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Abstract

In questa tesi presentiamo la progettazione ed implementazione del framework REEL,
un framework per reti di sensori orientato alla riprogrammazione remota. Il frame-
work REEL si basa sul sistema operativo FreeRTOS, estendendone le funzionalità
di base, fornendo in particolare dei servizi aggiuntivi per gestire la gestione remota
delle applicazioni installate sul nodo di una rete di sensori.
La riprogrammazione remota del nodo consiste nell’iniettare un nuovo codice ap-
plicativo sul nodo a run-time, senza necessità di intervento diretto dell’operatore
umano. Questa caratteristica permette, ad esempio, di cambiare il comportamento
del nodo, la configurazione e gli algoritmi, direttamente dalla stazione di controllo,
senza modificare il sistema di base del’OS. La politica di riprogrammazione a livello
di applicazione intrapresa permette di caricare sul nodo una nuova applicazione,
o sovrascrivere una esistente, senza e�etti collaterali sulle applicazioni eseguite in
modo concorrente. A questa precedura si a�ancano servizi avanzati per fornire:

• contesto di esecuzione protetto delle applicazioni: permette di rilevare i soft-
ware faults, notificare le eccezioni e bloccare le relative applicazioni difettose
evitando il blocco dell’intero sistema

• monitoraggio remoto del sistema: rileva il livello di utilizzo del sistema, le
applicazioni installate, la memoria disponibile, ed eventuali valori caratteristici
quali il livello della batteria

• gestione remota delle applicazioni: consente il caricamento, l’esecuzione e
l’arresto delle applicazioni senza riavvio della macchina

• procedura di riavvio: ripristina la configurazione iniziale del sistema e riavvia
le applicazioni schedulate, portando il sistema in uno stato consistente.

• metodo di riprogrammazione sicuro: verifica l’integrita’ e l’autenticita’ delle
applicazioni prima di e�ettuare l’installazione sul nodo

Non di minore importanza sono gli strumenti software forniti da REEL per la
stazione di controllo:

• ambiente di sviluppo di alto livello per sviluppare nuove applicazioni basate
sul REEL framework

• compilare ed rilocare il codice, linking statico, delle applicazioni in modo au-
tomatico

• gestire la manutenzione e la riprogrammazione dei nodi remoti
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• e�ettuare il debug delle applicazioni
• strumenti per il monitoraggio delle attività su ciascun nodo e lo stato della

rete
• interfaccia utente per monitorare ed interrogare il nodo remoto, noonchè cari-

care nuove applicazioni
Il tema della riprogrammazione remota e’ abbastanza recente in letteratura e sono
stati proposti numerosi approci. REEL si propone buon compromesso fra il con-
sumo energetico e prestazioni, e puo’ essere adattato per svariate tipologie di sce-
nari. La politica di riprogrammazione si basa sul linking statico delle applicazioni
nella stazione di controllo, la di�usione dell’immagine verso il nodo remoto, e la
relativa esecuzione. Questa procedura permette da un lato di minimizzare le infor-
mazioni scambiate durante la comunicazione rispetto al linking dinamico; dall’altro
lato, fornisce un’esecuzione nativa del codice macchina, senza introdurre overhead
temporali tipici di soluzioni basate su macchina virtuale.
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1. Introduction

The goal of this thesis is to design and implement REEL, an novel framework for
Wireless Sensor Network. The REEL framework is based on the lightweight, real
time, operating system FreeRTOS aiming to extends its basic functionalities, which
are limited to the scheduler and the memory management. In particular, REEL
is a complete framework oriented to the remote reprogramming, which consists in
injecting new codes in to nodes at run-time. This feature, for example, allows to
change the configuration and the algorithms on the remote node directly from the
Control Room. Since the remote reprogramming is not a completely new subject on
the WSN literature, we want to focus on the following key features:

1. the ability to load more than one single application without a�ecting the others
running applications,

2. the ability to kill a bugged application and thus to “protect” the execution
from exceptions.

Other aspects such as the code dissemination optimization, while important, are
not directly addressed by REEL in the sense that we relies on existing solutions.
Moreover REEL framework provides a development environment to write and debug
applications, a complete tool-chain and a simple mechanism to propagate the new
code over the network.

The thesis is organized as following. In the first chapter we present the problem
of the remote reprogramming in the WSN. In the second chapter, we discuss the
main operating systems for WSN and the reprogramming methods present in the
literature. In the Design and Implementation chapters, we present the architecture of
REEL and our practical realization. In the fifth chapter, we present the experimental
results and finally, in the last chapter, we show the final remarks.

1.1. WSN overview

We consider a monitoring system for environmental and structural applications com-
posed by a set of remote monitoring systems (RMSs) deployed in the environment
to observe the physical phenomena of interest and by a Control Room that col-
lects data from remote systems for processing, analysis and storage. The hybrid
wired-wireless architecture of the RMS is composed by:

7



Chapter 1 Introduction

• a cluster of sensing and processing units (sensor nodes): acquire and locally
process signals (e.g., MEMS, geophones, temperature sensor, strain gauges)

• a base station (gateway node) connected to all sensor nodes of his RMS: gate-
way nodes collects the acquisition from the sensor nodes and remotely transmit
them to a control room for storage and analysis.

The proposed architecture uses di�erent hardware platforms and system software for
two class of nodes: DSPIC33F microcontroller with FreeRTOS for sensor nodes and
200MHz ARM9 CPU with Linux for gateway nodes. Our idea is di�erent: a generic
and stable hardware/software embedded system, configurable for a specific domain.
The hardware platform is defined in the “NetBrick: a high-performance, low-power
hardware platform for wireless and hybrid sensor network” [4] article, developed at
Politecnico di Milano.

1.2. Reel objectives

Nowadays an update in a Wireless Sensor Network requires to disassemble the entire
network. This procedure is really expensive and not always feasible. In this scenarios
we are not only interest about the value detected by the sensors, but we want to
know also the internal state of a remote node: running applications, configuration
parameters (clock frequency), battery life, software faults and etcetera. Moreover we
want to install and debug our applications on the remote node without disassemble
the entire network. This is REEL OS. The main targets of REEL are:

• an e�cient and secure reprogramming method
• an safe execution context per applications

In this thesis we explain in details all the mechanism of REEL solution. In specify,
the main peculiarities are:

• Reprogrammability
• Maintenance
• Security
• Robustness and Safety
• Performance
• Usability and scalability

1.2.1. Reprogrammability

The main focus of REEL is the ability of reprogramming. The term reprogramming
means the ability to load a new application or overwrite an existed one over a remote

8



1.2 Reel objectives

sensor node. The load procedure looks like the installation methods of traditional
computer system. The node supports a collection of applications which define the
tasks and the algorithms to perform. The application can be insert, or install,
delete or overwritten but the basic system must be unchangeable. The kernel and
the services must be solid components to provide a high level of reliability. In the
next section we present the reprogramming scenarios and analyze di�erent kinds of
situations.

1.2.2. Maintenance

In the software life cycle, the maintenance phase is the last stage of the cycle. During
the maintenance phase of the software life cycle, software programmers regularly
issue software patches to address changes in the needs of an organization, to the
main reasons:

• correct issues relating to bugs in the software or resolve potential security
issues

• prevent any hindrance to the expected performance of the software
• add increased functionality to the software

In the WSN domains, the application must satisfy the constrains due to the embed-
ded platform.
REEL provides two main levels of maintenance:

• system: the kernel, device drivers, services are unchangeable
• user applications: can be update through reprogramming procedure

The system maintenance allows to manager the internal state of the remote machine.
The control room can remotely access to the node and set the current configuration.
In specify, the system maintenance lets to:

• monitoring the internal information of a node: battery status, used memory
• monitoring the user applications: list of installed, scheduled or running appli-

cations
• notify the software faults and select the politics to use

1.2.3. Security

The application can be signed for a specific devices, so nobody, unless the owner,
can modify the binary. This security feature does not allow malicious person or
virus to infect the application. A mechanism with cryptographic signatures avoids
this hole in the security and increase the availability of the system.

9



Chapter 1 Introduction

1.2.4. Robustness and safety

In the perfect world, the applications have no bugs and the system never crash. But
we are in the real word and sometimes the things don’t go as you want. Sometimes
the application profiling and simulating are not enough and they do not satisfy all
possible scenarios. For example the application faults are not unusual: division by
0, access to a protected or invalid memory address. In the classic systems for WSN,
the kernel and the applications are merged together, and if the application gets a
fault, the system gets a fault, and the platform stops to work and resets itself. After
reboot, the system execute the application again and it resets itself one more time.
So we built a useless machine that consumes a lots of energy. A robust framework
should recognize the software faults and block the bugged application. The system
marks the application as not-executable, and it is never executed anymore.

1.2.5. Performance

The sensor node applications usually performs cyclic operations: sampling the val-
ues, local process and eventually transmit the results. These operations are per-
formed in a well-defined interval of time. At the diminution of time interval length,
follows the increase of the frequency increase and in high frequency applications, the
frequency becomes one of the criticality of the system. In general a sensor node can
sampling data at rate of 10/100Herz or more. To guarantee this rate we define two
conditions for OS. First, an application, with cyclic behavior, must start exactly at
the begin of the time period; the Real-Time scheduler of REEL satisfies this require-
ment. The second condition consists to verify that the application does not violate
the frequency rate. A single cycle of the application must not exceed its period of
time. The sampling frequency is set ad-hoc by the operator. The system should not
introduce time overhead during the execution of the application. For this reason,
the REEL reprogramming method, based on binary code, is much performed than
virtual machine approach.

1.2.6. Usability and scalability

Many solutions in literature provides good reprogramming methods but many of
them are hard to use. The complexity is due to: poor documentation, insu�cient
software tools and few library functions. Moreover the framework often doesn’t help
the operator with a common interface to exchange information over the network.
We can exchange various information about the WSN node and collect them in the
Control Room. In the Control Room di�erent kinds of operator can interface with
the system:

• Developers: write and debug their applications with a development environ-
ment, build the binary image with the tool-chains, and test the remote system

10



1.3 Reprogramming scenarios

• Administrators: configure the nodes and monitor the network

• Observers: after an high-level synthesis, read the values received from the
sensor nodes.

We focus our project for the firsts two kinds of operator that directly interface with
the WSN nodes and REEL framework.

1.3. Reprogramming scenarios

Software updates for sensor networks are necessary for a variety of reasons ranging
from implementation and testing of new features of an existing program to complete
reprogramming of sensor nodes when installing new applications. In this section
we review a set of typical reprogramming scenarios and compare their qualitative
properties.

• Software development is an iterative process where code is written, installed,
tested, and debugged in a cyclic fashion. Being able to dynamically reprogram
parts of the sensor network system helps shorten the time of the development
cycle. During the development cycle developers typically change only one
part of the system, possibly only a single algorithm or a function. A sensor
network used for software development may therefore see large amounts of
small changes to its code.

• Sensor network testbeds are an important tool for development and experi-
mentation with sensor network applications. New applications can be tested in
a realistic setting and important measurements can be obtained. When a new
application is to be tested in a testbed the application typically is installed
in the entire network. The application is then run for a specified time, while
measurements are collected both from the sensors on the sensor nodes, and
from network tra�c. For testbeds that are powered from a continuous energy
source, the energy consumption of software updates is only of secondary im-
portance. Instead, qualitative properties such as ease of use and flexibility of
the software update mechanism are more important. Since the time required
to make an update is important, the throughput of a network-wide software
update is of importance. As the size of the transmitted binaries impact the
throughput, the binary size still can be used as an evaluation metric for sys-
tems where throughput is more important than energy consumption.

