
POLITECNICO DI MILANO

Scuola di Ingegneria dei Sistemi

Corso di Laurea Specialistica in Ingegneria Matematica

Multiobjective Optimization For Parameter Extraction
Of Power Electronics Devices

Relatore: Prof. Maurizio VERRI

Correlatore: Prof. Riccardo SACCO

Correlatore: Dr. Ivica STEVANOVIC

Correlatore: Dr. Marco BELLINI

Tesi di laurea di:

Daniele PRADA Matr. 711741

Anno Accademico 2011–2012

Daniele Prada: Multiobjective optimization for parameter extraction of power electronics
devices, Laurea Specialistica in Ingegneria Matematica, © December 2012

P R E FA C E

This work stems from my internship in the Power Electronics Integration and Semi-
conductor groups of the Automation Devices department at ABB Switzerland Ltd,
Corporate Research, Dättwil. From February 1

st to October 31
st , 2011, I have been

working as a trainee on the subject “Parameter extraction for power electronics de-
vices”. This work was part of the research project “IGBT modeling and parameter
extraction”. Starting from an idea of my two ABB’s supervisors, Ivica Stevanovich
and Marco Bellini, I studied and developed from scratch a multi-objective opti-
mization approach. Such an approach was so effective that a paper appeared on
the subject in the “Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technol-
ogy Meeting, 2011”, entitled “Improved Lumped Charge Model for High Voltage
Power Diode and Automated Extraction Procedure” [5]. I am presently in the pro-
cess of writing some further papers on this subject in collaboration with some
ABB’s engineers [82].

This thesis is organized as follows. Chapter 1 introduces the procedure of auto-
matic parameter extraction for power semiconductor devices. At first, an introduc-
tion to the field of power electronics and the basic principles that govern a power
diode operation are presented. Then, the different types of diode models used in
circuit simulators are categorized and briefly explained. Among the whole spec-
trum of diode models, three are selected as a case study: Lauritzen model [68], Ma
model [75] and Extended Lauritzen model [5, 82]. The latter diode model represents
an original contribution of my thesis and has been published in the paper co-authored with
Marco Bellini and Ivica Stevanovic and mentioned above. Finally, parameter extraction
and refinement using a formal optimization procedure are described. At the end
of this chapter, the multi-objective optimization approach for parameter extraction
is briefly introduced.

Chapter 2 presents multiobjective programming and some of the nomenclature
used in successive chapters. The different solution techniques for multiobjective
optimization problems are classified. Some of these techniques, like the weighted
sum method, are deeply described in order to show their potential drawbacks
when dealing with parameter extraction problems.

In Chapter 3, evolutionary algorithms for solving multiobjective problems are
discussed. I chose and implemented this particular class of solution techniques to
develop a parameter extraction methodology that is potentially general enough
to be applicable to all classes of models and devices. First, the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) is described, as it was employed to
optimize a single device output characteristic at a time. Then, multi-objective evo-
lutionary algorithms (MOEA) are extensively described. Emphasis is put on the
algorithms that I implemented during the internship. Finally, some methodologies
for statistical performance assessment of stochastic multiobjective optimizers are
reviewed. Material covered in this chapter is the heart of this work and represents the state
of the art in the multi-objective nonlinear nonconvex optimization context. A substantial
part of the described techniques and algorithms is an innovative contribution of this thesis.

iii

In Chapter 4 I discuss two test cases where the automated parameter extraction
procedure based on MOEAs was used. Our results show that MOEAs are promis-
ing candidates to deal with parameter extraction of power semiconductor devices.

In Chapter 5 some conclusions are drawn and my view of current and future
research directions is illustrated.

Appendix A provides a quick overview of the structure of the software for pa-
rameter extraction developed during the internship.

Appendix B gives the complete code of three YAML files for designing a single
objective optimization, a multiobjective optimization and a MOEA comparison, in
this order.

P R E FA Z I O N E

Questa tesi è il risultato dell’esperienza di tirocinio da me svolta presso ABB Swi-
tzerland Ltd, Corporate Research, Dättwil, dal 1 Febbraio al 31 Ottobre, 2011. L’ar-
gomento del tirocinio era “estrazione parametrica per dispositivi elettronici di po-
tenza”, e faceva parte del progetto di ricerca “estrazione parametrica e modellizza-
zione dell’IGBT”. Partendo da un suggerimento dei miei due supervisori in ABB,
Ivica Stevanovich e Marco Bellini, ho studiato e sviluppato da zero un’innovativa
procedura di estrazione basata su algoritmi di ottimizzazione multiobiettivo. Tale
procedura si è rivelata talmente efficace che alcuni dei risultati di questo studio
sono stati pubblicati su un articolo comparso in “Proceedings of the IEEE Bipola-
r/BiCMOS Circuits and Technology Meeting, 2011”, dal titolo “Improved Lumped
Charge Model for High Voltage Power Diode and Automated Extraction Procedu-
re” [5]. Al momento, sto scrivendo un altro articolo sul medesimo argomento, in
collaborazione con alcuni ingegneri di ABB [82].

