
POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

Master of Science in

Computer Engineering

DESIGN SPACE EXPLORATION METHODOLOGY
FOR COMPILER PARAMETERS

IN VLIW PROCESSORS

Supervisor: Prof. Cristina Silvano

Co-Advisor: Prof. Vittorio Zaccaria

 Co-Advisor: Dr. Sotiris Xydis

M.Sc Thesis of:

Amir Hossein Ashouri

 10327573

Academic Year: 2011- 2012

DESIGN SPACE EXPLORATION METHODOLOGY

FOR COMPILER PARAMETERS

IN VLIW PROCESSORS

A Thesis

Submitted to the Department of

Computer Engineering

at Politecnico di Milano

in Partial Fulfillment of

the Requirements

for the Degree of

Master of Science in Computer Engineering

Supervisor: Cristina Silvano, Ph.D.

 Co-Adviser: Vittorio Zaccaria, Ph.D.

Co-Adviser: Sotirios Xydis, Ph.D.

Amir Hossein Ashouri

DECEMBER 2012

I | P a g e

ABSTRACT IN ENGLISH

Embedded systems can be considered as specialized computing systems which can be used for multi-purpose

application varying from mobile-phone to military and home-automation devices. Although the functionalities of

these devices are differed, the computational structure and design is tightly connected with the platform and

programmability in which they rely on. Consequently, by introducing the VLSI technology, designing complex

systems-on-chip (SoC) platform and related Network-on-Chip (NoC) has to be finely tuned.

The target is a multi-objective optimization problem: to maximize the performance of the platform and minimize the

power consumption or other non-functional metrics. During this design phase, Design Space Exploration (DSE)

plays a major role to benefit the designer, to prune the large design space and support the designer during the

analysis phase.

The research thesis targets the exploration of compiler options parameters, in order to automatically explore the

design space and analyze the compiler-architecture co-design in VLIW processor by applying random design of

experiment algorithm. The thesis tackles the aforementioned problem by proposing an automatic methodology based

on a tool-chain including the MOST tool(Multi-Objective System Tuner), a Ubuntu wrapper and two open-source

compilers; namely, LLVM and VEX. The proposed tool-chain enables the designer to automatically explore,

optimize and analyze the options by using several standard benchmarks for both high-end embedded and signal

processing applications.

The analysis could be used as a tool-chain for benchmarking the compiler options and expanded to architectural

options in the near future. The optimization phase could be done as a further step of the research to generalize the

explored trends in the results' analysis.

In this dissertation, the thesis is supported by a large set of experimental results relying on solid sets of statistical

analysis which clearly shows the characteristics and the effects of each transformation. We targeted benchmarking

with MOST software, VEX and LLVM simulator to provide solid experimental setup. In addition, the Appendix

provided a complete hand-manual for designers in order to use as a multiple-purpose reference.

Keywords: Compiler Options, Design Space Exploration, VLIW processors, Compiler Optimizations, DoE, Tool chain

Benchmarking

II | P a g e

ABSTRACT IN ITALIAN

I sistemi embedded possono essere considerati come sistemi di calcolo specializzati che possono essere usati per
applicazioni multi-purpose che possono spaziare da telefoni cellulari fino ad applicazioni militari o di domotica.
Sebbene le funzionalità di questi dispositivi siano diverse, la struttura di calcolo e il relativo progetto è strettamente
collegato con la piattaforma e il paradigma di programmazione utilizzato. Di conseguenza, introducendo la
tecnologia VLSI, il progetto di piattaforme complesse di tipo System-on-Chip (SoC) e della relativa rete di
interconnessione on-chip (Network-on-Chip) deve essere dettagliatamente raffinato.

L'obiettivo è massimizzare le prestazioni della piattaforma e minimizzare la potenza dissipata e altre metriche non
funzionali del sistema. In tale fase di progetto, l'esplorazione dello spazio di progetto (Design Space Exploration)
gioco un ruolo fondamentale per filtrare automaticamente i punti dello spazio di progetto e supportare il progettista
nella fase di analisi.

La presente tesi di ricerca ha come obiettivo principale l'eplorazione dei parametri del compilatore, in modo da
esplorare automaticamente lo spazio di progetto e analizzare in modo congiunto i paramteri del compilatore e
architetturali nei processori VLIW applicando tecniche casuali per il progetto degli esperimenti (Design of
Experiment).

La tesi affronta il problema proponendo una metodologia automatica basata su una tool-chain che include il tool
MOST (Multi-Objective System Tune), un wrapper Ubunti e due compilatori open-source: LLVM e VEX. La tool-
chain proposta consente al progettista di esplorare automaticamente, di ottimizzare e di analizzare le opzioni dello
spazio di progetto usando diversi benchmark standard per applicazioni high-end embedded e di elaborazione dei
segnali.

La metodologia di analisi proposta può essere usata come tool-chain di benchmarking per valutare i parametri del
compilatore e come sviluppo futuro per valutare i paramteri architetturali. La fase di ottimizzazione può essere
eseguita come sviluppo futuro del progetto di ricerca per generalizzare gli andamenti evidenziati nell'analisi dei
risultati sperimentali.

Nel presente lavoro di tesi, l'approccio proposto è supportato da un ampio insieme di risultati sperimentatli che si
basano su un insieme solido di analisi statistiche che evidenziano chiaramente le carattersitiche e gli effetti di ogni
trasformazione applicata. L'analisi presenta risultati ottenuti utilizzando la metodologia proposta basata sui tool
MOST, VEX e LLM che forniscono un solido ambiente di sperimentazione. Inoltre, nell'Appendice sono raccolti
tutti i risultati sperimentali ottenuti nella presente tesi da utilizzare come rifermento per analisi successive.

Parole chiave: Opzioni del compilatore, Esplorazione dello Spazio di Progetto, Processori VLIW, Ottimizzazioni
del Compilatore, progettazione degli esperimenti, Tool-chian Benchmarking.

III | P a g e

ACKNOWLEDGMENTS

This Master of Science thesis has been carried out at the Department of Electronics and Computer at

Politecnico di Milano University. The work has been performed within System Architecture Engineering

Group of professors Cristina Silvano and Vittorio Zaccaria who introduced the topic and provided

limitless support during the course of the project.

The team work was truly fun and challenging at the same time. I learned a lot and met engineers who

shared their knowledge and experience which I am very grateful and would like to thank.

First I would very much like to thank my supervisors at Politecnico di Milano, Cristina Silvano and

Vittorio Zaccaria whom always had the answer to all my questions and guided me to the right way. Their

constant encouragement and support throughout the project made it possible for me to complete the work.

I would also like to thank Dr. Sotirios Xydis, Post-Doc researcher in the System Architecture

Engineering Group; it was a pleasure having his advices and excellent experiences in the field.

Last but not least, I would like to appreciate lifetime support of my perfect family; Mother, Father and

younger brother whom always been backbone for me during the hard-times and good-times. Thank you

for keep giving me the positive energy to carry-on and thanks for urging me to choose this path for my

life.

Finally, I would like to thank everyone in Politecnico Di Milano University circle, from my colleagues,

secretaries to the professors, whom got involved in such a way to let this checkpoint of my life happens.

Thank you all,

Amir-Hossein Ashouri

IV | P a g e

Contents

ABSTRACT IN ENGLISH ... I

ABSTRACT IN ITALIAN .. II

ACKNOWLEDGMENTS .. III

Table of Figures .. VII

List of tables .. IX

Chapter 1 ... 13

Introduction ... 13

1-1 Dissertation Contribution .. 14

1-2 Dissertation Organization ... 15

Chapter 2 ... 16

Main Background .. 16

2-1 Background ... 16

2-1-1 ILP architecture ... 16

2-1-2 VLIW Processor Architecture ... 17

2-1-3 Design Space Exploration ... 19

2-1-4 Compiler Options .. 20

2-1-5 Performance Model and Floating Point ... 23

2-2 State of Art .. 24

2-2-1 Design Space Exploration for Compiler Options .. 25

2-2-2 Design Space Exploration in VLIW Processors .. 26

Chapter 3 ... 27

Proposed Methodology ... 27

3-1 Problem Description ... 27

3-2 Designed Model .. 30

3-2-1 MOST Generic Wrapper (MGW) ... 31

V | P a g e

3-2-2 Multi-Objective System Tuner (MOST) ... 33

3-2-3 LLVM .. 35

3-2-4 HP-VEX .. 36

3-3 Benchmarks .. 37

3-4 Analysis Types ... 38

3-4-1 ANOVA Analysis ... 38

3-4-2 Kruskal-Wallis .. 39

3-4-3 Correlation Analysis .. 40

3-4-4 Principal Component Analysis .. 41

Chapter 4 ... 43

Experimental Results .. 43

4-1 Motivation .. 44

4-2 Benchmark No.1 - GSM ... 46

4-2-1 ANOVA .. 47

4-2-2 Kruskal-Wallis .. 48

4-2-3 Distributions .. 48

4-2-4 Scatter Plots ... 52

4-2-5 Principal Component Analysis .. 53

4-2-6 Correlation Analysis .. 55

4-2-7 Matrix Plot ... 62

4-4-8 GSM Conclusion ... 67

4-3 Benchmark No.2 AES ... 68

4-3-1 ANOVA .. 69

4-3-2 Kruskal-Wallis .. 69

4-3-3 Distributions .. 70

4-3-4 PCA ... 74

4-3-5 Densities .. 75

4-3-6 AES Synthesis Conclusion .. 78

Chapter 5 ... 79

Conclusions ... 79

5-1 Targeted Problem ... 79

5-2 Approach Review ... 79

5-3 Analysis Result Conclusion .. 80

VI | P a g e

5-3-1 per Benchmarks ... 80

No. 1 – GSM ... 80

No.2 AES .. 82

No.3 – No.5 Benchmarks .. 83

5-3-2 Cross Benchmarks ... 83

5-3-3 ANOVA Cross-Benchmark ... 83

5-3-4 Kruskal-Wallis Cross-Benchmark ... 84

5-3-5 Parameters Effect .. 85

Chapter 6 ... 87

Future Works .. 87

6-1 Combining Architectural Parameters ... 87

6-2 Extended Benchmarks .. 88

6-3 Further Algorithms of Optimizations ... 88

Bibliography ... 89

Appendix ... 93

VII | P a g e

Table of Figures

Figure 1- ILP architecutre classifications [7] .. 17
Figure 2- VLIW and Superscalar Differences [7] ... 18
Figure 3- Design Space Exploration General Flow (Courtesy of sciencedirect.com) 19
Figure 4-Roofline Model [19] ... 24
Figure 5- High-level View of Proposed Tool-Chain... 31
Figure 6-Proposed Tool-Chain Schematic .. 32
Figure 7- MOST Schematic (Courtesy of Dr. Vittorio Zaccaria, Politecnico Di Milano) 35
Figure 8- ANOVA .. 39
Figure 9- ANOVA Example ... 39
Figure 10- Kruskal_Wallis_Example .. 40
Figure 11- Correlation Matrix_GSM_Inline Example .. 41
Figure 12- PCA for GSM_Inline .. 42
Figure 13 - GSM_dce_4000 iteration_ Roofline Certification ... 44
Figure 14-GSM_Mem2reg Effect ... 45
Figure 15-GSM_Mem2reg Effect_2 ... 45
Figure 16-GSM_Inline_Distribution ... 49
Figure 17-GSM_Inline_BoxPlot ... 49
Figure 18-GSM_Loop_unroll_Dist... 50
Figure 19-GSM_Loop_unroll_Box... 50
Figure 20-GSM_Mem2reg_Dist ... 51
Figure 21-GSM_Inline_ScatterPlot .. 52
Figure 22-GSM_ScatterPlot_Loop_unroll .. 52
Figure 23--GSM_mem2reg_Scatterplot ... 53
Figure 24-GSM_Inline_PCA .. 54
Figure 25-GSM_Loop_unroll_PCA ... 54
Figure 26-GSM_Mem2reg_PCA .. 55
Figure 27-GSM_Inline_Corr_raw_data .. 56
Figure 28- GSM_Loop_unroll_Corr_raw ... 57
Figure 29-GSM_Mem2reg_Corr_Raw ... 58
Figure 30-GSM_Inline_Corr_Deltas .. 58
Figure 31-GSM_Loop_Unroll_Corr_Delta .. 59
Figure 32-GSM_Mem2reg_Corr_Delta .. 60
Figure 33-GSM_Inline_Corr_PCA ... 61
Figure 34-GSM_Loop_Unroll_Corr_PCA ... 61

VIII | P a g e

Figure 35-GSM_Mem2reg_Coo_PCA ... 62
Figure 36-GSM_Inline_MatrixPlot ... 63
Figure 37-GSM_Loop_Unroll_Matrixplot ... 63
Figure 38-GSM_Mem2reg_MatrixPlot .. 64
Figure 39-GSM_Inline_Densities ... 65
Figure 40-GSM_Loop_Unroll_Densities ... 65
Figure 41-GSM_Mem2reg_Densities ... 66
Figure 42-AES_Distributions ... 71
Figure 43-AES_Boxplot ... 71
Figure 44-AES_Loop_reduce ... 72
Figure 45-AES_Loop_reduce_Box ... 72
Figure 46-AES_Mem2reg_Distributions .. 73
Figure 47-AES_Mem2reg_Box .. 73
Figure 48-AES_Inline_PCA ... 74
Figure 49-AES_Loop_reduce_PCA ... 74
Figure 50-AES_Mem2reg_PCA ... 75
Figure 51-AES_Inlie_Densities .. 76
Figure 52-AES_Loop_reduce_Densities .. 76
Figure 53-AES_Mem2reg_Densities .. 77
Figure 54- Transformations Bubble Effects .. 86

IX | P a g e

List of tables

Table 1-List of compiler transformations in LLVM ... 22
Table 2-Our Problem Design Space Exploration_ Example ... 28
Table 3-Our Design Space Exploration Fixed Arch Parameters .. 29
Table 4- MGW sections's Example ... 32
Table 5- GSM_ANOVA ... 47
Table 6- GSM_Kruskal ... 48
Table 7-AES_ANOVA ... 69
Table 8-AES_Kruskal_Wallis... 70
Table 9-ANOVA_Cross-benchmak_Performance .. 84
Table 10- Kruskal-Wallis_Cross-benchmark_Performance ... 85

13 | P a g e

Chapter 1

Introduction

Increase in speed at which processor are clocked have led to higher performance benefits - applications

now run faster; it is now possible to run realistic graphics, interactive games and simulators. This is

primarily because of improvements in semiconductor technology in terms of both speed and technology.

