

POLITECNICO DI MILANO

Scuola di Ingegneria dell'Informazione - Dipartimento di Elettronica e Informazione

Corso di Laurea Magistrale in Ingeneria dell’Automazione

PLANNING DYNAMIC TRAJECTORIES

WITHIN THE SEARCH BASED

PLANNING LIBRARY

Relatore: Prof. Luca Bascetta Tesi di Laurea di

Correlatore: Prof. Matteo Matteucci Ming Li

 Matr. 761171

Anno accademico 2011-2012

I

Abstract

Motion planning for autonomous vehicles is an important topic across the world. Nowadays

there exist several classes of algorithms for motion planning, such as grid-based algorithms

and sampling-based algorithms. A simple and effective method to plan the path for an

autonomous robot based on a YAMAHA Grizzly all terrain vehicle, is here presented,

accounting for the anti-rollover problem as well. Grid-based algorithms are a good choice.

This thesis presents a few grid-based algorithms and two ways to decide the vehicle

commands. A benchmark among different grid-based algorithms and different methods to

compute the vehicle commands is shown, together with an analysis of their pros and cons.

II

Abstract

Il problema della pianificazione del percorso per veicoli autonomi, ovvero privi di conducente

umano è un tema di grande interesse in tutto il mondo. Al giorno d'oggi esistono diverse classi

di algoritmi per la pianificazione del moto, quali ad esempio quelli grid-based e

sampling-based. In questo lavoro viene presentato un metodo semplice ed efficace per la

pianificazione del percorso di un veicolo autonomo basato su un ATV YAMAHA Grizzly. Tale

metodo è di tipo grid-based e permette di considerare il problema del ribaltamento del

veicolo.

Questa tesi illustra alcuni algoritmi grid-based e due modi per decidere l'azione di controllo

del veicolo. Sulla base di un problema benchmark verranno analizzati pro e contro di ciascun

algoritmo.

III

Acknowlegement

First of all, I would like to thank Prof. Luca Bascetta for giving this opportunity to start a

thesis in all-terrain-vehicle motion planning. His patient gives me a good start, to understard

the main issue of this thesis, to have an idea of YAMAHA Grizzly features.

Secondly, thanks to the guidance of Prof. Matteo Matteucci, he is the one who lead me to the

world of search-based planner library. He provide motion primitive file for ATV, and gives me

instructions on how to get action increment directly on vehicle states.

Thanks Politecnico di milano for giving me this opportunity to study in master program of

automation, and thanks to all the professors who give lectures to us.

IV

Contents

1 Introduction--1

2 Motion Planning---3

3 Graph search---9

3.1 A star---9

3.2 Anytime repairing A*--12

3.3 D* Lite--16

 3.4 Anytime Dynamic A*--19

 3.5 Anytime Nonparametruc A*---23

4 Search-Based Planner Library---27

 4.1 Environment and Planner class---27

 4.2 Motion primitive--28

5 Navxytheta class---31

 5.1 Grid Environment--31

5.2 Motion primitive for ATV---31

 5.3 Action for motion primitive---32

 5.4 Main loop for Navxytheta---34

 6 NavxyATV class---35

6.1 Dynamic car model---35

 6.2 Increment generation-- 37

 6.2.1 Assign speed and steering increment--37

 6.2.2 ATV model and state discretize--38

 6.3 Action for direct increment---38

6.4 Main loop for NavATV class--40

7 Benchmart--41

V

 7.1 Navigate along the obstacle---41

 7.1.1 Motion primitives, shortest path and smoothest path benchmark-----------41

 7.1.2 Benchmark of shortest path between AD, ARA*, ANA planners-----------42

 7.1.3 Benchmark of smoothest path between AD, ARA*, ANA planners--------45

 7.2 Navigate through the obstacle--47

 7.2.1 Motion primitives, shortest path and smoothest path benchmark-----------47

 7.2.2 Benchmark of shortest path between AD, ARA*, ANA planners-----------48

 7.2.3 Benchmark of smoothest path between AD, ARA*, ANA planners--------51

8 Benchmark with roughness map---55

8.1 Move along the obstacle--55

8.2 Move through the obstacle--58

Appendix A--63

Appendix B--65

Bibliography---67

VI

List of Tables

3.1 Specific parameter in A star, forward version---9

3.2 Complete Algorithm of A*, forward version---12

3.3 ARA* parameters, backward version---13

3.3 Main loop of ARA*---15

3.4 Comment on Figure 3.2---15

3.5 (a) Function key(s) and ImprovePath in ARA*, (b)Main loop of ARA*--------------16

3.6 D* Lite parameters--17

3.7 D* Lite algorithm--19

3.8 AD* parameters--20

3.9 (a) Key, UpdateState and ImprovePath function, (b) Mail loop of AD*---------------23

3.10 ANA parameter--24

3.11 ANA algorithm--25

4.1 Environment class---27

4.2 Planner class--28

4.3 Simple motion primitive feature---28

5.1 Motion primitive parameter for ATV--32

6.1 Dynamic Car Features--35

6.2 YAMAHA Grizzly on road perfomance--37

6.3 Vehicle behavior constraint for SBPL in our experiment--------------------------------37

7.1 Constraint for benchmark---41

7.2 Travel Distance of different trajectories, notice that motion primitive path is shorter

but unfeasible with respect to vehicle dynamics--42

7.3 Shortest path details of AD, ARA* and ANA--42

VII

7.4 Smoothest path details of AD, ARA* and ANA---45

7.5 Travel Distance of different trajectories, notice that motion primitive path is shorter

but unfeasible with respect to vehicle dynamics--48

7.6 Shortest path details of AD, ARA* and ANA--48

7.7 Smoothest path details of AD, ARA* and ANA---51

8.1 Travel Distance of different trajectories--58

8.2 Travel Distance of different trajectories--62

VIII

List of Figures

1.1 YAMAHA GRIZZLY 700--1

1.2 Experiment Platform--2

2.1 Simple example for Grid-based search---4

2.2 Visibiliy graph---5

2.3 Potential field example---6

2.4 Rapidly-Exploring Random Trees method for Dubins car, (a) Two stage

Expansion, (b) The global tree and generated trajectory--7

3.1 An example of how A* works---11

3.2 Example of how backward version of ARA* works--------------------------------------14

3.3 Robot navigation example with D* lite---18

4.1 Motion primitive with yaw = 22.5 degs--29

4.2 All 16 motion primitives--29

4.3 Solution composition--30

5.1 Base motion primitive---32

5.2 Motion primitive with yaw = 90 degs---17

5.3 Flow diagram to assign cost--33

5.4 Main loop for Navxytheta, forward planning direction-----------------------------------34

6.1 Dynamic car model--35

6.2 Action assignment for shortest path and smoothest path---------------------------------39

6.4 Main loop for EnvATV--40

7.1 (a) Motion primitives trajectory, (b) Shortest Path trajectory, (c) Smoothest

path trajectory---41

 7.2 Footprint of shortest paths of AD, ARA* and ANA planners----------------------------42

IX

 7.3 (a) AD planner shortest path states, (b) ARA* planner shortest path states,

(c) ANA planner shortest path states---44

7.4 Footprint of smoothest paths of AD, ARA* and ANA planners-------------------------45

7.5 (a) AD planner smoothest path states, (b) ARA* planner smoothest path states,

(c) ANA planner smoothest path states--47

7.6 (a) Motion primitive trajectory, (b) Shortest path trajectory, (c) Smoothest

path trajectory---47

7.7 Footprint of shortest paths of AD, ARA* and ANA planners----------------------------48

7.8 (a) AD planner shortest path states, (b) ARA planner shortest path states, (c)