• Correction of Software Bugs in sensor networks was early identified. Even after
careful testing, new bugs can occur in deployed sensor networks caused by, for
example, an unexpected combination of inputs or variable link connectivity
that stimulate untested control paths in the communication software. Software
bugs can occur at any level of the system. To correct bugs it must therefore
be possible to reprogram all parts of the system.

11
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• Application Reconfiguration in an already installed sensor network, the appli-
cation may need to be reconfigured. This includes change of parameters, or
small changes in the application such as changing from absolute temperature
readings to notification when thresholds are exceeded. Even though reconfig-
uration not necessarily include software updates, application reconfiguration
can be done by reprogramming the application software. Hence software up-
dates can be used in an application reconfiguration scenario.

• Dynamic Applications in many situations where it is useful to replace the
application software of an already deployed sensor network. One example is
the forest fire detection scenario presented where a sensor network is used
to detect a fire. When the fire detection application has detected a fire, the
fire fighters might want to run a search and rescue application as well as
a fire tracking application. While it may possible to host these particular
applications on each node despite the limited memory of the sensor nodes,
this approach is not scalable. In this scenario, replacing the application on the
sensor nodes leads to a more scalable system.

Scenario Update frequency Update fraction Update level Program longevity
Development often small all long

Testbeds seldom large all long
Bug fixes seldom small all long

Reconfiguration seldom small app long
Dynamic App. often small app long

Table 1.1.: The reprogramming scenarios on WSN
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2. State of the art
In this section we present a brief introduction of the available operating systems for
embedded devices and in particular for wireless sensor network nodes. In particular,
we will analyze the reprogramming methods supported by several OSs. Among the
techniques present in the literature, we investigate:

• complete reprogramming: the entire program image, which contains the ap-
plication and the OS is replaced by a new version; the size could be very
large;

• incremental patches: only a delta is transmitted and replaced; the size is
reduced;

• virtual machines: the application is based on a virtual machine byte-code,
optimized in space for reduced transmission overhead

• loadable modules: applications and services are loaded at run time without
modifying the OS

Figure 2.1.: Reprogramming methods

2.1. Operating systems for WSN nodes

The WSN node operating system are a key component in of the WSN-based ap-
plication software stack. The internal architecture of an OS has an impact on the
size on the overhead in terms of memory footprint and, from the development point
of view, how it provides services to the application programs. The common OS
architectures are the following:

13



Chapter 2 State of the art

• monolithic architecture: in the monolithic architecture (i.e., TinyOS, Nano-
RK), the kernel provides all the services (e.g., device drivers, communication
protocols, memory management, etc.). Such an architecture allows bind all
the exported services together into a single system image, thus allowing to op-
timize the OS memory footprint. An advantage of the monolithic architecture
is that the module interaction costs are low because the kernel space shares
functions and variables among modules.

• modular architecture: modular architecture (used in FreeRTOS) exposes
only basic set of functionality (i.e., memory management, scheduling). Other
services (e.g., device drivers, network protocols, etc.) are relegated to external
processes (such as the UNIX daemons). in modular kernels the modules are in
practice separated processes that communicate each other by using the inter
process communication (IPC) kernel service. In particular, the IPC provides
mechanisms such as communication queues, semaphores and shared memo-
ries for both external services and applications. The main advantage of the
modular kernel to complete decouple the modules via IPC, which eases the
testability and maintenance of the system. The drawback of such approach
consists in the augmented complexity in terms of memory required an CPU
time to handle the IPC service w.r.t. the typical sys-call of the monolithic
kernel.

Another important key to compare OSs are the programming model supported,
which has a significant impact on the application development. There are two main
programming models provided by typical WSN OSs:

• event driven programming: it is optimized for low-end devices, but di�cult
and error prone not from the developer point of view. It lets the micro-
controller sleep as much as possible (it wake-up only to react to external
events), thereby achieving energy-e�ciency.

• multi-threaded programming: it is the classical application development
model, but it require a not negligible overhead in terms of memory required
and then not well suited for resource constrained devices such as sensor node.
Statically allocating per thread stack is often too expensive in terms of mem-
ory space. Many contemporary on developing a light-weight multi-threading
programming model for WSN OSs.

TinyOS [18] is one of the most widely used monolithic operating systems for WSN.
TinyOS is written in NesC [9], a programming language based on C, and is a
component-based OS, allowing modular programming. Its level of abstraction is
very low and it is often di�cult to implement even simple programs. In addition, rig-
orously event-based style and exclusion of blocking operations are often the sources
of complexity. Fiber [30]is a lightweight concurrency model for TinyOS and allows
a single blocking execution context along with TinyOS event-driven concurrency
model.
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Mantis OS [1] is at the other end of spectrum: it provides preemptive, time-
sliced multi-threading on MICA2 motes. TinyThreads [30] , Proto-Threads [8]
and Y.Threads [24] are in the intermediate level between Fiber and Mantis OS.
TinyThread is a multi-thread library for TinyOS. Proto-threads are a multi-threading
library for Contiki [7], which is an event-based operating system. Proto-threads are
similar to TinyThread in that they also adopt the cooperating multi-threading.

2.2. Reprogramming techniques

The reprogrammability feature is something realized in middleware. Some examples
are Impala [22] and SensorWare [2]. Impala is a middleware designed for ZebraNet
project [14] and its goal is to enable application modularity, adaptability to dynamic
environments, and repairability. Its modular design allows easy and e�cient on-the-
fly reprogramming via wireless channel. SensorWare supports Tcl-based control
scripts for the language used for reprogramming. Compared to virtual machine,
SensorWare is designed for a richer hardware platform such as iPAQ.
Some operating systems have started to feature a dynamic reprogramming capabil-
ity. Deluge [12], a dissemination protocol, with TOSBoot boot-loader enables an in
situ code update for TinyOS, Mantis OS [1] , Contiki[7], and SOS [10] also support
dynamic update in finer resolution such as module and thread for more e�ciency.

2.2.1. Complete reprogramming

The full image replacement is the easiest way to reprogram a sensor node by re-
distribution of the program. However, reprogramming cost is high because the image
size can be large several kilobytes. Moreover, after the completion of downloading
process, the sensor nodes must reboot themselves to activate the new image, causing
the operation of sensor nodes to be stopped and the current execution state to be
lost. Although an external mechanism can be provided to save the execution state
to non-volatile memory and restore it after the reboot, this approach is still an
expensive operation.
TinyOS [18] is the primary example of an operating system that does not support
loadable program modules in the standard release. Several protocols provide repro-
gramming of the full system, such as Deluge[12], Stream [26], Freshet [16], MOAP
[28], and MNP [17].
Deluge[12], a reliable data dissemination protocol for disseminating a large data ob-
ject (i.e. larger than can fit into RAM) from one or more source nodes to many other
nodes over a multi-hop wireless network. Deluge’s density-aware, epidemic proper-
ties help achieve reliability in unpredictable wireless environments and robustness
when node densities can vary by factors of a thousand or more. Representing the

15



Chapter 2 State of the art

data object as a set of fixed-size pages provides a manageable unit of transfer which
allows for spatial multiplexing and supports e�cient incremental upgrades.

2.2.2. Incremental patches

The di�erential patching schemes, or incremental code update, allow to reduce the
amount of data transmitted during reprogramming. Based on the assumption that
image changes such as bug fixes are usually small, they only distribute the binary
di�erences between the original system image and the new one. After receiving
the di�erences, the new image could be generated from the received di�erences and
the current image stored on the sensor node. However, since previous di�erential
patching schemes are based on XNP[5], sensor nodes still need to reboot themselves
to execute the new image.
To support incremental reprogramming Jeong [13] use Rsync to compute the dif-
ference between the old and new program images. However, because it is built on
top of XNP [5], it can only reprogram a single-hop network and does not use any
application-level modifications to handle changes in function locations. In 2003 Rei-
jers and Langendoen, the authors modify Unix’s di� program to create a edit script
to generate the delta. They identify that a small change in code can cause many
address changes resulting in a large delta. Koshy and Pandey use slop, empty, re-
gions lead to fragmentation and ine�cient use of the Flash memory. Also when the
function references to change and size of the delta script to increase.
Zephyr[25], a fully functional incremental multi-hop reprogramming protocol, is an
extension of Rsync algorithm to reduce the size of the delta. The delta script is
transmitted wirelessly to all nodes in the network in a multi-hop manner. The
nodes save the delta script in their external flash memory and then build the new
image using the delta and the old image and store it in the external flash. Finally
the boot-loader loads the newly built image from the external flash to the program
memory and the node runs the new software. Zephyr uses techniques like function
call indirections to mitigate the e�ect of function shifts for reprogramming of WSN
node.

2.2.3. Virtual Machine-based reprogramming

The idea is to provide an application-specific virtual machine, which is designed for
a particular application domain and provides the needed flexibility, so that it can
support a safe and e�cient programming environment. The motivation for being
application specific is based on the observation that WSN are usually deployed for a
certain application purpose, unlike the Java virtual machine that is generic enough.
Since virtual machines provide a higher level interface, the size of the byte-code
is extremely small as compared to the native code image. This is attractive in
WSNs since it reduces the energy for code dissemination during reprogramming.
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Although reprogramming costs are cheap, the cost of running virtual machines on
devices with strict resource constraints such as sensor nodes would be high. This
is because dynamically interpreting byte-codes can have a significant computational
overhead. Finally, the reprogramming ability is applied only to applications running
on the virtual machine for a limited number of instructions. Moreover it is not
possible extend on-the-fly the supported instructions.. Neither the virtual machine
itself nor the kernel can be reprogrammed. Maté [19]and ASVM [21, 20] are stack-
oriented virtual machines implemented on top of TinyOS. Melete [31] extends Maté
and supports multiple concurrent applications. VMStar [15] allows the dynamic
update of the system software such as VM itself, as well as the application code.
In the licterature there are several application specific VM based on Java, example
Darjeeling [3].

2.3. Loadable Modules

A loadable module contains the native machine code of the program that is to be
loaded into the system. The machine code in the module usually contains refer-
ences to functions or variables in the system. These references must be resolved to
the physical address of the functions or variables before the machine code can be
executed. The process of resolving those references is called linking. Linking can
be done either when the module is compiled or when the module is loaded; we can
identify the two di�erent cases:

• pre-linked, or static, module contains the absolute physical addresses of the
referenced functions or variables whereas a dynamically linked module contains
the symbolic names of all system core functions or variables that are referenced
in the module. This information increases the size of the dynamically linked
module compared to the pre-linked module.

• dynamic linking has not previously been considered for wireless sensor net-
works because of the perceived run-time overhead, both in terms of execution
time, energy consumption, and memory requirements.

