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Abstract

The problem of unilateral constraints, such as frictionless and frictional contact phe-

nomena, in multi-rigid-body problems, is characterized by a nonsmooth dynamics.

By and large there are two ways to approach this nonsmoothness: continuous contact

approaches and hard constraint (complementarity) approaches. The �rst ones use

a regularization of the nonsmooth aspects of the problem, e. g. by substituting the

impenetrability constraint with sti� reaction laws at contact. The complementarity

approach is built on the basis of a mathematical framework able to consistently

describe solutions that include nonsmoothness, and leads to the description of the

phenomena in terms of Complementarity Problems.

This work originates from the interest to integrate some form of modeling unilat-

eral constraints in the MBDyn multibody dynamics software. First, the continuous

contact approach has been considered, and constitutive laws based on this regu-

larization approach have been implemented and tested. Then the state of the art

for the complementarity approach has been reviewed, and the classic Moreau-Jean

timestepping has been considered in order to add a tool for implementing frictionless

and frictional contacts in the MBDyn software. The focus of the exploration has

been on retaining the robustness and accuracy of the DAE integration implemented

in MBDyn, along with its powerful modeling capabilities, and the robustness and

rigorous approach in dealing with nonsmooth events of the NonSmooth Contact

Dynamics framework.

A co-simulation approach of the smooth dynamics through MBDyn alongside

the application of timestepping methods to the nonsmooth part of the problem has

been developed and tested. A validation of the approach has been made through

comparison with models simulated entirely with state-of-the-art nonsmooth dynam-

ics software Siconos and with a recently developed method that combines the HHT

integration method with the time-stepping schemes to obtain a higher order event-

capturing integration. Following that same approach an adaptation of the multistep

integration scheme used by MBDyn to nonsmooth dynamics has been made. A more

complex application of aerospace interest and an application with frictional contact

have been developed with the co-simulation approach, in order to gain insight to

the strenghts and weaknesses of the method.
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Sommario

I problemi che comprendono vincoli unilaterali, come contatti con e senza attrito,

in sistemi multicorpo rigidi, sono caratterizzati da una dinamica nonsmooth, ovvero

con forti proprietà di irregolarità.

Possono essere a�rontati in due modi principali: con una regolarizzazione del

problema, metodi continuous contact, o con metodi nonsmooth event-capturing o

event-driven che si basano su un quadro matematico consistente con le caratteris-

tiche nonsmooth, tramite il quale la soluzione della dinamica diviene un problema

di complementarietà.

Questo lavoro nasce dall'interesse ad integrare la possibilità di modellare vincoli

unilateri nel software per la dinamica multicorpo MBDyn. Si è inizialmente consid-

erato lo stato dell'arte per l'approccio continuous contact, e sono state implementate

e testate leggi costitutive che ne consentono l'applicazione. Successivamente l'ap-

proccio nonsmooth, ed in particolare il metodo event-capturing introdotto da More-

au e Jean, è stato studiato con lo scopo di aggiungere uno strumento per gestire

contatti con attrito in MBDyn. L'obiettivo dell'approccio esplorato è stato quello

di mantenere l'integrazione di problemi di�erenziali algebrici (DAE) implementata

in MBDyn, per trarre vantaggio dalle sue caratteristiche di accuratezza e versatil-

ità nei problemi multidisciplinari, e trattare parte del problema con un approccio

consistente con le sue caratteristiche nonsmooth.

Si è sviluppato quindi un metodo di co-simulazione che prevede una parte della

dinamica del problema integrata da MBDyn assieme ad una parte della dinamica

che risente direttamente di caratteristiche nonsmooth integrata tramite un metodo

nonsmooth event-capturing. Una validazione empirica dell'implementazione è sta-

ta e�ettuata tramite la comparazione con risultati dal software stato dell'arte per

la dinamica nonsmooth Siconos. Traendo spunto da un recente lavoro si è inoltre

sviluppato un adattamento dello schema di integrazione multistep usato in MBDyn

a problemi di dinamica nonsmooth, ed i risultati di questo metodo su semplici esem-

pi hanno ulteriormente validato l'approccio di co-simulazione. Una più complessa

applicazione del campo aerospaziale comprendente contatti senza attrito è stata

testata con successo. Una estensione del metodo alla modellazione di contatti con

attrito è stata applicata ad un modello di meccanismo deambulante.
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Chapter 1

Introduction

Many engineering problems involve the simulation of multibody dynamical systems

composed of several rigid bodies as well as joints, contacts (non-interpenetration),

and friction constraints.

Although �nite element analysis is a powerful and accurate method to simulate

contact problems, for many applications the method of multi-rigid-body systems is

the most e�cient for the dynamic analysis of the overall motion of mechanical sys-

tems. Therefore the numerical dynamics of collections of bodies treated as perfectly

indeformable, subject to the constraints of non-interpenetrability, with friction taken

into account in the event of contact, is currently an active domain of research.

The problem of unilateral constraints, such as frictionless and frictional contact

phenomena, in multi-rigid-body problems, is characterized by a nonsmooth dynam-

ics. To quote J.J.Moreau [35]:

In fact 'Nonsmoothness' is the salient feature of the problems in view.

After the set of possible positions of the investigated system has been

parametrized through an element q ∈ Rn, the geometric restriction that

the non-interpenetrability constraints impose on q are formulated as a

set of inequalities. Hence, instead of running in a smooth manifold, as in

traditional analytical dynamics, the point q is con�ned in a region of Rn

whose boundary is made of a lot of hyper-surfaces: this is nonsmoothness

in space. Furthermore, collisions are expected to induce velocity jumps:

this is nonsmoothness in time. To end, the contact forces or 'reactions'

associated with the non-interpenetrability constraints are governed by

highly irregular laws. These forces vanish as soon as the corresponding

contacts break while, if contact holds, the commonly stipulated mechan-

ical conditions do not express them as functions of q. If in addition, dry

friction is taken into account (usually in the form of Coulomb's law), it

introduces some irregular relationships between contact forces and the

1



CHAPTER 1. INTRODUCTION 2

sliding velocities. All this may be called nonsmoothness in law.

By and large there are two ways to approach this nonsmoothness: continuous

contact approaches and hard constraint (complementarity) approaches.

In the �rst ones, which are regularization approaches, also called penalty meth-

ods, it is assumed that every time two rigid bodies come in frictional contact, the

interaction can be represented by a collection of sti� springs along with damping

elements that act at the interface of the two bodies. By allowing a small interpene-

tration between bodies and including in the model the sti� contact forces originated,

this �continuous contact� approach allows the adoption of normal ODE or DAE in-

tegrators, requiring little e�ort on the programming side, which is an important

advantage. The immediate disadvantage is that the resulting DAE can be quite

sti�, and this in turn leads to a heavy computational burden. Moreover, the need

to tune many physical parameters on a case-by-case basis to describe the contact

interactions is not always welcome by end users.

The complementarity approach is built on the basis of a mathematical framework

able to consistently describe solutions that include nonsmoothness, avoiding the need

to formulate sti� regularized problems.

There exist two types of numerical schemes for the integration of these nons-

mooth systems: the event-driven schemes and the event-capturing, or time-stepping,

schemes.

The event-driven type, is based on a decomposition of the dynamics in the time

intervals in which the dynamics is smooth and the discrete events, i.e. times of

non-di�erentiability of the solution. Between events the solutions are di�erentiable

enough, so that any high-order scheme for the solution of ODE or DAE may be

used until an event is detected. Detection and localization of the nonsmooth events

must be accurate enough so that the order is preserved, and followed by a reinitial-

ization of state, implementing an integrate-detect-restart procedure at each change

of status of the contacts. The main drawbacks of this approach are the need of

an accurate detection of the time instant at which there is an event, and the fact

that they may fail when handling multiple unilateral constraints, because there is

no way to guarantee an upper bound on the number of subproblems to solve in �nite

time intervals, e.g. in presence of Zeno like accumulation phenomena . Also in this

framework it is not possible to establish a general convergence proof.

The principle of the time-stepping schemes, also described as event-capturing, is

to write down a time discretization of the whole dynamical system (the smooth dy-

namics, the complementarity conditions) and to form a nonsmooth one-step problem

which, once solved, allows the scheme to advance from step k to step k + 1, through

the solution of a complementarity problem, or a quadratic problem, or a projection

algorithm. Convergence results have been proved. The advantages are the ability to
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accommodate a large number of events (e.g. accumulations) and the ability to work

without accurate detection of the events. A drawback is their low order (higher

order methods may be applied in some cases, however, the nonsmoothness brings

back the order to one).

This work originates from the interest to add tools for modeling unilateral con-

tacts in the MBDyn Multibody Dynamics software (http://www.mbdyn.org/). MB-

Dyn is a free general purpose Multibody Dynamics analysis software, released under

GNU's GPL, developed at the Dipartimento di Ingegneria Aerospaziale of the Uni-

versity "Politecnico di Milano". The aim of this work has been on retaining the

robustness and accuracy of the DAE integration implemented in MBDyn software,

while adding the capability to deal with frictionless and frictional contacts.

First (2), the continuous contact approach has been considered, and constitutive

laws based on this regularization approach have been implemented and tested.

Then an event-capturing method, the nonsmooth contact dynamics, has been

considered (3), in order to add a tool for implementing frictionless and frictional

contacts in the MBDyn software. A solution that avoided rewriting the general ar-

chitecture of the MBdyn software, with its accurate and e�cient integration method

and its versatile library of elements for heterogeneous problems, has been explored

(4). This approach, a form of co-simulation, consists in a coupled integration with

a part of the model integrated with classic DAE schemes and at the same time a

part integrated with time-stepping schemes. It is expected that for suited applica-

tions this approach allows for a satisfying solution of the frictional contact problem

and retains some of the properties of MBDyn integration in the smooth phases of

motion.

A dynamically loaded module for the software MBDyn has been developed and a

validation of that approach has been made through a comparison with simple models

simulated entirely with state-of-the-art nonsmooth dynamics software Siconos. Then

a recently developed method adapting the Newmark-type HHT integration scheme

to the nonsmooth framework to obtain a higher order event-capturing integration

has been considered (5). The same approach has been applied to the multistep

integrator used by MBDyn. A comparison with the two methods and the developed

co-simulation has been made on simple examples, and the results have been used to

empirically validate this last approach.

A more complex application of aerospace interest has been tested, in order to

gain insight to the strenghts and weaknesses of the co-simulation approach, while

demonstrating its robustness and versatility (6). An extension of the module devel-

oped to include frictional contact ha been developed, and applied to a model of a

simple walking mechanism (7).



Chapter 2

A Continuous Contact Approach

A common approach in dealing with the nonsmooth nature of contact phenomena is

to apply a smoothing approximation, to replace the nonsmooth governing relation-

ships by a regularization in the description of non-interpenetration and frictional

constraints. The non-interpenetrability constraints are replaced by some sti� repul-

sion laws which take e�ect as soon as two members of the system come close to each

other. A local deformability is assumed and continuous non-impulsive contact forces

are integrated in the time-steps during which the contact take place. Models of the

constitutive force-displacement law are necessary in order to evaluate this forces.

This automatically handles the possible collisions as long as one considers them

elastic, while the dissipation of energy in collisions may be accounted for by adding

some damping actions or by using di�erent repulsion laws in the episodes of ap-

proach and of separation. It is a popular approach because of the simplicity of

implementation in already existing codes for multibody analysis, since it consists in

adding sti� contact forces to the DAE equations integrated by standard solvers.

A review of some formulations of the contact force law is presented here. It

is followed by the description of an implementation of this approach in MBDyn

(http://www.mbdyn.org), a free software for multibody analysis developed at Po-

litecnico di Milano, and by the results of some simple tests, to serve as benchmarks

for subsequent comparisons with di�erent approaches.

2.1 Dissipative contact force models

The simplest model to represent the variation of force induced at the surfaces of

two bodies in contact is equivalent to that of a parallel spring-damper element. The

model is referred to as the Kelvin-Voigt model.

FN = Kδ +Dδ̇

4
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where FN denotes the normal contact force, K is the spring sti�ness and δ represents

the relative penetration or deformation of the colliding bodies, D is the damping

coe�cient of the damper and δ̇ represents the relative normal contact velocity.

This model has the advantage of simplicity, but presents weaknesses. The contact

force at the moment of impact is not null, due to the damping component which is at

its maximum at the beginning of contact. This discontinuous behavior is not realistic

because when the contact begins, both elastic and damping force components must

be null. Moreover, at the end of the restitution phase, the penetration is null, the

relative contact velocity is negative and, thus, the resulting contact force is also

negative. This indicates that the bodies in impact must exert tension on each other

right before separation, which does not make sense from a physical point of view.

Other popular force models to represent the collision between two bodies are

based on the work by Hertz [17], founded on the elasticity theory [15, 45] .

The Hertz theory is restricted to frictionless surfaces and linearly elastic solids,

and it is subject to the hypothesis that the zone of contact is of small dimensions in

comparison with the radii of curvature of the impacting bodies in its vicinity and

that it has a very large radii of curvature in comparison with its linear dimensions.

The force-approach law relates the contact force with a nonlinear power function

of penetration or deformation of the colliding bodies δ and is expressed as

FN = Kδn

The parameters in the model are determined based on the geometric and material

properties of the contact surfaces.

For a contact between a sphere i and a plane surface body j, the generalized sti�-

ness parameter depends on the radius of the sphere Ri and the material properties

of the contacting surfaces, and can be expressed as

K =
4

3 (σi + σj)

√
Ri (2.1)

in which the material parameters σi and σj are given by

σ =
1− ν2

E

The exponent n is set to 3
2
in cases where there is a parabolic distribution of

contact stresses, and can be set either higher or lower for di�erent materials and

geometric con�gurations, using experimental results.