These processors seek out independent operations/instructions in a sequential program and execute them

in parallel to expose what is commonly called instruction level parallelism (ILP). On one hand we could

have a processor with large and complex control path and relatively small data path while on the other

hand we could have a processor with vice versa configurations. The VLIW processors use the latter

approach; making it easy for parallelism and simpler control systems [1].

It is often very difficult to find a single modeling approach or analysis tool which is capable of fulfilling

all the challenges of systems-on-chip design. There is a certain need for tuning the chip in order to have

the best outcome. Configurable simulation models are used to accurately tune the on-chip architectures

and to satisfy the requirements of the target application in terms of performance versus intensity trade-off,

battery lifetime and area.

The performance indicators (such as power consumption, delay, area, etc.) are impacted considerably by

altering the parameters. The design space exploration (DSE) is an optimization phase which aims at

tuning the configurable system parameters to find the best trade-off in terms of the selected figures of

merit. The DSE generally consists of a multi objective optimization (MOO) problem and pruning a large

design space of parameters. In addition, DSE can be used in the compiler level, tuning the compiler-

options in order to exploit the best possible trade-off and even mix those with the architectural parameters

such as Cache size, word size, etc.

14 | P a g e

The overall goal of the DSE phase is to find the optimal parameterized configurations of either

architectures and/or applications in order to minimize the number of executing simulations during the

exploration phase. So far, several heuristic techniques have been proposed to address this problem;

however, they were not efficient enough for identifying the Pareto front of feasible solutions in a

reasonable amount of time. That is exactly the main objective and contribution of the dissertation which is

going to be elaborated in the following section.

1-1 Dissertation Contribution

The aim of this thesis is to define an efficient tool-chain to explore and analyze the design space formed

by the compiler option parameters for ILP processors.

The main contribution presented in this thesis consists of the definition of a multi-objective

benchmarking, analysis methodology for compiler options in VLIW processors.

Our study will show a clear way, how to calculate performance and do analysis on these compiler options

which is definitely necessary for many purposes such as graphic AGP cards, embedded systems, etc.

Within this dissertation, we focus on VLIW (Very Long Instruction Word) processors, which are suitable

for low-power embedded high-end computers.

In order to introduce the methodology, first it starts by explaining the status-quo and the background work

already presented about DSE and compiler options. Consequently, the tool-chain details will be

introduced. In addition, the final methodology and test-bed which has designed to test the performance of

these compiler options will be clarified. Furthermore, the experimental results will be introduced,

Followed by conclusion and future works and the complete hand-manual appendix.

This dissertation focused on exploration of research field not yet well faced with as a methodology

analysis, it describes the performance metrics of the most common compiler options introduced by

LLVM in several standard and useful benchmarks.

In order to exploit the best benefits of VLIW processors, there is certainty for tuning the configuration

tree based on design space exploration. Therefore, understanding the performance and the pros and cons

of each compiler option could play an important role in the era of computational lower-orders tasks.

15 | P a g e

The methodology proposed, in Chapter 3, has main target to provide best and complete information

regarding the compiler options and their benchmarking. Given the increasing complexity of multi-

processor system on-chip architectures, a wide range of architecture parameters must be explored at

design time to find the best trade-off in terms of multiple competing objectives (such as energy, delay,

bandwidth). Therefore, the design space of the target architectures is huge because it should consider all

possible combinations of each parameter. The experimental tool in which we used, MOST: Multi-

Objective System Tuner [2], under proprietary of Politecnico Di Milano, helps driving the designer

towards near-optimal solutions to the architectural exploration problems.

1-2 Dissertation Organization

The structure of this dissertation is as follows; first, the state-of-art and background of the topic is going

to be illustrated in Chapter 2. In Chapter 3, the selected compiler option is going to be bolded, then the

two open-sourced compilers LLVM [3] and VEX [4] are going to be introduced. In Chapter 4, by

introducing the tool-chain and MOST, the methodology is going to be illustrated. Finally in Chapter 5, the

experimental results will be shown and will have the conclusion and future works on Chapter 5 and 6. At

the end of this dissertation, there will be an Appendix representing the overall results in classified mode.

16 | P a g e

Chapter 2

Main Background

To better understand the work and methodology, some theoretical points regarding the topic of the
dissertation reviewed. In 2-1 Theoretical Background, the main background of the topic such as VLIW
architecture, Design Space Exploration (DSE), Performance Models, etc are going to be represented at a
glance. Afterwards, in section 2-2 State of Art, recent works regarding the performance evaluation of the
compiler options are referred.

2-1 Background

2-1-1 ILP architecture

Instruction level parallelism (ILP) is a family of processors and compiler design techniques that speed-up

execution by causing individual machine operations, such as memory load and stores, integer addition and

floating point multiplications, to execute in parallel. [5] The operations in which they involve are the

normal RISK-style operations, and the program is performing a single program written with a sequential

processor in mind. The intrinsic of this technique could lead to improvements in speed, but unlike the

traditional multiprocessor parallelism, this action is totally transparent to the users. The prominent

example of ILP usage could be found in VLIW [6] architecture and superscalar systems.

The end result of ILP is that multiple operations are simultaneously in execution, either due to the result

of having been issued simultaneously in the issue phase or because of having a greater time for

17 | P a g e

completing the execution phase than issuing the successive operation. The classification of ILP could be

as following [5]:

• Sequential Architectures (without the necessity of conveying any explicit information

regarding parallelism. i.e. superscalar processors)

• Dependence Architectures (By indicating the dependencies which exist between the

operations. i.e. Data flow processors)

• Independence architectures (In this architecture, the program provide information as

which operation are independent from one another. A good example could be VLIW

processors.)

Figure 1- ILP architecutre classifications [7]

2-1-2 VLIW Processor Architecture

Since introducing ILP in 80’s, there were lots of systems taking advantage of it. VLIW (Very Long

Instruction Word) was more like a design philosophy for a long time. A succinct statement of VLIW

philosophy could be “Expose instruction-level parallelism in the architecture” [7] . But it could apply to

18 | P a g e

many levels of the system, including compiler, instruction-set architecture, etc. In addition, parallelism

should be revised as it could refer just to run independent task separately rather than in sequentially. We

have to take into account lots of interconnection between VLIW and superscalar, VLIW and Compilers,

etc.

Recent high performance processors have depended on Instruction Level Parallelism (ILP) to achieve

high execution speed. ILP processors achieve their high performance by causing multiple operations to

execute in parallel, using a combination of compiler and hardware techniques. Very Long Instruction

Word (VLIW) is one particular style of processor design that tries to achieve high levels of instruction

level parallelism by executing long instruction words composed of multiple operations. [8]

As an example of differences between superscalar and VLIW, could be the scheduling process; in which

superscalar does in via hardware but VLIW have compiler rearrange the code to be executed without

changing the hardware. In some processor, there is a special control hardware that examines the operation

as it comes from instruction streams. A principal of VLIW has been said as “don’t wastes silicon, avoid

hardware that computes anything other than the intended computation on the critical path of every

instruction” [7]

Figure 2- VLIW and Superscalar Differences [7]

19 | P a g e

2-1-3 Design Space Exploration

By introducing the VLSI [9] technology, designing complex systems-on-chip (SoC) platform parameters

and the network infrastructure on the chip (NoC) of these devices has to be finely tuned. The target is to

maximize the performance of the platform and minimize the non-functional costs of the system like

Power Consumption, etc. Mapping programs onto configurable architectures is a difficult problem. The

set of design choices from which a designer must perform trade-offs in enormous. The designer must

detect and exploit characteristics in the sequential application to manage the data movement within the

program, determine the data movement in the memory subsystem, and assign system resources to

program components to maximize system performance. The large number of degrees of freedom creates a

complex design space [10]. This is where Design Space Exploration (DSE) plays the main role to benefit

the designer, to prune the large amount of unnecessary design space and actuate the multi-objective

problem for the best trade-offs.

Figure 3- (Design Space Exploration General Flow) shows the flow of applying design space exploration.

In general, we are interested in finding the solution on each architecture we applied the method. However,

quite often it happens that we won’t reach the exact and complete solution. There are possibilities in

which we reach the succinct point via some algorithms i.e. Simulated Annealing [11], Design of

experiment (DOE) [12], etc.

Figure 3- Design Space Exploration General Flow (Courtesy of sciencedirect.com)

20 | P a g e

2-1-4 Compiler Options

Using more optimized compilers have been always a goal in computer science, however, reaching this

goal has its own tolerance and trade-off. Occasionally it happens to sacrifice the code size for better

performance or portability versus code size. Consequently, there should be a precaution when using these

options otherwise it ends up heavier and less-usable.

Without any optimization option, the compiler's goal is to reduce the cost of compilation and to make

debugging produce the expected results [13]. Statements are independent: if you stop the program with a

breakpoint between statements, you can then assign a new value to any variable or change the program

counter to any other statement in the function and get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or code size at

the expense of compilation time and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the program. Compiling multiple

files at once to a single output file mode allows the compiler to use information gained from all of the

files when compiling each of them. Not all optimizations are controlled directly by a flag.

Most optimizations are only enabled if an -O level is set on the command line. Otherwise they are

disabled, even if individual optimization flags are specified. Generally, there are some levels of

optimizations defined in which it could be specified the level and the routine of optimization. The main

classifications of GNU [14] C family compilers’ optimizations are as following:

21 | P a g e

• -O1

Optimizing compilation takes somewhat more time, and a lot more memory for a large function.

With -O, the compiler tries to reduce code size and execution time, without performing any

optimization that takes a great deal of compilation time.

• -O2

Optimize even more. GCC performs nearly all supported optimizations that do not involve a

space-speed tradeoff. As compared to clean -O, this option increases both compilation time and

the performance of the generated code.

• -O3

Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on some of the

other optimization flags like “inline” and “loop_unswitch”. The complete list of Compiler

parameters involves with LLVM is being described completely in the following section.

• -O0

Reduce compilation time and make debugging produce the expected results (the default option)

Still there are lots of more optimization flags to be mentioned, but in main stream, the role of using these

flags depends on the compiler architecture and its behaviors.

In this dissertation, 15 compiler parameters which aggregated to the popular LLVM capabilities of

compiler flags have selected to be used for our analysis on the benchmarks. These are taken from and

listed in Table 1-(List of compiler transformations in LLVM) [15]:

22 | P a g e

Compiler

Transformation

Full Unabbreviated

Name
Description

Constprop
Constant

Propagation

It looks for instructions involving only constant operands and replaces

them with a constant value instead of an instruction.

Dce
Dead Code

Elimination

Dead code elimination is similar to dead instruction elimination, but it rechecks

instructions that were used by removed instructions to see if they are newly dead

Inline
Function

Integration/Inlining Bottom-up inlining of functions into callees.

Instcombine
Combine

Redundant

Instruction

Combine instructions to form fewer, simple instructions. This pass does

not modify the CFG This pass is where algebraic simplification happens.

Licm
Loop Invariant
Code Motion

Attempting to remove as much code from the body of a loop as possible.

It does this by either hoisting code into the pre-header block, or by

sinking code to the exit blocks if it is safe.

Loop_reduce
Loop Strength

Reduction

This pass performs a strength reduction on array references inside loops that

have as one or more of their components the loop induction variable.

Loop_rotate Rotates Loops A simple loop rotation transformation.

Loop_unroll Unroll Loops This pass implements a simple loop unroller.

Loop_unswitch Unswitch Loops
This pass transforms loops that contain branches on loop-invariant

conditions to have multiple loops

Mem2reg
Promote Memory

To Register

This file promotes memory references to be register references. It

promotes alloca instructions which only have loads and stores as uses.

Memcpyopt
Memcpy

Optimizations

This pass performs various transformations related to eliminating

memcpy calls, or transforming sets of stores into memset's.

