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Abstract 
To bring the costs of carbon capture and storage plants (CCS) down to 

more competitive prices, there have been developments to optimize the plant‟s 

processes. As a consequence, the fluid‟s thermodynamic properties need to be 

predicted with higher accuracy. This study analyzes one possible route for 

improving the accuracy of the prediction of thermodynamic properties: the 

mathematical optimization method used for the fitting of the experimental data. 

Using recent experimental data obtained by Mantovani et al. [1] for CO2 –based  

mixtures (CO2-N2, CO2-Ar, CO2-O2), both the Levenberg-Marquardt and Trust-

Region methods were compared for the nonlinear fitting of the Peng-Robinson 

(PR) cubic equation of state. By applying the van der Waals mixing rules, the 

binary interaction parameters (BIP) were optimized using a Matlab code and the 

built-in function nonlincurvefit with these two different algorithms. As a result, 

there appears to be no influence of the optimization method in the accuracy of 

the predicted properties using the optimized BIP. Nonetheless, the use of the PR 

equation of state to predict the volumetric properties of the CO2-based mixtures 

cited above was carried out successfully and provided results with deviations in 

the range 1.2% to 2.8%.  
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Introduction 

The necessity of reducing the cost of Carbon dioxide Capture and Storage 

(CCS) technologies has been requiring the optimization of all the involved 

processes. In CCS plants, the removal of the CO2 can be made by its 

liquefaction, since the condensation temperature of the carbon dioxide is 

different from the other gases in the stream (N2, O2, Ar). However, a small 

percentage of these gases mixes with the CO2 and, for that reason, the estimation 

of thermodynamic properties of CO2 mixtures with high accuracy has become a 

subject of interest [2].  

The evaluation of the properties of fluids is often a demanding task in real-life 

projects. Both pure fluids and mixtures behave differently than what is predicted 

by the traditional Equations of State (EoS), especially when the interactions 

between the molecules are strong or when the fluids are subjected to near-

critical conditions [3]. This justifies the need for developing estimates that can 

accurately predict the thermodynamic and volumetric properties of the fluids in 

those circumstances.  

The presented study aims to explain the basics surrounding the development of 

Equations of State and to bring into further detail two of the most used classes of 

models: cubic and multi-parameter equations of state. This work is divided into 

six chapters: 

Chapter 1 is a review of equations of state (EoS), both analytical and non-

analytical. It gives an introduction to the equations of state, describes the 

importance of the estimation of properties and how they can be generally 

accomplished. It covers the van der Waals EoS, the Peng-Robinson EoS and the 

Redlich-Kwong-Soave-Penelux EoS, for the analytical ones, and briefly 

describes some multi-parameter EoS. At the end, it also provides a comparison 

between analytical and non-analytical EoS for CO2 mixtures, 

Chapter 2 introduces the mathematical part of the work, the least square 

problems. It starts from the linear least squares as a primary step for the 

understanding of the non-linear least square problems, for which two algorithms 

are described: Gauss-Newton and Levenberg-Marquardt methods, 

Chapter 3 describes how the optimization will be applied to the mixtures using 

the Peng-Robinson EoS, 

Chapter 4 presents the results obtained from the simulations using Matlab, 

Chapter 5 gives the interpretations of the results presented previously, 

explaining their significance and providing information regarding possible 

further developments. 
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Chapter 1: Review of Equations of State 

 

1.1.  Estimation of Properties 

In real-life situations, it is often the case that the value of a property is needed 

but there exist no experimental values for those exact conditions (composition, 

pressure, temperature) [3]. When these situations arise, it becomes crucial to 

have a proper way to estimate or predict those values. There are primarily three 

ways of proceeding: theoretical, empirical or semi-empirical basis. 

From a theoretical base, for an ideal gas: 

       (Eq. 1.) 

where  *
  

  
+ is the specific volume,    *

  

    
+ the specific gas constant,  [  ] 

the pressure and  [ ] the temperature. 

When applied to real gases, the ideal gas equation (Eq.1.) may present large 

deviations. For that reason, it is common practice to introduce experimental data 

to improve the accuracy of the predicted results. The resulting equations are 

empirical and semi-empirical relationships. 

An improvement of the ideal gas relationship is the van der Waals Equation of 

State [4]. Starting from (Eq.1.), and assuming the following ideas [3]: 

1- the total volume occupied by the gas, that coincides with the volume of 

the recipient for an ideal gas, is reduced by the volume occupied by the 

molecules themselves, expressed by the co-volume (b), 

2- the pressure exerted by gas molecules on the recipient wall is reduced 

because of the attraction between the molecules due to their mass, 

expressed by the energy parameter (a), and increases with square of 

density,  

the following equation is obtained: 

(  
 

  
) (   )     . (Eq. 2.) 

The parameters a and b are based upon the theoretical principles stated above. 

However, in practice, their values are known to depend on actual 

thermodynamic conditions and composition [3]. In this study, only the 

dependence on the mixture is considered, and that dependence is introduced by 

the mixing rules. 
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1.2.  Corresponding States Principle (CSP) 

 

According to van der Waals, in a paper published in 1873 [4], the corresponding 

states principle indicates that all fluids (pure substances or mixtures), when 

compared at the same non-dimensional reduced temperature (        ) and 

non-dimensional reduced pressure (        ), present a behavior that deviate 

from the ideal gas by approximately the same degree. In a general form, the 

corresponding states principle can be first expressed as a 2-parameter function 

[3]: 

     (     ) (Eq. 3.) 

where    and    are the reduced specific volume and reduced temperature, 

respectively. 

In reality, the principle works only for one group of substances at a time, whose 

molecular constitution is relatively similar. However, to account for the 

situations when that is not the case, a third parameter is introduced into Eq.3, the 

compressibility factor (Z), defined as [3]: 

  
  

   
   

(Eq. 4.) 

The compressibility factor may also be expressed in a non-dimensional form. 

Given the critical compressibility factor: 

    
      
     

 
(Eq. 5.) 

and the reduced one, 

   
 

   
 
    
  

 
(Eq. 6.) 

the compressibility factor Z can be expressed as: 

     
    
  
  

(Eq. 7.) 

According to Bejan, pure substances can be described with a 2-parameter CSP 

and a compressibility factor. [5] That way, it is possible to eliminate    from the 

previous equation to obtain the following 3-parameter relationship: 
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   (         ) (Eq. 8.) 

where     may act as the parameter related to the molecular constitution. 

As a consequence of expressing the compressibility factor in a non-dimensional 

form, many substances can be represented in the same generalized graphic. The 

following graphic was obtained experimentally by Nelson and Obert (1954) for 

several substances from experimental PVT data. It may be used for most 

substances, but it should not be used for strongly polar fluids, helium, hydrogen, 

or neon unless special, modified critical constants are used. [3] 

 

Figure 1: Generalized compressibility factor for all Pr, Vr=V/(RTc/Pc) (Nelson and Obert 1954) 

 

1.3.  Acentric Factor 

 

An alternative for the third parameter was proposed by Pitzer et al. [6]. With the 

introduction of the Pitzer acentric factor ω, defined as: 

                        (Eq. 9.) 
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Figure 2: Pr x Tr Diagram [5] 

That expression assumes the value ω=0 for the “simple fluids”, that were 

defined by Pitzer as the permanent gases with heavy molecules, such as Ar, Xe 

and Ne [5]. The position of these substances in the   (  ) – each curve 

presented in (Figure 2) represents one substance - was taken as the reference 

from which the acentric factor is calculated. The practical meaning of the Pitzer 

acentric factor is that each pure substance has a different value of ω that 

increases with the fluid polarization. That way, highly polarized fluids, such as 

H2O and NH3, have high Pitzer acentric factors (                 

     ). 

Therefore, the 3-parameter CSP can be rewritten as: 

   (       )  (Eq. 10.) 

1.4.  Cubic Equations of State 

Cubic Equations of State (EoS) are a general class of equations where the 

specific volume has powers no higher than three. They are classified as 

analytical equations because they have a closed-form solution. That is important 

when the computational effort needs to be minimized, because iterative 

solutions tend to be much more time consuming. Regarding its use, the cubic 

EoS are accurate for predicting a fluid‟s characteristics when not in near-critical 

conditions - for pure simple substances and non-polar mixtures. That occurs 
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because some of the assumptions used for their development are not valid 

anymore in near-critical conditions or for strong polar substances. 

In the following sections, a description of the cubic equations of state is 

presented, along with a description of the main improvements proposed to 

increase the accuracy of predictions for either the critical or other specified 

conditions. Furthermore, the cubic EoS have parameters that are specific for 

each substance and need to be defined a priori. The most used methods for 

obtaining those parameters will also be described.  

 

1.4.1. Van der Waals Equation of State 

 

The first EoS was published by J. D. van de Waals in 1873 [4] and more than a 

hundred others have been published since. By rewriting (Eq. 2) in the form  

   (   ) we obtain: 

  
   

   
 
 

  
   

(Eq. 11.) 

Overall, this equation gives a good qualitative description of fluid properties, but 

it overestimates the critical compressibility factor (Zcr). Consequently, it poorly 

predicts the density in the critical region.  

 

Figure 3: P-V Diagram 

To calculate Zcr, we first impose the critical-point conditions for the critical 

isothermal line. It can be seen from (Figure 3) that, for the critical conditions, 

the critical isotherm has a double inflexion point (point C), therefore: 
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(
  

  
)
  
   

(Eq. 12.) 

(
   

   
)
  

     
(Eq. 13.) 

By solving the system of equations obtained from applying (Eq. 12.) and (Eq. 

13.) to (Eq. 11.), the following expressions for the constants a and b are 

obtained: 

        
     

 

   
 

(Eq. 14.) 

       
    
   

    
(Eq. 15.) 

Now, by rewriting the van der Waals expression as    (   ) we can 

calculate the value of Zcr, for which we obtain     
 

 
      . In practice, it 

has been verified experimentally that the critical compressibility factor of pure 

fluids is in the range    
         to    

      , [3] which justifies the need for 

improvements. 

 

1.4.2. General Form of Cubic Equations of State 

Cubic EoS are very often used for the estimation of properties because they 

present a good compromise between accuracy and computational demand [3]. 

Nonetheless, different expressions may be more suitable for different situations 

(fluids, mixtures, thermodynamic conditions). According to Poling et al [3], a 

general form for all cubic EoS was proposed by Abbot, 1979, and can be 

represented in terms of P, as: 

  
  

   
 

 (   )

(   )(       )
    

(Eq. 16.) 

Depending on the model               may be constants, including 0, or 

functions of the temperature and composition. The difference among the 

different models is what value those parameters have and how they are made to 

vary. 

Furthermore, the first term (
  

   
) is called the repulsive term, and the second 

one (
 (   )

(   )(       )
), the attractive term. 
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1.4.3. Improvements to the van der Waals EoS 

The van der Waals equation of state does not describe the working fluids 

normally used in today‟s industrial processes with the required accuracy. 

Nonetheless, cubic EoS are very attractive because they have a closed-form 

solution and they can represent both liquid and vapor phases of many fluids [3]. 

Therefore, to obtain higher accuracies, especially in the near-critical region, 

modifications to the original van der Waals EoS have been proposed.  

1.4.3.1. Volume Translation 

A volume translation is a technique to improve the EoS predictability where the 

specific volume is computed from an original EoS and shifted so that the 

translated volume matches some experimental value or values from an 

estimation method (CSP, Group Contribution Methods). The underlying 

assumption is that the translation is small and does not materially change the gas 

or vapor phase densities [3]. It is common to express the shift by substituting 
(   ) for ( ) in (Eq.16.).  

1.4.3.2. The alpha function 

 

Another improvement to the van der Waals EoS is the introduction of the so 

called alpha function. According to A. Bejan [5], it was first introduced by G. 

Soave [7] as a modification of the Redlich-Kwong (RK) equation of state, which 

has the following characteristics: 

1- the attractive term presents the dependence on the co-volume, 

2- the energy parameter varies with temperature as           

The RK-EoS can be written as: 

  
  

   
 
      

 (   )
    

(Eq. 17.) 

According to Poling et al [3], this equation has been subjected to extensive 

testing and can be used not only for pure fluids, but also for mixtures whose 

critical points are not situated too far from one another.  

The alpha function ( ( )) was introduced by G. Soave [7] to include the ability 

of accurately predict the vapor tension at a reduced temperature       : 

 (   )        ,   *  (
 

   
)
   

+-

 

 
(Eq. 18.) 

and it matches the expression of        for the critical point.  
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There have been many other expressions proposed for the alpha function. They 

generally present at least one of the following characteristics [3]: 

1- polynomial functions of the reduced temperature, 

2- exponential functions of the reduced temperature, or 

3- a combination of both. 

Moreover, the alpha function expressions must satisfy the following 

fundamental conditions [3]: 

1- they must be finite and positive at each temperature, 

2- they must have a value equal to one at the critical point, 

3- they must tend to zero when the temperature tends to infinity, 

4- they must be continuous with defined finite first and second order 

derivatives. 

As previously presented, the Pitzer acentric factor ω takes into consideration the 

fact that not all substances can be approximated as having a spherical shaped 

molecule. Soave correlated the alpha function parameter m against the Pitzer 

acentric factor as: 

                         (Eq. 19.) 

That way, we obtain the Redlich-Kwong-Soave (RKS) equation of state: 

  
  

   
 

 ( )

 (   )
    

(Eq. 20.) 

