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Abstract

Convection is arguably the most widely used in industry among several modes

of heat transfer. In the last few years, several attempts of enhancing the cool-

ing ability of a fluid stream by means of applied electric fields have been made,

and both experimental and numerical studies have been conducted on the mat-

ter. This work presents both affirmed and original models for the description of

charged particles injection in fluids by corona discharge, describes a mathemat-

ical framework for the discretization and numerical approximation of the PDEs

governing the electrohydrodynamic phenomena, and provides comparison of the

numerical simulations performed with experimental data in order to assess the

newly introduced discharge models.

Sommario

La convezione è assai probabilmente il più utilizzato in ambito industriale tra

i modi del trasferimento di calore. Negli ultimi anni, sono stati fatti molti

tentativi di incremetare l’efficacia del raffreddamento per convezione attraverso

l’applicazione di campi elettrici, e l’argomento è stato studiato sia sperimental-

mente che numericamente. Questo lavoro presenta modelli sia affermati che origi-

nali per la descrizione dell’iniezione particelle cariche nei fluidi attraverso l’effetto

corona, descrive una struttura matematica per la discretizzazione ed approssi-

mazione numerica delle EDP che governano i fenomeni di elettroidrodinamica, e

fornisce un confronto delle simulazioni numeriche eseguite con dati sperimentali,

allo scopo di validare i nuovi modelli di scarica introdotti.
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Chapter 1

Introduction and motivation

Since the beginning of the industrial era, heat transfer has constantly been an important

part of most industrial processes: it was at first the condensation of water in the vapor

engine, later the control of chemical production, cooling of combustion engine, refrigeration

and air conditioning, and since the late 20th century, the thermal management of nowadays

ubiquitous semiconductor devices.

In most of these applications, there is need to draw thermal energy from one place

and convey it to some other: if we take a computer chip as an example, the engineer is

interested in extracting as much as possible of the thermal power produced by the chip,

and transfer it to surrounding environment, in order to maintain the working temperature

of the chip within a range that guarantees the best performance and reliability.

Several techniques can be employed for heat transfer: conduction, phase transition,

Twall

T∞

V∞
V<V∞

V≈V∞

T >T∞

T ≈ T∞

Figure 1.1: Left: theoretical representation of a boundary layer; right: experimental image of a
boundary layer in turbulent regime.
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10 Chapter 1. Introduction and motivation

natural or forced convection. In a vast majority of examples, the last step in the cooling

process consists of transferring heat from some solid surface to the air in the surrounding

environment.

Convective cooling refers to the transport of heat in a fluid by means of combined

conduction, namely the diffusion of thermal energy, and advection, namely the motion of

energy driven by the flow of the fluid. The latter contribution is predominant in bulk fluid,

far from solid boundaries, but becomes negligible as one approaches walls or obstacles,

where the velocity of the flow itself vanishes in the first place: this phenomenon is known

as the formation of boundary layers, and is depicted in Figure 1.1.

Historically, most of the convective cooling systems are based on fans, used to drive the

fluid flow over the surface of the device to be cooled. This approach is generally efficient,

except for some applications with very specific requirements, for example:

• cooling of devices with highly localized “hot spots”, for which is unpractical to force a

strong flow over the whole device to reduce the temperature of only a limited region,

• cooling of devices contained in enclosures that do not have enough room to place

large fans,

• cooling by means of “dirty” air, containing some small objects or particles which

could limit the durability of moving mechanical parts,

• applications for which mechanical vibrations or noise are to be avoided.

Recently, an alternative method for driving the flow of cooling fluid, namely the use of

ElectroHydroDynamics (EHD) forces, has been exploited in many applications (see Fig. 1.2

and 1.3). In EHD, electric fields are applied in the fluid to accelerate charged particles.

Impacts at the microscale between charged and neutral particles result at the macroscale

in a volume force on the bulk fluid, creating or modifying its flow.
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Figure 1.2: Left: EHD pump for cooling liquid, designed by NASA [46]. Right: Electrostatic fluid
accelerator prototype from Tessera [29].

Figure 1.3: Facilities for experiments in EHD enhancement for boiling, condensation and capillary
pumps at McMaster University [53].

In this thesis, we discuss the application of EHD and the production of charged particles

for the enhancement of convective cooling in air, by disturbing and reducing the velocity

boundary layers. Since the problem is approached by means of numerical simulations, the

mathematical models and the algorithms for the solution of the related PDEs are also

covered. In particular, existent and original lumped models for the prediction of charged

particles generation are presented, implemented and validated.
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1.1 Review of EHD enhanced heat transfer

In this section, we briefly review recent literature related to physical modeling of EHD phe-

nomena, their application to heat transfer enhancement, and the numerical approximation

of the governing equations.

EHD forces can be employed for heat transfer enhancement in two main ways. In

cooling systems based on multiphase flow, EHD forces are used to initiate or enhance the

formation of droplets or bubbles in the fluid; in cooling systems based on single-phase flow,

EHD forces are used to accelerate free charged particles contained in the fluid.

Enhanced condensation or boiling was the first application to be exploited at industrial

level, and has been studied extensively since more than thirty years (see, e.g., Jones’ review

[40]). Nonetheless, this approach is still currently employed and studied, for example by

Cotton, Robinson and others [67, 16, 56].

Electrostatic fluid accelerators, on which we will focus in the following, are gaining an

increasing appeal especially in semiconductor thermal management, thanks mainly to the

promise of reduced dimensions of the cooling devices. Recent contributions in the field

have been focusing on both numerical simulations and experimental studies:

• Adamiak and others [1, 7, 64, 65, 77] studied the DC and pulsed corona discharge

between a needle and a plate collector, using different numerical methods (FEM,

BEM, FCT etc.) for the approximation of each equation in the PDE system;

• Kasayapanand and Kiatsiriroat [44, 45, 43] simulated the effect of electrohydrody-

namics in differently shaped channels by the finite difference method;

• Ahmedou and Havet [3, 2, 4] used a commercial FEM software to investigate the

effect of EHD on turbulent flows;
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• Moreau and Touchard [54], Huang and others [31], and Kim and others [47] experi-

mentally studied different EHD devices designed for cooling or air pumping purpose;

• Chang, Tsubone and others [13, 73, 12] made extensive experimental study of the

forced airflow and the corona discharge in a converging duct;

• Jewell-Larsen and others [42, 39, 38, 30, 36, 35, 37] and Go and others [25, 24, 22,

27, 26] conduced both experimental and numerical studies aimed at designing and

applying ionic wind cooling devices to thermal management of cooling devices, and

provided

The literature on the analysis of EHD equations is not very extensive: a few studies

of the existence of a solution in 2D are carried out by Ryham in [63, 62]. Interesting

analytic results can be found, however, in the literature on electrochemistry and flows in

ionic solutions, which give rise to inherently similar equations, namely the Navier-Stokes-

Poisson-Nernst-Planck system (see, e.g., [61, 34]). We refer, for example, to the work of

Jerome, Sacco and others [8, 14, 50, 49, 32, 33].

1.2 Contents and scope of this thesis

The main focus of this thesis work is the formulation and implementation of an algorithm

for the numerical simulation of single-phase EHD cooling systems. The requirements for

obtaining an industrially interesting tool are that the simulations should be acceptably

matching experimental results, and have a certain degree of prediction ability. In this case,

numerical simulation can be used as a first step in the design of actual devices, without the

need of immediate experimentation in the first stages of the designer’s work. This thesis

is structured as follows:
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Chapter 2 presents the physical description of the phenomena which govern the electrohy-

drodynamic cooling, along with the mathematical models necessary to its description:

• in Section 2.1, the different possible interactions between electric fields and

charged fluids are reviewed, and a mathematical formulation for the EHD force

on ionized air is provided;

• in Section 2.2, the partial differential equations which govern the electrohydro-

dynamic phenomena are introduced, and the couplings between the equations

are clarified;

• in Section 2.3, the physics of electron avalanche in corona discharge is analyzed,

and successively different boundary lumped models for the discharge is proposed,

some of which for the first time;

• in Section 2.4, the differential and boundary models are completed with bound-

ary conditions, in order to provide the formulation of an initial-boundary-value

differential problem.

Chapter 3 concentrates on the algorithmic aspects of the numerical simulations, with

the final purpose of transforming the original PDE system in a set of linear algebra

problems:

• Section 3.1 reformulates the problem as a discrete dynamical system on proper

function spaces;

• Section 3.2 provides a first decoupling of the differential equations in subprob-

lems, and introduces an iterative algorithm for computing the solution at each

time step;

• Section 3.3 introduces a modified and linearized version of the electrical problem,

and delineates an iterative algorithm for its solution;
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• Section 3.4 introduces the finite volumes method for PDEs discretization, and

provides a general space-discrete formulation for the linearized problems;

• Section 3.5 presents the solution method for fluid dynamics subproblem, based

on the space-discrete formulation.

Chapter 4 presents the results of numerical simulations obtained through the implemen-

tation of the described algorithm, and compares the results with experimental and

numerical works on EHD present in literature, along with a comparison and valida-

tion of the different lumped models proposed in Section 2.3.
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Chapter 2

Physics of electrical discharge in
gases

Electrical discharge in gases can occur in several different regimes, involving very different

physical phenomena. Charge carriers can be externally injected as charged droplets, small

particles, or ionized gas molecules, or they can be generated by ionization of the gas itself,

when excitation inducedby the electric field in gas particles is sufficient to break molecular

bonds. In such situations, the properties of the gas may be radically changed, and the gas

itself may be turned into plasma in part of the system.

A particularly effective approach for introducing charges in the system consists of ex-

ploiting the so called Townsend avalanche process, i.e., avalanche multiplication of free

electrons by impact-ionization of neutral gas molecules. In order for this process to be

triggered, free electrons traveling through bulk gas under the effect of an externally ap-

plied electric field, must gain in one free flight period a kinetic energy higher than the gas

ionization energy.

When this situation occurs, an ion-electron pair is produced by each collision and the

newly generated charges, in turn accelerated in the electric field, contribute to more ionizing

impacts and lead to an avalanche. When a large number of free carrier pairs is generated

in a globally neutral gas, one can say the gas has been turned into a plasma.

