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Abstract

Development of accurate combustion models able of predict the full thermo-

chemical state of combustion systems with acceptable costs remains a challenge.

Recently, Principal Component Analysis (PCA) was applied to the study of reacting

systems, and its ability to reduce their dimensionality with minimum reconstruction

error was demonstrated. The present work introduces a new approach, called Man-

ifold Generated from Local PCA (MG-L-PCA), which fully couples the manifold

identified by a PCA and a CFD solver.

In the first chapters, the laminarSMOKE solver adopted to simulate several lam-

inar flames will be introduced and the results obtained with a flame feed with

hydrogen and three methane coflowing flames will be proposed, bearing out the

possibility to represent the involved physical-chemical variables through this tool.

Then, the MG-L-PCA technique will be illustrated, showing its ability to find a low-

dimensional, attracting thermo-chemical manifold through an a priori computation

of some basis matrices, made up by the eigenvectors of the system covariance matri-

ces. These matrices will be then exploited to simulate reacting systems, by solving

transport equations only for a subset of the original state-space variables. Results

show the possibility to reduce the number of the variables to be transported, while

maintaining a low reconstruction error for state variables and corresponding source

terms.
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Abstract

Lo sviluppo di modelli di combustione accurati, capaci di predirre in modo esaustivo

lo stato termo-chimico di sistemi interessati da combustione con costi accettabili, ri-

mane un’attività impegnativa e complessa. Recentemente, l’analisi delle componenti

principali (PCA) è stata applicata allo studio di sistemi reattivi ed è stata dimostrata

la sua capacità di ridurre la loro dimensionalità con un errore di ricostruzione di

minimo. Il presente lavoro di tesi introduce un nuovo approccio, chiamato Manifold

Generated from Local PCA (MG-L-PCA), che accoppia completamente lo spazio a

più dimensioni identificato con la PCA e il solver CFD.

Nei primi capitoli sarà introdotto il solver laminarSMOKE adottato per simulare

diverse fiamme laminari e saranno presentati i risultati ottenuti, confermando la pos-

sibilità di rappresentare le grandezze fisico-chimiche in gioco con questo strumento.

Poi, sarà illustrata la tecnica MG-L-PCA, mostrando la sua abilità di trovare un

interessante spazio a più dimensioni attraverso un calcolo a priori di alcune ma-

trici base, costituite dagli autovettori delle matrici covarianza del sistema. Queste

matrici saranno poi sfruttate per simulare sistemi reagenti, risolvendo le equazioni

di trasporto solo per un sottoinsieme delle variabili di stato originarie. I risultati

mostrano la possibilità di ridurre del numero delle variabili da trasportare, pur man-

tenendo un errore di ricostruzione basso per le variabili di stato e per i termini

10
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sorgente corrispondenti.



Introduction

Combustion modeling

The knowledge of the combustion phenomena is a key point in a large variety of appli-

cations, that includes furnaces, burners and engines design, study of the combustion

emissions and fire safety analysis. Many physical and chemical processes have to

be considered, like issues related to fluid mechanics, thermodynamics, combustion

kinetics and heat exchange, involving a wide range of time and length scales. This

makes hard the description of combustion phenomena and a lot of models have been

adopted to model combustion. Thanks to the development of modern computers and

the continuous improvement of the numerical techniques, it’s possible to describe the

evaluation of a flame through the Computational Fluid Mechanics (CFD).

Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) includes all the computational tools for the

study and the solutions of problems that involve fluids flow. Mass, energy and

momentum conservation are considered through the transport equations (of chemical

species, total enthalpy, etc...) and constitutive equations that describes phisical

12
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properties of the fluids, as the Newton’s Law, the Fourier’s Law, the Fick’s Law and

the equations of state that express the relations between temperature, pression and

the density of a fluid [10].

A wide variety of numerical methods, free or commercial, has been employed,

but three basic steps are common to all CFD methods [10][1]:

1. Pre-Processing. In this step, all the information necessary for the numeric

solver are definited and the input information is converted in an suitable one

for the solver. The following operations are usually included:

• definition of the computational domain;

• discretization of the flow domain into cells: a set of grid lines or curves

define the mesh and a set of nodes at which the flow variables are to be

calculated;

• phisical and chemical phenomena modeling;

• definition of thermodynacis and transport fluids properties;

• evaluation of proper bondary conditions.

2. Solver. This is the core of the fluid dynamics code: discretization of the

governing equations is carried out in this step. The exact partial differential

equations to be solved are replaced by approximate algebraic equations written

in terms of the nodal values of the dependent variables. Among the numerous

discretization methods, the following ones are the most common.

(a) The finite difference method estimates spatial derivatives in terms of the

nodal values and spacing between nodes. The governing equations are

then written in terms of the nodal unknowns at each interior node.
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Finite volume methods, related to finite difference methods, may be de-

rived by a volume integration of the equations of motion, with application

of the divergence theorem, reducing by one the order of the differential

equations. Equivalently, macroscopic balance equations are written on

each cell of the domain. This ensures the conservations of the variables.

(b) Finite elements methods are weighted residual techniques in which the

unknown dependent variables are expressed in terms of basis functions

interpolating among the nodal values. The basis functions are substi-

tuted into the equations of motion, resulting in error residuals which are

multiplied by the weighting functions, integrated over the control volume,

and set to zero to produce algebraic equations in terms of the nodal un-

knowns. Selection of the weighting functions defines the various finite

element methods.

(c) Spectral methods approximate unknown variables through Fourier series

or Chebyshev polinomies. The main difference with the previous methods

is that spectral methods take on a global approach, with approximations

effective in all the domain, while the others use a local approach.

After discretization of the equations and application of the boundary condi-

tions, the result is a set of algebraic equations for the nodal unknown variables.

Discretization in time is also required for the ∂
∂t

time derivative terms in un-

steady flow. The descretized equations represent an approximation of the exact

equations, and their solution gives an approximation for the flow variables. The

accuracy of the solution improves as the grid is refined, that is, as the number

of nodal points is increased.

When the discretization step is carried out, the solver accounts for the solution
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of the algebraic equations.

3. Post-Processing. All the data collected through the solution of transport

equation by the solver are organized and visualized. For example, there are

specific tools that allow to visualize in a graphic form the grid, the vector plots,

the contour plots, pathlines or streamlines, etc...

CFD advantages In comparison with the traditional experimental activities, the

main benefit of the computational fluid dynamics is the possibility to get data and

information saving costs and time. In general the more data are required, the higher

is the cost of an experiment, in terms of equipment, time spent by the operators, and

so on. Once the simulation is developed for a particular system, CFD instead allows

to get all the data required (for example, for sensitivity analysis) with costs almost

indipendent from the quantity of the desired data. Last but not least, CFD allows

to study systems under condition of risk (like fires symulations) without danger for

people or things.

CFD limits Computational Fluid Dynamics is a powerfull tool but experimen-

tal validations cannot be put aside due to semplifications in adopted models and

approximations:

• adopted models and corresponding differential equations have semplications

and approximations (model errors);

• the discretization of the partial differential equations in space and time intro-

duce approximations (dicretization errors);

• the translation of the partial differential equations into the computerized model

may contain errors (programming errors);
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• during the resolution step, an iterative algorithm is applied and there can be

convergence problems (iterations errors).

Moreover, case studies through a CFD code require time, too. The time required

for the preprocessing is not always neglectable; for istance, the grid definition for

actual cases is a sensitive step and can employ half of the time spent by an industry

for a CFD project [1]. Time required by the solver to achieve accurate results can

exponentially grow due to the number of equations to be solved and numerical issues

involved in the resolution.

As regards combustion modeling, it represents a challenging task due to the com-

putational limitations determined by the broad range of overlapping fluid dynamic

and chemical scales that characterize actual systems and that lead to stiff systems

during the numerical solution of the transport equations. This becomes particularly

relevant for systems requiring an accurate description of finite-rate chemistry effects,

considering that detailed combustion mechanisms for fuel as simple as methane in-

volve 53 species and 325 reactions and that the number of species and reactions

dramatically increases with the molecular weight of the hydrocarbon fuel [4].

Overview of the thesis

Aim of this thesis is introducing the Manifold Generated from Local Principal Analy-

sis (MG-L-PCA), a new methodology to reduce the computational cost of numerical

simulations describing reactive systems, as the ones involved in combustion. This

technique is the development of the Principal Component Analysis (PCA), that al-

lows the reduction of the transport equations to be solved, through a linear projection

onto a lower-dimensional space; variables to be transported, the Principal Variables

(PV), are linear correlations of all the variables describing the data-set.
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In the first Chapter, the solver chosen to be coupled with the MG-L-PCA will

be presented. It is the laminarSMOKE solver, a new framework for the modeling of

laminar flames with detailed gas-phase chemistry. Several test-cases will be proposed

and the comparison between computed results and experimental values will be shown.

In the second Chapter, the MG-L-PCA approach will be described, starting from

the rigorous mathematical formalism of the PCA that allows to reduce the dimen-

sionality of the data-set, elencating the methods to select the PV and the optimal

criteria to obtain all the necessary information from the preprocessing step and,

eventually, showing how to couple the MG-L-PCA with the solver.

In the third Chapter, two data-sets provided by the simulation of a hydrogen

flame will be considered and results obtained by the employ of the MG-L-PCA to

reconstruct the two data-sets, showing the reconstruction error for the state variables

and source terms, will be displayed.

In the end, conclusions of the present work will be shown.