By imposing the critical point conditions (Eq. 12. and Eq. 13.) and calculating 

the parameters a and b (Eq. 14 and Eq. 15.), the critical compressibility factor of 

         is obtained. That value, even though it presents a clear improvement 

from the van de Waals EoS, is still higher than the experimental values obtained 

for pure substances. Nonetheless, the RKS EoS is considered adequate for 

hydrocarbons and other nonpolar compounds [8].  

1.5.  Other Equations of State 

As a result of the improvements presented above, many other EoS have been 

developed. In the following sections, two cubic EoS will be examined. They are 

two of the most commonly used equations that resulted from the improvements 

made to the van der Waals equation of state. 

1.5.1. Peng-Robinson Equation of State 

In 1976 Peng and Robinson [09] modified the attractive term denominator in the 

Eq. 17 and proposed the following expression: 
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 (   )

         
 

(Eq. 21.) 

where, by applying the critical-point conditions, 

         
     

 

   
 

(Eq. 22.) 

        
    
   

    
(Eq. 23.) 

The alpha function assumes the same expression as in Eq. 18, but the function m 

has different coefficients: 

                               (Eq. 24.) 

With those values, the critical compressibility factor can be calculated, 

   
    

 
   
 
 

 

   
 
 (   )     ⁄

         
 

(Eq. 25.) 

and its value is        , closer to the interval previously mentioned (     
   ), showing an improvement at the critical region compared to the RKS 

model. 

1.5.2. Redlich-Kwong-Soave-Peneloux Equation of State 

This model introduces a volume translation to improve the molar liquid volume 

calculation ( *
  

   
+). The EoS expression is: 

  
  

     
 

 (   )

(   )(     )
    

(Eq. 26.) 

The co-volume and energy parameter can be calculated with the same 

expressions provided for the RKS model. The parameter c is calculated with the 

following expression: 

         (           )
    
   

 
(Eq. 27.) 

where     is the Rackett compressibility factor. 

1.6.  Obtaining analytical cubic EoS parameters 

To use either the generalized equations of state (such as RKS) or the 

corresponding states principle, one needs information on the critical point and 



Chapter 1: Review of Equations of State    

 

Equations of State for Mixtures: an Optimization-Based Approach                                           21 

other properties of the fluids of interest. An issue that arises is what to do when 

such data is not available. 

1.6.1. Goup Contribution Methods – obtaining thermodynamic properties 

The most common way to make properties estimates in the absence of 

experimental data is to use a group contribution methods [9]. The basis of the 

method is that a molecule is thought of as a collection of functional groups, each 

of which makes an additive contribution to the properties of the molecule. Then, 

as a result of summing up the contributions of each of the functional groups, the 

properties of the molecule are obtained.  

A group contribution method is based on the principle that some aspects of the 

structures of chemical components are always the same in many different 

molecules. The smallest common constituents are the atoms and the bonds. 

A group contribution method is used to predict properties of pure components 

and mixtures by using group or atom properties. This dramatically reduces the 

number of needed data.  

There are mainly two categories for contribution methods: 

I. Additive group contribution method 

a. it is the simplest form of a group contribution method; 

b. it is accomplished by the determination of a property summing 

up the group‟s contribution 

c. it assumes that there is no interaction between groups and 

molecules 

d. it is used in the Joback‟s method for some properties 

II. Additive group contributions and correlations 

a. it uses the pure additive group contributions to correlate the 

wanted property with an easily accessible property 

b.  it usually gives better results than purely additive equations due 

to the introduction of a molecule‟s known property 

c. commonly used additional properties are the molecular weight, 

the number of atoms, chain length, ring sizes and counts 

III. Group interactions 

a. It is used for the prediction of mixture properties when the other 

methods are not sufficiently accurate 

b. It is determined from group interaction parameters. 

1.6.1.1. Lydersen method 

The Lydersen method was one of the first group methods proposed for the 

calculation of the critical pressure, critical temperature and critical specific 

volume. The Lydersen method is based on the Guldberg rule, which establishes 

that a rough estimate of the normal boiling temperature Tb is roughly two-thirds 
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of the critical temperature Tcr. The Lyndersen method uses the same basic idea 

but it calculates more accurate values: 

    
  

      ∑   (∑  )
 
    

(Eq. 28.) 

This method is the ancestor of many new models like Joback, Klincewicz, 

Ambrose, Gani-Constantinou and others. 

 

1.6.1.2. Joback method 

The Joback method assumes that there are no interactions between the groups 

and therefore only uses additive contributions and no contributions for 

interactions between groups.  It is known due to the fact that: 

1- It uses a single group list for all properties, what makes it possible to 

obtain all supported properties from a single analysis of the molecular 

structure; 

2- It uses a very simple and easy-to-assign group scheme. 

The group contributions can be found in a table, like the one presented below 

[10]: 

Table 1: Group Contributions 

Group Tc Pc Vc Tb Tm 

-CH3 0.0141 -0.0012 65 23.58 -5.10 

-CH2- 0.0189 0.0000 56 22.88 11.27 

>CH- 0.0164 0.0020 41 21.74 12.64 

>C< 0.0067 0.0043 27 18.25 46.43 

=CH2 0.0113 -0.0028 56 18.18 -4.32 

=CH- 0.0129 -0.0006 46 24.96 8.73 

 

The properties can be calculated with the following equations: 

   ( )  
  ( )

           ∑          (∑          )
 

 

 
(Eq. 29.) 

   (   )  
 

(              ∑          )
  

(Eq. 30.) 
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(Eq. 31.) 
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(Eq. 32.) 

  ( )      ∑       
 

 
(Eq. 33.) 

where the subscripts b, cr and f indicate the boiling, critical and freezing points, 

respectively. The Δ‟s are the contributions of each group to each property, found 

on the presented table.  

1.6.2. CSP – obtaining model parameters 

Critical constants are very commonly used for cubic EoS. Although not strictly 

necessary, it is convenient to force the EoS to fit the critical condition because 

three relationships exist to obtain the parameter values in that case: 

The third equation is obtained by rewriting the cubic EoS     (   ) in the 

form   (   ), applying the definition of the compressibility factor for the 

critical region. The general expression of the cubic EoS becomes: 

   

 
 

      ⁄
 

(   ⁄ )(    ⁄ )

(    ⁄ )(
 
   ⁄ )  ( 

  ⁄
) (    ⁄ )

     

(Eq. 34.) 

Since that equation is cubic in     ⁄ , the closed-form solution may be obtained, 

that is [3]: 

    
    

             
    
    

              (
   
    

)
 

    
        

 (   )   

(Eq. 35.) 

 

  
    
     

 
    

(Eq. 36.) 

By enforcing that the cubic equations meet the true critical conditions, 

there will be increased error because the cubic Equations of State were defined 

for regions far enough from the critical point. Therefore, the expression above 

should only be used if the critical region is not of importance. Otherwise, it 

might occur that a value of     different from the true critical compressibility 

must be used to reduce the error in other regions of more importance. So, by 
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reducing the accuracy at the critical point, it is possible to decrease the error at 

other conditions. Furthermore, depending on the model used for the cubic EoS, 

not all three equations are needed (Eq. 12, Eq. 13 and Eq. 34). If the model is a 

2-parameter EoS, only two equations are needed and, usually, the first two are 

used due to their simplicity. 

It is also important to notice that the (Eq. 34.) does not apply to the case 

where there is a volume translation. In that case, the relationships expressed by 

(Eq. 12, Eq. 13 and Eq. 34) need to be modified. 

1.6.3. Regression of data 

In cases where CSP or group contributions are not used, the parameter 

values (a, b, etc) must be obtained by fitting data. However, even when CSP is 

used, it may also be desirable to use a combination of CSP and fitting. The 

fitting may be accomplished by the regression of data over the entire range of 

the liquid or by matching a particular state, such as at       , to obtain  . 

According to Poling et al. [3], there have been many studies on the matching of 

saturation volumes to obtain EoS parameters, on the discussion regarding the 

best choice of data for fitting parameters and other strategies. As a useful result, 

it has been shown by Soave et al. (1994) [3] that most CSP formulations require 

only 
   

   
⁄ , that can be estimated from simple data sets. 

1.7.  Extension of cubic EoS for mixtures 

To be able to use a cubic EoS for a mixture of fluids, its parameters must 

be calculated in an appropriate way. Cubic EoS have been successfully used for 

predicting fluid phase equilibrium of nonpolar mixtures [3]. The tools used for 

calculating the EoS parameters for a mixture are called mixing rules. The 

simplest one is the van der Waals mixing rules, presented in this section. 

1.7.1. Van der Waals Mixing Rules 

One possibility for extending the EoS for fluid mixtures is to increase the 

number of parameters in the virial EoS with an expansion of  (  ⁄ ) [3]. The 

virial EoS is not part of the presented study, but it should be noted that the van 

der Waals mixing rules only match the composition dependence basis imposed 

by the second virial coefficient, that is: 

     ∑∑       

 

   

 

   

 ∑∑    (  
 

  
)
  

 

   

 

   

 
(Eq. 37.) 

where b is the co-volume and a, the energy parameter. The energy parameter is 

calculated from the energy parameter of each species and their mol fraction. 
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When the values of     are not very different between themselves, the co-volume 

is calculated as follows: 

  ∑∑       

 

   

 

   

 
(Eq. 38.) 
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(     )                 
(Eq. 39.) 

And a is 

  ∑∑       

 

   

 

   

 
(Eq. 40.) 

    √    (     ) (Eq. 41.) 

where     are called binary interaction parameters.  

1.8.  Nonanalytical Equations of State 

When one needs high accuracy in the properties description, cubic or 

quartic analytical equations of state cannot be generally used. “Though the 

search for better models began well before computers, the ability to rapidly 

calculate results or do parameter regression with complicated expressions has 

introduced increasing levels of complexity in the Equations of State” [3]. Two 

of the most used multi-parameter EoS are presented in this section.  

 

1.8.1. Benedict-Webb-Rubin Equation of State 

The first non-analytical equation of state was proposed by Benedict-

Webb-Rubin (BWR) in 1940. They combined polynomials in temperature with 

power series and exponentials of density into an 8-parameter form [3]: 

      (        
  
  
)    (     )       

 
   

  
(     ) (   

 ) 

(Eq. 42.) 

where                         are the eight adjustable parameters. As an 

improvement from the cubic EoS, the BWR equation can treat supercritical 

components and is able to work in the critical area with good accuracy [3]. 

1.8.2. Benedict-Webb-Rubin-Starling Equation of State 

Han and Starling (1973) introduced modifications to the BWR equation of 

state and the resulting equation is an 11-parameter EoS that can be used for 
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hydrocarbon systems that include the common light gases, such as H2S, CO2 and 

N2 [8] : 

      (        
  
  
 
  
  
 
  
  
)   (      
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(Eq. 43.) 

where the additional parameters are            . 

To obtain the eleven parameters, one option is to resort to relationships 

with the critical properties and the acentric factor [2] : 

Table 2: 11-Parameter EoS Relationships 

Expressions 

                 

    
        

     
    

        
   

          

     

    
         

    

    
         

   
               

    
         

   
              

    
           

     

    
 
          

(     ) 
 

 

Table 3: 11-parameter EoS Relationships 2 

Parameter Subscript (j)       

1 0.44369 0.115449 

2 1.28438 -0.92073 

3 0.356306 1.70871 

4 0.544979 -0.2709 

5 0.528629 0.349261 

6 0.484011 0.75413 

7 0.705233 -0.04445 

8 0.504087 1.32245 
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9 0.030745 0.179433 

10 0.073283 0.463492 

11 0.00645 -0.02214 
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1.8.3. BWRS Mixing Rules 

Another option to determine the parameters is to resort to experimental 

data or estimates. In case of a mixture, the mixing rules used for determining the 

parameters of the BWRS EoS are based on the van der Waals mixing rules 

presented previously [8] : 
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(Eq. 44.) 
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(Eq. 53.) 
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(Eq. 54.) 

           (Eq. 55.) 

The parameters                                            are pure 

component constants that can either be found on literature or estimated. The 

   are the binary interaction parameters and the matrix k is symmetric. 
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1.9.  Comparison between Analytical and Non-Analytical 

Equations of State for CO2 mixtures 

It is important to have a general understanding of the advantages and 

drawbacks of using analytical or non-analytical equations of state for a certain 

application. Especially when one needs to decide which model to use for a 

certain application for which the standard model has not been defined, a general 

comparison might provide a better initial guess from which to start the 

development of a specific EoS. Nowadays, with the increased need of improving 

carbon CCS processes and the need to estimate accurately the thermodynamic 

properties of CO2 mixtures (usually containing N2, O2 and Ar), the non-

existence of highly accurate EoS models is noticeable.  

Generally, multi-parameter equations of state provide a more accurate 

prediction of most thermodynamic properties. However, the evaluation of multi-

parameter EoS requires an increased computational effor. For CO2, the Span and 

Wagner 12-parameter EoS is considered to be the reference EoS. According to 

Span et al. [11], this equation represents most of the data within    ⁄        

for pressures below 20MPa, which is usually well beyond (10-100 times) the 

accuracy of the cubic EoS. 

