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Abstract

The aim of this work is to survey the optimal control theory and the backward

stochastic differential equations approach.

We extend the theory from diffusive processes to marked point processes, high-

lighting the significant points in common and the main differences between the

two treatments. In particular we show that marked point processes are described

in a natural way by the dynamic approach, which links them to the martingale

theory through the compensator notion. We consider the specific case of semi-

Markov processes, for which we provide an original result concerning the form

of their compensator. For both diffusive and marked point processes, we show

that backward stochastic differential equations can be used to represent the value

function and to characterize the optimal control.

Keywords: Backward Stochastic Differential Equations, Stochastic Optimal

Control, Marked Point Processes, Stochastic Differential Equations, random mea-

sure, semi-Markov processes.
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Sommario

In questo lavoro si mostra come risolvere problemi di controllo ottimo stocastico

attraverso un particolare approccio basato sulla teoria delle equazioni differenziali

stocastiche backward (BSDEs). In particolare si presenta in parallelo il controllo

ottimo di processi diffusivi ed il controllo ottimo di processi di puro salto, sot-

tolineando i significativi punti in comune e le principali differenze tra le due

trattazioni. Esiste un’ampia letteratura sui problemi di controllo ottimo stocas-

tico, sia riguardanti processi diffusivi che processi di salto; per quanto riguarda

l’approccio BSDEs, esso è stato considerato da alcuni autori nel caso diffusivo,

mentre risulta meno tradizionale per i processi discreti, per i quali si opta spesso

per una risoluzione attraverso programmazione dinamica. Nonostante la tesi si

presenti come elaborato prevalentemente compilativo, sono presenti alcuni risul-

tati nuovi sviluppati in previsione di un successivo avanzamento della teoria.

L’obiettivo è infatti quello di fornire gli strumenti per un approfondimento fu-

turo di alcuni specifici argomenti considerati.

Nel caso diffusivo, la soluzione di una BSDE consiste in una coppia di processi

(Y, Z), soddisfacenti

Yτ +

∫ T

τ

ZtdWt = η +

∫ T

τ

f(t, Yt, Zt)dt, τ ∈ [0, T ]; (1)

dove W è un processo di Wiener in Rd, f è chiamato generatore ed η è la con-

dizione finale dell’equazione. Cerchiamo una coppia (Y, Z) nello spazio dei pro-

cessi prevedibili, a valori in Rk × L(Rd, Rk), tale che

|||(Y, Z)|||2 := E
[∫ T

0

(
|Yt|2 + ‖Zt‖2

)
dt

]
<∞.

Indicheremo questo spazio con K; munito della norma ||| · |||, K risulta essere

uno spazio di Hilbert. Per una tale soluzione mostriamo risultati di esistenza ed

unicità. Detta Ft la σ-algebra generata dai processi Wt, indichiamo con P[0T ]

la σ-algebra prevedibile generata a sua volta da Ft. Si considerano le seguenti

ipotesi:
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Ipotesi 1. - La condizione finale η : Ω→ R è FT -misurabile e

E
[
|η|2
]
<∞;

- f è misurabile rispetto a P[0, T ] ⊗B(Rk)⊗B(L(Rd, Rk));

- Esiste K > 0 tale che, per ogni τ ∈ [0, T ], r, r′ ∈ R, z, z′ ∈ L2(Rd, Rk),

valga

|f(τ, r, z)− f(τ, r′, z′)| 6 K |r − r′|+K ‖z − z′‖ ;

- E
[∫ T

0
|f(t, 0, 0)|2 dt

]
<∞.

Si dimostra innanzitutto un risultato preliminare:

Lemma 1. Assumiamo che valgano le ipotesi sopra elencate e che f : Ω× [0, T ]→ Rk

sia un processo prevedibile che soddisfa E
[∫ T

0
|ft|2 dt

]
<∞.

Allora l’equazione backward

Yτ +

∫ T

τ

ZtdWt = η −
∫ T

τ

ftdt, τ ∈ [0, T ].

ammette un’unica soluzione (Y, Z) ∈ K.

Tale Lemma, assieme ad un teorema di punto fisso, permette di mostrare la

buona positura dell’equazione (1). Vale infatti il seguente risultato:

Teorema 2. Sotto le Ipotesi 1, la BSDE (1) ammette un’unica soluzione

(Y, Z) ∈ K.

La teoria delle equazioni backward sopra schematizzata viene utilizzata per ri-

solvere problemi di controllo ottimo applicati ai processi diffusivi. Un processo di

controllo è un processo (Ft)-prevedibile a valori in uno spazio misurabile (U, U).

Nel caso diffusivo, dato un processo da controllare X, il controllo u appare diret-

tamente nella dinamica di X tramite un’opportuna funzione r:

dXτ = F (τ,Xτ )dτ +G(τ,Xτ ) r(τ,Xτ , uτ )dτ +G(τ,Xτ )dWτ , τ ∈ [0, T ].

L’obiettivo è quello di minimizzare, al variare di tutti i possibili controlli ammis-

sibili u, il costo funzionale della forma:

E
[∫ T

0

l(t,Xt, ut)dt+ φ(XT )

]
,

dove l e φ rappresentano rispettivamente il costo di esercizio ed il costo terminale

del processo X. Consideriamo la formulazione debole del problema. Fissiamo un
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sistema di controllo ammissibile (a.c.s) U = (Ω̂, F̂, (F̂t)t>0, P̂, û), dove sono con-

siderate incognite, oltre al controllo û, anche la σ-algebra F̂, la filtrazione (F̂t)t>0

e la probabilità P̂ soggiacente al processo X. Introduciamo dunque il processo

XU
τ , τ ∈ [0, T ] associato ad un tale a.c.s, soluzione dell’equazione stocastica:

XU
τ = x+

∫ τ

0

F (t,XU
t )dt+

∫ τ

0

G(t,XU
t ) r(t,XU

t , ût)dt+

∫ τ

0

G(t,XU
t )dŴt,

dove Ŵ è un processo di Wiener rispetto a (F̂t)t>0. Con questa formulazione, il

costo che deve essere minimizzato è:

J(U) = Ê
[∫ T

0

l(t,XU
t , ût)dt+ φ(XU

T )

]
dove indichiamo con Ê il valore atteso rispetto alla probabilità P̂, che dipende

dall’a.c.s U; la funzione valore corrispondente è:

V = inf
U
J(U).

Osserviamo che la formulazione debole introdotta attraverso la nozione di a.c.s

risulta essere molto generale, non essendo a priori fissate né la probabilità né la

filtrazione considerata.

Per risolvere il problema di controllo, è possibile introdurre un’equazione back-

ward per la coppia (Y U
τ , Z

U
τ ) della forma:

Y U
τ +

∫ T

τ

ZU
t dW

U = φ(XU
T ) +

∫ T

τ

ψ(t,XU
t , Z

U
t )dt, τ ∈ [0, T ]. (2)

il cui generatore contiene la funzione hamiltoniana

ψ(t, x, z) = inf
u∈U

{
l(t, x, u) + zr(t, x, u)

}
.

Sotto opportune condizioni di limitatezza e Lipschitzianità sul generatore, si

mostra che la BSDE associata al problema di controllo ammette una ed una

sola soluzione (Y U
τ , Z

U
τ ). Si può allora provare che il problema di controllo ottimo

ha una soluzione, che può essere caratterizzata attraverso la soluzione della BSDE

(2). In particolare si dimostra la validità della cosiddetta relazione fondamentale:

Y U
0 = J(U) + Ê

[∫ T

0

[
ψ(t,XU

t , Z
U
t )− ZU

t r(t,X
U
t , ût)− l(t,XU

t , ût)
]
dt

]
Dalla definizione di ψ si deduce inoltre che J(U) > Y U

0 . Se infine assumiamo

che esista una mappa misurabile γ : [0, T ] × Rn × Rd → U tale che ψ(t, x, z) =

l(t, x, γ(t, x, z)) + zr(t, x, γ(t, x, z)), allora esiste un a.c.s che verifica Y U
0 = V .

v



Ci occupiamo poi del caso discreto, concentrandoci in particolare sui cosiddetti

processi di punto marcato. Dato uno spazio (Ω, F, P) completo, (Tn)n>1 è detto

processo di punto se T0 = 0, Tn < Tn+1 sull’insieme (Tn < ∞). Per tali processi

assumiamo che non vi sia esplosione, ovvero che Tn → ∞ P-a.s. Un processo

di punto marcato è allora individuato dalla coppia (Tn, ξn), dove Tn soddisfa

la definizione precedente e ξn è una variabile aleatoria in uno spazio misurabile

(K,K), con ξ0 costante. Per ogni processo di punto marcato, possiamo definire

il processo a tempo continuo:

Xt =
∑
n>0

ξn1[Tn, Tn+1)(t).

Dopo aver introdotto il processo di conteggio:

Nt(A) =
∑
n>1

1Tn6t1ξn∈A, t > 0, A ∈ K,

costruiamo la σ-algebra da esso generata nel modo seguente:

F0
t = σ(Ns(A), s 6 t, A ∈ K), Ft = σ(F0

t , N)

dove N sono gli insiemi P-nulli di F. Denotiamo con P e Prog, rispettivamente, la

σ-algebra prevedibile e quella progressiva per (Ft). Valgono le seguenti proprietà:

Proposizione 3. (1) Tn è F0
t -tempo di arresto;

(2) F0
Tn

= {A ∈ F0
∞ : A ∩ {Tn 6 t} ∈ Ft,∀t > 0} = σ(T0, ξ0, ..., Tn, ξn);

(3) Un processo f è (F0
t )-prevedibile se e solo se

ft(ω) =
∑
n>0

f
(n)
t (ω)1(Tn, Tn+1](t)

dove f 0 è B(R+)-misurabile , f (n) è F0
Tn
⊗B(R+)-misurabile.

Il seguente teorema svolge un ruolo chiave in tutta la trattazione, poiché ci

permette di legare i processi di punto alla teoria delle martingale.

Teorema 4. Esiste A crescente, A0 ≡ 0, continuo a destra, prevedibile, tale che

E
[∫ ∞

0

HtdNt

]
= E

[∫ ∞
0

HtdAt

]
∀H > 0 prevedibile.
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In particolare questo implica che N − A è una Ft-martingala.

Per studiare i processi di punto marcato è necessario definire una nuova misura

sullo spazio prodotto (0, ∞) ×K. Per ogni ω, introduciamo una misura p(ω, ·)
tale che

p(ω,C) =
∑
n>1

1(Tn(ω), ξn(ω))∈C per C ∈ B((0, ∞))⊗K.

Allora si può mostrare che:

Teorema 5. Esiste φt(A), ω ∈ Ω, t > 0, A ∈ K, tale che

(1) φt(ω, ·) é una probabilità su (K, K) ∀t, ∀ω;

(2) (t, ω) 7→ φt(ω,A) è prevedibile, ∀A;

(3) E
[∫∞

0
Ht(y)p(dtdy)

]
= E

[∫∞
0
Ht(y)φt(dy)dAt

]
per ogni Ht(ω, y) > 0 P⊗K-misurabile.

Chiameremo p̃(dtdy) = φt(dy)dAt il compensatore di p. (3) mostra che p e

p̃ hanno la stessa restrizione su P ⊗K. Se a questo punto fissiamo un orizzonte

T > 0, e un processo Ht(ω, y) (K, K)-misurabile che soddisfa

E
[∫ T

0

|Hs(y)|φs(dy)dAs

]
<∞,

possiamo definire per t ∈ [0, T ]∫ t

0

Hs(y)q(dsdy) :=

∫ t

0

Hs(y)p(dsdy)−
∫ t

0

Hs(y)φs(dy)dAs,

la quale risulta essere una martingala cadlag a variazione finita. Introduciamo

quindi un teorema di rappresentazione delle martingale, risultato fondamentale

per dedurre la teoria BSDEs associata ai processi di punto marcato.

Teorema 6. Data M martingala cadlag rispetto a Ft su [0, T ], esiste Ht(ω, y),

P⊗K-misurabile e soddisfacente

Mt = M0 +

∫ t

0

∫
K

Hs(y)q(dsdy).

A questo punto della trattazione si è rivolta una particolare attenzione a

specifici processi di salto, detti processi semi-Markov. Essi costituiscono una

famiglia di processi molto estesa, il cui studio è particolarmente interessante per

le numerose applicazioni possibili. Per questi processi abbiamo calcolato la forma
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esplicita del compensatore, di cui, a nostra conoscenza, non esistono risultati

analoghi in letteratura. Abbiamo iniziato la nostra analisi dalla formula di Jacod

per i processi di punto marcato generali:

p̃(dt, dy) =
∑
n>1

Gn(dt− Tn, dy)

Hn([t− Tn,∞])
1Tn<t6Tn+1 .

In tale formula si indica con Gn(dt, dx) la legge condizionale di (Sn+1, ξn+1)

rispetto alla σ-algebra FTn , dove (ξn+1, Tn+1) è il processo di punto marcato

considerato e Sn+1 = Tn+1 − Tn; Hn(dt) è invece la misura marginale che cor-

risponde alla legge condizionale di (Sn+1) rispetto a FTn . Definiamo allora i

processi semi-Markov come un’opportuna generalizzazione dei processi Markov

tempo-omogenei. Per i processi (Sn+1, ξn+1) e (Sn+1) introduciamo le funzioni

di ripartizione rispetto alla σ-algebra FTn , rispettivamente Q e H, e le misure

ad esse associate H̃ e Q̃. Il compensatore per i processi semi-Markov assume la

seguente forma:

p̃(dt, dy) = q(Xt−; dy, a(t−))R(Xt−; dt− TN(t−)),

dove q(x;A, t) = P {ξn+1 ∈ A|Sn+1 6 t, ξn = x}, x ∈ K, A ∈ K, t ∈ R+, N(t) è il

processo di conteggio introdotto, R è definita come la “hazard measure” di H:

R(x; dt) :=
H̃(x; dt)

H̃(x; [t, +∞])
,

e

a(t) := t− TN(t).

Se infine assumiamo che la funzione di sopravvivenza di Q ammetta un rate λ,

allora il compensatore assume la forma semplificata:

p̃(dt, dy) = q(Xt−; dy, a(t−))λ(Xt−)dt.

La nozione di compensatore permette di descrivere la dinamica di un processo

di punto marcato, e la sua conoscenza è di fondamentale importanza sia per la

teoria BSDEs che per il controllo ottimo associato a tali processi. Consideriamo

innanzitutto una classe di BSDEs guidate da una misura aleatoria, senza parte

diffusiva, su un intervallo finito, naturalmente associata ad un processo di punto

marcato generale:

Yτ +

∫ T

τ

∫
K

Zt(y)q(dtdy) = ξ +

∫ T

τ

ft(Yt, Zt(·))dAt, τ ∈ [0, T ], (3)
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dove q(dtdy) = p(dtdy) − p̃(dtdy), Y : Ω × [0, T ] → R è un processo progres-

sivamente misurabile, mentre Z : Ω × [0, T ] × K → R è P ⊗ K-misurabile. In

particolare, cerchiamo Y e Z nello spazio dei processi che soddisfano:

‖(Y, Z)‖2
β := E

[∫ T

0

eβAt |Yt|2 dAt
]

+ E
[∫ T

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

]
<∞,

in cui β è un numero reale da scegliere in modo opportuno. Indicheremo tale

spazio con Kβ; munito della norma ‖(Y, Z)‖2
β, Kβ risulta essere uno spazio di

Hilbert. Richiediamo inoltre che siano soddisfatte le seguenti proprietà:

Ipotesi 2. - ξ è FT -misurabile e E
[
eβAT |ξ|2

]
<∞;

- ∀t ∈ [0, T ], ∀ω ∈ Ω, ∀r ∈ K, ft(ω, r, ·) : L2(K,K, φt(ω, dy)) → R e, per

ogni Z, la mappa (ω, τ, r) 7→ fτ (ω, r, Zτ (·)) è Prog⊗B(R)-misurabile;

- ∃L > 0, L′ > 0 tale che, ∀ω ∈ Ω, τ ∈ [0, T ], r, r′ ∈ R e z, z′ ∈
L2(K,K, φτ (ω, dy)),

|ft(r, z(·))− ft(r′, z′(·))| 6 L′ |r − r′|+ L
(
|z(y)− z′(y)|2 φt(dy)

)1/2

;

- E
[∫ T

0
|ft(0, 0)|2 eβAtdAt

]
<∞.

Per provare esistenza ed unicità della soluzione dell’equazione backward (3),

consideriamo innanzitutto un’equazione più semplice, con un generatore ft che

non dipenda ne dal processo Y ne da Z. Si ha il seguente risultato:

Lemma 7. Assumiamo che valgano le condizioni sopra elencate e che

E
[
eβAT |ξ|2

]
+ E

[∫ T

0

eβAt |ft|2 dAt
]
<∞

per qualche β > 0. Allora esiste un’unica coppia (Y, Z) soluzione della BSDE

Yτ +

∫ T

τ

∫
K

Zt(y)q(dtdy) = ξ +

∫ T

τ

ftdAt, τ ∈ [0, T ].

Inoltre, per ogni τ ∈ [0, T ] vale la seguente identità:

E
[
eβAτ |Yτ |2

]
+ βE

[∫ T

τ

eβAt |Yt|2 dAt
]

+ E
[∫ T

τ

∫
K
eβAt |Zt(y)|2 φt(dy)dAt

]
= E

[
eβAT |ξ|2

]
+ 2E

[∫ T

τ

eβAtYtftdAt

]
.
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Tramite il precedente Lemma, ed un opportuno teorema di punto fisso, si

dimostra allora il risultato di buona positura cercato:

Teorema 8. Assumiamo che valgano le Ipotesi 2 con β > L2 + 2L′.

Allora esiste un’unica coppia di processi (Y, Z) in Kβ che risolve la BSDE (3).

Una volta introdotta la teoria delle BSDEs per processi di salto, è possi-

bile formulare il problema di controllo per questi processi ed andarne a studiare

la risolubilità tramite l’approccio BSDEs. Dato uno spazio misurabile (U, U),

definiamo processo di controllo ogni processo prevedibile (uτ )τ a valori in U . Ri-

cordiamo che, nel contesto dei processi di punto marcato, questo corrisponde a

chiedere che:

ut(ω) =
∑
n>0

u
(n)
t (ω)1(Tn, Tn+1](t)

con u(0) funzione deterministica nel tempo e B(R+)-misurabile , u(n) misurabile

rispetto a B(R+) ⊗ σ(T0, ξ0, ..., Tn, ξn). Ciò significa che il controllore decide la

strategia di un controllo dopo il salto Tn avendo osservato Xt, t ∈ [0, Tn] e cambia

strategia solo dopo il prossimo tempo di salto Tn+1.

L’effetto di un controllo si esprime tramite una assegnata funzione r, della

forma rt(ω, y, u), ω ∈ Ω, t > 0, y ∈ K, u ∈ U . Richiederemo che essa sia limitata

e P ⊗K ⊗ U-misurabile. Anche in questo caso il problema del controllo ottimo

viene formulato in modo debole. Ad ogni controllo u(·) si associa una probabilità

Pu tale che il processo X, sotto Pu, ammetta come compensatore

p̃u(dtdy) := rt(y, ut) p̃(dtdy).

Il funzionale costo da minimizzare è allora:

J(u(·)) = Eu
[∫ T

0

lt(Xt, ut)dAt + g(XT )

]
dove Eu indica il valore atteso rispetto a Pu. Si può mostrare che una tale

probabilità esiste ed ammette la forma seguente:

Pu(dω) = LT (ω)P(dω)

dove

Lτ = exp

(∫ τ

0

∫
K

(1− rt(y, ut))φt(dy)dAt

) ∏
n>1:Tn6t

rTn(ξn, uTn),
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a condizione di poter verificare che E [LT ] = 1. Sotto le ipotesi introdotte su r si

prova che L è una martingale locale positiva (rispetto a (Ft, P)), soluzione unica

di

Lτ = 1 +

∫ τ

0

∫
K

Lt−(rt(y, ut)− 1)q(dtdy).

Inoltre vale il seguente Lemma:

Lemma 9. Sia |r| 6 Cr, γ > 1, β = γ + 1 + Cγ
2

r

γ−1
, E
[
eβAT

]
<∞. Allora

E [LγT ] <∞, E [LT ] = 1.

Sotto tali ipotesi, si può associare il costo J(u(·)) ad ogni controllo u(·).
Al problema di controllo cos̀ı formulato è possibile associare una opportuna

equazione BSDE; definita la funzione hamiltoniana

f(ω, t, x, z(·)) = inf
u∈U

{
lt(ω, x, u) +

∫
K

z(y)(rt(ω, y, u)− 1)φt(ω, dy)

}
per ω ∈ Ω, t > 0, x ∈ K, z : K → R, consideriamo la BSDE:

Yτ +

∫ T

τ

∫
K

Zt(y)q(dtdy) = g(XT ) +

∫ T

τ

f(t,Xt, Zt(·))dAt, τ ∈ [0, T ]. (4)

Richiediamo che Yt(ω) sia adattato e cadlag (ed in particolare Y0 sia F0-misurabile,

cioè deterministico), Zt(ω, y) sia P ⊗ K-misurabile ∀ω ∈ Ω, t ∈ [0, T ], y ∈ K,

e che i processi Y , Z soddisfino opportune condizioni di integrabilità. Sotto

tali ipotesi si mostra che l’equazione backward (4) ammette un’unica soluzione

(Yt, Zt). Si può quindi risolvere il problema di controllo con l’approccio BSDEs.

Per fare ciò, osserviamo innanzitutto che

Eu
[∫ T

0

∫
K

Zt(y)q(dtdy)

]
= Eu

[∫ T

0

∫
K

Zt(y)p(dtdy)

]
− Eu

[∫ T

0

∫
K

Zt(y)φt(dy)dAt

]
= Eu

[∫ T

0

∫
K

Zt(y)p̃u(dtdy)

]
− Eu

[∫ T

0

∫
K

Zt(y)φt(dy)dAt

]
poichè p̃u è il compensatore di p rispetto a Pu. Allora, ricordando che Y0 è

deterministico, si ottiene

Y0+Eu
[∫ T

0

∫
K

Zt(y)(rt(y, ut)− 1)φt(dy)dAt

]
= Eu [g(XT )]+Eu

[∫ T

0

f(t,Xt, Zt(·))dAt
]
,

che, dopo opportuni passaggi, fornisce la relazione fondamentale nel caso di pro-

cessi di punto marcato:

Y0 = J(u(·))+Eu
[∫ T

0

[
f(t,Xt, Zt(·))− lt(Xt, ut)−

∫
K

Zt(y)(rt(y, ut)− 1)φt(dy)

]
dAt

]
.

xi



Dalla definizione di f segue inoltre che:

Y0 6 J(u(·)) per ogni controllo ammissibile u(·).

Infine, se esiste un controllo uZ(·) tale che il valore atteso a secondo termine sia

esattamente uguale a 0, allora uZ(·) è ottimo, e Y0 = minu∈U J(u(·)) = J(uZ(·)).
Si arriva cos̀ı al risultato conclusivo:

Teorema 10. Sotto le ipotesi precedenti su r, g e l, supponiamo che A sia con-

tinuo e che E
[
e(β+C4

r )AT

]
<∞. Supponiamo inoltre che esista β tale che

β > sup |r − 1|2 , E
[
eβAT

]
<∞, E

[
|g(XT )|2 eβAT

]
<∞.