Reassociate
Reassociate

Expressions

This pass reassociates commutative expressions in an order that is

designed to promote better constant propagation

Scalarrepl

Scalar
Replacement of
Aggregates (DT)

This transform breaks up alloca [16] instructions of aggregate type

(structure or array) into individual alloca instructions for each member if

possible.

Sccp

Sparse
Conditional

Constant
Propagation

Assumes values are constant, Basic Blocks are dead unless proven

otherwise, Proves values to be constant, and replaces them with

constants and Proves conditional branches to be unconditional.

Simplifycfg Simplify the CFG
 Performs dead code elimination and basic block merging.

Table 1-List of compiler transformations in LLVM

23 | P a g e

2-1-5 Performance Model and Floating Point

Similar to every other science, the whole attempts should lead to a better performance and lower

functional cost. Therefore, there have been lots of different models for performance evaluations regarding

the design space and all the matters. Regardless of what model we choose, there is a possibility of

misleading us to the fine goal, justifying the right result and mapping them to the experimental one could

be the hardest task of each researcher.

Stochastic analytical models [17] and statistical performance models [18] can predict program

performance on multiprocessors accurately; however, it is rarely to suggest an insight on how to improve

these measurements either for compilers, programs or computers.

In the Section 2-2 (State of Art), some of the recent performance models are going to be introduced, but
meanwhile an important model in which the dissertation has been illustrated.

For a given kernel, we can find a point on the X-axis based on its operational intensity. If we draw a

vertical line through that point, the performance of the kernel on that computer must lie somewhere along

that line.

The horizontal and diagonal lines give this bound model its name. The Roofline [19] sets an upper bound

on performance of a kernel depending on its operational intensity. If we think of operational intensity as a

column that hits the roof, either it hits the flat part of the roof, which means performance is compute

bound, or it hits the slanted part of the roof, which means performance is ultimately memory bound.

24 | P a g e

Figure 4-Roofline Model [19]

Consequently, we have to make sure the way we traverse in these areas will be on the verge of higher

levels of performance versus intensity; otherwise we hit the roof either in the straight or slanted line and

end up being compute and memory bound.

2-2 State of Art

In the field of Design Space Exploration for compilers in VLIW processors, there have been some quality

works done recently which in this section are going to be illustrated. However, none of those are exactly

applied to the very current topic of this dissertation. This section is presented combinatorial like as for the

most important works could be viewed chronologically.

25 | P a g e

2-2-1 Design Space Exploration for Compiler Options

David. Fischer et al. [20] in their co-exploration work tried to characterize the design space of both

compiler frontend (intermediate code optimization) and backend (architecture-specific code generation)

that is used in order to do Architecture/Compiler Co-Exploration for the search of optimal

architecture/compiler combinations. Their results have been published as a framework entitled,

“BUILDABONG”.

A. Halambi et al. in their 2001 work [21], namely “Expression”, designed and introduced a language

supporting architectural design space exploration for embedded Systems-on-Chip (SoC) which was

capable of automatic generation of a retargetable compiler/simulator toolkit. As a key feature of their

work, it could be explicitly being specified for the memory subsystem, therefore some new ways of

memory organization and hierarchies were possible. Meanwhile the work wasn’t being self-adaptive for

architectural-based compiler flow for each architecture it had the need of specifying the dependencies.

B. So et al. [22] described an automated approach to hardware design space exploration, through

collaboration between parallelizing compiler technology and high-level synthesis tool. Their algorithm

was to be said to have a quicker search space exploration and could derived a closely matched to best

performance model.

M. O’Boyle et al. [23] defined an iterative optimization using machine learning which it uses predictive

modeling from the domain of machine learning to automatically focus search on those areas likely to give

greatest performance. This approach was independent of search algorithm, search space or compiler

infrastructure and scales gracefully with the compiler optimization space size

O. Mencer et al. [24] defined a stream compiler (ASC) which allows users to express and reason about the

design space, extract parallelism at each level and quickly evaluate different design choices. They have

tested their work with benchmarks like wavelet compression and Kasumi encryption and had optimization

in latency and memory usage on both.

C. Dubach et al. [25] went for another solution on the DSE tree. They used machine learning techniques

to rapidly explore and predict the design space since it costs a lot of time to explore the tree for each

application. This architecture-centric approach used prior knowledge from off-line training and applies it

across benchmarks which allowed the model to predict the performance of any new program across the

entire micro-architecture configuration space with just 32 further simulations.

26 | P a g e

2-2-2 Design Space Exploration in VLIW Processors

In the recent years, there have also some works done with the new coming open-sourced compiler for

VLIW architecture, namely VEX [4]. One of the benefits of using this compiler is to have degree of

freedom in changing the architecture based-on the needs and have the detailed compilation log. It

supports 32 bits compilation for native C language with the standard of -C89 and -C99 [26]. As a matter

of fact, by introducing the pre-defined scenarios, VEX compiler is capable if evaluating good

architectural parameters i.e. total cycles, cache usages, etc.

P. K. Saraswat et al. [27] used simulated annealing for finding the best custom VLIW architecture for

GSM decoder application using mentioned VEX compiler. The suitability and the efficiency of the

simulated annealing-based Design Space Exploration Algorithm is evaluated and compared against the

exhaustive exploration of the complete design space.

In addition, there has been a digital signal processing application done with VEX for a custom VLIW

architecture. D. Saptono et al. [28] presented a design space exploration experience for an embedded

VLIW processor that allows finding out the best architecture for given application. The proposed method

has been implemented and tested using an image processing chain for direct photo printer. The results

show a considerable improvement in hardware cost and performance, after identifying the best

architecture, they applied a technique to optimize the code in VEX system that uses “inlining” function in

order to reduce execution time.

M. Kumar et al. [29] have verified SIM-A Simulator with VLIW based Vex Simulator. Their work

discussed the working and configurationally issues involve in Vex Simulator. They have compared the

results obtained from VEX and SIM-A simulator in various levels and claimed some inconsistency

between those.

Taking into considerations all these appreciated efforts, in the following section, the proposed work is

going to be presented.

27 | P a g e

Chapter 3

Proposed Methodology

The ongoing advances in computer architectures and processors have been led to create a necessity of

walking on the right trend in order to comply with the wave. Therefore, applying design space exploration

in a right manner plays a vital role in that matter. Therefore, the main contribution presented in this

direction is based on the definition of a multi-objective benchmarking, analysis methodology for compiler

options in VLIW processors.

As explained in 2-1-3 Design Space Exploration, the variety of parameters both in architectural and

compiler side, have made the DSE a huge complex tree to traverse. There is the need to apply further

optimizations algorithms to prune the unpromising branches and leafs in-order approach toward the

succinct optimal solution. The leaf nodes are the configurations, reaching these points is not as easy as it

sounds like, even with the best supercomputers so-far, it takes a lot to calculate the space tree.

3-1 Problem Description

Optimization problems are very common in many design phases of each engineering phases.

Nevertheless, understanding the current situation, analyzing the trend and try to find a solution could be

pre-phases toward the latter matter.

28 | P a g e

When we face compiler and architectural options in design space for VLIW processors, we are accounting

thousands of parameters in a giant complex tree to traverse. As an example, provided with 15 compiler

optimization options, each there are possibilities either to “take” or “exclude”, in addition there are 18

more architectural levels in which there could be a range to taking. Provided with the constraint of taking

the integer numbers in between those ranges, we are going to end up having the Table 2- (Our Problem

Design Space Exploration_ Example):

No. Parameters Possible Values

(Integer Range)

Final

Outcome

1 Compiler Optimization

Parameters

215 32768

2 lg2CacheSize [11,30] 22

3 lg2Sets [0,3] 4

4 lg2LineSize [5,9] 5

5 lg2ICacheSize [11.30] 22

6 lg2ICacheSets [0,3] 4

7 lg2ICacheLines [5,9] 5

8 CoreCkFreq [300,500] step=50 5

9 BusCkFreq [200,400] step=50 5

10 NumCaches [1,2] 2

11 NumClusters [1,4] 4

12 IssueWidth [1,16] 16

13 NumAlus [1,16] 16

14 NumMuls [1,4] 4

15 MemLoad [1,8] 8

16 MemStore [1,8] 8

17 Memory [1,8] 8

18 PFT [0,8] 9
Table 2-Our Problem Design Space Exploration_ Example

The so far mentioned design simply has 5.9868 * 10 18 space size to be explored to each benchmark.

Therefore, not applying the right method, definitely leads us to suboptimal leafs. In addition, when we are

29 | P a g e

dealing with these multiple parameters, there is a necessity of using DOE (for design of experiment) in

order to sampling the tree. For instance, when it is said, expanding the “inline” compiler parameter, the

designer has to take into account the possible manners for each and every design when the inline has been

chosen or not (excluded). That is 2 multiply the type of compiler options (which is here 15) added to the

exploration problem. Taking into accounts the 15 compiler option each having two phases, it will be

2 × 2 × . .. ���
No. of compiler Options

 × 2 = 215

In this dissertation, the main focus were on the compiler options parameters, therefore the architectural

parameters have been assumed as fixed with the values reported in Table 3:

No. Parameters Values (Integer

Range)

2 lg2CacheSize 16

3 lg2Sets 2

4 lg2LineSize 5

5 lg2ICacheSize 16

6 lg2ICacheSets 2

7 lg2ICacheLines 6

8 CoreCkFreq 500

9 BusCkFreq 300

10 NumCaches 1

11 NumClusters 2

12 IssueWidth 8

13 NumAlus 8

14 NumMuls 2

15 MemLoad 4

16 MemStore 4

17 Memory 4

18 PFT 4

 Table 3-Our Design Space Exploration Fixed Arch Parameters

30 | P a g e

Many different DoEs have been studied for design space exploration; some of them are as follows [12]:

1- Full Factorial: experiment all the factors included in the experiment.

2- Fractional Factorial: runs a fractioned factored randomly based on the predefined heuristics.

3- Screening Factorial: more extreme way of factorial.

4- Response Surface: is an off-line optimization, two factors studied usually.

5- EVOP : online evolutionary experiments

6- Mixture : Based on the context it will add the constraints

Given the large size of our design space, in this dissertation, Fractional factorial which has the

randomized selection of experiments has been used. For instance, by running 500 times for each and

every compiler options, the system has a good estimation of the whole design space. The algorithm will

sample the space equal to the N defined in the script, then by using the Random Effects option in the

scripts, the system divide the sample nodes (here is 500) to two 250 and allocate them for each of the

phases (here is two: exclude or include) the interested compiler parameter which to be explored. The

other points are being chosen randomly.

3-2 Designed Model

As it abstracted in the section “ 1-1-1 Analyzing Compiler parameters “, the opposed methodology of

benchmarking the design space exploration for compiler options in VLIW processor was consisted of a

built tool-chain (a generic-wrapper), MOST [2] (for Multi-objective system tuner), two open-sources C

compilers, namely, LLVM [3] and VEX [4] and some sets of standard benchmarks inside the HP-VEX,

namely, GSM [30] and some benchmarks of Chstone series [31], namely, Jpeg, Aes, Adpsm and

Blowfish. The very first benchmark was used for mostly focus on the intensity which is caused to system

and the latter’s one were mostly used in order to see the high level gate filled up with embedded

applications of multimedia.

In this chapter, the detail of the methodology is going to be illustrated. Wherever it is needed for further

mathematical backgrounds, there would be a section with that title. The high-level schema of the

proposed tool-chain is as following:

31 | P a g e

Figure 5- High-level View of Proposed Tool-Chain

3-2-1 MOST Generic Wrapper (MGW)

This Perl, Bash wrapper gets to manage the whole system in order to feed MOST based on the defined

settings, i.e. design space exploration settings for compiler and architectural, iterations inputting the

benchmarks, etc, and subsequently get the output results and import it to the database of MOST, initiating

the next run for that matter. It has a randomized function which randomly generates the input points

MOST needs for running the benchmark. As it mentioned in the Section 3-1 (Problem Description), the

DoE methodology in which it has been used was randomized factorial, therefore in order to avoid the

gigantic design space tree caused by the parameters calculated in the Section 3-1 (Problem Description),

there should have been a generator for these points at the beginning.

MOST GENERIC WRAPPER [32] (MGW) is a Perl wrapper designed to simplify the integration of tools

for the design space exploration (DSE) phase by using MOST. It hides most of the integration details in

term of MOST XML input/output files (except for the XML Design Space description file) providing to

the designer a simpler way to integrate its problem in MOST. The execution config file includes 3 main

sections:

• Input files declaration: This section is used to let the MGW what are the input parameters and

where to include the values in those files.

• Output files declaration: This section is used to let the MGW what are the output files where to

read the metrics and how to read the values. The section is composed by several lines, one for

each metric declared in the XML design space definition file.

• Execution script: It should include all the commands needed for the generation of the output

files (including the metrics).

A simple example of initiating the MGW is shown below:

32 | P a g e

Input File Declaration Output File- Coordinates Execution script

[...]

