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Abstract 

Motion planning for autonomous vehicles is an important topic across the world. Nowadays 

there exist several classes of algorithms for motion planning, such as grid-based algorithms 

and sampling-based algorithms. A simple and effective method to plan the path for an 

autonomous robot based on a YAMAHA Grizzly all terrain vehicle, is here presented, 

accounting for the anti-rollover problem as well. Grid-based algorithms are a good choice. 

 

This thesis presents a few grid-based algorithms and two ways to decide the vehicle 

commands. A benchmark among different grid-based algorithms and different methods to 

compute the vehicle commands is shown, together with an analysis of their pros and cons. 
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Abstract 

Il problema della pianificazione del percorso per veicoli autonomi, ovvero privi di conducente 

umano è un tema di grande interesse in tutto il mondo. Al giorno d'oggi esistono diverse classi 

di algoritmi per la pianificazione del moto, quali ad esempio quelli grid-based e 

sampling-based. In questo lavoro viene presentato un metodo semplice ed efficace per la 

pianificazione del percorso di un veicolo autonomo basato su un ATV YAMAHA Grizzly. Tale 

metodo è di tipo grid-based e permette di considerare il problema del ribaltamento del 

veicolo.  

 

Questa tesi illustra alcuni algoritmi grid-based e due modi per decidere l'azione di controllo 

del veicolo. Sulla base di un problema benchmark verranno analizzati pro e contro di ciascun 

algoritmo. 
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1. Introduction 

YAMAHA Grizzly 700 is a four-wheel all terrain vehicle. It is 2.06m in length, 1.18 m in 

width and 1.24m in height. The ground clearance is 0.275m. The total weight is 294kg 

without human rider. The electric power steering system, also know as the EPS, contains a 

DC motor, a gear motor with transmission ratio of 34:1, a torque sensor mounted on the 

steering shaft and an electronic control unit.  

 

Figure 1.1: YAMAHA GRIZZLY 700 

 

The experiment platform is on this ATV. As shown in Figure 1.2, it is equipted with an 

industiral PC, 2 laser scanners, a increment encoder, a GPS，etc. A steering control system and 

a throttle control system have already been developed on this platform.  
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Figure 1.2 Experiment platform 

 

We want to generate feasible paths in an identified environment according to vehicle 

dynamics. This requires a reasonable trajectory to avoid obstacles, plus a sequence of 

reasonable speed and steer angle setpoints to the onboard controller. The main issue of this 

thesis is to present a reasonable motion planner for our ATV. It is able to generate feasible 

moving trajectories, speed and steer angle setpoints for the control system. 

 

The thesis starts by providing the background on motion planning and graph search methods. 

Then a few heuristic-based methods are presented to show how they work in path planning. 

After that is the Search-Based Planning Library, the thesis will show how to use Navxytheta 

class and motion primitives in SBPL to generate trajectories. NavATV class, which is a 5 

degree of freedoms motion planning class, will show how to use state speed and state steer to 

generate dynamic feasible paths. Last one is the benchmark between different trajectories 

using Navxytheta and NavATV. 
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2. Motion Plannning 

The state space for motion planning is a set of possible states that could be reacted by the 

robot. This will be referred to as the configuration space (Cspace)
 [1]

. Cobstacle is the subset of 

configuration space including obstacles and unobtainable subset of state space. Cfree is the 

remaining subset of Cspace. 

 

Path Planning consists of finding a sequence of actions that transforms some initial state into 

some desired goal state, which is to find a sequence of states in Cfree. In the case of just 

vehicle motion planning, the state variable could be in simple case [position, yaw] for 

kinematic car model, or in a complex case [position, yaw, speed, steer] for dynamic car 

model.  

 

Transition cost(action cost) is a measurement of the state transformation. Lower this transition 

cost, better the state transformation. A path is optimal if the sum of its transition costs from 

initial state to goal state is minimal across all possible paths in Cfree. A planning algorithm is 

complete if it can find a path in finite time when exists. Similarly, a planning algorithm is 

optimal if it can always find an optimal path. 

 

Motion planning has several applications, such as robot arm navigation, robot design in CAD 

software, and vehicle navigation without human driver, as well as applications in other fields, 

such as animating digital characters, video game AI, and the study of biological molecules. 

Many algorithms are developed to cope with variants of basic problems. For example, adding 

nonholonomic dynamic constraint for cars, planes and differential drive robots or dealing with 

uncertainty problems such as motion uncertainty and sensorless planning. 

 

Generally, there are four different categories of motion planning algorithms, the grid-based 

search method, the geometric algorithm, the potential field method and the sampling-based 



4 

algorithm. Grid-based search method has been chosen in our case for its simplicity to 

construct cost function. Besides, it is convenient to assign action directly on the states. 

 

Grid-Based Search 

Grid-based approaches overlay a grid on configuration space, and assume each configuration 

is identified with a grid cell
[3]

. At each cell, the robot is allowed to move to adjacent cells as 

long as the robot action between them is completely contained within configuration space. 

Many algorithms, like A*, ARA*, ANA, AD* can be used to find a path in grid environments. 

An example is given in Figure 2.1. 

 

Figure 2.1: Simple example for Grid-based search 

These approaches require setting a grid resolution. Search is faster with coarser grids, but the 

algorithm will fail to find paths through narrow portions of configuration space. Moreover, 

the number of points on the grid grows exponentially in the configuration space dimension, 

which makes them inappropriate for high-dimensional problems. 

 

Geometric Algorithm 

Visibility graphs may be used to find Euclidean shortest paths among a set of polygonal 

obstacles in the plane: the shortest path between two obstacles follows straight line segments 

except at the vertices of the obstacles, where it may turn. So the Euclidean shortest path is the 

shortest path in a visibility graph that has as its nodes the start and destination points and the 

vertices of the obstacles
[3]

. Therefore, the Euclidean shortest path problem may be 

decomposed into two simpler sub problems: constructing the visibility graph, and applying a 

shortest path algorithm such as Dijkstra's algorithm to the graph. Figure 2.2 gives an example 

of the constructed visible map. The start and goal should be “visible” to each other. That is by 
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connecting all visible vertices, including start and goal points, there should be a series of line 

segments (including connection on the edge of obstacles) that link start to goal.  These paths 

exist on the perimeter of obstacles. 

 

Figure 2.2 Visibility graph 

 

Potential Fields 

Another approach is treats the robot's configuration as a point in a potential field that 

combines attraction to the goal, and repulsion from obstacles. The resulting trajectory, the 

global minima, is output as the path. This approach has advantages in that the trajectory is 

produced with little computation. However, potential field method can become trapped in 

local minima of the potential field, and fail to find a path. Example in Figure 2.3 works like 

this: 

� The goal location generates an attractive potential pulling the robot towards the goal. 

� The obstacles generate a repulsive potential pushing the robot far away from the 

obstacles. 

� The negative gradient of the total potential is treated as an artificial force applied to the 

robot. 