Allora esiste una ed una sola soluzione (Y, Z) della BSDE (4), nella classe dei

processi considerata. Se inoltre supponiamo che, per tali processi Z, esista uZ :

Ω× [0, T ]→ U prevedibile e tale che

uZt (ω) ∈ arg min
u∈U

{
lt(ω,Xt−, u) +

∫
K

Zt(ω, y)(rt(ω, y, u)− 1)φt(ω, dy)

}
,

allora uZ(·) è ottimo e Y0 = minu∈UJ(u(·)) = J(uZ(·)).

Parole Chiave: Equazioni Differenziali Stocastiche Backward, Controllo Ot-

timo Stocastico, Processi di Punto Marcato, Equazioni Differenziali Stocastiche,

misure aleatorie, processi semi-Markov.
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B.1 Likelihood ratios and intensity changes . . . . . . . . . . . . . . . 75

B.2 An Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . 78

C Ito’s formula for finite-variation processes 80

Bibliography 83

xiv



Introduction

In this work we deal with stochastic processes and the associated optimal control

problems.

The aim of optimal control theory is to govern a given system in such a way

that a certain optimality is achieved. In particular we consider systems with

stochastic dynamics, namely where a random noise affects the system evolution

and, in general, the observations of the controller. Although the noise dependency

is unavoidable, we can act on the control process to change the state dynamics.

Introducing a functional cost which depends on the state and on the control

variable, we are interested in designing the optimal control that minimizes its

expectation value over all possible realization of the noise process.

There exists a large literature on optimal stochastic problems; we refer the

reader to [5], [4], [27], [40], [33], [37], [7]. The two main classes of controlled

processes are the diffusive processes and the jump processes. Roughly speaking,

in the first case the control process occurs in the controlled equation; in the jump

process case, instead, the control process has the effect of modifying the initial

state dynamics by a change of probability. For both processes the functional cost

is defined in a similar way.

In the past many different methods have been developed to solve this kind of

problems. In our work we will present a special approach based on the theory of

backward stochastic differential equations, BSDEs for short; we will apply it to

optimal control problems related to both diffusive and marked point processes.

BSDEs are Itô’s stochastic differential equations with a final condition; this

subject started with the paper [31] by Pardoux and Peng, where the authors first

solved general nonlinear BSDEs driven by the Wiener process. Existence and

uniqueness of the solution to BSDEs was studied under local Lipschitz hypotheses,

and afterwards a systematic theory has been developed for diffusive BSDEs, we

mention in particular [16], [17], [12], [29], [30].

The BSDEs approach to optimal control has been deeply studied in the dif-

fusive case starting from [32]; the reader can consult for instance [33], [27], [40],

and [17].

1



Introduction 2

Later, generalizations have been considered where the Wiener process is re-

placed by more general processes. The general formulation of a BSDEs driven by

a random measure has been introduced in [37], and has been considered in [3],

[36] in the markovian case, and in [39] for general jump process.

The approach to optimal control is less traditional. Indeed, there exists a

large literature on optimal control of marked point processes ([10], [18] as general

references), but there are relatively few results on their connections with BSDEs.

For this part our main reference consists of the recent paper [20], where the

authors addressed the topic in a systematic way.

This thesis consists of a survey of the main topics, even though it has the merit

of presenting some specific new results that are useful for future developments of

the theory.

We give a detailed presentation of marked point processes, BSDEs and opti-

mal control problems. BSDEs and optimal control theories are both formulated

in parallel for diffusive and marked point processes. By this complementary point

of view, we highlight the significant points in common and the main differences

between the diffusive and the discrete treatment, and how the last one can be

derived from the first by appropriate modifications. As we already pointed out,

the available literature on the BSDEs approach for optimal control is inhomoge-

neous. For this reason, in the diffusive case we choose to present only the proofs

we want to compare with the discrete discussion. In the marked point processes

framework, on the contrary, we give the proof of all results, and we strive to

provide every detail that was not explicit in the original articles. Moreover, we

consider specific jump processes, namely semi-Markov ones, and in Section 1.4

we present the explicit form of the compensator of these processes. They define

a very large family and are particularly interesting in view of the large number

of applications. Although the general compensator formula for marked point

processes was already pointed out in the Jacod’s paper [23], we are not aware

of other results on the explicit form in the semi-Markov case. This research has

been done in view of a future application of the general optimal control theory

based on BSDEs approach to this appealing case.

Next we shortly describe the contents of every chapter.

In Chapter 1 we present the class of marked point processes, following the

discussions in [10] and [25]. A point process is a sequence of random variables

Tn satisfying T0 ≡ 0, Tn 6 Tn+1, which can be interpreted as the times at which

certain events occur. Associated to these times are some other random elements

ξn, called marks, containing further information about events, which take values

in a measurable space (K, K). The process (Tn, ξn)n is said to be a marked point
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process, MPP for short. MPPs are widely used in a variety of fields; they may

model times at which items or customers enter or leave certain manufacturing

stations, queueing systems, communications network, etc. Associated with a

MPP is a filtration, i.e. a flow of information representing the history of the

process evolving with time. The corresponding random counting measure is p =∑
n>0 δ(Tn,ξn), where δ denotes the Dirac measure. The random measure p is fairly

general, the only restriction being non explosion (i.e., Tn →∞).

There is a basic link between MPPs and the martingale theory; the corre-

sponding results form the so called dynamic approach to MPPs. This approach

is used by Last and Brandt [25] and by Brémaud [10] in their work on marked

point processes and we follow it in our presentation. It is mathematically based

on the concept of compensator, which describes the local dynamics of a MPP.

The compensator indeed compensates the increments of a well-defined counting

measure associated with the MPP in a predictable manner such that the dif-

ference becomes a martingale. We denote At the compensator of the counting

process measure Nt := p([0, t]×K) and by φt(dy)dAt the (random) compensator

of p.

Many MPPs can be described in a natural way by the dynamic approach,

as, for instance, doubly stochastic Poisson processes, marked Poisson processes

and Markov chains. Martingale methods in the theory of point processes go

back to Watanabe [38] (1964), who discovered the martingale characterization

of the Poisson processes, but the first systematic treatment of a general MPPs

using martingales was given in 1972 by Brémaud [10]. He adapted the martingale

approach to MPPs and he demonstrated its usefulness in the theory of stochastic

systems driven by point processes. The martingale definition of compensator

gives the basis to construct a martingale calculus which has the same power as

Ito calculus for diffusions.

The compensator characterizes the distribution of a marked point process, and

its knowledge is very important in view of optimal control applications. Indeed,

the control changes the process dynamics by an appropriate modification of the

compensator for the controlled process. For these reason we devote Section 1.4

to the presentation of the particular case of semi-Markov processes, and to the

calculations for their compensator.

We start our inquiry from Jacod’s formula (see [23]) for the general compen-

sator of a marked point process:

p̃(dt, dy) =
∑
n>1

Gn(dt− Tn, dy)

Hn([t− Tn,∞])
1Tn<t6Tn+1 .

Here Gn(dt, dx) denotes the conditional law of (Sn+1, ξn+1) with respect to the
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σ-algebra FTn , where (ξn+1, Tn+1) is the considered marked point process and

Sn+1 = Tn+1 − Tn; Hn(dt) is the marginal measure which corresponds to the

conditional law of Sn+1. Then we define a semi-Markov process as an appro-

priate generalization of the time-homogeneous Markov one. We introduce the

cumulative distribution functions (with respect to the σ-algebra FTn) Q and H,

respectively for the process (Sn+1, ξn+1) and (Sn+1), and the associated measures

H̃ and Q̃. The compensator for the semi-Markov processes takes the following

form:

p̃(dt, dy) = q(Xt−; dy, a(t−))R(Xt−; dt− TN(t−)),

where q(x;A, t) = P {ξn+1 ∈ A|Sn+1 6 t|ξn = x}, x ∈ K, A ∈ K, t ∈ R+, N(t) is

the counting process, R is defined as the hazard measure of H:

R(x; dt) :=
H̃(x; dt)

H̃(x; [t, +∞])
,

and

a(t) := t− TN(t).

If we assume that the survival function of Q admits a rate λ, then the com-

pensator assumes the simpler form:

p̃(dt, dy) = q(Xt−; dy, a(t−))λ(Xt−)dt.

In Chapter 2 we present the notion of backward stochastic equation and the

associated well-posedness results. In Section 2.1 we analyse the BSDEs driven

by a Wiener process, for which we mainly follow the discussion in [31] and [17].

According to these authors, the solution of a BSDE consists of a pair of adapted

processes (Y, Z) satisfying

Yτ +

∫ T

τ

ZtdWt = η +

∫ T

τ

f(t, Yt, Zt)dt, τ ∈ [0, T ],

where W is a Wiener motion in Rd, f is called generator and η is the final

condition. This equation is intended in the Itô sense and we look for predictable

processes (Y, Z), such that Y : Ω× [0, T ]→ Rk, Z : Ω× [0, T ]→ L(Rd, Rk).

The basic hypothesis on the generator f is a Lipschitz condition requiring

that for a constant K > 0,

|f(τ, y, z)− f(τ, y′, z′)| 6 K |r − r′|+K ‖z − z′‖ ,

for every τ ∈ [0, T ], for y, y′ ∈ Rk and z, z′ ∈ L(Rd,Rk).
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In order to solve the equation, beside measurability assumptions, we require

moreover the summability condition

E
[∫ T

0

|f(t, 0, 0)|2 dt
]
<∞.

All the results of the Section are without proof, except for the Lemma 2.3

and the Theorem 2.4, which together give the existence and uniqueness of the

solution to the BSDE. In particular the existence and uniqueness result is achieved

in Theorem 2.4, considering first a specific BSDE (as the one in Lemma 2.3), and

next generalizing that result by a fixed-point theorem. The corresponding proofs

play a key role, representing a valid procedure, with appropriate modifications,

to prove also respective results in the marked point processes case. We finally

present a priori estimates and the continuous dependence upon a given process

for the considered solution.

Then in Section 2.2 we focus on a BSDE driven by a random measure, without

diffusion part, on a finite time interval, of the form:

Yτ +

∫ T

τ

Zt(y)q(dtdy) = ξ +

∫ T

τ

ft(Yt, Zt(·))dAt, τ ∈ [0, T ],

where the generator f and the final condition ξ are given. In this formulation

the unknown process associated with the martingale part, namely the Z-process,

is a random field.

Here the basic probabilistic datum is the marked point process (Tn, ξn). With

the same notations of Chapter 1, we call p(dt dy) the corresponding random

counting measure, and we denote At the compensator of the counting process

measure p([0, T ] × K) and by φt(dy)dAt the (random) compensator of p. Fi-

nally, the compensated measures q(dt dy) = p(dt dy) − φt(dy)dAt occurs in the

above equation. The unknown process is a pair of (Yt, Zt(·)), where Y is a real

progressive process and {Zt(y), t ∈ [0, T ], y ∈ K} is a predictable random field.

The basic hypothesis on the generator f is a Lipschitz condition requiring

that for some constants L > 0, L′ > 0,

|ft(ω, r, z(·))− ft(ω, r′, z′(·))| 6 L′ |r − r′|+ L
(∫

K

|z(y)− z′(y)|2 φt(ω, dy)
)1/2

for all (ω, t), for r, r′ ∈ R and z, z′ in appropriate functional spaces (depending

on (ω, t)). We note that the generator of the BSDE can depend on the unknown

Z-process in a general functional way: this is required in the applications to op-

timal control problems, and it is shown that our assumptions can be effectively
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verified in a number of cases. In order to solve the equation, beside measurabil-

ity assumptions, we require (as in the diffusive case) a summability condition,

namely:

E
[∫ T

0

eβAt |ft(0, 0)|2 dAt
]

+ E
[
eβAT |ξ|2

]
<∞,

to hold for some β > L2 + 2L′. We remark that in the Poisson case we have a

deterministic compensator φt(dy)dAt = ν(dy) for some fixed measure ν on K and

the summability condition reduces to a simpler form, not involving exponentials

of stochastic processes.

The existence and uniqueness of the solution are provided following the dif-

fusive case procedure: we first prove existence and uniqueness for a simplified

BSDE in Lemma 2.7, then the general result is achieved in Theorem 2.8 by a

fixed-point theorem. We also present a priori estimates and some results on

continuous dependence upon the data.

In Chapter 3 we finally formulate the optimal control problem and we solve

it by the BSDEs approach.

We define an admissible control system, a.c.s for short, as the set

U = (Ω̂, F̂, (F̂t)t>0, P̂, û)

where (Ω̂, F̂, P̂) is a complete probability space, (F̂t)t>0 is a filtration that verifies

the usual conditions, û is a predictable process with respect to (F̂t)t>0. As we will

see, the a.c.s notion plays an important role in the so called “weak” formulation

of optimal control problems.

In Section 3.1 we deal with optimal control of diffusive processes. In this case,

given a controlled process X, the control u occurs directly in the X dynamics by

means of a function r:

dXτ = F (τ,Xτ )dτ +G(τ,Xτ ) r(τ,Xτ , uτ )dτ +G(τ,Xτ )dWτ , τ ∈ [0, T ].

We consider the weak formulation of the control problem. We fix an a.c.s U and

we introduce the process XU
τ , τ ∈ [0, T ], solution of the Ito stochastic equation:

XU
τ = x+

∫ τ

0

F (t,XU
t )dt+

∫ τ

0

G(t,XU
t )r(t,XU

t , ût)dt+

∫ τ

0

G(t,XU
t )dŴt,

where Ŵ is a Wiener process with respect to (F̂t)t>0. The state dynamics is

changed by the choice of a new a.c.s, i.e., by the entire set (Ω̂, F̂, (F̂t)t>0, P̂, û).

In this formulation, the cost to be minimized is:

J(U) = Ê
[∫ T

0

l(t,XU
t , ût)dt+ φ(XU

T )

]
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where Ê denotes the expectation with respect to the probability P̂ depending on

the admissible control system U; the corresponding value function is

V = inf
U
J(U).

To solve this optimal control problem, we introduce the BSDE for the un-

known process (Y U
τ , Z

U
τ ):

Y U
τ +

∫ T

τ

ZU
t dW

U = φ(XU
T ) +

∫ T

τ

ψ(t,XU
t , Z

U
t )dt, τ ∈ [0, T ].

where the generator contains the hamiltonian function

ψ(t, x, z) = inf
u∈U

{
l(t, x, u) + zr(t, x, u)

}
.

By the BSDEs theory, there exists only one solution this equation.

Moreover, assuming that the infimum in the ψ definition is in fact achieved,

we prove that the optimal control problem has a solution, and that the optimal

control can be obtained by means of the solution to the above BSDE at the initial

time.

In Section 3.2 we consider the class of optimal control problems for marked

point processes. We follow a classical approach, so called intensity-control: the

controller can modulate the intensity but cannot directly add or erase points (see

for instance [10]). As in the diffusive case, we present the weak formulation of

the control problem and how to solve it with the BSDEs approach.

We consider first the jump process Xt =
∑

n>0 ξn1[Tn, Tn+1)(t) corresponding

to a given marked point process (ξn, Tn)n>0, and an admissible control process u.

In analogy to the previous case, we would like to associate u to X by means

of a certain process Xu and to minimize a cost functional with the form:

J(u(·)) = E
[∫ T

0

lt(X
u
t , ut)dAt + g(XT )

]
.

However, in the marked point processes case, u cannot be described within a

dynamics equation. Therefore, we introduce an a.c.s by an opportune change

of probability. Given the uncontrolled process X and the associated filtration,

we prove that there exists a Gisanov kernel Lτ associated to the marked point

process such that, assuming that E [LT ] = 1,

Pu(dω) = LTP(dω).

Under this new probability, the process X admits the compensator

p̃u(dt, dy) := rt(y, ut) p̃(dt, dy)
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and the functional cost becomes:

J(u(·)) = Eu
[∫ T

0

lt(Xt, ut)dAt + g(XT )

]
.

where Eu denotes the expectation under Pu.
To this control problem we associate the BSDE:

Yτ +

∫ T

τ

∫
K

Zt(y)q(dt dy) = g(XT ) +

∫ T

τ

f(t,Xt, Zt(·))dAt, τ ∈ [0, T ].

where the generator contains the hamiltonian function

f(ω, t, x, z(·)) = inf
u∈U

{
lt(ω, y, u) +

∫
K

z(y)(rt(ω, y, u)− 1)φt(ω, dy)
}
.

As in the diffusive case, it can be proved that there exists only one (Yτ , Zτ (·))
solution of the above BSDE.

Assuming that the infimum of f is in fact achieved, admitting a suitable

selector, together with a summability condition of the form

E
[
eβAT

]
+ E

[
|g(XT )|2 eβAT

]
<∞

for a sufficiently large value of β, we show that the optimal control problem has a

solution, and that the value function and the optimal control can be represented

by means of the solution to the BSDE.

Finally, we devote a brief section to conclusions remarks, presenting in par-

ticular some suggestions for future developments of the theory; moreover, in Ap-

pendix A, B, and C we fix the main notations and we collect some preliminary

useful results.



Chapter 1

Marked point processes

In this Chapter we present the class of marked point processes (MPPs). We

follow the dynamic approach used by Last and Brandt [25] and by Brémaud [10].

In particular we give the notion of compensator, showing that it describes the

local dynamics of a MPP.

In Section 1.1 we start by presenting marked point processes and the associ-

ated counting measures.

Section 1.2 is devoted to specific processes which admit an absolutely continu-

ous compensator with respect to Lebesgue measure. In that case the compensator

has a density, which is called stochastic intensity.

In Section 1.3 we present instead marked point processes with general com-

pensators, for which the existence of a stochastic intensity is not granted. This is

the general framework we address to in Section 2.2 and in Section 3.2, where we

study respectively BSDEs driven by a marked point process and the associated

Optimal Control problem.

Finally in Section 1.4 we introduce semi-Markov processes using the renewal

Markov process theory, and we derive an explicit formula for their compensator.

1.1 Point Processes and Counting Measure

Let (Ω,F,P) be a complete probability space and (K,K) a measurable space.

Assume we have a sequence (Tn)n>1 of jump times, Tn taking values in [0, ∞].

We set T0 = 0 and we assume, P-a.s.,

Tn <∞⇒ Tn < Tn+1, n > 0.

Such a sequence (Tn)n>1 is called a point process, and Tn is interpreted as the

n-th occurrence of a given physical phenomenon. We always assume that (Tn)

9
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is nonexplosive, i.e. Tn → ∞ P-a.s. Associated with these times we define a

sequence (ξn)n>1 of random variables, called marks, taking values in K (mark

space) and containing further informations about the events (for instance ξn is

the number of customers in the n-th batch of arrivals). We call the double

sequence (Tn, ξn)n>1 a marked point process. For every A ∈ K we define the

counting process

Nt(A) =
∑
n>0

1Tn>t1ξn∈A, t > 0, (1.1)

and we set Nt = Nt(K). This process is also called a marked point process by

abuse of notation (an innocuous, since Nt and (Tn, ξn) carry the same informa-

tions).

Generally it is difficult to study a marked point process directly in terms of the

distribution of the sequence (Tn, ξn). We begin thus to introduce the σ-algebras

F0
t = σ(Ns(A) : s ∈ [0, t], A ∈ K), t > 0,

and we observe that each Tn is an F0
t -stopping time. We define the filtration

generated by the counting processes setting

Ft = σ(F0
t ,N), t > 0,

where N denotes the family of P-null sets in F; it represents the history of the

marked point process evolving with time. It turns out that (Ft)t>0 is right contin-

uous and therefore satisfies the usual conditions. In the following all the measura-

bility concepts for stochastic processes refer to the filtration (Ft)t>0 (see Appendix

A.1).

The predictable σ-algebra (respectively, the progressive σ-algebra) on Ω ×
[0, ∞) is denoted by P (respectively, by Prog). The same symbols also denote

the restriction to Ω× [0, T ] for some T > 0.

We fix then ξ0 ∈ K (deterministic) and we define from (ξn, Tn) the process

Xt =
∑
n>0

ξn1[Tn, Tn+1)(t), t > 0. (1.2)

We do not assume that P(ξn 6= ξn+1) = 1. Therefore in general trajectories of

(Tn, ξn)n>0 cannot be reconstructed from trajectories of (Xt)t>0 and the filtration

(Ft)t>0 is not the natural completed filtration of (Xt)t>0.

For ω ∈ Ω we define a measure on ((0, ∞)×K,B(0, ∞)⊗K) setting

p(ω,C) =
∑
n>1

1{(Tn(ω), ξn(ω))∈C}, C ∈ B(0, ∞)⊗K (1.3)
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where B(Λ) denotes the Borel σ-algebra of any topological space Λ. p is called a

random measure since ω 7→ p(ω,C) is F-measurable for fixed C. We also use the

notation p(ω, dt dy) or p(dt dy). We remark that N is the cumulate distribution

associated to p, i.e.:

p((0, t]× A) = Nt(A) for t > 0, A ∈ K;

moreover, we have the following equality: for every K-indexed Ft-predictable

process H, ∫ τ

0

∫
K

Ht(y)p(dt dy) =
∑

n>1,Tn6τ

HTn(ξn),

which is always well defined since we are assuming that Tn →∞ P-a.s.

We present some examples, for which we mainly refer to [25] and [10].

Example 1.1. One-point process

Let T be a random element of (0, ∞]) and put T1 := T and Tn := ∞, n > 2.

Then Tn is called one-point process.

The next example defines a point process in terms of the differences between

Tn+1 − Tn, n ∈ Z+ = {0, 1, ..}, (T0 := 0), where we use the definition ∞−∞ :=

0. These random variables define a point process uniquely and are sometimes

referred to as the interarrival times.

Example 1.2. Homogeneous Poisson process

We consider a point process Tn and the associated counting process Nt. Suppose

that T1, T2 − T1, T3 − T2, .. are independent and distributed according to an

exponential distribution with parameter λ. Moreover, for all 0 6 s 6 t, Nt −Ns

is P-independent of Fs given F0 and, for all k > 0,

P {Nt −Ns = k|Fs} =
(λ · (t− s))k

k!
e−λ(t−s), k = 0, 1, 2.. (1.4)

Then Tn is called an homogeneous Poisson process with intensity λ.

If we know additional informations on the points Tn, we have the correspond-

ing simple marked point processes:

Example 1.3. Marked one-point process

Let T be a random element of (0, ∞], ξ a random element ofK and put (Tn, ξn) :=

(T, ξ) if n = 1 and T <∞, (Tn, ξn) := (∞, x∞) otherwise. Then (Tn, ξn) is called

marked one-point process.

Example 1.4. Independently marked homogeneous Poisson process

Let Tn an homogeneous Poisson process and ξn is an i.i.d.-sequence of random

elements of K which is independent of (Tn). Then (Tn, ξn) is an independently

marked homogeneous Poisson process.
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1.2 Intensity kernels

In this Section we present the notion of stochastic intensity and its natural link

with marked point processes.

Definition 1.1. Intensity Measure

The measure on R+ ×K

Λ([0, t]× A) := E [Nt(A)] , A ∈ K. (1.5)

is called intensity measure of Nt.