Core numeber = 4

ICache size = 2048

DCache size = 4096

Bus size = 64

[...]

type;hitRate[%];Accesses; power [mw];

icache; 97.9; 10401; 145;

dcache; 83.1; 8300; 132;

L2cache; 76.3; 3219; 347;

#!/bin/sh

set -e

echo "requests 438 " > output.txt

echo "accesses

@__MOST_GENERIC_WRAPPER__param1__@

" >> output.txt
Table 4- MGW sections's Example

A simple schematic view of the system is drawn as in Figure 6 - (Proposed Tool-Chain Schematic):

Figure 6-Proposed Tool-Chain Schematic

33 | P a g e

The proposed methodology has been defined and designed for multiple-benchmarks and only inputs the

benchmark and settings for the faster and cleaner explorations. In other word, as it will be shown in the

Experimental Results, it is able to input multiple benchmarks from high level synthesis to high

performance and explore, analyze and synthesize the system.

3-2-2 Multi-Objective System Tuner (MOST)

MOST is a tool for architectural and compiler design space exploration [2] [33]. It is an interactive

program that lets the designer explore a design space of configurations for a particular architecture for

which an executable model or driver exists. It can be also extended by introducing new optimization

algorithms such as Monte Carlo optimization, sensitivity based optimization, etc. For instance, Taguchi

design of experiments [34].

The overall goal of this framework aims at providing a methodology and a re-targetable tool to drive the

designer towards near-optimal solutions to the architectural exploration problem, with the given multiple

constraints. The final product of the framework is a Pareto curve of configurations within the design

evaluation space of the given architecture. To meet this goal it has been implemented a skeleton for an

extendible and easy to use framework for multi-objective exploration.

The strength of MOST is that drivers and optimization algorithms can be dynamically linked within

MOST at run-time, without the need of recompiling the entire code base. This is supported by well

defined interfaces between the driver and the optimization algorithms versus the kernel of MOST. The

proposed DSE framework is flexible and modular in terms of: target architecture, system-level models

and simulator, optimization algorithms and system-level metrics.

3-2-2-1 MOST Structure

The Overall structure of MOST can divide its modules into three different categories: [33]

34 | P a g e

1. MOST internal modules: They are represented in blue in figure 2. Those modules are internal

to the MOST structure. They are composed by the MOST Kernels, the MOST shell, the MOST

internal database management and the design of experiments and optimization modules. In the

following, each module is described more in detail:

a. The MOST Kernel engine represents the core of the design space exploration tool. It

orchestrates the optimization process by invoking the constituent and inter-changeable

blocks of the framework.

b. The MOST shell is the command line interpreter. By using this shell (or equivalent

batch scripts) it is possible to specify the optimization problem and the related

exploration strategy. This particular interface is suitable for remote execution of design

space exploration on server farms. The MOST interpreted language gives now the

possibility to define complex objective functions.

c. The MOST Internal Database Manager is used to store all the results coming from

simulations. Moreover, it is used for combining metrics values (as estimated by the

simulator) into objective functions, to train analytical models (RSM) and to generate

output reports of the exploration process.

d. The design of experiments and optimization modules are the basic components for

building the exploration strategies. The internal organization of the software has been

factored in order to provide standard and common APIs for the various modules

associated with the fundamental functionalities of MOST. The standard API consists of a

corresponding dynamic linkable object interface which can be used to develop new

models, aside from the existing ones.

2. MOST External Modules: Those modules are within the MOST packages but are composed of

external executables that will be called through the MOST interfaces. In particular, they are

represented by the response surface models.

a. The response surface models (RSM) are used for building analytical models of the

target system response. A similar standard data interchange format (as previously done

for DoE and optimizers) is used for supporting the introduction of response surface

models in MOST.

35 | P a g e

Figure 7- MOST Schematic (Courtesy of Dr. Vittorio Zaccaria, Politecnico Di Milano)

As mentioned in the Section 3-1 (Problem Description), the DoE used in this dissertation was based on

Random factors which generated a set of random designed points. In addition, the optimization algorithm

used here was parallel DoE (PDoE) [12] which was based on the possibility of performing concurrent

evaluation of the different design points. Consequently, in these experimental analyses, for each

benchmark compiler option, the number of exploration was 500. It would enough points for the system to

use for DoE and Optimizer to generates the effects and metrics beside the Pareto points (if exists).

3-2-3 LLVM

LLVM is a collection of modular and reusable compiler and tool-chain techniques. LLVM began as

a research project at the University of Illinois, with the goal of providing a modern, SSA-based

compilation strategy capable of supporting both static and dynamic compilation of arbitrary programming

languages. Since then, LLVM has grown to be an umbrella project consisting of a number of different

subprojects, many of which are being used in production by a wide variety of commercial and open

source projects as well as being widely used in academic research. Code in the LLVM project is licensed

under the "UIUC" BSD-Style license [3].

The LLVM Core libraries provide a modern source- and target-independent optimizer, along with code

generation support for many popular CPUs. Therefore, for this dissertation research it was chosen as the

C code optimizer which transformed the native C codes of the benchmarks to transformed.c and let the

second compiler in chain (HP-VEX) used it as the feed.

36 | P a g e

As an overview, some of the LLVM features could be as following [35]:

• Front-ends for C, C++, Objective-C, Fortran, etc

• A stable implementation of the LLVM instruction set, which serves as both the online and offline

code representation, together with assembly (ASCII) and byte-code (binary) readers and writers,

and a verifier.

• A powerful pass-management system that automatically sequences passes (including analysis,

transformation, and code-generation passes) based on their dependences, and pipelines them for

efficiency

• A wide range of global scalar optimizations

• An easily re-targetable code generator

• APIs and debugging tools to simplify rapid development of LLVM components

• A test framework with a number of benchmark codes and applications

• 64bits C code transformer

3-2-4 HP-VEX

VEX ("VLIW Example" [4]) is a compilation-simulation system that targets a wide class of VLIW

processor architectures, and enables compiling, simulating, analyzing and evaluating C programs for

them.

VEX system include three main components [36]:

1. The VEX Instruction Set Architecture. VEX defines a 32-bit clustered VLIW ISA that is

scalable and customizable to individual application domains. Scalability includes the ability to

change the number of clusters, execution units, registers and latencies; customizability enables

users to define special-purpose instructions in structured way.

2. The VEX C Compiler. It is a robust, ISO/C89 compiler that uses Trace Scheduling [37] as its

global scheduling engine. A very flexible table-like machine model determines the target

architecture. For VEX, we selectively expose some of the parameters to allow architecture

exploration by changing the number of clusters, execution units, issue width and operation

latencies, without having to recompile the compiler.

37 | P a g e

3. The VEX Simulation System. The VEX simulator is an architecture-level (functional) simulator

that uses compiled simulator technology to achieve a speed of many equivalent `MIPS'. A simple

built-in cache simulator (level-1 cache only), and an API that enables other plug-ins used for

modeling the memory system.

VEX has the capability of writing output log files based on the architectural parameters; i.e. No. of cycles,

No. of stalls, etc. This is the base of mathematical calculations and metrics for MOST databases.

Got to be mentioned there is a problem aroused by using VEX after LLVM since LLVM compiler feed

the VEX with 64 bits of compiled, transformed code. In some of the benchmarks, lots of efforts have been

issued to fix and make those in-chain output-inputs compatible to each other.

3-3 Benchmarks

As mentioned in the Section 3-2 (Designed Model), there is variety of benchmarks that have been used to

expand the usability of the proposed methodology in this dissertation. The higher level embedded

applications like JPEG to more complex ones like GSM. The selected set of benchmarks is composed of:

1. GSM

2. AES

3. ADPCM

4. JPEG

5. BLOWFISH

There is a necessity of explanation here about some of the differences of “Intensity” the parameter in the

next chapter results which are the difference between the target applications. In another word, those

ChStone benchmark applications [31] are high level synthesis field, therefore the input data is not so large

in-order to be able to simulate at the gate level. For these applications, in this dissertation, the impact of

compiler transformation on performance is more interested rather than intensity itself.

38 | P a g e

3-4 Analysis Types

Taking into account the multi-objective facet and complexity of the problem, in this dissertation, for each

benchmark explored, there have been several strong statistical analyses performed in order to support the

evaluation process. All have been done by powerful open-sourced statistical software R [38]. The types of

analysis are:

• ANOVA

• Kruskal-Wallis

• Principal Component Analysis (PCA)

• Correlation Plots

• Box-Plots, Scatter Plots, Matrix Plots

• Densities

For each benchmark, the type analyses mentioned in section Experimental Results of the Chapter - 4 have

been elaborated. In the following section, the definitions of these analyses are being illustrated.

3-4-1 ANOVA Analysis

One of the best tests for evaluating the obtained results in the normal parametric distributions could be

ANOVA [39] (for ANalysis OF VAriances).

ANOVA is a collection of statistical models, and their associated procedures, in which the

observed variance in a particular variable is partitioned into components attributable to different sources

of variation. In its simplest form, ANOVA provides a statistical test of whether or not the means of

several groups are all equal, and therefore generalizes t-test [40] to more than two groups. T-test gets a

significant acceptance value as (α), and then decides to accept or reject the model if the acceptance is

lower or higher than the calculated value. ANOVA is a particular form of statistical hypothesis

testing heavily used in the analysis of experimental data. A statistical hypothesis test is a method of

making decisions using data. A test result (calculated from the null hypothesis and the sample) is called

statistically significant if it is deemed unlikely to have occurred, assuming the truth of the null hypothesis.

A statistically significant result (when a probability (p-value) is less than a threshold (significance level))

justifies the rejection of the null hypothesis. The computer method calculates the probability (p-value) of

39 | P a g e

a value of F greater than or equal to the observed value (Pr). The null hypothesis is rejected if this

probability is less than or equal to the significance level (α). The two methods produce the same result. In

this dissertation, the significance level (α) is equal to 5%, therefore, for accepting a model (Pr) should be

greater than F.

Figure 8- ANOVA

As an example, for GSM benchmark and the mem2reg compiler option, we have this ANOVA result for

performance value:

Figure 9- ANOVA Example

As it may be seen, the (Pr) is greater than (F) and the value is lower than 5%, so the test will be accepted

and it is possible the declare existence of significant impact of mem2reg on the performance metric on the

model.

3-4-2 Kruskal-Wallis

Unlike ANOVA, this analysis test is for non-parametric data. Kruskal-Wallis [41] compares between the
medians of two or more samples to determine if the samples have come from different populations.
Firstly, it has to be checked if the data are independent from each other and the distribution do not have to
be normal and the variance do not have to be equal. The more important thing is that the individuals must
have equal chance of being selected.

As an example, just like the last method, the acceptance test has to be based on the significance level (α)

which is supposed to be 5% in this dissertation. By having:

40 | P a g e

Figure 10- Kruskal_Wallis_Example

3-4-3 Correlation Analysis

In this dissertation a couple of different correlation analyses have been made in order to better elaborate

the experimental results.

First, the Correlation Matrix, which is similar to the Covariance Matrix of the standardized random

variables [42] is going to be illustrated. In this matrix, maximum correlation in the same way of the

parameter is going to be shown by (+1) and vice-versa in the opposite way will be (-1). In between those

points, the correlation will be distributed and of course on the main diagonal of the matrix the value will

be zero as of NO correlation for each same couple.

Second, by varying the parameters with the metrics, the deltas for each parameters will be reached.

Therefore, this type of correlation matrix could be used in order to illustrate the impact of the other

parameters on both the metrics and the other parameters

Third, the Correlation matrix of PCAs, is just like the normal correlation matrix with this different in

which the main parameters for making correlation to will be the principal components of the metrics. For

instance, for GSM benchmark and the mem2reg compiler parameter, the experimental result led to have

the following correlation plot:

41 | P a g e

Figure 11- Correlation Matrix_GSM_Inline Example

As it may be seen, Performance (ops) seems positively correlated with mem2reg, code_size, inline,
loop_reduce, reassociate while it is negatively correlated with loop_rotate.

3-4-4 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical procedure that uses an orthogonal

transformation to convert a set of observations of possibly correlated variables into a set of values

of linearly uncorrelated variables called principal components. In addition, the number of principal

components is less than or equal to the original values, or in another word, is less than or equal to the

number of eigenvalues of the matrix [43]. PCA is a way of identifying the patterns in data and expressing

the data in such a way as to highlight their similarities and differences.

In the metrics of the analysis, it is been tried to focus on finding and analyzing the most influential

patterns regarding the performance and intensity in the experimental results, therefore using PCA could

be a good tool in order to define new levels for the analysis. As an example, again for GSM_Inline

parameter, the PCA plot is defined as Figure 12- (PCA for GSM_Inline):

42 | P a g e

Figure 12- PCA for GSM_Inline

Figure 12- (PCA for GSM_Inline) shows strong impact of performance component (around 98%) to the

model, and it is the main or the first principal component of the model.

43 | P a g e

Chapter 4

Experimental Results

In this chapter of dissertation, the achieved experimental results are going to be illustrated. The procedure

of elaboration will be benchmark by benchmark, and then some of the selected diagrams of each are

going to be introduced. Finally, the whole experimental of each benchmark will be classified via a table.