Chapter 1

Laminar coflow flames

1.1 Introduction

Laminar flames have been widely studied to improve the design and the optimiza-

tion of industrial and domestic equipment (i.e., furnaces, domestic gas burners, etc.)

and for a better understanding and modeling of more complex flows (e.g., turbulent

flames). However, modeling of multi-dimensional laminar flows with realistic chemi-

cal mechanisms places several demands on computational resources, mainly because

of the large number of chemical species involved, the high stiffness of the governing

equations and the presence of high gradient regions (especially close to the flame

front) [7]. Therefore, a technique able to reduce the computational cost of numerical

simulations for these flames would be very appealing and the MG-L-PCA techinique,

that will be described in the Chapter 2, could be a very usefull tool.

Several laminar coflow flames have been simulated with the solver laminarSMOKE,

whose validation was previously performed [7]. In particular, a flame feed with hydro-

gen and nytrogen and three methane flames have been considered. In this Chapter,

18
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the governing equations of the reactive system, the numerical method applied to solve

them and the kinetic schemes adopted by the solver will be illustrated. Then, the

numerical results will be compared with the ones get by experimental measurements.

1.2 OpenFOAM

OpenFOAM® (Open Field Operation And Manipulation) is a free, open source

CFD software package and it is the chosen CFD tool for my thesys. The standard

OpenFOAM® solver for compressible, unsteady, non-reacting flows (pisoFoam) was

modified in order to make possible the introduction of detailed kinetic mechanisms:

the result is a new framework, called laminarSMOKE, for the numerical modeling of

laminar reactive flows.

1.2.1 Governing equations

The reactive, laminar flows under investigations in the present thesys are mathe-

matically described by the conservative equations for continuous, multicomponent,

compressible, thermally-perfect mixtures of gases [7] The conservation equations of

total mass, mixture momentum, individual species mass fractions and mixture en-

ergy, are reported in the following (assuming a Newtonian fluid):

∂ρ

∂t
+∇ (ρu) = 0 (1.1)

∂

∂t
(ρu) +∇ (ρuu + pI) = ∇T + ρg (1.2)
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∂

∂t
(ρY k) + (ρY ku) = −∇ (ρY ku) + Ẏ k k = 1, ..., NC (1.3)

ρcp
∂T

∂t
+ ρcpu∇T = −∇q− ρ

NC∑
k=1

cp,kYkuk −
NC∑
k=1

hkẎk (1.4)

where t is the time, ρ is the mixture density, p the pressure, u the mixture

velocity vector, T the fluid stress tensor, g the acceleration vector due to gravity, Yk

the mass fraction of the species k, uk is the diffusion velocity velocity of species k,

Ẏk the formation rate of species k, T the temperature, cp and cp,k are respectively

the specific heat at costant pressure of the mixture and of the individual species k,

q the heat flux vector and hk the individual species enthalpy.

The density of the mixture is calculated using the equation of state of ideal gases.

The heat flux vector accounts for conduction and radiation:

q = −λ∇T + qrad (1.5)

where λ is the mixture thermal conductivity and qrad the radiative heat flux.

Both Fickian and thermal diffusion are taken into account for evaluating the diffusion

velocities:

uk = −Dk

Yk
∇Yk −

DkΘk

Xk

1

T
∇T (1.6)

where Dk is the individual species mixture averaged diffusion coefficient, Xk the

mole fraction and Θk the thermal diffusion ratio of species k. An optically thin

radiation model is included in the calculations. If self-absorption of radiation is

neglected, the divergence of the net radiative flux can be written as:
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∇qrad = −4σap
(
T 4 − T 4

env

)
(1.7)

where σ is the Stefan-Boltzmann constant, Tenv the environmental temperature.

Considering as the only radiating species H2O, CO, CO2 and CH4, the Planck mean

absorption coefficient, ap, is evaluated according to the following expression:

ap = pH2Oap,H2O + pCO2ap,CO2 + pCOap,CO + pCH4ap,CH4 (1.8)

where pk is the partial pressure of species k and ap,k is the extinction coefficient

of species k.

1.2.2 Numerical method: Strang splitting scheme

In order to solve the gas-phase transport equations of continuity, momentum, energy
and species mass fractions, the OpenFOAM® framework has been employed. In
particular, the standard OpenFOAM® solver for compressible, unsteady, nonreact-
ing flows (pisoFoam) was modified to take into account a reacting system.

Segregated algorithms based on operator-splitting methods were used for the
resolution of the system of partial differential equations, thus separating the stiff
chemical reaction processes from the non-stiff transport processes.

As described in [6], for a general transport/reaction system like a laminar flame

described by a set of partial differential equations (PDEs), the governing PDEs can

be transformed into a set of ODEs by the spatial discretization and the application

of the method of lines:

dΨ

dt
= S (Ψ) + M (Ψ, t) (1.9)

where t is the time,Ψ the dependent (or orimary) variables (mass fractions and
enthalpy), S (Ψ) is the rate of change of Ψ due to the chemical reactions and M (Ψ, t)
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the rate of change of Ψ due to transport processes, such as diffusion, convection, heat
loss, inflow/outflow, etc. In order to solve Eq.1.9 numerically, the time is dicretized
in increments 4t, and the integration time is performed using the Strang splitting
scheme. According to this apprach, reaction is separated from the transport process
and the numerical integration is performed in three sub-steps:

1. The reaction terms are integrated over a time interval 4t
2

through the solution

of an ODE system:

dΨa

dt
= S (Ψa) (1.10)

The initial condition Ψa(0) is taken equal to the final state Ψ from the previous

time step and the solution of Eq.1.10 is indicated as Ψa
(4t

2

)
.

2. The transport terms (convection and diffusion) are integrated over a time in-

terval 4t by solving:
dΨb

dt
= M

(
Ψb, t

)
(1.11)

The initial condition Ψb(0) corresponds to the final state of the system from

Sub-step 1, Ψa(4t
2

), and the solution of Eq.1.11 is denotated by Ψb(4t) .

3. This step is identical to Sub-step 1, with the exception that the initial condition

corresponds to the final state of the system from Sub-step 2, Ψb(4t). The

solution is used as the initial condition for the next time step.

The reaction operator S (Ψ) is indipendent of time and does not involve any dis-

cretization operation in space, which means that reaction process is local (separate
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for each grid point). On the contrary, the transport operator M (Ψ, t) may be dipen-

dent on time if boundary conditions are time dipendent; moreover M (Ψ, t) is not

separate for different grid points, which are coupled by the convective term and the

Laplacian in the diffusion term. As a consequence, Sub-step 1 and 3 correspond

to N indipendent stiff ODE systems, in NC + 1 unknowns (species mass fractions

and temperatures), where N is the total number of computational cells and NC the

number of species. Such ODE systems are conveniently integrated over the requested

time step using the BzzOde solver, specifically conceived for very stiff ODE systems

arising from the numerical modeling of reactive systems with detailed kinetics. Sub-

step 2 correspond to an ODE system of N · (NC + 1) coupled equations. However,

as these equations are not stiff (the chemical reactions are considered in Sub-steps

1 and 3), the solution is performed in a segregated approach: instead of solving the

whole ODE system, NC + 1 ODE systems are solved, each having dimension equal

to N . The OpenFOAM® framework is used to manage the spatial discretization

of transport terms and to solve the Eq.1.11 using the implicit Euler method. The

linear systems involved in this process are solved through iterative techniques, i.e.

reducing the equation residual over a succession of solutions.

The splitting procedure described above is applied only to species and enegy

equations. The continuity and momentum equations are solved in a segregated man-

ner using the well known PISO approach, already available in OpenFOAM®. The

whole numerical procedure is summerized in Figure 1.1. The time-step is automat-

ically adapted to keep the Courant number sufficiently low in every computational

cell, in order to avoid stability issues.
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Figure 1.1: Numerical algorithm used in laminarSMOKE
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1.2.3 Kinetic Schemes

In order to simulate the coflow laminar flames, two detailed kinetic mechanisms were

adopted: the POLIMI_H21201 (11 chemical species, 21 reactions), for the flame feed

by hydrogen and nitrogen, and POLIMI_HT1201 (187 chemical species and 6086

reactions) for the methane flame.

As regards the methane flame, a skeletal mechanism was taken into account; in

particular, the
PolimiSkeletal_CH4 (23 species, 118 reactions) was applied.
All the kinetic mechanisms are freely available in CHEMKIN format (together

with thermodynamic data and transport properties) at http://creckmodeling.chem.polimi.it/.

1.3 H2/N2 coflow flames

The laminar coflow flame feed with hydrogen, experimentally and computationally

studied by Toro et al. [11], has been numerically modeled through the laminarSMOKE

solver. In particular, an axisymmetricH2/air flame in which a cylindric fuel stream is

surrouned by coflowing air was considered, and the numerical results were compared

with the experimental values get through two techniques, a spontaneous Raman

scattering and Coherent Anti-Stokes Raman Scattering (CARS), described in [11].

In the burner arrangement, an upright stainless tube of 45.5 cm (i.d 0.9 cm),

carrying the H2/N2 fuel (1:1 mole ractio), is surrounded by an air-coflow annulus

(i.d. 9.5 cm) at ambient temperature. The fuel is diluted with nitrogen to reduce

heat transfer to the burner; this move the reaction zone downstream so that the

gradients in temperature and concentration at the exit of the burner are small. One

average fuel exit velocity (50 cm/s) was considered in the present work.

Numerical simulations were performed on a computational domain with a width
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Figure 1.2: H2 coflow flame: 2D maps of temperature.

of 5.5 cm and length of 20 cm, exploiting the axial simmetry of the flame; the

adoopted mesh costists of 76800 cells. The chemistry was described by the the

detailed mechanism POLIMI_H21201.

In order to illustrate the overall flame structure, Fig. 1.2 shows the two-dimensional

flase-color plot od the computed distribution of temperature, while maps of the com-

puted values of the mass fractions of H2, O2, H2O, and N2 are displayed in Fig. 1.3

.