This new measure yields some information on the distribution of (Tn, ξn)n>0.

In the univariate case, the intensity measure is a measure on R+. For a homo-

geneous Poisson process, it is multiple of Lebesgue measure, as we have seen in

Example 1.2, where Λ([s, t]) = λ · (t− s).

Definition 1.2. LetNt be a counting process associated to a point process, adapted

to some filtration Ft. Suppose that λt is a nonnegative Ft-progressive process such

that, for all t > 0, ∫ t

0

λsds <∞ P− a.s.

If for all nonnegative Ft-predictable process Ht the equality

E
[∫ ∞

0

HsdNs

]
= E

[∫ ∞
0

Hsλsds

]
(1.6)

is verified, then we say that Nt admits the (P,Ft)- stochastic intensity λt.

Roughly speaking, the intensity describes the propensity of a process to jump

at time t given the whole history up to t. This definition opens the way to a

systematic analysis of point processes with the martingale approach. Indeed, as

[9] pointed out, it corresponds to say that

Nt −
∫ t

0

λsds is an Ft −martingale.

and it implies that, for all 0 6 s 6 t,

E [Nt −Ns|Fs] = E
[∫ t

s

λudu|Fs
]
.
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Definition 1.3. Intensity Kernel

Let (Tn, ξn)n be a K-marked point process with filtration Ft and associated

counting measure p(dt dy). Suppose that for each A ∈ K, Nt(A) admits the

(P,Ft)-predictable intensity λt(A), where λt(ω, dy) is a transition measure from

(Ω× [0, T ),F ⊗B+) into (K,K).

Then we say that p(dt dy) admits the (P,Ft)-intensity kernel λt(dy).

Remark 1.1. Let be λt a nonnegative Ft-predictable process and φt(ω, dy) a prob-

ability transition kernel from (Ω × [0, ∞),F ⊗ B+) into (K,K). If the intensity

kernel λt(dy) can be written in the form

λt(dy) = λt · φt(dy),

then the pair (λt, φt(dy)) is called (P,Ft)-local characteristics of p(dt dy).

We observe that, since φt(dy) is a probability, φt(K) = 1 and then λt = λt(K)

is the (P,Ft)-intensity of the underlying point process Nt = Nt(K).

Example 1.5. Consider the marked one-point process Nt as in Example 1.3, and

let L be the distribution of (T, ξ). Assume that the function L((0, t]) × A) has,

for A ∈ K, a piecewise continuous derivative f(t, A). The function

r(t, A) =
f(t, A)

L([t,∞]×K)
, t > 0,

(where 0/0 := 0) is the hazard rate of the random time

TA :=

{
T if ξ ∈ A
∞ otherwise.

If A = K, then one also says that r(t,K) is the hazard rate of L(· ×K). Then

it can be shown that

λ(t, A) = 1{t6T} r(t, A)

is the intensity of Nt.

We give then an important example of an intensity which is deterministic and

independent of t.

Proposition 1.1. Let Nt be a homogeneous Poisson process, with the intensity λ.

Then Nt has the stochastic intensity λt ≡ λ.

Proposition 1.1 can be generalized as follows.
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Example 1.6. Poisson process

A point process Tn (associated to the counting process Nt) is called a Poisson

process if Tn has independent increments (see Example 1.2) and if there is a

measure Λ on R+, which is locally bounded (i.e. Λ(t) := Λ([0, t]) < ∞) such

that for all s < t, s, t ∈ B+ and k ∈ Z+

P {Nt −Ns = k|Fs} =
Λ([s, t])k

k!
e−Λ([s, t]) if Λ([s, t]) <∞. (1.7)

Obviously, Λ is then the intensity measure of Nt. If

Λ(t) =

∫ t

0

λ(s)ds

for some measurable function λ, then λ is called the intensity function of Nt. If

λ(t) is piecewise continuous then λ(t) is the stochastic intensity of Nt which is in

fact deterministic. As claimed in Example 1.2, a homogeneous Poisson process

can indeed be shown to have independent increments and to satisfy 1.7 with

Λ(dt) = λdt. The intensity function is then constant.

We shall now give two examples of martingales to respect to point process

filtrations. To state the first, we define the hazard measure of a marked point

process (T, ξ) as the measure on R+ ×K given by

R(d(t, x)) :=
L(d(t, x))

L([t, ∞]×K)
(1.8)

and R({0} ×K) = 0, where L is the distribution of (T, ξ).

Proposition 1.2. Consider the marked one-point process associated with a marked

point (T, ξ), see Example 1.3. Let R be the hazard measure of (T, ξ). Then

Mt(A) := Nt(A)−R((0, t ∧ T ]× A), t ∈ R+, A ∈ K,

is an Ft-martingale for all A ∈ K.

Finally we refer to Example 1.6, where we have already observed that a Pois-

son process is a point process with a deterministic intensity kernel λ(t). More-

over, Watanabe [38] in 1964 pointed out that the Poisson process plays a dis-

tinguished role among point processes. Indeed the martingale property of the

process Nt −
∫ t

0
λ(s)ds, where λ(t) is some locally integrable deterministic func-

tion, characterizes Nt as a Poisson process with intensity λ(t). More precisely:
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Theorem 1.3. Martingale characterization of the Poisson process

Let Nt be a point process and let λ(t) be a locally integrable nonnegative measurable

function. Suppose that

Nt −
∫ t

0

λ(s)ds, t > 0,

is an Ft-martingale. Then Nt is a Ft-Poisson process with intensity λ(t), i.e., for

all 0 6 s 6 t, Nt − Ns is a Poisson random variable with parameter
∫ t

0
λ(u)du,

independent of Fs.

We end the section with two fundamental results, that we analyse in the

following section in a more general context.

Theorem 1.4. Projection Theorem (see [10] Theorem T3)

Let (Tn, ξn)n be a K-marked point process with the counting measure p(dt dy)

and the Ft-intensity kernel λt(dy). Then, for each nonnegative Ft.predictable

K-marked process H,

E
[∫ ∞

0

∫
K

Ht(y)p(dt dy)

]
= E

[∫ ∞
0

∫
K

Ht(y)λt(dy)dt

]
. (1.9)

Corollary 1.5. Integration Theorem

Let (Tn, ξn)n be a K-marked point process with the counting measure p(dt dy) and

the Ft-intensity kernel λt(dy). Let H be a Ft-predictable K-indexed process such

that, for all t > 0, we have

E
[∫ t

0

∫
K

|Ht(y)|λt(dy)dt

]
< ∞,[ ∫ t

0

∫
K

|Ht(y)|λt(dy)dt < ∞ P− a.s.,
]

then

E
[∫ t

0

∫
K

|Ht(y)| q(dt dy)

]
is a (P,Ft)−martingale (1.10)

where we have defined q(dt dy) = p(dt dy)− λt(dy)dt.
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1.3 Toward a general theory of intensity

Even in the case where Nt is nonexplosive, the existence of an Ft-stochastic

intensity λt for Nt is not granted. For this reason, we ask ourselves what does

happen in the case where there is no intensity for Nt. We start by the following

theorem for the point processes (see [10] Theorem T12):

Theorem 1.6. Let Nt be a point process with the filtration Ft that verifies the

usual conditions. Then there exists a unique, right-continuous Ft-predictable

nondecreasing process A satisfying A0 ≡ 0 such that, for all Ht Ft-predictable

processes,

E
[∫ Tn

0

HtdNt

]
= E

[∫ Tn

0

HtdAt

]
. (1.11)

The above stochastic integrals are defined for P-almost every ω as ordinary

(Stieltjes) integrals. A is called the compensator, or the dual predictable projec-

tion, of N .

Remark 1.2. To understand the meaning of the word “compensator”, we present

a simple calculation. Indeed, if we choose Ht = 1[s, t]1B, B Fs-measurable, the

definition above becomes

E [(Nt −Ns)1B] = E [(At − As)1B]

E [(Nt − At)1B] = E [(Ns − As)1B]

E [(Nt − At)|Fs] = Ns − As.

i.e. Nt − At is a Ft-martingale. In other words, Nt itself is not a martingale,

but it becomes a martingale when we subtract an increasing, right-continuous

predictable process At. The compensator thus characterizes the distribution of a

marked point process.

Remark 1.3. We do not assume Nt to be nonexplosive. In the case where Nt is

nonexplosive, if At is absolutely continuous with respect to the Lebesgue measure

in the sense that

At =

∫ t

0

λsds

for some Ft-progressive nonnegative process λt, then we are back to the situation

considered in the previous section, i.e. we have a stochastic intensity kernel exists.

Remark 1.4. In the following we always make the assumptions that P-a.s.

A has continuous trajectories (1.12)
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which are in particular finite-valued.

The above Theorem can be extended to the case of marked point processes.

However, we need some additional assumptions on the space of marks (K,K).

Hypotheses 1.1. K is a Borel subset of a compact metric space and K consists of

the Borelians of K.

Under Hypotheses 1.1 on K, it can be proved that there exists a function

φt(ω,A) such that

(1) for every ω ∈ Ω, t ∈ [0, ∞), the mapping A 7→ φt(ω,A) is a probability

measure on (K,K);

(2) for every A ∈ K, the process (ω, t) 7→ φt(ω,A) is predictable;

(3) for every nonnegative Ht(ω, y), P⊗K-measurable, we have

E
[∫ ∞

0

∫
K

Ht(y)p(dt dy)

]
= E

[∫ ∞
0

∫
K

Ht(y)φt(dy)dAt

]
. (1.13)

The random measure φt(ω, dy)dAt(ω) is denoted p̃(ω, dt dy) or simply p̃(dt dy),

and is called the compensator, or the dual predictable projection, of p.

Fix T > 0, and let Ht(ω, y) be a P⊗K-measurable real function satisfying∫ T

0

∫
K

|Ht(y)|φt(dy)dAt <∞, P− a.s.

Then the following stochastic integral can be defined, for every τ ∈ [0, T ],∫ τ

0

∫
K

|Ht(y)| q(dt dy) :=

∫ τ

0

∫
K

|Ht(y)| p(dt dy)−
∫ τ

0

∫
K

|Ht(y)|φt(dy)dAt

(1.14)

as the difference of ordinary integrals with respect to p and p̃. Here and in

the following the symbol
∫ b
a

is to be understood as an integral over the interval

(a, b]. We shorten this identity writing q(dt dy) = p(dt dy)− p̃(dt dy) = p(dt dy)−
φt(dy)dAt.

Now for all r > 1 we define Lr,0(p) as the space of P ⊗ K-measurable real

functions Ht(ω, y) such that

E
[∫ T

0

∫
K

|Ht(y)|r p(dt dy)

]
= E

[∫ T

0

∫
K

|Ht(y)|r φt(dy)dAt

]
<∞

(the equality of the integrals follows from the definition of φt(dy)).

Given an element H of L1,0(p), the stochastic integral (1.14) turns out to be

a finite variation martingale (see Appendix A.2).

Specifically, we have the following result:
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Corollary 1.7. We suppose that Hypotheses 1.1 on K hold and that the quantities

on either side of (1.13) are finite. Then∫ t∧Tn

0

∫
K

Ht(y)q(dt dy)

is a (P,Ft)-martingale, where q(dt dy) = p(dt dy)− φt(dy)dAt.

The measure q(dt dy) allows us to create new martingales. Moreover, there

exists an integral representation theorem of marked point process martingales

(see e.g. [13], [14]) which is a counterpart of the well known representation result

for Brownian martingales (see e.g. [34] Ch V.3 or [18] Theorem 12.33). Recall

that (Ft) is the filtration generated by the jump process, augmented by the usual

way. Then

Theorem 1.8. Let M be a cadlag (Ft)-martingale on [0, T ]. Then we have

Mt = M0 +

∫ τ

0

∫
K

Ht(y)q(dt dy), τ ∈ [0, T ],

for some process H ∈ L1,0(p).

This theorem is the key result used in the construction of a solution to the

BSDE (2.18).

1.4 Semi-Markov processes and their compen-

sators

We want to study stochastic processes, namely the semi-Markov ones, which

are specific jump processes. These form a large family and are very common in

statistic applications and in control problems. In particular we make explicit the

associated compensator form. As we will see in Chapter 2 and 3, its knowledge

is fundamental to the application of the optimal control theory based on BSDEs;

moreover, an explicit compensator formula can considerably simplify the BSDE

we need to solve to find the optimal control solution.

We start to briefly present the Markov time-homogeneous processes, which

can be seen as a specific case of the semi-Markov ones.

1.4.1 Markov processes

Let X = (X(t))t∈R+ be a stochastic process with state space (K,K).
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Definition 1.4. If for all (s, t) ∈ R2
+ and A ∈ K, we have

P {X(t+ s) ∈ A|X(u), u 6 s} = P {X(t+ s) ∈ A|X(s)} P− a.s.,

then the stochastic process X is called a Markov process.

Intuitively it means that the future is independent of the past given the

present. The regular conditional distributions

Ps,t(x,A) := P {X(t) ∈ A|X(s) = x} , A ∈ K, x ∈ K, (s, t) ∈ R2
+, s 6 t,

are called transition probability functions of the Markov process X. We assume

that they always exist.

If Ps,t(x,A) depends only on the difference t−s, i.e., Ps,t(x,A) = P0,t−s(x,A),

for all x ∈ K, A ∈ K, (s, t) ∈ R2
+, s 6 t, we say that the Markov process is

time-homogeneous. In this case we simplify the notation, writing

Pt(x,A) = Pτ,τ+t(x,A).

Definition 1.5. Jump process

Let (X(t), t ∈ R+) be a stochastic process defined on a probability space (Ω,F,P)

with values in (K, K). The process is said to be a jump process if, for all ω ∈ Ω

and all t ∈ R+, there exists a δ = δ(t, ω) such that Z(t+ h) = Z(t) for 0 6 h < δ

or, equivalently, if the trajectories are right-continuous in the discrete topology

on the state space.

We will consider Markov jump-processes. These processes start in a state,

stay there for a certain length of time, then jumps to another state, stays for a

certain length of time and so on.

We introduce 0 = T0 < T1 < .. as the jump times of the Markov process X;

for each t > 0 we define the random variable N(t) by

N(t) = max{n : Tn 6 t},

which counts the number of jumps in the time interval (0, t].

Then we consider the discrete-time process (ξn, n = 0, 1, ..) by

ξ0 = X(0) and ξn = X(Tn).

We have thus X(t) = ξN(t).

The random variables S1, S2, .. defined by

Sn+1 = Tn+1 − Tn
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for all n > 0, are the successive sojourn times in the states ξ0, ξ1, .. visited by the

process X. We assume that S∞ =∞ if Tn =∞.

The stochastic process (ξn, Sn)n=0,1,2,.. is the embedded process of X(t). The

process (ξn)n>0 is a Markov chain.

Markov time-homogeneous processes can be characterized in the following

way:

Theorem 1.9. Let be Xt a stochastic process specified by the marked point process

(ξn, Tn)n>1. Then Xt is a Markov time-homogeneous process iff

(1) The random variables Sn+1 = Tn+1 − Tn and ξn+1 have independent distri-

butions conditional of FTn;

(2) There exists a function λ(x) such that the distribution of Sn+1 conditional

of FTn is given by

P {Sn+1 6 t|FTn} = P {Sn+1 6 t|ξn}
= 1− e−λ(ξn)t, t ∈ R+

i.e., Sn+1 conditional of FTn has an exponential distribution with rate λ(ξn).

We can introduce the transition rate λ0(x,A) of a Markov time-homogeneous

process:

Definition 1.6. Transition rate

We denote π(x;A) the probability such that π(x;A) = P {ξn+1 ∈ A|ξn = x}, and

we consider the rate λ(x) as described in Theorem 1.9. Then

λ0(x,A) := λ(x) π(x;A).

is called the transition rate of X.

Remark 1.5. The time-homogeneous request in Theorem 1.9 is fundamental. In-

deed, property (1) doesn’t hold for general time non-homogeneous processes;

moreover, in the general case the rate λ is dependent of the time and thus the

waiting time distribution is not exponential.

In the following we mainly refer to Limnios [26] and Gikhman-Skorohod [21].

1.4.2 Markov renewal processes

The study of semi-Markov processes is closely related to the theory of Markov re-

newal processes, that generalizes the notion of Markov jump processes. Through

all the chapter, (K,K) is a measurable space such that {x} ∈ K for all x ∈ K.
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Definition 1.7. A function π(x;A), x ∈ K, A ∈ K, is called a sub-Markov transi-

tion function (or a sub-Markov kernel) on (K,K) if:

(1) ∀x ∈ K, π(x; ·) is a measure on K such that π(x;K) 6 1;

(2) ∀A ∈ K, π(·;A) is a K-measurable function;

(3) ∀A ∈ K, ∀x ∈ K, π(x;A) is a Borel measurable function.

If π(x;K) = 1 ∀x ∈ K, then π(x;A) is a Markov transition function (or a

Markov kernel) on (K,K).

If K is finite or a countable set and if K = P(K), a transition function on

(K,K) is determined by the matrix (πij; i, j ∈ K). Hence π(i;A) =
∑

j∈A πij,

A ∈ K.

Definition 1.8. A function Q(x;A, t), x ∈ K, t ∈ R+, A ∈ K, is called a semi-

Markov kernel on (K,K) if:

(1) Q(x;A, ·) ∀x ∈ K, A ∈ K, is nondecreasing, right continuous real function

such that Q(x;A, 0) = 0;

(2) Q(·; ·, t) ∀t,∈ R+, is a sub-Markov kernel on (K,K);

(3) π(·; ·) = Q(·; ·,+∞) is a Markov kernel on (K,K).

The following properties of a semi-Markov kernel are straightforward conse-

quences of the above definitions:

• For each x ∈ K, Q(x; ·, ·) defines a probability measure on the σ-algebra

B+ ⊗K.

• For each x ∈ K, the function H(x; ·) = Q(x;K, ·) is a distribution function

such that H(x, ; 0) = 0.

• For each t ∈ R+, A ∈ K, Q(·;A, t) is an K-measurable function.

Due to the inequality Q(x;A, t) 6 π(x;A), x ∈ K, t ∈ R+, A ∈ K, the

measure Q(x; ·, t) is absolutely continuous with respect to the measure π(x; ·)
for each t ∈ R+, x ∈ K (i.e., π(x;A) = 0 implies Q(x;A, t) = 0.) According to

the Radon-Nikodym theorem, there exists a real K-measurable function F (x; y, t)

such that

Q(x;A, t) =

∫
A

F (x; y, t)π(x; dy), A ∈ K. (1.15)
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It is easy to show that, for fixed x, y ∈ K, the function F (x; y, ·) is nondecreas-

ing. Hence F (x; y, ·) can be chosen right-continuous, as is Q(x;A, ·). Moreover,

throughout we shall assume that F (·; ·, t), for fixed t ∈ R+, is K⊗K-measurable.

The same argument can be applied to Q and H. Indeed, for fixed x ∈ K

and A ∈ K, the measure Q(x;A, ·) on (R+,B+) is absolutely continuous with

respect to the measure H(x; ·). Hence there exists a real, B-measurable function

q(x;A, ·) such that

Q(x;A, t) =

∫ t

0

q(x;A, u)H(x; du), t,∈ R+, x ∈ K, A ∈ K. (1.16)

Obviously, q(x; ·, t) is a measure on K and, since q(x;A, ·) is nondecreasing, and

right continuous, the function q(·; ·, t) is K⊗K-measurable for each fixed A ∈ K.

In the following we show how new stochastic processes can be obtained by the

semi-Markov kernel notion. In particular we define the Markov renewal process

associated to the semi-Markov kernel Q. On the measurable space (K×R+,K⊗
B+), let P ((x, s), A× [0, t]) be the Markov transition function defined by

P ((x, s), A× [0, t]) = Q(x;A, t− s) (1.17)

for (x, s) ∈ K × R+, A× [0, t] ∈ K⊗ B. It is well known that, for each (x, s) ∈
K × R+, there exists a probability space (Ω,F,P(x,s)) and a sequence of random

variables (ξn, Tn)n∈N such that

P(x,s) {ξ0 = x, T0 = s} = 1,

and

P(x,s) {ξn+1 ∈ A, Tn+1 6 t|σ(ξm, Tm,m 6 n)} = P(x,s) {ξn+1 ∈ A, Tn+1 6 t|ξn, Tn}
= Q(ξn;A, t− Tn).

for all n ∈ N, t, s ∈ R+, A ∈ K.

Thus (ξn, Tn)n∈N is a Markov process with the state space (K ×R+,K⊗B+)

and the transition probability given by (1.17).

Definition 1.9. The process (ξn, Tn) is called the Markov renewal process associ-

ated to the semi-Markov kernel Q.

Let us denote S0 = T0, Sn+1 = Tn+1 − Tn, n ∈ N and let set

Fn = σ((ξm, Sm), m 6 n),

Mn = σ((ξm, m 6 n).
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Theorem 1.10. For each s ∈ R+ the processes (ξn,Mn,P(x,s)) and ((ξn, Sn),Fn,P(x,s))

are Markov chain with state spaces (K,K) and (K × R+,K⊗ B+), respectively.

Their transition probabilities are given by

P(x,s) {ξn+1 ∈ A|Mn} = π(ξn;A), x ∈ K, A ∈ K, s ∈ R+,

P(x,s) {ξn+1 ∈ A, Sn+1 6 t|Fn} = Q(ξn;A, t), x ∈ K, A ∈ K, t, s ∈ R+.

1.4.3 Semi-Markov processes

Once we have the semi-Markov kernel Q and the associated Markov renewal

process, we can achieve the definition of a semi-Markov process. Let Q(x;A, t),

x ∈ K, A ∈ K, t ∈ R+, be a semi-Markov kernel on (K,K) and let (ξn, Tn) the

associate Markov renewal process. If we set

N(t) =

{
0 if S1 > t

sup{n ∈ N : S1 + · · ·+ Sn 6 t} if S1 < t,

then we can define the jump process

Z(t) = Zt = ξn for Tn 6 t+ T0 < Tn+1, t ∈ R+, n ∈ N,

or, equivalently,

Zt = ξN(t), t ∈ R+.

The jump times are T1 − T0, T2 − T1, .. and the intervals jumps are S1, S2, ...

Definition 1.10. The stochastic process (Z(t))t∈R+ defined above is called a semi-

Markov process corresponding to the semi-Markov kernel Q.

Remark 1.6. The random variable T∞ = limn→∞ Tn is called the explosion time.

The semi-Markov kernel (as well as the corresponding Markov renewal and semi-

Markov processes) is called regular if

T∞ =∞, P(x,s) − a.s. for all x ∈ K, s ∈ R+.

A semi-Markov process Zt is thus a stochastic process which makes transitions

from state to state in accordance with a Markov chain, but in which the amount

of time spent in each state before a transition occurs is random. We denote

ξn+1 as the embedded Markov chain of the process Zt. In this contest, Q(x;A, t)

represents the probability that after making a transition in x, the process next

makes a transition into a state belonging to the set A, in an amount of time less

or equal to t; π(x;A) and H(x; t) are respectively the marginal distribution of

ξn+1 and Sn+1, while the functions F (x; y, t) and q(x; y, t) give us the conditional

density function of Sn+1 given ξn+1, and of ξn+1 given Sn+1, respectively.
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1.4.4 Derivation of the compensator

In this Section we show how to calculate the explicit form for the compensator

associated to a semi-Markov process. We start from the work of Jacod [23],

where a formula for the compensator is given in the general contest of marked

point processes. We interpret the Jacod’s formula for the particular case of semi-

Markov processes, and we give a final formula consistent with the notions of Q,

H and q introduced above.