In practice, for mixtures of more than two components, what is usually done 

is to obtain experimental data of the binary constituents and to fit the binary 

interaction parameters (BIP) of the mixing rule such that the deviations from the 

experimental and calculated data are minimized. On that basis, Mario 

Mantovani [12] analyzed the binary mixtures CO2 - N2, CO2 – O2, CO2 – Ar with 

the cubic EoS models. The BIP were obtained from the data in the Vapor-Liquid 

equilibrium (VLE) condition using the software AspenTech for the fitting. His 

results are presented on the following table for the methods covered in his text 

[12](PR, RKSP – van der Waals mixing rules): 

Table 4: Mantovani et al results - study 1 

 CO2 - N2 CO2 – O2 CO2 – Ar 

EoS kij Total 

deviation 

kij Total 

deviation 

kij Total 

deviation 

PR  -0,030 6,2% 0,116 9,2% 0,097 8,1% 

RKSP -0,030 6,2% 0,114 8,5% 0,103 7,8% 

 

In his studies [12] [1], Mantovani found that both temperature and 

mixing rules influence significantly the accuracy of the models. In particular, the 

BIP were found to be strongly dependent on the temperature and, on the other 

hand, the increased complexity of the alpha function was found to be ineffective 

in the accuracy increase.  
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Michela Mazzoccoli [2] compared different EoS for both pure CO2 and 

mixtures using experimental data from literature and the Aspen Plus V7.3 

software. In her study, the non-analytical EoS were included and demonstrated 

the expected increase in accuracy. However, depending on the region where the 

mixture‟s behavior was predicted (bubble point, dew point, single phase vapor) 

the model that presented the lowest deviations changed. Therefore, there doesn‟t 

seem to exist a direct general way to decide which model to use for CO2 

mixtures. 

For the CO2 - N2 mixture, the deviations (for the density prediction) 

encountered by Mazzoccoli are shown in table 5 [2]: 

Table 5: Mazzoccoli et al results 

CO2 - N2 

EoS Total deviation - Single phase 

PR 3,8% 

RKS 3,8% 

BWRS 2% 

 

Although the results shown above are low, large deviations were 

observed for other regions, ranging from 1% to 90%. Also, for the study 

performed by Mazzoccoli, limited data was available for the CO2 – O2 and CO2 

– Ar mixtures [2]. 

In another study [1], Mantovani et al obtained new experimental data for 

CO2 binary mixtures (CO2 – N2, CO2 – O2 and CO2 – Ar) and fitted the data with 

EoS models. The results are shown in table 6: 

Table 6: Mantovani et al results - study 2 

 CO2 - N2  CO2 – O2 CO2 – Ar 

EoS kij Total 

deviation 

kij Total 

deviation 

kij Total 

deviation 

PR -0,097 2,1% 0,151 2,37% -0,031 2,56% 

RKSP -0,512 3,05% 0,169 3,92% 0,408 4,07% 

BWRS -0,037 1,71% 0,057 1,97% -0,041 1,75% 

Where a general improvement in the precision of the BIP estimation has 

been achieved.  

Overall, to determine the best suited EoS for a given CO2 mixture and 

conditions, the choice is not yet clearly visible. So far, two main aspects of the 

property calculation have been discussed: the EoS model and the mixing rules. 
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However, another possibility for improvement is the mathematical optimization 

used for the fitting of a given EoS results to the experimental data obtained. 

 

Figure 4: Mixture Properties Estimation Diagram 

For that matter, the optimization method that will be used for the fitting 

is the non-linear least squares. However, before proceeding, the review of least 

square problems are presented in the following sections: 

  

Mixture 
Properties 
Estimation 

EoS 
Model 

Mixing 
Rule 

Fitting 
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Chapter 2: The Least Square Problem 
 

2.1.  Presentation 

In optimization problems, the function to be minimized is called 

objective function. The least square problems are a widely used class of 

optimization problems where the objective function has the following structure: 

 ( )  
 

 
∑  

 ( )

 

   

    
(Eq. 56.) 

These kind of problems are usually the ones where the results of a model 

need to be compared to experimental ones [13]. In those cases, the difference 

between each measured and modeled data is called a residual (usually noted as 

  ). If one wants to fit the data in such a way that both under and over estimates 

are punished equally, it makes mathematical sense to minimize the sum of 

squares instead of minimizing the simple sum, since the squares ensure that the 

value to be minimized is always positive. That way, the minimization problem 

can be written as: 
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(Eq. 57.) 

In another notation, the residuals may also be expressed as a vector. 

Writting  ( )̅̅ ̅̅ ̅̅  (  ( )    ( ))
 , where   ( ) are the residuals at each 

point, the sum of squares can be written in a more compact way by using the    

norm: 
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(Eq. 58.) 

In the problem at study we are estimating the density value, and the 

optimization of the BIP is such that a certain model fits the experimental data 

for the CO2 mixtures. Therefore, the residual is defined as: 

 ( )̅̅ ̅̅ ̅̅       (      )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅  (Eq. 59.) 

where k is the binary interaction parameter (BIP),      (      )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the set of 

calculated densities (using a model, i.e. Peng Robinson, BWR) and      ̅̅ ̅̅ ̅̅  is the 

set of experimental densities. 
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In a general form, the BIP is a 2x2 matrix (the combinations between the 

two species of the binary interaction): 

  [
      
      

]   
(Eq. 60.) 

However, since we are using the Van der Waals mixing model, k12=k21. 

Furthermore, the interaction of each species with itself is null, therefore 

k11=k22=0. That way, the BIP can be represented only as real number  . 

  *
  
  

+   (Eq. 61.) 

2.2.  Introducing the Statistical Uncertainty of the Measurements 

In experiments, a crucial part of the work is the determination of the 

statistical properties of the measure data. Suppose a measured density ρ and the 

residual, as defined above, between that value and a certain calculated one 

(using a model). If we suppose that the residuals    ‟s are independent of each 

other, i.e. one measurement doesn‟t influence the others, that they are equally 

distributed with a certain standard deviation   and that they can be described by 

probability density function  ( ), the likelihood of a particular set of calculated 

values      
( )
      
( )

       
( )

, given that the actual parameter vector is     ̅̅ ̅̅ ̅̅  , is 

given by the function [13]: 

 (     (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅̅    )  ∏ (  )

 

   

    
(Eq. 62.) 

If we assume that the probability density function follows normal 

distribution, the expression  (  ) can be written as: 

 (  )  
 

  √  
 
 
  
 

   
 
 

(Eq. 63.) 

that is, the values of the residuals are normally distributed. Integrating the above 

function, it is possible to calculate the probability of a certain measurement to be 

inside a range of values, usually expressed in terms of the standard deviation   : 
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Figure 5: Bell Curve 

Where    is the mean of the residuals and the   is the standard deviation of the 

residuals. 

That way, the likelihood function may be written as the following 

expression, by substituting the normal distribution equation into the likelihood 

one [13]: 

 (     (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅̅    )  (    
 )   ⁄    ( 

 

   
 
∑  

 

 

   

)  
(Eq. 64.) 

From the above expression, it becomes clear that the maximum 

likelihood that a certain calculated density      (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represents well the set 

of experimental data     ̅̅ ̅̅ ̅̅  is obtained when the sum of the squares of the 

residuals ∑   
  

    is minimized. Therefore, in our least square problem, by 

minimizing the sum of squares of the residuals, we are maximizing the 

likelihood. 

2.3.  Linear Least Square Problem 

The fitting of experimental data using the Peng-Robinson EoS and the Van der 

Waals mixing rules is accomplished by the solution of the minimization problem 

stated above (least square of the residuals). In this case, since the function  

     (      ) is linear in k (the BIP), the residual is also linear in k [13]. That 

way, we are dealing with the solution of the following problem 

   
 
 ( )  

 

 
‖ ( )̅̅ ̅̅ ̅̅ ‖

 

 
   

(Eq. 65.) 

where the residual is linear in k. 

                                     

 

 ( ) 
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The first step in the minimization problem is to determine the stationary 

points. To find a minimum of the objective function (local or global minimum), 

a first-order necessary condition is [13]: 

If k
*
 is a local minimizer and f is continuously differentiable in an open 

neighborhood of k
*
, 

  (  )̅̅ ̅̅ ̅̅ ̅       (Eq. 66.) 

Writing that explicitly, for any k, 

  ( )̅̅ ̅̅ ̅̅  ∑  ( )  ( ) 

 

   

 
(Eq. 67.) 

since the Jacobian is defined as 

 ( )̿̿ ̿̿ ̿̿  [
   
 
   

] 
(Eq. 68.) 

we can write, 

  ( )̅̅ ̅̅ ̅̅   ( )̿̿ ̿̿ ̿̿   ( )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   (Eq. 69.) 

and, also 

   ( )̿̿ ̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿  ∑ ( )  
   ( )

 

   

  ( )̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿     
(Eq. 70.) 

The residual has a linear dependence on k, therefore, its second derivative is 

zero. According to Nocedal & Wright [13], it is possible to define a matrix  ,̿ 
independent of k, such that: 

 ( )̅̅ ̅̅ ̅̅    ̅̿      ̅̅ ̅̅ ̅̅  (Eq. 71.) 

and, therefore, the gradient and Hessian of the objective function become 

  ( )̅̅ ̅̅ ̅    ̿(  ̅̿      ̅̅ ̅̅ ̅̅ )        ( )̅̅ ̅̅ ̅    ̿  ̿ (Eq. 72.) 

It is clear from (Eq. 65.) that f(k) is convex. As a consequence, the following 

theorem holds [13]:  

                                   

   (  )̅̅ ̅̅ ̅̅                                   
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That is a powerful result in case of a linear objective function, and it 

permits us to write the following system of equations: 

  ̿  ̿ ̅    ̿   ̅̅ ̅̅ ̅̅  (Eq. 73.) 

that are known as the normal equations [13], and the solution is the minimizer 

of the linear objective function, that differs mainly on how this equation is 

solved (Cholesky factorization, QR factorization and so on). 

2.4.  Non-linear least square problem 

When the residual function is non-linear, the fitting problem described 

above needs a more detailed solution, mainly because the structure of the 

Hessian    ( )̅̅ ̅̅ ̅   ( )̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿  ∑  ( )  
   ( )

 
    is more complex. That way, 

we can no longer say that the objective function is always convex and, therefore, 

the stationary points will be local minima (or maxima), depending on the result 

of the Hessian calculation.  

From the expression of the Hessian 

   ( )̅̅ ̅̅ ̅   ( )̅̅ ̅̅ ̅̅   ( )̅̅ ̅̅ ̅̅  ∑ ( )  
   ( )

 

   

 
(Eq. 74.) 

we now need to evaluate the Hessian of the residuals (    ( )) and that may 

require considerable additional computational effort. In the following two 

sections, a description of two methods commonly used to circumvent that issue 

will be presented. 

2.4.1. Gauss-Newton Method 

This method is used with a line search algorithm, where a descendent 

search direction          (      )   (  )  is chosen. The most important 

search direction is the Newton direction, derived from the second-order Taylor 

expansion 

 (      )    ̅   ̅
    ̅  

 

 
 ̅     ̅ 

(Eq. 75.) 

where the search direction is the solution obtained by minimizing the above 

function. By setting the first derivative to zero 

  
    (    ̿̿ ̿̿ ̿̿ )

  
   ̅̅ ̅̅    

(Eq. 76.) 

That way, the interest in simplifying the Hessian calculation becomes 

clear. The Gauss-Newton method is the simplest method for minimizing the 
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non-linear least square problem and it is based in the principle that the Hessian 

calculation can be approximated as: 

   ( )̿̿ ̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿    (Eq. 77.) 

This simplification holds well [13], since there are many situations in 

which the term  ( )̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿  dominates the second one (∑  ( )  
   ( )

 
   ), at 

least close to the solution, and the convergence rate of Gauss–Newton is similar 

to that of Newton‟s method. That will occur when the norm of each second-

order term (that is, ‖ ( )  
   ( )‖ ) is significantly smaller than the 

eigenvalues of  ( )̿̿ ̿̿ ̿̿   ( )̿̿ ̿̿ ̿̿ . This behavior is usually seen when either the 

residuals  ( )  are small or when they are nearly affine (so that the ‖    ( )‖ 

are small). Therefore, if the least square solution presents relatively large 

residuals or the initial guess is too far from the solution, the approximation may 

no longer be adequate.  

2.4.2. Levenberg-Marquardt Method 

This method is used with the trust region algorithm. Reminding that we 

are interested in solving the least square problem posed by (Eq. 67.): 

   
 
 ( )̅̅ ̅̅ ̅̅  

 

 
‖ ( )̅̅ ̅̅ ̅̅ ‖

 

 
   

(Eq. 78.) 

we need to define, at each iteration i, a region with radius   , where the function 

f  will be evaluated using a Taylor-series approximation: 

 (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (  )̅̅ ̅̅ ̅̅ ̅    (  )̅̅ ̅̅ ̅̅ ̅̅ ̅  ̅  
 

 
 ̅    (     ̅)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿ ̅ 

(Eq. 79.) 

where the real scalar   (   ).  

The Levenberg–Marquardt method can be obtained by using the same 

Hessian approximation as in the Gauss-Newton method, but replacing the line 

search with a trust-region strategy. One motivation to use a trust region strategy 

is avoid one of the deficiencies of Gauss–Newton method - when the Jacobian is 

rank-deficient, or nearly so. Since the same Hessian approximations are used 

both for Gauss-Newton and Levenberg-Marquardt, the local convergence 

properties of the two methods are similar [13] .  

Recalling the approximation for the Hessian (Eq. 77.), (Eq. 79.) can be 

written as [13]: 

  ( )̅̅ ̅̅ ̅̅ ̅̅  
 

 
‖ (  )̅̅ ̅̅ ̅̅ ̅‖

 

 
  ̅   ( )̅̅ ̅̅ ̅̅   (  )̅̅ ̅̅ ̅̅ ̅  

 

 
 ̅   ( )̿̿ ̿̿ ̿̿    ( )̿̿ ̿̿ ̿̿  ̅ 

(Eq. 80.) 
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where   ( )is the model function of the objective function f at each iteration i , 

that is supposed to be a good approximation of the function in a region of radius 

p, sufficiently small. 

