
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione
Corso di Laurea Specialistica in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Model Based Control
for Multi-Cloud Applications

Relatore: Ing. Elisabetta DI NITTO
Correlatore: Ing. Danilo ARDAGNA

Tesi di laurea di
Giovanni Paolo GIBILISCO - Matr. 755066
Marco MIGLIERINA - Matr. 754848

Anno Accademico 2011/2012

to Silvia, my family and all who sustained me in these years
Giovanni Paolo

to Eleonora, my family, and my roomies
Marco

i

Contents

1 Introduction 5
1.1 Thesis objectives . 7
1.2 Structure of the thesis . 7

2 Background 9
2.1 Cloud Computing . 9
2.2 Non-Functional Requirements 12
2.3 The Discrete Time Markov Chain with Reward 12
2.4 Availability in the cloud . 14
2.5 Cloud Portability . 15
2.6 Scaling . 16
2.7 Infrastructure-as-a-Service (IaaS) 19

2.7.1 Amazon EC2 . 19
2.7.2 Rackspace Cloud . 22
2.7.3 Terremark Cloud Computing 23

2.8 Platform-as-a-Service (Paas) 23
2.8.1 Google App Engine . 23
2.8.2 Microsoft’s Windows Azure Platform 25

2.9 Software-as-a-Service (SaaS) 26
2.9.1 Google applications . 26
2.9.2 Rackspace . 26
2.9.3 Microsoft . 26

3 Existing Tools and Methodologies 27
3.1 Palladio-Bench . 27

3.1.1 Palladio Component Model 29
3.1.2 PCM transformations 34

3.2 Model Based Control . 37
3.2.1 Control Theory . 38

3.3 Self-Adaptive Software Meets Control Theory 38
3.4 Cloud Auto-scaling with Deadline and Budget Constraints . . 43

ii

3.5 Cloud control approaches considerations 45

4 Model and Controller Extensions 47
4.1 Overview of the solution . 47
4.2 The Model . 48
4.3 The Controller . 51

4.3.1 The autoscaling controller 52
4.3.2 The load balancer controller 66

5 Tool 71
5.1 Palladio Extension . 71
5.2 Simulation . 76

6 Experimental Analysis 82
6.1 A Web System Scenario . 82

6.1.1 Scenario 1 . 84
6.1.2 Scenario 2 . 86
6.1.3 Scenario 3 . 89

6.2 A Multi-Region Scenario . 90
6.3 A Smart City Scenario . 99

6.3.1 Application Model . 100
6.3.2 Filtering Part . 101
6.3.3 Process Model . 104

6.4 Results analysis . 117

7 Conclusions 121

iii

List of Figures

3.1 Palladio Component Model - Roles 28
3.2 PCM - Repository diagram . 30
3.3 PCM-System diagram . 31
3.4 PCM-Resource diagram . 32
3.5 PCM-Allocation diagram . 32
3.6 PCM-Usage diagram . 33
3.7 PCM - Failure types . 35
3.8 Branch conversion . 36
3.9 Loop conversion . 36
3.10 Concept of the feedback loop to control the dynamic behav-

ior of the system. Source: http://en.wikipedia.org/wiki/
Control_theory . 38

3.11 Schema of the software system. Source [1] 40
3.12 DTMC model for the example system. Source [1] 41
3.13 Reliability of the system: set point (dashed) and achieved

value (solid). 43
3.14 Control variables of the system: c1a dashed, c1b solid and c5

dashed dotted. 44
3.15 Structure of the controller in [2] 45

4.1 Overview of the solution . 48
4.2 Instance of the model . 52
4.3 . 57
4.4 Convergence of Equation 4.18, starting from one only running

machine, with an arrival rate of 5000 requests per second, a
maximum service rate of each machine of 100 requests per
second and a convergence rate β = 0.75. 59

4.5 Convergence of Equation 4.19, starting from one only running
machine, with an arrival rate of 5000 requests per second, a
maximum service rate of each machine of 100 requests per
second and a convergence rate β = 0.75. 60

iv

http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Control_theory

4.6 Convergence of Equation 4.19, starting from one only running
machine, with an arrival rate of 5000 requests per second, a
maximum service rate of each machine of 100 requests per
second and a convergence rate β = 0.75. 61

4.7 Convergence of Equation 4.19, starting from 500 running ma-
chine, with an arrival rate of 5000 requests per second, a max-
imum service rate of each machine of 100 requests per second
and a convergence rate β = 0.75. 62

4.8 Convergence of Equation 4.19, starting from 500 running ma-
chine, with an arrival rate of 5000 requests per second, a max-
imum service rate of each machine of 100 requests per second
and a convergence rate β = 0.75. 63

4.9 Convergence to the desired working condition, that is cpu us-
age between 70% and 90%, is reached in 3 steps. 65

5.1 Example Repository . 72
5.2 SEFF diagrams . 72
5.3 Sensitivity file example . 73
5.4 Complete Sensitivity File . 74
5.5 First step of the transformation 75
5.6 Second and third steps of the transformation 76
5.7 Fourth and fifth steps of the transformation 77
5.8 Final result of the transformation 77

6.1 Palladio model of the first usecase 83
6.2 DTMC model representation of the Multi-Cloud application.

Green nodes represent autoscaling groups, red nodes represent
failure states. 84

6.3 Availability of the system of Section 6.1.1 85
6.4 Number of active VMs of the system of Section6.1.1 86
6.5 Maximum service rate of VMs 87
6.6 Control variable values . 88
6.7 Cpu utilization values . 89
6.8 Cloud availabilities . 90
6.9 Cloud 1 system availability . 91
6.10 Cloud 2 system availability . 91
6.11 Controlled system availability 92
6.12 Control variable values . 92
6.13 Average CPU utilization . 93
6.14 Number of VMs for the controlled system 93
6.15 Palladio model for use case 2 94

v

6.16 DTMC model for the second usecase 94
6.17 Availabilities of cloud providers 95
6.18 Availability of the system of using only region 1 96
6.19 Availability of the system of using only region 2 97
6.20 Availability of the system using only cloud 2 97
6.21 Availability of the controlled system 98
6.22 Control variables values . 98
6.23 Number of running machines 99
6.24 Structure of the application 101
6.25 DTMC model of the filtering part of the smart city usecase . . 103
6.26 Palladio model of the smart city emergency system 105
6.27 Bimodal requests arrival rate 107
6.28 Cloud 4 service rate . 107
6.29 Cloud 1 availability . 108
6.30 Cloud 3 availability . 108
6.31 Cpu utilizaion of cloud 2 . 109
6.32 Number of running VM in cloud 2 110
6.33 System avalability using only cloud 3 110
6.34 Cpu usage of machine usng only cloud 3 111
6.35 Number of VMs using only cloud 3 111
6.36 Availability of the system using only cloud 4 112
6.37 Availability of the controlled system with set point to 5-nines . 113
6.38 Number of running VMs for the controleld system with set

point at 5-nines . 114
6.39 Control variables values for the controlled system with set

point at 5-nines . 114
6.40 Availability of the controlled system with set point at 99% . . 115
6.41 Number of running machines for the controlled system with

set point at 99% . 116
6.42 Control variables vaules for the controlled system with set

point at 99% . 116
6.43 Availability of the controlled system with set point at 95% . . 117
6.44 Number of running VMs of the controlled system with set

point at 95% . 118
6.45 Control variables values for the controlled system with set

point at 95% . 118

vi

List of Tables

2.1 Availabilities of cloud providers from [3] 14
2.2 Amazon EC2 Instances Types 20

3.1 Attribute used to take scaling decisions 44

5.1 Result of a sensitivity run . 73

6.1 Simulation parameters . 84
6.2 Controlled vs non controlled results 86
6.3 Controlled vs non controlled results 88
6.4 Controlled and non controlled results 90
6.5 Simulation parameters . 95
6.6 Controlled vs non controlled results 99
6.7 Simulation parameters . 106
6.8 Smart city scenario results . 115

vii

Abstract

The emergence of cloud computing architectures in last years has changed
the way applications are delivered to users. The growing number of cloud
providers and companies that rely on their infrastructure is a sensible indica-
tor of its popularity. Cloud Computing offers a cost effective solution to the
problem of resource provisioning by giving developers access to a virtually
infinite pool of resources in a matter of minutes. Usually cloud resources are
priced in a pay per use basis so cloud users can maintain under control the
costs of deploying their applications by utilizing only resources they need.
The scaling capability of cloud providers allows companies to change the size
of their virtual IT infrastructure according to their needs.

One of the major problems faced by companies when deciding to move
to a cloud environment is the loss of control on the management of the IT
infrastructure. Companies are worried of outages that can not be directly
kept under control. In order to cope with this problem cloud providers offer
service level agreements with their users by explicitly quoting the availability
that they guarantee to provide. Many cloud providers offer a service level
agreement availability value of 99.95%. Real data shows that the availability
that cloud users experience from their providers is much lower and in the
order of 95%. Such a low value of availability can not be accepted by de-
velopers of critical application that usually require a much higher value of
availability. In order to fulfill this requirement one could decide to replicate
the deployment of its application on multiple clouds and use only the one
that works best at a given time.

In this thesis we propose a model for the high level description of avail-
ability requirements of Multi-Cloud applications and a controller able to
guarantee the desired availability. In order to automatically generate the
defined model, used for control, we developed an extension to the Palladio
Bench modeling software. The controller monitors the state of the system at
runtime, updates the model and intervenes both in the machine scaling man-
agement and in the distribution of requests within clouds. The overall goal
of the control system is to minimize costs, while satisfying the availability

1

requirements.
In order to test our control approach against different usage scenarios we

have implemented a simulation engine. Tests on the control system against
common usage scenario shows that our controller is capable of minimizing the
cost of running the application while respecting the availability requirement.
It is also capable to recover quickly from different kind of cloud or network
infrastructure failures.

2

Sommario

Negli ultimi anni, l’utilizzo di architetture cloud ha cambiato il modo in
cui le applicazioni sono distribuite agli utenti. Il crescente numero di fornitori
di servizi cloud e di compagnie che utilizzano tali servizi é un importante
indice della popolaritá di questo tipo di architettura. Il cloud computing
offre una soluzione efficace al problema dell’approvvigionamento di risorse IT
fornendo su richiesta risorse virtualmente illimitate nel giro di alcuni minuti.
Tipicamente le risorse messe a disposizione dai fornitori di servizi cloud sono
offerte mediante una politica pay-as-you-go, in questo modo gli utenti di
servizi cloud possono mantenere sotto controllo i costi infrastrutturali delle
loro applicazioni modificandone la struttura in base alle loro esigenze.

Uno dei maggiori problemi affrontati da parte delle compagnie nella scelta
di utilizzare una piattaforma di questo tipo é la perdita di controllo sulla
gestione dell’infrastruttura. Le aziende che utilizzano i servizi cloud sono
preoccupate dalla possibilitá di interruzioni di servizio che non possono essere
gestite direttamente. Per far fronte a questo problema i fornitori di servizi
cloud offrono accordi a livello di servizio in cui viene specificato il valore di
disponibilitá del sistema che si impegnano a fornire.

La maggior parte dei fornitori offre un valore di availability pari al 99.95%.
Dati reali mostrano che il valore di disponibilitá sperimentato da gli utenti
del cloud é spesso inferiore, e si attesta sul valore di 95%. Un valore cośı
basso non puó essere accettato dagli sviluppatori di applicazioni critiche che,
tipicamente, richiedono una availability molto alta. Per soddisfare tale vin-
colo di availability si potrebbe decidere di replicare l’applicazione su diversi
fornitori di servizi cloud e scegliere in ogni momento quale servizio utilizzare
in base alla sua attuale availability.

In questa tesi proponiamo un modello per la descirizione di requisiti di
availability di applicazioni replicate su piú cloud. Proponiamo inoltre un con-
trollore capace di garantire il livello di availability richiesto dall’applicazione.
Al fine di generare automaticamente una istanza di tale modello abbiamo
esteso il software di modellazione Palladio Bench. Il controllore monitora lo
stato del sistema durante il suo funzionamento, aggiorna il modello ed in-

3

terviene sia a livello di scalabilitá delle risorse cloud, sia nella distribuzione
delle richieste entranti nel sistema tra piú cloud. L’obiettivo del controllore
é minimizzare i costi delle risorse utilizzate e, allo stesso tempo, soddifare il
vincolo di availability.

Al fine di verificare il comportamento del nostro approccio di controllo
in diversi scenari di utilizzo abbiamo implementato uno strumento di simu-
lazione. Le prove di controllo effettuate su diversi scenari di utilizzo mostrano
che il controllore é capace di minimizzare il costo di utilizzo delle risorse cloud
e rispettare il vincolo di availability dell’applicazione. Inoltre, il controllore é
in grado di ripristinare il livello di servizio desiderato a fronte di diversi tipi
di fallimento della piattaforma cloud o dell’infrastruttura di rete.

4

Chapter 1

Introduction

The advent of cloud computing has offered developers a new way of build-
ing services and offering them to the public. This new appealing paradigm
has been widely accepted by the community of both developers and of com-
panies which are deciding to move the services they offer into a cloud environ-
ment for economical reasons. With this new practice, system administrators
can acquire resources in a much more flexible, scalable and rapid way than
before. Cloud providers let users pay only for the resources they use and
give them the possibility to acquire a potentially infinite pool of resources in
matter of minutes [4]. Though, no cloud provider offers a native mechanism
to guarantee the Quality of Service (QoS) required by specific application
domains.

At present, there are many providers that offer cloud services and, since
this is a quite new and profitable market, more providers are appearing. The
choice of which cloud provider to trust is not an easy one. Each provider
offers specific APIs and programming / design paradigms. Thus, moving
from a provider to another involve, in many cases, re-writing part of the
code, moving large databases from a technology to the other and manually
re-deploy applications.

Our research interest is to identify proper modeling mechanisms that al-
low us to keep availability of a cloud-based application under control. Avail-
ability is a non functional property of an application which measure the
portion of time in which the system behaves correctly. The usual way to
achieve a high availability is replication of critical components or compo-
nents that are more subject to failure, this is a quite common and successful
practice but it is not very effective from the economic point of view, because
it involves the acquisition of backup resources which are left unused for most
of the time and exploited only in case of a failure of the primary system.

Reducing operative costs is something that companies always try to do,

5

CHAPTER 1. INTRODUCTION

on the other hand they also need a reliable architecture on which running
their applications. In many contexts a period of downtime of the system
generate losses that can not be balanced by the savings due to the utilization
of a cheaper architecture. Examples of this are mission critical applications.
If a company decides to move its services to the cloud for economical reasons
it accepts the fact that it loses some control on the system on which its
service run.

Users could decide to make this choice by looking at service level agree-
ments (SLA) offered by cloud providers and choosing the one that provides
them the highest availability. If we look at cloud providers’ SLA we can ob-
serve that many of them offer 99.95% of availability. As an example, Amazon
EC2 SLA1 states that: “AWS (Amazon Web Services) will use commercially
reasonable efforts to make Amazon EC2 available with an Annual Uptime
Percentage of at least 99.95% during the Service Year” and if this availability
value is not met for some reasons depending on Amazon the user “will be
eligible to receive a Service Credit”, which means, to run its application for
free for a period of time that depends on the size of the occurred failure.
Windows Azure SLA2 guarantees to provide 99.95% availability of internet
connectivity to users virtual machines and 99.9% of uptime of virtual ma-
chine instances evaluated on a monlty basis. Both these providers require
the user to deploy at least two machines in separate regions (or availability
zones in case of Amazon) in order for their SLA to take effect.

These data alone are not representative of the real behavior of the cloud
environment because are just nominal agreement values. In order to decide if
an application can be safely moved into the cloud a company should evaluate
the economical loss in case of a failure of cloud provider services using some
more realistic data. In [3], a study has been conducted to analyze availability
of cloud providers. These data shows that the availability values experienced
by users of a cloud based service is much less than the one declared by
SLAs. For example the average availability of Amazon european region for
the period of time of the study was 96.32%, Windows Azure service offers an
even lower availability value of 95.39%.

Looking at this data it is clear that running mission critical applications
in this kind of environment is a risky decision. In order to run applications
with high availability requirements on the cloud, users could exploit the fact
that usually cloud failures are independent of each other. Users can deploy
their applications on the cloud provider that offers the highest availability
at a given time and switch to another one if its availability falls behind a

1http://aws.amazon.com/ec2-sla/
2http://www.microsoft.com/en-us/download/details.aspx?id=24434

6

CHAPTER 1. INTRODUCTION

certain value or if it is more convienient from an economical point of view.
Our thesis has been developed in the context of the MODAClouds project

which is an European community project that aims to ease this commitment
choice by uniforming the way developers access cloud resources allowing ap-
plications and companies to freely move from one cloud to another or even
use mixed solutions. A very attractive solution of the availability problem
is the use of the flexibility of resources offered by cloud, this new approach
could help companies that run highly available application to save money
required for the provisioning of backup resources.

1.1 Thesis objectives

The objective of our thesis is to contribute to the development of self-
adaptive software systems in the context of Multi-Cloud applications, focus-
ing our attention on availability requirements and cost minimization.

To reach this goal, we defined a model to describe availability require-
ments of Multi-Cloud applications and a two layer controller able to manage
both in-cloud configuration policies and traffic routing through different cloud
providers, keeping the model alive at runtime. The controller’s objective is
to guarantee high availability, while reducing costs. We have extended the
already existing integrated modeling environment Palladio Bench to model
Multi-Cloud applications using our novel paradigm. Finally, we implemented
a tool to create simulated environments and to test our controller on different
scenarios. We evaluated our approach through three different use cases: a
web system scenario with two single-region clouds, and a multi-region sce-
nario, and a smart city scenario.

Our work starts from the assumption that the application is already able
to migrate from cloud provider to cloud provider. From what we already
said, this is a pretty relevant assumption but as we will see in Section 2 there
are many active projects dealing with it.

1.2 Structure of the thesis

Chapter 2 gives an overview about non functional requirements like avail-
ability, the Discrete Time Markov Chain (DTMC) models usually adopted
for availability evaluations. It then proceeds by introducing some of the
characteristics of the major cloud providers. This section does not aim at
showing a complete list of cloud computing offers but at helping the reader
to understand similarities and differences between cloud providers in order

7

CHAPTER 1. INTRODUCTION

to underline the possibilities offered by cloud computing and the challenges
of application portability and control in this environment, the section ends
with a small survey on some of the main approaches that try to solve the
problem of portability between clouds.

Chapter 3 shows state of the art tools that have been exploited in order
to build our control system, it introduces Palladio, a tool for designing ap-
plications capable of deriving a DTMC model from different diagrams built
at design time, and some control techniques that have been used as a basis
to build our controller.

Chapter 4 shows the innovative contribution of this thesis, it introduces
an extension to the DTMC model which allows to annotate some properties
peculiar to the cloud environment that are used later on for the simulation
and control of the system. It describes additional properties of nodes of the
DTMC, introduces control variables and characterizes parameters specific to
the modeled case study that are necessary to initialize the control system.
The second part of the chapter shows the extension we proposed to the
controller introduced in Chapter 3 in order to deal with our new model and
to perform adaptation on both in-cloud scalability and clouds orchestration.

Chapter 5 goes through the implementation of the extensions to Palladio,
developed in Java, and the implementation of the simulation tool developed
in Matlab.

Chapter 6 introduces the three use cases that have been tested for the
evaluation of the control approach. The first is based on a 4 hours simu-
lation of a two tires application that makes use of two cloud providers in
a single-region scenario, showing the peculiarities and the behavior of our
approach on a simple case. The second is based on a 6 hour simulation of
the same application on a multi-region scenario. The third describes a much
complex application that controls the emergency response system of a smart
city. These use cases are introduced by stating their requirements and their
simulated workload, the environmental conditions in which they run and
their architecture developed with Palladio. These applications are simulated
and the results of the availability and costs obtained by the proposed control
system are discussed.

Chapter 7 summarizes this thesis contribution and provides an overall
evaluation of our approach, pointing out some future work that we consider
worth to be investigated.