� The artificial force controls the robot. 
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Figure 2.3: Potential field example 

 

Sampling-Based Algorithms 

Sampling-based algorithms represent the configuration space with a roadmap of sampled 

configurations. A basic algorithm samples N configurations in configuration space, and 

retains those in free space to use as milestones. A roadmap is then constructed that connects 

two milestones P and Q if the line segment PQ is completely in free space. Again, collision 

detection is used to test inclusion in free space. To find a path that connects start and goal, 

they are added to the roadmap. If a path in the roadmap links start and goal, the planner 

succeeds, and returns that path. If not, the reason is not definitive: either there is no path in 

free space, or the planner did not sample enough milestones.  

 

These algorithms work well for high-dimensional configuration spaces, because unlike 

combinatorial algorithms, their running time is not (explicitly) exponentially dependent on the 

dimension of configuration space. They are also (generally) substantially easier to implement. 

They are probabilistically complete, meaning the probability that they will produce a solution 

approaches 1 as more time is spent. However, they cannot determine if no solution exists. 

Like the case in Figure 2.4, it is a Rapidly-Exploring Random Trees method for Dubins car. 

The Dubins car can move forward, turn both left and right, overall three actions.  
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Figure 2.4: Rapidly-Exploring Random Trees method for Dubins car, (a) Two stage expansion, 

(b) The global tree and generated trajectory 

 

We do not use sampling-based algorithms because it is not possible to guarantee optimal 

paths.  
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3. Graph search 

3.1 A star 

Planning a path for navigation can be regarded as a graph search problem. A* (Hart, Nilsson, 

& Rafael 1968; Nilsson 1980) algorithm is one of the early popular graph search methods. 

The method operates guiding its search towards the most promising set of states, return an 

optimal path, potentially saving a significant amount of computation. 

 

For the forward version of A*, denote S the set of states in state space, for example a set of 

[position, yaw] states for a kinematic car model. Denote in table 3.1 that: 

S The set of states in state space, for exanple a set of [position, yaw] states 

for a kinematic car model. 

( )g s  The path cost from the initial state starts S∈ to state s S∈ . 

( , )goalh s s  The heuristic function estimate from state s to sgoal, for example the 

euclidean distance from state s to sgoal. 

OPEN A priority queue storing states needed to be expanded in the future. Each 

element s in this OPEN list is sorted according to ( ( ) ( , ))goalg s h s s+ , 

which is the sum of its current path cost from start plus an admissible 

heuristic function estimate of path cost from s to sgoal. 

c(s,s’) Edege cost from current state s to its neighboring state s’. 

Table 3.1 Specific parameter in A star, forward version. 

 

A simple example in Figure 3.1 will show how the algorithm works
[12]

. Here CLOSED stores 

visited list so far, number in the middle of the arrow represent the edege cost between two 

neighboring states.  
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Figure 3.1 An example of how A* works 
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The heuristic ( , )goalh s s typically underestimates the cost of the optimal path from s to goals and 

is used to focus the search. The algorithm pops the state s at the front of the OPEN and 

updates the cost of all states reachable from this state through a direct edge: if 

g(s’)<c(s,s’)+g(s), then the cost of s’ is set to this new, lower value. Also, if the cost of a 

neighboring state s’ changes, it is placed on the OPEN list.  

 

The algorithm continues popping states off the queue until it pops off the goal state. At this 

stage, if the heuristic is admissible, i.e. guaranteed to not overestimate the path cost from any 

state to the goal, then the path cost of sgoal is guaranteed to be optimal. The complete 

algorithm is given in Table 3.2. 

ComputeShortestPath() 

01. while ( arg min ( ( ) ( , ))s OPEN goal goalg s h s s s∈ + ≠ ) 

02.     remove state s from the front of OPEN; 

03.     for all ' ( )s Succ s∈  

04.         if ( ( ')  ( )  ( , ')g s g s c s s> + ) 

05.            ( ') = ( )  ( , ')g s g s c s s+ ; 

06.            insert 's into OPEN with value ( ( ')  ( ', ))goalg s h s s+ ; 

Main() 

07. for all s S∈  

08.     ( ) ;g s = ∞  

09. ( ) 0;startg s =  

10. ;OPEN = ∅  

11. insert starts  intoOPEN with value ( ( ) ( , ))start start goalg s h s s+ ; 

12. ComputeShortestPath(); 

Table 3.2: Complete Algorithm of A*, forward version. 

 

3.2 Anytime Repairing A* 

When an agent must react quickly and the planning problem is complex, computing optimal 

paths as described in the previous sections can be infeasible, due to the sheer number of states 

required to be processed in order to obtain such paths. In such situations, we must be satisfied 

with the best solution that can be generated in the time available.  
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A backward version of Anytime Reparing A*(ARA*) is present here because it is easy to 

analysis. The planning start from goal state to start state, parameters are given in Table 3.3. 

 

S The set of states in state space, for exanple a set of [position, yaw] states 

for a kinematic car model. 

( )g s  The path cost from current state s S∈ to goal state goals S∈ . 

( , )starth s s  The heuristic function estimate from state sstart to s. 

OPEN A priority queue storing states needed to be expanded in the future.  

CLOSED All states already expanded once in the current search. 

INCONS All the inconsistent states that are not in OPEN. For example, When we 

are now at state s, due to a cost change associated with a neighboring state 

sneighbore , this state is placed into INCONS list rather than reinserted into 

CLOSED. 

C(s,s’) Edege cost from current state s to its neighboring state s’. 

key(s) Also known as the f-value, is given by ( ) ( , )startf g s h s sε= + ⋅ ; 

ε  The inflation factor used for inflated heuristics. A* search proceed the 

expansion in the order ( ( ) ( , )startf g s h s s= + . Here for ARA* in order to 

have a quicker expansion, or in a more accurate way, to bias towards 

states that are closer to the goal. The expansion order is given by 

( ( ) ( , ), 1startf g s h s sε ε= + ⋅ ≥ .  

Table 3.3 ARA* pamameters, backward version. 

 

ARA* limits the processing performed during each search by only considering those states 

whose costs at the previous search may not be valid given the newε value. It begins by 

performing an A* search with an initial inflation factor 0ε , but during this search it only 

expands each state at most once. 

 

Once a state s has been expanded during a particular search, if it becomes inconsistent due to a 

cost change associated with a neighboring state, it is placed into the INCONS list. When 

current search terminates, the states in the INCONS list are inserted into a fresh priority queue 

(with new priorities based on the new inflation factorε ) which is used by the next search.  

This improves the efficiency of each search in two ways. Firstly, by only expanding each state 
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at most once a solution is reached much more quickly. Secondly, by only reconsidering states 

from the previous search that were inconsistent, much of the previous search effort can be 

reused. Thus, when the inflation factorε is reduced between successive searches, a relatively 

minor amount of computation is required to generate a new solution. 