In Fig. 1.4-1.9 the radial profiles of temperature and mole fractions of the major

species at 3, 10 and 30 mm are presented, to follow the development of the flame.

The computed results reproduce the experimental profiles well: the results are nearly

quantitative.

Fig. 1.10 shows the axial centerline profiles of temperature. The shape of the

profile obtained from experimental measurements is the same of the one get from

the numerical simulation and temperature is perfectly predicted until the axial dis-

tance of 40 mm, but there are some discrepances between the experimental and the
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Figure 1.3: H2 coflow flame: 2D maps of mass fractions of H2, O2, H2O, and N2.

Figure 1.4: Radial temperature at z= 3 mm
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Figure 1.5: Radial mole fractions of H2, O2, H2O, and N2 at z= 3 mm

Figure 1.6: Radial temperature at z= 10 mm
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Figure 1.7: Radial mole fractions of H2, O2, H2O, and N2 at z= 10 mm

Figure 1.8: Radial temperature at z= 30 mm
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Figure 1.9: Radial mole fractions of H2, O2, H2O, and N2 at z= 30 mm

computed values starting from the this point. Anyway, the position of the peak of

temperature is well predicted and the relative discrepance is never higher than 15%.

In Fig. 1.11, profiles of mole fractions of the major species are displayed. The

computed profiles agree quite well with the experimental ones.

1.4 CH4 coflow flames

Three coflowing laminar methane/air flames, varying in primary equivalence ratio,
have been numerically studied. These flames were studied by Bennet et al. [3] and
a schematic of the burner utilized is shown in Fig. 1.12. The inner fuel nozzle
internal radius is rI = 0.555 cm and the tube through which it flows has a wall
thickness of wJET= 0.080 cm. The coflow inner radius is rO= 4.76 cm and the inner
radius of the cylindrical shield is rmax= 5.10 cm. The primary equivalence ratio
Φ (primary air flowrate required for complete combustion, divided by the actual
primary air flowrate) for each flame appears in Table 1.1. The methane and primary
air flowrates in the inner jet are given in QCH4 and Qair columns, respectively. The
coflow stream, reported in Table 1.2, is held fixed for all three cases. The primary
air is oxygen-enriched (25% O2 by volume), whereas the secondary air is regular
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Figure 1.10: Temperature profiles along centerline

Figure 1.11: Mole fractions profiles of H2, O2, H2O, and N2 along centerline.
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Figure 1.12: Schematic of the burner used for th[3]e tree flames

Φ QCH4

[
cm3

min

]
Qair

[
cm3

min

]
vz
[
cm
s

]
YCH4 YO2 YN2

∞ 330 0 5.67 1.00000 0.00000 0.00000
6.160 330 420 12.89 0.30226 0.19627 0.50147
2.464 330 1050 23.71 0.14769 0.23975 0.61256

Table 1.1: Inner jet - Flow rate and composition (mass fractions)

air (20.9% O2). Both the streams are fed at ambient temperature and atmospheric
pressure.

The numerical calculations were performed on a non-equispaced, structured mesh

of 23664 cells (with finest spacing in the region immediatly above the burner surface)

using the POLIMI_HT1201 mechanism.

Fig. 1.13 reports an example of the two-dimensional maps of temperature amd

mass fractions of CH4, O2, CO2, H2O, OH and C2H2 for the not premixed flame,

to better show the main structural properties of the investigated flames.
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QCH4

[
cm3

min

]
Qair

[
cm3

min

]
vz
[
cm
s

]
YCH4 YO2 YN2

0 44000 10.48 0 0.23200 0.76800

Table 1.2: Outer jet - Flow rate and compositions (mass fractions)

Figure 1.13: CH4 coflow flame: 2D maps of temperature and mass fractions of CH4,
O2, CO2, H2O, OH and C2H2 for the not premixed flame.
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Φ
HT [cm]

Exp. Comp.
∞ 5.70 5.83

6.160 4.90 5.13
2.464 3.80 3.72

Table 1.3: Experimental and computed flame heights

1.4.0.1 Flame Heights

The more partial premixing occurs, the smaller is the amount of the secondary

oxygen that must diffuse inward to create a stoichiometric mixture, and thus the

smaller is the axial distance required for this necessary diffusion to occur. This

argument implies that the flame height will shrink with increased premixing, when

the CH4 flowrate is held constant [3]. For each of the three flames studied, Table

1.3 contains the experimental values of the height of the flame (HT ), defined as

the axial location where the maximum of temperature occurs, and the computed

values. In order to compare experimental results with numerical model predictions,

the nondimensionalization of the axial coordinate z through division by HT was

applied.

1.4.0.2 Double flame structure

It has been shown [3] that each flame contains at least one non premixed flame front.

In addition, in the partially premixed flames, evidence supporting the existence of an

inner premixed flame front abounds. The latter is approximately in corripondence of
z
HT

= 0.5 and the presence of an inner rich premixed flame and an outer nonpremixed

flame is denoted as double flame structure. As partial premixing occurs, heat released

decreases at the outer flame front and increases at the inner flame front, showing

a “shoulder” near z
HT

= 0.5 in profiles of heat release. As the amount of partial
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Figure 1.14: Profiles of temperature along the flame centerline. The symbols for
experimentals results do not corrispond to specific data points; rather, they help to
distinguish among the various plotted curves.

premixing increases, the increasing strenght of the inner flame front is accompanied

by other effects, especially the increase of the overall flame temperatures caused by

the decrease of radial mass and heat transport ( due to the reduction in the flow

radially inward).

These effect of premixing will be showed in the results obtained through lami-

narSMOKE, too.

1.4.0.3 Effect of premixing

Temperature Gas temperature along the centerline of each of the three flames

are shown in Fig 1.14. The nondimensional axial position z
HT

is plotted in abscissa.
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Thermal boundary conditions in the numeric model sets the inlet temperature to

298 K. This value is chosen primarily because the experimental technique does not

allow temperature measurement within a certain distance of the burner, so the true

value is not known. This means that the numerical model includes neither heating

of the burner lip, nor, consequently, preheating of the reactants. Therefore, the

computed steady-state temperature are initially lower than the experimental ones.

As described in [3], three effects of partial premixing are present in both the

computational and experimental results.

First, the peak centerline temperature increases from nonpremixed flame to the

Φ = 2.464 flame for both the computational and the experimental data: this trend

is very well predicted by the model. This is likely caused by the increasing strenght

of the inner flame front, leading to an increased heat release near the centerline.

Another reason for the increase of the maximum temperature along the centerline

may be that the less of the (cooler) coflowing air is entrained as partial premixing

occurs.

The second effect of partial premixing present in the temperature profiles is the

“shoulder” that forms near z
HT

= 0.5 due to heat release at the inner flame front, a

feature present in both the computational and experimental results.

The third effect is the reduction in centerline temperatures near the burner surface

( z
HT
≤ 0.4), an experimentally trend very well predicted by the computational results.

This effect is best explained by the decrease of flow radially inward, in the region
z
HT
≤ 0.4. This latter behavior subsequently reduces the heat transfer from the outer

flame front toward the centerline. The same phenomenon also decreases the inward

radial transport of chemical species formed off-axis (H2O, CO2, CO, etc. ), thus

delaying the rise of their centerline profiles.
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Figure 1.15: Profiles of CH4 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

CH4 mole fraction Examinations of the mole fractions of major species begins

with those of methane, depicted along the centerline in Fig. 1.15.

Even if some discrepancies can be observed, in general, there is good agreement

between computational and experimental results and the values of z
HT

at which

the CH4 disappears are well predicted by the numerical model. Three trends are

observed as partially premixing occurs.

First, the initial concentrations of CH4 decrease, because the CH4 is being diluted

by primary air.

Second, the initial concentrations of CH4 persist to larger heights above the

burner surface, as evidenced by the longer flat region at the start of each profile.

This behaviour is consistent with the decrease in coflow entraiment seen above,

responsable for decreased dilution of the centerline reactants, and it also indicates

a decrease in radial transport. Moreover, the axial component of velocity increases

as partial premixing occurs (due to the increased flowrate in the inner jet), further

decreasing the relative impact of radial transport.
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Figure 1.16: Profiles of O2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

The third trend apparent in both the compuational and experimental CH4 cen-

terline data is the increase in the rapidity with wich the concentrations vanish.

Some computational/experimental discrepancies appear near the burner surface,

in particular the experimental CH4 mole fractions for the nonpremixed flame do not

appear to match the computed values when extrapolated to the burner surface. This

behavior is believed to be caused by argon concentrations that are slightly lower than

those assumed (species calibrations depend upon an assumed argon concentration of

1% through the measurement domain) [3].

O2 mole fraction Oxygen mole fractions along the centerline are illustrated in

Fig. 1.16.

As described in the previous paragraph, the argon calibration procedure for the

species measurements relies on the assumption of a constant (known) argon concen-

tration. The fact that the absolute experimental O2 mole fractions near the burner

surface are lower than those found numerically indicates that this assumption is
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Figure 1.17: Profiles of H2O mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

probably a poor one near the burner surface [3].

Computational and experimental results are in fairly good agreement at the values

of z
HT

at which O2 first disappears and then reappears.

The compuational and experimental O2 profiles both show three effects of partial

premixing. First, the initial concentrations of O2 increase, because the air concen-

tration in the inner jet increases.

Second, the initial concentrations persist further into the flame (i.e., the profiles

remain flatter further above the burner), which is a consequence of the decreasesed

coflow entrainment and decreasedd inward radial transport previously discussed.

Third, O2 disappears mich more sharply as partial premixing occurs, indicating

the increasing strenght of the inner flame front.