To this strictly elastic reaction a damping term must be added to represent the

energy loss during the contact process.

Hunt and Crossley [20] developed a model based on the observation that for
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most materials with a linear elastic range and for velocities not exceeding 0.5m/s

the value of the restitution coe�cient appears to be related to the initial impact

velocity as:

e = 1− αδ̇(−) (2.2)

where e is the restitution coe�cient, while δ̇(−) is the velocity at the moment of

impact.

With the assumption that the energy dissipated during the contact is relatively

small when compared to the maximum absorbed elastic energy the following expres-

sion has been developed:

FN = Kδn +Kδn · 3

2
(1− e) 1

δ̇(−)
· δ̇ (2.3)

The Hunt and Crossley force model expresses the damping as a function of

penetration, which sounds physically reasonable. Furthermore, this model does not

present discontinuities at the initial instant of contact and at the end of contact,

i.e., it starts and ends with zero value.

A similar continuous contact model, using the Hertz contact law together with a

hysteresis damping law has been proposed by Lankarani e Nikravesh [28, 27].

It shares with the former law the hypothesis that the energy dissipated during

the contact is relatively small compared to the maximum absorbed elastic energy.

This assumption results in laws that perform poorly for contacts with a low value

of the coe�cient of restitution, so the optimal range is for values of the coe�cient

of restitution close to 1.

Unlike the Hunt and Crossley law the analytical formulation here is not based

on the assumption in equation (2.2).

FN = Kδn +Kδn · 3

4

(
1− e2

) 1

δ̇(−)
· δ̇ (2.4)

By analyzing equation (2.3) and equation (2.4), it can be observed that for a

perfectly elastic contact, i.e. e = 1, the hysteresis damping factor assumes a zero

value, while for a perfectly plastic contact, i.e. e = 0, the hysteresis damping factor

does not assume an in�nite value as it would be expected.

More recently, Flores et al. [10] described a contact force model that has a

realistic characteristic also for plastic and soft materials. This contact force model

was developed with the foundation of the Hertz law together with a hysteresis damp-

ing parameter that accounts for the energy dissipation during the contact process.

FN = Kδn +Kδn · 8

5

(1− e)
e

1

δ̇(−)
· δ̇ (2.5)
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equation (2.5) shows that for a perfectly elastic contact, i.e. e = 1, the value of the

hysteresis damping factor is zero, and when the contact is purely plastic, i.e. e = 0,

the hysteresis damping factor tends to in�nity, which is reasonable from a physical

point of view and gives a more accurate correspondence between the coe�cient of

restitution given as input and the e�ective restitution, particularly for low values of

the former.

All these methods require the choice of parameters like K, D, n and e which

depend on the geometry and the material of the bodies in contact and which can

be the object of experimental study or obtained with a more accurate �nite element

analysis.

2.2 Implementation of continuous contact in MB-

Dyn

MBDyn is an free general-purpose multibody dynamics analysis software, released

under GNU's GPL 2.1 (http://www.mbdyn.org). It features a library of elements

that allows to simulate the behavior of heterogeneous mechanical, aeroservoelastic

systems. It has been developed at the Dipartimento di Ingegneria Aerospaziale of

the University "Politecnico di Milano", Italy.

A penalty method to account for contacts and impacts has been added to MB-

Dyn, following an approach analogous to the one that has been implemented in

commercial softwares like MSC ADAMS to deal with contacts through a �penalty�

or regularized approach.

In order to be able to examine this approach in subsequent comparisons with

other solutions, a module has been developed to implement the Hunt Crossley,

Lankarani Nikravesh and Flores et al. formulations in form of constitutive laws to

be used in conjunction with 1-dimensional and 3-dimensional deformable elements

between the nodes involved in the contact.

Constitutive laws, as implemented in MBDyn, are generic implementations of

constitutive relations in the form f = f(ε, ε̇) to be used by di�erent deformable

joint elements, for example a viscoelastic law. The joint elements de�ne how ε

and ε̇ are computed from the kinematic of the model, and how the resulting force

f = f(ε, ε̇) , given by the constitutive laws, is applied. Constitutive laws are also

used in non-structural components, to allow some degree of generality in de�ning

input/output relationships. Therefore it is possible to call di�erent constitutive laws

in elements without having to hardcode the same into the element, and so reusing the

same implementation for di�erent types of elements. Moreover, the constitutive law

has been implemented leveraging the ability of MBDyn of loading dynamic runtime
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Figure 2.1: Bouncing ball problem

Table 2.1: Bouncing ball problem: parameters
radius R [m] 0.1
height h [m] 1.0
mass m [kg] 1.0
gravity acc. g [m/s] −9.81
timestep [s] 1.e− 5
Newton coef. of restitution 0.8

modules through GNU's libltdl, so the implementation could be added as a loadable

module without altering the base code.

To test the implementation presented it has been applied to some simple exam-

ples, often used as benchmark in testing contact problems approaches. It consists

of a spherical mass accelerating towards a horizontal plane along its normal due

to gravity force. Geometrical and inertial properties of the problem are showed in

table 2.1.

A generalized sti�ness parameter has been determined using equation (2.1) with

the hypothesis that both the ball and the plane material is steel, resulting in K =

2.4 · 1010N/m
3
2 , and the exponent of the Hertz formulation is set to n = 3

2
.

The in�uence in the use of di�erent dissipative contact force models is illustrated

in �gure 2.2, 2.3, showing the dynamics computed for two values of the coe�cient

of restitution: e = 0.2 and e = 0.8. The results show the vertical position of the ball

vs time and the hysteresis plot relative to the �rst bounce. The correlation between

the input and the resulting coe�cients of restitution is summarized in 2.4.

The Flores et al. model of equation (2.5) dissipates more energy for low restitu-

tion coe�cients as shown by the larger hysteresis loop, and as a result the rebounding

velocity is lower than with the other contact force models. Hunt and Crossley and

Lankarani an Nikravesh model tend to underestimate the energy loss in impacts

involving lower values of the restitution coe�cient.
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Figure 2.2: Bouncing ball model, coe�cient of restitution e = 0.8. Vertical position
vs time. Force-penetration relation.
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Figure 2.4: E�ective dissipation with the three models, function of the input coe�-
cient of restitution

The comparative behavior in terms of the input restitution coe�cient and the

resulting output responses is illustrated in �gure 2.4. The closer the data-points to

the 45-degrees dashed line, the more closely the contact force model used represent

the contact-impact process.

As indicated in table 2.1 the timestep used for the simulation is very small. It

cannot be increased further, since the solution with larger timesteps does not con-

verge, due to the sti�ness introduced in the problem. This highlights the immediate

disadvantage of the regularization approach, which is that the resulting DAE can be

quite sti�. The presented laws are based on a physical interpretation, but may be

possible to tune the parameters in order to achieve the desired compromise between

accuracy and computational e�ciency, but the tradeo� remains. The more accurate

the approximation, the sti�er the problem. Also it may not be easy, or convenient

for certain applications, to tune the parameters of the smoothing approach.



Chapter 3

Non Smooth Contact Dynamics

3.1 Non Smooth Contact Dynamics framework

In the following it is presented the Non Smooth Contact Dynamics (NSCD) frame-

work. This chapter only describes the framework and the NSCD algorithm, and the

steps taken in order to familiarize with the method, while the innovative contribu-

tion is the way it will be applied in chapter chapter 4. The approach followed is

originated from Moreau and Jean seminal papers [34, 35, 21], and the notation used

here to formulate the problem follows a version of the NSCD introduced in [2]. In

this section the theory later applied is brie�y presented. A frictionless impact law is

�rst illustrated, and the formulation of the dynamics problem in terms of measure

di�erential inclusions and its discretization is shown. The solution of the time dis-

cretized problem as an LCP problem is brie�y treated. The subsequent section in

this chapter illustrates the steps taken to �rst familiarize with the Non Smooth Con-

tact Dynamics algorithm. An implementation of the NSCD has been �rst tested on

simple examples and compared with state-of-the-art nonsmooth software Siconos's

results. A DAE problem reduced to ODE with a direct elimination of Lagrangian

multipliers has been solved using standard components of the SiconosKernel library.

Mechanisms involving contacts and impacts between parts can be modeled in

terms of multibody systems with unilateral constraints. The simulation of rigid

contacts requires the solution of nonsmooth equations of motion: the dynamics is

nonsmooth because of the discontinuous nature of non-interpenetration, collision,

and adhesion constraints.

An approach that allows for robust and e�cient simulation of this problems is the

time-stepping, or event-capturing, method, originated from the work of J.J.Moreau

and M.Jean [34, 35, 21]. In this seminal works the unilateral contact between rigid

bodies received a formulation in terms of elementary convex analysis which proves

12
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suitable for computation.

Mathematically, the nonsmooth evolution problems are governed by measure

di�erential inclusions. The directing idea of this contact dynamics approach is that

the main object of computation is the velocity function t→ u ∈ Rn, that has to be

a function of locally bounded variation. Time-stepping algorithms essentially have

to determine the evolution of this function, by applying the principles of dynamics

and the speci�ed force laws. The position function t → q is only to be updated at

each step through adequate integration.

This method has the advantage of not requiring an explicit event handling and

accurate collision detection, and accumulations of events or a large number of events

in �nite time are handled without di�culties. Furthermore, the convergence analysis

of this family of schemes leads to existence of solutions for rather complicate systems

[31, 40]. The numerical algorithms that can be obtained are robust and e�cient, and

e�ciency is the main advantage over the penalty methods that require the inclusion

of sti� forces to the problem and are impractical for problems with a high number

of unilateral constraints. The main drawback of this approach is that the solutions

have only �rst order accuracy.

Here are considered velocity-impulse LCP-based time-stepping methods. The

introduction of inequalities in time-stepping schemes for Di�erential Variational In-

clusions, leads to linear complementarity problems (LCP), which are systems of

complementary inequalities to be satis�ed simultaneously. These LCP problems

must be solved at each time step in order to advance the integrator.

There exist di�erent classes of LCP solvers. For a detailed overview of Comple-

mentarity Problem solvers see [2]. It is considered for the implementations in this

chapter and in chapter 5 a quite straightforward solver based on simplex methods,

also known as direct or pivoting methods, originating from the algorithms of Lemke

and Dantzig.

Three-dimensional Coulomb friction problems result in nonlinear complementar-

ity problems (NCP). It is possible, through the use of a polyhedral approximation to

morph the friction cones as faceted friction pyramids, to cast the NCP into an LCP,

and solve it in a way not dissimilar to the frictionless method presented here.. This

approach to the frictional problem is the one chosen for extending the co-simulation

approach to frictional cases in chapter 7 because of the simplicity of its implemen-

tation. This solution is not optimal because it introduces arti�cial anisotropy in the

friction phenomenon, and augment the dimensions of the problem to solve, but it

is meant to be applied to multibody problems with a limited number of unilateral

constraints.
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3.1.1 Frictionless impact law

A formulation of a frictionless impact law to be used in the following is explained

here.

There are at least two historical approaches to impacts: Newton's kinematic

impact law, which reverses the sign of the relative velocity at the impact and takes

into account dissipation with a coe�cient 0 < ε < 1

v+ = −εv−

and Poisson's impact law, which requires a decomposition of the impact process

into a compression phase (−) and a decompression phase (+) in order to de�ne the

restitution coe�cient ε by the ratio of the corresponding impulsive forces,

Λ(+) = εΛ(−)

A complete review of the frictionless collision problem in rigid-body dynamics

can be found in [14].

Let us now state the unilateral version of Newton's impact law for a single contact

.

Having de�ned rD as the distance between the two proximal points between two

bodies and n as the normal to one of the points coming in contact we can write the

gap function de�ning the unilateral constraint as:

g(q, t) = nTrD > 0

And its derivative ġ, the normal relative velocity, as:

ġ = nT (vC1 − vC2)

where vCiare the absolute velocities of the rigid-body contour points involved in

the contact.

The post- and pre-impact normal relative velocities, bounded variation func-

tions (functions admitting a numerable set of discontinuities and having both a left

and right limit for every time instant t), with possible discontinuities re�ecting the

impact, can be expressed as:

ġ± = HT (q, t) · u± + ŵ

The problem will be now stated in a form suitable to describe systems with

multiple contacts.

We assume a total of m simple unilateral constraints gi(q, t) > 0 de�ning, for
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any �xed time t, the feasible displacements C , and denote by Ia the active set at a

probable impact event(q0, t0).

C := {q|gi(q0, t0) > 0, i = 1, ...,m} Ia := {i|gi(q0, t0) = 0}

Newton's impact equations for a multi-contact con�guration then read :

M (u+ − u−) = 0 if g > 0 (3.1)

M (u+ − u−) =
∑

i∈IaHiΛi, (i ∈ Ia), if g ≤ 0 (3.2)

ġi
+ + εiġi

− > 0, Λi > 0, (ġ+
i + εiġ

−
i ) ·Λi = 0 (3.3)

equation (3.1) concerns the case of open contact.

With a closed contact the equation (3.2) is derived from the Newton Euler or

Lagrange equations, formulated as an equality of measures and integrated over a sin-

gleton {t0}, in which a jump in velocity may happen. Together with equation (3.2),

equation (3.3) is a complementarity condition expressing the following physical be-

havior. The impulsive force, if there is any, should act as a compressive magnitude,

Λ ≥ 0. In the case of a non-vanishing impulse (Λ > 0) we apply Newton's impact

law as usual, i.e. ġ+ = −εġ , which is expressed by the third condition in equa-

tion (3.3). The magnitude ε denotes Newton's coe�cient of restitution with the

usual values 0 ≤ ε ≤ 1. The case ε = 0 corresponds to a completely inelastic impact

with vanishing post-impact relative velocity (ġ+ = 0), whereas ε = 1 represents a

completely elastic impact at which the relative velocity ġ+ is inverted ġ+ = −ġ−.
Suppose now that, for any reason, the contact does not participate in the impact,

i.e. that the value of the impulsive force is zero, although the contact is closed. This

happens normally for multi-contact situations as explained in the next paragraph.

