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cuore per avermi dato l’opportunità di crescere, con i suoi utili consigli, ed aver sempre
risposto in modo tempestivo alle mie domande.

Ringrazio anche al Professor Marco Discacciati, per la sua grande disponibilità e per i
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Abstract

The scope of this thesis is to analytically and numerically analyze the so-called inter-
face control domain decomposition methods. These methods are the subject of current
research within the academic world.
They represent a viable alternative to more classical methods for the resolution of het-
erogeneous problems, without the necessity of setting neither the interface between the
different sub-domains in which should be solved different problems (not always easily iden-
tifiable), nor the coupling conditions, but rather minimizing a suitable cost functional.
The basic idea of these methods, actually, consists in splitting the original domain into two
or more overlapping sub-domains, in introducing the interface variables λi on the different
interfaces and in minimizing a cost functional depending on the introduced variables. In
particular, the solution of the problems in the different sub-domains depends on λi and
we try to minimize the difference of meaningful quantities measured on adjacent domains
in an appropriate norm.
In this thesis we discuss the methods mentioned above in the case of two sub-domains.
In particular, at first some methods for the resolution of elliptic problems are presented.
These methods are analyzed in the case of both continuous and discontinuous coefficients,
in order to test their suitability and efficiency. Then, we propose two methods for the
solution of the heterogeneous Stokes-Darcy problem, we report the obtained numerical
results and assess their properties of well-posedness and stability.

Keywords: domain decomposition, optimal control, interface control, elliptic problems,
finite element method, Stokes-Darcy coupling



ii



Sommario

L’obiettivo di questa tesi è quello di analizzare dal punto di vista analitico e numerico
i cosiddetti metodi di decomposizione dei domini con controllo all’interfaccia. Tali metodi
sono oggetto di ricerche attuali all’interno del mondo accademico.
Essi rappresentano una valida alternativa ai metodi più classici per la risoluzione di prob-
lemi eterogenei, senza la necessità di fissare né l’interfaccia tra i diversi sottodomini su
cui devono essere risolti i diversi problemi (non sempre facilmente identificabile), né le
condizioni di accoppiamento, ma minimizzando un opportuno funzionale costo.
L’idea fondamentale di questi metodi, infatti, è quella di scomporre il dominio originario
in due o più sottodomini con sovrapposizione, introdurre delle variabili di interfaccia λi

sulle diverse interfacce e minimizzare un funzionale costo dipendente dalle variabili in-
trodotte. In particolare, la risoluzione dei problemi nei sottodomini dipende dalle λi e si
cerca di minimizzare la differenza di quantità significative misurate su domini adiacenti in
un’ opportuna norma.
In questa tesi vengono trattati i metodi suddetti nel caso di due sottodomini. In partico-
lare, dapprima sono presentati dei metodi per la risoluzione di problemi di tipo ellittico.
Tali metodi vengono analizzati sia nel caso di coefficienti continui che discontinui, al fine
di testare la bontà e la robustezza dei metodi proposti. In secondo luogo vengono esposti
due metodi per la risoluzione del problema eterogeneo Stokes-Darcy, riportati i risultati
numerici ottenuti e valutate le proprietà di buona positura e stabilità dei metodi.

Parole Chiave: decomposizione di domini, controllo ottimo, controllo d’interfaccia,
problemi ellittici, metodo degli elementi finiti, accoppiamento Stokes-Darcy
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Introduction

The aim of this thesis is to analytically and numerically analyze the so-called interface
control domain decomposition methods (ICDD). These methods are the subject of current
research within the academic world.
They represent a viable alternative to more classical methods for the resolution of het-
erogeneous problems, without the necessity of setting neither the interface between the
different sub-domains in which should be solved different problems (not always easily iden-
tifiable), nor the coupling conditions, but rather minimizing a suitable cost functional.
The basic idea of these methods, actually, consists in splitting the original domain into two
or more overlapping sub-domains, in introducing the so-called interface controls λi which
play the role of unknown boundary data on the different interfaces and in minimizing a
cost functional depending on the introduced variables. In particular, the solution of the
problems in the different sub-domains depends on λi and we try to minimize the difference
of meaningful quantities measured on adjacent domains in an appropriate norm.
In particular, we discuss these methods in the case of two sub-domains. We first consider
elliptic differential problems, then we consider the case of Stokes-Darcy coupling.
ICDD methods for elliptic problems were developed in [8]. There the case of Dirichlet
interface control with homogeneous boundary conditions was analyzed. We extend the
results of [8] to a more general setting, by considering mixed (Dirichlet and Neumann)
boundary conditions. Moreover we discuss with more details the case of Robin interface
control. This part represents an original contribution of this work. Moreover, we discretize
the proposed methods using piecewise linear finite elements P1, while in [8], piecewise bi-
linear Q1 finite elements and spectral elements QN , N > 1 were used.
In the second part of this thesis we apply ICDD methods to an heterogeneous problem.
We propose two different functionals to be minimized, already considered in [10], to solve
the Stokes-Darcy coupling. No theoretical results of well-posedness of these methods are
available for this kind of problems. We numerically analyze the proposed methods in order
to understand whether they are well-posed and robust or not.
Our work is organized as follows: in the first three Chapters we introduce the theoretical
background necessary to develop ICDD methods, in Chapters 4 and 5 we present theoret-
ical and numerical results for ICDD methods applied to elliptic differential problems and
in Chapter 6 we formulate the Stokes-Darcy coupling with two ICDD methods, and show
numerical results.
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More in detail:

Chapter 1 We introduce and give the basic results concerning optimal control problems. This
theory is necessary for the development of ICDD methods.

Chapter 2 We formulate elliptic problems, we recall the statements of the Galerkin Finite Ele-
ment Method (FEM) and we present the main convergence results of this method.

Chapter 3 We describe one of the classical Domain Decomposition Methods (DDM), the Schwarz
method, and we present theoretical and numerical results. We are interested in these
kinds of methods because the Interface Control Domain Decomposition methods are
based on the domain decomposition of the computational domain into overlapping
sub-domains.

Chapter 4 We present the theory of ICDD methods to solve elliptic differential problem, with
two different kinds of interface controls (Dirichlet and Robin interface controls), and
three different cost functionals to be minimized, and we discuss the well-posedness
of these methods. Finally we obtain the optimality systems to be solved for every
method.

Chapter 5 We discretize the optimality systems obtained in the previous Chapter with finite
element method and we present the numerical resolution and results obtained with
ICDD methods in order to choose the better among these mehods. We compare
the numbers of iterations required by these methods also with the ones of Schwarz
method, so that we can understand how they compare with classical Schwarz method.
The numerical simulations are made for different test cases and with both continuous
and discontinuous coefficients, in order to test the robustness of these methods. For
our comparisons we fix the overlap thickness and vary the mesh size, then we fix the
mesh size and vary the overlap thickness.

Chapter 6 After introducing the Stokes and the Darcy problem and their numerical approxi-
mations used in this work, we describe the classical theory of Stokes-Darcy coupling
with sharp interface and we give its dimentionless formulation. Finally we present
two different ICDD methods to solve this heterogeneous problem and we try to un-
derstand with numerical sinulations whether they are well-posed and give a solution
consistent with the real solution of the problem.

All our numerical simulations have been carried out using MATLABR©[15]. This numerical
investigation represents a very substantial part of our thesis.

Milano, December 2012.
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Chapter 1
Optimal Control Problems for Partial

Differential Equations

In this Chapter we recall the general theory of optimal control problems (see [17]), which
is needed to develop the interface control domain decomposition method.

1.1 The Problem Setting

In order to give the basic results concerning optimal control, we need to introduce the
following fundamental data:

• The control function u, belonging to a certain functional space Uad (the space of
admissible controls), usually a closed and bounded subspace of a Hilbert space U ;

• The state function y = y(u) ∈ V , with V Hilbert space, which is the state of the
system to be controlled by u. The function y(u) is the solution of the state system:

Ay(u) = f(u)

where A : V → V ′ is supposed to be a known operator, and f ∈ V ′ a function of u;

• The observation function z = z(u) ∈ H, with H Hilbert space, which depends
on the control function u through the state function and an observation operator
C : V → H which is linear and continuous:

z(u) = Cy(u) .

This function is to be compared with the desired observation zd, which is the desired
objective to be reached.

• The cost functional J : Uad → R

u ∈ Uad 7→ J(u) ∈ R

1



2 Chapter 1. Optimal Control Problems for Partial Differential Equations

• The control problem: find the optimal control u ∈ Uad such that

J(u) = inf
v∈ Uad

J(v)

or, equivalently, such that

J(u) ≤ J(v) ∀ v ∈ Uad

1.2 Functional Minimization: Existence and Uniqueness Re-
sults

Let U be a Hilbert space, endowed with the inner product (·, ·), and with the norm
‖ · ‖ :=

√
(·, ·). We consider the continuous bilinear form on U

u, v 7→ π(u, v) ∀u, v ∈ U (1.1)

that is supposed to be symmetric, and the continuous linear functional on U

v 7→ L(v) ∀v ∈ U (1.2)

Moreover, let Uad be a closed and convex subspace of U . Now we consider the cost
functional of the form:

J(v) = π(v, v) − 2L(v) ∀v ∈ Uad (1.3)

The existence and uniqueness of the minimum of (1.2) is given by the following The-
orems. The proofs can be found in [14].

Theorem 1. Let π(·, ·) be coercive on U :

∃α : π(v, v) > α‖v‖2 ∀v ∈ U .

Then there exists a unique element u ∈ Uad such that

J(u) = inf
v∈Uad

J(v) . (1.4)

Theorem 2. Let us assume the hypothesis of the previous Theorem is valid. Then:

1. The minimizing element u ∈ Uad is characterized by

π(u, v − u) > L(v − u) v ∈ Uad (1.5)

2. If we assume also that the functional v 7→ L(v) is strictly convex and Gâteaux-
differentiable in Uad, and that the cost functional satisfies the condition

J(v) −→ +∞ as ‖v‖ −→ +∞ (1.6)

then, the unique u ∈ Uad satisfying (1.4) is characterized by the following inequality:

J ′(u)[v − u] > 0 ∀v ∈ Uad (1.7)

where J ′(u) stands for the Gâteaux derivative of J in u, defined as the linear operator
J ′(u) : Uad → R such that

J ′(u)[φ] = lim
δ→0

J(u+ δφ)− J(u)

δ
∀φ ∈ Uad
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Corollary 1. Under the assumptions of Theorem 2, in the case that Uad = U , the (1.5)
becomes:

π(u, φ) = L(φ) ∀φ ∈ U

and it is named Euler equation associated to the minimization problem (1.4).

Corollary 2. Under the assumptions of Theorem 2, the characterization (1.7) is equiva-
lent to:

J ′(v)[v − u] > 0 ∀v ∈ Uad

1.3 Control of Systems Governed by Elliptic Partial Differ-

ential Equations

In this Section first we introduce the mathematical formalism needed to treat these kinds
of problems, and then try to apply to these problems the general theory introduced above,
in order to find results of existence and uniqueness of the solutions also in these cases.

Problem Statements

Let V and H be two Hilbert spaces on R, and let us assume that V →֒ H, with continuous
and dense injection. This means that V ⊂ H, that ∃c > 0 such that

‖v‖H 6 c‖v‖V ∀v ∈ V

and that V is dense in H.
In this case, denoting the dual spaces of V and H respectively with V ′ and H ′, it results
that

V →֒ H ⋍ H ′ →֒ V ′ (1.8)

and we refer to (V,H, V ′) as Hilbert Triplet.
Finally, let

a : V × V → R

be a continuous and coercive bilinear form on V , and for a given f ∈ V ′ let F be the
continuous linear form on V

F : V → R , F (v) = V ′〈f, v〉V .

The following holds true.

Lemma 1. (Lax-Milgram’s) Under the previous hypothesis on a(·, ·), for a given f ∈ V ′,
there exists a unique u ∈ V such that:

a(u, v) = F (v) ∀v ∈ V. (1.9)

We may rewrite (1.9) noting that the form v 7→ a(u, v) is linear and continuous on V ,
and so we can define the linear operator A ∈ L (V, V ′) as

a(u, v) = V ′〈Au, v〉V (1.10)

Hence (1.9) is equivalent to
Au = f in V ′. (1.11)
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We are now ready to formulate the control problem, according to the general setting shown
in Section 1.1.
Let the Hilbert space U be the space of the controls, and let us define the operator
B ∈ L (U, V ′)1. The state variable y(u) ∈ V is governed by the following equation,
called the state equation:

Ay(u) = f +Bu in V ′. (1.12)

We note that this equation uniquely defines y(u), thanks to Lemma 1. The operator B
can be, for example, the identity or a restriction operator, such as the trace operator.
The observation equation is instead of the form:

z(u) = Cy(u) (1.13)

where C ∈ L(V,H).
Finally, we introduce the operator N ∈ L(U,U), with N symmetric and positive definite
and such that ∃ν > 0 :

(Nu, u)U ≥ ν‖u‖2U (1.14)

The term (Nu, u)U is called penalization term.
To every control u ∈ U , we can associate the cost functional

J(u) = ‖Cy(u)− zd‖2H + (Nu, u)U (1.15)

where zd ∈ H is the desired observation.

Some Remarks on the Control Problem

Let Uad ⊂ U be the space of admissible controls. It can be easily shown that the following
Theorem holds:

Theorem 3. Under all the hypotheses and definitions given above, there exists a unique
element u ∈ Uad such that

J(u) = inf
v∈Uad

J(v) . (1.16)

The element u is said to be the optimal control.

Proof. Let us write J(u) in the following form:

J(u) = ‖C(y(u)− y(0)) + Cy(0)− zd‖2H + (Nu, u)U .

We now set
π(u, v) := (C(y(u)− y(0)), C(y(v) − y(0)))H + (Nu, v)U

L(v) := (zd − Cy(0), C(y(v) − y(0)))H .

We can note that the form π(u, v) is a continuous and coercive bilinear form on U , that
L(v) is a continuous linear functional on U and that the functional J(v) can be written in
the following way:

J(v) = π(v, v) − 2L(v) + ‖zd − Cy(0)‖2H
Thus, thanks to Theorem 1, the thesis follows.

1Given two Banach spaces U and V , the space of the linear and continuous operators from U into V is
called L (U,V ′)
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Corollary 3. Under all the hypotheses of the previous Theorem except on N , if N = 0
but there exist a constant α0 > 0 such that

∃α0 > 0 : ‖Cy(u)− zd‖2H > α0‖u‖2U ∀u ∈ Uad ,

then the thesis of the previous Theorem is still valid.

The set of inequalities defining the optimal control

In the previous paragraph we have shown that, under certain hypotheses, the existence
and uniqueness of the optimal control can be proved. Now we need to study the structure
of the problem in order to be able to solve it.
We recall that, thanks to Theorem 2, the optimal control u ∈ Uad is characterized by:

J ′(u)[v − u] > 0 ∀v ∈ Uad, (1.17)

where

J ′(u)[φ] = 2π(u, φ) − 2L(φ)

= 2 ((C(y(u)− y(0)), C(y(φ) − y(0)))H + (Nu, φ)U )− 2(zd − Cy(0), C(y(φ) − y(0)))H .

Moreover, since u 7→ y(u) is an affine linear map, we can write

Ay(v − u) = f +B(v − u) = f +A(y(v)− y(u))

and, given that f = Ay(0), we have

A(y(v − u)) = A(y(0) + y(v)− y(u))

and so

y(v − u)− y(0) = y(v)− y(u)

since A is an isomorphism from V into V ′. Therefore (1.17) is equivalent to

(Cy(u)− zd, C(y(v) − y(u)))H + (Nu, v − u)U > 0 ∀v ∈ Uad. (1.18)

Let us denote by Λ = ΛH the canonical isomorphism from H into H ′, and by C∗ ∈
L(H ′, V ′) the adjoint operator of C.
We can now rewrite (1.18), obtaining:

V ′〈C∗Λ(Cy(u)− zd), y(v) − y(u)〉V + (Nu, v − u)U > 0 ∀v ∈ Uad. (1.19)

We shall now transform (1.19), using the adjoint state.
Actually, let A∗ ∈ L(V, V ′) be the adjoint operator of A. It is associated to the bilinear
form a(., .) in the following way:

V ′〈A∗u, v〉V = V ′〈u,Av〉V = a(u, v) ∀u, v ∈ V .

For any control v ∈ U , the adjoint state p(v) ∈ V is defined by the following equation:

A∗p(v) = C∗Λ(Cy(v)− zd) .
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Therefore, the terms on the left of the inequality (1.19) becomes:

V ′〈C∗Λ(Cy(u)− zd), y(v)− y(u)〉V + (Nu, v − u)U =

V ′〈A∗p(u), y(v) − y(u)〉V + (Nu, v − u)U =

V 〈p(u), A(y(v) − y(u))〉V ′ + (Nu, v − u)U =

V 〈p(u), B(v − u)〉V ′ + (Nu, v − u)U =

U ′〈B∗p(u), v − u〉U + (Nu, v − u)U ,

where B∗ ∈ L(V,U ′) is the adjoint operator of B. We can also introduce the canonical
isomorphism ΛU : U → U ′, and deduce:

U ′〈B∗p(u), v − u〉U = (Λ−1
U B∗p(u), v − u)U .

So, we can finally rewrite (1.17) as:

1

2
J ′(u)[v − u] = (Λ−1

U B∗p(u) +Nu, v − u)U > 0 ∀v ∈ Uad .

We have also shown that the Riesz’ element2 (belonging to U) that represents the Gâteaux
derivative of J in u is:

J ′(u) = 2(Λ−1
U B∗p+Nu)

All the results can be summarized in the following

Theorem 4. Assume that all the hypotheses and definitions given in Section 1.3 hold,
except hypothesis (1.14). A necessary and sufficient condition for u to be an optimal control
is that the following equations and inequalities (called optimality system) are satisfied:





Ay(u) = f +Bu in V ′

A∗p(u) = C∗Λ(Cy(u)− zd) in V ′

(Λ−1
U B∗p(u) +N(u), v − u)U > 0 ∀v ∈ Uad .

(1.20)

If Uad = U , the last inequality is an equality.
Moreover, if N satisfies (1.14), the optimal control is unique.
On the other hand, if N = 0 and Uad is bounded, there exists at least one solution.
Finally, if N = 0 and

∃α0 > 0 : ‖Cy(u)− zd‖2H > α0‖u‖2U ∀u ∈ Uad ,

then the optimal control is unique.

2Riesz representation Theorem can be found, for example, in [16]



Chapter 2
Elliptic Problems and Galerkin Finite

Element Method

In this Chapter we recall the general formulation of elliptic problems and their numerical
approximation by finite elements.
Elliptic equations describe diffusion, reaction and transport phenomena in the case when
there is no dependence on the time variable. Moreover they can be used to model electro-
static and electromagnetic potentials, and the deformation of elastic structures. Besides,
also the time-dependent problems, after being discretized, can be seen as stationary prob-
lems to be solved at each temporal step.
The general theory of these kinds of problems can be found in [16] while their numerical
approximation by Galerkin finite element method is described in [17]. In this Chapter we
will base our analysis on these two references.

2.1 The Problem Setting

Let us consider an open bounded domain Ω ⊂ Rd (d=1,2,3) with a Lipschitz boundary
∂Ω.
Let L be the linear elliptic operator:

Lu = div(−K∇u+ bu) + b0u (2.1)

where K = K(x) is a symmetric positive definite tensor K = (Kij)i=1,...,d,j=1,...,d such
that Kij ∈ L∞(Ω), Kij = Kji. Moreover, we will assume that K satisfies the elliptic
constraint:

d∑

i,j=1

Kijξiξj ≥ K|ξ|2 ∀ξ ∈ Rd , (2.2)

for a certain K > 0.
Moreover b ∈ [W 1,∞(Ω)]d and b0 ∈ L∞(Ω) with b0(x) > 0 in Ω, are such that:

• if ΓN = ∅, ∃σ0 > 0 such that

b0(x) +
1

2
div(b(x)) > σ0 ∀x ∈ Ω; (2.3)

7
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• if ΓD = ∅, ∃σ0 > 0 such that (2.3) is satisfied and ∃ε0 > 0 such that:

either ‖b‖L∞(ΓN ) 6
2[min{K,σ0} − ε0]

C∗
, or b · n 6 0 a.e. on ΓN , (2.4)

where C∗ is the constant of trace inequality ‖v‖2L2(∂Ω) 6 C∗‖v‖2H1(Ω), ∀v ∈ H1(Ω);

• if both ΓD 6= ∅ and ΓN 6= ∅, ∃σ0 > 0 such that (2.3) is satisfied and ∃ε0 > 0 such
that:

– if σ0 = 0, b satisfies:

either ‖b‖L∞(ΓN ) 6
2KCΩ − ε0

C∗
, or b · n 6 0 a.e. on ΓN , (2.5)

where CΩ is the constant of the Poincaré inequality ‖v‖L2(Ω) 6 CΩ‖∇v‖L2(Ω),
∀v ∈ H1

0,ΓD
(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD},

– if σ0 > 0, b satisfies (2.4).

Let us consider the following elliptic problem P on Ω:




Lu = f in Ω

u = φD on ΓD

∂nL
u = φN on ΓN

, (2.6)

where f ∈ L2(Ω), φD ∈ H1/2(ΓD), φN ∈ H−1/2(ΓN ) and ∂nL
u is the conormal derivative

of u with respect to the operator L:

∂nL
u =

d∑

i,j=1

Kij
∂u

∂xj
ni − b · nu ,

where ni are the components of n, the unit normal vector external to ∂Ω.
The weak formulation of (2.6) is: find u ∈ H1(Ω), u = φD on ΓD such that

a(u, v) = F (v) ∀v ∈ V , (2.7)

where V = {v ∈ H1(Ω) : v = 0 on ΓD}, while the bilinear form a(·, ·), and the linear
functional F (·) are defined as follows:

a(u, v) =

∫

Ω
K∇u · ∇vdΩ−

∫

Ω
ub · ∇vdΩ+

∫

Ω
b0uvdΩ ∀u, v ∈ H1(Ω) (2.8a)

F (v) =

∫

Ω
fvdΩ+

∫

ΓN

φNvdΓ ∀v ∈ H1(Ω) (2.8b)

It can be shown that the following Theorem holds:

Theorem 5. Let us consider the weak formulation (2.7) of the Elliptic problem P: under
the definitions and hypotheses made, the problem has a unique weak solution u ∈ V =
H1(Ω).
Moreover the following inequality holds:

‖u‖V 6
1

α
‖F‖V ′ ,

where α > 0 is the coercivity constant of a(·, ·).
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Let us show the basic ideas of the proof. For details, see [16]. The proof of this The-
orem is based on Lax-Milgram’s Lemma. It is sufficient to show that the bilinear form
a(·, ·) is continuous and coercive on V and the thesis follows.

