for GSM. Since the results and figures are pretty high and varied
for all the 15 compiler options (named in section 2-1-4 Compiler Option), for some of the selected
parameters the experimental results are going to be illustrated and the end of the section the whole table
will be shown. In order to be complete, the whole results have been put in the section Appendix. For
GSM, the parameters chosen were Inline, Loop Unroll and Mem2reg because those were good
representative of all the space combination depicted in the Table 5- (GSM_ANOVA). More in detail we
have that:

o [nline passes both tests for Intensity and performance,
e Joop unroll failed the both,

e memZreg have only passed the impact on Performance.

Therefore, selecting these three could be a good representation of the whole sets of transformations

available.

46| Page

4-2-1 ANOVA

ANOVA Analysis _ Inline

Intensity
Df Sum Sg Mean Sqg F wvalue Pr (>F)
inline 1 12847 12847 66.81 2.52e-15 **x*
Residuals 496 95380 192
Ops
Df Sum Sg Mean Sg F value Pr (>F)
inline 1 41832 41832 22.8 2.37e-06 ***
Residuals 496 910193 1835
ANOVA Analysis _ Loop_Unroll
Intensity

Df Sum Sg Mean Sqg F wvalue Pr (>F)
loop unroll 1 0 0.08 0 0.984
Residuals 492 100129 203.51

Ops
Df Sum Sg Mean Sqg F wvalue Pr (>F)

loop unroll 1 2 1.7 0.001 0.976
Residuals 492 913735 1857.2

ANOVA Analysis _ Mem2reg

Intensity

Df Sum Sg Mean Sqg F wvalue Pr (>F)
mem2reg 1 70 69.91 0.35 0.555
Residuals 494 98740 199.88

Ops

Df Sum Sg Mean Sg F value Pr (>F)
mem2reg 1 21368 21368 11.46 0.000766 **x*
Residuals 494 920663 1864

Table 5- GSM_ANOVA

Provided with the Table 5, it could be seen that:
e Inline: a significant impact on Intensity is being observed based on the ANOVA test.

e Loop_ Unroll: No significant changes observed

e Mem2reg: a significant impact on performance (Ops) could be observed.

47| Page

4-2-2 Kruskal-Wallis

Kruskall-Wallis_Inline
Intensity

Kruskal-Wallis chi-squared = 55.0613, df 1, p-value = 1.168e-13

Ops

Kruskal-Wallis chi-squared = 23.3781, df = 1, p-value = 1.331le-06

Kruskall-Wallis_Loop_unroll
Intensity

Kruskal-Wallis chi-squared = 0.0022, df = 1, p-value = 0.9625

Ops

Kruskal-Wallis chi-squared = 0.007, df = 1, p-value = 0.9332

Kruskall-Wallis Mem2reg
Intensity

Kruskal-Wallis chi-squared = 0.1376, df 1, p-value = 0.7107

Ops

Kruskal-Wallis chi-squared = 8.3994, df = 1, p-value = 0.003753

Table 6- GSM_Kruskal

Provided with the Table 6, it could be seen that:
e Inline: a significant impact on Intensity is being observed based on the kruskal test.
e Loop_ Unroll: No significant changes observed

e Mem2reg: a significant impact on performance (Ops) could be observed.

4-2-3 Distributions
In this section, presented on each page, there will be the densities of the transformations both in plot and

box view. ANOVA, Kruskal-Wallis analyses can be certify the median lines of the figures.

48| Page

Inline

Performance Intensity

0.030-
0025-
0.008-

0.020-

0.006 -

% inline
z inline £ oots- excluded
z excluded 3 phasel
< phaset
0.004-
0.010-
0.002-
0.005-
0.000- 0.000-,
Figure 16-GSM_Inline_Distribution
Box-Plots
Performance Intensity

750~

700-
170-
inline e
: ”""’;" B excluded
g 160 B et
03
03
650 - E03 Fo3
160~
140-
00—

i
excluded

inline

Figure 17-GSM_Inline_BoxPlot

It can be observed from the Figure 17, there are significant impacts on the median of Performance and

Intensity by activating the Inline transformation. This statement could be certifies by ANOVA as well.

49| Page

Loop_Unroll

Performance

0.008 -

0.006 -

Intensity

0025~

0.020-

loop_unroll
excluded
phasel

0.015-

density

0.010-

0.005-

0.000 -

! 1 ! ! |
130 140 150 160 170 180 190
ints

Figure 18-GSM_Loop_unroll_Dist

loop_unroll
% excluded
E-] phasel
0.004 -
0.002 -
0.000 -
Performance Intensity
750 - 190-
180-
700-
170-
)_unroll
B8 excluded
3 B8 phaset i
0.3
650- o3
150 -
140-
60~

b & Moo n Sl et e . 2

| i
excluded phasel
loop_unroll

loop_unroll
85 excluded

B phaset
03

o3

I I
excluded phasel
loop_unroll

Figure 19-GSM_Loop_unroll_Box

As we could guess by ANOVA (refer to 4-4-8 GSM Conclusion), there are no significant change in the

medians of loop_unroll. The Figure 19 certifies this hypothesis. Here as well, it could be observed that

the medians are the same, so no significant impact on metrics.

50| Page

MemZ2reg

Performance Intensity

0.030-

0.008-
0.025-

0.008- 0.020-
2 mem2reg
2 excluded
8 0015~ phaset
0.004-
0010~
0.002-
0.005-
0,000~ 0.000-
Figure 20-GSM_Mem2reg_Dist
Performance Intensity
190 T
750~ -
L] . .
180 - . .' .
[. :-‘ e .-
700 10~
03
03
Bos B03
2 £ 160~ memzreg
o mem2reg excluded
B excluded : phaset
650~ B8 phasel
150~
140-
600~ .
130- *
excllljded phalsel
mem2reg

Figure 21-GSM_Mem2reg_Box

Ilustrated by Figure 21, mem2reg transformation has significant impact on Performance metrics.

S51|Page

4-2-4 Scatter Plots

By drawing intensity and performance in a same figure, it can be possible to have a plot which shows the

variety of data and experimental points scattered in the figure as in Figure 21:

intensity performance

40 -
30 -
20 -
Es
10- E
=
-
-

_20 4
I I 1 1 I 1 | |
—20 -15 —10 -5 —-10 10 20 30 40
x
Figure 21-GSM_Inline_ScatterPlot
intensity performance
L]
15-
10- P .
05- ae ols, 5
- 3
0.0- e &
L S 1
-05- . . 1
- L
-
-10-
. o
-
>
15-
10-
05- g'
-
0.0- e 3
- S
—05-
e 1 i sl L
~1.0- +—
I I 1 I 1 1 I I I I 1 1 1
-10 -05 00 05 10 15 -10 -08 -06 -04 -02 00 02

X

Figure 22-GSM_ScatterPlot_Loop_unroll

52|Page

intensity

performance

100-

50-

Aysusul

100 - =

sourulopad

Figure 23--GSM_mem2reg_Scatterplot

Figures 21-23 are a good representation of the deltas while seeing the both metrics together. Distributions
could be seen easily and the trends (if any) could be extracted.

4-2-5 Principal Component Analysis

As explained in the section 3-4-4 Principal Component, using this analysis will re-coordinate the way we
look at the figures in such a way that the more important components based on the highest variety are

categorized as the first and second components. Therefore, the figure can be analyzed by the better
knowledge of knowing the main affected factor.

53|Page

54|Page

-05 0.0 05 10
| | | | |
L =2
o
Q
=
(——
S
e o Tomm
it ks
™ G, ‘ég
» BY % 2
[C o
o 4 "ﬁ“ e, W ag W w @ o
o o i Lol e e e
Q W ww w bTgm WE Fhedorma
L e
o | = 108
- [
! | 0
| [<
| T
|
§ v
intensity - ‘c_
o |
2
i
T T T T T T
-30 -20 -10 0 10 20

PC1

Figure 24-GSM_Inline_ PCA

Intensity.

-05 0.0 0.5 1.0
. | | | | o
o performance | -
g N
< I‘".]
- \ e
o | ""‘
e ! intensi
8 n“. 4 —
o - —
=] - =)
S 7 L s
158 181945 .
118 38 ‘g 132
188
0 B
? 185 : - :g
117135
144 126
= 176 168 7 0
‘l_] 140 ?
T T T T T T T
-1.0 -05 0.0 05 1.0 1.5 20
PC1
Figure 25-GSM_Loop_unroll_PCA

As it can be observed by the figure the principal component is performance. The second component is the

With a low slope, the first principal component is related to intensity here and slopped performance is the

second key.
—0.4 —0.2 0.0 0.2 0.4 0.6 0.8 1.0
I | | I I I I I
intensity — .,o_
S - | o
- S S
/ | ©
[=1
B -3
g
- <
(=]
f 18 wy T 68
L l .': N B 7“"”“ e -
S A ot = - S
7 5 1E3 o ""’—77_'5,‘?-_ 78
a8 -3 z|ﬁﬂ 208
! s 109 i performg
- o
T
s
7 <
T T T T
—50 V] 50 100
PC1

Figure 26-GSM_Mem2reg PCA

As it can be observed by the figure the principal component is performance. The second component is the

Intensity.

4-2-6 Correlation Analysis

In this section of experimental result, three types of correlation are going to be presented.

1. Correlation on raw data: Simply by having the output data and the metrics, there is a
possibility of calculating the correlation between each two component of the performance and

compiler parameters

2. Correlation on deltas: As it was depicted in Figure 12-GSM_Mem?2reg Effect and Figure 13-

GSM_Mem2reg Effect 2, by filtering the specified compiler parameter and their metrics
(Performance and Intensity), there will be derived four points which was the result of exclusion
and inclusion of that compiler parameter with the results. This kind of correlation is calculated

based on these deltas of the points.

55|Page

3. Correlation of the Principal Component: After defining the PCA of the exploration, it is also

possible to do the correlation with respect to the first and second principal component.

1- Correlation on raw data

Inline

w
2 3 gt £
3 B = § b S‘I @ B oo £
g 8 3 S 8%F § s5s25uif
= (] 9| 83| E"Eg = §LD|%9|3|E
st o8fowbEo 02888 gugRESaa D
252+£5=8a23 0688322838583 9E
o=ES2ocLtlocoEtEflcon0Lfomewtaodcllosn
ebw [] !
licm
mem2reg 0.8
tdta |l H
code_size H B [] 06
inline ||
loop_reduce
ops] . r 04
memcpyopt
loop_unroll L 02
dce
constprop
DCacheAccess [] | [] -0
instcombine
scop Fr-0.2
scalarrepl
ints | 04
execution_cycles]
ICacheAccess HE B
num_operations BEE B -06
reassociate >< W =]
loop_rotate | .>.< 08
loop_unswitch ><>OO< W E : P : : ; : b4
simplifycfg |

Figure 27-GSM_Inline_Corr_raw_data

As it could be seen from the result:

e Performance (opt); seems positively correlated with loop reduce, inline, mem2reg,
reassociate, memcpyopt. Licm while it is negatively correlated with loop-rotate and
instcombine.

o Intensity (ints); positively correlated with loop-rotate, reassiciate and scalarrepl and
negatively with loop-reduce and inline

e Small negative correlation between Intensity and performance in the table

56| Page

Loop Unroll

num_operations

loop_unroll

execution_cycles
licm

|CacheAccess

DCacheAccess
reassociate

loop_unswitch
sccp

tdta
loop_reduce

memcpyopt
memz2reg
swnp[fycfg
ops

inline
instcombine

constprop
loop_rotate

scalarrepl
ebw
dce

ints

code_size

memcpyopt
memZ2reg
loop_unswitch 0.8
tta (W0 M5 [|
code_size || | |] 06
simplifycfg
inline || |
loop_reduce | | 04
ops]]
instcombine 02
constprop
DCacheAccess 1 | [] 0
sccp
scalarrepl

ints | | [[]| 02
execution_cycles >< X X L >< 4 . . .
H EE N

ICacheAccess
reassogiate H B
num_operations >< >< >< >< HEE
loop_unroll -06
licm

loop_rotate L] [] ||| ~08
ebw H

dce

Figure 28- GSM_Loop _unroll_Corr_raw

e Performance (opt); seems positively correlated with loop_reduce, inline, mem2reg,
reassociate. Licm while it is negatively correlated with loop-rotate

o Intensity (ints); positively correlated with loop-rotate, reassociate and scalarrepl and
negatively with loop-reduce and inline

e THERE IS NO correlation between Intensity and performance

57|Page

Mem2reg

execution_cycles

loop_reduce
DCacheAccess
instcombine
ints
ICacheAccess
num_operations
reassociate
loop_rotate
loop_unswitch
loop_unroll
constprop

mem2reg
licm

tdta
code_size
inline

scop

dce

ops
simplifycfg
memcpyopt
ebw
scalarrepl

mem2reg
tdta
code_size
inline
sccp
dce
ops [| u
loop_reduce |l [1]
DCacheAccess HE []
instcombine
ints] ||
execution_cycles Hn
ICacheAccess

||
|
HE EB
num_operations [[|
Hul
L]

reassociate

loop_rotate H B | |

loop_unswitch
loop_unroll

Constr;‘rcorgx X XXX XX
simplifyefg 3| DO P XX

memcpyopt |

eow SO XXX X

scalarrepl |

Figure 29-GSM_Mem2reg_Corr_Raw

2- Correlation on Deltas

Inline

constprop

X >< >< >< >< reassociate
KX XX dee

intensity

>< scop
X | loop_rotate

X X licm
>< X loop_unroll

intensity

>< X mem2reg
X >< X performance

X
loop_rotate >< X >< ><
iem MM (XX
loop_unroll X X X X
constprop >< X X >< X X >< X
reassociate >< >< X >< X >< >< X >< ><
dee XXX X XXX XXX X
simplifycfa | 3 X XXX XXX
memcpyopt X XXXXXXX XX
loop_unswitch >< >< X >< X >< X X X X ><
scalarrepIXXXXXXXXXXX ><
insteombine | XX XX XX X XX X X
loop_reduce XXXXXXX XXXXX
memz2reg X >< >< X X X .
performance X X X x X X X X .