With dynamic linking, the object files do not only contain code and data, but
also names of functions are variables of the system core that are referenced by the
module. The code in the object file cannot be executed before the physical addresses
of the referenced variables and functions have been filled in. This process is done
at run time by a dynamic linker. SOS [10] and Contiki[7] are examples of operating
systems that support dynamically loadable modules in WSNs. Furthermore, when
an existing module needs to be upgraded, it must be completely removed and its
current state and allocated system resources must be discarded. Thus, the new
module needs to be run from the beginning and to acquire the necessary resources
again. This not only increases the reprogramming latency but also degrades the
system availability.
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The main advantage to choose the loadable module solution are:
• high execution performance: the code is compiled for the specific target, at

di�erent of virtual machine
• low overhead in transmission: transmit only the module application instead

the full image
• higher usability: it is not necessary know exactly the current state of full image

in the node, like the di�erential patching scheme
The high complexity of dynamic linking increases the amount of tra�c that needs to
be disseminated through the network to transfer the symbol and relocation tables to
the node for runtime linking. Moreover the symbol table consumes a considerable
amount of FLASH memory. On the hand, in the pre-link solution, the linking
procedure is performed by the base station without exchange symbol information.
The base station need to know information about the current state of the sensor
node: the allocated and free memory segments.
Contiki is a lightweight open source OS written in C for WSN sensor nodes. Contiki
is a highly portable OS and it is built around an event-driven kernel. A typi-
cal Contiki configuration consumes 2Kilobytes of RAM and 40 Kilobytes of ROM.
A full Contiki installation includes features like: multitasking kernel, preemptive
multi-threading, proto-threads, TCP/IP networking, IPv6, a GUI, a web browser,
a simple telnet client. The Contiki OS follows the modular architecture. At the
kernel level it follows the event driven model, but it provides optional threading fa-
cilities to individual processes. The Contiki kernel comprises of a lightweight event
scheduler that dispatches events to running processes, Protothreads[8]. The Contiki
architecture is composed by:

• Core: kernel, device drivers, standard applications, parts of C library and
symbol table. It includes the meta-information about the loadable programs

• Loadable programs: load at the top of core; they have full access to the core
functions and variables. Each loadable programs is a module, a binary code
unloadable into the system.

The reprogramming methods of Contiki is based on the dynamic linking procedure;
we can distinguish two main steps of the reprogramming methods:

• linking: link the symbol name of the functions and variables into the physic
address, before the execution of the code (compile-time o load-time).

– pre linking : link the reference into physic address
– dynamic linking: link the reference into symbol name

• relocation: bind the reference of functions an variables of a same module.
(compile-time o run-time)

The complexity of the system requires the minimum dimension of the system symbol
table of 4 Kbytes of ROM.
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Figure 2.2.: The memory architecture of the Contiki memory [7].

2.4. Proposed solution

In this thesis we propose REEL, a framework oriented for remote reprogramming,
based on the FreeRTOS real-time OS. The reprogramming method is based on load-
able modules. This approach provides a low code dissemination and high perfor-
mance on execution. Moreover it allows the developer to write applications com-
pletely separated from the underlining kernel and libraries and upload only the
applications to the sensor nodes.
In specific, REEL implements the pre-link, or static linking, method to decrease
the overhead due to the binary transmission and reduce the energy consumption.
Instead dynamic linking, REEL does not dissemination the symbol tables and the
linking phase is performed by the base station during the generation of the binary
code. So it is necessary that the base station know the free memory regions over
the sensor node. This constrain is less strong than di�erential patching scheme: we
need to know exactly the full image on the current system.
On the sensor node side, the reprogramming procedure is very easier: the system
stores the binary code exactly into the specified region of memory.
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Figure 2.3.: The dynamic linking mechanism of Contiki [7]
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3. Design
REEL is a framework based on the FreeRTOS operating system. In particular, the
presented framework is a collection of software services:

• Remote reprogramming mechanism
• Safe execution context for applications
• Remote debug of system and applications
• Monitoring system and applications

It is worth noting that the REEL frameworks relies on standard communication
protocols (e.g., ZigBee, 6loWPan etc) to manage the local network aspects. In
fact, the focus of the entire framework is to provide a robust mechanism to remote
reprogramming a WSN nodes; we are not interested to present a reliable way to
disseminate the program because they already exist valid solutions in the literature
(e.g., SINAPSE [27]).
In the classical WSN system hierarchy exists three main components, in general
di�ering for hardware capabilities and software architecture. The communication
back-bone provided by the network-layer allows to exchange data, parameters, com-
mands and either application. Those three components are:

• Control Room: monitors the state of the network and the state of each node
• Gateway node (GW): coordinates the entire network and is able to communi-

cate with the control room
• Sensor node (SN): has the role to sense and locally process the measurements

coming from attached transducers; the gathered data are routed to the GW
node.

Typically GW and SN have di�erent hardware; however in our system the GW and
SN share a similar hardware architecture: the NetBrick mote. Since the NetBrick
architecture is modular, the di�erence between GW and SN consists only in the
hardware modules configuration (a further discussion about NETBRICK hardware
is presented in "NetBrick: a high-performance, low-power hardware platform for
wireless and hybrid sensor network" artivle[4]). Thus, the SN and GW sports a
similar software architecture and, in particular, they have the same operating system
but di�erent the services (provided by REEL) installed.
In the following paragraphs, we briefly introduce the hardware architecture used as
foundation of the REEL framework, then we introduces all the layers composing
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Figure 3.1.: REEL over the network

REEL with a special focus on the remote reprogramming procedure. We present,
also the REEL framework at the Control Room level, which allows to write, compile,
monitor and transmit an application to a WSN node.

3.1. Sensor and Gateway nodes architecture

The REEL framework provides a Real-Time OS with a robust execution context
and protection mechanisms for a secure remote reprogramming procedure for the
WSN node. Moreover it provides a complete development environment for writing,
debug the applications and a set of tools for the control room to interact and install
applications on the WSN node. For this reason without loss of generality, in the
rest of the paper we will consider REEL framework for a generic WSN node and the
behavior depends on the installed applications. The software architecture layers are
the following:

• hardware: The NetBrick[4] board is equipment with a STM32F103ZE pro-
cessor based on ARM CORTEX M3, an low-power architecture for embedded
systems.

• kernel space: REEL framework abstract from the hardware platform to pro-
vide an execution environment for applications. It is composed by two main
parts:

– kernel: is responsible to manage the hardware and to provide basic func-
tionalities used by higher levels. It mainly consists of the operating sys-
tem and low-level libraries.

– services: provides secure reprogramming, robust execution environment
and remote command interface services.
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• application space: is the top of the described software stack and uses all the
features provided by the underlying layers.

In the next sections we present in details each REEL layers.

Figure 3.2.: The architecture of the REEL node

3.2. Hardware

An e�cient, adaptive and reliable software architecture is essential to locally process
signal acquired up to high frequency, to guarantee synchronism among the acqui-
sition units and to provide the mechanism to update the behavior of RMS nodes
during the operational life. The choice of the appropriate system layer architecture
for each hardware platform with its specific constraints is crucial. The WSN nodes
are equipped with the NetBrick board[4], developed at Politecnico di Milanobased.
This board is equipped with the STM32F103RB processor by ST Microelectronics.
The limited memory does not allow to run a general purpose operating system such
as Linux. Therefore, we employed an embedded real-time operating system that
guarantees real time elaboration on high frequency and provides tools and services
for software managing. The principal component of the architecture is the ARM
32-bit CortexTM-M3 CPU Core. The main properties of this processor are the
following:

• 72 MHz maximum frequency,1.25 DMIPS/MHz
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• 20 Kbytes of SRAM memory for volatile data

• 256 or 512 Kbytes of Flash memory for permanent data and executable code

• Low power: Sleep, Stop and Standby modes

The FLASH memory is grouped in blocks of 2Kbytes. This observation is funda-
mental to develop an e�cient reprogramming method. Moreover the NetBrick board
has a lots of additional peripherals as:

• debug mode: Serial wire debug (SWD) & JTAG interfaces

• communication interfaces: USARTs (ISO 7816) and CAN interface

The NetBrick board is not the only board supported by REEL. We executed and
tested successfully REEL under STM3210E-EVAL, the ST Microelectronics devel-
opment board. So REEL can be installed in several STM32 boards equipped with
enough memory for store the kernel and the applications.

3.3. Kernel layer

The kernel is the first software layer to provide an abstraction level from the hard-
ware. It is composed by the ST Microelectronics low-level libraries and the FreeR-
TOS, an real-time operating system for embedded devices. Our proposed solution
uses software components from third parties to guarantee security and reliability.
FreeRTOS is mostly used in embedded system and a lots of company used it for
business purpose. Although these software components are not provided with the
REEL, they can be freely downloadable and usable from their website.

3.3.1. FreeRTOS

The proposed REEL framework is based on FreeRTOS, a real time operating system
for embedded devices, with its low overhead in terms of memory foot print (an
essential feature in memory constrained devices) and a real time scheduler to verify
in advance the scalability of the processes running. Moreover FreeRTOS supports
a large set of boards and interacts with the ST low-level libraries which contains
functions to access to the hardware devices. We choose FreeRTOS because:

• native support di�erent architectures and development tools.

• reliable and undergoing continuous active development.

• minimal ROM, RAM and processing overhead.

• very scalable, simple and easy to use.

• truly free for use in commercial applications.
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In the other hand, FreeRTOS does not include all the concepts of a complete kernel
system: it doesn’t provide the abstraction of applications, advanced services or
device libraries. REEL aims to complexity provides a model of the application, the
job, that can be stored, execute and transmit over the network.

3.3.2. Device driver

The NetBrick board is equipped with a processor of the STM32 family. ST Micro-
electronics provides the support for their components composed by documentation,
schematics, libraries and demo projects under copyright. We are interesting in the
library of low-level for interacting with registers and peripherals. Each peripheral
is linked to the processors with a specific port and each port is mapped in one or
more processor register. We make a di�erent from other solutions, because we are
not interested to build a new Open Source low-level library, but we want use the ST
standard library.

3.4. Services Layer

The services layer extends the functionalities of a common OS, like FreeRTOS, to
became a complete framework system. REEL framework provides the abstraction
of high-level application as independent program. Our main focus is the ability
to reprogram the remote node and manage the current execution of the remote
applications. For this purpose we define cross-services between WSN nodes and
Control Room:

• remote command interface service: interaction between the Control Room
and the WSN node.

• secure reprogramming service: install an application on the remote note
with static linking method and verified the authenticity of the application.

• software faults manager: manage the exceptions to guarantee a robust exe-
cution environment and notify the fault to the Control Room.

• communication service: is the interface to send and receive data over the
network

3.4.1. Communication service

The communication layer is responsible to transport data, parameters and com-
mands for the reprogramming procedure between the node and the Control Room.
In specify we can split the communication in two di�erent class:

• data: the node sends the processed data to the Control Room .
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• commands: the Control Room interacts with the node to read the current
status of the system and reprogramming a specific job.

Although in our realization the local communication is based on ad-hoc protocol,
we don’t want to focus on a specific the communication protocol. In real system
communication protocol is chosen by the topology of the network and the nature of
the application domain. In the following we list the main quality of a communication
layer:

• the topology of a network determinate a single hop or multi-hop routing algo-
rithm.

