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Sommario

Questo lavoro si pone, nell'ambito dell' �Uncertainty Quanti�cation�, lo studio di
EDP tempo dipendenti caratterizzate da parametrico condizioni iniziali stochastiche,
con il particolare �ne di sviluppare soluzioni approssimanti con dimensionalità ridotta.
L' approaccio adottato, che prende il nome di �Dynamically Orthogonal Field� (DO),
consiste nell'assumere la soluzione approssimante espansa in termini di serie, con basi
deterministiche e coe�cienti stocastici, entrambi tempo dipendenti in modo tale da evol-
vere in accordo con la soluzione. L'obiettivo è quello di riuscire ad utilizzare una espan-
sione con pochi termini che descrivano globalmente la struttura della soluzione ad ogni
istante temporale. Questo concetto si traduce nel nostro caso in un sistema accoppiato
di equazioni di evoluzione, stocastiche quelle per i coe�cienti e deterministiche per le
basi e la media della funzione approssimante. Tale sistema può essere ricavato diretta-
mente dalla EDP stocastica che governa il problema, tramite un opportuno approccio
alla Galerkin. Mostreremo inoltre che tale approccio corrisponde dal punto di vista nu-
merico con la `Dynamically Double Orthogonal� (DDO), in quanto entrabi forniscono la
stessa soluzione se si adotta una formulazione alla Galerkin. Tale fatto risulta rilevante
in quanto sono presenti in letterature stime di quasi ottimalità per l'approssimazione
DDO in dimensione �nita, ovvero errore limitato da quello di migliore approssimazione
sotto opportune ipotesi e con le opportune norme. Alla luce di questo abbiamo indagato
la relazione tra soluzione approssimate (DO) a rango N e la migliore approssimazione
a rango N tramite test numerici e considerazioni teoriche per il caso semplice di EDP
paraboliche con di�usione lineare. Tale modello di equazioni sarà inoltre utilizzato per
testare il reale funzionamento del metodo e l'in�uenza dai vari parametri di discretiz-
zazione. Concludiamo il lavoro applicando l'approccio DO a PDE tempo dipendenti con
termine di reazione non lineare, speci�catamente ispirate ai modelli di attività biolet-
trica per le cellule cardiache, distinguendo nei test numerici il caso di condizione iniziale
o parametri stocastici.



Abstract

In this thesis we focus on parabolic PDEs in which some of the parameters or the
initial data are not exactly quanti�ed �a priori�. In this framework the problem is de-
scribed in terms of random variables in the probability space; in particular, the solutions
are assumed to be spatial and time dependent random �elds.
When the number of stochastic variables is large, an important issue consists in reducing
the dimensionality of the problem for the approximation of the solution. This represents
a challenging task when the probability structure of the solution evolves in time. In
view of that we consider the Dynamically Orthogonal Field (DO) approach according
to which the approximate solution is described in terms of deterministic basis functions
and stochastic coe�cients, both of them evolving in time. In particular they adapt to
the solution in a way that reduces the dimension of the approximation. The key point
consists in not building an approximation through �xed bases either in the determinis-
tic or physical space but in looking directly for an approximate rank N solution that is
achieved by a Galerkin projecting of the governing equation. The method results in a
system of evolution equations that de�nes the solution at any time instant in order to
maintain the e�ectiveness of the approximation also for long time integration. One can
�nd in literature equivalent formulation in a �nite element setting for which convergence
analysis and error estimates are provided. In particular, we show that the DO approach is
strongly related to the Dynamically Double Orthogonal decomposition (DDO) since both
methods provide the same numerical solution when the Galerkin approach is adopted.
The rest of the thesis is divided in two parts. In the �rst one we focus on parabolic
linear di�usion equations for which we give theoretical results on the convergence rate
and numerical examples to test the accuracy of the method. In the second one we con-
sider parabolic equations with non linear reaction term, particularly inspired by electrical
models of biological tissues.



Introduction

In the last decades many engineering and physical problems have been described by
mathematical models and reproduced in numerical simulation. This approach basically
consists in investigating the phenomena to �nd all the relevant variables, formulating
mathematical equations to describe the principles that link these variables each other
and then discretizing and solving the problem via numerical methods. However each of
these steps is pron to many sources of error and uncertainty. In particular in several
situations the analysis of the problem is compromised by incomplete knowledge or it is
characterized by intrinsic variability. Exact experimental measurement are indeed not
always available or they might not characterize completely the system. One can think
for instance to geological problems, where the study of the mechanical proprieties of the
soil can not be supported by complete data. The measurement of the physical quantities
like viscosity, permeability or density are often not precise or not available point-wise. In
other cases the uncertainty is instead intrinsic in the phenomena as some quantities can
not be predicted. This occurs for example in the weather forecasting framework where
the initial conditions are never exactly known �a priori�. In addition there are other situa-
tions in which the model is required to preserve the variability of the phenomena. This is
the case of models for the electrical signals in biological tissues, in which the parameters
depend on each individual and can change in time, based on the age and the occurrence
of many situation among which diseases, stress and changes of the life-style. The limi-
tations of the deterministic approach can be overcame by characterizing and quantifying
the impact of the uncertainties on the mathematical modeling and consequently on the
numerical predictions. By following this approach the problem is reformulated under
probability structures in order to predict and quantify both the expected outcome and
its variability. The resulting mathematical model is often described by partial di�eren-
tial equations where the data and the parameters are modeled as random variables or
random �elds that may have spatial or temporal structures. Speci�cally in this thesis we
focus on dynamical systems governed by stochastic partial di�erential equations where
the randomness is generated by the initial condition or it arises from the parameters in
the di�erential operator. Since in this framework the dimension of the stochastic space is
often large or in�nite, a challenging task consists in developing numerical methods that
e�ciently describe the evolution of the stochastic system at an a�ordable computational
cost.
In this thesis we focus on numerical methods that aim at �nding an approximate solution
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in a low dimensional manifold that evolve in time. Speci�cally we analyze the Dynami-
cally Orthogonal Filed approach (DO), proposed in [16] [17] and also in [12], [10] with a
slightly di�erent formulation in �nite dimensional setting. The Dynamically Orthogonal
�eld approach consists basically in a low rank approximation method according to which
the numerical solution is built as a linear combination of few basis functions that try
to catch the principal features of the stochastic �eld. Contrary to most of the methods
proposed in literature this approach provides an approximate representation of the so-
lution where both the stochastic and deterministic components changes in time in order
to adapt to the process evolution. This feature makes the model e�ective also for long
time integration.
In the light of the strong relation between the Dynamically Orthogonal Filed approach
and the dynamical Singular Value Decomposition (SVD), we propose an analysis and im-
plementation of the method speci�cally for stochastic parabolic equations with di�usion-
reaction term. In particular the thesis is organized as follows:

• Chapter 1 we review the spectral approach in the uncertainty quanti�cation frame-
work with a brief description of the main methods proposed in the literature for
the forward uncertainty quanti�cation,

• Chapter 2 we illustrate the DO approach and show the equivalence with the
Double Dynamically Orthogonal decomposition. In the light of that we report some
results on the convergence analysis of the approximation in the �nite dimensional
setting, obtained in [12],

• Chapter 3We apply the DO method to a linear parabolic PDE with either stochas-
tic initial datum or stochastic di�usion coe�cient. In particular we analyze the
relation between the DO expansion and the expansion of the solution on the eigen-
function of the di�erential operator. We detail then the discretization of the DO
system by Finite Element in space and Finite Di�erence in time and present same
numerical tests that con�rm the theoretical �ndings. We discus the computational
aspects of the method, that has been implemented in Matlab.

• Chapter 4 we apply the DO method to stochastic parabolic equations with non
linear reaction term describing the electric signal in biological tissues. By distin-
guishing the case in which the initial datum or the parameters of the operator
are stochastic, we compare the DO approximate solution with the best rank N
approximation.

• Conclusion we discuss the results achieved in this work, the key points of the DO
approach and the suitable further developments.



Chapter 1

Problem Background

In this chapter we introduce the necessary background concerning the problem dis-
cussed in the thesis. We give a brief overview of some of the stochastic modeling methods
recently developed in the literature for the uncertainty quanti�cation and, in particular,
the Stochastic Collocation method that will be used hereafter.

1.1 Notation

Let (Ω,F ,P) be a complete probability space where Ω is the set of outcomes, F ⊂ 2Ω

the σ-algebra of events and P : F → [0, 1] the associated probability measure. A real-
valued random variable on (Ω,F ,P) is a function ξ = ξ(ω) : Ω → R that associates one
numerical value to each realization ω ∈ Ω. We indicate with E[ξ] the mean, or expected
value, of ξ and generally with E[ξk] the k-th moment:

E[ξk] =

∫
Ω
ξk(ω) dP(ω) (1.1)

The space of all the stochastic variables with �nite second moment, denoted by L2
P(Ω):

L2
P(Ω) =

{
ξ : Ω→ R : E[ξ2] < ∞

}
(1.2)

is an Hilbert space with associated inner product given by:

< ξ1, ξ2 >L2
P(Ω) = E[ξ1ξ2] =

∫
Ω
ξ1(ω), ξ2(ω) dP(ω) (1.3)

Given two jointly distributed random variable ξ1, ξ2 ∈ L2
P(Ω) we de�ne the covariance

and the variance respectively as:

C(ξ1, ξ2) = E[(ξ1 − E[ξ1])(ξ2 − E[ξ2])],
Var(ξ1) = E[(ξ1 − E[ξ1])2],

(1.4)
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and we remind that E[(ξ1 − E[ξ1])2] = E[ξ2
1 ]− E[ξ1]2.

Furthermore, given a spatial domain D ⊂ Rn (with n = 1, 2, 3) we call deterministic
function any function de�ned in D with value in R. The in�nite set of all the square
integrable functions in D, L2(D), form a Hilbert space with inner product denoted by
< ·, · >. Speci�cally:

L2(D) =
{
u : D→ R :

∫
D
u2(x) dx <∞

}
(1.5)

Moreover we de�ne H1(D) the Hilbert space of all square integrable functions in D with
square integrable distributional derivatives.

H1(D) =
{
u : D→ R :

∫
D

(
u(x)

)2
+ |∇u|2(x) dx <∞

}
(1.6)

and H1
0(D) ⊂ H1(D) the subspace of the functions with zero trace on the boundary.

Given the deterministic and the stochastic space, a random �led is de�ned as a real
valued function on the product space:

u(x, ω) : D× Ω→ R (1.7)

where x denotes the space coordinate. For any �xed x ∈ D, u(x, ·) is a random variable
and conversely, �xed the event ω ∈ Ω, u(·, ω) is called realization of the stochastic �led.
Similarly to what seen before, we can de�ne the expected value and the covariance
operator that in this case become functions of the deterministic variable x:

ū(x) = E[u(x; ·)] x ∈ D

Cuv(x, y) = E
[(
u(x; ·)− ū(x)

)(
v(y; ·)− v̄(y)

)]
x, y ∈ D

(1.8)

The set of all square integrable random �elds form a Hilbert space, denoted by H i.e.:

H =

{
u : D× Ω→ R :

∫
Ω

∫
D

(
u(x; ξ)

)2
dx dP(ω) <∞

}
(1.9)

with associated inner product < u, v >H= E[< u, v >].
All the previous de�nitions can be generalized to time dependent stochastic �elds:

u(x, t, ω) : D× [0, T]× Ω→ R (1.10)

where t is the temporal variable and [0, T] ⊂ R is the time interval. We introduce also
the Banach spaces L∞([0,T],H) and L2([0,T],H) de�ned as:

L∞([0,T], H) =

{
u : D× [0, T]× Ω→ R : E

[ ∫
D u

2(x, t; ·) dx
]
<∞ ∀t ∈ [0, T]

}
L2([0,T], H) =

{
u : D× [0, T]× Ω→ R :

∫
[0,T] E

[ ∫
D u

2(x, ·; ·) dx
]
dt <∞

}
(1.11)
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Under the ��nite dimensional noise assumption� the stochastic space is parametrized
by a random vector ~ξ = [ξ1, ..., ξs] and it assumed to have �nite dimension s. Let Γi
be the support of ξi and Γ = Γ1 × ... × Γs ⊂ Rs the support of ~ξ, then the abstract
probability space (Ω,F ,P) can be replaced by (Γ,B(Γ), f(~ξ)d~ξ) where B(Γ) denoted the
Borel σ−algebra and f(~ξ) is the joint probability density function of ~ξ. The Hilbert
space L2

P (Ω) becomes L2
f (Γ) de�ned as:

L2
f (Γ) =

{
y : Γ→ R :

∫
Γ
y2(~ξ)f(~ξ) d~ξ <∞

}
(1.12)

Any stochastic �eld in u ∈ H can be also re-de�ned and expressed in terms of ~ξ,
u(x, ~ξ(ω)), with u(x, ·) ∈ L2

f (Γ).

1.2 Spectral Representation

The spectral approach aims to describe the uncertainty from a functional point of
view. Contrarily to the Monte Carlo Methods that obtains locally informations by sam-
pling, the spectral approach aims to determine the functional dependence that generates
the uncertainty. The unknown random variables are generally represented in form of
series, and the basis functions are de�ned in the stochastic space.
We introduce two classical spectral representation approaches for square integrable ran-
dom �elds u(x, ω): the Karhunen Loève expansion based on the spectral decomposition of
the autocorrelation function and the generalized Polynomial Chaos Expansion which pro-
vides the decomposition in terms of orthogonal polynomials in the stochastic space. Thus
the approaches will be then generalized for time dependent stochastic �elds u(x, t, ω).

1.2.1 The Karhunen Loève Expansion

Any square integrable random �eld u(x, t) with continuous covariance function can be
represented as an in�nite sum of uncorrelated random variables. The Karhunen-Loève
expansion, see [2], [23], is one of the most common decompositions of a random �eld
and is the analogous of the Principal Component Decomposition (see e.g. [1]) in in�nite
dimensional setting. It consists of decomposing the random �eld in terms of uncorrelated
random variables, i.e. random variable orthogonal in L2

P (Ω), and L2(D)-orthonormal
deterministic basis functions, i.e.:

u(x; ω) = ū(x) +

∞∑
i=1

yi(ω)ui(x) (1.13)

with

• < ui(x), uj(x) >= δij ,

• E[yi] = 0
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• E[yiyj ] = λiδij

for all i, j ∈ N+ and where δij is the Kronecker's symbol, δij = 1 if i = j and zero
otherwise. We detail the KL expansion in the case of time dependent random �elds.

Proposition 1.2.1.

Let u ∈ L∞([0, T], H) be a random �eld with continuous covariance function Cu(t)u(t)(x,x
′)

for any t ∈ [0, T]. Let Γu(t) be the linear, symmetric and compact operator de�ned for
any t ∈ [0, T] as:

v ∈ L2(D)→ Γu(t)u(t)(v) =

∫
D
Cu(t)u(t)(x, x′)v(x′) dx′ (1.14)

Hence, it admits a decreasing and non-negative sequence of eigenvalues {λi(t)}i∈N with
corresponding eigenfunctions {ui(x, t)}i∈N that form an orthonormal basis in L2(D) at
any t. Moreover it holds:

u(x, t; ω) = ū(x, t) +
∞∑
i=1

yi(t; ω)ui(x, t) (1.15)

where ū(x, t) = E[u(x, t; ω)] and yi(t; ω) are uncorrelated stochastic processes with zero
mean and variance Var[yi(t; ω)] = λi(t), de�ned as:

yi(t; ω) =

∫
D

[u(x, t; ω)− ū(x, t)]ui(x, t) dx (1.16)

Furthermore the total variance of u is given by:∫
D
Var[u(x, t; ·)] dx =

∞∑
i=1

λi(t) (1.17)

The expansion (1.13) is an exact representation of the stochastic �eld u that is de-
composed at any time instant in a in�nite number of deterministic �elds multiplied by
scalar stochastic coe�cients. The deterministic �elds carry all the spatial information
while the stochastic coe�cients describe the whole stochastic response.
In order to get a computable decomposition, the series (1.15) is truncated and only a
�nite set of N terms is taken into account. The number of terms N has to be large
enough to deliver a good approximation of u, i.e. it has to be chosen in order to include
a su�cient percentage of the total variance (1.17). The set of N terms that maximizes
the total variance of the approximation is given by the �rst N elements of the series
assuming that the eigenvalues {λi(t)}i∈N in the spectral decomposition of the covariance
operator have been sorted in decreasing order with respect to the variance. Then the
truncated Karhunen Loève expansion reads:

uN (x, t; ω) = ū(x, t) +

N∑
i=1

yi(t; ω)ui(x, t) (1.18)



CHAPTER 1. PROBLEM BACKGROUND 7

Observe that the truncated KL expansion is an optimal approximation in the sense that
it is the best approximation that can be achieved by N terms in the mean square sense
at any time instant.
The approximation uN converges in mean square sense to u as provided by the Mercer's
Theorem and the rate of convergence depends on the decay of the eigenvalues, [4]. In
particular it holds:

E
[ ∫

D
|u(x, t, ·)− uN (x, t, ·)|2 dx

]
=

∞∑
i=N+1

λi(t) → 0 when N → ∞ (1.19)

for any t ∈ [0, T]. Moreover the decay of λi is related to the spatial regularity of the
covariance function: the smoother the covariance is, the faster the eigenvalues λi(t) de-
cay. Speci�cally an analytic covariance function has exponential decay of λi, while �nite
Sobolev regularity leads only to an algebraic decay.

An alternative to the Karhunen Loève expansion is given by the Fourier-based decompo-
sition [23], according to which the stochastic �eld is expanded in terms of trigonometric
polynomials.
Consider a stochastic �led u ∈ H. We say that u is stationary if the covariance func-
tion Cuu(x,x′) depends only on the distance ‖x − x′‖, i.e. Cuu(x,x′) = Cuu(‖x − x′‖).
Assume that u : [0, L]2 × Ω → R is stationarity and isotropic. For the hypothesis of
stationarity the variance of u is assumed to be point-wise equal to σ2. Moreover let the
covariance function Cuu(x,x′) be Lipschitz continuous, it can be expressed in cosinus
terms by the Fourier series:

Cuu(‖x− x′‖) = σ2
∑
i∈N2

+

ck cos(ωk1(x1 − x′1)) cos(ωk2(x2 − x′2)) (1.20)

with normalized coe�cient ck so that
∑

i∈N2
+
ck = 1.

Then u admits the following representation:

u(x; ω) = ū(x) + σ
∑

i∈N2
+
ck

[
y1
i (ω) cos(ωk1x1) cos(ωk2x2)+

y2
i (ω) sin(ωk1x1) sin(ωk2x2)+
y3
i (ω) cos(ωk1x1) sin(ωk2x2)+
y4
i (ω) sin(ωk1x1) cos(ωk2x2)

] (1.21)

where ωki = kiπ
L and the stochastic variables , yji , j=1,...,4, are uncorrelated, with zero

mean and unit variance . Thanks to the trigonometric polynomials this approach high-
lights the contribution of each frequency to the total �eld.
Once more the series needs to be truncated in order to get a computationally suitable
representation. Compared to the KL expansion, similar convergence proprieties holds.

In general if u admits a continuous version and is periodic, it can be expanded in
Fourier series, or in other words it can be represented by deterministic cosine and sine
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terms with stochastic coe�cients. Otherwise if u is not periodic, it can be made periodic
in a bigger physical domain, e.g if we assume u(·, ω) de�ned in [0, L] it have to be made
periodic with period at least equal to L (or bigger). This technique provides a periodic
function that can be expanded in Fourier series but on the other hand this might introduce
discontinuities on the boundary of the original domain leading to a degraded convergence
rate. It is then worth making the function periodic on a larger domain [−δ, L+ δ] with
δ equal to twice or three times the correlation length to minimize this degradation.

1.2.2 Generalized Polynomial Chaos Expansion

The Generalized Polynomial Chaos (gPC) expansion, [23], [1], [2], [26] consists in
decomposing the stochastic variables in terms of uncorrelated polynomial functions.
Namely the stochastic variable is linearly expanded into a series of �xed stochastic func-
tions multiplied by deterministic coe�cients.
Historically in 1938 Wiener �rst formulated the polynomial chaos expansion, [25], in term
of the Hermite polynomials to modelize near-gaussian stochastic processes.
Under the ��nite dimensional noise assumption� the probabilistic space is parametrized
by a �nite number S of random variables ~ξ = (ξ1, ..., ξS) : Ω → ΓS , where ΓS is the
support of ~ξ. Assume that ~ξ is a vector of S centered, normalized, mutually orthogonal
Normal random variables and let {ψi}i∈N be a sequence of uncorrelated polynomials, i.e.:
E[ψiψj ] = δij where δij is equal to 1 for i = j and 0 otherwise. The uncorrelated relation
is transfered in L2(Γ,B(Γ), f(~ξ)d~ξ) and leads to:

E[ψiψj ] =

∫
Γ
ψi(~ξ)ψj(~ξ)f(~ξ) d~ξ = δij (1.22)

Here f is the joint density function of ~ξ, B(Γ) denoted the Borel σ−algebra and that
{ψi}i∈N form a complete basis in L2(Γ,B, f(~ξ)d~ξ).
Now let u be a square integrable random �eld. It can be expressed in terms of the random
vector ~ξ as u(x, ~ξ(ω)) and in particular we have u(x, ·) ∈ L2(Γ). Then, according to the
Polynomial Chaos approach, u can be represented as:

u(x, ~ξ(ω)) =
∞∑
i=0

ui(~x)ψi(~ξ(ω)) (1.23)

where {ψi(~ξ)}i∈N correspond to the Hermite polynomials. One can verify that they are
orthogonal with respect to the Gaussian measure and moreover that E[ψi] = 0 for all
i > 1.
In order to get a computationally feasible representation, the series (1.23) is truncated
and the stochastic �eld is approximated by the �rst N + 1 terms:

uN (x, ~ξ(ω)) =
N∑
i=0

ui(x)ψi(~ξ(ω)) (1.24)
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One can choose to approximate the expansion by using all the polynomials up to a �xed
total degree p that leads to take into account a number of terms:

N + 1 =
(S + p)!