X
X
XXX X memepyopt
XX XXX X 10op_unswitch
>< >< >< >< >< >< >< scalarrepl

X >< >< X X X x X X instcombine
XXXX XXXXXXX\OO;}JEMC&

XX

X X x X X simplifycfg
XX
XX

XXX

Figure 30-GSM_Inline_Corr_Deltas

58| Page

08

06

04

02

0.8

06

04

r oz

It can be observed in the figure that:

e No significant impact on Intensity

e Performance is modified positively by both the activation of inline and mem2reg and
loop_reduce, instcombine and dce. It can negatively modified by activation of inline and

simplifycfg and licm

Loop_Unroll

g _ 2 % o8 . 28
ScessissgEgEiags
performance XXXXXXXX XXXXX I
tem PR OXIXXXIX XEXIXXXX X 08
memZ2reg XX XXXXX XXXXXXX
sca\arrep\xxx XX XXXXXXX o
dee XX XX XXXAXXXX X X[o
reassociate XXXXX XXXXXXXXXX
toop_rotate XX XX XIXXXOXIXOXEXIX | 102
loop_unswitch >< ><><><><>< ><><><><><>< >< 0
seer X XXXXX XXXX XXX
smpliyeig XXX XX XX XX XX | o2
loop_reduce XXXXXXXXXX ><><>< ><
constprop XXXXXXXXXXX XXXX o

instcombine ><><><>< ><><><><><><>< ><><>< -06
memcpycthXXXXXXXXXXXX XX

intensity XXX XX XX XXX 08

inline >< XXXXXXXXXX

Figure 31-GSM_Loop_Unroll_Corr_Delta

o Intensity can be decreased by activating loop_unroll and inline and loop_reduce. and negatively
by activating loop_unroll and scalarrepl and dce.
e Performance is modified negatively by both the activation of loop_unroll and inline. Also

positively with loop_unroll and simplifycfg

59|Page

Mem2reg

em | XX XXX X XX 1
scalarrepl | > > XXX XK X XK X 08
wr XX XKKKKK KKK
inline | > > KKK AKX XXX o
loop_reduce | X XK XKIXKIKIXKX KX XK KX [04
loop_unswitch > XX > DK KX XK XX
loop_unroll > DX XK XX XXX 02
memepyopt | X XXX X XXX XX X o
instcombine | > S X XX XK HKAXX XXX
se XX XXX K TR KK T KKK oz
simplifyetg | 5 KKK XXX XXX XX
constprop ><><><><><><><><><><>< ><>< o
loop_rotate | SBIXXXK XIX XX XXX [o6
reassociate | > KK KKK XK KX XK
intensity X XXX XXX X - o8
performance -X XXX XX X -

Figure 32-GSM_Mem2reg_Corr_Delta

3- Correlation of the PCA

Inline

Since it was shown on Figure 22-GSM_Inline PCA, the PCA for the GSM_Inline were depicted. Based

on these data, the correlation between the data and the components can be shown as Figure 33:

60| Page

o —) > a5 = _ 2 8 8
z; § tg: Efxereig:
intensity HKX XX XXX KX XXX
scep | DK XXX XXX X XXX X X X os
loop_rotate | D D XXX >XX XXX X < X
tiem | DD DX XX X XK X XXX o8
loop_unroll | > X[WX XX XXX XXX 0.4
constprop | | XX XXX XIXIXIXIXI XX XX
reassociate DX DX X DX X X X X XX XX 02
dee XXX XXX X XXX X 0
simplifycfg >< >< >< >< >< >< >< X X >< >< ><
memcpyopt >< >< >< >< >< >< >< >< >< >< —02
oop_unswitch NGO GV GV VO X[= XXX
scalarrepl | D | D DD DD DK DK XK I X XX XX o
instcombine | > D XXX X XX x< > -06
loop_reduce | R D DD/ DK > XXX X X
mem2reg | 3| > X< XX a8
performance | B > | 3 < XXX -1

Figure 33-GSM_Inline_Corr_PCA

For the PCA correlation, it can be observed that the transformation mem2reg has positive correlation with

the first principal component and simplifycfg has negative correlation with performance.

Loop Unroll

£
8 L g £ - 3 2 5
s P ofzi fgEecc
SRR ER ISR R R AR
performance P XXX X 1
lem B XXX X XXX XX 08
mem2req ><>< XXXXX ><><>< XXX
scalarrepl XWX W X X MY XX XXX 06

dee XIXXX XXXX XXX X X[s
reassociateXXXXX XXXXXXXXX
Ioopfrolate><><>< ><>< ><><><><>< X><>< 02
Ioop_unawitchx XXXXX XXXXXX ><

s X XXXXX XXX XXX X
simpliyefy XXX XXX XX XXX X | 02
Ioop_reduceXXXXXXXXXX XXX ><
consiprop 2 X XXX XX XX XX XXX X ™
instcombine XX X >< XXXXX ><><>< -06
memcpyothXXXXXXXXXXXX XX

intensity >< X X >< X X >< X >< oe

inline >< >< XXXXXXXX

Figure 34-GSM_Loop_Unroll_Corr_PCA

61|Page

Mem2reg

perormance. MMM XX KK KX XXK 1
reassociaiex X XXXXXXXXX >< 08
constprop (| KAUXKAKXAK XXX X
mtensny‘x X.XXXXXXXXX o0
loop_rotate XXXX XXXXXXXXXXX 0.4

oop_reduce XX XXX XX XXX X
simplifyefg XXX XX XX XXX | ez

dee ZERKXHK XK XK XX KX XX
insicombine DMK XK XK XXX XXX
memepyopt XK XX XK XX XX XXX —02
loop_unroll MMM MY KKK XX XXX XX
loop_unswitch M M M X X X XXX XX XX o
iline X HX K XX XX XXX H o

scop |) KX XKXKKAHKAK AKX X

scalamepl K XX XXX XXX X X s
licm . X XXX XX X X

0

|
Figure 35-GSM_Mem2reg Coo_PCA

Regarding the above correlation plot, it can be said that,

e Loop_reduce seems positively impacting the first component (represented by Performance). The
second component (Intensity) is negatively impacted by loop_reduceb and positively impacted

by reassociate.

4-2-7 Matrix Plot

After calculation of the metrics, another way of presenting the information could be by matrix-plot. In this
plot “tdta” stands for Total Data Across Bus, “ebw” stands for Effective bandwidth and “int” and “ops”

are representatives of Intensity and Performance.

62|Page

Inline

Loop_Unroll

63|Page

Seatter Plot Matrix

Figure 36-GSM_Inline_MatrixPlot

T T
700 750

~ 160 ints 160 —

- 24000

- 23000 tdta 23000

22000 23000 22000 1

Scatter Plot Matrix

Figure 37-GSM_Loop_Unroll_Matrixplot

As it could be guessed, since the first principal component has high dependency with intensity, so the
majority of the points have been indicated by pink, which refers to the intensity.

For the other two figures, the issue is vice-versa, thus there are enormous blue points in the system have
been observed.

Mem2reg
160 ints 160 —
140

22000 23000 22000
| |
Scatter Plot Matrix

Figure 38-GSM_Mem2reg_MatrixPlot

Densities

When the benchmark has been explored with respect to the specified compiler parameter, there will also a
possibility to see the effects of adding the second parameter (include/exclude) with respect of having the
first parameter activated already, i.e. in this scenario now there is “Inline” option activated already for

exploration, we can see the effect of having a second parameter meanwhile.

64|Page

In the Figure 39, Inline parameter have been already activated, for the infensity metric we are interested in

seeing the effect of activating “scalarrepl” as well. Therefore for both case of including and excluding the

parameter, the following figure is drawn:

Inline
0 1
> scalarrepl
g iz
=] L 1
1 1 =5 -20 -10
intensity
Figure 39-GSM_Inline_Densities
Loop _unroll
0 1
|
|
1
3- ||
22 I | scalarrepl
@ [| 0
5 ('
h=1 | | 1
||
| | ‘
|
|) |
[|
] | | ‘
' |
[|
{ 1
| |
| | | |
\ ;/\\.‘I ‘| M\
y % 1/
0 et ., & o o d MR
] I I I I I I I 1 I I I
-10 -05 00 05 10 15 -10 -05 00 05 10 15
intensity

Figure 40-GSM_Loop_Unroll_Densities

65|Page

Mem2reg

0.08

0.

o
»

density
o
2

0.02

0.00

intensity

Figure 41-GSM_Mem2reg_Densities

66|Page

4-4-8 GSM Conclusion

The results which have been illustrated, was for the compiler parameter “Inline”. Since the compiler
parameters explored in this dissertation were 15, for being abstract regarding the results publications and
figures in this text, the author assumed it suffice to present only one parameter out of those 15. For the
sake of completeness, at the end of each benchmark there will be a conclusion section which presents all

the complete data in a quantitative table.

In the following page, the classification of results for GSM is being illustrated.

67|Page

- instcombine (.05)
- scalarrepl (.05)

