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    ABSTRACT 

 

The stereoscopic system is settled in the laboratory and used for measurement of 3D 

coordinates. By using experimental data the uncertainty of the measurements described by means of 

discrepancies. A numerical approach developed by using Monte Carlo method in order to 

investigate the effect of parameters on the uncertainties. As a result; the effect of investigated 

parameters described including comparison for the certain experiment setup and the developed 

numerical approach is applicable for any other stereoscopic system with different baseline.  

 

Keywords: stereoscopy, uncertainty, Monte Carlo, 3D measurement. 
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1. Introduction to Camera Calibration  

 

Taking an image of an object by camera cause some defects on it during transferring from  

3-D reference frame to 2-D image frame due to the camera components like lenses and sensors.  

The aim of the camera calibration is making correction on the image and gathering the image as 

close as to the real world.  

There are some softwares to calibrate the cameras and to correct the images.   In order to 

calibrate the cameras we used Camera Calibration Toolbox for MatLab Software designed by 

California Institute of Technology.  

Before start to explain calibration procedure, we have to be familiar with some parameters 

and theory of the camera calibration and pinhole camera model. 

 

1.1. Pinhole Camera Model 

  

 The pinhole camera model defines the mathematical relations through projection from 3D 

coordinates to image plane by a pinhole camera that no lenses are used to focus light as aperture 

.The camera aperture is just defined as a point. The pinhole aperture of the camera where the whole 

projection lines pass is considered to be extremely small point. In the literature this point in 3D 

space is referred to as the optical (or lens or camera) center.[1] 

 Light from a point travels along a single straight path through a pinhole onto the view plane. 

The object is imaged upside-down on the image plane.[2] 



Page | 2  
 

 

 

Figure 1.1 Geometry of a Pinhole Camera  

 

 

There is another way of thinking about the pinhole cameras. Let’s suppose to view a scene 

with one eye looking through a square window, and draw a picture of what we see through the 

window . The image we would get corresponds to drawing a ray from the eye position and 

intersecting it with the window. This is equivalent to the pinhole camera model, except that the 

view plane is in front of the eye instead of behind it, and the image appears rightside-up, rather than 

upside down. (The eye point here replaces the pinhole). [2] 

 

1.1.1 Geometrical and Mathematical Relations of the Pinhole Camera 

 

 By looking at figure-1.2 ,C is the origin of  3D orthogonal coordinate system  also where the 

camera aperture is positioned. X, Y, Z are pointed as three axes of the coordinate system. Z axis is 

directed to the field of view of the camera and it is introduced as the optical axis or principal axis. 
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The image plane is parallel to axes X and Y and it is positioned at a distance from the origin 

C where the 3D world is projected through the aperture of the camera. The distance between image 

plane and the camera center gives the focal length f of the pinhole camera. The image plane is 

perpendicular to the  Z axis. 

 

 

  Figure 1.2 Geometry of a Pinhole Camera with Coordinates 

 

 

The point P is cited as the principal point or image center where the intersection of the 

image plane and the optical axis and the coordinates of the principal point is (u0, v0) . The point m 

into the real world with coordinates related to the axes X,Y, Z is projected to the image plane 

denoted as mı through the red projection line. The point mı is the intersection point of the projection 

line(red) and the image plane. 
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Moreover, there is a 2D coordinate system on the image plane, with origin at P and with 

axes u and v which are parallel to X and Y, properly. The coordinates of point mı corresponding to 

this coordinate system is (u, v). 

For the next step, we need to understand the relations between the coordinates of mı (u, v) 

and coordinates of point m (X, Y, Z) according to camera reference frame. We can obtain the 

equation (1.1) by figure-1.3.  

 

        
 

 
          

 

 
                                          (1.1)    

 

 

Figure 1.3. Geometry of a pinhole camera as seen from the X axis  
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1.1.2. Central Projection by Using Homogenous Coordinates 

 

  If the world and image points are represented by homogenous vectors, then central 

projection is very simply expressed as a linear mapping between their homogenous coordinates. It 

may be written in terms of matrix multiplication as in the equation 1.2. [3] 

                               (
 
 
 
) (

  
  
 

)  [
  

  

  

] (

 
 
 
 

)                                  (1.2) 

 

In practice, the origin of coordinates in the image plane is not coincident with the principal 

point. So, the expression on equation 1.2 is modified as equation 1.3. 

 

  (
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)  [
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)                                 (1.3) 

 

        K = [
   

   

 

]                                                             (1.4) 

 

    mı
 = K [ I I 0] m      (1.5) 
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And, K is called the camera calibration matrix. In (1.5) If we write (u, v,1)
T
 as mı and (X, 

Y, Z, 1)
T 

as m  and the camera is assumed to be located at the origin of Euclidian coordinate system 

with the principal axis  of the camera pointing straight down the Z-axis and the point m is expressed 

in this coordinate system. This coordinate system may be called the camera coordinate frame.[3] 

 

 

1.2. Description of the calibration parameters 

In this section the calibration parameters will be explained in detail with the contribution of 

visual sources. 

 

1.2.1. Intrinsic parameters  

In the program shortenings are used to identify the internal parameters. 

 

 Focal length: The focal length of an optical system is a measure of how strongly the system 

converges or diverges light. For an optical system in air, it is the distance over which 

initially collimated rays are brought to a focus.  

A system with a shorter focal length has greater optical power than one with a long 

focal length; that it bends the rays more strongly, bringing them to a focus in a shorter 

distance.   

http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Collimated
http://en.wikipedia.org/wiki/Focus_(optics)
http://en.wikipedia.org/wiki/Focal_length
http://en.wikipedia.org/wiki/Optical_power
http://en.wikipedia.org/wiki/Ray_(optics)
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Longer focal length (lower optical power) leads to higher magnification and a 

narrower angle of view; conversely, shorter focal length or higher optical power is 

associated with a wider angle of view. As it can be seen on figure 1.4, if the focal length 

decreases, the angle of view increases. 

 

 

 

Figure 1.4 Visual demonstration of the relation between angle of view and focal length 

 

 In the calibration tool the focal length in pixels is stored in the 2x1 vector  as fc, the 

first row of the matrix is the focal length on u direction and the second row of the matrix is 

the focal length on v direction. The ratio of fc(2) / fc(1) is called aspect ratio and it equals to 

1 when the CCD sensor array is square but camera sensors generally are non-square, it is the 

reason of why we use two different focal length. Considering the focal length on u and v 

axis , we have to update the K matrix .  

 

 

http://en.wikipedia.org/wiki/Magnification
http://en.wikipedia.org/wiki/Angle_of_view
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         [
       

       

 

]       (1.6) 

 

 

 

   Figure 1.5. Focal Length on u and v axes 

 

 

 Principal point: The principal point coordinates are the center of coordinates on the image 

plane (at the same time, sensor plane), P (u0, v0) and these coordinates stored in the 2x1 

vector. First row of the vector demonstrates the pixel coordinates on u direction and the 

second row of the vector demonstrates the pixel coordinate on v direction. Principal point is 

shown in the tool as cc and it is fixed as ( 
 
) during calibration. 

 

 Skew coefficient: The skew coefficient defines the angle between the u and v pixel axes. It’s 

optimal value is 90 
o
 and shown as alpha_c. If we update the matrix K  
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       [

              

       

 

]      (1.7) 

 

 Distortions: The image distortion coefficients (radial and tangential distortions) are stored in 

the 5x1 vector kc.  

Radial distortions are symmetric and ideal image points are distorted along radial 

directions from the distortion center. This is caused by imperfect lens shape and deviations 

are most noticeable for rays that pass through the edge of the lens. Decentering distortions 

are usually caused by improper lens assembly and ideal image points are distorted in both 

radial and tangential directions.[4] 

Let’s consider the projection of point m on the camera reference frame and let’s take Xn as 

the normalized (pinhole) image projection.   