S!p!
(1.25)

An alternative approach consists on the tensor product expansion according to which
one considers all the combinations of the one-dimensional polynomials with degree lower
or equal to a �xed order p. The number of terms included grows exponentially with
the dimension of the stochastic space and because of that the method su�ers of the so
called curse of dimensionality . Alternative approaches to overcame this problems are
introduced in [21].
The approximation (1.24) introduces a truncation error that depends on p. However the
generalization of Cameron and Martin theorem [30] provides that the truncated expansion
converges to u in mean square sense when p, and consequently N , goes to in�nity, i.e.:

lim
N→∞

E
[ ∫

D
|uN (x, ·)− u(x, ·)|2dx

]
→ 0 (1.26)

The polynomials {ψi(~ξ)}0=1,..∞ form indeed a complete basis in L2(Ω). Moreover, by
assuming that u is a nearly Gaussian random �eld, the Hermite polynomials provides
that the truncation error is minimized with respect to N , the number of terms in the
expansion. In this sense we refer to �optimal � set of polynomial. Observe indeed that
any Gaussian random variable can be exactly represented with p = 1.
In 2002, Xiu and Karniadakis [26] generalized this idea and applied the concept of or-
thogonal polynomials to some of the most common probability distributions. Observe
that the probability density function plays the role of a weight function in the orthogo-
nality relation (1.22). In the light of the correspondence between the probability density
functions and weighting functions, the stochastic polynomials are constructed by using
the measure corresponding to the probability law of the random �eld that one wants to
represent. Speci�cally, once the probability space has been parametrized by ~ξ accord-
ing to the probability structure of the problem, any square integrable stochastic �eld
u(x, ~ξ(ω)) is represented by using orthogonal polynomials with respect the probability
law of ~ξ(ω). The Askey scheme [2] provides the correspondence between the common
distributions and the associated orthogonal family of polynomials, e.g. Legendre poly-
nomials correspond to uniform distribution. For many more general distributions the
set of orthogonal polynomials can be found by the Gram-Schmidt orthogonalization pro-
cess [27]. However, observe that this approach implicitly requires a priori knowledges on
the probability structure of the sources of uncertainty.
The gPC method can be also used to represent time-dependent �elds and the decompo-
sition reads:

u(x, t, ~ξ(ω)) =

∞∑
i=0

ui(x, t)ψi(~ξ(ω)) (1.27)

where {ψi(~ξ)}i∈N are the orthogonal polynomials with respect to ~ξ. Observe that the
polynomials are time independent. In other words the stochastic structure remains �xed
in time and the deterministic coe�cients evolve according to the process evolution.
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1.3 Methods for forward uncertanty propagation

In this thesis we deal with time-dependent stochastic problems of the form:
∂u(x, t, ω)

∂t
= L(u(x, t, ω);ω) x ∈ D, t ∈ [0,T], ω ∈ Ω

u(x, 0, ω) = u0(x, ω) x ∈ D, ω ∈ Ω

u(σ, t; ω) = h(σ, t; ω) σ ∈ ∂D, t ∈ [0,T], ω ∈ Ω

(1.28)

where L is a general di�erential operator.
There exist several approaches according to witch the solution u(x, t, ω) can be discretized
in order to get a numerical approximation. One of them, the Proper Orthogonal Decom-
position, consists of evolving an approximate solution given a set of �xed deterministic
basis functions chosen a �priori�. On the contrary the generalized polynomial Chaos Ex-
pansion approach provides a decomposition of the stochastic �eld by using �xed basis
functions in the random space.

1.3.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition method [2], [1] adopts the idea of the KL
expansion and attempts to approximate the solution along the principal components of
the stochastic �eld u. The method results in an approximation of the form:

uN (x, t, ω) = ū(x, t) +

N∑
i=1

yi(t; ω)ui(x) (1.29)

where {yi(t; ω)}i=1,...N are stochastic processes and {ui(x)}i=1,...N time-independent or-
thonormal �elds. Following the statistical approach, the sample covariance matrix is
computed from experimental data or from direct numerical simulations and the eigen-
vectors of the correlation matrix are supposed to correspond to the spatial functional
basis functions. In other words the technique consists in pre-computing a number of
snapshot at di�erent time instant and for several parameter values. The snapshots are
then used to estimate the sample correlation matrix and the bases are computed by the
SVD decomposition. Alternatively the initial datum is expanded according to the KL
decomposition and the �rst N principal components are used as the time constant phys-
ical basis functions.
The solution is approximated in the low dimensional subspace identi�ed by the basis func-
tions u1(x), ...uN (x). Speci�cally by the Galerkin projection of the original governing
equations onto the subspace spanned by the basis functions, one recovers the evolution
equations for the unknown stochastic coe�cients:

∂yi(t, ω)

∂t
=< L(u(·, t, ω), ω), ui > ∀i = 1, ...N (1.30)

The advantage of the POD consists on reducing the dimension of the problem but on
the other hand the lack of time dependence on the deterministic basis functions reduces
the representation capabilities of the method that might not be e�ective for non-linear
dynamical problems.
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1.3.2 gPC based Stochastic Galerkin

The Stochastic Galerkin, [2], [9], [32], [31] is an intrusive method that consists in
formulating the governing equations for the deterministic coe�cients in the gPC.
According to the gPC approach, the probabilistic space is parametrized by ~ξ and the
stochastic �led u is expanded onto the orthonormal polynomials {ψi}i∈N. The series is
then truncated to N terms:

uN (x, t, ~ξ(ω)) =
N∑
i=0

ui(x, t)ψi(~ξ(ω)) (1.31)

and it is introduced into the governing equation (1.28). A Galerkin projection into the
subspace VN = span < ψ0, ..., ψN > yields to a set of N + 1 deterministic equations.

∂ui(x, t)

∂t
=

1

αi
E
[
L
( ∞∑
k=0

uk(x, t
)
ψk
)
ψi] (1.32)

for all i = 0, ...N , where αi = E[ψiψi]. The Galerkin projection above ensures that the
residual is orthogonal toWN at any time instant. The system (1.32) is deterministic and
can be solved by any common discretization techniques, e.g. by the �nite element method.
In this case the solution is approximated in the �nite dimensional space Vh,p = Wh⊗VN
where Wh is a �nite element space of continuous piecewise polynomials de�ned on a
triangulation Th of D, being h the mesh spacing parameter.
On the other hand the equations are often coupled, with dimension equal to N + 1 times
the dimension of the deterministic system, and they require ad hoc strategies for the
resolution, besides a big e�ort for what concerns the memory storage.
Moreover we remark that the method might su�ers for long time integration. The gPC
approach indeed assumes a �xed parametrization of the probability space according to
the random inputs. As shown in [8], [14] in some cases, e.g. quadratic non-linearity in
the stochastic space, the solution deviates from the distribution of the inputs for later
times. It follows that more and more terms in (1.31) are required to well describe the
solution in time. In rough words the problem concerns with the fact that the solution is
approximated by polynomials �xed in time which do not adapt to the evolution of the
probabilistic structure.
A possible solution has been proposed in [13], [14] and it consists in using time depen-
dent polynomials {ψi(~ξ, t)}i=0,...N that adapt to the changes of the probability density
function.

1.3.3 Stochastic Collocation

The Stochastic Collocation, SC, is in a interpolation method based on Lagrange
polynomials, [22], [21], [24], [33].
Given a stochastic di�erential problem as (1.28), this is evaluated in a set of Ny points
{ξi ∈ Γ}. That means that for all ξi ∈ Γ one computes the corresponding deterministic
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solution u(., t, ξi) and builds the global polynomial approximation upon those evaluations,
i.e.:

u(x, t; ~ξ(ω)) =

Ny∑
i=1

u(x, t)Li(~ξ(ω)) (1.33)

where {Li(~ξ(ω))}Ny

i=1 are the multivariate Lagrange polynomials. There are several pos-
sibilities to choose the collocation points:

• Clenshaw-Curtis points: i.e. the roots of Chebyshev polynomials, Tk(x) = cos(k arccos(x)).
By doubling the number of points each time, this choice produces a nested sets of
points with Nk

y = 2k−1 + 1 and N1
y = 1.

• Gauss points: the zeros of the orthogonal polynomials in the probability space, i.e.
the orthogonal polynomials with respect to the probability density function f(ξ).
The result is a grid of non nested points.

• Kronrod-Patterson: the nested sequence of points that maximizes the exactness of
the quadrature formula with respect to the weight f(ξ). It gives a set of nested
�nearly Gauss� points.

This technique can be based on either full or sparse tensor product approximation space.
In oder to detail the method we focus on the former case.
Let Γ be the S-dimensional interval [−1, 1]S ∈ RS where S is the dimension of the
stochastic space. First of all we consider the case with S = 1.
We introduce the set of the collocation points on the mono-dimensional interval Γ1 =
[−1, 1] such that {ξ1, ...ξNy} ⊂ [−1, 1]. Let W be the Banach space where u(ξ, ·) takes
values so that we de�ne the one-dimensional Lagrange interpolation operators as:

UNy(u)(ξ(ω)) =

Ny∑
j=1

u(ξj)Lj(ξ(ω)) (1.34)

for all u ∈ C0(Γ1, W), where Lj are the Lagrange polynomials of degree Ny − 1:

Lj(ξ) =

Ny∏
k=1, k 6=j

(y − yk)
(yj − yk)

(1.35)

Observe that the interpolation (1.35) is exact for all the polynomials of degree less than
Ny.
Now in the multidimensional case S > 1, we introduce a multi-index i = (i1, ..., iS) ∈
NS+. For each u ∈ C0(Γ, W) and multi-index i the function is approximated using the
full tensor product interpolation:

ui
Ny

(~ξ) =
(
U i1 ⊗ ...⊗ U iS

)
(u)(~ξ)

=
∑i1

j1=1 ...
∑iS

jS=1 u
(
yj1 , ..., yjS

)(
Li1j1(ξ1)⊗ ...⊗ LiSjS

(
ξS))

(1.36)
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where Ny is the total number of collocation points i.e. Ny =
∏S
k=1 ik.

The great advantage of the SC with respect to the stochastic Galerkin consists on de-
coupling the problem. In other words, given a stochastic partial di�erential equation the
SC method consists on an approximation by solving Ny decoupled deterministic partial
di�erential equations.
On the other hand the method is a�ected by what is known as curse of dimensionality .
The number of collocation points grows exponentially with the dimension of the stochas-
tic space and for large S the tensor product interpolation becomes impracticable. To
overcame, at least in part, to this problem sparse grid can be used. For details concern-
ing the sparse grid approximation see [18], [15], [24].
Note that, once the Stochastic Collocation approximation is computed, the evaluation
of the moments of u can be simply obtained by applying the quadrature roles to the
equation (1.36). In particular the mean function and the total variance can be computed
respectively as:

• E[uNy(x, t; ·)] ∼=
∑Ny

k=1 uk(x, t; ξk)wk

• Var[uNy(x, t; ·)] ∼=
∑Ny

k=1 u
2
k(x, t; ξk)wk − E[uNy(x, t; ·)]2

where w1, ...wNy are the weights associated to each point of the stochastic grid, i.e.:

wk =

∫
Γ
Lk(~ξ(ω))f(~ξ(ω))d~ξ(ω) ∀k = 1, ...Ny (1.37)

1.4 Conclusion

To conclude this brief overview we stress that for time dependent problems the POD
method, as well as the gPC and the SC are not always able to well describe the solution
while the time evolves. This is due to the use of a �xed approximation bases in the
random or in the physical space that could require more and more approximation terms
or can lead to unacceptable error levels.
Moreover from the computational point of view the gPC method requires to solve a set
of deterministic equations that are often coupled and eventually needs ad hoc e�cient
and robust solvers. On the other hand the SC is a non intrusive method and leads to
solve uncoupled deterministic problems with the possibility to use pre-existing codes in
a �black box� way. Unfortunately the number of collocation points grows exponentially
with the dimension of the stochastic space if full tensor grids are used and the method
can result in a large number of equations to solve.
In the next chapters we describe an alternative method based on the Dynamical Orthog-
onal �eld approach. We will see how it answers to these problems and limitations and
what are its advantages and limitations.



Chapter 2

Dynamically Orthogonal Field

method

2.1 Dynamically Orthogonal Field approach

In this chapter we illustrate the Dynamically Orthogonal Filed approach that provides
an alternative method to e�ectively describe the solution u(x, t; ω) of time dependent
stochastic PDE, at any time instant. The DO �eld methodology was introduced in
[16], [19], [17] to deal with ocean �ow with random initial data and it was presented as
a generalization of the approaches that we have described in the previous chapter, in
particular the POD and the gPC ones. Speci�cally the DO approach aims to evolve a
low rank approximation by providing few terms that globally describe the solution u.
Contrary to what assumed for the gPC or POD method, the stochastic �led u(x, t; ω) is
expanded in time dependent terms on both the physical and the stochastic space. Fixing
the expansion to N terms, the approximate solution uN looks as:

uN (x, t; ω) = ū(x, t) +
N∑
i=1

yi(t; ω)ui(x, t) (2.1)

where:

• ū(x, t) ∼= E[u(x, t; ω)],

• {ui(x, t)}i∈N is a deterministic orthonormal basis in L2(D),

• {yi(t; ω)}i∈N is a set of zero mean stochastic processes in L2
P (Ω).

It easy to verify that such decomposition is not unique. Given any orthonormal matrix
v(t) ∈ RN×N , we can de�ne new deterministic basis function and stochastic coe�cients
as

• wj(x, t) =
∑N

i=1 ui(x, t)vi j(t)

• zj(t; ω) =
∑N

i=1 yi(t; ω)vj i(t)
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by obtaining an equivalent representation of uN where the new deterministic basis func-
tions are still orthonormal in L2(D). The redundancy of the representation is overcome
by imposing the so called Dynamically Orthogonal condition:

<
∂ui(·, t)
∂t

, uj(·, t) >= 0 ∀i, j = 1, ...N ∀t ∈ [0, T] (2.2)

In particular the Dynamically Orthonormal condition preserves the orthonormality of
the bases:

∂

∂t
< ui(·, t), uj(·, t) >=<

∂ui(·, t)
∂t

, uj(·, t) > + <
∂uj(·, t)
∂t

, ui(·, t) >= 0 (2.3)

∀i, j = 1, ...N ∀t ∈ T.
Roughly speaking, if we denote by WN (t) the subspace spanned by the deterministic
basis {u1(x, t), ..., uN (x, t)}, the DO condition is a restriction imposed on the subspace
where the solution is approximated:

dWN (t)

dt
⊥ WN (t) ⇐⇒ <

∂ui(·, t)
∂t

, uj(·, t) >= 0 ∀i, j = 1, ..., N ∀t ∈ [0, T]

(2.4)
It forces the evolution of the modes to be normal to WN (t) since the dynamics of the
stochasticity withinWN (t) can be already described by the random coe�cients y1, ..., yN .
In practice, to build an approximate solution of the form (2.1) we can use a Galerkin
method where the residual of the equation is projected onto the subspace WN .
The approach concerns dynamical systems governed by a stochastic PDE as

∂u(x, t, ω)

∂t
= L(u(x, t, ω);ω) x ∈ D, t ∈ [0,T], ω ∈ Ω

u(x, 0, ω) = u0(x, ω) x ∈ D, ω ∈ Ω

u(σ, t; ω) = h(σ, t; ω) σ ∈ ∂D, t ∈ [0,T], ω ∈ Ω

(2.5)

where L is a general di�erential operator and the randomness can arise from the initial
or boundary conditions as well as from the parameters appearing in the di�erential
operator. By assuming that the approximate solution expanded as in (2.1) satis�es the
DO condition (2.2), a Galerkin projection provides a system of evolution equations for
all the components of the expansion (2.1). In view of that, from the original SPDE one
derives a set of N + 1 deterministic PDEs coupled to N stochastic ordinary di�erential
equations. The �rst set of equations describes the evolution of the mean and of the
deterministic basis functions while the other set governs the dynamic of the stochastic
coe�cients. Therefore the DO approach automatically evolves a low rank approximation
with a number of terms �xed in time, all of them uniquely determined at any time instant
and evolving according to the structure of the solution. This makes the approximate
solution in (2.1) a�ective also for long time intervals, as long as the low rank approach
is suitable for the problem analyzed.
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2.2 Dynamically Orthogonal Field equations

Given a time dependent problem governed by a stochastic PDE as in (2.5), we
derive now the evolution equations for all the terms in the expansion (2.1). Recall that
the deterministic basis {ui(x, t)}Ni=1 has to satisfy the Dynamically Orthogonal condition
at each time t ∈ [0, T].

DO Equations.

Under the assumption of the DO representation (2.1), (2.2) by performing a Galerkin
projection of the equations (2.5) one obtains:

∂ū(x, t)

∂t
= E[L(u(·, t; ω); ω)]

∑N
i=1

∂ui(x, t)

∂t
Cyi,yj (t) =

∏
WN (t)⊥ E[L(u(·, t; ω); ω)yj(t; ω)] ∀j = 1, ...N

∂yi(t; ω)

∂t
=< L(u(·, t; ω); ω) − E[L(u(·, t; ω); ω)], ui(·, t) > ∀i = 1, ...N

(2.6)

where WN (t) = span < u1(x, t), ..., uN (x, t) > and
∏
WN (t)⊥ is the projection operator

onto WN (t)⊥ de�ned as:
∏
WN (t)⊥

[
F(x)

]
= F(x) −

∑N
k=1 < F(·), uk(·, t) > uk(x, t).

The associated boundary conditions have the form:

ū(σ, t) = E[g(σ, t; ω)]∑N
i=1 ui(σ, t)Cyi,yj (t) = E[g(σ, t; ω)yj(t; ω)] ∀j = 1, ...N

(2.7)

and initial conditions are given by:

ū(x, t0) = ū0(x) = E[u0(x; ω)]
ui(x, t0) = ui0(x) ∀i = 1, ...N
yi(t0, ω) =< u0(·; ω)− ū0(.), ui0(·) > ∀i = 1, ...N

(2.8)

where {ui0(x)}i=1,...N are the eigenfunctions of the covariance operator Γu0u0.

The DO equations can be derived by repleacing the DO expansion in the governig
SPDE and performing a Galerkin projection in the tensor space WN (t) ⊗ VN (t) where
VN (t) = span < y1(t, ω), ..., yN (t, ω). In what follows we describe it in details.
First of all we substitute the expansion (2.1) in the SPDE (2.5) and we obtain:

∂ū(x, t)

∂t
+

N∑
i=1

∂ui(x, t)

∂t
yi(t; ω) +

N∑
i=1

∂yi(t; ω)

∂t
ui(x, t) = L(u(x, t; ω); ω) (2.9)

Since the random coe�cients are zero mean stochastic processes, by integrating in Ω, i.e.
applying the mean operator, we get the �rst equation in (2.6).
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Considering again the equation (2.9) we calculate the spatial inner product with uj(x, t):

<
∂ū(x, t)

∂t
, uj(x, t) > +

∑N
i=1 <

∂ui(x, t)

∂t
yi(t; ω), uj(x, t) >

+
∑N

i=1 <
∂yi(t; ω)

∂t
ui(x, t), uj(x, t) >=< L(u(x, t; ω); ω), uj(x, t) >

(2.10)
Since {ui(x, t)}i=1,...N form an orthonormal bases of WN (t) ⊂ L2(D), i.e.
< ui(x, t), uj(x, t) >= δi j , the third term on the left side vanishes for i 6= j.
Thanks to the DO condition the second term on the left side is always equal to zero.
Therefore we get:

<
∂ū(x, t)

∂t
, uj(x, t) > +

∂yj(t; ω)

∂t
=< L(u(x, t; ω); ω), uj(x, t) > (2.11)

Observe that by using the �rst equation in (2.6) we can replace the �rst term on the left
side with E[< L(u(·, t; ω), uj(·, t) >] and get the third set of equations in (2.6).
Starting again from equation (2.9) this time we consider the inner product with the
stochastic variables {yi}. Then it holds:

E[
∂ū(x, t)

∂t
yj(t, ω)] +

∑N
i=1

∂ui(x, t)

∂t
Cyi,yj (t)

+
∑N

i=1 ui(x, t)C∂tyi,yj (t) = E[L(u(x, t; ω); ω), yj(t; ω)]
(2.12)

where Cyi,yj (t) = E[yi(t; ω)yj(t; ω)] and C∂tyi,yj (t) = E[
∂yi(t; ω)

∂t
yj(t; ω)].

Note that, since the {yi(t; ω)}i=1,...N are zero mean stochastic processes the �rst term on
the left side is equal to zero. Then we calculate the spatial inner product with uk(x, t).
The second term in (2.12) vanishes because of the orthogonal condition, hence it remains:

C∂tyk,yj (t) =< E[L(u(·, t; ω); ω)yj(t; ω)], uk(·, t) > (2.13)

By using this result in (2.12) we obtain the second set of equations in (2.6).

2.3 Dynamically Double Orthogonal decomposition

According to the DO approach the approximate solution is expanded as in (2.1)
where the deterministic basis functions are supposed be orthonormal in L2(D) while
the stochastic coe�cients are possibly correlated. The Double Dynamically Orthogonal
approach, DDO [11], adopts intead a slightly di�erent decomposition according to which
the stochastic coe�cients are required do be orthonormal in L2

P (Ω). Speci�cally, given
u ∈ H solution of (2.5), the DDO decomposition of the approximate solution reads:

ũN (x, t; ω) = ˜̄u(x, t) +

N∑
j, i=1

ai j(t)ũi(x, t)ỹj(t; ω) (2.14)

where:
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• < ũi(x, t), ũj(x, t) >= δij ,

• < ∂ũi(x, t)

∂t
, ũj(x, t) >= 0,

• E[ỹi(t, ω)] = 0

• E[ỹi(t, ω)ỹj(t, ω)] = δij

• E[
∂ỹi(t, ω)

∂t
ỹj(t, ω)] = 0

• a(t) ∈ RN×N invertible

for all i, j = 1, ...N , at any t ∈ [0,T].
The DDO decomposition has been proposed in �nite dimensional setting by Lubich et al .
in [11], [12] to develop dynamically low rank approximations of time dependent matrix
equations. By following the same idea of the dynamical SVD decomposition, under the
assumption that uN is expanded as in (2.14), one can recover evolution equations for all
the terms in the DDO decomposition. In particular, by applyng a Galerkin projection,
the problem (2.5) is reformulated as:

∂ū(x, t)

∂t
= E[L(u(·, t; ω); ω)] x ∈ D, t ∈ [0, T], ω ∈ Ω

dai j(t)

dt
= E

[
< L(u(·, t; ω); ω)− E[L(u(·, t; ω); ω)], ũi(x, t) > ỹj(t; ω)

]
∀i, j = 1, ...N∑N

k=1

∂ũk(x, t)

∂t
ak i(t) =

∏
W⊥N

E
[(
L(u(·, t; ω); ω)− E[L(u(·, t; ω); ω)]

)
ỹi(t; ω)

]
∀i = 1, ...N∑N

k=1 ai k(t)
∂ỹk(t; ω)

∂t
=
∏
V⊥N

[
< L(u(·, t; ω); ω) − E[L(u(·, t; ω); ω)], ũi(·, t) >

]
∀i = 1, ...N

(2.15)
plus the relative boundary and initial conditions there VN (t) = span < ỹ1(t, ω), .., ỹN (t, ω) >
and WN (t) = span < ũ1(x, t), .., ỹN (x, t) >.
By solving the system we recover all the terms of the expansion at any time instant and
we construct by this way a rank N approximate solution.
Even if the DDO decomposition does not correspond to the DO expansion in (2.1), the
two approaches have strong relation. Speci�cally by adopting the Galerkin method, they
provide the same numerical solution,

Proposition 2.3.1. Through a Galerkin projection, the DO approach coincides with the
DDO one, therefore the two methods provide the same numerical solution.

Proof. Given the DDO solution ũN (x, t; ω) = ˜̄u(x, t) +
∑N

i=1 ai j(t)ũi(x, t)ỹj(t; ω) we
de�ne yi(t; ω) =

∑N
i=1 ai j(t)ỹj(t; ω).
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We want to verify that ũN (x, t; ω) = ˜̄u(x, t) +
∑N

i=1 ũi(x, t)yi(t; ω) corresponds to the
DO solution uN . First of all ũN satis�es the DO condition. Then it is su�cient to show
that ũN is solution of the DO system.
Observe that the equation for the mean function in (2.6) coincides with the one in (2.15).
For convenience we denote L∗(u(·, t; ω); ω) = L(u(·, t; ω); ω)−E[L(u(·, t; ω); ω)]. More-
over we remind that for any stochastic function f ∈ L2

P (Ω) it holds:

∏
V⊥N

[
f(ω)] = f(ω)−

N∑
i=1

E[f(ω)yi(ω)]yi(ω) (2.16)

By substitution we obtain:

∂yi(t;ω)

∂t
=
∑N

j=1

dai j(t)

dt
ỹj(t; ω) +

∑N
j=1 ai j(t)

∂ỹj(t;ω)

∂t

=
∑N

j=1 E
[
< L∗(u(·, t; ω); ω), ũi(x, t) > ỹj(t; ω)

]
ỹj(t; ω)

+
∏
V⊥N

[
< L∗(u(·, t; ω); ω), ũi(·, t) >

]
=
∑N

j=1 E
[
< L∗(u(·, t; ω); ω), ũi(x, t) > ỹj(t; ω)

]
ỹj(t; ω)

+ < L∗(u(·, t; ω); ω), ũi(·, t) > −
∑N

k=1 E[< L∗(u(·, t; ω); ω), ũi(·, t) > ỹk(t; ω)]ỹk(t; ω)

=< L∗(u(·, t; ω); ω), ũi(·, t) >
(2.17)

The equations for the stochastic coe�cients correspond to the equations in (2.6). Fur-
thermore by de�ning the covariance matrix as Ci j(t) =

∑N
k=1 ai k(t)ak j(t) the system of

equations for the deterministic �elds {ui}i=1,...N is recovered. In conclusion the DDO
solution satis�es the DO system. Analogously one can easy verify that the DO solution
satis�es the DDO system in (2.15), say a(t) = C

1/2
yiyj (t). We conclude that the DDO and

DO approach arrive at the same numerical solution.