La tesi è strutturata come segue. Il Capitolo 1 introduce la procedura di estra-
zione parametrica per modelli di dispositivi elettronici di potenza. Dopo un’in-
troduzione generale all’elettronica di potenza, vengono richiamati i concetti fon-
damentali alla base del funzionamento di un diodo di potenza. Segue una breve
classificazione dei diversi modelli di diodo utilizzabili in simulazioni circuitali al
computer. Viene approfondito lo studio di tre particolari modelli, da me impiegati
durante il tirocinio in ABB: il modello Lauritzen [68], il modello Ma [75] e il model-
lo Lauritzen esteso [5, 82]. L’ultimo di questi modelli rappresenta un contributo originale
della mia tesi ed è stato pubblicato nell’articolo scritto in collaborazione con Marco Bellini
e Ivica Stevanovic e menzionato precedentemente. Infine, viene descritta la procedura
di estrazione ed ottimizzazione parametrica per modelli di dispositivi elettronici.
A conclusione del capitolo, viene brevemente introdotta la procedura di estrazione
parametrica basata su algoritmi evolutivi multi-obiettivo.

Il Capitolo 2 illustra alcuni concetti chiave della programmazione multiobietti-
vo e una parte della notazione utilizzata nei capitoli successivi. Viene fornita una
possibile classificazione degli algoritmi per la risoluzione di problemi multiobietti-
vo. Alcuni metodi tra i più comunemente impiegati vengono descritti a fondo per
aiutare il lettore a comprendere le ragioni per cui tali metodi non sono stati da me
utilizzati nella procedura di estrazione parametrica.

iv

Il Capitolo 3 discute la classe degli algoritmi evolutivi per l’ottimizzazione mul-
tiobiettivo. La procedura di estrazione parametrica da me sviluppata si basa su
questo tipo di algoritmi ed è sufficientemente generale per poter essere applicata
a qualsiasi modello a parametri concentrati di un dispositivo elettronico. Inizial-
mente viene introdotto il metodo CMA-ES, un particolare algoritmo evolutivo uti-
lizzato per ottimizzare una o più curve caratteristiche di un dispositivo di potenza
alla volta. Segue un’ampia trattazione sugli algoritmi evolutivi multiobiettivo. Un
rilievo particolare è dato ai metodi da me implementati durante il tirocinio in ABB.
L’ultimo paragrafo richiama alcune tecniche statistiche per il confronto di algorit-
mi di ottimizzazione stocastici. Il materiale discusso in questo capitolo rappresenta il
cuore del lavoro di ricerca da me svolto e rispecchia lo stato dell’arte nel contesto dell’otti-
mizzazione multi-obiettivo non lineare non convessa. Una parte sostanziale delle tecniche
e degli algoritmi descritti costituisce un contributo innovativo della mia tesi al problema
dell’estrazione parametrica.

Nel Capitolo 4 sono presentati due esempi di estrazione parametrica basata su
algoritmi evolutivi multiobiettivo. I risultati suggeriscono che tali algoritmi con-
sentono di raggiungere un buon accordo tra il modello di un dispositivo e i dati
sperimentali.

Nel Capitolo 5 vengono tratte alcune conclusioni sull’efficacia degli algoritmi
evolutivi multiobiettivo per l’estrazione parametrica e vengono proposte possibili
linee di ricerca future.

L’Appendice A riporta una descrizione sintetica della struttura del software per
l’estrazione parametrica sviluppato durante il tirocinio in ABB.

Nell’Appendice B è riportato il codice completo di tre file YAML impiegati nel-
l’ambito di un’ottimizzazione a singolo obiettivo, di un’ottimizzazione multiobiet-
tivo e di un confronto fra algoritmi evolutivi multiobiettivo.

