
POLITECNICO DI MILANO

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

GreenMove: a software infrastructure

to support open vehicle sharing

Relatore: Prof. Gianpaolo CUGOLA

Correlatore: Ing. Matteo ROSSI

Tesi di Laurea di:

Sante Gennaro ROTONDI

Matr. n. 724821

Anno Accademico 2011–2012

ACRONYMS

A list of all of the acronyms which are used in the document.

DSL . Domain Specific Language

ECU . Electronic Control Unit

EPAC . Electric Pedal Assisted Cycles

GEB . Green E-Box

GMA . Green Move Application

GMC . Green Move Center

GMVSS . Green Move Vehicle Sharing System

GM . Green Move

GPS .Global Positioning System

HAL . Hardware Abstraction Layer

MVC . Model View Controller

NFC . Near Field Communication

RFID . Radio Frequency Identification

SAL . Software Abstraction Layer

TDD . Test Driven Development

ZELS . Zero Emission, Light, Small

ZEV . Zero Emission Vehicle

i

CONTENTS

CONTENTS ii

LIST OF FIGURES iii

1 INTRODUCTION 1

2 MOBILITY SYSTEMS 5

3 GREEN MOVE INFRASTRUCTURE 11
3.1 Hardware Infrastructure . 11
3.2 Software Infrastructure . 15

4 GREEN MOVE CENTER 19
4.1 Overview of users’ interaction with the GMC 19
4.2 Overview of vehicles’ interaction with the GMC 22
4.3 Green Move Center architecture 24
4.4 Software architecture of the GMC - Controllers 30
4.5 Software architecture of the GMC - Models 32

5 GREEN MOVE APPLICATIONS 39
5.1 Green Move Application structure 40
5.2 Green Move Code Agent . 41
5.3 Green Move Applications Server 42

6 TESTING 45
6.1 Test Driven Development . 45
6.2 Green Move Center API Testing 48

7 CONCLUSIONS 49
7.1 Development considerations . 49
7.2 Future work . 50

A T-REX RULES AND EVENTS 53

B RSPEC TESTS 57

C GREEN MOVE APPLICATIONS DEVELOPMENT WORKFLOW 61

D CHAP:DATABASE SCHEMA 65

BIBLIOGRAPHIC REFERENCES 101

ii

LIST OF FIGURES

3.1 Tazzari Zero (left), Estrima Birò and Piaggio Liberty e-mail. A power
outlet of A2A is visible next to the Tazzari Zero. 12

3.2 Green E-Box architecture. 13
3.3 T-Rex Complex Event Processing . 17

4.1 An overview of the interactions between the GMC, users and ve-
hicles. 20

4.2 Calendar view when searching for a vehicle on the GMC, seen from
the Google Chrome browser on Android 21

4.3 Vehicle model and date selection when searching for a vehicle on
the GMC, seen from the Google Chrome browser on Android . . . 21

4.4 List of the reservations of the current user on the GMC, seen from
the Google Chrome browser on Android 22

4.5 Registering a new vehicle on the GMC. 23
4.6 Position of a vehicle is showed on a map in the admin section of

the GMC. 24
4.7 The Green Move Center network architecture 25
4.8 Model View Controller. The user request reaches the controller,

which performs operation on with the model and renders the view,
which is sent as thre response. 26

4.9 The user is asked by her browser to allow the GMC to use her ap-
proximated physical position. Firefox browser on Ubuntu Linux . . 28

4.10 Controllers of the GMC . 31
4.11 Models of the GMC - part 1 . 33
4.12 Models of the GMC - part 2 . 34
4.13 Models of the GMC - part 3 . 35

5.1 Green Move Applications interfaces. 40

6.1 Test Driven Development cycle. 46

C.1 Exporting a GMA with the Eclipse IDE. 62
C.2 A Green Move Application can be uploaded on the Admin section

of the GMC. 63
C.3 The GMC allows to install, reinstall or uninstall the GMA. Cur-

rently it only supports broadcasting o unicasting. 63

iii

— CHAPTER 1 —

INTRODUCTION

This thesis describes the Green Move project, with particular focus the work
of the author on the development on two components of the former (Green
Move Center and Green Move Applications).

Green Move is an innovative vehicle sharing system designed and proto-
typed by Politecnico di Milano, with fundings by Regione Lombardia.

The aim of the Green Move project is to solve the mobility problem dis-
cussed in chapter 2, building a system which unifies and brings forward many
existing solutions to this problem.

Western countries have a common personal mobility model: vehicles are
often owned and used by individuals, both for work and for personal travels.
The core of the mobility problem is that, given the number of people in the
world - who wish for a personal mobility model similar to the one described
below - the ending of the reservoirs of fossile combustibles and the extreme
need to reduce the CO2 emissions in the next twenty years, people won’t be
able to perpetrate or reach the aforementioned model of mobility.

Vehicle sharing allows people to limit the possession of an own vehicle,
while preserving their ability to move without using only the public trans-
portation system.

Chapter 2 presents multiple vehicle sharing initiatives which exist in the
world, stressing their characteristics and limitations w.r.t to the problem they
wish to solve.

The multi business-model of Green Move is described, along with another
unique feature of this system, which is the multi ownership-model. Green
Move does not infact require a single entity to possess all of the vehicles em-
ployed in the car sharing system. This allows B2C, B2B and even P2P business
models, with the only constraint of adhereing to a set of standardized proto-
cols which are developed and enforced by Green Move itself.

To comply with the requirement of reducing the CO2 emissions, Green
Move chooses to employ only electric vehicles in its fleet.

Chapter 3,4 and 5 focus on the overall architecture and core components
of Green Move. A system with an ambitiuous goal such as solving the mo-
bility problem requires an accurately developed infrastructure, both on the
information technology (IT) and on the other sides.

Chapter 3 focuses on the IT components needed to operate the Green Move
vehicle sharing service. These include both the hardware and the software
ones, ranging from vehicles to web application frameworks.

Green Move does support multiple vehicle kinds, while the vast majority
of existing vehicle sharing initiatives only feature one kind (e.g. only cars, only
bikes).

Each vehicle kind has to be adapted to comply with the Green Move stan-

1

1. INTRODUCTION

dards and protocols. This is achieved with the installation of a physical device
on each vehicle, named the Green E-Box (GEB). GEB technology and design is
described in chapter 3.

A GEB is a physical device with electronic circuits developed at Politecnico
di Milano and an Android board, which is a computer running the Android
operating system and custom software developed for the GEB operations.

The purpose of GEBs isn’t limited to allow vehicles to be shared in the GM
system: they also collect data from the vehicles with its builtin sensors.

The collected data are sent to a central repository and made available for
use inside the GM system, both for the system itself and third parties which
have a partnership with GM. This functionality is achieved with a custom
software component named T-Rex. Chapter 3 describes this component and
the functionalities it provides.

The scope of T-Rex is not limited to data collection, it is infact a Com-
plex Event Processing middle-ware capable of reacting to given situations de-
tected with the observation of the stream of collected data, which are treated
as events.

Green Move aims to minimize the cost of operating a vehicle sharing sys-
tem, and does this by automating everything possible and removing the need
of any expensive structure which may be not needed or replaced with tech-
nology.

Users need to own a smart-phone to rent vehicles of the GM fleet, since the
reservation process can be made online and on mobile and no physical keys
are needed to access the vehicles.

This allow GM to automatize the administrative functionalities of billing
and to avoid having a pervasive human presence to operate the key delivery
and return functions.

The smart-phones run an application which enables them to connect to the
GM system, place reservations and manage their billing preferences.

Chapter 3 also presents the basic elements of a core component of Green
Move, which is the Green Move Center (GMC) and is described accurately in
chapter 4.

GMC is composed of a web application, which acts as the website which
users visit to browse offers and place reservations, and the T-Rex based com-
munication system. The web application is a software component developed
with the Ruby programming language, plus minor parts in other languages
required for the website (JavaScript, CSS, HTML).

The purpose of the GMC is to provide the functionality of users’ registra-
tion, vehicle’s reservations and the administration of the whole GM system.

GMC provides this functionalities both as a website and as web service,
since it exposes a public application programming interface (API) which is
used by the users’ smart-phone application to communicate with the GMC.

Chapter 5 focuses on another important innovative functionality of Green
Move, which is the possibility both for GM itself and its partners to push ad-
ditional logic on the GEBs on demand. The cost of the software mantainance
of the whole system is lowered since it has a mean of extending the code on

2

the GEBs remotely. The extensions of functionalities on the GEBs are named
Green Move Applications in a sort of analogy with the existing App based sys-
tems (e.g. iOS, Android).

Such a system has also a side benefit, since it allows some functionalities
to be present and used only where needed, based on the context of the current
user and vehicle. This is a unique feature for a vehicle sharing initiative.

Chapter 6 describes some of the technologies and techniques used to aid
the development of GM.

Such a complex system requires many skills for its development, along
with proper tools for testing and debugging of its components and the inter-
actions between the latter.

Chapter 7 presents the conclusions of this work along with the proposals
for the future work on the GM project.

3

— CHAPTER 2 —

MOBILITY SYSTEMS

THE MOBILITY PROBLEM

In western countries, personal mobility models based on an internal combus-
tion engine are consolidated. People expect an evolution toward more com-
fortable, clean, technologically advanced and economic vehicles. There are
two billions of people in developing countries which aim to a fast reach of
the same level of mobility.

This is unlikely to happen though, since traditional fossil based combustible
stocks are rapidly decreasing and there is the need to diminish the CO2 emis-
sions in the atmosphere.

Unless a strong technological singularity happens, the solution to the mo-
bility problem will lay upon three evolutionary lines.

• Reduction of weight and size of vehicles

• Massive reduction of internal combustion powered vehicles and the sub-
sequent rise of electric vehicles

• Change in the mobility model, moving from the traditional single-owned
model toward a new one, based on vehicle-sharing

It is also important to note that electrical grids are evolving, becoming a
collector of energy from various sources (wind, solar, geothermal, carbon).
Mobility should look at electrical grids as an access point to power, since it is
anachronistic to look at sustainable mobility without considering the energy
consumed by vehicles.

In the next years, new sustainable mobility models will arise around the
world. We believe that most of them will have in common the small, electric,
shared vehicle paradigm.

VEHICLE SHARING SYSTEMS

In the last few years many car sharing initiatives have been promoted around
the world, as car sharing (and more generally vehicle sharing) has become a
viable solution for the future of urban transportation [Katzev, 2003]. In this
section we briefly report on some of these experiences, focusing on the under-
lying technological issues.

Zipcar [Zipcar, n.d.] is a popular car sharing system available in the United
States and some cities of Canada, Spain and United Kingdom. Zipcar started
in the early 2000’s in the US. This service offers different kinds of ICE or hybrid
cars to registered users, who reserve vehicles via web or via phone. Users are
provided with RFID cards that are used to open cars, and the vehicle keys are

5

2. MOBILITY SYSTEMS

physically chained to the car, together with a fuel card; users can also locally
lock/unlock the car using a smartphone app, though the interaction does not
occur directly with the car, which is opened remotely by the control center
when an SMS is received.

A car sharing service similar to Zipcar is the Swiss Mobility Carsharing
[Sharing, n.d.], started in 1997. In 2010 Mobility operated about 1200 stations
in 450 locations in Switzerland. As for Zipcar, upon registration users receive
RFID cards that are used to open the cars, that are reserved online or via
phone. The keys are in the vehicle, but not chained to it, so doors can be
locked/unlocked using the vehicle key itself. A simple interface available in
the car allows users to modify on-the-fly the trip by extending or stopping the
reservation. A fuel card is onboard to refill the car, if needed.

A more flexible car sharing service is the car2go project [Car2Go, n.d.],
which is available in cities such as Ulm, Germany, and Austin, Texas. As
Daimler AG is the promoter of the initiative, cars available to Car2go users are
Smart ForTwo, equipped with an RFID card reader to unlock the car. When a
user registers to the service, an RFID chip is applied to her driving license.
The car has an advanced user interface, and the position of every vehicle is
tracked via GPS. This allows users to leave/take the car in every free park-
ing of the city. Moreover, the reservation is optional. Employees of the car2go
service refill the cars when the fuel level (which is remotely monitored) is low.

The last decade has seen the emergence of a different kind of car sharing
services, the so-called “peer-to-peer” ones. With peer-to-peer car sharing any
private car owner can share her own vehicle with other users. To guarantee
that private cars are not damaged/stolen when lent out, the vehicles’ position
must be known in real-time. Moreover, a control center keeps track of which
user is using which vehicle. Therefore, shared vehicles must have features
such as GPS positioning, GPRS communication with the control center, and
mechanisms to identify the user. An example of a peer-to-peer car sharing
service is Google’s Relay Rides [RelayRides, n.d.]. To join this service each
would- be lender must register her vehicle on a website. Then, a technician
takes care of installing on the car a “box” containing

• a GPRS/UMTS communication module

• a GPS device

• a RFID card reader

• a fuel card

Users must register online, after which an RFID card is delivered to them.
Reservation is also done trough a website. Relay Rides allows lenders to con-
figure both the schedule and the charge for the use of their vehicles. Moreover,
comments on drivers’ behaviour are collected in a forum; this allows a lender
to avoid the most “dangerous” users.

None of the car sharing services analysed so far focuses on electric ve-
hicles. yélomobile [Yelòmobile, n.d.] is an example of such service, which is
available in La Rochelle, France. This is a traditional car sharing system, but it

6

operates only with ZEVs, and in particular with electric cars. As in other ser-
vices users must register online, after which they are given RFID cards to un-
lock the cars, which are taken from recharging stations. The keys are chained
to the vehicle.

More recently, the e-Vai car sharing service, which is also based on electric
vehicles, has been set up in Milano. This initiative complements the railway
service provided by the Ferrovie Nord group, thus it can be seen as an exam-
ple of “last-mile” car sharing. Upon registration, a user is sent a card which is
used to access both the railway and the car sharing services. Then, she accesses
the electric vehicles as in a standard car sharing service.

Finally, the autolìb service, which is available in Paris, is substituting its
ICE vehicles with ZEV ones based on the Bluecar Bollorè. These vehicles have
an RFID card reader, GPS localization, GPRS/UMTS connectivity and a user
interface which allows users to access value-added services. Moreover, recharg-
ing stations are “smart”: they interact with the user to check her identity and
to lock/unlock the cars, and also send information to the control center.

GREEN MOVE

Green Move started in 2010 as a project of Politecnico di Milano, funded by
Regione Lombardia. The Green Move service combines together the most in-
teresting characteristics (use of electric vehicles, peer-to-peer sharing, etc.) that
are found separately in existing car sharing initiatives. However, it goes be-
yond them on many aspects, such as the mechanisms through which users in-
teract with system and vehicles, which are now entirely key-less and smartphone-
based.

Green Move tackles the mobility problem on both the technological and
business model sides, aiming to put the foundation to a new urban and metropoli-
tan mobility model. Many research groups of Politecnico di Milano are in-
volved in Green Move, in a joint effort to provide a sound and complete solu-
tion.

Existing vehicle sharing systems can be divided in two main groups:

• First generation systems: vehicles are rented in the classical manner, di-
rectly managed by personnel of the company operating the service with
respect to reservation / payment. These systems usually employ normal
internal combustion vehicles and usually are found in personal mobility
systems from/to airports. There are also many small examples of micro-
systems which employ bicycles or scooters, usually managed by tourist
villages, municipalities. An example oh these system is Car2Go.

• Second generation systems: these difference from the first generation
systems mainly because the reservation/take/release/payment phases
are completely automatized. Systems of this kind have been recently im-
plemented on large scale and feature small and cheap vehicles (bikes).
The most famous and important example is the bike-sharing system of
Paris Velib.

7

2. MOBILITY SYSTEMS

These systems show that, when correctly funded and implemented, they
can respond to the personal mobility problem. They are, though, too simple
and limited to solve the larger problem of the urban personal mobility. Limit-
ing characteristics are mainly these:

• Vehicle mix: both first and second generation systems usually feature
only a kind of vehicle (eg. only bikes, only cars). Cars are usually internal
combustion vehicles which are not thought for a specifical short range
urban use. This mono-vehicle approach contrasts with the pay-what-you-
need principle, resulting often sub or super sized with respect to the user
needs.

• Interoperability: these systems are intrinsecally closed, in the sense that
no inter-operation between different vendors exists.

• Ownership of the system: these systems are single owned by a vendor.
Each system thus requires a completely dedicated funding, which low-
ers the chance to reach a critical mass both on the size of the vehicle fleet
and on the points of access to the service.

• Business model: first and second generation systems have a single busi-
ness model. Each system (car rental, bike sharing, etc) has a specific busi-
ness model and charging mechanism (free for some users, free with a
caution, a forfeit without reservation).

Green Move proposes an innovative system, which can be defined of third
generation. Green Move embraces the open, multi-business, multi-owned prin-
ciples of the digital networks such as the Internet, which is based on open,
standardized and inter-operable protocols. The presence of a system manager
guarantees the consistency of the project. The principle of the open protocol
is declined at various levels of the system, both at the hardware and software
and at the business model level.

• Vehichle mix: Green Move is a multi-vehicle system, because it features
different macro classes of vehicles (cars, scooters, bikes) and different ve-
hicle kinds in each macro class. For instance, two, three and four-wheelie
are featured in the same category. The only restriction enforced by Green
Move is that any vehicle must use a ZELS engine (Zero Emission, Light,
Small). Vehicles of this kind can be electric bikes (EPAC: Electric Pedal
Assisted Cycles), electric scooters (2,3,4-wheelie, with or without cover
and thus with or without the need to wear an helmet), electric quadri-
cycles with 2 or 4 seats. Use of ZELS vehicles helps the evolution of the
concept of vehicle sharing: it lowers the pollution with respect to tradi-
tional vehicles and enables power savings, with an accurate monitoring
and profiling of consumptions. This allows to define more and targeted
fares for the single user, considering the effective consumption and not
only the distance covered.

• Interoperability: it is the key feature of Green Move. Each vehicle can be
different from another, but must adhere to a common shared protocol

8

which enables it to join the network. Green Move aims to enable every
vendor to adapt its vehicles to the standard protocol by installing a small
electronic device (the Green e-Box) and a standard docking system in the
parking stations.

• Ownership of the system: Green Move is a distributed system, man-
aged by an entity which takes care of maintenance, coordination and
standardization. The system includes a set of sub-systems (vehicles and
docking stations) which are owned and managed by different vendors.
Those sub-systems are standardized in their interfaces so that any vehi-
cle can be connected to any docking station. The automatized manage-
ment and billing of Green Move enables a flexible way of dealing with
special subsets of users (eg. a multi located company may own only a
small number of docking stations near its facilities, and a few vehicles.
these can be made available only for the employees of the company, but
be connected to every docking station in the urban area. Conversely, the
docking stations owned by the company can be used with any other
vehicle of Green Move).

• Business Model: various business model can coexist in Green Move.
Fixed annual pricing for all the users of a municipality, free for em-
ployees of a company, pay as you go for vehicles provided by a vehicle-
rental company.. Each actor can choose his business model, contributing
to Green Move with his vehicles and the installation of new docking
stations. The only requirement will be the adopting of the Green Move
standard protocol. This will help the system to quickly reach the critical
mass.

The main goal of Green Move is to bring together the benefits of zero emis-
sions electric vehicles and car sharing, by developing a new and innovative
vehicle sharing system based on electrical, small vehicles suitable for urban
use. Green Move is an electric vehicle car sharing system. Any electric vehicle
can be part of the system, regardless of the ownership and the kind of vehi-
cle (two and four wheelie vehicles are already part of the system, with three
wheelie planned in the upcoming months).

Another important key feature of Green Move is the absence of a phys-
ical support structure. Users can perform anything within Green Move only
having an app installed on their smartphones (currently only an Android pro-
totype has been developed). There are no physical keys to be retrieved for
renting a vehicle, nor a RFID card must be shipped to users upon registration
to the system. This approach dramatically lowers the barriers for new users
and at the same time allows the system to function with less fixed costs. For
an electric vehicle-sharing system, a key factor for success is a good number of
vehicles, so the vast majority of users will find one available when asking for a
reservation. The cost of electric vehicles is high at the moment, so it would be
unfeasible for a single entity to have enough funding to buy a whole fleet. The
vehicles are equipped with a Green E-Box (GEB), which is the only addition to
each vehicle required to enter the Green Move system. Green E-Boxes provide

9

2. MOBILITY SYSTEMS

the vehicle internet access and a GPS sensor. GEB are physically connected to
the vehicle, with various level of integration depending on the specific vehicle
model, and can collect data from various sources. Typical data includes bat-
tery level, instantaneous current and voltage, speed and door status (if any).
GEB are responsible of acting both as a replacement for the traditional key to
access the vehicle and as an enabler of additional services for the users.

2.0.1 GREEN MOVE SERVICE DESCRIPTION

Green Move users can play two roles in the system, which are not mutually
exclusive. They can be both owners which share their vehicles or regular cus-
tomers. Each vehicle is provided with a GEB, which is configured upon instal-
lation to be uniquely and securely identified and reachable in Green Move.

There are no physical offices required for reservation. Users go on the
Green Move website or use the downloaded app on their smartphone to search
and reserve a vehicle. There is no limit on the starting time of a reservation: a
user may need a vehicle in the very next moment or in the next month.

Green Move takes care of finding the best fit, given the date and time in
which the user wishes to start the rental. A ticket is electronically generated
and made available for download by the user’s smartphone, along with other
information useful for the user to spot the vehicle in a parking lot (model,
color, license plate). The smartphone acts as a key, given the vehicle has net-
work access or got a copy of the ticket in any previous moment with network
access.

The user can temporarily leave the vehicle at any time during her reserva-
tion, even if no internet connection is available (i.e. in a subterranean parking
lot). The vehicle will allow her to close the doors and open them back later
even in absence of network connection, leveraging a direct communication
channel between the GEB and the user’s smartphone via bluetooth or NFC.

When the users no longer needs the vehicle, she can park it back where she
picked it and put it on charge by connecting it to a power outlet of the Green
Move system. The ticket will then expire and the user will no longer be able
to open the doors until the next reservation.