2.4 An equivalent Variational Formulation

LetMN be the manifold of all the functions that admit a rank N representation as
in (2.1), i.e.:

MN =
{
v(x, t; ω) ∈ L∞([0, T],H)] : v(x, t; ω) = v̄(x, t) +

∑N
i=1 zi(t;ω)vi(x, t),

< vi(x, t), vj(x, t) >= δi j , E[zi(ω, t)] = 0}
(2.18)

and let TuMN (t) be the tangent space toMN at uN (t). Then the DO approach corre-
sponds to a Galerkin formulation according to which the residual of the equation (2.5) is
projected onto the tangent space TuMN at each time instant. Speci�cally the formulation
reads:
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. At each t ∈ [0, T], �nd the approximate solution uN (·, t, ·) ∈ MN with
∂uN (·, t, ·)

∂t
∈

TuMN (t) such that:

E
[
<
∂uN (·, t, ω)

∂t
− L(uN (·, t, ω); ω), v(·, ω) >

]
= 0 ∀v ∈ TuMN (t) (2.19)

This projection is equivalent to require that the components in the expansion (2.1)
are the solution of the DO system in (2.6). Then DO approximate solution minimize the
residual of (2.5) at any time inant. However this does not coincide necessarily with the
best rank N approximation vN , that instead satis�es:

• vN ∈MN ,

• E
[
‖u(·, t; ω) − vN (·, t; ω)‖L2(D)

]
is minimized

at any t ∈ [0, T]. Observe that here the solution u is projected on the manifold MN ,
instead of the residual in the tangent manifold TuMN . Moreover it is equivalent to
minimizing the error with respect to the total variance. Consequently the truncated KL
expansion corresponds to the best rank N approximation in an L2 sense.
On the other hand the DO approach takes inspiration from the KL expansion. It evolves
the low rank solution and adapts at each time instant the spatial basis as well the stochas-
tic variables to what best describes the structure of the solution without computing the
KL decomposition at each time step. This makes the method numerically accessible and
e�ective in terms of approximation error at any time instant for long time integration.

2.5 Approximation Proprieties

The DO method provides an approximate solution that is not necessary equal to the
truncated Karhunen-Loève expansion but aims to be close to it. In order to investigate
the relation between the error of the DO solution and the error of the best N rank
approximation, we exploit the equivalence between the DO the DDO formulations and
recall the convergence estimates provided by Lubich et al in [12], [11] for �nite dimen-
sional problems. In particular we report here one of the main results provided by the
authors that suggest the possibility to bound the error of the DO method in terms of
best approximation error under proper conditions.
By transferring the problem in �nite dimensional setting, The DDO formulation is ap-
plied to an evolution matrix equations i.e. Ȧ = L(A) with A ∈ Rn×m. The error analysis
is provided by comparing the solution Y (t), achieved by the dynamical low rank method,
with the best N rank approximation, in the Frobenius norm. In particular if the prob-
lem Ȧ = L(A) has a continuously di�erentiable N -rank best approximation X(t) then
the error for the dynamical low rank method can be bounded in terms of the best ap-
proximation error. This shows that the dynamical low rank method provides a locally
quasi-optimal low rank approximation, under proper conditions.
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Theorem 2.5.1. [12] Suppose that a continuously di�erentiable best approaximation
X(t) ∈ MN to A(t) exists for t ∈ [0, T]. Let the N − th singular value of X(t) has
the lower bound σN (X(t)) ≥ ρ > 0, and assume that the best-approximation error of the

DDO method is bounded by ‖X(t)−A(t)‖ ≤ 1

16
ρ for t ∈ [0, T]. Then the approximation

error with initial value Ũ(0) = X(0) is bounded in Frobenius norm by:

‖Ũ(t)−X(t)‖ ≤ 2βeβt
∫ t

0
‖X(s)−A(s)‖ ds withβ = 8µρ−1 (2.20)

for t ∈ [0, T] and as long as the right-hand side is bounded by 1
8ρ.

The method have been generalized in [10] for higher order tensors, approximated in
low rank Tucker or hierarchical Tucker format.

2.6 Over-approximation and Ill-conditioned problems

We de�ne a N rank function any stochastic �eld uN ∈MN where N is the dimension
of the manifold. Moreover we say that uN ∈ MN has e�ective rank equal to N if the
covariance matrix associated to the stochastic coe�cients in the decomposition (2.1) has
rank equal to N . Speci�cally the e�ective rank of uN corresponds to the rank of the
covariance matrix or equivalently to the rank of the matrix Si j = ai j in (2.14) in the
DDO approach. Since the covariance matrix evolves, it follows that also the e�ective
rank might change in time. The theoretical results illustrated in the previous section as
well as the system of equations (2.6) or equivalently (2.15) concern the case in which the
rank of the approximate solution is equal to N and the rank of the exact solution is larger
or equal to N . We analyze now what happens when the solution is over-approximated,
i.e. the exact solution has e�ective rank smaller than N although it is approximated by
N rank functions.
Consider the DO system; the equations for the modes are coupled by the covariance
matrix. When the rank of the approximate solution uN is N , the problem is well posed,
the covariance matrix can be inverted and the solution is obtained generally. Otherwise
the system is overdetermined and we say that the solution is over-approximated. Un-
der generally, we refer to ill-conditioned problems when the covariance matrix has zero
eigenvalues or when the ratio between the largest and the smallest singular value is large.
An obvious example of over-approximation arises when we handle stochastic dynamical
systems with deterministic initial condition. In this case we aim to evolve a N rank solu-
tion even if the initial datum, which does not have any stochastic features, has e�ective
rank zero. On the other hand that case highlights the necessity of dealing with this type
of situations.
For �nite dimensional problems, in [12] it is proved that, under speci�c assumption on
the singular values of S and proper conditions of regularity for the best N -rank solu-
tion, the error of the dynamically low rank approximation is bounded also in the case
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of ill-conditioning. In particular the authors proved that when there is a gap in the
distribution of the singular values of S, the low rank approximation is not subjected to
instability. Speci�cally, it concerns that case in which the singular values can be divided
in two ranges ~λ1 = (λ1, ..., λs) and ~λ2 = (λs+1, ..., λn) with min(~λ1) >> max(~λ2) and
the N -rank approximate solution is expanded as

Zn = U

(
S1 0
0 S2

)
V > = U1S1V 1> + U2S2V 2>

where, according to the DDO formulation U ∈ Rq×N , V ∈ Rp×N , U = (U1, U2), V =
(V 1, V 2), have orthonormal columns and ~λi = ρ(Ai) with i = 1, 2. The theoretical
results show that the set of the smallest singular values ~λ2 does not give any remarkable
contribution no matter what the derivatives of V 2, U2 are, and the N-rank solution
corresponds to the s-rank one, up to small perturbations, as the matrix S2 remains
small. In line with this observation we adopt an analogous approach to deal with over-
approximated problems in the DO framework. First of all we observe that any function
uN ∈MN can be written as:

uN (x, t; ω) = ū(x, t) +
N∑
i=1

zi(t; ω)wi(x, t) (2.21)

where, given v1(t), ..., vN (t) eigenvectors of the covariance matrix Cyy(t), we have:

• wj(x, t) =
∑N

i=1 ui(x, t)vji(t)

• zj(t; ω) =
∑N

i=1 yi(t; ω)vij(t)

Note that the stochastic coe�cients zi are orthogonal in L2
P (Ω) and the transformation

preserves the orthonormality of the deterministic �elds.

Proposition 2.6.1. Let uN (x, t; ω) ∈ MN expanded as in (2.21). Moreover assume
that:

uN (x, t; ω) = ū(x, t) +

N1(t)∑
i=1

zi(t; ω)wi(x, t) +
N∑

i=N1(t)+1

z∗i (t; ω)wi(x, t) (2.22)
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where E[z∗k(t, ω)z∗k(t, ω)] = 0 for all k = N1(t)+1, ..., N then the system in (2.6) becomes:

∂ū(x, t)

∂t
= E[L(u(·, t; ω); ω)]

∂wi(x, t)

∂t
λi(t) =

∏
WN (t)⊥ E[L(u(·, t; ω); ω)zi(t; ω)] ∀i = 1, ..., N1(t)

∏
WN (t)⊥ E[L(u(·, t; ω); ω)zi(t; ω)] = 0 ∀i = N1(t) + 1, ..., N

∂zi(t; ω)

∂t
=< L(u(·, t; ω); ω) − E[L(u(·, t; ω); ω)], wi(·, t) > ∀i = 1, ..., N1(t)

∂z∗i (t; ω)

∂t
=< L(u(·, t; ω); ω) − E[L(u(·, t; ω); ω)], wi(·, t) > ∀i = N1(t) + 1, ..., N

(2.23)
where λi(t) = E[zi(t, ω)zi(t, ω)]

In practice we assume that, given a bi-orthogonal representation as in (2.21), the basis
functions associated to zero singular values do not evolve as the singular values remain
equal to zero. The advantage of this approach consists in considering in the expansion
(2.1) also the latent variables, i.e. the zero variance stochastic variables, in a way that,
even if at time t̄ they do not give any contribution, they are however allowed to evolve
at t > t̄. This means that the DO approach develops an approximate solution uN ∈MN

with e�ective rank that is bounded by N but which evolves according to the e�ective
rank of the exact solution.

2.6.1 An illustrative example

Let us introduce an example to clarify the concept. Consider the following stochastic
problem with initial deterministic condition:

∂u(x, t; ω)

∂t
− δ(ω)∆u(x, t; ω) = 0 x ∈ (0, L), t ∈ [0, T], ω ∈ Ω

u(0, t; ω) = 0 t ∈ [0, T], ω ∈ Ω

u(L, t; ω) = 0 t ∈ [0, T], ω ∈ Ω

u(x, 0; ω) =
∑N

i=1 sin
(

2iπx
L

)
x ∈ [0, L], ω ∈ Ω

(2.24)
The initial condition is a deterministic �nite linear combination of the �rst N eigenfunc-
tions of the Laplace operator. This implies that the solution evolves in the stochastic
subspace spanned by the N eigenfunctions and develops a manifold of dimension N . The
solution u, that at t = 0 doesn't have any random feature but is a�ected by the stochas-
ticity of the system as soon as it evolves and its rank increases in time. On the other
hand, the system is dissipative and the solution tends asymptotically to the deterministic
zero solution. Therefore, the rank will tend asymptotically to zero as t → ∞. To limit
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the truncation error at later time, N modes are needed in the representation (2.1) since
the beginning although all the coe�cients have to be initialized to zero. Hence the ini-
tial covariance matrix is singular and with zero rank. Furthermore we deal with nearly
singular matrices also when the random coe�cients go back to zero as t → ∞. The
need of using a larger number of modes with respect to what the initial datum requires
is emphasized if the di�erential operator has strong reaction terms. However, even if
the initial datum involves a full rank covariance matrix, nevertheless this may becomes
singular or nearly singular as time evolves, namely when one or more random coe�cients
become zero or they have very small variance compared to the others. The proposition
(2.6.1) concerns these situations.



Chapter 3

Stochastic Linear Parabolic

Equation

In this chapter we analyze problems governed by linear parabolic di�usion equations
in order to see how the DO approach works. In this framework we investigate the relation
between the eigenvalue problem associated to the Laplace operator and the correlation
operator, by following what discussed in [34]. In particular we illustrate a spacial case
in which the DO approach degenerates to the POD method using as deterministic basis
functions the eigenfunctions of the Laplace operator. After discussing the implementation
aspects, some simple numerical examples will be introduced to verify the consistency of
the method with the analytic solutions.

3.1 Problem Setting

Consider the following stochastic linear parabolic problem:
∂u(x, t, ω)

∂t
− ∇ · (a(x, ω)∇u(x, t, ω)) = f(x, t, ω) x ∈ D, t ∈ [0,T], ω ∈ Ω

u(σ, t, ω) = 0 σ ∈ ∂D, t ∈ [0,T], ω ∈ Ω

u(x, 0, ω) = u0(x, ω)) x ∈ D, ω ∈ Ω

(3.1)
where ∇ denotes the di�erential operator in the physical space. The di�usion coe�cient
a : D× Ω→ R and the forcing term f : D× [0, T]× Ω→ R are random functions with
continuous and bounded covariance function. In order to guarantee the existence of the
solution, we assume that a(·, ω) is strictly positive and bounded over D for each random
event ω ∈ Ω i.e.:

∃amax, amin ∈ R+ : P
(
ω ∈ Ω : a(x, ω) ∈ [amin, amax], ∀x ∈ D

)
= 1, (3.2)

which implies that a is uniformly coercive. Moreover let f be a square integrable random
function for any t ∈ [0,T], i.e.: f ∈ L∞([0,T], H). In [3] it has been shown, by means
of energy estimates, that the weak formulation of (3.1) admits a unique solution in the



CHAPTER 3. STOCHASTIC LINEAR PARABOLIC EQUATION 26

tensor space u ∈ L∞([0,T],H1
0(D))⊗ L2

P (Ω).
In accordance with the DO approach we seek the approximation of u in the manifold
MN that minimizes the residual of (3.1) in the tangent space TuMN at any time instant.
This results in looking for a N rank function uN ∈ L∞([0,T]; H1

0(D))⊗L2
P (Ω) expanded

as in (2.1) in which all the terms satisfy the DO system (2.6). Speci�cally we assume
that the approximate solution is expressed in terms of y1, ..., yN ∈ L∞([0,T], L2

P (Ω)) and
ū, u1, ...uN ∈ L∞([0,T],H1

0(D)) which satisfy the DO formulation of the problem (3.1)
in a weak sense.
We distinguish two types of problems: one in which all the stochasticity arises form the
initial condition, being the di�usion coe�cient and the forcing term deterministic, and
the other in which the di�usion coe�cient and/or the forcing term are random.

3.2 Di�usion equation with stochastic initial condition

In this section we consider problem (3.1) where we assume that all the stochasticity
is generated by the initial datum, being the di�usion coe�cient and the forcing term
deterministic. For simplicity we also assume that the di�usion coe�cient is constant in
time. In this case the DO system yields:

∂ū(x, t)

∂t
− a∆ū(x, t) = f(x, t) x ∈ D, t ∈ [0,T], ω ∈ Ω

∑N
i=1

∂ui(x, t)

∂t
Cyiyj (t) =

∏
WN (t)⊥ E[a∆u(·, t, ·)yj(t, ·)] ∀j = 1, ...N

∂yi(t; ω)

∂t
=< a∆u(·, t), ui(·, t) > ∀i = 1, ...N

(3.3)
with initial conditions given by:

ū(x, 0) = E[u0(x, ω)]
ui(x, 0) = ui0(x) ∀i = 1, ..., N
yi(0, ω) =< u0(·, ω)− ū0, ui0 > ∀i = 1, ..., N

(3.4)

where {ui0(x)}i=1,...N are the eigenfunctions of the correlation operator Γu(0)u(0). The
boundary conditions are given by:

ū(σ, t) = 0 σ ∈ ∂D
ui(σ, t) = 0 ∀i = 1, ..., N

(3.5)

By de�nition the projection operator
∏
WN (t)⊥ E[∆u(·, t, ·)yj(t, ·)] leads to:

N∑
k=1

∆uk(x, t)Cykyj (t) −
N∑
r=1

N∑
k=1

< ∆uk(·, t), ur(·, t) > ur(x, t)Cykyj (t) (3.6)
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where we use that {yi}Ni=1 are zero mean stochastic processes.
We are going analyze the relation between the eigenvalue problem associated to the
Laplace operator and the correlation operator. W assume the di�usive coe�cient equal
to one and zero external force. This does not lead to any loss of generality because de-
terministic forcing terms in�uence only the mean function whose equation is decoupled
from the others.
The operator −∆ is positive, self-adjoint and its inverse is compact in the Hilbert space
L2(D). The spectral theory of compact operators [5] allow us to say that there exists a
monotonically increasing sequence of strictly positive eigenvalues {λi}i∈N and the corre-
sponding sequence of eigenvectors {φi}i∈N from an orthonormal basis in L2(D). Precisely:

−∆φi = λiφi
< φi, φj >= δij ∀i, j ∈ N (3.7)

and any v ∈ L2(D) can be expressed as:

v(x) =
∞∑
i=1

< v, φi > φi(x) (3.8)

Consider now the problem (3.3). We assume that the approximate solution uN is ex-
panded as in (2.1) where u1(·, t), ..., uN (·, t) are deterministic functions, orthonormal in
L2(D) at any t ∈ [0, T]. Since the eigenfunctions {φi}i∈N of the Laplace operator form a
complete basis in L2(D) the deterministic modes can be written in terms of {φi}i∈N, i.e.:

ui(x, t) =
∞∑
j=1

τj i(t)φj(x) ∀i = 1, ...N (3.9)

where τj i(t) =< ui(·, t), φj >. Moreover, assumed ui(·, t) ∈ H1
0 for almost every t ∈

[0, T], it holds:

∆ui(x, t) = −
∞∑
j=1

λjτj i(t)φj(x) ∀i = 1, ...N (3.10)

For convenience, we de�ne the vectors of functions U = (u1, ..., uN )>, Y = (y1, ..., yN )>,
Φ = (φ1, ..., φ∞)> and the transformation matrix Υ(t) ∈ RN×∞ i.e. Υ(t)ij =< ui(·, t), φj >,
so U(t) = Υ(t)Φ. Furthermore let Λ be the diagonal matrix of the eigenvalues of the
operator −∆ and C(t) ∈ RN×N the covariance matrice of Y at time t, i.e. C(t)ij =
E[yi(·, t)yj(·, t)].
The DO system can be re-written as:

∂ū(x, t)

∂t
= ∆ū(x, t) x ∈ D, t ∈ [0,T], ω ∈ Ω

C(t)
∂U(x, t)

∂t
= C(t)

[
∆U(x, t)− < ∆U(·, t), U>(·, t) > U(x, t)

]
∂Y(t, ω)

∂t
=< ∆U(·, t), U>(·, t) > Y(t, ω)

(3.11)
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and by using (3.10) it yields:

∂ū(x, t)

∂t
= ∆ū(x, t) x ∈ D, t ∈ [0,T], ω ∈ Ω

C(t)
dΥ(t)

dt
= C(t)

[
Υ(t)Λ Υ(t)>Υ(t) − Υ(t)Λ

]
∂Y(t, ω)

∂t
= −Υ(t)ΛΥ(t)>Y(t, ω)

(3.12)

where speci�cally < ∆U(·, t), U>(·, t) >= −Υ(t)Λ < Φ, Φ> > Υ(t)> = −Υ(t)ΛΥ(t)>

because the eigenvectors are orthonormal in L2(D).

Special case: the DO approach degenerates to the POD method

We consider now a particular case in which the deterministic basis functions (u1, ..., uN )
are assumed to be linear combinations of N eigenfunctions of the Laplace operator and
the transformation matrix Υ(t) is then a square in RN×N . We show that in this case
the DO reduces to the PDO method.
Let the initial condition u0 be in the manifold MN . We assume that the mean func-
tion is equal to zero, however the same conclusion can be achieved in the general case.
According to the KL decomposition, it can be expanded in series as:

u0(x, ω) =
N∑
i=1

yi(0, ω)ui(x, 0) (3.13)

where (u1, ..., uN ) are the principal components of u0. Now we assume that (u1, ..., uN )
are in the span of N eigenvalues of the Laplace operator, i.e.:

ui(x, 0) =

N∑
k=1

< ui(·, 0), φk > φk(x) i = 1, ..., N (3.14)

This implies that Υ(0) ∈ RN×N , being < ui(·, t), φk >= 0 for all k > N .
Since Υ(t) is the transformation matrix between two orthonormal bases of the same
subspace one can easy verify that it is orthogonal at any t ∈ [0, T]:

δij =< ui(x, t), uj(x, t) >=
N∑
m=1

N∑
k=1

Υik(t) < φk, φm > Υjm(t) =
N∑
k=1

Υik(t)Υjk(t)

(3.15)
Furthermore in the case we are analyzing, being Υ square, it holds that Υ(t)>Υ(t) = I.
Now we are going to verify that

U(x, t) = U(x, 0)
Y(t, ω) = Υ(0)e−ΛtΥ(0)>Y(0, ω)

(3.16)
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is solution of (3.11). First of all we observe that the condition U(x, t) = U(x, 0) is
equivalent to require that Υ(t) = Υ(0) for any t ∈ [0, T], since U(x, t) = Υ(t)Φ. Then
we calculate the covariance of this solution, that is:

C(t) = Υ(0)e−ΛtΥ(0)>E[Y(0)Y(0)>]Υ(0)e−ΛtΥ(0)>

= Υ(0)e−ΛtΥ(0)>C(0)Υ(0)e−ΛtΥ(0)>
(3.17)

We observe that, since C(0) is assumed to be a full rank matrix and being Υ(0)e−ΛΥ(0)>

strictly positive de�nite, the covariance matrix is strictly positive de�nite and then in-
vertible at any t ∈ [0, T]. Therefore, we can simplify C(t) in (3.11) and equivalently in
(3.12) and then we obtain:

dΥ(0)

dt
=
[
Υ(0)Λ Υ(0)>Υ(0) − Υ(0)Λ

]
∂Y(0, ω)

∂t
= −Υ(0)ΛΥ(0)>Y(0, ω)

(3.18)

We use that Υ is square:

Υ(t)Λ Υ(t)>Υ(t) − Υ(t)Λ = Υ(t)Λ − Υ(t)Λ = 0

and then the �rst equation in (3.18) is automatically satis�ed. Now we pass to verify
the equation for Y. Since the transformation matrix is square and constant in time, the
second equation in (3.18) can be rewritten in terms of Υ(t)Y(t, ω) as:

∂
(
Υ(t)>Y(t, ω)

)
∂t

= −ΛΥ(t)>Y(t, ω) (3.19)

with initial condition Υ(0)>Y(0, ω). The solution is given by:

Υ(t)>Y(t, ω) = e−ΛtΥ(0)>Y(0, ω)

that implies Y(t, ω) = Υ(t)e−ΛtΥ(0)>Y(0, ω) = Υ(0)e−ΛtΥ(0)>Y(0, ω).
We conclude that U(x, t) = U(x, 0) and Y(t, ω) = Υ(0)e−ΛtΥ(0)>Y(0, ω) is the unique
solution of (3.11). This implies that the transformation matrix and consequently the
deterministic modes do not evolve in time and the DO approach degenerates to the
POD method according to which the solution is totally described by the evolution of
the stochastic coe�cients. Speci�cally the approximate solution uN has the following
analytic formulation:

uN (x, t, ω) = U(x, 0)>Υ(0)e−ΛtΥ(0)>Y(0, ω)
= Φ(x)>e−ΛtΥ(0)>Y(0, ω)

(3.20)

We remark that this analysis doesn't concern the mean function and it holds also when
the initial condition has mean di�erent than zero since the equation for the mean, in the
problem (3.3), is decoupled from the others.