• adaptive routing algorithm to topology adaption
• unit can run out of power with subsequent no wished disconnection from the

network.
• easy scalability of the WSN network
• quality of service of communication among units is a�ected both meteorological

and environmental
• conditions as well as electromagnetic pollution

3.4.2. Remote command interface service

The RCI provides a standard communication interface between the Control Room
and the node through a set of commands that will be will be executed on the remote
node. A key aspect of our architecture is the ability to interact with the node to
acquire data information, read the current status of the system and reprogram a
job. In specific we consider two di�erent access levels for operators:

• application expert: retrieve the information of interest from an acquired
measurement or processed data.

• application designer: manage the maintenance and reprogramming. The
main functions are the following:

– retrieve and change the current status of one or more applications
– upload and download of a single application
– notify when happen an exception on the node and select a politics to use
– restart, suspend or clean the node execution

The RCI service is based on client/server architecture:
• Control Room as Client: the CR sends commands to the WSN node.
• Sensor and Gateway Nodes as Server: the SGN receive the commands from

CR, locally process them and transmit a replay to the CS. A replay is usually
a ACK/NACK to notify the success/failure of the command execution
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3.4.3. Loader service

One of the main focus of the research is the secure reprogramming method. To
guarantee the security of the applications we used an hardware/software mechanism
based on Trusted Platform Module, TPM. Each application can be signed for a
specific devices, so nobody, unless the owner, can modify the binary. This secu-
rity feature does not allow malicious person or virus to infect the application. For
example, two years ago the virus Stuxnet infected the workstations and the com-
puters of nuclear plants in Iran. This virus cloned itself in the internal network
and compromised the software (Siemens Step 7 in windows OS) for the reprogram-
ming procedure of PLC devices. A mechanism with cryptographic signatures avoids
this hole in the security and increases the availability of the system. We present 3
di�erent scenarios for the security of an application:

• the company builds the application and nobody can change.

• a certified operator builds the ad-hoc application

• a 3-parties authority certified the applications

3.4.4. Software faults handling service

In a scenario of medium criticality applications, the certification body agrees that
the proposed architecture and safety claims meet the standards necessary for the
assessed system safety integrity level. Moreover the STM32 micro-processor has
embraced the concept of a MPU (Memory Protection Unit). This is a simple and
fast unit designed for special purpose systems, as opposed to the MMU (Memory
Management Unit), suitable for general purpose designs. REEL manages the mem-
ory protection unit (MPU) to ensure tasks cannot inadvertently access each others
RAM memory space, or the RAM memory space of the kernel. Further, REEL
ensures that a task cannot inadvertently execute the kernel code. We are interested
in the following class of faults:

• hard fault: A hard fault is an exception that occurs because of an error during
exception processing, or because an exception cannot be managed by any other
exception mechanism.

• memory management fault: A memory management fault is an exception
that occurs because of a memory protection related fault. The fixed mem-
ory protection constraints determines this fault, for both instruction and data
memory transactions. This fault is used to abort instruction accesses to Exe-
cute Never (XN) memory regions.

• bus fault: A bus fault is an exception that occurs because of a memory related
fault for an instruction or data memory transaction. This might be from an
error detected on a bus in the memory system.
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• usage fault: A usage fault is an exception that occurs because of a fault
related to instruction execution. This includes:

– an undefined instruction
– an illegal unaligned access
– invalid state on instruction execution
– an error on exception return.

The following can cause a usage fault when the core is configured to report
them:

– an unaligned address on word and half-word memory access
– division by zero

We have seen di�erent kind of faults, but we don’t discuss about how to manage
the fault. We presented di�erent politic strategies:

• restart of the system
• not consider the fault and go on
• suspend the faulty application and delete from restarting scheduled applica-

tions
• increment the faulty register and after n-times suspend the application as

before
• notify to the Control Room the faulty event and receives the ad-hoc strategies

to handle the exception
The operator can choose one or more politics at the same times in case to use
di�erent mechanisms with di�erent faults.

3.4.5. Boot and restart services

We distinguish di�erent two kind of system restart:
• hardware reset: by pressing the reset button on the board
• software reset: by hardware constrain (ex. power-o�) or a software command.

Note that we consider the hardware reset as the high priority reset and in this
special case we desire to load only the basic system (kernel and services). In the
other situation the system return to the state previously the reset event. After the
reset event, the main phases of restarting are the following:

1. Initialize and run the kernel.
2. Initialize and run the services.
3. Execute only the previously running applications
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a) Copy the from SRAM to FLASH the application code
b) Initialize the application variable
c) Schedule the application

3.4.6. Job service

A Job is a program develop by the user and executed by REEL. Basically it looks as
a normal program written in C with ST library methods and FreeRTOS functions.
REEL is based on FreeRTOS that implements the methods and strategies to execute
multiple programs at the same time by the preemption model. REEL supports the
multitasking model as well and extends the concept of multi-Jobs: all tasks of a jobs
are executed at the same time. Usually a job is realized as a single task on FreeRTOS.
On the other hand, a single job can instantiates multiple tasks to cooperate and make
a complex work. The job service implements all kinds of mechanisms to provide the
abstraction of jobs.

3.5. Application Layer

In the previously sections we described the architecture and the functionality of
REEL framework as a generic purpose system usable in a wide range of domains.
The behavior of the software depend on the applications running at the top of the
system.
In the WSN infrastructure, the Sensor Node applications focus on the local elabora-
tion of the acquired signals; the Gateway Node applications exploit the management
of the WSN; finally, the Control Room applications are sophisticated post processing
algorithms. All this kind of operations are organized in applications.

3.5.1. WSN node monitoring applications

REEL framework provides a set of applications for monitoring the current hardware
and software status on the remote nodes.

• Hardware monitoring:

– QoS management o Energy/power management

• Software monitoring:

– Data memory
– Status of interprocess communication structures
– Profiling: CPU and memory consumption
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– Ad-hoc performance solutions

• Connectivity and advanced communication services

– Routing of communication flow
– Reconfiguration of path between nodes
– Reconfiguration of communication frequency for power-consumption.

3.5.2. Control Room applications

The software of the Control Room is composed by high level applications for com-
putation and analysis of the retrieved data. Usually these software make some
statistical analysis of the data exchange on the network and process data retrieved
from the SNs. A database can store all the data and value for history purpose.

3.6. REEL tool-chain

The REEL tool-chain provides a set of Open Source tools for application develop-
ment. The development environment tools let the following operations:

• Provide the base for develop and extension of the REEL platform allowing
customization for optimize the kernel code for specific application domain

• Develop new application based on REEL framework
• Compile the application and link together with REEL automatically allowing

the code reallocation
• Verify the physical constrains: memory space, dependencies, real-time profiling

and user constrains
• Manage the maintenance and reprogramming of a remote node
• Debug an application on remote node
• Provide the set of tools for monitoring the activity of every nodes and the

status of complete network.
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In this section we discuss the behavior of REEL and show the implementation of
each components. We preset the hardware platform Netbrick[4] used in this project
and a short introduction to FreeRTOS. Over FreeRTOS we realize the REEL service
level to implement all the politics and components presented in the Design chapter:
Job manager, Remote command interface, Exception manager, Loader service, Boot
and restart service. The last section of this chapter presents the mechanism of
static linking technique and tools to generate a re-allocable binary file for a REEL
application. The figure 4.1 shows the implementation of the designed architecture
of REEL into Flash and Sram memories. The layers of the REEL architecture are
mapped in di�erent regions in the memories. The size of the system depend on the
configuration of FreeRTOS and the ST libraries which we need.

Figure 4.1.: Sram and Flash memories
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4.1. Kernel space

FreeRTOS is an high configurable real-time operative system. We can choose:
• clock of cpu processor Type of task scheduler : preemptive or cooperative.
• size of stack memory, name length and property for each task
• schemes of memory allocation

These and other parameters are define in the main FreeRTOS configuration file,
“FreeRTOSConfig.h”:

1 #define configUSE_PREEMPTION 1
2 #define configUSE_IDLE_HOOK 1
3 #define configUSE_TICK_HOOK 0
4 #define configCPU_CLOCK_HZ ( 24000000UL )
5 #define configTICK_RATE_HZ ( ( portTickType ) 1000 )
6 #define configMAX_PRIORITIES ( ( unsigned portBASE_TYPE ) 5 )
7 #define configMINIMAL_STACK_SIZE ( ( unsigned short ) 70 )
8 #define configTOTAL_HEAP_SIZE ( ( s i z e_t ) ( 7 ú 1024 ) )
9 #define configMAX_TASK_NAME_LEN ( 10 )

4.1.1. Kernel structure

REEL is based on FreeRTOS. We show the REEL kernel structure as a FreeRTOS
program. We can defined four main parts of FreeRTOS program:

1. Includes the FreeRTOS headers (FreeRTOS.h, task.h, list.h, queue.h, FreeR-
TOSConfig.h)

2. Declarations of global task handler variables (xJOBMANAGERTaskHandle,
xRCITaskHandle)

3. Initialization of components and creation of tasks: we can choose the priority,
stack size and function handler for each task.

1 void k e r n e l _ i n i t ( void ) {
2 /ú Component i n i t i a l i z a t i o n ú/
3 EXCEPTIONS_conf ( ) ;
4 /ú Tasks c r ea t i on ú/
5 xTaskCreate ( RCI_start , ( signed char ú) "RCI\0 " ,

APP_TASK_STACK_SIZE/2 , NULL, APP_TASK_PRIORITY, &
xRCITaskHandle ) ;

6 xTaskCreate (JOBMANAGER_task, ( signed char ú) "JOB\0 " ,
APP_TASK_STACK_SIZE/2 , NULL, APP_TASK_PRIORITY, &
xJOBMANAGERTaskHandle) ;

7 }

4. Starting the FreeRTOS scheduler: the scheduled tasks will be execute.
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1 void ke rne l_s ta r t ( void ) {
2 /ú S t a r t the s chedu l e r . ú/
3 vTaskStartScheduler ( ) ;
4 /ú Wil l on ly reach here i f t h e r e i s i n s u f f i c i e n t heap a v a i l a b l e

to s t a r t the s chedu l e r . ú/
5 while (1 ) ;
6 }

4.1.2. FreeRTOS’s tasks

A real time application that uses an RTOS can be structured as a set of independent
tasks. Each task executes within its own context with no coincidental dependency on
other tasks within the system or the RTOS scheduler itself. Only one task within the
application can be executing at any point in time and the real time RTOS scheduler
is responsible for deciding which task this should be. As a task has no knowledge of
the RTOS scheduler activity it is the responsibility of the real time RTOS scheduler
to ensure that the processor context (register values, stack contents, etc) when a
task is swapped in is exactly that as when the same task was swapped out. To
achieve this each task is provided with its own stack.

A FreeRTOS task can be in one of the following state:

• Running: When a task is actually executing it is said to be in the Running
state. It is currently utilizing the processor.

• Ready: Ready tasks are those that are able to execute (they are not blocked
or suspended) but are not currently executing because a di�erent task of equal
or higher priority is already in the Running state.

• Blocked: A task is said to be in the Blocked state if it is currently waiting for
either a temporal or external event.

• Suspended: Tasks in the Suspended state are also not available for scheduling.