8

Chapter 2

Background

In this chapter we will provide some definitions and the minimum back-
ground knowledge required to better understand our work and in order
to have a common lexicon, since for some terms there might not be well-
established meanings.

Section 2.1 presents the cloud computing environment by showing some
of its complexity and introducing some of the main features that makes it so
attractive. Section 2.2 introduces the subject of non functional requirements.
Section 2.3 introduces the popular model of DTMC and extends it with
reward in order to model a cost function. Sections 2.4 and 2.5 shows some of
the main problems that affects the cloud computing environment. Section 2.6
explains the important autoscaling feature of cloud provider that, along with
low costs, makes cloud computing one of the most attractive environment to
run application. Sections 2.7, 2.8 and 2.9 respectively give an overview on
Infrastructure, Platform and Sofware as a service. These are the three main
fashions in which cloud computing has been described in literature.

2.1 Cloud Computing

Cloud computing is an emerging technology born by the idea of big IT
companies of renting some of their computing capacity when it was not
needed by the company itself. For example Amazon developed EC2 for in-
ternal purpose of reducing maintenance costs of its worldwide infrastructure,
later on it made publicly available its service and started the business of
cloud computing. The main advantages from a developer’s point of view of
cloud computing are its very low start-up costs, the fact that there is no effort
required to manage hardware on which his application runs and the immense
computing capacity cloud can offer. We now give a brief overview of some of

9

CHAPTER 2. BACKGROUND

the major cloud providers in order to show to the reader the wide spectrum
of offers that are available as cloud services, the similarity and the difference
between cloud providers. This section should make the reader aware of the
difficulties in choosing the best cloud provider for its needs and the chal-
lenges in provide portability of applications between cloud providers. This
section ends with an overview of the work in progress to ease this process of
migration. Cloud computing, as stated in [5, 3], refers to both applications
delivered as services over the Internet, hardware and systems software in the
data centers that provide those services. Cloud computing is very new and
dynamic field of IT, it emerged in the last few years and a clear schema of
all its aspects has not been developed yet. This is mainly due to the va-
riety of objects offered as a service from cloud providers, among them we
can count Software, Infrastructure, Platform, Storage, Data, API and much
more. Other than the variety of services offered by cloud providers there are
other factors that increase the complexity, for example the way these services
are offered. Clouds can be private or public: By private cloud we refer to
internal data centers of an organization which cannot be accessed by third
parties; vice versa public clouds are publicly available on a pay-as-you-go ba-
sis. A third type of cloud has emerged with the name of hybrid cloud because
it’s made of a composition of a private IT infrastructure (e.g. a private cloud
or a DBMS) and a public cloud. An example could be an Hybrid Web Host-
ing where Web servers are hosted in the cloud, while the database servers are
situated in the internal network of a company, this is usually done in order
to maintain critical data in a more controlled environment.

Among all others the main categorization that has been done for cloud
services in this one:

� Infrastructure-as-a-Service (IaaS): The provider let the user up-
load his own virtual machine or choose from a pre-configured set, in
both cases the user is responsible for the operating system, the appli-
cation stack and so on. The pricing methods for this service are based
on the resource size of the user virtual machine(s) (e.g. CPU cores,
RAM GBs). Examples are Amazon EC2 [6], Rackspace Cloud [7] and
Terremark’s cloud [8].

� Platform-as-a-Service (PaaS): The provider offers code execution.
Operating system managment is done by the provider and user does
not have to cope with security updates or failures of the OS. The user
provide the application code (language support is usually limited) and
the cloud platform takes care of its execution. Examples are Salesforce’s
Force.com cloud [9] and Google’s App Engine [10].

10

CHAPTER 2. BACKGROUND

� Software-as-a-Service (SaaS): The provider offers an entire appli-
cation as a service. The user can make use of the application by calling
APIs or in other ways (e.g. Google apps, mailing servicies); usually
a monthly per user fee is charged for the usage. Examples are Google
applications [11], Netsuite [12], Freshbooks [13] and Hotmail [14].

Choosing the appropriate model for the user needs is a key factor for
the success of user’s application. For example the IaaS model gives a finer
control on resources because it is possible to choose the operating system,
the programming language, administration tools and so on, this finer control
is good for CPU-intensive applications but requires a big effort to manage
the system. For example scalability of the application in a IaaS context has
to be managed by the system administrator which has to carefully choose the
number and size of VMs needed and build strong rules to cope with traffic
changes. In a PaaS model VMs management is delegated to the provider
of the service so the user has only to build an application that is scalable
in the sense that it may run on multiple instances but the management of
the operating system of VMs and their scaling is managed by the provider,
a clear advantage is the fact that usually each PaaS provider has some VMs
in a steady state which can be used for autoscaling without waiting the
usual boot up time that is needed in IaaS. A drawback of PaaS is the fact
that many applications of different users may run on the same system so
the performance of a user application may be subject to the load of other
users’ application. To avoid this situation most of cloud providers implement
artificial upper bounds using the so called “governors” [3].

For cloud users storage could also be an issue because they need to get
content into the cloud. Not all cloud storage system have similar character-
istics: For example Google’s Bigtable is very fast in retrieving data [3] but
is slow in insert operations. A critical point that the user should take care
of while choosing the right system is the latency: For example in Amazon
Simple Storage Service (Amazon S3) [15] it is possible to choose from many
different regions when storing data to minimize the time needed to retrieve
them; moreover this choice impacts the performance of data transfer and the
pricing to store and transfer data. An interesting option offered by Amazon
is the “AWS Import/Export”: When a user wants to transfer a large amount
of data (in case of migration, backup, disaster recovery and so on) she/he
can send to Amazon some portable storage devices and they will be uploaded
directly into the Amazon S3 storage system. This is useful when the Internet
connection speed is not enough to transfer all data in a reasonable time.

11

CHAPTER 2. BACKGROUND

2.2 Non-Functional Requirements

In this thesis we are taking care of those requirements that define how a
system should be, not what the system should do in terms of functionalities.
Our interest is in the quality of service of an application. These kind of
requirements are called non-functional and have not to be neglected since in
some scenarios, especially for critical applications, a system should not just
work sometimes, or eventually give the result, but there are strong quality
constraints that have to be satisfied. A detailed description of these quality
measures can be found in [16], some of the most common are

� Usability, which is highly related to the user experience and the ease
in using the application.

� Reliability, which can be defined as the probability that a functional
unit will perform its required function for a specified interval under
stated conditions. The most common reliability parameter is the mean
time to failure (MTTF).

� Maintainability, that is the ease with which a product can be main-
tained. Its basic measure is the mean time to repair (MTTR).

� Availability is also a very important non-functional requirement, espe-
cially when dealing with critical applications, since it measures the
probability that a system is in a functioning condition at a given
time. It can be measured as uptime

uptime+downtime
, or else, identically, as

MTTF
MTTF+MTTR

. High availability systems, like the one presented in Sec-
tion 6.3, usually require an availability of 0.99999, or, as commonly
said, 5 nines availability (a term indicating the number of 9s after the
decimal point).

2.3 The Discrete Time Markov Chain with

Reward

Discrete Time Markov Chains (DTMC) are known as a useful formalism
to describe systems from the reliability viewpoint and to support reasoning
about it. In [17] DTMC are described as graphs where nodes represent
states, and edges model transitions, i.e., state changes, with a probability
attached to them. A state describes some information about a system at
a certain moment of its behavior. Transitions specify how the system can
evolve from one state to another. The successor state of state, say, s is

12

CHAPTER 2. BACKGROUND

chosen according to a probability distribution. This probability distribution
only depends on the current state s, and not on, e.g., the path fragment that
led to state s from some initial state. Among all states, one is the initial state.
Among all the other states, one or more represent the successful completion
of the execution or the occurrence of a failure. Failure and success states are
modeled as absorbing states, i.e. states with a self-loop transition labeled
with probability 1. Formally, a DTMC is a tuple (S, s0,P, L) where:

� S is a finite set of states

� s0 is the initial state

� P : S×S → [0, 1] is a stochastic matrix (i.e. ∀si ∈ S
∑

sj∈S P(si, sj) =

1)

� L : s → 2AP is a labeling function that marks every state si with the
Atomic Propositions (AP) that are true in si.

States (or transitions) of Markov Chains can be augmented with rewards,
numbers that can be interpreted as bonuses, or dually as costs. The idea is
that whenever a state s is chosen, the reward associated with s is earned.

These kinds of model well fit the kind of application we are going to deal
with, that are cloud applications. In fact we can consider the components
of our system, that can be in-house solutions, services offered by external
providers (see SaaS in Section 2.9) or applications deployed on third parties
platforms (see PaaS or IaaS in Section 2.8 and 2.7), as states of a DTMC
and let transitions model the workflow through these services. We can then
add failure states and attach probability of failure to each transition coming
from nodes whose availability can either be known a priori or estimated from
the success rate of the service modeled by the node. Some other transitions
can instead model requests distribution among different alternative services.
Finally, since external services would probably be with fee, nodes can be
equipped with costs.

Once a system is modeled using a DTMC with rewards, reliability of
the system can be expressed as reachability properties, i.e., as a relational
formula constraining the probability of reaching certain states that represent
failure situations, plus, costs can be used to compute the price of reaching a
certain state through a certain path. Given that SR is an absorbing state, the
vector x̄ whose entries xi correspond to the probabilities of reaching sR from
state si is computed as solution of the linear equation system in variables

13

CHAPTER 2. BACKGROUND

EC2 APAC 95.61%
EC2 EU 96.32%
EC2 US-East 96.42%
EC2 US-West 95.80%
GoGrid 96.33%
Google App Engine 93.05%
Joyent 94.87%
Rackspace CloudServer 96.33%
Windows Azure 95.39%

Table 2.1: Availabilities of cloud providers from [3]

{xi|si ∈ S}:

xi =

1 if si = sR
0 if si 6= sR is absorbing∑

sj∈S P(si, sj) · xj otherwise
(2.1)

thus the item x0 corresponds to the probability of reaching state sR from the
initial state.

2.4 Availability in the cloud

One of the main concern of system developers is that their application
satisfy certain availability constraints, using the cloud as production envi-
ronment for an application frees the system administrator of the effort of
maintaining the system and moves it to the cloud provider. Companies that
use cloud services trust their cloud providers that the system on which they
deploy their applications works correctly all the time. This is usually defined
in the contract made with the provider by a service level agreement. Many
cloud providers’ SLA guarantee 99.95% of availability over a year. In reality
data shows that their expertimented availabilities are much lower as shown
in table

Availability problems in such big and complex infrastructures are not
new, examples of cloud failures are:

� Amazon S3 Availability Event that happened on july 20, 2008 that
lasted for 8 hours that affected US and EU data centers, costumers who
relied on that services experienced downtime of their applications.1

1http://status.aws.amazon.com/s3-20080720.html

14

CHAPTER 2. BACKGROUND

� Gmail major outage of february 24, 2009 caused Gmail users not being
able to access their e-mail account for about two and a half hours 2

� Amazon Relational Database outage of april 21, 2011 affected response
time and availability of many popular sites like Foursquare, HootSuite,
Quora and Reddit. 3

� Gmail failure on march 1, 2011 caused some users to loose access to
their accounts and deletion of all emails for some hours. 4

� Hotmail outage on december 31, 2010 lasted for more than three days
leaving empty in-boxes for many users. 5

Even if cloud provider maintenance teams can discover problems or outages
quite fast, investigating their cause and providing efficient response in such
a complex infrastructure usually requires a quite long of time. Usually cloud
providers grant free computing hours as compensation for the outages of the
affected clients.

2.5 Cloud Portability

As stated in [18] one of the main challenges for the long term success of
cloud computing paradigm is to avoid the vendor lock-in that is currently
happening among cloud providers.In order to do that we need to abstract the
programmatic differences among providers, develop a way to move applica-
tions from local servers to cloud servers or to run in an hybrid context, unify
communication between providers both at application level and data storage
level and create a common management system capable of abstracting cloud
providers architectural differences. This is a very difficult challenge, mainly
because it requires a standardization effort of systems that are already in
place, as explained in [19]. This thesis aims at controlling the behavior of an
application developed on a such a unified environment so this portability and
interoperability features are taken as prerequisite for out work. In particular
this features can be divided into three levels:

2http://googleblog.blogspot.it/2009/02/current-gmail-outage.html
3http://www.crn.com/news/cloud/229402004/amazon-ec2-goes-dark-in-morning-

cloud-outage.htm
4http://gmailblog.blogspot.it/2011/02/gmail-back-soon-for-everyone.html
5http://www.crn.com/news/cloud/228901610/microsoft-windows-live-hotmail-back-

after-e-mails-inboxes-disappear.htm

15

CHAPTER 2. BACKGROUND

� Programming level: Applications can be moved from one cloud provider
to another without the need of re-writing code or reconfiguring the ap-
plication manually. Since we are dealing with runtime adaptation of
the application this is a basic prerequisite. This is not an easy task be-
cause it does not only involve the adoption of a common programming
language, java is currently supported by almost all cloud providers, but
also the development of standardized libraries and interfaces to access
data, the definition of a common ontology of cloud resources and APIs
to use them.

� Monitoring level: Monitoring of QoS properties is crucial for our control
approach so standardized metrics and monitoring tools are necessary
for any kind of control approach to work. This involves the ability to
retrieve metrics both on the utilization of cloud resources (e.g. CPU of
VMs) and of quality of service provided by those resources (e.g. avail-
ability). Another characteristic of cloud provider that should be stan-
dardized is the pricing model, since different cloud providers charge
users based on different metrics (network usage, I/O accesses, CPU
hours) it’s very hard to keep track of all of these aspects of the ap-
plication and predict exactly the cost of deploying on a provider with
respect to another.

At the programming level there are many attempts to create a set of
open APIs that aim to hide the differences between cloud provider specific
APIs and give access to features like blob storage or queues that are com-
mon to many providers, but none of them has been capable of providing
sufficient functionality and at the same time exploit each cloud provider pe-
culiarities. Examples of this APIs are jClouds (Java), libcloud (Python),
Cloud::Infrastructure (Perl), Simple Cloud (PHP) and Dasein Cloud (Java).

2.6 Scaling

One of the most important features introduced by cloud computing is
the concept of scaling. In classical computing systems a company owns a
fixed pool of resources on which its applications run. If the utilization of
applications grows the resources of the company may not be able to cope
with the required computing power so the company has to acquire new re-
sources and expand its pool. This is usually a very expansive operation for
a company and has some drawbacks. First of all the old pool of resources
when saturated starts to reject requests so the quality of the service offered
by the company decreases dramatically, this is the main drawback of a static

16

CHAPTER 2. BACKGROUND

architecture. The second drawback is the fact that even if the company
acquire new resources and integrate them in the current architecture if the
workload for its applications return on normal values the new resources will
be useless until another peak of requests arrives. This approach of acquiring
much more resources than the one necessary in a normal situation to cope
with traffic peaks is called over provisioning and can deal to very high eco-
nomical damages to companies. Cloud computing has the power to offer new
resources with very low prices in matter of minutes from the request of them,
this ability can effectively solve the problem of company resource saturation.
It also offers the opportunity to pay only for used resources and deallocate
them according to companies needs, this ability is very useful to reduce the
problem of over provisioning. A group of resources that is able to scale is
called autoscaling group.

Every IaaS provider offers different kind of VM as resources, this kind
varies in processing power and prices, some more details on resource types
will be given in Section 2.7.1. So the user of the cloud environment can
choose between two kind of scaling:

� Vertical scaling consist in changing the processing power of VMs. Some
providers offers ways to add dynamically resources (e.g. virtual CPU
cores, RAM, disks) to a running VM, others does not allow this kind
of mechanism but require the user to startup a new VM with more
resources and migrate traffic from the old one to the new one when it
is ready to serve requests.

� Horizontal scaling consist in changing the number of running virtual
machines by adding or removing VMs according to user defined rules.
When a scale up request is performed VMs have to boot up before start
serving requests, the delay between the request of scale and the actual
effect depend on the cloud provider. Some of them keep machines in a
stand by state ready to scale up without charging the user.

When to prefer virtual scaling against horizontal scaling is not easy and
depends heavily on application requirements. Horizontal scaling is quite
easy to perform and manage. It mostly affects the number of requests that
are served simultaneously while the average processing time of each request
remains the same because the pool of resources is, generally, homogeneous.
Vertical scale is quite different because it may affect processing time for each
single request, so it may be useful to reduce response time of the application
if for example incoming requests requires high processing power and pass
queues quite fast. A combination of this scaling approaches can be done
simply by requiring resources with a different size of the one already available.

17

CHAPTER 2. BACKGROUND

Both of this kind of approaches can obviously be exploited to increase
or decrease the pool of available resources, the decision of releasing some
resource in order to reduce costs is also not an easy one, sometime it is even
harder scaling up. It is quite obvious that if the system is rejecting requests
new resources are needed and the number of new VMs can be decided with
very complex policies that takes into consideration different facts or by a fixed
number decided at design time. The same can be said for releasing resources
but the under utilization of the system can not be seen just observing the
number of successfully served requests. Another aspect that makes scale
down even more difficult than scale up is the fact that if the response of scale
up in front of a peak of request is too strong, i.e. to many new resources
are allocated, the effect is not perceived by the users of the service whose
requests are going to be served normally but if actions taken to reduce the
size of the poll of resources in case of underutilization is too strong, i.e. too
many machines are shut down, the remaining resources will be overloaded
and requests will be rejected causing QoS degradation.

In order to perform successfully scale up and scale down two components
are requested to cloud provider, the first is a common load balancing layer
which routes incoming traffic among the autoscaling group. Every cloud
provider offers this possibility, some of them also allow the user to customize
load balancer rules. A representative example for the load balancing capa-
bilities of cloud provider is the one of Amazon shown in section 2.7.1.

Another requisite to perform autoscaling is monitoring. In order to ef-
fectively exploit scaling capacity of cloud providers system administrators
have to be able to monitor how their machines are responding to requests
and how the workload affect their performance. Monitoring can be done at
application level or at system level. Many cloud provider offer some system
level monitoring of key performance metrics for their VMs. Metrics that are
usually provided are incoming and outgoing network traffic and CPU uti-
lization. Each cloud provider then offers some metrics like Disk Read/Write
operations that can be common among resources or other that are specific
to the kind of resource that is monitored (e.g. free storage space of Ama-
zon RDS DB, cache hit or miss of Amazon Elastic Cache). Different cloud
providers also offers different sizes of the monitoring interval.

18

CHAPTER 2. BACKGROUND

2.7 Infrastructure-as-a-Service (IaaS)

2.7.1 Amazon EC2

Amazon’s cloud system provides an IaaS model service to users grant-
ing them complete control over assigned virtual machines. Management is
made available through a Web interface where it is possible to launch in-
stances, deploy a custom application environment, manage network’s access
permissions, and run images using as many or few systems as desired. These
operations are made available also using dedicated APIs provided by Ama-
zon, so that users can embed them directly inside applications to perform
automatic scaling or management operations. Amazon Iaas offers to:

� launch virtual machines from a predefined set (including major Linux
distributions and Windows Server) or custom images by uploading an
Amazon Machine Image (AMI);

� configure security and network access to virtual machines;

� choose instances type for every virtual machine, as listed in Table 2.2;

� choose the location of virtual machines between seven different regions,
manage IP endpoint and block storage attached;

� automatically mange load balancing between active machines

� build custom scaling rules

� integrate storage with the Amazon S3 service

The pricing model is a pay-as-you-go both for instances, data transfer and
storage. When creating a custom AMI, users can include software based on
their needs. Amazon offers a list of available software to choose from, like
IBM DB2, Oracle Database 11g, MySQL Enterprise, Microsoft SQL Server
Standard 2005, Apache HTTP, IIS/Asp.Net and many more. Amazon offers
different VM type for any user needs, instances differs for RAM size, virtual
CPU cores, Storage size and performance. Some VMs offers the possibility to
perform parallel computation on GPU cards, this feature is very interesting
for some application because it can really speed up the processing of data.
Not every provider offer this service, so if the developer choses to use this
solution he reduces the pool of provider that its application can run on. Table
2.2 shows the variety of instance types offered by Amazon.