CHAPTER 3. STOCHASTIC LINEAR PARABOLIC EQUATION 30

3.2.1 Approximate solution and truncation error

In this section we aim to analyze the accuracy of the DO approximation, compared to
the best N rank approximation, when the initial condition u0 /∈MN . It implies that the
initial datum is truncated and only the �rst N principal components of u0, corresponding
to those with largest variance, are considered. We will see how the truncation error
in�uences the the approximate solution. In particular we start by showing a special case
in which, under strong assumptions, the DO approximate solution coincide exactly with
the KL expansion.
Consider an initial stochastic condition u0 that is not in a �nite dimensional linear
manifold, u0 /∈ MN . For simplicity we assume that ū0(x) = E[u(x, 0, ω)] = 0 that
implies ū(x, t) = 0 for any t ∈ [0,T]. By following the KL approach, the initial function
can be expanded as:

u0(x, ω) =
∞∑
i=1

y0i(ω)u0i(x) (3.21)

where {u0i}i∈N are the principal components associated to the correlation operator
Γu(0)u(0) and y0i(ω) =< u0(·, ω), u0i > for all i ∈ N. We �rst assume that the prin-
cipal components of the initial datum correspond exactly to the eigenfunctions of the
Laplace operator, i.e. :

φi(x) = u0i(x) ∀i ∈ N

The exact solution can be calculated analytically and it is given by:

u(x, t, ω) =

∞∑
i=1

y0i(ω)e−λitui0(x) (3.22)

where {λi}i∈N are the eigenvalues of the Laplace operator.
The expression (3.22) corresponds to the KL expansion of u(x, t, ·) at any t ∈ [0, T], by
taking yi(t, ω) = y0i(ω)e−λit and ui(x, t) = ui0(x), for all i ∈ N. In fact the covariance
operator of u reads:

v ∈ L2(D)→ Γu(t)u(t)(v) =
∫

DCu(t)u(t)(x, x′)v(x′) dx′

=
∫

D E[
∑∞

i=1 y0ie
−λitui0(x)

∑∞
k=1 y0ke

−λktuk0(x′)]v(x′) dx′

=
∫

D

∑∞
i=1 e

−2λitE[yi(t, ·)yi(t, ·)]ui0(x)ui0(x′)v(x′) dx′

(3.23)
where Λ is the diagonal matrix of the eigenvalues of the Laplace operator. We used the
fact that, according to the KL decomposition, the initial stochastic coe�cients {y0i}i∈N
are uncorrelated. It follows that the principal components of u coincide with {u0i}i∈N at
any time instant and the associated stochastic coe�cients in the KL expansion are given
by:

yi(t, ω) =< u(·, t, ω), u0i >= y0i(ω)e−λit i ∈ N (3.24)
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thanks to the L2(D)-orthonormality of {u0i}i∈N.
We calculate now the DO approximate solution inMN . First of all the initial datum is
truncated:

u0N (x, ω) =

N∑
i=1

y0i(ω)u0i(x) = U0(x)Y0(ω). (3.25)

Then by recalling our assumption that the deterministic basis corresponds to a set of N
eigenfunctions of the Laplace operator, we are back to the case previously analyzed. The
method indeed doesn't see the initial approximation, it degenerates to the POD method
and develops, analogously to what seen before, an approximate solution uN given by:

uN (x, t, ω) =
N∑
i=1

y0i(ω)e−λitu0i(x) (3.26)

By comparing the DO solution with the analytic solution we see that the method at this
level doesn't introduce any other source of error except the initial truncation error. By
denoting with ε(t) the error in norm L2(D)⊗ L2

P (Ω) at time t, this can be estimated as:

ε(t) = E
[
‖u(·, t, ·)− uN (·, t, ·)‖2L2(D)

]
=

∞∑
i=N+1

E[y2
0i]e
−2λit (3.27)

This shows that the error is bounded by the initial truncation error and it goes to zero
when N goes to in�nity. Namely the DO solution converges to the exact solution when N
goes to in�nity with rate of convergence driven by the rate of decay of the eigenvalues of
the covariance operator. We can conclude that, under the assumption that the principal
components of the initial datum correspond to the eigenfunctions of the Laplace operator,
the DO solution corresponds to the best N -rank approximation i.e. the N truncated KL
expansion at any time instant.
However the assumption that we have done is very strong. We replace it by assuming
the �rst N initial principal components to be linear combinations of N eigenfunctions
of the Laplace operator. Speci�cally let u0(x, ω) be the initial condition expanded as in
(3.21) with:

u0i ∈ span < φ1, ..., φN > i = 1, ..., N
u0i ∈ L2(D) i = N + 1, ...,∞ (3.28)

that implies U(0) = Υ(0)Φ where Υ(0)ij = 0 for i ≤ N ∧ j > N . Equivalently it holds:

u0i =
∑N

j=1 Υ(0)ijφj i = 1, ..., N

u0i =
∑∞

j=1 Υ(0)ijφj i = N + 1, ...,∞ (3.29)

The initial function u0 is truncated as in (3.25). Next we denote with ΥN (t) the trans-
formation matrix of dimension N ×N such that ΥN (t)ij = Υ(t)ij for all i, j = 1, ..., N

and with UN (0), YN (0), ΦN the vectors of functions (u01, ..., u0N )>, (y01, ..., y0N )> and
(φ1, .., .φN )> respectively, so that, under the assumption (3.28) the approximated initial
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datum can be rewritten as uN = UN>YN (0) = (ΥN (0)ΦN )>YN (0).
Moreover we denote with Υ∗(t) the transformation matrix such that for all i, j = 1, ...,∞
Υ∗(t)ij = Υ(t)N+i,j and with U∗(0), Y∗(0) the vectors functions (u0,N+1, ..., u0,∞)> and
(y0,N+1, ..., φ0,∞)>.
Then the exact initial condition can be rewritten as:

u0(x, ω) = (ΥN (0)ΦN )>YN (0) + (Υ∗(0)Φ)>Y∗(0) (3.30)

We recall that, if the initial datum is a linear combination of N eigenfunctions of the
Laplace operator, then the DO method degenerates to the POD one and the rank N
approximate solution corresponds to the exact solution. Moreover we observe that the
Laplace operator is linear so that the problem (3.1) with initial condition u0 (3.30) can be
reformulated as the sum of 2 analogous problems with initial data (ΥN (0)ΦN )>YN (0)
and (Υ∗(0)Φ)>Y∗(0) respectively. The solution of the �rst problem corresponds to the
DO approximate solution of (3.1) while the second problem concerns the time evolution
of the truncation error. Namely if we de�ne the function e = u− uN , this is solution of
the problem:

∂e(x, t; ω)

∂t
− ∆e(x, t; ω) = 0 x ∈ D, t ∈ [0,T], ω ∈ Ω

e(σ, t; ω) = 0 σ ∈ ∂D

e(x, 0; ω) = (Υ∗(0)Φ)>(x)Y∗(0, ω)

(3.31)
The solution of (3.31) can be calculated analytically and leads to:

e(x, t; ω) = Φ>(x)Υ∗>(0)Υ(0)e−ΛtΥ∗>(0)Y∗(0, ω) (3.32)

where Λ is the matrix of eigenvalues of the Laplace operator. By denoting with ε(t)
the square error in norm L2(D) ⊗ L2

P (Ω) at time t, it corresponds to the total variance
of e(t), i.e. ε(t) = E[‖u(·, t, ·) − uN (·, t, ·)‖2L2(D)] = E[‖e(·, t, ·)‖2L2(D)] and the following
bound holds:

ε(t) = E[‖e(·, t, ·)‖2L2(D) ≤ ε(0)e−2λ1t (3.33)

where λ1 > 0 is the smallest eigenvalues of the Laplace operator.

An Illustrative Example

We illustrate a trivial example that emphasizes the analytical results:
∂u(x, t; ω)

∂t
− ∂2u(x, t; ω)

∂x2
= 0 x ∈ (0, 2π), t ∈ [0,T], ω ∈ Ω

u(0, t; ω) = u(2π, t; ω) = 0 t ∈ [0,T], ω ∈ Ω

u(x, 0; ω) = z1(ω)
1√
π

sin(x) + z2(ω)
1√
π

sin(2x) x ∈ (0, 2π), ω ∈ Ω

(3.34)
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where z1, z2 are independent uniform random variables with zero mean and variance
E[z2

1 ] = 1, E[z2
2 ] = 2. The exact solution can be calculated analytically and it reads:

u(x, t, ω) = z1(ω)e−t
1√
π

sin(x)+z2(ω)e−4t 1√
π

sin(2x) x ∈ [0, 2π], t ∈ [0,T], ω ∈ Ω

(3.35)
and the total variance is given by Var[u(x, t; ·)] = E[z2

1 ]e−2t + E[z2
2 ]e−8t.

The initial condition is a rank 2 function with the principal components that correspond
to the �rst two eigenfunctions of the Laplace operator. It follows that the expansion of
the initial datum (3.34) corresponds to the KL expansion and the exact solution evolves
in the manifold M2 at any time instant. By applying the DO method with N = 2, no
truncation error is introduced at the �rst step and the DO method degenerates to the
POD method. At the continuous level both the DO and the KL approach provide the
exact solution.
Consider now that the solution is approximated inM1. The initial function is approx-

imated according to the KL decomposition by u1(x, ω) = z2(ω)
1√
π

sin(2x), which is

the term with largest variance, and the DO method develops the following approximate
solution

uDO1 (x, t, ω) = z2(ω)e−4t 1√
π

sin(2x) x ∈ [0, 2π], t ∈ [0,T], ω ∈ Ω (3.36)

while the KL approximate solution is:

uKL1 (x, t, ω) =


z2(ω)e−4t 1√

π
sin(2x) for t ∈ [0, T] : E[z2

1 ]e−2t ≤ E[z2
2 ]e−8t

z1(ω)e−t
1√
π

sin(x) for t ∈ [0, T] : E[z2
1 ]e−2t > E[z2

2 ]e−8t

(3.37)

Figure 3.1 shows the evolution of the exact and approximate total variance (left) and
the mean square error of the DO method compared to the best 1-rank approximation,
i.e. the 1-truncated KL expansion (right).
This example highlights the meaning of the estimate (3.33). The error of the DO method
is bounded by the truncation error and goes to zero with rate of decay that depends on
the smallest eigenvalue of the Laplace operator:

ε(t)DO ∼ E[z2
1 ]e−2t

while the error of the best approximation is:

ε(t)KL ∼ min
(
E[z2

1 ]e−2t, E[z2
2 ]e−8t

)
which is proportional to E[z2

2 ]e−8t for t >> 0.
We underline that this example concerns a very particular case, since the eigenfunctions
of the Laplace operator correspond to the principal components of the initial condition,
but it aims to emphasize the relation between the best N rank approximation and the
DO approximate solution with respect to the truncation error.
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Figure 3.1: On the left: Evolution of the total variance Var(t) of the KL and DO approximate
solution with N = 1 as well as the exact solution. On the right: Time evolution of the mean
square error ε(t) of the DO method with N = 1 and the best approximation.

3.2.2 Weak formulation and Numerical approximation

The DO approach consists in seeking the approximate solution uN ∈ MN of u that
minimizes at any time instant the residual of the equation (3.1) in Tu(t)MN , i.e. the
tangent space toMN in u(t). This is equivalent to looking for a function uN of the form
uN (x, t, ω) = ū(x, t) +

∑N
i=1 ui(x, t)yi(t, ω) where the terms of the expansion satisfy the

DO system:

∂ū(x, t)

∂t
− ∆ū(x, t) = 0 x ∈ D, t ∈ [0,T], ω ∈ Ω

∑N
i=1

∂ui(x, t)

∂t
Cyi, yj (t) =

∏
WN (t)⊥ E[∆u(x, t, ·)yj(t, ·)] ∀j = 1, ..., N

∂yi(t, ω)

∂t
=< ∆u(·, t, ω) − E[∆u(·, t, ω)], ui(·, t) > ∀i = 1, ..., N

(3.38)
with the following boundary conditions:

ū(σ, t) = 0 σ ∈ ∂D, t ∈ [0,T]

ui(σ, t) = 0 ∀i = 1, ..., N

and with initial conditions given by:

ū0(x) = E[u0(x, ω)] for all x ∈ D,

{u0i(x)}i=1,...N the �rst N eigenfunctions of the correlation operator Γu(0)u(0),

yi0(ω) =< u0(·, ω), u0i > with ω ∈ Ω and for any i = 1, ..., N .
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We remind that WN (t) is the subspace spanned by the deterministic basis {u1, ..., uN}
at time t and the projection operator onto the orthogonal to WN (t) in (3.38) reads:

ΠW⊥N
∆ui(x, t) = ∆ui(x, t)−

N∑
k=1

< ∆ui(·, t), uk(·, t) > uk(x, t) i = 1, ..., N (3.39)

We denote with u and y the vectors of functions such that u(x, t) =
(
u1(x, t), ..., uN (x, t)

)
and y(ω, t) =

(
y1(ω, t), ..., yN (ω, t)

)
. De�ne the vectorial projection operator as Π : v→

(Π(v1), ...,Π(vN )) for any v in [L2(D)]N as:

ΠW⊥N
∆u(x, t) = ∆u(x, t)− u(x, t) < ∆u(·, t)>, u(·, t) > (3.40)

Finally the weak DO formulation for the problem (3.1) reads:

. for any t ∈ [0, T], �nd ū(·, t) ∈ H1
0(D), u(·, t) ∈ [H1

0(D)]N and y(t, ·) ∈ [L2(Ω)]N such
that: 

<
∂ū(·, t)
∂t

, ψi > + < ∇ū(·, t), ∇ψi >= 0

<
∂u(·, t)
∂t

, ψk > C (t) + p(u(·, t),u(·, t), ψk)C (t) = 0

∂y(t, ω)

∂t
+ y(t, ω) < ∇u>(·, t), ∇u(·, t) >= 0

(3.41)

for all ψi, ψj ∈ H1
0(D) and for a.e. ω ∈ Ω,

where p(·, ·, ·) is de�ned as:

p : (u,v, w)→ − < Π<W>
N>

∆v, w >

=< ∇v, ∇w > − < w, u >< ∇v,∇u >

(3.42)

where u, v, w ∈ [H1
0(Ω)]N and < ui, uj >= δij . We remark that according to the DO

representation the stochastic components are separated from the functions de�ned in the
physical space. Speci�cally in the DO system (3.41) the �rst two sets of equations depend
on the the deterministic variable x while the last one is de�ned in the probability space.
Thanks to this, deterministic and stochastic functions can be discretized independently
and with di�erent strategies. However, the system (3.41) remains coupled at any time
instant. In particular we choose the Finite Element method to discretize the deterministic
functions and the Stochastic Collocation to solve the equations in ω.

3.2.3 Spatial Discretization

The physical space is discretized by using the linear Finite Element method. Let Th
be the triangulation de�ned in the spatial domain D being h the mesh spacing parameter
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and Nh the number of degrees of freedom that, by using linear elements, corresponds to
the vertice in the triangulation. We de�ne Vh ⊂ H1

0(D) the �nite element space of
the continuous piecewise linear functions de�ned in Th. Any function u(x) ∈ H1

0(D) is
approximated in Vh as follows:

u(x) ≈ uh(x) =

Nh∑
j=1

ujρj(x) (3.43)

where uj = uh(xj), for j = 1, ..., Nh are the nodal values of uh and {ρ1(x), ..., ρNh(x)}
are the Lagrange basis functions of Vh de�ned on the vertices of the triangulation.
Any time dependent function u ∈ L∞([0, T], H1

0) is approximated with a formulation
analogous to (3.43), where the the nodal values are replaced by time dependent functions
uj = uh(xj , t).
The semi-discrete formulation for the deterministic part of (3.41) reads: for any t ∈ [0, T],
�nd ūh(·, t) ∈ Vh, uh(·, t) ∈ [Vh]N such that:

<
∂ūh(·, t)

∂t
, ρk > + < ∇ūh(·, t), ∇ρk >= 0 k = 1, ..., Nh

<
∂uh(·, t)

∂t
, ρk > C (t) + p(uh(·, t),uh(·, t), ρk)C (t) = 0 k = 1, ..., Nh

(3.44)
Thanks to the linearity of the Laplace operator, in the case of deterministic di�usion
term, the equation for the mean is decoupled from the other N equations.
The time derivative is discretized by using the semi-implicit Euler method with time step
∆t. Denote with un the solution at time t = n∆t. The fully discretized formulation is:
for n = 0, 1, ..., NT with NT = bT/∆tc �nd ūn+1

h ∈ Vh, un+1
h ∈ [Vh]N such that:

< ūn+1
h , ρk > + ∆t < ∇ūn+1

h , ∇ρk >=< ūn+1
h , ρk >

< un+1
h , ρk > C n + ∆tp(unh(·, t),un+1

h (·, t), ρk)C n =< unh, ρk > C n
(3.45)

for n = 1, ...NT . Both the covariance matrix and the projection operator are treated ex-
plicitly in order to decouple the deterministic set of equations from the stochastic system.
Even if the subspace WN , generated by the deterministic basis, is time dependent we
chose to consider it freezed at the previous time step in the resolution of (3.44) in order to
reduce the computational e�ort and decouple the deterministic equations. Dealing with
a totally coupled system as in (3.45) may indeed require an excessive computational cost
especially with large physical domains and multidimensional stochastic space.

Stochastic Discretization

We chose to solve the stochastic equations by using the Stochastic Collocation method.
Assume that the probability space is parametrized by a vector ~ξ of S stochastic variables
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~ξ = (ξ1, ..., ξS), let f(~ξ) be the joint probability density function and let Γ be the support
of ~ξ. According to the distribution of ~ξ we select a set of collocation points {~ξi ∈ Γ}.
The stochastic equations are collocated in each collocation point and the approximate
solution yn(~ξ) is computed by a suitable interpolation of the results.
Suppose that the probability space is mono-dimensional, S = 1, then the stochastic
processes y1, ..., yN ∈ L∞([0, T], L2

P (Ω)) are approximated by:

yi(t, ξ(ω)) ≈ yiw(t, ξ(ω)) =

Ny∑
k=1

yi(t, ξk)Lk(ω) (3.46)

where Ny is the number of collocation points and {Lk}
Ny
k=1 is the sequence of Lagrange

polynomials of degree Ny − 1 associated to the collocation points.
In the problem (3.41) we deal with a system of N stochastic ordinary di�erential equa-
tions where the time derivative is discretized by the implicit Euler method. At any time
step tn = n∆t with tn ∈ [0, T] the discretized system is collocated in each collocation
point {~ξk ∈ Γ, k = 1, ..., Ny} of the stochastic grid in order to recover all the coe�cients

{y1(tn+1, ξk), ..., yN (tn+1, ξk)}
Ny
k=1. If the di�erential operator L is linear and determinis-

tic, this leads to Ny decoupled systems of dimension N ×N :

yn+1(ξk) + ∆t < ∇un+1, ∇un+1 > yn+1(ξk) = yn(ξk) (3.47)

for any k = 1, ..., Ny and at any time step tn = n∆t with tn ∈ [0, T]. The spatial inner
product represents the projection of the stochastic response in the subspace WN . Since
we solve at each time step �rst for the deterministic modes and then for the stochastic
variables (Gauss-Seidel-type approach), this projection can already be done on the up-
dated deterministic modes at tn+1.
The covariance matrix, which needs to be computed at each time step in order to solve
the deterministic equations in (3.45), is estimated through the quadrature formula cor-
responding to the collocation points, i.e.:

Cn = E[yn>yn] ∼=
Ny∑
k=1

y>n(ξk)y
n(ξk)wk (3.48)

where w1, ...,wNy are the weights associated to each point of the stochastic grid. We
remind that y are supposed to be zero mean stochastic process.
The method can be generalized to multidimensional stochastic spaces. In the case of full
tensor stochastic grid the formulation is exactly the same, where the stochastic variables
are assumed to be real valued functions of the vector ~ξ. The equations are collocated in
each point of the full tensor grid and once the coe�cients {y1(tn+1, ξk), ..., yN (tn+1, ξk)}

Ny
k=1

are recovered at each time step, y is interpolated by using the tensor product of the
one dimensional Lagrange polynomials. Remarkable computational advantages can be
achieved by using sparse grids. See [7], [18], [21] for details. However we underline that
the sparse grid approximation is interpolatory only if the collocation points are nested.
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3.2.4 Algebraic Formulation

First of all we de�ne the following matrices:

• Ūj = ūnh ∈ RNh ,

• Un = uni h ∈ RNh×N ,

• Y n = yni h ∈ RN×Ny ,

• Cn ∈ RN×N ,

• M, K, I the mass, the sti�ness and the identity matrix respectively.

then the algebraic formulation of the discretized DO system in (3.38) reads:
Ūn+1 + ∆tKŪn+1 = Ūn

Un+1Cn + ∆t(I−MUnUn>)KUn+1Cn = UnCn

Y n+1 + ∆tUn+1>KUn+1Y n+1 = Y n

(3.49)

Say R(x) the vector of the basis functions of the Finite Element space, R(x) = (φ1(x),
..., φNh(x)), and L(~ξ) the vector of the Lagrange polynomials into the collocation points,
L(~ξ) = (L1(~ξ), ..., LNy(

~ξ)), then the discretized approximate solution uN can be formu-

lated as uN (x, tn, ξ) = R(x)Ūn + R(x)UnY nL>(~ξ). Observe that we never store nor
require the explicit �full tensor� uN (xi, t

n, ξj) i = 1, ..., Nh j = 1, ..., Ny and the evolution
of the approximate solution is totally described by the N terms of the DO expansion.