H2O mole fraction Centerline mole fraction of H2O are displayed in Fig. 1.17.

As the low vapour pressure of H2O (at nonflame temperature) makes experi-

mental calibration difficult, the experimental values are multiplied by a scale factor



CHAPTER 1. LAMINAR COFLOW FLAMES 40

chosen such that the nonpremixed flame’s H2O concentration at z
HT

= 1 agrees with

the computed value. Thus, no statements can be made regarding the agreement of

absolute concentrations, but the good agreement observed in profile shape is mean-

ingful [3].

Both the computational and experimental data show two features resulting from

partial premixing.

First, the absence of H2O at z
HT

= 0 persists further above the burner surface as

partial premixing increases; in other words, the increase in H2O concentration occurs

later downstream. This behalvior results from decreased radial transport (of H2O

toward the centerline, in this case), as mentioned above in conjuction with related

trends in the centerline T profiles.

Second, the increase in concentrations gets sharper as Φ decreases from ∞ to

2.464, in accordance with the strengthening of the inner flame front. After peaking

near the the inner flame front, both the computational and experimental profiles are

roughly flat for z
HT

=& 0.8. At z
HT

= 1, H2O concentrations are very close to those

at equilibrium [3].

CO2 mole fraction Mole fractions of CO2 along the centerline are plotted in Fig.

1.18.

The computational and experimental results several discrepances. The first one

is the overprediction of the CO2 mole fraction in the region with 0.2 < z
HT

< 0.8 for

the not premixed flame and another important one is the underprediction of CO2

mole fraction in the region with z
HT

< 0.4 for the partially premixed flames. How-

ever, both the computational and experimental results display some similar features.

Indeed both the results show the primary effect of partial premixing, that is the

increase of CO2 (from its initial value of zero) occurs further downstream. The phe-
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Figure 1.18: Profiles of CO2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

nomenon responsable for this effect is the reduced radial transport (of CO2 toward

the centerline, in this case), which similarly affects the other species and T .

Indipendently of partial premixing, the experimental CO2 datasets peak at about

the same concentrations (XCO2 ≈ 0.1), values very close to equilibrium values [3].

This trend for the peaks is well predicted by the model.

OH mole fraction OH mole fractions along the centerline are illustrated in Fig.

1.19, plotted in log scale in Figure 1.19(b).

Because of the instability of OH at reference conditions makes experimental cal-

ibration difficult, the experimental values were multiplied by a scale factor such that

Φ = 2.464 flame’s maximum OH concentration agrees with the computed values.

Thus, no statements can be made regarding the agreement of absolute concentra-

tions, but only qualitative evaluations.
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Figure 1.19: Profiles of OH mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

In the region z
HT
≤ 0.4 any existing OH will quickly react with CH4, H2 and other

hydrocarbons, so OH is undetectable and experimental data start from z
HT

= 0.4,

where it rises in concentration bacause of inward transport from off-axis peaks. Like

the experimental results, the predicted peaks of OH concentrations increase with

decresing Φ.

C2H2 mole fraction Mole fractions of acetylene (C2H2) along the centerline are

illustrated in Fig. 1.20.

In general, an overprediction of C2H2 is evident, but the same trends are present

in both computational and experimental results. First, the partial premixing delays

the initial increase of C2H2 concentrations, a trend along the centerline similar to

that observed in the previous paragraphs for T , XH2O and XCO2 . A secondary effect

of premixing present in both datasets is the earlier disappearance of C2H2.
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Figure 1.20: Profiles of C2H2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

1.4.0.4 Skeletal mechanism

As mentioned above, a skeletal mechanism was applied before using the detailed

one. in particular, the PolimiSkeletal_CH4 was used and a mesh of 1402 cells was

adopted to dicretize the domain. All the plots showing the comparison between the

results obtained with the two kinetic mechanisms are displayed in the Appendix A,

where it’s also possible to observe the effect of the mesh on computed results.

In general, the profiles obtained with the detailed mechanism have the same

shape of the ones get through the skeletal mechanism and they often overlap with

the latter ones. This can be observed in profiles of temperature, methane, oxygen

and water.

The detailed mechanism is supposed to better predict the combustion process

and, indeed, an improved agreement with experimental results can be observed, for

example, in OH and C2H2 profiles. As it is shown in Fig. 1.21-1.22 for the three

flames, in OH profiles the trends are more similar to the experimental ones and, in
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Figure 1.21: Profiles of OH mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.

C2H2 profiles, the same shapes get through the skelatal mechanism are obtained but

the overprediction is considerably reduced, especially for not premixed flame.

Effect of mesh In general, a finer mesh allows an improved prection of variables

computed through the numerical simulations. Thus, a better agreement with exper-

imental results is obtained, especially for variables sensitive to the grid.

This can be observed, for example, in the results get with different grids and the

same kinetic mechanism (the skeletal mechanism) for the not premixed flame. In Fig.

1.23, temperature profiles obtained with the basic mesh consisting of 1402 cells are

compared with the profiles obtained with other two finer ones, respectively composed

of 4172 cells and 11329 cells. Only slight differences can be observed between the

computational results obtained with different grids, but these differences increase,
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Figure 1.22: Profiles of C2H2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.
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Figure 1.23: Effect of the mesh on temperature, adopting the PolimiSkeletal_CH4
mechanism

for example, with profiles of OH mole fractions, shown in Fig. 1.24, pointing out the

importance of a mesh enough fine to simulate the recting flow, as the one adopted

with the detailed mechanism and illustred in the previous Section.

1.5 Conclusions

In this Chapter, the solver laminarSMOKE was presented as a new laminar frame-

work for the modeling of laminar gas flames with detailed gas-phase chemistry. The

numerical method adopted by the solver is based on the operator-splitting approach

to manage large and stiff kinetic schemes. The new code was performed on several

laminar coflow flames, employing fine grids and describing the chemistry with de-
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Figure 1.24: Effect of the mesh on OH mole fractions, adopting the PolimiSkele-
tal_CH4 mechanism

tailed kinetic schemes. The agreement between and experimental measurements was

satisfactory for the flame feed with hydrogen as well the methane flames, demon-

strating the feasibility and the accuracy of this new framework for the modeling of

laminar, reacting flows.



Chapter 2

MG-L-PCA

2.1 Principal Component Analysis (PCA)
Solution of the species transport equations for reacting system can be very compu-
tationally intensive if no semplification is made.

As described in [2], the reduction of the number of species equations to be solved
can be achieved in two ways:

• Reduction of the kinetic mechanism. This approach is based on the analysis of
the dominant reaction rates at the conditions of interest and proceeds through
the elimination of species and reactions in the original kinetic mechanism,
ultimately leading to a reduced set of species equations to be solved.

• State space parametrization. This approach relies on the assumption that
the thermodynamic state of a reacting system relaxes onto a low-dimensional
manifold in chemical state space . The thermodynamic state of a single-phase
reacting fluid having Ns species is uniquely determinated by Ns+1 parameters
(T , P and Ns − 1 species mass fractions). However, if a set of “optimal”
varibles is identified, the whole thermochemical state can be re-parametrized
with a lower number of variables.

48
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This Chapter focuses on the second approach. Principal Component Analysis
(PCA) provides a rigorous mathematical formalism to reduce the dimensionality
of a data set consisting of a large number of correlated variables, retaining most of
the variation present in the original data. The reduction is achieved by trasforming
the original data set into a new set of variables, called Principal Components (PCs),
which are uncorrelated and ordered so that the first few account for most of the vari-
ation present in all the original variables. PCA provides an optimal representation
of the system based on q optimal variables, the PCs, which are linear combination
of the Ns + 1 primitive variables T , P and Yi .

2.1.0.5 Definition and derivation of the PCs

Consider a vector X of Q random variables, i.e. X = (x1,x2, ...,xQ) with mean
µ and covariance matrix Σ = 1

n−1X
TX. The (i, j)-th element of Σ represents the

covariance between i-th and j-th variables of X if i 6= j, or the variance of the j-
th element of X if i = j. PCA goal is to find q (<< Q) variables, called Pricipal
Components (PCs), which preserve most of the information present in the original
data. The PCs are linear combinations of the original variables; moreover they are
uncorrelated (i.e. orthogonal) and derived so that the variance of the j-th component
is maximum [2].

The first PC of X is defined as the linear combination

z1 = X a1 (2.1)

where the vector a1 is constructed so that var(z1) = aT1 Σ a1is maximized, sub-
ject to the constraint aT

1 a1 = 1. In order to solve this constrained problem, the
standard approach of Lagrange multipliers is adopted and the function

aT
1 Σ a1 − λ

(
aT
1 a1 − 1

)
(2.2)

must be maximized, where λ is a Lagrange multiplier. Differentiating with respect
to a1 and equating to zero, it gives Σ a1 − λa1 = 0, that is



CHAPTER 2. MG-L-PCA 50

(S− λIQ) a1 = 0 (2.3)

where IQ is the [QxQ] identity matrix. Thus λ is an eigenvalue of Σ and a1 the
corresponding eigenvector. The eigenvector a1 which maximizes the variance of z1

is the one corresponding to the largest eigenvalue of Σ,λ1, being:

aT
1 Σ a1 = aT

1 λ a1 = λaT
1 a1 = λ (2.4)

The second PC, z2 = X a2, maximizes the variance of var(z2) = aT
2 Σ a2, subject

to the constraints cov(X a1,X a2) = 0 (z1 and z2uncorrelated) and aT
2 a2 = 1. As

cov(X a1,X a2) = aT
1 Σ a2 = aT

2 Σ a1 = λ1a
T
1 a2 = λ1a

T
2 a1, (2.5)

each of the following equations

aT
1 Σ a2 = 0 aT

2 Σ a1 = 0 λ1a
T
1 a2 = 0 λ1a

T
2 a1= 0 (2.6)

could be used to specify no correlation between z1 and z2. Choosing arbitrarily
the last expression in Eq. (2.6), the quantity to be maximized becomes

aT
2 Σ a2 − λ

(
aT
2 a2−1

)
−φaT

2 a1 (2.7)

where λ and φ are Lagrange multipliers. Differentiating with respect to a2 and
equaling to zero, the expression (2.7) becomes

2Σ a2 − 2λa2 − φa1 = 0 (2.8)

Pre-multiplying by aT1 , it could be transformed as

2
(
aT
1 Σ a2 − λaT1 a2

)
− φa1a1

T = 0 (2.9)

which reduces to
φ = 0, (2.10)
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because
aT
1 Σ a2 = λaT

1 a2 (2.11)

due to the constraint of z1 and z2 being uncorrelated. Then Eq. (2.9)reduces to

Σ a2 − λ a2 = 0 (2.12)

Therefore, λ is once more an eigenvalue of Σ and a2 is the corresponding eigen-
vector. Again, aT2 Σ a1 = λ. Assuming that Σ has all different eigenvalues, λ is the
second largest eigenvalue of Σ, λ2, and a2 is the corresponding eigenvector.