4.2. Reprogramming model

The job is a binary program of the user application compiled for the specific tar-
get machine that can be transmitted, installed and executed in REEL. The job is
compiled for the stm32 platform in the control station with a special procedure to
statically reallocate the object code. This special procedure allows the job manager
of REEL to execute the native code of an installed job into the WSN node. FreeR-
TOS does not support the reallocation procedure to link external binary files: the
kernel and the applications are a single monolithic binary file.
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4.2.1. Concurrent programming model

REEL is based on FreeRTOS that implements the methods and strategies to execute
multiple tasks at the same time by the preemption model. In FreeRTOS a task is a
path of program that is independent and is scheduled by OS. Moreover all FreeRTOS
tasks have the same properties and does not provide hierarchical mechanism. In
other words, an FreeRTOS application is a monolithic binary composed by the
kernel and various tasks work independently where each of them is not related to
the others. REEL supports the multitasking model as well and extends the concept
of multi-Jobs: all tasks of a jobs are executed at the same time. Usually a job is
mapped with a single task on FreeRTOS. Moreover a single job can instantiates
multiple tasks to cooperate and make a complex work. The multi-task paradigm
looks like the multi-threading paradigm in POSIX concurrent programming:

• a job is an executable program for REEL with his own instruction pointer, ad-
dress space, memory space, stack and registers. REEL stores meta-information
about each jobs in the jobs table, as current state or entry-point.

• a task is a path of execution in a job. Each task has its own instruction pointer,
stack and various registers. It shares the same memory space with the job that
created the task. All of the tasks in the job share the same global memory,
but each task is allocated a chunk of memory for its stack space.

The jobs solution has some others advantages:
• the same time of a normal task because a job for FreeRTOS scheduler is a

normal task
• a shared global memory for tasks of the same job
• general functions for group of tasks, when a job begins it starts all child tasks

4.2.2. Job state

The states of the job are the following:
• load: the job is correctly received but it is not jet installed in the machine
• ready: the job is installed in the machine and it is ready to run; the jobs

manager stores the code and data of the job in the memory and sets the
meta-information.

• run: the job is executed; all the tasks of the job are scheduled. At boot time,
the job is started.

• suspend: the execution of the job is suspended by the user; all the task of the
job are delete from the scheduler. At boot time, the job is restarted.

• block: the execution of the task is stopped by a fault. If only one task gets a
fault, all tasks of the job are suspended. At boot time, the job is not started.
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The status information is useful in the reset phase when the boot loader looks the
application table and starts only the jobs marked as RUN.

Figure 4.2.: Job states

4.2.3. Job structure

The main meta information associated to a job are the following:
• size and started address of code and init sections on FLASH memory.
• size and started address of data and bss sections on SRAM memory.
• the list of tasks of the job.
• the current state of a job. In the following we present the complete structure

of a job.
1 struct job_t {
2 uint8_t id ;
3 uint32_t s i z e_tex t ;
4 uint32_t s ize_data ;
5 uint32_t s i ze_bss ;
6 uint32_t s i z e _ i n i t ;
7 uint8_t s i gna tu r e [SIGNATURE_SIZE ] ;
8 uint8_t ú t ex t ;
9 uint8_t ú i n i t ;

10 uint8_t ú data ;
11 uint8_t ú bss ;
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12 Jobstate s t a t e ;
13 xTaskHandle task ;
14 xTaskHandle ú taskChi ld [MAX_TASK_FOR_JOB] ;
15 } ;
16 typedef struct job_t Job ;

Figure 4.3.: Job structure and memory addressing

4.3. Jobs manager
The high-level application for REEL framework, called Job, is a program develop by
the user and executed by REEL. Basically it looks as a normal program written in C
with ST library methods and FreeRTOS functions. REEL wants to improve the ex-
ecution paradigm of concurrent programming and extend the concept of FreeRTOS
task. In REEL a job is:

• the binary file of the application that can be transmitted, installed and exe-
cuted in REEL framework.

• the hierarchical multi-tasks execution model for concurrent programming
The jobs manager component implements all the mechanisms to manage a job on
the device. For this purpose the jobs manager stores information about the memory
location, the execute status and the some error status for each jobs. These meta-
information form the list of jobs stored in a global structure called JobsTable.

4.3.1. Jobs table

The JobsTable is the list of all jobs installed on the machine. This is a critical
resource for two reason:
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• It can be accessible in writing only by task in the kernel space.
• The values must not change after a reset In the REEL the JobsTable resides

in the initial regions of the FLASH memory after the Interrupt Vector. REEL
allocates 2kB of FLASH, 16 job-entries, for the JobsTable because 2kB is the
minimum block writable by the FLASH.

In other words, REEL standard configuration support at max 6 installed jobs. For
performance in SRAM there is a copy of the JobsTable for local update.

1 stat ic Job JOBMANAGER_table_FLASH[JOBTABLE_SIZE] __attribute__
( ( s e c t i o n ( " j o b t a b l e " ) ) ) ;

We present two solution for the implementation of the Jobstable:
• centralized: store all the meta information in a single location in memory.
• distributed: each job contains his meta information in his part of memory

assigned.
The reason of the choice is imposed by hardware constrains. In this implementation
we used a centralized job table.

4.3.1.1. Centralized approach

The system allocates one block of the FLASH memory for the job table structure.
In the STM32 architecture a block of memory is composed by 2k of bytes. In one
hand, all the information about the current status of the entire system are in a
single place and we don’t need scan the memory to find meta information. In the
other hand, the entire block of memory must be rewritten each time that we want
to modify the status of a job or insert/delete a job. So we need a bu�er of dimension
of one memory block.

4.3.1.2. Distributed approach

The distributed solution is based on the idea that each job stores his meta infor-
mation in his segment of memory. At startup the boot loader scans each segment
of memory and retrieves the value of the information. We save memory because we
don’t use a block of memory for the table and a bu�er as in centralized case. In
the other hand, a change in the job state field brings the rewriting of all the job
memory; this is not want we want.
In the simplest scenario, the system knows only the running jobs. If an application
has faults or does not work anymore, it is clear from the system. In this way, the
system does not need the byte for the jobs status. So a single row in the job table
has read-only access. This solution is the perfect case for a distributed job table
where each job contains his own meta information which a read-only access.
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4.3.2. Jobs operations

List of functions to scan, insert or delete jobs from the JobsTable:
• JOBMANAGER_task: scan the JobsTable and schedule the jobs to execute

at restart.
1 void JOBMANAGER_task( void ) {
2 //Copy the s t r u c t u r e from FLASH to SRAM
3 FLASH_readPage ( ( uint32_t )JOBMANAGER_table_FLASH, ( uint32_t )

JOBMANAGER_table_SRAM) ;
4 uint8_t i ;
5 for ( i =0; i<JOBTABLE_SIZE; i++){
6 i f (JOBMANAGER_table_SRAM[ i ] . id !=0) {
7 switch (JOBMANAGER_table_SRAM[ i ] . s t a t e ) {
8 case BLOCK:
9 break ;

10 case READY:
11 JOBMANAGER_table_SRAM[ i ] . s t a t e=LOAD;
12 JOBMANAGER_ready(&JOBMANAGER_table_SRAM[ i ] ) ;
13 break ;
14 case RUN:
15 JOBMANAGER_table_SRAM[ i ] . s t a t e=LOAD;
16 JOBMANAGER_ready(&JOBMANAGER_table_SRAM[ i ] ) ;
17 JOBMANAGER_resume(&JOBMANAGER_table_SRAM[ i ] ) ;
18 break ;
19 case SUSPEND:
20 JOBMANAGER_table_SRAM[ i ] . s t a t e=LOAD;
21 JOBMANAGER_ready(&JOBMANAGER_table_SRAM[ i ] ) ;
22 JOBMANAGER_suspend(&JOBMANAGER_table_SRAM[ i ] ) ;
23 break ;
24 default :
25 break ;
26 }
27 }
28 }
29 }

• JOBMANAGER_save: copy the volatile jobtable from SRAM to FLASH
• JOBMANAGER_create: assign a slot to a job in the jobtable
• JOBMANAGER_free: search a free slot in the jobtable
• JOBMANAGER_get: return the pointer to a job from his id
• JOBMANAGER_lookUpTask: return the pointer to a job from his task
• JOBMANAGER_index: return the position of a job in the jobtable
• JOBMANAGER_delete: clear a job
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• JOBMANAGER_write: copy text and data of an job into the memories. It
writes the text code and init data inside the job region in the FLASH. Then
copy the init data into the SRAM to became the data section. At the end fill
the bss section with zero.

1 void JOBMANAGER_write( Job ú job , uint8_t ú t e x t i n i t , uint8_t ú
i n i t ) {

2 // wr i t e the t e x t and i n i t i n t o FLASH : copy from the
t e x t i n i t b u f f e r in t o FLASH

3 FLASH_writeBytes ( ( uint32_t ) job≠>text , ( uint32_t ) t e x t i n i t ,
job≠>s i z e_tex t + job≠>size_bss ) ;

4 // wr i t e the data in t o FLASH : copy the i n i t i n t o SRAM
5 memcpy ( ( void ú) job≠>data , ( void ú) i n i t , job≠>size_data

) ;
6 // wr i t e the b s s in t o FLASH ; 0 i n i t i a l i z a t i o n in to SRAM
7 memset ( ( void ú) job≠>bss , 0x00 , job≠>size_bss ) ;
8 }

List of functions to manage the state of a single job:

• JOBMANAGER_resume: resume a job

• JOBMANAGER_suspend: suspend a job

• JOBMANAGER_block: block a job

• JOBMANAGER_ready: create and schedule a new task for the job. The
task is suspended until the call of the JOBMANAGER_resume function. The
entrypoint of the job is at the beginning of text code region.

1 void JOBMANAGER_ready( Job ú job ) {
2 i f ( job==NULL)
3 return ;
4 else i f ( job≠>s t a t e !=LOAD && job≠>s t a t e !=BLOCK)
5 return ;
6 job≠>s t a t e=READY;
7 void (ú ptrTask ) ( void ) ;
8 ptrTask =(( long int ú) ( ( uint32_t ) ( job≠>text )+1) ) ;
9 char name [5 ]= "JOBX\0 " ;

10 name [3 ]= job≠>id+’ 0 ’ ;
11 xTaskCreate ( úptrTask , ( signed char ú) name ,

APP_TASK_STACK_SIZE/10 , NULL, APP_TASK_PRIORITY, &job
≠>task ) ;

12 vTaskSuspend ( job≠>task ) ;
13 JOBMANAGER_save( ) ;
14 }
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4.4. Remote command interface service

The remote command interface, RCI, is an interpreter of command. One command
is mapped to a specific function build in the RCI components. The architecture
is flexible and scalable to support dozens of functions and allow to write ad-hoc
functions. In same application domains can be useful specified some instructions to
run on the machine at request mode. The purpose of RCI is to provide standard
interface for the communication with the network. It is possible view and change
the internal state of the system and the installed jobs. The interface of the Remote
Command Interface is very simple and it is composed by three methods:

• RCI_start: set the peripheral registers and parameters to open the channel of
communication.

• RCI_parse: merge the bytes from the channel and build the packet.
• USART1_IRQHandler: the handle function to retrieve the interrupt from the

network channel. It reads a single byte at time and call the RCI_parse function
to rebuild the packet. If the packet is complete, it is send to the dispatcher,
the EXECUTER_do function, to read and execute the right command.