2.2 Galerkin Finite Element Method for Elliptic Equations

In this Section we recall the statements of the Galerkin Finite Element Method (FEM) and
we present the main convergence results of this method in the case of problems governed
by elliptic equations defined in a domain Ω ⊂ R2. This method is useful to numerically
solve the problem as an algebraic system.
Let us consider the generic elliptic problem (2.6), and let all the hypotheses of Section 2.1
be considered valid.
Let us introduce a function RφD

∈ H1(Ω) which is the extension of the Dirichlet data into
the whole domain, namely it is such that RφD

= φD on ΓD. Setting w = u − RφD
, we

can define a new problem, equivalent to problem (2.6), but with homogeneous boundary
conditions: 




Lw = f − LRφD
in Ω

∂nL
w = φN − ∂nL

RφD
on ΓN

w = 0 on ΓD

. (2.9)

The weak formulation of problem (2.6) is equivalent to:
find u = w +RφD

such that w ∈ V = {v ∈ H1(Ω) : w = 0 on ΓD} and

a(w, v) = F (v)− a(RφD
, v) ∀v ∈ V , (2.10)

where a(·, ·) is defined in (2.8), while

F (v) =

∫

Ω
fvdΩ+

∫

ΓN

φNvdΓ .

Moreover, let us set F̂ (v) = F (v)− a(RφD
, v).

We first consider the case when the Dirichlet data is zero. In this case no extension is
required and we can find u directly.
Let us define a triangulation Th of the domain Ω. Th represents the covering of the domain
Ω with non overlapping triangles. In particular, if we set hK = diam{K} the diameter
of the generic triangle K belonging to Th, h is defined as h = maxK∈Th hK . Moreover,
let us assume that the grid Th satisfies the following regularity condition. Let ρK be the
diameter of the inscribed circle in the triangle K. A family of triangulation {Th, h > 0}
is regular if

∃δ > 0 :
hk
ρh

6 0 ∀K ∈ Th .

Let us denote by Pr the space of the polynomials of global degree r and let us define

Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Pr ∀K ∈ Th} .

Xr
h is the space of global continuous functions that are polynomials of degree r on each

single triangle. Moreover, we set

X̂r
h = {vh ∈ Xr

h : vh = 0 on ΓD} .
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These definitions allow us to approximate the problem 2.10 with a finite element problem
of the following form:
find uh ∈ Vh = X̂r

h such that:

a(uh, vh) = F (vh) ∀vh ∈ Vh . (2.11)

We want to highlight that the dimension of the generic space Pr defined on R2 is

dimPr =
(r + 1)(r + 2)

2
.

In particular, the P1 space has dimension three. Therefore, in each triangle of the triangu-
lation we can fix three nodes (the vertices) such that each function belonging to Vh = X1

h

is uniquely defined once its nodal values are known in the nodes xi, i = 1, ..., N t
h of the

triangulation Th.
Moreover, we can define a basis of the space Vh as the set of ϕi ∈ Vh, i = 1, ..., N t

h such
that

ϕi(xj) = δij =

{
0 i 6= j

1 i = j
i, j = 1, ..., N t

h .

This definition allows us to represent a generic function vh ∈ Vh as a linear combination
of the basis functions of Vh in the following way:

vh(x) =

Nh∑

i=1

viϕi(x) ∀x ∈ Ω, vi = vh(xi) ,

where Nh is the number of nodes of Th, except the boundary ones where a Dirichlet
condition is imposed. It is supposed that the Dirichlet nodes are numbered at the end.
Let us set N b

h = N t
h − Nh. In particular, also the solution uh of the discretized problem

(2.11) can be expressed in this way. Moreover (2.11) is satisfied for any vh ∈ Vh if and
only if it is satisfied for all basis functions ϕi, i = 1, ..., Nh. It can be easily shown that
problem (2.11) is equivalent to:
find uj = uh(xj), j = 1, ..., Nh such that

Nh∑

j=1

uja(ϕj , ϕi) = F (ϕi) ∀i = 1, ..., Nh . (2.12)

Introducing the matrix A and the vectors f and u such that Aij = a(ϕj , ϕi), fi = F (ϕi)
and ui = ui for i, j = 1, ..., Nh, the problem (2.12) is equivalent to the following algebraic
system:

Au = f , (2.13)

where the unknown vector to be found u holds the nodal values of the approximate solution
uh ∈ Vh.
We now describe how to treat non homogeneous Dirichlet data in the case of finite element
approximation and in particular how to choose its extension. If we have u = φD on ΓD in
the continuous problem, we can discretize this boundary condition by setting

φDh(x) =

Nt
h∑

i=Nh+1

φD(xi)ϕi|ΓD
(x) ∀x ∈ ΓD ,
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and then
uh(x) = φDh(x) ∀x ∈ ΓD .

We can define the extension of the discretized Dirichlet data in the following way:

RφDh
(x) =

Nt
h∑

i=Nh+1

φDh(xi)ϕi(x) ∀x ∈ Ω

Therefore, in this case, problem (2.10) is equivalent to the algebraic system

Aw = f −BφD ,

where {φD}i = φD(xi+Nh
), for i = 1, ..., N b

h and Bij = a(ϕj+Nh
, ϕi) for i = 1, ..., Nh and

j = 1, ..., N b
h, while A and f have been already defined above. We highlight that both

A and B are sparse matrices. Let us now give the most important convergence results,
without proving them. The proofs can be found in [17].

Theorem 6. Let us assume that all the assumptions made above are valid. Then the
Galerkin method is stable, uniformly with respect to h. Therefore, the following inequality
holds true:

‖uh‖V 6
1

α
‖F̂‖V ′ ,

where uh = wh + RφDh
, V = H1(Ω) and α is the coercivity constant of the bilinear form

a(·, ·).

Theorem 7. Let u ∈ V be the weak solution of the problem (2.7), and let uh = wh+RφDh

be its approximate solution with finite element method of degree r. If there exists p > 0
such that u ∈ Hp+1(Ω), the following convergence estimates hold true:

‖u− uh‖L2(Ω) 6 Chs+1|u|Hs+1(Ω)

‖u− uh‖H1(Ω) 6 Chs|u|Hs+1(Ω)

s = min{r, p} , (2.14)

where C is a constant independent of both h and u.

It is possible to discretize the problem also on a grid of quadrilaterals and to define
on it a new space of degree 1 that is the space of continuous functions on the whole
domain which are polynomials of degree one with respect to each of the variables on each
quadrilateral. This space is the finite elements space Q1. A detailed description of this
space and the discretization of the problem with these elements can be found in [5]. We
will focus on the spaces Pr and we will use the space Q1 in order to compare the numerical
results when necessary.
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Chapter 3
Domain Decomposition: Classical Schwarz

Method

In this chapter we describe one of the classical Domain Decomposition Methods (DDM),
the Schwarz method. DDM enable fast resolution of a problem governed by differential
partial equations if using parallel computing. Actually DDM enable us to rewrite the
original problem into subproblems, one in each sub-domain of the original one. Moreover,
DDM allow us to easily formulate and solve heterogeneous problems, namely problems
where we have to solve different partial differential equations in two or more sub-domains.
Interface Control Domain Decomposition methods are based on the domain decomposition
of the computational domain, as the name suggests, into overlapping sub-domains; this
motivates our interest.
The theory of DDM is presented in [18] and [20] and the theory of Schwarz method can
be found also in [17]. In this Chapter we will refer to these books.

3.1 Schwarz Method

The Schwarz method has been proposed by H.Schwarz1 as an iterative method to show the
existence of the solution of elliptical equations defined in domains whose shape does not
allow the application of Fourier series. Only much later this method has been extensively
used to numerically solve partial differential equations.
Let Ω ⊂ Rn n = 1, ..., 3 be an open and bounded set, with a Lipschitz bondary ∂Ω. Let
us consider the elliptic problem, analyzed in Chapter 2:
find

u : Ω → R

such that {
Lu = f in Ω

u = g on ∂Ω ,
(3.1a)

where L is the linear second order elliptic operator defined in (2.1). We will consider,
for sake of simplicity, homogeneous Dirichlet conditions (g = 0). As already seen, under

1The theory of this method can be found in [17] and in [20]

13
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suitable hypotheses on coefficients of L the problem is well-posed.
By introducing the space V = H1

0 (Ω), the weak formulation of the problem (3.1a) reads:

find u ∈ V : a(u, v) = (f, v) ∀v ∈ V (3.1b)

being a(·, ·) the bilinear form associated to L.
Let us consider a decomposition of the domain into two overlapping sub-domains Ω1 and
Ω2 such that Ω1 ∪ Ω2 = Ω and Ω1 ∩Ω2 = Ω12 6= ∅, as shown in figure (3.1). Moreover, set
Γi = ∂Ωi\(∂Ω ∩ ∂Ωi).

Figure 3.1: Example of domain partition

The Schwarz method is an iterative method that reads as follows: given u
(0)
2 on Γ1, solve

the following problems for k ≥ 1:





Lu
(k)
1 = f in Ω1

u
(k)
1 = u

(k−1)
2 on Γ1

u
(k)
1 = 0 on ∂Ω1\Γ1

(3.2a)





Lu
(k)
2 = f in Ω2

u
(k)
2 = αu

(k)
1 + (1− α)u

(k−1)
1 , α ∈ {0, 1} on Γ2

u
(k)
2 = 0 on ∂Ω2\Γ2

(3.2b)

If we choose α = 1 in (3.2b), the method is called multiplicative Schwarz, otherwise if
α = 0 additive Schwarz.
We want the sequences u

(k)
1 and u

(k)
2 to tend towards the restrictions of the solution u of

the original problem (3.1a) in each sub-domain, so that

lim
k→∞

u
(k)
1 = u|

Ω1

and lim
k→∞

u
(k)
2 = u|

Ω2

. (3.3)

It can be shown that the following Theorem holds. This result can be found in [17].

Theorem 8. The Schwarz Method applied to problem (3.1a) with Ω split as in Figure 3.1
always converges to the solution u of the problem (3.1b). The convergence rate increases
as the measure |Ω12|/|Ω| increases.
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3.2 Algebraic Formulation of Schwarz method

Let us consider a regular triangulation Th in finite elements of the domain Ω and the finite
elements discretization of degree r Pr in Ω 2. Moreover, let us suppose that the domain
is split into two overlapping sub-domains Ω1 and Ω2, as shown in figure 3.1. We assume
that in the overlapping region the nodes of the two grids match. If we set N t

h the total
number of nodes inside Ω, and Ni the total number of internal nodes of the domain Ωi,
we obtain that N t

h ≤ N1 + N2. Let us reorder the nodes, in order to have three blocks:
the first one containing the nodes of Ω1 \ Ω2, the second one the ones of Ω1 ∩ Ω2 and the
third one the ones of Ω2 \ Ω1.
Discretizing the weak formulation of the original problem, we obtain the classical algebraic
formulation Au = f3, while discretizing the subproblem in the ith domain, we obtain
Aiui = fi. The matrices A, A1 and A2 are linked to each other, as shown in figure 3.2, by
the following relations:

A1 = R1AR
T
1 ∈ RN1×N1

A2 = R2AR
T
2 ∈ RN2×N2

where Ri and R
T
i are the restriction and extension operators from Ω to Ωi.

Figure 3.2: Structure of matrix A

Using these definitions, we can write an iteration of the Schwarz method applied to the
system Au = f as follows.
In the case of multiplicative Schwarz, we have: given u(0), ∀ k ≥ 0

{
u(k+1/2) = u(k) +RT

1A
−1
1 R1(f −Au(k))

u(k+1) = u(k+1/2) +RT
2 A

−1
2 R2(f −Au(k+1/2))

(3.4)

On the other hand, in the case of additive Schwarz, the algebraic formulation becomes:
given u(0), ∀ k ≥ 0

u(k+1) = u(k) + (RT
1 A

−1
1 R1 +RT

2 A
−1
2 R2)(f −Au(k)) (3.5)

We can notice that, in both cases, two algebraic systems are solved at each iteration of
the method. Moreover, setting

Qi = RT
i A

−1
i Ri i = 1, 2 , (3.6)

2See Chapter 2 for details on the general theory of finite element method
3See Chapter 2 for details
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we can rewrite the methods in the following ways:
Multiplicative Schwarz

u(k+1) = u(k) + (Q1 +Q2 −Q2AQ1)(f −Au(k)) ,

Additive Schwarz

u(k+1) = u(k) + (Q1 +Q2)(f −Au(k)) .

Now it is clear that an iteration of both multiplicative and additive Schwarz can be seen
as an iteration of preconditioned Richardson method applied to solve the linear system
Au = f , where the preconditioner P is:
Multiplicative Schwarz

Pms = (Q1 +Q2 −Q2AQ1)
−1 ,

Additive Schwarz

Pas = (Q1 +Q2)
−1 .

Moreover, in the case of additive Schwarz, the following Theorem holds4

Theorem 9. Let δ be the overlap thickness and H = maxi=1,2{diam{Ωi}}. If we denote
by K2(T ) the condition number of the square matrix T with respect to the matrix norm
‖T‖ =

√
ρ(T TT ), it holds that

K2(P
−1
as A) 6

C

δH
,

where C is independent of h, H and δ.

These preconditioners can also be used to precondition the algebraic system Au = f

when it is solved by Krylov or Conjugate Gradient like algorithms.
We want to underline that the number of iterations needed to solve the linear system
Ay = f with preconditioned Richardson (itR) and with Preconditioned Conjugate Gra-
dient method (PCG) (itPCG), preconditioned with a matrix P , are theoretically linked to
κ = K2(P

−1A) in the following way5:

itR ∝ κ

and

itPCG ∝ κ1/2 .

Therefore, according to Theorem 9, once fixed the parameter H, the number of iterations
of method (3.5) (equivalent to Richardson preconditioned with Pas) is

it ∝ δ−1 , (3.7)

while the number of iterations of PCG preconditioned with Pas is

it ∝ δ−1/2 . (3.8)

4This result can be found in [17]
5Details on Iterative Methods can be found in Appendix A
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3.3 Numerical results

We solve the problem (3.1a) in Ω = (0, 1) × (0, 1) (with K = 2, b = 0 and b0 = 1) with
both additive and multiplicative Schwarz method (3.5) and (3.4), setting f and g such that
the exact solution of the problem is u = exp(x+y)+sin(x)+cos(y). We solve the problem
also by Preconditioned Conjugate Gradient method (PCG) applied to the whole system
Au = f , preconditioned with Pas. We decided to implement also this method because it
is easy to be implemented and it is highly parallelizable. We firstly fix the dimension of
the overlap δ = 0.1 and solve the problem by decreasing the mesh size h. Then, fixed the
mesh size h = 0.01, we decrease the overlap thickness.
We notice that, in terms of number of iterations, the behaviour of finite elements P1 and
Q1 is exactly the same. Moreover, in both cases, the errors, with respect to the exact
solution of the problem, in H1 and L2 norms converge to zero as the mesh size decreases
in agreement with the finite element theory (Figure 3.5), namely we have a second order
of convergence with respect to h in L2 norm and a first order of convergence in H1 norm.
The number of iterations is independent of the mesh size h, but it depends on the thickness
δ of the overlap. In the case of additive Schwarz the number of iterations varies according
to equations (3.7) and (3.8), as we can see respectively in Figure 3.3 and 3.4, while in the
case of multiplicative Schwarz it increases as δ−1 as δ tends to zero (Figure 3.3). Moreover,
we can note (Figure 3.3) that multiplicative Schwarz is faster than the additive one.
We also see that the number of iterations of PCG method preconditioned with Pas is lower
than the number of iterations of classical additive Schwarz. Furthermore, the number of
iterations in the first case increases less than the one of the second case when δ decreases
in agreement with 3.8 and 3.7, respectively.
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Chapter 4
Domain Decomposition and Optimal

Control: Interface Control Domain

Decomposition Methods for Elliptic

Problems

This chapter is aimed to describe Interface Control Domain Decomposition Methods (ICDD).
ICDD methods combine domain decomposition methods with overlapping sub-domains
with optimal control problem, in order to treat both homogeneous and heterogeneous
problems.
Actually the basic idea of this approach consists in introducing suitable functions called
interface controls which play the role of unknown boundary data on the interfaces of the
decomposition and in minimizing, in a suitable norm, the difference between the solutions
of the subproblems on the overlap.
They have been proposed and analyzed in [8]. We recall here the notations and some of
the results presented in [8] for both completeness and clearness. There, the results are
proven in the case of Dirichlet interface controls and in the case of homogeneous Dirichlet
boundary conditions. Here we extend them to a more general setting, by considering both
Dirichlet and Neumann boundary conditions. Moreover we discuss with more details the
case of Robin interface controls. Proofs of Theorems and results in the case of Dirichlet
interface controls can be found in [8].

4.1 The Problem Setting

Let us consider an open bounded domain Ω ⊂ Rd (d=1,2,3) with a Lipschitz boundary
∂Ω, split into two overlapping sub-domains Ω1 and Ω2, such that Ω1 ∩ Ω2 = Ω12 6= ∅ and
Ω1 ∪ Ω2 = Ω, as shown in figure 4.1. Moreover, let ∂Ω = ΓN ∪ ΓD with ΓN ∩ ΓD = ∅. Let
us denote Γi

D = ΓD ∩ ∂Ωi and Γi
N = ΓN ∩ ∂Ωi.

19
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Figure 4.1: Example of domain partition

Let us consider the problem (2.6) on Ω, described and analyzed in Section 2.1:




Lu = f in Ω

u = φD on ΓD

∂nL
u = φN on ΓN

, (4.1)

which weak formulation is given by (2.7): find u ∈ H1(Ω), u = φD on ΓD such that

a(u, v) = F (v) ∀v ∈ V , (4.2)

where V = {v ∈ H1(Ω) : v = 0 on ΓD}, while the bilinear form a(·, ·), and the linear
functional F (·) are defined in (2.8).
We will refer to problem (4.1) as global problem P.
We want to reformulate the problem (4.1) in an equivalent multidomain manner. In partic-
ular, we choose overlapping sub-domains. In this case, there are two different formulations.
Problem PΩ12

: 



Lu1 = f in Ω1

Lu2 = f in Ω2

u1 = u2 in Ω12

(4.3)

with boundary conditions
{
ui = φD|Γi

D
on Γi

D = ∂Ωi ∩ ΓD , i = 1, 2

∂nL
ui = φN |Γi

N
on Γi

N = ∂Ωi ∩ ΓN , i = 1, 2
(4.4)

and
Problem PΓ1∪Γ2

: 



Lu1 = f in Ω1

Lu2 = f in Ω2

Ψ(u1) = Ψ(u2) on Γ1 ∪ Γ2

(4.5)

with the same boundary conditions given in (4.4).
We denote by Ψ(ui) either the trace of ui on Γ1 ∪ Γ2, or its conormal derivative ∂nL

ui
on Γ1 ∪ Γ2 with respect to the same normal vector, or else a linear combination between
them.
In particular, condition (4.5)3 in the first case becomes

u1 = u2 on Γ1 ∪ Γ2 , (4.6)
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in the second case

∂nL
u1 = ∂nL

u2 on Γ1 ∪ Γ2 , (4.7)

or in the third case

βu1 + ∂nL
u1 = βu2 + ∂nL

u2 on Γ1 ∪ Γ2 , (4.8)

where β > 0 is a suitable parameter.
In the second and the third cases, we want to underline that the normal vector n on Γi is
directed outward from Ωi and that the conormal derivative of uj , j 6= i is computed upon
restricting ui to Ωj \ Ωij.
We can associate the problem (4.5) with its weak formulation, as made for problem (4.1).
Let us introduce the following Hilbert spaces:

Vi = {v ∈ H1(Ωi) : v = 0 on Γi
D} and V D

i = {v ∈ Vi : v = 0 on Γi} ,

endowed with the canonical norm of H1(Ωi).
In the case (4.6), the weak formulation reads: find ui ∈ H1(Ωi), ui = φD on Γi

D, ui = uj
on Γi, i 6= j, such that

ai(ui, vi) = Fi(vi) ∀vi ∈ V D
i i, j = 1, 2 , i 6= j ,

where ai(·, ·) is the restriction of a(·, ·) (defined in (2.8)) to Ωi, and

Fi(vi) =

∫

Ωi

fvidΩ+

∫

Γi
N

φNvidΓ ∀vi ∈ V D
i .

In the third case (4.8) the weak formulation becomes: find ui ∈ H1(Ωi), ui = φD on Γi
D,

such that

ai(ui, vi) +

∫

Γi

βuividΓ = Fi(vi) +

∫

Γi

(βuj + ∂nL
uj)vidΓ ∀vi ∈ Vi i, j = 1, 2 , i 6= j ,

where ai(·, ·) and Fi(·) are the same as in the previous case. In particular, we obtain the
second case (4.7) by setting β = 0. It can be shown that, under suitable assumptions on
parameters, these problems are well posed.

We want now to prove that (4.1), (4.3)-(4.4) and (4.5)-(4.4) are equivalent problems.
The Theorem 10 and Corollary 4 that follow are proven in [8]. We recall here also their
proofs for completeness.
Let us firstly introduce the following Hilbert spaces:

VφD
= {v ∈ H1(Ω) : v = φD on ΓD} and Vi,φD

= {v ∈ H1(Ωi) : v = φD on Γi
D} .

The following Theorem holds:

Theorem 10. The function u ∈ VφD
is the weak solution of (4.1) if and only if ui =

u|Ωi
∈ Vi,φD

, i = 1, 2 are the weak solutions of (4.3)-(4.4). Moreover, ui ∈ Vi,φD
, i = 1, 2

are the solutions of (4.3)-(4.4) if and only if they are solutions of (4.5)-(4.4).

Proof. The proof of this Theorem is split into two steps.
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• Let u ∈ VφD
be the solution of (4.1). If we consider the restriction of u to Ω1 and

Ω2, u|Ω1
and u|Ω2

, they satisfy (4.3)-(4.4) by construction. On the other hand, let
u1 and u2 be the solutions of (4.3)-(4.4), and let us consider

u =





u1 in Ω1 \ Ω12

u1 = u2 in Ω12

u2 in Ω2 \ Ω12 .

It can be easily seen that u ∈ VφD
and it satisfies (4.1).

• Let now u1 and u2 be the solutions of the problem (4.5)-(4.4), and let us set w =
u1|Ω12

− u2|Ω12
in Ω12. It results by definition that w ∈ V12, with V12 = {v ∈ Ω12 :

v = 0 on ∂Ω12∩ΓD}. Moreover, w satisfies the following problem (with homogeneous
data): 




Lw = 0 in Ω12

Ψ(w) = 0 on Γ1 ∪ Γ2

w = 0 on ΓD ∩ ∂Ω12

∂nL
w = 0 on ΓN ∩ ∂Ω12 ,

whose unique solution is w = 0. It follows that u1 = u2 on Ω12 and they satisfy
problem (4.3).
Vice versa, if u1 and u2 are solutions of the problem (4.3), they also satisfy (4.5)1
and (4.5)2, and the boundary conditions (4.4). Moreover, since u1 ∈ V1,φD

and
u2 ∈ V2,φD

in Ω12, their image on Γ1 ∪ Γ2 through the operator Ψ are also equal.