At each iteration the following sub problem needs to be solved: 

   
 
‖  ̿ ̅   (  )̅̅ ̅̅ ̅̅ ̅‖             ‖ ̅‖     (Eq. 81.) 

and the solution of the minimization algorithm can be classified in the following 

way: 

1- If a solution of the Gauss-Newton step lies inside the trust region, i.e. 

  
     , then it will also be a solution to (Eq. 80), 

2- Otherwise, there is a     such that the solution   
   ‖  ‖ and 

(  ̿
 
  ̿    )     

 ̿  . 

To find a   that satisfies the conditions above, a root finding algorithm based 

on the Cholesky or QR factorization may be used.  
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Chapter 3: Optimization Applied to the  

Peng-Robinson EoS 
 

For the purpose of optimizing the binary interaction parameter (BIP), the 

least square problem was solved using built-in Matlab optimization code. The 

idea is to study the difference between optimization algorithms and to analyze 

BIP dependence on the temperature. 

One crucial characteristic of the PR EoS is that an explicit expression of 

the form  (   ) is not easily found. 

 (   )     (   )  (Eq. 82.) 

where  (   ) is the Peng-Robinson EoS as written in (Eq. 21). 

Another way to proceed with the optimization algorithm explained in the 

previous sections is to calculate the density for each point (P,T) instead of 

finding a general expression. If we write the EoS explicitly as a cubic in v, as 

follows: 

    (        ) 
  (                  

  ) 

 (             
         

 )     
(Eq. 83.) 

A numerical solution in v, given P, T and the other parameters, can be 

easily found. We verify that this equation has only one real solution by verifying 

that it has no inflexion points, i.e. it is strictly ascendant. For that, first derivative 

should be always positive and, therefore, its determinant is always negative – 

since the derivative is a second-order equation.  

 Overall, the procedure to find a solution is the following: 

1- write the EoS as                

2- write the first derivative of the cubic as              

3- calculate   (  )   (  )  and calculate its value, if it‟s negative, 

continue 

4- calculate the parameters   
      

   
,   

  

   
 

  

    
 

 

  
 

5- calculate the   √      

6- calculate two more parameters   √   
 

,   √   
 

 

7- The cubic will have two imaginary and one real solution, the real one 

can be calculated from the following expression   
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1.1.  Application – binary mixtures CO2-N2, CO2-O2, CO2-Ar 

The procedure mentioned above was applied to a real case, where the 

experimental data obtained by Mantovani et al. [1] is used for the density 

estimation of the referred binary mixtures. 

The experimental set of data is given by six tables, where the properties of 

the binary mixtures CO2-N2, CO2-O2 and CO2-Ar are measured for two different 

compositions each [1]: 

Table 7: Mantovani et al experiment - mixtures composition 

 N1   N2   O1   O2   A1   A2  

 CO2  0,9585 0,9021 0,9393 0,8709 0,9692 0,8306

 N2  0,0415 0,0979  –   –   –   –  

 O2   –   –  0,0607 0,1291  –   –  

 Ar   –   –   –   –  0,0308 0,1694

 Mixture molar composition  

 

 

Table 8: Mantovani et al experiment - exp. data N1 

 Mixture N1 experimental data

 p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3 ]   p [MPa]   [kg/m3]  

1,001 17,91 1,001 16,79 1,003 15,2 1,002 14,03 1,002 13,08

2,000 37,75 2,004 34,95 2,001 32,23 2,002 30,39 2,001 27,55

3,001 60,12 3,000 54,72 3,001 50,12 3,000 46,57 3,000 42,75

4,001 85,65 4,001 76,45 4,002 68,52 4,002 63,73 4,003 58,6

5,001 116,38 5,003 100,8 5,003 89,33 5,001 81,83 5,003 74,95

6,000 155,97 6,001 128,5 6,002 111,99 6,001 101,2 6,000 92,1

7,001 213,29 7,001 160,99 7,000 136,56 7,002 121,6 7,003 109,94

8,001 330,92 8,001 200,41 8,001 163,71 8,005 143,48 8,001 128,59

9,001 544,54 9,001 249,73 9,000 193,75 9,003 166,64 9,002 148,16

10,002 634,72 10,001 312,81 10,001 227,23 10,001 191,38 10,001 168,52

11,001 683,11 11,002 389,63 11,002 264,48 11,002 217,83 11,002 189,95

12,001 715,67 12,001 467,33 12,000 305,25 12,002 245,86 12,002 212,12

13,001 740,35 13,001 532,26 13,000 348,75 13,001 275,07 13,002 234,83

14,002 759,32 14,001 582,79 14,000 393 14,000 305,51 14,002 258,37

15,004 774,69 15,002 619,85 15,001 435,95 15,001 336,55 15,002 282,34

16,001 788,63 16,001 649,44 16,001 475,71 16,002 367,63 16,001 306,66

17,003 801,56 17,001 673,37 17,003 510,93 17,001 397,82 17,001 331,02

18,001 813,51 18,003 693,69 18,001 541,92 18,001 426,94 – –

19,005 824,42 19,002 711,83 19,002 569,42 19,001 454,58 – –

20,001 833,58 20,001 728,16 20,004 593,72 20,002 480,85 – –

 T = 303.22 K   T = 323.18 K   T = 343.15 K   T = 363.15 K   T = 383.14 K  
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Table 9: Mantovani et al experiment - exp. data N2 

 Mixture N2 experimental data

 p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3 ]   p [MPa]   [kg/m3]  

1.000 17.42 1.002 16.15 1.001 14.29 1.001 13.43 1.000 12.48

2.000 36.62 2.000 33.57 2.003 30.68 2.001 28.57 2.003 26.68

3.001 58.04 3.003 52.68 3.001 47.56 3.000 44.28 3.001 41.5

4.001 82.12 4.001 73.32 4.001 66.13 4.003 61.87 4.001 56.89

5.000 110.12 5.001 95.85 5.003 85.97 5.003 79.14 5.002 72.61

6.002 144 6.000 121.04 6.003 107.13 6.001 97.56 6.001 88.97

7.000 187.15 7.002 149.69 7.003 129.96 7.001 116.91 7.000 106

8.001 248.76 8.001 182.41 8.001 154.43 8.004 137.17 8.003 123.69

9.000 341.94 9.000 220.69 9.002 181.2 9.002 158.53 9.001 142.03

10.003 453.92 10.001 265.42 10.000 210.13 10.001 181.15 10.000 161.18

11.002 541.32 11.002 316.33 11.001 241.54 11.001 204.87 11.001 180.9

12.003 599.42 12.001 371.76 12.002 275.24 12.000 229.68 12.002 201.21

13.000 640.25 13.000 426.12 13.001 310.56 13.002 255.53 13.000 222.01

14.002 671.43 14.002 475.97 14.001 346.77 14.000 282.04 14.002 243.35

15.002 695.05 15.001 519.15 15.001 382.74 15.001 309 15.001 264.96

16.001 715.04 16.000 554.51 16.000 417.63 16.001 336.03 16.001 286.73

17.005 731.98 17.001 584.29 17.002 450.07 17.003 362.76 17.001 308.77

18.001 747.85 18.000 610.03 18.002 480.07 18.000 388.68 18.001 330.77

19.003 761.75 19.001 632.79 19.001 507.72 19.001 413.59 19.002 352.16

20.001 773.45 20.001 652.97 20.002 532.73 20.001 438.02 20.002 373.05

 T = 303.22 K   T = 323.18 K   T = 343.15 K   T = 363.15 K   T = 383.14 K  

 

Table 10: Mantovani et al experiment - exp. data O1 

 Mixture O1 experimental data

 p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3 ]   p [MPa]   [kg/m3]  

1.003 17.930 1.000 16.790 1.020 15.270 1.004 13.750 1.009 12.820

2.004 37.390 2.003 34.810 2.006 31.710 2.010 29.690 2.002 27.150

3.000 59.690 3.003 54.280 3.001 48.820 3.011 45.050 3.001 42.340

4.000 84.800 4.002 75.650 4.010 67.220 4.006 62.670 4.001 58.120

5.002 114.540 5.001 99.330 5.002 88.500 5.000 81.480 5.002 74.460

6.003 152.040 6.001 126.150 6.001 110.670 6.000 100.750 6.001 91.550

7.000 203.610 7.003 156.990 7.001 134.860 7.003 120.600 7.000 109.210

8.001 289.700 8.001 193.320 8.003 161.060 8.002 142.170 8.001 127.600

9.002 461.140 9.001 237.430 9.001 189.880 9.004 164.800 9.000 146.880

10.001 588.570 10.001 291.610 10.003 222.010 10.002 188.990 10.000 167.030

11.002 651.970 11.000 356.070 11.000 257.280 11.001 214.480 11.000 187.900

12.004 691.780 12.001 426.040 12.001 295.230 12.000 241.380 12.002 209.570

13.000 721.430 13.000 491.280 13.001 335.990 13.001 269.730 13.002 231.830

14.000 743.520 14.000 543.710 14.002 377.880 14.000 299.130 14.002 254.660

15.002 761.680 15.001 586.850 15.003 418.590 15.003 329.230 15.001 278.160

16.001 777.530 16.001 620.780 16.001 457.590 16.001 359.230 16.000 301.720

17.001 791.430 17.001 648.030 17.001 493.830 17.001 388.810 – –

18.001 804.780 18.000 671.450 18.002 525.510 18.001 417.420 – –

19.006 816.570 19.001 691.460 19.002 553.760 19.001 444.670 – –

20.003 826.460 20.003 709.440 20.002 579.120 20.003 471.170 – –

 T = 303.22 K   T = 323.18 K   T = 343.15 K   T = 363.15 K   T = 383.14 K  
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Table 11: Mantovani et al experiment - exp. data O2 

 Mixture O2 experimental data

 p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3 ]   p [MPa]   [kg/m3]  

1.001 16.960 1.004 15.670 1.000 14.270 1.000 13.330 1.002 11.840

2.001 35.970 2.002 33.230 2.003 30.630 2.002 28.810 2.003 25.910

3.000 56.910 3.004 51.850 3.001 47.700 3.002 44.410 3.003 40.570

4.001 80.030 4.006 71.910 4.001 64.980 4.000 60.550 4.004 55.670

5.002 106.480 5.001 93.510 5.001 84.150 5.002 77.510 5.005 71.220

6.001 137.250 6.001 117.620 6.006 104.830 6.003 95.460 6.001 87.230

7.001 175.070 7.002 144.290 7.003 126.590 7.002 114.200 7.003 103.830

8.002 222.690 8.002 174.220 8.005 149.970 8.003 133.650 8.003 120.960

9.003 286.100 9.002 208.250 9.000 174.890 9.000 154.090 9.000 138.660

10.000 369.360 10.001 246.730 10.001 201.760 10.003 175.660 10.002 157.100

11.003 453.810 11.000 289.900 11.001 230.560 11.000 197.980 11.000 176.050

12.003 524.280 12.001 336.790 12.002 261.070 12.000 221.250 12.001 195.510

13.002 577.680 13.000 385.090 13.002 293.200 13.000 245.220 13.000 215.350

14.004 618.470 14.001 432.340 14.003 326.310 14.000 270.000 14.003 235.590

15.001 651.770 15.001 475.610 15.001 359.740 15.002 295.200 15.001 256.190

16.003 678.160 16.002 514.040 16.003 392.710 16.001 320.510 16.002 276.930

17.003 700.310 17.001 547.480 17.001 424.320 17.001 345.470 17.001 297.680

18.005 719.800 18.001 577.290 18.001 453.960 18.000 369.970 18.000 318.730

19.001 737.040 19.003 602.710 19.001 481.530 19.001 394.150 19.001 339.370

20.001 751.820 20.001 625.500 20.001 507.090 20.003 417.750 20.001 359.410

 T = 303.22 K   T = 323.18 K   T = 343.15 K   T = 363.15 K   T = 383.14 K  

 

Table 12: Mantovani et al experiment - exp. data A1 

 Mixture A1 experimental data

 p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3 ]   p [MPa]   [kg/m3]  

1.003 18.140 1.001 16.990 1.001 15.840 1.005 14.760 1.010 14.310

2.001 38.320 2.002 35.390 2.003 32.950 2.005 30.570 2.001 28.840

3.001 61.250 3.003 55.470 3.000 50.830 3.002 47.080 3.003 44.320

4.000 87.640 4.001 77.710 4.001 69.030 4.002 64.570 4.001 60.280

5.001 119.810 5.000 102.510 5.003 90.500 5.003 83.150 5.003 76.900

6.002 161.730 6.000 131.350 6.000 113.830 6.002 103.020 6.001 94.350

7.000 228.260 7.000 165.370 7.004 139.400 7.001 124.090 7.003 112.510

8.001 455.320 8.001 207.320 8.002 167.770 8.003 146.770 8.003 131.600

9.002 643.490 9.000 260.660 9.000 199.540 9.001 170.920 9.000 151.500

10.005 699.660 10.000 332.110 10.001 235.380 10.003 196.850 10.003 172.550

11.001 738.090 11.000 417.560 11.001 275.770 11.003 224.690 11.001 194.390

12.002 763.710 12.002 502.330 12.001 320.760 12.001 254.320 12.000 217.230

13.001 783.200 13.003 567.420 13.003 368.580 13.002 285.790 13.001 240.850

14.001 799.340 14.002 616.140 14.006 416.200 14.002 318.500 14.000 265.190

15.003 813.250 15.003 651.850 15.003 462.140 15.003 351.990 15.001 290.230

16.001 825.600 16.003 679.860 16.004 504.430 16.001 384.620 16.000 315.410

17.001 837.220 17.002 702.820 17.001 541.210 17.002 417.310 17.001 340.760

18.004 847.990 18.003 722.640 18.001 573.060 18.001 448.330 18.002 366.360

19.006 858.590 19.003 739.790 19.001 600.370 19.001 477.320 19.001 391.230

20.007 866.610 20.002 755.350 20.003 624.250 20.004 505.010 20.003 415.120

 T = 303,22 K   T = 323,18 K   T = 343,15 K   T = 363,15 K   T = 383,14 K  
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Table 13: Mantovani et al experiment - exp. data A2 