ANA planner shortest path states---50

7.9 Footprint of smoothest path of AD, ARA* and ANA planners--------------------------51

7.10 (a) AD planner smoothest path states, (b) ARA* planner smoothest path states

(c) ANA planner smoothest path states--53

8.1 Roughness map--55

8.2 (a) Motion Primitive trajectory footprint, (b) Roughness projection for motion

Primitive trajectory---56

8.3 (a) Shortest path trajectory footprint, (b) Roughness projection for shortest path

---57

8.4 (a) Smoothest path trajectory footprint, (b)Roughness projection for smoothest

path--58

8.5 Roughness map--59

8.6 (a) Motion Primitive trajectory footprint, (b) Roughness projection for motion

Primitive trajectory---60

8.7 (a) Shortest path trajectory footprint, (b) Roughness projection for shortest path

---61

8.8 (a) Smoothest path trajectory footprint, (b)Roughness projection for smoothest

path--62

1

1. Introduction

YAMAHA Grizzly 700 is a four-wheel all terrain vehicle. It is 2.06m in length, 1.18 m in

width and 1.24m in height. The ground clearance is 0.275m. The total weight is 294kg

without human rider. The electric power steering system, also know as the EPS, contains a

DC motor, a gear motor with transmission ratio of 34:1, a torque sensor mounted on the

steering shaft and an electronic control unit.

Figure 1.1: YAMAHA GRIZZLY 700

The experiment platform is on this ATV. As shown in Figure 1.2, it is equipted with an

industiral PC, 2 laser scanners, a increment encoder, a GPS，etc. A steering control system and

a throttle control system have already been developed on this platform.

2

Figure 1.2 Experiment platform

We want to generate feasible paths in an identified environment according to vehicle

dynamics. This requires a reasonable trajectory to avoid obstacles, plus a sequence of

reasonable speed and steer angle setpoints to the onboard controller. The main issue of this

thesis is to present a reasonable motion planner for our ATV. It is able to generate feasible

moving trajectories, speed and steer angle setpoints for the control system.

The thesis starts by providing the background on motion planning and graph search methods.

Then a few heuristic-based methods are presented to show how they work in path planning.

After that is the Search-Based Planning Library, the thesis will show how to use Navxytheta

class and motion primitives in SBPL to generate trajectories. NavATV class, which is a 5

degree of freedoms motion planning class, will show how to use state speed and state steer to

generate dynamic feasible paths. Last one is the benchmark between different trajectories

using Navxytheta and NavATV.

3

2. Motion Plannning

The state space for motion planning is a set of possible states that could be reacted by the

robot. This will be referred to as the configuration space (Cspace)
 [1]

. Cobstacle is the subset of

configuration space including obstacles and unobtainable subset of state space. Cfree is the

remaining subset of Cspace.

Path Planning consists of finding a sequence of actions that transforms some initial state into

some desired goal state, which is to find a sequence of states in Cfree. In the case of just

vehicle motion planning, the state variable could be in simple case [position, yaw] for

kinematic car model, or in a complex case [position, yaw, speed, steer] for dynamic car

model.

Transition cost(action cost) is a measurement of the state transformation. Lower this transition

cost, better the state transformation. A path is optimal if the sum of its transition costs from

initial state to goal state is minimal across all possible paths in Cfree. A planning algorithm is

complete if it can find a path in finite time when exists. Similarly, a planning algorithm is

optimal if it can always find an optimal path.

Motion planning has several applications, such as robot arm navigation, robot design in CAD

software, and vehicle navigation without human driver, as well as applications in other fields,

such as animating digital characters, video game AI, and the study of biological molecules.

Many algorithms are developed to cope with variants of basic problems. For example, adding

nonholonomic dynamic constraint for cars, planes and differential drive robots or dealing with

uncertainty problems such as motion uncertainty and sensorless planning.

Generally, there are four different categories of motion planning algorithms, the grid-based

search method, the geometric algorithm, the potential field method and the sampling-based

4

algorithm. Grid-based search method has been chosen in our case for its simplicity to

construct cost function. Besides, it is convenient to assign action directly on the states.

Grid-Based Search

Grid-based approaches overlay a grid on configuration space, and assume each configuration

is identified with a grid cell
[3]

. At each cell, the robot is allowed to move to adjacent cells as

long as the robot action between them is completely contained within configuration space.

Many algorithms, like A*, ARA*, ANA, AD* can be used to find a path in grid environments.

An example is given in Figure 2.1.

Figure 2.1: Simple example for Grid-based search

These approaches require setting a grid resolution. Search is faster with coarser grids, but the

algorithm will fail to find paths through narrow portions of configuration space. Moreover,

the number of points on the grid grows exponentially in the configuration space dimension,

which makes them inappropriate for high-dimensional problems.

Geometric Algorithm

Visibility graphs may be used to find Euclidean shortest paths among a set of polygonal

obstacles in the plane: the shortest path between two obstacles follows straight line segments

except at the vertices of the obstacles, where it may turn. So the Euclidean shortest path is the

shortest path in a visibility graph that has as its nodes the start and destination points and the

vertices of the obstacles
[3]

. Therefore, the Euclidean shortest path problem may be

decomposed into two simpler sub problems: constructing the visibility graph, and applying a

shortest path algorithm such as Dijkstra's algorithm to the graph. Figure 2.2 gives an example

of the constructed visible map. The start and goal should be “visible” to each other. That is by

5

connecting all visible vertices, including start and goal points, there should be a series of line

segments (including connection on the edge of obstacles) that link start to goal. These paths

exist on the perimeter of obstacles.

Figure 2.2 Visibility graph

Potential Fields

Another approach is treats the robot's configuration as a point in a potential field that

combines attraction to the goal, and repulsion from obstacles. The resulting trajectory, the

global minima, is output as the path. This approach has advantages in that the trajectory is

produced with little computation. However, potential field method can become trapped in

local minima of the potential field, and fail to find a path. Example in Figure 2.3 works like

this:

� The goal location generates an attractive potential pulling the robot towards the goal.

� The obstacles generate a repulsive potential pushing the robot far away from the

obstacles.

� The negative gradient of the total potential is treated as an artificial force applied to the

robot.

� The artificial force controls the robot.

6

Figure 2.3: Potential field example

Sampling-Based Algorithms

Sampling-based algorithms represent the configuration space with a roadmap of sampled

configurations. A basic algorithm samples N configurations in configuration space, and

retains those in free space to use as milestones. A roadmap is then constructed that connects

two milestones P and Q if the line segment PQ is completely in free space. Again, collision

detection is used to test inclusion in free space. To find a path that connects start and goal,

they are added to the roadmap. If a path in the roadmap links start and goal, the planner

succeeds, and returns that path. If not, the reason is not definitive: either there is no path in

free space, or the planner did not sample enough milestones.

These algorithms work well for high-dimensional configuration spaces, because unlike

combinatorial algorithms, their running time is not (explicitly) exponentially dependent on the

dimension of configuration space. They are also (generally) substantially easier to implement.

They are probabilistically complete, meaning the probability that they will produce a solution

approaches 1 as more time is spent. However, they cannot determine if no solution exists.

Like the case in Figure 2.4, it is a Rapidly-Exploring Random Trees method for Dubins car.

The Dubins car can move forward, turn both left and right, overall three actions.

7

Figure 2.4: Rapidly-Exploring Random Trees method for Dubins car, (a) Two stage expansion,

(b) The global tree and generated trajectory

We do not use sampling-based algorithms because it is not possible to guarantee optimal

paths.

