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Once you have tasted flight, you will
forever walk the earth with your eyes
turned skyward, for there you have been,
and there you will always long to return.

Leonardo da Vinci
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Abstract

The separation problem affects most aerodynamic flows, but the accurate prediction of these
flows is still a challenging problem for CFD.
This thesis will study the behavior of Reynolds Averaged Navier-Stokes (RANS) models in pre-
dicting the flow over a wall-mounted hump.
The goal of the work is to evaluate strengths and weaknesses of the most used and popular RANS
models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST ) by using the open source software
OpenFOAM.
Particular attention will be given to the size of the recirculation bubble, to the position of the
reattachment point, and to the trend of velocity profiles downstream of the hump.
The hump modeled in this work is the same used in Rumsey’s workshops in 2004 [1] and 2008
[2] and in the experiments conducted by Greenblatt et al. [3]; but here, since only the baseline
case is treated, the slot for the flow control is not included.
Both 2D and 3D simulations are run in order to reproduce the effects of the blockage due to the
end-side plates and particular attention is given to all parameters which can affect the accuracy
of results: mesh resolution, boundary conditions, location of the inlet and development of the
boundary layer upstream and downstream of the hump.
All models predict the separation point, the pressure distribution and the velocity profiles up-
stream and downstream of the hump in a proper way, but k-ε is the only model able to catch
the exact location of the reattachment point.
The boundary condition used for the upper wall, (symmetry plane or viscous wall), does not
change substantially the physics of the problem, even if the viscous wall condition can help in
adjusting and improving the pressure coefficient distribution over the hump for the k-ω-SST
model.
This thesis also shows that the development of the boundary layer upstream of the hump, which
depends on the position of the numerical inlet, strongly affects the velocity profiles downstream
of it.
Mesh resolution is another important aspect taken into account: in order to compute pressure
and skin friction at the wall properly, the mesh has to be very fine in the y-direction, close to
the hump.
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Sommario

Il problema della separazione riguarda la maggior parte dei flussi aerodinamici, ma l’accurata
predizione di tali flussi resta una grande sfida in ambito di calcolo numerico (CFD).
Questa tesi tratta il comportamento dei modelli RANS (Reynolds Averaged Navier Stokes mod-
els) nella predizione del flusso attorno da una parete con gobba.
L’obiettivo di questo lavoro è di valutare i punti di forza e di debolezza dei modelli RANS più
usati e diffusi (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST ), utilizzando il software open-
source OpenFOAM.
Particolare attenzione sarà dedicata alle dimensioni della bolla di ricircolo, alla posizione del
punto di riattacco e all’andamento dei profili di velocità a valle della gobba.
La gobba modellata in questo lavoro è la stessa usata da Rumsey nei suoi workshops del 2004 [1]
e del 2008 [2] e negli esperimenti condotti da Greenblatt et al. [3]; ma questa tesi tratta il solo
caso base, mentre il problema del controllo attivo e passivo non è affrontato.
Verranno eseguite simulazioni 2D e 3D, al fine di riprodurre gli effetti del bloccaggio delle pareti
di estremità e verrà dedicata grande attenzione a tutti i parametri che possono influenzare
l’accuratezza dei risultati: raffinatezza della mesh, condizioni al contorno, posizione della sezione
di ingresso e sviluppo dello strato limite a monte e a valle della gobba.
Tutti i modelli predicono il punto di separazione, la distribuzione di pressione e i profili di ve-
locità a monte e a valle della gobba in modo accurato, ma soltanto k-ε riesce a riprodurre l’esatta
posizione del punto di riattacco.
La condizione al contorno usata per la parete superiore (piano di simmetria o parete viscosa)
non cambia sensibilmente la fisica del problema, anche se la condizione di parete viscosa aiuta
a migliorare la distribuzione del coefficiente di pressione attorno al modello per il modello k
-ω-SST .
La tesi mostra che lo sviluppo dello strato limite a monte dell’ “hump”, che a sua volta dipende
dalla posizione dell’ inlet numerico, ha forte influenza sui profili di velocità a valle.
La risoluzione della mesh è un altro aspetto importante da tenere in conto: al fine di calcolare
la pressione e il coefficiente d’attrito accuratamente, la griglia deve essere molto raffinata in
direzione y, in prossimità della gobba.
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Dε Viscous diffusion of dissipation
k Turbulent kinetic energy
Kn Knudsen number
M Mach number
P Production
Rec Reynolds number based on the chord of the hump
S Outward-pointing face area vector
Sij Rate-of-strain tensor
t Time
T Time interval
Tk Transport of turbulent kinetic energy
Tε Transport of dissipation
x Space vector
u Scalar component of velocity
u Velocity vector

uτ Frcition velocity
√
τ/ρ

U∞ Asymptotic velocity
α Coefficient of the production term of ω for the k − ω model
αω Coefficient of the viscous term of the ω equation
β Coefficient of the dissipation term of ω in the k − ω model
ε Rate of dissipation of turbulent kinetic energy
Γ Dissipation, equation for ε
λ Molecular free path
ω Specific dissipation of turbulent kinetic energy
Πk Pressure diffusion, equation for turbulent kinetic energy
Πε Pressure transport, equation for dissipation
σε Coefficient of the viscous term in the ε equation
ρ Density
ν Kinematic viscosity
νt Turbulent kinematic viscosity
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νeff Effective viscosity (ν + νt)
τ Time scale
Subscript
i Index for the scalar component of a vector
j Index for the scalar component of a vector
N Center of the neighboring cells
P Center of the cell
f Face
Apex
− Time average
′ Time fluctuation



Chapter 1

Introduction

This thesis is inspired by Rumsey’s workshops of 2004 [1] and 2008 [2] and its goal is to update
the state of the art for what concerning the “hump-flow” model problem and RANS models in
predicting separated flows.
Even though, since the time of the workshops, many research centers have been working on
this problem, many aspects, concerning the characteristics of this flow and the behavior of CFD
methods are not totally clear, so that further investigations are required.
This work compares the performances of the most popular RANS models and discusses the
effects that procedural variables have on the accuracy of results.
A sketch of the geometry used in experiments is shown in figure 1.1.
The model was constructed from aluminum over a splitter-plate and the assembly was mounted
between two end-plates with aluminum frames and glass interiors[3].
Numerical simulations of the hump model were object of study during the CFD Validation
Workshop, held in Williamsburg, Virginia, in 2004. The goal of this workshop, fully described in
Rumsey’s paper[1], was to bring together an international group of computational fluid dynam-
ics practitioners to assess the current capabilities of different classes of different flow solution
methodologies to predict flow fields induced by synthetic jets and separation control geometries.
For the base-line (no flow control), most CFD results missed the pressure levels over the hump
between 0.2 < x/c < 0.6 and also predicted higher results in the separated region upstream of
x/c = 1.
This trend was in part due to the blockage of the side plates used in the experiments that caused
a decrease of pressure, when compared to 2D simulations.
The most significant results concerned with the separated flow downstream of the model: the
separation location was predicted reasonably well by most of the CFD methods, while the reat-
tachment location was predicted significantly downstream of the experimental location x/c = 1.1.
According to the author, a possible reason for the reattachment being predicted too late was that
most of the methods predicted the magnitude of the turbulent shear stress to be too small in
the separated region.

In 2008 a new survey was made by Rumsey[2]. According to Rumsey, no major progress was
made since the time of the first workshop in terms of RANS/URANS. Results seemed to be still
very consistent in under predicting the eddy viscosity in the separated region and over-predicting
the size of the bubble.
He et Al.[9] obtained reasonable good results by using the commercial software Fluent with sec-
ond order upwind and SIMPLE algorithm of pressure-velocity coupling. In this case, k-ε agreed
well with the experimental reattachment location but still underpriced the magnitude of the

13
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Figure 1.1: Isometric view of the hump model[3].

turbulent shear-stress.
These results brought into the question as why the same software yielded different results for
Brettini and Cravero[11].
The answer may be in the fact that this flow is strongly sensitive to the resolution of the mesh,
the position of the inlet and to the particular boundary conditions employed.

Our work will focus on these aspects and will put in evidence how these settings affect the
solution.
After a brief introduction to the SIMPLE algorithm implemented in OpenFOAM, we will show
our results for the baseline1 by using 4 different turbulent models (Spalart-Allmaras, k-epsilon,
k-omega, k-omega-SST ) and by analyzing weaknesses and strengthens of each of them.
The effect that the position of the inlet, the boundary condition on the upper wall and the
resolution of the mesh have on the hump-flow will be discussed, as well.
The work is structured as follows:

• Chapter 2 will provide a theoretical background about the RANS equations, Boussinesq’s
hypothesis and RANS models (the most popular 1 equation and 2 equation models) used
to model the eddy viscosity. It will be useful to understand the limits of the theory and
the range of applicability of RANS models.

• Chapter 3 will show the state of the art for the “hump-flow” model problem. The most

1The baseline will not include the plenum, since the problem of the flow-control is not dealt with.
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important problematics encountered in the 2004 and in the 2008 workshops are shown,
with particularly attention to RANS equations, which represent the less accurate tool to
compute separated flows.

• Chapter 4 will describe the basics of the SIMPLE algorithm implemented in OpenFOAM
and how a case is generated. The code will be translated into math and the final equations
for momentum and turbulent models will be compared to the theoretical ones.

• Chapter 5 will describe the hardware and the software used to run the simulations. After
a brief introduction to the super-computer facility at NASA Ames, the procedure to run
and to post-process the simulations will be shown.

• Chapter 6 contains most of the significant results concerning the simulations run by
using the most popular RANS models: Spalart−Allmaras, k− ε, k−ω and k−ω−SST .
Numerical results will be compared to experimental data in terms of pressure coefficient,
skin friction coefficient, separation point, reattachment point, size of the bubble, velocity
profile upstream and downstream of the hump and turbulent shear stress.

• Chapter 7 contains the conclusion and the future developments required to improve the
reliability of RANS models.

• In the Appendix some of the source files required to generate a case are attached. Here,
more specific information about how to generate the mesh, how to set initial and boundary
conditions, how to specify the numerical schemes and the properties of the fluid can be
found.



Chapter 2

Turbulence Models

2.1 RANS Equations

Navier Stokes equations, for an incompressible flow can be written as follows:{
∇ · (u) = 0
∂u
∂t + (u · ∇)u = − 1

ρ∇p+ ν∆u

Remark that:

• Mass conservation is expressed by an equation which is not a rate equation;

• Pressure does not satisfy a state equation: it only acts as a Lagrange multiplier to force
the mass conservation incompressibility constraint;

• Energy equation decouples, so that momentum equation is enough to determine the un-
knowns of the problem.

This equation includes and models all the physical phenomena concerning incompressible
flows. A direct numerical simulation implementing this system of equations would be able to
provide the exact1 solution for the problem, after having fixed the appropriate boundary condi-
tions and initial conditions.
Unfortunately, even considering the increasing evolution of modern computer devices, the com-
putational power required to solve a direct numerical simulation is still too big, for a problem
of practical interest. This is why it is required to model some of the terms of the momentum
equations which would otherwise require too much computational effort to be calculated.
To highlight these terms, velocity can be decomposed in the following way:

u′(x, t) = u(x, t)− ū(x) (2.1)

This approach, derived by Reynolds for the first time in 1894, is also known as Reynolds
decomposition, where u is the average velocity and u′ its fluctuation.

The average velocity is defined as:

ū(x) = 〈u(x, t)〉 = lim
T→∞

1

T

∫ T

0

U(x, t) (2.2)

1When we run numerical simulations, speaking of ”exact” results is improper, since our solutions are always
affected by numerical errors. We suppose that this error is small enough to be neglected.

16
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and it is independent of time, while u′(x, t) is the fluctuating part, and depends on time.
It follows from the continuity equation that both ū(x) and u′(x, t) are solenoidal: the average
velocity obeys the following equation

∇ū = 0 (2.3)

and by subtraction:
∇u′ = 0 (2.4)

For what concerning the momentum equation, taking the mean is less simple, because of the non
linear convective term:

(u · ∇)u = ((ū + u′) · ∇)(ū + u′) (2.5)

The means of this equation leads to:

(u · ∇)u = ū∇ū + u′∇ū + u′∇u′ + ū∇u′ (2.6)

It can be demonstrated that the term ū∇u′ is zero [12]:

ū∇u′ = lim
T→∞

∫ T

0

ū∇u′dt = ū

[
lim

T→061∞

∫ T

0

∇u′dt

]
= ū∇

[
lim
T→∞

∫ T

0

u′dt

]
= ū∇ū′ = 0 (2.7)

While,
ū∇ū = ∇ū2 = ∇ū2 (2.8)

u′∇u′ = ∇u′2 = ∇u′2 (2.9)

The final form of momentum equation is, for the steady case,

∇ · (ūū) +∇ · (u′u′) = −1

ρ
∇p̄+ ν∇2ū (2.10)

also known as Reynolds Averaged Navier-Stokes equations or, more simply, RANS equations.
RANS equations do not differ from the Navier-Stokes equations, except for the highlighted term
which represents the covariance of velocities, also known as Reynolds stresses2. Like p(x, t), p̄(x)
satisfies a Poisson equation. This may be obtained by taking the divergence of the Reynolds
equations 3.
The four equations written above (the continuity equation - or, alternatively, Poisson’s equation
- and the 3 scalar equations for momentum) are not enough anymore to solve the problem, since
these equations contain more than four unknowns, because of the appearance of the Reynolds
stresses: this issue leads to the problem of closure. In order to close the system, Reynolds stresses
have to be written as function of the other unknowns. In order to close the equations, turbulence
models are used.

2.2 Reynolds stresses

By bringing the Reynolds stresses to the right-hand side of the RANS equations, equation 2.10
can be rewritten as follows:

∇ · (ūū) = −1

ρ
∇p̄+ ν∇2ū−∇ · (u′u′) (2.11)

2The reason for which they are called ”stresses” will be explained in the next section

3We obtain: − 1
ρ
∇2p̄ = 〈 ∂ui

∂xj

∂uj
∂xi
〉 = ∂ui

∂xj

∂uj
∂xi

+
∂2u′

iu
′
j

∂xi∂xj



CHAPTER 2. TURBULENCE MODELS 18

By multiplying by density and by using Einstein notation, the following relation is derived:

ρūi
∂ūj
∂xi

=
∂

∂xi

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− p̄δij − ρu′iu′j

]
(2.12)

The right-hand side terms represent now the sum of three stresses[13]: the viscous stress, the
isotropic stress on the mean pressure field and the apparent stress arising from the fluctuating
velocity field, −ρu′iu′j . The viscous stress ultimately stems from momentum transfer at molecular
level; the Reynolds stress stems from momentum transfer by the fluctuating velocity field. This
explains why it is common to refer to this term as a stress.
It is important to remark that, while viscosity is an intrinsic propriety of the fluid, Reynolds
stresses are an exclusive propriety of the motion of the fluid: the mathematical analogy between
these two terms is not justified from a physical point view.
The most important proprieties of Reynolds stresses are now listed:

• The Reynolds stresses are identified by a second order tensor which is obviously symmetric:
u′iu
′
j = u′ju

′
i;

• The diagonal components are normal stresses, while the off-diagonal components are shear
stresses;

• The turbulent kinetic energy is defined as half of the trace of the Reynolds stress tensor:
k = 1

2u
′
iu
′
i;

• The distinction between normal and shear stresses depends on the choice of the coordinate
system; an intrinsic distinction can be made between isotropic and anisotropic stresses: if
2
3kδij is the isotropic stress, the anisotropic part can be defined as:

aij = u′iu
′
j −

2

3
kδij (2.13)

The importance of this part is that it is effective in transporting momentum.

2.3 Appraisal of Boussinesq’s Hypothesis

In order to close the system, Reynolds stresses must be expressed as a function of the other
dependent variables, otherwise the system would not admit any solution (we would have more
unknowns than equations).
By making the hypothesis that Reynolds stresses are aligned to the mean rate-of-strain tensor, a
positive scalar quantity, called eddy viscosity, νt(x), can be defined, so that the anisotropic term
can be modeled as follows:

aij = −(ρu′iu
′
j −

2

3
ρkδij) = −ρνt(x)

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.14)

By making the intrinsic hypothesis that aij only depends upon mean velocity gradients, and the
specific hypothesis that:

aij = −2νt(x)Sij (2.15)

the final form for aij is obtained. This result is also known as Boussinesq’s hypothesis. Sij is the

characteristic mean strain rate, defined as Sij = 1
2 ( ∂ui∂xj

+
∂uj
∂xi

). An effective viscosity, νe = ν + νt
can be now defined, so that 2.10 can be written as follows:

∇ · (ūū) = −∇p̄+∇ · (νe(x)∇ū) (2.16)
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The problem is now closed (νt needs to be modeled since it is the only unknown of the problem)
but, before going on, it is interesting to evaluate strengths and weaknesses of this approach. The
advantages of this method are its simplicity, coming from the direct analogy between viscous
stresses and Reynolds stresses, and its being the point of departure for the development of mod-
els4 able to provide good results in several cases and applications.
However, there are some weaknesses that need to be discussed.