In general, the k-th PC of X is zk = X ak and var(zk) = aT
k Σ ak = λk, where

λk is the k-th largest eigenvalue of Σ and akis the corresponding eigenvector.
2.1.0.6 PCA approach

In the subsection (2.1.0.5) the definition and derivation of PCs have been dis-
cussed for an infinite population of measures, as described in [2], but in actual cases
a random sample of n observations of the Q variables is available, i.e.

X = [x1x2 ...xQ] =


x11 x12 ... x1Q

x21 x22 ... x2Q
...

...
xn1 xn2 ... xnQ

 (2.13)

so that Xi = (xi1, xi2, ..., xiQ) represents the i-th observation from the data set. Thus,
the data available for PCA is a [n x Q] matrix and an unbiased estimator of Σ, S1,
is employed [2].

Proceeding like described in the subsection (2.1.0.5), it’s possible to construct Z,
the [n x Q] matrix of PCs scores, with (i,k)-th element equal to zik = Xiak. Thus Z

and X are related by
Z = X A (2.14)

1The matrix S represents the approximation of Σ for a finite population, i.e. the random sample
consisting of n observations for Q variables
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where A is the [QxQ] orthogonal matrix whose columns are the eigenvectors of
S. The covariance matrix can be defined as

S =
1

n− 1
XTX. (2.15)

As S is a symmetric, non-singular matrix, it can be decomposed as

S = AT L A (2.16)

where L is the [QxQ] diagonal matrix containing the eigenvalues of S in descend-
ing order (l1 > l2 > ... > lQ) .

The linear trasformation given by Eq. (2.14) simply recast the original variables
into a set of new uncorrelated variables, whose coordinate axes are described by A.
Since A is orthonormal, that is A−1 = AT, the original variables can be stated as a
function of the PCs as

X = Z AT. (2.17)

Therefore the original variables can be uniquely recovered through Z. However,
the main goal of PCA is to replace the Q elements of X with q PCs (q<<Q),
discarding only a small fraction of the variance originally contained in the data. The
truncated PCs are defined as

Zq = X Aq. (2.18)

Eq. (2.18) can be inverted to obtain

Xq = Zq AT
q (2.19)

where the subscrit q in the [n x Q] matrix Xq indicates that the data-set is
reconstructed through q variables. A schematic illustration of the size reduction
process carried out by PCA is showed in Figure 2.1.
2.1.0.7 Data preprocessing: centering and scaling

Data are usually centered before PCA is carried out: the variables means are sub-

stracted from the data sample, thus keeping only the relevant variation for analysis.
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Figure 2.1: Schematic illustration of PCA size reduction process

So centered PCs are obtained. Centering is usually adopted with scaling.

Scaling is an essential operation when the elements of X are in different units

or when they have different variances. The orders of magnitude are very differ-

ent: temperature may range from ambient conditions to thousand of degrees while

species mass fractions vary between zero and one. Moreover, even among species

mass fractions there may be need for scaling: for example radicals appear in small

concentrations and their mass fractions may range from zero to something far less

than one (i.e. 10−3 − 10−6), while major species mass fractions range from 0 to 1.

Considering also the centering, it’s possible to define a scaled variable, x̃j, as:

x̃j =
xj−xj

dj
(2.20)

where xj = 1
n

∑n
i=1 xij (j=1,2,..,Q), while dj is the scaling parameter relative to

the variable xj [2]. In matrix form, Eq. 2.20 becomes:

X̃ = (X−X) ·D−1 (2.21)
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where D is the diagonal matrix containing the scaling parameters. When scaling

is applied, Eq. 2.15-2.18 are modified as:

S =
1

n− 1
D−1

(
X−X

)T (
X−X

)
D−1 (2.22)

Z = (X−X)D−1A (2.23)

Zq = (X−X)D−1Aq (2.24)

The choise of scaling parameters has a strong impact on the resulting eigenvectors.

The following criteria are available[8]:

• auto scaling, which adopts the standard deviation as scaling factor, dj = sj;

• pareto scaling, which adopts the square root of the standard deviation as scaling

factor, dj =
√
sj;

• range scaling, which adopts the difference between the minimal and the maxi-

mal variable value as scaling factor, dj = max (xj)−min (xj);

• VAST (VAriable STability scaling), which focuses on stable variables and adopts

the product between the standard deviation and the so-called coefficient of

variation, sj
xj
, as scaling factor, dj =

s2j
xj
.

2.1.0.8 Criteria to select Principal Variables

Principal Components (PC) are linear combinations of all the variables defining

the data-set. However, these varibles are not necessarily equally important to the

formation of PC: some of the variables might be critical, but some might be redun-
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dant. Therefore, it’s reasonable to try to link the PC back to a subset of the original

variables, selecting critical variables or eliminating irrelevant ones. There are sev-

eral methods to choose a subset of q original variables which preserve most of the

variation in X [8].

• B4 Forward method. PCA is performed on the original matrix of Q variables

and n observation. Thus, the eigenvalues of the covariance matrix are computed

and it’s possible to compute l∗ (l∗ = 0.7l, where l is the average egeinvalue size).

If q is the number of PV to be choosen and Q1 is the number of components

that have eigenvalues smaller than l∗, the eigenvectors associated with the

remaining Q−Q1 eigenvalues are evaluated starting with the first component.

The variable associated with the highest eigenvector coefficient is then retained,

as it is highly correlated with an important PC. PCA is the repeated until all

the components have eigenvalues larger than l∗.

• B2 Backward method. PCA is performed on the original matrix of Q variables

and n observation. Thus, the eigenvalues of the covariance matrix are computed

and it’s possible to compute l∗ (l∗ = 0.7l, where l is the average egeinvalue size).

If q is the number of PV to be choosen andQ1 is the number of components that

have eigenvalues larger than l∗, the eigenvectors associated with the remaining

Q−Q1 eigenvalues are evaluated starting with the last component. The variable

associated with the highest eigenvector coefficient is then discarded, as it is

highly correlated with a component not carrying any useful information. PCA

is the repeated until all the components have eigenvalues larger than l∗.

• M2 backward method. PCA is performed on the original matrix of Q variables

and n observation, so the eigenvalues of the covariance matrix are computed.

If q is the number of PV to be choosen, the [n x q] matrix of PCs scores, Zq,
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is then evaluated. The goal is to select m (m < Q and m ≥ q) variables from

X which preserve most of the data variation. In the M2 method, q is the true

dimensionality of the data as it is determined with PCA and Zq is indicated

as the true configuration, whereas the corresponding approximation based on

m variables is indicated Ẑ. The discrepancy between the two configurations is

evaluated with a Procrustes Analysis. The idea is to compare the shape of Zq

and Ẑ, to establish wich set of variables better reproduces the true configuration

Zq, that is the following sum of squared differences between the configurations

Zq and Ẑ is minimized:

M2 = tr
(
ZT

qZq + ẐT Ẑ− 2Σ
)

(2.25)

where Σ is the matrix of singular value decomposition (SVD) of ẐTZq.

• McCabe criteria method. These approaches originate from the observation

that the principal components satisfy a certain number of optimality criteria.

A subset of the original variables that optimizes one of these criteria is called

a set of principal variables by McCabe. Assuming that the set of variables of

X is partitioned into subsets X(1) and X(2), the covariance matrix of X can be

decomposed as:

S =

 S11 S12

S21 S22

 (2.26)

Then, the partial covariance matrix for X(2) given X(1) is S22,1 = S22 −

S21S
−1
11 S12. The criteria proposed by McCabe for the definition of the prin-
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cipal variables are:

MC1 max |S11| = min |S22,1| = min

m∏
k=1

δk (2.27)

MC2 min tr (S22,1) = min

m∏
k=1

δk (2.28)

MC3 min ‖S22,1‖2 = min

m∏
k=1

δ2k (2.29)

where ρk are the eigenvalues of S22,1. The matrix S22,1 represents the infor-

mation left in the remaining unselected variables and, therefore, it is used to

evaluate the optimality criteria to choose the PV. MC1 maximizes the vari-

ance taken into account by the subset of variables, while both MC2 and MC3

minimize the reconstruction error.