ANOVA (<5%) KRUSKAL (<5%) CORR Corr on delta (5%) CORR (PCA) 5% DATA summmary
Parameters INT OPS INT OPS INT OPS INT OPS INT OPS AVG increment of INT Average increment of OPS
Mean: 159.2 Mean: 671.3 pc2=.25 pcl=.75
constprop 0.937 0.997 0.9249 0.9804 Min:129.3 Max:191.6 |Min:576.2 Max:754.8 +'m?m2reg(.09) - Ifﬁstcomblne(.19) 0.1 -0.02
-inline(.8) - licm(.07)
+ scalarrepl (.005) - loop_unswitch(.06)
PC2=.12 PC1=.88
Mean: 158.7 Mean: 669.6 . . .
dce 0.986 0.996 0.9851 0.9858 Min:126.3 Max:191.6 |Min:575.3 Max:751.3 +instcombine (.13) No accepted result regading -0.02 -0.02
I T T e +loop_rotate - licm (.12) sig-level 5%
-constprop - licm
2 .54
I.”Qi: rreedgu(ce()01) pC2=.09 PC1=.91
- Mean: 158.2 Mean: 667.3 ted It -) +simplifycfg (.28 -
inline 2.52E-15 2.37E-06 1.176-13 | 133606 | . V52" Mean noaccepted resulits | yce (.08) simplifycfg (.28) - loop_reduce (.14) -10.15 18.33
Min:129.2 Max:191.6 |Min:575.7 Max:753.7 |for 5% sig-level . R
- simplifycfg (.11)
- licm(.08)
Mean: 158.3 Mean: 670.0 pc2=.13 PC1=.86
i i 0.612 0.145 0.4239 0.03213 | X ! X No accepted result o 0.69 -5.17
instcombine Min:129.2 Max:191.6 [Min:575.3 Max:753.7 |+ performance(.56) |+ intensity(.39) cepte u "+inline (.31)
regading sig-level 5%
- licm(.34) - licm(.3)
PC2=.05 PC1=.95
licm ol 3 GIEGS 0.0364 5. 09E-05 . Mean: 157.3 . Mean: 670.0 no acce}?)ted results +.Io<.3p_reduce (.52) No accepted result regading 255 15.54
Min:129.3 Max:191.6 |Min:575.3 Max:747.6 for 5% sig-level -inline (.16) sig-level 5%
+loop_unswitch
-mem?2reg (.42 PC2=.05 PC1=.95
loop_reduce 1.10E-11 1.20E-16 1.71E-09 1.15E-15 Mean: 157.5 Mean: 669.6 scalarre gl((38)) no accepted results No accepted result +mem?2reg (.36) 8.54 31.3
p_redu : : : : Min:129.2 Max:191.6 |Min:575.3 Max:751.6 P for 5% sig-level cepte | g1 : :
- reassociate (.15) regading sig-level 5% - instcombine (.15)
Mean: 157.5 Mean: 678.8 no accepted results pC2=.05 PC1=.95
loop_rotate 4.73E-13 1.20E-16 1.19E-11 2.20E-16 § i R} i +1 d .49 - 8.92 -52.14
P Min:129.2 Max:191.6 |Min:575.3 Max:753.7 |+ mem2reg for 5% sig-level oop_reduce (.49) +mem?2reg (.26)
- simplifycfg - mem2reg (.12)
Mean: 156.4 Mean: 665.8 PC2=.31 PC1=.68
loop_unroll 0.984 0.976 9.63E-01 0.9332 . . - K 0.02 -0.11
P Min:129.2 Max:191.6 [Min:576.1 Max:753.2 +inline -inline (.43) -inline (.41) - licm (.17)
Mean: 158.3 Mean: 668.0 no accepted results pc2=.10 PC1=.90
i 0.825 0.896 0.8139 0.9337 § : . : : . +inli .24 - -0.28 0.51
loop_unswitch Min:129.3 Max:191.6 |Min:575.5 Max:754.8 |for 5% sig-level +instcombine inline (.24) +loop_reduce (.17)
+mem2reg - mem2reg (.26)
+ performance (.54)
i .2 PCl=.
2 0.555 0.000766 0.7107 | 0.003753 Mean: 157.7 Mean: 668.3 +sr:aalzsr?§alte2(6) ® pC2=.05 N(c:) accS:e5 ted result regadin 0.75 13.12
memeareg : - : : Min:129.5 Max:191.6 |Min:575.3 Max:753.7 | -2 orrepil +scalarrepl (.11) X P gading : :
-inline(.14) +intensity(.54) sig-level 5%
- sccp(.03) - scep(.16)
M :157.0 M :677.5 ted It ted It
memcpyopt 1 1 1 1 i ean) ean no acce? ed resufts no accer? ed resufts Zero variance ?? Zero Variance ?? 0 0
Min:130.2 Max:188.5 [Min:576.1 Max:754.8 |for 5% sig-level for 5% sig-level
+ performance (.96) [+ intensity (.96)
M 1574 M 6675 +scalarrepl(.42) +scalarrepl(.42) PC2= 01 PC1=.99
ean: . ean: =.
reassociate 1.20E-16 1.07E-11 2.20E-16 5.21E-11) . n - instcombine (.11) - instcombine (.11) No accepted result regading| 19.88 26.11
Min:129.2 Max:191.6 [Min:575.3 Max:753.7 + loop_rotate (.38) .
- dce (.09) - dce (.09) sig-level 5%
- loop_reduce (.08) - loop_reduce (.08)
+ performance (.82) ()
+intensity (.82
Mean: 157.3 Mean: 669.8 +loop_rotate(.24) PC2=.04 PC1=.96
0.00033 0.0255 0.0001392 0.1392 +loo otate(.19 4.52 8.46
scalarrepl Min:129.4 Max:190.8 [Min:575.3 Max:753.2 |*+!0op_unroll (.12) | p_rota |e|() |+ reassociate (.13) +inline (.12)
-loop_reduce (.32) |*!oop_unroll (.14)
-mem2reg (.15)
+instcombine (.35) pC2= 21 PC1=.79
Mean: 157.1 Mean: 668.3 no accepted results [+ scalarepl(.08) ’ - simplifycfg(.19)
0.893 0.91 0.8956 0.9124 No accepted result 0.17 -0.46
scep Min:129.2 Max:191.6 |Min:576.2 Max:751.3 |for 5% sig-level ~inline (.38) e azinp o rlevl; 5oz - licm (.14)
- simplifycfg (.19) & & 58 ° - mem?2reg (.13)
- dce (.08)
+intensity (.84)
- - Mean: 156.9 Mean: 672.5 +loop_unswitch(.27) |PC2=.04 PC1=.96
simpifycf; 0.491 0.905 0.5474 0.8483 + performance (.84 - -0.88 -0.47
pifycfg Min:129.2 Max:191.6 [Min:575.3 Max:747.5 P (-84) | inline (.06) +loop_unswitch (.07) -inline (.13)

67|Page

4-3 Benchmark No.2 AES

As it was mentioned in the section 3-3 Benchmarks, the explored benchmarks from No.2 to No.5 have
been used from the CHStone benchmark package [31], and are some quality ones in order to see the
impact of compiler parameters to performance but rather to I/O and intensity. These benchmarks are from

high level synthesis field, so the input data is not so large in order to be simulated in the gate level.

Therefore, unlike GSM (refer to section 4-2 GSM Results), just the figures with meaningful results have
been mentioned here. The overall focus was mostly dedicated to watch the Performance altering by using
compiler parameters and draw a possible sketch of explaining why and how. Keep in mind that, no one
could generalize rules easily out of 4-5 benchmarks what so ever, but the trend of altering the metrics

might deliver a meaningful pattern in order to draw attention to.

68| Page

4-3-1 ANOVA

ANOVA Analysis _Loop_Reduce

Intensity

Df Sum Sg Mean Sg F value Pr (>F)
loop reduce 1 0.196 0.19629 24.64 9.52e-07 ***
Residuals 496 3.951 0.00797

Ops

Df Sum Sg Mean Sg F value Pr (>F)
loop reduce 1 94018 94018 123.2 <2e-16 ***
Residuals 496 378399 763

ANOVA Analysis _ Inline

Intensity

Df Sum Sg Mean Sg F value Pr (>F)
inline 1 0.433 0.4334 55.53 4.14e-13 ***
Residuals 494 3.855 0.0078

Ops

Df Sum Sgq Mean Sqg F value Pr (>F)
inline 1 657 657.1 0.731 0.393
Residuals 494 444251 899.3

ANOVA Analysis _ Mem2reg

Intensity

Df Sum Sg Mean Sqg F value Pr (>F)
mem2reg 1 0.139 0.13880 15.72 8.4e-05 **x*
Residuals 498 4.396 0.00883

Ops

Df Sum Sg Mean Sqg F wvalue Pr (>F)
mem2reg 1 142418 142418 218.4 <2e-16 ***
Residuals 498 324714 652

Table 7-AES_ANOVA

Regarding the above table, provided with 5% of acceptance rate, it can be said:

o Intensity: all three have been passed and shows a significant impact on the intensity while using

these benchmarks.

o Performance (Ops): a significant impact could be seen on Loop_reduce and mem2reg while

inline was left non-impacted.

4-3-2 Kruskal-Wallis

69|Page

Kruskal Analysis _ Inline
Intensity

Kruskal-Wallis chi-squared = 31.7114, df = 1, p-value = 1.789%e-08
Ops

Kruskal-Wallis chi-squared = 1.2454, df = 1, p-value = 0.2644

Kruskal Analysis _ Loop_reduce
Intensity

Kruskal-Wallis chi-squared = 13.8727, df = 1, p-value = 0.0001956
Ops

Kruskal-Wallis chi-squared = 66.6889, df

1, p-value = 3.179e-16

Kruskal Analysis _ MemZ2reg
Intensity

Kruskal-Wallis chi-squared = 10.9974, df = 1, p-value = 0.0009124
Ops

Kruskal-Wallis chi-squared = 124.5624, df = 1, p-value < 2.2e-16

Table 8-AES_Kruskal Wallis

Defined by Table 8, it could be observed that:

e Intensity: all three have been passed and shows a significant impact on the intensity while using
these benchmarks.
e Performance (Ops): a significant impact could be seen on Loop_reduce and mem2reg while

inline was left non-impacted.

4-3-3 Distributions

70| Page

Inline

Performance Intensity

0.016=

0.010-
inline

excluded
phase1

inline

=
excluded 2
phase1 3

density

0.005 -

0.000 -

Figure 42-AES_Distributions

Performance Intensity

820- 35-

iniine

B8 excluded B8 excluded
3 B pheset 2 B8 phaset
©ec0- s " 03

E3os 34- Edo3

580~

3.3-

1 1
excluded phase1
inline

Figure 43-AES_Boxplot

As it was suggested on ANOVA test as well, a significant impact on the intensity metrics could be
observed by inline transformation. In Figure 43 - (AES_Boxplot) as well, there is the box-plot of Inline.

The medians could be seen impacted.

71|Page

Loop_reduce

Intensity

Performance

0.020-

0.015-

> loop_reduce
a excluded > loop_reduce
8 0.010- phaset g %:ﬂm‘:d
2
0.005-
1
0.000- o
Figure 44-AES_Loop_reduce
Performance Intensity
3.6-
640-
3.56=
620~
0.3 o3
. EJo03
Blo3 g
;i loop_reduce € Io‘op_reduce
600~ - oge o excluded
s sotet e s :,,h,'f;’f B phase

o o0 o,

580

33-

560~

1]
excluded phase1
loop_reduce

Figure 45-AES_Loop_reduce_Box

As it was suggested on ANOVA test as well, a significant impact on the both metrics could be observed

by loop reduce transformation in both Figure 44- (AES Loop reduce) and Figure 45-

(AES_Loop reduce Box)

72|Page

Distribution “Mem2reg”

Performance

0.020-

0.005-

0.000-

mem2reg

excluded

0.020-

0.005-

0.000-

Intensity

| 1
560 580

Figure 46-AES_Mem2reg_Distributions

Box-Plots “Mem2reg”

Performance

L T
PXEEN R L S
640~ el °

620~
03
=]
mem2reg

B8 excluded
B8 phaset

ops

600~

580~

il
excluded phaset

mem2reg

640~

620~

580~

560~

Intensity

1
excluded

s o ainant o o

mem2reg
m excluded
m phase1
1 1
600 620 640
ops
oo e .
03
=X
mem2reg
B8 excluded
B8 phaset

Figure 47-AES_Mem2reg_Box

Relying on ANOVA test on Table 7- (AES_ANOVA), a significant impact on the Performance metrics

could be observed by mem2reg transformation

73|Page

4-3-4 PCA

Provided with the pre-knowledge defined at the beginning of the benchmark, it was expected that the
performance could be the first principal as the high level synthesis field mostly focus on the optimizing

the performance, not the intensity at the gate level. The figures are as bellow:

Inline
intensity performance 1.0 05 0.0 05 1.0
8- | | | | |
© - L e
6-
4= = ¥ 7
F
Z | o
2- 2 e
~
O | e, e R A i z we- 2
S
o
(I\l _
o
- o
]
o T 4
@
3
F
8 P A intensity L ?
T T T T T T T
-6 -4 -2 0 2 4 6
PC1
Figure 48-AES_Inline PCA
Loop _reduce
-1.0 -0.5 0.0 0.5 1.0
intensity performance o ‘ ‘ ‘ ‘ ‘ o
© =
20~
o |
~
0
= 0
g [o
-20- = &
-40 - o~ £ o
3] O — e TR E o
o
>
o
20~ (I\‘ _
©
0- - o
]
-20~- o o
20 g qi- _
-40- 3
]
0 $ N intensity L ?
80 T T T T T T T
1004 -60 -40 20 0 20 40 60
1 1 1 1 1 1 1 1 1 1 1
-0.3 -0.2 -0.1 0.0 0.1 -80 -60 -40 -20 0 20 PC1

Figure 49-AES_Loop_reduce_PCA

74| Page

Mem2reg

intensity

-20-

-40-

-50-

-80-

1 1 1
-03 -02 -01

Provided with the results above, it clarifies out previous hypothesis regarding the

1
0.0

02

performance

1
-80

1
-60

1
-40

1
-20

Kyusuayui

souewlopad

PC2

40

20

-20

-40

-60

-1.0 -05 0.0 05 1.0
| | | | |
L e
n
i [o
| com o 19 5 il g
= 's]
- o
]
intensity = ?
T T T T T T
-60 -40 -20 0 20 40

Figure 50-AES Mem2reg PCA

PC1

low intensity

benchmarks, all three have the Performance as the first principal component and intensity as the second

with more or less the same degree between the first PCA and the second.