• The relation 2.15 is inconsistent : if we look at it, it is evident that in turbulence shear
flows, for instance, where Sii is zero, aii is zero as well, even if normal Reynolds stresses
are not;

• aij is not invariant ;

• aij is not aligned with S̄ij .

The similitude between viscosity and eddy viscosity presents another important aspect that has
to be considered: viscosity is a fluid property which represents its molecular behavior5, while
eddy viscosity is a property of motion. In order to calculate the molecular timescale and the
turbulent timescale, the following relationships are applied:

τm =
λ

c̄
(2.17)

where λ is the molecular free path, and c̄ is the speed of sound; while turbulent timescale, is:

τt =
k

ε
(2.18)

where k is the production of turbulent kinetic energy, while ε is its dissipation6. By comparing
the molecular and the turbulent timescale to that of the shear7, the following relationship is
derived :

τm
τs
∼ λ

c̄
S =

λ

L

U

c̄
= KnM << 1 (2.19)

while, for turbulent timescale:
τt
τS
∼ Sk

ε
= O(1) (2.20)

This means that, while molecular timescale is independent from shear timescale, turbulent
timescale is not. Ultimately, turbulence is not independent from the change of the mean ve-
locity gradients.
The fact that turbulence has memory is evident in Uberoi (1956) and Tucker(1970) experiments.

4Models which will be described further, such as k-epsilon, k-omega, Spalart-Allmaras...
5Viscosity is the statistic representation of molecular momentum exchange in y-direction [14]
6These two terms will be fully desribed and calculated in the next sections
7Shear is defined as Sij = 1

2
( ∂ūi
∂xj

+
∂ūj
∂xi

), that is, for a simple shear flow, S = ∂ū1
∂x2
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Figure 2.1: The apparatus used by Uberoi and Tucker in their experiments.

Figure 2.1 is a sketch of the wind tunnel used by Uberoi and Tucker to study the effects on
turbulence of an axisymmetric contraction. By theory, Reynolds stress anisotropies should be
zero on the straight sections, since there is no mean straining in there.
Unfortunately, because of the considerations about turbulent timescale, experimental data clearly
shows that anistotropy is different from zero after the contraction. (fig 2.2).

Figure 2.2: Reynolds-stress anisotropies during and after axisymmetric contraction: experimental
data of Tucker(1970) and DNS data of Lee and Reynolds(1985)[4]

This leads to the conclusion that eddy viscosity is not fully adequate for:

• Flows with abrupt change of shear rate;

• Flows over curved surfaces;

• Flows in ducts with secondary motions and/or separations;
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• Rotating or stratified flows;

• Three-dimensional flows;

• Many others...

2.4 One equation models

The first model implementing only one equation was the model for k. This model only imple-
mented a PDE transport equation for turbulent kinetic energy, as follows:

ūi
∂k

∂xi
=

∂

∂xi

[(
ν +

νT
σk

)
∂k

∂xi

]
− u′iu′j

∂ūi
∂xj
− Cd

k3/2

lm
(2.21)

where the black terms are the exact ones, while the red terms are the ones which are modeled. The
first term of this equation represents the mean convenction, the second term is the redistribution
term, the last two are, respectively, production and dissipation.
After solving the equation for k, it is possible to calculate the turbulent kinematic viscosity,
defined as:

νt = c
√
klm

c and Cd are empirical coefficient, σK is the turbulent Prandtl number for k and it is generally
chosen to be 1, while lm represents the mixing length and it is unknown.
This is why this model is incomplete and makes lm depend on the particular flow geometry.
The first complete one-equation model has been the Spalart-Allmaras model which represents
the lowest level at which a model can be complete.
It consists in resolving a transport equation for νt composed by 3 empirical functions and 8
empirical coefficients.
The model is designed for aerodynamic flows, such as transonic flow over airfoils, including
boundary-layer separation.
The equation for νt can be schematised as follows:

D̄νt
D̄t

= ∇ ·
(
νt
σν
∇νt

)
+ Sν (2.22)

where the source term Sν depends on the laminar and turbulent viscosities, ν and νt; the mean
vorticity (or rate of rotation) Ω; the turbulent viscosity gradient and the distance to the nearest
wall.
The details of the model are quite complicated: the reader is referenced to the original paper or
to the OpenFOAM source code in Annex, for the complete equation.

2.5 Two equation models

This section illustrates the two equation models used to solve the closure problem. These models
are so called because two turbulence quantities are modeled, so that they provide “more accu-
rate” solutions, whereas calculation time increases.
By definition, two equation models include two extra transport equations to represent the tur-
bulent properties of the flow. This allows to account for historical effects like convection and
diffusion of turbulent energy.
Most often one of the two transported variables is the turbulent kinetic energy, k, while the second
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transported variable depends on the type of two-equation model. The first variable determines
the energy in the turbulence, while the second determines the scale of the turbulence (length-
scale or time scale). Common choices are the turbulent dissipation, ε, or the specific dissipation,
ω.
Models like the k-ε model and the k-ω model have become industry standard models and are
commonly used for many types of engineering problems.

2.5.1 k-ε Model

If the turbulent-viscosity hypothesis is accepted, all that remains is to determine an appropriate
specification of the turbulent viscosity νt(x, t). This can be written as the product of a velocity
u∗(x, t) and a length l∗(x, t):

νt = u∗l∗ (2.23)

The k-ε modelers approximate the eddy viscosity νt as follows[15]:

νt = Cµ

(
k2

ε

)
(2.24)

The reason is that k and ε can be combined into a lengthscale (L = k(3/2)/ε) and a timescale
(τ = k/ε), as a consequence from 2.23 it is possible to derive 2.24.
The value of the constant is chosen to be Cµ = 0.09. In simple turbulent shear flow, in fact, the
k − ε model yields:

u′v′

k
=

(
Cµ

P

ε

) 1
2

(2.25)

Empirical observation leads to u′v′

k = 0.3 in regions where production is equal to dissipation, so
that Cµ = 0.09 = (0.3)2

Equation for k

For an incompressible flow, the exact equation governing the transport of k is

∂k

∂t
+ ui

∂k

∂xi
= Pk + Tk + Πk +Dk − ε (2.26)

Where the different terms on the right-hand side are given as rate of [5]:

• Production:

Pk = −u′iu′j
∂ui
∂xj

(2.27)

• Turbulence transport:

Tk = −1

2

∂

∂xi
(u′iu

′
ju
′
j) (2.28)

• Pressure diffusion:

Πk = −1

ρ

∂

∂xi
(u′ip

′) (2.29)

• Viscous diffusion:

Dk = − ∂

∂xi
2νu′j

∂u′i
xj

(2.30)
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Figure 2.3: Terms in the budget of the turbulence kinetic energy in wall coordinate [5].

• Dissipation

ε = −2ν
∂u′i
∂xj

∂u′i
∂xj

(2.31)

Figure 2.3 shows the various terms computed from the channel data of KMM as a function of
variable y+. The salient feature of this plot is that, away from the wall, the production rate is
almost balanced by the dissipation rate. Close to the wall the production rate and dissipation
are still the dominant terms, but the turbulent transport rate and viscous diffusion rate are no
longer negligible.
The turbulent diffusion rate has a positive peak at y+ = 6 and a negative peak y+ = 15. At
the wall, the left-hand side of equation 2.26 vanishes and the diffusion rate exactly balances the
dissipation rate. After having analyzed the exact equation for k, the goal is to model it.
The viscous diffusion term needs not be modeled, but the pressure-diffusion term and turbulent-
transport term are usually added and modeled as one term:

Tk + Πk =
∂

∂xi

(
νT

∂k

∂xi

)
(2.32)

Figure 2.4 shows the distribution of the turbulence transport term compared to the eddy-viscosity

model using νt =
−u′

1u
′
2

∂U
∂y

, from the data. In the vicinity of the wall the model has a different slope

than the data would indicate [5].
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Figure 2.4: Pictures taken from [5]. Transport terms Tk + Πk across the channel: circles = term
computed by [5], from the channel data [6], line = model.

The production term is modeled by substituting the model for −u′iu′j in the production rate
expression,

Pk = −u′iu′j
∂ui
∂xj

= 2νtSijSij (2.33)

In this case, the data match exactly. The final form of the modelled equation for k is:

∂k

∂t
+

∂

∂xi
(kūi) =

∂

∂xi

(
νt
σk

∂k

∂xi

)
+ Pk − ε (2.34)

Where σk is the ”turbulent Prandtl number” for kinetic energy and it is generally taken to be
σk = 1.

Equation for ε

The exact equation describing the evolution of ε is:

∂ε

∂t
+

∂

∂xi
(εūi) = P 1

ε + P 2
ε + P 3

ε + P 4
ε + Tε + Πε +Dε − Γ (2.35)

The different terms on the right-hand can be treated as rate of:

• Mixed production:

P 1
ε = −2ν

(
∂u′i
∂xk

∂u′j
∂xk

)
∂ūi
∂xj

(2.36)

• Production by mean velocity gradient:

P 1
ε = −2ν

∂u′k
∂xi

∂u′k
∂xj

∂ūi
∂xj

(2.37)
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• Gradient production:

P 3
ε = −2νu′k

∂u′k
∂xj

∂2ūi
∂xk∂xj

(2.38)

• Turbulent production:

P 4
ε = −2ν

∂u′i
∂xk

∂u′i
∂xm

∂u′k
∂xm

(2.39)

• Turbulent transport:

Tε = − ∂

∂xj

(
νu′j

∂u′i
∂xm

∂u′i
∂xm

)
(2.40)

• Pressure transport:

Πε = − ∂

∂xj

(
2
ν

ρ

∂p′

∂xm

∂u′j
∂xm

)
(2.41)

• Viscous diffusion:

Dε =
∂

∂xj

(
ν
∂ε

∂xj

)
(2.42)

• Dissipation:

Γ = − ∂

∂xj

(
νu′j

∂u′i
∂xm

∂u′i
∂xm

)
(2.43)

The various terms in the balance equation for ε are shown in Fig. 2.5. These results indicate
that P 4

ε and Γ are the largest terms in the core region of the channel. Near the wall, these terms
are still significant but are not larger than the other terms. Close to the wall (y+ < 8), the
production rate P 1

ε becomes of the same order as P 4
ε . In the range 6 < y+ < 15, the production

rate by mean velocity gradient P 2
ε is of the same order as P 4

ε .

Figure 2.5: Terms in the budget of the dissipation rate of the turbulence kinetic energy ε in wall
coordinates [5].
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Figure 2.6: Production of the dissipation rate of turbulent kinetic energy: Circlets = terms
computed from the channel data[6], line = model [5].

The equation for ε is closed by modeling the terms of the equation 2.35. To represent the
first two production terms, an expression for them in terms of k, ε and other mean quantities
is required. These two terms have the same trace and they are related for homogeneous flows
through the vorticity fluctuation. By assuming that Rotta’s approximation is valid for both
terms, the following relationship is obtained:

−2ν

(
∂u′i
∂xk

∂u′j
∂xk

)
∂ūi
∂xj
− 2ν

∂u′k
∂xi

∂u′k
∂xj

∂ūi
∂xj

= −C1

−u′iu′j
k

ε (2.44)

and by substituting the Boussinesq approximation for the Reynolds stresses, we obtain:

P 1
ε + P 2

ε = C1
ε

k
νT s̄ij s̄ij (2.45)

Fig. 2.6 shows the model compared to the exact expression, using the constant recommended by
CH, C1 = 1.35. The model yields a lower peak than the data would indicate. The term P 3

ε is
negligible compared to the other terms in the channel flow, so no explicit expression is used to
model it. The turbulent production term P 4

ε is expected to be non negligible even in isotropic
flows; an appropriate model for this model will be a function of k and ε. Dimensional analysis
yields P 4

ε ∼ ε2/k. The same arguments are used in modeling dissipation Γ, so that the model for
the combined terms is given as:

P 4
ε − Γ = −C2

ε2

k
(2.46)

Figure 2.7 shows the comparison of this model (C2 = 1.8) with the data: the model adequately
compare with the data in the y+ > 11 range but underpredicts the data close to the wall. The
remaining terms in the balance equation of ε are transport rate terms, which are grouped together
and modeled using an eddy-viscosity-diffusion model:

Tε + Πε =
∂

∂xj

(
νT
σ

∂ε

∂j

)
(2.47)
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Figure 2.7: Net dissipation rate of ε: Circlets = terms computed from the channel data[6], line
= model [5].

Where σ = 1.3(J&L, CH). Figure 2.8 compares the model with the terms representing the left-
hand side of Eq.2.47. As in the case for the k-equation, the comparison is not good in the vicinity
of the wall; in fact, it can be shown from Taylor series expansion that this model does not have
the proper asymptotic behavior as y+ → 0. The final model for ε is:

∂ε

∂t
+

∂

∂xi
(εūi) =

∂

∂xi

[(
νt
σε

)
∂ε

∂xi

]
+ Cε1

Pε

k
− Cε2

ε2

k
(2.48)

Where the value of constants is chosen by comparing the results of the model to experimental
data, DNS simulations and theoretical results for simple cases. The standard k− ε model imple-
mented in most of CFD applications, at present days, uses the following values for the constants:
Cε1=1.44, Cε2=1.92,Cσε=1.3.

2.5.2 k-ω Model

In the k-ω model, the first transported variable is turbulent kinetic energy, k, while the second
transported variable is the specific dissipation ω. The first to use a two equation model based
on the dissipation per unit turbulence kinetic energy ω was Kolmogorov in 1942. The model was
improved by Saffman in 1970 and then by Wilcox in 1974.
The differences between k − ε and k − ω will be discussed without going into the theoretical
details of k−ω which are not far from those derived form k− ε (The reader is referenced to [16]).
The equation for k is the same as described in section 2.5.1, while the equation for ω becomes:

∂ω

∂t
+

∂

∂xi
(ωūi) =

∂

∂xi

[(
νt
σω

)
∂ω

∂xi

]
+ Cω1

Pω

k
− Cω2ω

2 (2.49)

The question is: how does the k-ω model based on this equation differ from the k-ε model?
One way to answer this question is to derive the ω equation implied by the k-ε. Taking σk =
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Figure 2.8: Turbulent transport rate of ε: Circlets = terms computed from the channel data[6],
line = model [5].

σε = σω for simplicity, the result is

∂ω

∂t
+

∂

∂xi
(ωūi) =

∂

∂xi

[(
ν +

νt
σω

)
∂ω

∂xi

]
+ (Cε1 − 1)

Pω

k
− (Cε2 − 1)ω2 +

2νT
σωk

∂ω

∂xi

∂k

∂xi
(2.50)

Evidently, for homogeneous turbulence, the choices Cω1
= Cε1 − 1 and Cω2

= Cε2 − 1 make the
models identical. However, for inhomogeneous flows, the k-ε, written as k-ω model, contains an
additional term, that is the final term of equation 2.50. An improved version of the k-ω model,
able to model this term properly, is the k-ω-SST model.

2.6 Wall functions

Near wall effects require additions or modifications to the basic turbulent models, because of the
physics problem which requires to solve steep profiles of velocity and ε / ω: the idea of the “wall
function” approach is to apply boundary conditions some distance away from the wall, so that
turbulent equations are not solved close to the wall.
By combining the equation for k, ε and ω, we the following values of wall functions are obtained
[17]:

k =
u2
τ√
Cµ

ω =
k1/2

C
1/4
µ ky

ε = C3/4
µ

k3/2

ky

where the location at which these functions are calculated is y = y+ ∼= 50
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2.7 Strengths and weaknesses of turbulence models

The considerations made in this sections are taken from [18] [19] and refer to the range of
applicability of the turbulence models described in the previous sections.

• Spalart-Allmaras is the simplest model among the ones used in this work, since it is a
1-equation model. For this reason, this model is expected to work worst than the others
for complicated flows: this turbulence model is intended only for aerodynamic applications
and it has clear limitations as a general model: it is incapable, for example, of accounting
for the decay of νT in isotropic turbulence.
Anyway this model is able to predict skin friction for attached boundary layers that is
as close to measurement as algebraic models. The model’s predictions are far superior
to those of algebraic models for separated flows and the differential equation presents no
serious numerical difficulties.

• The k-ε model is the widely used two-equation model and it can be applied to any tur-
bulent flow. It performs reasonably well for two-dimensional thin shear-flows in which the
streamline curvature and the pressure gradient are small.
For boundary layers with strong pressure gradients and for flows with adverse pressure
gradients it performs poorly; it is also inaccurate for separated flows.

• The k-ω model performs satisfactorily for boundary layers with strong pressure gradients
and its performance is superior for many flows. However, like all of the RANS models based
on the Boussinesq-hypothesis, it may not perform properly for 3D flows.



Chapter 3

Flow Over a Hump Wall:
Overview

This section summarizes the state of the art for what concerns the study of the model problem
studied in this work: that is the flow over a wall-mounted hump.
The understanding and prediction of separated flows have posed a significant challenge for many
decades, so that many rstudies have been involved in this experimental setup, which has proven
to be a useful tool to test the reliability of numerical simulations and turbulence models for
separated flows.
A collection of the most important results is reported concerning both numerical and experimen-
tal works.
The experimental data are also available on the NASA Lanley Research Center website [20].
Experiments and simulations were conducted on both the baseline and the controlled cases
(steady suction and zero-flux oscillatory blowing were used to control the flow);the attention is
focused on the baseline case, which is the object of study of this work.
For further information about the “hump flow”, it is recommended to read the papers and the
bibliographic sources mentioned in this section.