8

9

3. Graph search

3.1 A star

Planning a path for navigation can be regarded as a graph search problem. A* (Hart, Nilsson,

& Rafael 1968; Nilsson 1980) algorithm is one of the early popular graph search methods.

The method operates guiding its search towards the most promising set of states, return an

optimal path, potentially saving a significant amount of computation.

For the forward version of A*, denote S the set of states in state space, for example a set of

[position, yaw] states for a kinematic car model. Denote in table 3.1 that:

S The set of states in state space, for exanple a set of [position, yaw] states

for a kinematic car model.

()g s The path cost from the initial state starts S∈ to state s S∈ .

(,)goalh s s The heuristic function estimate from state s to sgoal, for example the

euclidean distance from state s to sgoal.

OPEN A priority queue storing states needed to be expanded in the future. Each

element s in this OPEN list is sorted according to (() (,))goalg s h s s+ ,

which is the sum of its current path cost from start plus an admissible

heuristic function estimate of path cost from s to sgoal.

c(s,s’) Edege cost from current state s to its neighboring state s’.

Table 3.1 Specific parameter in A star, forward version.

A simple example in Figure 3.1 will show how the algorithm works
[12]

. Here CLOSED stores

visited list so far, number in the middle of the arrow represent the edege cost between two

neighboring states.

10

1

4

1

4

11

Figure 3.1 An example of how A* works

12

The heuristic (,)goalh s s typically underestimates the cost of the optimal path from s to goals and

is used to focus the search. The algorithm pops the state s at the front of the OPEN and

updates the cost of all states reachable from this state through a direct edge: if

g(s’)<c(s,s’)+g(s), then the cost of s’ is set to this new, lower value. Also, if the cost of a

neighboring state s’ changes, it is placed on the OPEN list.

The algorithm continues popping states off the queue until it pops off the goal state. At this

stage, if the heuristic is admissible, i.e. guaranteed to not overestimate the path cost from any

state to the goal, then the path cost of sgoal is guaranteed to be optimal. The complete

algorithm is given in Table 3.2.

ComputeShortestPath()

01. while (arg min (() (,))s OPEN goal goalg s h s s s∈ + ≠)

02. remove state s from the front of OPEN;

03. for all ' ()s Succ s∈

04. if ((') () (, ')g s g s c s s> +)

05. (') = () (, ')g s g s c s s+ ;

06. insert 's into OPEN with value ((') (',))goalg s h s s+ ;

Main()

07. for all s S∈

08. () ;g s = ∞

09. () 0;startg s =

10. ;OPEN = ∅

11. insert starts intoOPEN with value (() (,))start start goalg s h s s+ ;

12. ComputeShortestPath();

Table 3.2: Complete Algorithm of A*, forward version.

3.2 Anytime Repairing A*

When an agent must react quickly and the planning problem is complex, computing optimal

paths as described in the previous sections can be infeasible, due to the sheer number of states

required to be processed in order to obtain such paths. In such situations, we must be satisfied

with the best solution that can be generated in the time available.

13

A backward version of Anytime Reparing A*(ARA*) is present here because it is easy to

analysis. The planning start from goal state to start state, parameters are given in Table 3.3.

S The set of states in state space, for exanple a set of [position, yaw] states

for a kinematic car model.

()g s The path cost from current state s S∈ to goal state goals S∈ .

(,)starth s s The heuristic function estimate from state sstart to s.

OPEN A priority queue storing states needed to be expanded in the future.

CLOSED All states already expanded once in the current search.

INCONS All the inconsistent states that are not in OPEN. For example, When we

are now at state s, due to a cost change associated with a neighboring state

sneighbore , this state is placed into INCONS list rather than reinserted into

CLOSED.

C(s,s’) Edege cost from current state s to its neighboring state s’.

key(s) Also known as the f-value, is given by () (,)startf g s h s sε= + ⋅ ;

ε The inflation factor used for inflated heuristics. A* search proceed the

expansion in the order (() (,)startf g s h s s= + . Here for ARA* in order to

have a quicker expansion, or in a more accurate way, to bias towards

states that are closer to the goal. The expansion order is given by

(() (,), 1startf g s h s sε ε= + ⋅ ≥ .

Table 3.3 ARA* pamameters, backward version.

ARA* limits the processing performed during each search by only considering those states

whose costs at the previous search may not be valid given the newε value. It begins by

performing an A* search with an initial inflation factor 0ε , but during this search it only

expands each state at most once.

Once a state s has been expanded during a particular search, if it becomes inconsistent due to a

cost change associated with a neighboring state, it is placed into the INCONS list. When

current search terminates, the states in the INCONS list are inserted into a fresh priority queue

(with new priorities based on the new inflation factorε) which is used by the next search.

This improves the efficiency of each search in two ways. Firstly, by only expanding each state

14

at most once a solution is reached much more quickly. Secondly, by only reconsidering states

from the previous search that were inconsistent, much of the previous search effort can be

reused. Thus, when the inflation factorε is reduced between successive searches, a relatively

minor amount of computation is required to generate a new solution.

An easy example in Figure 3.2 will show how the backward ARA* planning algorithms

works. This example is a static planning from bottom right goal to the top left start.

Figure 3.2 Example of how backward version of ARA* works

15

Figure 3.2(a) Start withε =2, after two steps of planning, a door is opened at the top walls,

which means an edge cost change takes place. ARA* plays the same way A*

does, but it also add state 3 into the inconsistent list, which is only used for

next planning to improve solution trajectory (with a smaller inflation factor).

Figure 3.2(b) This time, the planner tries to improve the generated path(ε =1). The

planner will skip state 1 & 2, starting from state 3, continue updating cost of

its predecessors until goal is reached.

An improved path is generated, by only considering the inconsistent state

and unvisited state(state goal, 1 & 2 are not considered because they are

visited and consistent), the efficiency is improved.

Table 3.4 Comment on Figure 3.2

Overall, the ARA* planner will start planning with a big inflation factor 0 1ε > , works out a

sub-optimal path. Repeat improving this sub-optimal path by updating inconsistent states in it,

until an optimal path is get, which is planning with 1ε = . A simplified, backwards-searching

version of the algorithm is given in Table 3.5.

key(s)

01. return () (,)startg s h s sε+ ⋅ ;

ImprovePath()

02. while (min (() ())s OPEN startkey s key s∈ <)

03. remove s with the smallest key(s) from OPEN;

04. { }CLOSED CLOSED s= ∪ ;

05. for all ' ()s pred s∈

06. if 's was not visited before

07. (') ;g s = ∞

08. if (') (',) ()g s c s s g s> +

09. (') (',) ();g s c s s g s= +

10. if 's CLOSED∉

11. insert 's into OPEN with (')key s ;

12. else

13. insert 's into INCONS;

Table 3.5(a): Function key(s) and ImprovePath in ARA*

16

Main()

14. () ; () 0;start goalg s g s= ∞ =

15. 0;ε ε=

16. OPEN = CLOSED = INCONS =∅ ;

17. insert
goals into OPEN with ()goalkey s ;

18. ImprovePath();

19. publish currentε -suboptimal solution;

20. whileε > 1

21. decrease ε ;

22. Move states from INCONS into OPEN;

23. Update the priorities for all s OPEN∈ according to ()key s ;

24. CLOSED =∅ ;

25. ImprovePath();

26. publish currentε -suboptimal solution;

Table 3.5(b): Main loop of ARA*

3.3 D* Lite

D* Lite algorithm is present by Maxim Likhachev and Sven Koenig in 2002. D* Lite

maintain least-cost paths between a start state and any number of goal states as the cost of

arcs between states change. It can handle increasing or decreasing arc costs and dynamic start

states.

17

S The set of states in state space, for exanple a set of [position, yaw]

states for a kinematic car model.