It is now easy to prove the following

Corollary 4. Problems (4.3) and (4.5) with boundary conditions (4.4) are well-posed.

Proof. Since (4.1) is well-posed thanks to Theorem 5, and problems (4.3)-(4.4) and (4.5)-
(4.4) are equivalent to problem (4.1) thanks to Theorem 10, the well-posedness of problems
(4.3) and (4.5) with boundary conditions (4.4) follows.

4.2 The Interface Control Domain Decomposition Method

In this Section we describe the Interface Control Domain Decomposition Methods (ICDD)
and analyze them.
The main idea of these methods consists in introducing two or more controls, one for each
internal interface, which play the role of unknown Dirichlet or Neumann or Robin data
at the internal interfaces of the decomposition, and in finding them by minimizing the
difference between the solutions u1 and u2 of either problem (4.3) or (4.5) with boundary
conditions (4.4) in a suitable norm defined on either Ω12 or Γ1 ∪ Γ2.
In the following we will consider the Neumann controls as a peculiar case of Robin ones.
Actually it is sufficient to set β = 0 to find Neumann case.
Let us introduce the spaces of admissible controls. If Γi

D ∩ Γi 6= ∅, we denote by µ̃ the
trivial extension of µ ∈ H1/2(Γi) to Γi

D

µ̃ =

{
µ x ∈ Γi

0 x ∈ Γi
D

.
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The functional spaces can be defined as follows:

• admissible Dirichlet controls:

ΛD
i =





H
1/2
00 (Γi) = {µ ∈ H1/2(Γi) : µ̃ ∈ H1/2(∂Ω)} if Γi

N = ∅
{µ ∈ H1/2(Γi) : µ̃ ∈ H1/2(Γi ∪ Γi

D)} if Γi
D ∩ Γi 6= ∅

H1/2(Γi) otherwise

(4.9)

• admissible Robin control (β > 0):

ΛR
i = (H

1/2
00 (Γi))

′ (4.10)

It can be shown that the spaces (ΛD
i , ‖ · ‖H1/2(Γi)

) and (ΛR
i , ‖ · ‖(H1/2

00
(Γi))′

) are Hilbert

spaces.1

Using the notation of problem (4.5), we can formulate the state problems in the following
way. Let us consider two unknown control functions λi ∈ ΛD

i in the case of Dirichlet
controls, or λi ∈ ΛR

i in the case of Robin one. The state problems read: find ui = ui(λi) ∈
H1(Ωi), i = 1, 2, such that: 




Lui = f in Ωi

∂nL
ui = φiN on Γi

N

ui = φiD on Γi
D

Ψ(ui) = λi on Γi

(4.11)

where φiN = φN |Γi
N

and φiD = φD|Γi
D
.

The interface controls are determined as solutions of a minimization problem. Actually
the objective is to minimize a suitable cost functional, depending on the difference, with
respect to a suitable norm, between the two solutions u1 and u2 of problems (4.11) either
on the overlapping region Ω12 or on the interfaces Γ1 ∪ Γ2.
There are several possible cost functionals to be considered. We can minimize the differ-
ence between the two solutions in the following ways, given rise to different minimization
problems:

• Case 1: Minimization in the L2(Ω12) norm:

inf
λ1,λ2

J0(λ1, λ2), with

J0(λ1, λ2) =
1

2
‖u1(λ1)− u2(λ2)‖2L2(Ω12)

=
1

2

∫

Ω12

(u1(λ1)− u2(λ2))
2dΩ

(4.12)

• Case 2: Minimization in the H1(Ω12) norm:

inf
λ1,λ2

J1(λ1, λ2), with

J1(λ1, λ2) =
1

2
‖u1(λ1)− u2(λ2)‖2H1(Ω12)

=
1

2

∫

Ω12

(u1(λ1)− u2(λ2))
2dΩ+

1

2

∫

Ω12

(∇u1(λ1)−∇u2(λ2))2dΩ

(4.13)

1See [12], section 2.7 for details
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• Case 3: Minimization in the L2(Γ1 ∪ Γ2) norm:

inf
λ1,λ2

J0,Γ(λ1, λ2), with

J0,Γ(λ1, λ2) =
1

2
‖u1(λ1)− u2(λ2)‖2L2(Γ1∪Γ2)

=
1

2

∫

Γ1∪Γ2

(u1(λ1)− u2(λ2))
2dΓ

(4.14)

We remark that the minimization problems (4.12) - (4.14) with constraints (4.11) are
optimal control problems and can be analyzed using the classical theory of optimal control
described in Chapter 1. In particular, the controls are of boundary type in every case,
while the observation is distributed in the first two cases and of interface type in the third
one.
In order to analyze the well-posedness of the ICDD methods, it is useful to split the
probem into two parts, the former depending only on the control and the latter on the
data. Thanks to the linearity of the original problem, we have:

ui = uλi,f
i = uλi

i + ufi , i = 1, 2 ,

where uλi
i , i = 1, 2 are the solutions of the problems depending on the controls and ufi , i =

1, 2 are the solutions of the ones depending on the data. Particularly, we have that
uλi
i ∈ H1(Ωi), i = 1, 2 satisfy:





Luλi
i = 0 in Ωi

∂nL
uλi
i = 0 on Γi

N

uλi
i = 0 on Γi

D

Ψ(uλi
i ) = λi on Γi

(4.15)

while ufi ∈ H1(Ωi), i = 1, 2 are the solutions of:





Lufi = f in Ωi

∂nL
ufi = φiN on Γi

N

ufi = φiD on Γi
D

Ψ(ufi ) = 0 on Γi

(4.16)

When Ω ⊂ R2,R3, in the case of Dirichlet interface controls, let us assume that if
Γi
D ∩ Γi 6= ∅, φDi is connected with continuity to zero at Γi

D ∩ Γi.
Let us consider the notations used in Sections 2.1 and 4.1. The weak formulations of these
problems read, for i=1,2:

• Dirichlet interface controls
Find uλi

i ∈ H1(Ωi), u
λi
i = λi on Γi, u

λi
i = 0 on Γi

D such that

ai(u
λi
i , vi) = 0 ∀vi ∈ V D

i , (4.17a)

and find ufi ∈ H1(Ωi), u
f
i = 0 on Γi, u

f
i = φiD on Γi

D such that

ai(u
f
i , vi) = Fi(vi) ∀vi ∈ V D

i ; (4.17b)
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• Robin interface controls
Find uλi

i ∈ H1(Ωi), u
λi
i = 0 on Γi

D such that

ai(u
λi
i , vi) +

∫

Γi

βuλi
i vidΓ =

∫

Γi

λividΓ ∀vi ∈ Vi , (4.18a)

and find ufi ∈ H1(Ωi), u
f
i = φiD on Γi

D such that

ai(u
f
i , vi) +

∫

Γi

βufi vidΓ = Fi(vi) ∀vi ∈ Vi . (4.18b)

Let us refer to (4.17) or to (4.18) as primal or state problems. We will specify them when
required.

Correspondingly, the cost functionals can be split into the sum of two terms, a quadratic
one and an affine one. Let us first introduce a unified notation. In particular, let H be
a Hilbert space. If we denote the generic functional (to be choosen among (4.12)-(4.14))

with J(λ1, λ2) =
1

2
‖u1 − u2‖2H, it results:

J(λ1, λ2) =
1

2
‖uλ1

1 − uλ2

2 ‖2H +
1

2
‖uf1 − uf2‖2H + (uλ1

1 − uλ2

2 , u
f
1 − uf2)H ,

where the first terms of the splitting is quadratic with respect to λ = (λ1, λ2) , while the
second and the third terms compose the affine term.
Reasoning in a similar way as done in the papers [2] and [7], it can also be shown that
under the definitions and hypotheses made in (2.1)-(2.6), if λi ∈ ΛD

i or λi ∈ ΛR
i , in the case

of Dirichlet or Robin interface controls respectively, the two problems (4.15) and (4.16)
are well-posed.

4.3 The Well-Posedness of the ICDD Problem

In this Section we analyze the well-posedness of the control problems. We will use the
results seen in Chapter 1.
We will split our analysis into two cases, the first one corresponding to Dirichlet interface
controls and the second one to Robin interface controls.

4.3.1 Dirichlet interface controls

Let us define the Hilbert spaces V = V1,φD
× V2,φD

, VD = V D
1 × V D

2 and ΛD = ΛD
1 ×ΛD

2 ,
endowed with the corresponding graph norms, and let us set Λ12 = L2(Γ1 ∪ Γ2).

Moreover, we set uλ,f = (uλ1,f
1 , uλ2,f

2 ) ∈ V for any λ = (λ1, λ2) ∈ ΛD. Let be uλ = uλ,0

and uf = u0,f .
We want to unify the notation in order to make the analysis simpler. We have already
introduced some elements in the previous Section, but we now give a more detailed de-
scription of the notations, using the framework of optimal control.
Let (H, ‖ · ‖H) be a Hilbert space, and C : V → H a linear and continuous operator
(the observation one), so that the cost functionals in (4.12)-(4.14) can be written in the
following way:

JC,H(λ) =
1

2
‖Cuλ,f‖2H ∀λ ∈ ΛD , (4.19)
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where, for each case, we can identify the space, the observation operator and the norm, as
shown in this table:

JC,H(λ) H Cuλ,f |||·|||∗

Case 1: J0(λ1, λ2) L2(Ω12) (uλ1,f
1 − uλ2,f

2 )|Ω12
|||λ|||0 = ‖Cuλ‖L2(Ω12)

Case 2: J1(λ1, λ2) H1(Ω12) (uλ1,f
1 − uλ2,f

2 )|Ω12
|||λ|||1 = ‖Cuλ‖H1(Ω12)

Case 3: J0,Γ(λ1, λ2) Λ12 (uλ1,f
1 − uλ2,f

2 )|Γ1∪Γ2
|||λ|||0,Γ = ‖Cuλ‖L2(Γ1∪Γ2)

The terms (uλ1,f
1 − uλ2,f

2 )|Γ1∪Γ2
stands for the trace in the space H1/2(Γ1 ∪ Γ2).

The split of the functional already introduced in the previous Section can be rewritten as:

JC,H(λ) =
1

2
‖Cuλ‖2H +

1

2
‖Cuf‖2H + (Cuλ, Cuf )H , (4.20)

The following Lemma holds. Its proof, in the case with ΓN = ∅, can be found in [8].

Lemma 2. In all cases 1-3 ‖Cuλ‖H is a norm on the control space ΛD.

We want to highlight that ΛD is not necessary complete2 with respect to any of the
norms |||·|||∗, defined in the previous table. Nevertheless, it is possible to built the com-
pletion of (ΛD, |||·|||∗), and to look for the solution of the minimization problem in this

complete space. Let us denote by Λ̂D the completion of (ΛD, |||·|||∗). We underline that, if

(ΛD, |||·|||∗) is complete, then it follows Λ̂D = ΛD.
The following Theorem holds. The proof can be found in [8].

Theorem 11. The minimization problem

inf
λ∈Λ̂D

JC,H(λ) (4.21)

has a unique solution λ ∈ Λ̂D. Moreover the solution satisfies

(Λ̂D)′
〈J ′

C,H(λ),µ〉Λ̂D = (Cuλ,f , Cuµ)H = 0 ∀µ ∈ Λ̂D . (4.22)

4.3.2 Robin interface controls

We want now to analyze the well-posedness of ICDD in the case of Robin interface controls.
We will use the same notations of the previous Section and introduce new notations when
necessary.
Let us set ΛR = ΛR

1 ×ΛR
2 and consider λ ∈ ΛR. We consider the cost functionals defined

in (4.12) - (4.14), but now with λ ∈ ΛR instead of ΛD.
Also in this case, the following can be proven:

Lemma 3. In all cases 1-3 ‖Cuλ‖H is a norm on the control space ΛR.

2A normed space (V, ‖ · ‖) is said to be complete with respect to the norm ‖ · ‖ if each every Cauchy
sequence in (V, ‖ · ‖) is convergent in (V, ‖ · ‖)
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Proof. Firstly, we prove that ‖Cuλ‖H is a semi-norm on ΛR in all cases. Then, we
demonstrate that if ‖Cuλ‖H = 0, then λ = (λ1, λ2) = 0.

• ‖Cuλ‖H is a semi-norm on ΛR:

i) It is easy to show that ‖Cukλ‖H = |k|‖Cuλ‖H, ∀k ∈ R, ∀λ ∈ ΛR.
Thanks to the linearity of the problem (4.15) and thanks to homogeneous conditions
on the external boundary, we know that: if ui is a solution of the problem with
∂nL

ui+βui = λi on Γi, then vi = kui is the solution of the problem with ∂nL
vi+βvi =

kλi on Γi. Moreover, the gradient, the trace and the integral are linear operators.
It follows that (for example in case 2)

|||kλ|||1 =
(∫

Ω12

(
ukλ1

1 − ukλ2

2

)2
dΩ+

∫

Ω12

(
∇ukλ1

1 −∇ukλ2

2

)2
dΩ

)1/2

=

(∫

Ω12

k2
(
uλ1

1 − uλ2

2

)2
dΩ+

∫

Ω12

k2
(
∇uλ1

1 −∇uλ2

2

)2
dΩ

)1/2

= |k| |||λ|||1 .

In the other cases the proof is similar.

ii) It can also be shown that the triangular inequality ‖Cuλ+η‖H 6 ‖Cuλ‖H +
‖Cuη‖H, ∀λ, η ∈ ΛR holds. To prove it, it is sufficient to remember the Cauchy-
Schwarz inequality3 and to use the linearity of the problem, and of the operators,
as done before. We want to underline that the Cauchy-Schwarz inequality is to be
used on the space H, that is known to be a normed space with the norm ‖ · ‖H.

• ‖Cuλ‖H is a norm on ΛR:
It is sufficient to prove that if ‖Cuλ‖H = 0, then λ = (λ1, λ2) = 0. Let us split the
analysis, and analyze each case separately.

Case 1:
‖Cuλ‖L2(Ω12) = 0 implies that uλ1

1 = uλ2

2 a.e. in Ω12. Since u
λi
i ∈ H1(Ωi), i = 1, 2, it

follows that uλ1

1 − uλ2

2 ∈ H1(Ω12). Therefore, we can take the trace of uλi
i on ∂Ω12,

i = 1, 2, and it results uλ1

1 |Γi
= uλ2

2 |Γi
, i = 1, 2. Let us define the function

w =





uλ1

1 in Ω1 \Ω12

uλ1

1 = uλ2

2 in Ω12

uλ2

2 in Ω2 \Ω12 .

This function satisfies the homogeneous problem





Lw = 0 in Ω

w = 0 on ΓD

∂nL
w = 0 on ΓN ,

whose solution is w = 0 in Ω. It follows that both the trace and the conormal
derivative of w on Γi, i = 1, 2, are equal to zero, and so that λ = (λ1, λ2) = 0.

Case 2:
In this case the proof is similar to the previous one. Actually ‖Cuλ‖H1(Ω12) = 0

3Cauchy-Schwarz inequality : let (·, ·) be a scalar product on a normed space V , and let ‖ · ‖ be the
induced norm on the space V . Then |(u, v)| 6 ‖u‖‖v‖, ∀u, v ∈ V
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implies that ‖Cuλ‖L2(Ω12) = 0. Then, we can proceed as in Case 1 and the thesis is
proved.

Case 3:
‖Cuλ‖L2(Γ1∪Γ2) = 0 implies that uλ1

1 = uλ2

2 a.e. on Γ1 ∪ Γ2. Let us define w =

uλ1

1 − uλ2

2 on Ω12. w satisfies the following homogeneous problem:




Lw = 0 in Ω12

w = 0 on ∂Ω12 ∩ ΓD

∂nL
w = 0 on ∂Ω12 ∩ ΓN

w = 0 on Γ1 ∪ Γ2

,

whose solution is w = 0 in (Ω12). In particular it implies that ‖uλ1

1 −uλ2

2 ‖L(Ω12) = 0.
The thesis follows from Case 1.

As in the case of Dirichlet interface controls, it is not ensured that ΛR is a complete
space with respect to the norms |||·|||∗. Also in this case, it can be considered the completion

of this space, Λ̂R, with respect to these norms, and a solution of the problem can be found
in this space.
We are now ready to prove the following

Theorem 12. The minimization problem

inf
λ∈Λ̂R

JC,H(λ) (4.23)

has a unique solution λ ∈ Λ̂R. Moreover, the solution satisfies

(Λ̂R)′
〈J ′

C,H(λ),µ〉Λ̂R = (Cuλ,f , Cuµ)H = 0 ∀µ ∈ Λ̂R . (4.24)

Proof. Let us firstly suppose that ΛR is complete with respect to the norm |||·|||∗. For any
λ ∈ ΛR, we set

π(λ,µ) =
1

2
(Cuλ, Cuµ)H L(µ) = −1

2
(Cuf , Cuµ)H , (4.25)

so that JC,H(λ) = π(λ,λ)− 2L(λ) +
1

2
‖Cuf‖2H, according to (4.20).

π(·, ·) is a symmetric and bilinear form on ΛR and, thanks to Lemma 3, it is also continuous
and coercive on ΛR with respect to the norm |||·|||∗. Moreover, L is a linear and continuous
fuctional on ΛR. Finally, (ΛR, |||·|||∗) is a Hilbert space.
The existence and uniqueness of the solution are direct consequences of Theorem 1, while
the Euler equation (4.24) follows from Corollary 1 and by observing that

(Λ̂R)′
〈J ′

C,H(λ),µ〉Λ̂R = 2π(λ,µ)− 2L(µ) ∀λ,µ ∈ ΛR .

On the other hand, let us consider the case when ΛR is not complete with respect
to the norm |||·|||∗. The bilinear form π(·, ·) and the functional L(·) are continuous on ΛR

and they can be uniquely extended to a continuous form and functional on Λ̂R thanks to
Hahn-Banach Theorem4. The thesis follows in the same way as before.

4It can be found in [3]
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4.4 The Optimality System

Every of the minimization problem (4.12)-(4.14) with constraints (4.11) is equivalent to an
optimality system, as shown in Chapter 1. In this Section the derivation of these systems
is presented.
We use the classical theory of optimal control and in particular Theorem 4. We underline
that if Uad = U , as in these cases, the last inequality of the optimality system (1.20) is an
equality.
As made in the previous Section, we will analyze each functional separately.

4.4.1 Case 1: functional J0

Let us firstly consider the Gâteaux derivative of the functional. We consider the split form
of the functional J0 as given in (4.20), and we use Λ∗ to refer to either ΛD and ΛR. It is
easy to show that, ∀µ = (µ1, µ2) ∈ Λ̂∗, it results:

(Λ̂∗)′
〈J ′

0(λ),µ〉Λ̂∗ =

∫

Ω12

(uλ1

1 − uλ2

2 )(uµ1

1 − uµ2

2 )dΩ+

∫

Ω12

(uf1 − uf2 )(u
µ1

1 − uµ2

2 )dΩ . (4.26)

Let us define

χ12(x) =

{
1 if x ∈ Ω12

0 otherwise

We can introduce the following dual or adjoint problems, for i=1,2:





L∗pi = (−1)i+1(uλ1

1 − uλ2

2 )χ12 a.e. in Ωi

pi = 0 on Γi
D

∂nL∗pi = 0 on Γi
N

Ψ∗(pi) = 0 on Γi

(4.27)

and 



L∗p̂i = (−1)i+1(uf1 − uf2 )χ12 a.e. in Ωi

p̂i = 0 on Γi
D

∂nL∗ p̂i = 0 on Γi
N

Ψ∗(p̂i) = 0 on Γi

(4.28)

where Ψ∗ = Ψ in the case of Dirichlet interface controls, and Ψ∗(pi) = ∂nL∗pi + βpi in the
case of Robin interface controls.
The weak formulations corresponding to these problems are, for the various cases:

• Dirichlet interface controls
Find pi in V

D
i such that

ai(vi, pi) = (−1)i+1

∫

Ωi

χ12(u
λ1

1 −uλ2

2 )vidΩ = (−1)i+1

∫

Ω12

(uλ1

1 −uλ2

2 )vidΩ ∀vi ∈ V D
i ,

(4.29a)
and find p̂i in V

D
i such that

ai(vi, p̂i) = (−1)i+1

∫

Ωi

χ12(u
f
1 − uf2)vidΩ = (−1)i+1

∫

Ω12

(uf1 − uf2)vidΩ ∀vi ∈ V D
i ;

(4.29b)
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• Robin interface controls
Find pi in Vi such that

ai(vi, pi) +

∫

Γi

βpividΓ =

= (−1)i+1

∫

Ωi

χ12(u
λ1

1 − uλ2

2 )vidΩ = (−1)i+1

∫

Ω12

(uλ1

1 − uλ2

2 )vidΩ ∀vi ∈ Vi ,

(4.30a)
and find p̂i in Vi such that

ai(vi, p̂i) +

∫

Γi

βp̂ividΓ =

= (−1)i+1

∫

Ωi

χ12(u
f
1 − uf2)vidΩ = (−1)i+1

∫

Ω12

(uf1 − uf2)vidΩ ∀vi ∈ Vi .

(4.30b)

In view of (4.27) and (4.28), the Gâteaux derivative of J0 becomes:

(Λ̂∗)′〈J
′
0(λ),µ〉Λ̂∗ =

2∑

i=1

(∫

Ωi

L∗piu
µi
i dΩ+

∫

Ωi

L∗p̂iu
µi
i dΩ

)
. (4.31)

Let us consider the terms
∫
Ωi
L∗piu

µi
i dΩ. The other one is analogous. It results:

∫

Ωi

L∗piu
µi
i dΩ =

=

∫

Ωi

Luµi
i pidΩ−

∫

∂Ωi

∂nL∗piu
µi
i dΓ +

∫

∂Ωi

∂nL
uµi
i pidΓ =

= −
∫

Γi

∂nL∗piu
µi
i dΓ +

∫

Γi

∂nL
uµi
i pidΓ ,

thanks to the fact that uµi
i is the weak solution of the problem (4.15) and that pi is the

solution of (4.27). Therefore, it results Luµi
i = 0 in Ωi, ∂nL

uµi
i = 0 on Γi

N , uµi
i = 0 on Γi

D,
pi = 0 on Γi

D and ∂n∗

L
pi = 0 on Γi

N .
Moreover, in the case of Dirichlet interface controls, we have uµi

i = µi and pi = 0 on Γi.
In this case we have ∫

Ωi

L∗piu
µi
i dΩ = −

∫

Γi

∂nL∗piµidΓ .