The region occupied by the plasma may have a large extent if the electric field is overall

uniform, but by a proper geometric design of the electrodes one can constrain it to a thin

17
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grounded electrode

positive electrode
gas neutral molecule

positive ion

free electron

photon emission

ion-neutral collision

electron-neutral 
collision with ionization

ionization layer

Figure 2.1: Out-of-scale depiction of the positive corona discharge in gas.

layer. For example, a sharp anode (a pin, or a really thin wire) will produce a strong electric

field in its proximity; electrons generated within this high field region will be attracted and

quickly captured by the positive electrode, while cations will have to travel trough the

low electric field, or “drift”, region to reach the cathode. Due to this difference, charge

carriers can be considered as unipolar in the bulk fluid, as is pointed out in [5]. The choice

for the ionizing region to be near the anode is not arbitrary, but has some non negligible

advantages: first, in the drift region only one kind of carrier is present, namely positive

ions, whereas one would possibly have negative ions and electrons when ionizing near the

cathode; second, the ozone production in the former case is much less than in the latter

(see [11]), with obvious advantages in terms of air quality and material durability.

In this particular regime, known as corona discharge, the analysis can concentrate on the

drift region, namely the fluid outside the ionization layer. In this region, fluid properties are
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reasonably uniform and a macroscopic modeling approach can be taken: i.e., ion number

density, charge density can be modeled as continuous functions, and current density can

be expressed as function of the electric field, the charge density and the ion mobility in the

gas. Figure 2.1 depicts a system with the properties described above.

For very simple geometries one may apply further simplifications to the physical de-

scription introduced above. In particular, for a cylindrical metal pipe with a very thin

coaxial emitting wire one can derive the two-parameter Townsend model (see Sect. 2.3)

from which, in turn, a simple compact relation describing the current-voltage characteristic

can be derived ([48, p.485-504]):

i9V pV ´ Vonq, (2.1)

where i denotes the contact current, V the anode-to-cathode voltage and Von is the “onset”

voltage. For more complex geometries, a full PDE system including a drift-diffusion model

for ion transport, Poisson equation for self-consistent electric field computation, and Navier-

Stokes equations for the fluid velocity field in the bulk fluid is required. The development

of such full model occupies the remainder of the present chapter. It must be noted, though,

that relation (2.1) can still be useful for obtaining rough estimates of current, when the

corona is in its fully developed, stable regime, i.e. when the condition V " Von holds (see

Figure 2.2).

The remainder of this chapter is structured as follows:

• Section 2.1 provides a detailed description of the model for EHD force,

• Section 2.2 describes the whole system of equations governing the bulk fluid and

current flow,

• Section 2.3 introduces microscopic and macroscopic models for describing corona
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Figure 2.2: Examples of parabolic I-V characteristic as found in [55] (left) and [66] (right)

discharge,

• Section 2.4 summarizes the whole model and formulates the initial-boundary-value

PDE problem.

2.1 Modeling of electrohydrodynamic forces on the gas

In this section, we describe the different kind of EHD forces. A fluid medium immersed in

an electric field generated totally or partly by free charge carriers in the fluid, is subject

to a volume force fEHD which can be expressed as the sum of four contributions:

fEHD “ f1 ` f2 ` f3 ` f4, (2.2)

where f1 denotes the contribution called Coulomb or electrophoretic force, f2 the permittiv-

ity gradient force, f3 the dielectrophoretic force and f4 the electrocostriction force. These

four forces are functions of the number density of carriers in the fluid Np, the electric field

vector E , the dielectric permittivity ε and the density of the fluid ρ .
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In the following paragraphs, the four different terms in evidence in (2.2) will be dis-

cussed, based on the analysis presented in [68, p.96,137-40], [40] and [75].

Coulomb or Electrophoretic Force

The first contribution to EHD force represents the Coulomb force exerted by an electric

field upon free electric charges in the medium, and it is also referred to as electrophoretic

force:

f1 “ qNpE;

f1 is not negligible when there are free charges either flowing in the fluid or building up

at the interfaces of two fluids due to variations in permittivity and conductivity. The first

situation occurs for example when the already introduced corona discharge generates a

current flowing through the fluid; the second case occurs in instance multiphase flows: the

steep gradients in electrical permittivity ε and ion mobility µ can cause the building of

large amount of carriers, of which an estimation is given in [6] :

E ¨∇ε “ qNp `
ε

µNp
E ¨∇pµNpq.

vapor

liquid

Figure 2.3: Effect of f2 upon droplet formation [75].
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Permittivity gradient force

The second contribution in EHD force is driven by the spatial gradient of permittivity ∇ε

:

f2 “ ´
1

2
|E|2∇ε.

This term is particularly important in two-phase heat transfer processes where the

fluid permittivity changes significantly at the vapor/liquid interface. The direction of

the resulting force is thus from the more permittive material (liquid) towards the less

permittive (vapor) and is normal to the interface. This component of the force acts to

disturb condensate films and deform liquid droplets as shown for instance in Fig. 2.3.

Dielectrophoretic Force and Electrostriction Force

The third and fourth contribution to EHD force are derived from the expansion of the

gradient in the following expression thanks to the product rule:

1

2
∇
„

|E|2ρ

ˆ

Bε

Bρ

˙

“
1

2
∇|E|2

„

ρ

ˆ

Bε

Bρ

˙

`
1

2
|E|2∇

„

ρ

ˆ

Bε

Bρ

˙

.

The first term, driven by the non-uniformity of the electric field modulus∇|E|2, is called

dielectrophoretic force, while the second part, concurrent with changes of permittivity

independently of whether the field is uniform or not, is called electrocostriction force.

Using Clausius-Mossotti law, which expresses the relation of dielectric permittivity to

density to a very good approximation for non-polar fluids, one can obtain that:

ρ
Bε

Bρ
«
ε0

3
pεr ´ 1qpεr ` 2q,

where ε0 is the constant permittivity of void, and εris the relative permittivity; it is worth
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pointing out that similar but more complex equations can be derived for polar fluids (ac-

cording e.g. to [6]). The latter relation gives in turn:

f3 “
ε0

6
pεr ´ 1qpεr ` 2q∇|E|2

for the dielectrophoretic force and

f4 “ |E|
2 ε0

6
∇ rpεr ´ 1q pεr ` 2qs “ |E|2

ε0

6
p2εr ` 1q∇εr

for the electrocostriction force.

Dielectrophoretic force can be responsible of translational motion. The more permittive

fluid (or some object within the fluid) endures a larger force and is lead to occupy regions

where the electric field intensity is bigger. The direction of this term is independent of the

actual field direction. Furthermore, the dielectrophoretic term is non negligible only within

media whose relative permittivity is larger than unity, and can be considered to almost

vanish, e.g., in the vapor phase (for most fluid in gaseous phase, εr « 1). Fig. 2.4 shows

the effects of dielectrophoretic force in two different electrode setups.

Electrostriction force is directed in the direction of increasing permittivity (e.g. from

vapor to liquid) and normal to the interface (Fig. 2.5). As shown by its definition, f4 works

in direct opposition to f2, decreasing the droplet size and disturbing the interface profile.
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Relations between EHD force components

Recollecting the expression for each of the four contributions, the total EHD force expres-

sion reads:

fEHD “

B

qNpE

F

loooomoooon

f1

`

ˆ

´
1

2
|E|2∇ε

˙

looooooomooooooon

f2

`
ε0

6
pεr ´ 1qpεr ` 2q∇E2

looooooooooooomooooooooooooon

f3

` |E|2
ε0

6
p2εr ` 1q∇εr

looooooooooomooooooooooon

f4

. (2.3)

Each term in (2.3) may be significant or negligible, depending on the different flow

regime. The main discriminant factor is the presence or absence of a second fluid phase,

while a second important feature is the relative permittivity of the fluid.

Since for the object of our study the flow is monophase, we can neglect the strong

interface actions of terms f2 and f4. Moreover, since we do not want to consider large

temperature gradients, the distributed effect due to ε gradient is also negligible.

As for the remaining components, we consider f1 to be dominant with respect to f3.

High 
voltage 

electrode

Grounded electrode High voltage source

Figure 2.4: Effect of f3 in an capacitive systems as shown in [40]. The left picture shows two
concentric cylindrical electrodes with nonuniform electric field exerting dielectrophoretic force on
dielectric particles. The right picture demonstrates the same force’s effect on dielectric liquid.
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This latter term contains in fact the factor εr ´ 1 , which almost vanishes as we consider

air flow (εr,air « 1). Thus, from here on, we will consider

fEHD “ f1 “ qNpE. (2.4)

2.2 PDE modeling of electrical discharge and fluid flow

In this section, we review the partial differential equations that govern the EHD flow, and

in particular the flow of charged ions, the dependence of electric potential on charge dis-

tribution, the motion of the bulk neutral fluid and the heat transfer. Nonlinearities and

couplings in the aforementioned system make its solution complicated, but some simplifi-

cations, summarized in the chart in Fig. 2.6, can be made for computational purpose.

Transport of free charge qNp is governed by two fundamental equations. The first one

is Poisson’s equation that defines the relation between electric field (or potential) and free

charge:

∇ ¨ pεEq “ ´∇ ¨ pε∇φq “ qNp. (2.5)

The second equation is the current continuity equation, which expresses the principle of

Figure 2.5: Examples of the effects of f4: phase interface disturbance and droplet formation (see
[40, 75]).



26 Chapter 2. Physics of electrical discharge in gases

conservation of electrical charge:

BqNp

Bt
`∇ ¨ j “ 0. (2.6)

Ion transport occurs by three different mechanisms: advection due to applied electric field,

advection due to the fluid flow, and diffusion of charged particles (see e.g. [9, 10]):

j “ qNpµE` qNpv ´Dq∇Np. (2.7)

The product of charge density qNp and ion mobility µ is the better known electrical

conductivity σ, which is normally employed in the description of solid conductors, where

Np can be considered constant (this lead sometimes to mix-ups like in [24] where both

conductivity and mobility term sum up in the current density expression). The latter

equation introduces a strong coupling between (2.5) and (2.6):

BqNp

Bt
`∇ ¨

`

pµE` vqq∇Np ´Dq∇Np

˘

“ 0. (2.8)

The transport field v in (2.8) is the bulk fluid velocity, which for a Newtonian fluid obeys

the Navier-Stokes equations, which state the conservation of mass density ρ , momentum

density ρv and energy density ρCV T , expressed as function of fluid temperature T :

Bρ

Bt
`∇ ¨ pρvq “ 0, (2.9a)

Bρv

Bt
` v ¨∇pρvq “ ∇ ¨ pη∇vq ´∇p` fvol, (2.9b)

BρCV T

Bt
`∇ ¨ pvρCV T q “ ∇ ¨ pk∇T q `Qc ` j ¨E´ v ¨ fEHD, (2.9c)

where g is gravity acceleration, fvol “ fEHD` ρg is the body force exerted per unit volume
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of fluid by both gravity and the electric field, η is dynamic viscosity and k is thermal

diffusion rate of the fluid. Under the assumption that the fluid is incompressible (Bρ
Bt “ 0)

and its density and viscosity can be considered uniform (∇ρ “ ∇η “ 0), (2.9a) and (2.9b)

can be decoupled from (2.9c), defining the incompressible Navier-Stokes system:

∇ ¨ v “ 0, (2.10a)

Bv

Bt
` pv ¨∇qv “ ν∆v ´∇rp` fEHD ` fb

ρ
, (2.10b)

where ν is the kinematic viscosity,fb is an approximation for buoyancy force, and rp “
`

p
ρ ` g ¨ x

˘

is a modified pressure including the hydrostatic component (we will always use

rp in the remainder, but dropping the tilde for a plain notation).