 

  Xn = [
   
   

]  [
  

  
]                            (1.8) 

 

And let             
 
    

             (1.9)
5 

 

Xd is the distorted coordinates and it is derived from undistorted image coordinates Xn in 

(1.10), where dx is the tangential distortion vector that may be found from (1.11)[5] 
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Xd = [
     

     
] =                                    Xn + dx           (1.10)

5
  

    [
                   (       

 
)

     (       
 
)              

]            (1.11)
5 

 

kc vector consists of both tangential and radial distortion coefficients. After distortion is 

assigned, the final pixel coordinates c_pixel = [u;v] of the projection of m on the image plane is: 

 

        (                    )                         

                                  (1.12)
5
  

 

The pixel coordinate vector c_pixel and distorted coordinate vector    are realted to each 

other by linearly. 

 

     [
 
 
 
]    [

     

     
 

]                         (1.13)
6 

 

Finally, the camera calibration matrix K is defined as:  

 

                  [
                   

        

   

]                   (1.14)
6 
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Also, this tool calculates the uncertainties of fc, cc,kc and alpha_c and those vectors are 3 

times of the standard deviation of error estimation. Pixel coordinates are expressed as [0;0] is the 

left upper pixel’s center. [nx-1;0] is the right upper pixel’s center, [0;ny-1] is the lower left corner 

pixel’s center, [nx-1;ny-1] is the lower right pixel’s center. 

 In our experiment nx=3872 , ny=2592 . In the toolbox there is a function that computes 

direct projection map.This function takes the 3-D coordinates of the set of points in world or camera 

reference frame and intrinsic camera parameters and returns the pixel projections of the points on 

image plane. [6] 

 

1.2.2. Extrinsic Parameters 

 

 Extrinsic parameters are related with the camera’s location and the orientation of it with the 

world. Rotations and translations vectors represent the extrinsic parameters and give the relations 

between the world reference frame (Xworld, Yworld, Zworld)
T
and the camera reference frame coordinates 

(X, Y, Z)
T
 . 

 

Figure 1.6. Rotation and translation from world coordinates to camera coordinates 
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                               [
 
 
 
]                   

  
 
      (

  
 

)   [             ]              (1.15)
7 

       

               
      (1.16) 

 

       
   is the rotation matrix which rotates the coordinates from the world reference frame 

to the camera reference frame and can be seen in (1.17).        
   is the translation matrix that 

translates the coordinates from the world reference frame to the camera reference frame. P is the 

projection matrix that equals at the same time                  
  

 
       and uses both the intrinsic 

(K) and the extrinsic parameters (R,O).  

There are 11 free parameters into the Perspective Projection Matrix P, 5 of them are 

intrinsic, 3 of them are rotation and 3 of them are translation parameter.[7] 

        

 

 

   Figure 1.7. Rotation with Euler Angles
8 
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   (
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)(
     
             
          

)         (1.17)
8 

 

 

  (
                                                      
                                                   

                      
)           (1.18) 

 

 Finally, we may represent the relation between the world coordinates 

(                      )
T
 and the image coordinates (u, v) in (1.19) 

 

    [
 
 
 
]   (

     
     
     

)(
      

      

      

)             (1.19)
8 

 

In the notation of the Camera Calibration toolbox for Matlab, the reference frame of the  

calibration grid is (O,X,Y,Z) in the Figure1.8 
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Figure 1.8. Reference frame of the calibration grid
6
 

 

 X is a point in space with coordinate vector XX = [X;Y;Z] on the grid reference frame 

(figure 1.8). XXc = [Xc;Yc;Zc] is the coordinate vector of point X on the camera reference frame . 

Then XX and XXc are related to each other with the equation (1.20)
6 

 

 XXc = Rc_1 * XX + Tc_1             (1.20)
6 

 

 The translation vector Tc_1 is the coordinate vector of the origin of the grid pattern (O) in 

the camera reference frame and the third column of the matrix Rc_1 is the surface normal vector of 

the plane contains the planar grid in camera reference frame. This is valid for whole the extrinsic 

parameters (Rc_2,Tc_2), (Rc_3,Tc_3), ... , (Rc_25,Tc_25). The vectors  omc_1, omc_1, ... 

, omc_25 are the rotation vectors related to the rotation matrices Rc_1, Rc_1, ... , Rc_25. These two 

are associated to  the Rodrigues formula.  
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For example, Rc_1 = rodrigues(omc_1). As with in the intrinsic parameters, uncertainties 

related to the extrinsic parameters omc_i, Tc_i (i=1,...,n_ima)   can be also calculated by 

toolbox. These uncertainties are represented approximately three times of the standard deviation of 

error estimation.[6] 

 

1.3. Camera Calibration Procedure  

In this section single camera calibration, stereo vision and the stereo camera calibration 

procedure will be explained. 

  

1.3.1 Single Camera Calibration 

 

 A planar checkerboard grid is used in more than 2 different positions like Zhang’s 

calibration method. [9] In this experiment the planar checkerboard grid is used in 25 different 

orientations in order to calibrate the camera. During calibration process there are several steps 

which are loading calibration images, extracting image corners, running the main calibration 

engine, displaying the results, controlling accuracies, adding and suppressing images, undistorting 

images, exporting calibration data to different formats.[10] 
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1.3.1.1. Loading Calibration Images 

 

First step is to upload the images on the calibration tool for Matlab that are taken with the 

checkerboard grid with 25 different positions on the experiment. (See figure 1.9) 

 

 

      Figure 1.9. 25 Different orientation of the planar checkerboard grid 

 

If the memory of the hardware that executes the MatLab tool is not enough, it is better to 

switch the program with memory efficient version. 
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1.3.1.2. Extracting Image Corners 

 

By choosing extract grid corners option in the camera calibration tool we choose all the 

images. Then it is selected default window size of the corner finder and in this experiment it is 

chosen wintx and winty as 5. It means that automatic corner finder is going to search the corners in 

11x11 pixel size. When the distortion values are high it may not be enough wintx and winty as 5. In 

order to catch the correct corners these optimum values have to be chosen. If the windows sizes are 

chosen too high, the program may find the wrong corners. [10] 

 Then, it is chosen 4 extreme corners of the rectangular checkerboard pattern. It should be 

clicked carefully at most 5 pixel away the corners. On the contrary, some corners might be missed. 

 The first clicking point is related to the origin point of the reference frame. The other 3 

points of the rectangular grid can be chosen by any order. (See figure 1.10). 

 

 

Figure 1.10. Extracting grid corners
10 
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 After choosing the corners of the grid, it is entered the x and y direction values of the 

squares of the checkerboard. It is 33 mm in this experiment. At the end of the value entries, the 

program counts the number of the squares in both dimensions and shows the approximated grid  

corners without distortion (figure 1.11). 

 

 

      Figure 1.11. Checkerboard grid with counted squares 

  

If the approximated corners are not satisfactory enough for the real corners, than the 

distortion cefficient should be predicted to compensate the distortion of the lense. kc (lense 

distortion coefficient) has to changed in order to obtain more realistic corner extraction. This 

process may be repeated with estimating kc values by trial and error till obtain reasonable 

corners.[10] 
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     Figure 1.12. Extracting corners before and after the distortion coefficient is applied 

 

 The figure 1.12 shows the images of the corner extracting profcess before and after 

distortion coefficient is applied. The left image shows when the kc=0 , the right image shows kc = -

0.3 

 After corner extraction, the matlab data file calib_data.mat is automatically generated. This 

file contains all the information gathered throughout the corner extraction stage (image coordinates, 

corresponding 3D grid coordinates, grid sizes, ...).  