v

C O N T E N T S

1 modeling of power semiconductor devices 1

1.1 Overview of Power Semiconductor Devices 1

1.1.1 Semiconductor Devices . 3

1.1.2 Power semiconductor devices 4

1.2 Power Semiconductor Diode Basics 8

1.2.1 Review of Basic p-n Diode Characteristics 8

1.2.2 Construction and Characteristics of Power Diodes 12

1.3 Why Simulate? . 20

1.4 Classification of Models . 20

1.5 The Lumped-Charge Modeling Approach 22

1.5.1 Basics Concepts . 22

1.5.2 Diode models . 23

1.6 Parameter extraction . 38

1.6.1 Step 1: initial parameter estimation 40

1.6.2 Step 2: model parameter sensitivity and parameter ranges
definition . 45

1.6.3 Step 3: device and circuit simulation 51

1.6.4 Step 4: waveform comparison 54

1.6.5 Step 5: parameter optimization 56

2 multiobjective optimization 61

2.1 Problem Formulation and Solution Concepts 61

2.1.1 Problems with multiple objectives 61

2.1.2 Decision Space and Objective Space 63

2.1.3 Notions of Optimality . 65

2.1.4 Orders and Cones . 66

2.1.5 Multiobjective optimal solutions 71

2.1.6 Efficiency and Nondominance 72

2.2 Properties of the Solution Sets . 76

2.3 Generation of the Solution Sets . 79

2.3.1 Scalarization methods . 79

2.3.2 Nonscalarizing approaches . 84

3 evolutionary algorithms for solving parameter extraction

problems 91

3.1 EA Basics . 91

3.2 The CMA Evolution Strategy for single objective optimization 94

3.2.1 Eigenvalue Decomposition of a Positive Definite Matrix . . . 95

3.2.2 The Multivariate Normal Distribution 96

3.2.3 Randomized Black Box Optimization 97

3.2.4 The non-elitist CMA-ES with weighted recombination 98

3.2.5 A Single-Objective Elitist CMA Evolution Strategy 100

3.3 Using Multi-Objective Evolutionary Algorithms 102

vii

viii contents

3.3.1 Pareto Notation . 103

3.4 Design issues and components of Multi-Objective Evolutionary Al-
gorithms . 103

3.4.1 Dominance-based ranking . 104

3.4.2 Diversity . 107

3.4.3 Elitism . 109

3.4.4 Constraint handling . 113

3.5 Structure of selected MOEAs . 114

3.5.1 Nondominated Sorting Genetic Algorithm-II (NSGA-II) . . . 114

3.5.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2) 114

3.5.3 Improved Strength Pareto Evolutionary Algorithm 2 (SPEA2+) 114

3.5.4 Pareto Archived Evolution Strategy (PAES) 116

3.5.5 Covariance Matrix Adaptation for Multi-objective Optimiza-
tion (MO-CMA-ES) . 116

3.6 Many-Objective Optimization Basics 120

3.7 MOEA Performance Assessment . 129

3.7.1 Outperformance . 129

3.7.2 Stochasticity . 131

3.7.3 Sample Transformations . 132

3.7.4 Statistical Testing . 139

4 experiments 147

4.1 Problem Statement And Preliminary Studies 148

4.2 Algorithmic Alternatives and Computing Environment 152

4.3 First test case . 153

4.3.1 Choosing MOEA parameters and quality measures 153

4.3.2 Design of the experiment . 154

4.3.3 Analysis of the results . 156

4.4 Second Test Case . 168

4.4.1 Choosing MOEA parameters and quality measures 170

4.4.2 Design of the experiment . 170

4.4.3 Analysis of the results . 170

5 conclusions and future work 185

a software structure 187

a.1 Building a vector of variable parameters 189

a.2 Computing errors between measured and simulated data 189

a.2.1 The curveFamily class . 189

a.2.2 The errorFamily class . 190

a.2.3 SSQ class hierarchy . 191

a.3 Reading simulation files . 192

a.4 Running a simulation . 192

a.5 Exception Handling . 192

a.6 Fitting of a single characteristic . 194

a.6.1 Designing a single objective optimization 194

a.6.2 Post processing of single objective optimization results 202

a.7 Concurrent fitting of several characteristics 202

contents ix

a.7.1 Designing a multi objective optimization 203

a.7.2 Post processing of multi objective optimization results 206

a.8 Performance comparison of several MOEAs 206

b yaml file examples 209

bibliography 235

L I S T O F F I G U R E S

Figure 1 Intrinsic, n-type and p-type semiconductors. 1

Figure 2 Comparison between semiconductors adopted in consumer
electronics and in power electronics. 4

Figure 3 A simple diode rectifier. 5

Figure 4 A thyristor switched on by a trigger and off at the zero cross
point. 5

Figure 5 A comparison of the losses for overhead line transmission of
1200 MW AC and High-Voltage DC (HVDC). 6

Figure 6 A gate-turn-off thyristor can be switched on and off at high
frequency. 7

Figure 7 Applications using Insulated-Gate Bipolar Transistor (IGBT)
technology. 7

Figure 8 Space charge density, electric field and electric potential in-
side a p-n junction. 9

Figure 9 Junction capacitance Cd as a function of reverse junction volt-
age. 12

Figure 10 Diagram of power diodes. 13

Figure 11 Electric field strength in reverse biased power diodes. 14

Figure 12 Reverse bias i-v characteristic of a power diode. 14

Figure 13 Characteristics of a forward biased power diode. 16

Figure 14 Diode turn on characteristics. 17

Figure 15 Definitions for the turn-off parameters of a diode. 18

Figure 16 Lauritzen model, 1991. Inductive load i(t) turn off switching
waveform for two different inductor values. 24

Figure 17 Charge storage locations in a p-i-n diode. 25

Figure 18 Location of charge nodes in the P+N−N+ diode structure. . . 27

Figure 19 Location of the lumped-charge nodes and device equations. . 28

Figure 20 Charge distribution in the P+N− region during a reverse-
recovery transient. 31