In his paper Jacod defined the random measure Gn(ω; dt, dx) as the condi-

tional law of (Sn+1, ξn+1) with respect to the σ-algebra FTn :

Gn(ω, dt, dx) = P {Sn+1 ∈ dt, ξn+1 ∈ dx|FTn}
= P {Sn+1 ∈ dt, ξn+1 ∈ dx|σ(ξ0, T0, .., ξn, Tn)} .

and the corresponding marginal measure Hn(ω; dt):

Hn(ω; dt) = Gn(ω; dt,K)

as the conditional law of Sn+1.

The general Jacod’s formula for the compensator of a marked point processes

is then:

Proposition 1.11. ([23] Prop. 3.1) The predictable projection of the measure

p(dt, dy) =
∑
n>1

δ(Tn, ξn)(dt, dy)

is given by

p̃(dt, dy) =
∑
n>1

Gn(dt− Tn, dy)

Hn([t− Tn,+∞])
1Tn<t6Tn+1 . (1.18)

Now we want to understand the link between the measure Gn and the cumula-

tive distribution functions Q and H introduced above for a semi-Markov process.

We observe that in the semi-Markov case the measures Gn and Hn assume a

simpler form:

Gn(dt, dy) = P {Sn+1 ∈ dt, ξn+1 ∈ dy|ξn, Tn}
= P(x,s) {Sn+1 ∈ dt, ξn+1 ∈ dy} (1.19)

and

Hn(dt) = P {Sn+1 ∈ dt|ξn, Tn}
= P(x,s) {Sn+1 ∈ dt} , (1.20)
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where we are assuming that ξn = x and Tn = s. We observe that the measure

Gn corresponds to the cumulative distribution function Q when C = A× [0, t]:

Gn(C) = Q(x;A, t).

We introduce then the measures Q̃ and H̃, for which Q and H are the respective

cumulative distribution functions:

H̃(x; [0, t]) = H(x; t) or equivalently, H(x; t) =

∫ t

0

H̃(x; dv),

Q̃(x;A, [0, t]) = Q(x;A, t) or equivalently, Q(x;A, t) =

∫ t

0

Q̃(x;A, dv).

Thus we obtain

Gn(dt− Tn, dy) = Q̃(ξn; dt− Tn, dy).

On the other hand, the denominator of (1.18) is

Hn([t− Tn, +∞]) = P(x,s) {Sn+1 > t− Tn} = H̃(ξn; [t− Tn, +∞]).

Finally we have to compute

Gn(dt− Tn, dy)

Hn([t− Tn, +∞])
=

Q̃(ξn; dy, dt− Tn)

H̃(ξn; [t− Tn, +∞])
. (1.21)

By the definition of Q̃ and H̃, (1.16) can be rewritten as:

Q̃(x;A, t) = q(x;A, t)H̃(x; dt).

Moreover, we introduce the hazard measure of H (see (1.8) ), that is

R(x; dt) =
H̃(x; dt)

H̃(x; [t, +∞])
. (1.22)

With these notations (1.21) becomes:

Gn(dt− Tn, dy)

Hn([t− Tn, +∞])
=

q(ξn; dy, t− Tn)H̃(ξn; dt− Tn)

H̃(ξn; [t− Tn, +∞])

= q(ξn; dy, t− Tn)R(ξn; dt− Tn).

Finally we achieve the following formula for the compensator of a semi-Markov

processes:

p̃(dt, dy) =
∑
n>0

q(ξn; dy, t− Tn)R(ξn; dt− Tn)1Tn<t6Tn+1

= q(Xt−; dy, a(t−))R(Xt−; dt− TN(t)), (1.23)
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where

a(t) = t− TN(t).

We introduce the survival function of Q, that is:

h(x; t) = 1−H(x; t) = Q(x;K, [t, +∞])

If we assume that h admits a rate, i.e., there exists a λ(x) such that

λ(x) := −h
′(x; t)

h(x; t)
,

then the hazard measure R becomes

R(x; dt) = λ(x)dt

and the formula (1.23) in this case is:

p̃(dt, dy) = q(Xt−; dy, a(t−))λ(Xt−)dt. (1.24)

Compensator for time-homogeneous Markov processes Markov time-

homogeneous processes can be seen as specific semi-Markov processes. As we

already underlined, in this case ξn+1 and Sn+1 have independent distribution

conditionally to FTn and then

q(x;A, a(t)) = P(x,s) {ξn+1 ∈ A|Sn+1 6 t− Tn}
= P(x,s) {ξn+1 ∈ A}
= π(x;A)

=
λ0(x;A)

λ(x)
.

where λ0(x;A) is the transition rate of the process introduced by (1.6).

Then for Markov time-homogeneous processes, the compensator is:

p̃(dt, dy) = q(Xt−; dy, a(t−))λ(Xt−)dt

=
λ0(Xt−; dy)

λ(Xt−)
λ(Xt−)dt

= λ0(Xt−; dy)dt. (1.25)

As we expected, the compensator of a Markov time-homogeneous process does

not depend on t neither on a(t) = t− TN(t).
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Remark 1.7. Let be (Z(t), t ∈ R+) a semi-Markov process corresponding to the

semi-Markov kernel Q on (K, K). As we already pointed out in the above dis-

cussion, for such a process the Markov property doesn’t hold. However, if we

consider the process (Z(t), a(t), t ∈ R+), where a(t) = t − TN(t), then it can be

shown that this one is a Markov time-homogeneous process. In particular we

have the following result:

Theorem 1.12. ([26] Theorem 3.12) The stochastic process (Z(t), a(t)) with values

in K × R+ is a Markov process. More precisely, for every (x, s) ∈ K × R+:

P(x,s) {Z(t+ h) ∈ A, a(t+ h) 6 α|σ(Z()τ, a(τ), τ < t), Z(t) = y, a(t) = u}
= ϕ((y, u);A,α)

where y ∈ K, u, α, t, h ∈ R+, A ∈ K, and ϕ(·, ·) is an opportune Markov transi-

tion function.



Chapter 2

Backward stochastic differential

equations

In this Chapter we state and prove the main results on existence and uniqueness

of backward stochastic differential equations.

In Section 2.1 we present the standard theory about BSDEs driven by a

Wiener process; then in Section 2.2 we consider the particular class of BSDEs

driven by a random measure naturally linked to a marked point process. In

both cases we first give some notations and definitions about BSDEs and their

solutions spaces; then we state and prove the existence and uniqueness results;

finally we conclude by the analyse of the parameters dependency upon the data

and upon a given process.

2.1 BSDEs driven by a Wiener process

In this Section we present the BSDE theory when the stochastic equation is driven

by a Wiener process.

We start by giving the main notations and tools on BSDEs theory we will use

in the next paragraphs.

2.1.1 Notation and setting

Let W a Wiener brownian motion in Rd, W = {W i
t , t > 0, i = 1, ..., d}, defined

in a complete probability space (Ω,F,P). Let N be the family of elements of F

of probability 0. We define

Fτ = σ(Wt : t ∈ [0, τ ],N)

28
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i.e, for every τ > 0, Fτ is the σ-algebra generated by the random variables

{Wt : t ∈ [0, τ ]}, augmented by the P-null sets. It is well-known that the filtration

(Fτ )τ>0 is right-continuous (i.e (Fτ = ∩t>τFt) for every τ), hence the so-called

“usual conditions” hold.

We recall that a process Z : Ω × R+ → E is said to be predictable if it is

measurable with respect to the predictable σ-field P[0, T ] = σ{A × (t, τ ] : A ∈
Ft, 0 6 t < τ < T}.

Let Z be a predictable process with values in L(Rd,Rk):

Z = {Zij
t , t > 0, i = 1, ..., k, j = 1, ..., d},

satisfying P
{∫ T

0

∣∣Zij
t

∣∣2 dt <∞} = 1 for every T > 0 and for every i, j. Then

the Ito integral I = {
∫ τ

0
ZtdWt, τ > 0} is defined as the Rk-valued process with

components

I iτ =
d∑
j=1

∫ τ

0

Zij
t dW

j
t , i = 1, ..., k.

The process {Iτ , τ > 0} is a continuous local martingale in Rk, null at 0.

We will need the following special case of the Burkholder-Davis-Gundy in-

equalities (see Appendix A.2, Theorem A.8): for p ∈ (0, ∞), there exists a

constant cp such that

E

[
sup

τ∈[0, T ]

∣∣∣∣∫ τ

0

ZtdWt

∣∣∣∣p
]
6 cp E

[(∫ τ

0

‖Zt‖2dWt

)p/2]
, T > 0 (2.1)

where ‖Zt‖ :=
∑d

j=1

∑k
i=1

∣∣Zij
t

∣∣2.

The Ito integral process {Iτ , τ ∈ [0, T ]} on an interval [0, T ] is a square-

integrable martingale in Rk if E
[∫ T

0
‖Zt‖2dt

]
<∞ and it is a martingale if

E

[(∫ T

0

‖Zt‖2dt

)1/2
]
<∞.

In the following we consider the BSDE on an interval [0, T ]:{
dYτ = ZτdWτ + f(τ, Yτ , Zτ )dτ, τ ∈ [0, T ]

YT = η
(2.2)

where

f : Ω× [0, T ]× Rk × L(Rd,Rk)→ Rk, η : Ω→ Rk
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are given functions, and we look for unknown processes Y : Ω × [0, T ] → Rk,

Z : Ω × [0, T ] → L(Rd,Rk). We notice that a condition at the final time T is

given for Y and that the solution is a pair of processes (Y, Z). We assume that

η is FT -measurable, and that f is measurable with respect to

P[0, T ] ⊗B(Rk)⊗B(L(Rd,Rk))

(in particular, for any y ∈ Rk and z ∈ L(Rd,Rk), the process {f(τ, y, z), τ > 0}
is predictable).

We stress here the fact that (2.2) is intended in the Ito sense and consequently

we are looking for predictable processes (Y, Z).

The equation satisfied by Y has to be interpreted in the usual integral form:

P-a.s.,

Y i
τ = Y i

0 +
d∑
j=1

∫ τ

0

Zij
t dW

j
t +

∫ τ

0

f i(t, Yt, Zt)dt, τ ∈ [0, T ], i = 1, ..., k.

We adopt vector notation and write: P-a.s.,

Yτ = Y0 +

∫ τ

0

ZtdWt +

∫ τ

0

f(t, Yt, Zt)dt, τ ∈ [0, T ].

Writing the equation for τ = T and recalling that we require YT = η we arrive at

an equivalent formulation of (2.2): P-a.s.,

Yτ +

∫ T

τ

ZtdWt = η −
∫ T

τ

f(t, Yt, Zt)dt, τ ∈ [0, T ]. (2.3)

Assume that a solution exists; since we require it is predictable, in particular

adapted, then Y0 is F0-adapted. Since the filtration (Ft) is generated by the

brownian motion, F0 is trivial (i.e. its elements are sets of probability 0 or 1). It

follows that Y0 is P-a.s. constant, hence deterministic.

2.1.2 Existence, uniqueness, regularity

The purpose of this Section is to analyse the solvability properties of BSDEs, i.e.,

we want to show under which conditions a BSDE is well defined; in particular

we study under what hypotheses it admits a solution and this solution has a

continuous dependence upon the data.

Let us consider the following assumptions.

Hypotheses 2.1. (1) η ∈ L2(Ω,FT ,P,Rk), i.e. η is FT -measurable and

E
[
|η|2
]
<∞.
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(2) f satisfies the measurability assumptions stated above; moreover there exists

K > 0 such that, P-a.s.,

|f(τ, y, z)− f(τ, y′, z′)| 6 K |y − y′|+K‖z − z′‖,

for every τ ∈ [0, T ], y, y′ ∈ Rk, z, z′ ∈ L(Rd,Rk).

(3) E
[∫ T

0
|f(t, 0, 0)|2 dt

]
<∞.

We look for a solution (Y, Z) in the space of predictable processes, with values

in Rk × L(Rd,Rk), such that

|||(Y, Z)|||2 := E
[∫ T

0

(
|Yt|2 + ‖Zt‖2

)
dt

]
<∞. (2.4)

We denote this space by K: endowed with the norm ||| · |||, it becomes a Hilbert

space. Moreover by Kcont we denote the subspace given by all couples (Y, Z) ∈ K
such that Y has a continuous modification and

|||(Y, Z)|||2cont := E

[
sup

τ∈[0, T ]

|Yτ |2
]

+ E
[∫ T

0

‖Zt‖2dt

]
<∞. (2.5)

We first state a priori estimate, and a regularity result.

Proposition 2.1. Let us assume that Hypotheses 2.1 holds and that

(Y, Z) ∈ K is a solution. Then Y has a continuous modification and there exists

a constant c > 0 such that

|||(Y, Z)|||2cont 6 cE
[
|η|2
]

+ cE
[∫ T

0

|f(t, 0, 0)|2 dt
]
.

Our aim is an existence and uniqueness theorem for the solution to the BSDE

(2.3). The main tool is the following well known representation theorem (see for

instance [22]):

Lemma 2.2. Let (Ft) be the filtration generated by a brownian motion W in Rd,

augmented by the P-null sets (as explained above). Given T > 0, ξ : Ω→ Rk

FT -measurable satisfying E
[
|ξ|2
]
<∞, there exists a predictable process

{Zτ , τ ∈ [0, T ]}, with values in L(Rd,Rk), such that E
[∫ T

0
‖Zt‖2dt

]
<∞ and

ξ = E [ξ] +

∫ T

0

ZtdWt.
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We first address a simplified version of the BSDE (2.3). Indeed we consider

a BSDE where we impose a restriction on the generator f , namely f does not

depend on Y neither on Z; by the representation theorem we prove existence,

uniqueness and an a priori estimate for this type of BSDE. Using this result and

a point fixed theorem we next achieve the existence and uniqueness theorem for

the general class of BSDEs we are interested in.

Lemma 2.3. Let us assume that Hypotheses 2.1 holds and let f : Ω× [0, T ]→ Rk

be a predictable process satisfying E
[∫ T

0
|ft|2 dt

]
<∞.

Then the backward equation

Yτ +

∫ T

τ

ZtdWt = η −
∫ T

τ

ftdt, τ ∈ [0, T ]. (2.6)

has a unique solution (Y, Z) in K.

Proof. Assume that such a solution exists. Denoting by EFτ the conditional

expectation with respect to Fτ , and noting that Iτ =
∫ τ

0
ZtdWt, τ ∈ [0, T ], is a

martingale, we have

Yτ = EFτ [Yτ ]

= EFτ

[(
−
∫ T

τ

ZtdWt + η −
∫ T

τ

ftdt

)]
= EFτ [η]− EFτ

[(∫ T

0

ftdt−
∫ τ

0

ftdt

)]
= EFτ [ξ] +

∫ τ

0

ftdt,

where ξ = η −
∫ T

0
ftdt.

To prove uniqueness, we first note that the equation is linear in (Y, Z), so

it is sufficient to show that if f = 0, η = 0, then Y = 0, Z = 0. If f = 0,

η = 0, then the last equality shows that Y = 0 and from the equation it follows

that
∫ T
τ
ZtdWt = 0, τ ∈ [0, T ], which implies Z = 0 (notice that uniqueness also

follows from Prop 2.1).

To show existence, let us define

ξ := η −
∫ T

0

ftdt, Yτ := EFτ [ξ] +

∫ τ

0

ftdt.

By Lemma 2.2, there exists Z such that ξ = EFT [ξ] +
∫ T

0
ZtdWt; consequently,

Yτ = EFT [ξ] +

∫ τ

0

ZtdWt +

∫ τ

0

ftdt.
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For τ = 0 and τ = T we obtain, respectively,

Y0 = EFT [ξ] , YT = ξ +

∫ T

0

ftdt = η,

and so the backward equation is satisfied.

Finally we can extend the well-posedness result to the more general BSDE

(2.3). We have the central result:

Theorem 2.4. Under Hypotheses 2.1, the BSDE (2.3) has a unique solution (Y, Z)

in K.

Proof. We define φ : K → K as follows: given (U, V ) ∈ K, (Y, Z) = φ(U, V ) is

defined as the unique solution in K of the equation

Yτ +

∫ T

τ

ZtdWt = η −
∫ T

τ

f(t, Ut, Vt)dt, τ ∈ [0, T ]. (2.7)

φ is well defined by the Lemma 2.3. We show that φ is a contraction; clearly, its

unique fixed point is the required solution of the BSDE.

We endow K with the equivalent norm

|||(Y, Z)|||2β = E
[∫ T

0

eβt(|Yt|2 + ‖Zt‖2)dt

]
, (2.8)

where β ∈ R will be fixed later. Take another pair (U ′, V ′) ∈ K, and let (Y ′, Z ′) =

φ(U ′, V ′), Ȳ = Y − Y ′, Z̄ = Z −Z ′, Ū = U −U ′, V̄ = V − V ′, f̄t = f(t, Ut, Vt)−
f(t, U ′t , V

′
t ). Then

Ȳτ +

∫ T

τ

Z̄tdWt = −
∫ T

τ

f̄tdt, τ ∈ [0, T ].

By the Ito formula,

d[eβτ
∣∣Ȳτ ∣∣2] = βeβτ

∣∣Ȳτ ∣∣2 dτ + 2eβτ 〈Ȳτ , dȲτ 〉+ eβτ‖Z̄τ‖2dτ.

Integrating between τ and T and noting that ȲT = 0, it follows

eβτ
∣∣Ȳτ ∣∣2 +

∫ T

τ

eβt[β
∣∣Ȳt∣∣2 + ‖Z̄t‖2]dt = −2

∫ T

τ

eβt〈Ȳt, Z̄tdWt〉 − 2

∫ T

τ

eβt〈Ȳt, f̄t〉dt.

(2.9)
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One verifies that
∫ τ

0
eβt〈Ȳt, Z̄tdWt〉, τ ∈ [0, T ], is a martingale. Indeed:

E
[∫ τ

0

|Z∗t Yt|
2 dt

]1/2

6 cE

[
sup

τ∈[0, T ]

|Yτ |
∫ τ

0

‖Zt‖ dt

]1/2

6 cE

[
sup

τ∈[0, T ]

|Yτ |2 +

∫ τ

0

‖Zt‖ dt

]
< +∞.

Then
∫ τ

0
eβt〈Ȳt, Z̄tdWt〉, τ ∈ [0, T ] is a martingale with zero expectation. Next,

using Hypothesis 2.1, point (2), and the inequality ab 6 (a2 + b2)/2, we obtain

2
∣∣〈Ȳt, f̄t〉∣∣ 6 2

∣∣Ȳt∣∣K(
∣∣Ūt∣∣+ ‖V̄t‖) 6 (

∣∣Ūt∣∣2 + ‖V̄t‖2)/2 + 4K2
∣∣Ȳt∣∣2 .

Taking expectation in (2.9), setting τ = 0 and using the above inequality we

arrive at∣∣Ȳ0

∣∣2 + E
[∫ T

0

eβt[(β − 4K2)
∣∣Ȳt∣∣2 + ‖Z̄t‖2]dt

]
6

1

2
E
[∫ T

0

eβt(
∣∣Ūt∣∣2 + ‖V̄t‖2)dt

]
.

Neglecting the first term and choosing β = 4K2 + 1 we conclude that

|||(Ȳt, Z̄t)|||2β 6
1

2
|||(Ū , V̄ )|||2β,

which shows the required contraction property.

Remark 2.1. Setting f̄τ = |f(τ, 0, 0)|, it follows from Hypotheses 2.1 that

|f(τ, y, z)| 6 K (|y|+ ‖z‖) + f̄τ , E
[∫ T

0

∣∣f̄t∣∣2 dt] <∞ (2.10)

Remark 2.2. It can be shown that the conclusion of the previous Theorem holds

true under the following, weaker assumptions. We still assume that η is FT -

measurable, and keep the same measurability assumptions on f ; moreover we

assume

(i) E
[
|η|2
]
<∞

(ii) There exists a predictable process {f̄τ , τ ∈ [0, T ]} such that (2.10) holds;

(iii) The inequality

|f(τ, y, z)− f(τ, y, z′)| 6 K‖z − z′‖,

holds P-a.s.,for all τ ∈ [0, T ], y ∈ Rk, z ∈ L(Rd,Rk);
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(iv) The inequality

〈y − y′, f(τ, y, z)− f(τ, y, z′)〉 > µ |y − y′|2 ,

holds for some µ ∈ R, P-a.s. for all τ ∈ [0, T ], y, y′ ∈ Rk, z ∈ L(Rd,Rk),

(v) y → f(τ, y, z) is continuous, P-a.s. for all τ ∈ [0, T ], z ∈ L(Rd,Rk).

Under the previous assumptions, in [11] was obtained an existence and uniqueness

Theorem for BSDE (2.3). In particular, they recall the result of Pardoux [30],

Theorem 2.2, where the following hypothesis was introduced:

|f(t, y, 0)| 6 |f(t, 0, 0)|+ |ϕ(y)| P− a.s. ∀(t, y) ∈ [0, T ]× Rk, (2.11)

where ϕ : R+ → R+ is deterministic continuous increasing function. Under

hypotheses (i), (ii), (iii), (iv), (v), and the additional hypothesis (2.11), it is

proved that BSDE (2.3) has a unique solution in K.

The following two paragraphs are devoted to investigate what happens when

the considered BSDE has coefficients depending on another stochastic process

X. This analysis is particularly useful in view of the optimal control framework

in Chapter 3. Indeed, in that Chapter we solve optimal control problems by

the BSDEs theory, and doing so we deal with BSDEs depending on a particular

stochastic process, namely the controlled process. This process turns out to be

then the solution of another stochastic differential equation.

In Section 2.1.3 we analyse the continuous and regular dependence of the

solution to the BSDE on a given general stochastic process X; then in Section

2.1.4 we consider the particular case when X is solution of a forward stochastic

differential equation.

2.1.3 Equations depending on a given process: continuous

and regular dependence

In this general framework we suppose that X is a process with values in Rn

and that it belongs to the space Hp for every p ∈ [1, ∞). We denote by Hp

the space of continuous adapted (hence predictable) processes in Rn satisfying

‖X‖pHp := E
[
supτ∈[0, T ] |Xτ |p

]
<∞.

We consider the BSDE: P-a.s.,

Yτ +

∫ T

τ

ZtdWt = φ(XT )−
∫ T

τ

ψ(t,Xt, Yt, Zt)dt, τ ∈ [0, T ]. (2.12)
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where φ : Rn → Rk, ψ : [0, T ] × Rn × Rk × L(Rd,Rk) → Rk are given Borel

functions. As before, we look for predictable processes Y and Z with values in

Rk and in L(Rd,Rk) respectively (we recall that W has valued in Rd).

On the functions φ, ψ we fix the following assumptions.