4-3-5 Densities

In this section the densities of the so-far explained parameters are going to be illustrated while the second

parameter, namely, scalarrepl, is activated as well.

75| Page

-0.25-0.20-0.15-0.10-0.05 0.00 0.05 -0.25-0.20-0.15-0.10-0.05 0.00 0.05
intensity

~
Kisusp

Inline

S_Inlie_Densities

Figure 51-AE

As it could be observed, by activating the second parameter (scalarepl) the performance of the whole

compilation system will be reduced.

Loop Reduce

N
]
S
<]
-
[=]
I

(]
[=]
T

(i)
7

-0.1 0.0 01

-0.2

-03

intensity

reduce_Densities

Figure 52-AES_Loop

76 |Page

Mem2reg

-03 -02 -01 00 01 02 -03 -02 -01 00 O1
intensity

Figure 53-AES_Mem2reg Densities

77|Page

4-3-6 AES Synthesis Conclusion

Just like the other benchmark, in this section the whole synthesis table will be illustrated for the reference.
The intensity quantitative will be as expected low comparing with GSM, but the effect of activating the

optimization parameters could be observed on each and every compiler parameters.

In each section the values have been calculated and reported. The passed parameters in the ANOVA and

Kruskal-Wallis test have been marked with green box in order to be distinguished.

78| Page

ANOVA (<5%)

KRUSKAL (<5%)

Corr on delta [5%)

CORR (PCA) 5%

DATA summmary

Parameters INT OFS INT OPs INT OPS INT OFS INT QOFS ANG increment of OPS Average increment of INT
1st Qu.o0 Min. 0
Median 0 1st Qu..0
Mean 0 Median 0 PC1
constprop 1 1 1 1 2rd QU0 Mean 0 MA MA A MNA 0.1 0.02
Max. 0 Srd Qu.o0
Pin. 0 Pzx o0
Min. 0.0000000 Min. 0.00000
1st Qu.:0.0000000 1st Qu.:0.00000
Median :0.0000000 Median :0.00000 PC1
dce 0.976 0.997 0.9701 0.9987 Mean -0.0002475 Mean -0.01109 MNA on 5% MNA on 5% MNA on 5% NA 3 0.02
Srd Qu.:0.0000000 3rd Qu.:0.00000
Max. 00611400 Max. 273900
mMin. -0.27196 Min. =4.505 . PC1
1st Qu.-0.076935 1st Qu.-1.043 _loop_rotate -licm _) +intensity
inline 4.14E-13 3.93E-01 1.796-08 | 2.64E-01 Median -0.02740 Median :2.111 +simplyfycfg -loop_rotate Fsimplifycrg -loop_rotate 2 -0.08
Mean -0.05912 Mean :2.302 +intensity +performance R -
3rd Qu.: 0.00035 3rd Qu.: 5.486 +performance +loop_rotate ~licm
Max. :0.05463 Max. :8.220 —
Min. 023282 Min. -10.285 PC1
1st Qu.-0.01834 1st Qu.: -0.063 _liem -LIcmM +performance +intensity
instcombine 0.0717 0.129 0.07315 0.01573 Median : 0.01037 Median : 1.651 -loop_reduce _ 0.69 -5.17
. . +performance . B -loop_rotate -licm
Mean :0.01435 Mean : 4138 +intensity
Srd Qu.- 0.06256 Srd Qu.: 7.989
Min. —0.196930 Min. =~19 295 +loop_rotate o PC1
. 1st Qu.-0.028790 1st Qu.-11.066 — -inline +loop_rotate —inline
licm 0.768 F.26E-02 0.5413 5.57E-04 Median -0.006050 Median - -B.641 +performance tintensity +performance sintensity 24.5 -0.01
Mean -0.002445 Mean :-5.020
Min. -0.32081 Min. -90.43
1st Qu.-0.09598 1=t Qu.-66.06 pC1
loop_reduce 9.52E-07 <2e-16 1.96E-04 3.18E-16 Median : 0.00000 Median -34.41 -inline NA on 5% -inline NA on 5% 60.5 0.05
Mean 003971 Mean =-27.48
3rd Qu.:0.01170 3rd Qu.: 0.00
Min. -0.23934 Min. -43.110 PC1
1st Qu.-0.14654 1st Qu.-38.345
loop_rotate <2e-16 3.18E-16 <2.2e-16 <2.2e-16 Median ~0.07540 Median —28 870 MA on 5% MA on 5% MA on 5% MA on 5% -17.5 -0.07
Mean 007274 Mean -Z2Z2.049
Min. 20.000000 Min. =1.112000
1st Qu.20.000000 1st Qu.: 0.000000 PC1
Median :0.000000 Median : 0.000000
loop_unroll 0.979 0.999 9.66E-01 0.9965 Mean D.000188 Mean ~0.004466 MA on 5% MNA on 5% MA on 5% NA on 5% 0.02 -0.03
3rd Qu.:0.000000 3rd Qu.: 0.000000
Max. 0.046820 Max. :0.000000
Min. =0.0702900 Min. -1.87400
1st Qu.: 0.0000000 1st Qu.-0.20675 PC1
loop_unswitch 0.907 0.992 0.8921 0.9515 Median : 0.0000000 Median : 0.00000 MA on 5% 'IO_Op—r_Otate MA on 5% -loop_rotate 0.001 0.02
Mean :0.0009852 Mean :-0.02866 -simplifycfg . i
-simplifycfg
3rd Qu.: 0.0091600 3rd Qu.: 0.16925
Min. =0.322500 Min. =-90.47400
1st Qu.-0.088130 1st Qu.-67. 77700
Median -0.000125 Median -39.71900 PCc1
mem?22reg 8.40E-05 <2e-16 0.0009124 2.20E-16 Mean —0.033323 Mean =-33.75415 -inline 'instcombine -inline -instcombine -32.3 -0.03
3rd Qu.: 0.023410 3rd Qu.: 0.00375
Max. 0.239420 Max. :11.73500
Min. O Min. 0
1=t Qu.o 1st Qu.0
memcpyopt 1 1 1 1 Median 0 Median 20 A A NA PCl 0 o
Mean 0 Mean 0 MA
Srd Qu.o0 Srd Qu.0
Mg) PAzmw 0
Min. =-0.0100800 Min. =1.01000
1st Qu.: 0.0000000 1st Qu.: 000000 . . -loop_rotate . . PC1
reassociate 9.85€-01 9.87E-01 2.20E-16 | 9.29e-01 | Median:0.0000000 Median : 0.00000 Finstcombine -instcombine *instcombine -loop_rorate -1.5 -0.01
Mean ~0.0001611 Mean —0.04526 +performance sintensity +performance -instcombine
3rd Qu.: 0.0000000 3rd Qu.: 0.00000 +intensity
na -nnnTIann na -naonnn
Min. =0.20737 Min. =-15.40700
1st Qu.: 0.00000 1=t Qu.: -0.03975
Median : 0.00000 Median : 0.00000 PC1
scalarrepl 0.146 0.855 0.2368 0.7468 Mean -0.01298 Mean --0.52311 MNA on 5% MNA on 5% MNA on 5% NA on 5% -3.1 0.04
3rd Qu.:0.02166 3rd Qu.: 0.00000
Max. 0.19692 Max. 1491700
Min. =0.0468200 Min. =0.32900
1st Qu.: 0.0000000 1st Qu.: 0.00000
Median : 0.0000000 Median : 0.00000 PC1
sCcCcp 0.985 0.999 0.9645 0.9967 Mean —-0.0001463 Mean :0.00317 MA MA MNA on 5% NA on 5% o o
3rd Qu.: 0.0000000 3rd Qu.: 0.00000
Max. :0.0106900 Max. :1.11200
Min. =0.04990 Min. =-1.6020
1st Qu.: 0.00000 1st Qu.: 0.0000
Median : 0.00000 Median : 0.0000 _licm PC1
simpifycfg 0.205 0.898 0.4234 0.6828 Mean :0.01117 Mean :0.3735 MA on 5% NA on 5% 3 0.02
3rd Qu.: 0.04052 3rd Qu.: 1.1490 -seep NA on 5%
Max. 0.06376 Max. 21560

78| Page

Chapter 5

Conclusions

Based on the experimental results mentioned in the previous chapter, in this chapter of the thesis the
conclusions and final evaluations of the results will be illustrated. Finally, the next chapter will describe

future evaluation of the thesis work.

5-1 Targeted Problem

The main contribution of this dissertation was focused on explore, evaluate and analyze the compiler
options parameters in VLIW processor. As showed in Chapters 3 and 4, the methodologies and tool-chain
were designed, implemented and exploited. Design space exploration was used in order to benefit the
designer, to prune the large amount of unnecessary design space and actuate the multi-objective problem

for the better best trade-offs .

5-2 Approach Review

As it was depicted in Figure 5-Tool-chain Schematic, the designed methodology is able to explore multi-

benchmark system starting from high level synthesis to high performance applications. MOST (refer to 3-

79|Page

2-2 Multi-Objective System Tuner (MOST)) is able to set the type of DoE and the sampling mode which
is needed in order to explore the benchmarks. Using two powerful open-sourced compilers, namely,
LLVM and VEX (refer to 3-2-3 LLVM and 3-2-4 HP-VEX), resulted in transforming the source codes
using the interested optimization parameters. Consequently we evaluated the performance of the
compilation and calculate the needed metrics in order to be fit in the performance model, namely,

Roofline (refer to 2-1-5 Performance Model and Floating Point).

Figures have been drawn by open-source statistical software R in Linux for synthesizing. Using hundreds
of results for five explored benchmarks, there could be common explanations in order to derive a trend of
activities regarding the mentioned compiler parameters which is going to be elaborated in the following

section.

5-3 Analysis Result Conclusion

5-3-1 per Benchmarks

No. 1 - GSM

In this dissertation (refer to the section 4-1 Benchmark No. 1- GSM) three out of fifteen compiler
parameters have been illustrated by figures and explanations. For the complete review of the benchmark

please refer to the section 4-4-8 GSM Conclusion. Regarding the depicted figures it can be observed that:

Looking at the benchmark results, having acceptance value a set equal to 5%,

1. For ANOVA:
a. Inline, Licm, Loop reduce, Loop rotate, reassociate and scalarrepl have passed the
ANOVA test for intensity metrics
b. Inline, instcombine, licm, loop_reduce, loop_rotate, mem2reg, reassociate and scalarrepl

have passed the ANOVA performance metric test.

2. For Kruskal-Wallis:

80|Page

a. Inline, Licm, Loop reduce, Loop rotate, reassociate and scalarrepl have passed the
Kruskal test for intensity metrics
b. Inline, instcombine, licm, loop reduce, loop rotate, mem2reg and reassociate have

passed the Kruskal performance metric test

3. The maximum intensity observed in those 15 compiler parameters was 191.6 (flops/byte) which
belongs to constprop, dce, inline, instcombine, licm, loop reduce, loop rotate, loop unroll,

loop_unswitch, mem2reg, reassociate, sccp, simplifycfg.

4. The maximum performance value observed for this metrics in those 15 compiler parameters

was 754.8 (Gflops/s) which belongs to constprop, loop_unswitch and memcpyopt.

5. Performance and intensity metrics have been observed impacted by each other in the same

direction for compiler parameters instcombine, mem2reg, reassociate, scalarrepl and simplifycfg

6. Performance metrics have been observed as the most impressing component in Principal

Component Analysis for all the 15 compiler parameters with 99% as the highest value for

reassociate. In addition, the highest proportion value of valiance for intensity was seen as 31% for

loop unroll.

7. Regarding the average increment, reassociate has 19.88 and inline has -10.15 as the highest

decrement one for intensity, in addition, for performance, the highest observed was 26.11 for

reassociate and -52.14 for loop rotate.

81|Page

No.2 AES

Looking at the benchmark results, having acceptance value a set equal to 5%,

1.

2.

For ANOVA:
a. Only Inline, Loop reduce and Loop rotate have passed the ANOVA test for intensity
metrics
b. Only licm, loop_reduce, loop rotate and mem?2reg have passed the ANOVA performance

metric test.