An easy example in Figure 3.2 will show how the backward ARA* planning algorithms 

works. This example is a static planning from bottom right goal to the top left start. 

 

 

Figure 3.2 Example of how backward version of ARA* works 
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Figure 3.2(a) Start withε =2, after two steps of planning, a door is opened at the top walls, 

which means an edge cost change takes place. ARA* plays the same way A* 

does, but it also add state 3 into the inconsistent list, which is only used for 

next planning to improve solution trajectory (with a smaller inflation factor).  

Figure 3.2(b) This time, the planner tries to improve the generated path(ε =1). The 

planner will skip state 1 & 2, starting from state 3, continue updating cost of 

its predecessors until goal is reached.  

An improved path is generated, by only considering the inconsistent state 

and unvisited state(state goal, 1 & 2 are not considered because they are 

visited and consistent), the efficiency is improved. 

Table 3.4 Comment on Figure 3.2 

Overall, the ARA* planner will start planning with a big inflation factor 0 1ε > , works out a 

sub-optimal path. Repeat improving this sub-optimal path by updating inconsistent states in it, 

until an optimal path is get, which is planning with 1ε = . A simplified, backwards-searching 

version of the algorithm is given in Table 3.5.  

 

key(s) 

01.  return ( ) ( , )startg s h s sε+ ⋅ ; 

ImprovePath() 

02.  while ( min ( ( ) ( ))s OPEN startkey s key s∈ < ) 

03.     remove s with the smallest key(s) from OPEN; 

04.     { }CLOSED CLOSED s= ∪ ; 

05.     for all ' ( )s pred s∈  

06.         if 's was not visited before 

07.             ( ') ;g s = ∞  

08.         if ( ') ( ', ) ( )g s c s s g s> +  

09.             ( ') ( ', ) ( );g s c s s g s= +  

10.             if 's CLOSED∉  

11.                 insert 's into OPEN with ( ')key s ; 

12.             else 

13.                 insert 's into INCONS; 

Table 3.5(a): Function key(s) and ImprovePath in ARA* 
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Main() 

14.  ( ) ; ( ) 0;start goalg s g s= ∞ =  

15.  0;ε ε=  

16.  OPEN = CLOSED = INCONS =∅ ; 

17.  insert
goals into OPEN with ( )goalkey s ; 

18.  ImprovePath(); 

19.  publish currentε -suboptimal solution; 

20.  whileε  > 1 

21.     decrease ε ; 

22.     Move states from INCONS into OPEN; 

23.     Update the priorities for all s OPEN∈ according to ( )key s ; 

24.     CLOSED =∅ ; 

25.     ImprovePath(); 

26.     publish currentε -suboptimal solution; 

Table 3.5(b): Main loop of ARA* 

 

3.3 D* Lite 

D* Lite algorithm is present by Maxim Likhachev and Sven Koenig in 2002. D* Lite 

maintain least-cost paths between a start state and any number of goal states as the cost of 

arcs between states change. It can handle increasing or decreasing arc costs and dynamic start 

states.  
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S The set of states in state space, for exanple a set of [position, yaw] 

states for a kinematic car model. 

( )g s  The path cost from the initial state starts S∈ to state s S∈ . 

( , ')h s s  Cost estimate of an optimal path from state s to s’. 

c(s,s’) The cost of moving from s to s’ (the arc cost) 

rhs(s) Known as a one-step look ahead cost. Here ( )succ s S∈ denotes the set 

of successors. A state is called consistent if and only if its g-value 

equals its rhs-value, otherwise it is either overconsistent 

(if ( ) ( )g s rhs s> ) or underconsistent (if ( ) ( )g s rhs s< ). 

0                                                     
( )

min ( ( , ') ( '))    ,
' ( )

goalif s s
rhs s

c s s g s otherwise
s succ s

==  +
 ∈

 

OPEN A priority queue holds exactly the inconsistent states, that is where 

edge cost changes.  

key(s) The priority, or also known as the key value, represent the priority 

in OPEN list. D* Lite expands states from the queue in increasing 

priority, updating their g-values and the rhs-values of their 

predecessors, until there is no state in the queue with a key value less 

than that of the start state. 

1 2( ) [ ( ), ( )]

          [min( ( ), ( )) ( , ),

              min( ( ), ( ))].

start

key s k s k s

g s rhs s h s s

g s rhs s

=
= +  

In lexicographic ordering, ( )key s is less than priority ( ')key s , that 

is ( )  ( ')key s key s< , if and only if 1 1( ) ( ')k s k s< or both 

1 1( ) ( ')k s k s= and 2 2( ) ( ')k s k s< . 

Table 3.6: D* Lite parameters 

 

D* Lite maintains a least-cost path from a start state to a goal state. As with A*, D* Lite uses 

a heuristic and a priority queue to focus its search and to order its cost updates efficiently. 

During its generation of an initial solution path, it performs in exactly the same manner as a 

backwards A* search. If arc costs change after this initial solution has been generated, D* Lite 

updates the rhs-values of each state immediately and places those states into OPEN with 

corresponding key value. As before, it then expands the states on the queue in order of 
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increasing priority until there is no state in the queue with a key value less than that of the 

start state. A simple robot navigation example in Figure 3.3 will show how the planner works: 

 

 

Figure 3.3: Robot navigation example with D* Lite. 

 

D* Lite ensures that states that are along the current path and on the queue are processed in 

the most efficient order. Combined with the termination condition, this ordering also ensures 

that a least cost path will have been found from the start state to the goal state when 

processing is finished. The basic version of the algorithm is given in below in Table 3.7: 
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key(s) 

01. return [ min( ( ), ( )) ( , );min( ( ), ( ))startg s rhs s h s s g s rhs s+ ]; 

UpdateState(s) 

02. if s was not visited before 

03.    g(s) = ∞ ; 

04. if ( goals s≠ ) ' ( )( ) min ( ( , ') ( '));s Succ srhs s c s s g s∈= +  

05. if ( s OPEN∈ ) remove s from OPEN; 

06. if ( ( ) ( )g s rhs s≠ ) insert s into OPEN with key(s);  

ComputeShortestPath() 

07. while (min ( ( )) ( )s OPEN startkey s key s∈ <  OR ( ) ( )start startrhs s g s≠ . 

08.    remove state s with the minimum key from OPEN; 

09.    if ( ( ) ( )g s rhs s> ) 

10.       ( ) ( )g s rhs s= ; 

11.        for all ' ( )s pred s∈  UpdateState(s’); 

12.    else 

13.       ( ) ;g s = ∞  

14.        for all ' ( ) { }s pred s s∈ ∪  UpdateState(s’); 

Main() 

15. ( ) ( ) ; ( ) ;start start goalg s rhs s g s= = ∞ = ∞  

16. ( ) 0; ;goalrhs s OPEN= = ∅  

17. insert sgoal into OPEN with key(sgoal); 

18. forever 

19.    ComputeShortestPath(); 

20.    Wait for changes in edge costs; 

21.    for all directed edges (u, v) with changed edge costs 

22.       Update the edge cost c(u, v); 

23.       UpdateState(u); 

Table 3.7: D* Lite algorithm 
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3.4 Anytime Dynamic A* 

In 2005, Maxim Likhachev developed Anytime Dynamic A* (AD*), an algorithm that 

combines the replanning capability of D* Lite with the anytime performance of ARA* 

(Likhachev et al. 2005). Parameter details are given in Table 3.8. 