Figure 21 Diode during the turn off process. 36

Figure 22 Parameter extraction procedure. 40

Figure 23 Starting estimation of parameters τL and τH. 42

Figure 24 Sensitivity study for parameter m of Extended Lauritzen model. 46

Figure 25 Sensitivity study for parameter Cj0 of Extended Lauritzen
model. 47

Figure 26 Sensitivity study for parameter vj0 of Extended Lauritzen
model. 48

Figure 27 Reverse recovery current synchronization. 55

Figure 28 Single objective optimization approach 58

Figure 29 Parameter extraction flow chart for a diode. 60

Figure 30 Objective functions of Example 2.3. 62

Figure 31 Objective space in Example 2.1. 64

x

List of Figures xi

Figure 32 Objective space in Example 2.3. 65

Figure 33 Nondominated points in Example 2.3. 66

Figure 34 Min-max solutions of Example 2.3. 67

Figure 35 Illustration of two cones. 69

Figure 36 Illustration of definitions of efficient solutions. 74

Figure 37 Nondominated and weakly nondominated points. 75

Figure 38 Properly nondominated point ŷ. 76

Figure 39 Efficient set, ideal, and nadir point. 77

Figure 40 Nondominated points of Y and Y + R
p
= are the same. 78

Figure 41 Connectedness of YN . 79

Figure 42 A set S(λ, Y). 81

Figure 43 Properly nondominated ŷ ∈ YN 82

Figure 44 The weighted sum method fails for nonconvex problems. . . 83

Figure 45 Optimal solutions of ε-constraint problems. 83

Figure 46 Generalized EA data structures and terminology. 92

Figure 47 Key EA components. 93

Figure 48 Bitwise mutation. 93

Figure 49 Single-point crossover. 93

Figure 50 Roulette wheel selection. 94

Figure 51 Ellipsoids depicting isolines of a six different normal distri-
butions. 97

Figure 52 MOEA task decomposition. 103

Figure 53 Example of NSGA-II ranking. 106

Figure 54 Example of SPEA2 raw rank computation. 107

Figure 55 Definition of crowding distance. 108

Figure 56 Grid subdivision approach used by PAES. 110

Figure 57 PAES archiving and acceptance logic. 112

Figure 58 Illustration of the modification of Pareto dominance. 122

Figure 59 Parallel coordinate plots of three objectives. 128

Figure 60 Limitations of weak Pareto dominance. 130

Figure 61 Example of empirical attainment functions. 132

Figure 62 Hypervolumes of different regions. 134

Figure 63 Two incomparable approximation sets A and B. 135

Figure 64 A plot showing five approximation sets. 137

Figure 65 Attainment surface plots for the approximation sets in Fig-
ure 64. 138

Figure 66 Differences in the empirical attainment functions of two op-
timizers. 141

Figure 67 Comparison between measured and optimized simulated ca-
pacitance characteristic. 150

Figure 68 MOEA performance assessment flow. 157

Figure 69 First test case: comparison of hypervolume indicator values
through boxplots. 159

Figure 70 First test case: comparison of additive epsilon indicator val-
ues through boxplots. 160

Figure 71 First test case: convergence study for the NSGA-II and the
R-NSGA-II. 164

Figure 72 First test case: convergence study for the MO-CMA-ES-P and
the MO-CMA-ES-P-REC. 165

Figure 73 First test case: two Pareto points found by the MO-CMA-ES-P. 166

Figure 74 First test case: another two Pareto points found by the MO-
CMA-ES-P. 167

Figure 75 First test case: parallel coordinate plot of an approximation
set computed by MO-CMA-ES-P. 169

Figure 76 Second test case: representation of the first four approxima-
tion sets generated by the optimizers. 171

Figure 77 Second test case: 50%-attainment surfaces of the optimizers. . 172

Figure 78 Second test case: individual differences between the proba-
bilities of attaining different goals with the chosen optimizers. 173

Figure 79 Second test case: comparison of hypervolume indicator val-
ues through boxplots. 175

Figure 80 Second test case: comparison of additive epsilon indicator
values through boxplots. 176

Figure 81 Second test case: convergence study for the NSGA-II and the
R-NSGA-II. 180

Figure 82 Second test case: convergence study for the MO-CMA-ES-P
and the MO-CMA-ES-P-REC. 181

Figure 83 Second test case: two Pareto points found by the MO-CMA-
ES-P. 182

Figure 84 Second test case: another two Pareto points found by the MO-
CMA-ES-P. 183

L I S T O F TA B L E S

Table 1 Lauritzen model, 1991. Parameter list. 27

Table 2 Ma model, 1997. Parameter list. 34

Table 3 Extended Lauritzen model, 2011. Parameter list. 39

Table 4 Criteria and alternatives in Example 2.1. 61

Table 5 Some orders on Rp. 68

Table 6 Feasible solutions and objective values in Example 2.47. . . . 88

Table 7 Default strategy parameters of the non-elitist CMA. 100

Table 8 List of MOEAs implemented in the Python library for param-
eter extraction. 105

Table 9 Selected preference relations on Pareto front approximations. 129

Table 10 Extended Lauritzen model, 2011. Parameter list. 148

Table 11 Ranges for Extended Lauritzen model parameters influenc-
ing the capacitance characteristic. 150

Table 12 Ranges for Extended Lauritzen model parameters influenc-
ing dc and transient characteristics. 151

Table 13 Description of the computing environment. 153

xii

List of Tables xiii

Table 14 First test case: average rankings of the algorithms with re-
spect to the hypervolume indicator. 158