Green Move takes care to find a vehicle which is compatible with the user
request, ensuring that the vehicle will have the following characteristics:

• enough battery to cover the distance and the duration of the travel.
Green Move can compute automatically these values performing data
mining and time series analysis on the user rental history, or ask the user
for more details on her travel to help the system find the best solution

• proper services available, since the user might require additional ser-
vices (e.g. a stroller, wheelchair or baby’s chair)

10

— CHAPTER 3 —

GREEN MOVE INFRASTRUCTURE

Green Move operation is almost fully automatized with respect to user trans-
actions and system monitoring. This chapter focuses on the underlying hard-
ware and software required to operate the system. The next two chapters de-
scribe two components of Green Move which are the main topic of interest for
this thesis: the Green Move Center [4] and the Green Move Applications [5].

3.1 HARDWARE INFRASTRUCTURE

This section covers all of the physical resources needed by the Green Move
system, which include but are not limited to hardware and supplies owned
by the Green Move entity.

3.1.1 VEHICLES

Being a vehicle sharing system, vehicles are of course the main resource. As
cleared before in this document, Green Move adopts an innovative, multi
owned ownership model. Vehicles can be owned by Green Move itself, a mu-
nicipality, a car-renting business partner of Green Move or lended by users.

Here we cover some of the vehicles which compose the current fleet of
Green Move.

• Tazzari Zero Evo is a two-seat electric car with a driving range of 140
km, a maximum speed of 100 km/h and a touchscreen control panel
on which four different driving modes (Eco, Rain, Standard and Sport)
can be selected. The lithium-ion battery pack requires about 9 hours for
a full charge (0-100). This vehicle is suitable for urban mobility and/or
short-range interurban trips.

• Estrima Birò is a two-seat electric vehicle with a maximum speed of 45
km/h and a range of about 50 km. The Pb-Gel battery pack takes about
9 hours to be fully charged. Its extremely compact size makes it suitable
for urban (or low-speed suburban) streets.

• Piaggio Liberty e-mail is an electric scooter with a top speed of 45 km/h
and a range of 70 km. The lithium battery pack requires about 4 hours
for a full charge. The scooter is suitable for city driving, but, unlike the
other two vehicles, it is not for all weather conditions.

3.1.2 POWER OUTLETS

Power outlets are, with vehicles, a critical resource for the success of this vehi-
cle sharing initiative. The number and the dislocation of power outlets, along
with the time needed to charge a vehicle, are a key factor for Green Move.

11

3. GREEN MOVE INFRASTRUCTURE

FIGURE 3.1: Tazzari Zero (left), Estrima Birò and Piaggio Liberty e-mail. A power out-
let of A2A is visible next to the Tazzari Zero.

In the first phase of the project, a power outlet of A2A was installed in front
of DEI. It has a screen, a RFID card reader, some physical buttons and two out-
lets. The outlets are of two different kinds: MENNEKES and a SCAME. MEN-
NEKES provides two different outputs: a single-phase and a triple-phase one.
SCAME provides a single-phase output. Both the single-phase outputs are of
3,5 KiloWatt (16 Ampere, 220 Volt), while the triple-phase is of 42 KiloWatt (64
Ampere, 380 Volt). The italian law admits only the use of the single-phase for
recharging vehicles in the public space, which is significantly slower. The use
of the SCAME or MENNEKES outlet depends on the vehicle to be charged.
There can be communication between the vehicle and the outlet if this is sup-
ported on the vehicle. Information exchanged helps the power grid to handle
consumption peaks, and allows the Green E-Box on the other side to know
that the vehicle is charging. This information is very useful to forecast vehicle
range and availability for upcoming reservations.

3.1.3 GREEN E-BOXES

Each vehicle is equipped with a Green E-Box (GEB). The GEB is the device
which allows each vehicle to interact with the GM system: it is composed of
an embedded board and an Android board. The main tasks performed by the
GEB are the acquisition of vehicle signals and the handling of the connection
both with the GMC and the user’s smartphone. The acquisition of the sig-
nals is carried out by the embedded board which is directly connected to the
vehicle ECU.

Afterwards, the acquired data are processed by the Android board and
sent to the GMC. To correctly manage this complex system and meet the
needed requirements of transparency and availability, abstraction mechanisms

12

3.1. Hardware Infrastructure

FIGURE 3.2: Green E-Box architecture.

must be implemented, which allow the seamless use of technologically dif-
ferent vehicles, characterized by different available signals, different onboard
networks, a different split between digital and analog signals and so on.

In order to have a constant monitoring of each vehicle, even when turned
off and not in use, the GEB is directly connected to the permanent 12V line of
the vehicle. The GEB is then wired to the vehicle, it communicates with the
GMC via a 3G channel and with the users’ smartphone via Bluetooth or NFC
technology.

GM users employ their smartphones to interact with the GM system and
retrieve electronic keys, which are necessary to take possession of vehicles,
open/close their doors, enable the drive and take advantage of the extra fea-
tures offered by additional services.

The primary goal of the GEB is to ease the management of the heteroge-
neous fleet of vehicles by permitting a vehicle- independent communication
among Green Move elements. It is composed of a low-level embedded board
and a high-level Android board.

The embedded board acts as a Hardware Abstraction Layer (HAL) and it
is designed to abstract the vehicle-specific details, thus providing a general
communication protocol to the high-level layers built on top of it. To achieve
this, the embedded electronic board is connected to the vehicle’s CAN-bus
to retrieve data directly from the vehicle ECU and provides several analog
and digital input/output channels so that the GEB can be installed on a large
variety of heterogeneous vehicles, even those without an ECU (e.g., Tazzari
and Birò).

13

3. GREEN MOVE INFRASTRUCTURE

A microcontroller handles each signal, acquiring the vehicle data at a con-
stant rate and, since the set of available signals is strongly vehicle-dependent,
it collects them into standardized packets so that they can be easily transmit-
ted to the high-level Android board. The vehicle signals are clustered into 6
categories: battery, doors, speed, faults, commands and others. Each signal
available on the vehicle must belong to one of the previous category. For in-
stance, the actual provided current, the state of charge of the battery, and the
battery’s state (charging or not) belong to the battery group.

The Android board provides the Software Abstraction Layer (SAL) which
receives (in a vehicle-independent way) the data from the low-level board,
stores them into a suitable data structure, and exposes a standardized inter-
face that allows other GM applications residing on the GEB, to easily access
the vehicle information.

The GEB decouples the high-level fleet management functionalities from
those, implemented in the vehicle ECU, related to the control of the vehicle
motion, thus establishing the separation and non- interference of the former
with respect to to the latter, which guarantees the necessary safety require-
ments.

3.1.4 SERVERS RUNNING THE GREEN MOVE CENTER

Green Move requires servers connected to the Internet to run the Green Move
Center. The size and number of these servers can largely vary depending on
the number of users and GM partners accessing the service, thus can’t be de-
termined upfront.

In an effort to build a system which is green even in its own insfrastruc-
ture, a cloud architecture has been chosen as the base for building the Green
Move hardware infrastructure. This means that Green Move does not need its
own data center, but can be deployed in the cloud and scaled by adding hard-
ware only when needed. Of course, hardware resources can be freed when not
needed by Green Move.

A level of abstraction has been added on top of the hardware resources
by leveraging the virtualization techniques available in the market. The open
source virtualization software Virtual Box [VirtualBox, n.d.] has been adopted.
Any number of virtual machines can be run on top of Virtual Box. The Green
Move Center has been designed to run on any cloud with minimum adapta-
tions.

3.1.5 USER SMARTPHONES

Although not owned by Green Move, its crucial to note that it would be im-
possibile to operate the GMVSS without users’ smartphones. They are essen-
tial in the interaction between the user and the vehicle. They run the soft-
ware which make them act as the key for opening/closing the vehicles’ doors
(where available) and to enable the drive. Currently, for the sake of openness
in the initial stage of the GM project, only smartphones running the Android

14

3.2. Software Infrastructure

operating system are supported. Also, the minimum required version of An-
droid is 2.1.

Support for Apple smartphones, along with BlackBerry and Windows Phone
is planned for the near future.

3.2 SOFTWARE INFRASTRUCTURE

This section covers the different software running in the GM system, except
for the Green Move Center and the Green Move Applications functionalities
which are separately treated in the following chapters.

3.2.1 DATABASES

Dealing with large amounts of data, Green Move needs to store them appro-
priately. Also, these data is different in kind and purpose, and thus require
different software approaches for an efficient storage, access and use.

POSTGRESQL

PostgreSQL is an object-relational database management system (ORDBMS)
available for many platforms. It is released under the PostgreSQL License,
which is an MIT-style license, and is thus free and open source software. Post-
greSQL is developed by the PostgreSQL Global Development Group, consist-
ing of a handful of volunteers employed and supervised by companies such
as Red Hat and EnterpriseDB. It implements the majority of the SQL:2008
standard, is ACID-compliant, is fully transactional (including all DDL state-
ments), has extensible data types, operators, index methods, functions, aggre-
gates, procedural languages, and has a large number of extensions written by
third parties.

The PostgreSQL database management system has been chosen as the database
to store the administrative and operative information of Green Move. This in-
formation includes the users login information, the vehicles details and the
reservations in the system, along with various other data and configurations
needed to operate the vehicle-sharing service.

NOSQL DATABASES

Log data collected through the system does not require a structured and trans-
actional database. This, along with the performance benchmarks of NoSQL
Databases, lead to the choice to use this kind of technology to store the logs.

Part of the logs are the positions of the vehicles, which are collected like
any other information in the GM infrastructure.

Currently, the evaluation of various NoSQL database is going on in the
GM project.

15

3. GREEN MOVE INFRASTRUCTURE

3.2.2 ANDROID

Android is a popular operating system for smartphones, whose development
started by Android Inc. in 2003. Google acquired Android Inc. in 2005 and in
2007 constituted the Open Handset Alliance with other companies and telcos.

Android differs from iOS and Blackberry OS because it is open source soft-
ware. This openness made Android the natural choice for the development of
the initial prototype of the users’ smartphone app. Also, Android had already
been chosen as the platform for the development of the Green E-Box software
stack.

Android provides both a Native Development Kit (NDK) and a Software
Development Kit (SDK) for the Java language. The software running on GEBs
is written in Java and so is the application on the users’ smartphone.

3.2.3 COMPLEX EVENT PROCESSING ENGINE

A huge amount of data is generated, gathered, treated and collected in Green
Move. Much of this data can been seen as event data, since it is strictly con-
nected with the time, position, and context in which it is generated. Events can
be even related one with another, since many events of a certain kind in the
same time and area may be of interest to the system (i.e. many vehicles rapidly
stopping on the same street might mean that an accident occurred).

Many events are generated in proximity of the user, especially when she is
in the vehicle, or by the vehicle itself (position, charge level, hardware faults).
With a fleet of many vehichles circulating in the system, there is the need to
have a system capable of handling many events per second and to process
them to build new events out of a set of rules.

This component must be a high-performance, configurable service reach-
able by all of the actors involved in the event generation and consumption in
the GM system.

T-REX

T-Rex is a CEP middleware developed at DEI - Politecnico di Milano which
has the requirements outlined above in terms of performance and configura-
bility.

T-Rex uses the TESLA[Cugola & Margara, 2010] language, an event defi-
nition language that provides a high degree of expressiveness to users, while
keeping a simple and easy to use syntax. TESLA has also been developed at
DEI - Politecnico di Milano with the precise goal of providing a simple yet
powerful way to express event and rules for T-Rex.

T-Rex runs on top of the GM infrastructure. Any GEB and the Green Move
Center can estabilish a connection to the T-Rex server, and so can any GM
partner which is interested in sending/receiving events. At the time of writ-
ing, users’ smartphones do not interact directly with the T-Rex middleware.

T-Rex Server is a software layer built around T-Rex to provide a set of API
to clients. It uses the TCP/IP protocol to obtain an acknowledged, resilient
communication channel with clients. The protocol used to communicate with

16

3.2. Software Infrastructure

T-Rex Server has been developed to be simple and fast, given that it can be
rewritten with little effort without changing dramatically client applications
(only a the T-Rex client library must be substituted, API remains the same).

FIGURE 3.3: T-Rex Complex Event Processing

T-Rex Server exchanges packets with its client, which are summarized
here:

• Ping Packet: an empty packet which is periodically sent from T-Rex
Server to each connected client. A client must reply with a Ping Packet
or will be considered crashed/offline, its subscriptions will be removed
and the TCP connection terminated.

• Publication Packet: it is the event packet. It contains informations as a
key-value list, along with a packet type id which is useful to better sep-
arate events based on their purpose.

• Subscription Packet: a packet carrying the information useful to perform
a subscription. It includes the packet type id and constraints on the event
content.

• Unsubscription Packet: a packet suitable for cancelling subscriptions.

• Rule Packet: rules for T-Rex can be dynamically added at run time by
sending a Rule Packet.

T-Rex Server adopts a content based publish-subscribe paradigm: any client
can subscribe for events and publish events. Subscriptions are based on the
content of the event (i.e. certain attribute with given value)

T-Rex Server startup process can be summarized in this steps:

• The rules defined within the T-Rex Server source files are loaded and
added to the T-Rex Engine.

• A log file is initialized.

17

3. GREEN MOVE INFRASTRUCTURE

• The internal state of T-Rex is set to a clean state, since it has no memory
of any previous interaction with the GM system.

• T-Rex Server opens a listening TCP socket on port 50254 and starts lis-
tening for event publications and subscriptions.

Interaction with T-Rex in GM is performed by using its APIs. A C++ and a
Java client library have been developed for this purpose.

18

— CHAPTER 4 —

GREEN MOVE CENTER

The Green Move Center (GMC) is a key component of the Green Move archi-
tecture. It provides the following functionalities to Green Move:

• Users’ registration and login: users can register to the GMC simply fill-
ing a form on the GMC website.

• Vehicle reservations: users login to the GMC and perform a research.
The GMC is in charge of finding a suitable solution.

• Broker for Green Move Applications: GMAs are uploaded on the GMC
and distributed to Green E-Boxes.

• Secure transmission of the ticket: the electronic ticket for a reservation
is generated by the GMC and then transmitted encrypted to both the
vehicle and the user’s smart-phone.

• API for the smart-phones: the GMC provides the same registration and
reservation functionalities via an HTTP API.

• Data collected from the vehicles is stored in the GMC database

Such a complex system is composed of various pieces. In this chapter we
focus on the web-application which provides the website and the APIs, along
with the support for the Green Move Applications.

Figure 4.1 shows the interactions of the three key actors in the GM system:
users, vehicles (Green E-Boxes) and the GMC.

In the following sections, we analyse interactions of every actor of Green
Move with the GMC and present the choices made in the implementation of
the latter.

4.1 OVERVIEW OF USERS’ INTERACTION WITH THE GMC

Users can sign up to Green Move by visiting the GMC website. Currently the
user’s credentials are the email used for the registration and the chosen pass-
word but two factor authentication, including sending a confirmation code
via SMS to the user, is easily implementable in the system.

Users have a list of their reservations, both the past and the current ones.
Reservations must be confirmed, since unconfirmed reservations act as a lock
on a certain vehicle: after 15 minutes, the GMC purges these reservations to
maximize to number of available vehicles1. Cleaning unconfirmed reserva-
tions also helps prevent a denial of service attack, in which numerous searches
are performed and no confirmation (and payment) is done.

1The removal of unconfirmed reservations is scheduled as a cron task on the server on which
the GMC currently runs.

19

4. GREEN MOVE CENTER

FIGURE 4.1: An overview of the interactions between the GMC, users and vehicles.

Users search for vehicles with a calendar based view, as shown in figure
4.2 and figure 4.3. The user first chooses the day in which she wants to start the
rental, the model of vehicle she prefers and optionally any required additional
services (eg. baby seat, assistance). Search results are presented to her, which
is then invited to confirm one of the proposals and input an estimate of the
time when she will no longer need the vehicle. This time may be extended
later, if it does not conflict with other users’ reservations for the same vehicle.

Users use their smart-phones to search for free vehicles or just to retrieve
the electronic ticket. The former is possible both visiting the Green Move
Center site with the smart-phone, as shown in figure 4.2 or using the Green
Move smart-phone app, while the latter is available only with a running GM
client application. Users are required to register and login in the GMC to
perform any operation, such as reserving vehicles. The same applies for the
smart-phone application, which stores securely the user’s credentials using
the means provided by the Android operating system.

This means that any other action apart from registration requires a login on
the website or the insertion of the login credentials in the application running
on the user’s smart-phone.

The download of the ticket is handled on user’s demand, although the
support for pushing the ticket directly from the GMC to the user’s smart-

20

4.1. Overview of users’ interaction with the GMC

FIGURE 4.2: Calendar view when searching for a vehicle on the GMC, seen from the
Google Chrome browser on Android

FIGURE 4.3: Vehicle model and date selection when searching for a vehicle on the
GMC, seen from the Google Chrome browser on Android

21

4. GREEN MOVE CENTER

FIGURE 4.4: List of the reservations of the current user on the GMC, seen from the
Google Chrome browser on Android

phone has already been experimented successfully.
When the user tries to open the doors of a vehicle, the latter downloads

its own list of valid reservations from the GMC and uses the ticket informa-
tion provided with each valid reservation to authenticate the user and allow
commands on a direct communication via blue-tooth or NFC.

4.2 OVERVIEW OF VEHICLES’ INTERACTION WITH THE

GMC

A vehicle is registered on the GMC after the installation of its Green E-Box.
Vehicle registration requires the following data to be available and inserted:

• Vehicle license plate

• MAC address of the blue-tooth module of the green e-box (which is
found on a label applied to the green e-box)

• Vehicle model

• Cryptographic public key for the vehicle. This key is generated along
with the private key and made available by the green e-box or can be
pre-generated2

When a user attempts to pick up a vehicle from its parking position, the
vehicle downloads a list of its confirmed reservations from the GMC. Each

2The key must be a RSA key with 4096 bit of entropy.

22

4.2. Overview of vehicles’ interaction with the GMC

reservation contains the relative ticket. The vehicle then uses the current time
to determine the active ticket and attempts to establish a secure connection
with the user’s smart-phone, using a shared secret which is contained in the
ticket (the session-key).

When the vehicle is temporary parked, no connection with the GMC is
necessary. When the user leaves the vehicle back in its parking position, the
vehicle communicates again with the GMC to mark the end of the reservation.

During the rental, sensors collect data on the vehicle and the Green E-Box
leverages the T-Rex middle-ware to transmit these information to the GMC,
which logs and stores them in the database3.

4.2.1 OVERVIEWS OF ADMINS’ INTERACTION WITH THE GMC

The GMC also provides administration functionalities. These include adding
(see Figure 4.5), editing and removing users and vehicles, monitoring vehicles’
position (see Figure 4.6) and faults.

Green Move Applications, treated in the next chapter, are also uploaded to
Green E-Boxes via the Green Move Center.

Figure 4.5 shows the form prompted to an admin when registering a new
vehicle on the GMC.

FIGURE 4.5: Registering a new vehicle on the GMC.

3The NoSQL database for storing some of the collected data has not yet been chosen.

23

4. GREEN MOVE CENTER

FIGURE 4.6: Position of a vehicle is showed on a map in the admin section of the GMC.

4.3 GREEN MOVE CENTER ARCHITECTURE

Green Move Center has been designed to be modular, ready for deployment
on a cloud platform, easy to change, extend and fast to develop.

The sum of this characteristics, for a modern web application as the GMC,
is difficult to achieve all at the same time. A number of choices had to been
performed to develop the GMC, detailed in the next sections of this chapter.

The GMC has been developed with cloud computing technologies in mind,
so its architecture reflects the flexibility required to run in these kind of envi-
ronments. Figure 4.7 shows the network services architecture of the GMC. The
components represented are not tied to a particular physical structure or soft-
ware implementation, in effect they could be all running on the same physical
or virtual machine.

In a cloud environment each component is to be thought as a service. The
database service, the storage service, the load balancer service and so on. This
poses some restrictions on the implementation (e.g. files should be stored on
the storage service rather than on the local disk), but allows greater flexibility
and scalability.

Instances of the GMC can be added to the instance pool of any of the web
servers depicted in figure 4.7, regardless of the hardware which the instance is
running on. Of course, for performance reasons, the choice won’t be random.

24

4.3. Green Move Center architecture

FIGURE 4.7: The Green Move Center network architecture

4.3.1 WEB APPLICATION FRAMEWORKS

We already discussed the database choice, which obviously impacted on the
choice of the technologies required to build the GMC.

The most important choice in the development of the GMC is the web
application framework. The choice was a-priori restricted to open source soft-
ware, as for any other technology of Green Move. A modern web application
can’t be effectively coded without a sound, well tested framework, better if
with a large community and online resources. There are a number of good
frameworks available, in a variety of programming languages.

4.3.2 RUBY ON RAILS

Ruby on Rails (RoR, or Rails), the application framework chosen for the GMC,
is an open source web application framework, written in the Ruby4 program-
ming language. Ruby is a general purpose language, first released in 1993 by
the Japanese programmer Yukihiro Matsumoto. Ruby is object-oriented, inter-
preted and multi-paradigm (imperative, reflective, functional). It has a variety
of intepreters available, which follow different approaches in the realization
of the Virtual Machine (VM) which executes the Ruby code.

Citing from Wikipedia: "Ruby on Rails is a full-stack framework, mean-
ing that it gives the web developer the ability to gather information from the
web server, talk to or query the database, and render templates out of the box.
As a result, Rails features a routing system that is independent of the web
server. Ruby on Rails emphasize the use of well-known software engineering
patterns and principles, as Active record pattern, Convention over Configura-
tion, Don’t Repeat Yourself and Model-View-Controller."

4Ruby [http://ruby-lang.org]

25

4. GREEN MOVE CENTER

During the development of Green Move Center, various updates of RoR
have been made available and seamlessly applied, testifying the solidity of
the choice performed.

FIGURE 4.8: Model View Controller. The user request reaches the controller, which
performs operation on with the model and renders the view, which is sent as thre
response.

4.3.3 RUBY AND JRUBY

Ruby is the language in which Rails is written. It is also the language chosen
for the development of the web-application part of the GMC. Ruby has an al-
most unique feature among programming languages, which is the amount of
different implementations of virtual machines and interpreters for its execu-
tion. The development of the GMC levered this feature to reduce development
time and the risk of incompatibilities and errors in future releases, with respect
to the T-Rex middle-ware.