S The set of states in state space, for exanple a set of [position, yaw] 

states for a kinematic car model. 

( )g s  The path cost from the initial state starts S∈ to state s S∈ . 

( , ')h s s  Cost estimate of an optimal path from state s to s’. 

c(s,s’) The cost of moving from s to s’ (the arc cost) 

rhs(s) Known as a one-step look ahead cost. Here ( )succ s S∈ denotes the set 

of successors. A state is called consistent if and only if its g-value 

equals its rhs-value, otherwise it is either overconsistent 

(if ( ) ( )g s rhs s> ) or underconsistent (if ( ) ( )g s rhs s< ). 

0                                                     
( )

min ( ( , ') ( '))    ,
' ( )

goalif s s
rhs s

c s s g s otherwise
s succ s

==  +
 ∈

 

OPEN A priority queue storing states needed to be expanded in the future.  

CLOSED All states already expanded once in the current search. 

INCONS All the inconsistent states that are not in OPEN. Each timeε is 

decreased, all inconsistent states are moved from INCONS to OPEN 

and CLOSED is made empty. 

key(s) The priority, or also known as the key value, represent the priority 

in OPEN list. D* Lite expands states from the queue in increasing 

priority, updating their g-values and the rhs-values of their 

predecessors, until there is no state in the queue with a key value less 

than that of the start state. 

1 2( ) [ ( ), ( )]

          [min( ( ), ( )) ( , ),

              min( ( ), ( ))].

start

key s k s k s

g s rhs s h s s

g s rhs s

=
= +  

In lexicographic ordering, ( )key s is less than priority ( ')key s , that 

is ( )  ( ')key s key s< , if and only if 1 1( ) ( ')k s k s< or both 

1 1( ) ( ')k s k s= and 2 2( ) ( ')k s k s< . 
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ε  The inflation factor used for inflated heuristics, to bias the states which 

are closer to the goal. AD* search proceed 

expansion ( ) [min( ( ), ( )) ( , );min( ( ), ( )))]startkey s g s rhs s h s s g s rhs sε= + ⋅ . 

Table 3.8: AD* parameters 

 

AD* performs a series of searches using decreasing inflation factors ε  to generate a series 

of solutions with improved bounds, as with ARA*. When there are changes in the 

environment affecting the cost of edges in the graph, locally affected states are placed on the 

OPEN queue to propagate these changes through the rest of the graph, as with D* Lite. States 

on the queue are then processed until the solution is guaranteed to beε -suboptimal. 

 

AD* begins by setting the inflation factor ε to a sufficiently high value 0ε , so that an initial, 

suboptimal plan can be generated quickly. Then, unless changes in edge costs are detected, 

ε is gradually decreased and the solution is improved until it is guaranteed to be optimal(ε = 

1). This phase is exactly the same as for ARA*. 

 

When changes in edge costs are detected, there is a chance that the current solution will no 

longer beε -suboptimal, i.e. an intermediate state in solution trajectory becomes an obstacle. 

In such a case, the algorithm increasesε so that a new sub-optimal solution can be produced 

quickly. Then repeat decreasingε until the solution becomes optimal.  

 

By incorporating these considerations, AD* is able to handle both changes in edge costs and 

changes to the inflation factorε . Table 3.9 gives the complete algorithm. 
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key(s) 

01. if ( ( ) ( )g s rhs s> ) 

02.     return [min( ( ), ( )) ( , );min( ( ), ( )))];startg s rhs s h s s g s rhs sε+ ⋅  

03. else 

04.     return [min( ( ), ( )) ( , );min( ( ), ( )))];startg s rhs s h s s g s rhs s+  

UpdateState(s) 

05. if s was not visited before 

06.    ( )  ;g s = ∞  

07. if ( goals s≠ ) ' ( )( ) min ( ( , ') ( '));s Succ srhs s c s s g s∈= +  

08. if ( s OPEN∈ ) remove s from OPEN; 

09. if ( ( ) ( )g s rhs s≠ ) 

10.     if s CLOSED∉  

11.         insert s into OPEN with key(s); 

12.     else 

13.         insert s into INCONS; 

ComputeOrImprovePath() 

14. while (min ( ( )) ( )s OPEN startkey s key s∈ <  OR ( ( ) ( )start startrhs s g s≠ ) 

15. remove state s with the minimum key from OPEN; 

16.     if ( ( ) ( ))g s rhs s<  

17.         ( ) ( )g s rhs s= ; 

18.         { };CLOSED CLOSED s= ∪  

19.          for all ' ( )s pred s∈    UpdateState( 's ); 

20.     else 

21.         ( )g s = ∞ ; 

22.         for all ' ( ) { }s pred s s∈ ∪   UpdateState( 's ); 

Table 3.9(a): Key, UpdateState and ImprovePath function 
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Main() 

01. ( ) ( ) ; ( ) ;start start goalg s rhs s g s= = ∞ = ∞  

02. 0( ) 0;goalrhs s ε ε= = ; 

03. ;OPEN CLOSED INCONS= = = ∅  

04. insert goals  into OPEN with ( )goalkey s ; 

05. ComputeorImprovePath(); 

06. publish current ε -suboptimal solution; 

07. forever 

08.     if changes in edge costs are detected 

09.         for all directed edges (u, v) with changed edge costs 

10.             Update the edge cost c(u, v); 

11.             UpdateState(u); 

12.     if significant edge cost changes were observed 

13.         increaseε or replan from scratch; 

14.     else ifε  > 1 

15.         decreaseε ; 

16.     Move states from INCONS into OPEN; 

17.     Update the priorities for all s OPEN∈ according to key(s); 

18.     CLOSED = ∅ ; 

19.     ComputeorImprovePath(); 

20.     publish current ε -suboptimal solution; 

21.     if ε  = 1 

22.         wait for changes in edge costs; 

Table 3.9(b): Main loop of AD* 

 

3.5 Anytime Nonparametric A* 

Anytime Nonparametric A*, also known as (ANA), is present by Jur van den Berg, Rajat 

Shah, Arthur Huang and Ken Goldberg. The motivation of this planning algorithm is to 

develop an Anytime A* algorithm that does not require parameters(do not assignε  and the 

amount by whichε  is decreased for ARA* for example). 
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S The set of states in state space, for exanple a set of [position, yaw] 

states for a kinematic car model. 

( )g s  The path cost from the initial state starts S∈ to state s S∈ . 