If the lens distortions are really too severe (for fisheye lenses for example), the simple 

guiding tool based on a single distortion coefficient kc may not be sufficient to provide good 

enough initial guesses for the corner locations. For those few difficult cases, a script program is 

included in the toolbox that allows for a completely manual corner extraction.[10] 
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1.3.1.3. Main Calibration Stage 

 

After the corner extraction step is completed, the main camera calibration procedure is 

executed. Calibration occurs in two steps: first initialization, and then nonlinear optimization.  

A closed-form solution is computed in the initialization step for the calibration parameters 

based not including any lens distortion. The total reprojection error is minimized by non-linear 

optimization step (in the least squares sense) over all the calibration parameters (9 DOF for 

intrinsic: focal, principal point, distortion coefficients, and 6*20 DOF for extrinsic, totally 129 

parameters). The optimization is done by iterative gradient descent with an explicit (closed-form) 

computation of the Jacobian matrix.[10]  

After these, the calibration parameters are stored in number of variables. If the skew 

coefficient alpha_c and the 6th order radial distortion coefficient (the last entry of kc) have not been 

estimated, the angle between u and v pixel axes is 90 degrees.If the reprojection error is still too 

large, it generally causes because of the grid corners were not very precisely extracted for a number 

of images.  

Then, let’s click on Reproject on images in the Camera calibration tool to show the 

reprojections of the grids onto the original images. These projections are computed based on the 

current intrinsic and extrinsic parameters. Generally the reprojection error is too large across a large 

number of figures because of not doing a careful job when extracting corners with highly distorted 

images. A better job could have been done by using the predicted distortion option. We can correct 

for that now by recomputing the image corners on all images automatically.[10] 
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After that, we choose the mode of extraction: the automatic mode (auto) uses the re-

projected grid as initial guess locations for the corner, the manual mode let’s the user extract the 

corners manually (the traditional corner extraction method). In the present case, the reprojected grid 

points are very close to the actual image corners. Therefore, we can select the automatic mode. 

Only six iterations were necessary for convergence, and no initialization step was performed (the 

optimization started from the previous calibration results). After the optimization we can save the 

calibration results (intrinsic and extrinsic) in the matlab file Calib_Results.mat.[10] 

 

 

Figure 1.13. Projected (left) and Re-projected (right) error in pixels 

 In the left graph, projected error is more than the right graph; it means that after reprojection 

step, error value decreases. 

 The camera calibration tool can show the new 3D positions of the grids with respect to the 

camera by choosing the Show Extrinsic option.  
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Figure 1.14. 3D positions of the checkerboard grids with respect to the camera  

 

The tool Analyse error option allows to inspect which points match with the large errors. 

By clicking on the desired error region on (figure 1.14), the datas can be seen on the program.  

The error inspection tool is very useful in cases where the corners are extracted badly into 

one or more images. In such a case, to recompute the corners of the specific images using a 

different window size is possible. Therefore, wintx and winty windows sizes can be choosen 

differently for all the images. 

After recomputing the corners, we may recalibrate the camera by choosing calibration 

option in the tool. By this way, we can monitor a decrease on reprojection error compared to 

previous ones. In addition, we may recognize that the uncertainties on the calibration parameters are 

also smaller. 
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Figure 1.15. A close view to the corners of the grid on image 21 before and after recomputing 

corners 

 

 It can be observed on (figure 1.15) that changing windows sizes on related image is useful to 

contract the reprojection error. On the right image that is after recomputing corners step on (figure 

1.15) corner extracting is more successful than the left image.  

So it is possible to say that  recomputing step serves properly. At the end of the process we 

may save the results of intrinsic and extrinsic parameters as Calib_Results.mat. 

 

1.3.2 Stereo Vision Systems 

 

Stereo vision is a technique that aims to infer the depth information from two or more 

cameras. With two or more camera it can be inferred depth by means of triangulation, if we may 

find the related points in the two images. In order to obtain the stereo vision we need to apply stereo 

camera calibration process. 
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1.3.2.1. Camera Calibration for Stereo Systems 

 

While running the camera calibration tool for Matlab for stereo vision, first of all we have to 

calibrate the both two cameras separately like on the calibration procedure for one camera . After 

calibrating right and left cameras the calibration results will be saved as Calib_Results_left.mat for 

left camera and Calib_Results_right.mat for right camera. Then, within the folder including stereo 

data  “Load left and right calibration files” option is chosen into the stereo toolbox and 

Calib_Results_left.mat , Calib_Results_right.mat is loaded.  

 At the end of the uploading data, intrinsic parameters of the right and left cameras are 

calculated and demonstrated. Moreover, extrinsic parameters om(rotation) and T(translation) 

vectors are calculated that characterize the relative location of the right camera with respect to the 

left camera.  

The intrinsic parameters fc_left, cc_left, alpha_c_left, kc_left, fc_right, cc_right, 

alpha_c_right and kc_right are equivalent to the traditional parameters fc, cc, alpha_c and kc 

defined on the previous section.  

The two pose parameters om and T are defined such that if we consider a point P in 3D 

space, its two coordinate vectors XL and XR in the left and right camera reference frames 

respectively are related to each other through the rigid motion transformation in equation 

(1.21).[11] 

 

XR = R * XL + T             (1.21)
11 
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Where R is the 3x3 rotation matrix corresponding to the rotation vector om. The relation 

between om and R is given by the rodrigues formula R = rodrigues(om). After executing “Run 

stereo calibration” in the stereo toolbox, we can derive the calibration data for the stereo system. 

At the end of the procedure, all intrinsic and extrinsic parameters have been recalculated 

together and it can be observed that the uncertainties on intrinsic parameters for both cameras are 

smaller after stereo calibration. The stereo calibration results are saved as 

Calib_Results_stereo.mat. We can monitor the extrinsic parameters in a form of 3D plot.(see 

figure 1.16) 

 

 

Figure 1.16. Extrinsic parameters of the stereo rig 

 

It is very important to keep in mind for the corner extraction process that for each pair, the 

same set of points must be selected in the left and right images. This means that same grid of points 

and same origin point must be chosen. In this experiment the left upper corner has been chosen as 

the origin of the grid. 
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Finally, the stereo images can be rectified with the “Rectify the calibration images” option in 

the stereo toolbox. (With epipolar lines matching with the horizontal scanned lines). In addition to 

generating the rectified images, the script also saves the new set of calibration parameters under 

Calib_Results_stereo_rectified.mat (valid only for the rectified images).[11] 

 There are several advantages of using a stereo rig rather than a single camera. The epipolar 

geometry associated with the left and right images of the stereo rig remains unchanged over time 

and therefore it is possible to collect several image pairs and to compute a common fundamental 

matrix for all these image pairs rather than for individual pairs.  

The tracking of image point-features over time is facilitated by the fact that the two cameras 

are rigidly attached to each other, and the problem of upgrading a 3D projective structure to an 

affine structure can be solved, either in closed form or using linear minimization methods which is a 

great advantage over nonlinear methods generally associated with single camera calibration.[12] 

 

1.3.2.2. Stereo Triangulation 

 

The stereo triangulation is a process that computes the 3D locations of a group of points 

given their left and right image projections. We can compute the 3D location of the grids points 

extracted on the one of the image pairs in the experiment.  

For example, after running through the complete stereo calibration, the image projections of 

the grid points on the right and left images are available in the variables x_left_1 and x_right_1 for 

images (left01.jpg, right01.jpg).  