JRuby5 is an implementation of the Ruby VM which runs on top of the
Java Virtual Machine (JVM). The main benefits of JRuby are true concurrency
of Ruby code (Ruby threads are mapped to Java threads) and a seamleass
integration with Java libraries. It is possible to call Java functions from Ruby
code. This permitted to use the already available Java client library for T-Rex
without coding it from scratch in Ruby6.

4.3.4 JQUERY, SASS, COFFEESCRIPT AND BOOTSTRAP

Rails strongly promotes the Convention over Configuration principle, so it
was a natural choice to follow Rails development conventions in GMC: jQuery

5JRuby [http://jruby.org/]
6A Ruby client library for T-Rex would have required at least two weeks of coding, and would

then require maintenance and updates as the reference library changed.

26

4.3. Green Move Center architecture

has been adopted as the JavaScript framework, Sass as the language for Cas-
cading Style Sheets (CSS) and CoffeeScript as the client side scripting lan-
guage. Sass is automatically compiled to plain CSS by a component of Rails,
while CoffeeScript code is compiled to JavaScript.

Since Green Move Center targets all the desktop browsers and the mobile
ones, it is crucial to have a consistent look and behaviour and all the browsers
and devices. For this reason, a CSS framework has been adopted: Bootstrap
(formerly named Twitter Bootstrap).

4.3.5 DEVISE

Registration core functionality is provided by a Ruby gem named Devise 7.
Devise provides an API for the following use cases:

• sign up

• login and logout, with session management

• password recovery with a request time-out (requires a working SMTP
server)

• password change, optionally requiring the user to confirm the previous
password

• multi step registration (i.e. users must be approved by an admin or click
a link in a confirmation email)

Devise has currently a growing community on Github8 which counts more
than a thousand forks and more than 1000 commits. It has been chosen for its
proven stability and security and to speed up the development process, since
such a basic set of functionalities still requires a lot of coding time, and it’s an
error prone process.

Green Move Center wraps the Devise API and exposes it in two points: a
sign up form on the website and a HTTP API accessible by the smart-phone
application.

4.3.6 RESERVATION PROCESS

Reservation starts with a research performed by an user. At the time of writ-
ing, the user can provide the following parameters:

• Start date and time

• Type and model of the vehicle (can be more than one)

• A location and a distance in kilometers, for proximity search on the ve-
hicles. If the user wishes to have a vehicle immediately, this can be auto-
matically computed using the GPS on the smart-phone or the geoloca-
tion API in a browser (see figure 4.9)

27

4. GREEN MOVE CENTER

FIGURE 4.9: The user is asked by her browser to allow the GMC to use her approxi-
mated physical position. Firefox browser on Ubuntu Linux

The GMC uses the provided parameters to find suitable vehicles, option-
ally limiting to those present in proximity of the user. Constraints on the re-
maining charge of the vehicle and additional services are not considered in
the currently implemented reservation logic, although a more comprehensive
system is being developed by other participants in the Green Move project.

The GMC creates an unconfirmed reservation if at least one vehicle is
found to be available in the given location and time. This reservation needs
to be confirmed by the user, or will expire in 15 minutes and will be purged
by the system.

This is basically the same logic which is adopted in the train and airline
business. The unconfirmed reservation acts as a lock on the resource, which
here is a vehicle. The resource needs to be freed if the user does not wish to
continue with the reservation and does not explicitly cancel the reservation
procedure, thus a time-out is needed. 15 minutes is a common value for this
kind of use case.

After a reservation is confirmed, its ticket is available. The ticket is not a
record stored on the database, it is instead an object computed every time it is
needed.

Every time the ticket is requested, it is computed from scratch with the
data associated with the reservation. This allows a greater flexibility in the
reservation process, since allows to have a fresh ticket if the timing of the
reservation changes without impacting the database. This design choice does
not, however, add significant computational overhead on ticket retrieval.

7Devise: [https://github.com/plataformatec/devise]
8Github [https://www.github.com] is a popular platform for hosting open source projects.

28

4.3. Green Move Center architecture

The ticket is represented as a set of key-value pairs. Here we enumerate
the keys and the relative meaning:

• id: the id of the reservation, which can be used to fetch a new copy of
the ticket in case of need

• user-id: the id of the user which created the reservation

• start-datetime: the date and time in which this ticket becomes valid

• end-datetime: the date and time in which this ticket becomes no longer
valid

• session-key: the shared key which the vehicle and the smart-phone will
use to communicate securely. It is generated with a cryptographic hash-
ing algorithm (SHA1) and salted with the id of the reservation, which is
a random string.

When the application on the smart-phone of the user downloads the tick-
ets, additional information is added to each one to aid the user in finding the
vehicle, such as the license plate, the color and the model.

When the Green E-Box downloads the tickets, no additional info is re-
quired.

As a security measure, every time the tickets are transferred from the GMC,
to the smart-phone or the Green E-Box, they are ciphered with asymmetric en-
cryption (RSA with 4096 bit keys). This kind of encryption intrinsically adds
security, because the result of encryption is different at each iteration (while
the result of decryption remains the same). This helps prevent reply attacks to
the crypto-system.

Since encryption generates unprintable characters and the HTTP API of
the GMC uses JSON as the standard format, an additional step of encoding
the ticket in a Base64 string has been added to the process.

4.3.7 INTERACTIONS BETWEEN THE GMC AND THE GREEN E-BOX

DURING A RESERVATION

During usage, the vehicle will generate a continuous stream of data. The T-
Rex based middle-ware presented in the previous chapter is used to publish
this data. Any interested party can subscribe to specific events.

A logging mechanism has been developed which subscribes to the cur-
rently generated events and log them in the GMC database. In case of errors,
faults or user behaviour in contrast with the terms of the GM service, the GMC
can perform any useful actions such as calling external services, send emails
or other kind of alerts.

This requires that the GMC is somehow subscribed to events produced by
the vehicles. In absence of native Ruby library, the java client library for T-Rex
has been used in conjunction with the JRuby interpreter, which allows Ruby
code to be run on top of the Java VM. The GMC can act both as a regular web

29

4. GREEN MOVE CENTER

application and a daemon, continuously waiting for a subset of the events and
performing operations accordingly.

The daemonized mode is used for any activity which is too long to be
performed during an HTTP request - with the user waiting on the other side
of the network - or batch processing. This includes pushing reservation and
ticket data to vehicles and smart-phones and distribution of the GMAs.

4.4 SOFTWARE ARCHITECTURE OF THE GMC -
CONTROLLERS

A (simplified) diagram of the controllers of the GMC is shown in figure 4.10.
Methods in controllers are called actions, and usually correspond to a sin-

gle functionality which is reachable by the end user with an HTTP request.
Some actions may be declared as private, so their code is not directly reach-
able but can be called by other actions in the same controller. Private meth-
ods are often used to build shared logic, which is then called before, after or
around the code of other actions. Rails provides a simple way to manage the
execution order of this methods, which is called the filters pipe.

A Rails’ convention wants the all controller classes to be in the controllers
folder. Controllers should be declared in files with the name ending in _con-
troller (e.g. the Application controller is defined in the file application_controller.rb
in the controllers folder). Another convention prescribes to use camel case
names for class names, and the corresponding snake case for file names, so
that the Application controller class is named ApplicationController.

The Application controller is the default controller. It subclasses the base
class of controllers in the Rails framework, which is ActionController::Base. The
main functionality provided by the Application controller is to set the locale,
so that proper translations can be loaded and used in the views.

As any other code which is shared among various actions, the set_locale
method is declared in the super class and inserted in the filters pipe. In this
way, it can be executed before the code of each other action.

The RegistrationsController subclasses the ApplicationController class and
provides methods for the user sign up, login and update. This includes the
ability to change the user’ password, the public key and any other user related
data.

The ReservationsController is essentially a wrapper around the Reservation
model, described later in this chapter, which contains all the reservation pro-
cess logic. The search action is responsible of parsing the parameters submitted
by the user, then asking the Reservation class for free vehicles and rendering
the view with the results.

The administrative functions live in a name-space, which has a principal
controller (Admin::BaseController), which is then subclassed by all the others
in the Admin name-space. This choice gives proper code isolation and also
allows the definition of a filter in the Admin::BaseController which redirects all
the unauthorized users to the home page of the GMC website.

The four controllers defined in the Admin name-space provide the follow-

30

4.4. Software architecture of the GMC - Controllers

FIGURE 4.10: Controllers of the GMC

ing functionalities:

• GPSPositionsController: displays a map (using the JavaScript APIs avail-
able from Google) with the current position of each vehicle, updated in
near real-time

• UsersController: provides the admins a way to add, edit or delete users

• VehiclesController: same as the users controller, for vehicles

• GreenMoveApplicationsController: allows selected users to upload GM
Applications and schedule operations for their distribution / removal in
the Green E-Boxes

31

4. GREEN MOVE CENTER

The Api name-space contains the controllers responsible of providing APIs
exposed to the smart-phone client applications (U name-space) and the GEBs
(V name-space). Both of the name-spaces defined under the Api name-space
contain a Crypto name-space, which contains the Reservation controller re-
sponsible of the encrypted exchange of the reservation (and ticket) data.

The Api::U::ReservationsController mimics the behaviour of the Reservation-
sController described above, with the only differences that responses are all
JSON objects and that user’s authentication information must be supplied
with every request, since the APIs are state-less.

The Api::U::RegistrationsController wraps the logic provided by the Devise
gem, allowing a user to sign-up by using the smart-phone application rather
than the website.

4.5 SOFTWARE ARCHITECTURE OF THE GMC - MODELS

Most of the models defined in the GMC, in its current state of implemen-
tation, are only used to comply with the underlying database structure and
constraints (e.g. referential integrity).

Figure 4.11, 4.12 and 4.13 show the models of the GMC and the relation-
ships among them, which reflect the foreign keys present on the Postgres
database. Attributes are not shown for the sake of readability. A detailed rep-
resentation of the database schema is given in Appendix D. The choice of Post-
greSQL allowed the developers of the database structure to enforce foreign
keys integrity checks among the tables. This mean that the database is not a
mere data store with a layer of software to perform queries, but is in fact an ap-
plication itself. This is a good design choice when heterogeneous clients might
access and modify the stored data, since allows to keep access authorization
logic in a shared place. As a side effect, this choice gives a significant perfor-
mance increase w.r.t. duplicating the same logic with a scripting language as
Ruby.

However, the logic which ensures referential integrity has to be repeated
in the Ruby code of the models, otherwise the database will deny transactions
(e.g. deleting a vehicle without prior deletion of its reservations).

Since Rails does not provide a way to distinguish views from tables on the
underlying database, a model must be declared to access data provided by
the database views. Proper attention must be put when implementing these
models in not performing write operations on such views, since this is not
possible and an exception will be raised by the database adapter.

4.5.1 THE RESERVATION MODEL

The Reservation model deserves a special mention, since it provides the func-
tionality both for searching and for reserving vehicles. This model maps the
reservations table on the database.

As previously stated, the reservations table is used both to store the con-
firmed reservations and the temporary reservations, which are purged after
15 minutes if the user does not confirm them. The proposals method of the

32

4.5. Software architecture of the GMC - Models

FIGURE 4.11: Models of the GMC - part 1

33

4. GREEN MOVE CENTER

FIGURE 4.12: Models of the GMC - part 2

34

4.5. Software architecture of the GMC - Models

FIGURE 4.13: Models of the GMC - part 3

35

4. GREEN MOVE CENTER

Reservation model is responsible of creating temporary reservations, given the
user input9.

The current implementation of the proposals method does the following:

• Vehicles near to a user’s specified address are considered for the re-
search. the user may specify a maximum distance which will affect this
operation

• Vehicles are optionally restricted to a given model or specific vehicle, if
specified

• If more than one vehicle is found in the previous steps, only the first one
is considered

• An attempt to save the reservation is made, triggering validation logic
which ensures that the given vehicle has no overlapping reservations in
the user’s supplied time frame

• The list of the unconfirmed reservations for the given user is returned,
so the user can continue the reservation process confirming one of the
temporary reservations before they get deleted

Needless to say, the logic described above is pretty basic and not suitable
for a production system. For example, the first vehicle might be busy in the
given time but a second one might be available. The above logic will fail to
find the free vehicle. Also, a user is allowed to perform various searches with-
out its temporary reservations getting deleted. This is not safe in a production
environment w.r.t. to denial of service attacks.

The problems presented are easily solvable. The described logic, however,
is just a placeholder for the upcoming reservation logic. Green Move aims to
integrate various systems under its standardized protocols, so the actual logic
will depend on a great number of factors and conditions. The simple logic
currently implemented has been good enough to perform tests in this first
phase of experimentation.

The Reservation model is also responsible of providing ticketing data to
both the Green E-Boxes and the client applications on the users’ smart-phone.

The method semantically named data_for_smartphone assolves the last duty.
It returns a dictionary with two key-pairs.

• additional_info: a dictionary containing the license plate, mac address,
color of the vehicle and other human readable informations to help the
user find the correct vehicle in a parking lot

• ticket: the ticket is a dictionary containing information about the start
end the end times of the current reservation, along with its unique id
and the id of the user. The ticket also contains the session-key, which

9A more complex reservation system is ongoing. The user will be granted a reservation with
no particular vehicle, and GM will take care of finding the optimum solution just in time for the
start of the rental.

36

4.5. Software architecture of the GMC - Models

will be pre-shared secret between the Green E-Box and the smart-phone
application when communicating over blue-tooth.

The data_for_greenebox method returns a dictionary containing only the
ticket data, which is the same of the data_for_smartphone method.

Both methods convert the dictionary in the JSON format, then cipher the
resulting string with the public key - of the user and of the vehicle, respec-
tively - and encode the binary output of the cipher operation in a Base64
string.

The session-key is the result of a SHA1 sum operation, currently involving
a fixed salt and the unique identifier of the reservation.

The session-key generation mechanism can be furtherly hardened. How-
ever, an attacker which can guess the session-key will only be able to establish
a blue-tooth connection with the Green E-Box, since the vehicle has its own
copy of the reservation, which contains the timing information.

Knowing the session-key will allow the attacker to perform a man in the
middle attack, which will require to be in the range of the blue-tooth tranmis-
sion. Having the session-key allows the attacker to read the communication
between the Green E-Box and the smart-phone in clear text, so this could be
used to inject commands to the vehicle.

The problem with this attack is that the id of the reservation is random and
only the vehicle and the user can read it, because is transmitted ciphered with
their public keys (and over a SSL connection, when running in production).

This said, of course hardening proposals are possible and welcome.

37

— CHAPTER 5 —

GREEN MOVE APPLICATIONS

While developing the Green Move Center and the Green E-Box software many
ideas and use cases have emerged with respect to the potential of Green Move.
One of these ideas was about the interest of third parties in interacting with
Green Move users or vehicles.

T-Rex provides a standardized protocol for exchanging complex events,
but the overall level of interaction for third parties is limited to subscribing
and publishing events. This might or might not be enough interesting for
some actors.

Consider the case of an advertising agency which decides to provide some
targeted ads to Green Move users. Currently there is not a standard in Green
Move to achieve this. Sure we can imagine advertisements being sent as events,
with a pre-defined component on the Green E-Box which performs subscrip-
tions based on the kind of advertisements suitable for the current user on
board.

However, other needs may arise in the future and we can’t think upfront of
a solution for all of them. This is especially true for the Green E-Boxes. While
the code of the Green Move Center is easily extendable and new versions can
be deployed anytime, the process of upgrading the software on all the Green
E-Boxes can be slow, with uncertain results and at worse even very expen-
sive due to the number of the vehicles and the multi-ownership model which
characterize Green Move.

Android applications can be made auto updatable. This can appear to be a
viable solution to the problem of providing new functionalities on the Green
E-Box applications. There are two main reasons for which this is not an ideal
solution:

• Dependency on a third party for updates distribution and timing. Al-
though Google is a great example of stability and speed, it is an haz-
ardous choice to rely exclusively on Google to deliver new features to
the Green E-Box application.

Specifically, the timing of the distribution of updates is subject to the ac-
ceptance of the latter in the Android market, which may be unsuitable
for urgent updates. Also, in case of a failed update, manual interven-
tion will be required. This means that a vehicle on which the update has
failed must be identified, reached (online or offline) and fixed.

This is critic even for an approach where GMA are shipped as separate
applications, rather than updates of the existing Green E-Box app.

• Poor flexibility and inefficient use of resources of the Android board.
Since the application runs on an Android board it has limited resources,
both in terms of memory and of computational power. Even if all of the

39

5. GREEN MOVE APPLICATIONS

use cases were covered with appropriate functionalities embedded in
the application, the latter would become very large and complex. Also,
most of the functionalities would be unused because the vehicle may not
be rented for days or always taken by users for whom there is no need
to have all that functionalities in place.

Ideally, we would like to have a minimal application running on Green
E-Boxes which handles the core tasks (take and release of the vehicle, collec-
tion of vehicle data and transmission of data to T-Rex Server). For any other
need, it would be better to have the chance to add functionalities only when
there is need of them for a particular user, location or period. When no longer
needed, they could be simply removed from the device. This would help the
application to remain light and eliminate the need to think upfront of all the
use cases, at cost of having a new problem of building a system capable to
achieve this goal. In analogy with the Android applications, we named Green
Move Applications (GMA) all of the extensions to the Green E-Box application
which can be installed on demand.

FIGURE 5.1: Green Move Applications interfaces.

The GMA system is composed of a component which resides on the Green
E-Box (Green Move Code Agent) and a module of the Green Move Center
(Green Move Applications Server). Green Move Applications are uploaded
on the Green Move Applications Server and distributed to Green Move Code
Agents leveraging the T-Rex middleware.

In the next section we describe the structure and the conventions necessary
to build a GMA.

5.1 GREEN MOVE APPLICATION STRUCTURE

A GMA is essentially a standard Android Library which adheres to a set of
conventions. The conventions are required for the correct operation of the
GMA loading mechanism. The code of the GMA must be precompiled for the

40

5.2. Green Move Code Agent

Dalvik Virtual Machine and packaged in a JAR file to be distributable. Details
on this process are provided in appendix C.

The critical points in the operation of loading a Java class are the following:

• the complete package name must be known a-priori

• only the default constructor can be called on the target class

Having this constraints, the GMA must provide a single point of entry in
the application code which must be a class, and have only the default con-
structor. Additionally, a init method must implemented to receive a reference
to the Green Move Container object, which provides API for interacting with
the vehicle and the T-Rex Server. In order to quit the execution of a GMA, a
stop method must be implemented.

To enforce this conventions and provide the necessary dependencies for
the development of GMAs, an Android library named GMCodeLibrary has
been developed and made available, along with its documentation.

Given this pre-requisite, a GMA can perform any operation allowed by the
Android OS.

Operations requiring data collected from the vehicle can subscribe to up-
dates from the embedded board present in the Green E-Box. The Green Move
Container, a component of the Green Move Code Agent described later, pro-
vides a reference to the component responsible for the interactions with the
vehicle.

Each Green Move Application can use the T-Rex middleware to publish
and subscribe to events generated in any other part of the GM system.

In the next section we describe the Green Move Code Agent, a module
for the Green E-Box application which provides the functionality for adding
Green Move Applications along with a standardized API for the latter.

5.2 GREEN MOVE CODE AGENT

Since the Green E-Box application runs on Android, it has most benefits of the
code running on a Java Virtual Machine. Java classes can be loaded program-
matically when needed, so it is possibile to think of a system which down-
loads code from the network and loads it to extend the functionalities of the
Green E-Box application. Green Move Code Agent (GMCA) is the component
responsible of such behaviour.

GMCA require different Android components:

• GMContainer: an Android service. It runs in the background and waits
for input. It is responsible of providing an API for the Green Move Ap-
plications to interact with the vehicle and the GMC.

• GMTRexClient: an Android service. It runs in the background. It is re-
sponsible of keeping a connection with T-Rex Server to receive input
about the GMA to load. Will use the JarRetriever to perform the task,
and notify the GMContainer when done.

41

5. GREEN MOVE APPLICATIONS

• JarRetriever: a class responsible of downloading and loading the code of
a GMA.

5.2.1 GREEN MOVE CONTAINER API

The Green Move Container is the component responsible of providing a stan-
dard API for the GMAs, both for loading/unloading and for interacting with
the vehicle and the T-Rex Server. It is an Android Service, always running
in the background, since it only performs tasks when prompted. The Green
Move Container keeps a list of references to every GMA loaded on its device,
since it is the only way to perform the unloading of that code.

It provides an administrative API which is required to ask loading, un-
loading and listing of GMAs:

• loadClass(<url of jar file>,<class name>): fetch the GMA from the given
url and attempt to load the class with the given name

• unloadClass(<class name>): ask the GMA to terminate, if loaded

• listClasses(): list the currently loaded GMAs

Green Move Container also provides an API for GMAs, consisting in the
following:

• getDataModel(): returns a reference to an object which can be subscribed
for updates in sensor readings, providing data about GPS position, speed,
etc.

• getTransportManager(): provides the caller a reference to its own in-
stance of a component required to communicate with the T-Rex Server.

• toast(message): gives the GMA a method to interact with the user on
board, showing a message in the display of the Green E-Box (where
available).

5.3 GREEN MOVE APPLICATIONS SERVER

The component responsible of the distribution of GMAs to Green E-Boxes is
the Green Move Applications Server (GMAS). The GMAS is available, for
selected users, inside the GMC. Jar files containing the applications are up-
loaded on the GMAS, along with the information required to load them (class
name).

The user may choose among three operations on each of her GMAs:

• load: the application should be loaded on the Green E-Boxes

• reload: the application should be updated on the Green E-Boxes

• unload: the application should be uninstalled from the Green E-Boxes

42

5.3. Green Move Applications Server

5.3.1 DISTRIBUTION OF AN APPLICATION

The GMAS stores the uploaded jar in a directory and puts the jar url and class
name in a queue, along with the operation to be performed.

A background job, which uses the JRuby interpreter, estabilish a connec-
tion to the T-Rex Server and processes the queue. For each item in the queue
an event is published.

Currently, only broadcasting or unicasting GMAs is supported, due to an
intrinsic limitation of any publish/subscribe protocol, such as the one adopted
by T-Rex.