1 void USART1_IRQHandler( void ) {
2 i f (USART_GetITStatus (EVAL_COM1, USART_IT_RXNE) != RESET)

{
3 /ú Read one by t e from the r e c e i v e data r e g i s t e r ú/
4 byteRead = (USART_ReceiveData(EVAL_COM1) ) ; //& 0x7F) ;
5 i f ( RCI_parse ( byteRead ) == 1) {
6 // Packet Accepted EXECUTOR_do(&executorCmd ) ;
7 }
8 }
9 }

We implement the following operations:
• reset: restart the system; the function calls the reset procedure in the Boot

& restart service.
• upload: insert a new job; the function calls the loader service to upload and

install the new job.
• download: retrieve a job; the function calls the Job manager and replies with

the code of the job
• run: execute a specific job installed on the machine; the function calls the Job

manager.
• top: print the list of job and them status; the function calls the Job manager.
• kill: suspend a job; the function calls the Job manager to suspend the job

with the specific job id.
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4.4.1. Communication protocol

RCI provides the methods to encapsulates the information and create a packet for
the transmission. The same protocol is used to transmit and receive information.

• header (1 byte): the first flag of the packet ‘0xaa’
• size (2 bytes): the dimension of the payload
• crc (1 byte): a XOR of all bytes of the packet
• payload (n bytes): 1 byte to identify the instruction and Size-1 bytes for the

arguments
• footer (2 bytes): the end of the packet ‘0xcc’, ‘0xcc’

The payload 1stbyte identity the operations described in RCI: 0=reset, 1 = upload,
2 = download, 3 = run, 4 = top, 5 = kill.

Figure 4.4.: Format of REEL packet

4.4.2. Job payload

The application packet is the binary image of the application with additional in-
formation for the static linking procedure. These meta-information define the code
and data segment of the application in FLASH and SRAM memory. Moreover an
extra field can be used to set the cryptographic signature of the application. This
information provides a secure mechanism of reprogramming. The meta-information
are the following:

• size and address location of TEXT section in FLASH
• size and address location of DATA section in SRAM
• size and address location of BSS section in SRAM
• size and address location of the initialize values section in FLASH
• cryptographic signature for security verification.

4.5. Exception service

The reliability is the ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time. [Institute of Electrical
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Figure 4.5.: Format of REEL application packet

and Electronics Engineers (1990) IEEE Standard Computer Dictionary: A Compi-
lation of IEEE Standard Computer Glossaries. New York, NY ISBN 1-55937-079-3].
In our model a reliable system is a robust system for software faults. A software
fault, an exception, is an interrupt generated within a processor by executing an
instruction. The exception manager handles the software interrupt to respond the
to the occurrence, during computation, of exceptions.

4.5.1. Classification

The list of exceptions to handle:
• NMI: A NonMaskable Interrupt (NMI) can be signaled by a peripheral or

triggered by software.
• hard fault: A hard fault is an exception that occurs because of an error

during exception processing, or because an exception cannot be managed by
any other exception mechanism.

• memory management fault: A memory management fault is an exception
that occurs because of a memory protection related fault. The fixed mem-
ory protection constraints determines this fault, for both instruction and data
memory transactions. This fault is used to abort instruction accesses to Exe-
cute Never (XN) memory regions.

• bus fault: A bus fault is an exception that occurs because of a memory related
fault for an instruction or data memory transaction. This might be from an
error detected on a bus in the memory system.

• usage fault: A usage fault is an exception that occurs because of a fault
related to instruction execution. This includes:
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– An undefined instruction
– An illegal unaligned access
– Invalid state on instruction execution
– An error on exception return.

The following can cause a usage fault when the core is configured to report
them:

– An unaligned address on word and halfword memory access
– Division by zero

4.5.2. Specification

The exception manager binds the software interrupts to the exception routines. This
mapping operation is based on the interrupt vector. The firsts items of the interrupt
vector are the functions handler of the interrupt exceptions. Each exception label
calls a function that resolve the software faults by a defined politic.

1 void (ú const I n t e r r u p t s [ ] ) ( void ) __attribute__ ( ( s e c t i o n ( "
vec to r " ) ) ) = {

2 &_stacktop , // The i n i t i a l s t a c k po in t e r
3 Reset , // 1 r e s e t hand ler
4 NMI_Handler , // 2 NMI hand ler
5 HardFault_Handler , // 3 hard f a u l t hand ler
6 MemManage_Handler , // 4 MPU f a u l t hand ler
7 BusFault_Handler , // 5 bus f a u l t hand ler
8 UsageFault_Handler , // 6 usage f a u l t hand ler
9 . . .

10 }

Some kind of exceptions, like division by 0 and others, are disabled by default on
stm32: the line that throws the exception is ignored and nothing happen. If we
want enable all kinds of exceptions, we must set manually the register bit on stm32
cpu. The stm32 library provides several masks to set the register bits of usage fault
exceptions:

• SCB_CCR_STKALIGN_Msk : Configures stack alignment on exception
entry. On exception entry, the processor uses bit 9 of the stacked PSR to
indicate the stack alignment. On return from the exception it uses this stacked
bit to restore the correct stack alignment.

• SCB_CCR_BFHFNMIGN_Msk : Enables handlers with priority -1 or
-2 to ignore data bus faults caused by load and store instructions. This applies
to the hard fault, NMI, and FAULTMASK escalated handlers. Set this bit to
1 only when the handler and its data are in absolutely safe memory. The
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normal use of this bit is to probe system devices and bridges to detect control
path problems and fix them

• SCB_CCR_DIV_0_TRP_Msk : Enables faulting or halting when the
processor executes an SDIV or UDIV instruction with a divisor of 0

• SCB_CCR_UNALIGN_TRP_Msk : Enables unaligned access traps
• SCB_CCR_USERSETMPEND_Msk : Enables unprivileged software

access to the STIR, see Software trigger interrupt register (NVIC_STIR) on
page 127 of stm32 manual

• SCB_CCR_NONBASETHRDENA_Msk : Configures how the proces-
sor enters Thread mode.

The listing shows the configuration function to enable some advanced exceptions
disabled by default.

1 void EXCEPTIONS_conf ( void ) {
2 SCB_Type úSCB_DBG;
3 SCB_DBG = (SCB_Type ú)
4 SCB_BASE;
5 SCB≠>CCR = SCB_CCR_DIV_0_TRP_Msk ;
6 }

4.5.3. Policies

In the design section we showed a lots of di�erent politics about exception handling.
In this section we show the most used politic for a general case. When an exception
occurs the routine suspends the faulty job and deletes it from restarting. This
politics is realized by setting the state of the job to BLOCK: the execution of the
task is stopped by a fault; if only one task gets a fault, all tasks of the job are
suspended and at boot time, the job is not restarted. The EXCEPTIONS_do
function retrieves the faulty job and sets it to BLOCK.

1 void EXCEPTIONS_do (EXCEPTION_Type type ) {
2 xTaskHandle ú fau l tyTask = xTaskGetCurrentTaskHandle ( ) ;
3 Job ú f au l tyJob = JOBMANAGER_lookUpTask( fau l tyTask ) ;
4 JOBMANAGER_block( fau l tyJob ) ;
5 }

4.6. Loader service

The loader service allows the system to upload a new application into the node.
This component implements the reprogramming mechanism with a secure politic.
The network packet of the application is received by the RCI and it calls the loader
service. The secure reprogramming procedure is composed by 3 main steps:
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1. Check the job:
a) Security mechanism with cryptographic signatures (TPM)
b) Availability of memory spaces / CPU time
c) Check the application dependences

2. Install the job:
a) Set the entrypoint and the meta-information in the JobsTable
b) Allocate the needed space for the application in FLASH and SRAM mem-

ories
i. Copy the textcode and initialized variables into FLASH
ii. Copy the values of the variables into SRAM

3. Insert the job: add the new job to the list of available jobs.
1 void LOADER_build( uint8_t ú RxBuffer ) {
2 Pkt úpkt ; Job ú job ;
3 pkt=(Pkt ú) RxBuffer ;
4 /ú Create the new job ú/
5 job=JOBMANAGER_create( ) ;
6 job≠>text = ( uint8_t ú) pkt≠>header . address_text ;
7 job≠>i n i t = ( uint8_t ú) pkt≠>header . addre s s_ in i t ;
8 job≠>bss = ( uint8_t ú) pkt≠>header . address_bss ;
9 job≠>data = ( uint8_t ú) pkt≠>header . address_data ;

10 job≠>s i z e_tex t = pkt≠>header . s i z e_tex t ;
11 job≠>s i z e _ i n i t = pkt≠>header . s i z e _ i n i t ;
12 job≠>size_bss = pkt≠>header . s i z e_bss ;
13 job≠>size_data = pkt≠>header . s ize_data ;
14 memcpy ( job≠>signature , pkt≠>header . s i gnature ,SIGNATURE_SIZE)

;
15 /ú Write the job in the memory ú/
16 JOBMANAGER_write( job , ( uint8_t ú)&pkt≠>stream , ( uint8_t ú) (&

pkt≠>stream+pkt≠>header . s i z e_text ) ) ;
17 /ú I n s e r t j ob in t o the s chedu l e r ú/
18 job≠>s t a t e=LOAD;
19 JOBMANAGER_ready ( job ) ;
20 }

4.7. Boot and restart service

The boot and restart procedure sets the initial configuration of the system and
lunches the kernel. This procedure starts when one of this events happened: push
the reset button or receive the reset command. It is composed by the following
steps:
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1. Initialize the platform:
a) Initialize system clock
b) Set the vector table base address at 0x08000000

2. Initialize the SRAM:
a) Copy initialized system data values from section ".system.init" in FLASH

to section ".system.data" in SRAM
b) Initialize to 0 system bss variables from section ".system.bss" in SRAM

3. Initialize the system:
a) Initialize the system kernel
b) Initialize the jobs of the applications
c) Start the scheduler and the task of the kernel and the jobs

1 void Reset ( void ) {
2 unsigned long úSrc , úDest ;
3 // Copy system data v a r i a b l e s from s e c t i o n " . system . i n i t " in

FLASH to s e c t i o n " . system . data " in SRAM
4 Src = &__system_init__ ;
5 for ( Dest = &__system_data__ ; Dest < &__system_data_end__ ; ) {
6 úDest++ = ú Src++;
7 }
8 // I n i t i a l i z e to 0 system bss v a r i a b l e s from s e c t i o n " . system

. b s s " in SRAM
9 for ( Dest = &__system_bss__ ; Dest < &__system_bss_end__ ; ) {

10 úDest++ = 0 ;
11 }
12 // I n i t i a l i z e system c l o c k
13 SystemInit ( ) ;
14 // Set the Vector Table base address at 0x08000000
15 NVIC_SetVectorTable (NVIC_VectTab_FLASH, 0x0 ) ;
16 // I n i t i a l i z e the system
17 ke rne l k e r n e l _ i n i t ( ) ;
18 // I n i t i a l i z e the j o b s
19 JOBMANAGER_reset( ) ;
20 // S t a r t the k e r n e l
21 ke rne l_s ta r t ( ) ;
22 }

4.8. Development tool-chain

In this sections we show the methods to build the system and the applications. The
make command starts the compilation procedure composed by:
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• configure the REEL base system
• compile and link procedures for REEL base system
• compile and link procedures for an application and build an packet

4.8.1. Configuration script

We provide a small menu script to specify the parameters and components of the
REEL base system. We can set a wide range of configurations:

• the path and version of the gnu embedded tool-chain.
• the path of the ST library and the library components to include.
• the FreeRTOS library and the main configuration parameters.
• the list of binary application to include.