• Principal Features. Adopting this method, the dimension reduction is accom-

plished by choosing a subset of the original variables that contains most of

the essential information, both in in the sense of maximum variability of the

variables in the lower dimensional space and in the sense of minimizing the

reconstruction error. The rows of the eigenvector matrix, Aq, represent the

projection of each variable onto the lower dimensional space, that is, the q el-

ements of each row correspond to the weights of the corresponding variable on

each axis of the subspace. The key observation of the method is that variables

that are highly correlated or have high mutual information will have similar

weight vectors (i.e., similar rows of the eigenvector matrix Aq). On the two

extreme sides, two fully correlated variables have identical weight vectors (up
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to a change of sign) while two indipendent variables have completely different

ones. Therefore, the structure of the rows of Aq is first analyzed by k-mean

algorithm to choose high correlated variables, then a variable is extracted from

each subset. The chosen variables represent each group optimally in terms of

variability, recontruction accuracy and insensitivity to noise.

2.1.0.9 Transport equations for the PCs

The selection of optimal variable for reacting systems could be very appealing

due to the possibility of trasporting in a numerical simulation only few linear com-

binations of the original variables: the PCs [2].

The mass fraction balance for a reacting chemical species is considered:

∂ρYk
∂t

+
∂ρujYk
∂xj

=
∂

∂xj

(
ρDk

∂Yk
∂xj

)
+ ω̇k (2.30)

where ρ is the density, Yk is the mass fraction of the k-th chemical species, uj is

the velocity component along the direction xj, Dk is the material diffusivity for the

k-th chemical species and ω̇k is the mass reaction rate per unit volume of the k-th

chemical species. Introducing the material derivative the equation becomes:

ρ
DYk
Dt

=
∂

∂xj

(
ρDk

∂Yk
∂xj

)
+ ω̇k (2.31)

Considering the Lewis number for the k-th chemical species (Lek = Sck
Pr

= λ
ρcpDk

,

where λ is the thermal diffusivity and cp is the specific heat), it becomes:

ρ
DYk
Dt

=
∂

∂xj

(
λ

cpLek

∂Yk
∂xj

)
+ ω̇k (2.32)
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If the species mean, Y k, is subtracted and a scaling factor, dk, is applied to the

centered variable, the following equation is obtained:

ρ

D

[
(Yk−Y k)

dk

]
Dt

=
∂

∂xj

[
λ

cpLek

∂

∂xj

(
Yk − Y k

dk

)]
+
ω̇k
dk

(2.33)

Considering the weight of the k-th variable on the i-th PC, aki, it turns into:

ρ

D

[
(Yk−Y k)

dk
aki

]
Dt

=
∂

∂xj

[
λ

cpLek

∂

∂xj

(
Yk − Y k

dk
aki

)]
+
ω̇kaki
dk

(2.34)

Summing over all the variables, the obtained equation is:

ρ

D

[∑Q
k=1

(Yk−Y k)
dk

aki

]
Dt

=
∂

∂xj

[
λ

cp

Q∑
k=1

1

Lek

∂

∂xj

(
Yk − Y k

dk
aki

)]
+

Q∑
k=1

ω̇kaki
dk

(2.35)

As
∑Q

k=1

(Yk−Y k)
dk

aki is the definition of the i-th PC, zi, if the Lewis number is

assumed equal for all the species, the Eq. 2.35 can be rewritten as:

ρ
Dzi

Dt
=

∂

∂xj

(
λ

cpLe

∂zi

∂xj

)
+ ω̇zi (2.36)

where ω̇zi is the source terms for zi

ω̇zi =

Q∑
k=1

ω̇kaki
dk

(2.37)

If temperature is included in PCs, it’s possible to show how to include it in trans-

port equations for the PCs. Starting from the transport equation for temperature,



CHAPTER 2. MG-L-PCA 60

ρcp
∂T

∂t
+ ρcp

∂ujT

∂xj
=

∂

∂xj

(
λ
∂T

∂xj

)
+ Q̇R (2.38)

where Q̇R is the heat released by reaction, and introducing the material derivative,

Eq. 2.38 becomes

ρ
DT

Dt
=

∂

∂xj

(
λ

cp

∂T

∂xj

)
+
Q̇R

cp
(2.39)

If the mean temperature, T , is subtracted, a scaling factor, dT , is applied to the

centered variable and the weight of temperature on the i-th PC, aT i, is considered,

the following equation is obtained:

ρ

D

[
(T−T)
dT

aT i

]
Dt

=
∂

∂xj

[
λ

cp

∂

∂xj

(
T − T
dT

aT i

)]
+
Q̇RaT i
cpdT

(2.40)

When all variables are summed over in Eq.2.35, the source terms for zi becomes:

ω̇zi =
Q̇RaT i
cpdT

+

Q∑
k=1

ω̇kaki
dk

(2.41)

It’s possible to express Eq.2.36 in a more compact form:

ρ
D

Dt
(Z) = −∇ (jZ) + ω̇Z (2.42)

where jZ is the mass diffusive flux of Z.

A prerequisite of the previous equation is that the matrix of PCs coefficients,

A, is constant. As the PCA analysis is based on the processing of a multitude of

observations in both space and time, A is constant by construction.
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2.2 Local PCA

The PCs are uncorrelated by construction but they can be highly statistically

dependent, especially when the relationship among the correlated variables is non-

linear, as it usually happens for a reacting system. In order to find a more compact

description of the data in a low-dimensional space, a new approach was proposed,

known as Local Principal Component Analysis (LPCA) and largely applied

in the field of image processing[9]. According to LPCA, a vector quantization (VQ)

algorithm first partitions tha data space into disjoint regions (clusters) and then PCA

is performed in each of them, relying on the observation that if the local regions are

small enough, the data manifold will not curve much over the extent of the region

and a linear model will be a good fit.

For the LPCA to be effective, the VQ algorithm should not be independent of the

PCA analysis. Thus, it was introduced a VQ algorithm based on a reconstruction

error metric. The global reconstruction error for each observation Xi, from the

sample X, can be defined as:

ε
(
Xi −X

(k)
)

= ‖Xi −Xi,q‖ =
∥∥∥Xi −

(
X

(k)
+Zi,qA

T(k)
q

)∥∥∥ (2.43)

where X
(k) is the k-th cluster centroid, Xi,q is the rank q approximation of Xi,

Zi,q is the i-th value of the truncated set of PCs, Zq, and A
(k)
q is the matrix obtained

by retaining only the first q eigenvectors of the covariance matrix, S(k), associated

with the k-th cluster. The original LPCA algorithm was modified to include data pre-

processing (Section 2.1.0.7) in the quantization scheme and a very stable algorithm

was obtained by using a global scaled reconstruction error metric, εGSRE, defined as

[2]:

ε
(
X̃i − X̃(k), D

)
=
∥∥∥X̃i − X̃i,q

∥∥∥ (2.44)
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Figure 2.2: Schematic illustration of the VQPCA algorithm [2]

where X̃i is the observation of the sample scaled by D, the diagonal matrix whose

j-th diagonal element is the scaling factor dj associated to xj.

The proposed LPCA algorithm, briefly referred as VQPCA, can be summerized

as follows:

1. Initialization: the cluster centroid, X
(k), are randomly chosen from the data

set and S(k) is inialized to the identity matrix for each cluster.

2. Partition: each observation from the sample is assigned to a cluster using the

metric εGSRE.

3. Update: the clusters’ centroids are updated on the basis of partitioning.

4. Local PCA: PCA is performed in each disjoint region of the sample.

5. Steps 2-4 are iterated until convergence is reached.

The VQPCA algorithm is illustrated in Figure 2.2.

The reconstruction quality given by VQPCA is measured with respect to the

mean variance in the data as

εGSRE,n =
E (εGSRE)

E [var (x̃j)]
(2.45)
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where E denotes the expectation operator and x̃j is the scaled j-th variable from X̃.

If auto scaling is employed in data preprocessing, Eq. 2.45 reduces to

εGSRE,n = E (εGSRE) (2.46)

In order to obtain the partition of the data into clusters, the optimal approach

based on the minimization of the reconstruction error is the VQPCA algorithm, but

this approach can result computationally intensive for very large data sets (i.e. data

from DNS) [2]. Therefore, it was proposed to split the sample in bins of mixture

fraction and to perform the PCA analysis in each cluster. This algorithm, called

FPCA (as mixture fraction is indicated with the letter F), can be summerized as

follows:

1. Partition. The data are partitioned into bins of mixture fractions.

2. Local PCA. PCA is performed in each bin of the mixture fraction.

The advantage of this approach is twofold: first, the a priori knoledge of the par-

titioning variable simplifies the LPCA model implementation, moreover the use of

mixture fraction is particularly appealing due to its widespread use in the combustion

field [9].

A schematic representation of the FPCA method with 2 clusters is showed in

Figure 2.3. The data are partitioned into mixture fractions bins, i.e. rich and lean

regions, and a one-dimensional coordinate system is identified in each cluster. With

respect to the VQPCA method, FPCA allows a very fast clustering, but it is not

possible to state a priori that the choice of mixture fractions as conditioning variable

is the best choice.
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Figure 2.3: Schematic illustration of the FPCA algorithm for a CO/H2 flame [2]

It has been showed [9] that the two local PCA models, VQPCA and FPCA,

outperform the global approach, GPCA. Indeed, GPCA is unable to provide a

compact representation of the data in a low-dimensional space due the highly non-

linear relationship existing among the state variables.

2.3 MGPCA

Scores transport equations require the computation of diffusive fluxes and source

terms for the PC scores. As the PCs may be linear combination of all state vari-

ables (temperature and species mass fractions), the evaluation of source and diffusive

terms is not straightforward. For systems showing significant diffusion effects, the

evaluation of the diffusive fluxes in the PCA-score approach framework appear par-

ticularly challenging. Moreover, it can be shown that the error associated to the PCA

reconstruction strongly affects the calculation of source terms, whose accuracy de-

grades very quickly when reducing the number of parameters defining the manifold.