Orthogonalization in the probability space

We consider here the second set of equations in (3.45). If consists in a system of N
deterministic equations that are coupled because of the covariance matrix that multiply
u on the right side. A trivial option to decouple the equations consists in multiplying
both sides by the inverse of the covariance matrix. Unfortunately nothing ensures that
this is possible. The covariance matrix indeed evolves in time and it can become singular
(or nearly singular). We have seen that deterministic initial conditions provide singular
covariance matrices but also dissipative processes develop nearly singular matrices when
the process tends to the deterministic steady state. Another possibility consists in using
the pseudo-inverse. This choice provides stability to the system but on the other hand
prevents the rank from increasing. The eigen�elds associated to zero eigenvalues are
indeed set to zero and the associated stochastic �elds are not allowed to increase anymore.
The strategy we adopted is based on re-orthogonalizing the random coe�cients at each
time step. We remark indeed that the system does not preserve the un-correlation of the
stochastic coe�cients in general, being a condition not required in the DO approach.
The covariance matrix is by de�nition symmetric and positive semi-de�nite. It follows
that at any time instant there exists a set of N eigenvalues {λk(t)}Nk=1 and N eigenvectors
{vk(t)}Nk=1 orthogonal with respect to the euclidean norm. Therefore at any time instant
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there exists a transformation according to which the stochastic �eld uN ∈ MN can be
written as:

uN (x, t; ω) = ū(x, t) +

N∑
i=1

zi(t; ω)wi(x, t) (3.50)

where:

• wj(x, t) =
∑N

i=1 ui(x, t)vi j(t) ∀j = 1, ..., N

• zj(t; ω) =
∑N

i=1 yi(t; ω)vj i(t)∀j = 1, ..., N

In particular the stochastic coe�cients {zi}Ni=1 are orthogonal in L2
P (Ω), i.e. E[zi(t)zj(t)] =

λi(t)δij . Moreover the transformation preserves the orthonormality of the deterministic
�elds since the matrix {vij} is orthogonal. Speci�cally the covariance matrix of the uncor-
related stochastic variables {zi}Ni=1 corresponds to the diagonal matrix of the eigenvalues
of C(t). We use this observation to decouple the deterministic system in (3.45).
At the discrete level the covariance matrix, that is treated explicitly and freezed at the
previous time step for the resolution of the deterministic system, is diagonalized and the
system is solved with respect to the functions {wi}Ni=1. Let Vn be the matrix of the
eigenvectors of Cn, in algebraic form the system can be reformulated as follows:

Wn+1Dn + ∆t(I−MUnUn>)KWn+1Dn = WnDn (3.51)

where Wn = UnVn, Wn+1 = Un+1Vn and D is diagonal. This strategy decouples the
system and in addition it permits to deal with singular covariance matrices. In view
of the observation (2.23) the deterministic �elds associated to zero variance stochastic
coe�cients are unchanged. According to the representation (3.50) we denote with Wi

and Yi the ith mode and stochastic coe�cient respectively, associated to the eigenvalue
λi, for i = 1, ..., N . Finally the DO system in algebraic form reads:

Ūn+1 + ∆tKŪn+1 = Ūn

Wn+1
i + ∆t(I −MUnUn>)KWn+1

i = Wn
i λni > 0

Wn+1
i = Wn

i λni ≤ 0

Y n+1 + ∆tUn+1>KUn+1Y n+1 = Y n

(3.52)

Implementation Details

The computational code used for the numerical tests shown in sections 3.2.5, 3.3.1,4.4.2,
4.5 is realized in Matlab and implemented for one and two dimensional physical domains.
In the second case the spatial grid, the mass and sti�ness matrices are generated using
the code FreeFem++ (see www.freefem.org) and imported in Matlab. Approximation in
the stochastic variables have been obtained by tensorial stochastic grids on Gauss points.
The linear systems in (3.52) are solve with the Matlab command back − slash or with
gmres in case of 2 dimensional spatial domains. The covariance matrix is diagonalized
with the command eig . As described in the previous section, we assume that only the
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modes associated to eigenvalues strictly larger than zero evolve. For computational rea-
sons we need to set a threshold with respect to which the eigenvalues are considered non
zero. In order to guarantee more stability to the problem the threshold is weighted with
respect to the largest eigenvalue:

λni > ε ·maxj=1,...,N (λnj ) =⇒Wn
i evolves

λni < ε ·maxj=1,...,N (λnj ) =⇒Wn
i left unchanged

(3.53)

In the numerical examples that follow the threshold set has been ε = 10−15.
In conclusion the DO method consists, at any time iteration, in N + 1 equations of
dimension Nh×Nh plus Ny equations of dimension N×N , where Nh, Ny are the number
of the physical degrees of freedom and of stochastic collocation points, respectively. We
underline that the computational cost is reduced by the diagonalization of the covariance
matrix that leads to actually solve only a number of deterministic systems corresponding
to the rank of uN intead of N .

3.2.5 Numerical Examples

Test Case 1: sinusoidal basis functions

Consider the following mono-dimensional problem:

∂u(x, t; ω)

∂t
−∆u(x, t; ω) = 0 x ∈ (0, 10), t ∈ T, ω ∈ Ω

u(0, t; ω) = 0 t ∈ T, ω ∈ Ω

u(10, t; ω) = 0 t ∈ T, ω ∈ Ω

u(x, 0; ω) = z(ω)
√

1
5 sin

(
πx
5

)
x ∈ (0, 10), ω ∈ Ω

(3.54)
Here z(ω) is a uniform random variable with zero mean and variance 1/3 so that the initial
datum is a zero mean stochastic �eld, while the di�erential operator is deterministic.
According to the DO approach we seek an approximate solution uN ∈MN , that satis�es
the DO system associated to the problem (3.54). We aim to verify if and how uN changes
with respect to the dimension of the manifoldMN where the solution is approximated.
For this purpose, in what follows, the number of modes N is considered between 1 and
10.
According to the Dirichlet boundary conditions, we choose to initialize the modes to
orthonormal sinusoidal functions in L2(D) where D is the interval [0, 10]:

ui(x, 0) =

√
1

5
sin
( iπx

5

)
i = 1, ..., N (3.55)

Then the initial condition can be rewritten as:

u(x, 0; ω) =
N∑
i=1

yi(0, ω)ui(x, 0) (3.56)

where the stochastic coe�cients are initialized as follows:
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• y1(0, ω) = z(ω),

• yi(0, ω) = 0, ∀i = 2, ..., N.

In particular the covariance matrix at t = 0 is singular for any N > 1 since only one
random variable has variance larger than zero. Observe that the example we are in-
vestigating corresponds to the case analyzed in the section 3.2 where we supposed the
principal components of the initial datum equal to the eigenfunctions of the Laplace op-
erator. The numerical tests con�rm the analytical results; the DO method degenerates
to the POD method. One can indeed verify that the exact solution, that is given by:

uex(x, t; ω) = z(ω)e
−π2t
25

√
1

5
sin
( iπx

5

)
= z(ω)e

−π2t
25 u1(x, 0) (3.57)

lives in a manifold of dimension 1 and its total variance is given by:
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Figure 3.2: On the left: The modes at time T = 2 with N = 4, ∆t = 10−2, spatial discretization
h = 0.1, Ny = 9. On the right: Time evolution of the variance of the stochastic process Y1.

Var(t) = E[z(ω)2]e
−2π2t

25 (3.58)

For anyN analyzed the modes do not evolve in time , see Figure (3.2) (left). Furthermore,
since the method in this speci�c case does not introduce any truncation error with respect
to the initial datum, the DO solution corresponds to the KL expansion at any time
step. In particular the process is totally described by the evolution of the �rst stochastic
coe�cient, see Figure (3.2) (right). For N > 1 any yi with i = 2, ..., N remains identically
equal to zero. The total variance of the solution is then identi�ed by the variance of y1

that decays to zero with constant rate proportional to the �rst eigenvalue of the Laplace
operator. Consequently the rank of the covariance matrix is constantly equal to one



CHAPTER 3. STOCHASTIC LINEAR PARABOLIC EQUATION 42

until all the stochasticity of the solution is dissipated, and than goes to zero (which will
happen however only for t→∞). Moreover this example allows us to verify the behavior
of the method in the case of over-approximation, (i.e. a number N of modes larger then
the e�ective rank of the solution). Speci�cally for this example this occurs for N > 1.
For any N the method provides a numerical solution, that potentially belongs to MN

but that has e�ective rank 1, consistently with the exact solution. For what concerns the
system of deterministic PDEs in (3.41), being the covariance matrix already diagonal at
each time step, the algorithm solves only the linear system associated to the �rst mode.

Test Case 2: hierarchical basis functions

In this section we want to investigate a more general case in which the deterministic
basis functions do not correspond to the eigenfunctions of the Laplace operator and the
initial datum is not in a �nite dimensional space spanned by N eigenfunctions. We
consider a problem analogous to (3.54) but with initial condition given by:

∂u(x, t; ω)

∂t
−∆u(x, t; ω) = 0 x ∈ (0, 8), t ∈ T, ω ∈ Ω

u(0, t; ω) = 0 t ∈ T, ω ∈ Ω

u(8, t; ω) = 0 t ∈ T, ω ∈ Ω

u(x, 0; ω) = u0(x; ω) x ∈ (0, 8), ω ∈ Ω

(3.59)
Here the initial condition u0 is a linear function of z(ω), that is a uniformly distributed
random variable with zero mean and variance 1/3. We initialized the deterministic basis
functions to a sequence of hierarchical functions, see Figure 3.3, and assume that the
initial condition is expanded as:

u(x, 0; ω) =

N∑
i=1

yi(0, ω)ui(x, 0) (3.60)

where the random coe�cients are:

• y1(0, ω) = z(ω),

• yi(0, ω) = 0, ∀i = 2, ..., N.

Here N , that is the number of modes, is between 1 and 15. We remark that in order to
apply the DO method the modes have to be orthonormal in L2(D), and consequently the
hierarchical basis functions (Figure 3.3) need to be re-orthonormalized. From a compu-
tational point of view the orthogonalization is achieved by using the QR decomposition
that consists in factorizing a generic matrix A ∈ Rm×n, with m ≥ n, in a orthogonal
matrix Q of dimension m×m times an upper triangular matrix R ∈ Rm×n. Speci�cally
the initial datum needs to be reformulated as follows:

u(x, 0; ω) =
N∑
i=1

ỹi(0, ω)ũi(x, 0) (3.61)
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Figure 3.3: On the left: The hierarchical bases with N = 6. On the right: The error ε w.r.t. the
time step.

where the basis functions are orthonormal in L2(D), i.e. < ũi(·, 0), ũj(·, 0) >= δi j . Since
the QR decomposition results in an orthogonal matrix Q with respect to the euclidean
norm, the factorization is applied to the matrix M1/2U where we remind that M is the
mass matrix of the Finite Element space and U ∈ RNh×N is de�ned as Uij = uj(xi), and
the orthonormal set of basis functions is identi�ed by Ũ = M−1/2Q. The orthonormality
is easy to verify:

Ũ>MŨ = Q>M−1/2MM−1/2Q = I. (3.62)

In order to recover a decomposition equivalent to (3.60) also the stochastic coe�cients
need to be updated. To summarize:

• [Q, R] = qr(M1/2U),

• Ũ = M−1/2Q,

• Ỹ = RY .

Observe that the �nite dimensional space spanned by the new basis functions is exactly
the same as the one described by the hierarchical basis in Figure 3.3 (left). We apply
the DO method to problem (3.59) starting from an initial datum expanded according to
(3.61).
Thanks to the linearity of the Laplace operator and the structure of the initial condition,
that is a 1-rank function, the exact solution evolves in a manifold of dimension 1 at any
time instant, however with a deterministic subspace that changes in time. Consequently,
according to the DO approach, the approximate solution is expected to be described by
modes that evolve in time. Moreover, contrary to the example 1 the method is expected
to introduce truncation error that depends on the number of the modes and that is
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in�uenced by the time step, since the system of PDEs in (3.41) is solved by freezing the
covariance matrix in order to decouple the deterministic equation from the stochastic
ones. The numerical tests con�rm the previous observations. The deterministic basis
functions change in time and we quanti�ed the evolution by computing the following
di�erence in L2(D)-norm:

γi(t) =‖ ui(·, 0)− ui(·, t) ‖2L (D) i = 1, ...N (3.63)

The results are displayed in Figure 3.4 where to di�erent colors correspond to di�erent
values of N . We observe that the the process is mainly described by the evolution of
the �rst stochastic coe�cient but, contrary to example 1, the other random variables
do not remain identically equal to zero. Speci�cally, their variance increases as the
variance of the �rst random variable decreases, Figure 3.5 (Left). However we remark
that, consistently to the theoretical observations, the numerical solution �lives� in a
manifolds of dimension 1 provided by the rank of the covariance matrix that is constantly
equal to one. We quanti�ed the error of the approximate solution in norm L2(D)⊗L2

P (Ω)
at �xed time:

ε =

(
E[‖uex(x, T, ω)− uDO(x, T, ω)2

L2 ]

) 1
2

(3.64)

where uex(x, t, ω) is the reference solution, computed with the Stochastic Collocation
method by using a highly accurate sparse grid in order to guarantee a numerical solution
very close to the exact one. As shown in Figure 3.3 (right) the error is proportional to
the time step with order 1 and goes to zero when ∆t tends to zero. This shows that the
truncation error introduced in the stochastic space is negligible compared to the time
discretization error.
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Test Case 3: non linear reaction term

We compare now the results obtained in Test cases 1 and 2 in which the problem is
governed by a parabolic PDE with non linear reacton term. Speci�cally in this example
we consider

∂u(x, t; ω)

∂t
−∆u(x, t; ω) = F (u(x, t;ω)) x ∈ [0, 10], t ∈ T, ω ∈ Ω

∂u

∂x
(0, t; ω) = 0 t ∈ T, ω ∈ Ω

∂u

∂x
(10, t; ω) = 0 t ∈ T, ω ∈ Ω

u(x, 0; ω) =
2

5
+ z(ω)

√
1
5 cos

(
πx
5

)
x ∈ [0, 10], ω ∈ Ω

(3.65)
where F (u) = βu(u − 1)(α − u) with α ∈ (0, 1), β > 0, and z(ω) is a uniform random
variable with zero mean and variance σ2 = 4/15. Details on the numerical approximation
of (3.65) will be given in the next chapter, section 4.3.2. The initial condition is a
rank 1 stochastic �eld and the exact solution u is in a one-dimensional manifold, since
the stochastic space has dimension 1 (only one random variable is involved in (3.65)).
However this manifold is not linear. It follows that the DO approximate solution, that is
sought is a linear manifold of dimension N , might require N > 1 modes to well describe
the exact solution. In order to investigate the accuracy of the approximation based on
the dimension of the linear manifold, we numerically solved the problem for di�erent
values of N. The initial condition can be expanded in series in accordance with the KL
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decomposition as:

u(x, t0, ω) = ū(x, t0) +
N∑
k=1

uk(x, t0)yk(t0, ω)

where

• ū(x, t0) =
2

5
,

• uk(x, t0) =

√
1

5
cos
(
(k − 1)π

x

5

)
, for all k = 1, ..., N

• y2(t0, ω) = z(ω),

• yk(t0, ω) = 0 ∀k = 1, k = 3, ..., N

where the deterministic basis functions associated to zero variance stochastic variables are
arbitrarily initialized to cosinus functions. The rank of the covariance matrix is initially
equal to one, since only one coe�cient has variance di�erent than zero. Numerical tests
show that the rank increases in time, meaning that the solution is approximated in a
linear manifold of dimension N > 1. On the other hand, as shown in Figure 3.8(left)
the basis functions evolve in time, in order to adapt to the solution. The non linear
reaction term makes the solution to evolve in strongly non linear manifold. Moreover
this manifold evolves in time that implies that more and more �directions� are needed in
time to describe it. On one side the DO approximation requires N > 1 modes to span
linearly the solution, but on the other hand adapts the linear �directions� in time, in
order not to continue to add modes as the manifold of the solution evolves. Moreover
we analyzed the error of the DO approximate solution based on the number of modes
and the discretization time step. The error is computed in norm L2(D) ⊗ L2

P (D) with
respect to a numerical solution computed with the Stochastic Collocation method with
a highly accurate sparse grid. Figure 3.8(right) shows that the error decreases by adding
modes, and for N > 1 it decreasing by reducing the time discretization step size ∆t.
This means that the error in the stochastic space becomes negligible with respect to the
time discretization error by incrementing the dimension of the linear manifold where the
solution is approximated, where it seems to dominate the time-discretization error for
N ≤ 4.

3.3 Stochastic Di�usion Coe�cient

We consider now the parabolic equation in (3.1) with stochastic di�usion coe�cient
a ∈ L∞P (Ω) and deterministic forcing term. We assume satis�ed the conditions that
provide the existence of a unique solution u in L∞([0,T]; H1

0(D))⊗ L2
P (Ω). In particular

let a(ω) be a stochastic �eld in L∞P (Ω) uniformly distributed with mean µ > 0 and
variance σ2, with µ > σ. We write a(ω) as:

a(ω) = µ+ σz(ω) z(ω) ∼ U(−1, 1) (3.66)
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Figure 3.6: On the left: Modes at time t = 0 (blu) and time t = 0.7 (green), with N = 4
∆t = 10−2, spatial discretization h = 0.1, Ny = 7 collocation points. On the right: Mean square
error of the DO solution with N = 2, 4, 10 w.r.t. the time step.

then the problem is formulated as follows:
∂u(x, t, ω)

∂t
−
[
µ+ σz(ω)

]
∆u(x, t, ω) = f(x, t) x ∈ D, t ∈ [0,T], ω ∈ Ω

u(σ, t, ω) = 0 σ ∈ ∂D, t ∈ [0,T], ω ∈ Ω

u(x, 0; ω) = u0(x, ω) x ∈ D, ω ∈ Ω

(3.67)
According to the DO approach, we seek an approximate solution uN ∈ MN , i.e. ex-
panded as in (2.1), whose components y1, ..., yn ∈ L∞([0,T], L2

P (Ω)) and ū, u1, ..., uN ∈
L∞([0,T], H1

0(D)) satisfy the DO system (2.6) in weak sense. Denote with u and
y the vectors of functions such that u(x, t) =

(
u1(x, t), ..., uN (x, t)

)
and y(ω, t) =(

y1(ω, t), ..., yN (ω, t)
)
then the system reads:

∂ū(x, t)

∂t
− µ∆ū − σ∆u(x, t)Cyz(t) = f(x, t)

∂u(x, t)

∂t
Cyy(t) =

∏
WN (t)⊥ [∆u(x, t)(µCyy(t) + σCyyz(t)) + σ∆ūC>yz(t)]

∂y(t, ω)

∂t
= [(µ+ σz(ω))y(t, ω)− σC>yz(t)] < ∆u>(·, t), u(·, t) >

+σz(ω) < ∆ū(·, t), u(·, t) >
(3.68)

with Dirichlet boundary conditions and initial condition given by:

ū(σ, t) = 0, ∀σ ∈ ∂D, t ∈ [0,T]
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u(σ, t) = 0 ∀σ ∈ ∂D, t ∈ [0,T]

ū0(x) = E[u0(x, ω)] for all x ∈ D,

u0(x) given by the �rst N eigenfunctions of the correlation operator Γu(0)u(0),

y0(ω) =< u0(·, ω), u0 > with ω ∈ Ω.

and where we have de�ned:

• Cyz(t) = E[zy>(t, ·)],

• Cyy(t) = E[y>(t, ·)y(t, ·)],

• Cyyz(t) = E[zy>(t, ·)y(t, ·)]

The weak formulation yields:

. for any t ∈ [0, T], �nd ū(·, t) ∈ H1
0(D), u(·, t) ∈ [H1

0(D)]N and y(t, ·) ∈ [L2
P (Ω)]N such

that:

<
∂ū(·, t)
∂t

, ψi > +µ < ∇ū(·, t), ∇ψi > +σ < ∇u(·, t), ∇ψi > Cyz(t) = f(x, t)

<
∂u(·, t)
∂t

, ψk > Cyy(t) + p(u(·, t),u(·, t), ψk)[µCyy(t) + σCyyz(t)]

+σp(u(·, t), ū(·, t), ψk)C>yz(t) = 0

∂y(t, ω)

∂t
− [(µ+ σz(ω))y(t, ω)− σC>yz(t)] < ∇u>(·, t), ∇u(·, t) >

−σz(ω) < ∇ū(·, t), ∇u(·, t) >= 0

(3.69)
for all ψi, ψk ∈ H1

0(D) and for a.e. ω ∈ Ω; where p(·, ·, ·) is de�ned as in (3.42).

Similarly to what described in the section 3.2.2, the physical space is discretized with
the Finite Element method, while the stochastic di�erential equations are solved by the
Stochastic Collocation method. The time derivative is discretized by the semi-implicit
Euler method and the covariance matrix is treated explicitly in order to decouple the
equations de�ned in the physical domain from those de�ned in the probability space.
Moreover the projection operator is evaluated at the previous time step to recover the
linearity of the problem. Speci�cally, by adopting the same notation as in section 3.2.4,
the discretized problem can be written in algebraic form as follows:

MŪn+1 + ∆tµKŪn+1 + ∆tσKUn+1Cnyz = MŪn + ∆tFn

MUn+1Cn + ∆tPnKUn+1(µCn + σCnyyz) + σ∆tPnKŪn+1Cnyz = MUnCn

Y n+1 + ∆t
(
µ+ σZ

)
Un+1>KUn+1Y n+1 = Y n

+µ∆tUn+1>KUn+1Cnyz − σ∆tŪn+1>KUn+1Z

(3.70)
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where in particular Z is the vector of the values of z in the collocation points, Q is a
matrix of dimension N × N de�ned as Cnyyz = E[(yn)>ynz], Cyz is the column vector
E[(yn)>z] and Pn is the discrete projection operator in the subspace WN (tn), i.e. P =
(I−MUn(Un)>).
We remark that, contrary to the case in which the di�usion term is a deterministic
real value, here the equations for the mean function and the modes are all coupled. In
particular the equation for the mean �led ū is coupled to the equations for the other
spatial modes.
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Figure 3.7: On the left: Numerical test 3.3.1 special initial condition: Time evolution of the
variance of the stochastic coe�cients with N = 4 ∆t = 10−2, spatial discretization h = 0.1,
Ny = 9 collocation points. On the right: Numerical test 3.3.1 general initial condition: Time
evolution of the rank of the covariance matrix associated to the DO solution with N = 2, 4, 8,
Ny = 9 collocation points.

3.3.1 Numerical Tests

Special initial condition

Consider the problem governed by the following stochastic PDE:

∂u(x, t;ω)

∂t
− β(ω)∆u(x, t;ω) = 0 x ∈ (0, 10), t ∈ T, ω ∈ Ω

u(0, t; ω) = 0 t ∈ T, ω ∈ Ω

u(10, t; ω) = 0 t ∈ T, ω ∈ Ω

u(x, 0; ω) = u0(x) x ∈ (0, 10), ω ∈ Ω

(3.71)
where β(ω) is a uniform random variable U(µ, σ2) with µ > 0. Let β(ω) be reformulated
as µ + σz(ω) with z ∼ U [−1, 1]. We consider �rst a particular initial condition that is
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Figure 3.8: On the left: The mean square error of the DO approximate solution with ∆t = 10−1

(red), ∆t = 10−2 (blu), ∆t = 10−3 (green) Ny = 7 collocation points. On the right: Mean square
error of the DO approximate solution w.r.t. to the time step, Ny = 7, N = 1.

assumed to coincide with an eigenfunctions of the Laplace operator. Speci�cally it is
de�ned as:

u0(x) =

√
1

5
sin

(
πx

5

)
(3.72)

Even if the initial condition is deterministic the solution is immediately a�ected by the
stochasticity of the system at t > 0 and evolves in a 1 dimensional manifold generated
by u0. It reads:

uex(x, t;ω) = e
−β(ω)

π2

25
t
√

1

5
sin

(
πx

5

)
(3.73)

and in particular the exact mean function and the total variance are given by:

ūex(x, t) =
25

2σ2π2t
e
−(µ+σ2)

π2

25
t
(
e
σ2

2π2

25
t
− 1

)√
2

10
sin

(
2

10
πx

)
Varex(t) =

25

4σ2π2t
e
−(µ+σ2)

2π2

25
t
(
e
σ2

4π2

25
t
(

1− 25

σ2π2t

)
− 1− 25

σ2π2t
+

50

σ2π2t
e
σ2

2π2

25
t
)

(3.74)
The analytic solution suggests that the DO method degenerates to the POD method.
First of all, according to the DO expansion, the initial datum is reformulated as in (2.1)
so that:

• ū(x, 0) = u0(x),

• u1(x, 0), ..., uN (x, 0) correspond to the �rst N eigenfunctions of the Laplace oper-
ator,
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• y1(0, ω), ..., yN (0, ω) are identically equal to zero.

and the DO method leads to a system as in (3.69). Before discussing the numerical
results we observe that the analytical solution in (3.73) can be rewritten as:

uex(x, t;ω) = ūex(x, t) + y1(t; ω)u1(x, 0) (3.75)

that leads us to expect only the �rst stochastic coe�cient to evolve. This is con�rmed
by the numerical results which can be summarized as follows:

• The modes do not evolve. For what concerns the system of PDEs, at each time
iteration only 2 equations are actually solved: the one for the mean function and
the one for the �rst mode because this is the only one �led associated to a non-zero
eigenvalue.