Table 15 First test case: average rankings of the algorithms with re-
spect to the additive epsilon indicator. 159

Table 16 First test case: adjusted p-values for the post-hoc test of the
hypervolume indicator. 162

Table 17 First test case: adjusted p-values for the post-hoc test of the
additive epsilon indicator. 163

Table 18 A principal component analysis of the reference set for the
first test case. 168

Table 19 Second test case: seeds provided to the experimental design
procedure. 172

Table 20 Second test case: average rankings of the algorithms with re-
spect to the hypervolume indicator. 174

Table 21 Second test case: average rankings of the algorithms with re-
spect to the additive epsilon indicator. 175

Table 22 Second test case: adjusted p-values for the post-hoc test of
the hypervolume indicator. 178

Table 23 Second test case: adjusted p-values for the post-hoc test of
the additive epsilon indicator. 179

L I S T I N G S

Listing 1 A YAML file for optimization of diode reverse recovery wave-
form. 209

Listing 2 A YAML file for multi-objective optimization with the NSGA-
II/R-NSGA-II. 215

Listing 3 A YAML file for designing a MOEA performance comparison. 231

L I S T O F A L G O R I T H M S

2.1 Lexicographic Optimization . 85

3.1 Stochastic black box search. 98

3.2 (µ/µw, λ)-CMA-ES . 99

3.3 (1 + λ)-CMA-ES . 101

3.4 updateStepSize(a = [x, p̄succ, σ,pc, C], psucc) 101

3.5 updateCovariance(a = [x, p̄succ, σ,pc, C],xstep ∈ Rn) 102

3.6 NSGA-II algorithm . 115

3.7 SPEA2 algorithm . 116

3.8 SPEA2+ algorithm . 117

3.9 PAES algorithm . 117

3.10 µ× (1 + λ)-MO-CMA-ES . 119

3.11 Principal Component Analysis for Multi-Objective Optimization . . 126

4.1 Generation of initial populations for a MOEA comparison. 155

4.2 Generate random seeds for MOEA runs. 156

A C R O N Y M S

EMC Electro-Magnetic Compatibility

EMI Electro-Magnetic Interference

HVDC High-Voltage DC

FACTS Flexible AC Transmission Systems

GTO Gate Turn-Off Thyristor

xiv

acronyms xv

IGCT Integrated Gate-Commutated Thyristor

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

IGBT Insulated-Gate Bipolar Transistor

BiMOS Bipolar-Metal-Oxide-Semiconductor

PCB Printed Circuit Board

TCAD Technology Computer-Aided Design

SCR Silicon Controlled Rectifier

MCT MOS Controlled Thyristor

BJT Bipolar Junction Transistor

HDL Hardware Description Language

KCL Kirchoff current laws

KVL Kirchoff voltage laws

SPICE Simulation Program with Integrated Circuit Emphasis

CMA-ES Covariance Matrix Adaptation Evolution Strategy

RSS Residual Sum of Squares

RSM Residual Sum of Magnitudes

MOP Multiobjective Optimization Problem

EA Evolutionary Algorithm

EC Evolutionary Computation

GA Genetic Algorithm

ES Evolution Strategy

EP Evolutionary Programming

EVOP Evolutionary Operator

MOEA Multi Objective Evolutionary Algorithm

NFL No Free Lunch

NSGA-II Non Dominated Sorting Genetic Algorithm II

PAES Pareto Archived Evolution Strategy

MO-CMA-ES Multi-Objective Covariance Matrix Adaption Evolution Strategy

SPEA2 Strength Pareto Evolutionary Algorithm 2

SPEA2+ Improved Strength Pareto Evolutionary Algorithm 2

xvi acronyms

R-NSGA-II Reference point based Non Dominated Sorting Genetic Algorithm II

PCA Principal Component Analysis

SOP Single-objective Optimization Problem

MCDA Multi Criteria Decision Aid

EAF Empirical Attainment Function

ECDF Empirical Cumulative Distribution Function

KS Kolmogorov-Smirnov

APV adjusted p-value

SBX Simulated Binary Crossover

API Application Programming Interface

PISA Platform and Programming Language Independent Interface for Search
Algorithms

1
M O D E L I N G O F P O W E R S E M I C O N D U C T O R D E V I C E S

The aim of this chapter is to introduce the procedure of automatic parameter ex-
traction for power semiconductor devices. Section 1.1 presents an introduction to
the field of power electronics. Then, in Section 1.2, we focus our attention on the
basic physical principles that govern a power diode operation, because this is the
device we studied most extensively during our internship at ABB Corporate Re-
search Center in Switzerland. Section 1.3 briefly discusses reasons for device and
circuit simulation in power electronic system design. The simulation activity starts
with the choice of a suitable model for the device under test. In Section 1.4, the
different types of diode models are categorized. Section 1.5 describes three diode
models that we deeply studied. The extended Lauritzen diode model is the most
recent model and it is used in Chapter 4 to provide an example of automatic param-
eter extraction. Finally, Section 1.6 describes parameter extraction and refinement
using a formal optimization procedure.