Page | 27  
 

In order to triangulate those points in space, we execute stereo_triangulation.m by 

inputting x_left_1,x_right_1, the extrinsic stereo parameters om and T and the left and right 

camera intrinsic parameters: 

 

                                           [       
         

]                       (1.22) 

                                                                                                      ) (1.22) 

 

 The output variables Xc_1_left and Xc_1_right are the 3D coordinates of the points in the 

left and right camera reference frames respectively (observe that Xc_1_left and Xc_1_right are 

related to each other through the rigid motion equation(1.23)[11] 

 

Xc_1_right = R * Xc_1_left + T                      (1.23)
11 
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2. Experimentation in Laboratory 

 

     We can simply call  “two sphere experiment” , basically there are 2 spheres which are 

placed with certain distance from each other .The  idea is mount these two sphere on CMM machine 

and take photos in known position where we already generate single and stereo calibration for two 

cameras. Then by using the 2D coordinates of the center of the spheres as an input to the specific 

matlab code and gets the 3D coordinates of the center of the spheres in camera coordinate system. 

Then create a relation between known coordinates and out-put coordinates from the matlab code in 

order to obtain uncertainty map in the certain working volume which we are going to describe. 

 

2.1. The Aim of the Experiment 

    

     The main target is to create an uncertainty map of certain volume where we have the stereo 

calibration. The point is which parameters have influence on the uncertainty and how much they are 

effective respect to other parameters. 

 

2.2.The equipment’s and initial parameters 

    

For the experiment we need 2 cameras, 2 precise sphere mounted on bar , CMM machine , 

two tripod to hold the cameras , adjustable lights , remote control for the cameras. 

    One of the important thing is cameras should have same lenses and the initial settings such 

as ISO , focus distance , resolution should be same. 
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                                      Figure.2.1. Fixed cameras on the tripods 

 

   As we can see on the figure.2.1 the cameras fixed on the tripods, then as we mentioned 

before cameras are settled to these settings:  

 ISO 200 

 Focus : Manual focus at a distance of 1.5 meter 

 Format : Jpg 

 Resolution : 3872 x 2592 

   The main reason to use same settings for both cameras is after the all process to be able to 

compare two cameras in a more reliable way. 
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2.3. Single Calibration of Cameras  

 

     After the settings the system is ready for the calibration step. First we calibrate the 2 

cameras separately which calls single camera calibration. Then by using single camera calibration 

data’s we will be able to obtain stereo calibration step. 

 

 

 

 

 

 

 

                                          Figure.2.2. Positions of checker board   

  

    In the calibration step one of the most important point is our calibration volume should cover the 

working volume that where we are going to try to generate the uncertainty map. Because calibration 

data’s of cameras are valid in the certain volume where calibration is done, so we placed the 

checker board on 25 different positions. And the board took place close and far from the cameras 

and also photos taken for different angles. 
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2.3.1. Left Camera Calibration 

  

     Once we get the 25 photos of checker board from each camera then we will be ready to do 

calibration. As explained in the theory of the calibration we obtain the calibration data of left 

camera by following defined steps.  

 

 

The Intrinsic parameters of left camera:  

 

 Focal length:      fc = [ 3929.5 ; 3943.2 ]; 

 

 Principal point:    cc = [ 1936; 1296]; 

 

 Skew coefficient:     alpha_c = 0; 

 

 Distortion coefficients: kc = [ -0.04 ; 0.06 ; -  0.0004; -0.004 ; 0]; 

 

 Focal length uncertainty:  fc_error = [ 17.4 ; 17.2 ]; 

 

 Principal point uncertainty:  cc_error = [ 0; 0]; 

 

 Skew coefficient uncertainty:  alpha_c_error = 0; 

 

 Distortion coefficients uncertainty:  kc_error = [ 0.03 ; 0.14 ; 0.00 ; 0.003 ; 0]; 

 

   By using matlab tool-box the intrinsic parameters which are well defined in the theoretic 

part are obtained.  
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2.3.2. Right Camera Calibration 
 

    

    By using same procedure of left camera calibration we obtained the right calibration data’s. 

 

The Intrinsic parameters of left camera: 

 

 Focal length:  fc = [ 3789.1 ; 3815.8 ]; 

 

 Principal point:  cc = [ 1936; 1296]; 

 

 Skew coefficient:  alpha_c = 0; 

 

 Distortion coefficients: kc = [ -0.072 ; 0.065 ; -0.0007 ; -0.0009; 0]; 

 

 Focal length uncertainty: fc_error = [ 15.2 ; 16.4]; 

 

 Principal point uncertainty: cc_error =[ 0; 0]; 

 

 Skew coefficient uncertainty:  alpha_c_error = 0; 

 

 Distortion coefficients uncertainty: kc_error = [ 0.02 ; 0.15 ; 0.0009; 0.001 ; 0]; 
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2.4. Stereo Calibration of Two Cameras 
 

    

    Once we have the calibration data’s of the single cameras, we can perform the stereo 

calibration. Again by using matlab tool-box we can easily perform this step. For stereo calibration 

tool-box has specific command which is “stereo_gui”.  

 

 

 

                       
               

                               Figure.2.3. Stereo Calibration Command Window 

 

 

     Once we write the “stereo_gui” command to matlab we see the menu which we can see 

above. This useful menu allows us to load the single calibration data’s and by using them create the 

stereo calibration. After loading the single calibration data’s we just simply use the “Run stereo 

calibration” command in order to obtain the stereo calibration data’s. 

 

Stereo calibration parameters: 

 

Intrinsic parameters of left camera: 

 

 Focal Length:   fc_left = [ 3956.3  , 3976.3 ] ± [ 9.5   8] 

 Principal point:  cc_left = [ 1936, 1296] ± [ 0 0] 

 Skew: alpha_c_left = [ 0] ± [ 0]   => angle of pixel axes = 90± 0degrees 

 Distortion:  kc_left = [ -0.096  0.29   -0.00026   -0.0021  0] ± [ 0.03   0.15 0.0005   0.003 0] 
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Intrinsic parameters of right camera: 

 

 Focal Length: fc_right = [ 3826.9   3856.4 ] ± [ 8.3  8.3 ] 

 Principal point: cc_right = [ 1936  1296] ± [ 0   0] 

 Skew: alpha_c_right = [ 0] ± [ 0]   => angle of pixel axes = 90± 0degrees 

 Distortion: kc_right = [ -0.073   -0.016   0.0004   -0.00018  0] ± [ 0.02   0.14   0.00067   

0.001 0] 

 

 

 

 

Extrinsic parameters (position of right camera wrt left camera): 

 

 Rotation vector:  om = [ 0.01109   0.24241  0.00444 ] ± [ 0.00015   0.00046  0.00020 ] 

 Translation vector:   T = [ -0.37076   -0.00069  0.06835 ] ± [ 0.00057   0.00016  0.00183 ] 

 

  The “ stereo_gui window” includes the other useful commands such as “ show extrinsic of 

stereo rig” which shows the 25 different positions of the checker board on the camera coordinate 

system and the position of the camera respect to each other . 

 

 

Figure.2.4. The position of cameras and positions of checker board on the camera coordinate 

system. 
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      As we can see above the 25 different position of checker board and their distance to the cameras 

in camera reference system. We can say that calibration volume starts from 0.9 meter and finishes at 

1.8 meter, so that means our calibration data’s are useful in that range. That information will be 

helpful while we will be defining the working volume for the experiment; the working volume 

should be covered by the calibrated volume. 

 

 

                                   Figure.2.5. The distance between the cameras 

     

      The other important information is the distance between two cameras; according to stereo 

calibration data distance between cameras is 0.37076 meter, and we roughly estimated in advance 

this distance which is 0.38 meter. That information shows that the stereo calibration data’s are 

sufficiently reliable.  
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2.5. Working Volume of Experiment  

     

     As it is mentioned before one of the important step is to define “working volume”, there is 

no such a rule for this definition. The important thing is that working volume should be placed in 

the intersection of the cameras view zone. Basically working volume should be visible from both 

cameras.  