• All the stochastic evolution is described by the �rst random coe�cient while the
others remain equal to zero, independently of the number of modesN . The variance
of y1, initially zero, grows up as soon as the solution evolves and then it is dissipated
and goes to zero as the solution tends to zero, Figure: 3.7 (left);

• the rank of the covariance matrix is equal to zero at the �rst time iteration since
the initial condition is deterministic and then is steadily equal to one because the
solution is a�ected by the randomness of the operator as soon as it evolves. When
the solution goes to zero all the stochasticity is dissipated, the solution tends to a
deterministic function and the covariance matrix returns to be identically equal to
zero.

We conclude that the manifold of the solution, which has dimension equal to 1 but
that does not evolve linearly in time (as one can analytically verify in (3.73)), can be
approximated by the rank 1 DO approximate solution, which instead describes a linear
manifold of dimesnion one. Figure 3.8 (left) indeed shows that the error of the DO
approximate solution, in mean square sense, does not depend on the number of modes
and the order of convergence is established by the time discretization step size, see Figure
3.8 (right).

Special initial condition in a 2D spatial domain

Now we are going to verify if the results of the previous section are in�uenced by
the dimension of the physical space. We consider a problem analogous to (3.71) in a
bi-dimensional spatial domain D = [0, 1]2. Assume that the initial condition is:

u0i(x) =
√

2 sin(πx1) sin(πx2)

N∑
i=i1,i2

yi0(ω)
√

2 sin(i1πx1) sin(i2πx2), (3.76)

where i is a multi-index, N is the number of the deterministic basis functions and all
the stochastic coe�cients are initialized to zero. Analogously to the mono-dimensional



CHAPTER 3. STOCHASTIC LINEAR PARABOLIC EQUATION 52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

time

r
a

n
k

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−15

−10

−5

0

time

v
a

r
i
a

n
c
e

Figure 3.9: On the left: Time evolution of the rank of the covariance matrix with N = 4,
∆t = 10−2, spatial discretization h = 0.05, Ny = 5 collocation points. On the right: Time
evolution of the variance of the stochastic coe�cient of the DO approximate solution with N = 4,
∆t = 10−2, Ny = 5 collocation points (log. scale).

problem, the solution is in a manifold of dimension 1, since only one random variable is
involved which however is non linear. We computed the DO approximate solution with
N between 1,...,10. Figure 3.9 (left) shows that the rank of the covariance matrix in
this case increases in time. On the other hand Figure 3.9 (right) displays that there is
a gap between the variance of the random coe�cients and only one of them develops
remarkable variance. This means that the solution can be approximated with only one
mode by dropping the stochastic coe�cients with negligible variance. This is con�rmed
in Figure 3.10 (left) which shows that the mean square error does not depend on the
number of modes, or rather the error in the stochastic space is negligible compared to the
spatial and temporal discretization error. These considerations concern the approximate
solution computed with 5 collocation points, moreover we aim to verify if this parameter
in�uences the approximation. Figure 3.10 (right) shows that the error increases when
reducing the number of collocation points and may dominate the time discretization error
for small ∆t. However it does not change by adding modes, Figure 3.10 (left).

General initial condition

We consider again the problem (3.71) but with a more general initial condition.
Speci�cally we chose:

u0(x) =
1

100
x(x− 10)2 (3.77)

Observe that the initial datum is deterministic but it can not be expressed in terms of a
�nite number of eigenfunctions of the Laplace operator. According to the DO expansion,
the initial datum is reformulated as in (2.1) with:
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Figure 3.10: On the left: Error of the DO approximate solution w.r.t the time step and with
number of collocation points Ny = 2(green), Ny = 3 (red), Ny = 5(green). On the right: Error
of the DO approximate solution with number of collocation points Ny = 3 (red), Ny = 5(green)
and with ∆t = 10−1, ∆t = 10−2, ∆t = 10−3.(log-log scale)

• ū(x, 0) = u0(x),

• u1(x, 0), ..., uN (x, 0) corresponding to the �rst N eigenfunctions of the Laplace
operator,

• y1(0, ω), ..., yN (0, ω) are identically equal to zero.

and the DO system is de�ned as in (3.69). In particular the covariance matrix is iden-
tically equal to zero at the �rst time iteration, being the initial condition deterministic.
Contrary to case of deterministic operator and stochastic data analyzed in section 3.2,
the stochastic di�usion term generates a non linearity in the stochastic space. Because
of this the solution of (3.71) evolves in a non linear manifold. In addition the manifold
evolves in time, as u is solution of a time-dependent problem. However the dimension
remains equal to 1, since only one random variable is involved in the di�erential operator
and no stochasticity comes from the initial datum. The DO approach provides a linear
approximation of the solution in which the e�ective dimension coincides with the rank of
the covariance matrix associated to the random coe�cient. In view of this it is important
to understand how the rank evolves in time with respect to the number of modes and
collocation points, because this tells us the dimension of the linear manifold where the
solution can be approximated. Numerical tests con�rm that the rank of the covariance
matrix grows up at the second time iteration in order to generate a stochastic subspace
able to describe the process evolution. However we see that the rank remain bounded.
It increases up to a maximum values and then it decreases to zero when the solution
goes asymptotically to the deterministic function zero. The maximum value achieved
obviously depends on the number N of basis functions selected initially, as well as on the
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Figure 3.11: On the left: Approximation error ε(t) of the DO solution with Ny = 9 compared to
the solution of the Stochastic Collocation method with Ny = 20, w.r.t. N, at t = 0.7. ∆t = 10−2,
spatial discretization h = 0.1. On the right: Error of the DO solution in mean square sense,
w.r.t the time step and with N = 1, 3, 5, Ny = 9 and spatial discretization h = 0.1. (log.scale)

number of collocation points used to solve the stochastic system, speci�cally:

0 ≤ rank(C) ≤ min(N, Ny) (3.78)

As shown in Figure 3.7 (right), in the case we are analyzing the rank reaches the sat-
uration level for N = 7. It means that it does not increase any further, even if one
increases the number of the collocation points and basis functions. This tells us that
the manifold of the solution, which, we remark, evolves non-linearly in time, can be ap-
proximated by 7 modes. They evolve in time by spanning the new �directions� along
which the solution evolves, and no any other mode give contribution to the approxima-
tion. We verify the consistency of the analysis concerning the rank of the covariance
matrix by computing the error of the DO approximation in the stochastic space. This is
estimated by comparing the DO approximate solution to the solution usc of the Stochas-
tic Collocation method with highly accurate sparse grid. In Figure 3.11 (left) the error
ε(t) = E[‖uN (·, t, ·) − uN (·, t, ·)‖2L(D)] at t = 0.7. The results con�rm that no improve-
ment are achieved by using N > 4, in accordance with the rank of the covariance matrix
at that time step, see Figure 3.7 (right). However it is important to understand how the
accuracy of the approximation degrades if we uses a number of modes N lower than the
saturation level of the covariance matrix. In fact the goal of the DO approach consists
in approximating the solution by using few basis functions possibly and in light of that
we aim to reduce the dimension of the approximation by dropping out all the compo-
nents which do not give remarkable contribution. In Figure (3.11) (left) we compute the
approximation error in norm L2(D) × L2

P (Ω) of the DO solution with di�erent number
of modes and with di�erent time step. We observe that the error in the stochastic space
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Figure 3.12: On the left: Time evolution of the total variance of the exact solution. On the
right: Time evolution of the variance of the stochastic coe�cients in the DO expansion for the
approximate solution with N = 4.

dominate the time discretization error with N = 1 and then decreases by adding modes
up to the saturation level.

Bi-dimensional stochastic space

We consider now the case in which both the di�usion term and the initial condition
are stochastic variables. In particular the problem reads:

∂u(x, t;ω)

∂t
− β(ω)∆u(x, t;ω) = 0 x ∈ (0, 10), t ∈ T, ω ∈ Ω

u(0, t; ω) = 0 t ∈ T, ω ∈ Ω

u(10, t; ω) = 0 t ∈ T, ω ∈ Ω

u(x, 0; ω) = u0(x) + z(ω)
√

1
5 sin

(
πx
5

)
x ∈ (0, 10), ω ∈ Ω

(3.79)
with u0(x) = 1

100x(x− 10)2 and where z, β are independent uniform random variables,
z(ω) ∼ U(µ2, σ

2
2) and β(ω) ∼ U(µ1, σ

2
1), with µ1 > 0. Since the random variables

are independent, the stochastic space and consequently the manifold where the solution
�lives� have dimension 2. The DO approximate solution is then expected to have rank at
least 2. Moreover the manifold of the exact solution is not linear. In Figure 3.14(left) one
can see that the rank of the covariance matrix associated to the DO solution increases
up to 8, when N ≥ 8. We observe that this is an upper bound, which means that the
rank does not go over 8 independently of N and the number of the collocation points.
Furthermore Figure 3.12(right) shows that only few stochastic variables have remarkable
variance, which means that the solution can be approximated in a linear manifold of low
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Figure 3.13: On the left: Time evolution of the rank of the DO approximate solution with
N = 4, 6, 8, 10 and number of collocation points Ny = 52 (blu) and Ny = 32 (green). On
the right: Error of the DO approximate solution computed with a number of collocation points
Ny = 52 (blu) and Ny = 32 (green), compared to the solution of the Stochastic Collocation
method with Ny = 152 in mean square sense.

dimension with good accuracy, as one can see in Figure 3.14(right). The error decreases
according to the time step, which implies that the error in the stochastic space is negligible
compared to the time discretization error for N ≥ 4, in accordance to the time evolution
of the variance of the stochastic variables in Figure 3.12(right).

Reaction term with stochastic coe�cient

We conclude this section with a more challenging example in which both the coe�-
cients of the di�usion and reaction terms are stochastic variables:

∂u(x, t; ω)

∂t
− β(ω)∆u(x, t; ω) = δ(ω)F (u(x, t;ω)) x ∈ (0, 10), t ∈ T, ω ∈ Ω

∂u

∂x
(0, t; ω) = 0 t ∈ T, ω ∈ Ω

∂u

∂x
(10, t; ω) = 0 t ∈ T, ω ∈ Ω

u(x, 0; ω) =

{
1 x ≤ 5

0 x > 5
ω ∈ Ω

(3.80)
where F (u) = u(u−1)(α−u) with α ∈ (0, 1), β(ω) and δ(ω) are two uniform independent
random variables. The solution is then described by a bi-dimensional manifold that is
strongly not linearly, since the reaction term is a cubic polynomial. In the previous exam-
ple we have seen that by increasing the number of modes, and equivalently the dimension
of the linear manifold where we approximate the solution, we can improve the accuracy
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Figure 3.14: On the left: Time evolution of the rank of the DO approximate solution with
N = 4, 8, 12, ∆t = 10−3, number of collocation points Ny = 15 . On the right: Error of the DO
approximate solution in mean square sense, w.r.t the time step and with N = 4, 5, number of
collocation points Ny = 52

of the approximation, up to the saturation level of the covariance matrix. However the
number of collocation points represents an other important parameter that in�uences
the approximation, since the stochastic coe�cients and, consequently the approximate
solution, are approximated in a polynomial space using the evaluations in the collocation
points. Figure 3.13(left) shows that the increasing trend of the rank of the covariance
matrix is indeed in�uenced by the number of collocation points, and consequently also
the accuracy of the approximate solution. We compared the solution of the DO and
Stochastic Collocation method, this one computed with a highly accurate sparse grid, in
order to quantify the in�uence of this parameter. Figure 3.13(right) shoes the error, in
mean square sense, of two DO approximate solutions, computed with a stochastic tensor
grid with respectively 3 and 5 collocation point per axis, compared to the solution of
the Stochastic Collocation method that uses 15 points. One can see that the error of
the DO approximate solution decreases by using a more accurate stochastic grid. This
can be explained by reminding that the DO approximate solution tends to coincide to
the solution of the Stochastic Collocation method by increasing N up to the number of
collocation points. Then with a large number of modes the convergence rate depends on
the number of collocation points in the same way as that of the Stochastic Collocation
method.



Chapter 4

Stochastic Reaction-Di�usion

Equations: application to the

electrocardiology

In this chapter we focus on parabolic di�erential equations with non linear reaction
term describing the electric signal in biological tissues. After discussing the probabilistic
approach, we are going to verify the e�ectiveness of the DO method to this type of
equations.

4.1 Cardiac Electrical Activity and Mathematical Models

The heart is a muscular organ that acts as a pump. The �ow of ions across the cell
membranes causes electrical impulses that give rise to perpetuating waves of excitation.
The wave spreads through the whole heart and enables the impulse to travel from a cell
to another. This excitation state and its spread is what coordinates and feeds the con-
tractions of the cardiac cells. From a macroscopic point of view, this is essentially what
happens when blood is pumped to the body. However this process depends on several
parameters and it is correlated to many other sub-process. This makes the problem quite
complex to modelize.
Cardiac cells have two features linked each other: they have a contractile ability and
they are excitable. The action of the mechanical function is caused by electrical signals
that propagate in the tissue while the propagation is allowed by the excitability of the
cells. The stimulation arises in the sinoatrial node where the pacemecker cells generate
the electric pulse that determines the heart beat. When an excitable cell is activated
the membrane potential of that cell generates the so-called action potential . It is caused
by a potential di�erence that gives rise to transfer of ionic charges. When the local
depolarization reaches a certain threshold the action potential starts and the impulse is
transmitted to neighboring cells. For details [29].
The Hodgkin Huxley and subsequently many other models have been developed to de-
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scribe the action potential of a single cell. They consist on biophysically-based model
and reproduce the action potential by modeling the underlying sub-cellular processes.
An alternative to this complex approach is provided by non-biophysical models, among
which the most known is probably the FitzHugh-Nagumo one. These simpli�ed models
aim at describing the �qualitative� features of the action potential without attempting
to address the underlying bio-physiological processes. For details [28].

4.2 Traveling waves

A traveling wave is a solution that travels at constant speed with �xed shape. We
recall two types of traveling waves in excitable systems. The �rst one, called traveling
front, is characterized by two steady levels: some low value in front of the wave and some
higher value behind the wave. On the contrary, the other one can be described as a curve
that begins and end at the same value. It means that a recovery phase, which follows
the excitation, takes the wave back to the initial state. This is called traveling pulse.
In other words a traveling front acts like a zipper switching from resting to exciting
state. If the recovery variable can force back the solution to the steady state we have the
traveling pulse.
We focus on the traveling front without considering the recovery variable, or equivalently
by assuming it �xed to the steady state. The evolution of a traveling front is described
by the bistable equation, so called because it has two stable rest points. It is related to
the FitzHugh−Nagumo model, without recovery, described in the next section.

4.2.1 Travelling fronts: Bistable equation

The Bistable equation is a spacial case of Cable equation and it consists in a parabolic
PDE, with non linear reaction term, i.e.:

∂u

∂t
−∆u = f(u) (4.1)

where f(u) is assumed to be a cubic polynomial. We assume f(u) having the zeros at
0, 1 and α, with α ∈ (0, 1). The �rst two zeros are stable which means that u = 0 and
u = 1 are the steady equilibriums of the PDE. The other zero α is instead repulsive. The
dynamics of the solution is described by the transition between the two steady states.
This feature makes u a travelling front. The reaction term can be written in the following
form:

f(u) = Au(u− 1)(α− u) α ∈ (0, 1) (4.2)

where A is a constant that determines the speed of the wave.
We have seen that the excitable dynamics comes from the reaction term and in particular
for large A the reaction dominates the di�usion. This generates dynamics characterized
by sharp fronts.
Analytic solution can be obtained only for particular initial conditions. This makes
the wave propagation in the FitzHugh − Nagumo model not completely understood
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yet, especially with multidimensional spatial domain. On the other hand the numerical
approach can achieve good results even if small discretization time step and speci�c
numerical treatment are often required to handle with the reaction term which, beside
generating sharp slops and fast dynamics, is not linear.
We start the analysis from the mono-dimensional case for which an analytic solution can
be derived. This enables us to understand how the parameters in�uence the dynamic
and which implications we should expect by considering them as stochastic variables.
Furthermore it give us the opportunity to test the quality of the numerical results.
Let us consider the problem in a mono-dimensional domain:

∂u

∂t
− ∂2u

∂x2
= f(u) (4.3)

Since the traveling front is a wave that travels with constant speed c, we seek a solution
of the form:

u(x, t) = v(x+ ct) (4.4)

Denoting with ξ the new variable ξ = x+ ct, the PDE 4.3 becomes:

cv′′ − v′ = f(v) (4.5)

After solving the previous ordinary di�erential equation, for details ( [29]), we conclude

that the problem 4.3 with initial condition u(x, 0) = 1
2 + 1

2 tanh
(√A

2
√

2
x
)
have the following

analytic solution:

u(x, t) =
1

2
+

1

2
tanh

(√
A

2
√

2
(x+ ct)

)
(4.6)

where the speed c is given by:

c =

√
A

2
(1− 2α) (4.7)

Observe that the speed of the propagation depends on α, that is the repulsive zero of
the reaction function f(u). In particular the speed decreases as α tends to 0.5, value for
which the direction of the wave propagation changes.

Stochastic approach

From a biological point of view the PDE in (4.1) models the ionic current through the
cellular membranes and the inter-cellular space and provides a macroscopic description
of the action potential avoiding to directly involve the related sub-cellular processes. It
represents an alternative to the biophysically based models which detail several cellular
interactions by adding more and more functions. The constant A represents the exci-
tation rate and α is the normalized threshold potential value. They depend on several
variables among which the membrane capacitance, the membrane resistance, cytoplasmic
resistance, cell diameter and clearly the ionic channel conductances. All these parameters
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are largely uncertain and such uncertainty should be properly included in the determin-
istic model. The �tting of parameters requires sophisticated anatomical, physiological,
biological and clinical experimental programs that not only are di�cult to achieve but
are also very prone to noises. In addition the parameters depend on each individual
and they may change in time, as consequence of many situations among which diseases,
stress, diet and so on. By considering stochastic parameters we can achieve comprehen-
sive analysis which incorporate the uncertainty that is intrinsically part of the problem
as well that which comes from the measurement.
For what concerns the bistable equation, the problem can be formulated as follows:

∂u

∂t
−∆u = A(ω)u(u− 1)(α(ω)− u)

u|t0 = u0(x, ω)
(4.8)

where the solution u(x, t, ω) is a stochastic process and the parameters, the initial con-
dition or both of them are stochastic.

4.3 Bistable Equation: DO approach

In this section we apply the DO approach to the stochastic bistable equation. After
provided the DO formulation of the problem and the computational details, we discuss the
numerical results by distinguish two typologies of problem: in the �rst the stochasticity is
intrinsically part of the operator in the governing equations, in the second the randomness
is totally generated by the initial condition. We aim to investigate if and in which cases
the low rank approximation is a suitable approach to approximate excitable systems as
in (4.8), and how the source of uncertainty a�ects the answer.

4.3.1 DO formulation

We consider the stochastic problem governed by SPDE in (4.8) with Neumann
boundary conditions. We remind that the DO approach computes an approximate solu-
tion inMN , the subspace of all the N rank stochastic �elds, by projecting at each time
instant the residual of the equation (4.8) onto Tu(t)MN that is the tangent space toMN

at uN (t). In the speci�c case of the stochastic bistable equation the DO method results
in solving the following system:

∂ū(x, t)

∂t
− ∆ū(x, t) = E[f(u(x, t;ω); ω)] x ∈ D, t ∈ [0,T], ω ∈ Ω

∑N
i=1

∂ui(x, t)

∂t
Cyiyj (t) =

∏
W⊥N

∑N
k=1

[
∆uk(x, t)Cykyj (t) + E[f(u(x, t;ω); ω)yj(t; ω)]

]
,

∀ j = 1, ...N
dyi(t, ω)

dt
=<

∑N
k=1 ∆uk(x, t)yk(t, ω) + f(u(x, t;ω);ω)− E[f(u(x, t;ω); ω)], ui(x, t) >

∀ i = 1, ..., N

(4.9)
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with the following boundary conditions:

∂ū

∂n
(σ, t) = 0 σ ∈ ∂D, t ∈ [0,T]

∂ui
∂n

(σ, t) = 0 ∀i = 1, ..., N

where n denotes the normal to the boundary ∂D, and with initial conditions given by:

• ū0(x) = E[u0(x, ω)] for all x ∈ D,

• {u0i(x)}i=1,...N that are the �rst N eigenfunctions of the correlation operator
Cu(0)u(0),

• yi0(ω) =< u0(·, ω), u0i > with ω ∈ Ω and for any i = 1, ...N .

System (4.9) consists in N + 1 deterministic PDEs coupled to N stochastic ODEs and
the approximate solution is recovered as:

uN (x, t; ω) = ū(x, t) +

N∑
i=1

yi(t; ω)ui(x, t) (4.10)

being N the dimension of the manifold in which the solution u of (4.8) is approximated.
We assume ū, u1, ..., uN ∈ L∞([0, T], H1(D) and y1, ..., yN ∈ L∞([0, T], L2

P (Ω). Denoted
with u and y the vector of functions such that u(x, t) =

(
u1(x, t), ..., uN (x, t)

)
and

y(ω, t) =
(
y1(ω, t), ..., yN (ω, t)

)
the weak formulation of (4.9) reads: for any t ∈ [0, T],

�nd ū(·, t) ∈ H1(D), u(·, t) ∈ [H1(D)]N and y(t, ·) ∈ [L2(Ω)]N such that:

<
∂ū(·, t)
∂t

, ψ > + < ∇ū(·, t), ∇ψ >=< E[f(u(·, t, ·))], ψ >

<
∂u(·, t)
∂t

, ψ > C (t) + p1(u(·, t),u(·, t), ψ)C (t) = p2(u(·, t),E[f(u(·, t, ·))>y], ψ)

∂y(t, ω)

∂t
+ y(t, ω) < ∇u(·, t), ∇u(·, t) >=< f(u(·, t, ·))− E[f(u(·, t, ·))], u(·, t) >

(4.11)
for all ψ ∈ H1(D) and where p1(·, ·, ·), p2(·, ·, ·) is de�ned as:

p1 : (u,v, w)→ − < Π<u>>∆v, w >

p1(u,v, w) =< ∇v, ∇w > − < w, u >< ∇v,∇u >
(4.12)

for any u, v, w ∈ [H1(Ω)]N and < ui, uj >= δij .

p2 : (u,v, w)→ < Π<u>>v, w >

p2(u,v, w) =< v, w > − < w, u >< v,u >
(4.13)
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for any u, v, w ∈ [L2(Ω)]N and < ui, uj >= δij . Even if at the continuous level all
the equations in (4DOeq) are coupled each other, they can be divided in two subsystem,
one deterministic and one stochastic and two independent discretization strategies can
be adopted in the physical and probability space.

