
Function manual
Define RUNNING_DIRS = the directory where you extract “sbpl.tar.gz”.
Define LIBRARY_DIRS = RUNNING_DIRS/trunk/sbpl/.

Direct Increment:
The code for direct increment library is located in the directory
“LIBRARY_DIRS/src/discrete_space_information\template\”

1. HashTable
Hash table is a vector to store visited states. Element is defined as struct “EnvXXXHashEntry_t”

Element 1 Element 2 Element 3 ... Element
N

stateID1
x1
y1
theta1
speed1
steer1

stateID2
x2
y2
theta2
speed2
steer2

stateID3
x3
y3
theta3
speed3
steer3

... stateIDN
xN
yN
thetaN
speedN
steerN

Useful functions:
EnvXXXHashEntry_t* GetHashEntry(int x, int y, double theta, int speed, double steer)
{
Goes through all the element in the hashtable, find the one with the same (x, y, theta, speed, steer).
Return the pointer to that element.
}

EnvXXXHashEntry_t* CreateNewHashEntry(int x, int y, double theta, int speed, double
steer)

{
Insert one element at the end of Hash table.
Return the pointer to the newly added element.
}

2. Initialize environment
 This part is about read data from configuration file. The whole process is below, details is in section
“useful functions”.

bool EnvironmentXXX::InitializeEnv(const char* sEnvFile, const char* roughnessEnvFile, const
vector<sbpl_2Dpt_t>& perimeterptsV)

{
ReadConfiguration(fCfg);
InitializeEnvConfig();
InitializeEnvironment();
ComputeHeuristicValues();
 Return 1 if initiation is complete.
}

useful functions:
void EnvironmentXXX::ReadConfiguration(FILE* fCfg)
{
readin map data, roughness map data, vehicle configurations
}

void EnvironmentXXX::InitializeEnvConfig()
{
convert vehicle configurations into cells.
}

void EnvironmentXXX::InitializeEnvironment()
{
init hash table and add start & goal states into hash table.
}

void EnvironmentXXX::ComputeHeuristicValues()
{
precompute useful heuristics.
}

3. Getsuccessors:
“Get successors” function is used for forward search planning, the planner begins with start state
and visited all possible successors’ states, calculate corresponding action cost. Add them to the
hashtable. The planners continue working like this until goal state is reached. Details is given
below:

void EnvironmentXXX::GetSuccs(int SourceStateID, vector<int>* SuccIDV, vector<int>*
CostV)
{

Assign all possible [newx,newy,newtheta,newspeed,newsteer] and corresponding action
costs. ** details of action cost see part 5

Add every single [new,newy,newtheta,newspeed,newsteer] into hash table.
Pass on Succsessors ID vector SuccsIDV to the planner.
Pass on Action cost vector CostV to the planner.

}

4. Getpredecessors:
“Get successors” function is used for backward search planning, the planner begins with goal state
and visited all possible predecessors’ states, calculate corresponding action cost. Add them to the
hashtable. The planners continue working like this until start state is reached. Details is given
below.

void EnvironmentXXX::GetPreds(int TargetStateID, vector<int>* PredIDV, vector<int>*
CostV)
{

Assign all possible [newx,newy,newtheta,newspeed,newsteer] and corresponding action
costs. ** details of action cost see part 5

add every single [new,newy,newtheta,newspeed,newsteer] into hash table.
Pass on Predecessors ID vector PredIDV to the planner.
Pass on Action cost vector CostV to the planner.

}

5. Action cost calculation:
There are two functions work together to get the action cost.

1.“int EnvironmentXXX::actioncost(int oldx, int oldy, double oldtheta, int oldspeed, double
oldsteer,int newx, int newy, double newtheta, int newspeed, double newsteer, int dx, int dy)”

2. “int EnvironmentXXX::GetActionCost(int SourceX, int SourceY, int SourceTheta,
EnvXXXAction_t* action)”

1. function “actioncost” calculates based on roughness, type of trajectory(shortest, smoothest)
and work out the cost.

i.e. in the case of shortest path, dx & dy means the displacement of action, cost is given by
(dx^2+dy^2)*(maximum roughness of intermediate cells)

2. function “GetActionCost” check validity of cells during the action.
{

Return infinite cost if is not valid intermediate cells, there occur vehicle collision during
action or future collision problem, i.e. Check 2 times the displacement of action(2*[dx,dy]).

Return finite cost(the one from “actioncost” function) if all check is valid.
}