1.1 overview of power semiconductor devices

Power electronics deals with the conversion and control of electricity using solid-
state electronic switches, i.e., circuits or devices built entirely from solid materials
without moving mechanical parts [77]. Solid-state electronics stems from the dis-
covery of semiconductors.

Semiconductors, such as silicon, have electrical properties that fall somewhere
between a good conductor (e.g., copper) and an insulator (e.g., rubber). If placed
in a circuit they act for much of the time as insulators, forming a barrier to the flow
of electrons, but sometimes, under certain conditions (elevated temperature, expo-
sure to electromagnetic fields, etc.), they behave more like conductors, allowing
electrons to flow freely.

(a) I-type semiconductor,
no impurities added.

(b) N-type semiconductor,
phosphorus added as
impurity.

(c) P-type semiconductor,
boron added as impurity.

Figure 1: Schematic diagram showing only the valence electron shell to illustrate intrinsic,
p-type and n-type semiconductors [44].

1

2 modeling of power semiconductor devices

The conductivity of a pure semiconductor, often called an intrinsic or I-type
semiconductor (see Figure 1a), can be drastically changed by adding other ele-
ments, known as impurities, so that a new and different crystal is formed in a
process called “doping”. Dopants used for silicon-based semiconductors have ei-
ther a three- or five-electron valency, which is one less or one more than silicon’s
four.

By adding small quantities of phosphorus, for example, with a valency of five,
the properties of an I-type semiconductor are altered so that more free electrons
are introduced, since its fifth electron remains unpaired. This creates an excess of
negative electron charge carriers, leading to the creation of an n-type crystal (see
Figure 1b). These weakly-bound electrons can move about in the crystal lattice
relatively freely and can facilitate conduction in the presence of an electric field.
Similarly, by adding small quantities of boron, with a valency of three, the prop-
erties of an I-type semiconductor are altered again. This time, however, it is the
fourth electron of silicon that remains unsaturated when it covalently bonds with
the dopant boron. Unsaturated bonds are repaired by electrons from neighboring
bonds, leaving positive “holes” or p-type regions in the semiconductor (see Fig-
ure 1c). The continued process of repair creates a chain-like reaction that results
in positively charged holes moving around the crystal. Current can be carried
either by the flow of negatively charged electrons or by the flow of positively-
charged “holes” in the crystal lattice of the semiconductor material. Both n- and
p-type semiconductors behave like insulators below a threshold voltage, resisting
current flow, but above that threshold they behave like conductors, allowing the
current to flow freely. The conductivity of these n-type or p-type semiconductors
can be varied between insulating and conducting by the level of dopant incorpo-
rated into the silicon lattice. To control the direction and magnitude of the current
required to switch the semiconductor from an insulator to a conductor, p- and
n-type semiconductors can be arranged adjacently in the same crystal, forming a
junction in which the negatively charged electrons from the n-type semiconductor
fill the holes resulting from unsaturated pairing in the p-type semiconductor. This
creates a thin nonconductive I-type semiconductor junction at the border between
more conductive p- and n-type semiconductors. This non-conductive barrier must
be overcome by an external voltage source to make the junction conduct. By ma-
nipulating this non-conductive p-n junction, the electrical properties of the device
can be controlled. The property and arrangement of such doped semiconductors
provides the key element that led to the development of the transistor, and now
forms the fundamental building block of all modern solid-state electronic devices.

In recent years advances in power semiconductor technology have produced
an ever expanding array of applications. The adverse effects of global warming,
resulting from the burning of fossil fuels, have played a major role in driving the
increased use of power semiconductor technologies aimed at utilizing renewable
energy generation and increasing energy efficiency.

Even in the very early days of electricity, transmission efficiency had an impact
on the type of electricity that prevailed, i.e., direct current (DC) or alternating cur-
rent (AC). Initially, for historic reasons, electric power systems were predominantly
DC circuits. However, the inability to alter DC voltage levels, at that time, limited
its use. Power generators were built therefore to satisfy the load on the circuit (e.g.,

1.1 overview of power semiconductor devices 3

at a voltage level required for lighting or motors). Inefficient transmission at such
low voltages meant that these generators had to remain within a short distance of
consumers.

The subsequent development of AC generators and transformers provided the
much needed technology that would allow power to be stepped up to 110 kV
or more, to facilitate efficient long-distance power transmission. This meant that
power generators need not remain close to their end users, nor did their voltage
levels need to match the class of load attached to their circuits (since step-down
transformers could be used to alter the voltage to suit the load). These early de-
velopments in technology played a pivotal role in determining the nature and
architecture of power transmission and distribution systems.

Today new demands have been placed on electric power systems, including
greater energy efficiency and sustainability, yet developments in technology re-
main a major influence on their evolution. In the last few decades, developments
in semiconductor technology have had a major impact on the architecture of the
power systems that operate around the world. Innovations that have been made
possible through such technology include the efficient bulk transmission of electric
energy in the form of High-Voltage DC (HVDC) [99], the introduction of energy-
saving variable-speed drives [100], the conversion of AC at one frequency to AC
at another (50/60 Hz or 50/16.6 Hz) through the use of frequency converters, and
the introduction of Flexible AC Transmission Systems (FACTS) to enhance control
and increase the power transfer capability of the network [98].