()g s The path cost from the initial state starts S∈ to state s S∈ .

(, ')h s s Cost estimate of an optimal path from state s to s’.

c(s,s’) The cost of moving from s to s’ (the arc cost)

rhs(s) Known as a one-step look ahead cost. Here ()succ s S∈ denotes the set

of successors. A state is called consistent if and only if its g-value

equals its rhs-value, otherwise it is either overconsistent

(if () ()g s rhs s>) or underconsistent (if () ()g s rhs s<).

0
()

min ((, ') (')) ,
' ()

goalif s s
rhs s

c s s g s otherwise
s succ s

==  +
 ∈

OPEN A priority queue holds exactly the inconsistent states, that is where

edge cost changes.

key(s) The priority, or also known as the key value, represent the priority

in OPEN list. D* Lite expands states from the queue in increasing

priority, updating their g-values and the rhs-values of their

predecessors, until there is no state in the queue with a key value less

than that of the start state.

1 2() [(), ()]

 [min((), ()) (,),

 min((), ())].

start

key s k s k s

g s rhs s h s s

g s rhs s

=
= +

In lexicographic ordering, ()key s is less than priority (')key s , that

is () (')key s key s< , if and only if 1 1() (')k s k s< or both

1 1() (')k s k s= and 2 2() (')k s k s< .

Table 3.6: D* Lite parameters

D* Lite maintains a least-cost path from a start state to a goal state. As with A*, D* Lite uses

a heuristic and a priority queue to focus its search and to order its cost updates efficiently.

During its generation of an initial solution path, it performs in exactly the same manner as a

backwards A* search. If arc costs change after this initial solution has been generated, D* Lite

updates the rhs-values of each state immediately and places those states into OPEN with

corresponding key value. As before, it then expands the states on the queue in order of

18

increasing priority until there is no state in the queue with a key value less than that of the

start state. A simple robot navigation example in Figure 3.3 will show how the planner works:

Figure 3.3: Robot navigation example with D* Lite.

D* Lite ensures that states that are along the current path and on the queue are processed in

the most efficient order. Combined with the termination condition, this ordering also ensures

that a least cost path will have been found from the start state to the goal state when

processing is finished. The basic version of the algorithm is given in below in Table 3.7:

19

key(s)

01. return [min((), ()) (,);min((), ())startg s rhs s h s s g s rhs s+];

UpdateState(s)

02. if s was not visited before

03. g(s) = ∞ ;

04. if (goals s≠) ' ()() min ((, ') ('));s Succ srhs s c s s g s∈= +

05. if (s OPEN∈) remove s from OPEN;

06. if (() ()g s rhs s≠) insert s into OPEN with key(s);

ComputeShortestPath()

07. while (min (()) ()s OPEN startkey s key s∈ < OR () ()start startrhs s g s≠ .

08. remove state s with the minimum key from OPEN;

09. if (() ()g s rhs s>)

10. () ()g s rhs s= ;

11. for all ' ()s pred s∈ UpdateState(s’);

12. else

13. () ;g s = ∞

14. for all ' () { }s pred s s∈ ∪ UpdateState(s’);

Main()

15. () () ; () ;start start goalg s rhs s g s= = ∞ = ∞

16. () 0; ;goalrhs s OPEN= = ∅

17. insert sgoal into OPEN with key(sgoal);

18. forever

19. ComputeShortestPath();

20. Wait for changes in edge costs;

21. for all directed edges (u, v) with changed edge costs

22. Update the edge cost c(u, v);

23. UpdateState(u);

Table 3.7: D* Lite algorithm

20

3.4 Anytime Dynamic A*

In 2005, Maxim Likhachev developed Anytime Dynamic A* (AD*), an algorithm that

combines the replanning capability of D* Lite with the anytime performance of ARA*

(Likhachev et al. 2005). Parameter details are given in Table 3.8.

S The set of states in state space, for exanple a set of [position, yaw]

states for a kinematic car model.

()g s The path cost from the initial state starts S∈ to state s S∈ .

(, ')h s s Cost estimate of an optimal path from state s to s’.

c(s,s’) The cost of moving from s to s’ (the arc cost)

rhs(s) Known as a one-step look ahead cost. Here ()succ s S∈ denotes the set

of successors. A state is called consistent if and only if its g-value

equals its rhs-value, otherwise it is either overconsistent

(if () ()g s rhs s>) or underconsistent (if () ()g s rhs s<).

0
()

min ((, ') (')) ,
' ()

goalif s s
rhs s

c s s g s otherwise
s succ s

==  +
 ∈

OPEN A priority queue storing states needed to be expanded in the future.

CLOSED All states already expanded once in the current search.

INCONS All the inconsistent states that are not in OPEN. Each timeε is

decreased, all inconsistent states are moved from INCONS to OPEN

and CLOSED is made empty.

key(s) The priority, or also known as the key value, represent the priority

in OPEN list. D* Lite expands states from the queue in increasing

priority, updating their g-values and the rhs-values of their

predecessors, until there is no state in the queue with a key value less

than that of the start state.

1 2() [(), ()]

 [min((), ()) (,),

 min((), ())].

start

key s k s k s

g s rhs s h s s

g s rhs s

=
= +

In lexicographic ordering, ()key s is less than priority (')key s , that

is () (')key s key s< , if and only if 1 1() (')k s k s< or both

1 1() (')k s k s= and 2 2() (')k s k s< .

21

ε The inflation factor used for inflated heuristics, to bias the states which

are closer to the goal. AD* search proceed

expansion () [min((), ()) (,);min((), ()))]startkey s g s rhs s h s s g s rhs sε= + ⋅ .

Table 3.8: AD* parameters

AD* performs a series of searches using decreasing inflation factors ε to generate a series

of solutions with improved bounds, as with ARA*. When there are changes in the

environment affecting the cost of edges in the graph, locally affected states are placed on the

OPEN queue to propagate these changes through the rest of the graph, as with D* Lite. States

on the queue are then processed until the solution is guaranteed to beε -suboptimal.

AD* begins by setting the inflation factor ε to a sufficiently high value 0ε , so that an initial,

suboptimal plan can be generated quickly. Then, unless changes in edge costs are detected,

ε is gradually decreased and the solution is improved until it is guaranteed to be optimal(ε =

1). This phase is exactly the same as for ARA*.

When changes in edge costs are detected, there is a chance that the current solution will no

longer beε -suboptimal, i.e. an intermediate state in solution trajectory becomes an obstacle.

In such a case, the algorithm increasesε so that a new sub-optimal solution can be produced

quickly. Then repeat decreasingε until the solution becomes optimal.

By incorporating these considerations, AD* is able to handle both changes in edge costs and

changes to the inflation factorε . Table 3.9 gives the complete algorithm.