Hypotheses 2.2. For all τ ∈ [0, T ], x ∈ Rn, y, y′ ∈ Rk, z, z′ ∈ L(Rd,Rk), we have,

for some constants K > 0 and m > 0,

(1) |ψ(τ, x, y, z)− ψ(τ, x, y′, z′)| 6 K |y − y′|+K‖z − z′‖;

(2) |φ(x)|+ |ψ(τ, x, 0, 0)| 6 K(1 + |x|m).

Setting η = φ(XT ), and f(τ, y, z) = ψ(τ,Xτ , y, z), we can easily check that

η and f satisfy the conditions in Hypotheses 2.1. Thus there exists a unique

solution (Y, Z) ∈ K to (2.12).

We concentrate now on its dependence on X.

Proposition 2.5. Assume Hypotheses 2.2 and suppose that the mappings

x→ φ(x) and x→ ψ(τ, x, y, z) are continuous. Let X,Xn ∈ Hp, n = 1, 2, ... and

let (Y, Z), (Y n, Zn) be the corresponding solutions. If ‖Xn − X‖Hp → 0 when

n→∞ and p sufficiently large then, letting n→∞,

|||(Y, Z)− (Y n, Zn)|||2cont = E

[
sup

τ∈[0, T ]

|Yτ − Y n
τ |

2

]
+ E

[∫ T

τ

‖Zt − Zn
t ‖2dt

]
→ 0.

Moreover, the dependence on X is differentiable:

Proposition 2.6. Assume that φ ∈ C1(Rn) and ψ(τ, ·, ·, ·) ∈ C1(Rk × Rn ×
L(Rd,Rn)) for a.e τ ∈ [0, T ]. Moreover assume that there exist two constants

K > 0 and µ > 0 such that

|Oφ(x)| 6 K(1 + |x|µ), |Oxψ(τ, x, y, z)| 6 K(1 + |x|µ), (2.13)

for all x ∈ Rn, y ∈ Rk, z ∈ L(Rd,Rn) and a.e τ ∈ [0, T ]. Then, if p is large

enough, the map X → (Y, Z) is Gâteaux differentiable as a map Hp → Kcont.

In fact the Gâteaux differential is strongly continuous.

2.1.4 The forward-backward system

In the previous section we have introduced the parameters dependency upon a

certain stochastic process (Xt)t, which is supposed to be known, and the couple

of parameters of the form:

(φ(XT ), ψ(t,Xt, Yt, Zt)).
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Now we suppose that the randomness of the BSDE parameters is no longer due

to a given process; conversely, we consider a process (Xt)t as itself a solution of a

forward stochastic differential equation (FSDE). In this case, if we take the initial

condition of the FSDE as X0 = x, the solution (Y, Z) of the associated BSDE

can be seen as a solution of a parametrized BSDE, with parameter x.

Let us consider again the BSDE: P-a.s.,

Yτ +

∫ T

τ

ZtdWt = η −
∫ T

τ

ψ(t,Xt, Yt, Zt)dt, τ ∈ [0, T ]. (2.14)

Now X is the solution of a forward stochastic differential equation. Namely, let

us consider the following equation on the interval [τ, T ] ⊂ [0, T ]:{
dXτ = F (Xτ )dτ +G(Xτ )dWτ , τ ∈ [0, T ]

X0 = x
(2.15)

The equation is understood as usual: P-a.s.,

Xτ = x+

∫ τ

0

F (Xt)dt+

∫ τ

0

G(Xt)dWt τ ∈ [0, T ]. (2.16)

Here x ∈ Rn is given, and the functions

F : Rn → Rn, G : Rn → L(Rd, Rn)

are Borel measurable and satisfy the following hypotheses:

Hypotheses 2.3. For all x, x′ ∈ Rn and for some constants K we have

|F (x)− F (x′)|+ ‖G(x)−G(x′)‖ 6 K |x− x′| .

It is well known that there exists a unique continuous and adapted process

Xτ , τ ∈ [0, T ], solution of the forward equation. For every p ∈ [1, ∞), the fol-

lowing inequality holds:

‖X‖pHp = E

[
sup

τ∈[0, T ]

|Xτ |p
]
6 c(1 + |x|)p.

By the results of the previous sections, the backward equation (2.12) with X

solution of (2.15) has a unique predictable solution (Y, Z) ∈ K. To be more

explicit, the system:
dXτ = F (Xτ )dτ +G(Xτ )dWτ , τ ∈ [0, T ]

dYτ = ψ(τ,Xτ , Yτ , Zτ )dτ + ZτdWτ , τ ∈ [0, T ]

X0 = x

YT = φ(XT )

(2.17)

admits a unique solution with X ∈ Hp (for any p ∈ [1, ∞)), (Y, Z) ∈ K; moreover

(Y, Z) ∈ Kcont.
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Remark 2.3. We observe that, also in this case, Y0 is deterministic. To prove this

assertion, let F[0, T ] be the σ-algebra generated by the random variable Wτ , τ ∈
[0, T ], augmented by the P-null sets. The process X is F[0, T ]-measurable. Writing

the backward equation on the interval [0, T ] we deduce that the solution, and

in particular Y0, is F[0, T ]-measurable. On the other hand Y0 is predictable, and

so Y0 is F0-measurable. Since F[0, T ] and F0 are independent (because W has

independent increments) and since Y0 is measurable to both the σ-algebras, the

conclusion follows.

2.2 BSDEs associated to a marked point process

Now we address a class of BSDEs driven by a random measure, without diffusion

part, on a finite time interval, naturally associated to a marked point process. We

strongly use the notions of Chapter 1; we will see how the BSDE Wiener theory

presented in Section 2.1 can be modified to achieve existence and uniqueness

results in the marked point process discrete case.

As in the diffusive case (Paragraph 2.1.1), the Section starts with a brief

introduction on the main notations and tools about the BSDEs theory for point

processes.

2.2.1 Notation and setting

From now on, we fix a deterministic terminal time T > 0.

For given ω ∈ Ω and τ ∈ [0, T ], we denote Lr(K,K, φτ (ω, dy)) the usual space

of K-measurable maps z : K → R such that
∫
K
|z(y)|r φτ (ω, dy) <∞ (below we

will only use r = 0 or 1).

Next we introduce several classes of stochastic processes, depending on a

parameter β > 0.

• L
2,β
Prog(Ω× [0, T ]) denotes the set of real progressive processes Y such that

|Y |2β := E
[∫ T

0

eβAt |Yt|2 dAt
]
<∞

• L2,β(p) denotes the set of mappings Z : Ω × [0, T ] × K → R which are

P⊗K-measurable and such that

‖Z‖2
β := E

[∫ T

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

]
<∞.
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We say that Y, Y ′ ∈ L
2,β
Prog(Ω×[0, T ]) (respectively, Z,Z ′ ∈ L2,β(p)) are equiv-

alent if they coincide almost everywhere with respect to the measure dAt(ω)P(dω)

(respectively the measure φt(ω, dy)dAt(ω)P(dω)) and this happens if and only if

|Y − Y ′|β = 0 (respectively, ‖Z − Z ′‖β = 0).

We denote L
2,β
Prog(Ω× [0, T ]) (respectively L2,β(p)) the corresponding set of equiv-

alence classes, endowed with the norm |·|β (respectively, ‖ · ‖β).

L
2,β
Prog(Ω× [0, T ]) and L2,β(p) are Hilbert spaces,

isomorphic to L2,β(Ω× [0, T ], P rog, eβAt(ω)dAt(ω)P(dω)) and

L2,β(Ω× [0, T ]×K,P⊗K, eβAt(ω)φt(ω, dy)dAt(ω)P(dω)) respectively.

Finally we introduce the Hilbert space Kβ = L
2,β
Prog(Ω × [0, T ]) × L2,β(p),

endowed with the norm ‖(Y, Z)‖2
β := |Y |2β + ‖Z‖2

β.

In the following we consider the backward stochastic differential equation:

P-a.s.,

Yτ +

∫ T

τ

Zt(y)q(dtdy) = ξ +

∫ T

τ

ft(Yt, Zt(·))dAt, τ ∈ [0, T ]. (2.18)

where the generator f and the final condition ξ are given, and we look for unknown

processes (Y, Z) ∈ Kβ.

2.2.2 Existence, uniqueness, regularity

In parallel to what was done in Section 2.1.2, we want to show under which

conditions a BSDE driven by a marked point process is well defined. We ask

ourselves when this particular class of BSDEs admits a solution, and if are there

any continuous dependences upon the data.

We start to consider the following assumptions on the data f and ξ.

Hypotheses 2.4. (1) The final condition ξ : Ω→ R is FT -measurable and

E
[
eβAT |ξ|2

]
<∞.

(2) For every ω ∈ Ω, τ ∈ [0, T ], r ∈ R, a mapping

fτ (ω, r, ·) : L2(K,K, φτ (ω, dy)) → R is given, satisfying the following as-

sumptions:

(i) for every Z ∈ L2,β(p) the mapping

(ω, τ, r) 7→ fτ (ω, r, Zτ (ω, ·)) (2.19)

is Prog ⊗B(R)-measurable;
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(ii) there exists L > 0, L′ > 0 such that for every ω ∈ Ω, τ ∈ [0, T ],

r, r′ ∈ R, z, z′ ∈ L2(K,K, φτ (ω, dy)) we have

|fτ (ω, r, z(·))− fτ (ω, r′, z′(·))| (2.20)

6 L′ |r − r′|+ L
(∫

K
|z(y)− z′(y)|2 φτ (ω, dy)

)1/2
;

(iii) we have

E
[∫ T

0

eβAt |ft(0, 0)|2 dAt
]
<∞. (2.21)

Remark 2.4. (1) The slightly involved measurability condition on the genera-

tor seems unavoidable, since the mapping fτ (ω, r, ·) has a domain which

depends on (ω, τ). However, in the following section, we will see how it can

be effectively verified in connection with optimal control problems.

Note that if Z ∈ L2,β(p) then Zτ (ω, ·) belongs to L2(K,K, φτ (ω, dy)) except

possibly on a predictable set of points (ω, τ) of measure zero to dAτ (ω)P(dω),

so that the requirement on the measurability of the map (2.19) is meaning-

ful.

(2) We note the inclusion

L2,β(p) ⊂ L1,0(p). (2.22)

Indeed, if Z ∈ L2,β(p), then the inequality∫ T
0

∫
K
|Zt(y)|φt(dy)dAt 6(∫ T

0

∫
K
|Zt(y)|2 φt(dy)eβAtdAt

)1/2 (∫ T
0
e−βAtdAt

)1/2

and the fact that
∫ T

0
e−βAtdAt = β−1(1 − e−βAT ) 6 β−1 imply that Z ∈

L1,0(p).

It follows from (2.22) that the martingale Mτ =
∫ τ

0

∫
K
Zt(y)q(dtdy) is well

defined for Z ∈ L2,β(p) and has cadlag trajectories P-a.s. It is easily checked

that M only depends on the equivalence class of Z as defined above.

Just as we did in Section 2.1.2, to prove the existence and uniqueness of the

solution for the BSDE (2.18) we start considering a simpler problem. Indeed we

take a BSDE with a generator ft that does not depend on Y , neither on Z, and

we study the existence and uniqueness of the associated solution.

Lemma 2.7. Suppose that f : Ω × [0, T ] → R is progressive, ξ : Ω → R is

FT -measurable, and

E
[
eβAT |ξ|2

]
+ E

[∫ T

0

eβAt |ft|2 dAt
]
<∞
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for some β > 0. Then there exists a unique pair (Y, Z) in Kβ solution to the

BSDE

Yτ +

∫ T

τ

∫
K

Zt(y)q(dtdy) = ξ +

∫ T

τ

ftdAt, τ ∈ [0, T ]. (2.23)

Moreover, the following identity holds for every τ ∈ [0, T ]:

E
[
eβAτ |Yτ |2

]
+ βE

[∫ T

τ

eβAt |Yt|2 dAt
]

+ E
[∫ T

τ

∫
K
eβAt |Zt(y)|2 φt(dy)dAt

]
= E

[
eβAT |ξ|2

]
+ 2E

[∫ T

τ

eβAtYtftdAt

]
(2.24)

and there exists two constants c1(β) = 4(1 + 1
β
) and c2(β) = 8

β
(1 + 1

β
) such that

E
[∫ T

0

eβAt |Yt|2 dAt
]

+ E
[∫ T

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

]
6 c1(β)E

[
eβAT |ξ|2

]
+ c2(β)E

[∫ T

0

eβAt |ft|2 dAt
]

(2.25)

Proof. Uniqueness is proved using the linearity of (2.23) in (Y, Z) and taking

conditional expectation given Fτ . We assume that (Y, Z) ∈ Kβ is a solution and

we denote by EFτ the conditional expectation with respect to Fτ . Recalling that

Mτ =
∫ τ

0

∫
K
Zt(y)q(dtdy), τ ∈ [0, T ], is a martingale, we have

Yτ = EFτ [Yτ ]

= EFτ

[(
−
∫ T

τ

∫
K

Ztq(dtdy) + ξ +

∫ T

τ

ftdAt

)]
= EFτ

[
ξ +

∫ T

τ

ftdAt

]

By the linearity, it is sufficient to show that if f = 0, ξ = 0, then Y = 0, Z = 0.

If f = 0, ξ = 0, then the last equality shows that Y = 0 and from the equation

(2.23) it follows that
∫ T
τ
Ztdq(dtdy) = 0, τ ∈ [0, T ], which implies Z = 0.

Still assuming a solution (Y, Z) ∈ Kβ exists, we now prove the identity (2.24).

We consider eβAt |Yt|2 and we apply the Itô formula for the product:

d(eβAt |Yt|2) = βeβAt |Yt|2 dAt + eβAtd(|Yt|2).

We remark that the covariance is zero because we chose At continuous; obviously,

if this hypothesis didn’t hold we would also have the product of the respective

jumps.
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Now we recall the Itô formula for finite-variation processes (see Appendix C):

df(Yt) = f ′(Yt−)dYt + ∆f(Yt)− f ′(Yt−)∆(Yt − Yt−).

In our case we have

d(|Yt|2) = 2Yt−dYt + Y 2
t − Y 2

t− − 2Yt−(Yt − Yt−)

= 2Yt−dYt + (Yt − Yt−)2

= 2Yt−dYt +
∣∣∆Y 2

t

∣∣ ,
that motives moreover the use of a quadratic norm in the work. Finally we get

d(eβAt |Yt|2) = βeβAt |Yt|2 dAt + 2eβAtYt−dYt + eβAt |∆Yt|2

= βeβAt |Yt|2 dAt

+eβAt

[
2Yt−

(
Yτ +

∫
K

Zt(y)q(dtdy)− ftdAt
)

+ |∆Yt|2
]
.

So integrating on [τ, T ] and recalling that A is continuous,

eβAτ |Yτ |2 = −
∫ T

τ

βeβAt |Yt|2 dAt − 2

∫ T

τ

eβAtYt−

∫
K

Zt(y)q(dtdy)

−
∑
τ<t6T

eβAt |∆Yt|2 + eβAT |ξ|2 + 2

∫ T

τ

eβAtYtftdAt. (2.26)

The integral process
∫ τ

0
eβAtYt−

∫
K
Zt(y)q(dtdy) is a martingale, because the in-

tegrand process eβAtYt−Zt(y) is in L1(p): in fact from the Young inequality we

get

E
[∫ T

0

∫
K
eβAt |Yt−| |Zt(y)|φt(dy)dAt

]
6 1

2
E
[∫ T

0
eβAt |Yt−|2 (dy)dAt

]
+ 1

2
E
[∫ T

0

∫
K
eβAt |Zt(y)|2 φt(dy)dAt

]
<∞.

Moreover we have

|∆Yτ |2 =

∫ τ

τ−

∫
K

Zt(y)p(dtdy). (2.27)

In fact Yt is the solution of (2.23) and it depends on both the measures p and

p̃; however, being A continuous, the jump terms come only from p. Taking the

absolute value and summing on t, we get∑
0<t6τ

eβAt |∆Yt|2 =

∫ τ

0

∫
K

eβAt |Zt(y)|2 p(dtdy)

=

∫ τ

0

∫
K

eβAt |Zt(y)|2 q(dtdy)

+

∫ τ

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt (2.28)
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where the stochastic integral with respect to q is a martingale. Taking the ex-

pectation in (2.26) we obtain (2.24).

We now pass to the proof of existence of the required solution, that is based,

as in the diffusive case, on the martingale representation Theorem. We start from

the inequality∫ T

τ

|ft| dAt =

∫ T

τ

e−
β
2
Ate

β
2
At |ft| dAt

6

(∫ T

τ

e−βAtdAt

)1/2(∫ T

τ

eβAt |ft|2 dAt
)1/2

.

Since β
∫ T
τ
e−βAtdAt = e−βAτ − e−βAT 6 e−βAτ we arrive at(∫ T

τ

|fτ | dAτ
)2

6
e−βAt

β

∫ T

τ

eβAt |ft|2 dAt. (2.29)

That implies in particular that
∫ T
τ
|ft| dAt is square summable. The solution

(Y, Z) is then defined by considering a cadlag version of the martingale Mτ =

EFτ

[
ξ +

∫ T
0
ftdAt

]
. By the martingale representation Theorem 1.8, there exists

a process Z ∈ L1,0(p) such that

Mτ = M0 +

∫ τ

0

∫
K

Zt(y)q(dydt), τ ∈ [0, T ].

Define the process Y by

Yτ := Mτ −
∫ τ

0

ft(Ut, Vt)dAt, τ ∈ [0, T ]. (2.30)

In particular

YT = MT −
∫ T

0

ft(Ut, Vt)dAt = ξ.

Then

Yτ − ξ = Mτ −MT +

∫ T

τ

ftdAt

= −
∫ T

τ

∫
K

Zt(dy)q(dt dy) +

∫ T

τ

ftdAt

i.e. Yτ satisfies the equation (2.23).
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It remains to show that (Y, Z) ∈ Kβ. Taking the conditional expectation, it

follows from (2.23) that Yτ = EFτ

[
ξ +

∫ T
τ
ftdAt

]
so that, using (2.29), we obtain

eβAτ |Yτ |2 6 2eβAτ
∣∣EFτ [ξ]

∣∣2 + 2eβAτ
∣∣∣∣EFτ

[∫ T

τ

ftdAt

]∣∣∣∣2
6 2EFτ

[
eβAT |ξ|2 +

1

β

∫ T

0

eβAt |ft|2 dAt
]
. (2.31)

Denoting by mτ the right hand side of (2.31), we see that m is a martingale by

the assumptions of the Lemma. In particular, for every stopping time S with

values in [0, T ] (see Appendix A.3), we have

E
[
eβAS |YS|2

]
6 E [mS] = E [mT ] <∞ (2.32)

by the Doob’s optional stopping theorem (see Appendix A.3). Next we define

the increasing sequence of stopping times

Sn = inf

{
τ ∈ [0, T ] :

∫ τ

0

eβAt |Yt|2 dAt +

∫ τ

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt > n

}
,

(2.33)

with the convention inf ∅ = T . Computing the Ito differential d(eβAt |Yt|2) on the

interval [0, Sn] and proceeding as before, we deduce

βE
[∫ Sn

0

eβAt |Yt−|2 dAt
]

+ E
[∫ Sn

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

]
6 E

[
eβASn |YSn|

2]+ 2E
[∫ Sn

0

eβAtYtftdAt

]
.

Using the inequalities 2Ytft 6 (β/2) |Yt|2 + (2/β) |ft|2 and (2.32) (with S = Sn),

we find the following estimates

E
[∫ Sn

0

eβAt |Yt|2 dAt
]
6

4

β
E
[
eβAT |ξ|2

]
+

8

β2
E
[∫ T

0

eβAt |ft|2 dAt
]
,

E
[∫ Sn

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

]
6 4E

[
eβAT |ξ|2

]
+

8

β
E
[∫ T

0

eβAt |ft|2 dAt
]
,

from which we deduce

E
[∫ Sn

0

eβAt |Yt|2 dAt
]

+ E
[∫ Sn

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

]
6 c1(β)E

[
eβAT |ξ|2

]
+ c2(β)E

[∫ T

0

eβAt |ft|2 dAt
]
, (2.34)
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where c1(β) = 4(1 + 1
β
) and c2(β) = 8

β
(1 + 1

β
).

Setting S = limn Sn, we deduce∫ S

0

eβAt |Yt|2 dAt +

∫ S

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt <∞, P− a.s.

which implies S = T , P-a.s, by the definition of Sn. Letting n→∞ in (2.34) we

conclude that (2.25) holds, so that (Y, Z) ∈ Kβ.

Theorem 2.8. Suppose that Hypotheses (2.4) holds with β > L2 + 2L′.

Then there exists a unique pair (Y, Z) in Kβ which solves the BSDE (2.18).

Proof. We use a fixed point theorem for the mapping Γ : Kβ → Kβ defined setting

(Y, Z) = Γ(U, V ), if (Y, Z) is the pair satisfying

Yτ +

∫ T

τ

Zt(y)q(dtdy) = ξ +

∫ T

τ

ft(Ut, Vt)dAt, τ ∈ [0, T ]. (2.35)

From the assumptions on f it follows that E
[∫ T

0
eβAt |ft(Ut, Vt)| dAt

]
<∞, so by

Lemma 2.7 there exists a unique (Y, Z) ∈ Kβ satisfying (2.35) and Γ is a well

defined map.

Let (U i, V i), i = 1, 2, be elements of Kβ and let (Y i, Zi) = Γ(U i, V i). Denote

Ȳ = Y 1 − Y 2, Z̄ = Z1 − Z2, Ū = U1 − U2, V̄ = V 1 − V 2, f̄t = ft(U
1
t , V

1
t ) −

ft(U
2
t , V

2
t ). Lemma 2.7 applied to Ȳ , Z̄, f̄ and (2.24) yields, noting that ȲT = 0,

E
[
eβAτ

∣∣Ȳt∣∣2]+ βE
[∫ T

τ

eβAt
∣∣Ȳt∣∣2 dAt]+ E

[∫ T

τ

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 φt(dy)dAt

]
= 2E

[∫ T

τ

eβAtȲtf̄tdAt

]
τ ∈ [0, T ].

From the Lipschitz conditions of f and elementary inequalities, it follows that

βE
[∫ T

0

eβAt
∣∣Ȳt∣∣2 dAt]+ E

[∫ T

0

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 φt(dy)dAt

]
6 2LE

[∫ T

0

eβAt
∣∣Ȳt∣∣ (∫

K

∣∣V̄t(y)
∣∣2 φt(dy)

)1/2

dAt

]

+2L′E
[∫ T

0

eβAt
∣∣Ȳt∣∣ ∣∣Ūt∣∣ dAt]

6 αE
[∫ T

0

∫
K

eβAt
∣∣V̄t∣∣2 φt(dy)dAt

]
+
L2

α
E
[∫ T

0

eβAt
∣∣Ȳt∣∣2 dAt]

+γL′E
[∫ T

0

eβAt
∣∣Ȳt∣∣2 dAt]+

L′

γ
E
[∫ T

0

eβAt
∣∣Ūt∣∣2 dAt]
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for every α > 0, γ > 0. This can be written as:(
β − L2

α
− γL′

) ∣∣Ȳ ∣∣2
β

+ ‖Z̄β‖2
β 6 α‖V̄β‖2

β +
L′

γ

∣∣Ū ∣∣2
β
.