19

CHAPTER 2. BACKGROUND

Table 2.2: Amazon EC2 Instances Types

Type Subtype Memory
GB

Compute
Power ECU

Storage
GB

Micro Micro 0.613 up tp 2 ECU
(short period)

EBS only

Standard
Small 1.7 [1,1] 160
Medium 3.75 [2,1] 410
Large 7.5 [4,2] 850
Extra Large 15 [8,4] 1690

Second Generation
Extra Large 15 [13,4] EBS only
DoubleExtra
Large

30 [26,8] EBS only

High-Memory
Extra Large 17.1 [6.5,2] 420
Double Extra
Large

34.2 [13,4] 850

Quadruple
Extra Large

68.4 [26,8] 1690

High-CPU
Medium 1.7 [5,2] 350
Extra Large 7 [20,4] 1690

Cluster-CPU
Quadruple
XL

23 [33.5,2] 1690

Eight XL 60.5 [88,4] 3370

Cluster-GPU Quadruple
XL

22 [33.5,2] +
2 NVIDIA
Tesla M2050
GPU

1690

High I/O Quadruple
XL

60.5 [35,16] 1024 SSD

Amazon offers this instances with different payment options:

� On-Demand: The user pays only for the computing capacity he uses
on a hourly basis with no long-term commitments;

20

CHAPTER 2. BACKGROUND

� Reserved: The user pays a low one-time term (one or three years)
payment for each instance and get a discount on the hourly usage fee;

� Spot: The user can bid on unused Amazon EC2’s capacity and run
instances as long as their bid exceeds the current Spot Price, which
changes periodically based on supply and demand. This payment
method allows users to acquire resources paying less compared to the
on-demand instances but does not ensure the continuity of service.

Amazon EC2 is a public cloud but it offers the possibility to get a hybrid
one using Amazon Virtual Private Cloud services. This way it is possible to
connect the existing IT infrastructure to a set of isolated virtual machines
via a Virtual Private Network (VPN) connection. The VPN is priced on an
hourly basis.

Amazon offers a cloud storage service (Amazon S3) to use both as a
remote storage and combined with EC2 service as a block level storage. Ob-
jects are redundantly stored on multiple devices across multiple facilities in an
Amazon S3 Region chosen by the user; operations such PUT and COPY syn-
chronously store data across multiple facilities in order to ensure redundancy
immediately. Amazon will then periodically check storages using checksums
and repair lost redundancy (checksums are used also to detect corruption of
data packets when storing or retrieving data). There are two types of storage
accessible to customers:

� Standard Storage (useful for mission-critical and primary data stor-
age): Provide 11-nines durability and 4-nines availability of objects
over a given year and is designed to sustain the concurrent loss of data
in two facilities; only for this storage is available an optional versioning
service;

� Reduced Redundancy Storage (RRS) (useful for non-critical and
reproducible data): Provide 4-nines durability and 4-nines availability
of objects over a given year and sustain the concurrent loss of data in
a single facility.

Amazon implements automatically load balance among instances of an
autoscaling group. Users can create autoscaling groups and add virtual ma-
chines to them, traffic entering the autoscaling group is equally distributed
among VMs of the group. Amazon load balancer also automatically check
the healthiness of each VM attached to the group and if a machine does
not respond to its monitoring requests it is excluded from the working set of
machines and its requests are redirected on other active machines. The load
balancer keeps checking for the healthiness of VMs and if one of them start

21

CHAPTER 2. BACKGROUND

to respond again, maybe after a reboot of the system or other maintenance
action, its served again with requests. It is important to notice that this kind
of monitoring is done at the operating system level not at the application
level, if the applicative software of a machine incurs into a bug and stops
answering requests but the machine is still active and responding to moni-
toring requests of the load balancer it will not be excluded from the working
group and fed with requests. Amazon offers this service called Elastic Load
Balancing inside availability zones, which are independent zones inside the
same data center, and between availability zones of the same region.

2.7.2 Rackspace Cloud

The Rackspace Cloud service, called Cloud Servers, provide an IaaS model
service granting users complete control over their virtual machines. Instances
management is made accessible through a Web interface or APIs and avail-
able operations are similar to Amazon EC2 service.

Rackspace offer differs from Amazon EC2 mainly for the presence of a
support team which can help VMs deployers to manage their instances. One
of the main differences from the developer point of view between Amazon
EC2 and Rackspace Cloud is the fact that EC2 images are not persistent, that
means that when a running instance is shut down its state is lost. Rackspace’s
instances instead are presistent, that means that is a machine is shut down
and then rebooted its state (e.g. attached storage, files) will be in the same
state that they were when the machine was terminated. Another differ-
ence from the application point of view is the management of IP addresses.
Rackspace offers a persistent public IP address for each instance while Ama-
zon uses dynamic private IP addresses under a NAT. There are other minor
differences between the two providers which are listed here [20]

Rackspace offers also many solutions for data storage.

� Cloud Files is an object storage solution to store files or media and
deliver it over the Akamai CDN [21] and ensures data persistency with
triple replication.

� Cloud Database offers a High-performance MySQL databases in the
cloud.

� Block Storage offers a storage solution in which users can choose be-
tween SSD or SATA disks based on their I/O performance requirements

� Backup offers file level backup for servers in the cloud it implements
a scheduled backup policy and ensures rapid recovery of data from
backup in case of need.

22

CHAPTER 2. BACKGROUND

2.7.3 Terremark Cloud Computing

The Terremark Worldwide Inc. cloud services are divided in two cate-
gories: vCloud and Enterprise Cloud. The first service is designed for small
development teams and department needs: It offers a quick set up and a
pay-as-you-go policy. Enterprise Cloud offers precise and dynamic allocation
of computing resources with the scale, performance and security to handle
enterprise-wide applications and is targeted to large organizations, IT exec-
utives and multi-site teams. As previous providers, the management is made
available both through a Web interface and APIs. Terramark uses VMWare
virtualization products and technology and offers also persistent virtual ma-
chines that will not be erased when the user shut them down, similarly to
Rackspace. Terremark offers the possibility of increasing the size of the VM
both in computing capacity or memory dynamically without restarting the
tool.

Unlike previous providers, there is not a storage service to use in com-
bination with the computing one: Every instance will be provided with one
or more disks of variable sizes. Hybrid Cloud may be achieved by placing
proprietary servers in Terremark’s colocation service or by connecting the
enterprise IT infrastructure to the cloud.

2.8 Platform-as-a-Service (Paas)

2.8.1 Google App Engine

Google App Engine is a PaaS offered by Google and lets users run Web
applications on its infrastructure. The user develops and uploads her/his
applications without taking care of servers administration. It is possible to
bind a specific domain name or use one from applicationspot.com.

Google App Engine supports applications written in three different pro-
gramming languages: Java, Python and Go. With App Engine’s Java run-
time environment, it is possible to build applications using standard Java
technologies, including the JVM, Java servlets, and the Java programming
language or any other language using a JVM-based interpreter or com-
piler, such as JavaScript or Ruby. App Engine also features a dedicated
Python runtime environment, which includes a fast Python interpreter and
the Python standard library. The Java and Python runtime environments
are built to ensure that applications runs quickly, securely, and without in-
terference from other applications on the system.

The payment policy is pay-as-you-go: There are no set-up or recurring
costs, the user pays only for storage and bandwidth used every month. it is

23

CHAPTER 2. BACKGROUND

possible to set a monthly budget and the system will put a resources usage
cap to keep the used resources under that limit. Under 500MB of storage and
an amount of CPU and bandwidth needed to serve around 5 million page
views per month, the service is free of charge.

Some features of this service are: Dynamic Web serving, persistent storage
(with queries, sorting and transaction), automatic scaling and load balanc-
ing, APIs for authenticating users and sending email using Google accounts,
scheduled task for triggering events and task queues for performing work
outside of the scope of a Web request.

Applications run in a secure environment, the Sandbox, that provides
limited access to the underlying operating system. These limitations allow
App Engine to distribute Web requests for the application across multiple
servers, and start and stop them to meet traffic demands. The sandbox
isolates applications in their own secure, reliable environment that is inde-
pendent of the hardware, operating system and physical location of the Web
server. It also restricts applications: response to requests are limited within
30 seconds, they have limited access to file system and listening ports (only
common ones and http/https protocols). Inter process comunication is made
available by task queues in which a process can put tasks that are retrieved
by other processes that executes them.

Google App Engine provides a powerful distributed data storage service
that features a query and transaction engine. As the distributed Web server
grows with traffic, the distributed datastore grows with data. The App En-
gine datastore is not like a traditional relational database: Data objects, or
“entities”, have a type and a set of properties. Queries can retrieve entities of
a given type filtered and sorted by properties values. Datastore entities are
“schemaless”. The structure of data entities is provided and enforced by the
code of the application. The Java JDO/JPA interfaces and the Python data-
store interface include features for applying and enforcing structure within
application, which can also access the datastore directly to embrace as much
or as little structure as it needs. The datastore is strongly consistent and uses
optimistic concurrency control. An update of an entity occurs in a transac-
tion that is retrieved a fixed number of times if other processes are trying to
update the same entity simultaneously. The application can execute multiple
datastore operations in a single transaction which either all succeed or fail,
ensuring the data integrity. The datastore implements transactions across
its distributed network using “entity groups”. A transaction manipulates
entities within a single group. Entities of the same group are stored together
for execution and transactions efficiency. The application can assign entities
to groups when the entities are created.

24

CHAPTER 2. BACKGROUND

2.8.2 Microsoft’s Windows Azure Platform

Microsoft’s Windows Azure Platform is a PaaS provided by Microsoft
composed by a group of cloud technologies, each providing a specific set of
services to application developers. This service can be used both by applica-
tions running in the cloud and by on-premises applications. The components
are:

� Windows Azure: Provides a Windows-based environment for running
applications and storing data on servers in Microsoft data centers;

� SQL Azure: Provides data services in the cloud based on SQL Server;

� Windows Azure platform AppFabric: Provides cloud services for
connecting applications running in the cloud or on premises.

Windows Azure is a platform for running Windows applications and stor-
ing their data in the cloud; it runs on a large number of machines, all lo-
cated in Microsoft data centers and accessible via the Internet. Develop-
ers can build applications using the .NET Framework, unmanaged code, or
other approaches. Those applications are written in ordinary Windows lan-
guages, such as C#, Visual Basic, C++, and Java. Developers can create
Web applications, using technologies such as ASP.NET, Windows Commu-
nication Foundation (WCF) and PHP, applications that run as independent
background processes or applications that combine the two. Both Windows
Azure applications and on-premises applications can access the Windows
Azure storage service, and both do it in the same way: Using a RESTful
approach. This service allows storing binary large objects (blobs), provides
queues for communication between components of Windows Azure applica-
tions, and even offers a form of tables with a simple query language. There
is also a standard relational storage provided by SQL Azure Database. Cus-
tomers can create accounts for running application, storing data or both;
administration is made available through a Web interface and APIs.

Windows Azure Platform Appfabric is a service to address common in-
frastructure challenges in connecting distributed applications; it consists of
two components: Service Bus, a way to expose endpoints (as URI) that
can be accessed by other applications, whether on-premise or in the cloud,
and Access Control which allows RESTful client applications to authenticate
themselves and provide a server application with identity information. Users
can administer this service via a Web interface. Developers can deploy appli-
cations written in .net, java, php, python or other languages. If the developer
chooses to use .net as the language for its application he can exploit many

25

CHAPTER 2. BACKGROUND

features integrated in Visual Studio to build, test, deploy and manage the
application.

2.9 Software-as-a-Service (SaaS)

2.9.1 Google applications

Google applications is a SaaS offered by Google providing customizable
versions of several Google products using an owned domain name. This ser-
vice is mainly offered to companies and includes different Web applications
such as GMail for business, Calendar, Docs, Groups, Sites and Video. There
are different application Editions for every needs and fees: Standard (free up
to 50 users with GMail, Calendar, Docs and Sites), Premiere (as Standard
but with annual per user fee and adding more storage for emails, Video and
Groups), Education, Government and Non-Profit. An optional add-on avail-
able to premier users is Postini useful for protecting, archiving and securing
emails. Another option available to customers is Google applications Mar-
ketplace: It is a store where users can buy Web applications integrated with
Google ones deployed using Google App Engine. There are several categories
available ranging from administration tools, finance, customer relationship,
document management, productivity, sales and marketing, etc.

2.9.2 Rackspace

Rackspace also offers Rackspace Sites a platform which lets web designers
build and publish a site on its cloud platform in a very simple way using
Wordpress, Joomla or Drupal

2.9.3 Microsoft

Microsoft offers its SaaS solution for business as Microsoft Business Pro-
ductivity Online Suite which comprehends Exchange services for mail, calen-
dar and contacts management, SharePoint services for collaboration, Com-
munications and Live Meeting for communication and conference over chat,
voice and video.

26

Chapter 3

Existing Tools and
Methodologies

We provide now an overview of some tools that are used to deal with the
problems introduced in previous sections. Section 3.1 presents Palladio, a
tool used to model an application in details, from a class diagram representing
it’s logical structure to an allocation diagram that represents its deployment
onto physical machines. This tool can perform some transformation to the
model of the application described by the developer team in order to build
different models to evaluate non functional properties.

Section 3.2 gives some basic knowledge about software system control
methods based on applications models introducing the discrete time Markov
chain model and providing some basic notion about control theory in gen-
eral. Section 3.3 describes one of the first work coping with software self-
adaptation by automatically modifying the model of the application using a
control-theoretical approach. The model is kept alive at run-time through
parameters estimation and requirement satisfaction is obtained solving a con-
straint optimization problem. Section 3.4 shows a control approach found in
literature that manages the autoscaling behavior of a cloud provider. Au-
thors take into account the differences of performance between VM instances
in order to do scale up and the differences of processing needs of incoming
requests in order to assign them to VM that can process them in the shortest
time.

3.1 Palladio-Bench

Palladio is an IDE based on Eclipse Modeling Framework developed and
supported by Karlsruhe Institute of Technology (KIT), FZI Research Center

27

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component

Developer>>

part of

part of

part of
pa

rt
 o

f

<<System

Architect>>

<<System

Deployer>>

<<Domain

Expert>>

PCM

Instance

M
od

el
-to

-M
od

el

Tra
ns

fo
rm

at
io
n

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

Model-to
-Model

Transformation

Model-to-Code
TransformationM

odel-to-C
ode

Transform
ation

Figure 3.1: Palladio Component Model - Roles

for Information Technology, and University of Paderborn. As stated in [22]
It provides different tools for each developer role allowing them to build
separate diagrams describing some characteristics of the system to be. The
tool then automatically integrates all these diagrams and generates models
of the entire system to analyze some QoS properties at design time. In
this section we will shortly describe basic procedures to model a system in
Palladio-Bench and clarify its limitations in modeling a dynamic application
in the cloud, which is the subject of this thesis.

One of the key point of the Palladio suite is its ability to clearly separate
development roles, as shown in Figure 3.1 Palladio supports the design of the
application by automating multiple steps each one performed by a different
role in the development team, these roles are:

� Component Developer

� Software Architect

� System Deployer

� Domain Expert

28

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

3.1.1 Palladio Component Model

Palladio Component Model is the core of Palladio-Bench, it is composed
of four models that describe different aspects of the system and a usage model
that describes users’ behavior. The four system models are:

� Component Repository

� System Diagram

� Execution Environment

� Component Allocation

The Component repository diagram describes all the components of the
software and their interfaces. It is built by component developers which spec-
ify required and provided features for their components. A component is the
basic element of the application, if offers some functionalities and it may
require some other functionalities to work, a simple example of a compo-
nent could be the code of an application that replies to users’ requests. This
application may need to interact with a data base. In such case the compo-
nent would require that another component implement a common database
interface.

Component repository can include composite components, which repre-
sent subsystems, and additional informations like failure state specifications,
whose meaning will be explained later on in this section. This diagram can
be divided in two main layers, the upper one represents interfaces, compo-
nents and their provided/required relations, the lower one represents effects
of the implementation of provided interfaces by components. A diagram that
specifies the behaviour of a component while executing a certain function is
called a Service Effect Specification (SEFF). A SEFF diagram consists of a
chain of actions from a starting point to an ending one. To build this di-
agram the component developer can choose from many kind of predefined
actions, the two most important are internal processing or call to an exter-
nal service. Other actions include control like branches or loops. Internal
actions are used to represent some processing that occurs inside the compo-
nent, processing actions can be annotated with a failure type description with
an attached probability. This attribute represent the possibility that some-
thing in the processing of the internal action goes wrong, this kind of failure
refers to a software failure, not the failure of the hardware on which the com-
ponent runs. Another important parameter that component developers can
specify is the resource consumption. This parameter models the expected
required use of hardware components from the functionality implemented by

29

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.2: PCM - Repository diagram

the module, it can specify the amount of resources required in terms of CPU
and HDD. These annotations are used by Palladio when generating different
models for prediction of QoS measures. For example the failure probability
of an internal action is used to build a DTMC model for availability analysis
while the resource consumption is used when building performance models.
External actions are used when developing a SEFF to model calls to external
services, when adding an external call action the developer is supported by
Palladio that let users choose which external action to call within the pool
of functionalities defined by the interfaces required by the component. An
example of a very simple repository diagram with two interfaces and three
components is shown in Figure 3.2

The System Diagram is built by software architects which compose in-
stances of the components from the repository into an architecture of the
system. The system diagram has to be specified after the system diagram
has been defined, this is due to the fact that components in the repository
diagram represents classes while components in the system diagram represent
instances of those classes.

Information about how a functionality is implemented is not useful when
connecting components, the only information required in order to connect
two components is their required and provided interfaces. Software architects
define assembly contexts for each component that will be used in the system
and connect the required and provided interfaces of components defying the
structure of the system. This diagram can also specify a provided role for
the entire system which is the service that end users are actually going to
call. An example of a system diagram is shown in Figure 3.3

30

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.3: PCM-System diagram

The execution environment is defined by system deployers with a resource
environment diagram which models the physical structure of the system by
means of Resource Containers, with processing power, storage resources, and
links. This diagram is used to model the environment on which the appli-
cation will be deployed. An example of a resource environment is shown in
Figure 3.4. In this diagram system deployers can also specify MTTF and
MTBF of components.

The linking between the resource environment diagram and the system
diagram is specified by the component allocation diagram that specifies which
instance of each allocated component is deployed on each physical machine.
In the very simple case of Figure 3.5 the execution environment specified in
Figure 3.4 consists of a single resource container with a CPU and an HDD so
the components specified in Figure 3.3 are allocated on this machine. More
complex environments can include multiple machines networked together or
machines with multiple copies of the same resource. Merging the SEFF
diagram, the system diagram, the resource environment diagram with this
diagram Palladio can derive actual resource usage in terms of CPU seconds
or time to access the HDD for each function of each component.

Palladio let the developers team specify also a usage model diagram in
order to model the behavior of the users of the system. This diagram is
usually built by the domain expert. This diagram is used to generate model
for performance prediction based on Layered Queuing Networks since we are
dealing with DTMC models this diagram will not be discussed any further.

Palladio offers some great features to develop a system so can be really
useful when dealing with complex systems but it also has some limitations

31

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.4: PCM-Resource diagram

Figure 3.5: PCM-Allocation diagram

32

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.6: PCM-Usage diagram

when dealing with the cloud environment. Currently Palladio let system de-
ployers create only server entities in the resource environment diagram with
resources like CPU, HDD and Network links. Since this simple entity is not
suited to model cloud systems (e.g. dynamic computing resource allocation
and cloud performance variability) which are much more complex we chose
not to use it. The lack of cloud entities for the deployment diagram can
be associated to the lack of standardization in the cloud environment shown
in Section 2.1. Since we are dealing with availability measures our interest
in processing power of machines is limited to the case of requests rejection
due to an overload of the machine. We decided for simplicity, to model this
aspect in another way by associating this information with the failure type
description. Using this approach we did not need to add resource consump-
tion specification in SEFF diagrams but just a failure probability. Using this
kind of specification allowed us to separate the failure description inserted by
the domain expert which model the failure of a service due to some external
reasons to the failures due to the overloading of the machine its service run
on which is managed with a queuing theory method explained in Section 5.2.