3.1 Test case

Before beginning the computational study, low speed separation over the wall-mounted hump
was studied experimentally by the Langley group[3] in order to generate a data sets for the
workshop aimed at validating CFD turbulence models.
The test case involved a wall-mounted hump model, represented in figures 3.1, 3.2.

The model was constructed from aluminum over a splitter-plate and it was mounted between
two endplates with aluminum frames and glass interiors. The experiments were performed in the
NASA Langley 20”x 28” shear flow tunnel. The flow was nominally two-dimensional with side-
wall effects expected near the endplates. The characteristic reference “chord” length of the model
was defined as the length of the hump on the wall i.e. c=420mm and its maximum thickness was
h = 53.7mm.
The boundary layer was tripped at the splitter-plate leading edge, resulting in a fully developed
turbulent boundary layer at 2.14 chord lengths upstream of the model leading-edge1.

1For further details, it is recommended to consult the paper [3]

30
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Figure 3.1: Isometric view showing the model mounted on the splitter plate with end plates in
place [3].

Figure 3.2: 2-D Sketch of the experimental setup [3].
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Figure 3.3: A comparison of the test case surface pressure with that at high Reynolds number
[3]

For the uncontrolled case2 a test case was chosen at Re = 929000 and M = 0.1, even if this
does not play an essential role, since the model appears to be virtual insensitive to both Reynolds
number and inflow conditions, as we can see from the pressure coefficient distribution for different
Reynolds numbers, Fig. 3.3.
The results of pressure measurements and of 2-D and 3-D PIV flow field measurements are shown
in figure 3.5.

Figures 3.3 and 3.4 show that the flow, approaching the model leading-edge decelerates but
does not separate. Immediately downstream of the leading edge, the boundary layer is subjected
to a strong favorable pressure gradient: low Cf in this region, followed by large Cf change between
x/c=0.07 and 0.11 may indicate relaminarization close to the leading edge, followed immediately
downstream by re-transition. At x/c ≈ 0.6 in the region of strong convex curvature the pressure
increases abruptly and separation occurs. The flow remains separated over the relatively short
concave ramp in the aft part of the body and reattaches downstream of the trailing edge, at
x/c ≈ 1.1.
Downstream of reattachment, the boundary layer recovers under a near zero pressure gradient[3].

3.2 Computational Fluid Dynamics Validation Workshop

Numerical simulations of the hump model were object of study during the CFD Validation Work-
shop, held in Williamsburg, Virginia in March 2004.
The goal of this workshop, fully describe in [1] was to bring together an international group of
computational fluid dynamics practitioners to assess the current capabilities of different classes

2The uncontrolled case is the only one we are studying in this work.
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Figure 3.4: Wall shear stress coefficient data over the model. [3]

Figure 3.5: The superposition of four blocks of 2-D PIV U-component data, from upstream of
separation to downstream of the reattachement region for the baseline case (in m/s). [3]



CHAPTER 3. FLOW OVER A HUMP WALL: OVERVIEW 34

Figure 3.6: Simulated pressure coefficients compared to experimental data. [1]

of different flow solution methodologies to predict flow fields induced by synthetic jets and sep-
aration control geometries.
There were 75 attendees at this workshop and 7 countries were represented, including the United
States, France, Italy, Germany, Japan, United Kingdom and Switzerland.
To encourage broad participation and to determine the general state-of-the-art, the decision was
made not to dictate particular boundary conditions, grids or methods of solution.
Specifications concerning the geometry and the inlet conditions were given, in order to respect
the fluid dynamics similitude. Like in the experimental study described in the previous chapter,
a turbulent flow at M = 0.1 passed over a hump of chord 420mm.
The most important results, for the test case, are shown in figures 3.6, 3.7, 3.8

As a whole, most CFD results missed the pressure levels over the hump between 0.2 <
x/c < 0.6 and also predicted higher pressures than experimental results in the separated region
upstream of x/c = 1. An explanation of this trend could be in the fact that blockage effects
caused by the side plates in the experiment caused a decrease of pressure, if compared to 2D
simulations.
It can also be observed that the separation location was predicted reasonably well by most of
the CFD methods, and the reattachment location was predicted significantly downstream of the
experimental location of x/c = 1.11.
The only exception was the RANS simulation run by CIRA & CTR3, which predicted separation
later and reattachment earlier than other results with SST model, and the simulation also run
by CIRA & CTR, which predicted reattachment further downstream than other results using a
k-ε model.
A possible reason for reattachment being predicted too late is that most of the current models

3Authors: Marongiu, Iaccarino, Catalano, Amato
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Figure 3.7: Simulated separation location compared to experimental data. [1]

Figure 3.8: Simulated reattachment location compared to experimental data [1]
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Figure 3.9: Turbulent shear stresses inside separation bubble for the controlled case, steady
suction. (x/c = 0.8) [1]

and methods under-predict the magnitude of the turbulent shear stress in the separated region.
Fig. 3.9 shows turbulent shear stress for the suction condition4 at the location x/c = 0.8. It can
be remaked that the magnitude of the turbulent stress was seriously underpredicted. Rumsey
concluded his paper by saying that after the workshop it was discovered that the side plates used
in the tunnel caused blockage that, if not modeled, resulted in relatively minor (but noticeable)
overprediciton of the pressures over most of the hump. Flow structures near the back of the
plates could constrict the flow even further, so that, in spite of this flow appearing to be relatively
simple, computing the wall pressures accurately can require full 3-D modeling or else some sort
of blockage corrections. By the way CFD results were deficient in another important regard: they
consistently predicted the reattachment location to be significantly further downstream than the
location documented in the experiment. This same behavior occurred regardless of turbulence
model or method: even a DNS computation predicted a relatively long separation bubble.

3.3 k-ω Model

In 2005, Balakumar computed turbulent separated flow over a two-dimensional hump, by imple-
menting a higher order method for the RANS equations with k−ω−SST turbulence model [7].
In order to have a fully developed turbulent flow upstream of the hump, Balakumar extended
the computational domain from x/c = −10.0 to 4.0 in the streamwise direction (Fig. 3.10). The
length of the splitter plate (−6 < x/c < 0) was selected to match the measured velocity profiles at
x/c = −2.1. The free-stream Mach number was 0.1 and the chord Reynolds number was 936000

4This is not strictly our case (our case is the not controlled one), but the physical phenomena are the same.
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Figure 3.10: Schematic diagram of Balakumar’s hump model [7]

(very similar to the experimental setup described in section 3.1 . To keep as close as possible to
the experimental data the effects of the grid upstream of the splitter plate are reproduced, as
well (Fig. 3.11).
The governing equations, the flow equations and the turbulent equations, are solved using the

5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization
and using explicit third order total-variation-diminishing (TVD)5. Figure 3.12 shows the com-
puted and the measured Cp distribution for the baseline and the oscillatory cases. Qualitatively,
the same phenomena described in section 3.2 were observed: in the experiment, the pressure de-
creased immediately downstream of the slot, then increased up to the reattachment point; in the
computations, it remained flat near the slot and then increased. The computed Cp is about 10%
smaller than the experimental value because of the blockage of the end plates and the computed
separation region is longer than the experimental one.
The steady suction control reduces the length of the bubble, which, in the computed case, is still
over-predicted if compared to the experimental data.

3.4 Large Eddy Simulation

Since none of the RANS techniques gave satisfactory prediction of the important flow features,
in 2005 Large Eddy Simulation was employed to solve the problem of separation control over the
wall-mounted hump [8].
In their study, the authors employed a dynamic subgrid-scale model6 and non-dissipative nu-
merics to predict the turbulent flow separation and its control by synthetic jets in the same
hump-model configuration as described in the previous works.
LES produced superior results compared to those obtained from RANS simulations for both the
controlled and uncontrolled cases.
Figure 3.15 shows comparison of pressure coefficients for different numerical methods. It can be
remarked that LES results are the closest ones to experimental data. In what concerning the

5The WENO and TCD methods and the formulas are explained in Ref.13-14 of the paper [7]. In this paper all
information about inlet and boundary conditions are listed, as well.

6Dynamic subgrid-scale model for LES simulations were introduced by Germano for the first time, in 1991.
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Figure 3.11: Sketch of the mesh used by Balakumar in his simulations. [7]

Figure 3.12: Cp distribution for the baseline and the oscillatory control cases[7].
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Figure 3.13: Cp distribution for the baseline.[8]. Continuous line: LES, Circlets: experimental
data, dashed line: RANS, dot line: URANS

prediction of separation and reattachment of the bubble, figure 3.14 shows the trend of Cf , for
the controlled and uncontrolled cases, compared to the experimental results. For the baseline,
the LES curve perfectly matches the experimental data downstream of the hump, so that the
position and the length of the bubble are exactly calculated.
LES also shows favorable agreement with experimental data except for the front convex region
of the hump, even if, in this case, LES over-predicts the skin friction coefficient.
The Reynolds stress profiles from numerical simulations and experiments are compared in Fig.
3.16.
Once again, it can be observed that LES is consistently better in predicting the Reynolds shear
stress. The goal of this overview was just to expose the state-of-the-art for what concerning the
hump flow model problem. Even if this chapter deals with Large Eddy Simulation, from now on,
this work will only focus on RANS equations, since for these equations, the state-of-the-art is still
incomplete and they require more efforts in order to be modeled properly and to be consistent
with experiments.

3.5 2008 Workshop

In 2008, Rumsey published another paper to update the state-of-the-art on the hump-flow, from
2004 to 2008 [2].
This is the most recent survey about the model problem of the flow over a hump.
Rumsey’s conclusions about RANS equations are:
”No major progress has been made since the time of the first worksop in terms of RANS-URANS.
Results have for the most part been very consistent in terms of predicting too little eddy viscosity
in the separated region and too long a bubble. It was noted that models can sometimes predict a
particular feature like reattachment location correctly for the wrong reasons. For example, because
k-ε turbulence models tend to predict smooth body separation caused by adverse pressure-gradient
too late, they also tend to predict earlier reattachment. This reattachment location may appear
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Figure 3.14: Cf distribution for the baseline.[8]. Continuous: baseline, Circlets: experimental
data, dashed line: steady suction, dot line: oscillatory jet.

Figure 3.15: Velocity profile at different locations[8]. Continuous: baseline, Circlets: experimental
data, dashed line: steady suction, dot line: oscillatory jet.
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Figure 3.16: Reynolds shear stress profile.[8]. Continuous line: present LES, Circlets: experimental
data, dashed line: ILES, dot line: RANS.

to agree better with experiment in the hump case, for example, but it is not due better modeling
of the turbulent mixing in the separated region. ” He et al. [9] obtained very reasonable results
for the baseline, by using a second order upwind and a SIMPLE algorithm. The software used
to run their simulations was the commercial one, Fluent.
Their results, however, were questioned by the fact that Bettini and Cravero [11] obtained differ-
ent results, by using the same commercial software: the effects that the refinement of the mesh,
the position of the Inlet have on the solution may have been neglected: this work will focus on
these important aspects.
Figures 3.17, 3.18, 3.19 shows the behavior of pressure coefficients, velocity profiles and skin-
friction in the simulations run by He et al.
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Figure 3.17: He et Al. Pressure coefficient for the baseline [9].

Figure 3.18: He et Al. Skin friction for the baseline [9].

Figure 3.19: He et Al. Velocity profile for the baseline [9].



Chapter 4

OpenFOAM

4.1 An Introduction to OpenFOAM

OpenFOAM, Open Source Field Operation and Manipulation is a free, open source
CFD software package written in C++ and produced by OpenCFD Ltd. The code is released as
free and open source software under the GNU General Public License and it is maintained by
the OpenFOAM Foundation, which is sponsored by Silicon Graphics International.
By being open, OpenFOAM offers users complete freedom to customize and extend its existing
functionality. At present OpenFOAM includes over 80 solver applications that simulate specific
problems in engineering mechanics and over 170 utility applications that perform pre- and post-
process tasks (meshing, data visualization ...).
The original development of OpenFOAM started in 1980 at Imperial College, London to develop
a more powerful and flexible general simulation platform than FORTRAN. This led to the choice
of C++ as programming language, due to its highest modularity and object oriented features.
OpenFOAM was one of the first major scientific packages in C++ and it has also been the first
major general-purpose CFD package to use polyhedral cells.
One distinguishing feature of OpenFOAM is its syntax for tensors operations and partial differ-
ential equations that closely resembles the equations being solved. For example, the equation

∂ρU

∂t
+∇ · (φU) = −∇p+∇ · µ∇U (4.1)

is represented by the code:

Example of equation in OpenFOAM� �
s o l v e

(
fvm : : ddt ( rho ,U)

+ fvm : : div ( phi ,U)
==

− f v c : : grad (p)
+ fvm : : l a p l a c i a n (mu,U)
) ;� �

OpenFOAM solver capabilities include:

• Incompressible Flows;

43
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• Multiphase Flows;

• Combustion;

• Conjugate heat transfer;

• Particle methods (DEM, DSMC, MD);

• Other ...

While its libraries include:

• Turbulence Models;

• Transport/rheology models;

• Lagrangian particle tracking;

• Reacting kinetic / chemistry.

The solver which will be used in this work is that for steady, incompressible flows: simple-
FOAM, by implementing the turbulence models available for RANS equations, in particular:
SpalartAllmaras, k − ε, k − ω, k − ω − SST .

4.2 OpenFOAM structure

The OpenFOAM code is structured as follows1:

• applications: this folder contains the source files of all executables:

– solvers;

– utilities;

– bin;

– test;

• bin: basic executable scripts;

• doc: pdf and Doxygen documentation;

• lib: compiled libraries;

• src: source library files;

• test: library test source files;

• tutorials: tutorial cases;

• wmake: compiler settings.

1Type ”foam” and then ”ls” on your terminal window”.
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Figure 4.1: Header files, source files, compilation and linking. [10]

The code for the incompressible flows solver, simpleFOAM, is in the solver folder, while the
turbulence models employed to solve RANS equations are in the turbulenceModels folder,
which is inside src.
Programming languages that are object-oriented, such as C++, provide the mechanism - classes -
to declare types and associated operations that are part of the verbal and mathematical languages
used in science and engineering. The velocity U , for example, would be an instance, that is an
object, of the vectorField class; hence the term object-oriented.
New classes can be derived or inherit properties from other classes; for instance the vectorField
can be derived from a vector class and a Field class.
To understand the compilation process in OpenFOAM we should explain certain aspects of C++
and its file structure, shown schematically in figure 4.1.

A class is defined through a set of instructions such as object construction, data storage and
class member functions. The file containing the class definition takes a .C extension, e.g. a class
nc would be written nc.C. This file can be compiled indipendently of other code into a binary
executable library file known as a shared object library with the .so file extension, i.e. nc.so.
When compiling a piece of code, say newApp.C that uses the nc class, nc.C need not be recom-
piled, rather newApp.C calls nc.so at runtime. This is known as dynamic linking.
As a means of checking errors, the piece of code being compiled must know that the classes it uses
and the operations they perform actually exist. Therefore each class requires a class declaration,
contained in a header file with a .H extension, e.g. nc.H, that includes the names of the class and
its functions. This file is included at the beginning of any piece of code using the class, including
the class declaration code itself.

4.2.1 Compiling with wmake

OpenFOAM applications are organized using a standard convention that the source code of
each application is placed in a directory whose name is that of the application. The top level
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source file takes the application name with the .C extension. For example, the source code for
an application called newApp would reside in a directory newApp and the top level file would be
newApp.C, as shown in figure 4.2.