22

key(s)

01. if (() ()g s rhs s>)

02. return [min((), ()) (,);min((), ()))];startg s rhs s h s s g s rhs sε+ ⋅

03. else

04. return [min((), ()) (,);min((), ()))];startg s rhs s h s s g s rhs s+

UpdateState(s)

05. if s was not visited before

06. () ;g s = ∞

07. if (goals s≠) ' ()() min ((, ') ('));s Succ srhs s c s s g s∈= +

08. if (s OPEN∈) remove s from OPEN;

09. if (() ()g s rhs s≠)

10. if s CLOSED∉

11. insert s into OPEN with key(s);

12. else

13. insert s into INCONS;

ComputeOrImprovePath()

14. while (min (()) ()s OPEN startkey s key s∈ < OR (() ()start startrhs s g s≠)

15. remove state s with the minimum key from OPEN;

16. if (() ())g s rhs s<

17. () ()g s rhs s= ;

18. { };CLOSED CLOSED s= ∪

19. for all ' ()s pred s∈ UpdateState('s);

20. else

21. ()g s = ∞ ;

22. for all ' () { }s pred s s∈ ∪ UpdateState('s);

Table 3.9(a): Key, UpdateState and ImprovePath function

23

Main()

01. () () ; () ;start start goalg s rhs s g s= = ∞ = ∞

02. 0() 0;goalrhs s ε ε= = ;

03. ;OPEN CLOSED INCONS= = = ∅

04. insert goals into OPEN with ()goalkey s ;

05. ComputeorImprovePath();

06. publish current ε -suboptimal solution;

07. forever

08. if changes in edge costs are detected

09. for all directed edges (u, v) with changed edge costs

10. Update the edge cost c(u, v);

11. UpdateState(u);

12. if significant edge cost changes were observed

13. increaseε or replan from scratch;

14. else ifε > 1

15. decreaseε ;

16. Move states from INCONS into OPEN;

17. Update the priorities for all s OPEN∈ according to key(s);

18. CLOSED = ∅ ;

19. ComputeorImprovePath();

20. publish current ε -suboptimal solution;

21. if ε = 1

22. wait for changes in edge costs;

Table 3.9(b): Main loop of AD*

3.5 Anytime Nonparametric A*

Anytime Nonparametric A*, also known as (ANA), is present by Jur van den Berg, Rajat

Shah, Arthur Huang and Ken Goldberg. The motivation of this planning algorithm is to

develop an Anytime A* algorithm that does not require parameters(do not assignε and the

amount by whichε is decreased for ARA* for example).

24

S The set of states in state space, for exanple a set of [position, yaw]

states for a kinematic car model.

()g s The path cost from the initial state starts S∈ to state s S∈ .

G The cost of the current-best solution, G is set to ∞ in initialization

because no solution is found.

e(s)
It is given by

()
()

()

G g s
e s

h s

−= , that is the maximal value of e such that

()f s G≤ . ANA will expand the state in OPEN with maximum e(s).

c(s,s’) Edge cost from current state s to its neighboring state s’.

OPEN A priority queue storing states needed to be expanded in the future.

Table 3.10: ANA parameters

Choose to expand the state in OPEN with maximum e(s) in ANA means that bias the states

which is closest to the goal. This guarantees that ANA will plan quickly get a sub-optimal

trajectory and try to improve it with decreasing e(s) until an optimal solution is get.

Moreover, ANA acts more or less the same way as Weighted A* does, but with 2 differences.

1. Each time a state s is expanded, it will try to decrease the g-value(g(s’)) of each its

successors s’. Then, s is set to s’ predecessor such that the solution can be reconstructed

once it is found.

2. Moreover, this s’ is inserted into the OPEN. The planner will continue expanding states in

OPEN until it is empty. That is to prune the goal state and all the updated state s’. Details

of the complete algorithm is given in Table 3.11.

25

IMPROVESOLUTION()

1: while OPEN ≠ ∅ do

2: arg min { ()}s OPENs e s∈←

3: \{ }OPEN OPEN s←

4: if ()e s E< then

5: ()E e s←

6: if IsGOAL(s) then

7: ()G g s←

8: return

9: for each successor s’ of s do

10: if () (, ') (')g s c s s g s+ < then

11: (') () (, ')g s g s c s s← +

12: (')pred s s←

13: if (') (')g s h s G+ < then

14: Insert or update s’ in OPEN with key e(s’)

ANA*()

15: ; ; ; : () ; () 0;startG E OPEN s g s g s← ∞ ← ∞ ← ∅ ∀ ← ∞ ←

16: Insert sstart into OPEN with key e(sstart)

17: whileOPEN ≠ ∅ do

18: IMPROVESOLUTION()

19: Report current E-suboptimal solution

20: Update keys ()e s in OPEN and prune if () ()g s h s G+ ≥

Table 3.11: ANA algorithm

26

27

4. Search-Based Planner Library

Search Based Planner Library (SBPL) is a package includes a generic set of motion planners

using search based planning. It was developed by Maxim Likhachev at the University of

Pennsylvania in collaboration with Willow Garage.

4.1 Environment and Planner class

Environment class and Planner class are two most important parts of it. All their elements

inherit from their parent class. Useful detail is given by Table 4.1 and 4.2. For Yamaha grizzly,

the most suitable class is Navxytheta class.

Inheritance from basic Environment

class

Feature

EnvironmentNAV2D class 2D navigation class. For vehicle motion planning,

state is the position(x,y).

EnvironmentNAVTHETA class 3D navigation class. For vehicle motion planning,

state is the position(x,y) and yaw(theta)

EnvironmentNAVXYTHETAMLEVLAT

class

3D navigation class with multiple level of vehicle

configuration, i.e. a vehicle with a car like base and

a moving platform on it. State is several layers of

position(x,y) and yaw(theta).

EnvironmentRobotARM class For kinematic robot arm navigation of variable

number of degrees of freedom.

Table 4.1: Environment class

28

Inheritance from basic Planner class Feature

ADplanner class Grid search planning class, use Anytime Dynamic

A* (AD) algorithm.

ARAplanner class Grid search planning class, use Anytime Repairing

A* (ARA) algorithm.

anaPlanner class Grid search planning class, use Anytime

Nonparametric A* (ANA*) algorithm.

Table 4.2: Planner class

4.2 Motion primitive

Search based planning library uses motion primitives for path planning in a 2D environment,

Motion primitives are short, kinematically feasible motions which form the basis of

movements that can be performed by the robot platform. Search-based planner generates

paths from start to goal by combining a sequence of motion primitives. The result is a smooth

kinematically feasible path. A simple example will show how motion primitives work. Let us

assume that we are in a simple case in Table 4.3.

Feature Parameter

Permissive vehicle actions Run forward and make forward turn 25 degs, both left

and right, or run backward.

Yaw(θ) discretisation Resolution 22.5 degs, which means overall

360/22.5=16 choices of vehicle pointing direction

Action cost Forward action cost = 1,

Making forward turn cost = 5,

Moving backward action cost = 10.

Table 4.3: Simple motion primitive feature

29

Figure 4.1: Motion primitive with yaw = 22.5 deg

Figure 4.1 is one of the sixteen motion primitives, [θ =22.5 deg, vehicle reference point (0,0)].

When the SBPL planner is working, its goal is to choose between 16 motion primitives and

the exact robot action in that motion primitives. Like in Figure 4.2, all 16 motion primitives

are included.

Figure 4.2: All 16 motion primitives

30

A path solution is a series of these motion primitives. While the planner is working, it will

search through all 16 motion primitives from the current state, check obstacle collision

problem, try its best to find trajectory with minimal sum action cost(optimal solution). More

details is in Figure 4.3, grey objects are obstacles. Solid series of arrows are the path solution,

dashed ones represents the actions the planner has tried.

Figure 4.3: Solution composition

31

5. Navxytheta class

5.1 Grid environment

Navxytheta class uses discretized cells to describe environment. In our case, obstacle

threshold is 1, cell_size is 0.1m. So that for a 100m×100m environment, a 2 dimensional

matrix of size 1000x1000 is used to store map data. For each element, 0 means free space, 1

means obstacle. An example is given:

1000 1000
0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0

0 0 1 1 1 1 1 1

×
 
 
 
 
 
 

⋯

⋯

⋮ ⋮

⋯

The defination of a roughness map is more or less the same. It has the same size of

environment map. For each cell, there is an integer number to describe how much is the

roughness, higher this number, higher is the roughness. An example is given below:

1000 1000
0 1 3 9 9 3 2 1

0 3 0 1 1 2 2 2

0 1 8 4 0 5 5 5

×
 
 
 
 
 
 

⋯

⋯

⋮ ⋮

⋯

5.2 Motion Primitive for ATV

Motion primitive for Yamaha ATV is composed of all the possible action the vehicle can

perform during a specific time period. Parameter details are in Table 5.1, Figure 5.1 and 5.2

are the footprints for yaw = 0 degs and 90 degs seperately.