Indeed, the reconstruction of the temperature source term from the approximated
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state-space rapidly deteriorates when reducing the number of components, where the

same reduction does not affect temperature reconstruction [4].

The main reason for this observed behavior lies in the nature of the score-PCA

approach. The scores are linear combinations of centered and scaled variables and

this means that the PCA reconstruction error distributes among variables with very

different variances, without taking into account the absolute size of the variables.

As a consequence, radical species present in very small amounts are affected by

reconstruction errors of the same order of magnitude as the major variables, leading

to an uncontrolated propagation of error when the source terms are calculated from

the approximated state-space [4],[8].

Therefore, a new methodology to employ PCA in the construction of reduced-

order combustion models was developed. This model, called Manifold Generated

from PCA (MG-PCA), only requires classical transport equations for temperature

and species: only a subset of the state varibles is transported while the remaining

ones are recovered using the PCA transformation matrix [4].

2.4 MG-L-PCA

Limitations of PCA for the analysis of highly non-linear systems as the reactive

ones have been showed (Section 2.2): PCA tries to approximate the non-linear chem-

ical manifold by superimposing several linear effects. To avoid this problem, a local

PCA approach was proposed to carry out the partition of the data into clusters.

However, as such approach is based on the resolution of transport equations for the

scores, the number of PC equations increases with the number of clusters.

To address this problem and the major drawback of PCA related to the source

terms described in the previous Section, the current approach is theManifold Gen-

erated from Local PCA (MG-L-PCA), in which the local PCA is applied in
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the MG-PCA context [5].

2.4.1 MG-L-PCA method

Considering a X data-set [n x Q] of n observations of Q variables, in MG-L-PCA

method the classic transport equations are solved for a fixed subset of q variables

(q < Q), in contrast to the PCA discussed in Section 2.1.0.6 where q scores are

transported. The domain is divided in clusters according to a proper conditioning

variable but the q transported variables are the same in all the clusters. These are the

Principal Variables (PV) and they are selected during the pre-processing according

to one of the methods described in Section 2.1.0.8.

As PCA, the mean idea of MG-L-PCA is the identification of the q mostly active

directions for the data-set X that allow to approximate the state-space of the system

with a reduced number of optimal parameters:

X̃qj
= Zqj

AT
qj

(2.47)

where j = 1, 2, ..., NCL (NCL is the number of all the clusters), X̃qj
[nj x q]

is the q-dimensional approximation of X̃j [nj x Q](the centered and scaled data of

the j-th cluster with nj points), Zqj
[nj x q] is the matrix with the first q principal

component scores and Aqj
is the rectangular matrix containing the first q eigenvectors

of the covariance matrix Sj of the data-set of the j-th cluster, Sj = 1
nj−1Xj

TXj.

The MG-L-PCA approach is based on computing the q scores of the Principal

Variables in each cluster and recovering the others Q−q variables using the retained

PCs. If the q Principal Variables are considered in each cluster (X̃qj
, with j =

1, 2, ..., NCL), the corresponding scores Zqj
can be approximated through a subset
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of the eigenvector matrix Aqj
[Q x q][8]:

Zqj
= X̃qj

(
AT

qqj

)−1
(2.48)

where Aqqj
is the [q x q] matrix containing only the coefficients related to the

q retained variables. Depending on the number of the retained principal variables

contributing to the definition of Aqqj
, the approximated Zqj

scores can result in a

weak representation of the state space trough Eq.2.47. This can constrain the possi-

ble achievable reduction if Eq.2.48 is employed. However, the MG-L-PCA is built a

priori, allowing to simply overcome the limitation related to Eq.2.47 by considering

the actual first j scores,

Zqj
= X̃jAqj

(2.49)

and computing an optimized subset of the projection matrix, which also includes the

effect of the discarded variables [8]:

Bj =
(
AT

qqj

)−1
opt

= X̃−1qj
Zqj

(2.50)

Once the Bj is available, the non-transported thermo-chemical variables can be

approximated by

XQj
= X̃qj

Bj ·AT
qj
. (2.51)

The MG-L-PCA approach consists of the two steps [8],[5]: pre-processing and

prediction.

• A database is first generated, using canonical systems with the same chemical

composition of the systems to be simulated.
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• A classic PCA analysis is performed to identify the q Principal Variables (see

Section 2.1.0.8).

• A conditioning variable is chosen: in the context of non-premixed flames it

correspond quite well to mixture fraction, while for premixed ones temperature

appears to provide an optimal choice [8]. According to the value of this variable

each observation will be assigned to the corresponding cluster.

• An iterative algorithm is used to find the minimum number of clusters, NCL,

required to obtain a quasi-exact reconstruction of the training dataset (i.e.,

an R2 statistics > 99.99%, see Section 2.4.1.1 ) In particular, the data-set is

divided in clusters and, after centering and scaling, PCA is applied to find the

approximate variables reconstructed trough the scores of the principal variables

and the source terms obtained from these variables.

• The data-set is divided in NCL clusters and a PCA is applied in each one to

identify the low-dimensional manifold, represented by all the projection matri-

ces Aqj
. The corresponding Bj matrices are computed too and the centering

and scaling factors (see Section 2.1.0.7) used to scale and center the variables

in each cluster are stored to be used in the prediction step.

Prediction Transport equations are set to be solved for the q principal variables

identified in the pre-processing step.

At the end of each temporal iteration m, the following operations are performed:

• Conditioning. According to the conditioning variable, the domain is divided in

NCL cluster
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• Centering and scaling. Variables in each cluster are centered and scaled.

• Scores computing. PCs are computed in each cluster:

Z
(m)
qj = X̃

(m)
qj ·Bj [nj x q] = [nj x q][q x q]

• The Q− q missing variables are computed in each cluster:

X̃
(m)
Qj

= Z
(m)
qj ·AT

qj
[nj x Q] = [nj x q][q x Q]

where PV are subsequently replaced by the values of X̃
(m)
q

• Uncentering and unscaling. Variables in each cluster are uncentered and un-

scaled.

• Cluster fitting. To avoid discontinuities in the domain, the clusters are extended

by the 10% in each direction and in the overlapping zones a linear interpolation

between the reconstruction given by the two clusters are performed.

• Unconditioning. Data are recollected again in a unique matrix.

• Source terms computing. Source terms are computed with all the Q variables

S
(
X

(m)
Q

)
=
[

QR

ρmix·cpmix
, R1

ρ1
,R2

ρ2
, ..., RNC

ρNC

]
• Transport equation solving. Transport equations are solved for the q principal

variables.

2.4.1.1 Constrains of the method

In order to obtain an effective approach, two main conditions must be fullfilled [8]:

• The manifold Aqj
for each cluster should be identified from high-fidelity data-

sets sharing similarities with the systems to be modelled. Ideally, the data-sets

should be fast and easy to compute, to generate combustion models of tailored-

accuracy with affordable computational resources.
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• The principal varibles should allow an exact recontruction of the scores and

of the variables defining thermo-chemical state. This is crucial to ensure that

the source terms are accurately reconstructed for the reduced set of scalar

transport equations. To this purpose, the R2 statistics is used to quantify how

well the species mass fractions and source terms are approximated. For the

j-th species or source term, it’s possible to compute

R2
j = 1−

∑n
i=1

(
φij − φ̃ij

)2
∑n

i=1

(
φij − φj

)2 (2.52)

where φij refers to the i-th observation of the j-th variable or source term, φ̃ij

represents its reconstructed value and φj is the average of φj .



Chapter 3

MG-L-PCA Results

3.1 MG-L-PCA approach

In Chapter 2, PCA technique was showed and the motivations to adopt an improve-

ment of this method, the MG-L-PCA technique, were explained. In particular, the

preprocessing step necessary to include MG-L-PCA in a CFD solver was illustrated

and conditions to be fullfilled, in order to achieve a good reconstruction of involved

variables, were pointed out. In this Chapter, results obtained in the preprocessing

will be displayed, showing the information obtained for the employ of the MG-L-PCA

by the solver.

3.2 Preprocessing

As described in Chapter 2, preprocessing starts with the generation of a database,

using systems with the same chemical composition of the system to be simulated. In

the present work, data get through the laminarSMOKE solver for the flames analyzed
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in Chapter 1 were utilized.

3.2.1 Evaluation of the number of PV and the number of

clusters.

An iterative algorithm was applied to find the major reduction obtained by the MG-

L-PCA technique. In particular, if q is the number of transported variables and NCL

is the number of clusters, the MG-L-PCA is applied q x NCL times: every time the

dataset is divided in several clusters, variables are centered and scaled, scores are

computed in each cluster and the not trasported variables are reconstructed, unscaled

and uncentered. After the recollecting of all the data in one single matrix, source

terms obtained with the reconstructed variables are compared with the ones get by

the original data. Thus, it is possible to compute the R2 statistics that quantify the

reconstruction error for all the state variables and source terms. This procedure is

repeated for q = 1, ..., Q (if Q is the number of the variables involved in the simula-

tion) and for a an increasing number of clusters (for example for NCL = 1, ..., 20),

in order to cover all the combinations offered by several numbers of transported

variables and several numbers of clusters. In order to summerize the information

get through this analysis, it’s possible to report the minimum recontruction error

obtained for every iteration in two matrices, one for the minimum R2 statistics for

the reconstruction of state variables and one for the minimum R2 statistics for the

reconstruction of the source terms. To better illustrate these results, it is possible

to show these matrices in a graphical form.