This approximation can be obtain, for small temperature gradients, by Boussinesq for-

mula: this considers the small density variation (due to small temperature non-uniformities)

to be linear with temperature differences, namely:

ρpT q “ ρpTrefq
`

1` βexppTrefqpT ´ Trefq
˘

, (2.11)

where βexp is the volumetric thermal expansivity dp´ ln ρq
dT |p“const. for the gas at a given

temperature Tref ( a good approximation for T , and usually taken as a constant). For

ideal gases βexppT q “ T´1 and therefore the need for small variation for T is evident. In

reasonable ranges of temperature and at ambient pressure, air can also be considered ideal

gas and therefore the approximation still holds for small temperature differences. The

buoyancy force term then becomes:

fb “ gpρpT q ´ ρpTrefqq “ g pρpTrefqβexppTrefqpT ´ Trefqq . (2.12)
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Going back to the energy conservation equation (2.9c)

BρCV T

Bt
`∇ ¨ pvρCV T q “ ∇ ¨ pk∇T q `Qc ` j ¨E´ v ¨ fEHD,

Qc is the heat generation term due to e.g. chemical reactions, and can be neglected in

the case of ionization, which has a small thermal output; j ¨E would be the Joule heating

in a solid conductive material where no mechanical work is performed because of the still

medium, therefore the need of subtracting the mechanical work made by the EHD force

v¨qNpE. Other heating sources are external and therefore modeled as heat transfer through

the boundaries. With these simplifications, and considering gas properties uniform, we can

re-write the equation for temperature as:

BT

Bt
` v ¨∇T ´ k

ρCV
∆T “

pµEqNp ´Dq∇Npq

ρCV
¨E. (2.13)

Equations (2.5),(2.6),(2.10) and (2.13) should be completed with suitable initial and bound-

ary conditions, which will be clarified in Sections 2.3 and 2.4

2.3 Modeling of electron avalanche and ionization

As previously stated, in corona discharge processes, generation of free charge carriers oc-

curs in a thin plasma layer near one electrode. In our macroscopic model, this layer is

“lumped”and treated as a two-dimensional surface, so that its effect on the system is ac-

counted for via ad-hoc boundary condition, completing the system of equations presented

in Section 2.2. This section is split in two parts: in the first, we introduce a model for the

avalanche generation of ions, which applies within the plasma layer, while in the second

we propose a set of different approaches to derive the lumped BC which should reproduce

the described phenomena.
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Figure 2.6: Relations between the unknowns of the EHD system, with arrows pointing to an
influenced subsystems from the influencing one. Thicker arrows indicate influence which is major
in most cases, while thinner ones indicate minor influence. The chart is adapted from [74].

2.3.1 Microscopic model for avalanche charge generation

The microscopic model for corona discharge relies on the model first proposed in its very

core by Townsend [71, 72] and subsequently improved [70, 69], which describes the process

of ionization of neutral molecules by electron impact.

Let us imagine a free electron traveling under the influence of a uniform electric field E

(e.g. between the parallel plates of a gas filled capacitor) with mean free path λppq between

two collisions. If the energy that the electron gains becomes high enough, it can not only

excite the hit molecule, but even detach another electron from its shell. We can define
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a coefficient αT with the following meaning: one free electron in a gas of neutral atoms

will produce by collision an average of dn “ αTdx new electrons while traveling a path of

length dx. By solving the ODE for the total number of electrons n one obtains:

npxq “ n0e
şx
0 αT

psqds,

n0 being the initial number of electrons emitted, e.g., by photoelectric effect at the cathode.

It can be shown that αT depends only on E and p (or λppq) so, in this particular case,

it can be considered constant and the simpler form npxq “ n0eαT
x holds. Rather than a

relation of the form αT “ f p|E|, pq ), the simpler form
α
T
p “ f

´

|E|
p

¯

is usually employed,

as the latter fits experimental data for low |E|
p range:

αT

p
“ Ae

B |E|
p ,

A, B being constants depending on the gas used. However, this relation definitely fails to

hold as the |E|
p value grows over a certain threshold, and therefore other mechanisms must

be accounted for. Two main phenomena can be considered in this sense, both involving

a secondary electron emission: positive ion collisions with the cathode or photoelectric

release due to photons coming from metastable gas atoms (excited because of the electron

current itself).

Both those phenomena (and other similar ones) can be modeled with an added pa-

rameter γT usually called second Townsend coefficient, representing the average number

of electrons released at the cathode for every ionizing collision happening in the gas. If

we call n1 the number of electrons released from the cathode, we will find out that n0

were produced in the same way as in the former description (e.g. photoelectric effect from

an external photon source) while n1 ´ n0 come from this secondary effect. If a total of n
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electrons reach the anode, then n ´ n1 of them have been detached from neutrals in the

gas, so that the secondary contribution to the total emission becomes

n1 ´ n0 “ γTpn´ n1q

according to the definition of γT . This leads to a total electron number emitted from

cathode given by

n1 “
n0 ` γTn

1` γT

and thus to total electrons number at the anode of:

n “ n1eαT
x “

n0 ` γTn

1` γT

eαT
x “ ¨ ¨ ¨ “ n0

eαT
x

1´ γTpe
α
T
x ´ 1q

, (2.14)

x being the distance between anode and cathode plates. 1

Again, this regime does not hold indefinitely, as at a certain point the free charge in the

gas starts playing an active and non negligible role in making the electric field variable. As

shown in the beginning of this section, the exponential terms in (2.14) would in that case

turn into something like e
şx
0 αT

psqds (this does not change when the γT model is applied)

1 Some prefer to use a different parameter βT such that

γT “
βT

αT ´ βT

so that the former relation becomes

n “ n0
pαT ´ βTqe

α
T
x

αT ´ βTeαT
x ,

which comes in a form indeed very similar to the first formulation by Townsend. In [70], he postulated
the possibility of ionization by positive ion collision (which was logical inasmuch the primary discharge was
attributed to negative ions instead of electrons). Later, when a better understanding of atomic physics was
achieved, this idea was proved to be wrong, being positive ions not able to detach electrons by collisions at
the very small energies at which the secondary discharge was observed.



32 Chapter 2. Physics of electrical discharge in gases

but with the further complication that now the relation becomes implicit as:

αTpsq

p
“ f

ˆ

|Epnq|

p

˙

.

The straight Townsend discharge model becomes thus not directly applicable with relatively

high currents or ion densities in the gas, but still it can turn out useful when one has to

decide whether the corona discharge is triggered or not. One can indeed claim that the

onset of a stable (or self-sustained) corona happens when an initial electron is able to

produce enough ions to have another electron detached from the cathode. This condition

translates by means of the model just provided to:

γTe
şx
0 αT

psqds ě 1. (2.15)

By knowledge of the monotonically increasing functional dependence of αT on E one

could then define a field intensity Eon depending only on p and γT that, once reached,

triggers a self-sustaining discharge. At the same time a voltage Von can be defined as the

imposed voltage necessary to reach Eon. If the imposed voltage should increase over Von,

then the increment of space charge would initially result in a shielding of the electric field,

sufficient for maintaining the discharge stable, and for further increasing in voltage, the

shielding effect would not be sufficient and a disruption would happen.

The idea of a counter-effect required to maintain of a stable and self-sustaining corona

discharge is what lies behind the condition called Kaptsov hypothesis (see [41]): the electric

field value at the anode remains constant at Eon when a self-sustaining corona discharge is

triggered, even for imposed voltage greater than Von. This hypothesis is widely accepted

and provides a good starting point for corona modeling.

A more precise definition for the value of Eon which triggers the corona may be more
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difficult to obtain than one could expect. For the rather simple geometry of a cylindrical

pipe as cathode and a wire running trough its axis as anode, a semi-empirical solution is

given, known as Peek law or formula (see [58]):

Eon “ E0C1
p

p0

˜

1`

d

p0C2

prw

¸

, (2.16)

where E0 is the arc breakdown field at atmospheric pressure p0, rw is the wire radius, C1

a factor depending on the material and roughness of electrodes, and C2 a constant length

(discriminating between small and big radii).

2.3.2 Boundary lumped models for corona discharge

With the counter-effect behavior described in the latest subsection in mind, we propose in

this section four different boundary conditions formulations to be imposed together with

equation (2.6), in order to effectively reproduce corona discharge.

The boundary conditions will be presented in the form of a Robin condition, namely:

αNp ` βBnNp “ κ, (2.17)

where α , β and κ can in general depend on En , the electric field normal to the electrode

surface, while BnNp “ n ¨∇Np is the gradient component normal to the boundary surface.

The first approach consists in imposing an experimentally measured current im trough

a uniform current density normal to the surface jn . In order for the total current to match

the experimental value, the current density must be given by the ratio between im and the

electrode surface area s. Thanks to (2.7), we have:

µEnq
loomoon

α

Np ` Dq
loomoon

β

BnNp “
im
s

loomoon

κ

. (2.18)
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This approach, at least in its principle of matching empirical currents, has been adopted

by several authors (e.g. in [35, 51, 52, 76]). Nonetheless, it has flaws in two different

aspects: it is a non-predictive condition, since it needs experimental data which are not

always available, and it fails to produce higher current density where En is higher, which is

one of the desirable properties according to the microscopic model presented in this same

section.

To provide a model in which jn monotonically increases in relation with En, several

possibilities are available. The second model we present, called “space charge controlled

current” (SCCC), is proposed e.g. in [15], and contains two of the properties already

described here: a threshold on the electric field which reproduces the effect described by

(2.15), and the shielding effect of free charge. The law describing the injection reads then

jn “ jsatHpEn ´ Eonq ´ wNp, (2.19)

where jsat is the maximum current density the contact is supposed to allow, H is the step

function valued 0 for negative arguments and 1 for nonnegative ones, Eon is the threshold

field given by (2.16), and w is a quantity with the dimensions of a velocity times an electric

charge, which originates a backscattering current that grows as the free carriers density

rises. Transformed to our standard formulation (2.17), it reads:

µEnq ` w
loooomoooon

α

Np ` Dq
loomoon

β

BnNp “ jsatHpEn ´ Eonq
looooooooomooooooooon

κ

. (2.20)

This formulation solves the two flaws which we evidenced in (2.18), since it is predictive and,

to a certain extent, allows for higher currents as En grows. The choice of the parameters

jsat and w is nonetheless critical: the assumptions in the model root require in fact the

saturation and backscattering current densities jsat and wNp to be much bigger than the



2.3. Modeling of electron avalanche and ionization 35

actual value of jn , in order for current to be “space charge controlled”, while when jn is

big the control over the current is mainly exerted by the jsat parameter.