4.3.2 Numerical Approximation

Similarly to what described in Section 3.2.2 the deterministic PDEs are solved by
using the Galerkin method with linear �nite element discretization while the Stochas-
tic Collocation method is used to solve the stochastic ODEs. According to the weak
formulation (4.10) at any t the basis functions are discretized in the �nite dimensional
space Wh ⊂ H1(D) of continuous piecewise linear functions de�ned in the triangula-
tion Th of the physical domain. The stochastic coe�cients are instead computed as a
global polynomial approximation upon the solutions obtained by collocating the govern-
ing equations in each collocation point. The details of the two method are described in
the section 3.2.2. The time derivative is discretized with the Euler method. In particular
the di�usion terms are always treat implicitly while the reaction term, that is non linear,
explicitly. Once again the covariance matrix C(t) is freezed at the previous time step
when solving the deterministic equations, the same applies to the projection operator.
All these choices are motived by the purpose of keeping the deterministic equations de-
coupled from the stochastic equations in order to take the computational cost of the
DO method low. A fully coupled system for problems as in (4.10) indeed require a high
computational e�ort. By using the same notation introduced in the Chapter 3, we pass
directly to the algebraic form of (4.10):

MŪn+1 + ∆tKŪn+1 = MŪn + ∆tMF̄n

MUn+1Cn + ∆t(I −MUnUn>)KUn+1Cn = MUnCn + ∆t(I−MUnUn>)MFY
n

Y n+1 + ∆tUn+1>KUn+1Y n+1 = Y n + ∆tUn+1>M
(
Fn − F̄n

)
(4.14)

where F̄ is the column vector of the nodal values of Ê[f(u)] at time tn, i.e. F̄n = Ê[f(uh)]
and F ∈ RNh×Ny and FY n

i j = RNh×N are the matrices de�ned as Fni j = f(uh(xi, t
n, ξj))

and FY
n
i j = Ê[f(uh(xi, t

n, ·)yj(tn, ·)] respectively. The symbol Ê[·] denotes the ap-
proximated expected value estimated through quadrature formula corresponding to the
collocation points.
We observe that the equation for the mean function is decoupled from the others. On
the contrary the second set of equations are coupled each other through the covariance
matrix that is possibly singular and then not invertible. The strategy we adopted to
overcome the problem consists in diagonalizing the covariance matrix. In other words
the expansion in (4.10) is re-orthogonalized in L2(Ω) before solving the PDEs for the
deterministic basis functions. By de�nition the covariance matrix is symmetric and
positive semi-de�nite. It follows that at any time instant there exists a set of N eigenval-
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ues {λk(t)}Nk=1 and N eigenvector {vk(t)}Nk=1 orthogonal with respect to the euclidean
norm.Therefore at any time instant there exists a transformation according to which the
stochastic �eld uN ∈ MN can be expanded in orthogonal basis on the stochastic space,
i.e.:

uN (x, t; ω) = ū(x, t) +
N∑
i=1

zi(t; ω)wi(x, t) (4.15)

with:

• wj(x, t) =
∑N

i=1 uj(x, t)vi j(t)

• zj(t; ω) =
∑N

i=1 yi(t; ω)vj i(t)

In particular the covariance matrix associated to the stochastic coe�cients in (4.30)
corresponds to the diagonal matrix of the eigenvalues of C. However we stress that the
orthogonality of the random variables is not required by the DO approach and above
all it is not preserved in time. Indeed the approximation of the initial datum, according
to the KL expansion, provides a double orthogonal decomposition, but that feature is
not preserved except in the case in which the principal components of u0 coincide with
the eigenvalues of the operator L. At each time iteration we diagonalize the covariance
matrix and we solve the deterministic system of PDEs in to the unknowns w1, ..., wN ,
by considering the eigenvectors v1, ..., vN freezed at the previous time step. Speci�cally,
de�ned V and D the matrices of eigenvectors and eigenvalues of C, it holds:

MUn+1VnDn + ∆t(I −MUnUn>)KUn+1VnDn
= MUnVnDn + ∆t(I−MUnUn>)ME[FnY n>Vn]

(4.16)
By assuming the eigenvectors �xed in time at each iteration, (4.16) can be written in
terms of the alternative orthogonal representation as:

MWn+1Dn + ∆t(I −MUnUn>)KWn+1Dn
= MWnDn + ∆t(I−MUnUn>)ME[FnZn>]

(4.17)

where W ∗ = U∗Vn and Zn = Vn>Y n.
Now, in view of the proposition (2.6.1) the deterministic �elds associated to zero variance
stochastic coe�cients are left unchanged. Observe that this treatment is consistent with
the problem because on the right side we recover E[FnZn>], i.e. the correlation between
the reaction term and the uncorrelated stochastic variables, both of them treated explic-
itly. In particular the correlation is null when the stochastic variable has zero variance.
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In conclusion the DO system reads:

MŪn+1 + ∆tKŪn+1 = MŪn + ∆tMF̄n

MWn+1
i + ∆t(I −MUnUn>)KWn+1

i = M Wn
i +

1

λi
∆t(I−MUnUn>)ME[FnZn>i ]

if λni > 0

Un+1
i = Uni

ifλni < 0
Y n+1 + ∆tUn+1>KUn+1Y n+1 = Y n + ∆tUn+1>KUn+1

(
Fn − F̄n

)
(4.18)

4.3.3 Implementation details

The DO approach explicitly requires to the deterministic basis functions to be or-
thonormal in L2(D). Can be easily veri�ed that the condition is preserved at the contin-
uous level. On the other hand this is not guaranteed from a numerical point of view. The
problems analyzed in this section are characterized by fast dynamics that consequently
a�ects the covariance matrix and its eigenvalues. In order to overcome the problem we
chose to re-orthonormalize the deterministic basis functions at each time iteration, once
solved the system (4.16). The procedure adopted is analogous to what described in the
subsection 3.2.5. We underline that the deterministic basis functions are orthogonalized
before solving the equations for the stochastic coe�cients, since we adopt a Gauss Seidel
type approach. This constraint explicitly imposed at each time step as well the diago-
nalization of the equations for the deterministic basis functions, �nalized in particular
to deal with singular covariance matrix, justi�es our choice in the time discretization of
using a 1 step method instead of a multi step one. Possible numerical scheme to preserve
the orthogonality are proposed in [36].

4.4 Bistable equation with stochastic threshold potential

In this section we consider a mono-domain formulation of the bistable equation, where
the spatial domain is assumed to coincide with one myocardial cell with no connection
between the intracellular domain and any surrounding media. From the mathematical
point of view this means that we impose homogeneous boundary conditions type Neu-
mann on the surface of cell to prevent current �ow out the domain. We analyze the
case in which the threshold potential is assumed to be a stochastic variable and the
problem is modeled by a time dependent stochastic PDE, corresponding to the bistable
equation, with deterministic initial conditions. Say the reaction term a cubic polynomial
f(u, ω) = Au(α(ω) − u)(u − 1) and α(ω), the instable zero of f , a stochastic variable,
the problem reads:

∂u(x, t, ω)

∂t
−∆u(x, t, ω) = f(u(x, t, ω), ω) x ∈ D, t ∈ [0, T], ω ∈ Ω

u(x, 0, ω) = u0(x)
∂u

∂n
(σ, t, ω) = 0 σ ∈ ∂D

(4.19)
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where n is is the unit normal vector to the boundary. In order to understand how the
stochasticity of the parameter α in�uences the system, we focus �rst on the the mono-
dimensional problem mentioned in section 4.2.1, for which we recovered an analytic
solution. Then we discuss the numerical results of the DO method, applied to problem
(4.20). We start by describing the qualitative features and then we analyze the accuracy
of the DO approximate solution, compared to the one of the Stochastic Collocation
method and the best N rank approximation.

4.4.1 Modeling problem

We start by considering the mono-dimensional problem:
∂u(x, t, ω)

∂t
− ∂2u(x, t, ω)

∂2x
= f(u(x, t, ω), ω) x ∈ (−∞, ∞), t ∈ [0, T], ω ∈ Ω

u(x, 0, ω) = 1
2 + 1

2 tanh
(√A

2
√

2
x
)

(4.20)
where the reaction function is a stochastic �eld de�ned as f(u(x, t; ω), ω) = Au(α(ω)−
u)(u− 1). The excitation rate A and the initial datum are assumed to be deterministic
and the stochasticity of the system is uniquely generated by the random variable α. In
particular we suppose α(ω) ∈ L∞(Ω) and bounded between 0 and 1. According to (4.7)
the propagation speed of the traveling front depends on the threshold potential value α
and then it is as well a random variable:

c ∈ L∞P (Ω) s. t. c(ω) =

√
A

2
(1− 2α(ω)) (4.21)

Similarly to the deterministic case, the analytic solution of problem (4.20) is given by:

u(x, t; ω) =
1

2
+

1

2
tanh

(√
A

2
√

2
(x+c(ω)t)

)
x ∈ (−∞, ∞), t ∈ [0, T], ω ∈ Ω (4.22)

and it is a traveling front with random propagation speed. Since the range of the pa-
rameter α has to be bounded between zero and one, we choose to model it as a uniform
random variable. We observe that α = 0.5 is a �critic� point since it is the values for
which the direction of the front changes. For values of α bigger than 0.5 the solution
converges to the steady state u = 0 while for outcomes smaller than 0.5 it tends to the
higher steady level. The value α = 0.5 is instead a point of zero probability for which the
solution doesn't evolve. It means that if we consider the sign of c(ω) as function de�ned
in the stochastic space, then α = 0.5 is a discontinuity point. In particular it represents
a discontinuity point in the stochastic space for the solution u at t that tends to in�nity.
In fact for vales of α lower that 0.5, u tends asymptotically to the higher steady equilib-
rium u = 1, otherwise it tends to 0. In view of applying the DO approach, we remind
that the Stochastic Collocation method is often not suitable to describe discontinuous
random �elds. A good possibility to overcame the problem consists on decomposing the
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stochastic domain in the two intervals where the solution is continuous and then sepa-
rately solve the equations for each interval.
We describe here only the case in which all the possible outcomes of α are smaller then
0.5, the opposite case gives the same results for what concerns our purposes. Speci�cally
we consider α(ω) = 0.2(1 + z(ω)) where z is an uniform random variable in [−1, 1].
For computational reason we need to consider a �nite physical domain. We observe that
for �xed t it holds:

lim
x→∞

u(x, t, ω) = 1 lim
x→−∞

u(x, t, ω) = 0 ∀ω ∈ Ω (4.23)

Moreover for big values of A the solution u(x, t, ω) is characterized by a sharp front
de�ned in a small spatial interval, outside of which the function approaches rapidly the
steady states zero or one. We analyze therefore the problem (4.20) from the compu-
tational point of view by considering Neumann homogeneous boundary conditions in a
�nite interval [−d, d] with d > 0. Speci�cally the problem reads:

∂u(x, t, ω)

∂t
− ∂2u(x, t, ω)

∂2x
= f(u(x, t, ω), ω) x ∈ (−d, d), t ∈ [0, T], ω ∈ Ω

∂u

∂x
(d, t, ω) = 0

∂u

∂x
(−d, t, ω) = 0

u(x, 0; ω) = 1
2 + 1

2 tanh
(√A

2
√

2
x
)

x ∈ [−d, d], ω ∈ Ω

(4.24)
that is consistent with the original problem, as the wave travels within the interval. We
will use this result to verify the accuracy of the DO approximate solution in section 4.4.2

4.4.2 Numerical Results

Initialization of the deterministic basis functions

In order to apply the DO method the initial condition has to be expanded as in
(4.10). For stochastic initial condition the initial datum is expanded by following the
KL decomposition and approximated in MN by the eigenfunctions of the correlation
operator which are associated to larger variance. The deterministic basis function are
then initialized to the �rstN principal components of the initial datum. For deterministic
initial condition instead it is necessary to adopt an other di�erent strategy since the initial
function does not have any component in the stochastic space and �a priori� there is not
any privileged direction. However for consistence with the problem, at time t = 0 the
mean value has to coincide with the deterministic initial datum while the stochastic
coe�cients have to be initialized to zero. We observe that the term

N∑
i=1

yi(t, ω)ui(x, t)
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does not give any contribution at the t = 0 since the stochastic coe�cients are identi-
cally equal to zero. Then the deterministic basis u1, ..., uN can be chosen to correspond
to any sequence of N orthonormal functions in L2(D). Given the homogeneous Neumann
boundary conditions, one possibility consists in using cosine functions.
We call �latent� a basis function associated to a stochastic coe�cient with zero variance
while we say that a basis function is �activate� when the associated random variable de-
velops variance larger than zero. At �xed time t, only the �activate� variables in�uence
the approximation of the solution. They evolve in time to adapt to the structure of the
problem while the other are left unchanged. However the adaptation of the basis func-
tions is subjected to the error due to the time discretization. In particular the evolution
of the modes, determined by the equations in (4.18), depends on the eigenvalues of the
covariance matrix that is treated explicitly as well as the projection operator. However
numerical tests con�rm that the error in the adaptation of the modes decreases according
to the time step and it is negligible compared to the approximation error in the stochastic
space for small N . Another practical option to initialize the terms of the DO expansion
(4.10) consists in adding additional variance to the initial datum. We observe that at the
�rst iteration the modes do not evolve since the covariance matrix is identically equal to
zero. By introducing an additional variance, that is small enough to generate a negligible
error, we can overcome the problem. From the computational point of view, say ρ the
threshold over which the variance of the stochastic variables is considered not zero, one
or more stochastic coe�cients are initialized to an arbitrary random variable with order
of magnitude equal to ρ. In what follows we adopted the �rst approach.

Qualitative analysis

Before going into details about the accuracy of the DO approximation we give an
example that highlights the mean features of the method.
The DO approximate solution consists in a linear combination of deterministic modes
and stochastic coe�cients. Unlike the classical spectral approaches introduced in section
1.3, nor polynomial or any �xed structures are imposed �a priori�. Both the modes and
the stochastic coe�cients are computed �on �y�, that means at each time iteration, in
order to capture the structure of the problem. In this way few modes aim at globally
approximate the main feature of the solution. In addiction, the DO expansion is a
suitable representation of stochastic �elds for what concerns the numerical �Uncertainty
Quanti�cation�, context in which the goal is usually to compute statistics of the solution,
in particular mean and variance. By following the DO approach the mean �eld is treated
separately from the other modes and it is directly calculated by the method at each time
step. The linear combination of the modes, with the stochastic coe�cients, describes
instead the variability of the process in the stochastic space and in particular the sum
of the variance of the single stochastic variables corresponds to the total variance of the
approximate solution. In this way we actually have a comprehensive description of the
solution, as it is emphasized by the numerical test which we are going to describe.
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Figure 4.1: The mean �eld at t = 0.05 (left) and the standard deviation at time at t = 0.05
(middle) and at t = 0.5 (right) of the solution computed with the Stochastic Collocation method
with highly accurate sparse grid.

Consider the stochastic dynamical system governed by the following SPDE:

∂u(x, t, ω)

∂t
− δ∆u(x, t, ω) = f(u(x, t, ω)) x ∈ D = [0, 1]2, t ∈ [0, T], ω ∈ Ω

∂u

∂n
(σ, t, ω) = 0 σ ∈ ∂D

u(x, 0; ω) =

{
1 if x1 ≤ 0.5

0 if x1 > 0.5

(4.25)
where f(u) = 100u(u − 1)(α(ω) − u), α(ω) is an uniform random variable with mean
µ = 0.2 and variance σ2 = 0.013 and the di�usion coe�cient is δ = 0.01. The solution is
a stochastic �eld which tends asymptotically to the deterministic function u = 1 as t goes
to in�nity and it consists in a sheaf of traveling fronts with stochastic propagation speed
in (4.21). Figure 4.1 shows the mean �eld (left) and the standard deviation (right) of
the numerical solution computed with the Stochastic Collocation method with a highly
accurate sparse grid. The DO solution can be computed as described in section 4.3.1.
The initial mean function corresponds to the initial datum which is deterministic and
the modes are arbitrarily initialized to a sequence of N orthonormal basis functions in
[0, 1]2 with zero stochastic coe�cients. In this example we choose the cosine functions:
ui(x1, x2) =

√
2 cos(iπx1)cos(jπx2), for i, j = 1, ...,

√
N . Figure 4.2 shows that the

mean functions is a traveling front that actually describes the propagation of the solution.
Moreover the modes evolve in time and properly adapt to describe the variability of the
propagation speed. We observe that at any time instant the physical domain can be
divided in three parts and we describe each of them by qualitatively comparing the
exact solution, or rather the reference solution computed with the Stochastic Collocation
method with a highly accurate sparse grid, and the DO approximate solution. Figure
4.2 shows the mean function and while in Figure 4.4 we present the �rst two modes of
the DO approximate solution at di�erent time steps.

• Part 1: the solution is already at the higher equilibrium level, u = 1. Here u is
equal to a deterministic value for almost all ω ∈ Ω and then the variance �eld is
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Figure 4.2: Mean function of the DO approximate solution at t = 0 (left), t = 0.05 (middle) and
t = 0.5 (right), with N = 6, Ny = 7, ∆t = 0.001

equal to 0, as shown in (4.1). In accordance with this fact, all the �activated� modes
are equal to zero. We recall that at the �xed time t̄ only the modes associated to
stochastic coe�cients with variance larger than zero evolve, the other ones are left
unchanged and do not give any contribution to the solution at t̄ (however they
might evolve at t > t̄). The mean function of DO approximate solution is properly
equal to 1 and it is the only one term that gives remarkable contribution to the
approximation.

• Part 2: the portion of the domain that corresponds to the curve of the stochastic
traveling front. Here the stochasticity of the process is concentrated, the stan-
dard deviation is di�erent from zero and the mean function represents the mean
shape. The DO approximate solution is able to describe both the mean �eld and
its variability; the mean function is close to the exact one and the �activate� modes,
especially the ones that are associated to stochastic variables with large variance,
adapt to the same shape of standard deviation.

• Part 3: the portion of the domain which has not yet been reached by the traveling
front. The solution here is equal to the deterministic function u = 0 and both
the standard deviation and the �activate� modes are constantly equal to zero. The
mean function is zero as well and coincides with the exact one.

The same observation can be done at each time step, and this shows that the DO ap-
proximate solution is consistent with the qualitative features of the exact solution. The
modes, which promptly adapt since the �rst time step, evolve in time by following the
traveling front as well as the mean function. This shows that the DO method actually
captures the structure of the process without any �a priori� information and properly
describes the qualitative features of both the mean and the standard deviation �eld.

�A posteriori� estimates

In order to understand the dynamics of the solution in the stochastic space and the
suitability of the low rank approach, we analyze the evolution in time of the covariance
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Figure 4.3: First mode of the DO approximate solution at t = 0 (left), t = 0.05 (middle) and
t = 0.5 (right), with N = 6, Ny = 7, ∆t = 0.001
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Figure 4.4: Second mode of the DO approximate solution at t = 0 (left) t = 0.05 (middle) and
t = 0.5 (right), with N = 6, Ny = 7, ∆t = 0.001,

matrix and in particular the rank, which corresponds to the e�ective rank of the approx-
imate solution, and the eigenvalues, for di�erent values of N .
Let us consider problem (4.24), the stochastic space has dimension equal to one since the
stochasticity is uniquely determined by the random variable α. Thus the exact solution
evolves in a one-dimensional manifold, which however is non linear, as shown by the
analytic solution in (4.22). The traveling front is deterministic at t = 0, it propagates
with the stochastic speed in (4.21) and then tends asymptotically to the deterministic
value that corresponds to the steady equilibrium (in this case u = 1). Consequently, we
expect that the rank of the covariance matrix, initially equal to zero, would increase and
then go back to zero. It easy to verify that, at any time instant, the total variance of the
approximate solution corresponds to the sum of the variance of the stochastic coe�cients,
or equivalently to the sum of the eigenvalues of C(t).

Var[‖uN (·, t, ·)‖L2(D)] =

N∑
i=1

Var[yi(t, ·)] =

N∑
i=1

λi(t)

Concerning the covariance matrix, the dynamic of the rank depends on both the num-
ber of modes and the number of the collocation points. It is obviously bounded by N ,
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of collocation points Ny = N . Excitation rate A = 100. On the right: Time evolution of the
eigenvalues, in logarithmic scale with N = 30,A = 10.

the dimension of the matrix, and by Ny, the number of collocation points. We want to
verify wether there is any upper bound, beyond which the rank does not increase any
further, independently of N and Ny. For this purpose it is reasonable to use Ny = N .
The numerical results show that the rank tends to reach the saturation level, that is the
maximum level permitted by the parameters N and Ny. Only in the case of N ≥ 40 the
rank did not reach the saturation and increased up to 39 during the whole simulation, as
shown in Figure (4.5), (left). Moreover we observed that the evolution of the rank of the
covariance matrix is in�uenced by the excitation rate A. For consistency to biological
problems we focus on values of A ≥ 100. One can see in (4.21) that the speed of the
traveling front depends on the excitation rate. In particular the larger A, the larger
the variance of the propagation speed and the predominance of the reaction term are.
Consequently more and more directions are needed to well describe the solution. On the
contrary, for smaller values of A, e.g. A ≈ 10, we get smoother solutions in the stochastic
space, that are well described in a low dimensional manifold. In such a case the upper
bound reached by the rank of the covariance matrix is relatively low, compared to the
case that has been previously analyzed and does not saturate for N ≥ 30, as shown in
�gure (4.6), (left).
Associated to the analysis of the e�ective rank of the approximate solution, we studied
the time evolution of the eigenvalues of the covariance matrix. According to the observa-
tion (4.30), the eigenvalues coincide with the variance of the re-orthogonalized stochastic
variables. Say uN the DO approximate solution of rank N and ε(t) the approximation
error in mean square sense at time t ∈ [0, T ], ε(t) depends on the variance of stochastic
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eigenvalues, in logarithmic scale with N = 30. Excitation rate A = 10.

variables not included in the approximation and it can be estimated as:

ε(t) ≈
∞∑

i=N+1

Var[yi(t, ·)]

. In order to minimize the error in the mean square sense, we should include at any time
step the N basis functions associated to the N orthogonalized stochastic coe�cients with
largest variance. This can be achieved only by computing the KL decomposition at any
time step since it is not possible to �a priori� predict the principal components of the
solution. The DO approach avoids to compute the KL decomposition at any time step,
however the approximate solution which we obtain does not necessary correspond to the
best N rank approximation. The analysis of the evolution in time of the eigenvalues
of the covariance matrix provides an �a posteriori� estimate of the approximation error.
With this aim in mind we analyze Figure (4.5) (right) in order to understand:

• if there is a gap in the distribution of the eigenvalues and how many of them develop
remarkable values.

• how and when the eigenvalues increase and decay.

Thanks to the analysis of the rank of the covariance matrix, we already know that many
eigenvalues are di�erent from zero during the whole process, up to 40 for time t < 2.
Furthermore now we observe that many of them increase up to 10−4 which means that
the solution can not be approximate with high accuracy by only few modes. However
this is due to the intrinsic dynamic of the solution and it concerns the truncated KL
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Figure 4.7: On the left: Error for the mean function of the DO approximate solution w.r.t. the
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decomposition as well (the dynamical of the variance of the stochastic variables associated
to the KL decomposition is very close to Figure (4.5) (right)). The remarkable problem
concerns the increasing rate of the eigenvalues. We can see in Figure (4.5) (right) that
many of them rise up during the whole time interval [0, 0.7] and reach values larger than
10−4 for time t > 1.5. At the same time other eigenvalues quickly decay to zero. Then
the N principal components of the solution at time t > 1.5 do not correspond to the
evolution of theN principal components at time t < 1.5 since some of them are associated
to stochastic processes with variance which quickly decays for t > 1.5. In other words,
the manifold of the best rank N solution is not described along the trajectory of the
initial N principal components during the whole evolution of the process. Then if we
apply the DO method with N << 39 number of modes we are going to consider only the
stochastic processes which �rst develop variance larger than zero, up to the saturation
level of the covariance matrix. However we omit the stochastic processes whose variance
increases when the covariance matrix has already reached the saturation level and these
ones are going to develop a variance that is larger than 10−4.

Error analysis

In this section we quantify the accuracy of the DO method for what concerns problem
4.24 by computing the error of the DO approximate solution with respect to:

• the exact solution, in order to verify the quality of the approximate solution by
considering all the approximation parameters,
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• the numerical solution of the Stochastic Collocation method, computed with a
highly accurate sparse grid, in order to analyze the error in the stochastic space,

• the best rankN approximate solution with the aim of testing the low rank approach.