32

Motion primitives Feature Parameter

Allowable vehicle actions Running both forward and backward.

Turnning angle [30, 20, 10, 5] degs, both left and

right.

Speed Zeros speed and forward 2m/s.

Time discretization 0.5s

Yaw(θ) discretization Resolution 22.5 degs, 360/22.5=16 choices of

vehicle pointing direction.

Primitive action cost Forward moving cost = 1,

Making forward turn cost = 2,

Moving backward cost = 5.

Table 5.1: Motion primitive parameter for ATV

Figure 5.1: Base motion primitive Figure 5.2: Motion primitive with yaw=90 deg

5.3 Action for motion primitive

For example, when we are planning trajectory with forward ARA* planner in Navxytheta

library. The planning algorithm needs a reasonable way to assign successors to the planner.

Navxytheta class provide this kind of method. It is to choose among pregenerated motion

primitives, check their validity of source, target and intermediate states. Then pass on the set

of reasonable actions to the planner. Details is given in Figure 5.3.

33

Figure 5.3: Flow diagram to assign actions

34

5.4 Main loop for Navxytheta

Main loop for atv path planning with motion primitives is given by Figure 5.4. The inflation

factor epsilon is used for increasing planning speed, bigger the epsilon, faster the planning

speed. An optimal solution is given if epsilon is 1, in that case the solution cost is minimum.

Commonly the planning is started with a big epsilon, the planner itself is going to decrease

epsilon, trying its best to reduce the solution cost until it can be decreased no more.

Figure 5.4: Main loop for Navxytheta, forward planning direction

35

6. NavATV class

NavATV(NavXXX) class comes from modified Navxytheta class. Navxytheta class can only

generate kinematic feasible trajectory, which is not enough for YAMAHA Grizzly. What we

want is not only the trajectory but the state speed and state steer for vehicle control. Moreover,

to cope with anti-roll over problem, dynamic constraint is needed to limit vehicle movements,

i.e. limit turning angle while running at high speed. A dynamic car model and a suitable way

to assign vehicle speed and steering angle are important.

6.1 Dynamic Car Model

Figure 6.1: Dynamic Car model

Parameter: Feature:

s Axial speed

φ Steering angle

L Distance between front and rear axis

θ Yaw

w The distance traveled by the car

ρ The radius of the turning circle

Table 6.1: Dynamic Car Features

36

A configuration for dynamic car is denoted by (, ,)q x y θ= [1]
. In a small time interval t∆ , the

car is moving approximately in the direction that the rear wheels are pointing. When t∆ tends

to zero, it implies that / tandy dx θ= . Since / /dy dx y x=
i i

, and tan sin / cosθ θ θ= , We can get

a Pfaffian constraint function sin cos 0x yθ θ− + =
i i

. The constraint is satisfied if

cosx s θ= ⋅
i

and siny s θ= ⋅
i

, which is the decomposition of axial speed along x and y axis.

The next task is to derive dynamic equation for θ
i

. w means the distance traveled by the

car(integral of speed). As shown in Figure 6.1, If in the case steering angle is fixed, we can

come out that dw dρ θ= ⋅ . And from trigonometry / tanLρ φ= , it is clear that
tan

d dw
L

φθ = .

By assigning s and φ as control variables su and uφ . Dynamic equation for x, y and theta is

given by:

cos

sin

tan

s

s

s

x u

y u

u
u

L
φ

θ

θ

θ

=

=

=

i

i

i

i

i

All this lead to our final dynamic equations. Denote t current time instant, t+1 future time

instant, t∆ the time interval. The complete equation is given below.

1

1

1
1 1

1 1 1

1 1 1

tan

cos

sin

t t s

t t

t
t t t

t t t t

t t t t

s s u t

u t

s
t

L

x x s t

y y s t

φφ φ

θ θ φ

θ
θ

+

+

+
+ +

+ + +

+ + +

= + ⋅∆
= + ⋅ ∆

= + ⋅ ∆

= + ⋅ ⋅∆
= + ⋅ ⋅ ∆

Unluckily, SBPL provides nothing to assign su and uφ . Mofication on Environment

Navxytheta is necessary. Besides, once a new dynamic constraint is added, a new set of

motion primitives has to be generated for this certain case. Generally speaking, this is not

reasonable for practice. One way is to make motion primitive “online”. Let the planner decide

future actions and intermediate footprint based on actual vehicle state. Our ATV requires state

37

to be[], , , , 't t t t tx y sθ φ , let the planner decide the set of suitable increment{ [], 's φ∆ ∆ }. By a

slight modification on previous equation, future state can be achieved by following.

1

1

1

1

1

0

0

0

0

0

t t

t t

t t

t t

t t

x x x

y y y

ss s

θ θ θ

φφ φ

+

+

+

+

+

∆       
       ∆       
       = + ∆ +
       ∆       
       ∆      

Where 1 1cost tx s tθ+ +∆ = ⋅ ⋅∆ , 1 1sint ty s tθ+ +∆ = ⋅ ⋅∆ and 1 1/ tant ts Lθ φ+ +∆ = ⋅ .

6.2 Increment generation

6.2.1 Assign speed and steering increment

According to Yamaha Grizzly on road performance in Table 6.2, and also leave some margin

for off road behavior to cope with high roughness. Since[], ' [,]'s s tφ φ∆ ∆ = ⋅∆ɺɺ , we can assign

our set of sɺ andφɺ , the set of {[], 's φ∆ ∆ }is easily get. Detail is in Table 6.3.

Yamaha Grizzly Feature

Allowable movement Forward, forward turnning. No backward running

Maximum on road speed 107Km/h, that is 29.7m/s.

Steering on road Steer 55 degs in 2 secs.

For a linear steer process, the steering is 0.48rad/s

Speed up on road Speed up from zero speed to 60 km/h in 5.1s.

For a linear speed up case, the acceleration speed is 3.27m/s.

Table 6.2 YAMAHA Grizzly on road performance

Vehicle behavior constraint for SBPL

The set of possible sɺ= [-0.8, -0.6, -0.3, 0, 0.3, 0.6, 1.2](m/s).

The set of possibleφɺ= [-15, -10, -5, 0, 5, 10, 15](degs/s).

Maximum permissible speed = 3m/s.

Minimum speed = 0.

Maximum permissible steer = 30 degs.

Integration time t∆ =0.5s.

The set of possible s∆ =[-0.4, -0.3, -0.15, 0, 0.15, 0.3, 0.6](m).

The set of possible φ∆ =[-7.5, -5, -2.5, 0, 2.5, 5, 7.5](degs).

Table 6.3 Vehicle behavior constraint for SBPL in our experiment

38

6.2.2 ATV model and state discretize

Yamaha Grizzly can be modelled by a rectangular shape Arkerman model. Since we are in 2D

case, there is no need to consider ATV height. The center of gravity lies in the middle of the

rear axial. Its length is 1.8 meter and width is 0.9 meter. The gravity center is the vehicle

reference point, in vehicle body collision check, this reference point is very important.

In Navxytheta library, position x and y are already discretized to guarantee a finite

dimensional state space. Here the same thing has to carried out for yaw, speed and steer.