For this case we allow post-impact relative velocities higher than prescribed by

Newton's impact law in the case of a non-vanishing impulse, ġ+ = −εġ−, in order

to express that the contact is super�uous and could be removed without changing

the contact-impact process. The graph of Newton's impact law in inequality form is

depicted in �gure 3.1 and is a unilateral primitive moved horizontally and expressed

by the complementarity conditions Λ > 0, ġ+ + εġ− > 0, Λ · (ġ+ + εġ−) = 0 .
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Figure 3.1: Newton's impact law (�gure from [14])

In multi-contact problems there may be con�gurations at which no impulses

are transferred at the contacts, although they are or have just been closed. There

are two di�erent classes of multi-contact impact problems which usually occur in

combination and which are here illustrated by an example each.

Figure 3.2: Impact of a rod against two obstacles (�gure from [14])

Figure 3.3: Rocking rod example (�gure from [14])

The �rst class is characterized by the event that several contacts close at the

same time, such as the rigid rod which impacts with two obstacles as depicted in

�gure 3.2. Note that it depends on the displacements of the obstacles relative to

the rod whether impulses are transferred or not. When the obstacles are arranged

on di�erent sides of the rod's center of mass, one has Λ > 0 for both contacts

and thus, for a completely inelastic impact (ε = 0) vanishing post-impact velocities
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γ+ = 0. This situation is depicted in �gure 3.2b. In �gure 3.2a both obstacles lie on

the right-hand side of the rod. Here, the right obstacle does not participate in the

impact and could be removed without changing the impact process. No impulse is

transferred, and the associated relative velocity is greater than zero although ε = 0

has been chosen. This is due to the impulse acting from the left obstacle on the

rod, which makes the rod also turn. Thus, the rod remains in contact with the left

obstacle after the impact, but rotates counterclockwise and separates from the right

obstacle.

The second class concerns impact problems at which impulsive forces at closed

contacts or even separation processes are induced by other collisions. Both events

may be seen from the example of a rocking rod (ε = 0) in �gure 10. For small

values of the distance between the obstacles (a < l/
√

3) the rod is rocking by an

alternate turning around the two contact points (�gure 3.3a). A collision with one

of the obstacles causes an instantaneous detachment at the other contact with no

impulse being transferred there. Note that completely inelastic impacts (ε = 0) at

both contacts are assumed, leading to a loss of kinetic energy after each impact and

�nally, when the in�nite impact sequence has been passed, to a state where the rod

rests on both obstacles. In �gure 3.3b the distance between the two obstacles is

chosen large enough (a > l/
√

3) to admit a compressive impulse Λ > 0 at both

contacts, produced by the single collision of the rod against the left obstacle. Due

to completely inelastic behavior (ε = 0) the rod stops turning immediately after this

very �rst impact and is never moving again. The critical value a >= l/
√

3 at which

rocking changes to a single impact corresponds to the situation where the generalized

force directions H associated with the two contact points becomes orthogonal with

respect to the inner product on the cotangent space at the displacements of impact.

3.1.2 Discretization of the equations of motion

In the following the equations of motion, usually written as di�erential equations,

will be formulated in terms of equality of measures. Theory of measures provides a

theoretically sound generalization to describe �impulses+�nite forces� solutions and

to formulate a theory of convergence for this solutions. The dynamics of systems of

rigid bodies with unilateral constraints (contacts) and friction originates impulsive

forces. The moment an impact happens, the velocity of a body changes instanta-

neously, and that requires impulsive forces, contrary to what happens to deformable

bodies, and the acceleration cannot be de�ned as the usual second derivative of q.

Time stepping methods are based on using the integrals of the forces over each in-

tegration step instead of the instant value of the functions that describe the forces.

That way there isn't a clear distinction between �nite forces and impulses, and the
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latter can therefore be treated the same way. Velocities and impulses become the

primary variables. Within this framework, timestepping methods consist in a time-

discretization of the dynamics which can be advanced from step k to step k + 1 by

solving speci�c one-step nonsmooth problems (complementarity problems). A brief

survey of timestepping methods can be found in [41], while a complete tractation is

in [2].

We consider here a model including contacts without friction, for sake of sim-

plicity, and whose equations of motion are derived from Lagrange formulation.

Let q = (q1, ..., qN) ∈ RN be the generalized coordinates vector of a collection

of nb rigid bodies, with N = 6nb. For simplicity, we assume that the eventually

bilateral constraints imposed to the system have already been taken into account by

reducing the size of q.

Here the use of bold typography to indicate vectors or matrices is dropped in

order to lighten the notation. The equation of motion for the general case is:


M(q(t))dν +N(q(t), ν+(t))dt+ Fint(t, q(t), ν

+(t))dt = Fext(t)dt+ dr

ν+(t) = q̇+(t)

q(0) = q0, q̇(0
−) = q̇0

These equations contain a Lebesgue-measurable part for the continuous compo-

nents and an atomic part based on a Dirac point measure for the impact parts.

The measure for the velocities dν can be split in a Lebesgue-measurable part

u · dt, which is continuous, and the atomic parts which occur at the discontinuity

points, with the left and right limits u+ and u− and the Dirac point measure δ.

Similarly, the measure for the impulses is de�ned as dr.

The case of linear time invariant dynamics is treated here, but the framework is

extendable to nonlinear dynamics by means of linearization and Newton iteration

solution.

With a lighter notation we can write:
Mdν + (Kq(t) + Cν+(t))dt = Fext(t)dt+ dr

ν+(t) = q̇+(t)

q(0) = q0, q̇(0
−) = q̇0

We thus proceed to the time discretization of the dynamics. Applying the integral

on the timestep (tk, tk+1] of length h > 0, it yields:
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∫

(tk,tk+1]
Mdν +

∫
(tk,tk+1]

(Kq(t) + Cν+(t))dt =
∫

(tk,tk+1]
Fext(t)dt+

∫
(tk,tk+1]

dr

q(tk+1) = q(tk) +
∫

(tk,tk+1]
ν+(t)dt

The �rst term is discretized by applying the de�nition of the di�erential measure

dν: ∫
[tk,tk+1]

M dν ≈M (q̇ (tk+1)− q̇ (tk))

The approximation M(q) ' M(qk+γ) with γ ∈ [0, 1] is used, where it is de�ned

qk+γ = (1− γ)qk + γqk+1.

A θ-method, a �rst order scheme, is applied to the remaining terms. Stability

considerations imply choosing 0.5 6 θ 6 1.

∫
[tk,tk+1]

(Cq̇ +Kq )dt ≈ h [θ (Cq̇k+1 +Kqk+1) + (1− θ) (Cq̇k +Kqk)]

∫
[tk,tk+1]

Fext (t) dt ≈ h [θFext (tk+1) + (1− θ)Fext (tk)]

The generalized positions, which are absolutely continuous function, whereas

velocity is a function of bounded variations, are approximated with the same θ −
method:

qk+1 = qk + h [θq̇k+1 + (1− θ) q̇k]

Let's de�ne pk+1the approximated integral of the impulsive forces on the timestep:∫
(tk,tk+1]

dr

Finally this expression is obtained:

M̂ (q̇k+1 − q̇k) = −hCq̇k−hKqk−h2θKq̇k +h [θFext (tk+1) + (1− θ)Fext (tk)] + pk+1

where M̂ = [M + hθC + h2θ2K]

Regrouping the equation to highlight the unknowns leads to the formulation:

q̇k+1 = q̇free + M̂−1pk+1

where q̇free is the velocity of the unconstrained system.

Now it a discretization of the impact law of equation (3.3) is to be introduced.
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In order to obtain that it is helpful to consider a transformation from generalized

coordinates to local coordinates.

Generally speaking, for each contact α there exists a relation/mapping H(q)

between the relative velocity in correspondence of the contact, U , and the generalized

variable representing velocity v.

Thus assuming the components of the relative velocity U =

(
UT

UN

)
∈ R3 and

the components of the local reaction R =

(
RT

RN

)
∈ R3 , we can write:

Uα = HαT (q) · ν

pα = HαT (q) · Pα

The gap function, which gives the distance between the points that come to

contact in the unilateral constraint α, is de�ned as gα(q).

The discretized Newton law of impact expressed in local coordinates becomes:if gα(qk+1) 6 0 then 0 6 Pα
N,k+1 ⊥ Uα

N,k+1 + eαUα
N,k > 0

if gα(qk+1) > 0 then Pα
N,k+1 = 0

Based on the stated discretization and on the local coordinates previously intro-

duced we can formulate the discretized problem as:

UN,k+1 = ŴNNPN,k+1 + UN,free

Where ŴNN = HT
NM̂

−1HN is the so-called Delassus operator.

We expressed the relative velocity in function of the reaction due to the contact,

so the frictionless problem can be cast in the terms of a Linear Complementarity

Problem (LCP).

A usual de�nition of this problem can be formulated as follows:

Linear Complementarity Problem (LCP). Given M ∈ Rn×n andq ∈ Rn ,

�nd a vector z ∈ Rn such that

0 ≤ z ⊥Mz + q ≥ 0

The inequalities have to be understood componentwise and the relation x ⊥ y means

xTy = 0.

In this case the variable z of the problem is PN,k+1, M is ŴNN and q is UN,free.

This is the One Step Non-Smooth Problem to be solved at each step of integration.
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3.1.3 The NSCD algorithm

We present here a simple algorithm for the solution of Non Smooth Contact Dynam-

ics proposed in [2]. It derives from the classic timestepping scheme from Moreau and

Jean [21], and it will be used in the module developed in chapter 4 and in chapter 7,

in the latter with a di�erent formulation of the One Step Nonsmooth Problem to ac-

comodate for a LCP based formulation of the frictional problem. A large variety of

solvers exists for the LCP problem to be solved at each timestep. A complete range

of solvers is available in state-of-the-art software library SiconosNumerics, cited in

section 3.2.1 and used in the implementation in chapter 4. A comprehensive survey

of solving strategies for complementarity problems is in [2].
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Algorithm 3.1 Nonsmooth Contact Dynamics algorithm, (from [2])
Require: M,K,C,Fext defining the linear dynamics

Require: Hα, gα for each α ∈ I =
{1, ..., ν}, the kinematics relations

Require: e, µ parameters of restitution and friction

Require: t0, T
Require: q0, ν0

Require: h, θ, γ

k ← 0
U0 ← HTν0

M̂ ← [M + hθC + h2θ2K]
Ŵαβ ← HαTM̂−1Hβ, (α, β) ∈ {1, ..., ν}2

while tk < T do

νfree ← νk + M̂−1[−hCνk − hKqk − h2θKνk +
h[θ(Fextk+1) + (1− θ)(Fext)k]]
//Update of the index set of forecast active constraints

q̃k+1 ← qk + hγνk
Ia(q̃k+1)← {α ∈ I | gα(q̃k+1) 6 0}
for α ∈ Iado

Ufree ← HTνfree
Assemble (if necessary) Ŵ

end for

if Ia 6= 0 then

[Uk+1, Pk+1]← solution of OSNSP

end if

//State update

pk+1 ←
∑

α∈Ia H
αPα

k+1

νk+1 ← νfree + M̂−1pk+1

qk+1 ← qk + h[θνk+1 + (1− θ)νk]
tk ← tk+1

k ← k + 1

end while

3.2 Some exploration steps

Three simple tests have been conducted and described here in order to gain famil-

iarity with the approach in question.

First two benchmark problems have been simulated using the tools of an open

source software, Siconos (http://siconos.gforge.inria.fr), dedicated to implement high

end libraries to model and solve a large class of nonsmooth problems. Subsequently

an implementation of the algorithm described in 3.1 has been made in Octave

(http://www.octave.org), a Matlab-like scripting language, and a comparison has
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been made to validate both the algorithm and the Siconos models. Both the mod-

els and the results are presented in section 3.2.2, while a short presentation of the

Siconos software is given in section 3.2.1.

Finally since the modeling tools of Siconos at the time of this study didn't allow

the creation of bilaterally constrained models, a technique to reduce a di�erential

algebraic model to a simple ODE has been applied before the discretization of a

nonsmooth problem with a time-stepping algorithm. The method proved successful

for simple tests.

3.2.1 The Siconos Library

The Siconos Platform (http:\\siconos.gforge.inria.fr) is a scienti�c computing soft-

ware dedicated to the modeling, simulation, control, and analysis of nonsmooth

dynamical systems (NSDS), mainly developed in the Bipop team-project at INRIA

in Grenoble, France, and distributed under GPL GNU license. Siconos aims at

providing a general and common tool for nonsmooth problems in various scienti�c

�elds like applied mathematics, mechanics, robotics, electrical circuits, and so on.

However, the platform is not supposed to re-implement the existing dedicated tools

already used for the modeling of speci�c systems, but to possibly integrate them.

Siconos is composed of three main parts: Numerics, Kernel and Front-End. The

SiconosKernel library is the core of the software, providing high-level description of

the studied systems and numerical solving strategies. It is fully written in C++,

using extensively the STL utilities. The SiconosNumerics library holds all low-

level algorithms, to compute basic well-identi�ed problems (ordinary di�erential

equations, LCP, QP, NCP, etc...). The last component, Siconos Front-End, provides

interfaces with some speci�c command-languages such as Python or Scilab. This

to supply more pleasant and easy-access tools for users, during pre/post-treatment.

Front-End is only an optional pack, while the Kernel cannot work without Numerics.