 Mixture A2 experimental data

 p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3]   p [MPa]   [kg/m3 ]   p [MPa]   [kg/m3]  

1.002 17.700 1.036 16.390 1.019 15.290 1.004 13.840 1.004 12.620

2.003 37.390 2.003 34.270 2.000 31.410 2.001 29.570 2.000 26.980

3.000 58.810 3.005 53.070 3.001 47.860 3.001 45.560 3.001 41.970

4.003 82.660 4.002 73.420 4.000 66.410 4.001 62.170 4.001 57.440

5.002 109.640 5.001 95.220 5.001 85.940 5.002 79.510 5.001 73.270

6.002 141.430 6.007 119.390 6.001 106.640 6.001 97.510 6.000 89.500

7.002 179.990 7.000 145.740 7.003 128.430 7.000 116.440 7.001 106.400

8.003 229.060 8.001 175.110 8.005 151.850 8.001 136.150 8.001 123.740

9.001 294.030 9.000 208.100 9.004 176.670 9.000 156.770 9.003 141.710

10.000 377.700 10.001 244.800 10.001 203.170 10.003 178.320 10.000 160.360

11.000 465.250 11.001 285.240 11.001 231.270 11.001 200.650 11.000 179.400

12.002 538.570 12.002 328.930 12.004 261.010 12.001 223.900 12.001 199.010

13.002 594.050 13.002 373.810 13.002 291.940 13.001 247.960 13.000 218.970

14.001 635.790 14.000 418.720 14.004 323.970 14.002 272.480 14.002 239.300

15.003 668.490 15.005 461.680 15.003 356.440 15.001 297.600 15.001 259.930

16.001 695.110 16.001 500.310 16.003 388.270  –   –  16.002 280.740

17.001 717.840 17.003 535.060 17.003 419.020  –   –  17.003 301.710

18.000 737.350 18.002 565.870 18.001 448.220  –   –  18.001 322.560

19.001 755.040 19.007 593.010 19.006 476.050  –   –  19.004 343.410

20.004 769.490 20.005 617.440  –   –   –   –  20.003 363.600

 T = 303.22 K   T = 323.18 K   T = 343.15 K   T = 363.15 K   T = 383.14 K  

 

For the optimization, the algorithm used was the nonlinear curve fitting - 

a built-in Matlab function that can be found in the Optimization toolbox. It uses 

the nonlinear least square for the fitting of a function to a set of data (xdata, 

ydata) as follows: 

bip_opt = lsqcurvefit(rho_PR ,bip,P_exp,rho_exp) 

Where rho_PR is the density calculated from the Peng-Robinson 

relationship, P_exp and rho_exp are the experimental data to be fitted. The 

tricky part is to define the rho_PR expression with its explicit dependence on the 

bip, because for that, the function needs to include the mixing rules, based on 

parameters loaded with external files. The algorithm implemented for that was: 

1- create a function rho_PR = paramPR(P_exp, T_exp, a, R_spec, b_mix, 

bip, x) that receives the experimental values (P_exp, T_exp, molar 

fraction „x‟), the parameters (energy parameter, co-volume) calculated 

for each species and the bip to calculate the density, also verifying that 

the equation has only one real root (as explained in the previous point), 

2- call that function using an anonymous function, defining that P_exp and 

bip as  the variables rho_PR = @(bip, P_col) paramPR (P_exp, T_exp, 

data, R_spec, bip, x), 

3- define an initial guess for the bip 

4- call the optimization function bip_opt = lsqcurvefit (rho_PR 

,bip,P_exp,rho_exp) for each isotherm, 

5- Calculate the deviation AAD%, 
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Furthermore, since the bip is known to be strongly dependent on the 

temperature, an additional step was developed: 

1- optimize the bip for each isotherm, 

2- regress the data using the function bip(T) = a+b*T+c/T; 

3- calculate the rho_PR again but, this time, use the bip(T) for each 

isotherm, 

4- calculate the deviation. 
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Chapter 4: Results 

 

First, a comprehensive presentation and analysis of the results for the BIP 

fitting will be presented. Following that, the robustness analysis of the 

optimization method, by changing its tolerance, initial value and algorithms, 

along with the study of the implications of the BIP and mixtures variation will 

also be presented. Conclusions on the effectiveness of the method employed, 

suggested improvements and/or points to be reviewed to improve the validation 

of the discrepancies between experimental and calculated data will be presented 

at the end.  

4.1.  Optimization of BIP for Each Isotherm 

The first approach to the BIP optimization that will be presented considers 

the BIP as dependent on the temperature. However, its optimization will be done 

for one isotherm at a time and, therefore, every mixture will have a set of five 

optimum BIP‟s. 

The results are shown in the following plots (figure 5 to figure 10), where 

the AAD% is the total deviation of each isotherm, defined as: 

     
   

 
∑
|        |

    

 

   

   
(Eq. 84.) 

and the BIPopt are represented as the kij in the figures. The AAD% and 

temperature are displayed above each plot. 
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4.1.1. Plots Mixture N1 

 

Figure 6: Mixture N1, T=303K 

 

Figure 7: Mixture N1, T=323K 

 

Figure 8: Mixture N1, T=343K 
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Figure 9: Mixture N1, T=363K 

 

Figure 10: Mixture N1, T=383K 
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4.1.2. Plots Mixture N2 

 

Figure 11: Mixture N2, T=303K 

 

Figure 12: Mixture N2, T=323K 

 

Figure 13: Mixture N2, T=343K 
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Figure 14: Mixture N2, T=363K 

 

Figure 15: Mixture N2, T=383K 
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4.1.3. Plots Mixture O1 

 

Figure 16 : Mixture A1, T=303K 

 

Figure 17: Mixture A1, T=323K 

 

Figure 18: Mixture A1, T=343K 
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Figure 19: Mixture A1, T=363K 

 

Figure 20: Mixture A1, T=383K 
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4.1.4. Plots Mixture A2 

 

Figure 21: Mixture A2, T=303K  

 

Figure 22: Mixture A2, T=323K 

 

Figure 23: Mixture A2, T=343K 
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Figure 24: Mixture A2, T=363K 

 

Figure 25: Mixture A2, T=383K 
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4.1.5. Plots Mixture O1 

 

Figure 26: Mixture O1, T=303K 

 

Figure 27: Mixture O1, T=323K 

 

Figure 28: Mixture O1, T=343K 
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Figure 29: Mixture O1, T=363K 

 

Figure 30: Mixture O1, T=383K 
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4.1.6. Plots Mixture O1 

 

Figure 31: Mixture O2, T=303K 

 

Figure 32: Mixture O2, T=323K 

 

Figure 33: Mixture O2, T=343K 
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Figure 34: Mixture O2, T=363K 

 

Figure 35: Mixture O2, T=383K 

4.1.7. Explanation of the Plots  

Overall, from the plots (Fig 6 to 17), it can be seen that a good 

agreement has been obtained with the Peng-Robinson EoS model for all 

mixtures. The deviation for each curve remained around 2% (overall, between 

1.2107% and 2.8263%). Furthermore, the BIP values showed a strong 

dependence on the temperature. This fact can be seen in the following plot, 

where the BIP values for each temperature are plotted for the mixture N1: 
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Figure 36: BIPxT Mixture N1 

The numerical results of the isotherm plots presented above are 

summarized in the tables below: 

Table 14: Numerical Results - Mixtures N1&N2 

T 303,22 323,18 343,15 363,15 383,14

bip -0,0329 -0,4098 -0,2751 -0,1460 0,3012

AAD% 2,1314 2,4696 2,4280 1,8377 1,9165

T 303,22 323,18 343,15 363,15 383,14

bip -0,0829 -0,1379 -0,1316 -0,0867 -0,0368

AAD% 1,8101 2,1642 2,5273 1,9485 2,0336

N1 Mixture

N2 Mixture

 

Table 15: Numerical Results - Mixtures O1&O2 

T 303,22 323,18 343,15 363,15 383,14

bip 0,1581 0,0427 0,0556 0,1038 0,4520

AAD% 2,1071 2,2947 2,6510 2,1870 2,1189

T 303,22 323,18 343,15 363,15 383,14

bip 0,2270 0,1951 0,2165 0,3049 0,3632

AAD% 1,9695 2,4777 2,5594 2,0293 2,8263

O1 Mixture

O2 Mixture
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Table 16: Numerical Results - Mixtures A1&A2 

T 303,22 323,18 343,15 363,15 383,14

bip 0,0155 -0,3569 -0,4131 -0,3543 0,0052

AAD% 2,4831 2,6002 2,5613 1,9056 1,2107

T 303,22 323,18 343,15 363,15 383,14

bip -0,0296 0,0871 0,1103 0,2214 0,1452

AAD% 1,3244 2,0328 2,0769 1,4394 1,9973

A1 Mixture

A2 Mixture

 

From the fact that the BIP varies with the temperature, a following step in 

the optimization is to introduce an explicit expression for the BIP in function of 

the temperature. 

4.2.  T-Dependent BIP   

With Aspen Properties, the software used by Mantovani [12] to analyse the 

experimental data, it is possible to introduce the BIP's temperature dependency. 

In particular, the BIP's formulation is [8]: 

   ( )       
 

 
 

(Eq. 85.

) 

where a, b and c are fitting parameters. 

For the fitting of that expression, the Matlab command fit was used with a 

non-linear least square algorithm. For each mixture (N1, N2, A1, A2, O1, and 

O2) the optimum BIP values (one for each temperature, thus, five for each 

mixture) were used for the regression. From that, the parameters a, b and c (Eq. 

85.) were obtained and used for the calculation of the new BIPs (one for each 

isotherm). Then, the isotherm curves were re-plotted with these new BIPs to 

analyze their impact in the model.  

It is important to be aware that, since the regression introduces errors (the 

curve is the one that best fits the set of data in the least square sense, not 

necessarily passing through any of the optimum BIP points), a higher total 

deviation is expected. Nonetheless, having a direct correlation between BIP and 

temperature is important, since it provides an expression from which a BIP can 

be estimated for any temperature inside the range of the experimental data from 

which it has been regressed. 

In the following plots (Fig 13 to 18), the BIP fitting is presented, followed by 

the newly calculated isotherms using the (Eq. 86.): 
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Figure 37: BIPxT Regressed - N1 

 

 

 

Figure 38: BIPxT Regressed – N2 
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Figure 39: BIPxT Regressed - O1 

 

 

 

Figure 40: BIPxT Regressed - O2 
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Figure 41: BIPxT Regressed - A1 

 

 

 

Figure 42: BIPxT Regressed - A2 

Where the blue points are the optimum BIP previously calculated, the 

red curve is the one obtained from the regression using (Eq. 86.) and the 

magenta points are the actual points used for the calculation. The resulting 

isotherm curves are presented in the following plots (Fig 19 to 24): 
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4.2.1. Plots Mixture N1 

 

Figure 43: Mixture N1, T=303K, BIP(T) 

 

Figure 44: Mixture N1, T=323K, BIP(T) 

 

Figure 45: Mixture N1, T=343K, BIP(T) 
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Figure 46: Mixture N1, T=363K, BIP(T) 

 

Figure 47: Mixture N1, T=383K, BIP(T) 
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4.2.2. Plots Mixture N1 

 

Figure 48: Mixture N2, T=303K, BIP(T) 

 

Figure 49: Mixture N2, T=323K, BIP(T) 

 

Figure 50: Mixture N2, T=343K, BIP(T) 
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Figure 51: Mixture N2, T=363K, BIP(T) 

 

Figure 52: Mixture N2, T=383K, BIP(T) 

  



Chapter 4: Results    

 

Equations of State for Mixtures: an Optimization-Based Approach                                           67 

4.2.3. Plots Mixture O1 

 

Figure 53: Mixture O1, T=303K, BIP(T) 

 

Figure 54: Mixture O1, T=323K, BIP(T) 

 

Figure 55: Mixture O1, T=343K, BIP(T) 
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Figure 56: Mixture O1, T=363K, BIP(T) 

 

Figure 57: Mixture O1, T=383K, BIP(T) 

  



Chapter 4: Results    

 

Equations of State for Mixtures: an Optimization-Based Approach                                           69 

4.2.4. Plots Mixture O2 

 

Figure 58: Mixture O2, T=303K, BIP(T) 

 

Figure 59: Mixture O2, T=323K, BIP(T) 

 

Figure 60: Mixture O2, T=343K, BIP(T) 
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Figure 61: Mixture O2, T=363K, BIP(T) 

 

Figure 62: Mixture O2, T=383K, BIP(T) 
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4.2.5. Plots Mixture A1 

 

Figure 63: Mixture A1, T=303K, BIP(T) 

 

Figure 64: Mixture A1, T=323K, BIP(T) 

 

Figure 65: Mixture A1, T=343K, BIP(T) 
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Figure 66: Mixture A1, T=363K, BIP(T) 

 

Figure 67: Mixture A1, T=383K, BIP(T) 
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4.2.6. Plots Mixture A2 

 

Figure 68: Mixture A2, T=303K, BIP(T) 

 

Figure 69: Mixture A2, T=323K, BIP(T) 

 

Figure 70: Mixture A2, T=343K, BIP(T) 
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Figure 71: Mixture A2, T=363K, BIP(T) 

 

Figure 72: Mixture A2, T=383K, BIP(T) 

4.2.7. Explanation of the Plots 

Overall, it can be noted that with the introduction of the temperature 

dependence the deviation varied, but not greatly (figures 25 to 36) – it now 

varies from 1.2203% to 2.8103% (against 1.2107% to 2.8263% previously 

calculated).  