1.1.1 Semiconductor Devices

Today the vast majority of semiconductor devices are used in the consumer elec-
tronics industry. These products include computers, DVD players, cell phones,
household appliances and video games. These types of products generally oper-
ate in the nanowatt to milliwatt range. The miniaturization of such devices contin-
ues to develop with ever increasing complexity so that today’s integrated circuits,
known as microchips, contain hundreds of millions of switches operating at the
nanowatt level. The function of these devices is typically achieved by structuring
the surface area of the semiconductor material, see Figure 2a.

In addition, many low-power semiconductors are used today to modify the form
of electrical energy (i.e., to modify its voltage or frequency), including:

• DC/DC converters found in most mobile devices (eg, mobile phone, mp3

player). They maintain the voltage at a fixed value, whatever the charge level
of the battery.

• AC/DC converters (rectifiers) used whenever an electronic device is con-
nected to the mains (eg, computers, televisions, game consoles).

• AC/AC converters used to change either the voltage level or the frequency.
These are found in international power adapters, light dimmer switches, etc.

• DC/AC converters (inverters) used, e.g., to supply power to AC devices in a
car from a DC battery.

4 modeling of power semiconductor devices

(a) Semiconductors found in consumer elec-
tronics.

(b) Semiconductors found in power electron-
ics.

Figure 2: Comparison between semiconductors adopted in consumer electronics and in
power electronics [44].

Today, similar semiconductor devices can be used to modify electric energy in
the megawatt power range. They are generally silicon-based and the functionality
to either block or conduct current involves the whole 3-D body of the semiconduc-
tor (see Figure 2b). Generally these devices are less visible to end users than their
miniaturized cousins in the consumer electronics industry, yet they modify voltage
and frequency in much the same way, only on an industrial scale, forming robust
high-power switches that are either “on” or “off”.

Although power electronics form a relatively small segment in the semiconduc-
tor market, rapid growth in demand for high-power semiconductor devices in the
last five years has seen significant increases as new applications for this technology
are recognized.

1.1.2 Power semiconductor devices

Power semiconductor devices first appeared in the early 1950s, e.g., with the 7 kW
semiconductor diode. This device maintains the flow of electric current in one
direction (called the diode’s forward direction), while blocking the flow in the
opposite direction (see Figure 3). Semiconductor diodes provided the first solid-
state rectifiers.

In the late 1950s a new bipolar semiconductor, known as a thyristor, was devel-
oped. Thyristors are similar to diodes in that they block electric current flow in
the reverse direction, but they also prevent current flow in the forward direction
unless triggered to do so. In this way, the power (or current) that is supplied to
a load could be controlled by triggering conductance at a particular phase of the
waveform. Once switched on, the thyristor remains “on”, switching “off” once per
cycle when the current drops to the next zero cross point (see Figure 4). Once
switched on, the thyristor behaves essentially like a diode. Since thyristors can
switch power at the MW level they can be used to convert AC to DC and DC
to AC for HVDC transmission. Today HVDC classic systems (with thyristors con-
nected in series) are capable of carrying 6400 MW of power over several thousand
kilometers, providing efficient methods to transport electrical energy from remote

1.1 overview of power semiconductor devices 5

Time
−Vmax

0

Vmax

(a)

R

(b)

Figure 3: A simple diode rectifier.

Trigger Trigger
Time

−Vmax

0

Vmax

(a)

R

Gate

(b)

Figure 4: A thyristor switched on by a trigger and off at the zero cross point.

6 modeling of power semiconductor devices

Figure 5: A comparison of the losses for overhead line transmission of 1200 MW AC and
High-Voltage DC (HVDC) [44].

sources of generation to busy population centers. An HVDC transmission line has
lower losses than optimized AC lines for the same power capacity. The losses in
the converter stations have of course to be added, but since they are only about
0.7 percent of the transmitted power in each station, the total HVDC transmission
losses come out lower than the AC losses for distances above a certain threshold
(e.g., around 500 km for overhead lines, see Figure 5). In addition, HVDC is the only
practical solution for subsea cable connections over 70 km.

Although thyristors assembled in series can function in the several thousand
MW range, a similar single thyristor can be used in the 10 MW range to modify
the supply of voltage and current through a medium-voltage drive to efficiently
control the speed of an industrial motor. Applications driven by electric motors
account for an estimated 65 percent of all industrial energy use; however a signifi-
cant portion of this energy is currently lost through the wasteful methods used to
control their speeds. By altering the voltage and frequency using power electron-
ics, the speed of an AC motor can be adjusted with much lower losses. Typical
applications using variable-speed drives can reduce energy consumption by 30 to
50 percent.

Further developments in semiconductor technology have resulted in the Gate
Turn-Off Thyristor (GTO), which can be switched off at an arbitrary point in the
waveform, providing greater control over the power output, see Figure 6. Such
devices are common in frequency converters used to alter the power frequency of
the domestic grid to suit the power frequency used by electric trains and metros.