3.2.2 Implementation in Octave and comparison of results

In order to gain understanding of the NSCD algorithm for further application some

simple tests have been implemented in Octave. The results have been compared with

the same models implemented through the Siconos Kernel and Siconos Numerics

library.

Two simple problems are presented here.

The �rst simulation involves a the problem of a ball falling on a tilted plane. The

problem is illustrated in �gure 3.4 and the geometrical values and the parameters

used in the simulation are presented in table 3.1.
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Figure 3.4: Ball on a tilted plane: geometry of the problem

Table 3.1: Ball on a tilted plane: parameters
radius R [m] 0.1
tilt angle [rad] 0.05
height h [m] 1.0
mass m [kg] 1.0

gravity acc. g [m/s] −9.81
timestep [s] 1.e− 3

Newton coef. of restitution 0.8
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Figure 3.5: Ball on a tilted plane: position. Results are coincident



CHAPTER 3. NON SMOOTH CONTACT DYNAMICS 25

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5

V
e
lo

c
it
y
 (

m
/s

)

time (s)

Octave time-stepping
Siconos time-stepping

Figure 3.6: Ball on a tilted plane: vertical velocity. Results are coincident
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Figure 3.7: Ball on a tilted plane: impulse. Results are coincident

Another problem was simulated in order to validate the algorithm with respect

to the constraints assembly and is illustrated in �gure 3.8. The ball now falls with

the geometrical center in line with the point where the two slopes are touching. At

the moment of contact two geometrical unilateral constraints are to be satis�ed.

The parameters of the simulation are the same as in table 3.1.
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Figure 3.8: Double impact problem: geometry of the problem
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Figure 3.9: Double impact problem: vertical position. The results are coincident
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Figure 3.10: Double impact problem: vertical velocity. The results are coincident
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Figure 3.11: Double impact problem: impulse. The results are coincident

3.2.3 Application to a DAE problem through Direct Elimi-

nation of Lagrange Multipliers

The Siconos Kernel libraries do not allow the implementation of bilaterally con-

strained models at the time of writing. An example has been developed to test

the use of a technique for reducing a DAE system to ODE in conjunction with

the Siconos software in order to solve a problem with both bilateral and unilateral
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constraints.

The method of Direct Elimination of Lagrange Multipliers [46, 11] has been used

together with Baumgarte stabilization [3]. A Lagrangian system has been obtained,

which has been implemented together with the unilateral constraint with the Siconos

Kernel library.

Figure 3.12: DAE problem illustration.

The problem considered is illustrated in �gure 3.12 and can be expressed with

the following equations:
m1 · ẍ1 + r(ẋ1 − ẋ0) + k(x1 − x0)− λ = +m1g

m2 · ẍ2 + λ = +m2g

x2 − x1 = L

+ pns

We therefore have a problem in the form:Mq̈ + Cq̇ +Kq + ATλ = F

Aq + b = 0

described by the following matrixes:

M =

[
m1 0

0 m2

]
C =

[
r1 0

0 0

]
K =

[
k1 0

0 0

]

A =
[
−1 1

]
F =

[
m1g + k1x0 + r1ẋ0

m2g + pns

]

with q =

{
x1

x2

}
In order to reduce the number of equations to the number of independent degrees

of freedom we apply the method of Direct Elimination of Lagrange multipliers,

consisting in the following steps:

1. the constraints equation is derived two times
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2. q̈ is substituted in the dynamics equations to obtain an expression for λ

3. λ is substituted in the dynamics equations.

To make sure that not only the second derivative of the constraints but also the con-

straint equation is enforced, the di�erential equation obtained from the constraints

is replaced by the Baumgarte equation:

φ̈+ 2 · αφ̇+ β2φ = 0

where the derivatives are:

φ(q) = 0 = Aq + b

φ̇(q) = 0 = Ȧq + Aq̇ + ḃ = Aq̇

φ̈(q) = 0 = Äq + 2Ȧq̇ + Aq̈ + b̈ = Aq̈

So the problem becomes: Mq̈ + ATλ = Q(q, q̇, t)

Aq̈ = b
′′

where

Q(q, q̇, t) = F − Cq̇ −Kq

b
′′

= −2αAq̇ − β2(Aq + b)

Direct Lagrange Elimination is then applied:

q̈ = M−1Q−M−1ATλ

AM−1Q− AM−1ATλ = b
′′

λ = (AM−1AT )−1 · (AM−1Q− b′′)

and substituting this expression for λ in the dynamics equation:

Mq̈ = (I − AT (AM−1AT )−1 · AM−1)Q+ AT (AM−1AT )−1 · b′′
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For brevity we rename:

P = (I − AT (AM−1AT )−1 · AM−1)

and after replacing the de�nitions of Q and b
′′
and regrouping it is possible to express

the dynamics in the form of a Lagrangian system:

Mq̈ + Cq̇ +Kq = F̃

where

K = P ·K + AT (AM−1AT )−1 · β2A

C = P · C + AT (AM−1AT )−1 · 2αA

F̃ = P · F − AT (AM−1AT )−1 · β2b

The principle of the Baumgarte method is based on the damping of acceleration of

constraints violation by feeding back the position and velocity of constraint violation

as in a closed loop system.

In general if α and β are chosen positive constants, the stability of the general

solution is guaranteed, and when α is equal to β critical damping is achieved.

Baumgarte [3] showed that α = β = 5 is a suitable choice for multibody systems

made of rigid bodies and here is used that same choice.

A model using the software Siconos has been implemented, to simulate the

non-smooth dynamical system. First it has been de�ned an object of class La-

grangianTIDS, to de�ne the purely di�erential dynamical system.

Mq̈ + Cq̇ +Kq = F̃

The dynamical system has then to be associated with a unilateral contact law:

0 ≤ y ⊥ p ≥ 0

and a Newton impact law:

if y(t) = 0 then ẏ(t+) = −e · ẏ(t+)

The set of parameters listed in table 3.2 has been used in the simulation:
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Table 3.2: Reduced DAE model with Siconos: simulation parameters
mass 1 m1[kg] 0.5
mass 2 m2 [kg] 0.5
spring sti�ness k [N/m] 10.
sphere radius R [m] 0.1
spheres distance L [m] 0.2
timestep h [s] 1e− 3
Newton coef. of restitution 0.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

V
e
rt

ic
a
l 
p

o
s
it
io

n
 (

m
)

time (s)

MBDyn continuous contact
Siconos time-stepping

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  1  2  3  4  5

V
e

rt
ic

a
l 
p

o
s
it
io

n
 (

m
)

time (s)

MBDyn continuous contact
Siconos time-stepping

Figure 3.13: Position of the two masses vs time
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Figure 3.14: Velocity of the lower mass vs time

The method proposed has been compared with a model integrated with a con-

tinuous contact solution, using the previously described Flores constitutive law of

equation (2.5) to simulate the contact. Due to the sti�ness of the law the timestep

used with the continuous contact solution has to be h = 10−5, while the more e�-

cient time-stepping on a constraint projected model is h = 10−3 . The solutions are

almost coincident. The method proposed here shows a feasible way to address the

solution of bilaterally constrained models with the classes available at this moment

in the Siconos Kernel software (version 3.4.0), but it lacks the versatility needed to

implement varied multibody models.



Chapter 4

A Co-simulation Approach

4.1 Introduction and motivation

A drawback of nonsmooth event capturing methods, also brie�y called time-stepping

methods, is their intrinsic low order of accuracy. When events are encountered, the

local error of consistency is at best O(h). Over smooth periods, the order O(h2) is

expected to be as for the numerical integration of index-2 DAEs with the backward

Euler method [2, 1, 43].

There are applications where it is of interest to simulate with higher�order accu-

racy mechanical systems with a limited number of rigid bodies, for which unilateral

contact plays an important role for the behavior of a part of the system.

Those applications would bene�t from the ability of time-stepping methods to

robustly handle �nite accumulation of events and accurately resolve frictional con-

tact, and from the ability to solve the problem of contact without resorting to sti�

contact forces that involve a bigger computational burden. It would also be useful

though to retain the properties of higher order methods during the smooth phases

of motion.

Attempts have been made to improve the global order of accuracy of time�stepping

with nonsmooth events in recent research. The di�erent approaches can be classi-

�ed in two categories: mixed time-stepping schemes and augmented time-stepping

schemes.

Mixed time-stepping schemes propose a combination of classic high-order DAE

integration schemes for smooth intervals with time-stepping schemes for nonsmooth

phases. In [1] a scheme combining an Implicit Runge Kutta method with a Moreau

scheme is proposed. Higher order accuracy is sought by a localization of the non-

smooth event into a so-called critical time�step, which is integrated by Moreau's

time-stepping. A method of order p with a time step h is chosen to integrate the

smooth dynamics, and the integration over the critical time�step is performed with

33
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a method of order q. The length of the critical time�step denoted by h̃ is chosen

such that h̃q+1 = O(hp+1). In [9] another implementation of a �hybrid� integration

approach, switching between smooth and nonsmooth phases, has been proposed and

implemented in the multibody software MBSim (http://mbsim.berlios.de ).

Augmented time-stepping schemes are extensions of classic time-stepping schemes

of Moreau-Jean type. Extrapolation techniques or time-step size adaptation are used

to augment the integration order [43, 44, 19].

In this work a co-simulation approach is explored. The fundamental idea is to

have a coupled integration with a part of the model integrated with classic DAE

schemes and at the same time a part integrated with time-stepping schemes. This

approach targets problems in which it is possible to separate a subsystem subject to

dynamics with nonsmooth events, such as those determined by unilateral constraints,

while the other part of the problem is a subsystem with a dynamics that we can

consider only loosely coupled to the dynamics of the �rst subsystem, which therefore

we can consider �smooth�.

This solution is explored with the aim of adding a tool to deal with frictional

contacts to the software MBDyn, overcoming the limitations of a penalty method,

without altering the way it formulates the equations to solve and its core software

architecture. This solution would retain the accuracy and robustness of MBDyn,

as well as the versatility in modeling di�erent kinds of problems, and aims to take

advantage of the nonsmooth dynamical framework for a class of problems in which

contact and friction are relevant in the dynamics of a part of the system. It is ex-

pected that co-simulation with existing state-of-art nonsmooth time-stepping solvers

allows a satisfactory solution that avoids �re-inventing the wheel� in MBDyn, alas

reformulating the whole problem in the nonsmooth framework. Indeed important

e�orts like the Saladyn project (http://saladyn.gforge.inria.fr/) already aim in this

second direction, with the goal of developing a platform for the simulation of mechan-

ical systems with interactive multi-modelling directly in the nonsmooth dynamical

systems framework. It is supported by the French National Agency for Research

and is the collaborative work of a consortium that includes INRIA. The platform is

based on the integration of existing opensource software, Salomé-méca, LMGC90,

and Siconos.

4.2 Co-simulation concept

Let's suppose that the dynamics of a generic problem can be decomposed into two

interdependent subsystems, a smooth subsystem (4.2) and a nonsmooth one (4.3):
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f (q, q̇, t) = 0 (4.1)

fs (qs, q̇s, qns, q̇ns, t) = 0 (4.2)

fns (qs, q̇s, qns, q̇ns, t) = 0 (4.3)

Applying a classic multistep implicit integration solution involves a prediction phase:

qs,k =
∑
i=s,n

a1,iq1,k−i + h
∑
i=0,n

b1,iq̇s,k−i

qns,k =
∑
i=1,n

a2,iqns,k−i + h
∑
i=0,n

b2,iq̇ns,k−i

And a correction phase:

fs + fs/qsδqs,k + fs/q̇sδq̇s,k + fs/qnsδqns,k + fs/q̇nsδq̇ns,k = 0

fns + fns/qsδqs,k + fns/q̇sδq̇s,k + fns/qnsδqns,k + fns/q̇nsδq̇ns,k = 0

Since the two systems are interdependent a consistent approach to the correction

phase, with a Newton Raphson iteration, would be:[
hbfs/qs + fs/q̇s hbfs/qns + fs/q̇ns

hbfns/qs + fns/q̇s hbfns/qns + fns/q̇ns

]{
δq̇s,k

δq̇ns,k

}
=

{
−fs
−fns

}
This approach can be termed as monolithic.

An approximated treatment of the problem would be:(
hbfs/qs + fs/q̇s

)
δq̇s,k = −fs (qs, q̇s, qns, q̇ns, t)

q̇s,k += δq̇s,k

qs,k += bs,0δq̇s,k(
hbfns/qns + fns/q̇ns

)
δq̇ns,k = −fns (qs, q̇s, qns, q̇ns, t)

q̇ns,k += δq̇ns,k

qns,k += bns,0δq̇ns,k

This approach is called here semi-implicit, and on that is based the solution pro-

posed here. The di�erence from a coupled solution of DAE systems is that here the

nonsmooth subsystem is advanced with a time-stepping scheme. This means that,

at each iteration, a complementarity problem must be solved in order to update the

generalized variables pertaining to the nonsmooth subsystem and advance the prob-



CHAPTER 4. A CO-SIMULATION APPROACH 36

lem. The complementarity problem results from the discretization of the nonsmooth

subsystem, comprising the unilateral constraints. The timestepping integration im-

plemented follows the NSCD algorithm delineated in chapter 3.

4.3 Implementation

In order to test this approach a modular element of the software MBDyn has been de-

veloped. It implements a subsystem that is integrated with a time-stepping scheme,

and interfaced with the rest of the model. In order to have a versatile module to

enable the modeling of di�erent problems the nonsmooth system has been reduced

to a single node, on which the unilateral constraints acts, therefore modeling a part

of the system subject to contact. The fundamental implementation exposed here

consists of a static displacement node interacting with one non-smooth constraint,

impact on one or more �at planes.

This nonsmooth node is coincident with a node of the MBDyn integrated model,

to which it imposes the position and velocity obtained through Moreau-Jean time-

stepping integration, and to which it passes a reaction force. A total of nine con-

straint equations are contributed to the multibody model.