G The cost of the current-best solution, G is set to ∞ in initialization 

because no solution is found.  

e(s) 
It is given by 

( )
( )

( )

G g s
e s

h s

−= , that is the maximal value of e such that 

( )f s G≤ . ANA will expand the state in OPEN with maximum e(s). 

c(s,s’) Edge cost from current state s to its neighboring state s’. 

OPEN A priority queue storing states needed to be expanded in the future. 

Table 3.10: ANA parameters 

 

Choose to expand the state in OPEN with maximum e(s) in ANA means that bias the states 

which is closest to the goal. This guarantees that ANA will plan quickly get a sub-optimal 

trajectory and try to improve it with decreasing e(s) until an optimal solution is get.  

 

Moreover, ANA acts more or less the same way as Weighted A* does, but with 2 differences. 

1. Each time a state s is expanded, it will try to decrease the g-value(g(s’)) of each its 

successors s’. Then, s is set to s’ predecessor such that the solution can be reconstructed 

once it is found.  

2. Moreover, this s’ is inserted into the OPEN. The planner will continue expanding states in 

OPEN until it is empty. That is to prune the goal state and all the updated state s’. Details 

of the complete algorithm is given in Table 3.11. 
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IMPROVESOLUTION() 

1: while OPEN ≠ ∅  do 

2:    arg min { ( )}s OPENs e s∈←  

3:    \{ }OPEN OPEN s←  

4:    if ( )e s E<  then 

5:       ( )E e s←  

6:    if IsGOAL(s) then 

7:       ( )G g s←  

8:        return 

9:    for each successor s’ of s do 

10:       if ( ) ( , ') ( ')g s c s s g s+ < then 

11:          ( ') ( ) ( , ')g s g s c s s← +  

12:          ( ')pred s s←  

13:          if ( ') ( ')g s h s G+ < then 

14:              Insert or update s’ in OPEN with key e(s’) 

ANA*() 

15: ; ; ; : ( ) ; ( ) 0;startG E OPEN s g s g s← ∞ ← ∞ ← ∅ ∀ ← ∞ ←  

16: Insert sstart into OPEN with key e(sstart) 

17: whileOPEN ≠ ∅ do 

18:   IMPROVESOLUTION() 

19:   Report current E-suboptimal solution 

20:   Update keys ( )e s in OPEN and prune if ( ) ( )g s h s G+ ≥  

Table 3.11: ANA algorithm 
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4. Search-Based Planner Library 

Search Based Planner Library (SBPL) is a package includes a generic set of motion planners 

using search based planning. It was developed by Maxim Likhachev at the University of 

Pennsylvania in collaboration with Willow Garage.  

 

4.1 Environment and Planner class 

Environment class and Planner class are two most important parts of it. All their elements 

inherit from their parent class. Useful detail is given by Table 4.1 and 4.2. For Yamaha grizzly, 

the most suitable class is Navxytheta class.  

 

Inheritance from basic Environment 

class 

Feature 

EnvironmentNAV2D class 2D navigation class. For vehicle motion planning, 

state is the position(x,y). 

EnvironmentNAVTHETA class 3D navigation class. For vehicle motion planning, 

state is the position(x,y) and yaw(theta) 

EnvironmentNAVXYTHETAMLEVLAT 

class 

3D navigation class with multiple level of vehicle 

configuration, i.e. a vehicle with a car like base and 

a moving platform on it. State is several layers of 

position(x,y) and yaw(theta). 

EnvironmentRobotARM class For kinematic robot arm navigation of variable 

number of degrees of freedom. 

Table 4.1: Environment class 
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Inheritance from basic Planner class Feature 

ADplanner class  Grid search planning class, use Anytime Dynamic 

A* (AD) algorithm. 

ARAplanner class Grid search planning class, use Anytime Repairing 

A* (ARA) algorithm. 

anaPlanner class Grid search planning class, use Anytime 

Nonparametric A* (ANA*) algorithm. 

Table 4.2: Planner class 

 

4.2 Motion primitive 

Search based planning library uses motion primitives for path planning in a 2D environment, 

Motion primitives are short, kinematically feasible motions which form the basis of 

movements that can be performed by the robot platform. Search-based planner generates 

paths from start to goal by combining a sequence of motion primitives. The result is a smooth 

kinematically feasible path. A simple example will show how motion primitives work. Let us 

assume that we are in a simple case in Table 4.3. 

 

Feature Parameter 

Permissive vehicle actions Run forward and make forward turn 25 degs, both left 

and right, or run backward.  

Yaw(θ ) discretisation Resolution 22.5 degs, which means overall 

360/22.5=16 choices of vehicle pointing direction 

Action cost  Forward action cost = 1, 

Making forward turn cost = 5, 

Moving backward action cost = 10. 

Table 4.3: Simple motion primitive feature 
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Figure 4.1: Motion primitive with yaw = 22.5 deg 

Figure 4.1 is one of the sixteen motion primitives, [θ =22.5 deg, vehicle reference point (0,0)]. 

When the SBPL planner is working, its goal is to choose between 16 motion primitives and 

the exact robot action in that motion primitives. Like in Figure 4.2, all 16 motion primitives 

are included. 

 

Figure 4.2: All 16 motion primitives 
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A path solution is a series of these motion primitives. While the planner is working, it will 

search through all 16 motion primitives from the current state, check obstacle collision 

problem, try its best to find trajectory with minimal sum action cost(optimal solution). More 

details is in Figure 4.3, grey objects are obstacles. Solid series of arrows are the path solution, 

dashed ones represents the actions the planner has tried.  

 

Figure 4.3: Solution composition 
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5. Navxytheta class 

5.1 Grid environment 

Navxytheta class uses discretized cells to describe environment. In our case, obstacle 

threshold is 1, cell_size is 0.1m. So that for a 100m×100m environment, a 2 dimensional 

matrix of size 1000x1000 is used to store map data. For each element, 0 means free space, 1 

means obstacle. An example is given: 

1000 1000
0 0 0 0 1  0 0 0

0 0 0 1 1  0 0 0

                         

0 0 1 1 1  1 1 1

×
 
 
 
 
 
 

⋯

⋯

⋮ ⋮

⋯

 

The defination of a roughness map is more or less the same. It has the same size of 

environment map. For each cell, there is an integer number to describe how much is the 

roughness, higher this number, higher is the roughness. An example is given below: 

1000 1000
0 1 3 9 9  3 2 1

0 3 0 1 1  2 2 2

                         

0 1 8 4 0  5 5 5

×
 
 
 
 
 
 

⋯

⋯

⋮ ⋮

⋯

 

 

5.2 Motion Primitive for ATV 

Motion primitive for Yamaha ATV is composed of all the possible action the vehicle can 

perform during a specific time period. Parameter details are in Table 5.1, Figure 5.1 and 5.2 

are the footprints for yaw = 0 degs and 90 degs seperately. 
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Motion primitives Feature Parameter 

Allowable vehicle actions Running both forward and backward.  