On the other hand, in the case of Robin interface controls, we have ∂nL
uµi
i + βuµi

i = µi
and that ∂n∗

L
pi + βpi = 0 on Γi. Thus, in this second case, it results:

∫

Ωi

L∗piu
µi
i dΩ =

∫

Γi

piµidΓ .

It follows that the Frechét derivatives of J0 in the two cases are:

• Dirichlet interface controls

(Λ̂D)′〈J
′
0(λ),µ〉Λ̂D = −

2∑

i=1

(∫

Γi

∂nL∗piµidΓ +

∫

Γi

∂nL∗ p̂iµidΓ

)
; (4.32)
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• Robin interface controls

(Λ̂R)′
〈J ′

0(λ),µ〉Λ̂R =
2∑

i=1

(∫

Γi

piµidΓ +

∫

Γi

p̂iµidΓ

)
. (4.33)

We are now ready to formulate the following

Theorem 13. The minimization problem (4.12) with constraints (4.1), is equivalent to
the optimality system





(4.17)

(4.29)

(Λ̂D)′〈J ′
0(λ),µ〉Λ̂D = 0 ∀µ ∈ Λ̂D

, (4.34)

namely





solve

{
ai(u

λi
i , vi) = 0, uλi

i = λi on Γi ∀vi ∈ V D
i

ai(u
f
i , vi) = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ V D
i

solve

{
ai(vi, pi) = (−1)i+1

∫
Ωi
χ12(u

λ1

1 − uλ2

2 )vidΩ ∀vi ∈ V D
i

ai(vi, p̂i) = (−1)i+1
∫
Ωi
χ12(u

f
1 − uf2)vidΩ ∀vi ∈ V D

i

compute −∑2
i=1

(∫
Γi
∂nL∗piµidΓ +

∫
Γi
∂nL∗ p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

, (4.35)

in the case of Dirichlet interface controls, and it is equivalent to the optimality system





(4.18)

(4.30)

(Λ̂R)′
〈J ′

0(λ),µ〉Λ̂R = 0 ∀µ ∈ Λ̂R

, (4.36)

namely





solve




ai(u

λi
i , vi) +

∫
Γi
βuλi

i vidΓ =
∫
Γi
λividΓ ∀vi ∈ Vi

ai(u
f
i , vi) +

∫
Γi
βufi vidΓ = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ Vi

solve




ai(vi, pi) +

∫
Γi
βpividΓ = (−1)i+1

∫
Ωi
χ12(u

λ1

1 − uλ2

2 )vidΩ ∀vi ∈ Vi

ai(vi, p̂i) +
∫
Γi
βp̂ividΓ = (−1)i+1

∫
Ωi
χ12(u

f
1 − uf2 )vidΩ ∀vi ∈ Vi

compute
∑2

i=1

(∫
Γi
piµidΓ +

∫
Γi
p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

,

(4.37)
in the case of Robin interface controls.

We will refer to equations (4.29) and (4.30) as adjoint or dual problems.

4.4.2 Case 2: functional J1

In this case the derivation of the optimality system is analogous to the previous case. The
notation used in case 1, are used also in this Section.
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The Gâteaux derivative of the functional in this case assumes the form

(Λ̂∗)′
〈J ′

1(λ),µ〉Λ̂∗ =
∫

Ω12

(uλ1

1 − uλ2

2 )(uµ1

1 − uµ2

2 )dΩ+

∫

Ω12

(∇uλ1

1 −∇uλ2

2 ) · (∇uµ1

1 −∇uµ2

2 )dΩ+

+

∫

Ω12

(uf1 − uf2)(u
µ1

1 − uµ2

2 )dΩ+

∫

Ω12

(∇uf1 −∇uf2) · (∇u
µ1

1 −∇uµ2

2 )dΩ .

(4.38)

Let us introduce the following functionals:

Gi(vi) = (−1)i+1

(∫

Ω12

(uλ1

1 − uλ2

2 )vidΩ+

∫

Ω12

(∇uλ1

1 −∇uλ2

2 ) · ∇vidΩ
)

=

= (−1)i+1

(∫

Ωi

χ12(u
λ1

1 − uλ2

2 )vidΩ +

∫

Ωi

χ12(∇uλ1

1 −∇uλ2

2 ) · ∇vidΩ
)

∀vi ∈ Vi ,

(4.39)

and the functional Ĝi defined in an analogous way, changing in the expression for Gi the
terms λi with f .
We can introduce the following dual or adjoint problems, for i=1,2:

• Dirichlet interface controls
Find pi in V

D
i such that

ai(vi, pi) = Gi(vi) ∀vi ∈ V D
i , (4.40a)

and find p̂i in V
D
i such that

ai(vi, p̂i) = Ĝi(vi) ∀vi ∈ V D
i . (4.40b)

Moreover the functional Gi is linear and continuous on V D
i and so, thanks to Riesz

representation Theorem5, there exists a unique element G̃i ∈ V D
i such that

Gi(vi) = (G̃i, vi)V D
i
.

Therefore equation (4.40a) is equivalent to




L∗pi = G̃i in Ωi

pi = 0 on Γi
D

∂nL∗pi = 0 on Γi
N

∂nL∗pi + βpi = 0 on Γi

. (4.41)

An analogous problem can be written for p̂i.

• Robin interface controls
Find pi in Vi such that

ai(vi, pi) +

∫

Γi

βpividΓ = Gi(vi) ∀vi ∈ Vi , (4.42a)

and find p̂i in Vi such that

ai(vi, p̂i) +

∫

Γi

βp̂ividΓ = Ĝi(vi) ∀vi ∈ Vi . (4.42b)

5It can be found, for example, in [16]
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Thanks to the functional introduced above, the Gâteaux derivative of J1 becomes:

(Λ̂∗)′
〈J ′

1(λ),µ〉Λ̂∗ =
2∑

i=1

(
Gi(u

µi
i ) + Ĝi(u

µi
i )

)
. (4.43)

Let us focus on the first terms, the analysis of the other one is analogous.

• Dirichlet interface controls
In this first case we can use the problem (4.41), obtaining:

Gi(u
µi
i ) = (V D

i )′〈G̃i, u
µi
i 〉V D

i
=

∫

Ωi

L∗piu
µi
i dΩ . (4.44)

Proceeding in the same way as done above for the functional J0, we obtain that the
Gâteaux derivative of the functional J1, in the case of Dirichlet interface controls,
is:

(Λ̂D)′
〈J ′

1(λ),µ〉Λ̂D = −
2∑

i=1

(∫

Γi

∂nL∗piµidΓ +

∫

Γi

∂nL∗ p̂iµidΓ

)
. (4.45)

• Robin interface controls
In this second case, if we use the weak formulation of the dual problem (4.42), we
obtain:

Gi(u
µi
i ) = ai(vi, pi) +

∫

Γi

βpividΓ =

∫

Ωi

Luµi
i pi +

∫

∂Ωi

∂nL
uµi
i pi +

∫

Γi

βpiu
µi
i dΓ .

(4.46)

We recall that Luµi
i = 0 on Ωi, ∂nL

uµi
i = 0 on Γi

N , uµi
i = 0 on Γi

D and that
∂nL

uµi
i + βuµi

i = µi on Γi. Therefore, we obtain that the Gâteaux derivative of J1,
in the case of Robin interface controls, is:

(Λ̂R)′〈J
′
1(λ),µ〉Λ̂R =

2∑

i=1

(∫

Γi

piµidΓ +

∫

Γi

p̂iµidΓ

)
. (4.47)

We are now ready to formulate the following

Theorem 14. The minimization problem (4.13) with constraints (4.1), is equivalent to
the optimality system





(4.17)

(4.40)

(Λ̂D)′
〈J ′

1(λ),µ〉Λ̂D = 0 ∀µ ∈ Λ̂D

, (4.48)

namely




solve




ai(u

λi
i , vi) = 0, uλi

i = λi on Γi ∀vi ∈ V D
i

ai(u
f
i , vi) = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ V D
i

solve




ai(vi, pi) = Gi(vi) ∀vi ∈ V D

i

ai(vi, p̂i) = Ĝi(vi) ∀vi ∈ V D
i

compute −∑2
i=1

(∫
Γi
∂nL∗piµidΓ +

∫
Γi
∂nL∗ p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

, (4.49)
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in the case of Dirichlet interface controls, and it is equivalent to the optimality system





(4.18)

(4.42)

(Λ̂R)′
〈J ′

1(λ),µ〉Λ̂R = 0 ∀µ ∈ Λ̂R

, (4.50)

namely





solve




ai(u

λi
i , vi) +

∫
Γi
βuλi

i vidΓ =
∫
Γi
λividΓ ∀vi ∈ Vi

ai(u
f
i , vi) +

∫
Γi
βufi vidΓ = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ Vi

solve




ai(vi, pi) +

∫
Γi
βpividΓ = Gi(vi) ∀vi ∈ Vi

ai(vi, p̂i) +
∫
Γi
βp̂ividΓ = Ĝi(vi) ∀vi ∈ Vi

compute
∑2

i=1

(∫
Γi
piµidΓ +

∫
Γi
p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

,

(4.51)
in the case of Robin interface controls.

4.4.3 Case 3: functional J0,Γ

Also in this third case it is possible to show the equivalence between the minimization
problem (4.1), (4.14) and an optimality system. Let us consider the cases of Dirichlet and
of Robin interface controls separately.

• Dirichlet interface controls
We report the result proven in [8], without proving it.
Let us introduce the following problems, for i=1,2:





Lpi = 0 in Ωi

pi = 0 on Γi
D

∂nL
pi = 0 on Γi

N

pi = uλ1

1 − uλ2

2 on Γi

(4.52)

and 



Lp̂i = 0 in Ωi

p̂i = 0 on Γi
D

∂nL
p̂i = 0 on Γi

N

p̂i = uf1 − uf2 on Γi

(4.53)

The weak formulations of these problems read:
find pi in Vi, pi = uλ1

1 − uλ2

2 on Γi such that

ai(pi, vi) = 0 ∀vi ∈ V D
i , (4.54a)

and find p̂i in Vi, p̂i = uf1 − uf2 on Γi such that

ai(p̂i, vi) = 0 ∀vi ∈ V D
i . (4.54b)

The following Theorem holds:
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Theorem 15. In the case of Dirichlet interface controls, the minimization problem
(4.1), (4.14) is equivalent to the optimality system





(4.17)

(4.54)
∑2

i=1

(∫
Γi
(p1 + p2)µidΓ +

∫
Γi
(p̂1 + p̂2)µidΓ

)
= 0 ∀µ ∈ Λ̂D

, (4.55)

namely





solve




ai(u

λi
i , vi) = 0, uλi

i = λi on Γi ∀vi ∈ V D
i

ai(u
f
i , vi) = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ V D
i

solve




ai(pi, vi) = 0, pi = uλ1

1 − uλ2

2 on Γi ∀vi ∈ V D
i

ai(p̂i, vi) = 0, pi = uf1 − uf2 on Γi ∀vi ∈ V D
i

compute −∑2
i=1

(∫
Γi
∂nL∗piµidΓ +

∫
Γi
∂nL∗ p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

. (4.56)

Let us refer to (4.54) and as dual or adjoint problems, even if we have to solve primal
problems in this case, in order to unify the terminology.

• Robin interface controls
In this second case it is possible to show that the minimization problem (4.1), (4.14)
is equivalent to two different optimality systems. We noted a difference between
them in the numerical resolution. For this reason we decided to present both of
them.
Firstly, let us define, for i = 1, 2,

pi = uλ1

1 − uλ2

2 and p̂i = uf1 − uf2 on Γi . (4.57)

We need to use the following Lemma:

Lemma 4. Let L be a linear and continuous operator. Then, L is an injective
operator if and only if ker(L) = {0}. Where ker(L) is the kernel of the operator
considered.

The following Theorem holds6.

Theorem 16. In the case of Robin interface controls, the minimization problem
(4.1), (4.14) is equivalent to the optimality system





(4.18)

(4.57)
∑2

i=1

(∫
Γi
piµidΓ +

∫
Γi
p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂R ,

(4.58)

6This result is proved in [9]. We prove this result here for completeness
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namely





solve




ai(u

λi
i , vi) +

∫
Γi
βuλi

i vidΓ =
∫
Γi
λividΓ ∀vi ∈ Vi

ai(u
f
i , vi) +

∫
Γi
βufi vidΓ = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ Vi

compute




pi = uλ1

1 − uλ2

2 on Γi

p̂i = uf1 − uf2 on Γi

compute
∑2

i=1

(∫
Γi
piµidΓ +

∫
Γi
p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

,

(4.59)

Proof. Let us split the proof into two steps. In the first one we prove that if λ ∈ ΛR

is the solution of (4.1), (4.14), then it satisfies also (4.58). In the second step, we
show that (4.58) has a unique solution.

i) If λ is the solution of (4.14), it follows that uλ1

1 = uλ2

2 and that uf1 = uf2 on
Γ1 ∪ Γ2 and therefore that also the optimality system (4.58) is satisfied.

ii) It remains to prove that the optimality system (4.58) admits a unique solution.
Let us consider, for sake of simplicity, the case when f = 0, φD = 0 and
φN = 0. In the other case the proof is analogous. Let us define the linear
operator χ : Λ̂R → (Λ̂R)′ such that

(Λ̂R)′〈χ(λ),µ〉Λ̂R =

2∑

i=1

∫

Γi

(uλ1

1 − uλ2

2 )µidΓ =

2∑

i=1

∫

Γi

piµidΓ ∀µ ∈ Λ̂R

We want to apply Lemma 4, in order to prove that the operator χ is injective.
As consequence, thanks to the fact that

(Λ̂R)′〈χ(λ),µ〉Λ̂R = 0 ∀µ ∈ Λ̂R

has a solution, it follows that the solution is unique.
Let us show that the operator χ is injective. χ is a linear operator thanks to the
linearity of the trace operator. Moreover χ(λ) is well defined, it is linear thanks
to the linearity of the integral and it is continuous thanks to the definition of
duality. It remains to prove that if λ ∈ ker(χ), then λ = 0. We have that
λ ∈ ker(χ) if and only if

2∑

i=1

∫

Γi

(uλ1

1 − uλ2

2 )µidΓ = 0 ∀µ ∈ Λ̂R .

Therefore uλ1

1 = uλ2

2 a.e. on Γ1 ∪ Γ2. Let us now define w = uλ1

1 − uλ2

2 in Ω12.
It satisfies the following homogeneous problem:





Lw = 0 in Ω12

w = 0 on ΓD ∩ ∂Ω12

∂nL
w = 0 on ΓN ∩ ∂Ω12

w = 0 on Γ1 ∪ Γ2

.
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The unique solution of this problem is w = 0. In particular, it follows that
uλ1

1 = uλ2

2 in Ω12. Setting now

w =





uλ1

1 in Ω1 \ Ω12

uλ1

1 = uλ2

2 inΩ12

uλ2

1 in Ω2 \ Ω12

,

it follows that w satisfies the homogeneous problem:





Lw = 0 in Ω

w = 0 on ΓD

∂nL
w = 0 on ΓN

,

whose unique solution is w = 0. In particular, uλ1

1 = 0 in Ω1 and uλ2

2 = 0 in
Ω12 and therefore λ = (λ1, λ2) = 0.

We will refer to this first optimality system as J0,Γ(1) method.
On the other hand, it can be proved that the minimization problem (4.1), (4.14)
is analogous to another optimality system in the case of Robin interface controls,
under further assumptions.
Let us define, for i = 1, 2,

pi = uλ1

1 − uλ2

2 + β∂nL
(uλ1

1 − uλ2

2 ) on Γi (4.60a)

and

p̂i = uf1 − uf2 + β∂nL
(uf1 − uf2 ) on Γi . (4.60b)

Then, the following Theorem holds7.

Theorem 17. Let us assume that all the previous hypotheses are still valid. More-
over, we assume that

i) Ω is a bounded subset of R2 and of C2 class

ii) the coefficients Kij and bi, for i, j = 1, ..., n are Lipschitz functions in Ω

iii) f ∈ L2(Ω), φD ∈ H3/2(ΓD), φN ∈ H1/2(ΓN ) and λi ∈ H1/2(Γi) for i = 1, 2.

In the case of Robin interface controls, the minimization problem (4.1), (4.14) is
equivalent to the optimality system





(4.18)

(4.60)
∑2

i=1

(∫
Γi
piµidΓ +

∫
Γi
p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂R ,

(4.61)

7This result is proved in [9]
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namely





solve




ai(u

λi
i , vi) +

∫
Γi
βuλi

i vidΓ =
∫
Γi
λividΓ ∀vi ∈ Vi

ai(u
f
i , vi) +

∫
Γi
βufi vidΓ = Fi(vi), u

f
i = φiD on Γi

D ∀vi ∈ Vi

compute




pi = uλ1

1 − uλ2

2 + β∂nL
(uλ1

1 − uλ2

2 ) on Γi

p̂i = uf1 − uf2 + β∂nL
(uf1 − uf2 ) on Γi

compute
∑2

i=1

(∫
Γi
piµidΓ +

∫
Γi
p̂iµidΓ

)
= 0 ∀µ ∈ Λ̂D

,

(4.62)

The proof is analogous to the previous case. We want just to remark that the regu-
larity assumptions assure that the third equation of (4.61) is well defined.
Let us refer to this second case as J0,Γ(2) method.
Finally, let us refer to (4.57) and to (4.60) as dual or adjoint problems, even if no
problem has to be solved in these cases, in order to unify the terminology.

The optimality systems (4.34), (4.36), (4.48), (4.50), (4.55), (4.58) and (4.61) can be
discretized according to Finite Element theory and the global system obtained in each of
these cases can be reduced to a simpler system. This system, obtained with the Schur
complement of the matrix of the optimality system with respect to the control variable,
can be solved with an iterative method, as Bi-CGStab. Details can be found in Chapter 5.



Chapter 5
Interface Control Domain Decomposition:

Finite Element Approximation of the

Optimality System and Numerical Results

The aim of this Chapter is to analyze both numerical approximation and results of the
ICDD methods proposed in the previous Chapter.
To reach this goal we first apply the Galerkin finite element method, described in Section
2.2 for generic elliptic equations, to numerically solve the optimality systems seen in the
previous Chapter. Then we compare the numerical results obtained by applying the
different ICDD methods we implemented to solve elliptic problems with both continuous
and discontinuous coefficients.
We refer to [9] for the theoretical analysis of the results illustrated in this Chapter.

5.1 Finite Element Approximation of the Optimality Sys-

tem

In this Section we focus on the discretization of the optimality systems obtained in Chapter
4. We discretize the primal problems, the adjoint problems and the optimality conditions
separately. In the next Section we will discuss the resolution of the algebraic optimality
system obtained. Let us assume that the domain is split into two sub-domains whose
number of nodes is equal to N i,t

h , for i = 1, 2. Moreover, let N i
h be the total number

of nodes, except the Dirichlet ones, in the sub-domain i, for i = 1, 2, and let N i,b
h be

the number of nodes on external Dirichlet boundary (numbered as last in the lists of
nodes) and N i,Γi

h be the number of nodes on the interface Γi, for i = 1, 2. In every case
the nodes of the sub-domain i, for i = 1, 2, are listed as follows: nodes except Dirichlet
ones and boundary nodes on the interface Γi, boundary nodes on Γi and finally external
Dirichlet boundary nodes. In particular, in the case of Dirichlet interface control we have

39
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the following ordering of nodes:

N i,t
h︷ ︸︸ ︷

Total number of nodes into the domain Ωi

︸ ︷︷ ︸
N i

h

︸ ︷︷ ︸
N

i,Γi
h

︸ ︷︷ ︸
N i,b

h

while in the case of Robin interface control, it results:

N i,t
h︷ ︸︸ ︷

Total number of nodes into the domain Ωi

︸ ︷︷ ︸
N

i,Γi
h

︸ ︷︷ ︸
N i

h

︸ ︷︷ ︸
N i,b

h

We are now ready to discretize the optimality system.

Primal Problems

Let us consider the weak formulation, with extensions of Dirichlet data, of primal prob-
lems (4.15) and (4.16). Moreover, let us denote with the same notations the functions
from which we have removed the extensions of Dirichlet data.
Let us analyze separately the cases of Dirichlet and Robin interface controls.

Dirichlet interface controls

In the case of Dirichlet interface controls, the weak formulations of primal problems are
respectively:
find uλi

i ∈ V D
i such that

ai(u
λi
i , vi) = −ai(Rλi

, vi) ∀vi ∈ V D
i , (5.1a)

where Rλi
is the extension of λi into the domain Ωi, and find ufi ∈ V D

i such that

ai(u
f
i , vi) = F̂i(vi) ∀vi ∈ V D

i i = 1, 2 , (5.1b)

where ai(·, ·) is the one defined in Chapter 4, and

F̂i(v) =

∫

Ωi

fvdΩ+

∫

Γi
N

φiNvdΓ− ai(Rφi
D
, v) ,

where Rφi
D
is the extension of φiD into Ωi.

Let us define λi ∈ RN
i,Γi
h as {λi}l = λi(xN i

h+l), for l = 1, ..., N i,Γi

h and for i = 1, 2. The
Galerkin Finite Element approximations of these problems are:
find u

λi
i ∈ RN i

h such that

ADiu
λi
i = −BDiλi i = 1, 2 (5.2a)
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and find u
f
i ∈ RN i

h such that

ADiu
f
i = fDi i = 1, 2 , (5.2b)

namely, for i = 1, 2, we obtain the system

[
ADi 0 BDi

0 ADi 0

]

u
λi
i

u
f
i

λi


 =

[
0

fDi

]
,

where {ADi}lm = ai(ϕm, ϕl) for l,m = 1, ..., N i
h, {BDi}lm = ai(ϕN i

h+m, ϕl) for l = 1, ..., N i
h

and for m = 1, ..., N i,Γi

h , and {fDi}l = F̂i(ϕl) for l = 1, ..., N i
h and for i = 1, 2.

Robin interface controls

In the case of Robin interface controls, the weak formulations of problems (4.15) and (4.16)
are respectively:
find uλi

i ∈ Vi such that

ai(u
λi
i , vi) + β

∫

Γi

uλi
i vidΓ =

∫

Γi

λividΓ ∀vi ∈ Vi , (5.3a)

and find ufi ∈ Vi such that

ai(u
f
i , vi) + β

∫

Γi

ufi vidΓ = F̂i(vi) ∀vi ∈ Vi i = 1, 2 , (5.3b)

where ai(·, ·) and F̂i(·) are defined above.