A third option is to directly enforce Kaptsov hypothesis of a constant electric field

where ions are produced. This ansatz has been adopted, even if with different methods

for its actual enforcement, by different authors (e.g. in [1, 39, 42]). Our implementation

is obtained by imposing that the ion density and electric field at the electrode verify the

implicit relation

NppEn ´ Eonq “ 0, (2.21)

which allows only one of the factors to be nonzero at the same time; it recalls the form of

the characteristic equation of an ideal diode, where any current is allowed, but only over

a threshold voltage. The implicit relation cannot be effectively represented in the usual

form (2.17) without allowing the coefficients, and in particular κ , to depend on Np itself

(being α and β valued 1 and 0 respectively):

Np “ Np
En
Eon

loomoon

κ

. (2.22)

This choice allows for a formulation suitable for iterative solution algorithms, allowing the

free charge value to grow in order to enhance the shielding effect in cases where the electric

field is rather high, while cutting it to lower values if the shield effect brings En under the

defined threshold Eon. This latter parameter has the advantage of being easy to measure

or determine, and a rather good estimate can be given in most cases by Peek’s law (2.16).

Nonetheless, the non-smooth relation originating this “ideal diode” boundary condition

makes it rather unstable, and not easy to apply numerically.

The fourth and last form of boundary condition considered in this work is presented

here for the first time and may be seen as a generalization, or a smoother version, of the
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Table 2.1: Summary of the coefficients for the four boundary models presented

Model name Equation α β κ

Uniform 2.18 qµEn qD
iexp

s

SCCC 2.20 qµEn ` w qD jsatH pEn ´ Eonq

Ideal diode 2.22 1 0 Np
En
Eon

Real diode 2.23 1 0 ĂNp exp

ˆ

En
Eref

˙

“ideal diode” condition (2.22), expressed in form of exponential growth in ion density with

growing electric field. We will refer to this model as “real diode”:

Np “ ĂNp exp

ˆ

En
Eref

˙

loooooooomoooooooon

κ

. (2.23)

It is easy to see that the set of points in the Np-En plane that verify (2.23) converges to the

set verifying (2.21), as Eref Ñ 0 and at the same time ĂNp Ñ exp
´

´Eon
Eref

¯

. The advantages

the “real diode” formulation provides rely on its smoothness, which makes its numerical

implementation much easier, and on the presence of two parameters, allowing for more

flexibility when trying to fit experimental data. The drawbacks of this approach resides

also in the parameters, which cannot be easily connected to any experimentally measurable

value as, e.g., Eon is.

A summary of the coefficients is presented in Table 2.1 while a comparison, in terms of

Np-En characteristic curve, is given in Fig. 2.7. Neglecting the gradient term in the BC, at

least for representation purposes, makes sense since drift current is expected to outweigh

diffusion current in the anode region, where the electric field assumes very high values.
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Figure 2.7: Representation of the four different boundary models in the Np-En plane

2.4 Summary of the PDE system and boundary conditions

The equations presented in sec. 2.2 are complemented with proper boundary and initial

conditions. Figure 2.8 shows a simple two-dimensional space domain Ω, whose boundary

BΩ is partitioned in five different subsets:

• ΓA represents the anode, thus a positive voltage and an ion density (whose depen-

dence on the electric field will be discussed in next chapter) will be imposed;

• ΓC represents the cathode, thus zero voltage and no diffusion current are imposed;

• ΓI represents an electrically insulating wall, thus zero electric field and zero diffusion

current are imposed. These first three boundary types are all treated as solid walls

for the fluid and thermal equations, thus zero velocity (no-slip condition), and fixed

incoming energy are imposed;

• Γin represents a fluid inlet, thus the values of all velocity components and of tem-

perature are imposed, while all the other variable are considered to have no sensible

gradients;

• Γout represents a fluid outlet, thus the internal stress of the fluid is usually considered
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to vanish, as all other gradients are.

Additionally, the initial values for the unknowns are supposed to be consistent with the

boundary conditions, and the initial velocity field v0 to be divergence free. Summarizing,

the whole model is given by the following equations:

Poisson equation
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´∇ ¨ pε∇φq “ qNp on Ωˆ p0, tq

φ “ VA on ΓA ˆ p0, tq

φ “ 0 on ΓC ˆ p0, tq

Bnφ “ 0 on pΓI Y Γin Y Γoutq ˆ p0, tq

(2.24a)

Charge conservation equation
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

BpqNpq

Bt
`∇ ¨ p´Dq∇Np ` pv ` µEqqNpq “ 0 on Ωˆ p0, tq

αNp ` βBnNp “ κ on ΓA ˆ p0, tq

BnNp “ 0 on pBΩzΓAq ˆ p0, tq

Np “ Np0 on Ω for t “ 0

(2.24b)

Navier-Stokes equations
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bv

Bt
´∇ ¨ pν∇vq ` pv ¨∇qv ´∇p “ fEHD ` fb

ρ
on Ωˆ p0, tq

∇ ¨ v “ 0 on Ωˆ p0, tq

v “ 0 on pΓA Y ΓC Y ΓIq ˆ p0, tq

v “ vin on Γin ˆ p0, tq

´νBnv ` pn “ 0 on Γout ˆ p0, tq

v “ v0 on Ω for t “ 0

(2.24c)
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Temperature equation
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

BpρCV T q

Bt
`∇ ¨ p´k∇T ` vρCV T q “ pµEqNp ´Dq∇Npq ¨E on Ωˆ p0, tq

kBnT “ ein on pΓA Y ΓC Y ΓIq ˆ p0, tq

T “ Tin on Γin ˆ p0, tq

kBnT “ 0 on Γout ˆ p0, tq

T “ T 0 on Ω for t “ 0

(2.24d)

ΓoutΓin

ΓI ΓA ΓI

ΓC

Ω

Figure 2.8: Example domain where all the five possible kind of boundary are depicted.
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Chapter 3

Numerical solution of the
Electrohydrodynamics equations

A solution for the problem introduced in section 2.4 is known in analytic form only in very

simple cases, and numerical approximation has to be employed. This chapter is devoted to

explaining how a suitable algorithm to deal with the problem’s different nonlinearities and

couplings has been obtained, and is structured as follows: in Section 3.1 time discretization

and formulation of a semi-discrete problem are addressed, in Section 3.2 we deal with

the decoupling of the electrical, fluid and thermal subsystems, in Section 3.3 the electric

subproblem is decoupled and linearized, in Section 3.4 we introduce the finite volume

space discretization for the general diffusion-advection-reaction equation, and in the end

in Section 3.5 split operators solution algorithm for the fluid variables is presented.

3.1 Semi-discrete problem formulation

In this section, we provide the formulation of an initial/boundary value problem defined by

the equations presented in Ch. 2, and then we introduce the semi-discrete formulation for

advancing in time. For this purpose, it is useful to see the unknowns as functions defined

on the time interval r0, ts into suitably chosen functional spaces.

More precisely, let Ω Ă R3 be the spatial domain, with boundary BΩ sufficiently regular

for the trace and Green’s formulas to hold. The solution of the continuous problem will be

41
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denoted by:

u : r0, ts ÞÑ U Ă pU (3.1)

where u “ rφ,Np,v, p, T s, pU is the functional space

pU “ H1pΩq
loomoon

φ

ˆH1pΩq
loomoon

Np

ˆ

¨

˝H1pΩq ˆH1pΩq ˆH1pΩq
looooooooooooooomooooooooooooooon

v

˛

‚ˆ L2pΩq
loomoon

p

ˆH1pΩq
loomoon

T

(3.2)

and U is the subset of pU enforcing the imposed boundary conditions. With this notation,

we can readily re-write the problem as a nonlinear initial value one, namely finding u such

that:
$

’

’

&

’

’

%

F pt,uptq, Bu
Bt ptqq “ 0 @t P p0, tq

up0q “ u0.

(3.3)

The classical solution of the reformulated problem will then be found in C1pr0, ts;Uq. A

time semi-discrete problem is then obtained by substituting time derivatives in (3.3) with

suitable difference formulas.

Let the discrete time domain be formed by a set of time instants tpiq “ iδt with 0 ă

δt P R and i a non negative integer index. Let also upiq denote the value of the solution

at the instant tpiq “ iδt. The time derivatives will then be substituted by combinations

of the solution values at different times; for example, if we decide to employ the classical

backward Euler approximation:

Bu

Bt

ˇ

ˇ

ˇ

ˇ

tpiq
«

upiq ´ upi´1q

δt
, (3.4)
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then the problem in (3.3), properly restricted on the discrete time domain, becomes

$

’

’

&

’

’

%

Gpupiq; i,upi´1q, δtq “ F piδt,upiq, u
piq´upi´1q

δt q “ 0 @i : iδt P p0, tq

u0 “ u0

, (3.5)

which is a discrete dynamical system in U where the time advancing map is implicitly

represented by (3.5); in Sec. 3.2, a detailed presentation of a suitable algorithm for its

solution,in terms of fixed point iterations, is presented. For sake of convenience, we report

explicitly the stationary problem to be solved at the i-th step in problem (3.5), dropping

the step index for quantities evaluated at the i-th step and substituting the superscript

pi´1q with old:

Poisson equation
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´∇ ¨ pε∇φq “ qNp on Ω

φ “ VA on ΓA

φ “ 0 on ΓC

Bnφ “ 0 on ΓI Y Γin Y Γout

(3.6a)

Charge conservation (backward Euler)
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

qpNp ´N
old
p q

δt
`∇ ¨ p´Dq∇Np ` pv ´ µ∇φqqNpq “ 0 on Ω

αNp ` βBnNp “ κ on ΓA

BnNp “ 0 on pBΩzΓAq

(3.6b)
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Navier-Stokes equations (backward Euler)
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

v ´ vold

δt
´∇ ¨ pν∇vq ` pv ¨∇qv ´∇p “ fEHD ` fb

ρ
on Ω

∇ ¨ v “ 0 on Ω

v ¨ n “ 0 on ΓA Y ΓC Y ΓI

v “ vin on Γin

´νBnv ` pn “ 0 on Γout

(3.6c)

Temperature equation (backward Euler)
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ρCV pT ´ T
oldq

δt
`∇ ¨ p´k∇T ` vρCV T q “ pµEqNp ´Dq∇Npq ¨E on Ω

kBnT “ ein on ΓA Y ΓC Y ΓI

T “ Tin on Γin

kBnT “ 0 on Γout

(3.6d)

In the forthcoming sections we will describe an iterative technique to solve system (3.6),

based on a set of nested fixed point iterations.