Figure 4.2: Directory structure for an application. [10]

When the user compiles, by using the wmake command 2 the compiler searches for the
included header files. The full directory paths of the header files is located in the Make/options
file by using the following syntax:

EXE_INC = \

-I<directoryPath1> \

-I<directoryPath2> \

... \

-I<directoryPathN> \

4.3 The simpleFoam application: Algorithm

SimpleFOAM is a steady-state solver for incompressible, turbulent flow. We recall that the
Navier-Stokes equations for a single-phase flow with a constant density and viscosity are the
following:

∇ · u = 0 (4.2)

∇ · (uu)−∇ · (ν∇u) = −1

ρ
∇p (4.3)

The solution of these equations is not straightforward because of the non-linear term ∇·(uu) and
because an explicit equation for the pressure is not available. The approach used in OpenFOAM
is to derive an equation for the pressure by taking the divergence of the momentum equation
and substituting it in the continuity equation. Temporal discretization is performed using some
implicit temporal scheme, such as:[21]∫ t+∆t

t

f(t,U(x, t))dt = (1− C)∆tf(t,U(x, t0)) + C∆tf(t,U(x, tn)) (4.4)

2OpenFOAM is supplied with the wmake compilation script that is based on make but is considerably more
versatile and easier to use...
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where different values of C can recover temporal schemes defined in Juretic’s thesis[21]. When
the momentum equation is approximated by using the equation 4.4, the following relationship is
derived[21, 22]:

apup = H(u)−∇p (4.5)

where the subscript P refers to the center of cell P . Velocity can be rewritten as follows:

up =
H(u)

aP
− ∇p
aP

(4.6)

The term H(u) includes all terms apart from the pressure gradient at the new time step and
the diagonal term anPU

n
P , where the subscript n represents the new time level. The continuity

equation is discretized as:

∇ · u =
∑
f

Suf = 0 (4.7)

where S is outward-pointing face area vector and uf is the velocity on the face, which is obtained
by interpolating the semi-discretized form of the momentum equation (4.6) as follows:

uf =

(
H(u)

aP

)
f

−
(
∇p
aP

)
f

(4.8)

By substituting this equation into the discretized continuity equation above, the pressure equa-
tion is derived:

∇ ·
(

1

aP
∇p
)

= ∇ ·
(
H(u)

aP

)
(4.9)

The mass flux through a cell face can be obtained by using equation 4.8 as follows:

F = S ·
[(

H(u)

ap

)
f

−
(

1

aP

)
(∇p)f

]
(4.10)

4.4 The simpleFoam application: Implementation

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) allows to couple the Navier-
Stokes equations with an iterateve procedure, which can be summed up as follows:

1. Set the boundary conditions;

2. Solve the discretized momentum equation to compute the intermediate velocity field;

3. Compute the mass fluxes at the cells faces;

4. Solve the pressure equation and apply under-relaxation;

5. Correct the mass fluxes at the cell faces;

6. Correct the velocities on the basis of the new pressure field;

7. Update the boundary conditions;

8. Repeat till convergence.

The complete implementation of the algorithm can be seen in the source code of the simpleFoam
solver provided with OpenFOAM (file simpleFoam.C )3. It is based on the following steps:

3Directory:openfoam211/applications/solvers/incompressible/simpleFoam
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• Writing an equation for velocity, (file UEqn.H ), where a RANS equation is defined,
including all the terms of (ref rans eq), except pressure.The operators turbulence and
sources are defined in the file createFields.H and represent the non-linear terms. Reynolds
stresses are modeled using the eddy viscosity model, u′v′ = −2νtSij . Once the equation is
relaxed, the pressure term is added to the equation (last line of the following script):

The UEqn.H file in the simpleFoam directory� �
tmp<fvVectorMatrix> UEqn
(

fvm : : div ( phi , U)
+ turbulence−>divDevReff (U)
==

sourc e s (U)
) ;

UEqn ( ) . r e l a x ( ) ;

s ou r c e s . c o n s t r a i n (UEqn ( ) ) ;

s o l v e (UEqn( ) == −f v c : : grad (p ) ) ;� �
The first term in the implementation of the momentum equation (div(phi,U)) is translated
into:

∂(ūiūj)

∂xj
= ūj

∂ūi
∂xj

+ ūi
∂ūj
∂xj

= ūj
∂ūi
∂xj

(4.11)

where the last step is given by incompressibility of the mean flow fields4.

The function divdevReff in the kEpsilon.C file� �
tmp<fvVectorMatrix> kEps i lon : : divDevReff ( vo lVec to rF i e ld& U) const
{

re turn
(
− fvm : : l a p l a c i a n ( nuEff ( ) , U)
− f v c : : d iv ( nuEff ( )∗ dev (T( fvc : : grad (U) ) ) )

) ;
}� �
The term divDevReff(U) is defined in the same file where turbulence models for RANS
equations are implemented and it has two components:

− ∂

∂xj

(
νeff

∂ūi
∂xj

)
(4.12)

and

− ∂

∂xj

[
νeff

(
∂ūi
∂xj
− 1

3

∂ūk
∂xk

δij

)]
(4.13)

4According to continuity equation
∂ūj
∂xj

= 0
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which, thanks to continuity equation, becomes:

− ∂

∂xj
νeff

(
∂ūj
∂xi

)
(4.14)

so that the total equation for divDevReff is:

− ∂

∂xj

[
νeff

(
∂ūi
∂xj

+
∂ūj
∂xi

)]
(4.15)

The last part of the implementation is the pressure gradient. The final momentum equation
is:

ūj
∂ūi
xj
− ∂

∂xj

[
νeff

(
∂ūi
∂xj

+
∂ūj
∂xi

)]
= − ∂p

∂xi
(4.16)

which is the same equation as 2.16. The connection to previous time step is done through
the command UEqn().relax().

• Prediction of velocity; in this part of code the coefficients of the matrix A and H are
extracted, basing on the equation for velocity defined above, and a value of velocity defined
as u = H

aP
is predicted. The flux

∑
f S( HaP )f is calculated after interpolation through the

surfaces of the mesh (file pEqn.H ).

Prediction of velocity, simpleFoam.C file� �
p . boundaryField ( ) . updateCoef f s ( ) ;

v o l S c a l a r F i e l d rAU( 1 . 0 /UEqn ( ) .A( ) ) ;
U = rAU∗UEqn ( ) .H( ) ;
UEqn . c l e a r ( ) ;

phi = fvc : : i n t e r p o l a t e (U, ” i n t e r p o l a t e (HbyA)”) & mesh . Sf ( ) ;
adjustPhi ( phi , U, p ) ;� �

• Non-othogonal pressure corrector loop; pressure is calculated in according with the
relationship 4.9, and then it is relaxed:

Corrector loop for pressure, simpleFoam.C file� �
// Non−orthogona l p r e s su r e c o r r e c t o r loop

whi l e ( s imple . correctNonOrthogonal ( ) )
{

f vSca la rMatr ix pEqn
(

fvm : : l a p l a c i a n (rAU, p) == fvc : : d iv ( phi )
) ;

pEqn . s e tRe f e r ence ( pRefCel l , pRefValue ) ;

pEqn . s o l v e ( ) ;

i f ( s imple . f ina lNonOrthogona l I t e r ( ) )
{
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phi −= pEqn . f l u x ( ) ;
}

}

#inc lude ” con t inu i t yEr r s .H”

// E x p l i c i t l y r e l a x pr e s su r e f o r momentum c o r r e c t o r
p . r e l a x ( ) ;� �

• Momentum corrector, where the corrected value of velocity is calculated by using the
relationship 4.6

Correction of velocity, simpleFoam.C file� �
// Momentum c o r r e c t o r

U −= rAU∗ f v c : : grad (p ) ;
U. correctBoundaryCondit ions ( ) ;
s ou r c e s . c o r r e c t (U) ;� �

• Resolution of equations for turbulence: In the simpleFoam.C file, the command
turbulence − > correct is used to inherit the value of turbulent viscosity from the classes
in which the equations for turbulence are implemented (k-ε, k- ω, Spalart Allmaras ...)

turbulence->correct();

runTime.write();

The equations for k, ε and ω are shown as thy appear in the kEpsilon.C and kOmega.C files5.
The equations for turbulent kinetic energy and dissipation energy are are implemented as follows:

Turbulent kinetic energy equation, kEpsilon.C file� �
// Turbulent k i n e t i c energy equat ion
tmp<fvSca larMatr ix> kEqn
(

fvm : : ddt ( k )
+ fvm : : div ( phi , k )
− fvm : : Sp ( fvc : : d iv ( ph i ) , k )
− fvm : : l a p l a c i a n ( DkEff ( ) , k )

==
G

− fvm : : Sp ( e p s i l o n /k , k )
) ;

kEqn ( ) . r e l a x ( ) ;
s o l v e (kEqn ) ;
bound ( k , kMin ) ;� �

5The whole code is available in open foam, at the directory: open-
foam211/src/turbulenceModels/incompressible/RAS
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The first term in the implementation of the k-equation is the time derivative for k: this term will
not be treated, since the case studied in this work is steady.
The second term is the divergence of the velocity times k:

∂(ujk)

xj
= k

∂ūj
∂xj

+ ūj
∂k

∂xj
(4.17)

while the third term is the source term and it is written as −k ∂ūj∂xj
. The last term on the left

hand side is written − ∂
∂xj

(νeff
∂k
∂xj

). The G term is the production term and the OpenFOAM

implementation is quite difficult to understand [23].

Definition of G, file kEpsilon.C and of DkEff, file kEpsilon.H� �
. . .
v o l S c a l a r F i e l d G(”RASModel : :G” , nut ∗2∗magSqr (symm( fvc : : grad (U ) ) ) ) ;
. . .
//− Return the e f f e c t i v e d i f f u s i v i t y f o r k

tmp<v o l Sc a l a r F i e l d> DkEff ( ) const
{

re turn tmp<v o l Sc a l a r F i e l d>
(

new v o l S c a l a r F i e l d (” DkEff ” , nut + nu ( ) )
) ;

}
. . . . .� �
The symmetric part of the gradient of ui is:

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(4.18)

and the translation of the OpenFOAM code of G is therefore

G = 2νT

[
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)]2

=
νT
2

(
∂ūi
∂xj

∂ūi
∂xj

+
∂ūj
∂xi

∂ūj
∂xi

+ 2
∂ūi
∂xj

∂ūj
∂xi

)
= νT

∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

) (4.19)

The last term of k equation represents the dissipation, ε, so that, by putting together all the
terms of the equation, the following relation is derived:

∂k

∂t
+ k

∂ūj
∂xj

+ ūj
∂k

∂xj
− k ∂ūi

∂xj
− ∂

∂xj

(
νeff

∂k

∂xj

)
= νT

∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ε (4.20)

which simplifies to the final expression:

∂k

∂t
+ ūj

∂k

∂xj
− ∂

∂xj

[(
νeff

)
∂k

∂xj

]
= νT

∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ε (4.21)

By comparing this equation to 2.34, it is observed that the k-equation implemented in Open-
FOAM corresponds to the standard one, except for the terms νeff = ν + νt, and σk which is
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missing in OpenFOAM. However, by assuming that σk = 1, the only difference between the two
models is that, in this case, viscosity is added to νt.
This difference does not affect the results sensitively, how it will be discussed further in this
section. Moreover, most of two equation models, at present days, use the same formulation as
this one implemented by OpenFOAM.

Dissipation equation, kEpsilon.C file� �
// D i s s i p a t i o n equat ion

tmp<fvSca larMatr ix> epsEqn
(

fvm : : ddt ( e p s i l o n )
+ fvm : : div ( phi , e p s i l o n )
− fvm : : Sp ( fvc : : d iv ( ph i ) , e p s i l o n )
− fvm : : l a p l a c i a n ( Deps i l onEf f ( ) , e p s i l o n )

==
C1 ∗G∗ e p s i l o n / k

− fvm : : Sp ( C2 ∗ e p s i l o n /k , e p s i l o n )
) ;
epsEqn ( ) . r e l a x ( ) ;
epsEqn ( ) . boundaryManipulate ( e p s i l o n . boundaryField ( ) ) ;

s o l v e ( epsEqn ) ;
bound ( e p s i l o n , eps i l onMin ) ;� �

The equation for ε is very similar to the equation for k, with the only difference that the term
DepsilonEff is now defined as νT

σε
+ ν. The production term G is defined in the same way as in

the k-equation, so that the translation of the OpenFOAM code into math is, in this case,

∂ε

∂t
+ ūj

∂ε

∂xj
− ∂

∂xj

[(
ν +

νT
σε

)
∂ε

∂xj

]
= C1

ε

k
νT
∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− C2

ε2

k
(4.22)

Once again, by comparing this equation to 2.48, we can remark that the only difference is that,
in this equation, the viscosity is added to νT

σε
. In order to show the effect that this term has

on the final solution, in figure 4.3, two different solutions are shown, in term of velocity profiles
downstream of the hump geometry. The source code of OpenFOAM has been modified, in order
to estimate the effect of the “added ” viscosity on the equations. The two different solutions
“with and without added viscosity” match very well.
The last step is to define the turbulent kinematic viscosity: for the k-ε model, this parameter is
defined as:

νt = Cµ
k2

ε

where Cµ is a constant of the problem, while k and ε have been calculated above.

Definition of the turbulent kinematic viscosity, file kEpsilon.C� �
// Re−c a l c u l a t e v i s c o s i t y
nut = Cmu ∗ sqr ( k )/ e p s i l o n ;
nut . correctBoundaryCondit ions ( ) ;� �

While, for what concerning k-ω, the system is defined as follows:
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Equation for ω, file kOmega.C� �
// Turbulence s p e c i f i c d i s s i p a t i o n ra t e equat ion

tmp<fvSca larMatr ix> omegaEqn
(

fvm : : ddt ( omega )
+ fvm : : div ( phi , omega )
− fvm : : Sp ( fvc : : d iv ( ph i ) , omega )
− fvm : : l a p l a c i a n ( DomegaEff ( ) , omega )

==
alpha ∗G∗omega / k

− fvm : : Sp ( beta ∗omega , omega )
) ;

omegaEqn ( ) . r e l a x ( ) ;

omegaEqn ( ) . boundaryManipulate ( omega . boundaryField ( ) ) ;

s o l v e (omegaEqn ) ;
bound ( omega , omegaMin ) ;� �

Equation for k and definition of νT , file kOmega.C� �
// Turbulent k i n e t i c energy equat ion
tmp<fvSca larMatr ix> kEqn
(

fvm : : ddt ( k )
+ fvm : : div ( phi , k )
− fvm : : Sp ( fvc : : d iv ( ph i ) , k )
− fvm : : l a p l a c i a n ( DkEff ( ) , k )

==
G

− fvm : : Sp (Cmu ∗omega , k )
) ;

kEqn ( ) . r e l a x ( ) ;
s o l v e (kEqn ) ;
bound ( k , kMin ) ;

// Re−c a l c u l a t e v i s c o s i t y
nut = k /omega ;
nut . correctBoundaryCondit ions ( ) ;� �

In the k-ω equation, viscosity is defined as

νt =
k

ω
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σε 1.3
C1 1.44
C2 1.92
Cµ 0.09

Table 4.1: Coefficients for the k-ε model.

αω 0.5
α 0.52
β 0.072
Cµ 0.09

Table 4.2: Coefficients for the k-ω model.

The equation for k is the same as the one used in the k-ε model, while the equation for ω,
translated to mathematics is:

∂ω

∂t
+ ūj

∂ω

∂xj
− ∂

∂xj

[(
ν + αωνT

)
∂ω

∂xj

]
= α

ω

k
νT
∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− βω2 (4.23)

the value of coefficients used in OpenFOAM for the k-ε and the k-ω methods are summarized in
tables 4.1 and 4.2.

In Annex, the source codes for the Spalart-Allmaras model and the k-ω-SST model are
reported.

4.5 OpenFOAM cases

The basic directory structure for an OpenFOAM case, that contains the minimum set of files
required to run an application, is shown in figure 4.4. It contains:

• A constant directory that contains a full description of the case mesh in a subdirectory
polyMesh and files specifying physical properties for the application concerned;

• A system directory for setting parameters associated with the solution procedure itself. It
contains at least the following three files: controlDict where run control parameters are set
including start and end time, time step and parameters for data output; fvSchemes where
discretization schemes used in the solution may be selected at run-time; and, fvSolution
where the equation solvers, tolerances and other algorithm controls are set for the run;

• The time directories containing individual files of data for particular fields. These data
include: initial values and boundary conditions that the user must specify to define the
problem and results, written to file by OpenFOAM. The name of each time directory is
based on the simulated time at which the data is written; since we start our simulations at
time 0, the initial conditions are stored in a directory named 0.

In the next chapter, the commands used to run a case are shown, while the files used in the 0,
system and constant directories are reported in Annex.
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Figure 4.3: Velocity profile downstream of the hump, x/c = 1.2. k− ε methods with and without
added viscosity.

Figure 4.4: Case directory structure. [10]



Chapter 5

Equipment: Hardware and
Software

In the previous chapter, the structure and the algorithms of the open source software OpenFOAM
have been treated. This section explains how simulations are run and how solutions have been
post-processed and analyzed after having listed all the instruments and the softwares used for
that purpose.
After a brief introduction to Pleiades, the NASA super computer, a description of all the most
important commands to run simulations and to post-process data will follow.

5.1 Pleiades

Pleiades, which ranks 11th on the TOP500 list of the world’s most powerful supercomputers,
represents NASA’s state-of-the-art technology for meeting the agency’s supercomputing require-
ments, enabling NASA scientists and engineers to conduct modeling and simulation for NASA
missions. This distributed-memory SGI ICE cluster is connected with InfiniBand in a dual-plane
hypercube technology.

The system contains the following types of Intel-Xeon processors: E5-2670 (Sandy Bridge),
X5670 (Westmere), X5570 (Nehalem), and E5472 (Harpertown). Pleiades is named after the
astronomical open star cluster of the same name. [24]

5.1.1 History

Built in 2008, the supercomputer debuted as the third most powerful supercomputer in the world
at 487 teraflops. It originally contained 100 SGI Altix ICE 8200EX racks with 12,800 Intel Xeon
quad-core E5472 Harpertown processors connected with more than 20 miles of InfiniBand double
data rate (DDR) cabling.
With the addition of ten more racks of quad-core X5570 Nehalem processors in 2009, Pleiades
ranked sixth on the November 2009 TOP500 with 14,080 processors running at 544 teraflops.
In January 2010, the scientists and engineers at NAS successfully completed a “live integration”
of another ICE 8200 rack by connecting the new rack’s InfiniBand dual port fabric via 44 fibre
cables while the supercomputer was still running a full workload, saving 2 million hours in pro-
ductivity that would previously have been lost.