Turnning angle [30, 20, 10, 5] degs, both left and 

right.  

Speed Zeros speed and forward 2m/s. 

Time discretization 0.5s 

Yaw(θ ) discretization Resolution 22.5 degs, 360/22.5=16 choices of 

vehicle pointing direction. 

Primitive action cost Forward moving cost = 1, 

Making forward turn cost = 2, 

Moving backward cost = 5. 

Table 5.1: Motion primitive parameter for ATV 

    

Figure 5.1: Base motion primitive       Figure 5.2: Motion primitive with yaw=90 deg 

 

 

5.3 Action for motion primitive 

For example, when we are planning trajectory with forward ARA* planner in Navxytheta 

library. The planning algorithm needs a reasonable way to assign successors to the planner.  

Navxytheta class provide this kind of method. It is to choose among pregenerated motion 

primitives, check their validity of source, target and intermediate states. Then pass on the set 

of reasonable actions to the planner. Details is given in Figure 5.3. 
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Figure 5.3: Flow diagram to assign actions 

 

 

 

 

 



34 

5.4 Main loop for Navxytheta 

Main loop for atv path planning with motion primitives is given by Figure 5.4. The inflation 

factor epsilon is used for increasing planning speed, bigger the epsilon, faster the planning 

speed. An optimal solution is given if epsilon is 1, in that case the solution cost is minimum.  

 

Commonly the planning is started with a big epsilon, the planner itself is going to decrease 

epsilon, trying its best to reduce the solution cost until it can be decreased no more.  

 

Figure 5.4: Main loop for Navxytheta, forward planning direction 
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6. NavATV class 

NavATV(NavXXX) class comes from modified Navxytheta class. Navxytheta class can only 

generate kinematic feasible trajectory, which is not enough for YAMAHA Grizzly. What we 

want is not only the trajectory but the state speed and state steer for vehicle control. Moreover, 

to cope with anti-roll over problem, dynamic constraint is needed to limit vehicle movements, 

i.e. limit turning angle while running at high speed. A dynamic car model and a suitable way 

to assign vehicle speed and steering angle are important. 

6.1 Dynamic Car Model 

  

Figure 6.1: Dynamic Car model  

Parameter: Feature: 

s Axial speed 

φ  Steering angle 

L Distance between front and rear axis 

θ  Yaw 

w  The distance traveled by the car 

ρ  The radius of the turning circle 

Table 6.1: Dynamic Car Features 
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A configuration for dynamic car is denoted by ( , , )q x y θ= [1]
. In a small time interval t∆ , the 

car is moving approximately in the direction that the rear wheels are pointing. When t∆ tends 

to zero, it implies that / tandy dx θ= . Since / /dy dx y x=
i i

, and tan sin / cosθ θ θ= , We can get 

a Pfaffian constraint function sin cos 0x yθ θ− + =
i i

. The constraint is satisfied if 

cosx s θ= ⋅
i

and siny s θ= ⋅
i

, which is the decomposition of axial speed along x and y axis. 

 

The next task is to derive dynamic equation for θ
i

. w  means the distance traveled by the 

car(integral of speed). As shown in Figure 6.1, If in the case steering angle is fixed, we can 

come out that dw dρ θ= ⋅ . And from trigonometry / tanLρ φ= , it is clear that
tan

d dw
L

φθ = . 

By assigning s and φ  as control variables su and uφ . Dynamic equation for x, y and theta is 

given by: 

cos

sin

tan

s

s

s

x u

y u

u
u

L
φ

θ

θ

θ

=

=

=

i

i

i

i

i  

All this lead to our final dynamic equations. Denote t current time instant, t+1 future time 

instant, t∆  the time interval. The complete equation is given below. 

1

1

1
1 1

1 1 1

1 1 1

tan

cos

sin

t t s

t t

t
t t t

t t t t

t t t t

s s u t

u t

s
t

L

x x s t

y y s t

φφ φ

θ θ φ

θ
θ

+

+

+
+ +

+ + +

+ + +

= + ⋅∆
= + ⋅ ∆

= + ⋅ ∆

= + ⋅ ⋅∆
= + ⋅ ⋅ ∆

 

 

Unluckily, SBPL provides nothing to assign su and uφ . Mofication on Environment 

Navxytheta is necessary. Besides, once a new dynamic constraint is added, a new set of 

motion primitives has to be generated for this certain case. Generally speaking, this is not 

reasonable for practice. One way is to make motion primitive “online”. Let the planner decide 

future actions and intermediate footprint based on actual vehicle state. Our ATV requires state 
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to be[ ], , , , 't t t t tx y sθ φ , let the planner decide the set of suitable increment{ [ ], 's φ∆ ∆ }. By a 

slight modification on previous equation, future state can be achieved by following. 

1

1

1

1

1

0

0

0

0

0

t t

t t

t t

t t

t t

x x x

y y y

ss s

θ θ θ

φφ φ

+

+

+

+

+

∆       
       ∆       
       = + ∆ +
       ∆       
       ∆      

 

Where 1 1cost tx s tθ+ +∆ = ⋅ ⋅∆ , 1 1sint ty s tθ+ +∆ = ⋅ ⋅∆  and 1 1/ tant ts Lθ φ+ +∆ = ⋅ . 

6.2 Increment generation 

6.2.1 Assign speed and steering increment 

According to Yamaha Grizzly on road performance in Table 6.2, and also leave some margin 

for off road behavior to cope with high roughness. Since[ ], ' [ , ]'s s tφ φ∆ ∆ = ⋅∆ɺɺ , we can assign 

our set of sɺ andφɺ , the set of {[ ], 's φ∆ ∆ }is easily get. Detail is in Table 6.3. 

Yamaha Grizzly Feature 

Allowable movement Forward, forward turnning. No backward running 

Maximum on road speed 107Km/h, that is 29.7m/s. 

Steering on road Steer 55 degs in 2 secs. 

For a linear steer process, the steering is 0.48rad/s 

Speed up on road Speed up from zero speed to 60 km/h in 5.1s. 

For a linear speed up case, the acceleration speed is 3.27m/s. 

Table 6.2 YAMAHA Grizzly on road performance 

Vehicle behavior constraint for SBPL 

The set of possible sɺ= [-0.8, -0.6, -0.3, 0, 0.3, 0.6, 1.2](m/s). 

The set of possibleφɺ= [-15, -10, -5, 0, 5, 10, 15](degs/s). 

Maximum permissible speed = 3m/s. 

Minimum speed = 0. 

Maximum permissible steer = 30 degs. 

Integration time t∆ =0.5s. 

The set of possible s∆ =[-0.4, -0.3, -0.15, 0, 0.15, 0.3, 0.6](m). 

The set of possible φ∆ =[-7.5, -5, -2.5, 0, 2.5, 5, 7.5](degs). 