Another limitation that we have encountered during our work with Pal-
ladio is the fact that each interface connector in the system diagram can be
connected to a single providing component instance. This has been done in
order to avoid ambiguity that may arise by connecting more instances of the
same components or, more in general, of components implementing the same
interface, without explicitly deciding when to use one or the other. This fea-
ture can be implemented by specifying in the repository diagram an interface
for each copy of the component we want to connect. Then we can choose

33

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

to have a component implementing in a similar way all these interfaces and
replicate it inside the system diagram, or to have multiple components im-
plementing each one a single interface and instantiate them just once. This
approach moves the semantic choice of which service to call in case of mul-
tiple similar services into the SEFF diagram, which is much more expressive
in terms of conditions on user input data. Also the system diagram is more
readable and easy to build because when an instance of a component which
requires multiple interfaces is created the number of components providing
that interface is unambiguous. The drawback of this approach is the fact
that if we want to add two component providing the same functionalities
to another component we have to build two identical interfaces and if there
are many components of this kind in the system the deriving representation
become large and not very easy to read.

3.1.2 PCM transformations

The Palladio Component Model (PCM) defined by the diagrams of Sec-
tion 3.1 are used by Palladio Bench as a starting point form different trans-
formations. Depending on what the user is interested in Palladio Bench can
transform the PCM model into different models, the most used are Layered
Queuing Networks (LQN) and Regular Expressions. Both these models are
used to derive performance measures from the model, in particular the LQN
model can be solve analytically or with a simulation tool integrated in Palla-
dio. Even if not integrated in the final release there is also a transformation
engine that allows to derive DTMC models from PCMs. The effect on the
DTMC of using a single software failure type or multiple failure types during
system design can be seen in Figure 3.7. In 3.7(a) the general software fail-
ure type has been used so the generated Markov model has a single failure
type with many incoming arcs, while in 3.7(b) two software failure types has
been declared. Using multiple failure types give more information about the
failing component in the final analysis.

Other components like probabilistic branches and loops can be inserted
in the SEFF diagram these structures are then transformed in different ways
into the Markov chain. In particular probabilistic branches are translated as
in Figure 3.8, since in Palladio it’s not possible to define a probability for
remaining in a loop but only a fixed number of iterations, the transformation
of loops involve the loop unrolling procedure, the final outcome is shown in
Figure 3.9.

By transforming the specified model into a DTMC, Palladio is capable
of calculating the probability that the system ends in a success state and
show the effect of the failure of each service specified with a failure type on

34

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

(a) Single failure type

(b) Multiple failure types

Figure 3.7: PCM - Failure types

35

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.8: Branch conversion

Figure 3.9: Loop conversion

36

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

the overall failure probability. In this way system developers can find major
points of failure and focus their attention in reducing their probability of
failure. The main limitation of the analysis performed by Palladio is the fact
that it is a static analysis of the system. In order to overcome this limitation
Palladio allows developers to specify a sensitivity file in which one can define
some characteristics of the system as parameters and provide a range in which
they can vary. An example of a parameter could be the probability of failure
of a system or the probability of taking a branch in a SEFF diagram. This
sensitivity files are used by Palladio to run several iterations of the system
evaluation by modifying one parameter at a time in order to build a final
report. This approach is quite easy to use for small systems in which few
variables can change. To model a complex system like the one in our use case
described in Chapter 6 in which many parameters change over time a more
versatile environment is necessary. Another limitation of Palladio is the fact
that it is designed to perform an analysis on a fully determined system and
not to optimize the behavior of the specified system with respect to decision
variables, non controlled variables and a goal.

3.2 Model Based Control

As stated in [23], modern software systems are increasingly embedded
in an open world that is constantly evolving, because of changing in the
requirements, in the surrounding environment, and in the way people interact
with them. The platform itself on which software runs may change over
time, as we move towards cloud computing (see Section 2.1). For these
reasons, a developer cannot guarantee requirements satisfaction just from an
analysis conducted at design time. The assumptions made at development
time can change in ways developers did not think of. Often, changes in
the application cannot be handled off-line, but require the software to self-
react by adapting its behavior dynamically, to continue to ensure the desired
quality of service. The work in [23] advocates that future software engineering
research should focus on providing intelligent support to software at run-time,
breaking today’s rigid boundary between development-time and run-time.
Models should be kept alive at run-time so that software is able to evolve.

In order to react in case of changes in the environment, we need to equip
our running software with some instruments that are not strictly related
to functional aspects of the application, but rather to those non-functional
requirements described in 2.2. Besides the model, we then need a mechanism
to actually change the implementation of the software when the model is
modified, we need monitors to retrieve data useful to verify the requirements

37

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.10: Concept of the feedback loop to control the dynamic behavior
of the system. Source: http://en.wikipedia.org/wiki/Control_theory

satisfaction, and we need a controller capable of automatically evolve the
model in case the preset objectives are no longer reached. We will now
describe the model we are going to use and the control theory basis so to
rely on a common background.

3.2.1 Control Theory

Control theory is an interdisciplinary branch of engineering and mathe-
matics that deals with the behavior of dynamical systems with inputs. The
external input of a system is called the reference. When one or more output
variables of a system need to follow a certain reference over time, a controller
manipulates the inputs to a system to obtain the desired effect on the out-
put of the system. Controllers can be of two kinds. The ones that react
using only the current state of the system and its model, which are called
open-loop controllers, and the ones that use feedback, that is, the output of
the system measured by some sensor, which are called closed-loop controllers.
The obvious limitation in the first kind is that there is no information about
how the system is actually reacting to the inputted data is observed. The
concept of the feedback loop is shown in Figure 3.10. The main advantages
of closed-loop over open-loop controllers are disturbance rejection and guar-
anteed performance even if the model does not perfectly fit the real system.

3.3 Self-Adaptive Software Meets Control The-

ory

In Section 3.2.1 we introduced a field which seldom deals with self-adaptive
software. The first examples coming to one’s mind when talking about con-
trol theory are its applications in car’s cruise control or thermostat-controlled

38

http://en.wikipedia.org/wiki/Control_theory

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

temperature regulators. Though, control theory is not bounded to any prac-
tical field, it is just a mathematical theory which deals with anything that
may be automated. Therefore, when talking about self-adaptive software we
are actually dealing with a system whose requirements satisfaction needs to
be automatically controlled. In this Section we will present one of the first
works where a control theoretical approach was used to solve problems of
self-adaptation in software system models [1].

In the paper where this work was presented, the authors focused on sys-
tems where reliability requirements have to be guaranteed. The typical sce-
nario the authors refer to is a service-oriented application that composes
external services through a workflow. External services have their own fail-
ure profile, which is unpredictable, and the degree of freedom necessary to
self-adaptation is given by the choice of the service, expressed by using prob-
abilities. The application is formally modeled as a DTMC (see Section 2.3).
The controller is any system that, properly coupled to the software system,
makes it fulfill its requirements whenever they are feasible. Requirements
can be strict constraints on the behavior (e.g. reliability equal to a certain
value) or related to the optimization of certain metrics on the observed soft-
ware executions (e.g. minimization of outsourcing costs or maximization of
throughput). The claim this work support is that control theory provides
a number of instruments that software engineers to satisfy non-functional
requirements even in case of changes in the environment. In particular the
authors claim the controller is able to provide:

� a way to adapt the system in case of change in the requirements.

� robustness to fluctuations or sudden changes in the reliability of ex-
ternal services, that may vary around nominal values during normal
execution. Actual values are supposed to be estimated on line through
monitoring.

� robustness to accuracy error in measurement and monitoring.

A Representative Example Figure 3.11 shows the high level software
model of the case study introduced in the paper. An image filtering service
is composed by three different implementation of a beautifying filter, where
one of them is outsourced (External Filter). The DTMC model of the system
is shown in Figure 3.12. The controller will be responsible of adapting the
system acting on the control variables C1a, C1b and C5. Therefore, it is in
charge of distributing the requests among the three different filters and of
deciding whether re-iterating on the iterative filter. All the alternatives are

39

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.11: Schema of the software system. Source [1]

assumed to be black-box services, whose failure rates are collected by run-
time monitors that are then responsible of estimating the probability that
an invocation to the service will fail.

Starting from the DTMC model of Figure 3.12 and applying the approach
described in Section 2.3 the authors write down the equation system as in
Equation 2.1. By solving that system for s0 it is possible to obtain the closed
formula 3.7 that describes the explicit dependency of reliability (s) on control
variables (c) and measured reliabilities (r).

s = r0 · r6 ·
(
c1a · (−1 + c5) · r2
−1 + c5 · r2

+ c1b · r3 + (1− c1a − c1b) · r4
)

(3.1)

Software Models as Dynamic Systems Suppose that the adaptation
mechanism acts at instants identified by an index k. Also, let the average
duration of a step be significantly longer than the time scale of the controlled
system’s dynamics. This means that if at the beginning of a step the con-
troller altered the transition probabilities of the DTMC, then at the end of
the same step the effects of our actions can be measured. So the dynamic
system of the software model would be

s(k + 1) = f(r(k) + ∆r(k), c(k)) (3.2)

where s(k+ 1) is the application reliability in step k+ 1, c(k) are the control
variables set for step k, which are kept constant through the step, r(k) are

40

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.12: DTMC model for the example system. Source [1]

the expected reliabilities for step k (which are estimated via monitoring),
and ∆r(k) accounts for any discrepancy between the real and expected reli-
abilities in step k. The form of function f comes from the DTMC model as
computed in 3.7.

Controlling the System’s Dynamics by Feedback In a nutshell, the
idea of feedback presented in [1] can be summarized as plugging the con-
trolled system into a larger one where its input is made dependent on its
measured output, possibly its state or an estimation of it in the case it can-
not be measured, and on the desired behavior for the controlled system. Let
J(k) = fj(c) be a cost function on the control variables c(k), that can also
be an uninformative one (such as a constant value) to indicate no preference
among all the feasible solutions. In this case the problem is transformed in
a satisfiability problem because the controller has just to find a feasible as-
signment to control variables and not an optimal one. The controller comes
into play by solving the problem

min J(c) (3.3)

subject to the constraint

||goal(k + 1)− ŝ(k + 1)|| ≤ α||goal(k)− s(k)||

∀ci(k), 0 ≤ ci(k) ≤ 1
(3.4)

41

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

where α is a value in the range (0, 1) that affects the convergence rate of the
solution, that is in the next step we expect the absolute error to be reduced
by a factor α. ŝ is the expected system reliability, computed as:

ŝ(k + 1) = f(r̂(k), c(k)) (3.5)

where r̂ are the measured reliabilities, while control variables c have to be set
by the controller so to satisfy 3.3 and 3.4. goal is the set-point, that is the
desired reliability at each step. The set of constraints has to be extended with
probabilistic constraints (the sum of outgoing transitions from each state has
to be 1), as done for the control variables ci.

Experimental Evaluation For the proposed case study the control sys-
tem acts minimizing

J(c) = (J1ac1a + J1bc1b + J5c5)
2 (3.6)

where J1a, J1b and J5 are equal to one, therefore assuming that all costs are
equal. Reliabilities ri vary according to the following functions

r0 = 0.95 + 0.02stp(k − 25)− 0.20stp(k − 50) + 0.10stp(k − 75)

r2 = 0.95 + 0.02stp(k − 20)− 0.20stp(k − 70) + 0.15stp(k − 85)

r3 = 0.95 + 0.02stp(k − 15)− 0.97stp(k − 55) + 0.50stp(k − 65)

r4 = 0.95

r6 = 0.95 + 0.05stp(k − 95)

(3.7)

Figure 3.13 shows the result of the simulation. The dashed line is the set
point of the desired availability which is modified during the simulation,
the solid line is the availability of the controlled system. From this figure
we can see that the controller is capable of modifying the behaviour of the
application in order to get the desired availability, it converges to the new
set point in few time units and does not present oscillating behavior. Figure
3.14 shows the value assigned by the controller to control variables at each
time unit. For time units between 55 and 65 a failure of node r3 in injected,
the controller reacts by changing the probability of using that node to 0 and
raises other probabilities.

42

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.13: Reliability of the system: set point (dashed) and achieved value
(solid).

3.4 Cloud Auto-scaling with Deadline and Bud-

get Constraints

Another approach that can be adopted to manage auto scaling in a cloud
environment is presented in [2] where authors build an integer programming
problem from deadline and budget constrains and solve it to get scaling
decisions. This article focus on modeling the incoming workload and the
available processing resources by diving it them into sub classes. In particular
cloud VMs are modeled into three subclasses in order to specify some special
characteristics offered by machine of that type. The classes in which VMs
are divided are: General, High CPU and High I/O. The workload is also
divided into three classes that are: Mixed, CPU Intensive and I/O intensive.
The goal of this control mechanism is to complete each job within a deadline
that is assigned when the job enters the system. In order to make scaling
decisions authors take into consideration the attributes shown in table 3.1.

The control system proposed in the article consists in a monitoring part
that keeps track of application level performance measures like the average
processing time of each job according to a given machine type. A decision

43

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.14: Control variables of the system: c1a dashed, c1b solid and c5
dashed dotted.

Jj j th class of job
nj Number of jobs of class j already in queue
V VM type
Ii ith instance (running or pending)
cv Cost per hour of a VM of type V
dv Average startup delay of VM of type V
si Time spent in pending status for instance I
tj,v average processing time of job j on V
D Deadline
C Budget constraint
W Workload
P Computing Power

Table 3.1: Attribute used to take scaling decisions

44

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

Figure 3.15: Structure of the controller in [2]

engine that take scaling decisions and a VM manager that perform the scale
up or scale down action. This approach does not limit to horizontal or
vertical scaling but tries to mix both by choosing a combination of instance
types that is capable of processing all queued jobs within their deadline while
mini zing costs. The scaling manager is executed at the arrival of each job,
in order to determine if the increased workload (W) can be managed by
the current computing power (P), and a few minutes before the end of a
computing hour of each machine. This second activation of the controller is
used to manage the scaledown process. Since billing happens on an hourly
base at the each of each hour of uptime of each machine the controller has to
check if that machine is needed in the next hour or can be safely deallocated
to save budget resources. The structure of the controller is shown in Figure
3.15.

3.5 Cloud control approaches considerations

The work presented in Section 3.3 shows a control technique that uses
monitoring to keep models created at design time alive with the running
system. Authors use information from the updated model to automatically
take adaptation actions. In particular the controller chooses how to route
requests in some points of the application in order to fulfill an availability
requirement. At a first approximation we can say that this controller acts as

45

CHAPTER 3. EXISTING TOOLS AND METHODOLOGIES

a very smart load balancer for the system.
Section 3.4 shows a control approach aimed at managing efficiently the

scaling ability of a cloud provider. They divide available resources and in-
coming processing requests by performance categories and try to find the best
assignment of requests to resources when dealing with a scaling decision.

We considered both works when designing our controller by building two
layers of control that work together. The first layer acts as a smart load
balancer controller that monitors the system, updates the model and takes
control decisions. The second acts as a scaling manager that takes scaling
decisions by monitoring some parameters of its autoscaling group. Since we
start from the hypothesis that resources of an autoscaling group are homo-
geneous we did not used the approach described in [2] to assign requests to
machines.

46

Chapter 4

Model and Controller
Extensions

In this chapter we present an extension to the classical DTMC model that
allows it to represent some peculiar aspects typical of cloud computing. An
instance of this DTMC model can be used to describe an application deployed
on multiple clouds or even in a hybrid environment. The instance can be
useful to perform design time analysis of the behavior of the application
in different working scenarios and to conduct analysis similar to the one
described in Section 3.1. These kinds of analysis can be used by system
developers to take design decisions regarding the structure of the application.
The main advantage that we are interested in is the possibility of keeping an
instance of this model alive at runtime, update its value by monitoring the
real application and take control decisions by perform some reasoning on the
updated model. The controller described in Section 4.3 has been developed
to update model parameters at runtime and assign values to control variables
of the model in order to keep availability as close as possible to the set point
defined by the user while reducing costs.

4.1 Overview of the solution

The solution we propose in this thesis is shown in Figure 4.1. It is com-
posed by two main parts:

� A model that store information on the structure of the application and
on the characteristic of the environment in which it is deployed.

� A controller that operates on the model in order to control the behavior
of the system.

47

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

Figure 4.1: Overview of the solution

The model is derived automatically from an instance of a Palladio PCM
tool via an extension of Palladio that we have developed, described in Section
5.1. The controller uses the generated model by monitoring system parame-
ters to update its parameters. It then calculates control variable values that
are used to update the system while it runs.

In order to test the validity of our approach we implemented a tool capable
of simulating the cloud environment as shown in the lower part of Figure 4.1.
The tool is presented in Section 5.2 Users can specify some parameters of the
simulated scenario like the incoming workload or the availabilities of cloud
providers and the tool will simulate these behavior. The controller reads data
from the simulated environment and apply control actions. The availability
of the system, along with other parameters, is recorded during the simulation.

4.2 The Model

The DTMC model presented in Section 2.3 is frequently used for avail-
ability analysis but it is not suitable for representing some peculiarities of
the cloud environment.

48

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

In our model nodes represent two kind of entities:

� Computing Resources that can be a physical server of a company or
a pool of VMs offered by a cloud provider. This elements have some
peculiar characteristics that will be discussed deeper later.

� Logical Nodes like load balancers or other logical elements which do
not perform any specific computation on the requests traversing the
system. Logical nodes can be seen as particular computing nodes with
infinite processing power.

The main difference between these two entities is the fact that the first one
can represent a bottleneck of the system in which some requests are discarded
because of the limited processing capacity, the second kind of node does
not represent a bottleneck for the system but just distribute them among
following nodes. Usually providers manage the autoscaling of these nodes in
an automatic fashion that can’t be controlled by the user.

As in [1] we extended the classical DTMC model by adding control vari-
ables and measured availabilities as labels to transitions. Measured availabil-
ities represent factors external to the application that come from the infras-
tructure used. This factors may influence the behavior of the application and
could lead to degradation of the availability of the system. In control theory
lexicon these factors are called disturbances and can be measured by mon-
itors. Examples of this factors are blackout or outages due to middleware
management of data centers which may lead to world wide outages or failure
of an in-house computing resource. Control variables represent alternative
choices, made according to certain probabilities. This probabilities define the
rate at which requests are routed among connected nods. Augmenting the
DTMC model with this two kind of variables makes it suited for control but
it is still not enough to model other important aspects of the cloud.

A very important parameter that we added to our model is the one that
represents the scalability of the entity represented by the node. This is a
binary parameter, if it is true then the node represents an entity capable of
performing autoscaling. This is a very important property of a node because
it represents the fact that this node can change the amount of requests that
it can process and introduces a new way for the control system to manage
the execution of the application. Every node capable of scaling models an
autoscaling group presented in Section 2.1 and is supposed to have its own
load balancer, offered by the cloud provider, which automatically distributes
incoming traffic across instances uniformly. The fact that a node can perform
autoscaling or not heavily affects the usage of other parameters that will be
presented later. A node representing a computing resource with scalability

49

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

parameter set to false can be used to represent a computing resource with
fixed computing power, this is very useful if the user want to model an
hybrid cloud architecture. In such a case in house servers are not capable
of scale their computational power. If this parameter is true the maximum
processing capacity of the node is given by Numberofrunningmachines ×
maximumprocessingpower. This parameter is not used in logical nodes
since it affects the processing power of nodes and such nodes are supposed
to have infinite processing power.

A common extension to the DTMC model, discussed in Section 2.3, is
the definition of rewards, or, in our case, costs. In our model rewards are
attached to states and model the cost generated by a request traversing that
node. Recalling the distinction of nodes just presented, one can note that
only computing resources represent nodes with a positive cost while logical
nodes have cost equal to zero. This is due to the fact that they are not
mapped, as a first approximation, to any physical resource consumption that
leads to an increase in the cost of the system.