56
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Another expansion in 2010 added 32 new SGI Altix ICE 8400 racks with Intel Xeon six-core
X5670 Westmere processors, bringing up to 18,432 processors (81,920 cores in 144 racks) at a
theoretical peak of 973 teraflops and a LINPACK rating of 773 teraflops. NASA also put an
emphasis on keeping Pleiades energy efficient, increasing the power efficiency with each expan-
sion so that in 2010 it was three times more power-efficient than the original 2008 components,
which were the most power-efficient at the time. The integration of the six-core Westmere nodes
also required new quad data rate (QDR) and hybrid DDR/QDR InfiniBand cabling, making the
world’s largest InfiniBand interconnect network with more than 45 miles of cable.
After another 14 ICE 8400 racks containing Westmere processors were added in 2011, Pleiades
ranked seventh on the TOP500 list in June of that year at a LINPACK rating of 1.09 petaflops,
or 1.09 quadrillion floating point operations per second.
InfiniBand DDR and QDR fiber cables are used to connect the all of nodes to each other, as well
as to the mass storage systems at NAS and the hyperwall visualization system, creating a net-
work of made up of more than 65 miles of InfiniBand fabric, the largest of its kind in the world.
Pleiades is built in a partial 11-D hypercube technology, where each node has eleven connections
to eleven other nodes, with some making up to twelve connections to form a 12-D hypercube.
In 2012, NASA and partners SGI and Intel began working on the integration of 24 new Altix ICE
X racks with Intel Xeon eight-core E5-2760 Sandy Bridge processors to replace 27 of the original
Alitx 8200 racks containing quad-core Harpertown processors. With a total of 126,720 processor
cores and over 233 terabytes of RAM across 182 racks, the expansion increased Pleiades’ available
computing capacity 40 percent. Each new Sandy Bridge node has four networking links using
fourteen data rate (FDR) InfiniBand cable for a total transfer bandwidth of 56 gigabits (about
7 gigabytes) per second.

5.1.2 System architecture

The operating system of Pleiades is SUSE - Linux; the job scheduler is PBS and the compilers
are: Intel, GNU, C, C++, Fortran. The system architecture and the Pleiades Node details
can be resumed as follows:

• Manufacturer: SGI;

• 182 racks;

• 1.75 Pflop/s peak cluster;

• 2 racks (64 nodes total) enhanced with NVIDIA graphics processing unit (GPU): 43
teraflops total;

• Total processors: 23.552;

• Total cores: 126.720 (32.768 additional GPU cores);

• Total memory: 233 TB

In the fig 5.2 the details of Pleiades nodes are illustrated:

5.1.3 Role at NASA

Pleiades is part of NASA’s High-End Computing Capability (HECC) Project and represents
NASA’s state-of-the-art technology for meeting the agency’s supercomputing requirements, en-
abling NASA scientists and engineers to conduct high-fidelity modeling and simulation for NASA
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Figure 5.1: A picture of Pleiades in the super-computer department. NASA Ames Research
Center. Moffett Field, CA.

Figure 5.2: Pleaides Node Detail
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missions in Earth studies, space science, aeronautics research, as well as human and robotic space
exploration.
Some of the scientific and engineering projects run on Pleiades include:

• The Kepler Mission, a space observatory launched in March 2009 to locate Earth-like plan-
ets, monitors a section of space containing more than 200,000 stars and takes high-resolution
images every 30 minutes. After the operations center gathers this data, it is pipelined to
Pleiades in order to calculate the size, orbit, and location of the planets surrounding these
stars. As of February 2012, the Kepler mission has discovered 1,235 planets, 5 of which are
approximately Earth-sized and orbit within the “habitable zone” where water can exist in
all three forms (solid, liquid, gas).

• Research and development of next generation space launch vehicles is done on Pleiades
using cutting-edge analysis tools and computational fluid dynamics (CFD) modeling and
simulation in order to create more efficient and affordable space launch system and vehicle
designs. Research has also been done on reducing noise created by the landing gear of
aircraft using CDF code application to detect where the sources of noise are within the
structures.

• Astrophysics research into the formation of galaxies is run on Pleiades to create simulations
of how our own Milky Way Galaxy was formed and what forces might have caused it to
form in its signature disk-shape. Pleiades has also been the supercomputing resource for
dark matter research and simulation, helping to discover gravitationally bound “clumps” of
dark matter within galaxies in one of the largest simulations ever done, in terms of particle
numbers.

• Visualization of the Earth’s ocean currents using a NASA-built data synthesis model for
the Estimating the Circulation and Climate of the Ocean (ECCO) Project between MIT
and the NASA Jet Propulsion Laboratory in Pasadena, California. According to NASA,
the “ECCO model-data syntheses are being used to quantify the ocean’s role in the global
carbon cycle, to understand the recent evolution of the polar oceans, to monitor time-
evolving heat, water, and chemical exchanges within and between different components of
the Earth system, and for many other science applications.”

5.2 Running in parallel

Our simulations were run on 500 processors in parallel for the 3D cases and 100 processors for
the 2D cases.
In order to have access to at least 100 processors in Pleaides, the following command must be
used:

qsub -I -lselect=10:ncpus=12:mpiprocs=12:model=wes -lwalltime=5:00:00

Where the first digit refers to the number of nodes the user requires while the second and the
third digit refer to the number of processors available on each node, for a total of 120 processors.
In this example Westmere nodes (see fig 5.2) are going to be used for 5 hours.
The instruction changes, if the user wants to use the nodes of another sub-system, in according
with its characteristic. If the user wants to use Sandy Bridge, the command becomes:

qsub -I -lselect=7:ncpus=16:mpiprocs=16:model=san -lwalltime=5:00:00
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The number of processors available on each node has now changed, so that the number of nodes
to require to get at least 100 processors is now 7, instead of 10.
Once the user has access to the processors he required, he can enter into the directory of the
case he wants to simulate and type:

decomposePar

In this example, the mesh is decomposed in 100 parts. OpenFOAM reads the file decomposeP-
arDict (see the chapter 8.4 in Annex, to understand how this file is written), and it sends each
portion of the mesh to a specific processor.
At this point it is enough to type:

mpirun -np 100 simpleFoam -parallel

and the simulation is launched. Once the simulation is over, the mesh has to be reconstructed,
by using the command:

reconstructPar

At this point the solution at different iteration steps is available.
Since the waiting time to have access to the processors may be very long, especially at the
increasing of the wall time, the user may prefer to run simulations in the background.
An import ant advantage of running in the background is that several simulations can be run by
Pleiades at the same time.
The procedure to run in the background is very similar to that illustrated above. The only
difference is that the user has to create a text file in which he writes the commands that the
supercomputer has to execute. The directory of the case the user wants to simulate must be
specified.
Suppose the user generates a file called:

launch_simulation.txt

In this file he will write all the commands described above, by specifying the directory where the
case is. An example could be:

decomposePar -case /nobackupp2/dcappell/Hump_model_SpalartAllmaras

mpirun -np 100 simpleFoam -case /nobackupp2/dcappell/Hump_model_SpalartAllmaras -parallel

reconstructPar -case /nobackupp2/dcappell/Hump_model_SpalartAllmaras

In order to let Pleaides read the instructions contained in the file and to access the processors
that are needed, the following instruction has to be launched:

qsub -l select=7:ncpus=16:mpiprocs=16:model=san -lwalltime=10:00:00 launch_simulation

The command is very similar to that used to run the simulations in the foreground, except that
here the name of the file created above must be specified.
After the simulation is run, the folder where the case is run will contain all the directories shown
in picture 5.3:

de
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Figure 5.3: Screenshot of the window terminal, showing all the directories of our case after the
execution “recontructPar”

5.3 Post-processing

The default visualization application integrated in OpenFOAM is the open-source software Par-
aview.
In order to convert the results in the Paraview format, the following command is used:

foamToVTK

Once opened Paraview, the user goes into the directory VTK, automatically generated after the
execution of the previous instruction (figure 5.4) and he selects the file with the VTK extension.
After clicking on Apply, in the Properties window, the case will be uploaded. At this point, the
user has to move into the Display window to select the field that he wants to visualize (pressure,
velocity, viscosity...) as shown in figure 5.5

OpenFOAM also disposes of different filters, to extract a plane (Slice), to plot the parameters
along a line -plot over a line- (this tool is very useful if we want to plot the velocity profile in
y-direction, for example) to seed a vector field with points and then traces those seed points
through the vector field, and so on...
The limit of Paraview is that it is not able to plot the parameters over a curved line. This means
that it does not give the possibility to plot the coefficient pressure over the wall of the hump.
For this reason, in this work, a more complete visualization software was used: TecPlot.
Results are post-processed in TecPlot through the command:

foamToTecplot360

After having launched the instruction above, a folder called Tecplot360 will be generated. In
this folder there are all files containing solutions over the time and a file containing information
about the mesh1.

1The case studied in this work is steady: time is only a counter of the iterations required before getting
numerical convergence.
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Figure 5.4: Opening a VTK file in Paraview

Figure 5.5: Selection of the field to visualize
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Figure 5.6: Uploading a case in Tecplot.

We have to select the file containing the mesh, and at least one of the files containing the
solution over the time (the last one has to be selected to visualize the solution at the last time-
step). In order to do that, the user opens the File window and he selects the TecPlot Data Loader
command. He goes through the Tecplot path of his case, he selects the option multiple files and
uploads the files containing the mesh and the solution, as shown in picture 5.6.
At this point, At this point, the case is uploaded and the boundaries of the geometry are visible.
If the user wants to investigate the behavior of the solution at the center plane, he has to extract
a slice of plane by clicking on Data - Extract - Slice From Plane, as shown in figure 5.7 and select
the Z coordinate in which the plane is located.
After having selected the 2D Cartesian view (top-left of the screen, as highlighted in figure 5.8)
a contour of pressure or velocity2 is shown. If the user wants to extract pressure over the wall of
the geometry, he has to select Extract - FE-Boundary from the Data menu, as shown in figure
5.8. If we are interested in extracting the velocity profile, we can select Extract - Points from
Polyline and then draw a vertical line over the X location where profile wants to be extracted.
Once he has extracted all the fields he needs, in order to have the 2-D plot of the fields, he selects
the XY Line view, and sets the variables he wants to plot in the Mapping Style window (figure
5.9). For further information about TecPlot, the reader is referenced to the official guide[25].

2It depends on which parameter is set by default. To change it, click on the three-point button at the right of
Contour button
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Figure 5.7: Extraction of a plane in Tecplot.
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Figure 5.8: Extraction of the boundary and of Points from Polyline .
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Figure 5.9: Display of the extracted variables on a 2D graph.



Chapter 6

Hump Flow: Results

This section shows the most significant results obtained by running the hump flow model in
OpenFOAM.
In order to compare the numerical results to the experimental ones, we respected the fluid-
dynamic similitude was respected, by fixing Reynolds number and Mach number like in the
experiments.

6.1 Fluid dynamic similitude

In order to operate in subsonic, velocity is chosen to be 34 m/s, so that M = 0.1
The chord of the model used in this work goes from 0 to 1m (in order to easily compare this
case with the dimensionless results provided by the other works: x/c, y/c, U/U∞). This means
that in order to use the same Reynolds number1 as the experimental one (the Reynolds number
for the baseline case is ∼ 930000, see [3],[1], [20]) the value of the kinematic viscosity in the
transportProperties file2 has to be changed as follows:3

ν =
U∞c

Rec
=

34 · 1
930000

= 3.66 10−5m
2

s
(6.1)

In the following table, the basic properties of the “Hump flow” are summarized.

1We refer to the Reynolds number based on the chord of our model: Rec
2All the parameters defined in this file are shown in Appendix.
3This is the advantage of CFD: we can easily change the proprieties of the gas , without employing difficult

devices consisting in changing the pressure and the temperature of the wind tunnel.

c 1 m
U∞ 34 m/s
ν 3.66 10−5 m2/s
M 0.1
Rec 930 000

Table 6.1: Properties of our “hump” flow

67
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nCells y points grading nIT nProc Time
Spal-Allmar 336 000 300 500 30.000 100 2h30

k-ε 224 000 200 100 8000 100 2h
k-ω 336 000 500 300 30.000 100 2h30

k-ω-SST 336 0002 500 300 30.000 100 2h30

Table 6.2: Size of mesh and computational time for the 2D case

6.2 Mesh

For the simulations run in this work, three different meshes have been used: one with the inlet set
at -6 x/c upstream of the leading edge of the hump which wants to reproduce the experiments
as well as possible, the second is with inlet located at -1 x/c upstream of the hump which is
interesting to estimate the influence of the boundary layer on the flow: the goal is to compare
the effects of the development of the boundary layer along the lower wall of the mesh 4; the third
includes the end-side plates for the study of the 3-D flow.
The condition on the upper wall has been changed in order to study the theoretical case (no wall
perturbing the flow) and the experimental one: in this case, the effects of the upper wall of the
wind tunnel on the flow have been taken into account.
For the inlet located at -6 x/c, the length of the splitter plate has been chosen in order to match
the measured velocity profiles at x/c = −2.1 (see figure 6.2), [7]. Both 2D and 3D simulations
have been run in order to evaluate the effects of the end side plates on the flow. Since the mesh
generated by the blockMesh utility is 3D by default, an empty condition has to be used for the
side walls, in order to switch from a 3D to a 2D case.
The mesh has been built by using the OpenFOAM utility blockMesh5, and it is built in order
to be finer in proximity of the lower wall and of the hump6. In figure 6.1 a simplified sketch of
the mesh used to run our simulations is shown. The script of the mesh (blockMeshDict file) is
available in the appendix.
In table 6.2 the characteristics of the mesh used in the 2-D case and the computational time to
get to convergence are summarized.
The grading command defines the factor scale of the cells in y direction. A value of 100 means
that the cells near the lower wall are 100 times smaller than the cell close to the upper wall.

6.3 Boundary Conditions

Although one of the most important characteristic of the ”hump” flow is its insensitiveness to the
inlet conditions, it is important to set coherent values at the inlet in order not to have numerical
problems in the solution convergence.

An important parameter to define is the turbulent intensity I, defined as I =
√
u2

U∞
, where u is

the value of velocity fluctuation in the x-direction.
The physics of the problem can be simplified, by supposing isotropic turbulence, so that the
following relationship for the turbulent kinetic energetic can be written:

k =
3

2
(IU∞)2 (6.2)

4The lower wall of the mesh reproduces the splitter plate used in the experiments
5By default, OpenFOAM handles both structured and unstructured meshes as unstructured
6The points are scaled by using the option simpleGrading
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Figure 6.1: Sketch of our mesh. 1/10 lines plotted
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Figure 6.2: Velocity profiles at the inlet, x/c = −2.14.
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inlet lower wall upper wall outlet
U 34 m/s 0 m/s symmetry plane zero gradient
p zero gradient zero gradient symmetry plane p = p∞
νt 3.66e-4 m2/s wall function symmetry plane zero gradient
k 0.39 m2/s2 0 m2/s2 symmetry plane zero gradient
ε 37.4 m2/s3 wall function symmetry plane zero gradient
ω 500 1/s wall function symmetry plan zero gradient

Table 6.3: Boundary conditions for the 2D case. Upper Wall considered as a symmetry plane.

Turbulent viscosity, νt is the unknown of the problem and it will be calculated after the solution
of turbulence equations (k-ε, k-ω, Spalart Allmaras...). To a first approximation, the following
relationship can be used[26]:

νt
ν
' 10 to 100 (6.3)

By considering the relationship between k, ε, ω and νt, ε and ω can be estimated, once k and νt
are known.
By supposing a value of 1.5% for I, we have k = 3

2 (IU∞)
2

= 0.39.
Note that ν is fixed, in order to respect the Reynolds number, and its value is 3.66 · 10−5; it
means that the turbulent kinematic viscosity will be in the range νt ' 3.66 · 10−4 to 3.66 · 10−3.
By using the relationships between k, ε, ω and νt (chapter 2), the following relationships for ε
and ω are obtained:

ε = Cµ
k

νt
' 4 to 40 (6.4)

ω ' k

νt
' 100 to 1000 (6.5)

Velocity is forced by Mach number to be 34 m/s at the inlet, while for pressure, the zero gradient
condition has been chosen.
At the lower wall, viscosity imposes the values for the velocity and the turbulent kinetic energy
to be 0, while, since pressure does not change in the y-direction through the boundary layer
(hypothesis of thin boundary layers) the zero gradient condition for pressure has been used. For
what concerning ε and ω, they are calculated through the use of wall functions (epsilonWall-
Function and omegaWallFunction7).
For the 2D case, two different conditions have been used for the upper wall: in one case, the
upper wall has been supposed far enough not to be perturbed by the hump - symmetric plane
condition - while in the other case, a viscous wall condition has been used, in order to evaluate
the effects of the wind tunnel wall on the flow.
At the outlet, the zero gradient condition is used for all the variables, except from pressure which
is forced to be equal to the asymptotic pressure. Since in the simpleFoam solver psimpleFoam =
∆p
ρ , p is zero at the outlet.