Speed discretize can be achieved by setting the maximum speed limit and the minimum speed

limit. For yaw, experiment results shows that 20 degs of resolution is perfect to balance

planning speed and accuracy. Steer resolution is set to 2 degs to garantee precision. Up till

now, we get a 5D finite dimensional state space.

6.3 Action for direct increment

Now the action is based on actual and future vehicle states. Here I am going to present how

shortest path and smoothest path comes.

Shortest path is the combination of a series of actions with minimum total increment on

displacement. By define the action cost function as the “euclidean distance” of the increment,

SBPL planner will automatically get a path with minumum sum of increments. The smoothest

path means that minimum speed and steer angle difference along the trajectory. But since

speed and steer have the different unit, normalize speed difference and normalized steer

difference is used here instead. Details are given by Figure 6.2.

39

1 1

max max
2 2

t t t ts s

s

φ φ
φ

+ +− −
+

⋅ ⋅

Figure 6.2: Action assignment for shortest path and smoothest path

40

6.4 Mainloop for NavATV

This is loop for forward atv path planning with direct increment method, detail is given by

Figure 6.4. Also here the inflation factor epsilon is for speed planning. Commonly the

planning is started with a big epsilon, the planner itself is going to decrease epsilon, trying its

best to reduce the solution cost until it can be decreased no more. And this time epsilon is

equal to 1.

Figure 6.4 Main loop for EnvATV

41

7. Benchmark

This part is a benchmark of optimal trajectory between different kinds of paths and different

planners. The hardware platform is CPU T6400 2.2Ghz, 4G of ram, NVIDIA GT220M 1G

graphics. Maximum allowable time for planning is 300s. Constraints are given below:

Constraint Motion Primitive Direct Increment(shortest path &

smoothest path).

Speed limit Two speeds, zero speed and 2m/s Maximum speed 3m/s, minumum speed

0.

Steer limit 30 degs both left and right. 30 degs both left and right.

Table 7.1 Constraint for benchmark

7.1 Navigate along the obstable

7.1.1 Motion Primitives, shortest path and smoothest path benchmark

This section is the performance analysis along the obstacle. The environment map

is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue trajectory is the

solution. Start position (10,80) and goal position (90,85). Detail is given below.

Figure 7.1: (a) Motion primitives trajectory, (b) Shortest path trajectory, (c) Smoothest path

trajectory

42

 Travel Distance

Motion primitive 90.365m

Shortest path 95.78m

Smoothest path 107.86m

Table 7.2: Travel Distance of different trajectories, notice that motion primitive path is shorter

but unfeasible with respect to vehicle dynamics

7.1.2 Benchmark of shortest path between AD, ARA*, ANA planners

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue

trajectory is the solution. Start position (10,80) and goal position (90,85). Detail is given

below.

Figure 7.2: Footprint of shortest paths of AD, ARA* and ANA planners

 Shortest path travel distance Shortest path travel time

AD 95.78m 164.5s

ARA* 95.78m 164.5s

ANA 115.14m 59.5s

Table 7.3: Shortest path details of AD, ARA* and ANA

43

Figure 7.3 (a): AD planner shortest path states

Figure 7.3 (b): ARA* planner shortest path states

44

Figure 7.3 (c): ANA planner shortest path states

45

7.1.3 Benchmark of smoothest path between AD, ARA*, ANA planners

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue

trajectory is the solution. Start position (10,80) and goal position (90,85). Detail is given

below.

Figure 7.4: Footprint of smoothest paths of AD, ARA* and ANA planners

 Smoothest path travel distance Smoothest path travel time

AD 107.86m 43s

ARA* 107.86m 43s

ANA 108.07m 47.5s

Table 7.4: Smoothest path details of AD, ARA* and ANA

46

Figure 7.5 (a): AD planner smoothest path states

Figure 7.5 (b): ARA* planner smoothest path states

47

Figure 7.5 (c): ANA planner smoothest path states

7.2 Navigate through the obstacle

7.2.1 Motion Primitives, shortest path and smoothest path benchmark

This section is the performance analysis of a passing through the obstacle. The environment

map is 2100 100m× , cell resolution is 0.1m, Red part is the obstacle, and blue trajectory is the

solution. Start position (10,10) and goal position (90,90). Detail is given below.

Figure 7.6: (a) motion primitives trajectory, (b) Shortest path trajectory, (c) Smoothest path

trajectory

48

 Travel Distance

Motion primitive 122.64m

Shortest path 124.1m

Smoothest path 139.62m

Table 7.5: Travel Distance of different trajectories, notice that motion primitive path is shorter

but unfeasible with respect to vehicle dynamics

7.2.2 Benchmark of shortest path between AD, ARA*, ANA planners

The environment map is 2100 100m× , cell resolution is 0.1m, Red part is the obstacle, and

blue trajectory is the solution. Start position (10,10) and goal position (90,90). Detail is given

below.

Figure 7.7: Footprint of shortest paths of AD, ARA* and ANA planners

 Shortest path travel distance Shortest path travel time

AD 124.1m 161s

ARA* 124.1m 161s

ANA 170.11m 96s

Table 7.6: Shortest path details of AD, ARA* and ANA

49

Figure 7.8 (a): AD planner shortest path states

Figure 7.8 (b): ARA* planner shortest path states

50

Figure 7.8 (c): ANA planner shortest path states

51

7.2.3 Benchmark of smoothest path between AD, ARA*, ANA planners

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue

trajectory is the solution. Start position (10,80) and goal position (90,85). Detail is given

below.

Figure 7.9: Footprint of smoothest paths of AD, ARA* and ANA planners

 Smoothest path travel distance Smoothest path travel time

AD 139.62m 55s

ARA* 139.62m 55s

ANA 137.46m 53.5s

Table 7.7: Smoothest path details of AD, ARA* and ANA

52

Figure 7.10 (a): AD planner smoothest path states

Figure 7.10 (b): ARA* planner smoothest path states

53

Figure 7.10 (c): ANA planner smoothest path states

54

55

8. Benchmark with roughness map

Roughness is used here to multiply the action cost function. It is an amplifier of action cost,

which means that, perform the same action on higher roughness cost more. Roughness map is

of the same size of the environment, for each grid, there is a one digit decimal integer. Higher

is the roughness, larger this integer number.

8.1 Move along the obstacle

This section will present how the roughness affects the trajectory. Take the same environment

in section 7.1, and given the following roughness map in Figure 8.1.

Figure 8.1: Roughness map

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue

trajectory is the solution. Start position (10,80) and goal position (90,85). Figure 8.2, 8.3 and

8.4(a) gives the solution footprints, while Figure 8.2, 8.3 and 8.4(b) includes the projection of

56

roughness on the environment map seperately. Details of the correponding trajectory is given

in Table 8.1.

Figure 8.2(a): Motion Primitive trajectory footprint

Figure 8.2(b): Roughness projection for motion primitive trajectory

57

Figure 8.3(a): Shortest path trajectory footprint

Figure 8.3(b): Roughness projection for shortest path

58

Figure 8.4(a): Smoothest path trajectory footprint

Figure 8.4(b): Roughness projection for smoothest path

Roughness Travel Distance

Motion primitive 94.742m

Shortest path 108.49m

Smoothest path 105.63m

Table 8.1 Travel distance of different trajectories

59

8.2 Move through the obstacle

Take the same environment in section 7.2, and given the following roughness map in Figure

8.5.

Figure 8.5: Roughness map

The environment map is 2100 100m× , cell resolution 0.1m, Red part is the obstacle, and blue

trajectory is the solution. Start position (10,10) and goal position (90,90). Figure 8.6, 8.7 and

8.8(a) gives the solution footprints, while Figure 8.6, 8.7 and 8.8(b) includes the projection of

roughness on the environment map seperately. Details of the correponding trajectory is given

in Table 8.2.