First of all, we analyze the error of the DO approximate solution compared to the an-
alytical solution in (4.22). We consider small time interval such that the wave travels
within the spatial domain, for consistency with (4.22). We computed the following error
in L2(D)-norm:

εu(t) = ‖uex(·, t)− ūN (·, t)‖L2(D) (4.26)

where ūN is the mean function of the DO approximate solution with N number of modes.
Figure 4.7(left) shows the error εu(t), at �xed time t, with di�erent number of modes
and collocation points. First of all we observe that for small values of N , e.g. N ∼ 3,
the truncation error is large (10−1) and dominates the spatial and time discretization
error. This is in accordance with the �a posteriori� analysis obtained in Section 4.4.2.
Furthermore the plot con�rms that the accuracy of the solution depends on the number
of modes N as well as on the stochastic collocation points Ny and reasonably there is no
improvement in the quality of the approximation for N > Ny. However we observe that
the truncation error decays quickly by adding modes when N ∼ 3, but is negligible for
only large values of N and Ny.
Figure 4.7(left) shows the error computed with respect to the numerical solution of the
Stochastic Collocation method and using a highly accurate sparse grid in order to ana-
lyze only the error due to the approximation in the stochastic space. Once again we see
that the error is quite large for small values of N . In addition, we computed the error of
the DO solution when the number of collocation points is equal to the number of modes.
Figure 4.7(left) con�rms that the convergence rate of the DO approximate solution tends
to coincide with the convergence rate of the Stochastic collocation method, and decays
by increasing the number of collocation points.
In conclusion, it seems that the DO approach is not an e�ective method for this kind of
problem when one wants to achieve high accuracy. However, in oder to understand wether
the problem 4.24 can be suitably approximated by low rank approaches we compute the
KL decomposition of the solution at any time step. Furthermore we compare the error of
the truncated N- rank KL expansion, which represents the best rank-N approximation in
mean square sense, with the error of the DO method, with di�erent values of N. The aim
is to verify how much larger is the error of the DO approximate solution with respect to
the optimal error. Speci�cally we �rst compute a reference solution through the Stochas-
tic Collocation method (with highly accurate sparse grid) and then the KL expansion.
Subsequently, we compute the best rank N approximation at any time step. We used
the same spatial and temporal discretization parameters to compute the solutions with
both the Stochastic Collocation and the DO method, in order to compare only the error
in the stochastic space. The error computed is de�ned as:

ε(t) = E[‖usc(·, t, ·)− uN (·, t, ·)‖2L2(D)] (4.27)
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Figure 4.8: Error w.r.t. the total variance (in log scale) of the DO approximate solution (red) and
the best N -rank approximation (blu), with respect to N at �xed time. Excitation rate A = 100
on the left, A = 10 on the right.

where usc is the reference solution and uN denotes the rank N solution (KL or DO).
Figure (4.9) (right) shows the error ε of the KL and DO approximate solution with
respect to N , at time t �xed and with excitation rate A = 100. We observe that the
error of DO approximate solution is proportional to the best approximation error, but
the proportional constant does not decrease substantially by increasing N . However the
error of the best N rank approximation is quite large for small values of N , which attests
the di�culty to apply the low rank approach to this kind of problems. On the other
hand better results are obtained for problems with slower dynamic. We repeat the same
analysis for problem in 4.24 with excitation rate A = 10. Figure (4.7) (left) shows that
the best rank N approximation as well the DO approximate solution achieve higher level
of accuracy and with few modes.

4.5 Stochastic initial condition

In this section we numerically verify the suitability of the DO approach for problems
governed by the deterministic bistable equation, with initial stochastic condition. We
analyze the dynamics of the eigenvalues of the covariance matrix and we compare the
error of the DO approximate solution to the error of the best N rank approximation.
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Speci�cally we consider the following problem

∂u

∂t
(x, t, ω)− ∂2u

∂x2
(x, t, ω) = f(u(x, t, ω)) x ∈ [0, 10], t ∈ [0, T], ω ∈ Ω

∂u

∂x
(0, t, ω) = 0 t ∈ [0, T], ω ∈ Ω

∂u

∂x
(10, t, ω) = 0 t ∈ [0, T], ω ∈ Ω

u(x, 0; ω) = u0(x, ω) x ∈ [0, 10], ω ∈ Ω

(4.28)
where f(u) = Au(u − 1)(α − u) with A, α deterministic parameters and the initial
condition is de�ned as:

u0(x, ω) = 0.5 + z(ω) cos
(πx

5

)
x ∈ [0, 10], ω ∈ Ω

and z ∈ L2
P (Ω) uniform zero mean stochastic variable, with variance σ2 = 1/12. The

initial condition is bounded between 0 and 1 and, based on the value of α, the solution
tends asymptotically either to the lower or the higher steady equilibrium of the bistable
equation. In this example we consider α = 0.1 and A = 100. Figure 4.9(left) illustrates
the time evolution of the total variance of the solution. We observe that, because of the
reaction term, the total variance increases during the �rst part of the process and then
goes to zero when the solution approaches the steady level. Consequently we expect an
analogous trend for the rank and the eigenvalues of the covariance matrix, associated to
the DO approximate solution.
The DO approach leads to a system of equations as in (4.10). The initial datum is
expanded according to (4.10) and in particular the deterministic basis functions are
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initialized as:

ui(x, 0) =

√
1

5
cos

(
(i− 1)πx

5

)
i = 1, ..., N

that implies:

u0(x, t) = ū(x, 0) +

N∑
i=1

yi(0, ω)ui(x, 0) x ∈ [0, 10], ω ∈ Ω

where ū(x, 0) = 0.5, y2(0, ω) =
√

5z(ω) and yi(0, ω) = 0 for all i = 1 and i = 3, ..., N .
It follows that the rank of the covariance matrix is initially equal to one. Figure 4.10
(left) con�rms the expected evolution of the rank of the covariance matrix. Contrary to
what discussed in the Chapter 3, even if the initial condition is a 1-rank function, the
solution evolves in a multidimensional manifold. This is due to the presence of the non
linear reaction term and it means that more terms in the DO expansion are needed to
well describe the solution. On the other hand �gure 4.10 (right) shows that, even if many
stochastic coe�cients are �activated� during the process, only few of them reach relevant
levels of variance. This means that good level of approximation can be still achieved
by using few modes. More precisely we consider the error in norm L2(D) ⊗ L2

P (Ω)
at time t �xed. In the Figure 4.9 (right) we compare the error of the DO approximate
solution with that of the best N -rank approximation with respect to N . The best N rank
approximation, that corresponds to the truncated KL expansion is computed numerically
by using the solution computed through the Stochastic Collocation method with Ny = 41
collocation points. The �gure shows that by increasing N , the error of the DO method
decreases more or less at the same rate as the best approximation error. Moreover good
level of accuracy can be achieved with few modes.

4.5.1 Comparison with the Stochastic Collocation method

The Stochastic Collocation method and the DO approach are based on two di�erent
concepts of approximation. Given a stochastic �eld u ∈ L∞([0, T], L2(D)⊗L2

P (Ω)) that
is a solution of a problem as in (1.28), the Stochastic Collocation method provides, at any
time step, a global polynomial approximation of u in the stochastic space, interpolatory in
the case of tensor grids or nested collocation points, that is built upon speci�c evaluations
of the time dependent process in the collocation points. On the contrary the DO method
develops an approximate solution that is a linear combination of few basis functions
which depend on the solution and which aim to globally approximate it. However, the
DO method described in this thesis is closely related to the Stochastic Collocation method
since the latter is used to solve the ODEs for the stochastic coe�cients in (2.6). It follows
that the error of the DO solution, in mean square sense, is related to the error of the
Stochastic Collocation method. Speci�cally, by using the same number of collocation
points, the error of the Stochastic Collocation method represents a lower bound for the
DO method. Indeed, according to the numerical methods used to solve the DO system,
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Figure 4.10: On the left: The rank evolution with N = 10, 20, 30 and corresponding number of
collocation points Ny = N + 1. Excitation rate A = 100. On the right: Time evolution of the
eigenvalues, in logarithmic scale with N = 30. Excitation rate A = 100.

the approximate solution can be expanded as:

uN (x, t; ω) = ū(x, t) +
∑N

i=1 yi(t; ω)ui(x, t)

= ū(x, t) +
∑Ny

j=1

[∑N
i=1 yi(t; ξj(ω))ui(x, t)

]
Lj(ξ(ω))

(4.29)

that coincides to the approximate solution of the Stochastic Collocation method if N =
Ny − 1. It follows that the error of the DO method is bigger than the error of the
Stochastic Collocation method when we use the same number of collocation points and
N < Ny − 1. On the other hand it is interesting to verify how much the error increases
by decreasing N . In �gure 4.11 (left) we compare the DO solution computed with Ny

collocation points to the solution obtained through the Stochastic Collocation method
with the same Ny, by varying the number of modes N . Speci�cally the plot concerns the
numerical test discussed in the section 4.28 and the error computed is de�ned as:

ε(N) =
1

T

∫ T

0
‖uN (·, t, ·)− usc(·, t, ·)‖L2(D)⊗L2

P (Ω)dt

where usc denotes the solution of Stochastic Collocation method with Ny = 21. In the
�gure 4.11 (right) we instead compare two solutions obtained by the DO method with
di�erent number of collocation points. We computed the error of the two approximate
solutions with di�erent values of N . We considered the error in mean square sense, with
respect to a reference solution computed through the Stochastic Collocation method with
many more collocation points. The plot shows that in the case analyzed, for small values
of N , the trend of the error is independent to the the number of collocation points.
Moreover it con�rms that is not reasonable to use N > Ny.
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Figure 4.11: On the left: the error of the DO method compared to the Stochastic Collocation
method, with the same number of collocation points Ny = 21, with respect to N (log scale). On
the right: The error of the DO solution with Ny = 11 (green) and Ny = 21(blu) compared to a
reference solution, with respect to N

4.6 Adaptive Dimensionality

In this section we describe an adaptive method for the dimensionality of the mani-
fold where the solution is approximated, by following the criteria introduced in [17] [16].
According to the DO approach described in the Chapter 2, given N , the approximate so-
lution is represented in terms of N deterministic orthonormal basis functions associated
to N stochastic coe�cients. Adaptive methods basically consist in supposing N a func-
tion of time. A number of modes that is �xed in time and chosen �a priori� leads indeed
to two important questions: how many basis functions are needed to well describe the
solution during the whole time interval and how is it possible to minimize this number?
The DO approach gives a �rst answer to the problem by looking directly for a low rank
approximate solution with a spectral representation as in (2.1). On the other hand there
are many situation in which the low rank approach is not a suitable choice. The bistable
equation with stochastic threshold potential value described in the section (4.4) provides
an example. In that case indeed the e�ective rank of the solution, that is initially equal
to zero for deterministic initial conditions, grows fast up to high levels and then decreases
again to zero. Adaptive dimensionality criteria aim to use a time dependent number of
modes N(t) that follows the trend of the e�ective rank of the solution in order to obtain
at any time instant an approximate representation which uses only the minimum number
of terms to achieve the accuracy required. The focal points of these approaches concerns
the choice of the basis functions to add or drop out.
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4.6.1 Decreasing the dimensionality

The criterion to reduce the dimensionality is based on the rank of the covariance
matrix. If the covariance matrix is singular, the basis functions associated to the zero
variance stochastic coe�cients, are dropped. In oder to do this we use the observation in
(2.21). First of all we underline that, according to adaptive criteria, the dimension of the
covariance matrix changes in time, i.e. C(t) ∈ RN(t)×N(t). Being λ1(t), ..., λN(t)(t) and
v1(t), ...vN(t)(t) the sequences of the eigenvalues and eigenvector of the covariance matrix
at time t, the approximate solution uN ∈ MN can be expressed in terms of orthogonal
components in both the physical and stochastic space:

uN (x, t; ω) = ū(x, t) +

N(t)∑
i=1

zi(t; ω)wi(x, t) (4.30)

where

• wj(x, t) =
∑N(t)

i=1 ui(x, t)vi j(t)

• zj(t; ω) =
∑N(t)

i=1 yi(t; ω)vj i(t)

Moreover one can verify that the basis functions w1, ..., wN(t) correspond to the principal
components of the approximate solution. Let w and z be the vector of functions such
that w(x, t) =

(
w1(x, t), ..., wN(t)(x, t)

)
and z(ω, t) =

(
z1(ω, t), ..., zN(t)(ω, t)

)
and D the

diagonal matrix of the eigenvalues, it holds:

Cu(t)u(t)(x, x′) = E[w(x, t)z>(t, ·)z(t, ·)w>(x′, t)] = w(x, t)D(t)w>(x′, t) (4.31)

Reminding that the basis functions are orthonormal in L2(D), it is easy to check that
λ1(t), ..., λN(t)(t) and w1, ..., wN(t) are the solutions of the eigenvalue problem associated
to Cu(t)u(t). In light of that, if the covariance matrix singular with one zero eigenvalue,
we drop the basis function associated to the zero eigenvalue and the dimensionality is
reduced to N(t+) = N(t) − 1. In practice, from a computational point of view, we �x
a threshold under which the stochastic coe�cients are considered having zero variance
stochastic variables and at any time step we check if any random coe�cient is under the
threshold, in which case it is dropped.

4.6.2 Increasing the dimensionality

Given a stochastic problem as in (1.28), the DO method develops an approximate
solution in the manifolds MN that is mapped by the N orthonormal basis functions
u1, ..., uN at any time instant. Following the adaptive dimensionality approach, we denote
withWN(t) the N(t) dimensional subspace spanned by u1, ..., uN(t) and, at the �xed time
instant t∗ ∈ [0, T], we look for the �direction� in the subspace orthogonal toWN(t∗), that
is associated the largest potential variance. Let us �rst explain the idea by applying
the it to the truncated KL expansion, to which the DO approach is inspired. Fixed the
time instant t∗ and the number of basis functions N∗ = N(t∗), the method aims to add
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the (N∗ + 1)th principal component of u if the associated eigenvalue is bigger than the
threshold. By transferring this idea in the DO framework, we underline that the basis
function to add is �a priori� unknown. We followed the approach proposed in [16], [16]
according to which we study the stability of the reduced system to perturbation normal to
WN(t) by computing the Normal In�nitesimal Lyapunov Exponents introduced in [35] to
study the normal stability proprieties of invariant manifolds. In view of that we de�ne the
Fréchet derivative that is a basic element for optimization problems involving functional
derivatives. Let X and Y be two Banach spaces and F : A ⊂ X → Y with A open in
X. F is Fréchet di�erentiable in x ∈ U if there exists a linear operator dF (x) : X → Y
such that for any x+ h ∈ U it holds:

lim
h→0

‖F (x+ h)− F (x)− dF (x)h‖Y
‖h‖X

= 0 (4.32)

Let uN∗ ∈ MN∗ the approximate solution at t = t∗ , we seek a new basis function u∗ ∈
W>N∗ orthonormal in L2(D) to {u1, ..., uN∗}. Let uN∗+1 be the perturbed approximate
solution de�ned as:

uN∗+1(x, t∗, ω) = uN∗(x, t
∗, ω) + hy∗(t∗, ω)u∗(x, t∗) x ∈ D, ω ∈ Ω (4.33)

where 0 < h << 1. We assume y∗(t∗, ·) ∈ L2
P (Ω) is a random variable with zero mean

and independent to y1(t∗, ω), ..., yN∗(t
∗, ω) . By deriving the DO equations as in (2.6)

we obtain:

h
∂y∗(t, ω)

∂t
=< L(uN∗+1(·, t, ω); ω) − E[L(uN∗+1(·, t, ω); ω)], u∗(·, t∗) > (4.34)

Supposed L Fréchet di�erentiable in L2(D), it holds:

L(uN∗+1(x, t, ω), ω) = L(uN∗(x, t, ω), ω) +hy∗(t, ω)dL(uN∗(x, t, ω), ω)u∗(x, t) + o(h2)
(4.35)

Being y∗ a zero mean stochastic process, the expected value of (4.35) at t→ t∗ leads to:

lim
t→t∗

E[L(uN∗+1(x, t, ·))] = limt→t∗E[L(uN (x, t, ·))] + o(h2) (4.36)

By replacing (4.36) and (4.35) in (4.34) for t→ t∗ we get:

limt→t∗ h
∂y∗(t, ω)

∂t
=< L(uN (·, t∗, ω); ω) − E[L(uN (·, t∗, ω); ω)], u∗(·, t∗) > +

hy∗(t∗, ω) < dL(uN (·, t∗, ω), ω)u∗(x, t), u∗(x, t∗) > + o(h2)
(4.37)

Then we multiply by y∗ and integrate in Ω. By using again that y∗ is a zero mean
stochastic process and that it is independent of y1, ..., yN∗ when h that tends to zero it
yields:

dE[(y∗(t∗, ·))2]

dt
= 2E[y∗(t∗, ·)2] < E[dL(uN (·, t∗, ω), ω)u∗(·, t∗)], u∗(·, t∗) > (4.38)
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Finally the basis function that we are looking for is given by the u∗ ∈ W>N∗ orthonormal
in L2(D) that maximizes:

Q(v) =< E[dL(uN (·, t∗, ω), ω)v∗(·, t∗)], v(·, t∗) > (4.39)

under the assumption that all the stochastic variables associated to the basis functions
not included in WN∗ have the same variance.

4.6.3 An heuristic approach

In this section we give an heuristic criterion to increment the dimensionality. It is
based on verifying if there is any direction, along which the solutions evolves, that can
potentially develop stochasticity. The direction we look for �lives � in the complementary
of the stochastic subspace generated by the random variable already included in the
approximation. In light of that we can assume that the subspace spanned by the new
basis function is included in E[L(u(x, t, ·), ·)] and it is governed by the equation for the
mean �eld in the DO system (2.6). According to the DO approach, we have:

∂baru(x, t)

∂t
= E[L(u(x, t, ·), ·)]

Once discretized the time derivative of the mean function by a �nite di�erence, we project
it onto the orthogonal to WN :

u∗(x, tn) = ΠWN>

(
ū(x, tn+1)− ū(x, tn)

)
/∆t

We assume that y∗ is the stochastic coe�cient associated to u∗. At t = tn, y∗ is identically
zero since the u∗ is not included in the stochastic space. In order to verify if y∗ is going
to increase its variance, according to the DO approach, we estimate:

∂y∗(t; ω)

∂t
=< L(u(·, t; ω); ω) − E[L(u(·, t; ω); ω)], u∗ >

At the discretized level, since y∗ is identically zero at tn we have:

y∗(tn+1; ω) =< L(u(·, tn+1; ω); ω) − E[L(u(·, tn+1; ω); ω)], u∗ > ∆t

Then by computing [E[y∗(tn+1, ·)2] we have an estimate of the variance along the direction
u∗. If that variance is bigger than a threshold we orthonormalize u∗ and we include it in
the stochastic subspace.

4.6.4 Numerical approach

We give here a brief idea of a possible numerical approach for problem (4.39) We have
seen in Section 4.6.1 that the problem of adding the new mode can be re-interpreted in
the optimization problem in (4.39). From the computational point of view we adopt
the strategy proposed in [16], [17] which consists in sampling the space orthogonal to
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Figure 4.12: The evolution of the rank of the DO approximate solution (blu) with N = 40, of
the adaptive DO solution (red) with approach in 4.6.4, adaptive DO solution with the heuristic
approach (green) in 4.6.3

WN (that is the subspace spanned by the basis functions already in the expansion 2.1
of the DO approximate solution). With this aim we apply the Gram-Schmidt method
to a �nite set of N2 Fourier basis functions. Alternative we select a �nite set of Fourier
basis functions and them we project them into the orthogonal to WN . Say φ1, ..., φN2

the sampling basis functions, then mode which we are looking for is written as:

u∗(x, tn) =

N2∑
i=1

a∗iφi(x) (4.40)

and 4.39 is reduced to:

Q(v)n = aiaj < E[dL(uN (·, tn, ω); ω)φi], φj >

with v =
∑N2

i=1 aiφi(x) De�ned

Qij =< E[dL(uN (·, tn, ω); ω)φi], φj >

the problem 4.39 is reduced to the optimization of the quadratic functional Q̃ =
1

2
(Qij +

Qji) and in conclusion the new basis function is choice to correspond to the eigenvector
associated to the maximum eigenvalues of Q̃.

4.6.5 Illustrative example

We apply the method proposed in [16] as well we tested the heuristic approach in 4.6.3
to problem (4.24). This represents a challenging example since the rank of the covariance
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matrix fast increases up to large values. Figure 4.12 shows the evolution of the rank of
the DO approximate solution with N = 40 and the rank of the adaptive approximate
solutions. Observe that for the adaptive solution the rank corresponds to the number of
modes. Figure 4.12 shows that the dimension of the adaptive solutions well follows the
trend of the rank of the DO approximate solution, which arrives up to the saturation
level. We remark that this section concerns starting results about the adaptive approach
for the DO method, but however they are encouraging for further analysis.



Chapter 5

Conclusion

In this thesis we have investigated a low rank approximation method concerning the
Dynamically Orthogonal approach for time dependent PDEs with stochastic parameters
or initial data. This consists in developing an approximate solution expanded in terms
of mean �eld, stochastic coe�cients and deterministic basis functions, all of them time
dependent that adapt to the solution as it evolves. Without imposing any polynomial
structure to the term of the expansion we directly look for an approximate solution of
the form in DO. This is achieved by projecting at any time instant the residual of the
governing SPDE in (2.5) onto the tangent space to MN , MN the manifold where all
the rank N stochastic �elds. Then we recover a coupled system of evolution equations
for all the terms of the expansion (2.1), which consists in N+1 deterministic PDEs plus
N stochastic ODEs. This allows to evolve a low rank solution that adapts at each time
instant both the basis functions and the deterministic coe�cients to what best describes
the global structure of the solution. This idea suggests some relationships between the
DO approximate solution and the N-truncated KL expansion.
On the other hand we showed that the DO approach and DDO decomposition provide
the same numerical solution if a Galerkin formulation is adopted. This is a remarkable
and encouraging starting point since convergence and error estimates are present in the
literature for the DDO decomposition in �nite dimensional setting. In particular it is
shown that for evolution matrix equations the error of the DDO approximate solution
is bounded in terms of optimal approximation error, under speci�c conditions. In light
of that we investigated the relationships between the DO approach and the N truncated
KL expansion, that is a representation of the best N rank approximation in mean square
sense. We �rst focused on liniar parabolic di�usion equations with initial stochastic
condition. In this framework theoretical considerations, con�rmed by numerical tests,
show that the DO approximate solution coincides with the optimal one only under very
strong assumptions and that generally the convergence rate of the error is determined
by the smallest eigenvalue of the Laplace operator. However we remark that the KL
expansion does not represents an alternative method to the DO approach but a lower
bound for the approximation error. Encouraging numerical results are provided by the
analysis of the more challenging problem, governed by a parabolic di�usion equations with
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non linear reaction term with initial stochastic condition, where we see that the error of
DO approximate solution results is proportional to the optimal error and decreases with
the same rate. In conclusion, even if the question remains already open, the achieved
results make the DO approach suitable to a further analysis. In view of that, the probably
more interesting feature of the DO approach concerns the adaptability of the dimension.
As we have seen in the analysis of parabolic equations with non linear reaction term,
during the evolution of the process the e�ective rank of the solution might signi�cantly
change. If decreasing the dimensionality is an easy task, the questions concerning when
add and how to select new directions is already open. The starting results show that this
is suitable and e�ective approach and furthermore several strategies can be investigated.
We tested the idea of dimension adaptability by following the approach proposed in [17],
[16] which consists in sampling the space orthogonal to the modes already included in
the approximation, but more e�ective method can be investigated. One of the more
promising is maybe a method based on power-type or Arnoldi iteration, in the same
spirit as what proposed in [37].
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