The �rst three equations added to the DAE integration are originated from the

constraint imposing the coincidence of the position between the multibody static

displacement node and the non-smooth node:

qmb − qns = 0

The velocities also must be coinciding:

vmb − vns = 0

This implies that the multibody static displacement node receives reaction forces

represented by Lagrange multipliers:

δqTmbf = δqTmbλ

MBDyn integrates the smooth part of the problem, including the static displace-

ment node, and passes the initial q and v together with the reaction forces λ to the

non-smooth module.

The non-smooth module integrates with a time-stepping scheme a nonsmooth

subsystem consisting of a single node, owner of mass, with the reaction forces λ and

gravity as external forces and returns the motion qns and vns that must be prescribed

to the multibody node, together with an updated reaction force that accounts for
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the possible impact. This latter force results to be not sti� because does not have

to account for a jump in the velocity.

On the MBDyn side, more speci�cally, the constraint equations contributed by

the module are described in the following.

The linearization of the compatibility constraint, with a relaxation variable µ to

avoid over-constraining, is:

I∆qmb + I∆µ =
(qns − qmb)

c
− µ

where c is a constant derived from the integration method.

The constraint on velocity is:

I∆vmb = vns − vmb

The module contributes to the equilibrium equations of the static displacement node

by adding the terms:

I∆λ = −λ

This approach is formulated to work best the more the two subsystems are loosely

coupled. For that reason the static displacement node on the MBDyn side should

be connected to a smooth sub-model by a compliant element (a beam, a spring or

so). Kinematic constraints should be avoided.

In this initial simple implementation the module only handles frictionless contact-

impacts with �at planes, possibly more than one. The nonsmooth node can be set

with a mass and a radius. The planes are de�ned by a point and an orientation

both in relation with the position and orientation of another node of the model, and

a Newtonian restitution coe�cient can be set for each plane.

The nonsmooth problem is solved by an NSCD algorithm analogous to the one

presented in 3.1. The Siconos Numerics library described in section 3.2.1 provides

state of the art solvers for the Linear Complementarity Problem obtained. All the

solvers and solver parameters are accessible through the module input interface with

MBDyn, with the default settings using the Lexico Lemke algorithm with pivoting.

4.4 First tests of the approach

The approach proposed is �rst illustrated with a simple example of a linear oscil-

lator, a model comprising of two masses connected with a linear spring, of which

one is subject to impact with a plane. Furthermore, in order to validate the module

developed the two simple examples considered in chapter 2 are implemented, verify-
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Figure 4.1: Oscillator example

Table 4.1: Oscillators example: simulation parameters
restitution coe�cient e 0.8 [non dim.]
mass 1 m 1. [Kg]
mass 2 m 1. [Kg]
radius 2 R 0.2 [m]
spring sti�ness K 1.e3 [Nm]
gravity g 10. [m/s2]
initial height H 1.001 [m]
Multistep spectral radius ρ 0.82 [non dim.]
Moreau Jean theta θ 0.5 [non dim.]

ing the NSCD algorithm and the correct assembly of a complementarity problem in

presence of more than one unilateral constraint. In subsequent chapters a compar-

ison will be made with an alternative approach adapting higher order integration

schemes to the nonsmooth integration and subsequently the method will be tested

with more complex applications.

The method developed is applied to a basic model in order to illustrate the con-

cept. It is represented in �gure �gure 4.1 and the parameters of the simulation are

listed in table table 4.1. In this model the subsystem whose dynamics is mainly

a�ected by the nonsmooth constraint, in this case the non-interpenetration con-

straint with respect to a horizontal plane, consists of node 1. The motion of node

1 is determined by the nonsmooth integration implemented in the module. The

�smooth� subsystem, handled entirely by MBDyn integration routines, is compris-

ing of the sole mass 2. The two part of the model are connected by means of a spring

and the system is subject to gravity. The results of the co-simulation approach are

shown against those from the classic Moreau-Jean time-stepping implemented in

state-of-the-art library SiconosKernel.
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The results in �gure 4.2 and �gure 4.3 show the position and velocity of the

bottom mass, with a detail of the �rst 1.5 seconds of the simulation. For all the

simulations with the MBDyn module and the simulation with Siconos with h=10−3

double impacts occur due to the compression of the spring. The co-simulation ap-

proach with MBDyn integration shows, in this simple example, more accurate results

for smaller time-steps.

The module has also initially been tested with the two simple examples in chapter

3 in order to verify the correctness of the implementation of the NSCD algorithm,

thus in this models the �smooth� part does not come into play. First is considered

the problem of the ball falling on an inclined plane. The problem is illustrated in

�gure 3.4 and the parameters used for the simulation are those set in table 3.1. The

timestep used in the MBDyn simulation is h = 10−3 .

The plot shows a perfect superposition between the results of the simulations

done with Siconos and the NSCD algorithm implemented in Octave of chapter 3,

both implementing a Moreau Jean time-stepping approach.

The second test presented, used to validate the module in a situation where it

is necessary a composition of multiple unilateral constraints, is the same described

in �gure 3.8. Results are coincident with those found with a classic time-stepping

strategy.
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Chapter 5

Nonsmooth Multistep Integration

The aim of this chapter is to apply and adapt a multistep integration formula par-

ticularly suited for the analysis of multibody systems, implemented in the software

MBDyn, to the solution of problems involving nonsmooth unilateral constraints.

Although the global order of accuracy for time-stepping schemes is brought to one

by nonsmooth events [2, 16], the development of higher order time-stepping methods

is an active subject of research, to improve local accuracy during the smooth phases

of the motion [44, 1].

The method proposed in [7] is followed. In [7] Chen et al. have shown a way

to take advantage of the accuracy and stability properties of the Hilbert-Hughes-

Taylor integration scheme [18] together with the consistent treatment of impulses

and jumps in velocity of the Moreau-Jean time-stepping method [34][2]. Here the

same method is applied to a 2nd order, A/L stable, two-step integration formula

[32]. With some further adjustment in the implementation of the prediction phase

a method is obtained that in the smooth phases bene�ts from the properties of the

multistep method, whereas in the nonsmooth events it bene�ts of the consistency

of the time-stepping approach.

The results of simple tests are shown to empirically illustrate the properties of

the method, and a comparison is made between the Moreau-Jean approach, the

nonsmooth multistep approach presented here and the co-simulation of the MBDyn

integration and the Moreu-Jean time-stepping proposed in the previous chapters.

This comparison allows us to empirically validate this last approach.

5.1 Two-step implicit A-L stable integration

A 2nd order, A/L stable, two-step integration formula is introduced here. It repre-

sents a tested and viable choice for the numerical integration of multibody dynamics

and DAE problems, with tunable algorithmic dissipation. The details of its develop-

ment and the properties are discussed in [32], [30]. This 2nd order two-step algorithm

43
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has been applied to the multibody analysis of complex multidisciplinary systems,

e.g. helicopter rotors including aerodynamics, hydraulic controls and active control

by means of smart materials. It is implemented in the software MBDyn.

The method requires the computation of a single Jacobian matrix at the end

of the timestep and no Jacobian matrix multiplications, thus it is a viable and

optimized choice for the implementation of DAE problems.

A two-step method can be expressed as:

xk+1 = a0xk + a−1xk−1 + b1ẋk+1 + b0xk + b−1ẋk−1

where, calling ∆tc the current time step and ∆tp the previous one we can express

the coe�cients as function of the following α, β, δ. We can write β and δ as a

function of the asymptotic spectral radius, in order to tune the desired algorithmic

dissipation. A good trade-o� between accuracy and algorithmic dissipation is found

by choosing an asymptotic spectral radius of 0.6 .

α =
∆tp
∆tc

β = α
(2 + α)(1− ρ∞)2 + 2(1 + α)(2ρ∞ − 1)

2(1 + α)− (1− ρ∞)2

δ =
α2(1− ρ∞)2

2(2(1 + α)− (1− ρ∞)2)

a0 = 1− β

a−1 = β

b1 = ∆tc(
δ

α
+
α

2
)

b0 = ∆tc(
β

2
+
α

2
− (1− α)

δ

α
)

b−1 = ∆tc(
β

2
+ δ)

The method can be extended to second order equations as follows:

vn+1 = b1an+1 + a0vn + a−1vn−1 + b0an + b−1an−1
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qn+1 = b2
1an+1+a0qn+a−1qn−1+(b1a0+b0)vn+(b1a−1+b−1)vn−1+b1b0an+b1b−1an−1

which is a convenient form to treat equations of motion of mechanical systems.

The multistep method presented is therefore able to treat problems governed by

di�erential equations of both �rst and second order naturally, without additional

manipulation, whereas the HHT scheme needs further derivation of �rst order prob-

lems [5, 6].

In �gures 5.1 5.2 5.3 are shown some characteristics of di�erent A-stable, L-

stable and A-L stable integration schemes as a function of the integration step h

and the period associated to the problem T. Figure 5.1 shows the absolute value

of the spectral radius, the multistep scheme with tunable algorithmic dissipation

with the selected optimal choice for asymptotic spectral radius shows a sensibly

less pronounced decaying of the spectral radius for h/T < 1 with respect to the

other methods. Figure 5.2 shows the amplitude error, as 1 minus the ratio between

the absolute value of the spectral radius and the exact value, which is 1 for a not

damped problem. The error for the multistep scheme with tunable algorithmic

dissipation remains limited for big values of h/T . The error for the HHT method,

with α = −0.264 in order to have asymptotic spectral radius equal to the multistep

one, is sensibly bigger. Figure 5.3 shows the phase error, as 1 minus the ratio

between the absolute value of the spectral radius and the exact value, which is ωh

for a not damped problem. Here the error for the multistep solution is near the one

for Crank-Nicolson method, and slightly inferior to the one pertaining to the HHT

method.
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5.2 Equations of motion

This section brie�y formulates the non-smooth problem, following the notation pro-

posed in [7]. The innovative contribution is essentially related to the use of the two

step scheme discussed in the previous section.

Following the same notation in [7] it is possible to write the equations of a �exible

multibody system including bilateral and unilateral constraints in this form:

M(q)dv + ΦT
q di

b = hdt+ gTq di
u (5.1)

Φ(q) = 0

if g(q) ≤ 0 then 0 ≤ gqv(t+) + egqv(t−) ⊥ diu ≥ 0 (5.2)

where:

� q is the vector of generalized coordinates

� h = f ext − f int(q) − fdamp(q,v) collects the external, internal and damping

forces

� M is the mass matrix
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� Φ is the vector of bilateral holonomic constraints and Φq is the matrix of

constraint gradients.

� g is the vector of unilateral holonomic constraints and gq is the matrix of

constraint gradients, and λu is the vector of associated Lagrange multipliers.

� dv is the di�erential measure associated with the velocity v and assumed to

be of bounded variation

� dt is the standard Lebesgue measure

� diu and dib are the impulse measure of the contact reaction and the bilateral

force, respectively.

Equation 5.2 is the complementarity condition of the unilateral constraint at velocity

level together with the Newton impact law, whereas e is the coe�cient of restitution.

Since the motion might be nonsmooth it is necessary to take into account jumps

in the velocity and corresponding impacts with the following decomposition of mea-

sures:

dv = v̇dt+
∑

i(v(t+i )− v(t−i ))δti
diu = λudt+

∑
i p

u
i δti

dib = λbdt+
∑

i p
b
iδti

where λb is the vector of Lagrange multipliers associated with bilateral con-

straints; (v(t+i ) − v(t−i )) is the jump in velocity at the instant ti, δti is the Dirac

atom supported at ti; pui and pbi are the force impulses corresponding to unilateral

and bilateral constraints.

We can then separate the equation of motion

Mv̇dt+ ΦT
qλ

bdt = hdt+ gTq λ
udt

and the impact equation at time ti

M(v(t+i )− v(t−i )) + ΦT
q pbi = gTq pui

5.3 Time integration method

In order to present the time-stepping method, in the following implementation we

refer to systems without bilateral constraints, in order to deal with simple Linear

Complementary Problems instead of Mixed Linear Complementary Problems.

We enucleate the contact part from the equation of motion, such that:
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Mdv = Madt+ Mdvcon

with Madt = hdt

Mdvcon = gTq di
u

where a is the acceleration and dvcon is the contribution to the velocity increment

due to the contact impulse.

After de�ning the set of active constraints gA as the set of all the unilateral

constraints satisfying g ≤ 0 and ΛA as the corresponding Lagrange multipliers, the

discretized equations of motion become:

Man+1 = hn+1 (5.3a)

M∆vconn+1 = (gAq,n+1)TΛA
n+1 (5.3b)

0 = Ψ(ΛA
n+1, gAq,n+1vn+1 + egAq,nvn) (5.3c)

0 = Φqvn+1 (5.3d)

where Ψ(a, b) = 0−max(0, a− ρb), ρ > 0 expresses the complementarity condi-

tion.

Here equation (5.3a) describe the smooth dynamics, eq. equation (5.3b) describe

the impulsive contribution to the velocity, equation (5.3c) is the complementarity

condition, equation (5.3d) describe bilateral constraints.

If an impact is detected at time ti ∈ [tn, tn+1], the impact reaction only occurs in

the atomic measure at the instant ti. The in�uence of the impact is thus considered

only at the current timestep without a�ecting any other timesteps.