For Kruskal-Wallis:

a. Inline, Loop reduce, Loop_rotate, mem2reg and reassociate have passed the Kruskal test
for intensity metrics
b. instcombine, licm, loop reduce, loop rotate, mem2reg and reassociate have passed the

Kruskal performance metric test

The maximum intensity observed in those 15 compiler parameters was 0.19692 (flops/byte)
which belongs to scalarrepl. (as it was expected the intensity in these benchmark suits are low
since they are high level synthesis application and the effect of performance is more interested in

exploring these application rather than intensity)

The maximum performance value observed for this metrics in those 15 compiler parameters

was 31.87 (Gflops/s) which belongs to loop reduce.

Performance and intensity metrics have been observed impacted by each other in the same

direction for compiler parameters inline, instcombine, licm and reassociate

Performance metrics have been observed as the most impressing component in Principal

Component Analysis for all the 15 compiler parameters with near 100% as the highest value for

reassociate. In addition, the highest proportion value of valiance for intensity was seen as 0.260 %

for loop_unswitch.

Regarding the average increment, loop reduce has 60 value and mem2reg has -32.3 as the

highest decrement one for performance metric, in addition, for intensity, the highest observed was

0.05 for loop_reduce and -5.17 for instcombine.

82|Page

No.3 — No.5 Benchmarks

For the sake of synthesis in this dissertation, the results and synthetic conclusions for the remaining

benchmarks have been moved to the appendix chapter at the end.

5-3-2 Cross Benchmarks

Extracting the trends in each and every science could be a difficult and complicate task which needs to be
taken into account hundreds of factors such as induction rules, enough samples, risk and error evaluation,

etc.

In this dissertation, the main goal was designing and implementing a methodology for setting benchmarks
and performance evaluation of compiler options in VLIW processor, therefore, the generalization has to

be taken care in a future defined work which will be mentioned in the following chapter.

e As first hypothesis, it could be observed that all the transformations of the AES, have the
Performance by far as their principal component.
e In the GSM benchmark, the latter result is the same with little mixture of intensity to the PCA, as

the benchmark have put a large load on the system in the gate.

In both explored benchmarks; only loop reduce and loop rotate have had significant impact on both

metrics (Intensity and Performance), while:

e Inline, licm, mem2reg and reassociate have at least two metrics impacted in both two
benchmarks.

e Instcombine and scalarrepl have only one metric impacted.

5-3-3 ANOVA Cross-Benchmark

Using ANOVA and Kruskal-Wallis Analyses defined in Sections 4-2-1 ANOVA and 4-2-2 Kruskal-

Wallis, hereby there is going to be the cross-benchmark review of the experimental results:

83|Page

GSM AES ADPCM JPEG Blowfish
Constprop
Dce
Inline v v v
Instcombine v v v v
Licm v v v v v
Loop_reduce v v v v v
Loop_rotate v v v v
Loop unroll
Loop unswitch
MemZ2reg v v v v v
Memcpyopt
Reassociate v
Scalarrepl v v
Scep
simplifycfg

Table 9-ANOVA_Cross-benchmak_Performance

The acceptance rate of (ct) variable has been set to 5% as it has been defined in the Section 3-4-1 ANOVA
Analysis, therefore, the transformation which have pass this threshold acceptance rate have been marked
with a tick checkmark sign (v). This shows the Performance metric (Ops) has had the significant impact

on the medians of the transformation in that specific benchmark.

Observing Table 9- (ANOVA_Cross-benchmak Performance), it could be seen that four transformations,
namely, licm, loop _reduce and memZ2reg have the same trend on all the explored benchmarks. Relying on
their own intrinsic behaviors, these transformations could impact the performance in the proposed

methodology.

5-3-4 Kruskal-Wallis Cross-Benchmark

The overall cross-benchmark view of the Kruskal-Wallis analysis have been mentioned in the Table 10-
(Kruskal-Wallis_Cross-benchmark Performance):

84|Page

GSM AES ADPCM JPEG Blowfish

Constprop

Dce

Inline

Instcombine

Licm

Loop_reduce

| | € |

] €] |

| €| | |
<

Loop_rotate

Loop unroll

Loop unswitch

MemZ2reg v v v v v

Memcpyopt

Reassociate v v

Scalarrepl v

Scep

simplifycfg

Table 10- Kruskal-Wallis_Cross-benchmark_Performance

As it could be observed in the Table 10- (Kruskal-Wallis Cross-benchmark Performance), in this
analysis, three transformations, namely, instcombine, loop reduce and memlreg have passed all

benchmark test regarding impacts on performance metric.

5-3-5 Parameters Effect

Similar to what we have done with the correlation matrix on deltas defined in 3-4-3 (Correlation
Analysis), in order to have useful cross-benchmark high-level view between the parameter interactions, a
interaction table could be calculated with transformation parameters on the sides, therefore it will be
diagonal, and number of positive-negative interaction between parameters and metric (Performance) in
each transformation per benchmark could be add up to sketch a disk bubble. So the quantity of
transformations multiply number of benchmarks could estimate the maximum number of interactions.

The more the number of interaction is the higher the diameter of the bubble. In this case, the researcher

85|Page

could have a conclusive high level view to extract information out of the explorations. This analysis will
show the effect of activation of the second transformation parameter on performance metric with respect

to have the main transformation being activated already.

constprop dee inline instcombine liom loop_reduce loop rotate loop unroll loop unswitch mem2reg memcpyopt reassodate scalamepl scp simplifycfg

constprap
dee

infine
insteombine
fiem
loap_reduce
loop_rotate
loap_unroll
loop_unswitch
mem2reg
memcpyopt
reassociate
scalarrepl
scep

simplifycf

Figure 54- Transformations Bubble Effects

In the Figure 54- (Transformations Bubble Effects), four levels of effects have been illustrated:

1- No effects: no signs

2- Degree of effects equal to 1 : the white fill small ovals

3- Degree of effects equal to 2: medium size cross patterns ovals
4- Degree of effects equal to 3: large red filled ovals

It could be observed that having reassociate activated already, by adding inline transformation, we could
expect to impact the performance. This phenomenon is also true for simplifycfg and inline.

86|Page

Chapter 6

Future Works

As it mentioned on Chapter 5, the main objective of this dissertation was focus on using DSE for
compiler parameters in VLIW processors. Consequently, the benchmarks used in order to be explored
were mostly elaborated on seeing the effects of using these options in the issue. Due to the complexity

and size of the topic, there are some future ideas that could be taken care of as following.

6-1 Combining Architectural Parameters

In Table 2-Our Problem Design Space Exploration Example, the range of these architectural parameters

have been mentioned already. Combining the so-far topic with architectural parameters will add

87|Page

complexity and bigger orders of explorations to the problem; therefore, it could be an interesting future

work which needs to be elaborated in near future.

Indeed, architectural parameters involved the infrastructures and hardware machines to the problem
which could be really interesting for the industry and enterprise partners in order to be researched on.

Choosing the best suit of architectural configurations

6-2 Extended Benchmarks

Since multiple benchmark usage was one of the key features of the designed methodology in this
dissertation, it could be used with so many great and more sophisticated benchmarks i.e. high

performance video applications, Encoder/Decoder applications, etc.

By the date of writing this dissertation, the efforts of embedding a new benchmark, namely H264
Decoder [44], have been started for a while. Hopefully finishes exploring soon to have better reasoning

about the phenomena of impacting metrics.

6-3 Further Algorithms of Optimizations

There are bunch of other interesting problems still on the course of research which actuate the need of
extending the current work for future. Phase Ordering in compilers Optimization, which has been an
interesting target for researchers. A single sequence of optimization phases is highly unlikely to produce
optimal code for every application (or even each function within an application) on a given machine. The
problem of ordering optimization phases can be more severe when generating code for embedded

applications. [45]

88|Page

Bibliography

[1] S. Balakrishnan, "Very Long Instruction Word Processor," Ressonance, pp. 61-68, December 2001.

[2] V. Zaccaria, C. Silvano and G. Palermo, "MOST: Multi-Objective System Tuner - DSE for system
architects," in DATE, Grenoble, France, 2011.

[3] LLVM Co., "LLVM," [Online]. Available: www.llvm.org.
[4] HP Co., "HP-VEX," [Online]. Available: www.vliw.org/vex/.

[5] B.R.Rauand]J. A. Fisher, Instruction-Level Parallelism: history, overview, and perspective,
Springer, 1993.

[6] VLIW Organization, "LLVM," [Online]. Available: http://www.vliw.org.

[7] J. A. Fisher, P. Faraboschi and C. Young, in Embedded Computing; A VLIW Approach to
Architecture, Compilers and Tools, Morgan Kaufmann, 2005, pp. 57-63.

[8] B. Mathew, "Very Large Instruction Word Architectures (VLIW Processors and Trace Scheduling),"
Computer Engineering Handbook, CRC Press LLC, 2001.

[9]1 R. Sherief, "Lectures on Design and Implementation of VLSI Systems," Brown University.

[10] H. E. Ziegler, in Compiler-directed Design Space Exploration for Pipelined FPGA application,
University of southern california, 2006, pp. 1-10.

[11] "http://mathworld.wolfram.com/Simulated Annealing.html".

[12] "DoE Types," [Online]. Available:
http://www.qualitytrainingportal.com/resources/doe/doe _types.htm.

[13] GNU, "GNU GCC Manual," 2012. [Online]. Available: http://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html#Optimize-Options.

[14] GNU Organization, [Online]. Available: www.gnu.org.
[15] LLVM Organization, "LLVM Transformations," http://llvm.org/docs/Passes.html.

[16] L. O.-. C. Lattner, "LLVM Language Reference Manual," 2012. [Online]. Available:

8 |Page

http://llvm.org/docs/LangRef. html#i_alloca.

[17] Briggs, M. Dubois and F. A., "Performance of Synchronized Iterative Processes in Multiprocessor
Systems," in IEEE Trans. on Software Eng., 1982.

[18] E. Boyd, W. Azeem, H. Lee, T. Shih, S. Hung and E. Davidson, "A Hierarchical Approach to
Modeling and Improving the Performance of Scientific Applications on the KSR1," in Int’l Conf. on
parallel Processing, 1994.

[19] S. Williams, A. Waterman and a. D. Patterson, "Roofline: An Insightful Visual Performance Model
for Floating-Point Programs and Multicore Architectures," in ACM Communication, 2008.

[20] D. Fischer, J. Teich, R. Weper and U. Kastens, "Design space characterization for
architecture/compiler co-exploration," in CASES '01 Proceedings of the 2001 international
conference on Compilers, architecture, and synthesis for embedded systems, 2001,

[21] A. Halambi, P. Grun, V. Ganesh, A. Khare and N. Dutt, "EXPRESSION: a language for architecture
exploration through compiler/simulator retargetability," in conference on Design, automation and
test in Europe, NY, 1999.

[22] B. So, M. Hall and P. Diniz, "A compiler approach to fast hardware design space exploration in
FPGA-based systems," in ACM SIGPLAN, 2002.

[23] M. O'Boyle, Agakov and Felix, "Using machine learning to focus iterative optimization," in
Proceedings of the International Symposium on Code Generation and Optimization, 2006.

[24] O. Mencer, D. Pearce and L. Howes, "Design space exploration with A Stream Compiler," in Field-
Programmable Technology (FPT), 2003.

[25] C. Dubach, T. Jones and M. O'Boyle, "Microarchitectural Design Space Exploration Using an
Architecture-Centric Approach," in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, 2007.

[26] ISO Organization, "C99 C standards," ISO/ITEC.

[27] P. Saraswat, E. Zamsha and A. Jankovic, "A fast and Efficient Simulated Annealing based Design
Space Exploration for a Custom VLIW Architecture for GSM Decoder and Optimizations using
VEX compiler," in Relation 10.1.91, 2008.

[28] Saptono, Brost and Yang, "Design Space Exploration for a custom VLIW Architecture: Direct photo
printer hardware setting using VEX Compiler," in Signal Image Technology, 2008.

[29] M. K. Jain and G. K. Ranka, "VLIW BASED VEX TOOL AND VALIDATION OF SIM-A WITH
VEX," Journal of Global Research in Computer Science, vol. 2,n0. 9, 2011.

90|Page

[30] European Standard (Telecommunications series),
"http://WEBAPP.ETSI.ORG/exchangefolder/en _300724v080001p0.zip," Technical Committee
Special Mobile Group (SMG), 1999.

[31] E.R.T.L Corporation, "http://www.ertl.jp/chstone/," Japan, E.R.T.L.