3.2 Functional iteration for the solution

of the semi-discrete problem

Advancing in time for the dynamical system (3.5) involves the solution of a coupled set

of nonlinear PDEs of the form (3.6). The approach adopted in this work for the solution

of (3.6) is based on a set of nested fixed point iterations, following closely the structure

of algorithms presented in [49, 50, 32, 14, 20, 19]. The present section will introduce the

maps used for the outermost level of the iteration, depicted in Figure 3.1
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We characterize the solution of (3.6) as the fixed point of the map M : U ÞÑ U such

that for w P U:

w “Mpwq ô Gpw; i,uold, δtq “ 0. (3.7)

As it is apparent from the right hand side term of (3.7), the map depends also on values

of the unknowns at the previous time step. These values should, in principle, appear as

parameters in the map M; for sake of notational clarity, though, we will drop them in

the following. The staggered formulation, which paves the way for a consistent solution

algorithm, can be now obtained by splitting the computation of Mpwq as a composition

of three maps, which work through subspaces of rU:

M “ T ˝ F ˝ E . (3.8)

The definition of each one of the functional mappings E , F and T is given below by char-

acterizing them as the resolvent operator of one of the differential subproblems describing

a specific physical aspect of the coupled system.

• E represents the solution map of the Poisson-drift-diffusion system (3.6a)-(3.6b) for

the electrical variables, with “frozen” fluid velocity and physical properties:

w˚ “ Epwq
õ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´∇ ¨ pε∇φ˚q “ qN˚p on Ω

φ˚ “ VA on ΓA

φ˚ “ 0 on ΓC

Bnφ
˚ “ 0 on ΓI Y Γin Y Γout

qpN˚p ´N
old
p q

δt `∇ ¨
`

´Dq∇N˚p ` pv ´ µ∇φ˚qqN˚p
˘

“ 0 on Ω

αpφ˚qN˚p ` βpφ
˚qn ¨∇N˚p “ κpφ˚, N˚p q on ΓA

BnN
˚
p “ 0 on pBΩzΓAq

v˚ “ v, p˚ “ p, T ˚ “ T on Ω

(3.9)
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• F represents the solution map of the Navier-Stokes equations (3.6c) for the fluid vari-

ables, with a “frozen” source term depending on the electrical and thermal variables,

and physical properties depending from temperature:

w˚ “ Fpwq
õ

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

v˚´vold

δt ´∇ ¨ pν∇v˚q ` pv˚ ¨∇qv˚ ´∇p˚ “ fEHD`fb
ρ on Ω

∇ ¨ v˚ “ 0 on Ω

v˚ ¨ n “ 0 on ΓA Y ΓC Y ΓI

v˚ “ vin on Γin

´νBnv
˚ ` p˚n “ 0 on Γout

φ˚ “ φ,N˚p “ Np, T
˚ “ T on Ω

(3.10)

• T represents the solution map of the temperature equation (3.6d), with “frozen”

velocity field and source term depending on the electrical variables:

w˚ “ T pwq
õ

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ρCV pT
˚´T oldq

δt `∇ ¨ p´k∇T ˚ ` vρCV T
˚q “ pµEqNp ´Dq∇Npq ¨E on Ω

kBnT
˚ “ ein on ΓA Y ΓC Y ΓI

T ˚ “ Tin on Γin

kBnT
˚ “ 0 on Γout

φ˚ “ φ,N˚p “ Np,v
˚ “ v, p˚ “ p on Ω

(3.11)

The order in which the maps are applied is also not arbitrary: in fact, as already pointed

out in Fig. 2.6, it reflects the order of influence of one component to another.

The contractivity of the map M has been observed in the numerical simulations of

Chapter 4, but has not been proved analytically. The analysis of the contractivity problems

could be carried out, e.g., with the mathematical instruments introduced in [17, Ch.9], and
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w “ rφ,Np,v, p, T s

E

rφ˚, N˚p ,v, p, T s

F

rφ˚, N˚p ,v
˚, p˚, T s

T

Mpwq “ rφ˚, N˚p ,v˚, p˚, T ˚s

wk “ rφk, Nk
p ,v

k, pk, T ks

E

rφk`1, Nk`1
p ,vk, pk, T ks

F

rφk`1, Nk`1
p ,vk`1, pk`1, T ks

T

wk`1 “ rφk`1, Nk`1
p ,vk`1, pk`1, T k`1s

wk`1 « wk

k
Ð
k
`

1

Figure 3.1: Block diagrams representing the application ofM (left) and the iterative algorithm for
fixed point search employing its application (right).

would be an extension of the work of the already cited [49, 50, 32, etc.], but it is beyond

the scope of this thesis.

3.3 Functional iteration for the electric subproblem solution

The solution of the electrical subproblem, which has been represented in (3.8) with the

computation of Epwq for some element w P U, entails dealing once more with nonlinear

coupling between equations (3.6a) and (3.6b). This section presents the approach employed,

in a framework very similar to the global one considered in 3.2, introducing then a modified

version of equation (3.6a) to enforce convergence.

Let rU “ H1pΩqˆH1pΩq represent the restriction on the first two components of U . We
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define E in terms of the map ME , from rU onto itself, by means of the following relation:

w˚ “ Epwq ô

$

’

’

&

’

’

%

MEprφ˚, N˚p s;v, p, T q “ rφ˚, N˚p s

v˚ “ v, p˚ “ p, T ˚ “ T.

(3.12)

The mapME is given by the composition of the two maps P and C, in turn defined as the

solution maps for Poisson and semi-discrete charge conservation equations. More explicitly:

ME “ C ˝ P (3.13)

with

rφ˚, N˚p s “ Pprφ,Npsq

õ
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´∇ ¨ pε∇φ˚q “ qNp on Ω

φ˚ “ VA on ΓA,@i ą 0

φ˚ “ 0 on ΓC

Bnφ
˚ “ 0 on ΓI Y Γin Y Γout

N˚p “ Np on Ω

(3.14)
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and

rφ˚, N˚p s “ Cprφ,Npsq

õ
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

qpN˚p ´N
old
p q

δt `∇ ¨
`

´Dq∇N˚p ` pv ´ µ∇φqqN˚p
˘

“ 0 on Ω

αpφqN˚p “ κpφ,Npq ´ βpφqBnNp on ΓA

BnN
˚
p “ 0 on pBΩzΓAq

φ˚ “ φ on Ω.

(3.15)

where from (3.15)2 is clear how the Robin condition (2.17) on ΓA has been actually trans-

formed in a Dirichlet one via the explicit treatment of the gradient term.

The same procedure as in Sect. 3.2 could be applied for finding Epwq given w, but

unfortunately the convergence of such method is not guaranteed. In place of it, a modified

version obtained trough a variable change has been employed. Let ĂNp be a constant number

density, φE “
kBT
q be Einstein potential, and ζ be a potential defined by the law:

Np “ ĂNp exp

ˆ

ζ ´ φ

φE

˙

. (3.16)

Enforcing this relation and substituting it in (2.24a) and (2.24b), it is possible to look for

a solution in terms of ζ instead of Np.

If the same construction based on fixed point iterations is adopted, this new formulation

provides a converging algorithm, at the cost of having to deal with a nonlinear version of

Poisson equation. Furthermore, iterative framework allows to never actually “compute”the

newly introduced potential. In fact, when solving Poisson problem, one would use the latest

computed value for ζ, which can be readily expressed in terms of the latest φ and Np

value available. In terms of the maps previously defined, this means quite simply that P
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is substituted by its nonlinear version rP:

rφ˚, N˚p s “
rPprφ,Npsq

õ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´∇ ¨ pε∇φ˚q “ qNp exp

ˆ

φ´ φ˚

φE

˙

on Ω

φ˚ “ VA on ΓA,@i ą 0

φ˚ “ 0 on ΓC

Bnφ
˚ “ 0 on ΓI Y Γin Y Γout

N˚p “ Np on Ω.

(3.17)

Notice that the two maps C ˝ P and C ˝ rP have the exact same fixed points, since at

a fixed point the exponential term in (3.17) reduces to 1. Last step to be taken, as

the equations are uncoupled and iteratively solved for, is the linearization of the new

version of Poisson equation. This equation belongs to the class of quasi-linear equations,

and the Newton-Raphson algorithm was chosen for its solution. Each iteration of the

method (which we will see as the application of a map called Pφ) can be interpreted as an

incremental step: computing a solution variation δφ under the assumption that summing

it to the current solution estimation φ leads to the exact solution of the nonlinear problem

φ` δφ. In formulas (deriving from (3.6a) and (3.17)):
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e “ rφ,Nps

rP

rφ˚, Nps

C

MEpeq “ rφ˚, N˚p s

ek “ rφk, Nk
p s

Pφk

δφ

δφ « 0

rφk`1, Nk
p s

C

ek`1 “ rφk`1, Nk`1
p s

ek`1 « ek

k
Ð
k
`

1

φ
Ð
φ
`
δφ

Figure 3.2: Block diagrams representing the application of ME (left) and the iterative algorithm
for fixed point search employing both its application and Newton-Raphson iteration (right).

rφ˚, N˚p s “ Pφprφ,Npsq

õ

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´∇ ¨ pε∇pφ` δφqq “ qNp

ˆ

φE ´ δφ

φE

˙

exp

ˆ

φ´ φ

φE

˙

`opδφq on Ω

δφ “ 0 on ΓA Y ΓC

Bnφ “ 0 on ΓI Y Γin Y Γout

N˚p “ Np, φ
˚ “ φ` δφ on Ω

(3.18)

where the subscript parameter φ indicates the potential used as first argument in the

exponential term (which is part of the ζ estimation as per (3.16), and therefore linked to
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Np which does not change), while the erased term `opδφq denotes the residual of the linear

expansion for the exponential term. Thanks to Newton-Raphson algorithm convergence

properties, we can state that there exists some integer K such that:

rPprφ,Npsq « PKφ prφ,Npsq (3.19)

so that the composition of C and rP can be expressed in terms of linear problems.

Thanks to the reformulation described in this section, we can transform the solution of

the nonlinear coupled problem for the electric subsystem in a set of linear PDE problems, as

also shown in Figure. 3.2. Next section describes how the last step towards the formulation

as a linear algebraic system, namely discretization, is performed.