The contribution of the nonsmooth force to the velocity and position is then

derived as:

∆vconn+1 =

∫
[tn,tn+1)

dvcon

∆qconn+1 =

∫
[tn,tn+1)

∫
[tn,tn+1)

dvcondt = 0.5h∆vconn+1

where ∆vconn+1 also satis�es the discrete equation of motion . Combining with the

expression for generalized position and velocity by the classic multistep method :

vn+1 = b1an+1 + a0vn + a−1vn−1 + b0an + b−1an−1 + ∆vconn+1 (5.4)
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qn+1 = b2
1an+1+a0qn+a−1qn−1+(b1a0+b0)vn+(b1a−1+b−1)vn−1+b1b0an+b1b−1an−1+0.5h∆vconn+1

(5.5)

5.3.1 Prediction

In order to solve the implicit problem a �rst tentative value for an+1 must be pre-

dicted with an explicit method of accuracy better or equal to the multistep method.

A Hermite interpolation is used here:

an+1 = m0vk +m−1vk−1 + n0ak + n−1ak−1

where

mo = −m−1 =
−6α(1 + α)

∆tc

n0 = 1 + 4α + 3α2

n−1 = α(2 + 3α)

It is then possible to formulate a Linear Complementarity Problem (LCP), in or-

der to �nd the contribution of the impulsive forces to the velocity, with the following

steps.

From equation (5.3b):

∆vconn+1 = M−1(gAq,n+1)TΛA
n+1

then substituting in the expression for the velocity:

vn+1 = b1an+1 + a0vn + a−1vn−1 + b0an + b−1an−1 +M−1(gAq,n+1)TΛA
n+1

Replacing vn+1 in equation (5.3c) it is possible to write an LCP with unknown

ΛA
n+1 :

0 6 ΛA
n+1 ⊥DΛA

n+1 + b > 0

with

D = −gAq,n+1M
−1(gAq,n+1)T ,

b = gAq,n+1(b1an+1 + a0vn + a−1vn−1 + b0an + b−1an−1) + egAq,nvn
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Having predicted the value for ΛA
n+1 we can �nd ∆vconn+1, and subsequently vn+1

and qn+1 using equation (5.4) and equation (5.5).

The prediction after nonsmooth events depends on the values of velocity in the

two preceding steps, and after an impact this can evolve with a nonsmooth jump.

Therefore in the timesteps after those events the two-step formula is ill-suited

to accurately predict the solution without ignoring the nonsmooth nature of the

evolution of the generalized velocity. A re-initialization is then necessary after those

events with a 2nd order Crank Nicolson prediction. This is also needed to start the

algorithm, since it is not self-starting due to its multistep nature.

5.3.2 Correction

The linearized equation for Newton iteration becomes:

 M + b1Ct + b2
1Kt Ct + 0.5hKt 0

b2
1K

con
t M + 0.5hKcon

t −(gAq )T

b1Ψv + b2
1Ψq Ψv + 0.5hΨq ΨΛA


 ∆a

∆(∆vcon)

∆ΛA

 =

 −resq

−rescon

−resΨ


where the tangent sti�ness and damping matrices are de�ned as: Kt = ∂(Ma−

h)/∂q and Ct = −∂h/∂v.

We de�ne also Kcon
t = ∂(M∆vcon − (gAq )TΛA)/∂q.

The terms Ψv, Ψq, and ΨΛA are the partial derivatives of the function Ψ with

respect to vn+1, qn+1 and ΛA
n+1, respectively and are the generalized Jacobians at

the point of discontinuity.

A consistent update of the solution is then:

an+1 + = ∆a

∆vcon + = ∆(∆vcon)

ΛA + = ∆ΛA

vn+1 + = b0∆a+ ∆(∆vcon)

qn+1 + = b2
0∆a+ 0.5h ·∆(∆vcon)
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5.4 Numerical Results

5.4.1 Bouncing Ball

Figure 5.4: Model simulated

The �rst example is a classic ball bouncing on a horizontal plane, a well known

benchmark example in the �eld of nonsmooth mechanics. Both the ball and the

plane are rigid. The ball, subjected to gravity, bounces on the rigid plane with a

restitution coe�cient e = 0.8. Thus, it introduces a unilateral constraint on the

vertical position of the ball. The ball is standstill in the beginning. Other physical

parameters of this example are as follows: mass m = 1kg, radius R = 0.2m, gravity

acceleration g = 10m/s2 , initial height h = 1.001m. The numerical parameters

are set as: time step h = 1e − 3 for all the methods; for the nonsmooth multistep

method, ρ is chosen as 0.6, for the Moreau�Jean time stepping method, θ= 0.5.

All parameters of the simulations are listed in table 5.1.

All the methods show consistent impact characteristics and the results are coin-

cident.

Table 5.1: Test parameters
restitution coe�cient e 0.8 non dim.
timestep h 1.e− 3 s
mass m 1. Kg
radius R 0.2 m
gravity g 10. m/s2

initial height H 1.001 m
Multistep spectral radius ρ 0.82 non dim.
Moreau Jean theta θ 0.5 non dim.
MBDyn's Moreau Jean module theta θ 0.5 non dim.
HHT alpha (corresponding to ρ∞ = 0.82) α 0.1 non dim.



CHAPTER 5. NONSMOOTH MULTISTEP INTEGRATION 53

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

V
e

rt
ic

a
l 
p
o

s
it
io

n
 (

m
)

time (s)

Moreau Jean
Nonsmooth Multistep

Nonsmooth HHT
MBDyn + Moreau Jean

Figure 5.5: Bouncing ball vertical position vs time: Moreau Jean method, Nons-
mooth HHT, Nonsmooth Multistep, MBDyn+Moreau Jean.
The results of the four integration methods are coincident.
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The results of the four integration methods are coincident.
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5.4.2 Linear oscillator

Figure 5.7: Model simulated

In this example the motion of a vertical linear oscillator is studied. The model of

the oscillator is shown in Fig. 5.7, where two masses are connected by a spring.

The oscillator is subjected to gravity g = 10m/s2 , and has two DOF in the vertical

direction. After the lower ball gets in contact with the smooth plane, it bounces

with a restitution coe�cient of 0.8. In the meanwhile, it is also subjected to a force

by the compressed spring. Thus, a second impact or multiple impacts can happen.

In the free-�ight mode, the system is oscillating with its natural frequency. The

mass is of 1kg for each ball, and the sti�ness of the spring is 104 N/m. The initial

velocity is zero and the initial height of the masses is of 1.001m.

Numerical parameters are the same as in table 5.1.

Due to the compression force by the spring, a second impact happens right after

the �rst one. Fig 5.11 shows the total energy, numerical dissipation appears larger

for the Moreau Jean method with θ = 1 (implicit Euler discretization).
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Figure 5.8: Linear oscillator. Vertical position vs time: Moreau Jean method,
Nonsmooth HHT, Nonsmooth Multistep, MBDyn+Moreau Jean.
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Figure 5.9: Linear oscillator. Vertical velocity vs time: Moreau Jean method, Non-
smooth HHT, Nonsmooth Multistep, MBDyn+Moreau Jean.
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5.4.3 Chain of oscillators

Figure 5.12: Chain model

The example is considered in order to study the numerical results when a persistent

closed contact occurs. This model comprises 100 masses and 99 springs, which

connect the masses one by one. The chain of oscillators model is placed on a smooth

plane without friction, see Fig 5.12. It moves toward a wall on the left, and the �rst

mass is subject to a unilateral constraint due to the wall, with a Newton restitution

impact law. The initial velocity of the chain is set as v0 = −1m/s, ( the positive

direction is to the left). The rest of the physical and numerical parameters are the

same of the above two examples.

The closed contact constraint is stable for the four methods considered, there is

no drifting of the constraint formulated at velocity level.

The algorithmic dissipation is comparably small for all the methods with the

exception of the Moreau-Jean time-stepping with θ = 1, which is equivalent to a

discretization with implicit Euler.
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Figure 5.13: Chain example. Vertical position of the unilaterally constrained mass
vs time: Moreau Jean method, Nonsmooth HHT, Nonsmooth Multistep, MB-
Dyn+Moreau Jean.
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Figure 5.14: Chain example. Vertical velocity of the unilaterally constrained mass
vs time: Moreau Jean method, Nonsmooth HHT, Nonsmooth Multistep, MB-
Dyn+Moreau Jean.



CHAPTER 5. NONSMOOTH MULTISTEP INTEGRATION 59

 46

 47

 48

 49

 50

 51

 0  1  2  3  4  5

T
o
ta

l 
M

e
c
h

a
n
ic

a
l 
E

n
e
rg

y
 (

J
)

time (s)

Moreau Jean θ=1
Moreau Jean θ=0.5

Nonsmooth Multistep
Nonsmooth HHT

MBDyn + Moreau Jean

Figure 5.15: Chain example. Total mechanical energy vs time

5.5 Conclusions

The 2nd order, A/L stable, two-step integration formula considered in this chap-

ter presents advantages in the analysis of complex multibody and multidisciplinary

systems, as it is suited to deal with �rst and second order dynamics alike and with

DAE formulations providing a good trade-o� between accuracy and computation

time.

This chapter presents its adaptation to problems that include the nonsmooth

characteristics of unilateral constraints, following the method proposed in [7] for

Newmark-type integration schemes.

Since it is a two step formula special care has been taken in the implementation

of the prediction phase of the method in the steps following a velocity jump, where

a single-step second order accurate re-initialization of the analysis is required.

The solution of some numerical examples empirically shows that the method is

valid and stable.

The comparison of the results with those from the cited nonsmooth adaptation

of the Newmark-type HHT algorithm [7] further validate the MBDyn-MoreauJean

co-simulation approach proposed in the previous chapters. This last strategy shows

a comparatively larger numerical dissipation, though smaller than the Moreau-Jean

method with θ = 1.



Chapter 6

An Application: Helicopter Rotor

Sailing

6.1 A test on a realistic application

In the following the approach presented in previous chapters is tested on a more

realistic application of aerospace interest. The problem considered is the modeling

of the droop-stop and �ap-stop contacts on helicopter blades. In the phases of rotor

engagement and disengagement, at low rotor speed in high wind conditions, an

aeroelastic phenomenon called blade sailing can ensue, with potentially dangerous

blade motion and excessive �apwise tip de�ections [37]. In case of an articulated

rotor support points in correspondance of the blade cu� are needed to overcome the

e�ect of the blade weight at low rotation speeds, and this devices are called droop

stops. Additional restraint is required to prevent upward vertical movement of the

blade, in case of wind speed gust at low rotor speed. That is provided by the anti�ap

assembly.

An aeroservoelastic model of the SA-330 Puma helicopter rotor, implemented in

MBDyn, has been used as a base for the simulations. The nonlinear multibody aeroe-

lastic model of the SA-330 Puma helicopter implemented in MBDyn was already

available from previous work by [36]. The SA-330 Puma has been characterized

mainly using the appendix of the NASA Technical Manual [4] as data source.

The model consists in the main rotor modeled using the multibody approach:

kinematically exact constraints, enforced by means of Lagrange multipliers, describe

the relative motion between rigid bodies, while structural dynamics is dealt with by

a Finite Element approach using nonlinear, geometrically exact beam elements, and

by lumped masses. Each blade of the main rotor is therefore modeled using 5

three-node nonlinear beam elements, resulting in 11 structural nodes per blade. A

Blade Element/Momentum Theory aerodynamic model has been included through

60
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the use of o� the shelf MBDyn elements. The model is described by a total of 672

equilibrium (di�erential) equations and 805 smooth (algebraic) constraints.

In this model, derived from cited previous work, two ways of describing the

contact at droop-stops and anti-�ap stops have been implemented, allowing a com-

parison of the results. The �rst model uses the continuous contact implementation

described in chapter 2, and the second one uses the nonsmooth module introduced

in chapter 4.

Figure 6.1: Helicopter rotor model

6.1.1 Contact assembly modeling

The continuous contact way of modeling the droop and anti-�ap stops introduces a

regularization of the nonsmooth properties of the contact. Here for simplicity it is

modeled as two deformable hinges coincident the blade �ap hinge, each provided of

a steep sti�ness law in correspondance of the angles at which the droop and anti�ap

mechanisms are set to intervene. It uses the constitutive laws considered in 2, and

added to the modeling capabilities of MBDyn.

In a second model the droop and anti-�ap contacts have been modeled through

the use of the nonsmooth-node module introduced in 4. Here the mechanism is

described as a contact point rigidly attached under the �rst node after the �ap hinge,

at an o�set. This node representing the contact point has his movement limited by a

vertical plane set in a position such that it limits, through the rigid joint, the angles

that the blade root can assume with respect to the horizontal plane. The node

subject to the unilateral constraint represents the nonsmooth subsystem integrated

by the nonsmooth-node module, and the plane is de�ned as an unilateral constraint

that rotates with the rotor hub. The contact node is linked to the blade cu� through

a rigid joint constraining its o�setted position and orientation in relation to the �rst

node after the �ap hinge, at the root of the blade. This is done through the use of

the total joint element of the library of MBDyn, and geometry of this contact model



CHAPTER 6. AN APPLICATION: HELICOPTER ROTOR SAILING 62

is illustrated in �gure 6.2. Figure 6.2 shows the unilateral constraint modeled as a

plane, and in red the point of contact. The plane is linked to the �rst node after

the lag hinge, in order to be always aligned with the blade direction, even in case of

ample lag in the motion of the blade with respect to the hub.

Figure 6.2: Modeling of the droop-stop contact with the nonsmooth module

To compensate from overconstraining a relaxation of this rigid joint has been

necessary, and has been implemented through the use of a Tikhonov regularization

element, already available in the library of the MBDyn software. The Tikhonov

regularization consists in modifying a constraint so that it can be violated by an

amount that depends on the multipliers. Given a dynamics described by a set of

di�erental equations together with constraint algebraic equations:F (x, ẋ, ẍ, t) + ΦT
/xλ = 0

Φ (x) = 0

the Tikhonov regularization introduces a term of relaxation on the constraints as:F (x, ẋ, ẍ, t) + ΦT
/xλ = 0

Φ (x)− cλ = 0

where c is a small constant that can be set in the input: the larger the coe�cient,

the larger the constraint violation for a given value of the reaction λ.