[32] S. Xydis and G. Palermo, "Most Generic Wrapper (MGW)," Politecnico Di Milano, Dei Department,
System Architecture group, Milan, 2012.

[33] V. Zaccaria, "MOST (Multi-Objective System Tuner) Overview," Politecnico Di Milano,
Department of Computer and Electric Eng., Milan, 2001-2011.

[34] R. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process
improvement, Wiley, 2001.

[35] http://llvm.org/Features.html, "LLVM- Features," LLVM Organization.
[36] HP-VEX, "Vex Systems," HP, 2012.

[37] J. Fisher, "Traced Scheduling, A Technique for Global Microcode Compaction," Computers, IEEE
Transactions on Computers, Vols. C-30, no. 7, pp. 478-490, 1981.

[38] R-Project Organization, "R Statistical Software," [Online]. Available: www.r-project.org.
[39] D. MCFATTER, "Computational Formulas for ANOVA," Louisiana, USA.

[40] J. P. Key, Oklahoma State University, [Online]. Available:
http://www.okstate.edu/ag/agedcm4h/academic/aged5980a/5980/newpage26.htm.

[41] T. Gaten, "Kruskal-Wallis non-parametric ANOVA," University of Leicester, [Online]. Available:
http://www .le.ac.uk/bl/gat/virtualfc/Stats/kruskal.html.

[42] R. Rebonato, "The most general methodology to create a valid correlation matrix," Quantitative
Research Centre of the NatWest Group, 1999.

[43] L. I. Smith, "A tutorial on Principal Components Analysis," University of Otago New Zealand, 2002.

[44] K. Siihring, "H.264/AVC Reference Software," [Online]. Available: https://ipbt.hhi.fraunhofer.de/.
[Accessed 2012].

[45] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley and J. Davidson, "Finding effective
optimization phase sequences," in ACM SIGPLAN Notices, 2003.

[46] P. V. a. K. S. C. Nilanjan Banerjee, "A Power and Performance Model for Network-on-Chip
Architectures," in Design, Automation and Test in Europe Conference and Exhibition, 2004.

91|Page

Proceedings, 2004.

[47] A. B. Kahng, B. Li, L.-S. Peh and K. Samadi, "ORION 2.0: a fast and accurate NoC power and area
model for early-stage design space exploration," in Proceedings of the Conference on Design,
Automation and Test in Europe, Belgium ©2009, 2009.

[48] Y. Jin, N. Satish, K. Ravindran and K. Keutzer, "An Automated Exploration Framework for FPGA-
based," in Proceeding CODES+ISSS '05 Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, NY, USA, 2005.

[49] M. Palesi and T. Givargis, "Multi-objective design space exploration using genetic algorithms," in
Hardware/Software Codesign, 2002. CODES 2002. Proceedings of the Tenth International
Symposium on, 2002.

[50] J. KEINERT, M. STREUBUHR and T. SCHLICHTER, "SystemCoDesigner—an automatic ESL
synthesis approach by design space exploration and behavioral synthesis for streaming applications,"
ACM Transactions on Design Automation of Electronic Systems (TODAES) TODAES, vol. 14, no. 1,
2009.

[51] B. So, M. W. Hall and P. C. Diniz, "A compiler approach to fast hardware design space exploration
in FPGA-based systems," in PLDI '02 Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, 2002.

[52] "DoE Definition," [Online]. Available:
http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd31.htm.

92|Page

Appendix

For the sake of abstractness in this dissertation, only two out of the 5 explored benchmarks have been
mentioned during the content (refer to Experimental Results). One high intensity GSM and one out of the

CHStone benchmark suits, namely 4AES.

In this section all the results are going to be classified based on the benchmark-transformation, in this case
the reader could get a clear idea of what have we done in this dissertation to analyze the compiler options

for VLIW processors.

The trend of this section will be as following:

e Benchmark Name
o Distributions
o Box-Plots
o Correlations
= Raw Data
= On Deltas
o Scatter-Plot

o Principal Component Analysis

93|Page

APPENDIX SECTION

| constprop | | dce | | inline ‘ | instcombine ‘ | | | Loop_reduce | ‘ Loop_rotate |

GSM

Distributions

Performance

‘ L:)Op:;n;wit;h | |

Loop_unroll | s1mpllfycfg |
| | dce | | | instcombine ‘ i | Loop_reduce | ‘ Loop_rotate |
GSM
Distributions
Intensity

-
=]
=]
F;
= |
s |
7]
=
=
(]
=

Loop_unroll

94|Page

APPENDIX SECTION

constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

GSM

Box-plot

Performance

‘ scalarrepl

‘ memcpyopt ‘ | reassociate

‘ merianeg

Loop_unroll

| constprop | ’ dce m inline ’_| instcombine ’_‘

GSM

Box-plot

Intensity

‘ Lé;)p_unswitch | ‘ me;;ereg

Loop_unroll

‘ niemcpyopt ‘ |

scalarrepl

95|Page

APPENDIX SECTION

constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

GSM

Correlation on | - | N
raw data

=L I
RO O " o

P20 006+~ s 000 oo e X X

Loop_unroll | memZ2reg ‘

GSM

{ : fel iE Egidgifs
XX XX XX P ><><>< ><><><><>< perormance | XX XXXHKX XXX XX XM perormance | X XXX XX XXX XE
XXX XXX X oo} wiensty [><><><><><><><><><><><><>< = ety B XXX XXX X X W = ot B XX XXX XXXXX X o) wvunm!. ><><><>(><><><><>< o
. XXX XXXX W | omeomis XX XXX XXXXX XX " ’M‘*XX ><><><><><><><><><><>(><>< XX ><><><><><><><><><><>< maszrag (5| XXX XXX
Orrelat]on on X XX XXX s XK XX XX XX XX KX XX ’ XX X(Wf eorsme X "
X X XXXX o wina XXXX XXXXX XX o XXXX o s XX XX XXXX XXX ol
XX X X g s >< >< XX XXXXX XXX XX XX X
lt X X XXXX | o e XIX| XX XX XXXX o X XX | XX (1 caarep XX XX XX e
e as XXX XX X[, =““v“‘w4><><><><><><>< XXX XXXX XX XXXX| |, o XOOKXXXX XXX XHXXXX ||
XX X XXXX - KAXXXXAHKX XXKXXX XX X X sssncieis XOXXXX XX
XXX XXX XXX | - XX XXX o XXX | || ommemsr - XXX XXXX XXX XXX
XXXXXX XXXXX X ><><><>(><><><><>< ol XXX X X XXXX bl >(><><>< XXXX XXXXX XX XXXX
XXX XX X OXXXX W] mememene XX XXX XXX X - sestarept XX XXXXXXXXX XX XX W X] nstombine XX XXX X W™ mn_sarmt XX XXX XX XXX XK X XXX [
XXXXXX XX XXX smiomgt ><><><><><><><><><><><>< XXX o 2o XHHKHXHXAXXXXKXKK - XXX X X ‘vw"v“><><><><><><><><><><>< XX a essror XXX HX KX XXX
XX XXXXXXX XX s 3 (XX ><><><><><><><>< X e XX XXX XXXX XX X ae XXX XXX XXX X X BP0 0. 000 9.9.0.0.9.9.9.4
X X XXXXXX . momarog WX X[X o ntonsty (N XX X XXXXXX W simpitycly (3] X XXX XX X v waroyont D(C X XX XXX X
XXXXX XXX XXX e XX | s X XXX XXX XX XE N | X | e EXEXE XX XXX X Ao XX XXX XXX X))
Loop_unroll | ‘ Loop_unswitch | ‘ mem?2reg ‘ | reassociate ‘ ‘ ‘ scep ‘ ‘ simplifycfg

§ i EXXXXXXXXXXXXXX
XXXX XX

XX
of ez X . s 5

XX
KK mamepont

< o X RN e) X st XX
s e XXX RXIXRKXHAXKHAKN . R ST S R S K o XXX TRIKINK B R
<X wwéééx Sesoieseigiese l 1 XXX 1 m§><>< % |1 T K ek 1 N
Sz ey o XX X
30 o e XS0 RXKKXKK X | o SXXRXKXK |- o XXX XXXXK (o] e XXX KX XHXNXXXXK | g
S s XX XXX XXX XX %X | . X o I j95% e XXXXXK KXXXXXXK | ,
%X oo XXX XHXK K KXK X3 X XXXx I 85 s o o I S N I 8 3 o e 0205358
IR o XXXXXHIIK XXX . : XXXXH XX XXX of vstomne X XXXX of e XX T XXX T XXKK XK | .
% e XXXXXXKK X XXX | i XXX X XU oo XK XX XIK XK e XXXXXXXKX
o0 3ol I B oo Mo N et XY messesseTgss §§§§§§§§§§§XX§§X . .
i R - . i .
~ww~r*><><><><><><><><><><><><>< SXPTY oo XRXXKXK . XXXXK X XX XXXXXXXX XX
<R SN e X - XXX Txx x mfl- fossseteiessseiaal B &

XX X -
"‘”= X ><><><><><><><><><>< X XXX XX XX # X XIXXXXX] Sy X IXXXX XX XH . XXXXXXX X

96 |Page

APPENDIX SECTION

constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ Loop_rotate
GSM ‘ ““W\\ e / A\\ E ,s’j \ e / —_— mpw
Scatter-plot | /| f = ’Ij// o / \.%_'_'::f:'f‘_.;;l; : y
WY e] e |
’ Loop_unroll | ‘ Loop unsw1tch | ‘ mem2reg ‘ ‘ memci)yopt ‘ | reassoxciate ‘ ‘ scalarrepl ‘ ‘ scep ‘ ‘ ‘
- P S S pr— i ey ek i /\i‘w'u i
\ e 1 RaAe
iz i |
1haEmR e e i \
. I P %/
L | Nt A AENAN
| constprop | ’ dce m inline ’_| instcombine ’_‘ licm ’_‘ Loop_reduce H Loop_rotate |
GSM EEESEEN) ESCEPEPEN [EPIPIPEPY R I e | reeeee
Principal »;J f%-w
Component _ i ‘
Analysis(PCA) | | || *‘*"‘”1 S
Loop_unroll | ‘ Loop_ur?switch | ‘ mem?2reg ‘ ‘ memcpyopt ‘ | reassociate ‘ ‘ scalarrepl ‘ ‘ scep ‘ ‘ s1mpllfycfg ’
‘‘‘‘‘‘‘‘‘‘‘‘ :
e f

97| Page

APPENDIX SECTION

| constprop | | dce | | inline ‘ | instcombine ‘ | licm | | Loop_reduce | ‘ Loop_rotate

AES

Distributions

Performance

‘ simplifycfg

e
£

Loop_unroll ‘ | reassociate

| instcombine ‘ ‘ Loop_rotate |

AES
Distributions

Intensity

Wl
E.
= |
=g
Z|
g
o |

Loop_unroll

98 |Page

APPENDIX SECTION

constprop dce ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘
AES
Box-plot
Performance
CENTHEGEY aNART «
Loop_unroll memZ2reg ‘ reassociate ‘ scalarrepl scep

ey

constprop

dce

licm

AES
Box-plot

Intensity

’_| instcombine ’_‘

’_‘ Loop_reduce ﬂ

Loop_unroll | ‘ Lﬁ;p

unswitch |

mem?2reg

reassociate

scalarrepl

99|Page

APPENDIX SECTION

constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

AES

Correlation on
raw data

Loop_unroll |

| reassociate ‘

| constprop | ’

AES

5 B 1gd
H i : H i

XXE'| e HX | XXX XXXXHXEX XK SO | oo BXXXXXXXXK oo mX XXX
] T of e KRR KXW e BRXKXX XXX IN W]| ovnrcs i XXXXXX
0 XXN | e XX ORKTXRRKX XXX s XK XK XXXXXKINXXK ez XX XXXXKK
orre at]on on XX « XXX ><><><><x><><><><><><>< 1 XXX D OO 0030092020 0%0°020°] | I | I S 93092020
XX o XXX XXXXXK KX . XXM e XXX XXX XXXAXXK A e XXXXTXX XX
XX R X K XXX i XX XX XXX XXX o XXXXX XXX
d It XX| v E - XX KKK | XXX o e XXXIKHX T KHXIXIHXKK ||| e XXX XXX
eltas XX, I oS00 oo o %% XX s XXX XX XXXX| |, o XHXXXRX XX
XX fofesesesriesobigecgesote X esnte XXX X HXHKKX KXXXX e XXX XX X