Let us define λi ∈ RN
i,Γi
h as {λi}l =

∫
Γi
λiϕN i

h−N
i,Γi
h +l

dΓ, for l = 1, ..., N i,Γi

h and for

i = 1, 2. The Galerkin Finite Element approximations of these problems are:
find u

λi
i ∈ RN i

h such that

ARiu
λi
i = −BRiλi i = 1, 2 (5.4a)

and find u
f
i ∈ RN i

h such that

ARiu
f
i = fRi i = 1, 2 , (5.4b)

namely, for i = 1, 2, we obtain the system

[
ARi 0 BRi

0 ARi 0

]

u
λi
i

u
f
i

λi


 =

[
0

fRi

]
,

where {ARi}lm = ai(ϕm, ϕl) + β
∫
Γi
ϕmΓi

ϕlΓi
dΓ for l,m = 1, ..., N i

h,

{BRi}lm = −δ
l(N i

h−N
i,Γi
h +m)

for l = 1, ..., N i
h and for m = 1, ..., N i,Γi

h , and {fRi}l = F̂i(ϕl)

for l = 1, ..., N i
h and for i = 1, 2.

Let us note that the Finite element approximation of primal problems assume the same
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form both in the case of Dirichlet and Robin interface controls. Actually we can write
both (5.2) and (5.4) in the following way: find u

λi
i such that

Aiu
λi
i = −Biλi i = 1, 2 (5.5a)

and find u
f
i such that

Aiu
f
i = fi i = 1, 2 , (5.5b)

namely, for i = 1, 2, we obtain the system

[
Ai 0 Bi

0 Ai 0

]

u
λi
i

u
f
i

λi


 =

[
0

fi

]
,

where Ai, Bi and fi can be either ADi, BDi and fDi or ARi, BRi and fRi, respectively.

Adjoint Problems

Let us now consider the discretization of the adjoint problems of the optimality systems. As
above, let us consider the weak formulation of these problems with extensions of Dirichlet
data, and let us denote with the same notations the functions from whom we have removed
the extensions of Dirichlet data.
In this case it can be shown that the generic forms of the discretized adjoint equations are
the following: find pi such that

Ãipi = G1
iu

λ1

1 −G2
iu

λ2

2 i = 1, 2 (5.6a)

and find p̂i such that
Ãip̂i = G1

iu
f
1 −G2

iu
f
2 i = 1, 2 (5.6b)

namely, for i = 1, 2, we obtain the system

[
−G1

i G2
i 0 0 Ãi 0

0 0 −G1
i G2

i 0 Ãi

]




uλ1

1

u
λ2

2

u
f
1

u
f
1

pi

p̂i




=




0

0

0

0

0

0



,

where Ãi, G
1
i and G2

i are defined in the different cases, as follows.

Dirichlet interface controls

In the case of Dirichlet interface controls pi and p̂i belong to RN i
h .

• Functional J0
We have to discretize the equations (4.29). Their Galerkin finite element approxi-
mations are systems (5.6), where

{Ãi}lm = ai(ϕl, ϕm) l,m = 1, ..., N i
h

and

{G1
i }lm = {G2

i }lm = (−1)i+1

∫

Ωi

χ12ϕlϕmdΩ l,m = 1, ..., N i
h .
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• Functional J1
In this second case we discretize the equations (4.40). The matrices of the systems
(5.6) assume the following expressions:

{Ãi}lm = ai(ϕl, ϕm) l,m = 1, ..., N i
h

and

{G1
i }lm = {G2

i }lm = (−1)i+1

(∫

Ωi

χ12ϕmϕldΩ +

∫

Ωi

χ12∇ϕm · ∇ϕldΩ

)
l,m = 1, ..., N i

h .

• Functional J0,Γ
Let us now consider the discretization of the problems (4.54). It is easy to show that
the problems (4.54) are equivalent to other weak formulations with extensions of
Dirichlet data on Γi. In this case if we consider the discretizations of these equivalent
weak problems, we obtain that the Galerkin finite element approximations are given
by the system (5.6), where

{Ãi}lm = ai(ϕm, ϕl) l,m = 1, ..., N i
h ,

{G1
i }lm = −

N
i,Γi
h∑

k=1

ai(ϕN i
h+k, ϕl){G̃1

i }km l = 1, ..., N i
h,m = 1, ..., N1,t

h

and

{G2
i }lm = −

N
i,Γi
h∑

k=1

ai(ϕN i
h+k, ϕl){G̃2

i }km l = 1, ..., N i
h,m = 1, ..., N2,t

h ,

where G̃j
i are the restriction operators from the domain j − th to the interface Γi,

for i, j = 1, 2.
Let us observe that in this case Ãi = Ai, for i = 1, 2.

Robin interface controls

In the case of Robin interface controls, pi and p̂i belong to RN i
h if we consider J0 or J1

functional, while they belong to RN
i,Γi
h if we consider J0,Γ functional.

• Functional J0
We have to discretize the equations (4.30). Their Galerkin finite element approxi-
mations are systems (5.6), where

{Ãi}lm = ai(ϕl, ϕm) +

∫

Γi

βϕlϕmdΓ l,m = 1, ..., N i
h

and

{G1
i }lm = {G2

i }lm = (−1)i+1

∫

Ωi

χ12ϕlϕmdΩ l,m = 1, ..., N i
h .
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• Functional J1
In this case we discretize the equations (4.42). The matrices of the systems (5.6)
assume the following expressions:

{Ãi}lm = ai(ϕl, ϕm) +

∫

Γi

βϕlϕmdΓ l,m = 1, ..., N i
h

and

{G1
i }lm = {G2

i }lm = (−1)i+1

(∫

Ωi

χ12ϕmϕldΩ+

∫

Ωi

χ12∇ϕm · ∇ϕldΩ

)
l,m = 1, ..., N i

h .

• Functional J0,Γ(1)
Let us consider the formulas (4.57). In this case the matrix Ãi is the identity matrix
N i,Γi

h × N i,Γi

h , while the matrices Gj
i are the restriction operators defined above as

G̃j
i .

• Functional J0,Γ(2)
We have to consider the formulas (4.60). In this case the matrix Ãi is, as in the
previous case, the identity matrix N i,Γi

h × N i,Γi

h . The matrices Gj
i are N i,Γi

h × N j
h

matrices and they are the sum of the restriction operators G̃j
i and of the restric-

tions of the conormal derivative with respect to primal problems on the interface Γi

multiplied by β, for i, j = 1, 2.

Optimality Conditions

We want now to discretize the third equation of the optimality systems. The optimality
condition, discretized with Galerkin Finite Element Method, is equivalent to the following
pair of equations, for i = 1, 2

Cipi + Cip̂i = 0 , (5.7)

namely, for i = 1, 2, we obtain the system

[
Ci Ci

] [pi

p̂i

]
=

[
0
]

in all cases except the case of functional J0,Γ and Dirichlet interface controls. Actually, in
this case the equations (5.7) assume the forms

C1
i p1 + C2

i p2 + C1
i p̂1 + C2

i p̂2 = 0 i = 1, 2 , (5.8)

and therefore the system in this case is: namely, for i = 1, 2, we obtain the system

[
C1
i C2

i C1
i C2

i

]



p1

p2

p̂1

p̂2


 =

[
0
]

Let us now show the expressions of Ci in the different cases.
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• Dirichlet interface controls - J0 and J1 functionals

{Ci}lm = −
∫

Γi

∂nL∗ϕmϕN i
h+ldΓ l = 1, ..., N i,Γi

h , m = 1, ..., N i,t
h

• Dirichlet interface controls - J0,Γ functional

{Cj
i }lm =

∫

Γi

ϕmϕN i
h+ldΓ l = 1, ..., N i,Γi

h , m = 1, ..., N j,t
h j = 1, 2

• Robin interface controls - J0 and J1 functionals

{Ci}lm =

∫

Γi

ϕmϕN i
h+ldΓ l = 1, ..., N i,Γi

h , m = 1, ..., N i,t
h

• Robin interface controls - J0,Γ functional

{Ci}lm =

∫

Γi

ϕmϕN i
h+ldΓ l = 1, ..., N i,Γi

h , m = 1, ..., N i,Γi

h

Optimality system

We have discretized the equations of the optimality system. We want now to write a
unique algebraic system that is the Galerkin Finite Element approximation of each of
the optimality systems obtained in Chapter 4. Let us consider the equations (5.5), (5.6)

and (5.7) or (5.8). Moreover, let us set uλ = (uλ1

1 ,u
λ2

2 ), uf = (uf
1 ,u

f
2 ), p = (p1,p2),

p̂ = (p̂1, p̂2), λ = (λ1,λ2) and f = (f1, f2). Each of the optimality systems analyzed, once
discretized, can be written in the following form:




A 0 0 0 B
0 A 0 0 0

G 0 Ã 0 0

0 G 0 Ã 0
0 0 C C 0







uλ

uf

p

p̂

λ




=




0

f

0

0

0



, (5.9)

where the matrices are linked to the ones defined above as follows:

A =

[
A1 0
0 A2

]
B =

[
B1 0
0 B2

]
G =

[
−G1

1 G2
1

−G1
2 G2

2

]
Ã =

[
Ã1 0

0 Ã2

]

and, in the case when the optimality condition assume the form (5.7)

C =

[
C1 0
0 C2

]

while in the case when it is valid (5.8)

C =

[
C1
1 C2

1

C1
2 C2

2

]
.

Let us highlight that the matrix G is a singular matrix.
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Dirichlet interface controls: multiplicative version

In the case of Dirichlet interface controls, it is possible to implement also a different version
of the methods analyzed. In particular, it is possible to solve the primal problem on Ω1

with the control variable, and to use the trace of the solution u1 on Γ2 in order to solve
the problem on the second sub-domain. In this way the only control is λ1. This second
version of the methods is called multiplicative version. The one presented above is the
additive version. We briefly present the algebraic system to be solved in the multiplicative
case. This system is formally equal to the system (5.9), but the definitions of the variables
and of the matrices are different with respect to the previous case.
Let us set uλ1

2 the solution of the primal problem solved in Ω2 with uλ1

2 |Γ2

= uλ1

1 |Γ2

.

Let us firstly consider the cases of functionals J0 and J1. In these cases the variables and
the matrices are defined as follows:

uλ =

[
u
λ1

1

uλ1

2

]
uf =

[
u
f
1

u
f
2

]
p = p1 p̂ = p̂1 λ = λ1 f =

[
f1
f2

]

A =

[
A1 0
B2T2 A2

]
B =

[
B1

0

]
G =

[
−G1

1 G2
1

]
Ã = Ã1 C = C1 ,

where T2 is the restriction operator from Ω1 to Γ2. This operator is such that T2u
λ1

1 is a

vector of dimension N2,Γ2

h that contains the nodal values of uλ1

1 on Γ2.
In the case when we consider the functional J0,Γ, on the other hand, the expression of the
variables and of the matrices becomes:

uλ =

[
uλ1

1

u
λ1

2

]
uf =

[
u
f
1

u
f
2

]
p =

[
p1

u2

]
p̂ =

[
p̂1

p̂2

]
λ = λ1 f =

[
f1
f2

]

A =

[
A1 0
B2T2 A2

]
B =

[
B1

0

]
G =

[
−G1

1 G2
1

0 0

]
Ã =

[
Ã1 0

B2T2 Ã2

]
C =

[
C1
1 C2

1

0 0

]
,

We want to underline that in this case, being Ãi = Ai, then Ã = A.

5.2 Numerical Resolution of Optimality System

In this Section we show that to solve the optimality systems (5.9) is equivalent to solving
one reduced linear system, the one obtained building the Schur complement of the matrix
of the optimality system (5.9) with respect to λ. In order to solve the Schur complement
system, it is possible to use an iterative method, such as BiCGStab1. We want to underline
that in an iterative method the most expensive step is the evaluation of the product
between the matrix of the system and a vector. Let us show how to build the Schur
complement of the matrix of the optimality system (5.9) with respect to the variable λ.
We notice that it is not possible to build the Schur complement of the matrix with respect
to any other variable of the optimality system since the matrix G is a singular matrix.
In all cases, we have a system of the form (5.9).
From the first and second equations of the system, we obtain:

uλ = −A−1Bλ and uf = A−1f .

1See Appendix A for details on this method
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If we use this results in the third and fourth equations, giving:

p = −Ã−1Guλ = Ã−1GA−1Bλ

and

p̂ = −Ã−1Guf = −Ã−1GA−1f .

We are now ready to rewrite the last equation of the system Cp+ Cp̂ = 0 as:

Σλ = F , (5.10)

where Σ = CÃ−1GA−1B and F = CÃ−1GA−1f .
The matrix Σ is the Schur complement of the matrix of the optimality system (5.9) with
respect to the variable λ.
The idea is to solve the linear Schur complement system (5.10) with an iterative method.
Let us remark that the matrix Σ is neither symmetric nor necessarily positive definite.
Therefore, we need an iterative method for generic algebraic systems. For this reason we
decided to use Bi-CGStab method to solve it.
We can observe that in an iterative method, at each iteration, given λ, we have to know
how to compute the product χ = Σλ. Moreover, we can notice that in the equation (5.10)
the term F depends on the sole data of the problem and can be computed once, before
the iterations start, while the terms Σλ depends on the sole control.
We want now to describe how to compute χ in the additive and in the multiplicative cases.
The latter can be implemented only in the case of Dirichlet interface controls. Firstly we
give a general procedure that is valid in both cases, then we will show the steps of this
procedure in each case.
The evaluation of χ = Σλ can be divided into three steps:
Given λ,

1. solve the primal problems Auλ = −Bλ to find uλ,

2. solve Ãp = −Guλ to find p,

3. compute χ = Cp.

The three steps of this algorithm correspond to the equations of the optimality system:
the primal problems, the dual ones and the optimality condition.
Moreover, we can note that this algorithm of evaluation is composed by two linear systems
to be solved and a matrix-vector product. The most expensive part of this procedure is
the solution of both primal and dual problems. We highlight that in the case of Robin
interface control and functional J0,Γ there are no dual problems to be solved, but only
vectors to be computed. Let us explain this algorithm in the additive and multiplicative
case.

• Additive Case
In this case the first and the second steps of the algorithm can be split into two
substeps. Actually we have to solve the equations for uλ1

1 and for uλ2

2 in the first
step and for p1 and for p2 respectively in the second one. Therefore we have to solve
two primal problems and two adjoint problems.
Nevertheless in this case the primal problems , as the dual ones, are independent of



48 Chapter 5. ICDD: Finite Element Approximation and Numerical Results

each other. So these two steps (which are the most expensive part of the evaluation
procedure) could be done in parallel. This would not be true in the multiplicative
case.

• Multiplicative Case - Dirichlet interface controls
In this second case we have two primal problems to be solved sequentially. In the case
of J0,Γ functional, moreover, we have two dual problems to be solved sequentially.
Let us first consider the case of functionals J0 and J1 .
We analyze how to compute the primal state uλ.
Given λ = λ1,

1. solve the primal problem A1u
λ1

1 = −B1λ1

2. solve the primal problem A2u
λ1

2 = −B2T2u
λ1

1

Let us now consider the case of J0,Γ functional. In this case the computation of the
primal state is equal to the case of the other two functionals.
Therefore, let us analyze how to compute the dual state p.
Given u,

1. solve the dual problem Ã1p1 = G1
1u

λ1

1 −G2
1u

λ1

2

2. solve the dual problem Ã2p2 = −B2T2p1

We want to remember that in the multiplicative case the primal and the dual prob-
lems can’t be parallelized because they are not independent of each other.

5.3 Numerical Results for Elliptic Problems: Efficiency and
Robustness with respect to Discontinuous Coefficients

In this Section we compare the different methods we have studied. We will compare
them in terms of iterations done to reach convergence. When possible, we analyze their
behaviour with respect to that of the Schwarz method2. The comparison in terms of iter-
ation is useful in an iterative method because each iteration could be done in parallel.

Comparison among different ICDD methods

To compare the different methods first we have considered three different test cases. The
first and the second ones are with continuous coefficients and with a reference solutions,
while the third one is with discontinuous data. Let us analyze them separately.
To compare the different methods, a test has been done for each of the following kind of
control: Dirichlet, Neumann, Robin with β = 1. Let us consider Neumann virtual control
as a special case of Robin interface controls, and distinguish between them only when
required. In each of these cases, we have tested each available method, using both P1 and
Q1 discretization of the problem. We have firstly fixed the overlap thickness δ = 0.1, and
solved the problem by decreasing the mesh size h. Then, fixed the mesh size h = 0.01,

2See Chapter 3 for details
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we have decreased the overlap thickness. Finally, we have fixed the number of elements
inside the overlap along the direction of the thickness and we have decreased the overlap
thickness, and the mesh size as consequence.
Once analyzed these test cases, we compared the different methods when, fixed both the
overlap thickness and the mesh size, the coefficient K of the elliptic problem tends to zero.

Test Case 1

Consider the domain Ω = (0, 1) × (0, 1) where the following global problem is defined:

{
−K△u+ b0u = f in Ω

u = g on ∂Ω
(5.11)

with g and f such that the exact solution of the problem is u = exp(x+y)+sin(x)+cos(y).
Moreover we have chosen K = 2, b0 = 1. In Figure 5.1 we can see the solution of this
problem and the errors behaviours with respect to the grid size. They are in accordance
with the Finite Element Theory.

(a) Solution
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(b) Errors

Figure 5.1: Solution of the problem (5.11) with Finite Element P1

First of all, we underline the fact that Bi-CGStab number of iterations required for
both P1 and Q1 Finite Element Methods (FEM) is comparable when the problem is solved
with Schwarz (both in its classical version and solved with PCG3 preconditioned with Pas)
and with ICDD methods with all functionals, except J0. In this last case, actually, the
iterations number is higher in the case of P1 than in that of Q1 discretization.
In the following pages we will firstly analyze each case separately, and then compare them.

• Dirichlet interface controls
On one hand, we can compare the methods by fixing the overlap and varying the
mesh size. We can note (Figure 5.2a) that the better ICDD method seems to be J0,Γ,
not only because in every case its iterations are lower than others, but also because
its convergence rate is independent of the overlap thickness. We can also see that
this method is also better than preconditioned Schwarz (’Sc preco’ in the graphs)
both in terms of number of iterations and in terms of CPU time (Figure 5.4a).

3See Chapter 3 for details
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Comparing the other ICDD methods, it can be noticed that the number of iterations
of J0 method behaves like h−0.4 and the iterations of J1 like h−0.6 as the mesh size
h decreases.
In Figure 5.4a we notice that J0,Γ is the best method also in terms of CPU time
needed to solve the problem, even if all methods have an exponential growth of CPU
time as h tends to zero.
On the other hand, we can compare the methods by fixing the mesh size and vary-
ing the overlap thickness. We can observe (figure 5.2b) that, also in this case, the
method J0,Γ seems to be the better one among ICDD methods and Schwarz. More-
over, its iterations increase as the overlap thickness decreases with the same rate as
preconditioned Schwarz method (as δ−0.5).

It can also be seen that the number of iterations of each method decreases as the
overlap thickness increases, except in the case of J1 method. In this last case the
iterations are almost independent of the overlap size, while in the case of J0, the
iterations trend is δ−1.
If we observe Figure 5.4b, we note that the CPU times of J0,Γ method are clearly
lower than that of the other methods. It depends both on the number of PDE to
be solved at each iteration of Bi-CGStab method and on the number of iterations
itself. In the case of J0,Γ the number of iterations required is considerably lower with
respect to the number of iterations required by the other methods. Moreover, we
see that CPU time is almost independent of the overlap size δ in the case of J1, and
it increases a little as the overlap decreases in all other cases.
Finally we can compare the different method fixing the number of elements inside the
overlap along the direction of the thickness nex = 2 and decreasing at the same time
the overlap thickness and the mesh size. We notice (Figure 5.3) that the number of
iterations of each method increases as the overlap thickness decreases and that its
behaviour is regular as δ tends to zero. In particular, J0 and J1 methods are the
worst method among ICDD ones. In particular their numbers of iterations increases
as δ−1 and as δ−0.9 respectively. On the other hand, J0,Γ method is the best method
both among ICDD methods and Schwarz. Its growth in terms of iterations is the
same as preconditioned Schwarz as δ tends to zero. In particular, its number of
iterations behaves as δ−0.5.
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(b) fixed mesh size h=0.01

Figure 5.2: Test Case 1 - Dirichlet controls - additive case - iterations

In the multiplicative case there are some differences (see Figure 5.5 and 5.6). The
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Figure 5.3: Test Case 1 - Dirichlet controls - additive case - iterations
Fixed number of elements into the overlap nex=2
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(b) fixed mesh size h=0.01

Figure 5.4: Test Case 1 - Dirichlet controls - additive case - CPU time

number of iterations of J1 method is always larger than the one of J0. Moreover,
when the mesh size is fixed, the number of iterations of J0 decreases as δ0.3 when
the overlap thickness δ tends to zero, while the number of iterations of J1 method
increases a little as δ decreases. Also the number of iterations of both J0,Γ and
Schwarz increases when δ tends to zero. Finally we can note that if we fix the
number of elements into the overlap, the behaviour of the numbers of iterations of
all methods is the same as in the additive case, except for J0 method. In this last
case, actually, the behaviour is significantly better, even if now the dependence on δ
is not uniform.