3.4 Finite Volumes discretization for elliptic problems

In order to be numerically solved, the problems (3.18), (3.6b), (3.6c) and (3.6d) need to

be discretized in space and transformed in linear systems: this is achieved in the current

work by means of the finite volumes method (see e.g. [18]). Since the considered equations

all fall under the elliptic category, we will present the discretization method for a generic

diffusion-advection-reaction problem in the spatial domain Ω (as defined in Sect. 3.1) for

the unknown u:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∇ ¨ p´A∇u`Buq ` Cu “ f on Ω

u “ g on ΓD

Bnu “ h on ΓN,

(3.20)

where A, B and C are possibly nonuniform diffusion, advection and reaction coefficients

respectively and f is the source term, all defined from Ω onto R or R3, g and h are the

boundary terms, defined from ΓD,ΓN respectively onto R, with BΩ “ ΓD Y ΓN, and Bn is
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the outward normal component of the gradient operator.

In order to perform a space finite volume discretization of equation (3.20), a mesh T

of Ω is introduced. The mesh is such that Ω “
Ť

KPT K, where an element of T , denoted

by K, is a polyhedral open subset of Ω and is called a control volume or cell. Assumptions

on the meshes will be needed for the definition of the schemes; we refer to [18] for detailed

treatment of this topic, and only describe here the geometrical entities which we will be

using:

• cell center xK is a point in the cell;

• face K|L is the common face between cells K and L;

• neighborhood pK of a cell K is the set of cell which share a face with K;

• cell distance dK,L is the distance between xK and xL;

• face center xK|L is the point of intersection between K|L and the line joining xK and

xL;

• cell measure mpKq is the volume of cell K;

• face measure mpK|Lq is the surface of K|L;

• normal vector nK|L is the unit vector normal to K|L pointing from K towards L. A

mesh is called orthogonal, if xK and xL are chosen in order to verify nK|L “
pxL´xKq
dK,L

.

The discrete unknowns will be denoted by uK P R, K P T . The value uK is expected

to be some approximation of u on the cell K (the average value, the value at xK , or else).

The basic principle of the classical finite volume method is to integrate equation (3.20)

over each cell of the mesh. One obtains a conservation law written for the volume K:

ż

BK
p´ABnu`Bnuqds`

ż

K
Cudx “

ż

K
fdx. (3.21)
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The remaining step in order to define the finite volume scheme is therefore the ap-

proximation of the “flux”, ´A∇u `Bu, across the boundary BK of each control volume,

in terms of the discrete values tuL, L P T u. More precisely, omitting the terms on the

boundary of Ω, the exchange term (from K to L)
ş

K|Lp´A∇u`Buq ¨nds is approximated

by some quantity F pK,L, uK , uLq called numerical flux.

The approximation of the diffusion part is straightforward: if AK|L denotes an approx-

imation of A on the face (e.g., ApxK|Lq, or an interpolation of ApxKq and ApxLq), then a

suitable approximation of the diffusion term is:

ż

BK
´ABnuds «

ÿ

LP pK

´mpK|LqAK|L
uL ´ uK
dK,L

. (3.22)

As for the convective term, different choices are possible. In general, one of the most

used scheme is the upwind discretization, which is less accurate than interpolating on the

edges but allows for unrestricted stability of the solution. The scheme reads:

ż

BK
Bnuds «

ÿ

LP pK

mpK|LqnK|L ¨BK|L

´

H`K|LuK ` p1´H
`

K|LquL

¯

, (3.23)

being BK|L a suitable approximation of the transport field on the face K|L, and:

H`K|L “

$

’

’

&

’

’

%

1 nK|L ¨BK|L ě 0

0 nK|L ¨BK|L ă 0.

(3.24)

This last approach guarantees that F pK,L, uK , uLq “ ´F pL,K, uL, uKq for any pair K, L

of neighboring cells. The reaction term becomes

ż

K
Cudx « mpKqCKuK , (3.25)
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while the RHS is defined as:

ż

K
fdx « mpKqfpxKq — fK . (3.26)

Combining all the latter equations, we obtain the linear system:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ÿ

LPT

aK,LuL “ fK

aK,L “ 0 @L ‰ K, L R pK

aK,L “

ˆ

´
AK|L

dK,L
`H`L|KnK|L ¨BK|L

˙

mpK|Lq @L P pK

aK,K “ mpKqCK `
ÿ

LP pK

ˆ

AK|L

dK,L
`H`K|LnK|L ¨BK|L

˙

mpK|Lq @K.

(3.27)

Schemes with higher order than the one presented exist, but are not covered here. For

this topic, as well as for how boundary conditions can be introduced, we refer once more

to [18]. Next section will make use of the algebraic formulation in (3.27) for introducing

the idea lying behind the PISO method, which has been used in the solution of the fluid

dynamics subsystem.

3.5 Numerical solution of Navier-Stokes equations

This section presents the inexact factorization approach which lies under the PISO method,

which is adopted for velocity and pressur approximation in this work.

Navier-Stokes nonlinear problem (3.6c) can be approached with fixed point iteration

techniques as the one presented for the electric subsystem: a problem in wich the current

estimation for velocity works as transport field (Oseen problem) can be solved until conver-

gence is reached. Nonetheless, the particular formulation featuring the incompressibility
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constraint produces, via discretization, a system of the following form:

»

—

–

A B

B1 0

fi

ffi

fl

»

—

–

vK

pK

fi

ffi

fl

“

»

—

–

f1

f2

fi

ffi

fl

, (3.28)

where vK and pK represent the cell values of velocity and pressure, the right hand side

terms f1, f2 the discretization of the source terms, while A and B arise from the differen-

tial operators, like in (3.27). In particular, A represents the diffusion-advection-reaction

operator while B derives from the gradient, and B1 from the divergence.

The algebraic approach consists in computing a blockwise LU decomposition of the

entire matrix as first step:

»

—

–

A B

B1 0

fi

ffi

fl

“

»

—

–

A 0

B1 ´B1A´1B

fi

ffi

fl

loooooooooomoooooooooon

L

»

—

–

I A´1B

0 I

fi

ffi

fl

.

looooooomooooooon

U

(3.29)

Then, as a second step, the exact factors are approximated with inexact but simpler ones

L̂ and Û , where some of the blocks, and in particular the occurences of A, leave place to

approximated matrices:

»

—

–

A B

B1 0

fi

ffi

fl

«

»

—

–

C 0

B1 ´B1HB

fi

ffi

fl

looooooooomooooooooon

L̂

»

—

–

I C´1B

0 Q

fi

ffi

fl

loooooomoooooon

Û

“

»

—

–

C

B1

B

B1C´1B ´B1HBQ

fi

ffi

fl

looooooooooooomooooooooooooon

continuity error

. (3.30)

Different choices are possible for the matrices C, H and Q (e.g. trying to minimize the

error introduced in the continuity equation, highlighted in the formula above), giving rise

to several different methods. Covering all of them is beyond the purpose of this work, so

that we refer to specialized CFD literature ( e.g. [21, 59, 60]). Nonetheless, it is interesting
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to see how the new formulation allows for staggered solution for pressure and velocity. In

fact, LU factorization allows for a two-step solution of the linear system:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

L̂

»

—

—

–

v˚K

p˚K

fi

ffi

ffi

fl

“

»

—

—

–

f1

f2

fi

ffi

ffi

fl

Û

»

—

—

–

vK

pK

fi

ffi

ffi

fl

“

»

—

—

–

v˚K

p˚K

fi

ffi

ffi

fl

,

(3.31)

and with a further expansion via successive (blockwise) forward and backward substitution:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

v˚K “ C´1f1

p´B1HBqp˚K “ f2 `B
1v˚K “ f2 `B

1C´1f1

QpK “ p˚K

vK “ v˚K ´ C
´1BpK .

(3.32)

A very interesting reinterpretation is possible for the p´B1HBq matrix if H is chosen as

diagonal: H can be seen as a “diffusion coefficient” discretization and p´B1HBq becomes

the associated stiffness matrix (since B is the discrete counterpart of the operator ∇).

In the PISO method, C is taken as the diagonal of A, H is the inverse of C, while

Q “ ppB1HBq´1B1HAHBq´1 can be decomposed in order to obtain linear problems with

the same structure as (3.32)2. In the end, this means the solution

„

vK ,pK

1

is obtained

via a cycle of successive estimations for vK , solutions of Poisson-like problems for pK , and

corrections on the estimated vK .

This cycle takes the place of the operator F presented in Sect. 3.2, and together with
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the counterparts of E ( or, more precisely, C and P) and T derived as in Sect. 3.4 enters

in the algorithm represented in Fig. 3.1. The algorithm has been implemented as an

OpenFOAM R© solver, and the results of some simulations are presented in next chapter.



Chapter 4

Numerical simulations and results

The algorithm described in Chapter 3 has been implemented for simulation as a solver in

the finite volume library OpenFOAM R© [57], with the help of the library swak4Foam [28]

for handling the boundary conditions, while meshes were produced by gmsh [23].

Three benchmark test cases have been chosen in the literature, where detailed data

about the geometry of the devices, the experimental measurements and, where applicable,

the results of numerical simulations are provided. Comparison between our results and

the ones found in literature will be presented with regard to different quantities, both

global or local: total current prediction of the model, current-voltage characteristics, total

airflow through a surface, airflow-voltage and airflow-current characteristics, maximum

temperature, temperature profiles over a surface.

Two of the benchmarks concern with simple devices (a duct geometry with electrodes

installed) designed to work as EHD pumps, and therefore the reference also provides flow

rate measurements. The third one is instead a simple hot-spot cooler (an electrode installed

next to a heating plate on a flat surface) and the reference provides electrical and thermal

data.

In particular, in the first case of Section 4.1 we will describe in more detail how the

functional iterations in the algorithm are controlled, in the second case of Section 4.2 we

will compare different BC models with particular regard to the hydrodynamic quantities,

and in the third case of Section 4.3 we will address a problem where thermal data are

59
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Figure 4.1: Geometry representation for Benchmark 1: 3D representation of the duct. In red the
collecting grid, in blue the metal walls, in green the emitting electrode, yellow planes represent inlet
and outlet sections.

Figure 4.2: Benchmark 1: Global mesh, composed of the internal (cyan) and external (black) region
of the computational domain.

available.

4.1 Forced flow in a parallel duct

Benchmark 1 geometry is taken from [36]. The setup, depicted in Figure 4.1, consists in

three collectors, two of which are metal plates, acting as duct walls as well, while one is

a wire grid, and of a single wire being the corona emitter. All the wires have the same

diameter (50µm), and the duct dimensions are 15 ˆ 36 ˆ 277mm. The presence of the

grid allows for a slightly steeper decay of potential on one side of the emitter, resulting
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in a net force on the fluid which drives it towards the grid itself, as shown in Figure 4.8.