All the selected benchmarks have been evaluated and explored with the following scenario:

1- Fixed architectural parameters with the value mentioned in the section

2- 500 iterations under RandomDoE algorithm for each compiler parameter designed and executed

by MOST [33]

3- Optimized with the Parallel Doe and being transformed.

4- Being measured regarding the metrics of the roof-line model, the basic metrics have been

generated by VEX, then calculated for each iteration by the roof-line model equations [19]

5- Further analysis has been done with open-source software R [38] which the selected of them is

going to be illustrated for each benchmark. The Analysis are :

a. “ANOVA” test, defined in Section 3-4-1 (ANOVA Analysis)

b. “KRUSKAL” test, defined in Section 3-4-2 (Kruskal-Wallis)

c. “Box Plots” of Intensity, Performance for enabling/excluding each compiler parameter

d. “Correlation Analysis”, defined in the Section 3-4-3 (Correlation Analysis)

e. “Scatter Plots” of the effects obtained by varying each compiler parameter

f. “Principal Component Analysis”, defined in Section 3-4-4 (Principal Component)

g. “Average Increment of Performance and Intensity” for each compiler parameter option

h. Densities regarding the performance and intensity and activating the specified compiler

parameter and the second chosen parameter.

44 | P a g e

4-1 Motivation

There are several facets to be taken into considerations when we deal with design space in VLIW

processors. First, as it was mentioned in the Section 2-1-5 (Performance Model and Floating Point), the

roof-line model defines the limits in which it won’t be possible to surpass this line. To certify the theory,

as it has been illustrated in Figure 13, the GSM benchmark has been explored 4000 times with total

random architectural options and the dce random effect.

Second, since there are quite a lot of parameters involved in the problem, even with analyzing the effect

of activating each transformation, it won’t be easy classification of the results. In Figure 14-

(GSM_Mem2reg Effect), by exploring 500 times GSM with mem2reg effect and filtering the

configuration point both before and after activations with their metrics (Intensity and Performance), the

effectual arrows have been drawn. As it could be observed, still lots of parameters have been involved

affecting the trends and behaviors of the system.

Figure 13 - GSM_dce_4000 iteration_ Roofline Certification

45 | P a g e

Figure 14-GSM_Mem2reg Effect

A meaningful visualization about the effect of varying the compiler option, the traversing under the roof-

line could be vital since being either memory bound or computation bound could be resulted in refraining

the further progression of the system resources.

Figure 15-GSM_Mem2reg Effect_2

Figure 15- (GSM_Mem2reg Effect_2) shows the exact effects of Figure 14, provided with the points have

been transformed to the relative origin point of O (0, 0) of the Cartesian. If we split the diagram into

fourth, it is going to be seen that the majority of the points are located in the section fourth (minus

46 | P a g e

intensity, minus performance). This will be base of starting the analysis (PCA, etc) which is going to be

illustrated in the following.

4-2 Benchmark No.1 - GSM

It is one of the high intensity benchmarks available for testing the compiler performance at a high and low

level; it has an Encoder/Decoder which is capable of sending and receiving the signals [30]. The GSM

benchmark could place a good and reliable load into the system which is definitely needed to exemplify

the use of the designed methodology.

In this section of dissertation, some of the most important results achieved by running the proposed

methodology are going to be presented for GSM. Since the results and figures are pretty high and varied

for all the 15 compiler options (named in section 2-1-4 Compiler Option), for some of the selected

parameters the experimental results are going to be illustrated and the end of the section the whole table

will be shown. In order to be complete, the whole results have been put in the section Appendix. For

GSM, the parameters chosen were Inline, Loop_Unroll and Mem2reg because those were good

representative of all the space combination depicted in the Table 5- (GSM_ANOVA). More in detail we

have that:

• Inline passes both tests for Intensity and performance,

• loop_unroll failed the both,

• mem2reg have only passed the impact on Performance.

Therefore, selecting these three could be a good representation of the whole sets of transformations

available.

47 | P a g e

 4-2-1 ANOVA

ANOVA Analysis _ Inline
Intensity
 Df Sum Sq Mean Sq F value Pr(>F)
inline 1 12847 12847 66.81 2.52e-15 ***
Residuals 496 95380 192

Ops
 Df Sum Sq Mean Sq F value Pr(>F)
inline 1 41832 41832 22.8 2.37e-06 ***
Residuals 496 910193 1835

ANOVA Analysis _ Loop_Unroll
Intensity
 Df Sum Sq Mean Sq F value Pr(>F)
loop_unroll 1 0 0.08 0 0.984
Residuals 492 100129 203.51

Ops

 Df Sum Sq Mean Sq F value Pr(>F)
loop_unroll 1 2 1.7 0.001 0.976
Residuals 492 913735 1857.2

ANOVA Analysis _ Mem2reg

Intensity
 Df Sum Sq Mean Sq F value Pr(>F)
mem2reg 1 70 69.91 0.35 0.555
Residuals 494 98740 199.88

Ops
 Df Sum Sq Mean Sq F value Pr(>F)
mem2reg 1 21368 21368 11.46 0.000766 ***
Residuals 494 920663 1864

Table 5- GSM_ANOVA

Provided with the Table 5, it could be seen that:

• Inline: a significant impact on Intensity is being observed based on the ANOVA test.

• Loop_Unroll: No significant changes observed

• Mem2reg: a significant impact on performance (Ops) could be observed.

48 | P a g e

4-2-2 Kruskal-Wallis

Kruskall-Wallis_Inline
Intensity

Kruskal-Wallis chi-squared = 55.0613, df = 1, p-value = 1.168e-13

Ops

Kruskal-Wallis chi-squared = 23.3781, df = 1, p-value = 1.331e-06

Kruskall-Wallis_Loop_unroll

Intensity

Kruskal-Wallis chi-squared = 0.0022, df = 1, p-value = 0.9625

Ops

Kruskal-Wallis chi-squared = 0.007, df = 1, p-value = 0.9332

Kruskall-Wallis_Mem2reg
Intensity

Kruskal-Wallis chi-squared = 0.1376, df = 1, p-value = 0.7107

Ops

Kruskal-Wallis chi-squared = 8.3994, df = 1, p-value = 0.003753

Table 6- GSM_Kruskal

Provided with the Table 6, it could be seen that:

• Inline: a significant impact on Intensity is being observed based on the kruskal test.

• Loop_Unroll: No significant changes observed

• Mem2reg: a significant impact on performance (Ops) could be observed.

4-2-3 Distributions

In this section, presented on each page, there will be the densities of the transformations both in plot and

box view. ANOVA, Kruskal-Wallis analyses can be certify the median lines of the figures.

49 | P a g e

Inline

Performance Intensity

Figure 16-GSM_Inline_Distribution

Box-Plots

Performance Intensity

Figure 17-GSM_Inline_BoxPlot

It can be observed from the Figure 17, there are significant impacts on the median of Performance and

Intensity by activating the Inline transformation. This statement could be certifies by ANOVA as well.

50 | P a g e

Loop_Unroll

Performance Intensity

Figure 18-GSM_Loop_unroll_Dist

Performance Intensity

Figure 19-GSM_Loop_unroll_Box

As we could guess by ANOVA (refer to 4-4-8 GSM Conclusion), there are no significant change in the

medians of loop_unroll. The Figure 19 certifies this hypothesis. Here as well, it could be observed that

the medians are the same, so no significant impact on metrics.

51 | P a g e

Mem2reg

Performance Intensity

Figure 20-GSM_Mem2reg_Dist

Performance Intensity

Figure 21-GSM_Mem2reg_Box

Illustrated by Figure 21, mem2reg transformation has significant impact on Performance metrics.

52 | P a g e

4-2-4 Scatter Plots

By drawing intensity and performance in a same figure, it can be possible to have a plot which shows the

variety of data and experimental points scattered in the figure as in Figure 21:

Figure 21-GSM_Inline_ScatterPlot

Figure 22-GSM_ScatterPlot_Loop_unroll

53 | P a g e

Figure 23--GSM_mem2reg_Scatterplot

Figures 21-23 are a good representation of the deltas while seeing the both metrics together. Distributions
could be seen easily and the trends (if any) could be extracted.

4-2-5 Principal Component Analysis

As explained in the section 3-4-4 Principal Component, using this analysis will re-coordinate the way we
look at the figures in such a way that the more important components based on the highest variety are
categorized as the first and second components. Therefore, the figure can be analyzed by the better
knowledge of knowing the main affected factor.

54 | P a g e

Figure 24-GSM_Inline_PCA

As it can be observed by the figure the principal component is performance. The second component is the

Intensity.

Figure 25-GSM_Loop_unroll_PCA

55 | P a g e

With a low slope, the first principal component is related to intensity here and slopped performance is the
second key.

Figure 26-GSM_Mem2reg_PCA

As it can be observed by the figure the principal component is performance. The second component is the

Intensity.

4-2-6 Correlation Analysis

In this section of experimental result, three types of correlation are going to be presented.

1. Correlation on raw data: Simply by having the output data and the metrics, there is a

possibility of calculating the correlation between each two component of the performance and

compiler parameters

2. Correlation on deltas: As it was depicted in Figure 12-GSM_Mem2reg Effect and Figure 13-

GSM_Mem2reg Effect_2, by filtering the specified compiler parameter and their metrics

(Performance and Intensity), there will be derived four points which was the result of exclusion

and inclusion of that compiler parameter with the results. This kind of correlation is calculated

based on these deltas of the points.

56 | P a g e

3. Correlation of the Principal Component: After defining the PCA of the exploration, it is also

possible to do the correlation with respect to the first and second principal component.

1- Correlation on raw data

Inline

Figure 27-GSM_Inline_Corr_raw_data

As it could be seen from the result:

• Performance (opt); seems positively correlated with loop_reduce, inline, mem2reg,

reassociate, memcpyopt. Licm while it is negatively correlated with loop-rotate and

instcombine.

• Intensity (ints); positively correlated with loop-rotate, reassiciate and scalarrepl and

negatively with loop-reduce and inline

• Small negative correlation between Intensity and performance in the table

57 | P a g e

Loop_Unroll

Figure 28- GSM_Loop_unroll_Corr_raw

• Performance (opt); seems positively correlated with loop_reduce, inline, mem2reg,

reassociate. Licm while it is negatively correlated with loop-rotate

• Intensity (ints); positively correlated with loop-rotate, reassociate and scalarrepl and

negatively with loop-reduce and inline

• THERE IS NO correlation between Intensity and performance

58 | P a g e

Mem2reg

Figure 29-GSM_Mem2reg_Corr_Raw

2- Correlation on Deltas

Inline

Figure 30-GSM_Inline_Corr_Deltas

59 | P a g e

It can be observed in the figure that:

• No significant impact on Intensity

• Performance is modified positively by both the activation of inline and mem2reg and

loop_reduce, instcombine and dce. It can negatively modified by activation of inline and

simplifycfg and licm

Loop_Unroll

Figure 31-GSM_Loop_Unroll_Corr_Delta

• Intensity can be decreased by activating loop_unroll and inline and loop_reduce. and negatively

by activating loop_unroll and scalarrepl and dce.

• Performance is modified negatively by both the activation of loop_unroll and inline. Also

positively with loop_unroll and simplifycfg

60 | P a g e

Mem2reg

Figure 32-GSM_Mem2reg_Corr_Delta

3- Correlation of the PCA

Inline

Since it was shown on Figure 22-GSM_Inline_PCA, the PCA for the GSM_Inline were depicted. Based

on these data, the correlation between the data and the components can be shown as Figure 33:

61 | P a g e

Figure 33-GSM_Inline_Corr_PCA

For the PCA correlation, it can be observed that the transformation mem2reg has positive correlation with

the first principal component and simplifycfg has negative correlation with performance.

Loop_Unroll

Figure 34-GSM_Loop_Unroll_Corr_PCA

62 | P a g e

Mem2reg

Figure 35-GSM_Mem2reg_Coo_PCA

Regarding the above correlation plot, it can be said that,

• Loop_reduce seems positively impacting the first component (represented by Performance). The

second component (Intensity) is negatively impacted by loop_reduceb and positively impacted

by reassociate.

4-2-7 Matrix Plot

After calculation of the metrics, another way of presenting the information could be by matrix-plot. In this

plot “tdta” stands for Total Data Across Bus, “ebw” stands for Effective bandwidth and “int” and “ops”

are representatives of Intensity and Performance.

63 | P a g e

Inline

Figure 36-GSM_Inline_MatrixPlot

Loop_Unroll

Figure 37-GSM_Loop_Unroll_Matrixplot

64 | P a g e

As it could be guessed, since the first principal component has high dependency with intensity, so the
majority of the points have been indicated by pink, which refers to the intensity.

For the other two figures, the issue is vice-versa, thus there are enormous blue points in the system have
been observed.

Mem2reg

Figure 38-GSM_Mem2reg_MatrixPlot

Densities

When the benchmark has been explored with respect to the specified compiler parameter, there will also a

possibility to see the effects of adding the second parameter (include/exclude) with respect of having the

first parameter activated already, i.e. in this scenario now there is “Inline” option activated already for

exploration, we can see the effect of having a second parameter meanwhile.