Table 6.3 Vehicle behavior constraint for SBPL in our experiment 
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6.2.2 ATV model and state discretize 

Yamaha Grizzly can be modelled by a rectangular shape Arkerman model. Since we are in 2D 

case, there is no need to consider ATV height. The center of gravity lies in the middle of the 

rear axial. Its length is 1.8 meter and width is 0.9 meter. The gravity center is the vehicle 

reference point, in vehicle body collision check, this reference point is very important.  

 

In Navxytheta library, position x and y are already discretized to guarantee a finite 

dimensional state space. Here the same thing has to carried out for yaw, speed and steer. 

Speed discretize can be achieved by setting the maximum speed limit and the minimum speed 

limit. For yaw, experiment results shows that 20 degs of resolution is perfect to balance 

planning speed and accuracy. Steer resolution is set to 2 degs to garantee precision. Up till 

now, we get a 5D finite dimensional state space.  

 

6.3 Action for direct increment 

Now the action is based on actual and future vehicle states. Here I am going to present how 

shortest path and smoothest path comes.  

 

Shortest path is the combination of a series of actions with minimum total increment on 

displacement. By define the action cost function as the “euclidean distance” of the increment, 

SBPL planner will automatically get a path with minumum sum of increments. The smoothest 

path means that minimum speed and steer angle difference along the trajectory. But since 

speed and steer have the different unit, normalize speed difference and normalized steer 

difference is used here instead. Details are given by Figure 6.2. 
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1 1

max max
2 2

t t t ts s

s

φ φ
φ

+ +− −
+

⋅ ⋅

           

Figure 6.2: Action assignment for shortest path and smoothest path 
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6.4 Mainloop for NavATV 

This is loop for forward atv path planning with direct increment method, detail is given by 

Figure 6.4. Also here the inflation factor epsilon is for speed planning. Commonly the 

planning is started with a big epsilon, the planner itself is going to decrease epsilon, trying its 

best to reduce the solution cost until it can be decreased no more. And this time epsilon is 

equal to 1. 

 

Figure 6.4 Main loop for EnvATV 
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7. Benchmark 

This part is a benchmark of optimal trajectory between different kinds of paths and different 

planners. The hardware platform is CPU T6400 2.2Ghz, 4G of ram, NVIDIA GT220M 1G 

graphics. Maximum allowable time for planning is 300s. Constraints are given below: 

Constraint Motion Primitive Direct Increment(shortest path & 

smoothest path). 

Speed limit Two speeds, zero speed and 2m/s Maximum speed 3m/s, minumum speed 

0. 

Steer limit 30 degs both left and right. 30 degs both left and right. 

Table 7.1 Constraint for benchmark 

 

7.1 Navigate along the obstable 

7.1.1 Motion Primitives, shortest path and smoothest path benchmark 

This section is the performance analysis along the obstacle. The environment map 

is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue trajectory is the 

solution. Start position (10,80) and goal position (90,85). Detail is given below. 

 

Figure 7.1: (a) Motion primitives trajectory, (b) Shortest path trajectory, (c) Smoothest path 

trajectory 
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 Travel Distance 

Motion primitive 90.365m 

Shortest path 95.78m 

Smoothest path 107.86m 

Table 7.2: Travel Distance of different trajectories, notice that motion primitive path is shorter 

but unfeasible with respect to vehicle dynamics 

 

7.1.2 Benchmark of shortest path between AD, ARA*, ANA planners 

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue 

trajectory is the solution. Start position (10,80) and goal position (90,85). Detail is given 

below. 

 

Figure 7.2: Footprint of shortest paths of AD, ARA* and ANA planners 

 

 Shortest path travel distance Shortest path travel time 

AD 95.78m 164.5s 

ARA* 95.78m 164.5s 

ANA 115.14m 59.5s 

Table 7.3: Shortest path details of AD, ARA* and ANA 
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Figure 7.3 (a): AD planner shortest path states 

 

Figure 7.3 (b): ARA* planner shortest path states 
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Figure 7.3 (c): ANA planner shortest path states 
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7.1.3 Benchmark of smoothest path between AD, ARA*, ANA planners 

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue 

trajectory is the solution. Start position (10,80) and goal position (90,85). Detail is given 

below. 

 

Figure 7.4: Footprint of smoothest paths of AD, ARA* and ANA planners 

 

 Smoothest path travel distance Smoothest path travel time 

AD 107.86m 43s 

ARA* 107.86m 43s 

ANA 108.07m 47.5s 

Table 7.4: Smoothest path details of AD, ARA* and ANA 
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Figure 7.5 (a): AD planner smoothest path states 

 

Figure 7.5 (b): ARA* planner smoothest path states 
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Figure 7.5 (c): ANA planner smoothest path states 

 

 

7.2 Navigate through the obstacle 

7.2.1 Motion Primitives, shortest path and smoothest path benchmark 

This section is the performance analysis of a passing through the obstacle. The environment 

map is 2100 100m× , cell resolution is 0.1m, Red part is the obstacle, and blue trajectory is the 

solution. Start position (10,10) and goal position (90,90). Detail is given below. 

 

Figure 7.6: (a) motion primitives trajectory, (b) Shortest path trajectory, (c) Smoothest path 

trajectory 
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 Travel Distance 

Motion primitive 122.64m 

Shortest path 124.1m 

Smoothest path 139.62m 

Table 7.5: Travel Distance of different trajectories, notice that motion primitive path is shorter 

but unfeasible with respect to vehicle dynamics 

 

7.2.2 Benchmark of shortest path between AD, ARA*, ANA planners 

The environment map is 2100 100m× , cell resolution is 0.1m, Red part is the obstacle, and 

blue trajectory is the solution. Start position (10,10) and goal position (90,90). Detail is given 

below. 

 

Figure 7.7: Footprint of shortest paths of AD, ARA* and ANA planners 

 

 Shortest path travel distance Shortest path travel time 

AD 124.1m 161s 

ARA* 124.1m 161s 

ANA 170.11m 96s 

Table 7.6: Shortest path details of AD, ARA* and ANA 
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Figure 7.8 (a): AD planner shortest path states 

 

Figure 7.8 (b): ARA* planner shortest path states 
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Figure 7.8 (c): ANA planner shortest path states 
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7.2.3 Benchmark of smoothest path between AD, ARA*, ANA planners 

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue 

trajectory is the solution. Start position (10,80) and goal position (90,85). Detail is given 

below. 

 

Figure 7.9: Footprint of smoothest paths of AD, ARA* and ANA planners 

 

 Smoothest path travel distance Smoothest path travel time 

AD 139.62m 55s 

ARA* 139.62m 55s 

ANA 137.46m 53.5s 

Table 7.7: Smoothest path details of AD, ARA* and ANA 
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Figure 7.10 (a): AD planner smoothest path states 

 

Figure 7.10 (b): ARA* planner smoothest path states 
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Figure 7.10 (c): ANA planner smoothest path states 
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8. Benchmark with roughness map 

Roughness is used here to multiply the action cost function. It is an amplifier of action cost, 

which means that, perform the same action on higher roughness cost more. Roughness map is 

of the same size of the environment, for each grid, there is a one digit decimal integer. Higher 

is the roughness, larger this integer number.  