 

Figure.2.6. The order of points on the plane 

      

First we define the orientation of the points on the plane, as we can see on figure.2.6 we 

have 13 points  on one plane. Basically we can say that this is the first plane of our working volume. 
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                                            Figure.2.7. The order of planes 

 

    As we can see that after creating first plane, along the Y direction we have totally 5 planes 

which have also 13 same points on it. This coordinate system is CMM coordinate system, because 

we define these points and planes on the CMM machine. On the figure above different colors are 

representing the different planes, so now we can simply say that the working volume is defined. The 

overall working volume can fit in the cube shape which has 280 mm x 280 mm x 280 mm 

dimensions; basically we can the boundary of the working volume. 
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2.6. Two spheres and Known Positions 

   

     We have two spheres which are exactly have same dimensions; these spheres are mounted 

on the plastic bar with distance from each other 200 mm. 

 

 

Figure.2.8. The two spheres on the plastic bar 

 

    On the figure above we can see the spheres position on the plastic bar on which spheres are 

mounted. Now the spheres are ready to mount on the CMM machine head which moves to the 

adjustable known position in the CMM coordinate system.  
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Figure.2.9. The spheres are mounted on the head of CMM machine 

 

 

 

Figure.2.10. View angle from the cameras 

  

    On the figures above we can see that the two spheres are mounted on the head of CMM, 

also the cameras view angle to the spheres position is visible. And that view angle provides that the 

sphere on the left is always closer than the right sphere to the cameras , which is going to allow us 

to get two different data’s  for the same position of the CMM head.  
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2.6.1. The Known positions 

  

   The head of the CMM now is ready to move to the know positions which are on the planes that 

we already defined before. 

                                                  

                                       

                                Figure.2.11. The head of CMM on the first plane 

  

     Figure.2.11 is helpful to show the move of head on the plane. As we can see that head coordinate 

point is on the 11th position and for that position by taking photo we will have 2 data set, one from 

the left sphere, one from the right sphere. All these 13 point on the planes are the known 

coordinates in the CMM coordinate system. 
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First Plane Coordinates 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

X 10 150 290 220 80 10 150 290 220 80 10 150 290 

Y 26 26 26 26 26 26 26 26 26 26 26 26 26 

Z -55 -55 -55 15 15 85 85 85 155 155 225 225 225 

Second Plane Coordinates 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

X 10 150 290 220 80 10 150 290 220 80 10 150 290 

Y 96 96 96 96 96 96 96 96 96 96 96 96 96 

Z -55 -55 -55 15 15 85 85 85 155 155 225 225 225 

Third Plane Coordinates 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

X 10 150 290 220 80 10 150 290 220 80 10 150 290 

Y 166 166 166 166 166 166 166 166 166 166 166 166 166 

Z -55 -55 -55 15 15 85 85 85 155 155 225 225 225 

Fourth Plane Coordinates 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

X 10 150 290 220 80 10 150 290 220 80 10 150 290 

Y 236 236 236 236 236 236 236 236 236 236 236 236 236 

Z -55 -55 -55 15 15 85 85 85 155 155 225 225 225 

Fifth Plane Coordinates 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

X 10 150 290 220 80 10 150 290 220 80 10 150 290 

Y 306 306 306 306 306 306 306 306 306 306 306 306 306 

Z -55 -55 -55 15 15 85 85 85 155 155 225 225 225 

                   

                          Table.2.1 The known coordinates of 13 points on the all planes 

    

After defining planes, points and the known coordinates of these points we are ready for the 

next step where we are going to take the photos. 
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2.6.2. Photos of Spheres on The Known Positions 

    

     This is one of the most important step of the experiment; because this step gives us the main 

data’s in order to understand the regime of uncertainties. Since we fixed the cameras on the tripods 

we did not move them, we kept them in the same position where we obtain the calibration data’s.  

        As we mentioned before now we move the head of CMM to the 13 points on the 5 different 

planes and take photo for each position. We took 5 photos for each position because in this way we 

can have more data for the same position and repetition makes them more reliable and meaningful. 

During this step we used remote control for taking photos in order to prevent the photos from the 

noise which can cause from the vibration of cameras. 

 

    

                            Figure.2.12. Lightening of the spheres by adjustable lights 
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       The other important point of this step is lightening system, for this important parameter we 

used adjustable lights. While taking photos we change the position of the light and the quantity of 

the light for each position in order to get more reliable data’s from the taken photos.  

    Since we complete this important step where we have taken photos on 13 different points 

with 5 repetition for 5 planes , we have  650 photos totally 325 of it from left camera other half 

from the right camera ,  that means we collect the data’s which we need for the next step . 
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3. Data Analysis of Experiment 

    

     Since we have the photos which are the main input data for the analyzing process, we can 

start to analyze them and try to attribute a meaning to these data’s then we will be able to reach final 

phase where we will have conclusions and comments. 

 

3.1. Centroid Detection 

    

    As we mentioned that we have the 650 photos; we use this photos in order to get 

information such as the center coordinates of the spheres which is the most important data for our 

next process. In this step we used software which calls “National Instruments Vision Assistant 

2009”.Basically we upload the photos one by one to the software then by applying some filters and 

by using the tools of the small program we get the center coordinates of the spheres on the photo 2D 

pixel coordinate system. 

 

 

                           Figure.3.1. Centroid detection of spheres without light 
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      As we can see on figure.3.1 without adjustable lights after applying threshold, the shapes of 

the red areas are not like circle so these shapes are not able to give the real centroid of the spheres 

on the pixel coordinate system. As we mentioned before adjustable lights are really important in 

order to get more meaningful data. After that learning we repeated the experiment with adjustable 

lights which have led us to have more reliable and meaningful data’s.   

 

 

                                          Figure.3.2. Centroid detection of spheres with light 

  

     On the figure above as we can see the original picture on the left upper part of the window, 

and also on the bottom it is possible to see the step by step filter and image tool that applied to the 

original photo. After applying this process we can see these two spheres which are represented in 

red color. Thanks to adjustable lights we have almost perfect circular shape after threshold. 
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Object 

 

Sphere - 1 Sphere - 2 

Center of Mass X 

 

1924,19111 2480,6269 

Center of Mass Y 

 

1345,19897 1326,34845 

Bounding Rect Width 

 105 96 

Bounding Rect Height 

 103 96 

Perimeter 

 

328,66323 303,87509 

Area 

 

8524 7301 

Holes' Area 

 

0 0 

Ratio of Equivalent Ellipse 

Axes 

 

1,13861 

 

1,12034 

 

Compactness Factor 

 

0,78816 

 

0,79221 

 

Heywood Circularity Factor 

 

1,00421 

 

1,00323 

 

 

Table.3.1. Data’s of two spheres from detection software 

 

 

    

       As we can on the table above software allows us to have the pixel coordinates of the two 

spheres ; and additionally we other useful information like circularity factor these number means 

that the spheres on the photos how much close to the perfect circle shape on the photo plane. This is 

an important point because if we have shape which is more close to the perfect circle shape that 

means we have pixel coordinates which are more close to the real centroid coordinates. 
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3.2. Triangulation  

 

   

     Once we complete the centroid detection step then we are ready for the triangulation step 

which is one of the most important step of data analysis. Before the analyzing of data’s it is 

beneficial to know about triangulation or stereo triangulation. Once we have the stereo calibration 

data’s it is possible to obtain 3D data of the any point which is visible by the two cameras by using 

triangulation.   

 

 

 

 

 

 
 

                                                  Figure.3.3. Triangulation principle 

 

 

 

      As we can see above there is 3D point which is point P and there are two projection of that 

point A on the left and B on the right camera image plane. The point A has the pixel coordinates  

       and point B has the pixel coordinates   ,    which are 2D coordinates on the image plane .  