Then the compile and link procedure starts automatically.

4.8.2. Compile and link the system

The compilation of Reel is not di�erent from the compilation of standard c program.
The make procedure builds the shared object and the elf binary file of the system for
the target machine. The link procedure is more complex. We specify a linker script
file for the linker to specify the size and the location of the system sections. We
assume a FLASH memory composed by 0x80000 blocks (512Kbytes) and a SRAM
memory composed by 0xfa00 blocks (64Kbytes).

1 /ú Target S p e c i f i c Parameters ú/
2 MEMORY {
3 FLASH ( rx ) : ORIGIN = 0x08000000 , LENGTH = 0x80000
4 SRAM_DATA ( rwx ) : ORIGIN = 0x20000000 , LENGTH = 0 xfa00
5 }

The sections in the linker script show the di�erent segments of text, data on the
FLASH and SRAM memories:

1. Interrupt vector: the list of all interrupt function handler. It must be the first
structure in the FLASH memory. We assign a block of 1 flash page of 2Kbytes.

1 . system . vec to r : {
2 __system_vector__ = . ;
3 KEEP(ú ( vec to r vec to r . ú ) )
4 . = ALIGN(0 x800 ) ;
5 __system_vector_end__ = . ;
6 } > FLASH
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Figure 4.6.: Sram and Flash memories

2. Job table: the list of all job installed on the machine. This data must be
stored permanent in the FLASH memory. We assign a block of 1 flash page
of 2Kbytes.

1 . system . j o b t a b l e : {
2 __system_jobtable__ = . ;
3 KEEP(ú ( j o b t a b l e j o b t a b l e . ú ) )
4 . = ALIGN(0 x800 ) ; __system_jobtable_end__ = . ;
5 } > FLASH

3. Text section: the segment of code text of the kernel, libraries and the services.
1 . system . t ext : {
2 __system_code__ = . ;
3 . / s ta r tup . o ( . t ex t . t ex t . ú )
4 ú ( . t ex t . t ex t . ú )
5 ú ( . gnu . l i nkonce . t . ú )
6 ú ( . glue_7 )
7 ú ( . glue_7t )
8 ú ( . gcc_except_table )
9 ú ( . rodata . rodata ú)

10 ú ( . gnu . l i nkonce . r . ú )
11 __system_code_end__ = . ;
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12 } > FLASH

4. Data section: contains global and static variables used by the program that
are explicitly initialized with a value.

1 . system . data : AT (__system_code_end__) {
2 __system_data__ = . ;
3 ú( v tab l e vtab l e . ú )
4 ú ( . data . data . ú )
5 ú ( . gnu . l i nkonce . dú)
6 . = ALIGN(4) ;
7 __system_data_end__ = . ;
8 } > SRAM_DATA

5. BSS segment: starts at the end of the data segment and contains all global
variables and static variables that are initialized to zero or do not have explicit
initialization in source code.

1 . system . bss : {
2 __system_bss__ = . ;
3 ú ( . bss . bss . ú )
4 ú ( . gnu . l i nkonce . bú)
5 ú(COMMON)
6 . = ALIGN(4) ;
7 __system_bss_end__ = . ;
8 } > SRAM_DATA

6. Init section: it contains the initial configuration of constant value and the
initialize values for the variables in the data section. When an job is restarted,
it starts with its own initial configuration. These values must be stored in a
permanent way in the FLASH memory at the end of the text section.

1 . system . i n i t : {
2 __system_init__ = . ;
3 . = . + SIZEOF ( . system . data ) ;
4 . = ALIGN(4) ;
5 __system_init_end__ = . ;
6 } > FLASH

7. The heap area begins at the end of the BSS segment and grows to larger
addresses from there. The heap area is managed by malloc, realloc, and free.
The stack area contains the program stack, a LIFO structure, typically located
in the higher parts of memory. A "stack pointer" register tracks the top of the
stack; it is adjusted each time a value is "pushed" onto the stack.

1 . heapstack 0x20005000 : {
2 /ú HEAP ! ! ! ú/
3 _heap = . ;
4 ú ( . heap . heap . ú )
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5 . = . + 0x1000 ;
6 /ú r e s e rved f o r heap ú/
7 _eheap = . ;
8 . = ALIGN(4) ;
9 ú ( . s tack . s tack . ú )

10 . = ALIGN(4) ;
11 _stacktop = 0xa000 ≠4;
12 /ú Top o f Stack ú/
13 } > SRAM_DATA

4.8.3. Compile and link the job

The compile and link procedure generates from an application source file ‘.c’ the job
packet file ‘.pkt’ to send to the network.

Figure 4.7.: Compile and link chain

This procedure is composed by the following steps:

1. Compile: compile the source code and generate the single object file; the source
files can be more than one. The make command lunch the compilation of all
applications.

2. Pre-link: regroup and rename the sections of the object file. To regroup all
the text sections into only one we used a ldscript with the following sections:

1 MEMORY {
2 FLASH ( rx ) : ORIGIN = 0x08000000 , LENGTH = 0x80000
3 SRAM_DATA ( rwx ) : ORIGIN = 0x20000000 , LENGTH = 0 xfa00
4 }
5 SECTIONS {
6 . t ex t : { ú ( . t ex t . t ex t . ú ) } > FLASH
7 . data : AT ( ADDR( . t ex t ) + SIZEOF ( . t ex t ) ) { ú ( . data .

data . ú ) } > SRAM_DATA
8 . bss : { ú ( . bss . bss . ú ) } > SRAM_DATA
9 . i n i t : { . = . + SIZEOF ( . data ) ; } > FLASH

10 }

Then we rename the previous sections of the application, as «app_name».«section».
We want distinguish sections of di�erent application with the same name.
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1 ${OC} ≠≠rename≠s e c t i o n . t ex t =.$name . t ext main . out ;
2 ${OC} ≠≠rename≠s e c t i o n . data=.$name . data main . out ;
3 ${OC} ≠≠rename≠s e c t i o n . bss =.$name . bss main . out ;
4 ${OC} ≠≠rename≠s e c t i o n . i n i t =.$name . i n i t main . out ;

3. Static link: calculate the static address of allocation of all the sections of the
application binary file; retrieve the size of the previous installed application
and the size of the sections of the current application.

4. Link with reel: resolving the symbol table with the absolute address of the
functions of kernel and libraries. The main steps are:

a) Link the application object with all the libraries and source of REEL in
a static way

b) Extract the text and data sections of the current application from the
full system binary

1 ${LD} ≠o main . tmp main . out $flag_app ≠≠whole≠arch ive ≠
T${LDSCRIPT_KERNEL} ${LFLAGS}

2 ${OC} ≠≠only≠s e c t i o n =.$name . t ext main . tmp text . tmp
3 ${OC} ≠≠only≠s e c t i o n =.$name . data main . tmp data . tmp
4 ${OC} ≠Obinary text . tmp text . bin ${OC} ≠Obinary data .

tmp data . bin

5. Build: generate the packet to upload the current application into the WSN
node. This packet follows the communication protocol rules and can be send
directly over the network.
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In this character we describe the dynamic behavior of REEL system in a real con-
text. REEL allows to load and execute remotely a new application through the static
linking reprogramming method. The more applications we install, the more func-
tionalities the system has. We show a concurrent scenario where two applications
works in parallel. Using the results from the measurements, we can quantitative
compare the memory and time overhead to calculate approximations the consump-
tions. We detected the measurements on the STM3210E-EVAL board through an
high precision oscilloscope without using a simulator.

5.1. Concurrent applications

The main purposes of the sensor node are to acquire measurements, locally process
them to extract information and transmit the processed data to the gateway node
over the network. These operations describe the cycled behavior of an sampling
application. The more sensors there are, the more measurements we have. The
REEL node support more concurrent application for sampling data at di�erent
frequency rate.
In the figure we show the parallel execution of two applications for blinking at the
frequency of 500Hz. In specify the first application turn up and down an GPIO
peripheral, the green line. On contrary the second application is drawn in yellow
color. The two applications are executed in parallel as two di�erent REEL jobs.
The preemptive behavior is a property of FreeRTOS scheduler.

5.2. Energy Consumption

In a WSN node the main critical component for energy consumption is the wireless
radio. To reduce the energy consumption, an e�cient reprogramming technique
minimizes the data exchanged over the network. For example we test the imple-
mentation of the Blink application. We can make only a quantitative comparison
between the REEL and other reprogramming solutions:

• REEL static linking: the size of a REEL packet grows of 128Byte for meta-
information: linking memory address, signature.
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Figure 5.1.: Concurrent blink applications

• complete reprogramming: The size of blinker application including the oper-
ating system, FreeRTOS and ST Library, is about 55KB which is about 1100
times the size of the blinker application itself.

• Virtual Machines: the packet size is the dimension of the function call into
application library. The famous Virtual Machine solution are based on Java.
The bytecode .jar file introduces a lots of memory overhead. In specify Dar-
jeeling uses .di file format which uses no compression but eliminates all string
literals.

• Dynamic linking: the packet size of blinker application is due to the length of
the application plus the references and the symbol table.

5.3. Memory Consumption

Memory consumption is an important metric for sensor nodes since memory is a
scarce resource on most sensor node platforms. The netbrick nodes feature only 512
KB FLASH for program code and 64KB SRAM for data variables. The FLASH
memory is grouped in blocks of 2Kbytes. The less memory required for the system
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size
nature code 48B

REEL packet 176B
Java bytecode 856B
Darjeeling VM 146B
ELF Contiki 1056B

CELF Contiki 361B
Table 5.1.: Blink application size for di�erent reprogramming solutions

and services, the more is left for user applications. Each application is stored in
block of 2KB Flash memory. We discuss the memory requirements for kernel space,
services and user applications.

5.3.1. Kernel space

The kernel space is the unchangeable structure of the system. It is composed by the
FreeRTOS, the ST Library and a kernel interface to lunch the task and initialize
the system. The most expensive memory consumption is due to the ST library. In
our test, we are interest to support a lots of functionalities: more functionalities
we add, more functionalities we can reuse in our applications. On the other hand
when we insert functionalities to the library, we increase its memory size. We need
a trade-o� between memory consumption and number of ST functionalities. The
make procedure allow a user to select the ST library functionalities to compile in
the system.
Moreover the FreeRTOS scheduler is quite bigger, but we can be change a lot of
configuration and memory space reserved for each thread. However for FreeRTOS it
is not possible decrease the text region under the 2KB of Flash memory. Moreover
the internal stack of each task is defined in region on SRAM memory and not in stack
system segment. In other words we can change the the dimension of consumption
of FreeRTOS as we want.

Flash Sram
Kernel 936 0
FreeRTOS 12.7K 7.6K
ST Library 43.9K 156
Services 3.9K 2.5K

Table 5.2.: Flash and Sram memory consumption for kernel space.