Subscribers shall subscribe to specific events, optionally providing filters
on the event contents. This is not suitable in the scenario in which is the pub-
lisher who wants to choose specific receivers for its messages, such this case.

Instead of duplicating the infrastructure and the connections between the
GMC and the Green E-Boxes, a query-advertise mechanism will be added to
the GMA system in order to overcome this limit.

43

— CHAPTER 6 —

TESTING

Such a complex system as Green Move requires a big effort in testing all of
its functionalities. The earlier tests are started, the better the resulting system
will be.

This chapter focuses on the testing activities conducted on the Green Move
Center and the Green Move Applications. The testing activities included the
interactions between the aforementioned components and the T-Rex Server
and the Green E-Box.

A great effort has been put in place to automatize testing since the very
start of the development activities, especially for the Green Move Center.

The approach adopted in the development process is known as Test Driven
Development (TDD) and it’s briefly described in the next section. In literature,
a slightly different approach to testing is known as Behaviour Driven Devel-
opment, which is in effect the same thing of TDD.

6.1 TEST DRIVEN DEVELOPMENT

TDD is a software development process, often found in Agile Development
practices, that relies on the repetition of a very short development cycle: first
the developer writes an (initially failing) automated test case that defines a
desired improvement or new function, then produces the minimum amount
of code to pass that test and finally refactors the new code to acceptable stan-
dards.

The general rule of TDD is to write tests before the code whose behaviour
is intended to be tested. This is not mandatory, however, and it’s largely dis-
cussed among the open source communities of developers.

This topic is somehow connected to another one, which is about the amount
of code which should be covered by a test (code coverage). It is impossible to
test every possible behaviour of a method, and for really simple methods this
can result useless. A good rule of thumb about code coverage is the following:

You should test something until the boredom overcomes the fear of unin-
tended behaviour

This rule, although not formally provable to be right, has been chosen as
the guide for the testing of the Green Move Center.

Another important practice of the Test Driven Development process is run-
ning tests continuously, because the test should pass as soon as the minimum
amount of code required to achieve the described functionality has been writ-
ten. The last phase of the cycle, refactoring, should also be guided by the test.
At the end of the cycle, the test should be passing again.

45

6. TESTING

FIGURE 6.1: Test Driven Development cycle.

Obviously, this means that a growing set of tests will be exists in any given
time during the development. A common way to introduce bugs in code is to
change the behaviour of a method without considering where that method is
called, or which side effects of the method are required. This kind of bug is
usually a pointer of bad design in the software itself, but this goes beyond the
scope of this work of thesis.

To avoid bugs introduced by refactorings, each test in the test suite should
be executed whenever a change in the code is performed. This can rapidly
lead to a situation in which the amount of time required to run the test suite
is too long.

As we have seen, building a test suite for a software project is a complex
task, so proper tools have to be chosen and used.

6.1.1 RSPEC

RSpec1 is testing tool for the Ruby programming language. RSpec can be used
to perform unit, integration, acceptance and functional testing. Testing with
RSpec is a common practice in the development of a Rails application, since
it is very flexible and easy to use with a software developed following the
Model View Controller paradigm.

RSPec provides a Domain Specific Language (DSL) capable of expressing
assertions in a very readable manner. This DSL is just an expressive layer,

1Rspec - [http://rspec.info]

46

6.1. Test Driven Development

so RSpec tests are written in pure Ruby. The main benefit of this DSL is that
complex assertions can be expressed without writing boilerplate code which
might compromise the clarity and the purpose of the test itself.

Below are some examples of RSpec assertions:

• Testing that the result of an operation is true

resultOfOperation.should be_true

• Testing that a controller redirects the user instead of rendering a page

controllerResponse.should redirect_to someOtherController

• Testing equality between objects

someObject.should eq someOtherObject

Another important characteristics of RSpec is that it allows objects mocking.
Mocking consists in substituting the behaviour of a method dinamically, so
complex and time consuming operations can be avoided and the time of the
test execution reduced. This of course implies a trade-off, because mocking
might introduce bugs in the test code.

An example of mocking is replacing a call to an external web service,
which might be slow or unavailable when running the test suite, with a sam-
ple response.

Different tools have been developed for the purpose of providing a DSL for
mocking. RSpec allows the developer to choose among various mocking tools,
including its own implementation. In this work, Mocha2 has been chosen.

6.1.2 FACTORIES

Test cases require different classes to be instantiated and used, so there is need
of a set of sample records in the database. To avoid dependencies between
tests, which may lead to unpredictable behaviour based on test race order, a
good approach is to reset the sample records before each test starts.

A static set of sample records is not ideal for testing in a TDD fashion, as
it might be unnecessarily big for many test cases, leading to a slow execution
time for larger test suites.

Factories are components responsible of providing template instances of a
model class. Using factories, the set of sample records can be built on a per-test
basis, while keeping the logic needed to build such record in a unique place.

FactoryGirl3 is a Ruby gem which provides factories, and it is integrated
with Rails with the FactoryGirlRails4 gem.

FactoryGirl factories are tied to the model for which they provide a tem-
plate, so that the logic associated with that model remains in place when a

2Mocha [http://gofreerange.com/mocha]
3FactoryGirl - [https://github.com/thoughtbot/factory_girl]
4FactoryGirlRails - [https://github.com/thoughtbot/factory_girl_rails]

47

6. TESTING

factory is used (e.g. callbacks after the creation of a record). FactoryGirl also
provides a simple DSL to manipulate factories, which is in pure Ruby. Exam-
ples of factories are reported in Appendix B.

6.2 GREEN MOVE CENTER API TESTING

The APIs of the Green Move Center have a complete test suite. They are a
core component of the GM system, so special care has been put in the effort
of covering every possible execution path, including edge cases. The APIs are
stateless and have no view, so the automatized testing activity was focused
on the controllers. Automated testing has been conducted continuously along
manual testing, performed consuming the APIs with the smartphone clients.

The functionalities provided by the Devise gem (authentication, with re-
spect to the API) are already covered with the gem own tests, so only the
integration behaviour with GMC has been considered.

The following is a summary of currently implemented tests on the GMC
APIs:

• The public key of an user should be downloadable, so the smartphone
application can use it to verify that the private key stored locally is cor-
rect

• An action for checking the correctness of the password should be present

• A list of the reservations of the user must be downloadable

• APIs should deny access to users with wrong username/password com-
bination

• The ending time of a reservation should be recognized when supplied
as a timestamp in the UTC time zone

• A registered user should be allowed to perform a search for a reservation

• The Green E-Box App should be able to download a list of the reserva-
tions for its vehicle, ciphered with the public key of the latter

48

— CHAPTER 7 —

CONCLUSIONS

The work presented in this document covers a period of more than a year,
involving various people and only limiting the focus on the development of
the GMC and the GMA subsystems of Green Move.

A complete summary of the activities is impossible, so some of them have
just been discarded when writing this thesis (e.g. the presentation of Green
Move with the test drive occurred on October 13th or the realization of a video
clip).

Green Move represents an innovative approach to tackle the mobility prob-
lem described in chapter 2. The technologies developed by the author of this
thesis and others component of the work group at DEI, discussed in the previ-
ous chapters, are aimed at providing a working prototype (a minimum viable
product) of what could become the real system when implemented for mas-
sive use.

The choice of a cloud-ready architecture, with state of the art technologies
in many fields (web application framework, database, NFC) along with ex-
perimental technologies developed at DEI for research purposes and used in
the GMC (e.g T-Rex) puts a solid basis on which build the future Green Move
vehicle sharing system.

The openness of this system, which is built on APIs and standards, along
with the multi-ownership - multi-vehicle model and the strong automatiza-
tion of business operations, puts Green Move a step forward w.r.t to the exist-
ing vehicle sharing systems.

7.1 DEVELOPMENT CONSIDERATIONS

The use of the Android operating system has been chosen upfront for the sake
of openness, and it surely posed some constraints in the development which
influenced the decisions taken later.

7.1.1 ANDROID

Android does not provide a way to be sure that the Green E-Box application
software won’t ever be backgrounded or even closed by the OS. Also, interac-
tion between components of the application on the Green E-Box must strictly
adhere to the Android conventions.

In some circumstances, a completely custom device with the same form
factor as the Android board part of the GEB running a customized GNU/Linux
(or BSD) distribution would have simplified the development process.

49

7. CONCLUSIONS

7.1.2 T-REX

The T-Rex middle-ware has shown many aspects of immaturity, which are
typical of a system developed in the academia and never used in a real sit-
uation. The T-Rex protocol used to communicate with the T-Rex Server is
very light and fast but lacks basic resilience to errors. Currently, a malformed
packet can cause the crash of the T-Rex Server process, thus a watchdog sys-
tem had to be put in place to avoid downtime in this component.

Also, numerous security problems are present. Sending events with at-
tribute values longer than the maximum length may result in buffer over-
flows.

Luckily, all these problems are solvable with a security minded hardening
of the T-Rex Server and a complete rewrite of the communication protocol
(thus releasing a new client library, keeping the same APIs).

7.1.3 GREEN MOVE CENTER

The development of the GMC has seen a complete rewrite of the web-application,
since the schema of the database was completely replaced from a basic MySQL
one to the complete PostgreSQL one which is reported in appendix D.

In such a circumstance, with API clients already being developed, the TDD
approach has shined in great light. Tests developed were keeped, along with
URLs of the API endpoints and format of the messages exchanged with clients.

All the changes required by the new schema were performed at the model
and controller level, untils the tests were passing again.

7.2 FUTURE WORK

Green Move is undergoing great development, both on the IT side and on the
others side of the project. On the IT side, there are very interesting open topics,
some of which are described below.

The next months will see the experimentation of PerLa1, a context aware
system to query data from heterogeneous, pervasive systems. PerLa might be
used in place of the current T-Rex based system for collecting sensors data,
since in allows to move filtering logic in the GEBs and this can potentially
help a lot w.r.t to network usage and performance of the overall system.

The GMC needs to be completed with the flexible reservation logic which
is being developed. As described in chapter 4, the current implementation is
very basic.

Also, the NoSQL database has to be chosend and integrated with the GMC.
This poses some interesting problems of integration of heterogeneous data
stores in a single application. As a need for a more complete geographic in-
formation system (GIS) might arise, integration of such system with the GMC
may require a good amount of work on the database adapters and the appli-
cation framework. This is a good research topic, which might also result in
useful contributions to the open source software community.

1PerLa - [http://perlawsn.sourceforge.net/documentation.php?official=1]

50

7.2. Future work

The GMA subsystem is currently implemented as an additional compo-
nent w.r.t the Green E-Box software, so an integration of the two softwares is
necessary. Also, the efficient distribution of GMAs require a query-advertise
middleware which has to be chosen or customly developed for Green Move.

As the number of vehicles and users circulating in the GM system grows,
the cloud-ready architecture might be leveraged to switch from the currently
deployed physical server to a true cloud infrastructure.

Administrative functionalities of the GMC are only stubbed, so function-
alities such as billing and fault monitoring/response are to be developed.

Another important work to be done, although it does not pose particular
technologic difficulties, is the development (or the integration) of a content
management system (CMS) within the GMC. It is in fact impossible to imagine
Green Move without a user facing site with other informations and services
except for the reservations.

51

— CHAPTER A —

T-REX RULES AND EVENTS

The currently implemented events in the GM system are two, plus one which
is subjectible to changes since it’s only used in the GMAs experimentation.

A brief description of the events is supplied along with some background
information on the T-Rex rules.

Position Event

• id: 13

• source: Any vehicle

• contents: Vehicle position represented by two doubles, with information
about the source (gps, network)

• event kind: Periodic

• id of the Green E-Box

The Position Event is used to have a real time map of the vehicles in the
GM system. The GMC needs this information to perform the research of ve-
hicles in the nearbies of the user, and to display them on the map in figure
4.6.

Sensor Data Event

• id: 17

• source: Any vehicle

• contents:

– battery status

– current

– direction sense (backward, forward)

– door status

– faults

– gps data

– id of the Green E-Box

– heating status (on, off)

– state of charge

– speed

– timestamp

53

A. T-REX RULES AND EVENTS

• event kind: Periodic

The Sensor Data Event provides a complete set of information on anything
that may be collected with the sensors on board of the vehicles. This event
does not always contain all of the attributes presented above.

Rules Currently, only a simple set of rules is installed on the T-Rex engine.
They basically allow the events received by the engine to be forwarded to
the subscribers for that kind of events, since subscriptions are currently done
only on a per event-id basis. TESLA rules with more complex logic are under
development to leverage the potential of the T-Rex middle-ware.

A rule allows to use a temporal first order logic to express conditions on
the incoming stream of events and perform actions accordingly. The actions
are, usually, the generation of new events which use the data contained in the
input events.

The code which allows the event with id 13 to be forwarded is reported
below. This rules simply takes an event with id 13 and builds a new one with
the same attributes.

1
2 #include "RuleEvent13.hpp"
3
4 using concept::test::RuleEvent13;
5
6 RulePkt* RuleEvent13::buildRule(){
7 RulePkt* rule= new RulePkt(false);
8
9 int indexRootPos= 0;
10
11 // root Position predicate
12 Constraint constr[1];
13 strcpy(constr[0].name, "greenBox_id");
14 constr[0].type = STRING;
15 constr[0].op = IN;
16 strcpy(constr[0].stringVal, "-");
17 rule->addRootPredicate(13, constr, 1);
18
19 // template
20 CompositeEventTemplate* templ= new CompositeEventTemplate(13);
21
22 OpTree* idTree = new OpTree(new RulePktValueReference(indexRootPos, "greenBox_id"),

STRING);
23 templ->addAttribute("greenBox_id", idTree);
24
25 OpTree* latitudeTree = new OpTree(new RulePktValueReference(indexRootPos, "

latitudine"), FLOAT);
26 templ->addAttribute("latitudine", latitudeTree);
27
28 OpTree* longitudeTree = new OpTree(new RulePktValueReference(indexRootPos, "

longitudine"), FLOAT);
29 templ->addAttribute("longitudine", longitudeTree);
30
31 OpTree* sourceTree = new OpTree(new RulePktValueReference(indexRootPos, "sorgente"),

STRING);
32 templ->addAttribute("sorgente", sourceTree);
33
34 rule->setCompositeEventTemplate(templ);
35 return rule;
36 }

GMC support tools During the manual test phasis, the need for a tool to
debug rules and events arised. Since T-Rex Server allows to install rules at
runtime, this functionality would have been nice to have in such tool.

54

This tool is part of the GMC, although it is usable only when running the
JRuby interpreter since it requires the T-Rex client library. The tool is named
TRexClient and is located in the lib folder of the GMC.

It provides the following functionalities:

• connect to T-Rex Server

• send a Position Event

• send a Sensor Data Event

• install a rule for both the above events on the T-Rex engine

• subscrive to events

• install a listener to process incoming events

• the connection with the T-Rex Server is kept alive automatically

55

— CHAPTER B —

RSPEC TESTS

Factories Reservation Factory. This factory builds a Reservation model.

1 FactoryGirl.define do
2
3 factory :fare do
4 type { Faker::Company.catch_phrase }
5 description { Faker::Company.bs }
6 price { rand * 1000 }
7 valid_from { 1.year.ago }
8 valid_to { 1.year.from_now }
9 end

10
11 factory :service_configuration do
12 name { Faker::Company.catch_phrase }
13 description { Faker::Company.bs }
14 end
15
16 sequence :reservation_id do |n|
17 "#{n}"
18 end
19
20 factory :reservation do
21 id { FactoryGirl.generate :reservation_id }
22 taking_ts { Time.now }
23 user { FactoryGirl.create :user}
24 vehicle_class { FactoryGirl.create :vehicle_class}
25 fare { FactoryGirl.create :fare }
26 service_configuration { FactoryGirl.create :service_configuration }
27
28
29 factory :confirmed_reservation do
30 confirmed true
31 release_ts { taking_ts + 3.hours }
32 end
33 factory :unconfirmed_reservation do
34 confirmed false
35 end
36
37 end
38
39 end

User factory.

1 FactoryGirl.define do
2
3 sequence :user_id do |n|
4 "#{n}"
5 end
6
7 factory :user do
8 email { Faker::Internet.email }
9 name { Faker::Name.first_name}

10 surname { Faker::Name.last_name }
11 username { Faker::Internet.user_name }
12 #key size should really be 4096
13 k=OpenSSL::PKey::RSA.generate(4096)
14 public_key_string k.public_key.to_s
15 private_key_string k.to_pem.to_s
16 password "pippo123"
17 password_confirmation "pippo123"
18 owner false
19 customer true
20 id { FactoryGirl.generate(:user_id)}
21 end
22
23 end

57

B. RSPEC TESTS

Vehicle factory.

1 FactoryGirl.define do
2
3 sequence :license_plate do |n|
4 "targa#{n}"
5 end
6
7 sequence :green_ebox_id do |n|
8 n.to_s
9 end
10
11 factory :constructor do
12 name { Faker::Company.name }
13 end
14
15 factory :vehicle_class do
16 description { [’car’ ,’scooter’].sample}
17 end
18
19 factory :vehicle_model do
20 name { Faker::Company.bs }
21 constructor FactoryGirl.create(:constructor)
22 vehicle_class FactoryGirl.create(:vehicle_class)
23 end
24
25 sequence :vehicle_id do |n|
26 "#{n}"
27 end
28
29 factory :vehicle do
30 k=OpenSSL::PKey::RSA.generate(4096)
31 public_key_string k.public_key.to_s
32 private_key_string k.to_pem.to_s
33 vehicle_model { FactoryGirl.create(:vehicle_model)}
34 id { FactoryGirl.generate(:vehicle_id)}
35 end
36
37 factory :green_ebox do
38 id { FactoryGirl.generate(:green_ebox_id) }
39 end
40
41 end

Some of the RSpec tests are reported in this appendix along with comments
to help understand the structure and the logic.

Test assuring that the user can view the list of its reservations.

1 require "spec_helper"
2
3 describe ReservationsController do
4 include Devise::TestHelpers
5 it "should list the reservations for the current user" do
6 @user=FactoryGirl.create :user, :email=>"test@gmc.it",:password=>"123pippo",
7 :password_confirmation=>"123pippo"
8 sign_in @user
9 get "index"
10 response.should be_success
11 end
12 end

Test assuring that a vehicle can download a list of its reservations, ciphered
with the vehicle key and encoded in Base64

1 require "spec_helper"
2
3 describe Api::V::Crypto::ReservationsController do
4 include Devise::TestHelpers
5 before :each do
6 @user=FactoryGirl.create :user
7 @car= FactoryGirl.create :vehicle
8 end
9

58

10 it "should respond with the base64 encoded data of the reservation, ciphered with the
vehicle public key" do

11 @reservation = FactoryGirl.create :confirmed_reservation,
12 :user=>@user
13 @reservation.vehicle=@car
14
15 get "index", :format=>"json", :vehicle_id=>@car.id
16 response.should be_success
17 assigns[:reservations].should eq [@reservation]
18 end
19
20 end

Test assuring that public key of a user should be downloadable and that a
user is allowed to check its password against the system.

1 require "spec_helper"
2
3 describe Api::U::RegistrationsController do
4 include Devise::TestHelpers
5
6
7 it "should allow public_key_string downloading" do
8 @user=FactoryGirl.create :user
9 @request.env["devise.mapping"] = Devise.mappings[:user]

10
11 post ’public_key’, :format=>:json, :user=>{:email=>@user.email,:current_password=>

@user.password}
12
13 response.should be_success
14 response.body.should eq @user.public_key_string
15
16 end
17
18
19 it "should allow password checking" do
20 @user=FactoryGirl.create :user
21 @request.env["devise.mapping"] = Devise.mappings[:user]
22
23 post ’check_credentials’, :format=>:json, :user=>{:email=>@user.email,:

current_password=>@user.password}
24
25 response.should be_success
26
27 end
28
29 end

The following code tests actions for the Green Move APIs:

• An authenticated user should be able to retrieve the list of her reserva-
tions

• The system should deny access to users with wrong username/pass-
word combination

• GMC should recognize the end time of a reservation when supplied as
UTC timestamp

• A registered user should be able to search for vehicles

1 require "spec_helper"
2
3 describe Api::U::ReservationsController do
4 include Devise::TestHelpers
5 before :each do
6 @vehichle_class_car = FactoryGirl.create :vehicle_class, :description=>"car"
7 @vehicle_model = FactoryGirl.create :vehicle_model, :vehicle_class_id=>@vehichle_class_car

.id
8 @user=FactoryGirl.create :user

59

B. RSPEC TESTS

9 @car= FactoryGirl.create :vehicle, :vehicle_model=>@vehicle_model
10 @car_gb=FactoryGirl.create :green_ebox, :vehicle => @car
11 FactoryGirl.create :fare
12 FactoryGirl.create :service_configuration
13 end
14
15 it "should list the reservations for the current user" do
16 @reservation = FactoryGirl.create :reservation, :user=>@user
17
18 get "index", :email=>@user.email,:password=>@user.password, :format=>"json"
19 response.should be_success
20 assigns(:reservations).should eq(@user.reservations)
21 end
22
23 it "should deny access to a wrong username/password combination" do
24 get "index", :email=>@user.email,:password=>"wrongPassword", :format=>"json"
25 response.should_not be_success
26 get "index", :email=>"wrong_mail@gmc.it",
27 :password=>@user.password, :format=>"json"
28 response.should_not be_success
29 end
30
31
32 it "should understand the end time as a number" do
33 @reservation=FactoryGirl.create :reservation, :user=>@user
34 end_time=(Time.now + 1.day)
35 put "update", :id=>@reservation.id, :format=>:json, :email=>@user.email,:password=>@user.

password, :reservation=> { :confirmed=>true, :end=>end_time.to_i }
36 assigns(:reservation).should eq(@reservation)
37 @reservation.reload
38 #seems to be an issue here if I do not force reloading
39 @reservation.confirmed.should be_true
40 @reservation.end.to_i.should eq end_time.to_i
41 end
42
43
44 it "should allow a registered user to search for reservations" do
45
46 Gps.create :latitude=>45.4811679,:longitude=>9.229389, :ts=>Time.now, :gb_id=>@car.

green_ebox.id #this is needed for the position
47 LastPosition.stubs(:near).returns(LastPosition.all)
48
49 post "search", :email=>@user.email, :password=>@user.password,
50 :address=>"via porpora, milano",:vehicle_type=>["car"], :format=>:json
51 assigns(:reservation_proposals).should eq(@user.reservations.where(:confirmed=>false))
52 assigns(:reservation_proposals).count.should eq 1
53 @user.reservations.count.should eq 1
54 end
55
56 end

60

— CHAPTER C —

GREEN MOVE APPLICATIONS

DEVELOPMENT WORKFLOW

GMAs are just Android libraries. A minimal SDK is provided to aid their de-
velopment, which consists in two libraries: The Android SDK is required to
be installed on the development machine to code GMAs.