 

 

  P (x ,y .z) 

B 

(  ,   ) 

          A 

(     ) 
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[XL,XR]=stereo_triangulation(xL,xR,om,T,fc_left,cc_left,kc_left,alpha_c_left,fc_right,cc_right,kc_right,alpha_c_right) 

 

 

Figure.3.4. Stereo Triangulation Code 

   

   We already know the terms like fc , cc , kc , alpha_c, om and T from the  calibration step. 

xL and xR represent the 2D pixel coordinates of the same point from the left and right camera. For 

example in the figure 3.3 xL= (     ) and xR= (  ,    ). In our experiment case these values are 

the center 2D coordinates of the two spheres.  

   

    Once we have the all the data as input then “stereo_triangulation” code allows to get XL 

and XR which are 3D coordinates: 

 

 XL: 3xN matrix of coordinates of the points in the left camera reference frame(1) 

 XR: 3xN matrix of coordinates of the points in the right camera reference frame(1) 

 

    XL and XR are the output of the triangulation; here N represents the number of the points 

that is triangulated. 
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3.2.1. Triangulation of Experiment Data’s and 3D coordinates 
 

   

     As a result of centroid detection we have the all 2D pixel coordinates of each sphere; we 

detected 325 images from left camera 325 images from right camera. Also we have the stereo 

calibration data’s, now all inputs are ready for applying to triangulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

               Figure.3.5. Data flow and steps from 2D pixel coordinates to 3D coordinates. 

 

 

   

     Basically after triangulation we completed the passing from 2D pixel coordinates to 3D 

coordinates. As a result now we have new data’s which are the 3D coordinates of the two spheres in 

the camera reference system. 

 

  

          

          

          Left Image                    Right Image 

.  .  .  . 

CENTROID PIXEL COORDINATES 

OF TWO SPHERE 

TRIANGULATION 
STEREO CALIBRATION 

DATAS 

3D Coordinates of the center of the spheres in the camera coordinate system 
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First Plane 3D coordinates 

 X Y Z  X Y Z 

 

 

1.Point 

-0,036 0,027 1,136  

 

8.Point 

0,240 -0,113 1,096 

-0,036 0,027 1,136 0,240 -0,113 1,096 

-0,036 0,027 1,136 0,240 -0,113 1,096 

-0,036 0,027 1,136 0,240 -0,113 1,096 

-0,036 0,027 1,136 0,240 -0,113 1,096 

 

 

2.Point 

0,102 0,026 1,117  

 

9.Point 

0,170 -0,183 1,105 

0,102 0,026 1,118 0,170 -0,183 1,105 

0,102 0,026 1,117 0,170 -0,183 1,105 

0,102 0,026 1,117 0,170 -0,183 1,105 

0,102 0,026 1,118 0,170 -0,183 1,105 

 

 

3.Point 

0,241 0,026 1,098  

 

10.Point 

0,032 -0,182 1,124 

0,241 0,026 1,098 0,032 -0,182 1,124 

0,241 0,026 1,098 0,032 -0,182 1,125 

0,241 0,026 1,098 0,032 -0,182 1,125 

0,241 0,026 1,098 0,032 -0,182 1,124 

 

 

4.Point 

0,171 -0,044 1,107  

 

11.Point 

-0,038 -0,251 1,133 

0,171 -0,044 1,107 -0,038 -0,251 1,133 

0,171 -0,044 1,107 -0,038 -0,251 1,133 

0,171 -0,044 1,107 -0,038 -0,251 1,133 

0,171 -0,044 1,107 -0,038 -0,251 1,133 

 

 

5.Point 

0,032 -0,043 1,126  

 

12.Point 

0,101 -0,252 1,114 

0,032 -0,043 1,126 0,101 -0,252 1,114 

0,032 -0,043 1,126 0,101 -0,252 1,114 

0,032 -0,043 1,126 0,100 -0,252 1,114 

0,032 -0,043 1,126 0,101 -0,252 1,114 

 

 

6.Point 

-0,037 -0,112 1,135  

 

13.Point 

0,239 -0,253 1,095 

-0,037 -0,112 1,135 0,239 -0,253 1,095 

-0,037 -0,112 1,135 0,239 -0,253 1,095 

-0,037 -0,112 1,135 0,239 -0,253 1,095 

-0,037 -0,112 1,135 0,239 -0,253 1,095 

 

 

7.Point 

0,101 -0,113 1,116 

0,101 -0,113 1,116 

0,101 -0,113 1,116 

0,101 -0,113 1,116 

0,101 -0,113 1,116 

       

Table.3.2. 3D Coordinates of 13 points on the first plane (meter) 

    

     We can see table above the result of triangulation for the points on the first plane. We 

already mentioned about 5 repetitions for each position so here it is obvious that the coordinates are 

almost same for the repetitions, just few point has very small difference. 
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3.3. Roto Translation 
 

   

   As we know that as a result of our previous step we obtain 3D coordinates of the two 

spheres and CMM machine coordinates which are defined as a known positions. So that mean we 

have 3 information cloud, we will perform roto-translation between CMM coordinates and sphere 

coordinates which are output of triangulation. The main point is we actually need 2 CMM 

coordinate information cloud in order to roto-translate the other two information cloud of two 

spheres. Exactly at this point we tried two different cases. 

 

 

 

          
                                 Figure.3.6.  Roto-translation between coordinate systems. 
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     On the sketch above Camera Sphere-1 and Camera Sphere-2 represent the xyz coordinates of the 

two spheres on camera coordinate systems. CMM represents the xyz coordinates on the CMM 

machine coordinate system, CMM-TR is shifted coordinates system of CMM according to “d” 

distance. The “d” is defined as the 3D distance between each same single point both on CMM and 

CMM-TR coordinate system. 

 

 

Figure.3.7. The distance between CMM and CMM-TR 

 

 

           For the first case we assume the “d” is not constrain but it is same between each same single 

point both on the CMM and CMM-TR , for example distance between A and B is fixed but B can 

move any place for “d” is stable so we can define CMM-TR is shifted form of CMM. Then we 

performed the roto-translation both between CMM – Camera Sphere-1 and CMM-TR - Camera 

Sphere-2 as an example A is roto-translated to A' and B is roto-translated to B’.  
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           The figure above shows the distance “d” between CMM and CMM-TR and when d is not 

imposed we get these values: 

 Δx= 0.131 m 

 Δy=0.152 m                

 Δz=0.0021 m 

 

        Then by using Euclidean formula   d=√Δx  Δy  Δz^    ; it is calculated d=0.2006 m. 

This is an important point to highlight because we knew in advance d is measured d=0.200 m and 

the result of calculation is close to the actual one. 

 

       For the second case d is imposed as 0.2 m; the program that is used for this we set the Δz as 

a free component that we calculated from Euclidean formula we get these values:  

 

 

 Δx= 0.130 m 

 Δy=0.152 m                

 Δz=0.002 m 

       Then the numbers are close, we can say the data’s are collected from the process are reliable 

both to have good overlap by using roto-translation and to shift the CMM coordinate system. 
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                                        Figure.3.8. Roto translation of first sphere data’s 

   

        Figure above represents the roto-translation between xyz coordinates of center of the sphere-1 

result from triangulation and CMM xyz coordinates. It is possible to see that two information 

clouds are overlapped. 
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Figure.3.9. Roto translation of second sphere data’s 

 

 

       Figure above represents the roto-translation between xyz coordinates of center of the sphere-2 

result from triangulation and CMM xyz coordinates. It is possible to see that two information 

clouds are overlapped. 
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Figure.3.10.  Roto translation of spheres. 

    

     Figure above shows the both sphere-1 and sphere-2 xyz coordinates roto translation to the cmm 

coordinates, here it is possible to see overlapped data’s with the orientation of points and planes 

which are defined as working volume. 
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3.4. Uncertainties and Discrepancies 

 

   It is beneficial to know about terms like uncertainty, discrepancy before the explanation of 

experiment data analyze.  

    At the outset, it is important to recognize that all measurements are wrong in that the 

measured value (the result) and the right answer (the ‘true’ value) are different. The difference 

between these two is the measurement error, which is meant in the sense of a discrepancy, rather 

than an avoidable mistake (2).  