Though, we will not know how much a single request is going to influence
the costs, we left the cost of our model a parameter that will be estimated by
the controller at run-time. At run-time, in fact, we will have information like
the current instances pricing, the number of machines and the service rate
(or at least an estimate of them as we will explain in section 4.3) necessary to
estimate the impact of sending a request to one cloud rather than to another.
The cost per request is going to be computed with the following formula

cost per machine per second × number of machines

desired service rate
(4.1)

where the desired service rate is the estimated service rate of the entire node
when working at the desired CPU capacity (see Section 4.3. This cost is, in
fact, a measure of the convenience of using one cloud rather than another
one. So, for example, suppose we have two clouds, cloud A and cloud B.
They have the same pricing, but virtual machines of cloud A have a higher
service rate. Then, cloud A will manage to serve more requests in the same
interval of time, allowing to use less machines and, thus, to save money.

Pricing is usually given in instance hour. The user is charged for every
machine for the entire hour, even if one machine is turned off before the end
of the hour. In our solution, we decided to assume per second billing pay for
simplicity. Per hour billing pay is left to future work.

So, at design time we ask the developer to annotate the nominal cost of
using the resource modeled by the node. Instance pricing is usually constant
and retrievable on the provider web site. Though, we took into consideration

50

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

the fact that prices could change. APIs are usually provided by the cloud
provider to read current costs.

The next two parameters that will be presented are used only in au-
toscaling nodes since model features specific of the cloud environment. Each
autoscaling node is labeled with a minimum and a maximum number of run-
ning instances this two parameters represent respectively the minimum and
maximum number of machines that can run simultaneously on the resource
modeled by the node. This parameter can be used if, for example, while
building an application that requires high availability the designer decides
that on each region of a cloud provider there should be at least two machines
always running. Without this parameter a controller that tries to minimize
costs would be induced to shut down all providers except the most convenient
one. On the other hand the maximum number of running instances is used
to model a resource cap that the designer can set for some providers.

An example of a complete model is reported in Figure 4.2. Blue states
are logical, those states are supposed to have attribute cost equals to zero
and an infinite processing capacity. Green states are processing states that
represent physical processing resources. Two of them are autoscaling states
so they have a cost and a range in which the number of active machines can
vary, while the other one is an internal processing server that is not capable
of perform autoscaling so it has just a cost attribute. We can see that failure
in this model can arise from two different events:

� logical state going to failure state representing the failure of the cloud
provider or of one of its components (states “Cloud Failure”, “R1 Fail-
ure” and “R2 Failure”)

� failure due to computational resources bottlenecks (States “R1 Process-
ing Failure”, “R2 Processing Failure” and “Internal Server Failure”)

4.3 The Controller

In Section 4.2 we augmented the classical DMTC model so to define a
new model able to describe a Multi-Cloud application. This new model is
supposed to be kept alive at run-time, so that whenever some controller
modifies it, changes take effect on the actual implementation.

The controller we are going to define, is actually a dual layer controller.
The first layer controller is responsible for managing one autoscaling group,
controlling the number of running machines. So there are actually as many
first layer controllers as the number of nodes modeling autoscaling groups.

51

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

Figure 4.2: Instance of the model

The second layer controller is a sort of “smart” load balancer in charge of
distributing requests among nodes. The cooperation between these two lay-
ers of controllers aims at guaranteeing system availability, while minimizing
costs.

An important assumption is that they both work at discrete time, that
is, sensorial data is aggregated and delivered from monitors every constant
interval of time (step).

4.3.1 The autoscaling controller

The first layer controller is in charge of performing adaptation at the
node level of our DTMC model. As we saw in Section 2.1, PaaS solutions do
not require the developer to specify scale up or scale down policies. In fact,
the autoscaling is transparent and managed by the provider automatically.
Thus, the controller layer we are defining in this section is clearly only useful
for those applications using at least an IaaS component. If the application
is deployed on top of a PaaS system this layer of control is managed by
the cloud provider and only the controller of Section 4.3.2 is necessary even
though some modification may be required to estimate parameters like the
maximum service rate.

We are also assuming that the providers offer API’s to retrieve informa-
tion about the CPU percentage utilization, the number of running machines,
the status of machines (pending or running) and instances pricing, and API’s
to turn machines on or off, which is quite a realistic assumption given the

52

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

current providers’ offer (see Section 2.1).

Objective The objective of this controller is to keep the number of running
machines so that the average percentage of CPU utilization is equal to the
desired cpu load, a parameter that is chosen by the developer. This parameter
has to be chosen wisely considering that keeping resources highly loaded will
certainly reduce costs, since less running machines will be needed, but there
will also be less safety margin in case of sudden increase of incoming workload
and performance might decrease.

Monitoring Recalling Figure 3.10, what we need for a controller is a feed-
back loop. So, to begin with, we need data from “sensors” so that we can
check how the system is behaving in response to controller’s decisions. First
of all, we define a sliding observation window, which is the time span (or
number of steps) used to make statistics from data collected by sensors. The
statistics, that are all relative to the observation window, are the following:

� the incoming workload, that is the number of incoming requests to the
node

� the successful requests, that is the number of requests successfully pro-
cessed by the node

� the average CPU load, that is the average percentage of CPU utilization
computed over all running machines in the node

� the number of running machines.

From this data, the success rate is then estimated as

successful requests

incoming workload

The success rate will be our parameter of availability.
This information could also be used to make predictions on data, for

example estimating the next values of the CPU utilization or availability
from their trends in the window, but all this will be future work (7).

Control As we said, the developer has to give the set point to the con-
trol system, that is, the desired average CPU utilization of the running ma-
chines. Since the scale up process is quite slow, we cannot afford to let the
controller continuously take decisions and make the number of running ma-
chines change. We proposed a mixed approach to the controller intervention

53

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

timing. It has to be reactive, whenever the system is far from the desired
state. The developer is in charge of setting, besides the set point, bounds
to the CPU usage, that is a maximum and a minimum utilization levels.
The system has to take action immediately whenever the CPU utilization
overcomes these bounds, or whenever the performance degrade, that is, the
success rate becomes smaller than 100%. We will see shortly that, accord-
ing to our assumptions, a success rate smaller than 100% implies a CPU
utilization of 100%.

In case the node is working inside CPU bounds, the controller is tem-
porized. Thus, it is activated every constant interval of time, decided by
the developer, paying particular attention to the fact that, as we will see,
the controller on the first layer as higher priority with respect to the second
layer controller. The smaller this time interval, the higher the probability of
delaying the second layer controller intervention.

The temporized intervention is in charge of making the system approach
the set point, otherwise the controller would only try to make the system
work inside the bounds.

As we said, launching new machines is a slow process, it may take minutes
as stated in Section 2.1. So we need to prevent the controller to take decisions
while machines are turning on, or in pending state. We will say that a node
is stable whenever there are no machines in pending state. Also, we want
statistics from monitors to be estimated only from data observed after a scale
up or a scale down process happens. Therefore, we defined a cool-down state,
which will inhibit the controller as long as it is active. A node enters the
cool-down state when a scaling process is started (both scale up and down)
and will exit from this state only after remaining in a stable state for the
entire duration of the observation window.

After exiting from a cool-down state, the controller will be allowed to take
decisions, reacting on statistics from monitors, and timers for the temporized
intervention are reset.

Given data from monitors, we first need to find a control formula where
the error observed between the desired behavior and the actual one, can
be reduced (and asymptotically eliminated) at each control step acting on
the control variables. Our control variable in this case, is just the number
of machines required. We need, therefore, to find a relation between the
number of machines and the measured availability, and a relation between
the number of machines and the average CPU utilization.

Let us start with an example to understand the assumptions that follows.
Suppose that we have one node with 8 virtual machines. The arrival rate
at the node is 1000 requests per second. The maximum service rate of each
machine is 125. The node maximum service rate is therefore equal to the

54

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

arrival rate, which makes 100% of availability and 100% of average CPU
usage. If our desired behavior is having a CPU utilization of 80% we will
need 10 virtual machines. In fact, 1000

10×125 = 0.8.
To be more precise, we are supposing the CPU utilization to be equal

to AR
SR

, where AR and SR are the arrival rate at the node and the node
maximum service rate respectively. Therefore, we can write the following
equations

CPU(k) =
AR(k)

SR(k)
(4.2)

SR(k) = sr(k)n(k) (4.3)

where sr is the maximum service rate of a machine, while n is the number
of machines. It follows

CPU(k + 1) =
AR(k + 1)

sr(k + 1)n(k + 1)
(4.4)

We suppose the time steps are small enough to consider the service rate of a
machine and the arrival rate to remain constant. Otherwise, prediction can
be taken in consideration, but it is out of this scope. Therefore Equation 4.4
becomes

CPU(k + 1) =
AR(k)

sr(k)n(k + 1)
(4.5)

From 4.5 and 4.3 follows

CPU(k + 1) =
AR(k)

SR(k)

n(k)

n(k + 1)
(4.6)

Finally using 4.2 we get

CPU(k + 1) = CPU(k)
n(k)

n(k + 1)
(4.7)

and therefore our desired number of machines can be computed as

n(k + 1) = n(k)
CPU(k)

CPU(k + 1)
(4.8)

Let us now go back to our example. Suppose now that the maximum
service rate of each machine is 10 requests per second. The node maximum
service rate is therefore 100 requests per second, which makes 10% of avail-
ability. In order to satisfy 1000 requests per second we need our node to have
at least maximum service rate of 1000 requests per second. Therefore we will
need at least 100 virtual machines. This number can be easily computed

55

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

given the current number of machines n and the current availability a of the
node, with the following formula

n(k + 1) =
n(k)

a(k)
(4.9)

To be more precise, we started from the assumption that the availability,
that, as we said, is estimated through the success rate, is computed as

a(k) =
SR(k)

AR(k)
(4.10)

Given the assumptions made for the previous case and through mathematical
passages very similar to the ones just seen, we obtain

a(k + 1) = a(k)
n(k + 1)

n(k)
(4.11)

and therefore our desired number of machines can be computed as

n(k + 1) = n(k)
a(k + 1)

a(k)
(4.12)

From Equations 4.2, 4.10 and 4.3, we can describe the dependency of
CPU usage and node availability on the number of running machines

CPU(n) =
AR

sr · n
, a(n) =

sr · n
AR

(4.13)

Figure 4.3 shows this dependency through an example.
We can finally resume our assumptions with the following working con-

ditions:

� if the arrival rate is lower than the maximum service rate offered by
the node, the availability is 100%, while CPU utilization decreases in
indirect proportion to the number of machines.

� if the arrival rate is equal to the maximum service rate offered by the
node, both CPU utilization and availability are 100%

� if the arrival rate is greater than the maximum service rate offered by
the node, the CPU average utilization is 100%, while the availability
will be lower than 100%, growing in direct proportion to the number
of machines

56

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

Figure 4.3: Dependency of the average CPU utilization and the availability
of an autoscaling group on the number of running machines, where the ar-
rival rate is 5000 requests per second and the maximum service rate of each
machine is 100 requests per second.

Availability = min
(

1,
n

50

)
, CPU Utilization = min

(
1,

50

n

)

From these assumptions, we can identify two working modes, activating
each a different control policy.

1. If availability is 100%, we want to make the CPU usage to converge to
the set point. Similarly to the solution proposed in [1] for controlling a
system through feedback loop, we make the autoscaling controller solve
the following equation

u(k + 1)− p̂(k + 1|k) = β(u(k)− p(k)) (4.14)

where p is the CPU utilization and u is the desired CPU usage value.
p̂(k+ 1|k) is the expected value of CPU usage at the next step, which,
as seen in Equation 4.7, depends also on the number of machines at the
next step. β is a parameter in the range (0, 1) and determines how fast
is the convergence to the solution, that is, in the next step we expect

57

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

the absolute error to be reduced by a factor β. Solving the equation,
the analytical solution is

n(k + 1) =
n(k)p(k)

u(k + 1)− β(u(k)− p(k))
(4.15)

2. If availability is not 100%, the following equation would converge to
the number of machines needed to have the availability equal to the set
point v

v(k + 1)− â(k + 1|k) = β(v(k)− a(k)) (4.16)

Since the objective of our controller is to have 100% availability and to
have the desired CPU level we set v(k) = 1

1− â(k + 1|k) = β(1− a(k)) (4.17)

β is again a parameter in the range (0, 1) and determines how fast is
the convergence to the solution, that is, in the next step we expect the
absolute error to be reduced by a factor β. Substituting â(k + 1|k)
with the result obtained in Equation 4.11 we can compute the desired
number of machines as

n(k + 1) =
(1− β(1− a(k)))n(k)

a(k)
(4.18)

Though, this result would converge asymptotically to a solution in the
working point where both availability and CPU utilization are 100%
(see Figure and 4.4). We prefer the solution not only to reach avail-
ability 100%, but also to reach fast the desired CPU usage level. So
we decided to make two steps in one by using first Equation 4.18 and
then Equation 4.15. We obtain the following formula

n(k + 1) =
(1− β(1− a(k)))p(k)n(k)

a(k)(u(k + 1)− β(u(k)− p(k)))
(4.19)

This way we are certain that the controller will make the number of
machines overcome the bound and get to desired CPU level. In Figures
4.5 and 4.6 we can observe the convergence of this equation.

Finally, we can notice that Equation 4.19 is identical to Equation 4.15
whenever a(k) = 1, therefore we can simply use the first equation in
any working point. Figures 4.7 and 4.8 shows how convergence works
in the scale down case, that is when the processor usage is very low
and we want to turn off the spare machines.

58

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

(a)

(b)

Figure 4.4: Convergence of Equation 4.18, starting from one only running
machine, with an arrival rate of 5000 requests per second, a maximum service
rate of each machine of 100 requests per second and a convergence rate
β = 0.75.

59

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

(a)

(b)

Figure 4.5: Convergence of Equation 4.19, starting from one only running
machine, with an arrival rate of 5000 requests per second, a maximum service
rate of each machine of 100 requests per second and a convergence rate
β = 0.75.

60

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

Figure 4.6: Convergence of Equation 4.19, starting from one only running
machine, with an arrival rate of 5000 requests per second, a maximum service
rate of each machine of 100 requests per second and a convergence rate
β = 0.75.

61

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

(a)

(b)

Figure 4.7: Convergence of Equation 4.19, starting from 500 running ma-
chine, with an arrival rate of 5000 requests per second, a maximum service
rate of each machine of 100 requests per second and a convergence rate
β = 0.75.

62

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

Figure 4.8: Convergence of Equation 4.19, starting from 500 running ma-
chine, with an arrival rate of 5000 requests per second, a maximum service
rate of each machine of 100 requests per second and a convergence rate
β = 0.75.

63

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

We might be interested in finding a bound in the number of steps required
to reach convergence given a starting condition. From Section 3.3 we now
that the error u(k)− p(k) has an exponential decay. In fact, let e(0) be the
initial error u(0)− p(0), then e(k) = ake(0). If one assumes that the system
converged when e(k) ≤ ε then this happen when:

k ≥ logβ
ε

e(0)
(4.20)

.
Though, working with formula 4.19, it is hard to find a minimum k for

which we can consider the system converged analytically. We preferred to find
a bound numerically, postponing a more rigorous formalization for the future
work. First of all, considering equation 4.19 we notice that the convergence
depends on the starting value of the availability, the initial number of running
machines, the initial CPU usage, the desired CPU usage and the convergence
rate β. As for the evaluation of our approach in Section 6, we are mainly
interested in knowing how fast the controller will make the system work again
after the failure of a cloud. Therefore, our priority is to check how long the
scale up takes. Convergence was evaluated in the same working conditions
used during our tests, that is:

� β = 0.3

� desired cpu usage u = 0.8

� cpu usage tolerance t = 0.1

We then set the initial value of the running machines to 1 and availability
very close to zero, setting a machine service rate equal to 100 and an arrival
rate of 1e20, so to consider the worst case scenario. Figure 4.9 captures the
resulting convergence behavior, which tells us that the autoscaling group will
reach the desired working state (i.e. ‖p(k)− u‖ ≤ t) in 3 steps.

a(k) and p(k) on the left hand side of both the Equations 4.17 and 4.14
should actually be the predicted values at the next step, but, as for this
thesis, we will just use the average value observed during the observation
window. As we said, prediction is deferred to future work (see Chapter 7).

Obviously the number of machines is an integer number, but we do not
encounter any problem in rounding this number, unless we deal with a very
small number of machines or with CPU utilization ranges too close to the
set point. In these cases, there would be undesired behaviors, however not
too difficult to cope with. In the case, for example, we are dealing with a
small number of machines, we can use the ceiling of the decimal solution

64

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

(a)

(b)

Figure 4.9: Convergence to the desired working condition, that is cpu usage
between 70% and 90%, is reached in 3 steps.

65

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

computed by the controller instead of rounding it. This way, if n(k) = 1 and
the controller returns n(k) = 1.25, the ceiling would make the node scale up,
which is a preferred behavior when high availability is required.

Once the controller computed this number, the controller is responsible
of using the cloud provider’s APIs to turn off the exceeding machines or to
launch new ones. As said before, in case new machines are either launched
or turned down, the controller enters in the cool-down state.

4.3.2 The load balancer controller

The second layer controller is instead responsible of setting the control-
lable variables of the DTMC model. In order to work properly, this controller
should work at different time scale with respect to the one managing autoscal-
ing. In fact, the direct consequence of the load balancer decision may alter
the amount of traffic going to the nodes, therefore the first layer controller
will need some time to make the system stable back again. To avoid the
risk of overloading a node, as we anticipated in Section 4.3.1, we made the
first layer controller have a higher priority. The second layer controller is
therefore inhibited by the first layer controller. Once every node’s controller
exits the cool-down state, the load balancer can restart its periodical control
steps after having waited for its entire observation window to be fed by fresh
data.

Objective This controller aims at distributing traffic among nodes guaran-
teeing availability and minimizing costs. As we said in Section 2.1 different
providers offer different prices, that may change over time (e.g. Amazon
hotspots). Furthermore, being the cloud a shared infrastructure, perfor-
mance can change over time as well. Therefore, at different time of the day
may be more convenient one solution with respect to the other.

Moreover, we also observed in Section 2.1 that the availability of a single
cloud region is very low, so the controller is responsible of reacting when an
entire region fails, migrating incoming requests to the remaining available
nodes.

Monitoring At this level, we will need all the information already used
by the first layer controller from each node, so the incoming workloads, the
successful requests, the average CPU utilizations, the numbers of machines,
plus, we are going to need the instance pricing of each node (cost per machine)
and an estimate of the arrival rate at the input node of the system. From
this data, aggregated parameters are estimated:

66

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

� the service rate, that is the number of requests processable by a node
over time at 100% CPU utilization level, computed as

successful requests

average CPU utilization

� the cost per request, which measures the cost of a request traversing the
node (see Reward Markov Chain in Section 2.3) at the desired CPU
utilization and it is computed as

cost per machine per second × number of machines

service rate × desired CPU utilization

As already said, prediction could improve performance, but it is deferred to
future work (7).

Control The set point at this layer is the minimum success rate of the
system. We decided to allow the developer to set a minimum because even
though he would obviously always like to have 100%, for some applications
he might want to make a trade-off between costs and availability. So, for
example, he might prefer that sometimes some requests fail, rather than
migrating the application on a more expensive cloud which is actually guar-
anteeing 100% availability.

As we said, if any of the nodes is unstable, this controller is inhibited
until all nodes are stable, that is until there is no more autoscaling process
going on. Also in this case, we proposed a mixed approach between reactive
and temporized control.

Obviously, whenever a failure occurs, we want to fix the availability of our
system as soon as possible, so we decided to activate the controller whenever
the average success rate of the system falls below the set point. Then, we
decided not to be reactive on cost changes because they may change contin-
uously, as for the Amazon hot spot instances (explained in Section 2.1), for
example, and we do not want our controller to work no-stop, solving con-
strained minimization problems, which are quite computationally expensive,
to have infinitive load balancing modifications. Therefore, we had the con-
troller temporized. The control interval can be set by the developer based on
some analysis on costs fluctuation rate, time constraints, or whatever appli-
cation requirements are. The control timer is reset every time the controller
takes a decision. In the case the timer runs out when the controller is inhib-
ited by the first layer controller of some node, the controller will intervene as
soon as the node exits the cool-down state.