When the optimal variables of principal variables and cluster has been estab-

lished, the MG-L-PCA is applied to get the information necessary for the pre-

diction step that will be performed by the solver, that is the matrices Bj and
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Aqj
(j = 1, ..., NCL), and the centering and scaling factors for each cluster. It should

be underlined that the reconstruction error both for the state variables and the source

terms must be low, in order to have a correct prediction of involved variables during

the numerical simulation.

3.2.2 Results

In the following paragraphs, the summary plots obtained with the hydrogen flame

analyzed in Chapter 1 will be displayed. The standard procedure to include MG-

L-PCA in numerical simulations starts with the study of one-dimensional flame,

in order to find the principal variables to be transported and the preprocessing

information previously elencated; these informations will be then adapted for higher-

dimensional flames. Therefore, the first reported summery plots will show results get

with a 1D flame with the same composition of the mentioned flame. Then, summary

plots obtained by the MG-L-PCA technique applied directly to the 2D hydrogen

flame will be illustrated.

In all the considerated cases, the criterion chosen to select the principal variables

is the B2, that appears as the method that provides the most accurate description

on the state space [8]. Moreover, as the flame is not premixed, mixture fraction is

chosen as conditioning variable.

H2 flame (1D) The analyzed flame has the same composition of the one shown in

Chapter 1. A detailed kinetic scheme was employed (POLIMI_H21201) to describe

the chemistry and MG-L-PCA was performed with a data-set of 1o variables: T ,

H2,

Plot showing the minimum R2 statistics for state variables are displeyed in Fig.
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Figure 3.1: H2 flame (1D): plots showing the minimum R2 statistics for state vari-
ables

3.1, while the plot showing the minimum R2 statistics for source terms is illustrated

in Fig 3.2.

To obtain the previous results, the standard (STD) scaling criterion was em-

ployed. Other scaling criteria were utilized to apply the MG-L-PCA technique, but

they show lower R2 statistics, leading to the conclusion that the STD method is the

best scaling criterion for these type of flame; Fig. 3.3-3.8 show plots get through the

adoption of the other scaling criteria: pareto, VAST, range.

H2 flame (2D) MG-L-PCA was applied to the same flame considered in the pre-

vious paragraph, adopting the same detailed kinetic scheme, but the dataset was

generated by the numerical simulation performed on a 2D grid; the numerical results

obtained for this flame have been shown in Chapter 1. The minimum R2 statistics

for state variables can be observed in Fig. 3.9, while the minimum R2 statistics for

source terms is reported in Fig. 3.10.
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Figure 3.2: H2 flame (1D): plots showing the minimum R2 statistics for source terms

Figure 3.3: H2 flame (1D): plots showing the minimum R2 statistics for state vari-
ables adopting the pareto scaling.
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Figure 3.4: H2 flame (1D): plots showing the minimum R2 statistics for source terms
adopting the pareto scaling

Figure 3.5: H2 flame (1D): plots showing the minimum R2 statistics for state vari-
ables adopting the VAST scaling.
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Figure 3.6: H2 flame (1D): plots showing the minimum R2 statistics for source terms
adopting the VAST scaling

Figure 3.7: H2 flame (1D): plots showing the minimum R2 statistics for state vari-
ables adopting the range scaling.
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Figure 3.8: H2 flame (1D): plots showing the minimum R2 statistics for source terms
adopting the range scaling

Figure 3.9: H2 flame (2D): plots showing the minimum R2 statistics for state vari-
ables
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Figure 3.10: H2 flame (2D): plots showing the minimum R2 statistics for source
terms

Also in this case, the standard scaling criterion seems to be the best one to achieve

the minimum recontruction error, as it can be deduced observing Fig. 3.11-3.16, that

display the minimum R2 statistic for the variables reconstructed with other scaling

criteria and the corresponding R2 statistic for the source terms.

Summary plots obtained with hydrogen flame, both in the 1D flame and in the

2D flame, indicate that a satisfactory reconstruction of the state variable and the

corresponding source terms can be achieved only with seven variables and several

clusters. For example, if the 1D flame is considered, the minimum R2 statistics

with 20 clusters for source terms is 0.95 (corresponding to the reconstruction of the

source term for H2O2); in Fig. 3.17, all the R2statistics for the reconstruction of

state variables and source terms, obteined with the choose of 7 PV (OH, H2O2, H2,

HO2, O, H2O, H) by the B2 method, adopting the stardand scaling criterion and

splitting the domain in 20 cluster, are elencated.
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Figure 3.11: H2 flame (2D): plots showing the minimum R2 statistics for state vari-
ables adopting the pareto scaling.

Figure 3.12: H2 flame (2D): plots showing the minimum R2 statistics for source
terms adopting the pareto scaling
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Figure 3.13: H2 flame (2D): plots showing the minimum R2 statistics for state vari-
ables adopting the VAST scaling.

Figure 3.14: H2 flame (2D): plots showing the minimum R2 statistics for source
terms adopting the VAST scaling
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Figure 3.15: H2 flame (2D): plots showing the minimum R2 statistics for state vari-
ables adopting the range scaling.

Figure 3.16: H2 flame (2D): plots showing the minimum R2 statistics for source
terms adopting the range scaling
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chemical species R2 state variables
T 0.999999
OH 1.000000
N2 1.000000
H2O2 1.000000
O2 1.000000
H2 1.000000
HO2 1.000000
O 1.000000
H2O 1.000000
H 1.000000

chemical species R2 source terms
T 0.999990
OH 0.996999
N2 1.000000
H2O2 0.948889
O2 0.999987
H2 0.999985
HO2 0.975866
O 0.999875
H2O 0.999967
H 0.999771

Figure 3.17: 1D hydrogen flame: R2statistics for the reconstruction of state variables
and source terms. Method to select PV: B2. Scaling criterion: STD. Number of PV:
7. Number of clusters: 20.

3.3 Solver

In the previous subsection, results obtained from the preprocessing were illustrated,

showing the possibility to transport only a subset of the original state-space variables,

in particular 7 PV for an hydrogen flame. Therefore, the matrices Bj and Aqj
(j =

1, ..., NCL), and the centering and scaling factors for each cluster, used to reconstruct

the not transported variables by the MG-L-PCA in the preprocessing, were stored

both for the 1D flame and the 2D flame.

Next step should be the modification of the laminarSMOKE solver to include

the MG-L-PCA technique for the transport equations resolution. Goal of future

works could be the simulation of the same flames with the modified solver and the

comparison of the results obtained with the new methodology.

Moreover, hydrogen flames were chosen to the validation of the MG-L-PCA be-

cause chemistry involved in H2 combustion is well-know and can be described with

a small number of species, but a technique able to reduce the computational cost of
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numerical simulation would be more appealing for complex systems and, the more

complex the system is, the higher the reduction is supposed to be. Thus, when the

hydrogen test-case will be tuned, the MG-L-PCA could be applied to simulate more

complex systems, as flames feed with methane.

The MG-L-PCA technique could lead to a sensible reduction of the computational

costs, due to a twofold effect: the former is the reduction of the number of transport

equations to be solved, the latter is the possibility to obtain a reduce stiffness of the

numerical systems, because of the smaller differences in orders of magnitude of the

involved variables.



Conclusions

In this thesis, the Manifold Generated from Local Principal Component Analysis
(MG-L-PCA) was presented, illustrating a new methodology to reduce the compu-
tational cost of numerical simulations of complex reactive flows, by the resolution of
only a subset of the transport equations.

In particular, it has been shown the development of this technique from the

Principal Component Analysis (PCA), that transforms the data through a linear

projection onto a lower-dimensional space, retaining as much as possible of the vari-

ation present in the data-set. An overview of the coupling of this technique with

a CFD solver was proposed; methods to select the variables to be transported, the

Principal Variables (PV), have been elencated and the optimal criteria to obtain all

the necessary information from the preprocessing step have been showed. Required

data-sets for the preprocessing employed in this work have been get from a new solver

able to simulate laminar flames (laminarSMOKE), the same that could be modified

in order to apply the MG-L-PCA to predict the behavior of these flames. There-

fore, the laminarSMOKE framework was previously presented, showing the governing

equations, the numerical methods employed to solve them and the kinetic schemes

adopted to describe the chemistry. Several laminar flames, feed with hydrogen and

methane, were simulated with this new solver and computed results have been com-

pared to the experimental values. As the agreement was satisfactory, the feasibility

and accuracy of this tool was beared out.
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The MG-L-PCA technique was eventually applied to two datasets of the same hy-

drogen/air flame, the former modelled in one-dimension, the latter two-dimensional.

Summary plots displaying the reconstruction errors for the not transported values

and source terms pointed out the possible to achieve a reduction of the variables

to be transported, while preserving a fair accuracy. Additional work is required to

include the MG-L-PCA in the solver, in order to simulate also more complex systems

with lower computational costs.
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Appendix A

Skeletal mechanism

Profiles obtained for CH4 flames shown in Chapter 1 applying the skeletal mech-

anism are plotted with the values obtained with the detailed mechanism and the

experimental values in Fig. A.1-A.7 .

89



APPENDIX A. SKELETAL MECHANISM 90

Figure A.1: Profiles of temperature along the flame centerline, as functions of nondi-
mensional axial position ( z

HT
). Symbols for experimental data do not indicate specific

data points.
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Figure A.2: Profiles of CH4 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.
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Figure A.3: Profiles of O2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.
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Figure A.4: Profiles of H2O mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.



APPENDIX A. SKELETAL MECHANISM 94

Figure A.5: Profiles of CO2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.
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Figure A.6: Profiles of OH mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.
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Figure A.7: Profiles of C2H2 mole fractions along the flame centerline, as functions of
nondimensional axial position ( z

HT
). Symbols for experimental data do not indicate

specific data points.