The symmetry of the domain allows for the treatment of this case as a 2D problem. We

will go trough the results for this geometry discussing some algorithmic aspects, and will

concentrate on the application of different models later on.

The first problem which we had to address, is that obtaining an effective flow-rate

estimation was not possible by using the usual setup adopted for confined flows, that

is imposing velocity value at the inflow and a null-stress at the outflow. In fact, this

would have imposed the total flow-rate thanks to the incompressibility constraint. In

order to provide the necessary degree of freedom, then, the duct domain was enriched

by an “external room” (as shown in Figure 4.2) featuring a coarser mesh, except for the

regions near the channel inlet and outlet. This way, by adding relatively few additional

unknowns to the problem, the freedom for the velocity profile to adjust to the source

without infringing the incompressibility constraint.

Meshing step is particularly important near the emitting wire, where the gradient of

the electric potential is expectedly very large. The mesh was not adaptively refined, but

the mesh size near the wire was chosen small enough to provide an adequate definition on

the electric potential; in other words, if we wanted to be able to resolve electric potential

differences as small as, e.g., 10V, and expected electric field peaks of the order of 10MV as

Peek’s law suggests, the first few mesh cells near the electrode would have measures of the

order of 1µm. Another issue, as shown in Figure 4.3, is that unstructured meshes behave

poorly when the boundary conditions impose abrupt variations (e.g. in (2.22)). In those

situations, even a small difference on the estimated value for the electric field could lead

to a very different outcome in terms of ion or current density, and then in turn of velocity;

this occurrence has been avoided with the employment of almost structured layers in the

boundary vicinity.
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Figure 4.3: Comparison of different meshing algorithms of the domain region near the emitter:
ion density in the top row, velocity in the bottom row. Left to right, unstructured mesh and two
different structured ones. All results shown are obtained with boundary condition as in (2.22).

With regard to linear algebra OpenFOAM R© allows for choosing among some embedded

iterative solvers, and standard convergence criteria based on the ratio of residual reduction

are used. In our tests the degrees of freedom were in general in the order of 104 for 2D

simulations (« 22000 prisms for this particular benchmark) and we chose the multigrid

GAMG solver, which proved faster than (bi-)conjugate gradient solver.

The different iterative cycle in the problem, described in Sections 3.2, 3.3 and 3.5, are

subject to termination conditions which we did not specify yet. While performing the

simulations we noticed that, since small time steps are employed, the main loop for time

advancing produced non negligible variations on the unknowns only in the first iteration.

We consider this to happen due to both the arrangement of the subproblems solution in the

algorithm flow and the different time scales of the physical phenomena involved: forcing

term needs enough time to produce notable velocities, and convection needs even more
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Figure 4.4: Number of iterations and final residual for Benchmark 1 with small tolerances. C and
D refer to (4.1) and (4.2) respectively.
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Figure 4.5: Number of iterations and final residual for Benchmark 1 with large tolerances. C and
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to consistently reduce temperature. In conclusion, we decided to only perform one main

loop iteration for each time step and maintain the time step short, mainly because for

the application of the predictive conditions large time steps lead to numerical instabilities,

which we will describe later on.

Figures 4.4 and 4.5 show the result of using different threshold values for terminating the

electric fixed point iterations introduced in Section 3.3; the simulations are performed with

the uniform boundary condition on the corona electrode. The termination criterion applied

for the fixed point iterations, according to the notation in Figure 3.2, is the following:

ż

Ω
Nk`1

p ´Nk
p exp

ˆ

φk`1 ´ φk

φE

˙

dx ď C

ż

Ω
Nk`1

p dx (4.1)

where the left and right hand side is what we called “residual” and “threshold” respectively

in the graphs; moreover, a maximum number of iterations of 99 has been imposed. This

particular form has been chosen to enforce not only the new values of Np and φ to be

near the fixed point, but also to make the nonlinear version of Poisson’s problem in (3.17)

as consistent as possible with the original one in (3.14). The termination criteria for the

Newton iterations in nonlinear Poisson equation reads instead:

ż

Ω
|δφ|dx ď D

ż

Ω
|φ|dx. (4.2)

Simulations which Figures 4.4 and 4.5 refer to, were run with an initial condition for ion

density Np “ 0 and an imposed voltage of 5kV, so that a transient in which most of the

charge needs to be injected in the domain is present. This transient is visible in particular

in the first three cases shown in Figures 4.4 and 4.5, where the ion density on the wire

grows to enforce the total imposed current density, as the electric field diminishes due to

shielding; the simulation with the lowest threshold shows a smooth growth, which is less
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the case for the remaining two. In the case with the highest tolerance, instead, the electric

potential and field (and in turn the injected charge) adapt too slowly and the transient is

delayed. Convergence of Newton sub-cycle introduced in Section 3.3 is also slower in the

beginning, in all three “good” cases, since the initial guess is poorer and the ion density

source term is subject to larger changes, but becomes much quicker when the ion densities

approach steady state. Table 4.1 provides a comparison of the four simulations, denoted

by letters A, B, C and D, also in terms of computation time and of average outlet velocity:

here we can find further confirmation of our initial idea that the last, more loose simulation

is quite definitely inaccurate with respect to the other ones.

Graphs in Figure 4.6 present the outcome of using a different cap on the iteration

number for the fixed point loop. The purpose of terminating the cycle early is to speed

up towards a steady state, in the vicinity of which convergences are faster as we already

showed. The graphs in Figure 4.6 compare to simulation B in Figure 4.4, and the maximum

iterations are reduced to 50 and 10 respectively. The former case presents a behavior quite

similar to the 99 case, even if the threshold is not met until around double the time, while

the latter case propagates the error further on in a similar fashion as case D in Figure 4.5.

Taking a look back at Table 4.1, where the two cases are denoted E and F, one can notice

that computation times with this second approach are not really reduced, but on the other

hand also the outlet velocity is quite similar to the cases where more iterations are allowed.

A third way we used to try to obtain faster simulations is to “turn off” the electrical

part once it reaches an almost steady state: this can be effective because the small changes

in current and electric field have no huge effect on velocity, and avoiding the residual

computation, even if the fixed point and Newton cycle would perform no iteration, can

1Computation time is approximate and refers to simulations ran on a laptop computer with IntelR©

CoreTM i7 2630QM Processor, 4GB DDR3 1333 MHz RAM
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Table 4.1: Summary of the simulations from Figure 4.4 and 4.6.

Fixed point Newton iteration Maximum Simulation Average airflow
Sim. cycle tolerance tolerance iterations time (4s to 5s)

(log10) (log10) number [s] 1 compared to A

A -7 -6 99 165255 100 %
B -6 -5 99 55542 94.6 %
C -5 -4 99 35804 91.9 %
D -4 -3 99 27518 68.9 %
E -6 -5 50 51920 95.9 %
F -6 -5 10 48894 98.6 %

result in time saving. We report the results of an experiment made by prolonging to a final

time of 10s simulations A and B from Table 4.1 with time step increased from 0.5 to 5ms,

while maintaining all the other parameters unchanged: the average outlet velocity was

of 0.2713m/s and 0.2748m/s respectively, and the computation time of 3374s and 4710s.

Running the prolongation of case B without solution for the electrical part turned out in

0.2741m/s average outlet velocity, but lasted only 2378s. We want to point out that this

does not mean one can completely decouple the two equations since the beginning: fluid

velocity plays in fact an important role in the distribution of charge overall, but small

variations do not drastically change the nearly-steady behavior of the electrical system.

At last, we discuss here the application of two boundary conditions: the non predictive

uniform one as in (2.18) and the ideal diode condition as in (2.22). We performed simula-

tions at different voltages and compared the results with the ones proposed in [36]. As can

be evinced from Figure 4.7, the diode-like condition produces good results in estimating

current, and the parabolic trend expected as in (2.1) is met. The airflow characteristic as

in Figure 4.8 is also well matched by both the simulations sets, at least in the shape of the

curves, while small underestimation is present in both cases. However, we defer further

examination of the boundary conditions to the following sections, where we applied them

to different geometries.
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Figure 4.6: Number of iterations and final residual for Benchmark 1 with different iteration limits.
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Figure 4.7: DC characteristic curve for Benchmark 1.
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Figure 4.8: Airflow characteristic curve for Benchmark 1.
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4.2 Forced flow in a converging duct

Benchmark 2 geometry is taken from [13], where EHD-forced flow in a converging duct is

experimentally studied. The experimental set-up (see Figure 4.10) consists in a plexiglass

(insulating) duct with two conductive plates on the horizontal sides and a 0.24mm diam-

eter corona-emitter in the middle of the channel. The actual position of the wire in our

simulations is the one marked with letter A in the reference, namely 60mm far from the

16mm wide small opening of the duct. The total length of the duct is 117mm, the width

measures 33mm and the wider opening 24mm. Thanks to the symmetry of the domain, a

2D simulation has been run. As it can be appreciated by taking a look at Figure 4.9, the

principle on which this particular realization of the device works is based on the creation

and detachment of vortexes, generated by the EHD force field and the duct walls reaction.

Asymmetric vortexes detach then, directed towards the smaller duct opening.

The experimental DC characteristic curve in Fig. 4.12 fits well the theoretical prediction

of a parabolic relation, as presented in (2.1), having a convex shape and crossing the voltage

axis around the 5.5´6kV onset voltage. Three different boundary conditions (2.18), (2.22)

and (2.23) have been tested in this case: we will discuss the uniform and ideal diode

ones before, and then concentrate on the real diode condition. The uniform condition

unsurprisingly matches the experimental data, while the ideal diode overestimates the

current just slightly, maintaining a good agreement with the experiments and a similar

parabolic ongoing; the value for the onset field for the imposition of (2.22) has been chosen

by simulating the “onset case”, namely imposing the empirically measured onset voltage

allowing no current, and then sampling the electric field on the electrode.

A comparison of measured and computed velocity averages on the outlet section is

provided in Fig. 4.13. The uniform condition provides a seemingly linear relation between

velocity and applied voltage, while measured velocities seem to saturate quite early. The
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Figure 4.9: Instantaneous velocity field and pressure obtained at 7kV imposed voltage.

diode-like conditions seem to better agree with the reference, at least for higher voltages.

The poor fitting of the data at lower voltages can be explained by checking the relation

between power and flow rate, as in Figure 4.14: this graph shows a far better matching,

and this happens because in the low voltage simulations, where the even small errors

on the current are comparable with the current value itself, appreciably different powers

are applied on the flow field. This in turn justifies the concern in having good current

estimations for a reliable modeling of the electrohydrodynamic phenomena.