• The GMCodeLibrary library, which contains the GMComponent inter-
face definition. GMAs must have a single entry point, which is a class
implementing this interface. Also the GMContainer interface is provided
within this library, so the GMA has a list of the methods exposed by the
GMContainer.

• The T-Rex java client library, which contains class definitions required
to use the T-Rex middle-ware.

The developer can use any number of classes and packages in its own code,
given that everything needed for the application to work properly will be dis-
tributed in the same JAR file.

When the application is ready to be tested or distributed, the developer
must export a JAR file (see figure C.1).

The next step is performed using utilities of the Android SDK, to convert
the classes in the JAR file in the Dalvik VM bytecode.

Use the following commands:

• This command creates a file named classes.dex from the file remoteClasses.jar,
which is the JAR file previously exported.

dx --dex --output=classes.dex remoteClasses.jar

• This command creates a new JAR file, and adds the classes.dex file to
the latter

aapt add gma.jar classes.dex

The gma.jar file obtained is distributable as a GMA.
Figure C.2 and C.3 show the form for GMA upload on the GMC and the

panel with the available options for distribution, once the GMA has been up-
loaded.

The distribution is handled by the daemon mode of the GMC, which cur-
rently uses the T-Rex middle-ware to deliver an experimental event (with type
1337) with the necessary attributes: url of the JAR file, class name of the entry
point, action to be performed on the GMA.

61

C. GREEN MOVE APPLICATIONS DEVELOPMENT WORKFLOW

FIGURE C.1: Exporting a GMA with the Eclipse IDE.

62

FIGURE C.2: A Green Move Application can be uploaded on the Admin section of the
GMC.

FIGURE C.3: The GMC allows to install, reinstall or uninstall the GMA. Currently it
only supports broadcasting o unicasting.

63

C. GREEN MOVE APPLICATIONS DEVELOPMENT WORKFLOW

The daemon mode of the GMC requires the JRuby interpreter, and cur-
rently must be launched manually when needed (this is only to save RAM on
the development virtual machine).

The command to start the daemon mode is the following:

rvm use jruby; rake jobs:work

The daemon mode processes a queue of jobs, which are just Ruby objects
with a perform method.

64

— CHAPTER D —

CHAP:DATABASE SCHEMA

1 --
2 -- PostgreSQL database dump
3 --
4
5 SET statement_timeout = 0;
6 SET client_encoding = ’UTF8’;
7 SET standard_conforming_strings = on;
8 SET check_function_bodies = false;
9 SET client_min_messages = warning;

10
11 --
12 -- Name: greenmove; Type: COMMENT; Schema: -; Owner: -
13 --
14
15 COMMENT ON DATABASE greenmove IS ’Green Move project DB’;
16
17
18 --
19 -- Name: plpgsql; Type: EXTENSION; Schema: -; Owner: -
20 --
21
22 CREATE EXTENSION IF NOT EXISTS plpgsql WITH SCHEMA pg_catalog;
23
24
25 --
26 -- Name: EXTENSION plpgsql; Type: COMMENT; Schema: -; Owner: -
27 --
28
29 COMMENT ON EXTENSION plpgsql IS ’PL/pgSQL procedural language’;
30
31
32 SET search_path = public, pg_catalog;
33
34 --
35 -- Name: avail_asp_view_gen(timestamp without time zone); Type: FUNCTION; Schema: public;

Owner: -
36 --
37
38 CREATE FUNCTION avail_asp_view_gen(start_point timestamp without time zone) RETURNS void
39 LANGUAGE sql
40 AS $_$DELETE FROM avail_asp_view;
41 INSERT INTO avail_asp_view(id, vehicle_id, begin_day, begin_hour, end_day, end_hour)
42 SELECT a.id, a.vehicle_id, date_part(’day’::text, a.begin_ts::timestamp with time zone - $1)

::integer AS startday, date_part(’hour’::text, a.begin_ts)::integer AS starthour,
date_part(’day’::text, a.end_ts::timestamp with time zone - $1)::integer AS endday,
date_part(’hour’::text, a.end_ts)::integer AS endhour

43 FROM vehicle_availability a
44 WHERE a.begin_ts IS NOT NULL AND a.end_ts IS NOT NULL AND
45 (a.begin_ts >= $1 OR a.end_ts >= $1);$_$;
46
47
48 --
49 -- Name: onvehicleop_asp_view_gen(timestamp without time zone); Type: FUNCTION; Schema: public

; Owner: -
50 --
51
52 CREATE FUNCTION onvehicleop_asp_view_gen(start_point timestamp without time zone) RETURNS void
53 LANGUAGE sql
54 AS $_$DELETE FROM vehicleop_asp_view;
55 INSERT INTO vehicleop_asp_view(vehicle_id, begin_day, begin_hour, end_day, end_hour)
56 SELECT o.vehicle_id, date_part(’day’::text, o.begin_ts::timestamp with time zone - $1)::

integer AS startday, date_part(’hour’::text, o.begin_ts)::integer AS starthour,
date_part(’day’::text, o.end_ts::timestamp with time zone - $1)::integer AS endday,
date_part(’hour’::text, o.end_ts)::integer AS endhour

57 FROM on_vehicle_op o
58 WHERE o.begin_ts IS NOT NULL AND o.end_ts IS NOT NULL AND
59 (o.begin_ts >= $1 OR o.end_ts >= $1);$_$;
60
61
62 --

65

D. CHAP:DATABASE SCHEMA

63 -- Name: precedences_asp_view_gen(timestamp without time zone); Type: FUNCTION; Schema: public
; Owner: -

64 --
65
66 CREATE FUNCTION precedences_asp_view_gen(start_point timestamp without time zone) RETURNS void
67 LANGUAGE sql
68 AS $_$DELETE FROM precedences_asp_view;
69 INSERT INTO precedences_asp_view(resrv_id_bf, resrv_id_af)
70 SELECT r1.id, r2.id
71 FROM reservation r1, reservation r2
72 WHERE r2.taking_ts =
73 (SELECT MIN(r.taking_ts)
74 FROM reservation r
75 WHERE r.taking_ts > r1.release_ts)
76 AND (r1.taking_ts > $1 OR r1.release_ts > $1)$_$;
77
78
79 --
80 -- Name: resrvasp_view_gen(timestamp without time zone); Type: FUNCTION; Schema: public; Owner

: -
81 --
82
83 CREATE FUNCTION resrvasp_view_gen(start_point timestamp without time zone) RETURNS void
84 LANGUAGE sql
85 AS $_$DELETE FROM resrvasp_view;
86 INSERT INTO resrvasp_view(id, user_id, taking_day, taking_hour, release_day, release_hour,

taking_location, release_location)
87 SELECT r.id, r.user_id, date_part(’day’::text, r.taking_ts::timestamp with time zone - $1)::

integer AS startday, date_part(’hour’::text, r.taking_ts)::integer AS starthour,
date_part(’day’::text, r.release_ts::timestamp with time zone - $1)::integer AS endday,
date_part(’hour’::text, r.release_ts)::integer AS endhour, r.taking_position, r.

release_position
88 FROM reservation r
89 WHERE r.taking_ts IS NOT NULL AND r.release_ts IS NOT NULL AND
90 (r.taking_ts >= $1 OR r.release_ts >= $1);$_$;
91
92
93 SET default_tablespace = ’’;
94
95 SET default_with_oids = false;
96
97 --
98 -- Name: ad_provider_admin; Type: TABLE; Schema: public; Owner: -; Tablespace:
99 --

100
101 CREATE TABLE ad_provider_admin (
102 id character varying(50) NOT NULL,
103 user_id character varying(16) NOT NULL
104);
105
106
107 --
108 -- Name: admin; Type: TABLE; Schema: public; Owner: -; Tablespace:
109 --
110
111 CREATE TABLE admin (
112 id character varying(50) NOT NULL,
113 user_id character varying(16)
114);
115
116
117 --
118 -- Name: TABLE admin; Type: COMMENT; Schema: public; Owner: -
119 --
120
121 COMMENT ON TABLE admin IS ’Admin users list’;
122
123
124 --
125 -- Name: age_class; Type: TABLE; Schema: public; Owner: -; Tablespace:
126 --
127
128 CREATE TABLE age_class (
129 id character varying(50) NOT NULL,
130 lower_value character varying(255),
131 upper_value character varying(255),
132 class_name character varying(50)
133);
134
135

66

136 --
137 -- Name: TABLE age_class; Type: COMMENT; Schema: public; Owner: -
138 --
139
140 COMMENT ON TABLE age_class IS ’Age classes for the Green Move project users’;
141
142
143 --
144 -- Name: aggregation_point; Type: TABLE; Schema: public; Owner: -; Tablespace:
145 --
146
147 CREATE TABLE aggregation_point (
148 id integer NOT NULL,
149 name character varying(255)
150);
151
152
153 --
154 -- Name: TABLE aggregation_point; Type: COMMENT; Schema: public; Owner: -
155 --
156
157 COMMENT ON TABLE aggregation_point IS ’Aggregation points’’ descriptions.’;
158
159
160 --
161 -- Name: aggregation_point_class; Type: TABLE; Schema: public; Owner: -; Tablespace:
162 --
163
164 CREATE TABLE aggregation_point_class (
165 aggregation_point_id integer NOT NULL,
166 aggregation_point_type integer NOT NULL
167);
168
169
170 --
171 -- Name: TABLE aggregation_point_class; Type: COMMENT; Schema: public; Owner: -
172 --
173
174 COMMENT ON TABLE aggregation_point_class IS ’Classes for each aggregation point’;
175
176
177 --
178 -- Name: aggregation_point_id_seq; Type: SEQUENCE; Schema: public; Owner: -
179 --
180
181 CREATE SEQUENCE aggregation_point_id_seq
182 START WITH 1
183 INCREMENT BY 1
184 NO MINVALUE
185 NO MAXVALUE
186 CACHE 1;
187
188
189 --
190 -- Name: aggregation_point_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
191 --
192
193 ALTER SEQUENCE aggregation_point_id_seq OWNED BY aggregation_point.id;
194
195
196 --
197 -- Name: aggregation_point_type; Type: TABLE; Schema: public; Owner: -; Tablespace:
198 --
199
200 CREATE TABLE aggregation_point_type (
201 id integer NOT NULL,
202 type character varying(255)
203);
204
205
206 --
207 -- Name: TABLE aggregation_point_type; Type: COMMENT; Schema: public; Owner: -
208 --
209
210 COMMENT ON TABLE aggregation_point_type IS ’Types of aggregation points’;
211
212
213 --
214 -- Name: aggregation_point_type_id_seq; Type: SEQUENCE; Schema: public; Owner: -
215 --

67

D. CHAP:DATABASE SCHEMA

216
217 CREATE SEQUENCE aggregation_point_type_id_seq
218 START WITH 1
219 INCREMENT BY 1
220 NO MINVALUE
221 NO MAXVALUE
222 CACHE 1;
223
224
225 --
226 -- Name: aggregation_point_type_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
227 --
228
229 ALTER SEQUENCE aggregation_point_type_id_seq OWNED BY aggregation_point_type.id;
230
231
232 --
233 -- Name: assignement; Type: TABLE; Schema: public; Owner: -; Tablespace:
234 --
235
236 CREATE TABLE assignement (
237 reservation_id integer NOT NULL,
238 vehicle_id character varying(12),
239 confirmed boolean
240);
241
242
243 --
244 -- Name: assignment; Type: TABLE; Schema: public; Owner: -; Tablespace:
245 --
246
247 CREATE TABLE assignment (
248 reservation_id integer NOT NULL,
249 vehicle_id character varying(12),
250 confirmed boolean
251);
252
253
254 --
255 -- Name: TABLE assignment; Type: COMMENT; Schema: public; Owner: -
256 --
257
258 COMMENT ON TABLE assignment IS ’Vehicle assigned to each reservation data’;
259
260
261 --
262 -- Name: avail_asp_view; Type: TABLE; Schema: public; Owner: -; Tablespace:
263 --
264
265 CREATE TABLE avail_asp_view (
266 id integer NOT NULL,
267 vehicle_id character varying(255),
268 begin_day integer,
269 begin_hour integer,
270 end_day integer,
271 end_hour integer
272);
273
274
275 --
276 -- Name: TABLE avail_asp_view; Type: COMMENT; Schema: public; Owner: -
277 --
278
279 COMMENT ON TABLE avail_asp_view IS ’DO NOT FILL.
280 Automatically filled by function.’;
281
282
283 --
284 -- Name: charge; Type: TABLE; Schema: public; Owner: -; Tablespace:
285 --
286
287 CREATE TABLE charge (
288 vehicle_id character varying(12) NOT NULL,
289 begin_ts timestamp without time zone NOT NULL,
290 end_ts timestamp without time zone,
291 charge_station_id integer
292);
293
294
295 --

68

296 -- Name: TABLE charge; Type: COMMENT; Schema: public; Owner: -
297 --
298
299 COMMENT ON TABLE charge IS ’Charge operations’’ details’;
300
301
302 --
303 -- Name: charge_station; Type: TABLE; Schema: public; Owner: -; Tablespace:
304 --
305
306 CREATE TABLE charge_station (
307 id integer NOT NULL,
308 name character varying(255),
309 latitude double precision,
310 longitude double precision,
311 avail_slots integer
312);
313
314
315 --
316 -- Name: TABLE charge_station; Type: COMMENT; Schema: public; Owner: -
317 --
318
319 COMMENT ON TABLE charge_station IS ’List of all available charging stations’;
320
321
322 --
323 -- Name: COLUMN charge_station.id; Type: COMMENT; Schema: public; Owner: -
324 --
325
326 COMMENT ON COLUMN charge_station.id IS ’
327 ’;
328
329
330 --
331 -- Name: available_slots; Type: VIEW; Schema: public; Owner: -
332 --
333
334 CREATE VIEW available_slots AS
335 (SELECT s.id, (s.avail_slots - count(*)) AS free FROM (charge_station s JOIN charge c ON

((c.charge_station_id = s.id))) WHERE (c.end_ts IS NULL) GROUP BY s.id, s.avail_slots
ORDER BY s.id) UNION (SELECT s.id, s.avail_slots AS free FROM charge_station s WHERE
(NOT (s.id IN (SELECT k.charge_station_id FROM charge k WHERE (k.end_ts IS NULL))))
ORDER BY s.id);

336
337
338 --
339 -- Name: VIEW available_slots; Type: COMMENT; Schema: public; Owner: -
340 --
341
342 COMMENT ON VIEW available_slots IS ’Available charge stations’’ slots.’;
343
344
345 --
346 -- Name: battery; Type: TABLE; Schema: public; Owner: -; Tablespace:
347 --
348
349 CREATE TABLE battery (
350 id integer NOT NULL,
351 current double precision,
352 voltage double precision,
353 vehicle_id character varying(12),
354 charge integer
355);
356
357
358 --
359 -- Name: TABLE battery; Type: COMMENT; Schema: public; Owner: -
360 --
361
362 COMMENT ON TABLE battery IS ’Vehicle batteries’’ information.’;
363
364
365 --
366 -- Name: battery_id_seq; Type: SEQUENCE; Schema: public; Owner: -
367 --
368
369 CREATE SEQUENCE battery_id_seq
370 START WITH 1
371 INCREMENT BY 1

69

D. CHAP:DATABASE SCHEMA

372 NO MINVALUE
373 NO MAXVALUE
374 CACHE 1;
375
376
377 --
378 -- Name: battery_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
379 --
380
381 ALTER SEQUENCE battery_id_seq OWNED BY battery.id;
382
383
384 --
385 -- Name: belongs_to; Type: TABLE; Schema: public; Owner: -; Tablespace:
386 --
387
388 CREATE TABLE belongs_to (
389 user_id character varying(16) NOT NULL,
390 community_id integer NOT NULL
391);
392
393
394 --
395 -- Name: TABLE belongs_to; Type: COMMENT; Schema: public; Owner: -
396 --
397
398 COMMENT ON TABLE belongs_to IS ’Users belonging to a community list’;
399
400
401 --
402 -- Name: charge_station_id_seq; Type: SEQUENCE; Schema: public; Owner: -
403 --
404
405 CREATE SEQUENCE charge_station_id_seq
406 START WITH 1
407 INCREMENT BY 1
408 NO MINVALUE
409 NO MAXVALUE
410 CACHE 1;
411
412
413 --
414 -- Name: charge_station_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
415 --
416
417 ALTER SEQUENCE charge_station_id_seq OWNED BY charge_station.id;
418
419
420 --
421 -- Name: gps; Type: TABLE; Schema: public; Owner: -; Tablespace:
422 --
423
424 CREATE TABLE gps (
425 ts timestamp without time zone NOT NULL,
426 gb_id character varying(50) NOT NULL,
427 latitude double precision,
428 longitude double precision,
429 speed double precision,
430 satelittes integer,
431 other_data text
432);
433
434
435 --
436 -- Name: TABLE gps; Type: COMMENT; Schema: public; Owner: -
437 --
438
439 COMMENT ON TABLE gps IS ’Tables containing vehicles GPS positions’’ log.’;
440
441
442 --
443 -- Name: green_ebox; Type: TABLE; Schema: public; Owner: -; Tablespace:
444 --
445
446 CREATE TABLE green_ebox (
447 id character varying(50) NOT NULL,
448 vehicle_id character varying(12)
449);
450
451

70

452 --
453 -- Name: TABLE green_ebox; Type: COMMENT; Schema: public; Owner: -
454 --
455
456 COMMENT ON TABLE green_ebox IS ’Green e-Boxes’’ related data’;
457
458
459 --
460 -- Name: last_position_view; Type: VIEW; Schema: public; Owner: -
461 --
462
463 CREATE VIEW last_position_view AS
464 SELECT g.gb_id, g.latitude, g.longitude FROM gps g WHERE (g.ts IN (SELECT max(gp.ts) AS ts

FROM gps gp WHERE ((gp.gb_id)::text = (g.gb_id)::text) GROUP BY gp.gb_id));
465
466
467 --
468 -- Name: VIEW last_position_view; Type: COMMENT; Schema: public; Owner: -
469 --
470
471 COMMENT ON VIEW last_position_view IS ’Vehicle last position available (within 50 minutes).’;
472
473
474 --
475 -- Name: mobile_device; Type: TABLE; Schema: public; Owner: -; Tablespace:
476 --
477
478 CREATE TABLE mobile_device (
479 id integer NOT NULL,
480 user_id character varying(16),
481 model character varying(255),
482 type character varying(255)
483);
484
485
486 --
487 -- Name: TABLE mobile_device; Type: COMMENT; Schema: public; Owner: -
488 --
489
490 COMMENT ON TABLE mobile_device IS ’Data about users’’ personal devices.’;
491
492
493 --
494 -- Name: reservation; Type: TABLE; Schema: public; Owner: -; Tablespace:
495 --
496
497 CREATE TABLE reservation (
498 id integer NOT NULL,
499 taking_ts timestamp without time zone,
500 release_ts timestamp without time zone,
501 taking_position character varying(255),
502 release_position character varying(255),
503 vehicle_class_id integer,
504 fare_id integer,
505 confirmed boolean,
506 planned_travel_distance double precision,
507 service_configuration_id integer,
508 user_id character varying(16)
509);
510
511
512 --
513 -- Name: TABLE reservation; Type: COMMENT; Schema: public; Owner: -
514 --
515
516 COMMENT ON TABLE reservation IS ’Users’’ reservations data’;
517
518
519 --
520 -- Name: user_view; Type: TABLE; Schema: public; Owner: -; Tablespace:
521 --
522
523 CREATE TABLE user_view (
524 id character varying(16) NOT NULL,
525 name character varying(255),
526 surname character varying(255),
527 class_name character varying(255),
528 gender character varying(1),
529 email character varying(255),
530 customer boolean NOT NULL,

71

D. CHAP:DATABASE SCHEMA

531 owner boolean NOT NULL,
532 username character varying(20),
533 vat_info text,
534 billing_info text
535);
536
537
538 --
539 -- Name: TABLE user_view; Type: COMMENT; Schema: public; Owner: -
540 --
541
542 COMMENT ON TABLE user_view IS ’Table containing users’’ data (customers’’ and owners’’ data)

.’;
543
544
545 --
546 -- Name: vehicle; Type: TABLE; Schema: public; Owner: -; Tablespace:
547 --
548
549 CREATE TABLE vehicle (
550 id character varying(12) NOT NULL,
551 seats_number integer,
552 insurance character varying(255),
553 pub_key character varying(255),
554 engine_type character varying(255),
555 model_id integer,
556 owner_id character varying(16)
557);
558
559
560 --
561 -- Name: TABLE vehicle; Type: COMMENT; Schema: public; Owner: -
562 --
563
564 COMMENT ON TABLE vehicle IS ’Table containing vehicle related data’;
565
566
567 --
568 -- Name: client_data_view; Type: VIEW; Schema: public; Owner: -
569 --
570
571 CREATE VIEW client_data_view AS
572 SELECT m.id, u.class_name, u.gender, l.latitude, l.longitude FROM user_view u, reservation

r, vehicle v, mobile_device m, green_ebox g, last_position_view l, assignment a
WHERE (((((((m.user_id)::text = (u.id)::text) AND ((r.user_id)::text = (u.id)::text))
AND (r.id = a.reservation_id)) AND ((a.vehicle_id)::text = (v.id)::text)) AND ((g.

vehicle_id)::text = (v.id)::text)) AND ((l.gb_id)::text = (g.id)::text));
573
574
575 --
576 -- Name: VIEW client_data_view; Type: COMMENT; Schema: public; Owner: -
577 --
578
579 COMMENT ON VIEW client_data_view IS ’Last position related client data (user anonimous data)