By the assumption on β it is possible to find α ∈ (0, 1) such that

β >
L2

α
+

2L′√
α
. (2.36)

If L′ = 0 we see that Γ is an α-concentration on Kβ endowed with the equivalent

norm (Y, Z) 7→ (β−(L2/α)) |Y |2β +‖Z‖2
β. If L′ > 0 we choose γ =

√
α and obtain

L′√
α

∣∣Ȳ ∣∣2
β

+ ‖Z̄‖2
β 6 α‖V̄ ‖2

β + L′
√
α
∣∣Ū ∣∣2

β
= α

(
L′√
α

∣∣Ū ∣∣2
β

+ ‖V̄ ‖2
β

)
. (2.37)

so that Γ is an α-concentration on Kβ endowed with the equivalent norm (Y, Z) 7→
(L′/
√
α)) |Y |2β + ‖Z‖2

β. In all cases there exists a unique fixed point which is the

required solution to the BSDE (2.18).

2.2.3 Estimates and continuous dependence upon the data

We next prove some estimates on the solution of the BSDE (2.18), which show

in particular the continuous dependence upon the data.

Let us consider two solutions (Y 1, Z1), (Y 2, Z2) ∈ Kβ to the BSDE (2.18)

associated with the drivers f 1 and f 2 and final data ξ1 and ξ2, respectively,

which are assumed to satisfy Hypotheses 2.4. Denote Ȳ = Y 1−Y 2, Z̄ = Z1−Z2,

ξ̄ = ξ1 − ξ2, f̄t = f 1
t (Y 2

t , Z
2
t (·))− f 2

t (Y 2
t , Z

2
t (·)).

Proposition 2.9. Let (Ȳ , Z̄) be the processes defined above.

Then, for β > 2L′ + L2, the a priori estimate hold:

∣∣Ȳ ∣∣2
β
6

2

β − 2L′ − L2
E
[
eβAT

∣∣ξ̄∣∣2]+
4

β − 2L′ − L2
E
[∫ T

0

eβAt
∣∣f̄t∣∣2 dAt] , (2.38)

∣∣Z̄∣∣2
β
6

(
2 +

16

β − 2L′ − L2

)
E
[
eβAT

∣∣ξ̄∣∣2]
+

2

β − 2L′ − L2

(
1 +

16

β − 2L′ − L2

)
E
[∫ T

0
eβAt

∣∣f̄t∣∣2 dAt] . (2.39)

Proof. From the Ito formula applied to eβAt
∣∣Ȳt∣∣2 it follows that

d(eβAt
∣∣Ȳt∣∣2) = βeβAt

∣∣Ȳt∣∣2 dAt + 2eβAtȲt−dYt + eβAt
∣∣∆Ȳt∣∣2 .
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So integrating on [τ, T ] and recalling that A is continuous,

eβAτ
∣∣Ȳτ ∣∣2 = −

∫ T

τ

βeβAt
∣∣Ȳt∣∣2 dAt − 2

∫ T

τ

eβAtȲt−

∫
K

Z̄t(y)q(dtdy)

−
∑
τ<t6T

eβAt
∣∣∆Ȳt∣∣2 + eβAT

∣∣ξ̄∣∣2
+2

∫ T

τ

eβAtȲt
(
f 1
t (Y 1

t , Z
1
t )− f 2

t (Y 2
t , Z

2
t )
)
dAt. (2.40)

The integral process
∫ τ

0
eβAtȲt−

∫
K
Z̄t(y)q(dtdy) is a martingale, because the in-

tegrand process eβAtȲt−Z̄t(y) is in L1(p): in fact from the Young inequality we

get

E
[∫ T

0

∫
K

eβAt
∣∣Ȳt−∣∣ ∣∣Z̄t(y)

∣∣φt(dy)dAt

]
6

1

2
E
[∫ T

0

eβAt
∣∣Ȳt−∣∣2 (dy)dAt

]
+

1

2
E
[∫ T

0

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 φt(dy)dAt

]
< ∞.

Moreover we have∑
0<t6τ

eβAt
∣∣∆Ȳt∣∣2 =

∫ τ

0

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 p(dtdy)

=

∫ τ

0

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 q(dtdy)

+

∫ τ

0

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 φt(dy)dAt

where the stochastic integral with respect to q is a martingale. Taking the expec-

tation in (2.40), by the Lipschitz property of the driver f 1 and using the notation

‖z(·)‖2
t =

∫
K
|z(y)|2 φt(dy), we get

E
[
eβAτ

∣∣Ȳτ ∣∣2] = −E
[∫ T

τ

βeβAt
∣∣Ȳt∣∣2 dAt]

−E
[∫ T

τ

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 φt(dy)dAt

]
+ E

[
eβAT

∣∣ξ̄∣∣2]
+2E

[∫ T

τ

eβAtȲt
(
f 1
t (Y 1

t , Z
1
t )− f 2

t (Y 2
t , Z

2
t )
)
dAt

]
.
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Then we can estimate the first term in the following way:

E
[
eβAτ

∣∣Ȳτ ∣∣2] 6 −E
[∫ T

τ

βeβAt
∣∣Ȳt∣∣2 dAt]

−E
[∫ T

τ

∫
K

eβAt
∣∣Z̄t(y)

∣∣2 φt(dy)dAt

]
+ E

[
eβAT

∣∣ξ̄∣∣2]
+2E

[∫ T

τ

eβAt
∣∣Ȳt∣∣ (∣∣f 1

t (Y 1
t , Z

1
t )− f 2

t (Y 2
t , Z

2
t )
∣∣+
∣∣f̄t∣∣) dAt]

6 −E
[∫ T

τ

βeβAt
∣∣Ȳt∣∣2 dAt]− E

[∫ T

τ

eβAt‖Z̄t‖2
tdAt

]
+E

[
eβAT

∣∣ξ̄∣∣2]+ 2L′E
[∫ T

τ

eβAt
∣∣Ȳt∣∣2 dAt]

+2LE
[∫ T

τ

eβAt
∣∣Ȳt∣∣ ‖Z̄t‖tdAt]+ 2E

[∫ T

τ

eβAt
∣∣Ȳt∣∣ ∣∣f̄t∣∣ dAt]

We note that the quantityQ(y, z) = −β |y|2−‖z‖2
t+2L′ |y|2+2L |y| ‖z‖t+2

∣∣f̄t∣∣ |y|,
which occurs in the integrand terms in the right hand of the above inequality,

can be written as

Q(y, z) = −β |y|2 + 2L′ |y|2 + L2 |y|2 + 2
∣∣f̄t∣∣ |y| − (‖z‖t − L |y|)2

= −βL(|y| − β−1
L

∣∣f̄t∣∣)2 − (‖z‖t − L |y|)2 + β−1
L

∣∣f̄t∣∣2
where βL := β − 2L′ − L2 is assumed to be strictly positive. Hence

E
[
βeβAt

∣∣Ȳt∣∣2]+ βLE
[∫ T

τ
eβAt(

∣∣Ȳt∣∣− β−1
L

∣∣f̄t∣∣)2dAt

]
+E

[∫ T
τ
eβAt(‖Z̄t‖2

t − L
∣∣Ȳt∣∣)2dAt

]
6 E

[
eβAT

∣∣ξ̄∣∣2]+ E
[∫ T

τ
eβAt
|f̄t|2
βL

dAt

]
from which we deduce

E
[∫ T

0

eβAt
∣∣Ȳt∣∣2 dAt] 6 2

βL
E
[
eβAT

∣∣ξ̄∣∣2]+
4

β2
L

E
[∫ T

0

eβAt
∣∣f̄t∣∣2 dAt]

and

E
[∫ T

0
eβAt‖Z̄t‖2

tdAt

]
6
(

2 + 16
βL

)
E
[
eβAT

∣∣ξ̄∣∣2]
+ 2
βL

(
1 + 16

βL

)
E
[∫ T

0
eβAt
|f̄t|2
βL

dAt

]
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From the a priori estimates one can deduce the continuous dependence of the

solution upon the data.

Proposition 2.10. Suppose that Hypotheses 2.4 holds with β > L2 + 2L′ and let

(Y, Z) be the unique solution in Kβ to the BSDE (2.18).

Then

E
[∫ T

0

eβAt
∣∣Ȳt∣∣2 dAt]+ E

[∫ T

0

eβAt
∫
K

∣∣Z̄t(y)
∣∣2 φt(dy)dAt

]
6 C1(β)E

[
eβAT

∣∣ξ̄∣∣2]+ C2(β)E

[∫ T

0

eβAt

∣∣f̄t∣∣2
βL

dAt

]
(2.41)

where C1(β) = (2 + 18
β−2L′−L2 ), C2(β) = 2

β−2L′−L2 (1 + 18
β−2L′−L2 ).

Proof. The thesis follows from Proposition 2.9 setting f ′ = f , ξ′ = ξ, f 2 = 0 and

ξ2 = 0.



Chapter 3

Optimal Control and BSDEs

approach

The optimal stochastic control is a topic tightly connected to BSDEs. The control

problem can be exposed in two different ways: the so called strong formulation,

in which the noise process and the probability space on which it is defined are

fixed, and the weak formulation, in which only the law of the noise is fixed.

We present the second formulation, which can be applied both to diffusive and

marked point processes. In particular, we show that BSDEs can be used in control

theory to represent the value function and to characterize the optimal control.

The BSDEs theory is well known in the diffusive case (see [16], [17], [27], [29]);

conversely, optimal control problems for point processes are usually solved via

dynamic programming, and thus, in this case, the BSDEs theory represents an

innovating alternative approach.

In Section 3.1 we first present optimal control problem for Wiener processes,

and their connections with the BSDEs diffusive theory. Then in Section 3.2

we extend the discussion to marked point processes, highlighting the significant

points in common and the main differences between the diffusive and the discrete

treatment.

3.1 Optimal control for diffusive processes

3.1.1 Weak formulation of the problem

We are given a set U ⊂ Rn and the functions

F : [0, T ]× Rn → Rn

G : [0, T ]× Rn → Rn×d

50
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r : [0, T ]× Rn × U → Rd

φ : Rn → R
l : [0, T ]× Rn × U → R

and we consider the controlled equation:{
dXτ = F (τ,Xτ )dτ +G(τ,Xτ ) r(τ,Xτ , uτ )dτ +G(τ,Xτ )dWτ , τ ∈ [0, T ]

Xu
0 = x ∈ Rn

(3.1)

where u is an adapted stochastic process with values in some specified set U ⊂ Rn

and W is a Rd-valued standard Wiener process.

The purpose is to minimize over all admissible controls the cost functional

E
[∫ T

0

l(t,Xt, ut)dt+ φ(XT )

]
. (3.2)

Remark 3.1. The data specifying the optimal control problem are the action space

U , the running cost function l, the terminal cost function φ and the function r

which describes the effect of the control process.

We work under the following general assumptions:

Hypotheses 3.1. U is a Borel subset of Rm, the functions F,G, r,Φ, l are Borel

measurable, the function x 7→ F (t, x) is continuous on Rn for every t ∈ [0, T ],

and there exists a constant C such that :

(i) |φ(x)− φ(x′)|+ |F (t, x)− F (t, x′)|+ |G(t, x)−G(t, x′)| 6 C |x− x′|,

(ii) |r(t, x, u)− r(t, x′, u′)|+ |l(t, x, u)− l(t, x′, u′)| 6 C(|x− x′|+ |u− u′|),

(iii) |G(t, x)|+ |F (t, 0)|+ |r(t, x, u)|+ |l(t, 0, u)| 6 C.

for every t ∈ [0, T ], x, x′ ∈ Rn, u, u′ ∈ U .

We note that if r(t, x, u) = u then U is required to be bounded.

An admissible control system (a.c.s) is given by the set

U = (Ω̂, F̂, (F̂t)t>0, P̂, û)

where: (Ω̂, F̂, P̂) is a complete probability space, the filtration (F̂t)t>0 verifies the

usual conditions and the process û : [0, T ] × Ω̂ → U ⊂ Rm is predictable with

respect to the filtration (F̂t)t>0.
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For any a.c s U and fixed x ∈ Rn, we consider the process XU
τ , τ ∈ [0, T ],

solution of the Ito stochastic equation: P-a.s, for every τ ∈ [0, T ],

XU
τ = x+

∫ τ

0

F (t,XU
t )dt+

∫ τ

0

G(t,XU
t ) r(t,XU

t , ût)dt+

∫ τ

0

G(t,XU
t )dŴt, (3.3)

where the process Ŵ : [0, T ] × Ω̂ → Rd is a Wiener process with respect to the

filtration (F̂t)t>0. It is well known that, under Hypothesis 3.1, for all a.c.s there

exists a continuous, F̂t-adapted solution, unique up to indistinguishability (recall

that the term G(t, x)r(t, x, u) is Lipschitz in x uniformly in t and u).

In this setting the cost functional depends on U and is given by:

J(U) = Ê
[∫ T

0

l(t,XU
t , ût)dt+ φ(XU

T )

]
(3.4)

(notice that, for all a.c.s U, J(U) is a well defined real number). We consider the

problem of minimizing J(U) over all a.c.s U. Any a.c.s which minimizes J(·), if

it exists, is called optimal for the control problem starting from the fixed x at

time 0 in the weak formulation. The minimal value of the cost is then called the

optimal cost in the weak formulation.

Finally we introduce the value function V ∈ R corresponding to the weak

formulation:

V = inf
U
J(U) (3.5)

where the infimum is taken over all a.c.s U.

3.1.2 Solving the Optimal Control problem

by the BSDEs approach

To start we introduce the hamiltonian function ψ : [0, T ]×Rn×Rd → R setting

ψ(t, x, z) = inf
u∈U
{l(t, x, u) + zr(t, x, u)}, t ∈ [0, T ], x ∈ Rn, z ∈ Rd (3.6)

and we define the following, possibly empty set:

Γ(t, x, z) = {u ∈ U : l(t, x, u)+zr(t, x, u) = ψ(t, x, z), t ∈ [0, T ], x ∈ Rn, z ∈ Rd}.
(3.7)

The function ψ has some additional properties.

Lemma 3.1. Assume Hypotheses 3.1. Then there exists a constant c such that

|ψ(t, 0, 0)| 6 c, |ψ(t, x, z)− ψ(t, x′, z′)| 6 c |z − z′|+ c |x− x′| (1 + |z|+ |z′|)

for every t ∈ [0, T ], x, x′ ∈ Rn, z, z′ ∈ Rd.
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From now we shall always assume that Hypothesis 3.1 hold.

Let W̃ be a standard Wiener process in Rd, defined in some complete proba-

bility space (Ω̃, F̃, P̃). For 0 6 τ 6 T , we denote by F̃τ the σ-algebra generated

by W̃s, s ∈ [0, τ ], and augmented by the null sets of F̃. For fixed x ∈ Rn we

consider the equation:

X̃τ = x+

∫ τ

0

F (t, X̃t)dt+

∫ τ

0

G(t, X̃t)dW̃t, τ ∈ [0, T ]. (3.8)

The solution {X̃τ , τ ∈ [0, T ]} is a continuous process in Rn, adapted to the

filtration (F̃τ )τ∈[0, T ]. Moreover, the law of (W̃ , X̃) is uniquely determined by F

and G.

Next we consider the BSDE

Ỹτ +

∫ T

τ

Z̃tdW̃t = φ(X̃T ) +

∫ T

τ

ψ(t, X̃t, Z̃t)dt, τ ∈ [0, T ]. (3.9)

By Theorem 2.4 there exist a solution (Ỹ , Z̃) of (3.9) on the interval [0, T ],

where Ỹ is unique up to indistinguishability and Z̃ is unique up to modification.

Moreover, from the proof of the Theorem 2.4 it follows that the law of (Ỹ , Z̃) is

uniquely determined by the law of (W̃ , X̃) and by φ and ψ. We note that Ỹ0,

being measurable with respect to the degenerate σ-algebra F̃0, is deterministic; in

particular Ỹ0 = Ẽ
[
Ỹ0

]
only depends on the law of Ỹ , and thus it is a functional

of F , G, φ and ψ.

We set then

J ] = Ỹ0

The previous discussion shows that J ] is a number, whose value is uniquely

determined by F , G, φ and ψ. The relevance of J ] to our control problem is

explained in to the following proposition.

Proposition 3.2. Assume that Hypothesis 3.1 hold. For fixed x ∈ Rn and for every

a.c.s U, we have J ] 6 J(U).

Proof. We define the process

WU
τ := Ŵτ +

∫ τ

0

r(t,XU
t , ût)dt, τ ∈ [0, T ], (3.10)

and we remark that XU solves the equation

XU
τ = x+

∫ τ

0

F (t,XU
t )dt+

∫ τ

0

G(t,XU
t )dWU

t , τ ∈ [0, T ]. (3.11)
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Since r is bounded, by the Girsanov theorem there exists a probability measure

PU on (Ω,F) such that WU is a Wiener process under PU.

Let us consider the backward equation for the unknown process {(Y U
τ , Z

U
τ ), τ ∈

[0, T ]}, that we require to be predictable with respect to the filtration generated

by WU augmented with the null sets (indeed also XU is adapted to the natural

filtration of WU, as well as is adapted to the filtration of the a.c.s.):

Y U
τ +

∫ T

τ

ZU
t dW

U
t = φ(XU

T ) +

∫ T

τ

ψ(t,XU
t , Z

U
t )dt, τ ∈ [0, T ] (3.12)

By a result recalled earlier, there exists a unique solution (Y U, ZU) of this equa-

tion. Comparing equations (3.11)-(3.12) with (3.8)-(3.9) we note that they de-

pend on the same functions F , G, φ and ψ and thus J ] = Y U
0 .

Now we write (3.12) with respect to Ŵ : for every τ ∈ [0, T ],

Y U
τ +

∫ T

τ

ZU
t dŴt +

∫ T

τ

ZU
t r(t,X

U
t , ût)dt = φ(XU

T ) +

∫ T

τ

ψ(t,XU
t , Z

U
t )dt. (3.13)

We want to show that the stochastic integral in (3.13) has zero expectation with

respect to the original probability P̂. Therefore we check that Ê
[∫ T

0

∣∣ZU
t

∣∣2dt]1/2

<∞.

We consider (3.13) and we obtain the following inequality:

sup
τ∈[0, T ]

∣∣∣∣∫ τ

0

ZU
t dŴt

∣∣∣∣ 6 2 sup
τ∈[0, T ]

∣∣Y U
t

∣∣+

∫ τ

0

[∣∣ψ(t,XU
t , Z

U
t )
∣∣+
∣∣ZU

t r(t,X
U
t , ût)

∣∣] dt.
By our assumptions, and taking into account the Burkholder-Davis-Gundy in-

equalities (see (2.1)), we have, for some constant c > 0,

Ê
[∫ T

0

∣∣ZU
t

∣∣2dt]1/2

6 c Ê

[
sup

τ∈[0, T ]

∣∣∣∣∫ τ

0

ZU
t dŴt

∣∣∣∣
]

6 c Ê

[
sup

τ∈[0, T ]

∣∣Y U
τ

∣∣]+ c Ê
[∫ T

0

[∣∣ψ(t,XU
t , 0)

∣∣+
∣∣ZU

t

∣∣] dt]
6 c

(
EU [ρ2

])1/2 ·(
EU

[
sup

τ∈[0, T ]

∣∣Y U
τ

∣∣2]+ EU
[∫ T

0

[∣∣ψ(t,XU
t , 0)

∣∣2 +
∣∣ZU

t

∣∣2] dt])1/2

< ∞

where ρ = dP̂/dPU is the Girsanov density and by EU [·] we denote the mean

value with respect to PU.
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Thus Ê
[∫ T

0

∣∣ZU
t

∣∣2dt]1/2

<∞ and therefore Ê
[∫ T

τ
ZU
t dW

U
t

]
= 0.

We can now set τ = 0 in (3.13) and compute expectation with respect to P̂,

obtaining:

J ] = Y U
0 = Ê

[
φ(XU

T )
]

+ Ê
[∫ T

0

[
ψ(t,XU

t , Z
U
t )− ZU

t r(t,X
U
t , ût)

]
dt

]
Adding and subtracting Ê

[∫ T
0
l(t,XU

t , ût)dt
]

we arrive at:

J ] = J(U) + Ê
[∫ T

0

[
ψ(t,XU

t , Z
U
t )− ZU

t r(t,X
U
t , ût)− l(t,XU

t , ût)
]
dt

]
(3.14)

By the definition of ψ (formula (3.6)) the term in the square brackets is non

positive and consequently J(U) > J ].

We notice that relation (3.14) is a backward stochastic differential equations

version of the fundamental relation. It immediately yields important conse-

quences:

Corollary 3.3. For any a.c.s U it is equivalent:

(1) ûτ ∈ Γ(τ,XU
τ , Z

U
τ ) P-a.s, for almost every τ ∈ [0, T ] ,

(2) J(U) = J ].

Moreover, if one of the above conditions holds, then U is optimal for the control

problem starting from x at time 0.

In order to prove the existence of an optimal a.c.s we need to require that the

infimum in the definition of ψ is achieved. Namely we assume (compare (3.6)):

Hypotheses 3.2. There exists a measurable map γ : [0, T ] × Rn × Rd → U such

that:

ψ(t, x, z) = l(t, x, γ(t, x, z)) + zr(t, x, γ(t, x, z))

Proposition 3.4. Under Hypotheses 3.1 and 3.2 there exists an a.c.s verifying

J(U) = J ]. Consequently J ] = V .

Proof. Let W be a standard Wiener process in Rd, defined in some complete

probability space (Ω,F,P). For 0 6 τ 6 T , we denote by Fτ the σ-algebra

generated by Wt, t ∈ [0, τ ], and augmented by the null sets of F̂.
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Moreover let (X, Y, Z) be the solution of the system (with respect to the natural

filtration generated by W augmented by null sets):
dXτ = F (τ,Xτ )dτ +G(τ,Xτ )dWτ , τ ∈ [0, T ]

X0 = x ∈ Rn

dYτ = −ψ(τ,Xτ , Zτ )dτ + ZτdWτ , τ ∈ [0, T ]

YT = φ(XT )

We define

Ŵτ := Wτ −
∫ τ

0

r(s,Xs, γ(s,Xs, Zs))ds

the system can be rewritten: for every τ ∈ [0, T ]
dXτ = F (τ,Xτ )dτ +G(τ,Xτ )r(τ,Xτ , γ(τ,Xτ , Zτ ))dτ +G(τ,Xτ )dŴτ

X0 = x ∈ Rn

dYτ = −ψ(τ,Xτ , Zτ )dτ + Zτr(τ,Xτ , γ(τ,Xτ , Zτ ))dτ + ZτdŴτ

YT = φ(XT )

If P̂ is the probability under which Ŵ is a Wiener process, û = γ(s,Xs, Zs), and

U = (Ω,F, (Ft)t>0, P̂, û)

then by construction XU = X and by uniqueness of the solution of the backward

equation (3.12), (Y U, ZU) = (Y, Z). Thus again by definition ûτ = γ(τ,XU
τ , Z

U
τ )

and the claims follows immediately by Corollary 3.3.