The numerical results obtained for all mixtures – both with and without 

the use of the (Eq. 86.) are presented below: 
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Table 17 : Global Numerical Results - Mixtures N1&N2 

T 303,22 323,18 343,15 363,15 383,14

bip -0,0329 -0,4098 -0,2751 -0,1460 0,3012

AAD% 2,1314 2,4696 2,4280 1,8377 1,9165

bip(T) -0,0547 -0,3405 -0,3477 -0,1214 0,3017

AAD% 2,1981 2,4469 2,5096 1,8152 1,9162

T 303,22 323,18 343,15 363,15 383,14

bip -0,0829 -0,1379 -0,1316 -0,0867 -0,0368

AAD% 1,8101 2,1642 2,5273 1,9485 2,0336

bip(T) -0,0867 -0,1300 -0,1310 -0,0964 -0,0318

AAD% 1,8200 2,1599 2,5263 1,9656 2,0274

N1 Mixture

N2 Mixture

 

Table 18 : Global Numerical Results - Mixtures O1&O2 

T 303,22 323,18 343,15 363,15 383,14

bip 0,1581 0,0427 0,0556 0,1038 0,4520

AAD% 2,1071 2,2947 2,6510 2,1870 2,1189

bip(T) 0,1728 0,0202 0,0275 0,1687 0,4229

AAD% 2,0723 2,3303 2,7024 2,1225 2,1516

T 303,22 323,18 343,15 363,15 383,14

bip 0,2270 0,1951 0,2165 0,3049 0,3632

AAD% 1,9695 2,4777 2,5594 2,0293 2,8263

bip(T) 0,2222 0,2026 0,2254 0,2840 0,3725

AAD% 1,9872 2,4615 2,5429 2,0841 2,8103

O1 Mixture

O2 Mixture
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Table 19: Global Numerical Results - Mixtures A1&A2 

T 303,22 323,18 343,15 363,15 383,14

bip 0,0155 -0,3569 -0,4131 -0,3543 0,0052

AAD% 2,4831 2,6002 2,5613 1,9056 1,2107

bip(T) 0,0158 -0,3475 -0,4450 -0,3199 -0,0071

AAD% 2,4826 2,5940 2,5973 1,8765 1,2203

T 303,22 323,18 343,15 363,15 383,14

bip -0,0296 0,0871 0,1103 0,2214 0,1452

AAD% 1,3244 2,0328 2,0769 1,4394 1,9973

bip(T) -0,0329 0,0822 0,1483 0,1733 0,1635

AAD% 1,3468 2,0415 2,0168 1,6311 1,9587

A1 Mixture

A2 Mixture

 

 

The coefficients a, b and c of the (Eq. 86.) are: 

 for the CO2-N2 mixture 

                                     

                                    

 for the CO2-O2 mixture 

                                     

                                     

 for the CO2-Ar mixture 
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4.3.  Robustness Analysis – Tolerance, Algorithm and Starting 

Point 

For the results presented so far, the non-linear curve fitting was obtained 

with the following parameters: 

                 

                              

   ( )       

Now, to understand the robustness of the results obtained so far, those 

parameters are varied and the change in the deviation is analyzed. 

4.3.1. Tolerance 

To analyze the impact of the tolerance in the optimization, the tolerance 

was varied between four values: 10
-3

, 10
-6

, 10
-9

 and 10
-12

 for the N1 mixture. 

The resulting optimum BIP and AAD% were compared using the relative 

difference of the average values of the BIP and AAD% for each tolerance, 

having the value 10
-6

 (the default used in the non-linear curve fitting Matlab 

algorithm) as a reference. The results are shown in the following table: 

Table 20: Sensitivity Analysis - Tolerance 

T(K) 303,22 323,18 343,15 363,15 383,14

bip -0,032547 -0,409723 -0,275097 -0,145965 0,301135 -0,0562%

AAD% 2,130532 2,469583 2,428011 1,837681 1,916503 -0,0082%

bip -0,032873 -0,409818 -0,275097 -0,145953 0,301229 reference

AAD% 2,131443 2,469618 2,428011 1,837671 1,916450 reference

bip -0,032878 -0,409815 -0,275102 -0,145953 0,301229 0,0010%

AAD% 2,131456 2,469617 2,428017 1,837671 1,916449 0,0002%

bip -0,032877 -0,409815 -0,275102 -0,145953 0,301229 0,0009%

AAD% 2,131455 2,469617 2,428017 1,837671 1,916449 0,0001%

N1 Mixture

Tol = 1e-3

Tol = 1e-6

Tol = 1e-9

Tol = 1e-12

Relative 

Difference of Avg

 

Where the relative difference of average is calculated as: 
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   (    (    ))     (    (      ))

   (    (      ))
  

(Eq. 86.) 

and the average is calculated for all the five temperatures i calculated using each 

tolerance j. 

Those values can be summarized in the following plot, where it becomes 

clear that decreasing the tolerance – from the default 10
-6

 as a reference - does 

not bring significant improvement in the prediction of the optimum BIP using 

the non-linear curve fitting algorithm: 

 

 

Figure 73: Sensitivity Analysis – Tolerance 

4.3.2. Algorithm 

The two algorithms compared are the trust-region and the Levemberg-

Marquandt, because both are built-in components of the non-linear curve fitting 

in Matlab. For that simulation, the tolerance is be set to the default (10
-6

), and no 

difference was observed for the N1 or N2 mixtures, as it can be seen in the 

following table: 
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Table 21: Mixture N1&N2 for different optimization algorithms 

T 303,22 323,18 343,15 363,15 383,14

bip -0,032873 -0,409818 -0,275097 -0,145953 0,301229

AAD% 2,131443 2,469618 2,428011 1,837671 1,916450

bip -0,032873 -0,409818 -0,275097 -0,145953 0,301229

AAD% 2,131443 2,469618 2,428011 1,837671 1,916450

T 303,22 323,18 343,15 363,15 383,14

bip -0,082881 -0,137911 -0,131629 -0,086654 -0,036833

AAD% 1,810053 2,164249 2,527314 1,948463 2,033574

bip -0,082881 -0,137911 -0,131629 -0,086654 -0,036833

AAD% 1,810053 2,164249 2,527314 1,948463 2,033574

N1 Mixture

Levemberg-Marquandt

Trust-Region

N2 Mixture

Levemberg-Marquandt

Trust-Region

 

4.3.3. Initial value of BIP 

The initial value of the BIP used for the optimization has not affected the 

results as well. The initial values of -15, -5, 0, 5, and 15 have been tested for all 

mixtures, with no change in the results. 

4.4.  Sensitivity Analysis – Variation of the BIP 

Now, the variation of the isotherms and deviation (AAD%) will be tested 

against the variation of the BIP. The BIP values were changed in the range -1 to 

1 (with more values in between for the AAD% plots than for the Isotherms to 

make the visualization easier), because that is the range of values usually found 

for that parameter. The following curves were obtained, where every pair shows 

the calculated pressure for each isotherm in the first plot and the deviation for 

each isotherm in the second one - where the red circle shows the minimum 

deviation – for every mixture, N1, N2, O1, O2 , A1 and A2: 
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4.4.1. Plots Mixture N1 

 

Figure 74: Variation of BIP – mixture N1 - 303K 

 

Figure 75: Variation of BIP – mixture N1 - 323K 

 

Figure 76: Variation of BIP – mixture N1 - 343K 
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Figure 77: Variation of BIP – mixture N1 - 363K 

 

Figure 78: Variation of BIP – mixture N1 - 383K 

 

Figure 79: AAD% Variation with BIP – mixture N1 - 303K 
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Figure 80: AAD% Variation with BIP – mixture N1 - 323K 

 

Figure 81: AAD% Variation with BIP – mixture N1 - 343K 

 

Figure 82: AAD% Variation with BIP – mixture N1 - 363K 
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Figure 83: AAD% Variation with BIP – mixture N1 - 383K 
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4.4.2. Plots Mixture N2 

 

Figure 84: Variation of BIP – mixture N2 - 303K 

 

Figure 85: Variation of BIP – mixture N2 - 323K 

 

Figure 86: Variation of BIP – mixture N2 - 343K 
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Figure 87: Variation of BIP – mixture N2 - 363K 

 

Figure 88: Variation of BIP – mixture N2 - 383K 

 

Figure 89: AAD% Variation with BIP – mixture N2 - 303K 
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Figure 90: AAD% Variation with BIP – mixture N2 - 323K 

 

Figure 91: AAD% Variation with BIP – mixture N2 - 343K 

 

Figure 92: AAD% Variation with BIP – mixture N2 - 363K 
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Figure 93: AAD% Variation with BIP – mixture N2 - 383K 
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4.4.3. Plots Mixture O1 

 

Figure 94: Variation of BIP – mixture O1 - 303K 

 

Figure 95: Variation of BIP – mixture O1 - 323K 

 

Figure 96: Variation of BIP – mixture O1 - 343K 
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Figure 97: Variation of BIP – mixture O1 - 363K 

 

Figure 98: Variation of BIP – mixture O1 - 383K 

 

Figure 99: AAD% Variation with BIP – mixture O1 - 303K 
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Figure 100: AAD% Variation with BIP – mixture O1 - 323K 

 

Figure 101: AAD% Variation with BIP – mixture O1 - 343K 

 

Figure 102: AAD% Variation with BIP – mixture O1 - 363K 
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Figure 103: AAD% Variation with BIP – mixture O1 - 383K 
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4.4.4. Plots Mixture O2 

 

Figure 104: Variation of BIP – mixture O2 - 303K 

 

Figure 105: Variation of BIP – mixture O2 - 323K 

 

Figure 106: Variation of BIP – mixture O2 - 343K 
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Figure 107: Variation of BIP – mixture O2 - 363K 

 

Figure 108: Variation of BIP – mixture O2 - 383K 

 

Figure 109: AAD% Variation with BIP – mixture O2 - 303K 
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Figure 110: AAD% Variation with BIP – mixture O2 - 323K 

 

Figure 111: AAD% Variation with BIP – mixture O2 - 343K 

 

Figure 112: AAD% Variation with BIP – mixture O2 - 363K 
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Figure 113: AAD% Variation with BIP – mixture O2 - 383K 
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4.4.5. Plots Mixture A1 

 

Figure 114: Variation of BIP – mixture A1 - 303K 

 

Figure 115: Variation of BIP – mixture A1 - 323K 

 

Figure 116: Variation of BIP – mixture A1 - 343K 
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Figure 117: Variation of BIP – mixture A1 - 363K 

 

Figure 118: Variation of BIP – mixture A1 - 383K 

 

Figure 119: AAD% Variation with BIP – mixture A1 – 303K 
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Figure 120: AAD% Variation with BIP – mixture A1 – 323K 

 

Figure 121: AAD% Variation with BIP – mixture A1 – 343K 

 

Figure 122: AAD% Variation with BIP – mixture A1 – 363K 
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Figure 123: AAD% Variation with BIP – mixture A1 – 383K 
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4.4.6. Plots Mixture A2 

 

Figure 124: Variation of BIP – mixture A2 - 303K 

 

Figure 125: Variation of BIP – mixture A2 - 323K 

 

Figure 126: Variation of BIP – mixture A2 - 343K 

 

Figure 127: Variation of BIP – mixture A2 - 363K 
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Figure 128: Variation of BIP – mixture A2 - 383K 

 

 

Figure 129: AAD% Variation with BIP – mixture A2 - 303K 

 

Figure 130: AAD% Variation with BIP – mixture A2 - 323K 
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Figure 131: AAD% Variation with BIP – mixture A2 - 343K 

 

Figure 132: AAD% Variation with BIP – mixture A2 - 363K 

 

Figure 133: AAD% Variation with BIP – mixture A2 - 383K 
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4.4.7. Explanation of the Plots 

In the isotherms (Fig  74 to 78, 84 to 88, 94 to 98, 104 to 108, 114 to 118 

and 124 to128 ), the curves start from the bottom-right (for BIP=-1) and the BIP 

increases moving to the top-left. 

The first tendency that can be noted from the plots (figures 79 to 83, 89 

to 93, 99 to 103, 109 to 113, 119 to 123 and 129 to 133) is that the deviation 

curve (AAD%) gets flatter as the temperature increases. That means that the 

deviation is not as strongly dependent on the BIP as the fluids temperature 

increase.  