.’;
580
581
582 --
583 -- Name: cloud_service; Type: TABLE; Schema: public; Owner: -; Tablespace:
584 --
585
586 CREATE TABLE cloud_service (
587 id integer NOT NULL,
588 name character varying(255),
589 description character varying(255)
590);
591
592
593 --
594 -- Name: TABLE cloud_service; Type: COMMENT; Schema: public; Owner: -
595 --
596
597 COMMENT ON TABLE cloud_service IS ’placeholder for possibly offered cloud services...’;
598
599
600 --
601 -- Name: cloud_service_id_seq; Type: SEQUENCE; Schema: public; Owner: -
602 --
603
604 CREATE SEQUENCE cloud_service_id_seq

72

605 START WITH 1
606 INCREMENT BY 1
607 NO MINVALUE
608 NO MAXVALUE
609 CACHE 1;
610
611
612 --
613 -- Name: cloud_service_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
614 --
615
616 ALTER SEQUENCE cloud_service_id_seq OWNED BY cloud_service.id;
617
618
619 --
620 -- Name: community; Type: TABLE; Schema: public; Owner: -; Tablespace:
621 --
622
623 CREATE TABLE community (
624 id integer NOT NULL,
625 name character varying(255),
626 type character varying(255)
627);
628
629
630 --
631 -- Name: TABLE community; Type: COMMENT; Schema: public; Owner: -
632 --
633
634 COMMENT ON TABLE community IS ’Community of users data’;
635
636
637 --
638 -- Name: community_id_seq; Type: SEQUENCE; Schema: public; Owner: -
639 --
640
641 CREATE SEQUENCE community_id_seq
642 START WITH 1
643 INCREMENT BY 1
644 NO MINVALUE
645 NO MAXVALUE
646 CACHE 1;
647
648
649 --
650 -- Name: community_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
651 --
652
653 ALTER SEQUENCE community_id_seq OWNED BY community.id;
654
655
656 --
657 -- Name: vehicle_constructor; Type: TABLE; Schema: public; Owner: -; Tablespace:
658 --
659
660 CREATE TABLE vehicle_constructor (
661 id integer NOT NULL,
662 name character varying(255),
663 address character varying(255),
664 vat_info text,
665 phone character varying(255)
666);
667
668
669 --
670 -- Name: TABLE vehicle_constructor; Type: COMMENT; Schema: public; Owner: -
671 --
672
673 COMMENT ON TABLE vehicle_constructor IS ’Table containing constructors’’ references.’;
674
675
676 --
677 -- Name: constructor_id_seq; Type: SEQUENCE; Schema: public; Owner: -
678 --
679
680 CREATE SEQUENCE constructor_id_seq
681 START WITH 1
682 INCREMENT BY 1
683 NO MINVALUE
684 NO MAXVALUE

73

D. CHAP:DATABASE SCHEMA

685 CACHE 1;
686
687
688 --
689 -- Name: constructor_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
690 --
691
692 ALTER SEQUENCE constructor_id_seq OWNED BY vehicle_constructor.id;
693
694
695 --
696 -- Name: delayed_jobs; Type: TABLE; Schema: public; Owner: -; Tablespace:
697 --
698
699 CREATE TABLE delayed_jobs (
700 id integer NOT NULL,
701 priority integer DEFAULT 0,
702 attempts integer DEFAULT 0,
703 handler text,
704 last_error text,
705 run_at timestamp without time zone,
706 locked_at timestamp without time zone,
707 failed_at timestamp without time zone,
708 locked_by character varying(255),
709 queue character varying(255),
710 created_at timestamp without time zone NOT NULL,
711 updated_at timestamp without time zone NOT NULL
712);
713
714
715 --
716 -- Name: delayed_jobs_id_seq; Type: SEQUENCE; Schema: public; Owner: -
717 --
718
719 CREATE SEQUENCE delayed_jobs_id_seq
720 START WITH 1
721 INCREMENT BY 1
722 NO MINVALUE
723 NO MAXVALUE
724 CACHE 1;
725
726
727 --
728 -- Name: delayed_jobs_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
729 --
730
731 ALTER SEQUENCE delayed_jobs_id_seq OWNED BY delayed_jobs.id;
732
733
734 --
735 -- Name: failure; Type: TABLE; Schema: public; Owner: -; Tablespace:
736 --
737
738 CREATE TABLE failure (
739 id integer NOT NULL,
740 description character varying(255)
741);
742
743
744 --
745 -- Name: TABLE failure; Type: COMMENT; Schema: public; Owner: -
746 --
747
748 COMMENT ON TABLE failure IS ’Failures’’ types.’;
749
750
751 --
752 -- Name: failure_id_seq; Type: SEQUENCE; Schema: public; Owner: -
753 --
754
755 CREATE SEQUENCE failure_id_seq
756 START WITH 1
757 INCREMENT BY 1
758 NO MINVALUE
759 NO MAXVALUE
760 CACHE 1;
761
762
763 --
764 -- Name: failure_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -

74

765 --
766
767 ALTER SEQUENCE failure_id_seq OWNED BY failure.id;
768
769
770 --
771 -- Name: fare; Type: TABLE; Schema: public; Owner: -; Tablespace:
772 --
773
774 CREATE TABLE fare (
775 id integer NOT NULL,
776 type character varying(255),
777 description text,
778 price double precision,
779 valid_from timestamp without time zone,
780 valid_to timestamp without time zone
781);
782
783
784 --
785 -- Name: TABLE fare; Type: COMMENT; Schema: public; Owner: -
786 --
787
788 COMMENT ON TABLE fare IS ’Fare list’;
789
790
791 --
792 -- Name: fare_id_seq; Type: SEQUENCE; Schema: public; Owner: -
793 --
794
795 CREATE SEQUENCE fare_id_seq
796 START WITH 1
797 INCREMENT BY 1
798 NO MINVALUE
799 NO MAXVALUE
800 CACHE 1;
801
802
803 --
804 -- Name: fare_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
805 --
806
807 ALTER SEQUENCE fare_id_seq OWNED BY fare.id;
808
809
810 --
811 -- Name: green_move_applications; Type: TABLE; Schema: public; Owner: -; Tablespace:
812 --
813
814 CREATE TABLE green_move_applications (
815 id integer NOT NULL,
816 jar_file_name character varying(255),
817 user_id character varying(255),
818 class_name character varying(255),
819 jar_signature character varying(255),
820 created_at timestamp without time zone NOT NULL,
821 updated_at timestamp without time zone NOT NULL
822);
823
824
825 --
826 -- Name: green_move_applications_id_seq; Type: SEQUENCE; Schema: public; Owner: -
827 --
828
829 CREATE SEQUENCE green_move_applications_id_seq
830 START WITH 1
831 INCREMENT BY 1
832 NO MINVALUE
833 NO MAXVALUE
834 CACHE 1;
835
836
837 --
838 -- Name: green_move_applications_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
839 --
840
841 ALTER SEQUENCE green_move_applications_id_seq OWNED BY green_move_applications.id;
842
843
844 --

75

D. CHAP:DATABASE SCHEMA

845 -- Name: has_failure; Type: TABLE; Schema: public; Owner: -; Tablespace:
846 --
847
848 CREATE TABLE has_failure (
849 vehicle_id character varying(12) NOT NULL,
850 failure_id integer NOT NULL,
851 ts timestamp without time zone NOT NULL
852);
853
854
855 --
856 -- Name: TABLE has_failure; Type: COMMENT; Schema: public; Owner: -
857 --
858
859 COMMENT ON TABLE has_failure IS ’Vehicles failures’’ log.’;
860
861
862 --
863 -- Name: interest_topic; Type: TABLE; Schema: public; Owner: -; Tablespace:
864 --
865
866 CREATE TABLE interest_topic (
867 id integer NOT NULL,
868 name character varying(255),
869 description text
870);
871
872
873 --
874 -- Name: TABLE interest_topic; Type: COMMENT; Schema: public; Owner: -
875 --
876
877 COMMENT ON TABLE interest_topic IS ’Possible interest topics’’ list.’;
878
879
880 --
881 -- Name: interest_topic_id_seq; Type: SEQUENCE; Schema: public; Owner: -
882 --
883
884 CREATE SEQUENCE interest_topic_id_seq
885 START WITH 1
886 INCREMENT BY 1
887 NO MINVALUE
888 NO MAXVALUE
889 CACHE 1;
890
891
892 --
893 -- Name: interest_topic_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
894 --
895
896 ALTER SEQUENCE interest_topic_id_seq OWNED BY interest_topic.id;
897
898
899 --
900 -- Name: interested; Type: TABLE; Schema: public; Owner: -; Tablespace:
901 --
902
903 CREATE TABLE interested (
904 ts timestamp without time zone NOT NULL,
905 user_id character varying(16) NOT NULL,
906 topic_id integer NOT NULL
907);
908
909
910 --
911 -- Name: TABLE interested; Type: COMMENT; Schema: public; Owner: -
912 --
913
914 COMMENT ON TABLE interested IS ’Users related interests.’;
915
916
917 --
918 -- Name: mobile_device_id_seq; Type: SEQUENCE; Schema: public; Owner: -
919 --
920
921 CREATE SEQUENCE mobile_device_id_seq
922 START WITH 1
923 INCREMENT BY 1
924 NO MINVALUE

76

925 NO MAXVALUE
926 CACHE 1;
927
928
929 --
930 -- Name: mobile_device_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
931 --
932
933 ALTER SEQUENCE mobile_device_id_seq OWNED BY mobile_device.id;
934
935
936 --
937 -- Name: vehicle_model; Type: TABLE; Schema: public; Owner: -; Tablespace:
938 --
939
940 CREATE TABLE vehicle_model (
941 id integer NOT NULL,
942 name character varying(255),
943 constructor_id integer,
944 vehicle_class_id integer
945);
946
947
948 --
949 -- Name: TABLE vehicle_model; Type: COMMENT; Schema: public; Owner: -
950 --
951
952 COMMENT ON TABLE vehicle_model IS ’Table containing vehicle models’’ descriptions’;
953
954
955 --
956 -- Name: model_id_seq; Type: SEQUENCE; Schema: public; Owner: -
957 --
958
959 CREATE SEQUENCE model_id_seq
960 START WITH 1
961 INCREMENT BY 1
962 NO MINVALUE
963 NO MAXVALUE
964 CACHE 1;
965
966
967 --
968 -- Name: model_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
969 --
970
971 ALTER SEQUENCE model_id_seq OWNED BY vehicle_model.id;
972
973
974 --
975 -- Name: nfc; Type: TABLE; Schema: public; Owner: -; Tablespace:
976 --
977
978 CREATE TABLE nfc (
979 tag_id character varying(255) NOT NULL,
980 device_id integer,
981 "check" character varying(255),
982 data text
983);
984
985
986 --
987 -- Name: TABLE nfc; Type: COMMENT; Schema: public; Owner: -
988 --
989
990 COMMENT ON TABLE nfc IS ’NFC tag related data.’;
991
992
993 --
994 -- Name: on_vehicle_op; Type: TABLE; Schema: public; Owner: -; Tablespace:
995 --
996
997 CREATE TABLE on_vehicle_op (
998 vehicle_id character varying(12) NOT NULL,
999 begin_ts timestamp without time zone NOT NULL,

1000 end_ts timestamp without time zone
1001);
1002
1003
1004 --

77

D. CHAP:DATABASE SCHEMA

1005 -- Name: TABLE on_vehicle_op; Type: COMMENT; Schema: public; Owner: -
1006 --
1007
1008 COMMENT ON TABLE on_vehicle_op IS ’Performed on-vehicle operations’’ list.’;
1009
1010
1011 --
1012 -- Name: op_type; Type: TABLE; Schema: public; Owner: -; Tablespace:
1013 --
1014
1015 CREATE TABLE op_type (
1016 id integer NOT NULL,
1017 description text
1018);
1019
1020
1021 --
1022 -- Name: TABLE op_type; Type: COMMENT; Schema: public; Owner: -
1023 --
1024
1025 COMMENT ON TABLE op_type IS ’Available operations’’ list’;
1026
1027
1028 --
1029 -- Name: op_type_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1030 --
1031
1032 CREATE SEQUENCE op_type_id_seq
1033 START WITH 1
1034 INCREMENT BY 1
1035 NO MINVALUE
1036 NO MAXVALUE
1037 CACHE 1;
1038
1039
1040 --
1041 -- Name: op_type_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1042 --
1043
1044 ALTER SEQUENCE op_type_id_seq OWNED BY op_type.id;
1045
1046
1047 --
1048 -- Name: other_op; Type: TABLE; Schema: public; Owner: -; Tablespace:
1049 --
1050
1051 CREATE TABLE other_op (
1052 vehicle_id character varying(12) NOT NULL,
1053 begin_ts timestamp without time zone NOT NULL,
1054 end_ts timestamp without time zone,
1055 cause text,
1056 op_id integer
1057);
1058
1059
1060 --
1061 -- Name: TABLE other_op; Type: COMMENT; Schema: public; Owner: -
1062 --
1063
1064 COMMENT ON TABLE other_op IS ’Other operations’’ details’;
1065
1066
1067 --
1068 -- Name: path_event; Type: TABLE; Schema: public; Owner: -; Tablespace:
1069 --
1070
1071 CREATE TABLE path_event (
1072 id integer NOT NULL,
1073 begin_ts timestamp without time zone,
1074 end_ts timestamp without time zone,
1075 latitude double precision,
1076 longitude double precision,
1077 cause character varying(255)
1078);
1079
1080
1081 --
1082 -- Name: TABLE path_event; Type: COMMENT; Schema: public; Owner: -
1083 --
1084

78

1085 COMMENT ON TABLE path_event IS ’List of all path/road related issues (work in progress, ...)’;
1086
1087
1088 --
1089 -- Name: path_event_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1090 --
1091
1092 CREATE SEQUENCE path_event_id_seq
1093 START WITH 1
1094 INCREMENT BY 1
1095 NO MINVALUE
1096 NO MAXVALUE
1097 CACHE 1;
1098
1099
1100 --
1101 -- Name: path_event_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1102 --
1103
1104 ALTER SEQUENCE path_event_id_seq OWNED BY path_event.id;
1105
1106
1107 --
1108 -- Name: precedences_asp_view; Type: TABLE; Schema: public; Owner: -; Tablespace:
1109 --
1110
1111 CREATE TABLE precedences_asp_view (
1112 resrv_id_bf integer NOT NULL,
1113 resrv_id_af integer NOT NULL
1114);
1115
1116
1117 --
1118 -- Name: TABLE precedences_asp_view; Type: COMMENT; Schema: public; Owner: -
1119 --
1120
1121 COMMENT ON TABLE precedences_asp_view IS ’DO NOT FILL!
1122 Automatically filled by function.’;
1123
1124
1125 --
1126 -- Name: provided_by; Type: TABLE; Schema: public; Owner: -; Tablespace:
1127 --
1128
1129 CREATE TABLE provided_by (
1130 aggregation_poind_id integer NOT NULL,
1131 service_id integer NOT NULL
1132);
1133
1134
1135 --
1136 -- Name: TABLE provided_by; Type: COMMENT; Schema: public; Owner: -
1137 --
1138
1139 COMMENT ON TABLE provided_by IS ’Aggregation points available services’;
1140
1141
1142 --
1143 -- Name: request; Type: TABLE; Schema: public; Owner: -; Tablespace:
1144 --
1145
1146 CREATE TABLE request (
1147 reservation_id integer NOT NULL,
1148 service_id integer NOT NULL
1149);
1150
1151
1152 --
1153 -- Name: TABLE request; Type: COMMENT; Schema: public; Owner: -
1154 --
1155
1156 COMMENT ON TABLE request IS ’Data about additional services included in the reservation’;
1157
1158
1159 --
1160 -- Name: reservationASP_view; Type: VIEW; Schema: public; Owner: -
1161 --
1162
1163 CREATE VIEW "reservationASP_view" AS

79

D. CHAP:DATABASE SCHEMA

1164 SELECT r.user_id, (date_part(’day’::text, ((r.taking_ts)::timestamp with time zone - (now
() - ’7 days’::interval))))::integer AS startday, (date_part(’hour’::text, r.
taking_ts))::integer AS starthour, (date_part(’day’::text, ((r.release_ts)::timestamp
with time zone - (now() - ’7 days’::interval))))::integer AS endday, (date_part(’

hour’::text, r.release_ts))::integer AS endhour FROM reservation r WHERE ((r.
taking_ts IS NOT NULL) AND (r.release_ts IS NOT NULL));

1165
1166
1167 --
1168 -- Name: reservation_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1169 --
1170
1171 CREATE SEQUENCE reservation_id_seq
1172 START WITH 1
1173 INCREMENT BY 1
1174 NO MINVALUE
1175 NO MAXVALUE
1176 CACHE 1;
1177
1178
1179 --
1180 -- Name: reservation_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1181 --
1182
1183 ALTER SEQUENCE reservation_id_seq OWNED BY reservation.id;
1184
1185
1186 --
1187 -- Name: resrvasp_view; Type: TABLE; Schema: public; Owner: -; Tablespace:
1188 --
1189
1190 CREATE TABLE resrvasp_view (
1191 id integer NOT NULL,
1192 taking_day integer,
1193 taking_hour integer,
1194 release_day integer,
1195 release_hour integer,
1196 user_id character varying(255),
1197 taking_location character varying(255),
1198 release_location character varying(255)
1199);
1200
1201
1202 --
1203 -- Name: TABLE resrvasp_view; Type: COMMENT; Schema: public; Owner: -
1204 --
1205
1206 COMMENT ON TABLE resrvasp_view IS ’DO NOT FILL.
1207 Automatically filled by function.’;
1208
1209
1210 --
1211 -- Name: schema_migrations; Type: TABLE; Schema: public; Owner: -; Tablespace:
1212 --
1213
1214 CREATE TABLE schema_migrations (
1215 version character varying(255) NOT NULL
1216);
1217
1218
1219 --
1220 -- Name: sense; Type: TABLE; Schema: public; Owner: -; Tablespace:
1221 --
1222
1223 CREATE TABLE sense (
1224 sensor_id integer NOT NULL,
1225 failure_id integer NOT NULL,
1226 ts timestamp without time zone
1227);
1228
1229
1230 --
1231 -- Name: TABLE sense; Type: COMMENT; Schema: public; Owner: -
1232 --
1233
1234 COMMENT ON TABLE sense IS ’Sensor ability to sense a failure.’;
1235
1236
1237 --
1238 -- Name: sensor; Type: TABLE; Schema: public; Owner: -; Tablespace:

80

1239 --
1240
1241 CREATE TABLE sensor (
1242 id integer NOT NULL,
1243 ts timestamp without time zone NOT NULL,
1244 gb_id character varying(50),
1245 value character varying(255),
1246 sensor_class integer
1247);
1248
1249
1250 --
1251 -- Name: TABLE sensor; Type: COMMENT; Schema: public; Owner: -
1252 --
1253
1254 COMMENT ON TABLE sensor IS ’Table containing sensors retrieved data’;
1255
1256
1257 --
1258 -- Name: sensor_class; Type: TABLE; Schema: public; Owner: -; Tablespace:
1259 --
1260
1261 CREATE TABLE sensor_class (
1262 id integer NOT NULL,
1263 value_type character varying(25),
1264 description text
1265);
1266
1267
1268 --
1269 -- Name: TABLE sensor_class; Type: COMMENT; Schema: public; Owner: -
1270 --
1271
1272 COMMENT ON TABLE sensor_class IS ’Available classes of sensors.’;
1273
1274
1275 --
1276 -- Name: sensor_class_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1277 --
1278
1279 CREATE SEQUENCE sensor_class_id_seq
1280 START WITH 1
1281 INCREMENT BY 1
1282 NO MINVALUE
1283 NO MAXVALUE
1284 CACHE 1;
1285
1286
1287 --
1288 -- Name: sensor_class_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1289 --
1290
1291 ALTER SEQUENCE sensor_class_id_seq OWNED BY sensor_class.id;
1292
1293
1294 --
1295 -- Name: sensor_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1296 --
1297
1298 CREATE SEQUENCE sensor_id_seq
1299 START WITH 1
1300 INCREMENT BY 1
1301 NO MINVALUE
1302 NO MAXVALUE
1303 CACHE 1;
1304
1305
1306 --
1307 -- Name: sensor_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1308 --
1309
1310 ALTER SEQUENCE sensor_id_seq OWNED BY sensor.id;
1311
1312
1313 --
1314 -- Name: service; Type: TABLE; Schema: public; Owner: -; Tablespace:
1315 --
1316
1317 CREATE TABLE service (
1318 id integer NOT NULL,

81

D. CHAP:DATABASE SCHEMA

1319 name character varying(255),
1320 service_class_id integer
1321);
1322
1323
1324 --
1325 -- Name: TABLE service; Type: COMMENT; Schema: public; Owner: -
1326 --
1327
1328 COMMENT ON TABLE service IS ’Available services’;
1329
1330
1331 --
1332 -- Name: service_class; Type: TABLE; Schema: public; Owner: -; Tablespace:
1333 --
1334
1335 CREATE TABLE service_class (
1336 id integer NOT NULL,
1337 description character varying(255)
1338);
1339
1340
1341 --
1342 -- Name: TABLE service_class; Type: COMMENT; Schema: public; Owner: -
1343 --
1344
1345 COMMENT ON TABLE service_class IS ’Available classes of services’;
1346
1347
1348 --
1349 -- Name: service_class_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1350 --
1351
1352 CREATE SEQUENCE service_class_id_seq
1353 START WITH 1
1354 INCREMENT BY 1
1355 NO MINVALUE
1356 NO MAXVALUE
1357 CACHE 1;
1358
1359
1360 --
1361 -- Name: service_class_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1362 --
1363
1364 ALTER SEQUENCE service_class_id_seq OWNED BY service_class.id;
1365
1366
1367 --
1368 -- Name: service_configuration; Type: TABLE; Schema: public; Owner: -; Tablespace:
1369 --
1370
1371 CREATE TABLE service_configuration (
1372 id integer NOT NULL,
1373 name character varying(255),
1374 description text
1375);
1376
1377
1378 --
1379 -- Name: TABLE service_configuration; Type: COMMENT; Schema: public; Owner: -
1380 --
1381
1382 COMMENT ON TABLE service_configuration IS ’Possible Green Move use-configurations’;
1383
1384
1385 --
1386 -- Name: service_configuration_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1387 --
1388
1389 CREATE SEQUENCE service_configuration_id_seq
1390 START WITH 1
1391 INCREMENT BY 1
1392 NO MINVALUE
1393 NO MAXVALUE
1394 CACHE 1;
1395
1396
1397 --
1398 -- Name: service_configuration_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -

82

1399 --
1400
1401 ALTER SEQUENCE service_configuration_id_seq OWNED BY service_configuration.id;
1402
1403
1404 --
1405 -- Name: service_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1406 --
1407
1408 CREATE SEQUENCE service_id_seq
1409 START WITH 1
1410 INCREMENT BY 1
1411 NO MINVALUE
1412 NO MAXVALUE
1413 CACHE 1;
1414
1415
1416 --
1417 -- Name: service_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1418 --
1419
1420 ALTER SEQUENCE service_id_seq OWNED BY service.id;
1421
1422
1423 --
1424 -- Name: special_constraint; Type: TABLE; Schema: public; Owner: -; Tablespace:
1425 --
1426
1427 CREATE TABLE special_constraint (
1428 id integer NOT NULL,
1429 vehicle_id character varying(12),
1430 "constraint" text
1431);
1432
1433
1434 --
1435 -- Name: TABLE special_constraint; Type: COMMENT; Schema: public; Owner: -
1436 --
1437
1438 COMMENT ON TABLE special_constraint IS ’Placeholder for special type o constraint’;
1439
1440
1441 --
1442 -- Name: special_constraint_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1443 --
1444
1445 CREATE SEQUENCE special_constraint_id_seq
1446 START WITH 1
1447 INCREMENT BY 1
1448 NO MINVALUE
1449 NO MAXVALUE
1450 CACHE 1;
1451
1452
1453 --
1454 -- Name: special_constraint_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1455 --
1456
1457 ALTER SEQUENCE special_constraint_id_seq OWNED BY special_constraint.id;
1458
1459
1460 --
1461 -- Name: static_context; Type: TABLE; Schema: public; Owner: -; Tablespace:
1462 --
1463
1464 CREATE TABLE static_context (
1465 ts timestamp without time zone NOT NULL,
1466 user_id character varying(16) NOT NULL
1467);
1468
1469
1470 --
1471 -- Name: TABLE static_context; Type: COMMENT; Schema: public; Owner: -
1472 --
1473
1474 COMMENT ON TABLE static_context IS ’Data about user static context.’;
1475
1476
1477 --
1478 -- Name: supports; Type: TABLE; Schema: public; Owner: -; Tablespace:

83

D. CHAP:DATABASE SCHEMA

1479 --
1480
1481 CREATE TABLE supports (
1482 device_id integer NOT NULL,
1483 cloud_service_id integer NOT NULL
1484);
1485
1486
1487 --
1488 -- Name: TABLE supports; Type: COMMENT; Schema: public; Owner: -
1489 --
1490
1491 COMMENT ON TABLE supports IS ’List of device supported cloud services’;
1492
1493
1494 --
1495 -- Name: usable_in; Type: TABLE; Schema: public; Owner: -; Tablespace:
1496 --
1497
1498 CREATE TABLE usable_in (
1499 service_configuration_id integer NOT NULL,
1500 service_id integer NOT NULL
1501);
1502
1503
1504 --
1505 -- Name: TABLE usable_in; Type: COMMENT; Schema: public; Owner: -
1506 --
1507
1508 COMMENT ON TABLE usable_in IS ’Specific service configuration available services.’;
1509
1510
1511 --
1512 -- Name: usage_data; Type: TABLE; Schema: public; Owner: -; Tablespace:
1513 --
1514
1515 CREATE TABLE usage_data (
1516 reservation_id integer NOT NULL,
1517 real_taking_ts timestamp without time zone,
1518 real_release_ts timestamp without time zone,
1519 taking_km double precision,
1520 release_km double precision,
1521 constr_malus double precision,
1522 constr_bonus double precision,
1523 damage_malus double precision,
1524 charge_bonus double precision,
1525 release_bonus double precision
1526);
1527
1528
1529 --
1530 -- Name: TABLE usage_data; Type: COMMENT; Schema: public; Owner: -
1531 --
1532
1533 COMMENT ON TABLE usage_data IS ’Reservation related vehicles’’ usage data’;
1534
1535
1536 --
1537 -- Name: user; Type: TABLE; Schema: public; Owner: -; Tablespace:
1538 --
1539
1540 CREATE TABLE "user" (
1541 id character varying(16) NOT NULL,
1542 name character varying(255),
1543 surname character varying(255),
1544 email character varying(255),
1545 pub_key character varying(255),
1546 ident_url character varying(255),
1547 username character varying(20),
1548 passwd character varying(150),
1549 vat_info text DEFAULT ’none’::text,
1550 billing_info text DEFAULT ’none’::text,
1551 customer boolean NOT NULL,
1552 owner boolean NOT NULL,
1553 birthdate date,
1554 gender character varying(1)
1555);
1556
1557
1558 --

84

1559 -- Name: TABLE "user"; Type: COMMENT; Schema: public; Owner: -
1560 --
1561
1562 COMMENT ON TABLE "user" IS ’Table containing users’’ data (customers’’ and owners’’ data).’;
1563
1564
1565 --
1566 -- Name: vehicle_availability; Type: TABLE; Schema: public; Owner: -; Tablespace:
1567 --
1568
1569 CREATE TABLE vehicle_availability (
1570 id integer NOT NULL,
1571 vehicle_id character varying(12),
1572 begin_ts timestamp without time zone,
1573 end_ts timestamp without time zone
1574);
1575
1576
1577 --
1578 -- Name: TABLE vehicle_availability; Type: COMMENT; Schema: public; Owner: -
1579 --
1580
1581 COMMENT ON TABLE vehicle_availability IS ’Table containing eventual constraints on vehicle

availability’;
1582
1583
1584 --
1585 -- Name: vehicle_availability_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1586 --
1587
1588 CREATE SEQUENCE vehicle_availability_id_seq
1589 START WITH 1
1590 INCREMENT BY 1
1591 NO MINVALUE
1592 NO MAXVALUE
1593 CACHE 1;
1594
1595
1596 --
1597 -- Name: vehicle_availability_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1598 --
1599
1600 ALTER SEQUENCE vehicle_availability_id_seq OWNED BY vehicle_availability.id;
1601
1602
1603 --
1604 -- Name: vehicle_class; Type: TABLE; Schema: public; Owner: -; Tablespace:
1605 --
1606
1607 CREATE TABLE vehicle_class (
1608 id integer NOT NULL,
1609 description character varying(255)
1610);
1611
1612
1613 --
1614 -- Name: TABLE vehicle_class; Type: COMMENT; Schema: public; Owner: -
1615 --
1616
1617 COMMENT ON TABLE vehicle_class IS ’Classes of vehicles’;
1618
1619
1620 --
1621 -- Name: vehicle_class_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1622 --
1623
1624 CREATE SEQUENCE vehicle_class_id_seq
1625 START WITH 1
1626 INCREMENT BY 1
1627 NO MINVALUE
1628 NO MAXVALUE
1629 CACHE 1;
1630
1631
1632 --
1633 -- Name: vehicle_class_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1634 --
1635
1636 ALTER SEQUENCE vehicle_class_id_seq OWNED BY vehicle_class.id;
1637

85

D. CHAP:DATABASE SCHEMA

1638
1639 --
1640 -- Name: vehicle_constructor_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1641 --
1642
1643 CREATE SEQUENCE vehicle_constructor_id_seq
1644 START WITH 1
1645 INCREMENT BY 1
1646 NO MINVALUE
1647 NO MAXVALUE
1648 CACHE 1;
1649
1650
1651 --
1652 -- Name: vehicle_constructor_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1653 --
1654
1655 ALTER SEQUENCE vehicle_constructor_id_seq OWNED BY vehicle_constructor.id;
1656
1657
1658 --
1659 -- Name: vehicle_model_id_seq; Type: SEQUENCE; Schema: public; Owner: -
1660 --
1661
1662 CREATE SEQUENCE vehicle_model_id_seq
1663 START WITH 1
1664 INCREMENT BY 1
1665 NO MINVALUE
1666 NO MAXVALUE
1667 CACHE 1;
1668
1669
1670 --
1671 -- Name: vehicle_model_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: -
1672 --
1673
1674 ALTER SEQUENCE vehicle_model_id_seq OWNED BY vehicle_model.id;
1675
1676
1677 --
1678 -- Name: vehicleop_asp_view; Type: TABLE; Schema: public; Owner: -; Tablespace:
1679 --
1680
1681 CREATE TABLE vehicleop_asp_view (
1682 vehicle_id character varying(255) NOT NULL,
1683 begin_day integer NOT NULL,
1684 begin_hour integer NOT NULL,
1685 end_day integer NOT NULL,
1686 end_hour integer NOT NULL
1687);
1688
1689
1690 --
1691 -- Name: TABLE vehicleop_asp_view; Type: COMMENT; Schema: public; Owner: -
1692 --
1693
1694 COMMENT ON TABLE vehicleop_asp_view IS ’DO NOT FILL.
1695 Automatically filled by function.’;
1696
1697
1698 --
1699 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1700 --
1701
1702 ALTER TABLE ONLY aggregation_point ALTER COLUMN id SET DEFAULT nextval(’

aggregation_point_id_seq’::regclass);
1703
1704
1705 --
1706 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1707 --
1708
1709 ALTER TABLE ONLY aggregation_point_type ALTER COLUMN id SET DEFAULT nextval(’

aggregation_point_type_id_seq’::regclass);
1710
1711
1712 --
1713 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1714 --
1715

86

1716 ALTER TABLE ONLY battery ALTER COLUMN id SET DEFAULT nextval(’battery_id_seq’::regclass);
1717
1718
1719 --
1720 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1721 --
1722
1723 ALTER TABLE ONLY charge_station ALTER COLUMN id SET DEFAULT nextval(’charge_station_id_seq’::

regclass);
1724
1725
1726 --
1727 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1728 --
1729
1730 ALTER TABLE ONLY cloud_service ALTER COLUMN id SET DEFAULT nextval(’cloud_service_id_seq’::

regclass);
1731
1732
1733 --
1734 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1735 --
1736
1737 ALTER TABLE ONLY community ALTER COLUMN id SET DEFAULT nextval(’community_id_seq’::regclass);
1738
1739
1740 --
1741 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1742 --
1743
1744 ALTER TABLE ONLY delayed_jobs ALTER COLUMN id SET DEFAULT nextval(’delayed_jobs_id_seq’::

regclass);
1745
1746
1747 --
1748 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1749 --
1750
1751 ALTER TABLE ONLY failure ALTER COLUMN id SET DEFAULT nextval(’failure_id_seq’::regclass);
1752
1753
1754 --
1755 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1756 --
1757
1758 ALTER TABLE ONLY fare ALTER COLUMN id SET DEFAULT nextval(’fare_id_seq’::regclass);
1759
1760
1761 --
1762 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1763 --
1764
1765 ALTER TABLE ONLY green_move_applications ALTER COLUMN id SET DEFAULT nextval(’

green_move_applications_id_seq’::regclass);
1766
1767
1768 --
1769 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1770 --
1771
1772 ALTER TABLE ONLY interest_topic ALTER COLUMN id SET DEFAULT nextval(’interest_topic_id_seq’::

regclass);
1773
1774
1775 --
1776 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1777 --
1778
1779 ALTER TABLE ONLY mobile_device ALTER COLUMN id SET DEFAULT nextval(’mobile_device_id_seq’::

regclass);
1780
1781
1782 --
1783 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1784 --
1785
1786 ALTER TABLE ONLY op_type ALTER COLUMN id SET DEFAULT nextval(’op_type_id_seq’::regclass);
1787
1788
1789 --

87

D. CHAP:DATABASE SCHEMA

1790 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1791 --
1792
1793 ALTER TABLE ONLY path_event ALTER COLUMN id SET DEFAULT nextval(’path_event_id_seq’::regclass)

;
1794
1795
1796 --
1797 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1798 --
1799
1800 ALTER TABLE ONLY reservation ALTER COLUMN id SET DEFAULT nextval(’reservation_id_seq’::

regclass);
1801
1802
1803 --
1804 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1805 --
1806
1807 ALTER TABLE ONLY sensor ALTER COLUMN id SET DEFAULT nextval(’sensor_id_seq’::regclass);
1808
1809
1810 --
1811 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1812 --
1813
1814 ALTER TABLE ONLY sensor_class ALTER COLUMN id SET DEFAULT nextval(’sensor_class_id_seq’::

regclass);
1815
1816
1817 --
1818 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1819 --
1820
1821 ALTER TABLE ONLY service ALTER COLUMN id SET DEFAULT nextval(’service_id_seq’::regclass);
1822
1823
1824 --
1825 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1826 --
1827
1828 ALTER TABLE ONLY service_class ALTER COLUMN id SET DEFAULT nextval(’service_class_id_seq’::

regclass);
1829
1830
1831 --
1832 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1833 --
1834
1835 ALTER TABLE ONLY service_configuration ALTER COLUMN id SET DEFAULT nextval(’

service_configuration_id_seq’::regclass);
1836
1837
1838 --
1839 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1840 --
1841
1842 ALTER TABLE ONLY special_constraint ALTER COLUMN id SET DEFAULT nextval(’

special_constraint_id_seq’::regclass);
1843
1844
1845 --
1846 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1847 --
1848
1849 ALTER TABLE ONLY vehicle_availability ALTER COLUMN id SET DEFAULT nextval(’

vehicle_availability_id_seq’::regclass);
1850
1851
1852 --
1853 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1854 --
1855
1856 ALTER TABLE ONLY vehicle_class ALTER COLUMN id SET DEFAULT nextval(’vehicle_class_id_seq’::

regclass);
1857
1858
1859 --
1860 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1861 --

88

1862
1863 ALTER TABLE ONLY vehicle_constructor ALTER COLUMN id SET DEFAULT nextval(’constructor_id_seq

’::regclass);
1864
1865
1866 --
1867 -- Name: id; Type: DEFAULT; Schema: public; Owner: -
1868 --
1869
1870 ALTER TABLE ONLY vehicle_model ALTER COLUMN id SET DEFAULT nextval(’model_id_seq’::regclass);
1871
1872
1873 --
1874 -- Name: admin_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1875 --
1876
1877 ALTER TABLE ONLY admin
1878 ADD CONSTRAINT admin_pkey PRIMARY KEY (id);
1879
1880
1881 --
1882 -- Name: age_class_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1883 --
1884
1885 ALTER TABLE ONLY age_class
1886 ADD CONSTRAINT age_class_pkey PRIMARY KEY (id);
1887
1888
1889 --
1890 -- Name: aggregation_point_class_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1891 --
1892
1893 ALTER TABLE ONLY aggregation_point_class
1894 ADD CONSTRAINT aggregation_point_class_pkey PRIMARY KEY (aggregation_point_id,

aggregation_point_type);
1895
1896
1897 --
1898 -- Name: aggregation_point_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1899 --
1900
1901 ALTER TABLE ONLY aggregation_point
1902 ADD CONSTRAINT aggregation_point_pkey PRIMARY KEY (id);
1903
1904
1905 --
1906 -- Name: aggregation_point_type_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1907 --
1908
1909 ALTER TABLE ONLY aggregation_point_type
1910 ADD CONSTRAINT aggregation_point_type_pkey PRIMARY KEY (id);
1911
1912
1913 --
1914 -- Name: avail_asp_view_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1915 --
1916
1917 ALTER TABLE ONLY avail_asp_view
1918 ADD CONSTRAINT avail_asp_view_pkey PRIMARY KEY (id);
1919
1920
1921 --
1922 -- Name: battery_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1923 --
1924
1925 ALTER TABLE ONLY battery
1926 ADD CONSTRAINT battery_pkey PRIMARY KEY (id);
1927
1928
1929 --
1930 -- Name: belongs_to_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1931 --
1932
1933 ALTER TABLE ONLY belongs_to
1934 ADD CONSTRAINT belongs_to_pkey PRIMARY KEY (user_id, community_id);
1935
1936
1937 --
1938 -- Name: charge_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1939 --

89

D. CHAP:DATABASE SCHEMA

1940
1941 ALTER TABLE ONLY charge
1942 ADD CONSTRAINT charge_pkey PRIMARY KEY (vehicle_id, begin_ts);
1943
1944
1945 --
1946 -- Name: charge_station_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1947 --
1948
1949 ALTER TABLE ONLY charge_station
1950 ADD CONSTRAINT charge_station_pkey PRIMARY KEY (id);
1951
1952
1953 --
1954 -- Name: cloud_service_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1955 --
1956
1957 ALTER TABLE ONLY cloud_service
1958 ADD CONSTRAINT cloud_service_pkey PRIMARY KEY (id);
1959
1960
1961 --
1962 -- Name: community_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1963 --
1964
1965 ALTER TABLE ONLY community
1966 ADD CONSTRAINT community_pkey PRIMARY KEY (id);
1967
1968
1969 --
1970 -- Name: delayed_jobs_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1971 --
1972
1973 ALTER TABLE ONLY delayed_jobs
1974 ADD CONSTRAINT delayed_jobs_pkey PRIMARY KEY (id);
1975
1976
1977 --
1978 -- Name: failure_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1979 --
1980
1981 ALTER TABLE ONLY failure
1982 ADD CONSTRAINT failure_pkey PRIMARY KEY (id);
1983
1984
1985 --
1986 -- Name: fare_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1987 --
1988
1989 ALTER TABLE ONLY fare
1990 ADD CONSTRAINT fare_pkey PRIMARY KEY (id);
1991
1992
1993 --
1994 -- Name: gps_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
1995 --
1996
1997 ALTER TABLE ONLY gps
1998 ADD CONSTRAINT gps_pkey PRIMARY KEY (ts, gb_id);
1999
2000
2001 --
2002 -- Name: green_ebox_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2003 --
2004
2005 ALTER TABLE ONLY green_ebox
2006 ADD CONSTRAINT green_ebox_pkey PRIMARY KEY (id);
2007
2008
2009 --
2010 -- Name: green_move_applications_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2011 --
2012
2013 ALTER TABLE ONLY green_move_applications
2014 ADD CONSTRAINT green_move_applications_pkey PRIMARY KEY (id);
2015
2016
2017 --
2018 -- Name: has_failure_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2019 --

90

2020
2021 ALTER TABLE ONLY has_failure
2022 ADD CONSTRAINT has_failure_pkey PRIMARY KEY (vehicle_id, failure_id, ts);
2023
2024
2025 --
2026 -- Name: interest_topic_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2027 --
2028
2029 ALTER TABLE ONLY interest_topic
2030 ADD CONSTRAINT interest_topic_pkey PRIMARY KEY (id);
2031
2032
2033 --
2034 -- Name: interested_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2035 --
2036
2037 ALTER TABLE ONLY interested
2038 ADD CONSTRAINT interested_pkey PRIMARY KEY (ts, user_id, topic_id);
2039
2040
2041 --
2042 -- Name: mobile_device_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2043 --
2044
2045 ALTER TABLE ONLY mobile_device
2046 ADD CONSTRAINT mobile_device_pkey PRIMARY KEY (id);
2047
2048
2049 --
2050 -- Name: nfc_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2051 --
2052
2053 ALTER TABLE ONLY nfc
2054 ADD CONSTRAINT nfc_pkey PRIMARY KEY (tag_id);
2055
2056
2057 --
2058 -- Name: on_vehicle_op_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2059 --
2060
2061 ALTER TABLE ONLY on_vehicle_op
2062 ADD CONSTRAINT on_vehicle_op_pkey PRIMARY KEY (vehicle_id, begin_ts);
2063
2064
2065 --
2066 -- Name: onvehicleop_asp_view_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2067 --
2068
2069 ALTER TABLE ONLY vehicleop_asp_view
2070 ADD CONSTRAINT onvehicleop_asp_view_pkey PRIMARY KEY (vehicle_id, begin_day, begin_hour,

end_day, end_hour);
2071
2072
2073 --
2074 -- Name: op_type_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2075 --
2076
2077 ALTER TABLE ONLY op_type
2078 ADD CONSTRAINT op_type_pkey PRIMARY KEY (id);
2079
2080
2081 --
2082 -- Name: other_op_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2083 --
2084
2085 ALTER TABLE ONLY other_op
2086 ADD CONSTRAINT other_op_pkey PRIMARY KEY (vehicle_id, begin_ts);
2087
2088
2089 --
2090 -- Name: path_event_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2091 --
2092
2093 ALTER TABLE ONLY path_event
2094 ADD CONSTRAINT path_event_pkey PRIMARY KEY (id);
2095
2096
2097 --
2098 -- Name: pkey_ad_provider_admin; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:

91

D. CHAP:DATABASE SCHEMA

2099 --
2100
2101 ALTER TABLE ONLY ad_provider_admin
2102 ADD CONSTRAINT pkey_ad_provider_admin PRIMARY KEY (id, user_id);
2103
2104
2105 --
2106 -- Name: precedences_asp_view_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2107 --
2108
2109 ALTER TABLE ONLY precedences_asp_view
2110 ADD CONSTRAINT precedences_asp_view_pkey PRIMARY KEY (resrv_id_bf, resrv_id_af);
2111
2112
2113 --
2114 -- Name: provided_by_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2115 --
2116
2117 ALTER TABLE ONLY provided_by
2118 ADD CONSTRAINT provided_by_pkey PRIMARY KEY (aggregation_poind_id, service_id);
2119
2120
2121 --
2122 -- Name: request_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2123 --
2124
2125 ALTER TABLE ONLY request
2126 ADD CONSTRAINT request_pkey PRIMARY KEY (reservation_id, service_id);
2127
2128
2129 --
2130 -- Name: reservation_id; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2131 --
2132
2133 ALTER TABLE ONLY assignment
2134 ADD CONSTRAINT reservation_id PRIMARY KEY (reservation_id);
2135
2136
2137 --
2138 -- Name: reservation_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2139 --
2140
2141 ALTER TABLE ONLY reservation
2142 ADD CONSTRAINT reservation_pkey PRIMARY KEY (id);
2143
2144
2145 --
2146 -- Name: resrvASP_view_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2147 --
2148
2149 ALTER TABLE ONLY resrvasp_view
2150 ADD CONSTRAINT "resrvASP_view_pkey" PRIMARY KEY (id);
2151
2152
2153 --
2154 -- Name: sense_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2155 --
2156
2157 ALTER TABLE ONLY sense
2158 ADD CONSTRAINT sense_pkey PRIMARY KEY (sensor_id, failure_id);
2159
2160
2161 --
2162 -- Name: sensor_class_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2163 --
2164
2165 ALTER TABLE ONLY sensor_class
2166 ADD CONSTRAINT sensor_class_pkey PRIMARY KEY (id);
2167
2168
2169 --
2170 -- Name: sensor_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2171 --
2172
2173 ALTER TABLE ONLY sensor
2174 ADD CONSTRAINT sensor_pkey PRIMARY KEY (id);
2175
2176
2177 --
2178 -- Name: service_class_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:

92

2179 --
2180
2181 ALTER TABLE ONLY service_class
2182 ADD CONSTRAINT service_class_pkey PRIMARY KEY (id);
2183
2184
2185 --
2186 -- Name: service_configuration_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2187 --
2188
2189 ALTER TABLE ONLY service_configuration
2190 ADD CONSTRAINT service_configuration_pkey PRIMARY KEY (id);
2191
2192
2193 --
2194 -- Name: service_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2195 --
2196
2197 ALTER TABLE ONLY service
2198 ADD CONSTRAINT service_pkey PRIMARY KEY (id);
2199
2200
2201 --
2202 -- Name: special_constraint_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2203 --
2204
2205 ALTER TABLE ONLY special_constraint
2206 ADD CONSTRAINT special_constraint_pkey PRIMARY KEY (id);
2207
2208
2209 --
2210 -- Name: static_context_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2211 --
2212
2213 ALTER TABLE ONLY static_context
2214 ADD CONSTRAINT static_context_pkey PRIMARY KEY (ts, user_id);
2215
2216
2217 --
2218 -- Name: supports_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2219 --
2220
2221 ALTER TABLE ONLY supports
2222 ADD CONSTRAINT supports_pkey PRIMARY KEY (device_id, cloud_service_id);
2223
2224
2225 --
2226 -- Name: usable_in_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2227 --
2228
2229 ALTER TABLE ONLY usable_in
2230 ADD CONSTRAINT usable_in_pkey PRIMARY KEY (service_configuration_id, service_id);
2231
2232
2233 --
2234 -- Name: usage_data_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2235 --
2236
2237 ALTER TABLE ONLY usage_data
2238 ADD CONSTRAINT usage_data_pkey PRIMARY KEY (reservation_id);
2239
2240
2241 --
2242 -- Name: user_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2243 --
2244
2245 ALTER TABLE ONLY "user"
2246 ADD CONSTRAINT user_pkey PRIMARY KEY (id);
2247
2248
2249 --
2250 -- Name: user_view_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2251 --
2252
2253 ALTER TABLE ONLY user_view
2254 ADD CONSTRAINT user_view_pkey PRIMARY KEY (id);
2255
2256
2257 --
2258 -- Name: vehicle_availability_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:

93

D. CHAP:DATABASE SCHEMA

2259 --
2260
2261 ALTER TABLE ONLY vehicle_availability
2262 ADD CONSTRAINT vehicle_availability_pkey PRIMARY KEY (id);
2263
2264
2265 --
2266 -- Name: vehicle_class_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2267 --
2268
2269 ALTER TABLE ONLY vehicle_class
2270 ADD CONSTRAINT vehicle_class_pkey PRIMARY KEY (id);
2271
2272
2273 --
2274 -- Name: vehicle_constructor_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2275 --
2276
2277 ALTER TABLE ONLY vehicle_constructor
2278 ADD CONSTRAINT vehicle_constructor_pkey PRIMARY KEY (id);
2279
2280
2281 --
2282 -- Name: vehicle_model_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2283 --
2284
2285 ALTER TABLE ONLY vehicle_model
2286 ADD CONSTRAINT vehicle_model_pkey PRIMARY KEY (id);
2287
2288
2289 --
2290 -- Name: vehicle_pkey; Type: CONSTRAINT; Schema: public; Owner: -; Tablespace:
2291 --
2292
2293 ALTER TABLE ONLY vehicle
2294 ADD CONSTRAINT vehicle_pkey PRIMARY KEY (id);
2295
2296
2297 --
2298 -- Name: delayed_jobs_priority; Type: INDEX; Schema: public; Owner: -; Tablespace:
2299 --
2300
2301 CREATE INDEX delayed_jobs_priority ON delayed_jobs USING btree (priority, run_at);
2302
2303
2304 --
2305 -- Name: fki_vehicle_model_fkey; Type: INDEX; Schema: public; Owner: -; Tablespace:
2306 --
2307
2308 CREATE INDEX fki_vehicle_model_fkey ON vehicle USING btree (model_id);
2309
2310
2311 --
2312 -- Name: fki_vehicle_user_fkey; Type: INDEX; Schema: public; Owner: -; Tablespace:
2313 --
2314
2315 CREATE INDEX fki_vehicle_user_fkey ON vehicle USING btree (owner_id);
2316
2317
2318 --
2319 -- Name: index_green_move_applications_on_user_id; Type: INDEX; Schema: public; Owner: -;

Tablespace:
2320 --
2321
2322 CREATE INDEX index_green_move_applications_on_user_id ON green_move_applications USING btree (

user_id);
2323
2324
2325 --
2326 -- Name: unique_schema_migrations; Type: INDEX; Schema: public; Owner: -; Tablespace:
2327 --
2328
2329 CREATE UNIQUE INDEX unique_schema_migrations ON schema_migrations USING btree (version);
2330
2331
2332 --
2333 -- Name: admin_user_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2334 --
2335
2336 ALTER TABLE ONLY admin

94

2337 ADD CONSTRAINT admin_user_fkey FOREIGN KEY (user_id) REFERENCES "user"(id);
2338
2339
2340 --
2341 -- Name: aggregation_point_class_aggregation_point_fkey; Type: FK CONSTRAINT; Schema: public;

Owner: -
2342 --
2343
2344 ALTER TABLE ONLY aggregation_point_class
2345 ADD CONSTRAINT aggregation_point_class_aggregation_point_fkey FOREIGN KEY (

aggregation_point_id) REFERENCES aggregation_point(id) ON UPDATE CASCADE ON DELETE
RESTRICT;

2346
2347
2348 --
2349 -- Name: aggregation_point_class_aggregation_point_type_fkey; Type: FK CONSTRAINT; Schema:

public; Owner: -
2350 --
2351
2352 ALTER TABLE ONLY aggregation_point_class
2353 ADD CONSTRAINT aggregation_point_class_aggregation_point_type_fkey FOREIGN KEY (

aggregation_point_type) REFERENCES aggregation_point_type(id) ON UPDATE CASCADE ON
DELETE RESTRICT;

2354
2355
2356 --
2357 -- Name: assignement_reservation_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2358 --
2359
2360 ALTER TABLE ONLY assignment
2361 ADD CONSTRAINT assignement_reservation_fkey FOREIGN KEY (reservation_id) REFERENCES

reservation(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2362
2363
2364 --
2365 -- Name: assignement_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2366 --
2367
2368 ALTER TABLE ONLY assignment
2369 ADD CONSTRAINT assignement_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES vehicle(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2370
2371
2372 --
2373 -- Name: avail_asp_view_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2374 --
2375
2376 ALTER TABLE ONLY avail_asp_view
2377 ADD CONSTRAINT avail_asp_view_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES vehicle(id)

ON UPDATE CASCADE ON DELETE CASCADE;
2378
2379
2380 --
2381 -- Name: battery_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2382 --
2383
2384 ALTER TABLE ONLY battery
2385 ADD CONSTRAINT battery_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES vehicle(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2386
2387
2388 --
2389 -- Name: belongs_to_community_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2390 --
2391
2392 ALTER TABLE ONLY belongs_to
2393 ADD CONSTRAINT belongs_to_community_fkey FOREIGN KEY (community_id) REFERENCES community(

id) ON UPDATE CASCADE ON DELETE RESTRICT;
2394
2395
2396 --
2397 -- Name: belongs_to_user_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2398 --
2399
2400 ALTER TABLE ONLY belongs_to
2401 ADD CONSTRAINT belongs_to_user_fkey FOREIGN KEY (user_id) REFERENCES "user"(id) ON UPDATE

CASCADE ON DELETE RESTRICT;
2402
2403
2404 --

95

D. CHAP:DATABASE SCHEMA

2405 -- Name: charge_charge_station_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2406 --
2407
2408 ALTER TABLE ONLY charge
2409 ADD CONSTRAINT charge_charge_station_fkey FOREIGN KEY (charge_station_id) REFERENCES

charge_station(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2410
2411
2412 --
2413 -- Name: fkey_user; Type: FK CONSTRAINT; Schema: public; Owner: -
2414 --
2415
2416 ALTER TABLE ONLY ad_provider_admin
2417 ADD CONSTRAINT fkey_user FOREIGN KEY (user_id) REFERENCES "user"(id);
2418
2419
2420 --
2421 -- Name: gps_green_ebox_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2422 --
2423
2424 ALTER TABLE ONLY gps
2425 ADD CONSTRAINT gps_green_ebox_fkey FOREIGN KEY (gb_id) REFERENCES green_ebox(id);
2426
2427
2428 --
2429 -- Name: green_ebox_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2430 --
2431
2432 ALTER TABLE ONLY green_ebox
2433 ADD CONSTRAINT green_ebox_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES vehicle(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2434
2435
2436 --
2437 -- Name: has_failure_failure_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2438 --
2439
2440 ALTER TABLE ONLY has_failure
2441 ADD CONSTRAINT has_failure_failure_fkey FOREIGN KEY (failure_id) REFERENCES failure(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2442
2443
2444 --
2445 -- Name: has_failure_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2446 --
2447
2448 ALTER TABLE ONLY has_failure
2449 ADD CONSTRAINT has_failure_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES vehicle(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2450
2451
2452 --
2453 -- Name: interested_interest_topic_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2454 --
2455
2456 ALTER TABLE ONLY interested
2457 ADD CONSTRAINT interested_interest_topic_fkey FOREIGN KEY (topic_id) REFERENCES

interest_topic(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2458
2459
2460 --
2461 -- Name: interested_static_context_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2462 --
2463
2464 ALTER TABLE ONLY interested
2465 ADD CONSTRAINT interested_static_context_fkey FOREIGN KEY (ts, user_id) REFERENCES

static_context(ts, user_id) ON UPDATE CASCADE ON DELETE RESTRICT;
2466
2467
2468 --
2469 -- Name: mobile_device_user_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2470 --
2471
2472 ALTER TABLE ONLY mobile_device
2473 ADD CONSTRAINT mobile_device_user_fkey FOREIGN KEY (user_id) REFERENCES "user"(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2474
2475
2476 --
2477 -- Name: model_constructor_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -

96

2478 --
2479
2480 ALTER TABLE ONLY vehicle_model
2481 ADD CONSTRAINT model_constructor_fkey FOREIGN KEY (constructor_id) REFERENCES

vehicle_constructor(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2482
2483
2484 --
2485 -- Name: model_vehicle_class_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2486 --
2487
2488 ALTER TABLE ONLY vehicle_model
2489 ADD CONSTRAINT model_vehicle_class_fkey FOREIGN KEY (vehicle_class_id) REFERENCES

vehicle_class(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2490
2491
2492 --
2493 -- Name: nfc_mobile_device_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2494 --
2495
2496 ALTER TABLE ONLY nfc
2497 ADD CONSTRAINT nfc_mobile_device_fkey FOREIGN KEY (device_id) REFERENCES mobile_device(id)

ON UPDATE CASCADE ON DELETE RESTRICT;
2498
2499
2500 --
2501 -- Name: on_vehicle_op_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2502 --
2503
2504 ALTER TABLE ONLY on_vehicle_op
2505 ADD CONSTRAINT on_vehicle_op_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES vehicle(id)

ON UPDATE CASCADE ON DELETE RESTRICT;
2506
2507
2508 --
2509 -- Name: onvehicleop_asp_view_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2510 --
2511
2512 ALTER TABLE ONLY vehicleop_asp_view
2513 ADD CONSTRAINT onvehicleop_asp_view_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES

vehicle(id) ON UPDATE CASCADE ON DELETE CASCADE;
2514
2515
2516 --
2517 -- Name: other_op_op_typpe_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2518 --
2519
2520 ALTER TABLE ONLY other_op
2521 ADD CONSTRAINT other_op_op_typpe_fkey FOREIGN KEY (op_id) REFERENCES op_type(id) ON UPDATE

CASCADE ON DELETE RESTRICT;
2522
2523
2524 --
2525 -- Name: precedences_asp_view_resrv1; Type: FK CONSTRAINT; Schema: public; Owner: -
2526 --
2527
2528 ALTER TABLE ONLY precedences_asp_view
2529 ADD CONSTRAINT precedences_asp_view_resrv1 FOREIGN KEY (resrv_id_bf) REFERENCES

reservation(id) ON UPDATE CASCADE ON DELETE CASCADE;
2530
2531
2532 --
2533 -- Name: precedences_asp_view_resrv2; Type: FK CONSTRAINT; Schema: public; Owner: -
2534 --
2535
2536 ALTER TABLE ONLY precedences_asp_view
2537 ADD CONSTRAINT precedences_asp_view_resrv2 FOREIGN KEY (resrv_id_af) REFERENCES

reservation(id) ON UPDATE CASCADE ON DELETE CASCADE;
2538
2539
2540 --
2541 -- Name: provided_by_aggregation_point_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2542 --
2543
2544 ALTER TABLE ONLY provided_by
2545 ADD CONSTRAINT provided_by_aggregation_point_fkey FOREIGN KEY (aggregation_poind_id)

REFERENCES aggregation_point(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2546
2547
2548 --

97

D. CHAP:DATABASE SCHEMA

2549 -- Name: provided_by_service_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2550 --
2551
2552 ALTER TABLE ONLY provided_by
2553 ADD CONSTRAINT provided_by_service_fkey FOREIGN KEY (service_id) REFERENCES service(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2554
2555
2556 --
2557 -- Name: request_reservation_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2558 --
2559
2560 ALTER TABLE ONLY request
2561 ADD CONSTRAINT request_reservation_fkey FOREIGN KEY (reservation_id) REFERENCES

reservation(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2562
2563
2564 --
2565 -- Name: request_service_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2566 --
2567
2568 ALTER TABLE ONLY request
2569 ADD CONSTRAINT request_service_fkey FOREIGN KEY (service_id) REFERENCES service(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2570
2571
2572 --
2573 -- Name: reservation_fare_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2574 --
2575
2576 ALTER TABLE ONLY reservation
2577 ADD CONSTRAINT reservation_fare_fkey FOREIGN KEY (fare_id) REFERENCES fare(id) ON UPDATE

CASCADE ON DELETE RESTRICT;
2578
2579
2580 --
2581 -- Name: reservation_service_configuration_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2582 --
2583
2584 ALTER TABLE ONLY reservation
2585 ADD CONSTRAINT reservation_service_configuration_fkey FOREIGN KEY (

service_configuration_id) REFERENCES service_configuration(id) ON UPDATE CASCADE ON
DELETE RESTRICT;

2586
2587
2588 --
2589 -- Name: reservation_user_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2590 --
2591
2592 ALTER TABLE ONLY reservation
2593 ADD CONSTRAINT reservation_user_fkey FOREIGN KEY (user_id) REFERENCES "user"(id) ON UPDATE

CASCADE ON DELETE RESTRICT;
2594
2595
2596 --
2597 -- Name: reservation_vehicle_class_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2598 --
2599
2600 ALTER TABLE ONLY reservation
2601 ADD CONSTRAINT reservation_vehicle_class_fkey FOREIGN KEY (vehicle_class_id) REFERENCES

vehicle_class(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2602
2603
2604 --
2605 -- Name: resrvASP_view_reservation_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2606 --
2607
2608 ALTER TABLE ONLY resrvasp_view
2609 ADD CONSTRAINT "resrvASP_view_reservation_fkey" FOREIGN KEY (id) REFERENCES reservation(id

) ON UPDATE CASCADE ON DELETE CASCADE;
2610
2611
2612 --
2613 -- Name: resrvASP_view_user; Type: FK CONSTRAINT; Schema: public; Owner: -
2614 --
2615
2616 ALTER TABLE ONLY resrvasp_view
2617 ADD CONSTRAINT "resrvASP_view_user" FOREIGN KEY (user_id) REFERENCES "user"(id) ON UPDATE

CASCADE ON DELETE CASCADE;
2618

98

2619
2620 --
2621 -- Name: sense_failure_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2622 --
2623
2624 ALTER TABLE ONLY sense
2625 ADD CONSTRAINT sense_failure_fkey FOREIGN KEY (failure_id) REFERENCES failure(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2626
2627
2628 --
2629 -- Name: sensor_green_ebox_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2630 --
2631
2632 ALTER TABLE ONLY sensor
2633 ADD CONSTRAINT sensor_green_ebox_fkey FOREIGN KEY (gb_id) REFERENCES green_ebox(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2634
2635
2636 --
2637 -- Name: sensor_sensor_class_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2638 --
2639
2640 ALTER TABLE ONLY sensor
2641 ADD CONSTRAINT sensor_sensor_class_fkey FOREIGN KEY (sensor_class) REFERENCES sensor_class

(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2642
2643
2644 --
2645 -- Name: service_service_class_id; Type: FK CONSTRAINT; Schema: public; Owner: -
2646 --
2647
2648 ALTER TABLE ONLY service
2649 ADD CONSTRAINT service_service_class_id FOREIGN KEY (service_class_id) REFERENCES

service_class(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2650
2651
2652 --
2653 -- Name: special_constraint_vehicle_pkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2654 --
2655
2656 ALTER TABLE ONLY special_constraint
2657 ADD CONSTRAINT special_constraint_vehicle_pkey FOREIGN KEY (vehicle_id) REFERENCES vehicle

(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2658
2659
2660 --
2661 -- Name: static_context_user_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2662 --
2663
2664 ALTER TABLE ONLY static_context
2665 ADD CONSTRAINT static_context_user_fkey FOREIGN KEY (user_id) REFERENCES "user"(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2666
2667
2668 --
2669 -- Name: supports_cloud_service_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2670 --
2671
2672 ALTER TABLE ONLY supports
2673 ADD CONSTRAINT supports_cloud_service_fkey FOREIGN KEY (cloud_service_id) REFERENCES

cloud_service(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2674
2675
2676 --
2677 -- Name: supports_mobile_device_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2678 --
2679
2680 ALTER TABLE ONLY supports
2681 ADD CONSTRAINT supports_mobile_device_fkey FOREIGN KEY (device_id) REFERENCES

mobile_device(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2682
2683
2684 --
2685 -- Name: usable_in_service_configuration_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2686 --
2687
2688 ALTER TABLE ONLY usable_in
2689 ADD CONSTRAINT usable_in_service_configuration_fkey FOREIGN KEY (service_configuration_id)

REFERENCES service_configuration(id) ON UPDATE CASCADE ON DELETE RESTRICT;

99

D. CHAP:DATABASE SCHEMA

2690
2691
2692 --
2693 -- Name: usable_in_service_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2694 --
2695
2696 ALTER TABLE ONLY usable_in
2697 ADD CONSTRAINT usable_in_service_fkey FOREIGN KEY (service_id) REFERENCES service(id) ON

UPDATE CASCADE ON DELETE RESTRICT;
2698
2699
2700 --
2701 -- Name: usage_data_reservation_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2702 --
2703
2704 ALTER TABLE ONLY usage_data
2705 ADD CONSTRAINT usage_data_reservation_fkey FOREIGN KEY (reservation_id) REFERENCES

reservation(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2706
2707
2708 --
2709 -- Name: vehicle_availability_vehicle_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2710 --
2711
2712 ALTER TABLE ONLY vehicle_availability
2713 ADD CONSTRAINT vehicle_availability_vehicle_fkey FOREIGN KEY (vehicle_id) REFERENCES

vehicle(id) ON UPDATE CASCADE ON DELETE RESTRICT;
2714
2715
2716 --
2717 -- Name: vehicle_model_fkey; Type: FK CONSTRAINT; Schema: public; Owner: -
2718 --
2719
2720 ALTER TABLE ONLY vehicle
2721 ADD CONSTRAINT vehicle_model_fkey FOREIGN KEY (model_id) REFERENCES vehicle_model(id);
2722
2723
2724 --
2725 -- PostgreSQL database dump complete
2726 --
2727
2728 INSERT INTO schema_migrations (version) VALUES (’0’);
2729
2730 INSERT INTO schema_migrations (version) VALUES (’20121007130334’);
2731
2732 INSERT INTO schema_migrations (version) VALUES (’20121007152713’);

100

BIBLIOGRAPHIC REFERENCES

CAR2GO. http://www.car2go.com.

CUGOLA, GIANPAOLO, & MARGARA, ALESSANDRO. 2010. Tesla: A formally
defined event specification language.

KATZEV, R. 2003. Car sharing: A new approach to urban transportation problems.

RELAYRIDES, GOOGLE. https://relayrides.com.

SHARING, MOBILITY CAR. http://www.mobility.ch/de/pub.

VIRTUALBOX, ORACLE. https://www.virtualbox.org.

YELÒMOBILE. http://www.yelomobile.fr.

ZIPCAR. http://www.zipcar.com.

101

http://www.car2go.com
https://relayrides.com
http://www.mobility.ch/de/pub
https://www.virtualbox.org
http://www.yelomobile.fr
http://www.zipcar.com

	Contents
	List of Figures
	Introduction
	Mobility Systems
	Green Move Infrastructure
	Hardware Infrastructure
	Software Infrastructure

	Green Move Center
	Overview of users' interaction with the GMC
	Overview of vehicles' interaction with the GMC
	Green Move Center architecture
	Software architecture of the GMC - Controllers
	Software architecture of the GMC - Models

	Green Move Applications
	Green Move Application structure
	Green Move Code Agent
	Green Move Applications Server

	Testing
	Test Driven Development
	Green Move Center API Testing

	Conclusions
	Development considerations
	Future work

	T-Rex Rules and Events
	RSpec tests
	Green Move Applications development workflow
	chap:Database Schema
	Bibliographic references