     Unfortunately the true value is never precisely known and, by the same token, neither is the 

measurement error. Uncertainty, on the other hand, takes the form of a range, and, if estimated for 

an analytical procedure and defined sample type, may apply to all determinations so described.  In 

general, the value of the uncertainty cannot be used to correct a measurement result. (3) 

 

For instance: 

T = Tm±UT 

 

 Where; T is the true value, Tm is the measured value, and the range ±UT is the measurement 

uncertainty. 

    This statement can be taken to mean that the true value, T, probably lies somewhere between        

Tm - UT and Tm + UT. (2). 
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 From the experimental data’s there information data’s to allow us to understand the 

uncertainty by means of discrepancy. We simply calculate discrepancy between xyz Cmm 

coordinates which we defined as known positions and xyz coordinates which are results of 

triangulation.  

 

Discrepancy for the spheres: 

D =  √Δx  Δy  Δz^  

 

Where:          Δx= (x_cmm) – (x_trg) 

                      Δy= (y_cmm) – (y_trg) 

                      Δz= (z_cmm) – (z_trg) 
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Figure.3.11. Discrepancy of sphere one. 

 

   On the figure3.11 it is possible to see the discrepancy for sphere one in Cmm coordinate 

system. The graph has some regime for uncertainty in the sense of discrepancy. The uncertainties 

are higher on the lower parts which are first, second and third positions of working volume. 

Uncertainty of upper part, which include positions 11, 12, 13 in the working volume, it is high as 

well but obvious that higher than the lower part of working volume. The middle part of working 

volume includes position with number 4, 5, 6, 7, 8, 9 and 10  where uncertainties are lower respect 

to other parts of working volume  and in the middle part it is visible that uncertainty distribution is 

more homogeneous then the other parts. 
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Figure.3.12. Discrepancy for sphere two. 

   

     Figure above shows the discrepancies of sphere two , and  as we can see that position 

number 1 , 2, 3 which stays lower part of working volume and the position number 11 , 12 , 13 

which are on the upper part of working volume have higher discrepancy than the middle part of the 

working volume. The other interesting point is that uncertainties are higher on the upper and lower 

part respect to the sphere one.  On the upper part we can see the red color which represents the high 

uncertainty there. Also sphere two has regime in the middle part of working volume, there is similar 

color tone distribution. 
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Figure.3.13. Discrepancy of two sphere together. 

     

.    On the figure above we can see the discrepancy distribution of two spheres together in the 

Cmm coordinate system. In that graph it is easier to see and understand the regime of the 

uncertainties in the working volume of both spheres. The general color tone distribution allows 

saying lower and upper part uncertainties are higher than middle part. On the position number 11 

and 13 there are the highest discrepancies; especially on the right upper point which is number 13 

has the highest discrepancy. 
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                                      Figure.3.14. Discrepancy of two spheres on the zy plane. 

     Graph above also is helpful to show 5 planes along the Y coordinate direction and 

discrepancies have closer values in the middle part. Color tone distribution is easily visible in this 

perspective of graph. 

 

 

Figure.3.15.  The discrepancy of spheres in camera coordinate system 

   The graph above shows the spheres discrepancy information in the camera coordinate 

system. As we can see the spheres position respect cameras. 
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Figure.3.16. Position of spheres in the camera calibration area. 

     

   The figure above shows the where exactly place of working volumes in the calibration area 

of the two cameras in camera coordinates system. And it gives useful point of view about 

discrepancy distribution. The points are placed out of the calibration area has higher uncertainty. 

The middle part of the discrepancy graph which we mentioned before is placed more or less in the 

middle of calibration area where discrepancies are lower. 
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4. Monte Carlo Simulation 
 

   

      In this section the main idea is adding noise to the parameters such as; u v pixels 

coordinates, focal length, principal point (cc) and understand their effect on the discrepancies. 

Monte Carlo method is used for noise adding step. 

 

4.1. Monte Carlo Method 

    

    The Monte Carlo method is an application of the laws of probability and statistics to the 

natural sciences. The essence of the method is to use various distributions of random numbers, each 

distribution reflecting a particular process in a sequence of processes such as the diffusion of 

neutrons in various materials, to calculate samples that approximate the real diffusion history. 

Statistical sampling had been known for some time, but without computers the process of making 

the calculations was so laborious that the method was seldom used unless the need was compelling. 

The computer made the approach extremely useful for many physics problems.[13] 

     

        The Monte Carlo method is very useful tool for measurement, especially when there are 

large amount of measurement which are result of repeated measuring operation. For example with 

this method you can add random noise to the inputs in order to simulate high variety of scenario.  
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Figure.4.1. Gaussian distribution  

 

     The figure above shows the areas of the Gaussian distribution. The 68.26 % of the random 

numbers are generated ± σ one standard deviation from the mean value, 95.44% of the random 

numbers are generated ± 2σ two standard deviation from the mean value, 99.74% of the random 

number are generated ± 3σ three standard deviation from the mean value. 

 

   The parameter μ is the mean  (location of the peak) and σ
 2
 is the variance. σ is defined as 

the standard deviation. The distribution with μ = 0 and σ
 2
 = 1 is called the standard normal 

distribution. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Standard_deviation
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                   Figure.4.2. Example of noise adding by means of Gaussian distribution 

     

      Figure above valid for the case where noise added to principal point (cc) ;  with 0.005 noise 

level Monte Carlo simulation creates random noise 68.26 % of them has the deviation ±9 pixel on 

the other side  it is possible that by changing noise level we can adjust the deviation amount.  

 

 

 

 

 

 

 

 

 

9 pixel 9 pixel 

18 pixel 18 pixel 
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4.2. Point Projection and Noised Pixel Coordinates 

     

     In this part we project the 3D coordinates which are results of triangulation to 2D pixel 

coordinates. The matlab tool-box that we used for previous steps has a very useful command calls 

“project_points2”, this command allows project the 3D coordinates to 2D pixel coordinates we can 

say that it operates opposite process of triangulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              Figure.4.3.  Point projection steps 
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    On the figure.4.3 as we can see that the process starts with 3D coordinates which are the 

results of triangulation. Then by using  “project_points2” command we project 3D coordinates to 

2D pixel coordinates.  

    Next step is vital point of the process which is adding noise by using Monte Carlo method; 

in this step we add random noise by means of Gaussian Distribution. But we defined noise 

coefficient in order to narrow down the limits of noise. After adding noise to the pixel coordinates 

we again triangulate them in order to obtain 3D coordinates.  

By changing the noise level we try to understand the effect of parameter on the discrepancy.  

 

 

Number of 

tests 

Noise Level 

Case 1 Case 2 Case 3 

0.5px 0.75px 1px 

1000 Min. Std = 0.6 mm 

Max. Std = 1.2 mm 

Min. Std = 0.9 mm 

Max. Std =1.8 mm 

Min. Std = 1.2 mm 

Max. Std =2.4 mm 

 

Table.4.1. Cases of noise levels on the u and v (noise level corresponds to the standard deviation of 

the Gaussian distribution which used to generate the noise) 

    The table above explains the minimum and maximum standard deviation of 3D coordinates 

for three different noise level cases. As we can see that even if we increase the noise level, deviation 

does not change too much.  
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Figure.4.4. Discrepancy between 3D (with 0.5 pixel) mean of 1000 repeat and 3D without noise for 

sphere 1 

      

     After 1000 times repetition mean value of 3D coordinates is calculated then we compared 

them with 3D coordinates without noise. The graph above shows the discrepancy between them for 

sphere one and the discrepancies are quiet small. The discrepancy tends to be zero .This situation 

valid both sphere one and sphere two. 
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Figure.4.5. Discrepancy between 3D (with 0.5 pixel) mean of 1000 repeat and 3D without noise for 

sphere 2 

     

      Also for sphere two discrepancies are lower just a little bit higher respect to the sphere one. 