67

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

As we anticipated, the controller is going to solve a constraint minimiza-
tion problem. The control variables are, as we said in Section 4.2, the at-
tached probability of some arc of the DTMC model. The controller has to
choose, among all feasible values, the ones that minimize a cost function.

Since we deal with probabilities, the first constraint is that controllable
variables must be chosen in the range (0, 1). Also, since we are dealing with
a DTMC, the sum of the outgoing arcs must be 1. This last constrain can be
avoided allowing only two outgoing arcs on load balancers and set the value
of one of the arcs equal to one minus the other. If we want to have a load
balancer with three or more outgoing arcs, it is enough to put two or more
binary load balancers in cascade.

Then we need a constraint on the success rate, which has to be greater or
equal to the set point. To do this, we must obtain a formula that describes the
explicit dependency of system availability on control variables and measured
nodes availabilities, like the one in the example in Equation 3.1. First of all,
given the transition matrix A of our DTMC model with self loops removed
(i.e. no ones on the diagonal), i is the row of the matrix relative to the input
node, j is the row of the matrix relative to the output node (i.e. the success
state), we can write the following dynamic system

xT(k + 1) = xT(k)A + bT (4.21)

where x is a vector as long as the number of nodes, and b is the input
vector, as long as x, with all 0s except for the ith element which is 1. If b is
constant the system is going to stabilize and the values of x are going to be
the workload ratio arriving at each node:

xT = xA + bT

xT(I −A) = bT

xT = bT(I −A)−1

(4.22)

The jth element of x is going to be the success rate as a function of the
control variables and nodes availabilities, which will be used to estimate the
availability. Since we are dealing with models whose structure is constant in
time, the success rate function is always the same and can be computed at
design time.

Now we can write the availability constraint function as

u(k + 1)− ŝ(k + 1|k) ≤ α ·max (0, u(k)− s(k)) (4.23)

where u is the set point, ŝ is the estimated availability, using the average
availabilities of the nodes and letting ŝ become a function only of the control

68

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

variables. α is a parameter in the range (0, 1) that will affect the convergence
rate to the solution. Finally, s is the system availability measured at step k.
Using equation 4.23 the controller is allowed to let ŝ be greater than the set
point u.

Now we define the cost function that has to be minimized. We already
defined the cost of each node of our Reward DTMC model as the cost per
request, which is estimated by the monitoring module. Nodes that are not
autoscaling groups will clearly have cost equal to zero. The tentative cost
function would be then

J1 = xT · k (4.24)

where xT is the previously calculated workload ratio array that, once avail-
abilities are substituted with the average availabilities measured for each
node, depends only on the control variables. k is instead the vector contain-
ing the cost per request values.

We said “tentative” cost function because there is still something missing.
Let us suppose that all nodes are stable and healthy, that is, 100% availability.
We are using one cloud, and suddenly a second cloud prices become more
convenient. The minimization of the cost function J1 would cause a sudden
migration of requests from the first cloud to the second cloud, which will
not be capable of satisfying the entire workload until the scaling process is
complete. Consequently many requests will be lost, and availability will be
consistently affected. In the future work (7), in the case we are dealing with
nodes modeling IaaS autoscaling groups (see Section 2.1) we could think
about a pre-instantiation of the machines before performing the migration.
Though, we might also have PaaS which have their own scaling polocy.
Or else, even with pre-instantiation option we will not be sure about the
perfomance of the new cloud, and, consequently, about the exact number of
machines needed in the new cloud before making it work at full capacity.

Therefore, we want somehow to discourage big changes on the control
variables. One way would be to add a big weight to the increment:

J2 = xT · k +M ‖c(k + 1)− c(k)‖2 (4.25)

where c(k) is the vector with the old control values, while c(k + 1) is the
vector with the new values, which would be left free for the controller to set
it. M is a big number to be tuned, the bigger this weight the smaller the
increment.

This option has still some issues on the tuning of parameter M , which is
very sensitive to the use case, and difficult to set. Therefore we finally opted
for the following solution

J = xT · k +W ‖max(0, AR(k)x− SR(k))‖ (4.26)

69

CHAPTER 4. MODEL AND CONTROLLER EXTENSIONS

where W is a big number, easier to tune than before since it is sufficient to
have it much greater than the first member of the cost function. AR is the
average arrival rate to the input node of the system. x is again the array of
workload distribution on the node relative to the incoming workload to the
input node, and depending on the control variables that will be chosen by the
controller. SR is the array of the estimated maximum service rate of each
node. The rationale beyond this cost function is to discourage the controller
to load a node with more requests than the ones it is actually estimated to be
capable of processing. Whenever a migration of requests for economic reason
is required, the workload is gently distributed on the cheaper node letting it
the time to scale without overloading it, that is, without loosing requests.

This approach is a workaround to put a constraint to be considered only
when the nodes availabilities are high. We want to avoid losses whenever
the migration is only for economic reasons. When the availability constraint
is not satisfied, because, for example, an entire autoscaling group failed, the
controller will not find a minimal solution of J without overloading a node,
but in this case it is the desired behavior for the following reasons:

� All requests going to the failed node would be lost anyway

� The overloaded node will scale much faster in order to cope with the
new workload since the availability a in the Equation 4.19 will be very
low. Even in the case of a PaaS node, we expect the provider policy
to react faster than the case of a gentle migration.

As we said, the second layer controller will not work until the first layer
controller has stabilized the overloaded node. This way system oscillations
are avoided.

Data starvation A critical aspect to deal with is data starvation. If a
control variable is ever set exactly to 1 or 0, there will be nodes not receiv-
ing any request, causing the sensors on those nodes to fail in monitoring
their effective healthiness. In order to cope with this problem we decided to
put bounds to the values that control variables can have. This bounds are
chosen so that every node, even the failed ones, are always fed with a very
small workload. This quantity should be minimal with respect to the whole
workload, so that the system availability is not compromised.

In Section 7 we investigate other alternatives that might be taken in
consideration in the future to avoid loosing requests at all.

70

Chapter 5

Tool

This chapter presents two tools that have been developed in order to test
the control approach presented in Chapter 4. The first is an extension to
Palladio that allow us to easily design application and automatically derive
the corresponding instance of the model (Section 5.1). The second is a sim-
ulation engine built in Matlab that receive as an input the model and a few
more parameter about the use case and simulates it (Section 5.2).

5.1 Palladio Extension

In order to exploit the simplicity of modeling a software system offered
by Palladio we decided to extend it by allowing the generation of an instance
of the model introduced in Section 4.2. In order to do so, we extended
Palladio Bench by implementing a post processing phase that is executed
after the generation of the DTMC model by Palladio. This post processing
phase transforms the DTMC and annotates it by adding the parameters
introduced in Section 4.2.

We decided to reuse many of the features already available in Palladio
and integrate our code by reusing its structures. One of the features that
we used is the sensitivity file. A sensitivity file is an XML file that can
be generated in Palladio in order to modify some parameters of the model
while performing its evaluation. In a sensitivity file system, designers can
change some of the numerical values introduced in the model in order to
easily perform multiple evaluations of it and compare different design choices.
Examples of parameters that can be specified in a sensitivity file are the
failure probabilities of each failure type and the branching probabilities of
branch actions in SEFF diagrams.

Figure 5.1 shows a simple repository composed of four components: a web

71

CHAPTER 5. TOOL

Figure 5.1: Example Repository

(a) (b) (c)

Figure 5.2: SEFF diagrams

server, that processes incoming requests and uses some external processing
to produce the result, a load balancer component, that is responsible of
distributing incoming traffic, and two components modeling some service on
two different cloud providers.

Let assume that we are now interested only in the impact of cloud failure
on this simple architecture. Therefore, we model internal processing action
of cloud providers with a failure type description by utilizing SEFF diagrams,
depicted in Figure 5.2(a) and 5.2(b). The load balancer SEFF diagram is
shown in Figure 5.2(c) we can imagine that system developer does not have
control on the availabilities of cloud provider but only on the probabilities
on the load balancer.

If we model this system in Palladio we can run its evaluation tool based on

72

CHAPTER 5. TOOL

Figure 5.3: Sensitivity file example

Branch Name Branch Probability Success Probability

Azure

0 0.8
0.2 0.82
0.2 0.84
0.2 0.86
0.2 0.88
1 0.9

Table 5.1: Result of a sensitivity run

DTMC and discover that the expected availability of the system is 0.85. This
result was expected because if we simply analyze the diagrams presented we
can see that the application uses equally both clouds which have availability
values of 0.9 and 0.8 respectively, the result of this single evaluation is not
very helpful to developers who have to decide the best values for their load
balancer. By specifying in a sensitivity file like the one in Figure 5.3 a
variation of the parameters for the load balancer, Palladio is able to run
several iterations of the evaluation of the system by modifying the specified
values.

The result of this analysis is stored in a log and can be viewed in table
5.1, this table is much more useful because it shows how the choice of the
value for the load balancer variable affects the final availability of the system.
In this toy example the best choice of using only the cloud with the higher
availability was clear, but the purpose of this example is to show how the
sensitivity analysis work, not to model any complex real case.

The sensitivity analysis is useful if the number of changing parameters is
small, otherwise the output produced is too detailed to be used by develop-
ers. In our work we reused the structure of the sensitivity analysis mainly
because the graphical tool for building sensitivity files is well integrated in

73

CHAPTER 5. TOOL

Figure 5.4: Complete Sensitivity File

Palladio and the resulting XML is easy to parse with common parsers like
the javax.xml.parsers.DocumentBuilder . Reusing this file to query
the user for information used to annotate the model made also simpler the
mapping between attributes of the model and elements of Palladio.

Since Palladio transformations give as a result a static model in which all
transitions have a fixed probability we had to keep track of the failure types
defined by the user and mark them as measured availabilities. We also kept
track of branches whose probability had been marked as control variables
in the sensitivity file in order to mark them as control variables also in the
model. The sensitivity file is structured as in Figure 5.4 in this example we
can see that the user has specified four failure type parameters which will be
marked as measured availabilities and three probabilistic branch parameters
that will be transformed in the model in control variables.

At this point the user would specify the range in which parameters can
vary but, since we are interested in more attributes for each node, we require
the user to specify a string parameter sequence as a child of each software
failure type. In this parameter the user can insert a number of strings to
specify each of the attributes described in Section 4.2.

In order to obtain the final model we exploited the transformation engine
already built in Palladio to obtain a DTMC which is then transformed and
refined until it meets our needs. Even if the modeled application is very
simple the DTMC resulting from the transformation done by Palladio is
huge. Palladio offers natively the possibility to reduce this chain but what it
practically does is solving the chain by calculating all the failure and success
probabilities (one failure probability for each specified failure type) and build

74

CHAPTER 5. TOOL

Figure 5.5: First step of the transformation

a new very compressed DTMC with one start state directly connected to
the success state and to all failure states annotated with their probability.
This small matrix does not contain enough information on the structure of
the application so is useless for any control approach. For this reason we
decided to skip the chain reduction offered by Palladio and implement an
ad-hoc reduction function which simply eliminates all the transitions that
have probability one. This reduction is very simple from the logical point
of view but helps to heavily reduce the size of the final chain and prepare
it for further transformations. So, for example, the result of applying this
simple transformation step to the Palladio model depicted in Figure 5.1, can
be seen in Figure 5.5. For this example, the web server and the load balancer
controller are set to logic nodes, that is, as we said in Section 4.2.

The next step of the transformation is to move labels for non control
variables from failure states from corresponding success state, this is done in
order to simplify the process of the successive one which is to expand those
states by adding a failure state for each of them which corresponds to failing
requests due to the limited processing capabilities of these nodes. The output
of steps two and three can be seen respectivly in Figure 5.6(a) and Figure
5.6(b).

Steps four and five are dedicated to the generation of measured availability
variables, in order to do so we need to label as non controlled all the states
having as incoming transition only transitions that have not been already
considered as control variables or measured availabilities. Step four does this
by labeling corresponding states and step five moves the labels from state to
the corresponding transitions. The output of these steps is shown in Figures
5.7(a) and 5.7(b).

The last modification that we need to do to the DTMC is adding self
loops with probability one to all final success or failure states in order to
make them absorbing states for requests flowing in the system. This is done
in the last step which gives as output the model in Figure 5.8.

As introduced in Chapter 1 in order to verify the validity of the con-

75

CHAPTER 5. TOOL

(a)

(b)

Figure 5.6: Second and third steps of the transformation

troller that we have developed we performed some simulations. The code for
this simulation, that will be described in Section 5.2, is composed by some
matlab files with some tokens in correspondence with fields that describe
the model, simulation parameters or user inputs. After generating the final
DTMC model, the tool parses these template files and writes in the appro-
priate sections information like the matrix of the DTMC system and all the
parameters needed for the simulation.

5.2 Simulation

In order to validate the control approach presented in Section 4.3, we
implemented a simulation algorithm based on the model presented in Section
4.2. We built our simulation engine by looking at the infrastructure offered by
Amazon cloud. This infrastructure is quite common among cloud providers.
It has the concepts of regions, which are geographically separate data centers,
availability zones, which are independent data centers in the same region, and
autoscaling group. As explained in 2.7.1 load balancing among instances of
the same autoscaling group is done equally. This factors has been taken in
consideration while building the simulation system.

76

CHAPTER 5. TOOL

(a)

(b)

Figure 5.7: Fourth and fifth steps of the transformation

Figure 5.8: Final result of the transformation

During the simulation, the system evolves given input dynamics preset
by the user. The variables that have to be predefined are:

� The input workload, that is, the number of request that the system has
to process per step. This parameter is useful if we are interested in
observing how the controller reacts to peaks of incoming requests or
other fluctuations.

� The availability of each node. This parameter allows developer to sim-

77

CHAPTER 5. TOOL

ulate fault of a system, the fault can be a sudden death of a node or a
degradation of its service.

� The maximum capacity of each node, that is, the number of requests
that the node is able to process per step. This parameter has been
added in order to simulate the fact that processing power of VMs can
change dynamically. This is due to the fact that VMs use a shared
infrastructure. It is common for cloud providers to run different VMs
on the same physical machine, so it may happen that a VM of a user
is affected by the behavior of other VMs. Cloud providers usually try
to limit this behavior in various way but it is still present and it may
affect QoS heavily. Usually large variations on the processing power of
VMs is registered between daytime and night.

� The startup time of VMs. This parameter models the time that pass
from the request of scale up the number of machines done by the con-
troller and the time when machines start to serve requests. This param-
eters changes according to the cloud provider, the instance operating
system and the instance size as shown in [4].

� Simulation time and time step size can be specified by the user in order
to describe the time that he wants to simulate and the granularity of
the discretization of this time. These values are then used to define the
number of steps for the simulation.

The user can vary these parameters in order to simulate different scenar-
ios. For example if the user wants to test how its application reacts to a peak
of requests he may put the desired shape of the incoming workload and leave
other parameters unchanged. Another example could be testing how service
rate variation with the during time of the day affects the application. In or-
der to simulate this scenario the user can adjust the maximum node capacity
parameter. Some of the scenarios that we have simulated are described in
Chapter 6

Every request entering the system is dispatched among nodes following
the DTMC model. If a processing node is unavailable for a period of time,
i.e. its availability is set to zero, all requests going to that node are routed
to the corresponding failing node. Nodes can also discard requests because
of their limited computational capacity. This aspect is simulated using the
maximum capacity parameter. Whenever a node is fed with more requests
than the one it can serve exceeding requests are routed to its failure state.
The number of requests that a node can satisfy can be fixed in case of non
scaling nodes or change. As explained in 4.2 nodes capable of autoscaling

78

CHAPTER 5. TOOL

model group of VMs in the cloud, their maximum processing capacity is
given by

number of VMs× VM maximum service rate

By using this formula we are now using the fact that VMs in the same node
have the same processing capacity. This assumption is quite usual in real
solutions for performance reasons, since load balancing is usually homoge-
neous. Anyway, this aspect can be taken into account while designing the
model by splitting the node into two sub nodes with different processing ca-
pacity and costs. Requests flowing through an autoscaling node may trigger
a rule and start the scale up (or down) process. The simulation engine takes
into consideration scaling actions requested by the controller and changes the
number of VMs in the corresponding node only after a startup time defined
by the user.

The simulation tool runs the simulation algorithm according to the pa-
rameters defined by the user and shows the total availability of the system
and the total costs. Examples of the output of the simulation can be seen in
chapter 6.

The simulation is divided into steps, the user can choose the time duration
that he wishes to simulate (e.g. a 24 hour scenario) and the granularity of
the simulation steps. The number of steps is the given by⌈

simulated time

seconds per step

⌉
For each step k the simulation engine performs the following operations

1. loads the value of all parameters describing the state of the system
environment at step k

2. updates the transition matrix with control variables set by the con-
troller in the previous step and with the availability values of each
node.

3. generates a simple workload for the simulation, assuming the inter ar-
rival times to be exponentially distributed. So, a Poissonian random
number generator is used with mean given by a user defined function
which specifies the arrival rate multiplied by the seconds in a step.
More information about realistic traffic generation can be found in [24]

4. the incoming traffic is then iteratively distributed to all nodes of the
DTMC model according to the transition matrix until all requests reach
an absorbing node (success or failure state)

79

CHAPTER 5. TOOL

5. as described in [24], a simple way to simulate a realistic service time
is modeling its distribution by means of exponential variables. So, for
each node traversed by the requests, the total service time needed to
serve incoming workload is generated using a random generator over
the Gamma distribution

Γ

(
number of reqs,

1

number of VMs× VM maximum service rate

)
In fact, the gamma distribution models sums of exponentially dis-
tributed random variables.

6. the amount of requests that fails due to timeout are computed by com-
paring the duration of the step and the total service time required

7. the average cpu usage is updated by comparing the total service time
required by the node to process incoming requests and the duration of
the step

8. the measured availability of each node is updated according to the
success rate of the step

9. computes the availability of the system in the current step.

10. updates the number of running machines by checking if any node had
requested a scale up and the timeout for the scale up of the node has
expired

11. historical data is saved to feed monitors with data for estimates

12. if any scale up timer runs out the pending machines are set to active
and will be available for further computational power in the next step

13. the first layer controller, responsible for the autoscaling of machines,
checks if any scale up or scale down process has to be performed

14. the second layer controller, responsible for setting the control variables
of the DTMC model, checks if any change in the load balancing of
requests among nodes have to be changed to satisfy the user defined
goal at the minimum cost

Here it follows the while cycle used to simulate in matlab one step of
requests processed by the system.

80

CHAPTER 5. TOOL

1 arrivals = poissrnd(arrival rate(t) * seconds per step);
2 workload = zeros(1,n nodes);
3 incoming workload = input node * arrivals;
4 outgoing workload = zeros(1,n nodes);
5 failures = zeros(1,n nodes);
6 successes = zeros(1,n nodes);
7 service time = zeros(1,n nodes);
8 time left = seconds per step * ones(1,n nodes);
9 while any(incoming workload 6= outgoing workload)

10 workload = workload + incoming workload;
11 to do = incoming workload;
12 service time required = gamrnd(floor(to do), ...

1./(running machines .* service rate(t))) + ...
mod(to do,1) .* 1./(running machines .* ...
service rate(t));

13 outgoing workload = min(1, time left ./ ...
service time required) .* to do;

14 timed out reqs = to do − outgoing workload;
15 failed from ext problems reqs = outgoing workload .* ...

sum(dtmc matrix no failure loops(:,failure nodes),2)';
16 failures = failures + timed out reqs + ...

failed from ext problems reqs;
17 successes = successes + outgoing workload − ...

failed from ext problems reqs;
18 outgoing workload(success node |failure nodes)=0;
19 incoming workload = outgoing workload * dtmc matrix + ...

timed out reqs * dtmc matrix to failure nodes;
20 time left = max(0, time left − service time required);
21 service time = min(seconds per step, service time + ...

service time required);
22 end
23

24 cpu load = service time ./ seconds per step;
25 availability = ones(1,n nodes);
26 availability(workload 6=0) = min(1, successes(workload 6=0) ./ ...

workload(workload 6=0));
27 availability values = num2cell(availability);
28 system availability = ...

system availability function(ctrl values{:}, ...
availability values{:});

81

Chapter 6

Experimental Analysis

In this chapter we evaluate our approach by the means of three use cases
through simulation of generic cloud providers in different scenarios. The
simulation technique used for this tests is introduced in Section 5.2. Through
out all these use cases the α and β parameters for the control algorithm have
been initialized to 0.5 and 0.3 as default value. The first example shown in
Section 6.1 represents a simple web application deployed on two independent
clouds. The use case of Section 6.2 models again an application deployed on
two independent cloud providers one offering a single region model and the
other offering two regions for the deployment and execution of applications.
The last use case, described in Section 6.3 models a more complex application,
that deals with the management of a smart city emergency system. This
application in particular has higher availability requirements than the other
two and is deployed on top of four cloud providers. Section 6.4 makes some
considerations on the behavior of the controller about the results obtained
by the simulation.