 

8.1 Move along the obstacle  

This section will present how the roughness affects the trajectory. Take the same environment 

in section 7.1, and given the following roughness map in Figure 8.1. 

 

Figure 8.1: Roughness map 

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue 

trajectory is the solution. Start position (10,80) and goal position (90,85). Figure 8.2, 8.3 and 

8.4(a) gives the solution footprints, while Figure 8.2, 8.3 and 8.4(b) includes the projection of 
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roughness on the environment map seperately. Details of the correponding trajectory is given 

in Table 8.1. 

 

Figure 8.2(a): Motion Primitive trajectory footprint 

 

Figure 8.2(b): Roughness projection for motion primitive trajectory 
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Figure 8.3(a): Shortest path trajectory footprint 

 

Figure 8.3(b): Roughness projection for shortest path 
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Figure 8.4(a): Smoothest path trajectory footprint 

 

Figure 8.4(b): Roughness projection for smoothest path 

 

Roughness Travel Distance 

Motion primitive 94.742m 

Shortest path 108.49m 

Smoothest path 105.63m 

Table 8.1 Travel distance of different trajectories 
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8.2 Move through the obstacle 

Take the same environment in section 7.2, and given the following roughness map in Figure 

8.5. 

 

Figure 8.5: Roughness map 

 

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue 

trajectory is the solution. Start position (10,10) and goal position (90,90). Figure 8.6, 8.7 and 

8.8(a) gives the solution footprints, while Figure 8.6, 8.7 and 8.8(b) includes the projection of 

roughness on the environment map seperately. Details of the correponding trajectory is given 

in Table 8.2. 
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Figure 8.6(a): Motion Primitive trajectory footprint 

 

Figure 8.6(b): Roughness projection for motion primitive trajectory 
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Figure 8.7(a): Shortest path trajectory footprint 

 

Figure 8.7(b): Roughness projection for shortest path 
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Figure 8.8(a): Smoothest path trajectory footprint 

 

Figure 8.8(b): Roughness projection for smoothest path 

 

Roughness Travel Distance 

Motion primitive 153.45m 

Shortest path 147.06m 

Smoothest path 141.56m 

Table 8.2 Travel distance of different trajectories 
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Appendix A 

Useful Navxytheta class functions: 

Here state, state parameter are (x,y,yaw), stateID is the index in hash table for each state. 

 Function name Usage 

1 ConvertStateIDPathinto- 

XYThetaPath(vector stateIDs, 

vector state parameters) 

Iterate in vector stateIDs, search its related state 

parameter(x,y,theta) in hash table. Assign all of them in 

“vector state parameters”. 

2 GetSuccs(source stateID, 

successors vector, action 

vector) 

Play with motion primitives, get all available successors 

of source state assigning corresponding actions. It is 

used in forward version of AD, ARA, ANA algorithms. 

3 GetPreds(target stateID, 

predecessors) 

Play with motion primitives, get all available 

predecessors of target stateassigning corresponding 

actions. It is used in backward version of AD, ARA, 

ANA algorithms. 

4 GetStartHeuristic(stateID) Assign the heuristic from state state to current state, 

return Euclidean distance between them.  

5 GetGoalHeuristic(stateID) Assign heuristic from current state to goal, which is the 

Euclidean distance also.  

6 GetStateFromCoord(state) Search in hash table by state parameters, return 

correponding state ID. 

7 GetCoordFromState(stateID, 

state parameter) 

Search in hash table by stateID, return correponding 

state parameter. 

8 GetActionCost(source 

position, action increment) 

Calculate action cost, return infinite cost if the action is 

not valid, collide with obstacle and outside the 

environment map. 

9 InitializeEnv(environment 1. Read in environment data, start and goal state 
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configuration file, vehicle 

shape, motion primitive 

configuration file) 

parameter. Etc. 

2. Read in motion primitive configuration file. 

3. Read in model describing vehicle shape. 

4. Precompute action data using PreComputeAction() 

function. 

10 IsObstacle(position) Check if position is an obstacle.  

11 IsValidCell(position) Check if current position is obstacle or out of 

environment map. 

12 PreComputeActions() Running before planning, pre-compute actions, assign 

their pose and intermediate points on motion primitive 

configuration data. 

13 SetGoal(state parameter) Create goal state in hashtable with given state 

parameter. 

14 SetStart(state parameter) Create start state in hash table with given parameter. 

15 UpdateCost(position) It is used to updata map data for a certain cell. 
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Appendix B 

Useful NayATV class functions: 

Here state and state parameter are in 5 degs of freedom(x,y,yaw,speed,steer angle), stateID is 

the index in hash table for the corresponding state. 

 Function name Usage 

1 BodyCollisionCheck(position) Collision problem check between vehicle body and 

obstacle. It use “position” as vehicle reference point, 

check 4 corner points, 4 mid points between corners and 

the geometric mid point.  

2 CreateNewHashEntry(state) Create a new state in hash table with a newly assigned 

stateID.  

3 CreateStartAndGoalState 

(environment parameter) 

Create start state and goal state in hash table, return 

their stateIDs. 

4 GetHashEntry(state) Return the pointer in hash table to the place where 

“state” is stored, return NULL if it the state is not in 

hash table. 

5 GetActionCost(source, action) Return individual price of action, which is 

roughness*cell cost*shortest path(smoothest path) cost. 

It will return infinite cost if source is not valid cell, or 

invalid action intermediate cell also. 

6 GetGoalHeuristic(stateID) Return heuristic from current state to goal, which is the 

Euclidean distance between them. 

7 GetStartHeuristic(stateID) Return heuristic from start to current state, which is the 

Euclidean distance between them. 

8 GetSuccs(source stateID, 

succsID vector, cost vector) 

Used in forward AD, ARA and ANA plannning 

algorithms, return all possible successor of source state, 
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by assigning reasonable actions(direct increment on 

actual state). Combine all actions and action costs in 

“vector succsID” and “vector cost” seperately. 

9 GetPreds(target stateID,  

predsID vector, cost vector) 

Used in backward AD, ARA and ANA planning 

algorithms, return all possible predecessor of target 

state, by assigning reasonable actions(direct increment 

on actual state). Combine all action and action costs in 

“vector predsID” and “vector cost” seperatly. 

10 GetStateFromCoord(state 

parameter) 

Search in hash table corresponding index with the same 

state parameter. If there doesn’t exist, create a new 

element in hash table.  

11 IsValidCell(position) Check if current position locate at an obstacle cell, or it 

is out of the environment map. 

12 InitializeEnv(environment 

configuration file, vehicle 

shape configuration file) 

Read in environment configuration file, roughness data, 

map data, start and goal, vehicle shape. Etc. 
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