Regarding the isotherms, it is clear that the mixtures with higher 

quantities of Ar, O2 or N2 are more sensitive to the variation of the BIP (see 

figures 84 to 88, 104 to 108 and 124 to 128) in comparison with the ones where 

those quantities are lower (see figures 74 to 78, 94 to 98 and 114 to 118) – since 

the range of values for the BIP is the same, the wider are the magenta curves, 

the more sensitive is the EoS to the BIP. Also, for all mixtures, the sensitivity 

appears to increase as the temperature decreases. 

Furthermore, a comparison between the minimum achievable deviations 

(the ones circled in the figures 79 to 83, 89 to 93, 99 to 103, 109 to 113, 119 to 

123 and 129 to 133) and the ones obtained in the minimization of the BIP for 

each isotherm (figures 6 to 17) is made. The aim is to analyze how close to the 

minimum are the deviations when the optimum BIP is used, because the 

optimization is done by means of the least square of the residuals, not the lowest 

deviation. In the following tables (22, 23 and 24) it can be seen that the 

deviations obtained with the optimum BIP were close to the minimum one.  

Table 22: Comparison between minimum AAD% and AAD% obtained with optimum BIP – Mixture 

N 

T 303,22 323,18 343,15 363,15 383,14

AAD% 2,131 2,470 2,428 1,838 1,916

AAD%_min 2,066 2,439 2,360 1,749 1,812

Difference 0,065 0,031 0,068 0,088 0,105

T 303,22 323,18 343,15 363,15 383,14

AAD% 1,810 2,164 2,527 1,948 2,034

AAD%_min 1,763 2,161 2,472 1,877 1,948

Difference 0,047 0,003 0,055 0,072 0,085

N1 Mixture

N2 Mixture
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Table 23: Comparison between minimum AAD% and AAD% obtained with optimum BIP – Mixture 

O 

T 303,22 323,18 343,15 363,15 383,14

AAD% 2,107 2,295 2,651 2,187 2,119

AAD%_min 2,023 2,283 2,570 2,097 2,031

Difference 0,085 0,005 0,032 0,043 0,043

T 303,22 323,18 343,15 363,15 383,14

AAD% 1,970 2,478 2,559 2,029 2,826

AAD%_min 1,955 2,460 2,509 1,966 2,745

Difference 0,015 0,017 0,051 0,064 0,081

O1 Mixture

O2 Mixture

 

 

Table 24: Comparison between minimum AAD% and AAD% obtained with optimum BIP – Mixture 

A 

T 303,22 323,18 343,15 363,15 383,14

AAD% 2,483 2,600 2,561 1,906 1,211

AAD%_min 2,336 2,549 2,457 1,799 1,105

Difference 0,147 0,052 0,104 0,107 0,106

T 303,22 323,18 343,15 363,15 383,14

AAD% 1,324 2,033 2,077 1,439 1,997

AAD%_min 1,311 2,012 2,016 1,360 1,926

Difference 0,014 0,020 0,061 0,080 0,071

A1 Mixture

A2 Mixture

 

 

4.5.  Sensitivity Analysis – Variation of Mixture Component 

The optimum BIPs were plotted against the temperature, for the mixtures 

N1, A1 and O1 in the same plot. This is important to understand the relationship 

between the type of mixture – if it has strongly polar bonds, if it is a mixture 

with a noble gas – and how it affects the binary interaction parameter for the 

different temperatures. 
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Figure 134: BIPxT for Mixtures N1, O1 and A1 

 

 

Figure 135: BIPxT for Mixtures N2, O2 and A2 
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The first point that should be reminded is that the mixtures with index 2 

present a higher concentration of the respective gases (N2, O2 and Ar). That 

being said, the mixtures with higher concentrations of those gases presented a 

lower variation of the BIP with temperature. Also, the BIPs were closer to zero. 

Furthermore, the increased presence of Argon in the mixture (green triangles) 

shifted the BIP upwards into the positive values. That has strong implications in 

the parameters of the (Eq. 86.) and it shows the high sensitivity of the BIP 

estimation with the mixture composition in that case. For the other two 

components (O2 and N2), although the BIP variation diminishes with the 

increased concentration, that change is not as noticeable as the one with the 

Argon mixture. 
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Chapter 5: Conclusion 
 

The presented study confirms that the Peng-Robinson EoS can be 

applied to model the volumetric behavior of the CO2 mixtures studied (CO2-N2, 

CO2-Ar, CO2-O2) in the case where accuracies in the range 1.2% to 2.8% are 

acceptable. The robustness analysis showed that there is little to no influence 

both of the optimization method utilized (Levenberg-Marquardt or Trust-

Region) and of the initial BIP value used in the optimization process. However, 

the tolerance of the algorithm implemented may influence the results 

substantially and the default value used by Matlab (equal to 10
-6

) shows a good 

compromise between calculation time and precision (see table 20). 

The use of a temperature-dependent relationship for the regression of the 

BIP improved the quality of the results by providing a continuous equation for 

calculating the BIP, for temperatures inside the range studied, without 

increasing the deviation substantially (maximum increase of AAD = 0.064%). 

However, by analyzing the plots obtained for the regression (figures 43 to 72) it 

can be noticed that the curve for the BIP regression presents a change of 

concavity for the mixture A when the composition is changed from A1 to A2 

(figures 41 and 42). This indicates that the overall shape of the function BIP(T) 

can be strongly dependent on the mixture composition, and the use of the 

calculated coefficients (page 76) for general calculations of the optimum BIP 

should be made with caution. 

In the interest of further developments, other EoS and mixing rules may be 

analyzed. For the cubic EoS, the study of different mixing rules and EoS models 

would contribute to a better understanding of what is the most accurate 

analytical model available for the CO2 mixtures studied and how the 

optimization methods influence the calculations with these other methods. Non-

analytical EoS are certainly more accurate, but they could be studied with the 

intention of optimizing their calculation to minimize the computational effort 

needed to calculate the solutions, since they are iterative. It may also prove 

useful to compare these models with respect to the sensitivity of their BIP(T) 

function to the change in composition. 
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Appendix 1 - Matlab Code 
In the following pages, the Matlab code that was used for the simulations is 

presented. For the sake of simplicity, the code showed here is the one used for 

the CO2 - N2 mixtures. To use it for the other two mixtures, the lines up to 

“Optimization N1”, where the data is read, need to be changed. The lines where 

the data is plotted or printed to a file should also be changed so the name is 

coherent with the data used. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%%%%%% Optimization of the Data Fitting for the Density Estimate 

%%% 

%%%%%% Peng Robinson EoS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% Working - 27/11 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

clc 

close all 

clear all 

  

%%% Load Data from files 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load mixture_N1.txt 

  

for j=1:5 

     

    P1(:,j) = mixture_N1(2:end,2*j-1)*1e6; %Pa 

    T_lin1(j) = mixture_N1(1,2*j-1); %K 

    rho1(:,j) = mixture_N1(2:end,2*j); 

     

end 

  

load mixture_N2.txt 
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for j=1:5 

         

    P2(:,j) = mixture_N2(2:end,2*j-1)*1e6; %Pa 

    T_lin2(j) = mixture_N2(1,2*j-1); %K 

    rho2(:,j) = mixture_N2(2:end,2*j); 

        

end 

  

load mol_fraction_N1.txt 

x1(1) = mol_fraction_N1(1,1); %x_CO2 

x1(2) = mol_fraction_N1(2,1); %x_N2 

  

load mol_fraction_N2.txt 

x2(1) = mol_fraction_N2(1,1); %x_CO2 

x2(2) = mol_fraction_N2(2,1); %x_N2 

  

load critical_data_CO2N2_PR.txt 

  

crit_data = critical_data_CO2N2_PR; 

  

%CO2 

M(1) = crit_data(1,1); %kg/kmol 

Tc(1) = crit_data(2,1) + 273.15; %K 

Pc(1) = crit_data(3,1) * 1e6; %Pa 

omega(1) = crit_data(4,1); 

  

%N2 

M(2) = crit_data(1,2); 

Tc(2) = crit_data(2,2) + 273.15; 

Pc(2) = crit_data(3,2) * 1e6; 

omega(2) = crit_data(4,2); 

  

%% Optimization N1 

  

% Caltulate the specific gas constant for each mixture 
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R = 8314.462; %J/kmol*K 

M_mix1 = (x1(1)*M(1)+x1(2)*M(2)); %kg/kmol 

M_mix2 = (x2(1)*M(1)+x2(2)*M(2)); %kg/kmol 

 

bip = -0.5; 

    

% To change the opt algorithm 

mode = 1; 

  

for j=1:5 

     

% Assemble Co-volume Vector and Energy Parameter Matrix for each 

mixture 

  

    T_num1 = T_lin1(j); 

  

    for i=1:2 

         

        b1(i) = 0.07780*R*Tc(i)/Pc(i);%b mixture N1 1=CO2, 2=N2 

        m(i) = 0.37464 + 1.54226*omega(i) - 0.26992*omega(i)^2; 

        alpha_spec1(i,j) = (1+m(i)*(1-

(T_num1/Tc(i))^0.5))^2;%alphaCO2, alphaN2 

        a1(i,j) = 

0.45724*R^2*Tc(i)^2/Pc(i)*alpha_spec1(i,j);%aCO2, aN2 

                       

    end 

     

    b_mix1 = x1(1)*b1(1) + x1(2)*b1(2); 

     

    nonzero_p = max(find(P1(:,j),20,'first')); 

     

    P_col1 = P1(1:nonzero_p,j); 

    rho_col1 = rho1(1:nonzero_p,j); 

     

    rho_PR1 = @(bip,P_col1) paramPR(P_col1, T_num1, a1(:,j), R, 
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b_mix1, bip, x1); 

       

     

     

    switch mode 

        case 1 

        options = optimset('Algorithm','levenberg-marquardt'); 

        case 2 

        options = optimset('Algorithm','trust-region-

reflective'); 

    end 

     

    options = optimset('TolFun',1e-12);  

     

    bip1(j) = lsqcurvefit(rho_PR1,bip,P_col1,rho_col1./M_mix1); 

     

    rho_calcN1(1:nonzero_p,j) = rho_PR1(bip1(j),P_col1)*M_mix1; 

     

    AAD1(j) = 

(100/nonzero_p).*sum(abs((rho_calcN1(1:nonzero_p,j)-

rho_col1)./rho_col1),1); 

     

%     figure(j)  

    figure(1) 

    subplot(3,2,j) 

    plot(rho_calcN1(1:nonzero_p,j),P_col1.*1e-6,'m*-', 

rho1(1:nonzero_p,j),P_col1.*1e-6,'bo-'); 

    legend('Opt BIP','Experimental 

Data','Location','NorthWest'); 

    xlabel('\rho(kg/m^3)'); 

    ylabel('P(MPa)'); 

    title(['AAD% N1 = ',num2str(AAD1(j)),'%',' kij = 

',num2str(bip1(j)), ' T = ', num2str(T_num1),'K']); 

%     title('Mixture N1'); 

    grid on 

    hold on 
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    figure(6)  

    plot(T_num1,bip1(j),'m*-'); 

    legend('Opt BIP'); 

    xlabel('T(K)'); 

    ylabel('BIP'); 

    title('BIP versus Temperature - mixture N1'); 

    grid on 

    hold on 

             

     

end 

% print('-dpng','-r300',sprintf('N1_indiv.png')); 

  

% Interpolation for T dependence 

  

s = fitoptions('Method','NonlinearLeastSquares','Maxiter',1e3); 

ffun = fittype('aa + bb.*T + 

cc./T','independent','T','options',s); 

[reg gg hh] = fit(T_lin1(1,:)',bip1',ffun); 

TT = [T_lin1(1,1):1:T_lin1(1,5)]; 

  

for i=1:length(TT) 

    y(i)=reg(TT(i)); 

end 

  

figure(100) 

scatter(T_lin1(1,:),bip1,'b*'); 

hold on 

plot(TT,y,'r-') 

title('BIP_o_p_t CO_2-N_1 = f(T) = a + b*T +c/T'); 

xlabel('T(K)'); 

ylabel('BIP'); 

grid on 

  

  

for j=1:5 
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% Assemble Co-volume Vector and Energy Parameter Matrix for each 

mixture 

  

    T_num1 = T_lin1(j); 

  

    for i=1:2 

         

        b1(i) = 0.07780*R*Tc(i)/Pc(i);%b mixture N1 1=CO2, 2=N2 

        m(i) = 0.37464 + 1.54226*omega(i) - 0.26992*omega(i)^2; 

        alpha_spec1(i,j) = (1+m(i)*(1-

(T_num1/Tc(i))^0.5))^2;%alphaCO2, alphaN2 

        a1(i,j) = 

0.45724*R^2*Tc(i)^2/Pc(i)*alpha_spec1(i,j);%aCO2, aN2 

                       

    end 

     

    b_mix1 = x1(1)*b1(1) + x1(2)*b1(2); 

     

    nonzero_p = max(find(P1(:,j),20,'first')); 

     

    P_col1 = P1(1:nonzero_p,j); 

    rho_col1 = rho1(1:nonzero_p,j); 

     

    bip1_reg(j) = reg(T_num1); 

     

    rho_PR1 = @(bip,P_col1) paramPR(P_col1, T_num1, a1(:,j), R, 

b_mix1, bip1_reg(j), x1); 

     

    rho_calcN1_reg(1:nonzero_p,j) = 

rho_PR1(bip1_reg(j),P_col1).*M_mix1; 

     

    AAD_reg1(j) = 

(100/nonzero_p).*sum(abs((rho_calcN1_reg(1:nonzero_p,j)-

rho_col1)./rho_col1),1); 