This is an application that shows the versatility of the co-simulation module

implementation, which allow to add points of frictionless and frictional contact to

a model, in which the nonsmoothness due to the unilaterality is dealt with event-

capturing timestepping techniques. But this application is also a particularly chal-

lenging situation for the concept, since through the rigid joint the two subsystems

co-simulated are very strictly coupled.
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6.2 Simulation: rotor engagement and disengage-

ment

In order to test this two modelizations of a contact problem two operational condi-

tions of interest have been simulated.

First the rotor engagement and disengagement phases have been considered.

The hub rotation speed through the lenght of the simulation is illustrated in

�gure 6.3, and follows two cosine laws for the rotor start and disengagement phases

of the kind written in equation 6.1.

f(t) = ω·

(
1-cos

( π
20

·t
))

(6.1)

Figure 6.3: Rotor speed vs time

The motion of each blade through the simulation can be discerned with �gure

�gure 6.4, representing the �ap angle between the blade and the horizontal plane,

and the lag angle of the articulated rotor. The blades are initially still, their weight

supported by the �ap stops at an angle of −10° . Each blade gradually elevates from

the contact, then stays at a regime for 10 seconds and afterwards winds down with

the same cosine law but opposite sign. The simulation is not realistic and much

shorter than actual start-stop procedures but it is set to highlight the developed

module capabilities of modeling the non inter-penetration unilateral constraint of

the �ap-stop contact.

The simulation has been carried out with the collective, aft, and lateral com-

mands set to zero, and it includes gravity. The properties of the airstream refer to

standard air , still.

Simulation parameters are gathered in table 6.1.
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Table 6.1: SA 330 Puma. Simulation parameters
Nonsmooth Node Model

Restitution coe�cient 0.8
Timestep 1.e− 4
Tolerance 1.e− 4

Tikhonov constant 5.e− 9
Continuous Contact Model
Constitutive law Flores et al.

Restitution coe�cient 0.8
Timestep 1.e− 4
Tolerance 1.e− 4

Contact sti�ness 1.e9
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Figure 6.4: Flap and lag hinge angle of the articulated rotor
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Figure 6.5: Vertical force components in the root section of the �rst blade.
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Figure 6.6: Bending moments in the root section of the �rst blade.

In �gure �gure 6.6 and �gure 6.5 are shown the three components of the force

and the moment in the beam section at the root of the �rst blade. The results of the

continuous contact approach and the modelization through the nonsmooth node are

well correlated, and they show in the initial phases and end phases a more relevant

shear force along the vertical due to the contact with the droop stop. The force and

moment are oscillating due to the �exibility of the blade.

The table 6.2 shows that in this application the method developed doesn't show

an advantage in computing times, because of the higher number of iterations neces-

sary at each step to arrive at convergence for the co-simulation of the smooth and

non-smooth dynamics integrations. This application put the cosimulation concept

at test in its limits, since there's a rigid connection between the two subsystems

cosimulated, hence the bigger number of iterations to converge. But even in this

limit application the method is shown to arrive at a solution, and it can be a tool

for dealing with frictional contacts more e�ectively than with a regularized solution,
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and in applications where the contact point, or the �nonsmooth subsystem� is less

rigidly coupled with the rest of the system.

Table 6.2: Computation load comparison
Continuous contact Nonsmooth Node

CPU time 2867 seconds of CPU time 10331.460 seconds of CPU time
Total number of steps 600000 600000

Total iterations 1153635 6614384
Total Jacobians 599373 1905732
Total Error 6.83966 17.5347

6.3 Simulation: rotor sailing

To further test the robustness of the model, a di�erent simulation condition has been

considered. The rotor, initially still with the four blades weighting on the droop stop

contacts, is invested by an intense wind gust, whose pro�le is represented in �gure

6.7. The direction of the gust front and its pro�le are on the horizontal plane,

directed transversally with respect to the �rst blade elongation.

The gust model consists in a unifom front :

v (x, t) = n · g · (f · x + Vref t)

where

� v is the velocity perturbation;

� x is the position of the point whose airstream velocity is being computed;

� t is the current time;

� n is the unit vector perturbation_direction that de�nes the direction of the

velocity perturbation;

� g() is the function front_pro�le that de�nes the gust pro�le; In our case a

cosine law illustrated in 6.7.

g(t) = 15·
(

1-cos
( π

100
·t
))

(6.2)

� f is the unit vector front_direction that de�nes the direction of propagation

of the front;

� Vref is the velocity front_velocity of propagation of the front in direction f .
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The blades have a collector angle of 10°. The �rst blade is therefore raised by the

aerodynamic force, until the �ap stop comes into contact. after the gust passes the

blade fall on the droop-stop contact, with some bouncing due to the �exibility of the

blade. This behaviour is illustrated in �gure �gure 6.8, which shows the �ap hinge

angles limited by the droop-stop and anti-�ap contacts, at -10° and +10°. On the

other side of the rotor the third blade experience a downward force, while blades 2

and 4 are not sensibly interested by the gust.

In �gures �gure 6.9 and �gure 6.10 are shown the three components of the force

and the moment in the beam section at the root of the �rst blade. The results of

the continuous contact approach and the modelization through the nonsmooth node

are well correlated.
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Figure 6.7: Gust pro�le at the hub of the articulated rotor

Table 6.3: SA 330 Puma. Simulation parameters
Nonsmooth Node Model

Restitution coe�cient 0.8
Timestep 1.e− 4
Tolerance 1.e− 2

Tikhonov constant 5.e− 9
Continuous Contact Model
Constitutive law Flores et al.

Restitution coe�cient 0.8
Timestep 1.e− 4
Tolerance 1.e− 2

Contact sti�ness 1.e9
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Figure 6.8: Flap and lag hinge angles, in degrees, of the �rst blade
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Figure 6.9: Vertical force components in the root section of the �rst blade.
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Figure 6.10: Bending moments in the root section of the �rst blade.

Table 6.4: Computation load comparison
Continuous contact Nonsmooth Node

CPU time 1275 seconds of CPU time 2009 seconds of CPU time
Total number of steps 300000 300000

Total iterations 263619 879676
Total Jacobians 260920 346068
Total Error 385.514 2262.5



Chapter 7

Frictional Contact Problem

Co-simulation

An extension of the module introduced in chapter 4 is presented here, in which the

nonsmooth subsystem integrated with the time-stepping strategy comprises fric-

tional contacts.

In order to deal with the nonsmoothness of the frictional phenomena, as described

by the Coulomb's law, a polyhedral approximation of the friction cone is used, so

that it has been possible to cast the problem as an LCP. This is a well known

approach that is not optimal for problems with a large number of contacts, since

the number of facets of the approximation of the friction cone directly augment the

size of the problem. Also it introduces anisotropy in the description of the problem.

It is nonetheless a simple and suitable approach for problems of limited dimensions,

and can take advantage of the vast availability of LCP solver implementations.

It is the aim of this chapter to test the approach described in chapter 4 with a

simple LCP-based approach to frictional contacts. The approximation of the friction

cone and the reduction of the problem to an LCP is brie�y described in section 7.1.

The implementation through a dynamically loaded module in MBDyn is then intro-

duced. The results of some tests are compared with those from the Siconos Kernel

algorithms, which comprises more sophisticated techniques for solving the Frictional

Contact problem. The approach is then applied to a more complex example of a

walking mechanism.

7.1 Three-dimensional Coulomb's friction

The most used model for friction is the one obtained by C.A. Coulomb by experi-

mental investigation [8].

It states that the friction force acting on sliding bodies has magnitude propor-

71
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tional to the normal contact force holding the two contacting bodies together. The

constant of proportionality µ > 0 is called coe�cient of friction.

If there is sliding, the friction force is in the opposite direction to the relative

direction of sliding.

If the bodies are not sliding, the friction force may have any value provided that

its magnitude does not exceed µ times the normal contact force.

Figure 7.1: Three-dimensional Coulomb's friction cone (�gure from [2])

Using some basic concepts from convex analysis we can restate the problem as

follows. Coulomb's model links the reaction force R ∈ R3 to the tangential relative

velocity UT ∈ R2 , through the friction cone C. The cone C is a second-order convex

cone with its apex at the contact point P , whose sections by planes parallel to the

tangent plane are discs, and the angle between the normal n and any vector PM

with M on the boundary of C is equal to arctanµ . The Coulomb friction cone is

depicted in �gure 7.1.

Coulomb's friction says the following. If there's contact, alas the gap g(q) = 0,

then


if UT (t) = 0 thenR ∈ C

if UT 6= 0 then ‖RT (t)‖ = µ |RN | and there exists a scalar a > 0

such thatRT (t) = −aUT (t)

where we recall that in the above notation RT ∈ R2 , RN ∈ R. Thus Coulomb's
model says that if the sliding velocity is not zero, then the reaction R lies on the

boundary of C, and its projection on the tangent plane has the same direction as

but opposite sense to the sliding velocity. When the sliding velocity is zero, R is in

C, possibly on its boundary. The fact that UT = 0 and R is on δC is therefore a
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necessary condition to have a transition from sticking to sliding. A sliding case is

depicted in �gure 7.1. The Coulomb model is also often written as follows:

‖RT (t)‖ 6 µ |RN | and


‖RT (t)‖ < µ |RN | ⇒ UT (t) = 0

‖RT (t)‖ = µ |RN | ⇒ and there exists a scalar b > 0

such thatUT (t) = −bRT (t)

(7.1)

Let D1 be a given closed convex subset of the common tangent plane between

the two contacting bodies. Let D = µD1 . Let us introduce the following inclusion

[34] using the indicator function ψD(·):

− UT ∈ δψD(RT ) (7.2)

The meaning of equation (7.2) is as follows. If RT ∈ Int(D), then the normal

cone to D is the singleton {0}, so the tangential relative velocity is null. If RT ∈ δD,

the boundary of D, then −UT is in the normal cone to D computed at RT . Let

D1 be a disc with radius |RN |, so that when RT is on the boundary of D one has

‖RT‖ = µ |RN |. Then the normal cone to D at RT is nothing else but the ray passing

through the center of the R disc (the apex of the cone C) and whose direction is

that of RT . If we denote d = ‖RT‖, T the sliding direction, then −UT = bd for

some real b > 0. One sees that in this case equation (7.2) does represent the model

in equation (7.1). When D1 is not a disc the model may incorporate anisotropic

e�ects (the friction coe�cient may vary with the direction of sliding).

7.1.1 Implementation aspects

The notation and the approach used in this chapter follows the ones in [2]. The

index set of all unilateral constraints in the system is:

I = {1...ν} ⊂ N

The index set Ia is the set of all forecast active constraints of the system:

Ia(q̃k+1) = {α ∈ I | gα(q̃k+1) 6 0} ⊆ I

where q̃k+1 is the predicted status of the system. For instance Moreau takes

q̃k+1 = qk + γhvk with γ = 1
2
[35].

For each index α ∈ Ia(q̃k+1) it is speci�ed here the notation for expressing the

set of constraints in local coordinates.



CHAPTER 7. FRICTIONAL CONTACT PROBLEM CO-SIMULATION 74

Ua
k+1 =

[
Uα
k+1

]
α∈Ia(q̃k+1)

Ua
N,k+1 =

[
Uα
N,k+1

]
α∈Ia(q̃k+1)

Ua
T,k+1 =

[
Uα
T,k+1

]
α∈Ia(q̃k+1)

P a
k+1 =

[
Pα
k+1

]
α∈Ia(q̃k+1)

P a
N,k+1 =

[
Pα
k+1

]
α∈Ia(q̃k+1)

P a
T,k+1 =

[
Pα
k+1

]
α∈Ia(q̃k+1)

Ha (q̃k+1) =
[
Hα (q̃k+1)k+1

]
α∈Ia(q̃k+1)

Ha
N (q̃k+1) =

[
Hα
N (q̃k+1)k+1

]
α∈Ia(q̃k+1)

Ha
T (q̃k+1) =

[
Hα
T (q̃k+1)k+1

]
α∈Ia(q̃k+1)

p =
∑

α p
α =

∑
α∈Ia(q̃k+1) H

α (q̃k+1)Pα = Ha (q̃k+1)P

The components of the local velocities U and reactions P are expressed through

the mappings Hα for every contact α with respect to the generalized variable q.

With this notation it is possible to construct a Delassus operator for the set of

forecast active constraints: 

Ŵ a = Ha,TM̂−1Ha

Ŵ a
NN = Ha,T

N M̂−1Ha
N

Ŵ a
TT = Ha,T

T M̂−1Ha
T

Ŵ a
NT = Ha,T

N M̂−1Ha
T

7.1.2 Outer faceting the Coulomb's cone

In order to lighten the notation the subscript k+1and the superscript α, indicating

the indexes of the contacts, are dropped here.