XX | XXX |of - roremon XOXRXX KX XXX o] oonmmen "X XXX
XX XX = XXXXKHIXXK K XXKKX e XXX
XX | XXX 7] omenien XXXXK XX XXX o XXXXEXXXKK
XXM XXX e XXX XXXXXKKK KKK | omer XIKKKXKKKXKX
XX X e XXOHAINHIHA XX e XXRXXXX KKK

- XX u e XXX XX A e X
[i— somane XX X XX XXXX W ez XX X ><>< ><><><><>< i oy X XXX

Loop_unroll | | reassociate ‘ scep ‘ ‘

s9s -3t
i it 11]
Xé% g , remen | XXX XXXIXXXX XXX ><§§§ §>>2>;§§§ >>2>>§>>2 ><§x><
XXX e XX XXXXKXXXXKXXXXK N | X XXXXXX HXXXXXKXX
SR o] e XXX XXX XXX XXX KX Xxx M1 XXM XXX XX XXX
LXK rsee XXXX T XXKXXXXXKKK . N " XX o XX
§9598% conon X X X XTUXXXHXXXX mww><><><><>< XXXX X X LRAXRRKXX
SXK] e XXKKXK T XXXXXXXXX || x o o IR |+ XXX | o 903654
XXXX ||| o XXXXK X XXX XX e »l><><><><x><>< . S| e XX XXX XX XXX XXX XXX | | . X XXXXXX
KXX e XX XXXXX XXXXX X e XXX KKK XKXXX =A-m»‘><><><><><><><>< XXXXXX XXX XX
e XXX KIRKN IXEHK - 0 XXXXHXHXHKAK XXX X e e XXX XXX XXXXXX - = X X s X XXXXAXX
- XXXXXXX XXXXX oo XXX XXX XXX XIXXXX | L smsies 5OXX X XXXX XXX XX XXX XX XXXX
LB FUXN A e KRXIRRARR XK, KKK ornm TR TRR TR TRKK - = XXX | X - XXX RKXK
mors X XXX XXX XK IIK XKW o emmome XHXXHXXXXXXXX XX W o s T XXX XXXXXX XXX N " XXX X " XXXX XXX
X RXXXXXHXKK XXX i XXX XXXX XXXXX XX e REHHAAKA XX XX X XXXXX XX
reries XXX XX XXX XXX XX o] e XXX XXX - s X - - - X & XX & XXXXX
e P X K XK K KKK KK | X XXX X | = S R R, | X | e XXX KK IIIKKK e XXX XX IXXXXX

100 |Page

APPENDIX SECTION

dce

inline

AES

Scatter-plot

constprop |

N

[

‘ | instcombine ‘ ‘

Loop_unroll | ‘k ‘ memci)yop ’ ‘ | ‘
zsi \
k,,\\
i il |
| constprop | ’ dce m inline ’_| instcombine ’_‘ licm ’_‘ Loop_reduce H Loop_rotate
Principal e
Component \ ‘"“““ I - “‘ - *’“ N —
Analysis (PCA) N i v N | ; B |
Loop_unroll | ‘ Loop_ur?switch | ‘ mem?2reg ‘ ‘ memcpyopt ‘ | reasso';iate ‘ scalarrepl ‘ ‘ scc} ‘ ‘ simpli;ycfg
R N B
A | R — |

101 |Page

APPENDIX SECTION

| constprop | | inline ‘ | instcombine ‘ | | | Loop_reduce | ‘ Loop_rotate

ADPCM
Distributions N
Performance Y W

Loop_unroll | ‘ Loop_unswitch | meereg | | scep ‘ ‘ simplifycfg |

| constprop | | | inline ‘ | | licm | | Loop_reduce | ‘ Loop_rotate

ADPCM
Distributions

Intensity

‘ simplifycfg

| | scep

Loop_unroll

102 |Page

APPENDIX SECTION

constprop

dce

inline

‘ | instcombine

Loop_rotate

ADPCM
Box-plot

Performance

o -;":. g

. 5

AL e
BT ERP I PP

":4:'_}' & g

‘ ‘ Loop_reduce ‘ ‘

LT

Loop_unroll

memzreg

memcpyopt

ey

constprop

dce

inline

licm

ADPCM
Box-plot

Intensity

e

’_| instcombine ’_‘

‘ Loop_unroll |

‘ L(i;p

reassociate

scalarrepl

‘ sim[;lifYCfg

Jr—

103|Page

APPENDIX SECTION

constprop

‘ | instcombine ‘ ‘

‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

ADPCM

Correlation on
raw data

Loop_unroll |

ADPCM

Correlation on
deltas

XX XXXX
XXX XXXX
XXX XXXX

XXX XX X
% XXXX
XX XX
X % XXXX
XXX XX X
XXX XXXX
XXXXXX XXX
XXXXXX | XXXXX
XXXXX X XXXX
XXXXXX XX XXX
KK TXXKXKXX XX

X XXXXXXX
XXX XXX XXX

Pgdigafit
BXX XXXXX XXXXE
<M. mmel xxxxxxxxx

XXXXXXXXXXXXXXX
XX XX
i X>< XXXXXXXXXXXXX

><><><
- >< ><><><><><><><><><><><><

XXX
XXM

X
simpityets ><><><><><>< XXX XXXXXX
X XX

KAXXXHKXXXXX XXX
XXX

XX
XXXX XXX

o ><><><><><><><><><><><
ae XXX XXX XXX X

X XXX XX
X

XXX HKHXXX XX KX K

e KRRXK
I IS S 929500
- XXX

s XX X
e TR XRX KXY X

Loop_unroll |

‘ Loop_unswitch

‘ simplifycfg

nsesrbine XXX X XX
momspyont XXXXXXXXXXXXX
XXX XX XX

HXXXXXAXXXXX X

XX
lne X XXXXXXXXXX

e XXX XK XXX XXXX
o XX HXHXXKX XXXX

e XEXXK XK XXXX

XX
oo

X
X

X
X
X
X
X
X
X
|

[><><><><><><><><><><><><

X XX

. X
nmwm~><><><>< ><><><><><><><><
ety DEXXX XXX XXXXX

XXXXXX
XXX XX [tocp_tecuce

104 |Page

APPENDIX SECTION

| constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

ADPCM | e T TR T E—
Scatter-plot \J | AR, / \w : b \

‘ memci)yop ‘ | reasst;ciate ‘ ‘ scala;repl ‘ ‘ scép ‘ ‘ girﬁplifycf ‘

Loop_unroll | ‘ Logp_uliswitch | ‘ memZ2reg

INW 20 e 2 =

| constprop | ’ dce m inline ’_| instcombine ’_‘ licm ’_‘ Loop_reduce H Loop_rotate |
ADPCM rzazvy [7 2 3 o[2 sl wxeeal ssiaa1y | e e o P e e e

Principal
Component
Analysis (PCA)

I I e

Loop_unroll | ‘ Loop_u;switch | ‘ mem?2reg ‘ ‘ memcpyopt ‘ | reassociate ‘ ‘ scalarrepl ‘ ‘ scep

‘ simplifycfg

105|Page

APPENDIX SECTION

| constprop | | dce | | inline ‘ | instcombine ‘ | licm | | Loop_reduce | ‘ Loop_rotate
JPEG
Distributions
Performance
Loop_unroll | | Igemaii)yo;t ‘ | reas:ociate ‘ | | | ‘ s1mpllfycfg |

| | inline ‘ | instcombine ‘ | | | Loop_reduce | ‘ Loop_rotate
JPEG
Distributions)
=y
Intensity ‘ .
Loop_unroll | | memcpyopt] | “scalarrepl] “ |

106 |Page

APPENDIX SECTION

constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

JPEG kg S o e

Box-plot

Performance

‘ memcpyopt ‘ | reassociate

‘ Lo;)p:unswitch | ‘ merianeg

Loop_unroll

‘ .séalarrépl ‘ ‘ scépu ‘ ‘ S;mplifyéfg

fj{t?;ff--; Y o B e

ey . B e

| constprop | ’ dce m inline ’_| instcombine ’_‘

JPEG

Box-plot | e 3=

Intensity

pe

‘ Loop_unroll | ‘ Lﬁ;p:unswitch | ‘ mel:ereg ‘ ‘ men;;pyopt ‘ |

i n‘ 5

‘ ‘ scep ‘ ‘ sill;;;miifycfg

N <o - - Jr—

107 |Page

APPENDIX SECTION

constprop inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate

JPEG

Correlationon | = .- :
raw data . 1= ‘
e x| lexex X s & y ‘ I
Loop_unroll | ‘ Loop_unswitch | | reassociate ‘ ‘

| constprop | ’ dce m inline ’_| instcombine ’_‘

JPEG

£5 g g it H g 7 i1

ifs i £ it i i H igd

topmaves X XX | e ><><><><x><><><><><x>< ' o XXX XXX XXXXXX XXX | petornanee I><><><><><><><><>< ' XXXXX
e XX XXX o XXXXXX o o e X XSO XXXXXXXXXXXK W] o BRXXXX X XXXXEX W o XXXXXXX
0 s XX XXX | B o XXX XXXXX XXX HXKXXXHXXXXX s DR XXXXXXXX XXXXXX
Correlatlon on XX XXX) XXX XXXXX XXX ><><><><x><><><><><><>< 1 XXXXXXXX XXX M ¢ 1 XXX XX XX XXXXXX XK = X XXXRXX
et XX XXX o XXXXXXX o o XXX XXXXXK KX o e XXX TR X RXXXXK X e XXX XXX XXXHXXK of| e XXXXCXXXX
L0203 XXX XX X L st XX XXX XXX XK XXKXKN At XX XX XXX XXX o XXXXX XXX
1t o XXX XXX E XXXXHXK XXXXXXXXK | o E fRessgecssossiiatorstoretote el Iy IR os sosssoreiatscesscesscosstal N IS casosesscoliatotesscosssoseso i IR Sotecoiccotiiatess
eltas s XXX XOX s XX XXX X e XX XXX s XXX XXXXXXK e 5 XXX XXXX||, w0 XXXXXKX XX
XX XX XXX XX XXKXX TR o XXXRAXHNX XXX remsts XXX XXAXK RXKXX eomonie XXX XK X

o et XXX X X s XXXXXXK XHXXXAXX| o] o XX XXX X XK XXKKXX e XX XXXHN XXXKHK fof - ronsmons X XXX XX XXX o] omnmmen XX XXX
= XXX XX o XXXXRXXXXHK XX XXK S S L0200 D IS 20204 XXXXX XXXX s XXX XXXHX KK XXXKK XXX
e XXX XXX e XXX KR KK XXX [7 o XXX XX XXXX XXX XXX] omrmein XXXXX XX XRXX Y o XXX X XXX
02058 XXX o anmes XX XX XXX . s XXX XXRX XXX XX XX X XXM 0 XXX XXHHXIXXXHK XXX o womare XXXHXX XN
oy XXX XXX D 02020009°8 26402 26 6 %0 el 0% B 8082020202028 2¢%0% 20 2% X XX uX e XXHIHXHANXIHAK XX e XXX KX XXX

strnnn XXX K XX ¥ . I o gol X XX " X X £l B e XXX X% o e XX
stosmine. 3K XXX g e XX XRRKEKX | s XX K XK XXXX W X | e BXXX ><>< ><><><><>< i e XX XXX
Loop_unroll | ‘ Loop_unswitch | ‘ mem?2reg ‘ | reassociate ‘ ‘ scalarrepl ‘ ‘ scep ‘ ‘

H L] | 0 frrlidefgsfigiiy |0 giffEpfEfgfigief |00 giigEgfpiifEiisci | pRffEsfrifrcirei | BERSELEfEG
1| pemae ><><><><><>< '
XXX P o esstetetesefole §%
SXXPE] = XXX XXXXXXXXXKXX M] o E XXX
XXX e XAKK - X AKX] o o XX
SR o XXX X)X XRRxx | N e XX R HEXLIHLXHK
X fogetelel g XXX XXX || e = R K %Y
ananen XXX XHXXK XXX X KX 0 XXXXX XX XXXXX s XXX X XXX e X XXX XX XXXX XXX XXX o XXXXRX %
e XK IIXIRK T XXIKXKK |] s XXX XHXHXKK XXX B o XXXXXK KX RKK) e X of e XXXXX
e XK KKKKKKKXXXKK ot XXXXXK XXX XXXXK] L mmines XXX XXX XX XXXXX XXX BN osoteteseote iyl e 5
s XXX XRXXKKX KX X XK meozes XRXXXXXXX X XXXX o XOXOXXX XXX & XXX | B R st I e X
roret XXX R KK KKKIIK KKK W o] oo KXXXKIIXIKI XXX XXX s T XXX KKXIIIK KKK o R R RK XXX manone XX HKKXKKKXK XXX e XX XKIRKIRIK XX oo XXX
0 5 RXXXXXHXKXK XXX e XHXXXKKXKKKKKK XX e RRAKXXALAKA XX e SOOKAHAHXHAK MK e XXX XXX XX KX KKK e XXX KK XXX somien X XX XXX XXX XXX
s XXX XXX XX XK KK KK - wwlx XX XX XXX . e X XXX XK - St iar| B [ogaatitosesoseimessieiviar | [N g ota todpioistessiesssoin | B I XXXXXX X
e PIX XX XXXX X KKK KK | XXX XX XXXX | BIXXXX XK R i . R B m e RTTIRIR xm | e X XK X RN e XUXEXX XXXXXX