65 | P a g e

In the Figure 39, Inline parameter have been already activated, for the intensity metric we are interested in

seeing the effect of activating “scalarrepl” as well. Therefore for both case of including and excluding the

parameter, the following figure is drawn:

Inline

Figure 39-GSM_Inline_Densities

Loop_unroll

Figure 40-GSM_Loop_Unroll_Densities

66 | P a g e

Mem2reg

Figure 41-GSM_Mem2reg_Densities

67 | P a g e

4-4-8 GSM Conclusion

The results which have been illustrated, was for the compiler parameter “Inline”. Since the compiler

parameters explored in this dissertation were 15, for being abstract regarding the results publications and

figures in this text, the author assumed it suffice to present only one parameter out of those 15. For the

sake of completeness, at the end of each benchmark there will be a conclusion section which presents all

the complete data in a quantitative table.

In the following page, the classification of results for GSM is being illustrated.

67 | P a g e

Parameters INT OPS INT OPS INT OPS INT OPS INT OPS AVG increment of INT Average increment of OPS

constprop 0.937 0.997 0.9249 0.9804
 Mean: 159.2
Min:129.3 Max:191.6

 Mean: 671.3
Min:576.2 Max:754.8

+ scalarrepl (.005) - loop_unswitch(.06)

PC2= .25
+ mem2reg(.09)
- inline(.8)

PC1= .75
- instcombine(.19)
- licm(.07)

0.1 -0.02

dce 0.986 0.996 0.9851 0.9858
 Mean: 158.7
Min:129.3 Max:191.6

 Mean: 669.6
Min:575.3 Max:751.3

-constprop
+ loop_rotate
- licm

PC2= .12
+ instcombine (.13)
- licm (.12)

PC1= .88
No accepted result regading
sig-level 5%

-0.02 -0.02

inline 2.52E-15 2.37E-06 1.17E-13 1.33E-06
 Mean: 158.2
Min:129.2 Max:191.6

 Mean: 667.3
Min:575.7 Max:753.7

no accepted results
for 5% sig-level

+ mem2reg (.54)
+ loop_reduce(.01)
+ dce (.08)
- simplifycfg (.11)
- licm(.08)

PC2= .09
+ simplifycfg (.28)

PC1=.91
- loop_reduce (.14) -10.15 18.33

instcombine 0.612 0.145 0.4239 0.03213
 Mean: 158.3
Min:129.2 Max:191.6

 Mean: 670.0
Min:575.3 Max:753.7 + performance(.56)

- licm(.34)
+ intensity(.39)
- licm(.3)

PC2= .13
No accepted result
regading sig-level 5%

PC1=.86
' + inline (.31)

0.69 -5.17

licm 0.0494 2.01E-05 0.0364 2.09E-05
 Mean: 157.3
Min:129.3 Max:191.6

 Mean: 670.0
Min:575.3 Max:747.6

+ loop_unswitch

no accepted results
for 5% sig-level

PC2=.05
+ loop_reduce (.52)
- inline (.16)

PC1=.95
No accepted result regading
sig-level 5%

2.55 15.54

loop_reduce 1.10E-11 1.20E-16 1.71E-09 1.15E-15
 Mean: 157.5
Min:129.2 Max:191.6

 Mean: 669.6
Min:575.3 Max:751.6

- mem2reg (.42)
- scalarrepl(.38)
- reassociate (.15)

no accepted results
for 5% sig-level

PC2= .05
No accepted result
regading sig-level 5%

PC1= .95
+ mem2reg (.36)
- instcombine (.15)

-8.54 31.3

loop_rotate 4.73E-13 1.20E-16 1.19E-11 2.20E-16
 Mean: 157.5
Min:129.2 Max:191.6

 Mean: 678.8
Min:575.3 Max:753.7 + mem2reg

- simplifycfg

no accepted results
for 5% sig-level

PC2= .05
+ loop_reduce (.49)
- mem2reg (.12)

PC1= .95
+ mem2reg (.26)

8.92 -52.14

loop_unroll 0.984 0.976 9.63E-01 0.9332
 Mean: 156.4
Min:129.2 Max:191.6

 Mean: 665.8
Min:576.1 Max:753.2 + inline - inline (.43)

PC2= .31
- inline (.41)

PC1= .68
- licm (.17)

0.02 -0.11

loop_unswitch 0.825 0.896 0.8139 0.9337
 Mean: 158.3
Min:129.3 Max:191.6

 Mean: 668.0
Min:575.5 Max:754.8

no accepted results
for 5% sig-level + instcombine

+ mem2reg

PC2= .10
+ inline (.24)
- mem2reg (.26)

PC1= .90
+ loop_reduce (.17)

-0.28 0.51

mem2reg 0.555 0.000766 0.7107 0.003753
 Mean: 157.7
Min:129.5 Max:191.6

 Mean: 668.3
Min:575.3 Max:753.7

+ performance (.54)
+ reassociate (.28)
- scalarrepl(.26)
- inline(.14)
- sccp(.03)

+ intensity(.54)
- sccp(.16)

PC2= .05
+ scalarrepl (.11)

PC1= .95
No accepted result regading
sig-level 5%

-0.75 13.12

memcpyopt 1 1 1 1
 Mean: 157.0
Min:130.2 Max:188.5

 Mean: 677.5
Min:576.1 Max:754.8

no accepted results
for 5% sig-level

no accepted results
for 5% sig-level

Zero variance ?? Zero Variance ?? 0 0

reassociate 1.20E-16 1.07E-11 2.20E-16 5.21E-11
 Mean: 157.4
Min:129.2 Max:191.6

 Mean: 667.5
Min:575.3 Max:753.7

+ performance (.96)
+ scalarrepl(.42)
- instcombine (.11)
- dce (.09)
- loop_reduce (.08)

+ intensity (.96)
+ scalarrepl(.42)
- instcombine (.11)
- dce (.09)
- loop_reduce (.08)

PC2= .01
+ loop_rotate (.38)

PC1= .99
No accepted result regading
sig-level 5%

19.88 26.11

scalarrepl 0.00033 0.0255 0.0001392 0.1392
 Mean: 157.3
Min:129.4 Max:190.8

 Mean: 669.8
Min:575.3 Max:753.2

+ performance (.82)
+ loop_rotate(.24)
+ loop_unroll (.12)
- loop_reduce (.32)
- mem2reg (.15)

+ intensity (.82)
+ loop_rotate(.19)
+ loop_unroll (.14)

PC2= .04
+ reassociate (.13)

PC1= .96
+ inline (.12)

4.52 8.46

sccp 0.893 0.91 0.8956 0.9124
 Mean: 157.1
Min:129.2 Max:191.6

 Mean: 668.3
Min:576.2 Max:751.3

no accepted results
for 5% sig-level

+ instcombine (.35)
+ scalarepl(.08)
- inline (.38)
- simplifycfg (.19)
- dce (.08)

PC2= .21
No accepted result
regading sig-level 5%

PC1= .79
- simplifycfg(.19)
- licm (.14)
- mem2reg (.13)

0.17 -0.46

simpifycfg 0.491 0.905 0.5474 0.8483
 Mean: 156.9
Min:129.2 Max:191.6

 Mean: 672.5
Min:575.3 Max:747.5

+ performance (.84)

+ intensity (.84)
+ loop_unswitch(.27)
- inline (.06)
- instcombine (.05)
- scalarrepl (.05)

PC2= .04
+ loop_unswitch (.07)

PC1= .96
- inline (.13)

-0.88 -0.47

DATA summmaryANOVA (<5%) KRUSKAL (<5%) CORR Corr on delta (5%) CORR (PCA) 5%

68 | P a g e

4-3 Benchmark No.2 AES

As it was mentioned in the section 3-3 Benchmarks, the explored benchmarks from No.2 to No.5 have

been used from the CHStone benchmark package [31], and are some quality ones in order to see the

impact of compiler parameters to performance but rather to I/O and intensity. These benchmarks are from

high level synthesis field, so the input data is not so large in order to be simulated in the gate level.

Therefore, unlike GSM (refer to section 4-2 GSM Results), just the figures with meaningful results have

been mentioned here. The overall focus was mostly dedicated to watch the Performance altering by using

compiler parameters and draw a possible sketch of explaining why and how. Keep in mind that, no one

could generalize rules easily out of 4-5 benchmarks what so ever, but the trend of altering the metrics

might deliver a meaningful pattern in order to draw attention to.

69 | P a g e

4-3-1 ANOVA
ANOVA Analysis _ Loop_Reduce

Intensity
 Df Sum Sq Mean Sq F value Pr(>F)
loop_reduce 1 0.196 0.19629 24.64 9.52e-07 ***
Residuals 496 3.951 0.00797

Ops
 Df Sum Sq Mean Sq F value Pr(>F)
loop_reduce 1 94018 94018 123.2 <2e-16 ***
Residuals 496 378399 763

ANOVA Analysis _ Inline
Intensity
 Df Sum Sq Mean Sq F value Pr(>F)
inline 1 0.433 0.4334 55.53 4.14e-13 ***
Residuals 494 3.855 0.0078

Ops

 Df Sum Sq Mean Sq F value Pr(>F)
inline 1 657 657.1 0.731 0.393
Residuals 494 444251 899.3

ANOVA Analysis _ Mem2reg
Intensity
 Df Sum Sq Mean Sq F value Pr(>F)
mem2reg 1 0.139 0.13880 15.72 8.4e-05 ***
Residuals 498 4.396 0.00883

Ops
 Df Sum Sq Mean Sq F value Pr(>F)
mem2reg 1 142418 142418 218.4 <2e-16 ***
Residuals 498 324714 652

Table 7-AES_ANOVA

Regarding the above table, provided with 5% of acceptance rate, it can be said:

• Intensity: all three have been passed and shows a significant impact on the intensity while using

these benchmarks.

• Performance (Ops): a significant impact could be seen on Loop_reduce and mem2reg while

inline was left non-impacted.

4-3-2 Kruskal-Wallis

70 | P a g e

Kruskal Analysis _ Inline
Intensity

Kruskal-Wallis chi-squared = 31.7114, df = 1, p-value = 1.789e-08

Ops

Kruskal-Wallis chi-squared = 1.2454, df = 1, p-value = 0.2644

Kruskal Analysis _ Loop_reduce
Intensity

Kruskal-Wallis chi-squared = 13.8727, df = 1, p-value = 0.0001956

Ops

Kruskal-Wallis chi-squared = 66.6889, df = 1, p-value = 3.179e-16

Kruskal Analysis _ Mem2reg
Intensity

Kruskal-Wallis chi-squared = 10.9974, df = 1, p-value = 0.0009124

Ops

Kruskal-Wallis chi-squared = 124.5624, df = 1, p-value < 2.2e-16

Table 8-AES_Kruskal_Wallis

Defined by Table 8, it could be observed that:

• Intensity: all three have been passed and shows a significant impact on the intensity while using

these benchmarks.

• Performance (Ops): a significant impact could be seen on Loop_reduce and mem2reg while

inline was left non-impacted.

4-3-3 Distributions

71 | P a g e

Inline

Performance Intensity

Figure 42-AES_Distributions

Performance Intensity

Figure 43-AES_Boxplot

As it was suggested on ANOVA test as well, a significant impact on the intensity metrics could be

observed by inline transformation. In Figure 43 - (AES_Boxplot) as well, there is the box-plot of Inline.

The medians could be seen impacted.

72 | P a g e

Loop_reduce

Performance Intensity

Figure 44-AES_Loop_reduce

Performance Intensity

Figure 45-AES_Loop_reduce_Box

As it was suggested on ANOVA test as well, a significant impact on the both metrics could be observed

by loop_reduce transformation in both Figure 44- (AES_Loop_reduce) and Figure 45-

(AES_Loop_reduce_Box)

73 | P a g e

Distribution “Mem2reg”

Performance Intensity

Figure 46-AES_Mem2reg_Distributions

Box-Plots “Mem2reg”

Performance Intensity

Figure 47-AES_Mem2reg_Box

Relying on ANOVA test on Table 7- (AES_ANOVA), a significant impact on the Performance metrics
could be observed by mem2reg transformation

74 | P a g e

4-3-4 PCA

Provided with the pre-knowledge defined at the beginning of the benchmark, it was expected that the

performance could be the first principal as the high level synthesis field mostly focus on the optimizing

the performance, not the intensity at the gate level. The figures are as bellow:

Inline

Figure 48-AES_Inline_PCA

Loop_reduce

Figure 49-AES_Loop_reduce_PCA

75 | P a g e

Mem2reg

Figure 50-AES_Mem2reg_PCA

Provided with the results above, it clarifies out previous hypothesis regarding the low intensity

benchmarks, all three have the Performance as the first principal component and intensity as the second

with more or less the same degree between the first PCA and the second.

4-3-5 Densities

In this section the densities of the so-far explained parameters are going to be illustrated while the second
parameter, namely, scalarrepl, is activated as well.

76 | P a g e

Inline

Figure 51-AES_Inlie_Densities

As it could be observed, by activating the second parameter (scalarepl) the performance of the whole

compilation system will be reduced.

Loop_Reduce

Figure 52-AES_Loop_reduce_Densities

77 | P a g e

Mem2reg

Figure 53-AES_Mem2reg_Densities

78 | P a g e

4-3-6 AES Synthesis Conclusion

Just like the other benchmark, in this section the whole synthesis table will be illustrated for the reference.