The boundary values are summarized in table 6.3 and in table 6.4.

7Boundary conditions are specified in the 0 directory of our case. We report them in Appendix
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inlet lower wall upper wall outlet
U 34 m/s 0 m/s 0 m/s zero gradient
p zero gradient zero gradient zero gradient p = p∞
νt 3.66e-4 m2/s wall function wall function zero gradient
k 0.39 m2/s2 0 m2/s2 0 m2/s2 zero gradient
ε 37.4 m2/s3 wall function wall function zero gradient
ω 500 1/s wall function wall function zero gradient

Table 6.4: Boundary conditions for the 2D case. Effects of the upper wall on the flow.

6.4 Pressure

In this section the results of pressure for the 2D case are shown. In figures 6.3, 6.4, 6.5, 6.6, the
trend of pressure for the different turbulence methods is shown over the entire domain, while in
figures 6.7, 6.8, 6.9, pressure coefficients are shown in order to compare numerical results to the
experimental data.
These simulations are run by using both 1 equation and 2 equation turbulence models, more
specifically: Spalart-Allmaras8, k-ε, k-ω, k-ω-SST9. Pressure shows how the flow is accelerated
up to around the mid-chord of the hump, where a peak magnitude Cp is observed. A sudden
drop of pressure afterwards leads to the separation at around x/C=0.65, which corresponds to
the location of the cavity slot for the controlled case10.
Two experimental curves were measured: one is measured in the presence of the side plates,
the other is measured without side plates. This work will refer to both. In order to differentiate
them, the label Exp and Exp-no-plates will be used in the legend of graphs. The effect of the
blockage provoked by the walls significantly affects experimental measurements, how remarked
by Rumsey in his workshop (section 3.1, figure 3.6).
The boundary layer on the side plates makes the flow accelerate more, so that pressure decrease
over the hump is higher.
In figure 6.7, numerical results11 are compared to experiments: all the methods are very close to
the experimental results without plates, except k − ω − SST which over-predicts pressure.
In figure 6.8, simulations are run by taking into account the effects of the upper wall and they
are compared to the experiments: in this case a slightly improvement in pressure prediction can
be observed, especially for what concerns k − ω − SST which matches the experimental results
very well. Downstream of the separation point, pressure is over predicted by Spalart Allmaras
and k − ε, while k − ω and SST provides accurate results.
When the inlet is located at -1 x/c, higher values of depressions are obtained over the hump:
all the methods get closer to the experimental data with plates; some numerical methods (like
k − ω − SST ) under predict pressure.
This means that the boundary layer development upstream of the hump - along the splitter plate
(or the lower wall of the mesh) - significantly affects the flow over the hump.
The comparison of velocity profiles downstream of the hump clarifies this behavior as shown in
section 6.5.

81 equation model
92 equation models

10In this study the controlled case will not be studied
11In this plot, the upper wall is treated as a symmetric plane
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Figure 6.3: ∆p/ρ distribution over the plane. 2D case. Inlet = -6 x/c. Spalart-Allmaras model

Figure 6.4: ∆p/ρ distribution over the plane. 2D case. Inlet =-6 x/c. k-ε model
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Figure 6.5: ∆p/ρ distribution over the plane. 2D case. Inlet = -6 x/c. k-ω model

Figure 6.6: ∆p/ρ distribution over the plane. 2D case. Inlet = -6 x/c. k-ω-SST model
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Figure 6.7: Comparison between numerical and experimental pressure coefficients. Theoretical
case. Inlet = -6 x/c.
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Figure 6.8: Comparison between numerical and experimental pressure coefficients, by taking into
account the effects of the upper wall. 2D case. Inlet = -6 x/c.
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Figure 6.9: Comparison between numerical and experimental pressure coefficients. 2D case.Inlet
= -1 x/c.

6.5 Velocity

In figures 6.10, 6.11, 6.12, 6.13 velocity contours are shown for all turbulence models: the cases
are 2D and they do not take into account the presence of the upper wall. In figures 6.14, 6.15,
6.16, 6.17, velocity profiles at x/c = 0.8, x/c = 1.0, x/c = 1.1, x/c = 1.2 are compared with the
experimental results (inlet located at -6 x/c).
Grid origin is at the beginning of the hump, so that 1.0 x/c is the last point of the hump.
In the contour plots, the recirculation bubble (low speed flow marked by blue color) is visible for
all of the turbulence models employed. The trend of velocity is the same for all models: the flow
accelerates where pressure drops and separates soon after. The size of the bubble may change
for different models; this aspect will be discussed in the following section.The most significant
results are obtained by comparing the velocity profiles downstream of the hump. Velocity profiles
are extracted in the bubble (x/c = 0.8 and x/c = 1.0), at the experimental reattachment point
(x/c = 1.1), and outside the bubble (x/c = 1.2). The numerical profiles match the experimental
results very well at all locations except x/c = 1.2 which is a critical location.
As it will be shown in the next section, most turbulence models predict the reattachment point
to be very close to x/c = 1.2, while the experience suggests x/c = 1.1. Spalart-Allmaras, k − ω,
and k− ω− SST fail to reproduce the velocity profile at x/c = 1.2 close to the wall, while k− ε
provides good results probably because it is the most accurate one in predicting the position
of the reattachment point 12. In figure 6.18 the effects of the upper wall on velocity are shown.
We can see the boundary layer developing all along the upper wall. This is responsible for the
decrease of pressure shown in figure 6.8.
The presence of the upper wall does not affect the bubble and the velocity profiles downstream of

12These aspects will be discussed deeper in the next section.
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the hump. Figure 6.19 shows the velocity profiles at the critical location x/c = 1.2. Their trend
is very similar to that obtained by using a symmetry plane as boundary condition for the upper
wall (figure 6.17).
To have an idea of the accuracy of these solutions, the velocity profiles collected by Rumsey
( x/c = 1.2) are shown in figure 6.20. In this case, two methods predict the experimental re-
sults with a good accuracy:AZ-cobalt-des-1-3d and META-cfd++lns-3D. These are two hybrid
LES/RANS methods. One of them implements the DES method (Detached Eddy Simulation),
the other one implements the LNS method (Limited Numerical Scales). All the other curves,
obtained by using RANS models, are quite far from the experimental results: an evidence is the
fact that, in proximity of the wall, velocities are negative, while the experimental curve predicts
positive values. This is a consequence of the fact that the RANS simulations used in this work-
shop over-predicted the length of the bubble, so that the location x/c=1.2 was still inside the
recirculation zone.
The good behavior of the k-ε method used in our simulations is a consequence of predicting the
size of the bubble properly.

6.5.1 Inlet located at x/c = −1
In the previous section the influence of the position of the inlet section was mentioned. In this
section, the effects that the location of the inlet has on the velocity profiles are discussed.
So far, the inlet has been located -6 x/c upstream of the hump. Figures 6.21, 6.22, 6.23 show the
behavior of velocity profiles for the inlet located -1 x/c upstream of the hump.
In this case the boundary layer over the lower wall is thinner than that calculated for the inlet
located -6 x/c upstream of the hump: when the flow separates, the wake remains thinner, so that
by moving from the lower wall to the upper wall, it can be observed that the velocity profile
reaches the external flow velocity faster than experimental results.
This consideration is very important, because it shows that, even if the ”hump flow” is not
sensitive to different inlet conditions (Reynolds number, Mach number and turbulent parameters
do not affect sensitively the solution13), the position of the inlet plays an important role in the
accuracy of solution.

6.6 Recirculation zone

The size of the bubble is the most important parameter to evaluate how accurate our simulations
are. In order to estimate the length of the bubble, both the separation point and the reattachment
point have to be calculated.
This is possible by looking at the curve of the skin friction coefficient. When the curve cuts the
zero axis the term du/dy is zero as well. It means that the flow separates or reattaches.
In order to get the skin friction coefficient trend, the derivative of velocity along y has to be
computed.
This field is not one of the standard outputs in the software, so we need to modify the source
code of OpenFOAM by defining the new parameters.
It is now shown how the new parameters have been defined and implemented in order to compute
the skin friction and the turbulent shear stress.
We remind the analytical definitions of Cf and u′v′:

Cf =
τ

1
2ρU

2
∞

=
µ∂Ū∂y

1
2ρU

2
∞

(6.6)

13This is shown by Greenblatt in [27]
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Figure 6.10: Zoom of velocity field in x − y plane. 2D case. Inlet = -6 x/c. Spalart-Allmaras
model.

Figure 6.11: Zoom of velocity field in x− y plane. 2D case. Inlet = -6 x/c. k-εmodel.
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Figure 6.12: Zoom of velocity field in x− y plane. 2D case. Inlet = -6 x/c. k-ω model.

Figure 6.13: Zoom of velocity field in x− y plane. 2D case. Inlet = -6 x/c. k-ω-SST model.
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Figure 6.14: Simulated velocity profiles compared to experimental data. x/c=0.8. Inlet located
at -6 x/c.
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Figure 6.15: Simulated velocity profiles compared to experimental data.x/c=1.0. Inlet located at
-6 x/c.
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Figure 6.16: Simulated velocity profiles compared to experimental data.x/c=1.1. Inlet located at
-6 x/c.

U/U_inf

y/
c

-0.5 0 0.5 1 1.50

0.05

0.1

0.15
k-epsilon
Spalart-Allmaras
k-omega
SST
Expe

Figure 6.17: Simulated velocity profiles compared to experimental data.x/c=1.2. Inlet located at
-6 x/c.
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Figure 6.18: Velocity field in the x-y plane, by taking into account the effects of the upper wall.
Inlet located at -6x/c.

U/U_inf

y/
c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.05

0.1

0.15

k-epsilon
Spalart-Allmaras
k-omega
SST
Exp

Figure 6.19: Simulated velocity profiles compared to experimental data, in the presence of the
upper wall. x/c=1.2. Inlet located at -6 x/c.
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Figure 6.20: Velocity profiles collected by Rumsey. x/c = 1.2 [1]
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Figure 6.21: Simulated velocity profiles compared to experimental data. x/c=1.0. Inlet located
at -1 x/c.
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Figure 6.22: Simulated velocity profiles compared to experimental data. x/c=1.2. Inlet located
at -1 x/c.
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Figure 6.23: Simulated velocity profiles compared to experimental data. x/c=1.3. Inlet located
at -1 x/c.
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While the turbulent shear stress is given by:

u′v′ = −2νtSij = −νt
(
∂ū

∂y
+
∂v̄

∂x

)
(6.7)

Where Sij is the rait-of-strain tensor already defined in the chapter 2.
The following lines represent the modifications to the source code, to obtain these new fields:

Definition of new parameters in the file createFields.H� �
. . .

In fo<< ”Reading f i e l d vectorX\n” << endl ;
vec to r vectorX (1 , 0 , 0 ) ; // vec to r d e f i n i t i o n

Info<< ”Reading f i e l d vectorY\n” << endl ;
vec to r vectorY (0 , 1 , 0 ) ;

Info<< ”Reading f i e l d U x\n” << endl ;
v o l S c a l a r F i e l d U x // Assuming that U x i s a s c a l a r : ’ v o l S c a l a r F i e l d ’
(

IOobject
(

”U x ” ,
runTime . timeName ( ) ,
mesh ,
IOobject : : MUST READ,
IOobject : :AUTO WRITE

) ,
U. component ( vec to r : : X)

) ;

Info<< ”Reading f i e l d U y\n” << endl ;
v o l S c a l a r F i e l d U y
(

IOobject
(

”U y ” ,
runTime . timeName ( ) ,
mesh ,
IOobject : : MUST READ,
IOobject : :AUTO WRITE

) ,
U. component ( vec to r : : Y)

) ;

Info<< ”Reading f i e l d mu\n” << endl ;
v o l S c a l a r F i e l d mu
(

IOobject
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(
”mu” ,
runTime . timeName ( ) ,
mesh ,
IOobject : : MUST READ,
IOobject : :AUTO WRITE

) ,
mesh

) ;

Info<< ”Reading f i e l d tau\n” << endl ;
v o l S c a l a r F i e l d tau
(

IOobject
(

” tau ” ,
runTime . timeName ( ) ,

mesh ,
IOobject : : NO READ,
IOobject : :AUTO WRITE

) ,

// tau=mu∗ f v c : : grad ( U x)&vectorY
mesh ,
d imens ionedSca lar (” zero ” , dimensionSet (1 ,−1 ,−2 ,0 ,0) ,0 .0)

) ;

Info<< ”Reading f i e l d dU dx\n” << endl ;
v o l S c a l a r F i e l d dU dx
(

IOobject
(

”dU dx ” ,
runTime . timeName ( ) ,

mesh ,
IOobject : : NO READ,
IOobject : :AUTO WRITE

) ,

// tau=mu∗ f v c : : grad ( U x)&vectorY
mesh ,
d imens ionedSca lar (” zero ” , dimensionSet (0 ,0 , −1 ,0 ,0 ) , 0 . 0 )

) ;
Info<< ”Reading f i e l d dU dy\n” << endl ;

v o l S c a l a r F i e l d dU dy
(
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IOobject
(

”dU dy ” ,
runTime . timeName ( ) ,

mesh ,
IOobject : : NO READ,
IOobject : :AUTO WRITE

) ,

// tau=mu∗ f v c : : grad ( U x)&vectorY
mesh ,
d imens ionedSca lar (” zero ” , dimensionSet (0 ,0 , −1 ,0 ,0 ) , 0 . 0 )

) ;

) ;� �
The new parameters defined in the createFields.H file were then declared and computed in

the file UEqn.H.

Implementation of τ and u′v′ in the file UEqn.H� �
. . . .

U x=U. component ( vec to r : : X) ;
U y=U. component ( vec to r : : Y) ;
dU dx=fvc : : grad ( U y)&vectorX ;
dU dy=fvc : : grad ( U x)&vectorY ;
tau=mu∗ f v c : : grad ( U x)&vectorY ;

uv=−nut∗ f v c : : grad ( U x)&vectorY−nut∗ f v c : : grad ( U y)&vectorX ;
. . . . .� �

Figure 6.24 shows the skin friction coefficient over the hump for the turbulence models used.
The upper wall does not affect the value of the skin friction at lower wall, so that these curves
are valid for both cases - viscous wall and symmetry plane - with the inlet located at -6 x/c.
By identifying the points where the Cf curves cut the axis of zero, it is possible to locate the
separation point and the reattachment point.
As it can seen in table 6.5 and in figure 6.24 the separation point is accurately predicted by all
turbulence models, while the only method able to catch the reattachment point is k − ε. This
explains why the velocity profiles downstream of the reattachment are more accurate for k − ε
rather than they are for the other methods.
Figures 6.25, 6.26, 6.27, 6.28 show the size of the bubble computed with the different RANS
methods. The smallest bubble is predicted by k− ε, the biggest by k− ω − SST as summarized
in table 6.5.
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Figure 6.24: Skin friction coefficient. Inlet located at x/c = −6

Separation point [x/c] Reattachment point [x/c]
Spalart Allmaras 0.667 1.198

k-ε 0.669 1.104
k-ω 0.656 1.196

k-ω-SST 0.656 1.229
Experiments 0.65-0.67 1.11

Table 6.5: Location of the the separation point and of the reattachment point for the different
RANS models.

6.7 Turbulent Shear Stress

As reported in Rumsey’s survey, one of the parameters which can mostly affect the prediction
of the size of the bubble is the turbulent shear stress. As long as this parameter is not predicted
properly, the turbulence in the bubble can be compromised and so its length and size.
Figure 3.9 showed that CFD tends to under predict the turbulent shear stress: the consequence
is that the mixing of velocity in the bubble decreases too, by provoking a longer bubble as result.
In figure 6.29, the turbulent shear stress computed by using the algorithm shown above are
compared with the experiments. It can be remarked that in our case the turbulent shear stress
is under-predicted, too.
This is an intrinsic limit of RANS equations which are not modeled to compute separated
boundary layers properly.
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Figure 6.25: Visualization of the bubble in TecPlot for the Spalart-Allmaras model

Figure 6.26: Visualization of the bubble in TecPlot for the k − ε model
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Figure 6.27: Visualization of the bubble in TecPlot for the k − ω model

Figure 6.28: Visualization of the bubble in TecPlot for the SST model
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Figure 6.29: Turbulent shear stress at x/c=0.8.

6.8 Effects of the resolution of the Mesh

In section 2.6 the effects of the wall functions have been treated. In order not to compute the
velocity profile too close to the wall, where the gradient is very high and the profile too sharp,
the boundary conditions are applied somewhere away from the wall.
Unfortunately, in order to calculate the behavior of some parameters, like the skin friction co-
efficient, which depends on the velocity profile at the wall, the boundary conditions have to be
forced as close as possible to the wall.
In order to do that, a very fine mesh close to the wall, in the y direction is required.
Figure 6.30 shows the skin friction coefficient obtained with a mesh of 100 points and scaling of
300 in y direction14 We can remark how far the computed results are from the experiments.
This problem can affect not only the skin friction but all the others parameters calculated at
the wall, like, for example, the pressure coefficient. Figure 6.31 shows the pressure coefficient
distribution for a non-scaled mesh (in y direction, 400 equidistant cells have been used). We can
remark that both the methods employed (k − ω and k − ω − SST ) fail in predicting pressure.
Results are much less accurate than those shown for a mesh scaled at the lower wall (figure 6.7
and 6.8) .