A more complex problem is to adapt FreeRTOS memory scheme with privileged and
restricted regions through MPU component.
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5.3.2. Services

The services are based on the kernel space and provide the reprogramming methods
and other interesting features. We presented these service and their functionalities
in the Implementation chapter. In specify the Jobs manager services consumes 2K
of Sram memory, the same amount of memory to store the Jobs table. The jobs
manager generate a volatile structure in Sram, a bu�er, to store temporarily the
Jobs table.

Flash Sram
Exceptions 176 0
Jobs manager 1988 2K
Loader 176 0
Remote cons. 1584 56

Table 5.3.: Flash and Sram memory consumption for services.

5.3.3. Applications

The memory segment of the application takes place between the service and heap
regions. Each application is paged in block of 2KB Flah memory because this
memory can be rewritten only in single block of 2KBytes, although the binary
image of the application requires less resources. The binary image of the application
is composed by the text sections and the initialize values. These information are
saved permanently in the Flash memory region of the application.

Binary text + init values Binary data Flash Sram
Blink 46 0 2K 0
Timer 540 0 2K 0

Table 5.4.: Flash and Sram memory consumption for applications.

5.4. Execution Overhead

The execution overhead is the time due to the REEL for:

• reprogramming time: to install an application on the node.

• booting time: to initialize the REEL’s services.
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5.4.1. Reprogramming time

The reprogramming tecnique introduces a time to install an application on the note.
The reprogramming process begins when the packet of the application is received
and ends when the application is ready to run. In the figure, the green line show the
required time to install an application, 109,926ms. It is composed by the following
steps:

• add a new entry in the job table,
• copy the binary image into Flash memory, the yellow line
• create a new FreeRTOS task and save the job table into Flash memory,

REEL uses the static linking technique and doesn’t introduced additional overhead
for resolving symbols and references.

Figure 5.2.: Reprogramming time

5.4.2. Booting time

In the figure we show the time period for booting of REEL. The booting process
begins when the device is turned on for the first time or is re-energized after being
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turned o�, and ends when the device is ready to perform its normal operations. It
takes 8.034ms.
In the figure the green lane shows the boot time period, 8.034ms, composed of the
init operations: setting the interrupt table, initialization of clock, peripheral, SRAM
memory and REEL services. The yellow lane shows the time period, 1.249ms,
to initialize the REEL’s service components. The di�erent between the two line,
6.785ms, is the indipendent-application time for setting the platform and 1.249ms
is the time overhead due to REEL during the boot procedure.

Figure 5.3.: Booting time

5.5. Results

In the table we present a summary of a quantitative comparative between di�erent
reprogramming solutions. In specify the static linking tecnique of REEL requires
less complexity and memory overhead than a virtual machine or dynamic linking
solution. In term of performance binary code is compiled for the target machine
and doesn’t require any interpreter or address resolving. Moreover we can transmit
only the application binary image with a little overhead for meta-information.

memory overh. execution transmission Reprogramming
Full image replacement no native the full system yes

Virtual machine many interpreter function calls limited instruction
Dynamic linking medium native app + symbols applications

Static linking (REEL) less native app applications
Table 5.5.: Quantitative comparative of reprogramming methods

We can’t quality compare Contiki, because it use a di�erent hardware platform.
ESB is equipped with an MSP430 micro-controller with 2 kilobytes of RAM and

58



5.5 Results

60 kilobytes of flash ROM, an external 64 kilobyte EEPROM, as well as a set of
sensors and a TR1001 radio transceiver. However we can quantitative compare the
measurements which doesn’t depend on execution time.

REEL Contiki
table 2KB 4KB

blink size 176B 361B
Table 5.6.: REEL vs Contiki
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6. Conclusions

We have presented the design and the implementation of REEL framework, a com-
plete real-time reliable and reprogrammable framework for hybrid sensor networks.
We discuss in the Evaluation section the memory overhead, the energy consumption,
the execution time of our solution and made a comparison with other reprogramming
methods. We showed that REEL is a good trade-o� between energy consumption
and memory overhead without a decrease of performance. The static linking method
allows to execute native code, that it is more e�cient than a virtual machine, and
reduce the transmitted information due to the symbol table in dynamical linking
reprogramming. The only requirements is to exactly know the memory free regions
on the remote node. For this purpose, REEL provides a remote command interface
with additional remote functionalities.
The presentation of the full system, it can be comparable with the solution proposed
by other systems in the literature. The future works can be in two directions:

• Robust execution context for the applications: Memory fault handling mech-
anism with MPU.

• Security reprogramming method: Security mechanism with TPM cryptographic
signatures.

A more accurate memory fault handling mechanism uses the Memory Protection
Unit, MPU, component inside the processor. This is a simple and fast unit designed
for special purpose systems, as opposed to the Memory Management Unit, suitable
for general purpose designs. Using a Memory Protection Unit (MPU) can protect
applications from a number of potential errors, ranging from undetected program-
ming errors to errors introduced by system or hardware failures. The MPU can be
used to protect the kernel itself from invalid execution by tasks and protect data from
corruption. It can also protect system peripherals from unintended modification by
tasks and guarantee the detection of task stack overflows.
Another point of interest is the security of the application over the network. This
security feature checks the authenticity and the integrity of the application packet
with cryptographic signatures. A secure crypto-processor, Trusted Platform Module
TPM, o�ers facilities to remote attestation and sealed storage.
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A. Installation manual

This section guide the developer to install the framework of REEL on Linux. Un-
lucky there is not a complete package with all our requirements, so we need to build
our framework. The framework of REEL requires the following programs:

• Eclipse development environment and plugin
• Gcc arm tool chain for embedded system
• OpenOCD on-chip debugging
• menu script tool

Figure A.1.: Open Source development software chain

Moreover we need to download the low-level devices and kernel libraries for REEL.
The libraries requirements are:

• ST Microelectronics peripheral library
• FreeRTOS operative system

In the following we described the installation procedures for each programs and the
download procedure of requirement libraries.

Arm tool-chain

The ARM toolchain consists of a compiler, linker, library and debugger for embedded
ARM devices. The main ARM toolchain are:

• GNU ARM toolchain for CygWin, Linux and MacOS : www.gnuarm.com
• Yagarto, yet another GNU Arm toolchain: www.yagarto.de
• Sourcery G++ Lite, Mentor Graphics: www.mentor.com

We test ARM EABI Lite version of the CodeSourcery G++ development tools. The
steps to install the tool chain are:
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Chapter A Installation manual

1. Download the IA32 GNU/Linux Installer from:
http://www.codesourcery.com/sgpp/lite/arm/portal/subscription3053

2. To launch the graphical installer use this command from the command line:
sh arm-2011.03-42-arm-none-eabi.bin

3. Remember to add the bin directory path of the toolchain to the path of the
system: export PATH=$PATH:/toolchain_path/bin

OpenOCD

Open On-Chip Debugger, OPENOCD, is a free and open on-chip debugging, in-
system programming and boundary-scan testing (tested with 0.5 stable and 0.6 un-
stable version). The easier way to install OpenOCD is to use a package environment
of your Linux distribution, the command is: apt-get install openocd.

We suggest to install the newest version (0.6) but if there is no package, you can com-
pile it from source; no panic in a Linux environment this should be the rule. You can
download the source files from the SourceForge project page:
http://sourceforge.net/projects/openocd/.

Eclipse

To install Eclipse in your system is as easy as to download and unzip the right
distribution. If you don’t known witch version to download choose the Eclipse
IDE for C/C++ Developers as highlighted in the following picture. The CDT
Project provides a fully functional C and C++ Integrated Development Environ-
ment based on the Eclipse platform. We tested the system with eclipse Indingo
and Juno version that can be download at http://www.eclipse.org. We recom-
mend to download and install the Zylin Embedded CDT plugin for eclipse from
http://opensource.zylin.com/zylincdt. Zylin Emebedded CDT pu Eclipse ready to
use ARM GNU Debugger.

Libintl

The Libintl is used to compile the setting menu script tool that allow to choose
the components of the system. To install the library ’libintl’, you can install the
package ’gettext-lint’ from the repository of your distribution. For Debian/Ubuntu
distributions, the command is: apt-get install gettext-lint
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ST library

To link the standard ST peripheral library for STM32 board in REEL, the steps
are:

1. Download the version of 3.5.0 from
http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/FIRMWARE/stm32f1
0x_stdperiph_lib.zip.

2. Extract the zip file and force lowercase of the files: unzip -L stm32f10x_stdperiph_lib.zip
3. Move and rename the folder: mv –rf stm32f10x_stdperiph_lib_v3.5.0

./lib/libperi

FreeRTOS

To link the FreeRTOS Operative System in REEL, the steps are:
1. Download the version 7.2.0 of FreeRTOS from http://www.freertos.org
2. Extract the zip file: unzip -L FreeRTOSV7.2.0.zip
3. Move and rename the folder: mv –rf FreeRTOSV7.2.0 ./freertos
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B. Eclipse settings

1. Compilation:

a) Check if the complier (usually arm-none-eabi-gcc) is in the path: Project
-> Properties -> C/C++ Build -> Environment

b) Check the following properties in the: Project -> Properties ->
C/C++ Build -> Builder Settings

i. uncheck: Use default build command
ii. Build command: make
iii. uncheck: Generate Makefiles automatically
iv. Build directory: ${workspace_loc:/ReelFramework_trunk/}

2. OpenOcd: Run OpenOCD To use openocd software in debug server mode go
to menu: Run -> External Tools -> External Tools Configura-
tions.

a) Set the following properties:

i. Location: /usr/bin/openocd
ii. Working Directory:

${workspace_loc:/ReelFramework_trunk/arch/openocd}
iii. Arguments: -f openocd_debug.cfg

3. Debug: To set the debug properties go to the project ’ReelFramework_trunk’
in : Run -> Debug configurations -> Zylin Embedded debug (Na-
tive).

a) Set the following properties:

i. Debugger properties: Debugger
ii. GDB debugger: arm-none-eabi-gdb
iii. GDB command file:
iv. GDB command set: standard
v. Protocol: mi

b) Initialization: Commands -> ’Initialize’ commands
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t a r g e t remote :3333
monitor so f t_re s e t_ha l t
monitor ha l t
monitor f l a s h write_image e ra s e unlock . / ree l f ramework /

sourc e s / t o t a l . bin 0x08000000
f i l e . / ree l f ramework / sourc e s / t o t a l . out
break
main
cont inue
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C. Geting started

We show the steps to build the binary image of REEL:
1. Download REEL middleware: You can download the main trunk sources from

svn repository with the subversive plugin in eclipse. Alternatively you can
download it in the terminal with the command:
svn checkout svn+ssh://svn.code.sf.net/p/reelframework/code/trunk
reelframework-code

2. Import project into Eclipse:

a) Select the menu item : File -> Import... -> Existing Project
into Workspace.

b) Select the root directory of the project : workspace/reelframework-
code

c) Check the inside: project: ReelFramework_trunk

3. Open you application: in the root directory of the project go to the folder
apps and open the folder of your applications. The name of source folder is
the application name. You can edit an existing applications or write a new
one.

4. Compilation: the make procedure compile the project and all the applications
selected in the make. With the ncurses interface you can select the components
of the global system and the applications to build.

5. Run: select the Run button in the upper menu. OpenOCD load the system
image to the plugged device. Remind to follow the instruction in Appendix B
to set configuration of Zylin plugin.
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