60

Figure 8.6(a): Motion Primitive trajectory footprint

Figure 8.6(b): Roughness projection for motion primitive trajectory

61

Figure 8.7(a): Shortest path trajectory footprint

Figure 8.7(b): Roughness projection for shortest path

62

Figure 8.8(a): Smoothest path trajectory footprint

Figure 8.8(b): Roughness projection for smoothest path

Roughness Travel Distance

Motion primitive 153.45m

Shortest path 147.06m

Smoothest path 141.56m

Table 8.2 Travel distance of different trajectories

63

Appendix A

Useful Navxytheta class functions:

Here state, state parameter are (x,y,yaw), stateID is the index in hash table for each state.

 Function name Usage

1 ConvertStateIDPathinto-

XYThetaPath(vector stateIDs,

vector state parameters)

Iterate in vector stateIDs, search its related state

parameter(x,y,theta) in hash table. Assign all of them in

“vector state parameters”.

2 GetSuccs(source stateID,

successors vector, action

vector)

Play with motion primitives, get all available successors

of source state assigning corresponding actions. It is

used in forward version of AD, ARA, ANA algorithms.

3 GetPreds(target stateID,

predecessors)

Play with motion primitives, get all available

predecessors of target stateassigning corresponding

actions. It is used in backward version of AD, ARA,

ANA algorithms.

4 GetStartHeuristic(stateID) Assign the heuristic from state state to current state,

return Euclidean distance between them.

5 GetGoalHeuristic(stateID) Assign heuristic from current state to goal, which is the

Euclidean distance also.

6 GetStateFromCoord(state) Search in hash table by state parameters, return

correponding state ID.

7 GetCoordFromState(stateID,

state parameter)

Search in hash table by stateID, return correponding

state parameter.

8 GetActionCost(source

position, action increment)

Calculate action cost, return infinite cost if the action is

not valid, collide with obstacle and outside the

environment map.

9 InitializeEnv(environment 1. Read in environment data, start and goal state

64

configuration file, vehicle

shape, motion primitive

configuration file)

parameter. Etc.

2. Read in motion primitive configuration file.

3. Read in model describing vehicle shape.

4. Precompute action data using PreComputeAction()

function.

10 IsObstacle(position) Check if position is an obstacle.

11 IsValidCell(position) Check if current position is obstacle or out of

environment map.

12 PreComputeActions() Running before planning, pre-compute actions, assign

their pose and intermediate points on motion primitive

configuration data.

13 SetGoal(state parameter) Create goal state in hashtable with given state

parameter.

14 SetStart(state parameter) Create start state in hash table with given parameter.

15 UpdateCost(position) It is used to updata map data for a certain cell.

65

Appendix B

Useful NayATV class functions:

Here state and state parameter are in 5 degs of freedom(x,y,yaw,speed,steer angle), stateID is

the index in hash table for the corresponding state.

 Function name Usage

1 BodyCollisionCheck(position) Collision problem check between vehicle body and

obstacle. It use “position” as vehicle reference point,

check 4 corner points, 4 mid points between corners and

the geometric mid point.

2 CreateNewHashEntry(state) Create a new state in hash table with a newly assigned

stateID.

3 CreateStartAndGoalState

(environment parameter)

Create start state and goal state in hash table, return

their stateIDs.

4 GetHashEntry(state) Return the pointer in hash table to the place where

“state” is stored, return NULL if it the state is not in

hash table.

5 GetActionCost(source, action) Return individual price of action, which is

roughness*cell cost*shortest path(smoothest path) cost.

It will return infinite cost if source is not valid cell, or

invalid action intermediate cell also.

6 GetGoalHeuristic(stateID) Return heuristic from current state to goal, which is the

Euclidean distance between them.

7 GetStartHeuristic(stateID) Return heuristic from start to current state, which is the

Euclidean distance between them.

8 GetSuccs(source stateID,

succsID vector, cost vector)

Used in forward AD, ARA and ANA plannning

algorithms, return all possible successor of source state,

66

by assigning reasonable actions(direct increment on

actual state). Combine all actions and action costs in

“vector succsID” and “vector cost” seperately.

9 GetPreds(target stateID,

predsID vector, cost vector)

Used in backward AD, ARA and ANA planning

algorithms, return all possible predecessor of target

state, by assigning reasonable actions(direct increment

on actual state). Combine all action and action costs in

“vector predsID” and “vector cost” seperatly.

10 GetStateFromCoord(state

parameter)

Search in hash table corresponding index with the same

state parameter. If there doesn’t exist, create a new

element in hash table.

11 IsValidCell(position) Check if current position locate at an obstacle cell, or it

is out of the environment map.

12 InitializeEnv(environment

configuration file, vehicle

shape configuration file)

Read in environment configuration file, roughness data,

map data, start and goal, vehicle shape. Etc.

67

Bibliography

[1] S.M.LaValle, “Planning Algorithms”. Cambridge University Press, 2006, Available on:

http://planning.cs.uiuc.edu/.

[2] D.Ferguson, M.Likhachev & A.T.Stentz, “A Guide to Heuristic-based Path Planning”,

Proceedings of the International Workshop on Planning under Uncertainty for Autonomous

Systems, International Conference on Automated Planning and Scheduling (ICAPS), June,

2005.

[3] D.Hsu, J.C.Latombe & R.Motwani, “Path Planning in Expansive Configuration Spaces”.

Proc. IEEE Int. Conf. on Robotics and Automation, 1997.

[4] A* search algorithm, on Wikipedia. http://en.wikipedia.org/wiki/A*_search_algorithm/.

[5] Motion planning, on Wikipedia. http://en.wikipedia.org/wiki/Motion_planning/.

[6] M.Likhachev, D.Ferguson, G.Gordon, A.Stentz, & S.Thrun, “Anytime Dynamic A*: An

Anytime, Replanning Algorithm”. Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS), June, 2005.

[7] S.M.LaValle, “Motion Planning: The Essentials”. IEEE Robotics & Automation magazine,

vol 18, pp.79-89, June 2011.

[8] S.M.LaValle, “Motion Planning: Wild Frontiers”. IEEE Robotics & Automation magazine,

vol 18, pp.108-118, June 2011.

[9] SBPL library class, http://www.ros.org/wiki/sbpl/.

[10] Jur van den.Berg, Rajat.Shah, Arthur.Huang & Ken Goldberg, “ANA*: Anytime

Nonparametric A*”. Association for the Advancement of Artificial Intelligence: Annual

Conference (AAAI). San Francisco, CA. Aug 2011.

[11] M.Likhachev, G.Gordon, & S.Thrun, “ARA*: Formal Analysis”. Tech. Rep. CMUCS-

03-148, Carnegie Mellon University, Pittsburgh, PA, 2003.

[12] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, & Sebastian Thrun,

“Anytime Search in Dynamic Graphs”. Artificial Intelligence, vol.172, pp1613-1643, Sep

2008.

68

[13] Sven Koenig, Maxim Likhachev, “D* Lite”, Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI). pp.476-483, 2002.

[14] Maxim Likhachev, Geoff Gordon & Sebastian Thrun, “ARA*: Anytime A* with

Provable Bounds on Sub-Optimality”, In Advances in Neural Information Processing System

16: Proceedings of the 2003 Conference, 2004.

[15] Václav Hlaváč, “Motion Planning Methods” slides, Czech Technical University in

Prague, Faculty of Electrical Engineering, Department of Cybernetics. Available on

“http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/55IntelligentRobotics/100MotionPlanningMeth

ods.pdf”.