• Robin interface controls
In this case, we firstly analyze the behaviour of the available methods in the case
where we set β = 1. Actually the behaviour of all methods is qualitative the same
for different values of β. The only differences are quantitive ones. Therefore, we will
make a general comment and then compare the number of iterations for different
values of β, fixed the overlap and the mesh size.
Also in this case we can compare the different ICDD methods by either fixing the
overlap or the mesh size. Behaviours of the methods with P1 or Q1 discretization
are similar, except for the fact that J0 is always better, in terms of iterations, in Q1

than in P1 case, even if the qualitative behaviour is the same in the two cases. We
will focus on P1 discretization.
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(b) fixed mesh size h=0.01

Figure 5.5: Test Case 1 - Dirichlet controls - multiplicative case - iterations
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Figure 5.6: Test Case 1 - Dirichlet controls - multiplicative case - iterations
Fixed number of elements into the overlap nex=2

If we fix the overlap thickness to δ = 0.1, equivalent to 10% of the whole domain
size along x-direction, (figure 5.7a), we observe that the numbers of iterations of
J1 and J0,Γ(1) methods are almost the same so that these two methods seem to be
comparable in terms of iterations. Their number of iterations increases as h−0.5 as h
tends to zero. However, if we set the mesh size to h = 0.01, we note that J1 behaves
better than J0,Γ(1), and their difference in terms of iterations increases a little as
the overlap thickness decreases (figure 5.7b).
The number of iterations of method J0, instead, is always higher than that of the
other methods and grows faster (as h−1.5). Finally, J0,Γ(2) method seems to be the
best method in this case. Actually its number of iterations is constant as h decreases.
It can also be seen that the number of iterations of each method increases as the
mesh size decreases, once the overlap is fixed, except for J0,Γ(2) method.
We can also notice that varying the overlap thickness (Figure 5.7b), the number of
iterations of each method does not change in a significative way, even if we can note
that there are some trends. We observe in Figure 5.9 that if we fix the mesh size
and the overlap thickness, the trend of the number of iterations of each method is
not so regular, but it seems that the numbers of iterations of J1 and J0,Γ(1) increase
a little when β decreases.
In the case of Robin interface controls, if we fix the number of elements into the
overlap thickness to nex = 2 (Figure 5.8), the behaviour of the number of iterations
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of J0 method is the same as in the case of Dirichlet interface controls. On the other
hand, the number of iterations of J1 increases as δ−0.2, the one of J0,Γ(1) as δ−0.5

and the one of J0,Γ(1) as δ−0.35 when the overlap thickness decreases. We notice
that the behaviour of J1 method in this case is significantly better than that of the
same method in the case of Dirichlet interface controls.
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Figure 5.7: Test Case 1 - Robin controls with β = 1 - iterations
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Figure 5.8: Test Case 1 - Robin controls with β = 1 - iterations
Fixed number of elements into the overlap nex = 2

• Comparison among J0,Γ methods
Let us directly compare J0,Γ methods in the case of Dirichlet (additive case) and in
the case of Robin interface controls. In the first case let us call the method J0,Γ,
while in the case of Robin controls we call them J0,Γ(1) and J0,Γ(2), as made above.
In Figure 5.10 we can note that the behaviours of J0,Γ and of J0,Γ(2) are qualitative
the same, once the overlap thickness is fixed. Actually, in both cases, the number of
iterations is constant.
On the other hand, when the mesh size is fixed, the number of iterations of J0,Γ and
J0,Γ(2) increases as δ−0.55 and as δ−0.4, respectively. On the contrary, the number
of iterations of J0,Γ(1) method, is almost constant.
Finally, fixing the number of elements into the overlap along x-direction to nex = 2,
we notice that the numbers of iterations of both J0,Γ and J0,Γ(1) methods increase
as δ−0.5 when δ decrease, while the number of iterations of J0,Γ(2) method has a
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Figure 5.9: Test Case 1 - Robin controls with δ = 0.1 and h = 0.025 - iterations

lower growth. Actually it increases as δ−0.35 when the overlap thickness (and the
mesh size as consequence) tends to zero (Figure 5.11).
Moreover, the number of iterations of J0,Γ(1) method is always larger than that of
the other methods.
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Figure 5.10: Test Case 1 - Functionals J0,Γ - iterations

Conclusions:

In conclusion we can say that the best methods seem to be J0,Γ in the case of Dirichlet
controls, both in its additive and multiplicative versions and J0,Γ(2) in the case of Robin
interface controls. The other methods produce comparable errors on the exact solution,
but they are more expensive in terms of iterations.

Test Case 2

Consider the domain Ω = (0, 1) × (0, 1), and let us define ΓN = {x = (x, y) ∈ Ω : y = 1}
and ΓD = ∂Ω \ ΓN . Let us consider the following global problem:





Lu = f in Ω

u = g on ΓD

∂nL
u = h on ΓN

(5.12)
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Figure 5.11: Test Case 1 - Functionals J0,Γ - iterations - Fixed number of elements into
the overlap nex = 2

where L is the elliptic operator defined in Chapter 4. Moreover, we have chosen K = 5,
b = (y − 1,−x)′, b0 = 1, and f , g and h such that the exact solution of the problem is
u = exp(x + y) + sin(x) + cos(y). In Figure 5.12 we can see the errors behaviours with
respect to the grid size h. They are in accordance with the Finite Element Theory.
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Figure 5.12: Errors of the problem (5.14) solved with Finite Element P1

• Dirichlet interface controls
We can note in Figures 5.13 and 5.14 that the behaviour of the number of iterations
of every method is similar to the behaviour already seen in Test Case 1. Nevertheless,
the number of iterations of Schwarz, if compared to the previous case, grows more
than those of the other methods number. All other conclusions are the same of the
previous case. Let us insert some of the graphics obtained for completeness.
On the other hand, if we consider the CPU-times (Figure 5.15), the CPU-time of

preconditioned Schwarz method does not grow as the ones of the other methods.
Finally, in the multiplicative case we can draw the same conclusions as in Test Case 1.

• Robin interface controls
In these case, the behaviours of all methods is qualitative the same as in Test Case 1.

In these first two test cases, we have verified that the behaviour of all the proposed methods
is independent of the problem (with continuous coefficients and data) to be solved. In the
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(b) fixed mesh size h=0.01

Figure 5.13: Test Case 2 - Dirichlet controls - additive case - iterations
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Figure 5.14: Test Case 2 - Dirichlet controls - additive case - iterations
Fixed number of elements into the overlap nex=2

following test case we want to verify the robustness (or not) of the methods with respect
to discontinuous coefficients.

Test Case 3

Consider the domain Ω = (0, 1) × (0, 1), and let us define ΓN = {x = (x, y) ∈ Ω : y = 0}
and ΓD = ∂Ω \ ΓN . Let us consider the following global problem:





Lu = f in Ω

u = g on ΓD

∂nL
u = h on ΓN

(5.13)

where L is the elliptic operator defined in Chapter 4. Moreover, we have set

K =

{
10−2 if x < 0.5

102 if x > 0.5
,

b =

{
(0, 0)′ if x < 0.5

(10, 5)′ if x > 0.5
,
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(b) fixed mesh size h=0.01

Figure 5.15: Test Case 2 - Dirichlet controls - additive case - CPU time
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(b) fixed mesh size h=0.01

Figure 5.16: Test Case 2 - Dirichlet controls - multiplicative case - iterations

f(x, y) =

{
0.3 if x < 0.5

−300 if x > 0.5
,

b0 = 1, g = 0 and h = 0. In Figure 5.12 we can see the solution of this problem. It has
been solved in one domain, with finite element P1.
We have chosen a test with discontinuous data because we want to test the robustness

of ICDD methods with respect to these kinds of problems.

• Dirichlet interface controls
We first want to note that (Figure 5.19 and 5.14) J1 method, if we consider the
additive form of the method, has a worse behaviour than in the cases where the
problem to be solved has continuous coefficients. It could depend on the fact that
the gradient of the solution is very large in the overlapping area. Therefore it is diffi-
cult to approximate it in an adequate way and to have small values of the functional.
For this method, the number of iterations is very high with respect to the number
of iterations of all other methods and it has not a regular behaviour with respect to
the mesh size h. Moreover, when the mesh size is too small, the method J1 does not
converge to the prefixed tolerance in the maximum number of iterations, fixed at
1000. Finally the behaviour of its number of iterations when the number of elements
inside the overlap along x-direction is fixed, is the same as the case of continuous
coefficients, namely it behaves as δ−0.9 as the overlap thickness decreases.
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Figure 5.17: Test Case 2 - Dirichlet controls - multiplicative case - iterations
Fixed number of elements into the overlap nex=2

Figure 5.18: Solution of the problem (5.13) solved with Finite Element P1

Let us now consider the behaviour of the other methods . The number of iterations
of J0 method increases as h−0.4 when h decreases, namely its behaviour is the same
as the case when the problem to be solved has continuous coefficients. The number
of iterations of J0 is almost constant with respect to the overlap thickness both in
the case when h is fixed and when nex is fixed. On the other hand, the number of
iterations of J0,Γ is very small and constant with both h and δ. Also in the case
when the number of elements inside the overlap is fixed at nex = 2 the number of
iterations is almost constant with respect to the overlap thickness. Therefore, also
this method is robust with respect to discontinuous coefficients and data. Moreover
this method is better than Schwarz in its two forms. Moreover, we note that in
this case the number of iterations of Schwarz method in its two forms is the same.
It is probably due to the fact that the preconditioned version of Schwarz does not
improve as the other methods in the case of discontinuous data.

If we observe the CPU-times (Figure 5.21), we can note that the CPU-times required
by both J0,Γ and Schwarz are of the same order, while the CPU-times of all other
methods are larger. In particular, also the CPU-time of PCG preconditioned by
Schwarz is larger because one iteration of this method is more expensive than one
iteration of classical Schwarz method.
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(a) fixed overlap δ=0.1
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(b) fixed mesh size h=0.01

Figure 5.19: Test Case 3 - Dirichlet controls - additive case - iterations
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Figure 5.20: Test Case 3 - Dirichlet controls - additive case - iterations
Fixed number of elements into the overlap nex=2

In the multiplicative case (Figure 5.22), we can see that the behaviours of the
number of iterations of all methods with respect to h and δ are similar to the case
when a problem with continuous coefficients is solved, except for Schwarz and J0,Γ
methods, whose behaviours are significantly better. Moreover J0,Γ method is better
than Schwarz and its number of iterations is independent of both the mesh size and
the overlap thickness as in the additive case.
Nevertheless, we can note that by fixing the number of elements inside the overlap
along x-direction, the only method that has the same behaviour as the case with
continuous coefficients and data is J1 method. The other ones are better because
their numbers of iterations increase a little when the overlap thickness decreases.
Finally we can note that in this case preconditioned Schwarz and the classical one
are equivalent in terms of iterations. Moreover, the CPU-times of classical Schwarz
method are lower.

• Robin interface controls
In the case of Robin interface controls, the only method that is robust with respect
to discontinuous data of the problem to be solved is J0,Γ(2) method. Actually there
are some cases when the other methods (J0, J1 and J0,Γ(1)) do not converge to the
solution with the prefixed tolerance in the maximum number of iterations. Moreover,
when they converge, their numbers of iterations are too large compared with the
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(a) fixed overlap δ=0.1
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(b) fixed mesh size h=0.01

Figure 5.21: Test Case 3 - Dirichlet controls - additive case - CPU time
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(b) fixed mesh size h=0.01

Figure 5.22: Test Case 3 - Dirichlet controls - multiplicative case - iterations

numbers of iterations of the methods with Dirichlet interface controls. For this
reason J0, J1 and J0,Γ(1) methods can’t be considered a valid choice.
In Figure 5.26 we can also note that the number of iterations of J0,Γ(2) method
significantly decreases as β increases.

• Comparison among J0,Γ methods
We can notice in Figures 5.27 and 5.28 that J0,Γ(1) method is not comparable with
the two other methods J0,Γ and J0,Γ(2) because, as said above, it’s not robust with
respect to discontinuous coefficients and data of the problem. Actually its number
of iterations is too large.
On the other hand, the qualitative behaviour of both J0,Γ and J0,Γ(2) methods are
similar to each other, even if the number of iterations of J0,Γ is always smaller.

Conclusions:

Finally we can say that the only robust methods with respect to discontinuous coefficients
and data, among ICDD methods, are J1 method with Dirichlet interface controls only in
its multiplicative version, J0 method with Dirichlet interface controls and J0,Γ method in
its Dirichlet and in its Robin(2) version. Moreover, the better method among ICDD and
Schwarz seems to be J0,Γ in the case of Dirichlet interface controls, both in its additive
and multiplicative version.
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Figure 5.23: Test Case 3 - Dirichlet controls - multiplicative case - iterations
Fixed number of elements into the overlap nex=2

0 0.01 0.02 0.03 0.04 0.05
10

1

10
2

10
3

h

ite
ra

tio
ns

 

 

J
0

J
1

J
0,Γ (1)

J
0,Γ (2)

(a) fixed overlap δ=0.1

0.02 0.04 0.06 0.08 0.1
10

0

10
1

10
2

10
3

δ

ite
ra

tio
ns

 

 

J
0

J
1

J
0,Γ (1)

J
0,Γ (2)

(b) fixed mesh size h=0.01

Figure 5.24: Test Case 3 - Robin controls with β = 1 - iterations

Test Case 4

In this Section we want to test the efficiency of the ICDD methods with respect to the
coefficient K. In particular we analyze the behaviour of the methods as K tends to zero.
Let us consider the domain Ω = (0, 1) × (0, 1), and let us define ΓN = {x = (x, y) ∈ Ω :
y = 0} and ΓD = ∂Ω \ ΓN . Let us consider the following global problem:





Lu = f in Ω

u = g on ΓD

∂nL
u = h on ΓN

(5.14)

where L is the elliptic operator defined in Chapter 4. Moreover, we have chosen b = (1, 1)′,
b0 = 1, and f , g and h such that the exact solution of the problem is u = exp(x + y) +
sin(x) + cos(y). We have chosen to solve this problem for K = 0.01, 0.1, 1, 10. We
have chosen a triangulation Th such that the Péclet number4 is small enough that no

4Given an elliptic problem of the form described in Chapter 4, discretized with FEM, the Péclet number

is defined as Pe =
|b|h

2K
. If Pe > 1, then the numerical approximation is not stable and a stabilization is

required in order to adequately solve the problem (for example GLS or SUPG methods can be applied).
See [17] for details
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Figure 5.25: Test Case 3 - Robin controls with β = 1 - iterations - nex=2
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Figure 5.26: Test Case 3 - Robin controls with δ = 0.1 and h = 0.025 - iterations

stabilization is required.
In all numerical tests the overlap thickness is fixed to δ = 0.04 and the number of elements
into the overlap along x-direction to nex = 4.

• Dirichlet interface controls
In Figure 5.29 we can note that the only method whose number of iterations sig-
nificantly decreases as K decreases is Schwarz method (both in its additive and
muliplicative version). Preconditioned Schwarz, on the other hand, does not con-
verge when the coefficient K is too small.
The numbers of iterations of the other methods are almost constant if K is greater
than 10−1, while they increase or decrease as it becomes smaller. We can also note
that if we compare ICDD methods, J0,Γ is always better than J0 that is on its turn
always better than J1. Moreover their difference in terms of iterations increases as
K decreases.

• Robin interface controls
In this case (Figure 5.30), the general considerations made above on ICDD methods
are still valid. We want to remark, once again, that the qualitative and quantitative
behaviours of J1 and J0,Γ(2) methods are similar.
Moreover, in this case , J0,Γ(2) method is better than J1 that is better than J0.
Nevertheless, in the case of Robin interface controls, the numbers of iterations of the
different methods tend to be equal to each other when K tends to zero.
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Figure 5.27: Test Case 3 - Functionals J0,Γ - iterations

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

δ

ite
ra

tio
ns

 

 

J
0,Γ D

J
0,Γ (1) R

J
0,Γ (2) R

Figure 5.28: Test Case 3 - Functionals J0,Γ - iterations - Fixed number of elements into
the overlap nex = 2

Conclusions:

After having compared the different methods in four test cases, we can conclude that
the best method seems to be J0,Γ in the case of Dirichlet interface control, both in its
multiplicative and additive version. Nevertheless, a valid alternative would be J0,Γ(2) in
the case of Robin interface controls, with high β.
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Figure 5.29: Test Case 4 - Dirichlet controls - iterations
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Figure 5.30: Test Case 4 - Robin controls with β = 1 - iterations



Chapter 6
Interface Control Domain Decomposition

for Stokes-Darcy coupling

In this Chapter we analyze the behaviour of ICDD methods for heterogeneous problems,
where two (or more) different differential models are considered in suitable subregions of
the whole domain. The advantage is that we do not have to impose any interface condition
between two different problems nor to fix an interface between the two sub-domains on
which the problems are defined, but only to minimize an adequate functional. The choice
of this functional is clearly a crucial issue of ICDD approaches.
In this Chapter we focus on Stokes-Darcy coupling. In particular, we first describe the
two problems separately and then we give the formulation of the coupled problem, using
either the classical formulation and the one based on ICDD methods. The description
of the classical coupling of Stokes-Darcy problem with sharp interface is reported for
completeness. The ICDD methods we present for Stokes-Darcy coupling can be found in
[10], while the classical coupling can be found in [6] and in [11]. Finally we analyze the
numerical results obtained with the proposed methods, with the goal of understanding if
these methods are well-posed and consistent with the solution obtained with the classical
coupling.

6.1 Stokes Problem

In this Section we introduce and analyze the Stokes problem and its discretization by finite
elements. We refer to [17] and to [4] for the theoretical analysis.
Let us consider a domain Ω ⊂ R2, with a Lipschitz boundary, as in the previous Chapters.
We will use the same notations.
Let us consider the Navier-Stokes equations for a constant density and viscosity fluid.
They read as follows: find the velocity u and the pressure p such that





∂u

∂t
− ν △ u+ (u · ∇)u+∇p = f

∇ · u = 0
in Ω , (6.1)

where f is the force per mass unit, ν = µ/ρ is the kinematic viscosity, ρ is the density
of the fluid and µ is the dynamic viscosity of the fluid. We have denoted by ∇ · u the
divergence of the field u. Moreover, let highlight that both the pressure and the force have

65



66 Chapter 6. ICDD for Stokes-Darcy coupling

been scaled with the fluid density.

Let us consider the case when the problem is stationary (
∂

∂t
· = 0) and the non linear term

of the equation (6.1)1 can be ignored. This is, for example, the case when the Reynolds
number can be considered very small. Reynolds number is a dimensionless number defined
as follows:

Re =
|U|L
ν

,

where U and L are the characteristic velocity of the fluid and length of the domain,
respectively, while ν is the kinematic viscosity already defined.
Under these assumptions, the Navier-Stokes equations (6.1) assume the following form:

{
−ν △ u+∇p = f

∇ · u = 0
in Ω . (6.2)

Moreover, this problem is defined with the following boundary conditions:



u = g on ΓD

ν
∂u

∂n
− pn = h on ΓN

. (6.3)

The problem (6.2) with boundary conditions (6.3) is called Stokes problem.

Weak formulation

We are now ready to give the weak formulation of Stokes problem. Let us define the
following functional spaces:

Q =

{
L2(Ω) = {q : Ω → R :

∫
Ω q

2dΩ < +∞} if ΓN 6= ∅
L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω qdΩ = 0} if ΓN = ∅

,

V = [H1(Ω)]d = {v : Ω → Rd :

∫

Ω
(v2 + |∇v|2)dΩ < +∞} ,

V0 = [H1
ΓD

(Ω)]d = {v : Ω → Rd : v ∈ V, v = 0 on ΓD} .
Let us now multiply the first equation of (6.2) by v ∈ V0 and te second one by q ∈ Q, and
let us integrate in Ω thus obtaining:

∫

Ω
(−ν △ u+∇p) · vdΩ =

∫

Ω
ν∇u : ∇vdΩ −

∫

Ω
(∇ · v)pdΩ +

∫

∂Ω
(ν
∂u

∂n
− pn) · vdΓ =

=

∫

Ω
f · v ,

and ∫

Ω
(∇ · u)qdΩ = 0

We note that
∫
∂Ω(ν

∂u

∂n
− pn) · vdΓ =

∫
ΓN

h · vdΓ thanks to boundary conditions (6.3).

Therefore, the weak formulation of Stokes problem (6.2) with boundary conditions (6.3),
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reads as follows:
find (u, p) ∈ V ×Q, u = g on ΓD such that

{
a(u,v) + b(v, p) = (f ,v)L2(Ω) +

∫
ΓN

h · vdΓ ∀v ∈ V0

b(u, q) = 0 ∀q ∈ Q ,
(6.4)

where the bilinear forms a(·, ·) and b(·, ·) are defined as follows:

a : V × V → R, a(u,v) =

∫

Ω
ν∇u : ∇vdΩ (6.5a)

and

b : V ×Q→ R, b(u, p) = −
∫

Ω
(∇ · v)pdΩ . (6.5b)

Let us note that the non homogeneous Dirichlet boundary conditions can be treated also
by extending the Dirichlet data and building a new problem with homogeneous boundary
conditions, as made in Chapter 5. If we denote with Rg the extension of Dirichlet data
on Ω and, again with letter u, the function from which we have removed the extension of
Dirichlet data, the new weak formulation of the Stokes problem becomes:
find (u, p) ∈ V0 ×Q such that

{
a(u,v) + b(v, p) = F (v) ∀v ∈ V0
b(u, q) = G(q) ∀q ∈ Q ,

(6.6)

where

F : V → R, F (v) =

∫

Ω
f · vdΩ+

∫

ΓN

h · vdΓ− a(Rg,v) (6.7a)

and
G : Q→ R, G(q) = −b(Rg, q) . (6.7b)

It can be shown that the following Theorem holds1.

Theorem 18. If f ∈ [L2(Ω)]2, g ∈ [H1/2(ΓD)]
2 and h ∈ [H−1/2(ΓN )]2, then the Stokes

problem (6.6) admits a unique solution (u, p) ∈ V ×Q, u = g on ΓD.
Moreover the solution satisfies the following inequality:

‖∇u‖L2(Ω) + ‖p‖L2(Ω) 6 C
(
‖f‖L2(Ω) + ‖g‖H1/2(ΓD) + ‖h‖H−1/2(ΓN )

)
,

where C is a constant independent of the data.

Even if we don’t prove this Theorem, we give the general idea of its proof. The Stokes
problem can be seen as a saddle-point problem. This Theorem, therefore, is a peculiar case
of the more general Theorem of existence and uniqueness of the solution for saddle-points
problems (see [4] for details). In particular, it can be shown that the bilinear form a(·, ·)
is continuous and coercive on V0, namely

∃α > 0,∃γ > 0 : a(v,v) > α‖v‖2V0
; a(u,v) 6 γ‖u‖V0

‖v‖V0
∀u,v ∈ V0

and the bilinear form b(·, ·) is continuous on V0 ×Q, namely

∃δ > 0 : b(v, q) 6 γ‖v‖V0
‖q‖Q ∀v ∈ V0, ∀q ∈ Q .

1It can be found in [4]
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Moreover, the bilinear form b(·, ·) satisfies the inf-sup or LBB(Ladyzenskaya-Babuška-
Brezzi) condition:

∃β > 0 : inf
q∈Q\{0}

sup
v∈V0\{0}

b(v, q)

‖v‖V0
‖q‖Q

> β . (6.8)

Finite Element approximation of Stokes Problem

In this Section we give the finite element approximation of the Stokes problem (6.6).
Assume that Ω has a polygonal shape and let us introduce a regular triangulation2 Th and
two finite element spaces defined on Th:

Vh ⊂ V and Qh ⊂ Q .

Moreover, let be Vh,0 = Vh ∩ V0 .
The finite element approximation of the Stokes problem (6.6) is:
find the approximate solution (uh, ph) ∈ Vh,0 ×Qh such that

{
a(uh,vh) + b(vh, ph) = F (vh) ∀vh ∈ Vh,0

b(uh, qh) = G(qh) ∀qh ∈ Qh ,
(6.9)

where F (·) and G(·) are defined as in (6.7), usingRgh
instead of Rg in the two expressions.

gh is an approximation of the data g in the space Vh(ΓD).
Since the bilinear form a(·, ·) is still continuous and coercive on Vh,0 and b(·, ·) is still
continuous on Vh,0 × Qh, the discretized problem (6.9) is well-posed if and only if the
spaces Vh,0 and Qh satisfy the discrete LBB condition:

∃βh > 0 : inf
qh∈Qh\{0}

sup
vh∈Vh,0\{0}

b(vh, qh)

‖vh‖V ‖qh‖Q
> βh . (6.10)

Actually, if LBB condition is satisfied in V0×Q, it is not necessarily true that it is satisfied
also in Vh,0 × Qh. The fulfilment of this property depends on the choice of the discrete
spaces.
Moreover, in the case when discrete LBB condition (6.10) is not satisfied, the solution of
the discretized Stokes problem (6.9) could not be unique. Actually, let us suppose that

inf
qh∈Qh\{0}

sup
vh∈Vh,0\{0}

b(vh, qh)

‖vh‖V ‖qh‖Q
= 0 .