3.2 Optimal control for marked point processes

3.2.1 Weak formulation of the problem

We assume that a marked point process is given, satisfying the assumptions of

Chapter 1, and we denote as X the process that describes its evolution in time:

Xt =
∑
n>0

ξn1[Tn, Tn+1)(t), t > 0.

In particular we suppose that Tn →∞P-a.s and that Hypothesis (1.12) holds.

The data specifying the optimal control problem are an action (or decision)

space U , a running cost function l, a terminal cost function g, and another func-

tion r specifying the effect of the control process, exactly as in the diffusive case

in Section 3.1. They are assumed to satisfy the following conditions:
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Hypotheses 3.3. (1) (U,U) is a measurable space.

(2) The functions r, l : Ω× [0, T ]×K ×U → R are P⊗K⊗U-measurable and

there exist two constants Cr > 1, Cl > 0 such that, P-a.s,

0 6 rτ (x, u) 6 Cr, |lτ (x, u)| 6 Cl, τ ∈ [0, T ], x ∈ K, u ∈ U. (3.15)

(3) The function g : Ω×K → R is FT ⊗K-measurable.

We define as an admissible control process, or simply a control, any predictable

process (uτ )τ∈[0, T ] with values in U . The set of admissible control processes is

denoted A. We recall that a process u is (Ft)-predictable if and only if it admits

the representation

u(ω, t) =
∑
n>0

u(n)(ω, t)1Tn(ω)>t>Tn+1(ω), (3.16)

where for each n > 0 the mapping (ω, t) 7→ u(n)(ω, t) is FTn ⊗ B([0, ∞))-

measurable. Since we have FTn = σ(Ti, ξi, 0 6 i 6 n) (see e.g. [10], Appendix

A2, Theorem T30), the fact that a control is predictable can be roughly inter-

preted by saying that the controller, at each time Tn, based on observation of the

random variables Ti, ξi, 0 6 i 6 n, chooses his present and future control actions

and updates his decisions only at time Tn+1.

By the choice of the control process u we can modify the compensator, and

then the distribution, of the process X. We consider indeed the so called weak

approach: given a control u(·) ∈ A and a probability measure P on (Ω,F), we

associate to them a new probability measure Pu on the same probability space,

such that the process X admits a compensator of the form:

p̃u(dtdy) = rt(y, ut)p̃(dtdy).

If we denote by Eu the expectation under Pu, it corresponds to minimize the

functional cost:

J(u(·)) = Eu
[∫ T

0

lt(Xt, ut)dAt + g(XT )

]
. (3.17)

We show that such a probability Pu exists. Actually we can find Pu from the

original probability P by a change of measure of Girsanov type, as we are going

to describe. We define

Lτ = exp

(∫ τ

0

∫
K

(1− rt(y, ut))φt(dy)dAt

) ∏
n>1:Tn6τ

rTn(ξn, uTn), τ ∈ [0, T ]
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with the convention that the last product equals to 1 if there are no indices n > 1

satisfying Tn 6 τ (similar conventions will be adopted later without further

mention). It is a well-known result that L is a nonnegative supermartingale (see

[23] Proposition 4.3, or [8]), solution to the equation

Lτ = 1 +

∫ τ

0

∫
K

Lt−(rt(y, ut)− 1)q(dtdy), τ ∈ [0, T ].

If moreover E [LT ] = 1, then the process L is a martingale and thus we can define

a probability Pu setting

Pu(dω) = LTP(dω). (3.18)

The above result is a modification of the Girsanov theorem for the marked point

processes (see Appendix B).

The following result gives us some conditions under which E [LT ] = 1 holds

true.

Lemma 3.5. Let γ > 1 and

β = γ + 1 +
Cγ2

r

γ − 1
.

If E [exp(βAT )] <∞, then we have supτ∈[0, T ] E [Lγτ ] <∞ and E [LT ] = 1.

Proof. We follow [10], Chapter VIII, Theorem T11, with some modifications. To

shorten notation we define ρt(y) := rt(y, ut) and we denote Lτ = E(ρ)τ . For γ > 1

we define

at(y) := γ−1(1− ρt(y)γ
2

), bt(y) := γ − γρt(y)− γ−1 + γ−1ρt(y)γ
2

so that γ(1− ρt(y)) = at(y) + bt(y). Then

Lγτ = exp

(∫ τ

0

∫
K

(at(y) + bt(y))φt(dy)dAt

) ∏
Tn6τ

ρTn(ξn)γ,

and by Hölder’s inequality

E [Lγτ ] 6

{
E

[
exp

(∫ τ

0

∫
K

γat(y)φt(dy)dAt

) ∏
Tn6τ

ρTn(ξn)γ
2

]}1/γ

·

{
E
[
exp

(∫ τ

0

∫
K

γ

γ − 1
bt(y)φt(dy)dAt

)]} γ−1
γ
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Noting that γat(y) = 1 − ρt(y)γ
2
, the first term equals E(ργ

2
)τ and we have

E
[
E(ργ

2
)τ

]
6 1 by the supermartingale property. Since bt(y) 6 γ−γ−1 +γ−1Cγ2

r

we arrive at

E [Lγτ ] 6

{
E

[
exp

(
AT

(
γ + 1 +

Cγ2

r

γ − 1

))]} γ−1
γ

= {E [exp(βAT )]}
γ−1
γ

< ∞. (3.19)

Let Sn := inf{τ ∈ [0, T ] : Lnτ− + Aτ > n} with the convention inf ∅ = T , and let

ρ
(n)
t (y) := 1[0, Sn](t)(ρt(y)) + 1[Sn, T ](t), L

(n) := E(ρ(n)). Then L(n) satisfies:

L(n)
τ = 1 +

∫ τ

0

∫
K

L
(n)
t− (r

(n)
t (y)− 1)q(dtdy), τ ∈ [0, T ].

By the choice of ρ(n) we have L
(n)
τ = Lτ∧Sn , and by the choice of Sn it is easily

proved that E
[∫ τ

0

∫
K
L

(n)
t−

∣∣∣r(n)
t (y)− 1

∣∣∣φt(dy)dAt

]
<∞, so that L(n) is a martin-

gale and E
[
L

(n)
τ

]
= E [Lτ∧Sn ] = 1. The first part of the proof applied to L(n) and

the inequality (3.19) yield in particular:

sup
n

E
[
(L(n)

τ )γ
]

= sup
n

E [(Lτ∧Sn)γ] <∞.

So (Lτ∧Sn)n is uniformly integrable and letting n→∞ we conclude that E [Lτ ] =

1.

Under the assumptions of the Lemma, we can thus define the probability Pu
setting Pu(dω) = LT (ω)P(dω). It can be proved (see [23] Theorem 4.5) that

the compensator p̃u of p under Pu satisfies our claim, i.e. p̃u is related to the

compensator p̃ of p under P by the formula :

p̃u(dtdy) = rt(y, ut)p̃(dtdy) = rt(y, ut)φt(dy)dAt.

In particular, the compensator of N under Pu is:

Auτ =

∫ τ

0

∫
K

rt(y, ut)φt(dy)dAt. (3.20)

We can finally define the cost associate to every u(·) ∈ A as in (3.17): the control

problem consists in minimizing J(u(·)) over A.
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Remark 3.2. Later we will demand that

E
[
|g(XT )|2 eβAT

]
<∞ (3.21)

for some β > 0 fixed in such a way that the cost is finite for every admissible

control (see Hypothesis 2.4).

Remark 3.3. We notice that the laws of the random coefficients r, l, g under

P and under Pu are not the same in general, so that the formulation of the

optimal control problem should be carefully examined when facing a specific

application or modelling situation. This difficulty clearly disappears when r, l, g

are deterministic.

Example 3.1. Optimal control for Markov chains

We assume that X is a Markov chain on K = 1, ...N with matrix of transition

rates (λ(i, j))i, j∈K . We use the convention that λ(i, i) = 0. Then when X

enters a state i, it stays there for an exponential time with rate λ(i) :=
∑

j λ(i, j)

and it jumps on a state j (independent on the sojourn time) with probability

π(i, j) = λ(i, j)
λ(i)

(we assume π(i, j) = δi,j if λ(i) = 0). In this case the probability

p is specified by:

p((0, t]× {j}) =
∑
n>1

1Tn6t1XTn=j,

and his compensator is:

p̃(dt, {j}) = λ(Xt−, j) dt

= π(Xt−, j)λ(Xt−)dt.

In particular we can identify the measures φt(dy) and dAt of the previous general

discussion as:

φt({j}) = π(Xt−, j) and dAt = λ(Xt−)dt,

remarking that the compensator p̃ admits the stochastic intensity λ(Xt−).

If now we consider the optimal control problem and the associated probability

Pu, the compensator of p becomes:

p̃u(dt, {j}) = λ(Xt−, j) rt(j ut)dt.

We can for instance suppose that rt(j, ut) = r(j, ut), and consider a feedback

stationary control of the form

ut = u(X(t−))
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for a given function u : K → U . Then

p̃u(dt, {j}) = λ(Xt−, j) r(j, u(X(t−)))dt.

This is the compensator of a Markov chain with transition rates λ(i, j)r(j, u(i)):

the choice of the control modifies the original transition rates, multiplying them

for r(j, u(i)).

3.2.2 Solving the Optimal Control problem

by the BSDEs approach

We next proceed to the solution to the optimal control problem formulated above.

A basic role is played by the BSDE:

Yτ +

∫ T

τ

∫
K

Zt(y)q(dtdy) = g(XT )+

∫ T

τ

f(t,Xt, Zt(·))dAt, τ ∈ [0, T ] (3.22)

with terminal condition g(XT ) and generator defined by means of the hamiltonian

function f .

The hamiltonian function is defined for every ω ∈ Ω, t ∈ [0, T ], x ∈ K and

z ∈ L1(K,K, φt(ω, dy)) by the formula

f(ω, t, x, z(·)) = inf
u∈U

{
lt(ω, x, u) +

∫
K

z(y)(rt(ω, x, u)− 1)φt(ω, dy)

}
. (3.23)

We assume that the infimum is in fact achieved, possibly at many points. More-

over we need to verify that the generator of the BSDE (3.22) satisfies the con-

ditions required in the Section 2.2. It turns out that an appropriate assumption

is the following one, since we will see below that it can be verified under quite

general conditions. Here and in the following we set X0− = X0.

Hypotheses 3.4. For every Z ∈ L1,0(p) there exists a function uZ : Ω×[0, T ]→ U ,

measurable with respect to P and U, such that

f(ω, t,Xt−(ω), Zt(ω, ·)) = lt(Xt−(ω), uZ(ω, t))

+

∫
K

Zt(ω, y)(rt(ω, y, u
Z(ω, t))− 1)φt(ω, dy) (3.24)

for almost all (ω, t) with respect to the measure dAt(ω)P(dω).

Note that if Z ∈ L1,0(p) then Zt(ω, ·) ∈ L1(K,K, φt(ω, dy)) except possibly

on a predictable set of points (ω, t) of measure zero respect to dAt(ω)P(dω), so

that the equality (3.24) is meaningful. Also note that each uZ is an admissible

control.
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We can now verify that all the assumptions of Hypotheses 2.4 hold true for

the generator of the BSDE (3.22), which is given by the formula

ft(ω, z(·)) = f(ω, t,Xt, z(·)), ω ∈ Ω, t ∈ [0, T ], z ∈ L1(K,K, φt(ω, dy)).

Indeed, if Z ∈ L2,β(p) then Z ∈ L1,0(p) by (2.22), and (3.24) shows that the

process (ω, t) 7→ f(ω, t,Xt, Zt(ω, ·)) is progressive; since A is assumed to have

continuous trajectories and X has piecewise constant paths, the progressive set

{(ω, t) : Xt−(ω) 6= Xt(ω)} has measure zero with respect to dAt(ω)P(dω); it

follows that the process

(ω, t) 7→ f(ω, t,Xt, Zt(ω, ·)) = ft(ω, Zt(ω, ·))

is progressive, after modification on a set of measure zero, as required in (2.19).

Next, using the boundedness assumptions (3.15), it is easy to check that (2.20)

is verified with L′ = 0 and

L = sup |r − 1| = sup{|rt(y, u)− 1| : ω ∈ Ω, t ∈ [0, T ], y ∈ K, u ∈ U}.

Using (3.15) again we also have:

E
[∫ T

0

eβAt |f(t,Xt, 0)|2 dAt
]

= E

[∫ T

0

eβAt
∣∣∣∣ inf
u∈U

lt(Xt, u)

∣∣∣∣2 dAt
]

6 C2
l β
−1E

[
eβAT

]
, (3.25)

so that (2.21) holds as we provided the right-hand side of (3.25) is finite. As-

suming finally that (3.21) holds, by Theorem (2.8) the BSDE (3.22) has a unique

solution (Y, Z) ∈ Kβ if β > L2.

The corresponding admissible control uZ(ω, t), whose existence is required in

condition (3.21), is denoted by u∗. We are now ready to state the main result.

Recall that Cr > 1 was introduced in (3.15).

Theorem 3.6. Assume that conditions (3.15) and (3.21) are satisfied and that

E
[
exp((3 + C4

r )AT )
]
<∞. (3.26)

Suppose that exists β such that

β > sup |r − 1|2 , E [exp(βAT )] <∞, E
[
|g(XT )|2 eβAT

]
<∞. (3.27)

Let (Y, Z) ∈ Kβ denote the solution to the BSDE (3.22) and u∗ = uZ the corre-

sponding admissible control. Then u∗(·) is optimal and Y0 is the optimal cost, i.e

Y0 = J(u∗(·)) = infu(·)∈A J(u(·)).
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Remark 3.4. Note that if g is bounded then (3.27) follows from (3.26) with β =

3 + C4
r , since |rt(y, u)− 1|2 6 (Cr + 1)2 < 3 + C4

r .

Proof. Fix u(·) ∈ A. Assumption (3.26) allows to apply Lemma 3.5 with γ = 2

and yields E [L2
T ] < ∞. It follows that g(XT ) is integrable under Pu. Indeed by

(3.21):

Eu [|g(XT )|] = E [|LTg(XT )|] 6 (E
[
L2
T

]
)1/2(E

[
g(XT )2

]
)1/2 <∞.

We next show that under Pu we have Z ∈ L1,0(p), i.e Eu
[∫ T

0

∫
K
|Zt(y)| p̃u(dtdy)

]
<∞.

First, note that, by Hölder’s inequality,∫ T

0

∫
K

|Zt(y)|φt(dy)dAt =

∫ T

0

∫
K

e−
β
2
Ate

β
2
At |Zt(y)|φt(dy)dAt

6

(∫ T

0

e−βAtdAt

)1/2(∫ T

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

)1/2

=

(
1− e−βAT

β

)(∫ T

0

∫
K

eβAt |Zt(y)|2 φt(dy)dAt

)1/2

.

Therefore, using (3.15),

Eu
[∫ T

0

∫
K

|Zt(y)| p̃u(dtdy)

]
= Eu

[∫ T

0

∫
K

|Zt(y)| rt(y, ut)φt(dy)dAt

]
= E

[
LT

∫ T

0

∫
K

|Zt(y)| rt(y, ut)φt(dy)dAt

]
6

(
E
[
L2
T

])1/2 Cr√
β

{
E
[∫ T

0

eβAt |Zt(y)|2 φt(dy)dAt

]}1/2

,

and the right-hand side of the last inequality is finite, since (Y, Z) ∈ Kβ. We

have now proved that Z ∈ L1,0(p) under Pu. In particular, it follows that:

Eu
[∫ T

0

∫
K

Zt(y)p(dtdy)

]
= Eu

[∫ T

0

∫
K

Zt(y)p̃u(dtdy)

]
= Eu

[∫ T

0

∫
K

Zt(y)rt(y, ut)φt(dy)dAt

]
.

Setting τ = 0 and taking the expectation Eu in the BSDE (3.22), recalling that

q(dtdy) = p(dtdy)− p̃(dtdy) = p(dtdy)− φt(dy)dAt and that Y0 is deterministic,

we obtain

Y0 + Eu
[∫ T

0

∫
K

Zt(y)(rt(y, ut)− 1)φt(dy)dAt

]
= Eu [g(XT )] + Eu

[∫ T

0

f(t,Xt, Zt(·))dAt
]
.
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We finally obtain

Y0 = J(u(·))

+Eu
[∫ T

0

(
f(t,Xt, Zt(·))− lt(Xt, ut)−

∫
K

(rt(y, ut)− 1)φt(dy)

)
dAt

]
= J(u(·))

+Eu
[∫ T

0

(
f(t,Xt−, Zt(·))− lt(Xt−, ut)−

∫
K

(rt(y, ut)− 1)φt(dy)

)
dAt

]
where the last equality follows from the continuity of A. This identity is the

fundamental relation in the marked point processes case. By the definition of the

hamiltonian f , the term in square brackets is smaller or equal to 0, and it equals

0 if u(·) = u∗(·).

Hypotheses 3.4 can be verified in specific situations when it is possible to

compute explicitly the functions uZ . General conditions for its validity can also be

formulated using appropriate selection theorems, as in the following proposition.

Proposition 3.7. In addition to the assumptions in Hypotheses 3.3 suppose that

U is a compact metric space with its Borel σ-algebra U and that the functions

rt(ω, x, ·), lt(ω, x, ·) : U → R are continuous for every ω ∈ Ω, t ∈ [0, T ], x ∈ K

Then Hypotheses 3.4 is verified.

Proof. Let us consider the measure µ(dωdt) = dAtP(dω) on the predictable

σ-algebra P. Let P̄ denote its µ-completion and consider the complete mea-

sure space (Ω× [0, T ], P̄, µ). Fix Z ∈ L1,0(p), and note that the set

AZ = (ω, t) : Zt(ω, ·) /∈ L1(K,K, φt(ω, dy)) has µ-measure zero and define a map

FZ : Ω× [0, T ]× U → R setting:

FZ(ω, t, u) =

{
lt(ω,Xt−, u) +

∫
K
Zt(ω, y) (rt(ω, y, u)− 1)φt(ω, dy) (ω, t) /∈ AZ

0 (ω, t) ∈ AZ .

Then FZ(·, ·, u) is P̄-measurable for every u ∈ U , and it is easily verified that

FZ(ω, t, ·) is continuous for every (ω, t) ∈ Ω × [0, T ]. By a classical selec-

tion theorem (see [1] Theorem 8.1.3 and Theorem 8.2.11) there exists a func-

tion uZ : Ω × [0, T ] → U , measurable with respect to P̄ and U, such that

FZ(ω, t, uZ(ω, t)) = minu∈U F
Z(ω, t, u) for every (ω, t) ∈ Ω× [0, T ], so that (3.24)

holds for every (ω, t). After modifications on a set of µ-measure zero, the function

uZ can be made measurable with respect to P and U, and (3.24) still holds, as it

is understood as an equality for µ-almost all (ω, t).



Concluding remarks

The aim of this thesis was to provide a methodological treatment of backward

stochastic differential equations applied to optimal control problems. In this work

we showed how to solve, in a systematic way, optimal control problems with an

approach based on BSDEs. This is an alternative tool to the classical dynamic

programming theory, which represents a fundamental principle in the stochastic

control framework. The main idea of dynamic programming is to embed the

original problem into a much larger class of problems, and then to tie all these

problems together with a partial differential equation known as the Hamilton-

Jacobi-Bellman (HJB) equation. The HJB equation represents a very important

tool both in the diffusive case and in the context of jump processes.

Compared to dynamic programming theory, the BSDEs approach has the

great advantage of solving optimal control problems also in the case of nonmarko-

vian processes. Conversely, for such processes there is not a systematic treatment

via dynamic programming, since the generator to the HJB equation does not ex-

ist in general and the function value ceases to be deterministic. Moreover, in the

diffusive case the BSDEs theory leads to useful and interesting results from a com-

putational point of view. In fact, if we consider for instance an optimal control

problem for a process taking values in Rn, n� 1 (e.g. in a financial context), it

is much more efficient to compute the solution of the associated one-dimensional

BSDE instead of the solution of the n-dimensional HJB equation.

The results of this work admit several variants and generalizations: some of

them are not included here for reason of brevity and some are not yet complete.

For instance, the BSDE approach to optimal control of Markov jump processes

deserves a specific treatment: for this topic some results are in preparation, con-

cerning, in particular, the form of the associated BSDE and the corresponding

HJB equation. Moreover, we hope that this work may lead to a better under-

standing of the nonmarkovian situation. In particular, we studied the specific

form of the compensator in the semi-Markov case, with the intent to apply the

BSDEs approach to semi-Markov optimal control problems in the future. In our

study, we also considered more general processes below the semi-Markov case.
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Other appealing directions of investigation could be the study of diffusive equa-

tions with jumps, and the analysis of BSDEs driven by random measures without

Lipschitz assumptions on the generator, along the lines of many results available

in the diffusive case. We can also consider the extensions to the case of vector-

valued process Y and to random time interval. In the diffusive case, a large

literature is available on these topics.

In addition, there exist a great variety of optimal control problems not dis-

cussed here. First, we can consider optimal control problems with infinite horizon;

for these problems, the cost criterion in the diffusive case takes the form:

E
[∫ ∞

0

e−βtl(Xt, ut)dt

]
,

where β > 0 is a discount factor. One of the main contributions to this topic

consist of Pardoux’s paper [28].

In ergodic control problems, instead, we have to deal with stochastic systems

that exhibit in the long time a stationary behaviour characterized by an invariant

measure. In this case, the optimal control problem consists of optimizing over the

long term some criterion taking into account the invariant measure. A standard

formulation corresponds to optimize over the controls u a functional of the form:

lim
T→∞

sup
1

T
E
[∫ T

0

l(Xt, ut)dt

]
.

For a detailed discussion we refer the reader to the paper [19].

We can also analyse optimal stopping problems. In the diffusive case, they

consist in finding the function

v(x) = sup
τ∈S

E
[∫ τ

0

e−βt l(Xx
t )dt+ e−βτg(Xx

τ )

]
where S denotes the set of stopping times in [0, +∞], e−βτ = 0 if τ = +∞, and

Xx
t denotes a stochastic process with x as initial value. These specific optimal

control problems are investigated in depth in [15].

Optimal stopping problems can be generalized in the so called impulsive con-

trol problems. Roughly speaking, in this case the system is stopped several times,

and each time it is restarted from a new state value. In this context, we deal

with a series of stopping times Sn, and the functional cost depends both on the

stopping times and on the associated new state values. This kind of problems

are discussed by Pham in the paper [24].

Finally, it is possible to deal with more complex optimal control problems, as

for instance the case of control with partial observations, or the adaptive control.
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In the first case we have to control stochastic processes through observations

affected by unavoidable noises. In the second, some parameters of the state

dynamics are unknown: the choice of the control must be combined with an

estimate of the parameters.

For all these optimal control problems there is a great literature in the dif-

fusive case, also concerning the BSDEs approach. Conversely, few results are

available in the non diffusive context. The purpose of this thesis was precisely to

provide a first attempt along this direction. In fact, we showed how to extend

the BSDEs approach to optimal control from diffusive to marked point processes.

This can lead the path to several other applications and extension in optimal

control theory.