     

%     figure(6+j)  
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    figure(2)  

    subplot(3,2,j) 

    plot(rho_calcN1_reg(1:nonzero_p,j),P_col1.*1e-6,'m*-', 

rho1(1:nonzero_p,j),P_col1.*1e-6,'bo-'); 

    legend('Opt BIP','Experimental 

Data','Location','NorthWest'); 

    xlabel('\rho(kg/m^3)'); 

    ylabel('P(MPa)'); 

    title(['AAD% N1 = ',num2str(AAD_reg1(j)),'%',' kij = 

',num2str(bip1_reg(j)), ' T = ', num2str(T_num1),'K']); 

%     title('Mixture N1 - Regressed BIP'); 

    grid on 

    hold on 

%     print('-dpng','-

r300',sprintf(['N1_T',num2str(T_num1),'K.png'])); 

     

    figure(12)  

    scatter(T_lin1(1,:),bip1,'b*'); 

    hold on 

    plot(T_num1,bip1_reg(j),'m*-',TT,y,'r-'); 

    legend('Opt BIP'); 

    xlabel('T(K)'); 

    ylabel('BIP'); 

    title('BIP versus Temperature - mixture N1'); 

    grid on 

    hold on 

             

     

end 

% print('-dpng','-r300',sprintf('N1_indiv_BIP(T).png')); 

%% Optimization N2 

  

bip = -0.5; 

    

for j=1:5 

     

% Assemble Co-volume Vector and Energy Parameter Matrix for each 
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mixture 

  

    T_num2 = T_lin2(j); 

  

    for i=1:2 

         

        b2(i) = 0.07780*R*Tc(i)/Pc(i);%b mixture N1 1=CO2, 2=N2 

        m(i) = 0.37464 + 1.54226*omega(i) - 0.26992*omega(i)^2; 

        alpha_spec2(i,j) = (1+m(i)*(1-

(T_num2/Tc(i))^0.5))^2;%alphaCO2, alphaN2 

        a2(i,j) = 

0.45724*R^2*Tc(i)^2/Pc(i)*alpha_spec2(i,j);%aCO2, aN2 

                       

    end 

        b_mix2 = x2(1)*b2(1) + x2(2)*b2(2); 

     

    nonzero_p = max(find(P2(:,j),20,'first')); 

     

    P_col2 = P2(1:nonzero_p,j); 

    rho_col2 = rho2(1:nonzero_p,j); 

     

    rho_PR2 = @(bip,P_col2) paramPR(P_col2, T_num2, a2(:,j), R, 

b_mix2, bip, x2); 

     

    switch mode 

        case 1 

        options = optimset('Algorithm','levenberg-marquardt'); 

        case 2 

        options = optimset('Algorithm','trust-region-

reflective'); 

    end 

     

    options = optimset('TolFun',1e-12);  

     

    bip2(j) = lsqcurvefit(rho_PR2,bip,P_col2,rho_col2./M_mix2); 

     

    rho_calcN2(1:nonzero_p,j) = rho_PR2(bip2(j),P_col2).*M_mix2; 
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    AAD2(j) = 

(100/nonzero_p).*sum(abs((rho_calcN2(1:nonzero_p,j)-

rho_col2)./rho_col2),1); 

     

%     figure(12+j)  

    figure(3)  

    subplot(3,2,j); 

    plot(rho_calcN2(1:nonzero_p,j),P_col2.*1e-6,'m*-', 

rho2(1:nonzero_p,j),P_col2.*1e-6,'bo-'); 

    legend('Opt BIP','Experimental 

Data','Location','NorthWest'); 

    xlabel('\rho(kg/m^3)'); 

    ylabel('P(MPa)'); 

    title(['AAD% N2 = ',num2str(AAD2(j)),'%',' kij = 

',num2str(bip2(j)), ' T = ', num2str(T_num2),'K']); 

%     title('Mixture N2'); 

    grid on 

    hold on 

     

%     figure(18)  

%     plot(T_num2,bip2(j),'m*-'); 

%     legend('Opt BIP'); 

%     xlabel('T(K)'); 

%     ylabel('BIP'); 

%     title('BIP versus Temperature - mixture N2'); 

%     grid on 

%     hold on 

             

     

end 

% print('-dpng','-r300',sprintf('N2_indiv.png')); 

  

% Interpolation for T dependence 

  

s = fitoptions('Method','NonlinearLeastSquares','Maxiter',1e3); 

ffun = fittype('aa + bb.*T + 

cc./T','independent','T','options',s); 
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[reg2 gg hh] = fit(T_lin2(1,:)',bip2',ffun); 

TT2 = [T_lin2(1,1):1:T_lin2(1,5)]; 

  

for i=1:length(TT2) 

    y2(i)=reg2(TT2(i)); 

end 

  

figure(101) 

scatter(T_lin2(1,:),bip2,'b*'); 

hold on 

plot(TT2,y2,'r-') 

title('BIP_o_p_t CO_2-N_2 = f(T) = a + b*T +c/T'); 

xlabel('T(K)'); 

ylabel('BIP'); 

grid on 

  

  

for j=1:5 

     

% Assemble Co-volume Vector and Energy Parameter Matrix for each 

mixture 

  

    T_num2 = T_lin2(j); 

  

    for i=1:2 

         

        b2(i) = 0.07780*R*Tc(i)/Pc(i);%b mixture N1 1=CO2, 2=N2 

        m(i) = 0.37464 + 1.54226*omega(i) - 0.26992*omega(i)^2; 

        alpha_spec2(i,j) = (1+m(i)*(1-

(T_num2/Tc(i))^0.5))^2;%alphaCO2, alphaN2 

        a2(i,j) = 

0.45724*R^2*Tc(i)^2/Pc(i)*alpha_spec2(i,j);%aCO2, aN2 

                       

    end 

     

    b_mix2 = x2(1)*b2(1) + x2(2)*b2(2); 
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    nonzero_p = max(find(P2(:,j),20,'first')); 

     

    P_col2 = P2(1:nonzero_p,j); 

    rho_col2 = rho2(1:nonzero_p,j); 

     

    bip2_reg(j) = reg2(T_num2); 

     

    rho_PR2 = @(bip,P_col2) paramPR(P_col2, T_num2, a2(:,j), R, 

b_mix2, bip2_reg(j), x2); 

     

    rho_calcN2_reg(1:nonzero_p,j) = 

rho_PR2(bip2_reg(j),P_col2).*M_mix2; 

     

    AAD_reg2(j) = 

(100/nonzero_p).*sum(abs((rho_calcN2_reg(1:nonzero_p,j)-

rho_col2)./rho_col2),1); 

     

%     figure(18+j)  

    figure(4) 

    subplot(3,2,j); 

    plot(rho_calcN2_reg(1:nonzero_p,j),P_col2.*1e-6,'m*-', 

rho2(1:nonzero_p,j),P_col2.*1e-6,'bo-'); 

    legend('Opt BIP','Experimental 

Data','Location','NorthWest'); 

    xlabel('\rho(kg/m^3)'); 

    ylabel('P(MPa)'); 

    title(['AAD% N2 = ',num2str(AAD_reg2(j)),'%',' kij = 

',num2str(bip2_reg(j)), ' T = ', num2str(T_num2),'K']); 

%     title('Mixture N2 - Regressed BIP'); 

    grid on 

    hold on 

     

%     figure(25)  

%     scatter(T_lin2(1,:),bip2,'b*'); 

%     hold on 

%     plot(T_num2,bip2_reg(j),'m*-',TT2,y2,'r-'); 

%     legend('Opt BIP'); 
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%     xlabel('T(K)'); 

%     ylabel('BIP'); 

%     title('BIP versus Temperature - mixture N2'); 

%     grid on 

%     hold on 

             

     

end 

% print('-dpng','-r300',sprintf('N2_indiv_BIP(T).png')); 

 

And the function used to calculate the pressure using the Peng-Robinson EoS: 

function rho_PR = paramPR(P_col, T_num, a, R_spec, b_mix, bip, 

x) 

   

    a_CO2 = a(1); 

    a_N2 = a(2); 

     

    x_CO2 = x(1); 

    x_N2 = x(2); 

  

    a_mix = x_CO2^2*a_CO2 + x_N2^2*a_N2 + (1-

bip)*2*x_CO2*x_N2*(a_CO2*a_N2)^0.5; 

     

    for j=1:length(P_col) 

      

    a(j) = P_col(j); 

    b(j) = P_col(j)*b_mix - R_spec*T_num; 

    c(j) = a_mix - 2*b_mix*R_spec*T_num - 3.*b_mix^2.*P_col(j); 

    d(j) = -a_mix*b_mix + b_mix^2*R_spec*T_num + 

P_col(j)*b_mix^3; 

  

    r = [a(j) b(j) c(j) d(j)]; 

     

    v(j,:) = roots(r); 

            for i=1:3 
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                if  imag(v(j,i))==0 

                    rho_PR(j,1)= v(j,i)^-1; 

                end 

            end  

    end 

end 

 

For last, the code used to vary the BIP, for each mixture: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%%%%%% Optimization of the Data Fitting for the Density Estimate 

%%% 

%%%%%% Peng Robinson EoS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% Working - 27/11 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

clc 

close all 

clear all 

  

%%% Load Data from files 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load mixture_N2.txt 

  

for j=1:5 

     

    P1(:,j) = mixture_N2(2:end,2*j-1)*1e6; %Pa 

    T_lin1(j) = mixture_N2(1,2*j-1); %K 

    rho1(:,j) = mixture_N2(2:end,2*j); 

     

end 
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load mol_fraction_N2.txt 

x1(1) = mol_fraction_N2(1,1); %x_CO2 

x1(2) = mol_fraction_N2(2,1); %x_N2 

  

load critical_data_CO2N2_PR.txt 

  

crit_data = critical_data_CO2N2_PR; 

  

%CO2 

M(1) = crit_data(1,1); %kg/kmol 

Tc(1) = crit_data(2,1) + 273.15; %K 

Pc(1) = crit_data(3,1) * 1e6; %Pa 

omega(1) = crit_data(4,1); 

  

%N2 

M(2) = crit_data(1,2); 

Tc(2) = crit_data(2,2) + 273.15; 

Pc(2) = crit_data(3,2) * 1e6; 

omega(2) = crit_data(4,2); 

  

%% Optimization N1 

  

% Caltulate the specific gas constant for each mixture 

  

R = 8314.462; %J/kmol*K 

M_mix1 = (x1(1)*M(1)+x1(2)*M(2)); %kg/kmol 

  

bip = -0.5; 

    

% To change the opt algorithm 

mode = 1; 

  

for j=1:5 

     

% Assemble Co-volume Vector and Energy Parameter Matrix for each 
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mixture 

  

    T_num1 = T_lin1(j); 

  

    for i=1:2 

         

        b1(i) = 0.07780*R*Tc(i)/Pc(i);%b mixture N1 1=CO2, 2=N2 

        m(i) = 0.37464 + 1.54226*omega(i) - 0.26992*omega(i)^2; 

        alpha_spec1(i,j) = (1+m(i)*(1-

(T_num1/Tc(i))^0.5))^2;%alphaCO2, alphaN2 

        a1(i,j) = 

0.45724*R^2*Tc(i)^2/Pc(i)*alpha_spec1(i,j);%aCO2, aN2 

                       

    end 

     

    b_mix1 = x1(1)*b1(1) + x1(2)*b1(2); 

     

    nonzero_p = max(find(P1(:,j),20,'first')); 

     

    P_col1 = P1(1:nonzero_p,j); 

    rho_col1 = rho1(1:nonzero_p,j); 

     

    rho_PR1 = @(bip,P_col1) paramPR(P_col1, T_num1, a1(:,j), R, 

b_mix1, bip, x1); 

  

    bip1 = [-1:0.5:1]; 

     

    for jj=1:length(bip1) 

         

    rho_calcN1(1:nonzero_p,j) = rho_PR1(bip1(jj),P_col1)*M_mix1; 

     

    AAD1(jj,j) = 

(100/nonzero_p).*sum(abs((rho_calcN1(1:nonzero_p,j)-

rho_col1)./rho_col1),1); 

     

    figure(1) 

    subplot(3,2,j) 
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    plot(rho_calcN1(1:nonzero_p,j),P_col1.*1e-6,'m*-', 

rho1(1:nonzero_p,j),P_col1.*1e-6,'bo-'); 

    legend('Opt BIP','Experimental 

Data','Location','NorthWest'); 

    xlabel('\rho(kg/m^3)'); 

    ylabel('P(MPa)'); 

    title([' kij = ',num2str(bip1(1)),' to ',num2str(bip1(end)), 

'  T = ', num2str(T_num1),'K']); 

%     title('Mixture N1'); 

    grid on 

    hold on 

     

    end 

     

     

     

%     figure(2) 

%     subplot(3,2,j) 

%     plot(bip1,AAD1(:,j),'k.-

',bip1(find(AAD1(:,j)==min(AAD1(:,j)))),min(AAD1(:,j)),'ro','Mar

kerSize',10); 

%     legend('Opt BIP'); 

%     xlabel('BIP'); 

%     ylabel('AAD%'); 

%     title(['AAD% versus BIP - T = ',num2str(T_num1),'K - 

AAD_m_i_n = ',num2str(min(AAD1(:,j))),'%']); 

%     grid on 

%     hold on 

             

     

end 

print('-dpng','-r300',sprintf('N2_var_BIP.png')); 

% print('-dpng','-r300',sprintf('AADxBIP_N2.png')); 
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