Then, it could exist an element q∗h ∈ Qh such that

b(vh, q
∗
h) = 0 ∀vh ∈ Vh,0 . (6.11)

Let now (uh, ph) be a solution of the discrete Stokes problem (6.9). If there exists q∗h ∈ Qh

such that (6.11) is satisfied, then also (uh, ph + q∗h) is a solution of the discretized Stokes
problem. Actually in this case the second equation of the Stokes problem (6.9) is satisfied
and the first equation becomes:

a(uh,vh) + b(vh, ph + q∗h) =

= a(uh,vh) + b(vh, ph) + b(vh, q
∗
h) =

= a(uh,vh) + b(vh, ph) = F (vh) ∀vh ∈ Vh,0 .

2See Chapter 5 or [17]
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The functions q∗h ∈ Qh such that

b(vh, q
∗
h) = 0 ∀vh ∈ Vh,0

are called spurious modes.
It can also be shown that if we choose Vh = [PN ]2 and Qh = PN−1, with N > 2, then
the LBB discrete condition is satisfied. These couples of finite element spaces are called
Taylor-Hood elements. The inf-sup constant βh of these elements is independent of h which
ensures an optimal convergence rate. In particular, we have chosen to use Taylor-Hood
elements ([P2]

2,P1).
The following Theorem (Brezzi)3 holds:

Theorem 19. Under all the hypotheses made, if the discrete spaces Vh and Qh satisfy
the LBB discete condition (6.10), then the dicrete Stokes problem (6.9) admits a unique
solution (uh, ph) ∈ Vh,0 ×Qh.
Moreover, if (u, p) ∈ V0×Q is the exact solution of the Stokes problem (6.6), the following
convergence estimates hold true:

‖u− uh‖V 6

(
1 +

δ

βh

)(
1 +

γ

α

)
inf

vh∈Vh

‖u− vh‖V +
δ

α
inf

qh∈Qh

‖p− qh‖Q

and

‖p− ph‖Q 6
γ

βh

(
1 +

δ

βh

)(
1 +

γ

α

)
inf

vh∈Vh

‖u− vh‖V +

(
1 +

δ

βh
+

γδ

αβh

)
inf

qh∈Qh

‖p− qh‖Q .

Corollary 5. In the case when Vh = [P2]
2 and Qh = P1, if the exact solution of the Stokes

problem is such that u ∈ [Hp+1(Ω)]2 and p ∈ Hp for p > 0, then the convergence estimates
of the previous Theorem becomes:

‖u− uh‖[H1(Ω)]2 6 C1h
s|u|[Hs+1(Ω)]2(Ω) + C2h

s|q|Hs(Ω) (6.12a)

and
‖p− ph‖L2(Ω) 6 C3h

s|u|[Hs+1(Ω)]2(Ω) + C4h
s|q|Hs(Ω) , (6.12b)

where Ci, i = 1, ..., 4 are independent of both h and the exact solution.

Algebraic formulation of Stokes problem

In this Section we give the algebraic formulation of Stokes problem.
Let us introduce the basis function for the spaces Vh = [P2]

2 and Qh = P1. First we want
to highlight that the nodes required by P1 and P2 spaces are different each other, even if
the triangulation Th is the same. In particular, let N t

h,p and N t
h,2 be the total number of

nodes necessary to define a scalar function that belongs to the two spaces, respectively,
and let Nh,p and Nh,2 be the number of nodes except the Dirichlet ones. We define the
basis functions of the P1 space as

ψi i = 1, ..., N t
h,p

and the basis functions of the P2 space as

ϕi i = 1, ..., N t
h,2 .

3See [4] for details
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The basis functions of the vectorial space Vh = [P2]
2 can be built in the following way:

let N t
h,u be the total number of degrees of a function belonging to Vh and Nh,u be the

number of degrees except the ones corresponding to Dirichlet boundary conditions. Then,
N t

h,u = 2N t
h,2 and Nh,u = 2Nh,2 because we are considering a domain Ω ⊂ R2. The basis

function of Vh can be build as:

ϕi =

[
ϕi

0

]
for i = 1, ..., Nh,2 ,

ϕi+Nh,2
=

[
0
ϕi

]
for i = 1, ..., Nh,2 ,

ϕi+2Nh,2
=

[
ϕi

0

]
for i = Nh,2 + 1, ..., N t

h,2

and

ϕi+Nt
h,2+Nh,2

=

[
0
ϕi

]
for i = Nh,2 + 1, ..., N t

h,2 ,

With these definitions, a generic function qh ∈ Qh can be written as linear combination of
the basis functions

qh(x) =

Nt
h,p∑

i=1

qh(xi)ψi(x) ∀x ∈ Ω

and a generic function vh can be written in the following way

vh(x) =

Nt
h,u∑

i=1

vh(xi) ·ϕi(x) ∀x ∈ Ω .

We highlight that the choice of the basis functions in this last case allows us to reduce the
vector vh(xi) to a scalar value. Actually it can be only the first or the second component
of the vector because each basis function has always a null component.
Let us call U = [UT

1 ,U
T
2 ]

T the vector of nodal values, except Dirichlet ones, of the vectorial
function uh = [uh,1, uh,2]

T , and P the vector of nodal values, except Dirichlet ones, of the
function ph, namely:

{U1}i = Ui = uh,1(xi) i = 1, ..., Nh,2 ,

{U2}i = Ui+Nh,2
= uh,2(xi) i = 1, ..., Nh,2

and
Pi = ph(xi) i = 1, ..., Nh,p .

To solve the approximate Stokes problem (6.9) is equivalent to solving the following alge-
braic system: [

A BT

B 0

] [
U

P

]
=

[
F

G

]
, (6.13)

where Aij = a(ϕj , ϕi), for i, j = 1, ..., Nh,u and Blj = b(ϕj , ψl) for j = 1, ..., Nh,u and
l = 1, ...,Hh,p. We can note that the definition of the basis functions let us to rewrite the
system (6.13) as 


Ã 0 B̃T

1

0 Ã B̃T
2

B̃1 B̃2 0





U1

U2

P


 =



F1

F2

G


 , (6.14)
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where Ãij =
∫
Ω ν∇ϕj · ∇ϕi, for i, j = 1, ..., Nh,2, {B̃1}lj = −

∫
Γi
∂ϕj/∂x ψl and {B̃2}lj =

−
∫
Γi
∂ϕj/∂y ψl for j = 1, ..., Nh,2 and l = 1, ..., Nh,p.

We solve the global system with a direct method4, e.g. with LU factorization because the
matrix is symmetric but not positive definite.

6.2 Darcy Problem

There are two different ways to formally derive the Darcy law. The first one is based
on mixture theory and representative elementary volume (REV) technique5, while the
second one on homogenization6. The idea of REV approach is to consider local averages
of the functions that describe the physical quantities, on a small volume of the size of a
REV (hundreds or thousands of pores). The second approach, on the contrary, considers
a whole family of functions depending on the spatial scale parameter ε > 0 that is the
typical size of a pore and tries to find the limit of the involved functions as ε tends to
zero. The derivation of Darcy law by these two approaches can be found in [1] and [13]
respectively.
In this Section we formally derive the Darcy law with the second approach: the method
of homogenization. This derivation can be found in [13].

Formal derivation of Darcy law

In this Section we give the general idea of the formal derivation of Darcy law from Stokes
law at the porous scale ε. We assume that the porous media has a periodic substructure of
cells Y . In the standard periodicity cell Y (see Figure 6.1) there is a standard obstacle S ⊂
Y with reference size= 1 and with a piecewise smooth boundary ∂S. The complementary
is denoted by B = Y \S. We assume that this standard geometry is repeated periodically
all over R2. The geometric structure within the fixed domain Ω is obtained by intersecting
the ε-multiple of this periodic geometry (represented in Figure 6.2) with Ω, thus obtaining

B
ε = Ω ∩ (εB) and ∂Sε = Ω ∩ (ε∂S) .

Moreover we assume that ∂Ω ∩ ∂Sε = ∅.

ν

B

S

∂S

Figure 6.1: Standard microcell Y

4See [17] for details on other methods
5See [1] for details on this approach
6It can be found in [13]
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B
ε

S
ε

∂Sε

ε

Figure 6.2: Periodic porous medium

We start from the following Stokes problem without external forces at the pore scale:





ε2µ△uε(x) = ∇pε(x) x ∈ B
ε

∇ · uε(x) = 0 x ∈ B
ε

uε(x) = 0 x ∈ ∂Sε

, (6.15)

where µ represents the dynamic viscosity of the fluid, and ∇ · uε denotes the divergence
of the field uε.
We have chosen ε2 to enter into the problem because we want to scale the velocity uε so
that it has a limit u. We assume that the unknown functions uε and pε depend on x and
on y = x/ε in a separate way and that they admit asymptotic expansions of the form:

uε(x) = u0(x,y) + εu1(x,y) + ε2u2(x,y) + ... (6.16a)

and
pε(x) = p0(x,y) + εp1(x,y) + ε2p2(x,y) + ... (6.16b)

with Y -periodicity of the coefficient functions ui(x,y) and pi(x,y) with respect to the
variable y.
Moreover, the gradient taken with respect to the original variables reads

∇ = ∇x +
1

ε
∇y ,

where the subscripts indicate the gradients with respect to x and y, respectively.
Using the asymptotic expansions (6.16) in the problem (6.15), we obtain:

ε0µ△yu0(x,y)+ε
1(...)+... = ε−1∇yp0(x,y)+ε

0(∇yp1(x,y)+∇xp0(x,y))+ε
1(...)+... y ∈ B ,

ε−1∇y · u0(x,y) + ε0(∇y · u1(x,y) +∇x · u0(x,y)) + ε1(...) + ... = 0 y ∈ B ,
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and
ε0u0(x,y) + ε1u1(x,y) + ... = 0 y ∈ ∂S . (6.17)

Comparing the terms of the same order in the equations above, we obtain:

• O(ε−1) :

∇yp0(x,y) = 0 y ∈ B ,

hence p0(x,y) = p0(x) being the function p0(x,y) Y -periodic in the variable y, and

∇y · u0(x,y) = 0 y ∈ B ,

• O(ε0) :

µ△yu0(x,y) = ∇yp1(x,y) +∇xp0(x) y ∈ B ,

and
∇y · u1(x,y) +∇x · u0(x,y) = 0 y ∈ B .

We can note that the pressure gradient ∇xp0(x) can be written in the following form

∇xp0(x) =

2∑

j=1

ej∂xjp0(x) ,

where ej is the j-th unit spatial vector.
We define the following cell problems: find the Y -periodic vector fields wj(y) with com-
ponents wij(y), that solve the Stokes problems, for j=1,2





△ywj(y) = ∇yπj(y)− ej y ∈ B

∇y ·wj(y) = 0 y ∈ B

wj(y) = 0 y ∈ ∂S
,

where the functions πj(y) are the corresponding Y -periodic pressure fields. Using these
cell functions, we can write u0(x,y) as

u0(x,y) = − 1

µ

2∑

j=1

wj(y)∂xjp0(x) .

Let us define the avaraged vector field as follows

u(x) =

∫

B

u0(x,y)dy .

Its i-th component can be expressed as

ui(x) = − 1

µ

2∑

j=1

kij∂xjp0(x) ,

where

kij =

∫

B

wij(y)dy .



74 Chapter 6. ICDD for Stokes-Darcy coupling

Introducing the tensor k = kij , we obtain the classical expression of Darcy law:

u(x) = − 1

µ
k∇p0(x) .

Moreover, it can be shown that the permeability tensor k is symmetric and positive definite.
The hydraulic conductivity tensor is defined as K = kρg/µ, where ρ is the density of the
fluid and g is the acceleration due to gravity. In the following Sections we will replace
these tensors with scalar values, making the hypothesis that k = kI, where I is the identity
tensor.
It remains to prove that the velocity field u is divergence-free. We already know that

∇y · u1(x,y) +∇x · u0(x,y) = 0 y ∈ B .

We integrate this over B, thus obtaining

∇x · u(x) =
∫

B

∇x · u0(x,y)dy = −
∫

B

∇y · u1(x,y)dy =

= −
∫

∂B
ν · u1(x,y)dΓ(y) =

= −
∫

∂S
ν · u1(x,y)dΓ(y) −

∫

∂Y
ν · u1(x,y)dΓ(y) .

The boundary integral over ∂S is zero due to the term that is O(ε) is equation (6.17) and
the boundary integral over ∂Y is zero due to the Y -periodicity of u1(x,y) with respect to
y. Therefore, we have shown the following

Theorem 20. Homogenization of the Stokes problem (6.15) is given by the Darcy problem




u = − 1

µ
k∇p0 in Ω

∇ · u = 0 in Ω
(6.18)

In the following let us use u and p instead of u and p0, respectively.

Weak formulation and finite element approximation of Darcy law

In this Section we show how to numerically solve the Darcy problem (6.18). We can note
that combining the two equations, we obtain an equation for the pressure, actually

0 = ∇ · u = −∇ · ( 1
µ
k∇p) in Ω . (6.19a)

Therefore the Darcy problem can be solved by computing p as the solution of (6.19) and
then by setting

u = − 1

µ
k∇p in Ω . (6.19b)

We can associate this problem with the following boundary conditions. Let ΓD ,ΓN ⊂ Ω:
∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅. Then




p = g on ΓD

∂np =
k

µ
∇p · n = h on ΓN

(6.20)
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Ωs

Ωd

Γ

Figure 6.3: Domain partition with Sharp interface

The weak formulations of these problems read: find p ∈ H1(Ω), p = g on ΓD such that

∫

Ω

1

µ
k∇p · ∇ϕdΩ =

∫

ΓN

hϕdΓ ∀ϕ ∈ H1
ΓD

(Ω) (6.21a)

and find u ∈ [L2(Ω)]2 such that

∫

Ω
u · vdΩ = −

∫

Ω

1

µ
k∇p · vdΩ ∀v ∈ [L2(Ω)]2 (6.21b)

The Galerkin finite element approximation of these problems is the classical one7. To
numerically solve the Darcy problem we have chosen [P2]

2 elements for the velocity field8,
so that we can easily compare it with the one obtained by Stokes problem, and therefore
P3 elements for the pressure field.

6.3 Stokes-Darcy Problem: Classical Coupling with Sharp

Interface and Dimensionless Formulation

In this Section we present the classical Stokes-Darcy coupling and the dimensionless for-
mulation of the Stokes-Darcy problem, that will be used also for the formulation of the
coupled problem with ICDD methods. To achieve this goal we refer to the theory in [11]
and in [6].
Let us consider a domain Ω split into two non overlapping regions, as shown in figure 6.3.
We denote by Γ the interface between these two sub-domains. In the first region, Ωs we
have a fluid, while in the second one, Ωd we have a porous medium.
Therefore we have to solve Stokes equations in Ωs, and Darcy equations in Ωd. Let us

refer to the physical quantities of Stokes and Darcy problems with the subscripts f and d
respectively. We consider a fluid with constant density ρ and constant kinematic viscosity
ν. Let us remind that the dynamic viscosity µ is defined as µ = νρ.
The coupled Stokes-Darcy problem reads as follows:

7See Chapter 2 for details
8This space is described in the previous Section
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• Stokes problem 


−ν△(uf ) +∇

(
pf
ρ

)
=

f

ρ

∇ · uf = 0
in Ωs (6.22a)

with classical Stokes boundary conditions on ∂Ωs ∩ ∂Ω.

• Darcy problem 


ud = −k

ν
∇

(
pd
ρ

)

∇ · ud = 0
in Ωd (6.22b)

with classical Darcy boundary conditions on ∂Ωd ∩ ∂Ω.

• Coupling conditions
To couple the two problems, the following classical conditions on the interface be-
tween the two sub-domains can be considered:

i) Continuity of fluxes:

uf · n = ud · n on Γ , (6.22c)

where n denotes the unit vector normal to Γ, external to one of the two sub-
domains.

ii) Continuity of stresses:

−T(uf , pf )n

ρ
· n =

pd
ρ

on Γ , (6.22d)

where T(uf , pf ) is the stress tensor

T(uf , pf ) = µ(∇uf +∇Tuf )− pfI ,

where I denotes the identity tensor.

iii) Condition of Beavers-Joseph-Staffman (BJS):

−T(uf , pf )n

ρ
· τ =

να√
k
uf · τ on Γ , (6.22e)

where α is a dimensionless experimental parameter and τ denotes the unit
vector tangential to Γ.

Dimensionless form of the Coupled problem

We now give a dimensionless form of the coupled problem (6.22), that is derived in [6].
First, let us analyze the dimension of every parameter or function that enters into the
problem:

Parameter Dimension

uf [LT−1]

pf [ML−1T−2]

f [ML−2T−2]

ν [L2T−1]

ρ [ML−3]

Parameter Dimension

ud [LT−1]

pd [ML−1T−2]

k [L2]
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To write the dimensionless form of the problem, we need to introduce the following quan-
tities:

Xf characteristic length (Stokes Domain) [L]
Uf characteristic velocity (Stokes Domain) [LT−1]
Πf characteristic pressure (Stokes Domain) [ML−1T−2] ,

otaining

x∗ =
x

Xf
dimensionless cartesian coordinate

u∗
f =

uf

Uf
dimensionless Stokes velocity

p∗f =
pf
Πf

dimensionless Stokes pressure

u∗
s =

us

Uf
dimensionless Darcy velocity

p∗d =
pd
Πf

dimensionless Darcy pressure

In order to sempify the expressions of the dimensionless equations, we define also the fol-
lowing dimensionless numbers:

Ref =
UfXf

ν
Reynolds Number

Ef =
Πf

ρU2
f

Euler Number

Nk =
k

X2
f

Darcy Number

Ñk =
kUf

νXf
= NkRef

NBJS =
αν√
kUf

= α
(
N

1/2
k Ref

)−1

Using these notations we can now write the dimensionless form of (6.22).

• Dimensionless Stokes problem
{
−a△∗(uf ) +∇∗p

∗
f = f∗

∇∗ · u∗
f = 0

in Ωs , (6.23a)

where a = (RefEf )
−1 and f∗ = fXf/Πf , with dimensionless Stokes boundary con-

ditions on ∂Ωd ∩ ∂Ω.
• Dimensionless Darcy problem

{
u∗
d = −K∇∗p

∗
d

∇∗ · u∗
d = 0

in Ωd , (6.23b)

where K = RefEfNk, with dimensionless Darcy boundary conditions on ∂Ωd ∩ ∂Ω.
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• Dimensionless Coupling conditions

i) Continuity of fluxes:

u∗
f · n = u∗

d · n on Γ , (6.23c)

where n denotes the unit vector normal to Γ, external to one of the two sub-
domains.

ii) Continuity of stresses:

−
((
a(∇∗u

∗
f +∇T

∗ u
∗
f )− p∗fI

)
n
)
· n = p∗d on Γ . (6.23d)

iii) Condition of Beavers-Joseph-Staffman (BJS):

−
((
a(∇∗u

∗
f +∇T

∗ u
∗
f )− p∗fI

)
n
)
· τ = NBJSE

−1
f u∗

f · τ on Γ . (6.23e)

In the following Sections we will refer to the dimensionless form of the problem, but, for
simplicity of notation, we will avoid using ∗ to indicate dimensionless quantities.

6.4 Formulation of ICDD methods for Stokes-Darcy Cou-

pling

While in the previous Section we presented the classical formulation of Stokes-Darcy cou-
pling, in this Section we present two different ICDD methods proposed in [10] to numeri-
cally solve Stokes-Darcy coupling. There is no theory on the well-posedness of the ICDD
problems in these cases, therefore we try to apply these two methods in order to test
whether they could be good methods or not.
The analysis of the numerical results obtained by solving the coupled problem with these
methods are presented in the next Section.
We consider a domain Ω with a Lipschitz boundary ∂Ω such that ∂Ω = ΓD ∪ ΓN with
ΓD ∩ΓN = ∅, split into two overlapping sub-domains Ωs (the Stokes domain) and Ωd (the
Darcy domain), as shown in Figure 6.4. The overlapping region ΩSD is an intermediate
region where neither Stokes nor Darcy law is thought to be completely valid. We define
also the two internal interfaces as

Γs = ∂Ωs \ (∂Ωs ∩ ∂Ω)

and
Γd = ∂Ωd \ (∂Ωd ∩ ∂Ω) ,

and the external Neumann and Dirichlet boundaries of the two sub-domains as

Γs
D = ∂Ωs ∩ ΓD Γs

N = ∂Ωs ∩ ΓN

and
Γd
D = ∂Ωd ∩ ΓD Γd

N = ∂Ωd ∩ ΓN .

The two ICDD methods we will consider are methods with interface control and inter-
face observation. They differs in the cost functional to be minimized and in the kind of
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Ωs

Ωd Γs

Γd

Ωsd

Figure 6.4: Domain partition with overlapping sub-domains

controls used. Let us consider the dimensionless formulation of Stokes and Darcy problems
on Ωs and on Ωd respectively. We use the notation introduced in the previous Section,
denoting with the subscripts f and d the quantities relatives to Stokes and Darcy problem,
respectively. Let us introduce these two methods separately.