Appendix A

Stochastic Processes

In this section we are going to recall basic notations on Filtrations, Martingales

and Stopping times that we will constantly use in the rest of the work.

A.1 Filtrations, Measurability

Let (Ω,F) be a measurable space. A history (Ft, t > 0) on (Ω,F) is a family of

sub-σ-algebra of F such that for all 0 6 s 6 t

Fs ⊂ Ft.

We see that a history is an increasing family of sub-σ-algebra of F indexed by

the non negative real number. It is also called a filtration. We use the following

notation: F∞ =
∨
t>0 Ft. We say that the history is right continuous if for all

t > 0

Ft+ =
⋂
h>0

Ft+h = Ft.

A family (Xt)t>0 : (Ω,F) → (K,K) of random variables is called a K- valued

stochastic process defined on (Ω,F). Associated to the process Xt, we can define

for each t > 0 a sub-σ-algebra of F, denoted by

FXt = σ(Xs, s ∈ [0, t]).

This σ-algebra is generated by the family of random variables (Xs, s ∈ [0, t]) and

it is called the internal history of the process Xt. Any history Ft such that

Ft ⊃ FXt t > 0

is called a history of Xt. We can say that Xt is adapted to Ft. We denote the

whole families (Ft, t > 0) and (Xt, t > 0) simply by Ft and Xt. If Xt is a process
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on (Ω,F) and w an element of Ω, the mapping

t→ Xt(w)

is called a trajectories of Xt. If P is a probability measure on (Ω,F), and K is

a topological space, the process Xt is said to be continuous (right continuous,

left continuous) if and only if the trajectories t → Xt(w) are continuous (right

continuous, left continuous), P-a.s.

Definition A.1. The K-valued process Xt is said to be measurable if and only if

the mapping (t, w) 7→ Xt(w) : R+ × Ω→ K is K/B+ ⊗ F-measurable.

Definition A.2. The K-valued process Xt is said to be Ft-progressive if and only

if for all t > 0 the mapping (s, w) 7→ Xs(w) : [0, t]×Ω→ K is K/B([0, t])⊗ Ft-

measurable.

It follows that if Xt is Ft-progressive, than it is adapted to Ft and measurable.

Theorem A.1. If K is a metrizable topological space and Xt is an K-valued process

adapted to Ft and right-continuous (or left continuous), then Xt is Ft-progressive.

Definition A.3. We define P(Ft) to be the σ-field over (0, ∞) × Ω generated by

the rectangles of the form

(s, t]× A, 0 6 s 6 t, A ∈ Fs.

P(Ft) is called the Ft-predictable σ-field over (0, ∞)× Ω.

Theorem A.2. If Xt is an Rn-valued process adapted to Ft and left continuous,

then Xt is Ft-predictable.

In the hierarchy of measurability, predictability stands on top: if Xt is Ft-

predictable, than it is Xt is Ft-progressive.

A.2 Martingales

The concept of martingale is naturally linked to the concept of increasing informa-

tion pattern. A (P,Ft)-martingale over [0, c], c > 0 real number, is a real-valued

stochastic process Xt such that:

(i) Xt is adapted to Ft,

(ii) Xt is P-integrable, i.e. E [|Xt|] <∞ t ∈ [0, c],

(iii) for all 0 6 s 6 t 6 c, E [Xt|Fs] = Xs P-a.s.
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If Xt is a (P,Ft)-martingale over [0, c] for every real c > 0, Xt is called a (P,Ft)-
martingale.

An important property concerning the martingales is:

Theorem A.3. Doob’s inequality

Let (Xt)t>0 a càd martingale. Then

E

[
sup
s∈[0, t]

X2
s

]
6 4E

[
X2
t

]
∀t > 0.

Concerning the relations between martingales and stopping times, we have

the fundamental

Theorem A.4. First Optimal stopping time theorem

Let (Xt)t>0 a càd martingale, S, T bounded stopping times such that S 6 T .

Then

EFS [XT ] = XS a.s.

In particular, for all bounded T , E [XT ] = E [X0].

Theorem A.5. Second Optimal stopping time theorem

Let (Xt)t>0 a càd martingale, S, T bounded stopping times such that S 6 T and

E
[
supt>0Xt

]
<∞. Then

EFS [XT ] = XS a.s..

In particular, for all bounded T , E [XT ] = E [X0].

Moreover, we can take a real-valued stochastic process Xt adapted to a history

Ft, and an increasing family of Tn-stopping times such that:

(i) limn→∞ Tn = +∞

(ii) for each n > 1, Xt∧Tn is a (P,Ft)-martingale.

Then X is called (P,Ft)-local martingale and the family (Tn)n>1 is a family of

localizing times for Xt.

Finally we can consider the Radon-Nikodym derivative and its relation with

the martingales. We introduce P and P̃, two probabilities measures defined on

the same measurable space (Ω,F), and the history Ft. For each t > 0 we denote

by Pt and P̃t the restriction to Ft of P and P̃ respectively, and we assume that

for some c > 0, P̃c is absolutely continuous with respect to Pc. Then, for all

t ∈ [0, c], P̃t is absolutely continuous with respect to Pt. We consider for each
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t ∈ [0, c], the random variable Lt as the Radon-Nikodym derivative of P̃t with

respect to Pt:

Lt =
dP̃t
dPt

.

Then Lt is a (P,Ft)- (local) martingale over [0, c].

Quadratic variation of a local martingale

Theorem A.6. Let M be a local (continuous) martingale. Then there exists an

increasing process, unique up to indistinguishability, that we denote 〈M〉 :=

(〈M〉t, t > 0), such that

M2
t − 〈M〉t is a local martingale.

Moreover, for every t > 0,

lim
‖p‖→0

n∑
k=1

(Mtk −Mtk−1
)2 = 〈M〉t in probability, (A.1)

where p ranges over partitions of the interval [0, t] and the norm of the partition

p is the mesh.

Remark A.1. (i) The process 〈M〉 is called “quadratic variation” of M .

(ii) If M = W is the brownian motion, then 〈Wt〉 = t (it follows from the fact

that W 2
t − t is a martingale).

Theorem A.7. Kunita-Watanabe inequality

Let M , N be two martingales and let K, H be two measurable processes. Then∫ ∞
0

|Hs| |Ks| |d〈M,N〉s| 6

√∫ ∞
0

H2
sd〈M〉2

√∫ ∞
0

K2
sd〈N〉2.

The following inequalities represent the link between a local martingale and

its quadratic variation. For every local (continue) martingale M , we denote

M∗
t := sups∈[0, t] |Ms|.

Theorem A.8. Burkholder-Davis-Gundy

Let p ∈ R, p > 0. There exist some constants 0 < cp < Cp < +∞ such that, for

every continue local martingale M starting by 0,

cp E
[
〈M〉p/2∞

]
6 E [(M∗

∞)p] 6 CpE
[
〈M〉p/2∞

]
.
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A.3 Stopping times

Let T be a random variable which takes values in R̄+ and let Ft a history. {T 6
t} ∈ Ft. T is called an Ft-stopping time if and only if

{T 6 t} ⊂ Ft, t > 0. (A.2)

If we regard T as the time of the first occurrence of an certain event, then (A.2)

means that we can decide on the basis of Ft whether or not this event has occurred

before t. Trivial examples of stopping times are the constants T = t ∈ R+. Most

of the stopping times that we will encounter are of the following type.

Theorem A.9. Let X be a right-continuous (left-continuous) R-valued process

adapted to Ft, and c be a fixed real number. Define T as

T =

{
inf{t|Xt > c} if{...} 6= ∅
+∞ otherwise.

Then T is a stopping time.

We now list some important properties of stopping times:

(1) Any number a in [0, ∞] is a stopping time (for any history Ft).

(2) If T is an Ft-stopping time and a ∈ [0, ∞], then T + a is an Ft-stopping

time.

(3) If T and S are Ft-stopping times, then S ∧ T and S ∨ T are Ft-stopping

times.

(4) If T is an Ft-stopping time and a ∈ [0, ∞), then T ∧ a is Fa-measurable.

Theorem A.10. Let (Tn)n>1 be a family of Ft-stopping times. Then supn>1 Tn is

an Ft-stopping time and infn>1 Tn is an Ft+-stopping time.

Corollary A.11. Let (Tn)n>1 be a family of Ft-stopping times. Then infn>1 Tn,

lim supn→∞ Tn, lim infn→∞ Tn are Ft-stopping times. Moreover, if limn→∞ Tn ex-

ists, it is also an Ft-stopping time.

Definition A.4. Let T be a Ft-stopping time. The past at time T (relative to Ft)

is the σ-algebra FT defined as

FT = {A ∈ F∞|A ∩ {T 6 t} ∈ Ft for all t > 0}

Under certain conditions, the expected value of a martingale at a stopping

time is equal to the expected value of its initial value. Indeed
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Theorem A.12. Doob’s optional stopping theorem

Let be (Xn)n>0 a martingale and T a stopping time with respect to X. If one of

the following conditions holds:

(1) T 6 c P-a.s., c ∈ R,

(2) E [T ] <∞, ∃c ∈ R such that E [Xi+1 −Xi|Xi] 6 c P-a.s., ∀i,

(3) T <∞, |Xn| 6 c ∀n 6 T , c ∈ R.

Then E [XT ] = E [X0].

Similarly, if (Xn)n>0 is a submartingale or a supermartingale and the above

conditions hold, then

E [XT ] > E [X0] for a submartingale

E [XT ] 6 E [X0] for a supermartingale.

A.4 Point-Process Filtrations

For the following we will refer to [10], Appendix A2. We recall our main conven-

tions and definitions:

T∞ = lim ↑ Tn,

Nt(A) =
∑
n61

1Tn6t1ξn∈A, A ∈ K,

Nt(K) = Nt,

p((0, t]× A) = Nt(A),

F0
t = σ(Ns(A) : s ∈ [0, t], A ∈ K), t > 0.

Some important facts are:

Theorem A.13. Let (Tn, ξn)n>1 be a K-marked point process defined on (Ω,F).

With the above notations

(i) ∀n > 0, Tn is an F0
t -stopping time,

(ii) ∀n > 1, σ(Ti, ξi; 1 6 i 6 n) ⊂ F0
Tn

,

(iii) ∀t > 0, F0
t = σ(1ξn∈A1Tn6s;n > 1, 0 6 s 6 t, A ∈ K).

We have the following important results concerning the point-processes his-

tories.
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Theorem A.14. Let (Tn, ξn)n>1 be a K-marked point process defined on (Ω,F).

With the above notations

(i) The process Xt = 1T∞6t is F0
t -predictable.

(ii) ∀n > 0, let f (n)be a mapping from ω × [0, ∞)] into R+ that is F0
Tn
⊗ B+-

measurable; then the process Xt defined by

Xt(ω) =
∑
n>1

f (n)(t, ω)1Tn(ω)<t6Tn+1(ω)

is F0
t -predictable.

Theorem A.15. Let (Tn, ξn)n>1 be a K-marked point process defined on (Ω,F).

The internal history is right-continuous, i.e. F0
t = ∩h>0F

0
t+h.

This theorem is a special case of a more general result:

Theorem A.16. Let Yt be an (K,K)-valued process defined on (Ω,F), and suppose

that for all t > 0 and all ω ∈ Ω, there exists a strictly positive real number ε(t, ω)

such that

Yt+s(ω) = Yt(ω) on [t, t+ ε(t, ω)].

Then the history FYt is right-continuous.



Appendix B

Likelihood Ratios: Changes of

Intensity “à la Girsanov”

We examine the relation between a certain type of absolutely continuous change

of probability measures and the change of intensity that it induces in the point

processes case. Such changes of probability are quite general.

B.1 Likelihood ratios and intensity changes

We first describe a particular stochastic process, namely the so called fundamental

martingale.

Theorem B.1. Let (Nt(1), Nt(2), ..Nt(k)) be a k-variate point process adapted to

some history Ft, and let λt(i), 1 6 i 6 k, be a predictable (P,Ft)-intensities of

Nt(i), 1 6 i 6 k, respectively. Let µt(i), 1 6 i 6 k, be a Ft-predictable processes,

nonegative, and such that for all t > 0 and all 1 6 i 6 k∫ t

0

µs(i)λs(i)ds <∞ P− a.s.

Define the process Lt by

Lt =
k∏
i=1

Lt(i),

where

Lt(i) =

 exp
{∫ t

0
(1− µs(i))λs(i)ds

}
if t < T1(i)(∏

n>1 µTn(i)1Tn(i)6t

)
exp

{∫ t
0
(1− µs(i))λs(i)ds

}
if t > T1(i),
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or equivalently,

Lt(i) =
(∏
n>1

µTn(i)1Tn(i)6t

)
exp

{∫ t

0

(1− µs(i))λs(i)ds
}
.

Then Lt(i) is a (P,Ft)-nonnegative local martingale and a (P,Ft)-super-martingale.

In particular for all 1 6 i 6 k, Lt(i) is a (P,Ft)-local martingale and a (P,Ft)-
super-martingale.

Theorem B.2. Direct Radon-Nikodym derivative theorem (see [4], [5])

We use the same notations as in Theorem B.1. Moreover we suppose that

E [L1] = 1. (B.1)

Define the probability measure P̃ by

dP̃
dP

= L1.

Then, for each 1 6 i 6 k, Nt(i) has the (P̃,Ft)-intensity λ̃t(i) = µt(i)λt(i) over

[0, 1].

Condition (B.1) holds true under the following requirements:

Theorem B.3. We use the same notation as Theorem B.1. Moreover we suppose

that for 1 6 i 6 k, λt(i) = 1 and µt(i) is bounded. Then E [L1] = 1.

The last theorem, combined with Theorem B.2, can be interpreted as an

existence theorem. Actually, given the existence of a probability measure P for

which Nt is a (Ft)-Poisson, we can construct, for any Ft-predictable nonnegative

bounded process µt, a probability P̃ for which Nt has the (P̃,Ft)-intensity µt (take
dP̃
dP = L1).

We present now an example, for which the hypotheses of Theorem B.3 hold.

Example B.1. Queueing Processes

A (simple) queueing process Qt is a N+-valued process, defined on some (Ω,F,P),

and the form

Qt = Q0 + At −Dt

where At and Dt are P-nonexplosive point processes without common jumps. We

observe that P-a.s., Dt 6 Q0 +At, t > 0, since Qt is nonnegative. We call Qt the

state process and Q0 the initial state. For each t > 0, we interpret the random

variable Qt as as the number of customers waiting in line, At as the number of

arrivals in (0, t], and Dt as the number of departures in (0, t]. A simple queue

Qt can be viewed as a bivariate point process (At, Dt), where At and Dt are the
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input and output processes respectively. Suppose that under the probability P,

Qt is M/M/1 with Ft-parameters λ and µ. Let now λt and µt be two bounded

nonegative Ft-predictable processes. Then by Theorem B.2 and Theorem B.3,

we have:

Lt = exp
{∫ t

0

log

{
λs
λ

}
dAs −

∫ t

0

(λs − λ)ds
}

× exp
{∫ t

0

log

{
µs
µ

}
dDs −

∫ t

0

(µs − µ)1Qs>0 ds
}

is a (P,Ft)-martingale, and if we define P̃ by dP̃/dP = L1, Qt is a queue with the

(P̃,Ft)-parameters λt and µt over [0, 1].

We consider then the more general case of a marked point process with the

(P,Ft)-local characteristics (λt, φt(dy)) (see Remark 1.1).

Theorem B.4. (see [2][6]) Let p(dt dy) be a K-marked point process with the

(P,Ft)-local characteristics (λt, φt(dy)). Let µt be a nonnegative Ft-predictable

process, and let h(t, y) be an Ft-predictable K-indexed nonnegative process, such

that ∫ t

0

µsλsds <∞ P− a.s. t > 0∫
K

µyh(t, y)φt(dy) = 1 P− a.s. t > 0 (B.2)

Define for each t > 0

Lt = L0

(∏
n>1

µTn h(Tn, Yn)1Tn6t

)
· exp

{∫ t

0

∫
K

(1− µsh(s, y))λsφs(dy)ds
}
,

where L0 is a nonnegative F0-measurable random variable such that E [L0] = 1

(as usual, the product
∏

n=1 is taken to be 1 if T1 > t). Then:

(a) Lt is a nonnegative (P,Ft)-local martingale and a nonnegative (P,Ft)-supermartingale.

(b) If E [L1] = 1, Lt is a (P,Ft)-martingale over [0, 1]. Defining the probability

P̃ by dP̃
dP̃ = L1, p(dt dy) admits over [0, 1] the (P̃,Ft)-local characteristics

(µtλt, h(t, y)φt(dy)).

We give a sufficient condition for E [L1] = 1 in this more general case.

Theorem B.5. [2] Let the conditions (B.2) of Theorem B.4 prevail, and suppose

in addition that there exists a deterministic increasing real-valued function B(t)

and finite constants K1, K2 and α, where α > 1, such that for all t ∈ [0, 1],∫
K

(µsh(t, y))αφt(dy) 6 K1 +K2

(
Nt +

∫ t

0

λsds
)

P− a.s. (B.3)
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∫ t

0

λsds 6 B(t) P− a.s. (B.4)

Suppose moreover that for all 0 < M <∞

E [L0 exp{MN1}] <∞. (B.5)

Then E [L1] = 1.

Example B.2. Take λt = λ(t), where λ(t) is locally integrable and determinis-

tic, and φt(ω, dy) = F (dy). [Thus, under P, p(dtdy) is a marked Poisson pro-

cess]. The conditions (B.4) and (B.5) are then automatically satisfied. For the

condition (B.5) for instance, N1 being independent of F0, E [L0 exp{MN1}] =

E [L0E [exp{MN1}]] = E [exp{MN1}] < ∞, the last inequality being a conse-

quence of the fact that N1 is a Poisson random variable.

B.2 An Existence Theorem

The existence of an optimal control is not always granted; we present an existence

theorem that follows a method invented by Beneš (see [4]) for Wiener-driven

stochastic systems and which is based on compactness arguments of Radon-

Nikodym derivatives. In particular we consider this theory in the simple case

of an univariate process.

Let hence Nt be an univariate point process defined on (Ω,F), and let U be the

set of admissible controls consisting of those processes ut that are FNt -predictable

and satisfy, for some positive real constant K,

0 6 ut 6 K.

We assume the terminal time T = 1. The dynamics (Pu, u ∈ U) are such that

there exists a probability measure P on (Ω,F) such that Nt is a (P,FNt )-Poisson

process with intensity 1, and for each u ∈ U

dPu
dP

= L1(u) = L(u),

where

Lt(u) =
(∏
n>1

uTn1Tn6t
)

exp
{∫ t

0

(1− us)ds
}
.

In other words we are saying that Nt admits the (Pu,FNt )-intensity ut. Now we

consider φ as a random variable on (Ω,F) which is P-square-integrable:

E
[
|φ|2
]
<∞.



B.2. An Existence Theorem 79

Then φ is Pu-integrable for all u ∈ U . Finally, defining

J(u) = Eu [φ] , J∗ = inf
u∈U

J(u).

we have the requested existence result:

Theorem B.6. There exists at least one control u∗ ∈ U such that J(u∗) = J∗.

Proof. See [10].
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Ito’s formula for finite-variation

processes

We will present the Itô’s formula for finite variation (FV) functions, mainly fol-

lowing the discussion in [35], Chapter IV. We consider classical (deterministic)

functions on [0, ∞). Let x (mapping t to x(t)) be a FV function on [0, ∞). We

define

∆xs = xs − xs−, s > 0.

We observe that the function x induces a signed Stieltjes measure µx(u, v]) =

xv − xu. The measure µx has an atom ∆xs at any point s > 0, where ∆xs 6= 0.

We can decompose x into the sum of its continuous and atomic parts as follows:

x = x0 + xc + xa, xat =
∑

0<s6t

∆xs.

Integration by parts. Let x and y be two FV functions on [0, ∞). We can

define the product signed measure µx × µy on (0, ∞). Taking µx × µy measures

in the above equation, we see that

(xt − x0)(yt − y0) =

∫
(0, t]

(xv− − x0)dyv +

∫
(0, t]

(yu− − y0)dxu + [x, y]t

where

[x, y]t ≡
∑

0<s6t

∆xs∆ys.

On rearranging, we obtain the integration by parts formula:

xtyt − x0y0 =

∫
(0, t]

xs−dys +

∫
(0, t]

ys−dxs + [x, y]t

which we write in differential notation as

d(xy) = x−dy + y−dx+ d[x, y].
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Theorem C.1. Itô’s formula for FV function

Let f ∈ C1(R), and let x be an FV function on [0, ∞). Then

f(x−t)−f(x−0) =

∫
(0, t]

f ′(xs−)dxs+
∑

0<s6t

{f(xs)−f(xs−)−f ′(xs−)∆xs}. (C.1)

If we write Ft for f(xt), then we may write (C.1) in differential notations as

dFt = f ′(xt−)dxt + {∆Ft − f ′(xt−)∆xt}.

Remark C.1. On an interval [0, t0], x is bounded, and f ′ is bounded on the range

of x. Hence ∑
0<s6t0

|f(xs)− f(xs−)| 6 K
∑

0<s6t0

|xs − xs−| <∞

and ∑
0<s6t0

|f ′(xs−)∆xs| 6 K
∑

0<s6t0

|∆xs| <∞.

Proof. Fix the FV function x. Let A be the family of functions in C1(R) such

that (C.1) holds. Then A is clearly a vector space. But it is also true that A is

an algebra. Let f ∈ A, g ∈ A and put h = fg. Write Ft = f(xt), Gt = g(xt) and

Ht = h(xt). Then

dF = f ′(x−)dx+ {∆F − f ′(x−)∆x},
dG = g′(x−)dx+ {∆G− g′(x−)∆x}.

By the integration by parts formula,

dH = F−dG+G−dF + d[F, G], (C.2)

and considerations of the atoms in (C.2) tells us that

∆H = F−∆G+G−∆F + ∆F∆G.

So, from (C.2) we obtain

dH = {f(x−)g′(x−) + g(x−)f ′(x−)}dx+ {F−∆G+G−∆F + ∆F∆G− h′(x−)∆x}
= h′(x−) + {∆H − h′(x−)∆x},

so that h ∈ A. Since it is trivial that A contains the function f(x) = x,it follows

that A contains all polynomials.
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Now let f be any element of C1(R). It is enough to take t0 ∈ (0, ∞) and prove

(C.1) for all t 6 t0. Now for some N , x(t) ∈ [−N.N ] for all t 6 t0. Moreover, we

can find polynomials pn such that

pn → f uniformly on [−N, N ],

p′n → f ′ uniformly on [−N, N ].

Since (C.1) is true for each pn, it is now trivial that,for t 6 t0, (C.1) is true for

f .

Theorem C.1 can be generalized in n-dimensions as follows.

Theorem C.2. n-dimensional Itô’s formula

Suppose that

x = (x1, x2, .., xn)

is an Rn-valued function, each component of which is an FV function on [0, ∞),

Let f be a function on Rn with continuous first-order partial derivatives Dif .

Then

f(xt)− f(x0) =

∫
(0, t]

Dif(xs−)dxis +
∑

0<s6t

{f(xs)− f(xs−)−Dif(xs−)∆xis}.

where we sum over the repeated index i is an expression such as Dif(xs−)dxis.
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