Contrary to the two-dimensional frictional contact problem, the three-dimensional

case cannot be directly cast into an LCP standard form. This is mainly due to the

second-order cone C which cannot be written as a polyhedral cone. The nonlinear

nature of the section of the friction cone, i.e., the disk D(µRN) de�ned by:

D (µRN) = {RT | σ (RT ) = µRN − ‖RT‖ > 0}

adds new di�culties from the formulation point of view. To overcome this dif-

�culty, some approximations have been proposed which consist in faceting C. Fol-

lowing the presentation in [2], which refers to the original work in [24] and [25], the

friction disk D can be approximated by an outer polygon:

Douter (µRN) =
ω⋂
i=1

Di (µRN)
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Di (µRN) =
{
RT | σi (RT ) = µRN − cTi RT > 0

}
Where ω ∈ N is the number of facets. The functions σi (RT ) are the friction

saturation with respect to the cone Di(µRN) generated by an outward unit vector

ci ∈ R. Using the framework of convex analysis we now assume that the contact

law equation (7.2) is of the form

−UT ∈ NDouter(µRN ) (RT )

The normal cone to Douter (µRN) is given by

NDouter(µRN ) (RT ) =
ω∑
i=1

NDi(µRN ) (RT )

Figure 7.2: Approximation of the base of the Coulomb cone by an outer approxi-
mation

and the inclusion can be stated as:

−UT =
ω∑
i=1

kiδσi (RT ) , 0 6 σi (RT ) ⊥ ki > 0

Since σi (RT ) is linear with respect to RT , we obtain the following MLCP:

−UT =
ω∑
i=1

kici, 0 6 σi (RT ) ⊥ ki > 0

Assuming for the sake of simplicity that the vectors ci are chosen equal for all

contacts α, the time-discretized linear One Step Non Smooth Problem (OSNSP),

(PL), can be written as
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(PL)



Uk+1 = ŴPk+1 + Ufree

−Uα
T =

∑ω
i=1 k

α
i ci ∀α ∈ Ia (q̃k+1)

σi
(
Pα
T,k+1

)
= µPα

N,k+1 − cTi Pα
T,k+1

0 6 Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 > 0

0 6 σαi
(
Pα
T,k+1

)
⊥ kαi > 0

(7.3)

The fact that the friction saturation functions σi (PT,k+1) are linear shows that

the previous problem is an MLCP.

7.1.3 The LCP in a single-contact case

Generally, the MLCP equation (7.3) can be reduced into an LCP in standard form

assuming that at least one pair of vectors ci is linearly independent. The most

simple way to transform an MLCP into an LCP is to compute a Schur complement

of the MLCP matrix, which necessitates to invert a sub-matrix. To be able to invert

a sub-matrix of the MLCP equation (7.3), we assume that a pair of cαi vectors is

linearly independent for i ∈ Pα ⊂ {1...ωα}, where it is recalled that ωα is the

number of facets of the approximation of the cone at the contact α . Following [12],

we introduce the following notation,

R = {1...ω}\Pα

IPα = [cαi ]Pα

IRα = [cαi ]Rα

Thanks to this notation, we may write

σαi (λαT ) = µαRα
N − cαi λαT , ∀i ∈ {1...ω}

as

σαPα (λαT ) = µPαR
α
N − ITPαλαT

σαRα (λαT ) = µRαR
α
N − ITRαλαT

where the vector µPα and µRα are de�ned by
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µPα =

[
µα

µα

]
∈ R2

µRα =


µα

...

µα

 ∈ Rωα−2

Since IPα is assumed to be invertible, one obtains

λαT = I−TPα µPαR
α
N − I−TPα σ

α
Pα (7.4)

and then by substitution,

σαRα (λαT ) = µRαR
α
N − ITRαI−TPα µPαR

α
N + ITRαI

−T
Pα σ

α
Pα

In the same manner, the equation

−Uα
T =

ωα∑
i=1

kαi c
α
i = IPαkPα + IRαkRα

can be written as

kPα = −I−1
PαUT − I

−1
PαIRαkRα (7.5)

We drop the superscript α to lighten the notation. Substituting the value of

PT,k+1 given by the discrete analog to equation (7.4) into the �rst equation of equa-

tion (7.3) and substituting the velocity UT,k+1 into the discrete analog to equa-

tion (7.5) one obtains the following LCP in standard form:


UN,k+1 + eUN,k

kP

σR

 = M


PN,k+1

σP

kR

+ q

0 6


UN,k+1 + eUN,k

kP

σR

 ⊥

PN,k+1

σP

kR

 > 0

(7.6)

where

M =


ŴNN + ŴNT I

−T
P µP −ŴNT I

−T
P 0

−I−1
P

[
ŴTN + ŴTT I

−T
P µP

]
I−1
P ŴTT I

−T
P −I−1

P IR

µR − ITRI−TP µP ITRI
−T
P 0





CHAPTER 7. FRICTIONAL CONTACT PROBLEM CO-SIMULATION 78

q =

 UN,free + eUN,free

−I−1
P UT,free

0


In the multi-contact case, the matrix notation must be enlarged to extend the

formulation equation (7.6). Let us �rst introduce the index sets

P ={Pα | α ∈ Ia(q̃k+1)}, R ={Rα | α ∈ Ia(q̃k+1)}

In order to perform this extension, we introduce the following notation:

µP =



µP1

. . . (0)

µPα

(0)
. . .

µPν


, µR =



µR1

. . . (0)

µRα

(0)
. . .

µRν


For µPα ∈ R2a×aand µRα ∈ R(

∑
α(ωα−2)a)×a where a 6 ν is the cardinal of

Ia (q̃k+1).

Finally, we de�ne

IP =



IP1

. . . (0)

IPα

(0)
. . .

IPν


, µR =



IR1

. . . (0)

IRα

(0)
. . .

IRν


For IPα ∈ R2a×2a and IRα ∈ R2a×(

∑
α(ωα−2)a).

With the notation extended the way described, the LCP given by equation (7.6)

is valid for the multicontact case.

7.2 Co-simulation of the frictional contact problem

in MBDyn

The ability to instantiate a frictional nonsmooth subproblem has been added to

the dynamically loaded module introduced in 4. Using the same input interface of

the previously described module a user de�ned element can be provided that links

a node of the model with a subsystem subject to unilateral frictional constraints,
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which is integrated with a time-stepping method. The same approach described in

section 4.3 is used. The module integrates the dynamic of a node which can come in

contact with one or more planes, with friction. It formulates the problem assembling

an LCP as described in section 7.1, and it implements the NSCD algorithm 3.1 where

the OSNSP is the one expressed in equation (7.3).

7.2.1 First validation with a simple model

In order to validate the formulation for frictional contact adopted in the module the

example in section 3.2.2 has been reconsidered, and friction has been added to the

de�nition of the problem.

The problem has been described in �gure 3.4 and the parameters used are those

in table 7.1. A friction coe�cient µ = 0.02 has been used.

The same model has been implemented also using the Siconos Kernel library,

which, along with classes to describe Lagrangian Time Invariant Dynamical Sys-

tems, provides an updated choice of Frictional Contact Problem solvers. The model

implemented in Siconos is solved with a Non-Smooth Gauss Seidel solver, based on

a projection onto the Friction Cone, which is an iterative method that doesn't rely

on a faceting discretization of the problem.

The good correlation between the results of the two models, shown in 7.3, helped

validate the implementation.

Table 7.1: Ball on a tilted frictional plane: parameters
radius R [m] 0.1
tilt angle [rad] 0.05
height h [m] 1.0
mass m [kg] 1.0

gravity acc. g [m/s] −9.81
timestep [s] 1.e− 3

Newton coef. of restitution 0.8
Number of facets for the friction cone ω 16

Friction coe�cient µ 0.02
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Figure 7.3: Ball falling on a tilted plane with friction. Results are coincident.

7.2.2 Theo Jansen's mechanism

Figure 7.4: Jansen's walking model

The approach described has been applied to a more complex multibody application,

consisting of a walking mechanism. It is based on a planar mechanism designed by

the Dutch artist Theo Jansen, converting rotary motion into leg movements. The

model has been considered for the only purpose of testing the suitability of the

approach proposed in providing frictional contact elements to a multibody problem.

The linkage provides a constant axle height, uses only pivot joints and a rotat-

ing crank for input. The artist developed it with the goal of obtaining a visually

elegant walking motion, so the linkage is not necessarily the most e�cient way of

implementing this movement. For example comparable linkages, like Joseph Klann's
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linkage, may provide better step height and stride lenght in order optimize velocity

and the ability to overcome obstacles.

The model consists of four planar sections of Jansen's linkage, disposed in parallel

planes, in order to have a set of 8 legs able to walk on a 3D plane. At the tip of each

leg a contact point has been modeled through the use of the module co-simulating

a nonsmooth subproblem. The contact point at each leg has been de�ned and its

relative position constrained, with a total joint, to the position of the bottom leg

node. Tikhonov regularization has been applied to this joint, in order to avoid

overconstraining. The approach to the contact point de�nition is analogous to the

one explained in section 6.1.1.

In �gure 7.5 is shown a cycle of the mechanism in order to illustrate its motion,

whereas the 3D MBDyn model sketched with the software Easyanim, a free visual-

ization tool initially developed by Olivier Verlinden (Olivier.Verlinden@fpms.ac.be),

Faculté Polytechnique de Mons, is shown in �gure 7.4. The di�erent planes are

highlighted with di�erent colors and the contact points are the red dots.

Figure 7.5: Jansen's linkage phases

The parameters used in the simulation are detailed in table 7.2. Figure 7.6

illustrate the vertical stride movement of the two legs of the �rst planar mechanism,

from which it is possible to discern a duty cycle, calculated as a ratio of the time

of ground contact with the total time of simulation, of 0.5%. The �gure 7.7 shows

the reaction forces in the contact point at the base of the �rst leg. As expected

normal and tangent contact forces are present in the interval of time where the

vertical position of the leg is coinciding with the ground, as seen in the red plot in

�gure �gure 7.6. The tangential force along x axis is proportional to the normal

force by a factor determined by the friction coe�cient, and it is present a smaller

tangential force along the y axis due to the anisotropy introduced by the 16 faced

polyhedral discretization of the friction cone used. Better results would be possible

by using better formulations of the frictional problem, as those surveyed in [2]. This

LCP-based formulation has been chosen for simplicity of implementation in this

explorative phase.
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This application of the method proves it suitable to add frictional contact el-

ements to a multibody problem, in which the nonsmooth part of the problem is

isolated and co-simulated alongside the DAE integration of MBDyn.

Table 7.2: Jansen's simulation parameters
Timestep 1.e− 4
Friction coe�cient 1.2
Newton coe�cient 0.8
Tikhonov constant 5.e− 8
Crank speed [rad/s] 0.031416
LCP solver Lexico Lemke
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Figure 7.6: Stride vertical movement
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Figure 7.7: Reactions with ground in the �rst leg contact point



Chapter 8

Conclusions

The aim of this work was to explore a solution allowing to add a tool to model

unilateral constraints to the multibody analysis software MBDyn. A requirement of

the research has been the desire to retain the architecture of the MBDyn integration

engine to take advantage of the properties of accuracy and versatility of the MBDyn

integration scheme and because it would have required a broader programming e�ort.

First, following a path already adopted by commercial multibody softwares, a

continuous contact solution has been explored, resulting in the implementation of

sti� constitutive laws to use in conjunction with deformable elements in order to

model a regularized version of the phenomena of contact and impact. This ap-

proach proved suitable but results in very sti� problems that require small steps of

integration, and requires .

A radically di�erent approach to the nonsmoothness introduced in the problem

by non-interpenetration constraints and dry friction law is the nonsmooth contact

dynamics. A nonsmooth framework allows precise de�nitions of solutions for non-

smooth problems together with uniqueness and existence results and the use of

speci�c algorithms (time-stepping, LCP solvers with polynomial complexity) leads

to an e�cient simulation environment, allowing to treat large dimension problems or

systems with impact accumulation. A co-simulation approach has been developed,

to integrate alongside a part of the problem treated with the DAE integration of the

MBDyn software and a nonsmooth subproblem that makes use of the nonsmooth

contact dynamics algorithm. The cosimulation has been developed through a dy-

namically loaded module in MBDyn, implementing the integration of a nonsmooth

subproblem interfaced to the main model. The module has been validated through

comparison with results from state-of-the-art nonsmooth dynamics software Siconos.

An exploration of an approach to apply the multistep MBDyn integration to non-

smooth problems has been advanced, following a recent work regarding the adapta-

tion of the HHT integration scheme to the nonsmooth timestepping algorithm with

the aim of obtaining a higher order nonsmooth integration scheme. While compara-

84
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ble results have been reached, the necessity to reinitialize the algorithm after each

nonsmooth events renders this solution more complex on the implementation side.

The results for simple benchmark examples have been compared with those from

the co-simulation approach, with good correlation.

The cosimulation approach has been tested with more complex examples, in

order to test its robustness and versatility. The modelization of the droop-stop and

anti�ap contacts of an articulated helicopter rotor has been considered and compared

against a continuous contact solution, and a model of a walking mechanism has been

used to test the modelization of the contact with friction. This applications consider

models in which only the contact point is comprised in the nonsmooth subproblem,

and that sub-model is rigidly attached to the rest of the MBDyn integrated model.

The simulations show that the tool developed is capable of providing a solution

even in problems in which the two sub-problems are not well separated, but instead

strictly coupled. This requires though quite sti� forces exchanged between the two

subproblems, requiring thus a relevant computational aggravation compared to a

completely nonsmooth formulation. With the very simple formulation of dry friction

implemented, LCP based through a facetization of the friction cone, it is possible

to deal with stick-slip frictional contact state, thus overcoming a drawback of a

continuous contact solution.

The co-simulation approach developed can be a valuable tool for a class of prob-

lems in which it is possible to isolate the nonsmooth dynamics to a part of the

model. More tests need to be made with applications in which the two co-simulated

parts are connected through the use of a compliant element. It is expected that,

within this class of applications, signi�cant e�ciency gains can be obtained over the

continuous contact solution, adding to the advantage of a more consistent treatment

of the nonsmooth aspects of the problems, such as the resolution of the stick-slip

phases of dry-friction law. Future developements may include a more thorough anal-

ysis of the class of applications of interest, enhancements in the interaction process

between the two integration methods, especially during the smooth phases of mo-

tion, enhancements in the formulation of the frictional problem and a more versatile

way of de�ning the unilateral constraints, with the possibility of de�nition of more

generic surfaces as boundaries and the possibility of de�ning contact between two

or more parts, or nodes, of the same model.
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