Jt method

We consider a Dirichlet interface control in the case of Stokes problem and a Neumann
interface control in the case of Darcy problem. Moreover, we minimize the following cost
functional:

Jt(λ) =
1

2
‖uf − ud‖2L2(Γs)

+
1

2
‖(uf − ud) · n‖2L2(Γd)

, (6.24)

where

λ =

[
λs

λd

]
,

and λs and λd are the control functions on Γs and on Γd respectively.
The optimality system proposed in [10] for this first method is the following:

• Primal Problems 



−a△uf +∇pf = f in Ωs

∇ · uf = 0 in Ωs

uf = λs on Γs

+ b.c. on Γs
D ∪ Γs

N

(6.25a)

and





−∇ · (K∇pd) = 0 in Ωd

K
∂pd
∂n

= λd on Γd

+ b.c. on Γd
D ∪ Γd

N

, ud = −K∇pd in Ωd . (6.25b)

• Adjoint Problems 



−a△vf +∇qf = 0 in Ωs

∇ · vf = 0 in Ωs

vf = uf − ud on Γs

+ homogeneous b.c. on Γs
D ∪ Γs

N

(6.25c)
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and




−∇ · (K∇qd) = 0 in Ωd

K
∂qd
∂n

= (uf − ud) · n on Γd

+ homogeneous b.c. on Γd
D ∪ Γd

N

, vd = −K∇qd in Ωd . (6.25d)

• Optimality Conditions
(uf − ud)− vd = 0 on Γs (6.25e)

and
(uf − ud) · n− vf · n = 0 on Γd . (6.25f)

Jf method

Here we consider Neumann interface controls for both Stokes and Darcy problems. The
idea of this second method is to impose the continuity of the stresses on Γs and the
continuity of the normal component of the velocity on Γd. Therefore, in this case, we
minimize the following cost functional:

Jf (λ) =
1

2
‖ν ∂uf

∂n
− pfn+ pdn‖2L2(Γs)

+
1

2
‖(uf − ud) · n‖2L2(Γd)

. (6.26)

The optimality system proposed in [10] for this second method is the following:

• Primal Problems 



−a△uf +∇pf = f in Ωs

∇ · uf = 0 in Ωs

ν
∂uf

∂n
− pfn = λs on Γs

+ b.c. on Γs
D ∪ Γs

N

(6.27a)

and




−∇ · (K∇pd) = 0 in Ωd

K
∂pd
∂n

= λd on Γd

+ b.c. on Γd
D ∪ Γd

N

, ud = −K∇pd in Ωd . (6.27b)

• Adjoint Problems




−a△vf +∇qf = 0 in Ωs

∇ · vf = 0 in Ωs

ν
∂vf

∂n
− qfn = ν

∂uf

∂n
− pfn+ pdn on Γs

+ homogeneous b.c. on Γs
D ∪ Γs

N

(6.27c)

and




−∇ · (K∇qd) = 0 in Ωd

K
∂qd
∂n

= (uf − ud) · n on Γd

+ homogeneous b.c. on Γd
D ∪ Γd

N

, vd = −K∇qd in Ωd . (6.27d)
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• Optimality Conditions

(ν
∂uf

∂n
− pfn+ pdn)− qdn = 0 on Γs (6.27e)

and
(uf − ud) · n− vf · n = 0 on Γd . (6.27f)

These two optimality systems are discretized and solved in an analogous way as done
in Chapter 5.

6.5 Numerical Results for Stokes-Darcy Coupling with ICDD

methods

In this Section we analize the numerical behaviour of the proposed ICDD methods.
First we analyze the two methods on two different test cases with known reference solution,
then we analyze the behaviour of the numbers of iterations required by these methods
varying the overlap thickness, and finally we comment their consistence with respect to
two significant physical situations.

6.5.1 Errors computation and number of iterations in two test cases

We analyze the behaviour of the two ICDD methods proposed both in terms of iterations
and of errors with respect to two reference solutions when the grid size h tends to zero.
We split the analysis into two parts, each corresponding to one of the two methods. The
reference solutions in the two cases are built in order to exactly solve these problems with
the proposed methods.

• Jt method

Let us consider a test case with a reference solution on the domain Ω = (0, 1)×(0, 2).
The domain is split into two overlapping sub-domains and the overlap thickness
in δ. Stokes domain is Ωs = (0, 1) × (1 − δ/2, 2) while Darcy domain is Ωd =
(0, 1) × (0, 1 + δ/2).
The exact solution of the problem is:

u1 = −Kexsin(y)

u2 = −Kexcos(y)
p = exsin(y)

where K is the dimensionless Darcy coefficient. We impose Neumann conditions on
vertical edges of the domain, as shown in Figure 6.5. We denote by D and N the
Dirichlet and Neumann conditions, respectively.

We have fixed the overlap thickness δ at 10% of the size of the whole domain in
y-direction, namely δ = 0.2, and have decreased the mesh size h. This test has been
made for different values of the dimensionless Stokes and Darcy coefficients a and
K, in order to test the robustness of the method with respect to the coefficients of
the problem.
In the following table there are the coefficients used in the different cases. The
definitions of both a and K are given in Section 6.3.
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Ωs

Ωd

Γs

Γd

Ωsd

N

NN

N

D

D

Figure 6.5: Jt method : boundary conditions

a K

Case 1 2 2 · 104
Case 2 2 2 · 102
Case 3 2 · 10−1 2 · 102
Case 4 2 · 10−3 2 · 103

We notice that the number of iterations required by the proposed ICDD method does
not depend on the coefficients. The number of iterations required, when δ = 0.2, is
written in the following tables:

h 1/10 1/20 1/30 1/40 1/50 1/60

number of iterations 13 10 10 9 9 9

h 1/70 1/80 1/90 1/100 1/110 1/120

number of iterations 9 9 9 8 8 8

We can note that the number of iterations slightly decreases as the grid size h tends
to zero. Nevertheless, even if the mesh size is large, the number of iterations required
is low.

We can also observe that, once the overlap thickness is fixed, the errors of the
computed solution, with respect to the reference one, decrease in accordance with
the theory of finite element for the two differential problems (Stokes and Elliptic) (see
Figures 6.6 - 6.9). In particular, we can note that in the case of Stokes subproblem,
the errors behaviours satisfy the errors estimates (6.12), while in the case of Darcy
subproblem, the finite elements estimate are satisfied. On the other hand, once fixed
the mesh size, the errors increase as the overlap size decreases.
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(a) Stokes domain
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(b) Darcy domain

Figure 6.6: Case 1 - Jt method : fixed overlap δ = 0.2
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(a) Stokes domain
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(b) Darcy domain

Figure 6.7: Case 2 - Jt method : fixed overlap δ = 0.2

• Jf method

Let us consider the same domain of the previous test case, and let us now consider
the problem with exact solution on Stokes domain:

uf1 = −Kexsin(y − 0.9 + π/2)

uf2 = −Kexcos(y − 0.9 + π/2)

pf = exsin(y − 0.9 + π/2)(1 + aK)

and on Darcy domain:

ud1 = −Kexsin(y − 0.9 + π/2)

ud2 = −Kexcos(y − 0.9 + π/2)

pd = exsin(y − 0.9 + π/2)

where K and a are the dimensionless Darcy and Stokes coefficient, respectively. We
impose boundary conditions as shown in Figure 6.10.
As in the previous test case, we have fixed the overlap thickness δ at 10% of the

size of the whole domain in y-direction, namely δ = 0.2, and have decreased the
mesh size h. In this case we report the results obtained for the following values of
the dimentionless parameters:



84 Chapter 6. ICDD for Stokes-Darcy coupling

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

2

2.5

h

er
ro

rs

 

 

||u−u
h
||
H

1

||p−p
h
||
L

2
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(b) Darcy domain

Figure 6.8: Case 3 - Jt method : fixed overlap δ = 0.2
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(b) Darcy domain

Figure 6.9: Case 4 - Jt method : fixed overlap δ = 0.2

a K

2 · 10−3 2 · 103

The number of iterations required, when δ = 0.2, is written in the following tables:

h 1/10 1/20 1/30 1/40 1/50 1/60

number of iterations 9 8 8 8 8 7

h 1/70 1/80 1/90 1/100 1/110 1/120

number of iterations 7 7 7 7 6 6

We can note that, also in this case, the number of iterations decreases a little as
the grid size h tends to zero. On the other hand, even if the mesh size is large, the
number of iterations required is low.

We can also observe that, also with this method, once fixed the overlap thickness,
the errors of the computed solution with respect to the reference one decrease in
accordance with the theory of finite element for the two differential problems (Stokes
and Elliptic) (see Figure 6.11).
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Figure 6.10: Jf method : boundary conditions
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(a) Stokes domain

10
−3

10
−2

10
−1

10
−10

10
−5

10
0

10
5

2

3

h

er
ro

rs

 

 

||u−u
h
||
H

1

||p−p
h
||
L

2

(b) Darcy domain

Figure 6.11: Jf method : fixed overlap δ = 0.2

6.5.2 Number of iterations required versus the overlap thickness

We are interested in analyzing the number of iterations required as the overlap thickness
tends to zero. Let us consider two different test cases (test cases 1 and 2). In every case
the domain is Ω = (0, 1)× (0, 2). The real interface of the problem is set at y = 1 and, if δ
is the overlap thickness, the Γs and Γd are set at y = 1− δ/2 and y = 1− δ/2, respectively.
The coefficients of the problem are fixed to a = 0.002 and K = 2000 and the mesh size is
fixed to h = 0.02.

• Test case 1

In this first case, let us consider the boundary conditions shown in Figure 6.12, where
g = (g1, 0),

g1(x, y) =





(0.4)2 − (y − 1.6)2

(0.4)2
for 1.2 < y < 2

0 otherwise

.

In this case, the number of iterations required by the two methods to solve the
problem are

δ 1/5 4/25 3/25 2/25 1/25

number of iterations Jt 16 16 18 22 32

number of iterations Jf 13 13 13 14 14
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Figure 6.12: Test Case 1 - boundary conditions

We can note that the number of iterations required by Jf method is almost indepen-
dent of the overlap thickness, while the number of iterations of Jt method increases
as δ−1/2 when δ tends to zero.

• Test case 2

In this case, we imposed the boundary conditions shown in Figure 6.13, where g =
(0, g2),

g2(x, y) =
(x− 0.5)2 − (0.5)2

(0.5)2
.
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a
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∂n
− pfn = 0 a

∂uf

∂n
− pfn = 0

uf = g

pd = 0 pd = 0

K
∂pd
∂n

= 0

Figure 6.13: Test Case 2 - boundary conditions

In this second case the numbers of iterations required are the following:

δ 1/5 4/25 3/25 2/25 1/25

number of iterations Jt 17 17 20 21 29

number of iterations Jf 15 15 15 15 14

Also in this second case the considerations made above are still valid.

Conclusions:

In conclusion, we can say that the number of iterations of Jf method is independent of
the overlap thickness and it is very low, while that required by Jt increases as δ

−1/2 when
the overlap thickness tends to zero.
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6.5.3 Consistence of Solutions Computed by ICDD Methods

We want to understand if the proposed ICDD methods are consistent. More precisely,
we compare the solution of the ICDD method to that of classical Stokes-Darcy problem
6.229. In order to reach this goal, we solved two problems with meaningful boundary
conditions (test cases 3 and 4). In each of these cases, the physical interface between
the two sub-domains is set at y = 1, while Γs and Γd are set at y = 0.9 and y = 1.1,
respectively.

• Test case 3

We solved the coupled Stokes-Darcy problem in Ω = (0, 2) × (0, 2), with f = 0 and
with the boundary conditions given as in Figure 6.14.

Ωs

Ωd

Γs

Γd

Ωsd

a
∂uf

∂n
− pfn =

[
0
−1

]

uf = 0 uf = 0

pd = 0

K
∂pd
∂n

= 0 K
∂pd
∂n

= 0

Figure 6.14: Test Case 3 - boundary conditions
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Figure 6.15: Test Case 3 - pressure

In Figures 6.15 and 6.16 we plot the computed solutions using both Jt and Jf meth-
ods.
We can notice that the solution computed using Jt method is meaningless. Actually
the pressure is constant in each of the two sub-domains and the velocity field is
identically zero. On the other hand, the solution computed using Jf method seems
to be similar to what we expect.
Therefore we compare this solution with the one obtained with the classical method

9The numerical simulations of the classical Stokes-Darcy coupling have been provided by Professor
Discacciati Marco, Universitat Politècnica de Catalunya. BarcelonaTech.
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Figure 6.17: Test Case 3 - Stokes velocity field (first component)
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Figure 6.18: Test Case 3 - Stokes velocity field (second component)
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Figure 6.19: Test Case 3 - Darcy pressure

with sharp interface (Figures 6.17-6.19). We note that the velocity fields computed
in the two cases are comparable, even if it is slightly larger (in absolute value) in
the case of the method with sharp interface. On the other hand, the pressures are
almost equal in the two cases.
These differences can depend on the fact that the two problems are not fully equiva-
lent. As a matter of fact we recall that the two formulations impose different bound-
ary conditions on the internal boundary (the interface) of the Stokes sub-domains
and that the position of this interface is not the same for the two methods. Moreover
the ICDD solution could depend on the overlap thickness. A more in depth analysis
should be carried out versus both the overlap thickness and the mesh size.

• Test case 4

Consider the Stokes-Darcy coupling in the domain Ω = (0, 5) × (0, 2), with f = 0

and with the boundary conditions shown in figure 6.20
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uf = g

pd = 0

pd = 0K
∂pd
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= 0

Figure 6.20: Test Case 4 - boundary conditions

where g = (g1, 0),

g1(x, y) =





(0.4)2 − (y − 1.6)2

(0.4)2
for 1.2 < y < 2

0 otherwise .

Moreover, we have chosen ν = 10−6m2/s and therefore the dimentionless coefficients
a is a = 0.002.
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Figure 6.21: Test Case 4 - K = 2000
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Figure 6.22: Test Case 4 - K = 20

In Figures 6.21 and 6.22 we plot the velocity field computed with Jt and Jf for two
different values of the coefficient K.
We can notice that the velocity field does not change for different values of K in
the case of Jt method, and therefore its behaviour does not respect the physics of
the problem. The analysis of the velocity field computed using Jf method is more
complex. Actually in this case on one hand the velocity field changes in accordance
with the physics of the problem solved because the flux that enters into the porous
medium is greater when the permeability coefficient is higher. On the other hand,
in the case of Jf method, it is difficult to choose the value of the velocity field on
the overlapping region because the computed fields into the two sub-domains have
different values on it. Moreover we can note in Figure 6.22 that, when K = 20, the
tangential component of the Stokes velocity field with respect to the real interface,
set at y = 1, is significantly larger than zero.

Let us compare the solution computed with the second ICDD method proposed
to the one obtained with the classical Stokes-Darcy coupling.
If we choose K = 2000, the two solutions are almost equal in each sub-domain. On
the other hand, when we set K = 20 (Figures 6.23-6.25) the two solutions are sig-
nificantly different. Actually the Darcy pressure obtained with Jf method is smaller
with respect to the other one, even if the qualitative behaviour is the same. Moreover
the second component of the Stokes velocity computed using Jf method is smaller
(in absolute value) then the one obtained with the classical method. The first com-
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Figure 6.23: Test Case 4 - K = 20 - Stokes velocity field (first component)
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Figure 6.24: Test Case 4 - K = 20 - Stokes velocity field (second component)
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Figure 6.25: Test Case 4 - K = 20 - Darcy pressure
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ponent of the velocity field is larger in the first case with respect to the second one,
both near the right boundary and in the whole Stokes domain.
We believe that these differences are due to the fact that Jf method in this specific
case10 tries to minimize the tangential component of the stresses on the Stokes in-
terface, without imposing any restrictions on the value of the tangential component
of the velocity field with respect to this interface, while the classical coupling makes
this component to be related to the tangential stresses by means of BJS coupling
condition.
Moreover, we should made these tests with different overlap thicknesses and mesh
sizes in order to better understand the behaviour of Jf method.
We should also compare the solutions obtained with Jf method in meaningful phys-
ical situations with experimental data.

Conclusions:

In conclusion, according to the numerical results obtained, Jt does not seem to be suitable
because it gives a velocity field independent of the permeability of the porous medium and
it does not solve adequately the test case 3. This functional, in particular, considers only
the difference between the velocity fields and their normal components on the interface,
without considering the stresses at the interfaces and therefore the pressures are allowed
to be independent of each other.
On the other hand, the numerical simulations made don’t allow us to conclude whether
Jf gives a solution in accordance with the real solution of the problem. Actually, on one
hand, the solution of the test case 3 seems to be a good solution, and the velocity fields
(as we can see in test case 4) depend on the permeability coefficient of Darcy law. On the
other hand, the numerical solution obtained with δ = 0.2, h = 0.1 and K = 20 is quite
different from the solution computed using the classical Stokes-Darcy coupling with sharp
interface.
In order to better understand the pro’s and con’s of Jf method, and their fields of va-
lidity, we should understand what it happens for different overlaps, mesh sizes, boundary
conditions and coefficients. Moreover, in order to obtain more reliable conclusions on Jf
method, we should compare the solutions obtained using this method with experimental
data in meaningful physical situations. We believe that only with these comparisons we
could better understand the reliability of Jf method.

10the normal vector to Γ1, external to the Stokes domain, is n =

[

0
−1

]



Conclusions

In this thesis we analyzed interface control domain decomposition methods both analyti-
cally, when possible, and numerically.
In particular we proved the well-posedness of ICDD methods applied to the solution of
elliptic problems, and we presented two ICDD methods to solve Stokes-Darcy coupling.
In the case of elliptic problems, we compared the different ICDD methods in terms of num-
bers of iterations required both fixing the overlap thickness or the mesh size. We made
these analyses with both continuous and discontinuous coefficients, in order to understand
also the robustness of these methods. We can conclude that the best method seems to
be J0,Γ in the case of Dirichlet interface control, both in its multiplicative and additive
version. Nevertheless, a valid alternative would be J0,Γ(2) in the case of Robin interface
controls, with high β. Actually their numbers of iterations are constant when the overlap
is fixed and the mesh size tends to zero, and increase a little when the mesh size is fixed
and the overlap thickness decreases. Moreover, their numbers of iterations are very small
both with continuous and discontinuous coefficients. In particular, we can note that the
best methods are those with interface observation.
On the other hand, in the case of Stokes-Darcy coupling, we considered two different ICDD
methods. After having compared the numbers of iterations required by these methods, we
analyzed the solutions obtained with these methods in two significant physical problems.
In particular we can conclude that the method based on the functional Jt is not valid be-
cause the solutions obtained don’t respect the physics of the problem. On the other hand,
the numerical simulations made don’t allow us to conclude whether Jf gives a solution
in accordance with the real solution of the problem. We would need more cases and we
should compare the solutions obtained using this method with experimental data.
In conclusion, we found some valid methods to solve elliptic problems, and we excluded
Jt method for the solution of Stokes-Darcy coupling. The analysis of Jf method is more
complex and should be done with other external data. Therefore for this method we can
say only that its behaviour in terms of numbers of iterations is good, but we should analyze
whether it solves the problem in accordance with the physics of the problem.
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Appendix A
Iterative Methods to solve linear systems

In this Appendix we want briefly to present some iterative methods used to solve algebraic
linear systems and their properties in terms of convergence.
Given a linear system

Ay = f , (A.1)

the idea of an iterative method is to built a sequence {y(k)} that converges to the exact
solution y of the given system (A.1).
Let us introduce the error e(k) at the kth iteration with respect to the exact solution:

e(k) = y(k) − y .

For any symmetric and positive definite matrix A, let us also define the A-norm of a vector
b ∈ Rn as:

‖v‖A =




n∑

i,j=1

viaijvj




1/2

.

A.1 Richardson and Preconditioned Gradient Methods

Let us introduce the residual r(k) at the kth iteration

r(k) = f −Ay(k) ,

and a preconditioning matrix P . Richardson methods are iterative methods that compute
the solution at the kth iteration in the following way:

y(k+1) = y(k) + αkP
−1r(k) ,

with αk a parameter to be chosen.
If both A and P are symmetric positive definite matrices, we can define the Preconditioned
Gradient method(PG) as a particular Richardson method, where

αk =
z(k)

T
r(k)

z(k)
T
Az(k)

.

Therefore, PG method reads as follows:
given y(0), compute r(0) = f −Ay(0) and z(0) = P−1r(0). Then, for k = 0, 1, ...
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αk =
z(k)

T
r(k)

z(k)
T
Az(k)

y(k+1) = y(k) + αkz
(k)

r(k+1) = r(k) − αkAz
(k)

Pz(k+1) = r(k+1)

while convergence is reached.
The following Theorem holds. This Theorem can be found in [17].

Theorem 21. Let A and P be symmetric and positive definite matrices. Then the Gradient
Method converges for any value of the initial guess y(0). Moreover,

‖e(k)‖A 6

(
κ− 1

κ+ 1

)k

‖e(0)‖A , k = 0, 1, ... , (A.2)

where κ = K2(P
−1A) > 1.

A.2 Preconditioned Conjugate Gradient Method(PCG)

Let us consider the linear system (A.1), with A symmetric and positive definite matrix.
Let P be a symmetric positive definite preconditioning matrix. PCG method is equivalent
to Conjugate Gradient method applied to the following preconditioned problem:

P−1Ay = P−1f .

PCG scheme reads as follows:
given y(0), compute r(0) = f −Ay(0), z(0) = P−1r(0) and p(0) = z(0). Then, for k = 0, 1, ...

αk =
p(k)T r(k)

(Ap(k))
T
p(k)

y(k+1) = y(k) + αkp
(k)

r(k+1) = r(k) − αkAp
(k)

Pz(k+1) = r(k+1)

βk =
(Ap(k))

T
z(k+1)

p(k)TAp(k)

p(k+1) = z(k+1) − βkp
(k)

while convergence is reached.
The following Theorem, that can be found in [19], holds:

Theorem 22. Let A and P be symmetric and positive definite matrices. Then the Pre-
conditioned Conjugate Gradient Method converges for any value of the initial guess y(0).
Moreover,

‖e(k)‖A 6 2

(√
κ− 1√
κ+ 1

)k

‖e(0)‖A , k = 0, 1, ... , (A.3)

where κ = K2(P
−1A) > 1.
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A.3 Number of Iterations Required by PG and PCG meth-

ods

If we want to find the solution of the system (A.1) with a prefixed tolerance 0 < ε < 1:

y(it) : ‖e(it)‖A 6 ε‖e(0)‖A ,

the number of iterations needed to reach this tolerance depends on the error estimates
(A.2) and (A.3). They are both of the form

‖e(k)‖A 6 2

(
η − 1

η + 1

)k

‖e(0)‖A , k = 0, 1, ... ,

where η is equal to κ in the first case and equal to
√
κ in the second. The number of

iteration is the smallest integer greater than i such that (if η > 1):

2

(
η − 1

η + 1

)i

> ε

(
η + 1

η − 1

)i

6
2

ε

2

η
i 6 i log

(
η + 1

η − 1

)
6 log

2

ε

i 6
1

2
η log

2

ε
.

Therefore, we can say that the number of iterations required by PG and PCG methods,
are (for any κ):

itPG ∝ κ

and

itPCG ∝ √
κ .

A.4 Bi-Conjugate Gradient Stabilized Method (Bi-CGStab)

The biconjugate gradient stabilized method(Bi-CGStab) is an iterative method developed
by H.A.van der Vorst (1992) for the numerical solution of nonsymmetric linear systems.
Bi-CGStab is a Krilov subspace method. This theory can be found in [19]
Bi-CGStab method reads as follows:
given y(0), compute r(0) = f −Ay(0) and choose r̂(0) such that (r̂(0))T r̂(0) 6= 0 (for example
r̂(0) = r(0) if r(0) 6= 0). Moreover, put ρ−1 = α−1 = η0 = 1 and v(−1) = p(−1) = 1. Then,
for k = 0, 1, ...
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ρk = (r̂(0))T r(k)

βk =
ρk
ρk−1

αk−1

ηk

p(k) = r(k) + βk(p
(k−1) − ηkv

(k−1))

v(k) = Ap(k)

αk =
ρk

(r̂(0))Tv(k)

s = r(k) − αkv
(k)

t = As

ηk+1 =
sT t

tT t

y(k+1) = y(k) + αkp
(k) + ηk+1s

r(k+1) = s− ηk+1t

while convergence is reached.
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