6.1 A Web System Scenario

In this Section we consider a simple example to test different usage sce-
narios and how our approach is able to cope in case of simulated failures
or changes in the domain. The main goal of this example is not to show a
complex real world application but rather to test how the controller reacts
to some specific scenario that may happen in the cloud environment.

Figure 6.1 shows the model of the application created by means of Palladio
and our extension, explained in Section 5.1. The application is composed
by a load balancer that receives users’ requests and forwards them to the
appropriate cloud provider.

82

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.1: Palladio model of the first usecase

The load balancer is connected to two cloud providers on which the appli-
cation is deployed. Figure 6.2 shows the DTMC model derived automatically
by our tool introduced in Section 5.1. In this model we can see that the load
balancer has been modeled by a node with two outgoing arch whose proba-
bilities is controlled by the control variable C0.

The availabilities of the two cloud providers are modeled respectively by
a2 and a5. Failures of these two nodes are independent of the application
and the resources directly related to it. They may model the entire cloud
failure or failure in the delivery of some requests due to network issues or
software bugs of the cloud management infrastructure.

The failure of requests processed by autoscaling groups (represented by
green nodes) due to their limited computing capabilities are modeled by arcs
going from states 4 and 6 to the corresponding failure states according to r4
and r6. The availability of these nodes is dependent on the current allocated
resources by the first layer controller. Finally, the success state is a logical
state in which requests end, after being successfully processed by the system.

The transition matrix generated by the tool is the following:

A =

0 c0 0 0 1− c0 0 0 0
0 0 1− r2 r2 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1− r4 0 0 0 0 r4
0 0 0 0 0 r5 1− r5 0
0 0 0 0 0 0 1− r6 r6
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(6.1)

By means of Equation 4.22 we can obtain the workload ratio vector, whose

83

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.2: DTMC model representation of the Multi-Cloud application.
Green nodes represent autoscaling groups, red nodes represent failure states.

Cloud 1 Cloud 2
Cost per VM 0.30$/hr 0.50$/hr
VM startup time 100 s 100 s
VM nominal SR 10, 000 reqs

s
10, 000 reqs

s

CPU set point 80% 80%
CPU tolerance 10% 10%

Nominal cost per req 3.75E-5 $
req

6.25E-5 $
req

Table 6.1: Simulation parameters

8th value (success state) corresponds to the system availability:

s = r5 · r6 · (1− c0) + r2 · r4 · c0 (6.2)

We simulated three different scenarios against this application whose re-
sults are reposted in Sections 6.1.1, 6.1.2 and 6.1.3. In all of the three sce-
narios the parameters reported in Table 6.1 are kept consistent.

6.1.1 Scenario 1

The set point for the desired availability of the system has been initialized
to 0.99 and kept constant during the simulation. This scenario simulates a
four hours of usage of the system in which the arrival rate has been kept con-
stant to 1e6 requests per second. Also the service rate of VMs has been kept
constant its nominal value. The only parameter that changes dynamically in
this scenario is the availability of cloud 1. Cloud 2 shows a 100% availability

84

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.3: Availability of the system of Section 6.1.1

for the considered period while cloud 1 experience a failure between time
00:10 and 00:50. We can see that the cost of using cloud 1 is lower than the
one of using cloud 2 while VM maximum service rates are the same, so in
standard conditions the system is expected to prefere this provider over the
other one.

Figure 6.3 shows the availability of the controlled system (in blue) and
the desires set point (in red). From this Figure we can see that the failure
of cloud 1 at time 00:10 affects the system availability but the controller is
capable of discovering this failure and react by routing traffic to the second
cloud provider. In this scenario the time needed to restore the desired system
availability is of about 20 minutes.

Figure 6.4 shows the number of active VMs for cloud providers. We can
note that as soon as the controller sense the failure of cloud 1 (at time 00:10)
its number of active machines is 0 and the number of machine of cloud 2
start raising.

This is due to the fact that the first layer controller reacts by moving
the traffic from cloud 1 to cloud 2. The second layer controller, seeing such
a huge traffic, aggressively increases the number of running VMs until the
availability is back to desired value. On 00:50 cloud 1 recovers from its failure
so the controller starts to send some requests back to this one since it is the
cheapest. The switching from cloud 2 to cloud 1 is done in order to reduce
costs and happens much slowly than the first switch. If we look back to
Figure 6.3 we can see that in this period availability is not affected.

85

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.4: Number of active VMs of the system of Section6.1.1

Cloud 1 Cloud 2 Controlled
C0 1 0 Controlled
Availability 81.57% 100% 95.90%
Cost 122.51$ 251.51$ 180.77$

Table 6.2: Controlled vs non controlled results

The total results of the availability and cost of the system is shown in
Table 6.2. This table shows the total availability and cost of the system using
only cloud 1, only cloud 2 or by using our control approach.

This example shows the controller is capable of dealing with an unex-
pected complete failure of a cloud provider and to switch between cloud
providers in order to reduce costs without affecting the availability of the
system.

6.1.2 Scenario 2

The second scenario is quite similar to the one presented in Section 6.1.1.
The length of the simulation is of four hours and the arrival rate is constant
at 1e6 requests per second. In this scenario both clouds’ availabilities are
kept constant at 100% but the maximum service rate of machines is changed
as in Figure 6.5. This use case model a behavior that is quite usual in
cloud providers and can be explained by the fact that in any reagion during

86

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.5: Maximum service rate of VMs

daytime hours the load on datacenters increases while it decreases at night.
The increased workload causes the degradation of the performance of VMs
that share resources with other users.

Figure 6.6 shows the values of the control variables that are computed
by the controller. Figure 6.7 shows the utilization values of VMs. The red
line is the average cpu utilization of machines of autoscaling group 1, the
blue represent autoscaling group 2. The straight line at 70%, 80% and 90%
represent respectively the minimum tolarated cpu usage, the desired cpu
utilization and the maximum allowed cpu usage.

From these figures we can observe that when the service rate starts to
decrease the load on the cpu of cloud 1 start to increase. When this value
exceeds the maximum tolerated (around time 1:00 in Figure 6.7) the sec-
ond layer controller scales up the number of machines in order to maintain
the actual cpu load near the desired one. Since the maximum service rate
continue to decrease the this behavior is repeated several times.

After a certain point the maximum service rate of cloud 1 falls behind
a value that makes it inconvenient to use. This happens near 1:30 when
the controller start to gradually move traffic from cloud 1 to cloud 2. The
redirection of incoming requests causes the cpu usage of cloud 1 stop growing
and, when enough percentage of the incoming traffic is redirected to the more
convenient cloud 2, the CPU load on VMs on cloud 1 start to fall down. At
the same time the new workload that enters cloud 2 makes the CPU of
its machines to grow. The second layer controller of cloud 2 manages the

87

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.6: Control variable values

Cloud 1 Cloud 2 Controlled
C0 1 0 Controlled
Availability 100% 100% 100%
Cost 240.99$ 251.51$ 225.47$

Table 6.3: Controlled vs non controlled results

growth of the incoming workload by scaling up the number of machines until
the desired cpu load in reached (close to time 3:50).

From the results in Table 6.3 we can see that in all the presented cases the
availability is 100% this is due to the fact that the second layer controller that
manges autoscaling of nodes is always active and is capable of reacting to the
gradual service degradation. On the other hand the cost of the controlled
system is lower than the cost of both non controlled ones. This is due to the
fact that the first layer controller redirects requests on the cloud that offers
the same availability at the lowest price per request.

This scenario shows the fact that sometime in presence of gradual changes
in the environment condition, the maximum service rate here, the second
layer controller alone is capable to provide the desired availability. It also
shows that the first layer controller can measure the effect of the degradation
of machines performance and switch the application behavior in order to
minimize costs.

88

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.7: Cpu utilization values

6.1.3 Scenario 3

The last scenario for this use case is quite different and tests both the abil-
ity of the controller to react to changes in the availability of cloud providers
and in the redefinition of the desired availability. Like in the previous scenar-
ios the simulation time is of 4 hours and the arrival rate is constant. In this
scenario the maximum service rate of VMs is kept constant to their nominal
value shown in Table 6.1. We changed cloud 1 availability and the set point
according to Figure 6.8 and Figure 6.10 (red line).

Figure 6.9 shows the availability of the system using only the first cloud
provider. Figure 6.10 shows the availability of the system using only the
second cloud provider. We can observe that cloud 1 alone is not capable of
reaching the desired availability most of the time but from Table 6.1 it is the
cheapest. Cloud 2 on the other hand is capable of satisfying the availability
constraint all of the time but is more expensive. Figure 6.11 shows that the
controller satisfies the availability constraint even if the set point is changed
and react to these changes in a short period of time (10 minutes). By Figure
6.12 this is obtained by using a combination of both cloud 1 and cloud 2.
The controller sends more requests to cloud 2 when the desired availability
is raised and more to the cheaper cloud 1 when availability constraint is
relaxed. We can see that from 3:00 on the desired system availability is 0.5
but the actual system availability is 0.8. This behavior is due to the fact that
the system availability should be greater or equal to the set point. Figure

89

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.8: Cloud availabilities

Cloud 1 Cloud 2 Controlled
C0 1 0 Controlled
Availability 64.89% 95% 82.12%
Cost 98.96$ 241.20$ 173.44$

Table 6.4: Controlled and non controlled results

6.12 shows that all requests are sent to cloud 1. This is due to the fact that
cloud 1 is capable of providing the required availability at a lower cost.

The fact that the controller splits traffic among clouds in order to mini-
mize costs while getting the required availability is also captured by Figures
6.13 and 6.14.

The final results are shown in Table 6.4. The availability values have a
limited impact because the set point varies with time so the average value is
not an accurate measure. On the other hand we can observe that the cost
is a good trade off between the first cloud provider that offers a very low
availability and the second one that costs much more.

6.2 A Multi-Region Scenario

This use case models the system reported in Figure 6.15. It is composed
by a first load balancer that splits requests among the two cloud providers.
The second layer controller splits requests among different regions inside

90

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.9: Cloud 1 system availability

Figure 6.10: Cloud 2 system availability

91

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.11: Controlled system availability

Figure 6.12: Control variable values

92

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.13: Average CPU utilization

Figure 6.14: Number of VMs for the controlled system

93

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.15: Palladio model for use case 2

Figure 6.16: DTMC model for the second usecase

cloud 1. These two load balancers act according the probabilities given by
the first layer controller presented in Section 4.3 as shown by Figure 6.16.

The value for the parameters of the autoscaling groups represented by
green nodes in Figure 6.16 is shown in Table 6.5. The cost of the first cloud
is varied during the simulation. The cost is set to 0.3$/hr at the beginning of
the simulation and raised to 0.6$/hr at time 4:00. Costs are usually constant,
but we want to be quite general in our approach, avoiding to bind to a specific
cloud provider. A cloud provider like Amazon could change their prices in
case spot instances are used, desribed in Section 2.1. Or else, a cloud provider
may decide to change its pricing, after advising its customers, from a specific
date.

The parameters we changed during the simulations are the set point that
varies according to Figure 6.18 (red line). Also the availabilities of cloud
providers are changed according to Figure 6.17. In this scenario the avail-

94

CHAPTER 6. EXPERIMENTAL ANALYSIS

Cloud 1 (R1) Cloud 1 (R2) Cloud 2
Cost per VM 0.30$/hr 0.30$/hr 0.45$/hr
VM startup time 100 s 100 s 100 s
VM nominal SR 10, 000 reqs

s
10, 000 reqs

s
10, 000 reqs

s

CPU set point 80% 80% 80%
CPU tolerance 10% 10% 10%

Nominal cost per req 3.75E-5 $
req

3.75E-5 $
req

5.62E-5 $
req

Table 6.5: Simulation parameters

Figure 6.17: Availabilities of cloud providers

ability of cloud 2 is set to 100% and the availabilities of the two regions of
cloud 1 change independently. The first region experience downtime between
3:00 and 3:20. Region 2 experiences a very low level of availability of 50%
until 2:00, caused by a sudden traffic increase that caused the network to
overload. From 2:00 on the network provider managed to partially solve the
problem and availability grows to 90%. The duration of this simulation of 6
hours, the arrival rate is kept constant at 1e6 requests per second.

The availabilities of the system simulated using only one region of cloud
1 or only cloud 2 is shown in Figures 6.18, 6.19 and 6.20. Region 1 of cloud
1 shows a low level of availability until time 2:00 and a drastic failure at
time 3:00. It then recovers from the outage at time 3:20 when the system
availability is brought back above the set point. Region 2 alone is not capable
of satisfying the desired availability until time 2:00 but since it does not

95

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.18: Availability of the system of using only region 1

suffer the outage of region 1 it offers a better availability value later in the
simulation. Cloud 2 offers a very high system availability but it costs more
than the other two clouds.

Figure 6.21 shows the availability of the controlled system. We can ob-
serve that the controller is capable of providing the required availability and
to recover it after the failure of region 1.

Figure 6.22 shows that the controller keeps the desired availability by
using both clouds 1 and 2 until time 1:00. When the set point is raised the
system decides to send more resources to cloud 2 that offers higher availability
until time 2:00 when the availability of cloud 1 is raised to 90% (Figure
6.17). The controller then slowly switches to use cloud 1 only that is cheaper
and offers the desired availability. At time 3:00 the set point is lowered to
50% and simultanously region 1 experience an outage, due to bug in the
cloud hypervisor software introduced after an update of the system. The
controller reacts by moving some requests to region 2 and redirecting some
other requests to cloud 2. When region 1 recovers from the outage at time
3:20 the controller switches back to use cloud 1 only. At time 4:00 the cost
of using cloud 1 is raised so the controller starts switching slowly to cloud 2
wich is cheaper. During the switch the availability of the system increases
because cloud 2 has an higher value of availability and a lower cost.

Figure 6.23 shows the number of running machines for the controlled
system.

Table 6.6 shows the results of the simulations with the final costs. We

96

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.19: Availability of the system of using only region 2

Figure 6.20: Availability of the system using only cloud 2

97

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.21: Availability of the controlled system

Figure 6.22: Control variables values

98

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.23: Number of running machines

Cloud 1 (R1) Cloud 1 (R2) Cloud 2 Controlled
C0 1 1 0 Controlled
C1 1 0 − Controlled
Availability 71.69% 76.50% 99% 85.22%
Cost 232.96$ 245.75$ 338.71$ 276.41$

Table 6.6: Controlled vs non controlled results

can observe that, besides having satisfied the availability requirement for the
entire simulation except for a maximum recovery time of 20 minutes after
region 1 outage and sudden changes to the set point (Figure 6.21), we also
kept costs low, avoiding to use only the expensive cloud 2 for most of the
time, until if becomes more convenient for the raising of costs of cloud 1.

6.3 A Smart City Scenario

We tested the validity of our approach in a challenging use case in the
context of smart city management. The application we are considering deals
with the management of emergencies, it receives data from multiple sen-
sors in the city, elaborates them, recognizes emergency situations and puts
countermeasures in action. Examples of emergency situations are a fire in a
building, a leak in a gas pipe or a car accident. Countermeasures comprehend
alerting emergency teams, calculating optimal path for rescuers to the place

99

CHAPTER 6. EXPERIMENTAL ANALYSIS

of the emergency including traffic light control to evacuate certain zones and
clear path for rescuer squads.

Being a critical application the first and most important requirement is
availability. In a deeply automated environment of a smart city the main
response to emergency is given via its IT infrastructure, a failure in dealing
with an emergency could result in severe damage to the city itself or even
cause death.

Embedded sensors in buildings, on streets and on vehicles are already
a reality. Once all these sensors are connected to the Internet the amount
of data provided will be tremendous. Dealing with such a huge number of
sensors involves processing of raw data on the order of TB/s that can vary
over time of the day. This huge amount of data has to be cleaned from noise
and aggregated. In order to process such a huge amount of data the infras-
tructure should be scalable. The last requirement of this application, quite
obvious and popular this day, is to minimize costs of the IT infrastructure.

In order to fulfill these requirements the most reasonable choice these
days is to exploit resources offered from cloud computing providers. A cloud
platform like Amazon Web Services or Windows Azure can cope with the
second requirement quite well and also help to reduce costs but can not
guarantee the availability we wish to have.

The availability goal of our application is or five nines, which means that
we wish that our application runs for 99.999% of the time. If we consider a
general provider with an availability of 95%, as shown in [3], we should use at
least four different providers of that kind, assuming that provider failures are
independent of eachother. In fact the probability that n independent cloud
providers with an average availability of 95% fail simoultaneously is 0.05n.
We can calculate the minimum number of n needed to fulfill the five nine
requirement as shown:

0.05n < 0.00001

n > log0 .05(0.00001)

n > 3.85

So if we use at least four providers our availability requirement is fulfilled.

6.3.1 Application Model

The application is divided into three main layers. The first layer which
take cares of collecting data from sensors, filtering, noise reduction and ag-
gregation. The second layer receives aggregated data and update the process
model which describes the dynamic state of the city. The third layer con-
tains the reasoning module which is responsible of finding the best response

100

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.24: Structure of the application

to emergencies. In order to work properly this layer needs access to more
information than the one deriving from aggregated data so it could instruct
the first layer to reduce its aggregation policy or even to let some raw data
pass directly to the reasoner. This structure is shown in Figure 6.24.

In order to adapt the behavior of the application to the environment
conditions we thought of adding a middleware responsible for monitoring the
healthiness of the application and taking decisions about design adaptation.
We first focused on the filtering part since it’s the most computationally
intensive and, consequently, the one with greater impact on costs.

6.3.2 Filtering Part

Given the huge amount of data to be processed it’s unreasonable to send
it to all providers and make machines work redundantly to provide higher
availability. The DTMC model of the system is shown in Figure 6.25. Nodes
4, 5, 6 and 7 represent the entry point of the four cloud providers. Green
nodes attached to these nodes represent the auto scaling group of VMs that
process requests in order to filter and clean data. Red nodes represent pos-
sible failures. Nodes with incoming arches labeled 1-a4, 1-a5, 1-a6 and 1-a7
represent the availability of each cloud provider. For example if we say that
cloud provider 1 has an average availability of 95%, as in [3]. It means that
the average proability of each request of going into state 8 is of 95%.

If we look again at cloud 1 we see two distinct failure states are repre-

101

CHAPTER 6. EXPERIMENTAL ANALYSIS

sented. The first one receive requests that fail due reasons that affect the
cloud provider infrastructure. The other one, with incoming arch 1-a8, re-
ceive requests that fail because of limited performance of the autoscaling
group. All failure states of Figure 6.25 have the same number and label be-
cause they are actually mapped to a single state in the DTMC which has
been replicated here for clarity.

Nodes 1, 2 and 3 represent load balancing nodes whose probabilities are
defined by the first layer controller of Section 4.3.