And also there is no certain regime for this discrepancy both for sphere one and sphere two. Also 

for sphere two it tends to be zero. 
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            Figure.4.6. Standard deviations of 3D coordinate of sphere 1 and 2 for case one (with noise 

level 0.5 pixel) 

 

   

      The graphs above and below shows standard deviation result from noised repetitions and 

there is a regime from first plane to fifth plane, it is increasing from first plane to the fifth plane. But 

deviations are small numbers. 

    And also from first sphere to second sphere in the direction of x coordinates deviations are 

higher but still number are too small. 
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4.3. Focal Length and Noise Addition 

 

      As it is mentioned before triangulation uses data’s which are coming from the stereo 

calibration, in this section we choose focal length parameter in order to understand its effect on the 

discrepancies or uncertainties.  Focal length is an important parameter in the triangulation process 

and it is property of cameras. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.7. Adding noise to focal length 
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    Figure 4.7 shows the noise adding to the focal lengths of two cameras, there two cameras 

and we have two focal length data’s for each of them in the stereo calibration data’s. As it is 

mentioned focal length has two dimensions. 

 

          x  
                                                                  

 
               

 

Figure.4.8. Noise equation for focal length 

     

 By using equation above we defined the noise index which is used to multiply with the 

random noises or number resulting from the Monte Carlo simulation and the result of this 

multiplication added to focal length of both right and left cameras. And by changing coefficient it is 

possible to adjust the boundary of the random noises.  
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Number of 

tests 

Noise Level 

Case 1 Case 2 Case 3 

0.1% 0.5% 1% 

1000 Min. Std = 0.2 mm 

Max. Std = 2.5 mm 

Min. Std = 1 mm 

Max. Std =11 mm 

Min. Std = 2 mm 

Max. Std =24 mm 

 

 Table.4.2. Cases of noise levels on the focal length (noise level is the percentage of nominal 

focal length value and corresponds to the standard deviation of the Gaussian distribution which used 

to generate the noise) 

  

 The table.4.2 shows the three cases with different noise level and we can see the minimum 

and maximum standard deviations for three cases. It is obvious that while noise level increasing the 

deviations are increasing as well. The deviations are increasing linearly respect to the noise level. 
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Figure.4.9. Standard deviations of spheres in the case 2 (standard deviation results from noise 

corresponds to the 0.5% of the nominal focal length value) 

       

  The figure above shows the standard deviations for the case 2 for sphere one and sphere two. 

There is a regime from first sphere to second sphere deviations are increasing. And also from first 

plane to the fifth plane deviations are increasing. 

    The discrepancies between mean of 3D coordinates (with noise in focal length) and 3D 

coordinates without noise is too small , it tends to be zero for huge number of repetition. 

 

 

 

 

 



Page | 76  
 

4.4. Principal Point and Noise Addition 

 

      The other important parameter is principal point which we already defined in theory part. In 

this section noise will be added to the principal point and principal point has two components (u, v) 

which are noised separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.10. Adding noise to principal point (cc) length 
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    The principal point is coming from the stereo calibration data’s, as we explained before 

passing from 2D to 3D same process performed. But this time noise is added to the principal point 

(while other parameters without noise ) in order to understand its effect on the discrepancies. 

 

          x        z                                                        z                              

          x                                                                                            

Figure.4.11. Noise equation for principal point 

 

 

Number of 

tests 

Noise Level 

Case 1 Case 2 Case 3 

0.05% 0.1% 0.5% 

1000 Min. Std = 1.1 mm 

Max. Std = 2.3 mm 

Min. Std = 2.2 mm 

Max. Std =4.6 mm 

Min. Std = 11.1 mm 

Max. Std =23.4 mm 

 

 Table.4.3. Cases of noise levels on the principal point position  (noise level is the 

percentage of nominal principal point position and corresponds to the standard deviation of the 

Gaussian distribution which used to generate the noise) 
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 Table.4.3 shows the three noised cases of principal point , as we can see that noise is added 

to principal point  effected the deviations and deviations are big numbers for the case one and two . 

The process from 2d to 3d is get affected a lot by principal point.  

 For example for the case 1 the noise is 0.05 percent of the nominal value of the principal 

point position and we have min. deviation 1.1 millimeter  and max deviation is 2.3 millimeter. For 

case 2, noise is 0.1 percent of the nominal value and minimum deviation is 2.2 mm while maximum 

deviation is 4.6 mm. Also for the case 3 the noise is 0.5 percent of the nominal value but deviations 

are unacceptably big numbers. Due to having this comparison of these 3 cases, it is obvious that 

principal point has non-negligible effect on this process. 
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4.5. Comparison of Parameters 

 

 First of all comparisons among the parameters is valid only for this certain setup (certain 

baseline) which is done in the laboratory of the Politecnico di Milano but the numerical simulation 

(which used to analyze the parameters) is applicable for any other stereoscopic system with 

different baseline. 

     Previously we run Monte Carlo simulation for focal length, principal point and u v center 

pixel coordinates. They showed different reaction to noise addition and each parameter had affected 

the process (2d to 3d) in the different way. Finally we can compare them in order the have idea 

about their effectiveness on the process respect each other. 

 

 

Parameters 

Noise 

0.05% 0.1% 0.5% 1% 0.5px 0.75px 1.0px 

Min. Max Min. Max Min. Max Min. Max Min. Max Min. Max Min. Max 

U,V ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 0.6 1.2 0.9 1.8 1.2 2.4 

FC ‒ ‒ 0.2 2.5 1 11 2 24 ‒ ‒ ‒ ‒ ‒ ‒ 

CC 1.1 2.3 2.2 4.6 11.1 23.4 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

 

Table.4.4. The results for all parameters 
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 Table.4.4 shows the deviations for all parameter and cases, the minimum and maximum 

deviations are in millimeter unit. The noise ranges; 0.05 % - 0.5% of nominal value for principal 

point, 0.1 % - 1% of nominal value for focal length. The u v coordinates has no nominal value 

because it is different value for all different position of the spheres that’s why noise defined as a 

pixel amount. 

 When there is 0.1% noise in focal length, the maximum deviation is 2.5 mm; for the same 

percentage of the noise in the principal point the maximum deviation is 4.6 mm. The principal point 

has more affect than focal length in that certain setup for the same percentage of noise. 

 The u v parameters effects also the deviation for the case 1 where the noise is 0.5 pixel 

minimum deviation is 0.6 mm , maximum deviation is 1.2 . While the noise level increasing the 

minimum and maximum deviations are increasing linearly. 

 

 

 

 

 

 

 

 

 

 



Page | 81  
 

5. CONCLISIONS 

     

      After performing the experiment and analyzing the data’s that we have as a result of 

experiment, there are important points to highlight both related to procedure and analysis of data’s. 

First, during the experiment it is mentioned that lighting system is really important in order to get 

reliable data’s to analyses. Other than the working volume has to be placed in the calibration 

volume in order to be able to understand regimes during analyzing step. 

     The simulations play important role in analyzing step where focal length, principal point 

and u v center pixel coordinates are investigated. Comparison between parameters is performed by 

the help of Monte Carlo method. The idea is to obtain order of importance among the parameters, 

importance in the sense of effectiveness on the discrepancies. At the end of the analyzing process, 

the principal point has much more effect than focal length. The u v center pixel coordinates 

parameter has the linear effect respect to the noise level on the discrepancies. The numerical 

simulation (which used to analyze the parameters) is applicable for any other stereoscopic system 

with different baseline. 

 For future works, the next beneficial step would be investigating other parameters with 

different baselines in order to understand uncertainty in stereoscopic measurement systems. 
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