6.9 3D Model

In this section the effect of the end-side plates are taken into account. One of the causes of
pressure being over predicted by CFD in Rumsey’s first workshop in 2004[1] was the effect of
blockage due to the end-side plates used in the experiments.
A set of experimental measurements of pressure was done in the absence of the plates, showing

14The number of points and the scale factors chosen for the different cases are listed in table 6.2
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Figure 6.30: Skin friction coefficient. Coarse mesh.
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Figure 6.31: Example of pressure coefficient distribution for a coarse mesh.
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a significant variation of results.
In order to reproduce the effects of the side-plates, a viscous-wall condition on the lateral faces
of the mesh has been used.
The blue zone in figure 6.32 shows the region where velocity has zero value. The goal is to
reproduce the 3D model shown in figure 3.1, whereas figure 6.33 gives an idea of the grid used
to discretize the mesh.
Figure 6.34 shows the computed pressure coefficients compared to experimental data.
Both experimental measurements of Cp, with and without plates, are shown here.
The effect of blockage does not influence numerical solutions as it does in experiments.
A possible reason could be that, in this work, the end-side plates are modeled as flat plates, so
that, for high Reynolds number they do not affect the solution because of the modest thickness
of the boundary layer.
In reality other components, like the aluminum frame shown in picture 3.1, could have a major
impact on the solution. Another possible reason could be the intrinsic limit of RANS equations
in predicting three-dimensional flows.
Figure 6.35 shows the evolution of pressure coefficients for the 2D cases run (the upper wall is
modeled as a symmetry plane and as a viscous wall) and for the 3D case, including the end
plates.
The effects of the plates are important downstream of the separation point, while they do not
affect the solution too much, in the front part of the hump.
This is consistent with the fact that the effects of the boundary layer along the side-plates are
more important far downstream of the leading edge of the plate.
The presence of the plates does not affect the solution at the center line, as remarked by Rumsey
in his workshop.
At the centerline, the position of the the reattachment point does not change significantly if
compared to D results, as shown in figure 6.36. Moreover, velocity profiles have the same trend
of the 2D simulations as shown in figure 6.37.
Table 6.6 summarizes the number of processors used and the time and number of iterations
required to get the convergence.

n cells n Faces n iter n procs time
k-ε 11.325.000 34.178.750 18.000 500 20 h

Table 6.6: Number of iterations and time of convergence for the k − ε model. 3D case.

6.10 Launder-Sharma

The hump geometry used in this workshop can be considered as the extrados of a wing airfoil. In
this term, the choice of the Reynolds number based on the chord of the hump gives the possibility
to compare this flow to that over the airfoil of an aircraft.
Reynolds number is high enough so that low-Reynolds-number methods can not be used.
As a proof of that, figure 6.38 shows the coefficient pressure computed by using a low-Reynolds
RANS model: Launder Sharma. Results seem to be far away from experimental data.
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Figure 6.32: Sketch of the mesh used for 3D simulations.

Figure 6.33: Sketch of the grid used for 3D simulations.
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Figure 6.34: Comparison between numerical and experimental pressure coefficients at the cen-
terline. 3D case. Inlet located at -6 x/c.
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Figure 6.35: Pressure coefficient computed by using the k − ω − SST method with different
boundary conditions: 2D model with upper wall modeled like a symmetry plane, 3D case with
upper wall modeled like a viscous wall, 3D case with upper wall and end side plates.
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Figure 6.36: Localization of the reattachment point (Cf = 0) for 2D and 3D cases, for the
methods k − ω and SST .
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Figure 6.38: Pressure coefficient computed with the Launder-Sharma model.

6.11 Modifications to the k-ε model

Since the k-ε is the method performing better, some modifications were tried, in order to increase
the turbulent shear stress predicted by this method.
For the k-ε model, the term u′v′ is proportional to the constant Cµ, which is chosen to be 0.09
in the standard implementation.
The equation of the turbulent shear stress for the k-ε model is recalled:

u′v′ = −2νtSij = −2Cµ
k2

ε
Sij (6.8)

Figure 6.39 shows the trend of the turbulent shear stress when Cµ is increased from the standard
value, 0.09, to 0.18. The magnitude of u′v′ increases, but the physics of the problem is seri-
ously compromised. The length of the separation bubble decreases until it disappears: turbulent
viscosity increases, but not at the same location of the experimental data. Turbulent viscosity
increases close to the wall and enhances the mixing. This makes the bubble disappear.
Table 6.7 summarizes the location of the reattachment point for the same values of Cµ used in
figure 6.39.

Cµ 0.09 0.10 0.18
Reattachment point 1.10 1.08 –

Table 6.7: Location of the reattachment point for different values of Cµ. k-ε model.
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Figure 6.39: Turbulent shear stress for different values of Cµ. k-ε model. x/c = 0.8
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Conclusion

The goal of this work is to demonstrate that this problem is very sensitive to the procedural
variables used to implement the mesh and the boundary conditions and that a complete 3D
study can give results that differ from the 2D case because of the blockage introduced by the
end-side plates.
The reason for which the k-ε model gives very accurate results in terms of pressure coefficients,
velocity profiles and position of separation and reattachment points may be in the fact that the
turbulent shear stress predicted by this model is quite close to the experimental data in the
region close to the wall (y/c < 0.08). An evidence of this fact is that, if the magnitude of the
turbulent shear stress is increased more, the length of the bubble decreases until it disappears.
In what concerning the other models, the magnitude of the turbulent shear stress is seriously
under-predicted in all the domain, so that the mixing in the bubble is not intense enough to de-
termine the exact position of the reattachment point: the length of the bubble is over predicted,
as shown by Rumsey in the workshops of 2004 and 2008 .
Even if the hump-flow is considered insensitive to inlet conditions in terms of Reynolds number
and Mach number, the development of the boundary layer upstream of the hump strongly affects
the velocity profiles downstream. This is evidenced by the fact that by moving the location of
the inlet, the velocity field computed downstream of the model changes in a substantial way.
Since the Reynolds number influences the development of the boundary layer over the splitter
plate, a big variation of the Reynolds number during the experiments could have led to the same
consequences, too.
The reason for which particular attention has to be paid to the mesh resolution, is that velocity
profile is very sharp at the wall, because of the turbulent nature of the boundary layer. In order
to catch the derivatives of velocity properly, the mesh has to be very fine, close to the lower wall.
In this work, the mesh is scaled so that the points in proximity of the hump are 300 or 500 times
smaller than the free stream points.
A mesh which does not satisfy these requirements could not be able to provide accurate values
of pressure, skin friction and other parameters at the wall .
Our results are consistent with those obtained by He et al[9], who used the commercial software
Fluent, but they could be different from other results, even if computed by using the same soft-
ware, because of the great sensitiveness of the solution to all of the variables discussed above.

98
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7.0.1 Subsequent work

A complete direct numerical simulation (DNS) is suggested to fully understand the statistics
and the physics of the flow over a hump. This work would better help adjust the RANS models,
which would provide more accurate results.
This study should also focus on the turbulent shear stress: this quantity may play an important
role in mixing and recovery, so a complete understanding of this problem could definitively
improve the accuracy of solutions.
As well, the behavior of OpenFOAM for other separated flows could be tested: RANS simulations
on a 3D hill would be interesting to better understand the performance of the software in different
geometries.
Last but not least, other softwares, different from OpenFOAM, should be used to run simulations
on the same case, with the same settings: this would allow to better evaluate the performance of
OpenFOAM.



Chapter 8

Annex

8.1 Initial Conditions

The initial and the boundary conditions are in the directory 0. The files shown are those needed
to generate the initial conditions for the “Hump” case, when the k-ε model is used. They refer to:
velocity, pressure, turbulent kinetic energy k, dissipation of turbulent kinetic energy ε, turbulent
viscosity, νt.
These conditions are specified on the boundary of our geometry which we remember to be
composed by: a lower wall (our hump), an upper wall (the upper wall of the wind tunnel), an
inlet and an outlet.
Initial and boundary conditions for velocity:

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (34 0 0);

boundaryField

{

inlet

{

type fixedValue;

value uniform (34 0 0);

}

outlet

{

100
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type zeroGradient;

}

upperWall

{

type symmetryPlane;

}

lowerWall

{

type fixedValue;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

}

// ************************************************************************* //

Initial/boundary conditions for pressure:

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type zeroGradient;

}

outlet

{

type fixedValue;

value uniform 0;

}
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upperWall

{

type symmetryPlane;

}

lowerWall

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

// ************************************************************************* //

Initial/boundary conditions for k

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object k;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.39;

boundaryField

{

inlet

{

type fixedValue;

value uniform 0.39;

}

outlet

{

type zeroGradient;

}

upperWall

{

type symmetryPlane;

}

lowerWall
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{

type kqRWallFunction;

value uniform 0;

}

frontAndBack

{

type empty;

}

}

// *************************************************************************

Initial/boundary conditions for ε

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object epsilon;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 37.4;

boundaryField

{

inlet

{

type fixedValue;

value uniform 37.4;

}

outlet

{

type zeroGradient;

}

upperWall

{

type symmetryPlane;

}

lowerWall

{

type epsilonWallFunction;

}

frontAndBack
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{

type empty;

}

}

// ************************************************************************* //

8.2 Mesh

The description of the mesh is in the blockMeshDict file, whose directory is constant-¿polyMesh.
Since our geometry is curved, we use the spline command to force the line connecting two distinct
points of our mesh to interpolate all the others. The number of points used for the interpolation
is higher, here we only report some of them for reasons of space:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 1;

//vertices of our geometry

vertices

(

(0.000000000e+00 0.000000000e+00 0) //0 coordinates of the hump

(2.504898603e-01 1.004583950e-01 0) //1

(5.003331531e-01 1.279137016e-01 0) //2

(6.541569678e-01 1.150131168e-01 0) //3

(1.000001861e+00 0.000000000e+00 0) //4

(0.000000000e+00 0.000000000e+00 1) //5

(2.504898603e-01 1.004583950e-01 1) //6

(5.003331531e-01 1.279137016e-01 1) //7

(6.541569678e-01 1.150131168e-01 1) //8

(1.000001861e+00 0.000000000e+00 1) //9

(0.000000000e+00 1 0) //10

(2.504898603e-01 1 0) //11

(5.003331531e-01 1 0) //12

(6.541569678e-01 1 0) //13

(1.000001861e+00 1 0) //14

(0.000000000e+00 1 1) //15

(2.504898603e-01 1 1) //16

(5.003331531e-01 1 1) //17

(6.541569678e-01 1 1) //18

(1.000001861e+00 1 1) //19

(-1 0 0) //20 coordinates of the inlet
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(-1 0 1) //21

(-1 1 1) //22

(-1 1 0) //23

(4 0 0) //24 coordinates of the outlet

(4 0 1) //25

(4 1 1) //26

(4 1 0) //27

);

blocks

//Definition of the blocks and of the number of cells in (x, z, y) direction.

//One cell in z direction: 2D case

// The grading option allows to specify a variable the degree of finishing of the mesh

// along one direction

(

hex (5 6 1 0 15 16 11 10) (125 1 400) simpleGrading (1 1 50)

hex (6 7 2 1 16 17 12 11) (125 1 400) simpleGrading (1 1 50)

hex (7 8 3 2 17 18 13 12) (75 1 400) simpleGrading (1 1 50)

hex (8 9 4 3 18 19 14 13) (175 1 400) simpleGrading (1 1 50)

hex (9 25 24 4 19 26 27 14) (150 1 400) simpleGrading (1 1 50)

hex (21 5 0 20 22 15 10 23) (50 1 400) simpleGrading (1 1 50)

);

edges

(

// The spline allows to connect two point with a curve line,

// interpolating all the points specified

spline 0 1 (

(2.642555636e-04 2.118387155e-05 0)

(1.196187107e-03 1.013596154e-04 0)

(2.391164127e-03 2.169787857e-04 0)

(3.337323718e-02 8.488049619e-03

(7.975447508e-02 3.539180777e-02 0)

(8.094403000e-02 3.615196887e-02 0)

(1.011604723e-01 4.846462459e-02 0)

(1.692736726e-01 7.810842660e-02 0)

(2.487983224e-01 1.000949998e-01 0)

)

spline 1 2 (

(2.521801294e-01 1.008182144e-01 0)

(2.995579493e-01 1.097353663e-01 0)

(3.926100562e-01 1.219958860e-01 0)

(4.946946172e-01 1.278379919e-01 0)

(4.992053078e-01 1.279006964e-01 0)

)

spline 2 3 (
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(5.014609990e-01 1.279255533e-01 0)

(5.195059519e-01 1.279621465e-01 0)

(5.364229439e-01 1.277221132e-01 0)

(5.612348549e-01 1.268510549e-01 0)

(6.007160256e-01 1.239144952e-01 0)

(6.526311811e-01 1.154531877e-01 0)

(6.537463389e-01 1.151343734e-01 0)

)

spline 3 4 (

(6.584814913e-01 1.135819998e-01 0)

(6.670954723e-01 1.096670242e-01 0)

(6.781899528e-01 1.022275024e-01 0)

(7.005702715e-01 8.357909926e-02 0)

(8.505962294e-01 1.225083792e-02 0)

(9.363485982e-01 1.280259906e-03 0)

(9.997102679e-01 1.369738752e-07 0)

)

spline 5 6 (

(2.642555636e-04 2.118387155e-05 1)

(4.763002238e-02 1.553935551e-02 1)

(1.035564236e-01 4.980249228e-02 1)

(1.046353622e-01 5.038915247e-02 1)

(2.403368275e-01 9.822725788e-02 1)

(2.487983224e-01 1.000949998e-01 1)

)

spline 6 7 (

(2.521801294e-01 1.008182144e-01 1)

(3.570851113e-01 1.180858127e-01 1)

(4.834101633e-01 1.276072870e-01 1)

(4.992053078e-01 1.279006964e-01 1)

)

spline 7 8 (

(5.477001312e-01 1.274103783e-01 1)

(5.713927322e-01 1.263019395e-01 1)

(5.725205781e-01 1.262329486e-01 1)

(6.503894467e-01 1.160492197e-01 1)

(6.537463389e-01 1.151343734e-01 1)

)

spline 8 9 (

(6.584814913e-01 1.135819998e-01 1)

(6.694054910e-01 1.083136210e-01 1)

(6.804952425e-01 1.004385556e-01 1)

(8.155152479e-01 2.002839700e-02 1)

(9.077660516e-01 3.870971317e-03 1)

(9.987028423e-01 2.678174891e-06 1)

(9.997102679e-01 1.369738752e-07 1)



CHAPTER 8. ANNEX 107

)

);

boundary

//Definition of the nature of each path (type wall, type inlet, type outlet...)

(

inlet

{

type patch;

faces

(

(20 21 22 23)

);

}

outlet

{

type patch;

faces

(

(24 25 26 27)

);

}

lowerWall

{

type wall;

faces

(

(5 6 1 0)

(6 7 2 1)

(7 8 3 2)

(8 9 4 3)

(9 25 24 4)

(21 5 0 20)

);

}

upperWall

{

type patch;

faces

(
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(22 15 10 23)

(15 16 11 10)

(16 17 12 11)

(17 18 13 12)

(18 19 14 13)

(19 26 27 14)

);

}

frontAndBack

{

type empty;

faces

(

(5 6 16 15)

(6 7 17 16)

(7 8 18 17)

(8 9 19 18)

(9 25 26 19)

(0 1 11 10)

(1 2 12 11)

(2 3 13 12)

(3 4 14 13)

(4 24 27 14)

(21 5 15 22)

(20 0 10 23)

);

}

);

mergePatchPairs

(

);

// ************************************************************************* //

8.3 constant Directory

In the constant directory we also specify the model of turbulence that we want to use (RASProp-
erties file)

FoamFile

{
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version 2.0;

format ascii;

class dictionary;

location "constant";

object RASProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

RASModel kEpsilon;

turbulence on;

printCoeffs on;

and the properties of our flow (we set the appropriate value of viscosity, in order to fix the
Reynolds number).

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

transportModel Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 3.66e-05;

CrossPowerLawCoeffs

{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 1e-06;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 1e-06;

m m [ 0 0 1 0 0 0 0 ] 1;

n n [ 0 0 0 0 0 0 0 ] 1;

}

BirdCarreauCoeffs

{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 1e-06;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 1e-06;

k k [ 0 0 1 0 0 0 0 ] 0;

n n [ 0 0 0 0 0 0 0 ] 1;

}
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8.4 system Directory

In the system directory, we set the parameters to control our solution, we specify the operators
to use to solve the equations and to interpolate the data, and the tolerances on the residual that
we want to be respected. This is controlDict file:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application simpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 1000;

deltaT 1;

writeControl timeStep;

writeInterval 300;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

functions

{

streamLines

{
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type streamLine;

// Where to load it from (if not already in solver)

functionObjectLibs ("libfieldFunctionObjects.so");

// Output every

outputControl outputTime;

// outputInterval 10;

setFormat vtk; //gnuplot; //xmgr; //raw; //jplot;

// Velocity field to use for tracking.