Two different curves are presented in Figure 4.13 for the real diode model. The first one

has been run with parameters Eref and ĂNp of 6.5ˆ 105V{m and 5ˆ 106m´3 respectively,
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Figure 4.10: Blue part represents insulating walls, red represents collecting grounded plates, green
represents the emitter

Figure 4.11: Mesh details from Benchmark 2. Left, the entire computational domain; right, detail
of the duct.
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Figure 4.12: DC characteristic plot for the first benchmark case, where a comparison between the
experimental data and the result of applying (2.18), (2.22) and (2.23) is provided.
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Figure 4.13: Airflow plot for Benchmark 2, with different applied voltages.
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Figure 4.14: Airflow vs. power plot for Benchmark 2.
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while in the second case the same parameters were set to 7 ˆ 105V{m and 107m´3. Fig-

ure 4.15 shows the trend of the current over time in both the simulation sets. For both of

them, a relaxation factor on the boundary condition has been imposed between each linear

system solution and the following. The factor value for the first simulation was 2ˆ 10´4,

but in the higher voltage cases (ě 10kV) this lead to instabilities evidenced by the non

physical big overshooting and oscillation in the leftmost chart of Figure 4.15, so that a

smaller value of 2ˆ 10´7 had to be used for continuing the simulations. This small value

has been applied also to the simulations of the leftmost chart, which are still incomplete

and far from a steady state; it can be noted that for low and medium applied voltages, the

very low relaxation factor slows down rather than speeding up the current convergence to

a steady value.

Fitting of the experimental values for the total current is rather poor for both the pa-

rameter sets presented. However, the second set is more promising in this regard, as already

noted the currents for the medium-low applied voltages seem to maintain a steadily increas-

ing pace, which should eventually lead to a final I-V characteristic curve more similar to

the experimental one. Further assertions, though, need to be delayed until a full simulation

can be analyzed and possibly a more extensive study of the parameters is undergone.
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4.3 Convective cooling of a flat plate

Geometry for Benchmark 3 comes from Go et al.’s papers [24, 27]. A flat plate is resistively

heated with 4W of power, and is cooled by the combined action of a bulk flow, with a

velocity between 0.2 and 0.3m
s , and a very simple EHD blower. The blower is formed by a

steel wire with 50µm diameter, placed at a vertical distance of 3.15mm from the plate, and

at a variable horizontal distance upwind of a 6.35mm wide strip cooper tape, which lays

on the plate acting as cathode; the geometry is depicted in Figure 4.16. Different voltages

are investigated, for a time range of the order of minutes; the extension of the time range

is necessary to appreciate the temperature evolution, which occurs on much bigger time

scales than the electrical and dynamical phenomena.

Figure 4.17 shows a comparison of the obtained velocity and temperature fields in three

different discharge regimes, with the setup as in [24]: the first “device off” case provides a

reference temperature, while the other two cases simulate a near-onset and a higher voltage

discharge respectively. As pointed out in the references, the purpose of the blower is to

disturb the boundary layer, which is evident in the “device off” case, and thus allowing

for a better “heat extraction rate” (namely an increase in the convective heat transfer

Figure 4.16: Benchmark 3: Geometry of the EHD blower. In green the emitter, in blue the insulating
plate, in red the copper collector. In black on the background, the mesh used in 2D simulation.
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Figure 4.17: Comparison of velocity rms s and temperature rKs fields for three different applied
voltages for the setup as in [24]. Left, device off. Center, device near onset voltage (« 3kV). Right,
high voltage regime (« 4.6kV).

coefficient).

The subsystems in the EHD problem present strong time-multi-scale properties: the

dynamics of the electrical component is very fast, while the thermal component have much

longer characteristic time scale. This can be appreciated in Figure 4.18, where temperature

profiles (temperature differences relative to the corresponding “device off” value) over the

plate are plotted at different times. For being able to reach the end of transient states

for the complete system, the simulation were carried in three different steps: at first, a

very short time step was chosen, to allow the electric variables to reach an almost steady

state; then the time step was increased in order for the flow field to settle; in the end, a

larger time step was adopted with the purpose of reaching an approximately steady state

for temperature field; those latter simulations were performed in the same way described
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in the end of Section 4.1, with the electrical block not active. The maximum temperature

on the plate and the time step variation is shown in Figure 4.19: the initial value for

temperature field is given by the solution of the steady state temperature equation with

uniform velocity, thus the progressive formation of boundary layer is responsible for the

increasing “device off” peak.

Figure 4.20 shows comparisons of experimental and numerical temperature profiles

(both from reference and from our computations), given as in [24] in the nondimensional

form of the ratio of the “device off” and the “device on” temperature increase, with respect

to the incoming air: the higher the values for this nondimensional temperature, the better

the enhancement of heat transfer works. The poor correspondence of both numerical

profiles to the experimental data is arguably due to the imposed boundary condition,

namely a uniform incoming power density summing up to 4W over the whole plate.

Figure 4.21 shows a comparison of our results (in term of total current) in simulating

the work of the device from [27], with an inter-electrode horizontal distance of 4mm. This

particular setup presents the most difficulties among the ones analyzed, because of its

non-symmetry. Simulations were performed using three different models (2.20),(2.22) and

(2.23); the uniform condition could not be applied: in fact, it lead to an accumulation of

free charge on the side of the emitter opposite to the collector, which in turn made the

whole system unstable. It is however necessary to point out how a uniform emission would

be inherently nonphysical, as the ionizing electrons come preferably from the cathode, the

electric field around the wire is much stronger in the same direction.

As a result of the mentioned facts, all the three different models produce on the wire an

“active” region facing the plate, through which most of the current flows. The comparison

of the curves in Figure 4.21 highlights an acceptable match of the two diode-like models with

the experimental curve, while the “charge controlled current” model presents a saturation-
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Figure 4.18: Benchmark 3: Profiles of temperature differences near the flat plate, 0.001s to 0.5s
(left) and 0.5s to 10s (right). Line color ranges from cyan to blue to red to green as time grows.
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Figure 4.19: Benchmark 3: Maximum temperature on the plate over time. Logarithmic time scale
helps appreciating the variation in time step.
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Figure 4.20: Benchmark 3: relative temperature comparison. The reference is [24], where numerical
simulations results are also provided. The corona model in our computation is the ideal diode one
(2.22).
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Figure 4.21: DC characteristic curve for Benchmark 3.

like ongoing. As already mentioned, the real diode model has the additional advantage of

being further on adjustable for a better fitting to the data, while the ideal model cannot

be modified to correct the higher voltage overestimation, without sacrificing the matching

onset voltage value.



Chapter 5

Conclusions and outlook

This thesis is the result of the work carried out by the author as an intern at ABB Corporate

Research, on the EHD enhancement of convective cooling. In particular, it deals with the

mathematical modeling and simulation of the phenomena of electrohydrodynamics and

corona discharge. Summarizing, the main achievements in this work are the following:

• A physical model for ElectroHydroDynamic phenomena (EHD forces and PDE sys-

tem) has been introduced, applying suitable simplification that are allowed by the

specific application of interest (incompressible dry air flow);

• Boundary conditions representing ion injection due to corona discharge have been

studied, and both data-based and predictive models for charge injection have been

formulated. Two new models have been proposed, which account for the main macro-

scopic features of corona discharge;

• An algorithm for the decoupling and numerical solution of the PDE nonlinear sys-

tem arising from the physical model has been designed, inspired on the techniques

used in different fields such as computational electronics, electrochemistry and fluid

dynamics;

• The algorithm has been implemented as a solver for the OpenFOAM R© library;

• The discharge models proposed have been tested and validated by comparison with

experimental data obtained from scientific literature;

83
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• The solver has been used for simulation of real industrial cases, which we did not

present due to confidentiality reasons.

With particular regard to the injection models studied, which constitute the most innova-

tive contribution of this thesis, we can conclude that:

• the uniform model can be applied to simulation of simple, symmetrical geometries

only, and furthermore does not provide any prediction of the discharge;

• the space charge controlled current model is not reliable when non negligible electrical

currents are present, and thus it is hardly suitable for corona discharge simulation;

• the ideal diode model has quite good prediction ability, and can be used in non

symmetrical cases;

• the real diode model is promising, due to its flexibility with respect to the ideal diode

model; however, it still needs to be developed with particular regard to criteria for

the choice of its parameters.

Possible topics for further advancement can be:

• the definition of a physical framework for the ideal diode model, which may allow for

the physical interpretation of the model parameters which, in turn, would help in the

choice of their value;

• the acquisition of more accurate thermal data for comparison and benchmarking,

or the development of a multiphysics model to allow better treatment of the heat

transfer distribution at the solid-fluid interface;

• a parallel implementation of the OpenFOAM R© solver, which would allow for faster

simulations in 3D, “real life” cases; this should be rather straightforward, since
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OpenFOAM R© was chosen as the implementation framework in part because of its

embedded parallel computing capabilities, which have not been yet exploited due to

some technical issues.
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fEHD Volumetric EHD force, namely the force exerted on a unit volume fluid because of

the electric field and free charge. 17, 20, 22, 30, 35, 37

g Gravity acceleration ([LT´2]). 22
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i Current ([QT´1]). 16, 26, 27, 29

j Current density ([L´2T´1Q]). 21–23

jn Current density normal to a surface. 27

jsat Saturation current density, or maximum current density which the conductor can

carry. 27, 29

k Temperature diffusion rate, ([M2L´2T´3Θ´1]). 22, 23, 30, 35, 37

kB Boltzmann constant, valued 1.3806503ˆ 10´23kgm2s´2. 39

Np Number density of positive ions ([L´3]). 17, 18, 20, 21, 23, 26–30, 34–41, 51, 69, 71

p Pressure in the fluid ([ML´1T´3]). 22, 24–26, 30, 34–38, 44, 45, 69, 71

q Elementary electrical charge, or electrical charge of a proton ([Q]). 18, 20, 21, 23, 27,

29, 30, 34–37, 39–41

T Temperature ([Θ]). 22, 23, 30, 34–39, 69, 71

Tref Reference temperature, or the temperature used in gas properties computation. 22

t Time([T]). 21, 30, 34–37, 39

t Final time. 30, 33, 34

u Solution vector for the system of PDEs, either as a function of time with values in U or

as an element of U when time is fixed. Defined as rφ,Np,v, p, T s. 33, 34, 36, 71

U The function space in which u is found. 33, 34, 36, 38, 71
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v Velocity field in the fluid ([LT´1]). 21–23, 30, 34–39, 44, 45, 71

V Applied voltage, or the electric potential φ applied to an electrode ([ML2T´2Q´1]).

16, 30, 34, 36, 39, 40

Von Corona onset voltage. 16, 26
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