The intensity quantitative will be as expected low comparing with GSM, but the effect of activating the

optimization parameters could be observed on each and every compiler parameters.

In each section the values have been calculated and reported. The passed parameters in the ANOVA and

Kruskal-Wallis test have been marked with green box in order to be distinguished.

78 | P a g e

79 | P a g e

Chapter 5

Conclusions

Based on the experimental results mentioned in the previous chapter, in this chapter of the thesis the

conclusions and final evaluations of the results will be illustrated. Finally, the next chapter will describe

future evaluation of the thesis work.

5-1 Targeted Problem

The main contribution of this dissertation was focused on explore, evaluate and analyze the compiler

options parameters in VLIW processor. As showed in Chapters 3 and 4, the methodologies and tool-chain

were designed, implemented and exploited. Design space exploration was used in order to benefit the

designer, to prune the large amount of unnecessary design space and actuate the multi-objective problem

for the better best trade-offs .

5-2 Approach Review

As it was depicted in Figure 5-Tool-chain Schematic, the designed methodology is able to explore multi-

benchmark system starting from high level synthesis to high performance applications. MOST (refer to 3-

80 | P a g e

2-2 Multi-Objective System Tuner (MOST)) is able to set the type of DoE and the sampling mode which

is needed in order to explore the benchmarks. Using two powerful open-sourced compilers, namely,

LLVM and VEX (refer to 3-2-3 LLVM and 3-2-4 HP-VEX), resulted in transforming the source codes

using the interested optimization parameters. Consequently we evaluated the performance of the

compilation and calculate the needed metrics in order to be fit in the performance model, namely,

Roofline (refer to 2-1-5 Performance Model and Floating Point).

Figures have been drawn by open-source statistical software R in Linux for synthesizing. Using hundreds

of results for five explored benchmarks, there could be common explanations in order to derive a trend of

activities regarding the mentioned compiler parameters which is going to be elaborated in the following

section.

5-3 Analysis Result Conclusion

5-3-1 per Benchmarks

No. 1 – GSM

In this dissertation (refer to the section 4-1 Benchmark No. 1- GSM) three out of fifteen compiler

parameters have been illustrated by figures and explanations. For the complete review of the benchmark

please refer to the section 4-4-8 GSM Conclusion. Regarding the depicted figures it can be observed that:

Looking at the benchmark results, having acceptance value α set equal to 5%,

1. For ANOVA:

a. Inline, Licm, Loop_reduce, Loop_rotate, reassociate and scalarrepl have passed the

ANOVA test for intensity metrics

b. Inline, instcombine, licm, loop_reduce, loop_rotate, mem2reg, reassociate and scalarrepl

have passed the ANOVA performance metric test.

2. For Kruskal-Wallis:

81 | P a g e

a. Inline, Licm, Loop_reduce, Loop_rotate, reassociate and scalarrepl have passed the

Kruskal test for intensity metrics

b. Inline, instcombine, licm, loop_reduce, loop_rotate, mem2reg and reassociate have

passed the Kruskal performance metric test

3. The maximum intensity observed in those 15 compiler parameters was 191.6 (flops/byte) which

belongs to constprop, dce, inline, instcombine, licm, loop_reduce, loop_rotate, loop_unroll,

loop_unswitch, mem2reg, reassociate, sccp, simplifycfg.

4. The maximum performance value observed for this metrics in those 15 compiler parameters

was 754.8 (Gflops/s) which belongs to constprop, loop_unswitch and memcpyopt.

5. Performance and intensity metrics have been observed impacted by each other in the same

direction for compiler parameters instcombine, mem2reg, reassociate, scalarrepl and simplifycfg

6. Performance metrics have been observed as the most impressing component in Principal

Component Analysis for all the 15 compiler parameters with 99% as the highest value for

reassociate. In addition, the highest proportion value of valiance for intensity was seen as 31% for

loop_unroll.

7. Regarding the average increment, reassociate has 19.88 and inline has -10.15 as the highest

decrement one for intensity, in addition, for performance, the highest observed was 26.11 for

reassociate and -52.14 for loop_rotate.

82 | P a g e

No.2 AES

Looking at the benchmark results, having acceptance value α set equal to 5%,

1. For ANOVA:

a. Only Inline, Loop_reduce and Loop_rotate have passed the ANOVA test for intensity

metrics

b. Only licm, loop_reduce, loop_rotate and mem2reg have passed the ANOVA performance

metric test.

2. For Kruskal-Wallis:

a. Inline, Loop_reduce, Loop_rotate, mem2reg and reassociate have passed the Kruskal test

for intensity metrics

b. instcombine, licm, loop_reduce, loop_rotate, mem2reg and reassociate have passed the

Kruskal performance metric test

3. The maximum intensity observed in those 15 compiler parameters was 0.19692 (flops/byte)

which belongs to scalarrepl. (as it was expected the intensity in these benchmark suits are low

since they are high level synthesis application and the effect of performance is more interested in

exploring these application rather than intensity)

4. The maximum performance value observed for this metrics in those 15 compiler parameters

was 31.87 (Gflops/s) which belongs to loop_reduce.

5. Performance and intensity metrics have been observed impacted by each other in the same

direction for compiler parameters inline, instcombine, licm and reassociate

6. Performance metrics have been observed as the most impressing component in Principal

Component Analysis for all the 15 compiler parameters with near 100% as the highest value for

reassociate. In addition, the highest proportion value of valiance for intensity was seen as 0.260 %

for loop_unswitch.

7. Regarding the average increment, loop_reduce has 60 value and mem2reg has -32.3 as the

highest decrement one for performance metric, in addition, for intensity, the highest observed was

0.05 for loop_reduce and -5.17 for instcombine.

83 | P a g e

No.3 – No.5 Benchmarks

For the sake of synthesis in this dissertation, the results and synthetic conclusions for the remaining

benchmarks have been moved to the appendix chapter at the end.

5-3-2 Cross Benchmarks

Extracting the trends in each and every science could be a difficult and complicate task which needs to be

taken into account hundreds of factors such as induction rules, enough samples, risk and error evaluation,

etc.

In this dissertation, the main goal was designing and implementing a methodology for setting benchmarks

and performance evaluation of compiler options in VLIW processor, therefore, the generalization has to

be taken care in a future defined work which will be mentioned in the following chapter.

• As first hypothesis, it could be observed that all the transformations of the AES, have the

Performance by far as their principal component.

• In the GSM benchmark, the latter result is the same with little mixture of intensity to the PCA, as

the benchmark have put a large load on the system in the gate.

In both explored benchmarks; only loop_reduce and loop_rotate have had significant impact on both

metrics (Intensity and Performance), while:

• Inline, licm, mem2reg and reassociate have at least two metrics impacted in both two

benchmarks.

• Instcombine and scalarrepl have only one metric impacted.

5-3-3 ANOVA Cross-Benchmark

Using ANOVA and Kruskal-Wallis Analyses defined in Sections 4-2-1 ANOVA and 4-2-2 Kruskal-

Wallis, hereby there is going to be the cross-benchmark review of the experimental results:

84 | P a g e

 GSM AES ADPCM JPEG Blowfish

Constprop

Dce

Inline   

Instcombine    

Licm     

Loop_reduce     

Loop_rotate    

Loop_unroll

Loop_unswitch

Mem2reg     

Memcpyopt

Reassociate 

Scalarrepl  

Sccp

simplifycfg
Table 9-ANOVA_Cross-benchmak_Performance

The acceptance rate of (α) variable has been set to 5% as it has been defined in the Section 3-4-1 ANOVA

Analysis, therefore, the transformation which have pass this threshold acceptance rate have been marked

with a tick checkmark sign (). This shows the Performance metric (Ops) has had the significant impact

on the medians of the transformation in that specific benchmark.

Observing Table 9- (ANOVA_Cross-benchmak_Performance), it could be seen that four transformations,

namely, licm, loop_reduce and mem2reg have the same trend on all the explored benchmarks. Relying on

their own intrinsic behaviors, these transformations could impact the performance in the proposed

methodology.

5-3-4 Kruskal-Wallis Cross-Benchmark

The overall cross-benchmark view of the Kruskal-Wallis analysis have been mentioned in the Table 10-
(Kruskal-Wallis_Cross-benchmark_Performance):

85 | P a g e

 GSM AES ADPCM JPEG Blowfish

Constprop

Dce

Inline   

Instcombine     

Licm    

Loop_reduce     

Loop_rotate    

Loop_unroll

Loop_unswitch

Mem2reg     

Memcpyopt

Reassociate  

Scalarrepl 

Sccp

simplifycfg
Table 10- Kruskal-Wallis_Cross-benchmark_Performance

As it could be observed in the Table 10- (Kruskal-Wallis_Cross-benchmark_Performance), in this

analysis, three transformations, namely, instcombine, loop_reduce and mem2reg have passed all

benchmark test regarding impacts on performance metric.

5-3-5 Parameters Effect

Similar to what we have done with the correlation matrix on deltas defined in 3-4-3 (Correlation

Analysis), in order to have useful cross-benchmark high-level view between the parameter interactions, a

interaction table could be calculated with transformation parameters on the sides, therefore it will be

diagonal, and number of positive-negative interaction between parameters and metric (Performance) in

each transformation per benchmark could be add up to sketch a disk bubble. So the quantity of

transformations multiply number of benchmarks could estimate the maximum number of interactions.

The more the number of interaction is the higher the diameter of the bubble. In this case, the researcher

86 | P a g e

could have a conclusive high level view to extract information out of the explorations. This analysis will

show the effect of activation of the second transformation parameter on performance metric with respect

to have the main transformation being activated already.

Figure 54- Transformations Bubble Effects

In the Figure 54- (Transformations Bubble Effects), four levels of effects have been illustrated:

1- No effects: no signs
2- Degree of effects equal to 1 : the white fill small ovals
3- Degree of effects equal to 2: medium size cross patterns ovals
4- Degree of effects equal to 3: large red filled ovals

It could be observed that having reassociate activated already, by adding inline transformation, we could
expect to impact the performance. This phenomenon is also true for simplifycfg and inline.

87 | P a g e

Chapter 6

Future Works

As it mentioned on Chapter 5, the main objective of this dissertation was focus on using DSE for

compiler parameters in VLIW processors. Consequently, the benchmarks used in order to be explored

were mostly elaborated on seeing the effects of using these options in the issue. Due to the complexity

and size of the topic, there are some future ideas that could be taken care of as following.

6-1 Combining Architectural Parameters

In Table 2-Our Problem Design Space Exploration_ Example, the range of these architectural parameters

have been mentioned already. Combining the so-far topic with architectural parameters will add

88 | P a g e

complexity and bigger orders of explorations to the problem; therefore, it could be an interesting future

work which needs to be elaborated in near future.

Indeed, architectural parameters involved the infrastructures and hardware machines to the problem

which could be really interesting for the industry and enterprise partners in order to be researched on.

Choosing the best suit of architectural configurations

6-2 Extended Benchmarks

Since multiple benchmark usage was one of the key features of the designed methodology in this

dissertation, it could be used with so many great and more sophisticated benchmarks i.e. high

performance video applications, Encoder/Decoder applications, etc.

By the date of writing this dissertation, the efforts of embedding a new benchmark, namely H264

Decoder [44], have been started for a while. Hopefully finishes exploring soon to have better reasoning

about the phenomena of impacting metrics.

6-3 Further Algorithms of Optimizations

There are bunch of other interesting problems still on the course of research which actuate the need of

extending the current work for future. Phase Ordering in compilers Optimization, which has been an

interesting target for researchers. A single sequence of optimization phases is highly unlikely to produce

optimal code for every application (or even each function within an application) on a given machine. The

problem of ordering optimization phases can be more severe when generating code for embedded

applications. [45]

89 | P a g e

Bibliography

[1] S. Balakrishnan, "Very Long Instruction Word Processor," Ressonance, pp. 61-68, December 2001.

[2] V. Zaccaria, C. Silvano and G. Palermo, "MOST: Multi-Objective System Tuner - DSE for system
architects," in DATE, Grenoble, France, 2011.

[3] LLVM Co., "LLVM," [Online]. Available: www.llvm.org.

[4] HP Co., "HP-VEX," [Online]. Available: www.vliw.org/vex/.

[5] B. R. Rau and J. A. Fisher, Instruction-Level Parallelism: history, overview, and perspective,
Springer, 1993.

[6] VLIW Organization, "LLVM," [Online]. Available: http://www.vliw.org.

[7] J. A. Fisher, P. Faraboschi and C. Young, in Embedded Computing; A VLIW Approach to
Architecture, Compilers and Tools, Morgan Kaufmann, 2005, pp. 57-63.

[8] B. Mathew, "Very Large Instruction Word Architectures (VLIW Processors and Trace Scheduling),"
Computer Engineering Handbook, CRC Press LLC, 2001.

[9] R. Sherief, "Lectures on Design and Implementation of VLSI Systems," Brown University.

[10] H. E. Ziegler, in Compiler-directed Design Space Exploration for Pipelined FPGA application,
University of southern california, 2006, pp. 1-10.