UName U;

// Tracked forwards (+U) or backwards (-U)

trackForward true;

// Names of fields to sample. Should contain above velocity field!

fields (p k U);

// Steps particles can travel before being removed

lifeTime 10000;

// Number of steps per cell (estimate). Set to 1 to disable subcycling.

nSubCycle 5;

// Cloud name to use

cloudName particleTracks;

// Seeding method. See the sampleSets in sampleDict.

seedSampleSet uniform; //cloud;//triSurfaceMeshPointSet;

uniformCoeffs

{

type uniform;

axis x; //distance;

start (-0.0205 0.001 0.00001);

end (-0.0205 0.0251 0.00001);

nPoints 10;

}

}

}

// *************************************************************************

This is the fvSolution file:

FoamFile
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{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0.01;

}

U

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

k

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

epsilon

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

R

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;
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}

nuTilda

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

residualControl

{

p 1e-2;

U 1e-3;

"(k|epsilon|omega)" 1e-3;

}

}

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.7;

k 0.7;

epsilon 0.7;

R 0.7;

nuTilda 0.7;

}

}

// *************************************************************************

The third file contained in the system folder is the fvSchemes file. Here the numerical methods
for each term of the equations are specified as follows:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.1.1 |
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| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

grad(U) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div(phi,R) Gauss upwind;

div(R) Gauss linear;

div(phi,nuTilda) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default none;

laplacian(nuEff,U) Gauss linear corrected;

laplacian((1|A(U)),p) Gauss linear corrected;

laplacian(DkEff,k) Gauss linear corrected;

laplacian(DepsilonEff,epsilon) Gauss linear corrected;

laplacian(DREff,R) Gauss linear corrected;

laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;

}

interpolationSchemes
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{

default linear;

interpolate(U) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

p ;

}

// ************************************************************************* //

If the user wants to run parallel calculation, the number of parts in which the mesh has to
be decomposed must be specified. There are three different methods to decompose the mesh:

• simple: it decomposes the domain in equal parts according in the directions specified in the
corresponding subdictionary simpleCoeffs. For example, do decompose a case in 100 parts
in the x direction, n has to be set to (100 1 1). To split the domain into 100 parts, 50 in
the x direction and 2 in the y direction, n has to be set to (50 2 1);

• hierarchical : it’s the same than simple, but the user can specify the order according to
which the decomposition is done;

• manual : it lets the user directly specify the allocation of each cell to a particular processor.

delta is the cell skew factor. It’s default value is 0.001 For our simulations, the simple method is
used.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object decomposeParDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

numberOfSubdomains 100;
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method simple;

simpleCoeffs

{

n ( 100 1 1 );

delta 0.001;

}

hierarchicalCoeffs

{

n ( 50 2 1 );

delta 0.001;

order xyz;

}

manualCoeffs

{

dataFile "";

}

distributed no;

roots ( );

8.5 Spalart-Allmaras equation

The k-ε and k-ω equation are fully treated in the chapter 3. Here the file SpalartAllmaras.C
is reported for further information about the equation implemented in OpenFOAM for this
turbulent model.

\*---------------------------------------------------------------------------*/

#include "SpalartAllmaras.H"

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

namespace incompressible

{

namespace RASModels

{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

defineTypeNameAndDebug(SpalartAllmaras, 0);

addToRunTimeSelectionTable(RASModel, SpalartAllmaras, dictionary);
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// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //

tmp<volScalarField> SpalartAllmaras::chi() const

{

return nuTilda_/nu();

}

tmp<volScalarField> SpalartAllmaras::fv1(const volScalarField& chi) const

{

const volScalarField chi3(pow3(chi));

return chi3/(chi3 + pow3(Cv1_));

}

tmp<volScalarField> SpalartAllmaras::fv2

(

const volScalarField& chi,

const volScalarField& fv1

) const

{

return 1.0/pow3(scalar(1) + chi/Cv2_);

}

tmp<volScalarField> SpalartAllmaras::fv3

(

const volScalarField& chi,

const volScalarField& fv1

) const

{

const volScalarField chiByCv2((1/Cv2_)*chi);

return

(scalar(1) + chi*fv1)

*(1/Cv2_)

*(3*(scalar(1) + chiByCv2) + sqr(chiByCv2))

/pow3(scalar(1) + chiByCv2);

}

tmp<volScalarField> SpalartAllmaras::fw(const volScalarField& Stilda) const

{

volScalarField r

(

min

(

nuTilda_

/(
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max

(

Stilda,

dimensionedScalar("SMALL", Stilda.dimensions(), SMALL)

)

*sqr(kappa_*d_)

),

scalar(10.0)

)

);

r.boundaryField() == 0.0;

const volScalarField g(r + Cw2_*(pow6(r) - r));

return g*pow((1.0 + pow6(Cw3_))/(pow6(g) + pow6(Cw3_)), 1.0/6.0);

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

SpalartAllmaras::SpalartAllmaras

(

const volVectorField& U,

const surfaceScalarField& phi,

transportModel& transport,

const word& turbulenceModelName,

const word& modelName

)

:

RASModel(modelName, U, phi, transport, turbulenceModelName),

sigmaNut_

(

dimensioned<scalar>::lookupOrAddToDict

(

"sigmaNut",

coeffDict_,

0.66666

)

),

kappa_

(

dimensioned<scalar>::lookupOrAddToDict

(

"kappa",

coeffDict_,

0.41

)

),
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Cb1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"Cb1",

coeffDict_,

0.1355

)

),

Cb2_

(

dimensioned<scalar>::lookupOrAddToDict

(

"Cb2",

coeffDict_,

0.622

)

),

Cw1_(Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_),

Cw2_

(

dimensioned<scalar>::lookupOrAddToDict

(

"Cw2",

coeffDict_,

0.3

)

),

Cw3_

(

dimensioned<scalar>::lookupOrAddToDict

(

"Cw3",

coeffDict_,

2.0

)

),

Cv1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"Cv1",

coeffDict_,

7.1

)

),

Cv2_

(
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dimensioned<scalar>::lookupOrAddToDict

(

"Cv2",

coeffDict_,

5.0

)

),

nuTilda_

(

IOobject

(

"nuTilda",

runTime_.timeName(),

mesh_,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh_

),

nut_

(

IOobject

(

"nut",

runTime_.timeName(),

mesh_,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh_

),

d_(mesh_)

{

printCoeffs();

}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

tmp<volScalarField> SpalartAllmaras::DnuTildaEff() const

{

return tmp<volScalarField>

(

new volScalarField("DnuTildaEff", (nuTilda_ + nu())/sigmaNut_)

);

}
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tmp<volScalarField> SpalartAllmaras::k() const

{

WarningIn("tmp<volScalarField> SpalartAllmaras::k() const")

<< "Turbulence kinetic energy not defined for Spalart-Allmaras model. "

<< "Returning zero field" << endl;

return tmp<volScalarField>

(

new volScalarField

(

IOobject

(

"k",

runTime_.timeName(),

mesh_

),

mesh_,

dimensionedScalar("0", dimensionSet(0, 2, -2, 0, 0), 0)

)

);

}

tmp<volScalarField> SpalartAllmaras::epsilon() const

{

WarningIn("tmp<volScalarField> SpalartAllmaras::epsilon() const")

<< "Turbulence kinetic energy dissipation rate not defined for "

<< "Spalart-Allmaras model. Returning zero field"

<< endl;

return tmp<volScalarField>

(

new volScalarField

(

IOobject

(

"epsilon",

runTime_.timeName(),

mesh_

),

mesh_,

dimensionedScalar("0", dimensionSet(0, 2, -3, 0, 0), 0)

)

);

}
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tmp<volSymmTensorField> SpalartAllmaras::R() const

{

return tmp<volSymmTensorField>

(

new volSymmTensorField

(

IOobject

(

"R",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::NO_WRITE

),

((2.0/3.0)*I)*k() - nut()*twoSymm(fvc::grad(U_))

)

);

}

tmp<volSymmTensorField> SpalartAllmaras::devReff() const

{

return tmp<volSymmTensorField>

(

new volSymmTensorField

(

IOobject

(

"devRhoReff",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::NO_WRITE

),

-nuEff()*dev(twoSymm(fvc::grad(U_)))

)

);

}

tmp<fvVectorMatrix> SpalartAllmaras::divDevReff(volVectorField& U) const

{

const volScalarField nuEff_(nuEff());

return

(

- fvm::laplacian(nuEff_, U)

- fvc::div(nuEff_*dev(T(fvc::grad(U))))

);
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}

bool SpalartAllmaras::read()

{

if (RASModel::read())

{

sigmaNut_.readIfPresent(coeffDict());

kappa_.readIfPresent(coeffDict());

Cb1_.readIfPresent(coeffDict());

Cb2_.readIfPresent(coeffDict());

Cw1_ = Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_;

Cw2_.readIfPresent(coeffDict());

Cw3_.readIfPresent(coeffDict());

Cv1_.readIfPresent(coeffDict());

Cv2_.readIfPresent(coeffDict());

return true;

}

else

{

return false;

}

}

void SpalartAllmaras::correct()

{

RASModel::correct();

if (!turbulence_)

{

// Re-calculate viscosity

nut_ = nuTilda_*fv1(this->chi());

nut_.correctBoundaryConditions();

return;

}

if (mesh_.changing())

{

d_.correct();

}

const volScalarField chi(this->chi());

const volScalarField fv1(this->fv1(chi));

const volScalarField Stilda
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(

fv3(chi, fv1)*::sqrt(2.0)*mag(skew(fvc::grad(U_)))

+ fv2(chi, fv1)*nuTilda_/sqr(kappa_*d_)

);

tmp<fvScalarMatrix> nuTildaEqn

(

fvm::ddt(nuTilda_)

+ fvm::div(phi_, nuTilda_)

- fvm::Sp(fvc::div(phi_), nuTilda_)

- fvm::laplacian(DnuTildaEff(), nuTilda_)

- Cb2_/sigmaNut_*magSqr(fvc::grad(nuTilda_))

==

Cb1_*Stilda*nuTilda_

- fvm::Sp(Cw1_*fw(Stilda)*nuTilda_/sqr(d_), nuTilda_)

);

nuTildaEqn().relax();

solve(nuTildaEqn);

bound(nuTilda_, dimensionedScalar("0", nuTilda_.dimensions(), 0.0));

nuTilda_.correctBoundaryConditions();

// Re-calculate viscosity

nut_.internalField() = fv1*nuTilda_.internalField();

nut_.correctBoundaryConditions();

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace RASModels

} // End namespace incompressible

} // End namespace Foam

// ************************************************************************* //

8.6 k-ω-SST equation

In this section we report the file kOmegaSST.C containing the source code of the SST turbulent
model.

\*---------------------------------------------------------------------------*/

#include "kOmegaSST.H"

#include "addToRunTimeSelectionTable.H"

#include "backwardsCompatibilityWallFunctions.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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namespace Foam

{

namespace incompressible

{

namespace RASModels

{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

defineTypeNameAndDebug(kOmegaSST, 0);

addToRunTimeSelectionTable(RASModel, kOmegaSST, dictionary);

// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //

tmp<volScalarField> kOmegaSST::F1(const volScalarField& CDkOmega) const

{

tmp<volScalarField> CDkOmegaPlus = max

(

CDkOmega,

dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)

);

tmp<volScalarField> arg1 = min

(

min

(

max

(

(scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_),

scalar(500)*nu()/(sqr(y_)*omega_)

),

(4*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_))

),

scalar(10)

);

return tanh(pow4(arg1));

}

tmp<volScalarField> kOmegaSST::F2() const

{

tmp<volScalarField> arg2 = min

(

max

(

(scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_),

scalar(500)*nu()/(sqr(y_)*omega_)

),
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scalar(100)

);

return tanh(sqr(arg2));

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

kOmegaSST::kOmegaSST

(

const volVectorField& U,

const surfaceScalarField& phi,

transportModel& transport,

const word& turbulenceModelName,

const word& modelName

)

:

RASModel(modelName, U, phi, transport, turbulenceModelName),

alphaK1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"alphaK1",

coeffDict_,

0.85034

)

),

alphaK2_

(

dimensioned<scalar>::lookupOrAddToDict

(

"alphaK2",

coeffDict_,

1.0

)

),

alphaOmega1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"alphaOmega1",

coeffDict_,

0.5

)

),

alphaOmega2_

(
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dimensioned<scalar>::lookupOrAddToDict

(

"alphaOmega2",

coeffDict_,

0.85616

)

),

gamma1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"gamma1",

coeffDict_,

0.5532

)

),

gamma2_

(

dimensioned<scalar>::lookupOrAddToDict

(

"gamma2",

coeffDict_,

0.4403

)

),

beta1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"beta1",

coeffDict_,

0.075

)

),

beta2_

(

dimensioned<scalar>::lookupOrAddToDict

(

"beta2",

coeffDict_,

0.0828

)

),

betaStar_

(

dimensioned<scalar>::lookupOrAddToDict

(

"betaStar",

coeffDict_,
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0.09

)

),

a1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"a1",

coeffDict_,

0.31

)

),

c1_

(

dimensioned<scalar>::lookupOrAddToDict

(

"c1",

coeffDict_,

10.0

)

),

y_(mesh_),

k_

(

IOobject

(

"k",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

autoCreateK("k", mesh_)

),

omega_

(

IOobject

(

"omega",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

autoCreateOmega("omega", mesh_)

),

nut_
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(

IOobject

(

"nut",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

autoCreateNut("nut", mesh_)

)

{

bound(k_, kMin_);

bound(omega_, omegaMin_);

nut_ =

(

a1_*k_

/ max

(

a1_*omega_,

F2()*sqrt(2.0)*mag(symm(fvc::grad(U_)))

)

);

nut_.correctBoundaryConditions();

printCoeffs();

}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

tmp<volSymmTensorField> kOmegaSST::R() const

{

return tmp<volSymmTensorField>

(

new volSymmTensorField

(

IOobject

(

"R",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::NO_WRITE

),

((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc::grad(U_)),

k_.boundaryField().types()

)
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);

}

tmp<volSymmTensorField> kOmegaSST::devReff() const

{

return tmp<volSymmTensorField>

(

new volSymmTensorField

(

IOobject

(

"devRhoReff",

runTime_.timeName(),

mesh_,

IOobject::NO_READ,

IOobject::NO_WRITE

),

-nuEff()*dev(twoSymm(fvc::grad(U_)))

)

);

}

tmp<fvVectorMatrix> kOmegaSST::divDevReff(volVectorField& U) const

{

return

(

- fvm::laplacian(nuEff(), U)

- fvc::div(nuEff()*dev(T(fvc::grad(U))))

);

}

bool kOmegaSST::read()

{

if (RASModel::read())

{

alphaK1_.readIfPresent(coeffDict());

alphaK2_.readIfPresent(coeffDict());

alphaOmega1_.readIfPresent(coeffDict());

alphaOmega2_.readIfPresent(coeffDict());

gamma1_.readIfPresent(coeffDict());

gamma2_.readIfPresent(coeffDict());

beta1_.readIfPresent(coeffDict());

beta2_.readIfPresent(coeffDict());

betaStar_.readIfPresent(coeffDict());

a1_.readIfPresent(coeffDict());

c1_.readIfPresent(coeffDict());
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return true;

}

else

{

return false;

}

}

void kOmegaSST::correct()

{

RASModel::correct();

if (!turbulence_)

{

return;

}

if (mesh_.changing())

{

y_.correct();

}

const volScalarField S2(2*magSqr(symm(fvc::grad(U_))));

volScalarField G("RASModel::G", nut_*S2);

// Update omega and G at the wall

omega_.boundaryField().updateCoeffs();

const volScalarField CDkOmega

(

(2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_

);

const volScalarField F1(this->F1(CDkOmega));

// Turbulent frequency equation

tmp<fvScalarMatrix> omegaEqn

(

fvm::ddt(omega_)

+ fvm::div(phi_, omega_)

- fvm::Sp(fvc::div(phi_), omega_)

- fvm::laplacian(DomegaEff(F1), omega_)

==

gamma(F1)*S2

- fvm::Sp(beta(F1)*omega_, omega_)

- fvm::SuSp

(
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(F1 - scalar(1))*CDkOmega/omega_,

omega_

)

);

omegaEqn().relax();

omegaEqn().boundaryManipulate(omega_.boundaryField());

solve(omegaEqn);

bound(omega_, omegaMin_);

// Turbulent kinetic energy equation

tmp<fvScalarMatrix> kEqn

(

fvm::ddt(k_)

+ fvm::div(phi_, k_)

- fvm::Sp(fvc::div(phi_), k_)

- fvm::laplacian(DkEff(F1), k_)

==

min(G, c1_*betaStar_*k_*omega_)

- fvm::Sp(betaStar_*omega_, k_)

);

kEqn().relax();

solve(kEqn);

bound(k_, kMin_);

// Re-calculate viscosity

nut_ = a1_*k_/max(a1_*omega_, F2()*sqrt(S2));

nut_.correctBoundaryConditions();

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace RASModels

} // End namespace incompressible

} // End namespace Foam

// ************************************************************************* //
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