108 |Page

APPENDIX SECTION

| constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate
IPEG R ‘] nstcombine [[
Scatter-plot | - \ U Lij il -/

) / \\ g ‘S
. A

: MNT_MWHQQ‘

Loop_unroll | ‘ Loép_uﬁswitch | ‘ meméreg ‘ ‘ memci)yop ‘ ‘ | ‘ ‘ scalafrepl ‘ ‘ scc}) ‘ girﬁplifycf
e - /< /\ “‘f\w wwwwwwwwwwwww e i —— — ‘ /\ nnnnnnn =
H I i / /HA\
| U y _ WHE,/\\\~~+— Ea R
! : /\ /0//\/\\\\ T f\
i \ i r H) \
| constprop | ’ dce m inline ’_| instcombine ’_‘ licm ’_‘ Loop_reduce H Loop_rotate
JPEG : P I N
Principal 1 L
Component ’ |) —
Analysis (PCA) ! | , {
Loop_unroll | ‘ Loop_ur?switch | ‘ mem?2reg ‘ ‘ memcpyopt ‘ | reassociate ‘ ‘ scalarrepl ‘ ‘ scep ‘ ‘ simpli;ycfg
v

109 Page

APPENDIX SECTION

| constprop | | dce | | inline ‘ | instcombine ‘ | | | Loop_reduce | ‘ Loop_rotate |

memcpyopt ‘ | reassociate

BLOWFISH

Distributions

Performance

‘
w
gl
S |
E
!~< B
&
o |-

Loop_unroll

| instcombine ‘ ‘ Loop_rotate

BLOWFISH
Distributions

Intensity

A
-2
3 |,
=\
Z
g,
g |

reassociate

Loop_unroll

110|Page

APPENDIX SECTION

constprop |

dce

inline

‘ | instcombine

licm

‘ ‘ Loop_reduce ‘ ‘

Loop_rotate

BLOWFISH
Box-plot

Performance

T
ot

e

,,,,,,

Loop_unroll |

mem2reg

memcpyopt

reassociate

ey

L

[

[yon

constprop |

dce

inline

BLOWFISH
Box-plot

Intensity

e

=
R J."~~n»

sy

e

Loop_unroll |

‘ Lﬁ;)p ﬁnsv&itch |

mem?2reg

memcpyopt

reassociate

scalarrepl

simﬁlifycfg

5o [l

““““““

111 |Page

APPENDIX SECTION

constprop

‘ dce

inline

‘ | instcombine ‘ ‘

‘ ‘ Loop_reduce ‘ ‘

Loop_rotate

BLOWFISH

Correlation on
raw data

Loop_unroll |

reassociate ‘

constprop

inline

instcombine ’_‘

BLOWFISH

H i g5 i 4 $ 1s1
i i 38 i : 4 ird
XX {] | s XXX XXX XXX st | XX XXM [e XXX R [e WX XXXXX
s XXX B ol e XTI XXKK o o SEBEBBUN A e X HKHAK XX o eormarce i XXXXXX o
0 o XXX XN | o X XRKKAIXAXKKKAXK XXXXXXXX XX s XX X ez XX XXXXKK
Orrelatlon on st XX X XHXXKHKXKHXKX e XXX XXX KKK XXX X XXX oo X XXX XXX
[20294 X[. XUXXXXXX XXXX | . XX XXXXXXKXX . X A e XXXXTXX XX o
o en XXX X XX XXX XXXXXXX B 3 S S S D2020200°9°4°4°4%¢ X e XXXXX XXX
1t o XXX X g XXX XXXKKKXXXX| [+ X E wr XXXX X KKKKKKKXX | = XXXX [o XXXXK X XXX E
eltas reneg XXX X X[, X RRXXTRKTRRRXXN] e XXX) X e XXX XKXKK KXXXXXKK XXX, e XXRXXXX XX .
e XXX X X XXXXXXXKXKKX e XRXXRXRKXK XXX KK e XXXXXXXX XX XX et XAUXHXHAR KKK e XXX XX X
smis XXX X X[o XXKKKKKKKXXXXKX | o XXXXHXK XK XXX [of - omse XXXXX X XXXXXX e XX XX XRXKKK XXXKKK | X XXXXXX | fof| oo XXX KKK :
e XXX X X s XXXKRRKKAXK XRKKK XXX XX XXXXX s RRXXHHXHXKK XXX s XXX XXX XRK XRKXX e XXX XXXRXK KK XXHXKX e XXX
e XXX X o KR XK XX KKKKRKXXXK] v XX KKKRRRXIKK XKKXK W] oo KXXXXXXK ™ XX KKK XX XXX XXX o XXXXKXXXKK .
nereent XXX K X o XXX XXXN XXXXXX XX XXX st XK KKK KKKKK XXX ente XXX KKK KXKKXKK XXX ss XXRXK T XXIKKK XXX | omer XIKKKXKKKKX
e XXX X w><><><><><x><><><><><x>< XXXXXHXX XXX X e XXX e XX RN IHAH XXXXXX XXX e XXRXXXX KKK
o et XXX] pomares | B XXXHXHXKX XXX of semncs XX XXXX .l XX XXXX .. o e XX -
srirres XXX . TS S i XXXXXXXX | e & fogiose™ S e XX S S , XX XXXX g e X XXX .
Loop_unroll | ‘ Loop_unswitch | ‘ mem?2reg ‘ ‘ | reassociate ‘ ‘ scalarrepl ‘ scep ‘ simplifycfg
H g
i i : : .) sl i)
MWJX % e % XXX XXX RRRXHK X X RRRRRRRRRKRRNN % %%
i, % ‘"””’??XX§§§§§§XXXXXX N R 000 %% Lm ORI %% %% XX 5
= ¥ Py o B I s et rred B o 2l B o
E X = XXXX ><><><><><><><><><><>< g o of e XXX T XXXXXX XXX o XX X of
X < XXXXK XXX XXX XX X
i SRR o o o IR KIIIIKKKK | . X XK+ XX o
X[e XXXXXKXXK XXXKXKXXK | . . XXXXXXXX e XXX XXXX XXXXXX XX |, ww»><><><><><>< .
X prn XXX XXX XXXXXKX XXRXXKKXX $O50000%8% e XXX KK
m~~><><><><><><><x>< XX Xt XX XX XX XX [y - o X » . XXXX | e XXX -
s SR XXXXKX X s XXXKKK XXX XXXXX | " XX XHXXRXK KKK XKXXX XXXXX rereoen XX XXX X
mu.m><><><><x><><><><x K Y e XXXXKXKAXKKK XXX - - XX XXX XXX XXX X XXX B X o BEEREE y
eennie XXX XXXR KKK KL s XXX XXX XX KKK XXX . o R R RK XXX X OXxxH . - XXKKKKK
e XK XK X s XX XXX XX X e SOOKAHAHXHAK MK s X XXXIXKKIKK KK =-==w-=x><><><><><><><><><><x><
o XXX XXXKK s wv><><><><><><><><><><><><><><.l o s XX 2 XX XXXX W - - BeSessesssesestotete o e 5
a2 S o XXX XXX XXX XXX XN X XXX XXX R B m R S fod te oo oY

112|Page

APPENDIX SECTION

| constprop | ‘ dce ‘ ‘ inline ‘ | instcombine ‘ ‘ licm ‘ ‘ Loop_reduce ‘ ‘ Loop_rotate
BLOWFISH - S —_— X A -
Scatter-plot \J \\\ R L / ‘\‘Lv e
| minl| ‘EEE : ‘g /QDUUJL
’ Loop_unroll | ‘ Loop_unswitch | ‘ meméreg ‘ ‘ memci)yop ‘ |
L ESNE AR
| inline ’_| instcombine ’_‘ licm ’_‘ Loop_reduce H Loop_rotate
BLOWFISH : . : P R
Principal N & T
Component r— o = pewemp] B B
Analysis (PCA) I | _, l | | 1.
Loop_unroll | ‘ Loop_ur?switch | ‘ mem?2reg ‘ ‘ memcpyopt ‘ | reassociate ‘ ‘ scalarrepl ‘ ‘ scep ‘ ‘ simpli;ycfg
m e e =

113|Page

	ABSTRACT IN ENGLISH
	ABSTRACT IN ITALIAN
	ACKNOWLEDGMENTS
	Table of Figures
	List of tables
	Chapter 1
	Introduction
	1-1 Dissertation Contribution
	1-2 Dissertation Organization

	Chapter 2
	Main Background
	2-1 Background
	2-1-1 ILP architecture
	2-1-2 VLIW Processor Architecture
	2-1-3 Design Space Exploration
	2-1-4 Compiler Options
	2-1-5 Performance Model and Floating Point

	2-2 State of Art
	2-2-1 Design Space Exploration for Compiler Options
	2-2-2 Design Space Exploration in VLIW Processors

	Chapter 3
	Proposed Methodology
	3-1 Problem Description
	3-2 Designed Model
	3-2-1 MOST Generic Wrapper (MGW)
	3-2-2 Multi-Objective System Tuner (MOST)
	3-2-2-1 MOST Structure

	3-2-3 LLVM
	3-2-4 HP-VEX

	3-3 Benchmarks
	3-4 Analysis Types
	3-4-1 ANOVA Analysis
	3-4-2 Kruskal-Wallis
	3-4-3 Correlation Analysis
	3-4-4 Principal Component Analysis

	Chapter 4
	Experimental Results
	4-1 Motivation
	4-2 Benchmark No.1 - GSM
	4-2-1 ANOVA
	4-2-2 Kruskal-Wallis
	4-2-3 Distributions
	Inline
	Performance Intensity

	Box-Plots
	Performance Intensity

	Loop_Unroll
	Performance Intensity

	Mem2reg
	Performance Intensity
	Performance Intensity

	Figure 21-GSM_Mem2reg_Box

	4-2-4 Scatter Plots
	4-2-5 Principal Component Analysis
	4-2-6 Correlation Analysis
	1- Correlation on raw data
	Inline
	Loop_Unroll
	Mem2reg

	2- Correlation on Deltas
	Inline
	Loop_Unroll
	Mem2reg

	3- Correlation of the PCA
	Inline
	Loop_Unroll
	Mem2reg

	4-2-7 Matrix Plot
	Inline
	Loop_Unroll
	Mem2reg
	Densities
	Inline
	Loop_unroll
	Mem2reg

	4-4-8 GSM Conclusion

	4-3 Benchmark No.2 AES
	4-3-1 ANOVA
	4-3-2 Kruskal-Wallis
	4-3-3 Distributions
	Inline
	Performance Intensity
	Performance Intensity

	Loop_reduce
	Performance Intensity
	Performance Intensity

	Distribution “Mem2reg”
	Performance Intensity

	Box-Plots “Mem2reg”
	Performance Intensity

	4-3-4 PCA
	Inline
	Loop_reduce
	Mem2reg

	4-3-5 Densities
	Inline
	Loop_Reduce
	Mem2reg

	4-3-6 AES Synthesis Conclusion

	Chapter 5
	Conclusions
	5-1 Targeted Problem
	5-2 Approach Review
	5-3 Analysis Result Conclusion
	5-3-1 per Benchmarks
	No. 1 – GSM
	No.2 AES

	No.3 – No.5 Benchmarks
	5-3-2 Cross Benchmarks
	5-3-3 ANOVA Cross-Benchmark
	5-3-4 Kruskal-Wallis Cross-Benchmark
	5-3-5 Parameters Effect

	Chapter 6
	Future Works
	6-1 Combining Architectural Parameters
	6-2 Extended Benchmarks
	6-3 Further Algorithms of Optimizations

	Bibliography
	Appendix