[11] "http://mathworld.wolfram.com/SimulatedAnnealing.html".

[12] "DoE Types," [Online]. Available:
http://www.qualitytrainingportal.com/resources/doe/doe_types.htm.

[13] GNU, "GNU GCC Manual," 2012. [Online]. Available: http://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html#Optimize-Options.

[14] GNU Organization, [Online]. Available: www.gnu.org.

[15] LLVM Organization, "LLVM Transformations," http://llvm.org/docs/Passes.html.

[16] L. O.-. C. Lattner, "LLVM Language Reference Manual," 2012. [Online]. Available:

90 | P a g e

http://llvm.org/docs/LangRef.html#i_alloca.

[17] Briggs, M. Dubois and F. A., "Performance of Synchronized Iterative Processes in Multiprocessor
Systems," in IEEE Trans. on Software Eng., 1982.

[18] E. Boyd, W. Azeem, H. Lee, T. Shih, S. Hung and E. Davidson, "A Hierarchical Approach to
Modeling and Improving the Performance of Scientific Applications on the KSR1," in Int’l Conf. on
parallel Processing, 1994.

[19] S. Williams, A. Waterman and a. D. Patterson, "Roofline: An Insightful Visual Performance Model
for Floating-Point Programs and Multicore Architectures," in ACM Communication, 2008.

[20] D. Fischer, J. Teich, R. Weper and U. Kastens, "Design space characterization for
architecture/compiler co-exploration," in CASES '01 Proceedings of the 2001 international
conference on Compilers, architecture, and synthesis for embedded systems, 2001.

[21] A. Halambi, P. Grun, V. Ganesh, A. Khare and N. Dutt, "EXPRESSION: a language for architecture
exploration through compiler/simulator retargetability," in conference on Design, automation and
test in Europe, NY, 1999.

[22] B. So, M. Hall and P. Diniz, "A compiler approach to fast hardware design space exploration in
FPGA-based systems," in ACM SIGPLAN, 2002.

[23] M. O'Boyle, Agakov and Felix, "Using machine learning to focus iterative optimization," in
Proceedings of the International Symposium on Code Generation and Optimization, 2006.

[24] O. Mencer, D. Pearce and L. Howes, "Design space exploration with A Stream Compiler," in Field-
Programmable Technology (FPT), 2003.

[25] C. Dubach, T. Jones and M. O'Boyle, "Microarchitectural Design Space Exploration Using an
Architecture-Centric Approach," in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, 2007.

[26] ISO Organization, "C99 C standards," ISO/ITEC.

[27] P. Saraswat, E. Zamsha and A. Jankovic, "A fast and Efficient Simulated Annealing based Design
Space Exploration for a Custom VLIW Architecture for GSM Decoder and Optimizations using
VEX compiler," in Relation 10.1.91, 2008.

[28] Saptono, Brost and Yang, "Design Space Exploration for a custom VLIW Architecture: Direct photo
printer hardware setting using VEX Compiler," in Signal Image Technology, 2008.

[29] M. K. Jain and G. K. Ranka, "VLIW BASED VEX TOOL AND VALIDATION OF SIM-A WITH
VEX," Journal of Global Research in Computer Science, vol. 2, no. 9, 2011.

91 | P a g e

[30] European Standard (Telecommunications series),
"http://WEBAPP.ETSI.ORG/exchangefolder/en_300724v080001p0.zip," Technical Committee
Special Mobile Group (SMG), 1999.

[31] E.R.T.L Corporation, "http://www.ertl.jp/chstone/," Japan, E.R.T.L.

[32] S. Xydis and G. Palermo, "Most Generic Wrapper (MGW)," Politecnico Di Milano, Dei Department,
System Architecture group, Milan, 2012.

[33] V. Zaccaria, "MOST (Multi-Objective System Tuner) Overview," Politecnico Di Milano,
Department of Computer and Electric Eng., Milan, 2001-2011.

[34] R. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process
improvement, Wiley, 2001.

[35] http://llvm.org/Features.html, "LLVM- Features," LLVM Organization.

[36] HP-VEX, "Vex Systems," HP, 2012.

[37] J. Fisher, "Traced Scheduling, A Technique for Global Microcode Compaction," Computers, IEEE
Transactions on Computers, Vols. C-30, no. 7, pp. 478-490, 1981.

[38] R-Project Organization, "R Statistical Software," [Online]. Available: www.r-project.org.

[39] D. MCFATTER, "Computational Formulas for ANOVA," Louisiana, USA.

[40] J. P. Key, Oklahoma State University, [Online]. Available:
http://www.okstate.edu/ag/agedcm4h/academic/aged5980a/5980/newpage26.htm.

[41] T. Gaten, "Kruskal-Wallis non-parametric ANOVA," University of Leicester, [Online]. Available:
http://www.le.ac.uk/bl/gat/virtualfc/Stats/kruskal.html.

[42] R. Rebonato, "The most general methodology to create a valid correlation matrix," Quantitative
Research Centre of the NatWest Group, 1999.

[43] L. I. Smith, "A tutorial on Principal Components Analysis," University of Otago New Zealand, 2002.

[44] K. Sühring, "H.264/AVC Reference Software," [Online]. Available: https://ipbt.hhi.fraunhofer.de/.
[Accessed 2012].

[45] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley and J. Davidson, "Finding effective
optimization phase sequences," in ACM SIGPLAN Notices, 2003.

[46] P. V. a. K. S. C. Nilanjan Banerjee, "A Power and Performance Model for Network-on-Chip
Architectures," in Design, Automation and Test in Europe Conference and Exhibition, 2004.

92 | P a g e

Proceedings, 2004.

[47] A. B. Kahng, B. Li, L.-S. Peh and K. Samadi, "ORION 2.0: a fast and accurate NoC power and area
model for early-stage design space exploration," in Proceedings of the Conference on Design,
Automation and Test in Europe, Belgium ©2009, 2009.

[48] Y. Jin, N. Satish, K. Ravindran and K. Keutzer, "An Automated Exploration Framework for FPGA-
based," in Proceeding CODES+ISSS '05 Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, NY, USA, 2005.

[49] M. Palesi and T. Givargis, "Multi-objective design space exploration using genetic algorithms," in
Hardware/Software Codesign, 2002. CODES 2002. Proceedings of the Tenth International
Symposium on, 2002.

[50] J. KEINERT, M. STREUBUHR and T. SCHLICHTER, "SystemCoDesigner—an automatic ESL
synthesis approach by design space exploration and behavioral synthesis for streaming applications,"
ACM Transactions on Design Automation of Electronic Systems (TODAES) TODAES, vol. 14, no. 1,
2009.

[51] B. So, M. W. Hall and P. C. Diniz, "A compiler approach to fast hardware design space exploration
in FPGA-based systems," in PLDI '02 Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, 2002.

[52] "DoE Definition," [Online]. Available:
http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd31.htm.

93 | P a g e

Appendix

For the sake of abstractness in this dissertation, only two out of the 5 explored benchmarks have been

mentioned during the content (refer to Experimental Results). One high intensity GSM and one out of the

CHStone benchmark suits, namely AES.

In this section all the results are going to be classified based on the benchmark-transformation, in this case

the reader could get a clear idea of what have we done in this dissertation to analyze the compiler options

for VLIW processors.

The trend of this section will be as following:

• Benchmark Name

o Distributions

o Box-Plots

o Correlations

 Raw Data

 On Deltas

o Scatter-Plot

o Principal Component Analysis

APPENDIX SECTION

94 | P a g e

inline

GSM

Distributions

Performance

constprop

dce

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

GSM

Distributions

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

95 | P a g e

GSM

Box-plot

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

GSM

Box-plot

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

96 | P a g e

GSM

Correlation on
raw data

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

GSM

Correlation on
deltas

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

97 | P a g e

GSM

Scatter-plot

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

GSM

Principal
Component

Analysis (PCA)

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

98 | P a g e

AES

Distributions

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

AES

Distributions

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

99 | P a g e

AES

Box-plot

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

AES

Box-plot

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

100 | P a g e

AES

Correlation on
raw data

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

AES

Correlation on
deltas

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

101 | P a g e

AES

Scatter-plot

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

AES

Principal
Component

Analysis (PCA)

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

102 | P a g e

ADPCM

Distributions

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

ADPCM

Distributions

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

103 | P a g e

ADPCM

Box-plot

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

ADPCM

Box-plot

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

104 | P a g e

ADPCM

Correlation on
raw data

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

ADPCM

Correlation on
deltas

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

105 | P a g e

ADPCM

Scatter-plot

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

ADPCM

Principal
Component

Analysis (PCA)

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

106 | P a g e

JPEG

Distributions

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

JPEG

Distributions

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

107 | P a g e

JPEG

Box-plot

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

JPEG

Box-plot

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

108 | P a g e

JPEG

Correlation on
raw data

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

JPEG

Correlation on
deltas

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

109 | P a g e

JPEG

Scatter-plot

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

JPEG

Principal
Component

Analysis (PCA)

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

110 | P a g e

BLOWFISH

Distributions

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

BLOWFISH

Distributions

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

111 | P a g e

BLOWFISH

Box-plot

Performance

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

BLOWFISH

Box-plot

Intensity

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

112 | P a g e

BLOWFISH

Correlation on
raw data

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

BLOWFISH

Correlation on
deltas

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

APPENDIX SECTION

113 | P a g e

BLOWFISH

Scatter-plot

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

BLOWFISH

Principal
Component

Analysis (PCA)

constprop

dce

inline

instcombine

licm

Loop_reduce

Loop_rotate

Loop_unroll

Loop_unswitch

mem2reg

memcpyopt

reassociate

scalarrepl

sccp

simplifycfg

	ABSTRACT IN ENGLISH
	ABSTRACT IN ITALIAN
	ACKNOWLEDGMENTS
	Table of Figures
	List of tables
	Chapter 1
	Introduction
	1-1 Dissertation Contribution
	1-2 Dissertation Organization

	Chapter 2
	Main Background
	2-1 Background
	2-1-1 ILP architecture
	2-1-2 VLIW Processor Architecture
	2-1-3 Design Space Exploration
	2-1-4 Compiler Options
	2-1-5 Performance Model and Floating Point

	2-2 State of Art
	2-2-1 Design Space Exploration for Compiler Options
	2-2-2 Design Space Exploration in VLIW Processors

	Chapter 3
	Proposed Methodology
	3-1 Problem Description
	3-2 Designed Model
	3-2-1 MOST Generic Wrapper (MGW)
	3-2-2 Multi-Objective System Tuner (MOST)
	3-2-2-1 MOST Structure

	3-2-3 LLVM
	3-2-4 HP-VEX

	3-3 Benchmarks
	3-4 Analysis Types
	3-4-1 ANOVA Analysis
	3-4-2 Kruskal-Wallis
	3-4-3 Correlation Analysis
	3-4-4 Principal Component Analysis

	Chapter 4
	Experimental Results
	4-1 Motivation
	4-2 Benchmark No.1 - GSM
	4-2-1 ANOVA
	4-2-2 Kruskal-Wallis
	4-2-3 Distributions
	Inline
	Performance Intensity

	Box-Plots
	Performance Intensity

	Loop_Unroll
	Performance Intensity

	Mem2reg
	Performance Intensity
	Performance Intensity

	Figure 21-GSM_Mem2reg_Box

	4-2-4 Scatter Plots
	4-2-5 Principal Component Analysis
	4-2-6 Correlation Analysis
	1- Correlation on raw data
	Inline
	Loop_Unroll
	Mem2reg

	2- Correlation on Deltas
	Inline
	Loop_Unroll
	Mem2reg

	3- Correlation of the PCA
	Inline
	Loop_Unroll
	Mem2reg

	4-2-7 Matrix Plot
	Inline
	Loop_Unroll
	Mem2reg
	Densities
	Inline
	Loop_unroll
	Mem2reg

	4-4-8 GSM Conclusion

	4-3 Benchmark No.2 AES
	4-3-1 ANOVA
	4-3-2 Kruskal-Wallis
	4-3-3 Distributions
	Inline
	Performance Intensity
	Performance Intensity

	Loop_reduce
	Performance Intensity
	Performance Intensity

	Distribution “Mem2reg”
	Performance Intensity

	Box-Plots “Mem2reg”
	Performance Intensity

	4-3-4 PCA
	Inline
	Loop_reduce
	Mem2reg

	4-3-5 Densities
	Inline
	Loop_Reduce
	Mem2reg

	4-3-6 AES Synthesis Conclusion

	Chapter 5
	Conclusions
	5-1 Targeted Problem
	5-2 Approach Review
	5-3 Analysis Result Conclusion
	5-3-1 per Benchmarks
	No. 1 – GSM
	No.2 AES

	No.3 – No.5 Benchmarks
	5-3-2 Cross Benchmarks
	5-3-3 ANOVA Cross-Benchmark
	5-3-4 Kruskal-Wallis Cross-Benchmark
	5-3-5 Parameters Effect

	Chapter 6
	Future Works
	6-1 Combining Architectural Parameters
	6-2 Extended Benchmarks
	6-3 Further Algorithms of Optimizations

	Bibliography
	Appendix