102

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.25: DTMC model of the filtering part of the smart city usecase

103

CHAPTER 6. EXPERIMENTAL ANALYSIS

6.3.3 Process Model

In the eventuality of a failure of a cloud provider we may afford to lose
some of the data from sensors but what we cannot lose is the state of the
process model. Since it is the result of several hours of processing of in-
coming data it cannot be reconstructed instantaneously from new incoming
requests. Therefore replication of this component on several cloud providers
is needed. Autoscaling should not be considered for this component since it
will not require much computing power and the model cannot be distributed
on several machines. So we just have to deploy it on one highly reliable ma-
chine for each cloud. Aggregated data coming from the filtering module is
sent redundantly to all the running process models. If, for some reasons, a
machine with the process model fails, it is excluded from the process model
bucket in ḧealthy stateänd a new machine with this role will be instantiated,
its state will be updated using information from others machine in the bucket
and finally added. In order to perform this simple behavior the controller
should just check the liveness of these instances. Requests exiting from the
filtering layer are replicated and sent to all the machines in a healthy state.
Since our controller acts on the routing of requests among different cloud it
is not necessary in this layer. The maximum availability is easily guaranteed
by the maximum degree of replication.

Reasoning

The reasoning module is supposed to be stateless, since its decisions are
based on the information read from the process model and from the current
data coming from filtering layer. However, we cannot ever afford to lose the
reasoning module, since its failure cause the total system failure that would
not be able to react to any emergency situation. For these reason a replication
approach similar to the one for the process model should be applied. For
performance reasons the reasoning module should retrieve information from
the process model that run on the same cloud provider to minimize latency.
Whenever a cloud provider looses its process model the controller should
react by activating the reasoner module of another provider with a process
model working properly, similarly to the controller behavior of the modelling
layer. Again since the availability constraints force us to replicate the model
in all cloud providers controlling this layers is not in our scope.

Figure 6.26 shows the entire model of the application. Since we are inter-
ested in controlling only the first layer the DTMC of Figure 6.25 is derived
from the part of the model in Figure 6.26(a).

104

CHAPTER 6. EXPERIMENTAL ANALYSIS

(a)

(b)

Figure 6.26: Palladio model of the smart city emergency system

105

CHAPTER 6. EXPERIMENTAL ANALYSIS

Cloud 1 Cloud 2 Cloud 3 Cloud 4

Cost per VM 0.35 $

hr
0.40 $

hr
0.60 $

hr
0.55 $

hr

VM limit None None < 200 < 150
VM startup time 50 s 50 s 100 s 100 s
VM nominal SR 10, 000 reqs

s
10, 000 reqs

s
20, 000 reqs

s
20, 000 reqs

s

CPU set point 80% 80% 80% 80%
CPU tolerance 10% 10% 10% 10%

Nominal CpR 4.37E-5 $
req

5.00E-5 $
req

3.75E-5 $
req

3.44E-5 $
req

Table 6.7: Simulation parameters

The parameters used for simulating the scenario are reported in Table
6.7. We can observe that VMs offered by cloud providers 1 and 2 have the
same performances and similar costs. Cloud providers 3 and 4 offers more
performant VMs at higher costs. Though, as shown by the nominal cost per
request (CpR), Cloud 1 and 2 offer more convenient machines.

The scenario simulates the usage of the system in a typical 24 hour period,
the arrival rate is composed by a bimodal distribution shown in Figure 6.27
with two peaks at time 10:00 and 19:00. Maximum service rates for cloud
providers 1, 2 and 3 are kept constat to their nominal values while cloud 4
experiences a degradation of its service rate between time 13:00 and 17:00
as shown in Figure 6.28. Also the availability of cloud providers are changed
in order to simulate different failure scenarios. In particular the availability
of cloud 2, the most expensive one, is constant at 100%. Cloud 4 experience
a total downtime between time 8:00 and 13:00 that could be caused by the
lacking of connectivity the cloud provider. Cloud 1 starts with availability of
95% which is not enough to satisfy the 5 nines availability constraint but from
time 10:00 on its availability increases to 100% as shown in Figure 6.29 This
scenario could happen if the workload of other users of the cloud decrease
and its overall architecture has a lighter load so the availability increases.
The availability of cloud 3 is shown in Figure 6.30. It starts from 100% and
decreases to 95% between time 10:00 and 15:00.

Figure 6.31 shows the utilization of the cpu in the eventuality of using
only cloud 2 to support the system without the controller. Figure 6.32 shows
the number of running machines running on cloud 2 in the non controlled
system. We can observe that the initial CPU load is above the desired value
so the autoscaling group controller increases the number of running machines
until the cpu is near 80%. When the peak of requests is reached, the cpu
utilization increases and oscillates near the maximum allowed cpu because
of the scaling effect of the controller. The same behavior can be observed

106

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.27: Bimodal requests arrival rate

Figure 6.28: Cloud 4 service rate

107

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.29: Cloud 1 availability

Figure 6.30: Cloud 3 availability

108

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.31: Cpu utilizaion of cloud 2

when the number of requests decreases and the cpu usage oscillates near the
minimum allowed value because of the scale down actions of the controller.

If one decides to deploy his application only on top of cloud 3 he would
observe the variation of the availability shown in Figure 6.33. Cloud 3 offers
the cheapest price per request but, as shown in Figure 6.30, its availability
decreases to 95% for some time. Cloud provider 3 also has an upper limit to
the number of machine it offers. The loss of availbility can be detected by the
loss of availaility of the entire system. At time 10:00 the system availability
drops under 90% because even if the controller scales up the number of
machines, when it reaches the machines upper limit, its system is overloaded
and start rejecting requests. When the number of requests decreases, the
system availability increases but it reaches only the value of 95% because
of the limited availability of the cloud provider. At 15:00 the availability
of the cloud provider is increased back to its initial value of 100% and the
system availablity also follows this behavior. When the second, higher, peak
of requests enter the system the maximum number of available machines is
again the limitng factor of the availability of the system. These behaviors
can are reported also in Figures 6.34 that shows the cpu usage and Figure
6.35 that shows the number of running machines.

If the system administrator decides to deploy its application only on cloud
4 he would see the availability shown in Figure 6.36. The large availability
degradation that occurs between 8:00 and 13:00 is due to the loss of avail-
ability of the cloud in that time interval that could be caused, for example by

109

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.32: Number of running VM in cloud 2

Figure 6.33: System avalability using only cloud 3

110

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.34: Cpu usage of machine usng only cloud 3

Figure 6.35: Number of VMs using only cloud 3

111

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.36: Availability of the system using only cloud 4

the impossibility of reaching that cloud provider due to networking reasons.
The second loss of availability is due to the fact that, as shown in Figure
6.28, that the service rate of machines of cloud 4 degrades in that time in-
terval and that the maximum number of machines that the cloud offer is not
enough to serve all requests.

We now present the result of the simulations in which the controller is
active and decides how to forward requests to clouds. The scenarios we
present here have been simulated using all cloud behaviors introduced in
previous examples of this section.

For this first scenario the set point has been set to 5 nines as required by
the application. The availability of the controlled system is shown in Figure
6.37. We can observe that the system reaches the desired availability most of
the time excepts for very short time intervals in which sudden cloud failures
makes it decrease until the controller reroute some requests to other clouds.
The utilization of the fourth cloud providers can be observed in Figure 6.39
that shows the value of control variables and Figure 6.38 that shows the
number of running machines for each cloud provider.

We can observe that the controller uses only cloud 4, which is the cheapest
one, until it fails at time 8:00. Then, the controller uses cloud 3 until the
maximum number of available machines is reached. Since the workload keeps
growing, the controller decides to use also cloud 2 (time 10:00). At the same
time the availability of cloud 3 degrades to a point that the controller decides
to switch some of its requests to cloud 1 and shut down cloud 3. Since from

112

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.37: Availability of the controlled system with set point to 5-nines

10:00 the availability of cloud 1 is enough to fulfill the availability requirement
and it is cheaper than cloud 2, the controller shuts down cloud 2 and redirects
all requests to cloud 1. When the availability of cloud 3 and cloud 4 are set
back to 100% the controller uses both clouds instantiating their maximum
number of available machines and using clouds 1 and 2 only if the workload
is too high for both clouds 3 and 4 to serve.

Figure 6.39 shows that the values of control variables oscillates in some
situations. This is due to the fact that the controller tries to overload cheapest
clouds that in this case have a fixed number of machines. The controller takes
into account the fact that some cloud providers have a limited number of
machines by positive term in the cost function. This effect could be avoided
by adding a constraint to the controller to avoid it overloading limited clouds.
Since the 5-nines constraint is very restrictive it is hard for the controller to
minimize the cost function and the controlled variables values oscillate.

We have shown that the controlled solution gives better results with re-
spect to most of the single cloud solutions in term of availability since it is
capable of switching between clouds when the availability value decreases.
The only cloud that performed better is cloud 2 since it did not occurred in
degradation of any of its parameters during the simulation, the good behavior
of cloud 2 is compensated by its very high cost.

The overall results of the simulation are shown in Table 6.8. This Table
shows that the controlled system does not only overcome non controlled
solutions in terms of availability but also in term of costs.

113

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.38: Number of running VMs for the controleld system with set point
at 5-nines

Figure 6.39: Control variables values for the controlled system with set point
at 5-nines

114

CHAPTER 6. EXPERIMENTAL ANALYSIS

Cloud 1 Cloud 2 Cloud 3 Cloud 4
Controlled

sp = 5 nines
Controlled
sp = 99%

Controlled
sp = 95%

C0 1 1 0 0 Controlled Controlled Controlled
C1 1 0 ∗ ∗ Controlled Controlled Controlled
C2 ∗ ∗ 1 0 Controlled Controlled Controlled
Availability 98.81% 100% 85.16% 48.96% 98.24% 98.74% 97.70%
Cost 2, 740.57$ 3, 164.28$ 1, 814.60$ 1, 088.18$ 2, 317.99$ 2, 189.66$ 2, 065.21$

Table 6.8: Smart city scenario results

Figure 6.40: Availability of the controlled system with set point at 99%

In the second scenario we relaxed the availability requirement of the ap-
plication by moving the set point of the desired availability to 99%. Figure
6.40 shows the availability of the system that is quite similar to the one of
the previous scenario but less subject to failures. Figure 6.41 and Figure 6.42
shows the behavior of the controller. It is quite similar to one of the prevoius
example but it differs from the fact that at time 10:00 the controller chooses
to use cloud 1 instead of cloud 2. This Figure also shows the fact that the
controller is less subject to oscillations. The coiche of cloud 2 in the previous
example was due to the fact that at time 10:00 it was being overloaded by
requests and scaling up.

In the last scenario we relaxed even further the availability constraint
by setting it to 95%. Figure 6.43 shows that the system availability drops
under the set point only for a very short period of time and most of the
time stays over the desired value. Figure 6.44 show the number of running
machines in the system and Figre 6.45 shows the value of control variables.

115

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.41: Number of running machines for the controlled system with set
point at 99%

Figure 6.42: Control variables vaules for the controlled system with set point
at 99%

116

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.43: Availability of the controlled system with set point at 95%

The main difference between this behavior and the previous one is that the
95% constraint can be fulfilled even when the availability of cloud provider 3
experience degradation. This fact implies that cloud 1 and 2, most expensive
ones, are used only to react fast to the loss of service at time 10 and when
the capacity of cloud 3 and 4 is not enough to process the workload.

6.4 Results analysis

The simulation presented in this Chapter cover a variety of different user
scenario that could happen in a real cloud environment. These simulations
show that the controller is capable of adapting application behavior in case
of changes in the environment in order to maintain or recover the desired
availability. In particular we can identify two reasons that bring the controller
to change the utilization of cloud providers:

� The controller changes gradually the distribution of requests among
cloud provider for economical reasons

� The controller reacts to failure or degradation of cloud performances
and modify the behavior of the application to restore availability

The first kind of change can be observed in Figure 6.4 where the controller
shuts down cloud 2 and redirects all traffic to cloud 1. Looking at Figure 6.3

117

CHAPTER 6. EXPERIMENTAL ANALYSIS

Figure 6.44: Number of running VMs of the controlled system with set point
at 95%

Figure 6.45: Control variables values for the controlled system with set point
at 95%

118

CHAPTER 6. EXPERIMENTAL ANALYSIS

we see that the availability of the system is not affected by this action of the
controller.

The second kind of changes occurs in many simulated scenarios. The
most challenging situation of this kind is the one shown in Figure 6.17 where
a cloud provider experience a sudden complete outage. If, like in Section 6.2,
the system was using that cloud to process requests it experiences a sudden
degradation of its availability. In this case the controller redirects all traffic
going to that cloud to both the other two cloud providers in order to make
them scale and restore the computing capacity, as can be observe in Figure
6.23 between time 3:00 and 3:20. This sudden failure on a cloud provider
that the system is using is the most difficult scenario in which to satisfy
the availability requirement. The maximum time needed to bring back the
availability of the system to the set point in this scenario can be found by
applying the equation used for error convergence in [1]. Assuming that the
system has converged when e(k) ≤ ε, then this happes when

k ≥ logβ
ε

e(0))
(6.3)

where e(0) is the initial error. By setting the working conditions at time
3:00, that are, initial error e(0) = 0.5, β = 0.3 and setting ε = 0.01 as the
convergence tolerance, we obtain:

k ≥ log0.3

0.01

0.5
(6.4)

k ≥ 5.64 (6.5)

So we need 6 control steps of the load balancer controller. After each step
of the load balancer it is inhibited until all autoscaling groups have stabilized
their cpu usage within the predefined boundaries, that is, in this case, 70%
- 90%. According to Section 4.3 the maximum number of steps needed to
reach this value is 3. In our example machines take 100 seconds to boot up
so the total time needed to restore the availability is given by: 3×100s×6 so
1800 seconds that are 30 minutes. This value overestimates the time needed
for the controller to converge, since the function used in the reduction of
error at each control step says that the error of the next step should be less
then or equal to β · current error so in some steps the error could be reduced
by more than β. Also, as stated in Section 4.3, convergence depends on the
initial number of active machines, the initial availability, and the accuracy
of the estimated parameters of the model.

Other scenarios in which changes occurs more gradually, like the one
in Section 6.1.2 in which the machine service rate degrades smoothly, are

119

CHAPTER 6. EXPERIMENTAL ANALYSIS

handled by the controller in such a way that the system does not suffer loss
of availability.

120

Chapter 7

Conclusions

In this thesis we delved into the application of control theory to self-
adaptive software in the context of Cloud environments.

First, we extended the state of the art by augmenting the model used
to describe a service oriented application from the availability viewpoint to
cope with Multi-Cloud applications. In particular, we proposed to model
each state of the DTMC as a resource with a processing capacity. Each state
can model a component with fixed capacity or a scalable one. Scalable nodes
are used to model autoscaling groups of a generic cloud provider. Therefore,
we introduced the concept of virtual machine with its cost per hour and its
service rate inside the model.

Then, we defined a two layer controller to manage both the autoscaling
policy of single nodes and the load balancing at run-time, reasoning on the
defined models, which is kept alive and continuously updated at run-time.
The layer dealing with the autoscaling is responsible of ensuring that the
number of machines are enough to cope with the incoming workload, main-
taining a user defined cpu usage desired level. The second layer is instead
responsible of distributing the incoming workload so to keep the availability
of the entire system over a user defined threshold, minimizing costs. This
models start form the work in [1] that has been deeply modified in order to
fit in the particular environment of cloud computing. We also expanded the
controlling approach by adding costs and other kind of constraints specific to
the cloud domain to the model, as suggested by authors in the future work
section of the article.

Finally, we extended the already existing modeling Palladio Bench to al-
low developers to model their Multi-Cloud application and simulate different
scenarios to test the availability and cost requirements, both while being
monitored and controlled by our control system and without using it. We
implemented the possibility to simulate different workload conditions, service

121

CHAPTER 7. CONCLUSIONS

rate drop, network and cloud failures.
Results during experimental evaluation, reveal that our approach can in-

deed be valuable since even when dealing with clouds with average low avail-
abilities, the controller is able to take decisions at run-time and distribute
incoming workload to clouds so to cope with the user defined availability re-
quirement and so to minimize costs. It turned out to be a valuable approach
even in the case where clouds offer high availability but different (possibly
varying) costs, since the controller is able to move the workload to the cheap-
est one.

Future research will first go through different improvements on the reso-
lution of constraint optimization problems, so to cope with challenges cases
like the Smart City Scenario presented in Section 6.3, where the adopted
technique had some issues in finding the optimum solution.

A further important improvement to be investigated is the estimate of
future parameters. In our solution, in fact, we used the average value in
the observation window to estimate each future parameter. A Kalman Filter
could be a valuable solution since it is an algorithm which operates recursively
on streams of noisy input data to produce a statistically optimal estimate of
the underlying system state.

Furthermore, both model and simulation could be improved by providing
more realistic descriptions and features, according to the current solutions
offered by cloud providers, and simulating different scenarios as close to real
cases as possible.

Finally, the system should be tested on applications deployed on real
infrastructures so to compare results from simulations with the more chal-
lenging environment that will be in use in industrial scenarios.

122

Bibliography

[1] Alberto Leva Martina Maggio Antonio Filieri, Carlo Ghezzi. Self-
adaptive software meets control theory: A preliminary approach sup-
porting reliability requirements. 2011.

[2] Jie Li Ming Mao and Marty Humphrey. Cloud auto-scaling with deadline
and budget constraints.

[3] Bitcurrent. Cloud performance from the end user. Technical report,
http://www.bitcurrent.com/, 2010.

[4] Marty Humphrey Ming Mao. A performance study on the vm startup
time in the cloud.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view
of cloud computing. Communications of the ACM, 53(4):50–58, April
2010.

[6] http://aws.amazon.com/ec2/.

[7] http://www.rackspace.com/cloud/.

[8] http://www.terremark.com/services/infrastructure-cloud-
services/enterprise-cloud.aspx.

[9] http://www.force.com/.

[10] https://developers.google.com/appengine/.

[11] http://www.google.it/intl/it/enterprise/apps/business/.

[12] http://www.netsuite.com/portal/home.shtml.

[13] http://www.freshbooks.com/.

[14] http://it.msn.com/.

123

BIBLIOGRAPHY

[15] http://aws.amazon.com/s3/.

[16] Laprie J. C. Randell B. Landwehr C. Avizienis, A. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. on De-
pendable and Secure Computing, 2004.

[17] Christel Baier and Joost-Pieter Katoen. Principle of Model Checking.
April 2008.

[18] Dana Petcu. Portability and interoperability between clouds: Challenges
and case study.

[19] NIST CCSRWG. Cloud computing standards roadmap.

[20] http://www.rackspace.com/cloud/public/servers/compare/.

[21] http://www.akamai.com/.

[22] Ralf Reussner a Steffen Becker, Heiko Koziolek. The palladio component
model for model-driven performance prediction.

[23] Luciano Baresi and Carlo Ghezzi. The disappearing boundary between
development-time and run-time. FSE/SDP workshop on Future of soft-
ware engineering research, pages 17–22, 2010.

[24] Jussara M. Almeida, Virgilio A. F. Almeida, Danilo Ardagna, Italo S.
Cunha, Chiara Francalanci, and Marco Trubian. Joint admission con-
trol and resource allocation in virtualized servers. J. Parallel Distrib.
Comput., 2010.

124

	Contents
	Introduction
	Thesis objectives
	Structure of the thesis

	Background
	Cloud Computing
	Non-Functional Requirements
	The Discrete Time Markov Chain with Reward
	Availability in the cloud
	Cloud Portability
	Scaling
	Infrastructure-as-a-Service (IaaS)
	Amazon EC2
	Rackspace Cloud
	Terremark Cloud Computing

	Platform-as-a-Service (Paas)
	Google App Engine
	Microsoft's Windows Azure Platform

	Software-as-a-Service (SaaS)
	Google applications
	Rackspace
	Microsoft

	Existing Tools and Methodologies
	Palladio-Bench
	Palladio Component Model
	PCM transformations

	Model Based Control
	Control Theory

	Self-Adaptive Software Meets Control Theory
	Cloud Auto-scaling with Deadline and Budget Constraints
	Cloud control approaches considerations

	Model and Controller Extensions
	Overview of the solution
	The Model
	The Controller
	The autoscaling controller
	The load balancer controller

	Tool
	Palladio Extension
	Simulation

	Experimental Analysis
	A Web System Scenario
	Scenario 1
	Scenario 2
	Scenario 3

	A Multi-Region Scenario
	A Smart City Scenario
	Application Model
	Filtering Part
	Process Model

	Results analysis

	Conclusions