Not long after the development of the GTO, an improved type of device known as
the Integrated Gate-Commutated Thyristor (IGCT) was developed. These devices,
like the GTO, can be switched “on” or “off”, but since their turnoff times are much
faster, they can operate at much higher frequencies than GTOs. They are able to

1.1 overview of power semiconductor devices 7

Time
−Vmax

0

Vmax

On

Off

(a)

R

(b)

Figure 6: A gate-turn-off thyristor can be switched on and off at high frequency.

(a) The HVDC Light converter on the BorWin al-
pha platform with some wind turbines.

(b) Variable speed drives.

Figure 7: Applications using Insulated-Gate Bipolar Transistor (IGBT) technology [44].

8 modeling of power semiconductor devices

cope with high rates of voltage rise and have lower conduction losses. Today there
are many thousands of drives worldwide using IGCTs.

Two decades ago, a seemingly simple variant of the Metal-Oxide-Semiconductor
Field-Effect Transistor (MOSFET) began to change the power electronic landscape
with the creation of the Insulated-Gate Bipolar Transistor (IGBT). The IGBT is noted
for high efficiency and fast switching (switching “on” and “off” multiple times per
cycle) and relies on Bipolar-Metal-Oxide-Semiconductor (BiMOS) technology. These
devices can be assembled in a variety of ways to modify the voltage or frequency of
electrical power for a range of applications from HVDC Light® power transmission
systems (see Figure 7a) to low-voltage variable-speed drives (see Figure 7b). Both
variable speed drives and HVDC Light require rectifiers and converter topology.
However, as with all applications, the way in which semiconductor devices are
assembled in these applications determines the power rating at which they can
operate.

The different types of semiconductor devices and the way they are assembled,
define their suitability for a particular application. Each device is packaged, not
only to maintain its integrity and performance, but also to ensure its safe opera-
tion and longevity when working in harsh environments. Power semiconductors
are a key element in an increasing number of electrical applications. They allow
drives to efficiently operate motors from 10 W to several hundred MW. They en-
able electrical energy up to 6 GW to be transmitted through HVDC lines at 800 kV.
They provide the capacity for trains, cranes and elevators to run smoothly and al-
low renewable energy sources, such as wind turbines and large hydropower plants
to connect to the grid. Even radar systems emitting high-power pulses depend on
power semiconductors to securely operate air traffic.

In the next section we go into more depth of power semiconductor diode, since
we will often refer to it throughout this work.

1.2 power semiconductor diode basics

Power semiconductor diodes are required to carry up to several kiloampers of
current under forward bias condition and block up to several kilovolts under re-
verse biased condition. These extreme requirements call for important structural
changes in a power diode with respect to a p-n junction diode.

1.2.1 Review of Basic p-n Diode Characteristics

A p-n junction diode is formed by placing p and n type semiconductor materials in
intimate contact on an atomic scale. In an open circuit p-n junction diode, majority
carriers from either side will defuse across the junction to the opposite side where
they are in minority. These diffusing carriers will leave behind a region of ionized
atoms at the immediate vicinity of the metallurgical junction. This region of im-
mobile ionized atoms is called the space charge region. This process continues till
the resultant electric field (created by the space charge density) and the potential
barrier at the junction builds up to sufficient level to prevent any further migration
of carriers. At this point the p-n junction is said to be in thermal equilibrium condi-
tion. In this case, the potential barrier at the junction is frequently referred to as

1.2 power semiconductor diode basics 9

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������������������

Metallurgical
junction

Minority carrier
densiity

Space charge
density

Depletion layer
width

p n

np0 pn0

E Electric field strength

Emax

φ Electric potential

φ0

(a)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Metallurgical
junction

Minority carrier
density

Space charge
density

Depletion layer
width

p n

npr pnr

E Electric field strength

φ

Emax

Electric potential

v

φ0 + v

(b)

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�
�
�

�
�
�

�
�
�

�
�
�

Metallurgical
junction

Minority carrier
density

Space charge
density

Depletion layer
width

p n

npf pnf

E Electric field strength

Emax

φ Electric potential

v

φ0− v

(c)

Figure 8: Space charge density, electric field and electric potential inside a p-n junction
under (a) thermal equilibrium condition, (b) reverse biased condition, (c) forward
biased condition.

10 modeling of power semiconductor devices

the built-in potential. Variation of the space charge density, the electric field and the
potential along the device are shown in Figure 8a.

When an external voltage is applied with the p side more negative than the n
side, the junction is said to be under reverse bias condition. This reverse bias adds
to the height of the potential barrier. The electric field strength at the junction and
the width of the space charge region (also called the depletion region because of the
absence of free carriers) also increases. On the other hand, free minority carrier
densities will be zero at the edge of the depletion region on either side (Figure 8b).

This gradient in minority carrier density causes a small flux of minority carriers
to defuse towards the depletion layer where they are swept immediately by the
strong electric field into the electrical neutral region of the opposite side. This will
constitute a small leakage current across the junction from the n side to the p side.
There will also be a contribution to the leakage current by the electron-hole pairs
generated in the space charge layer by the thermal ionization process. These two
components of current together are called the reverse saturation current Is of the
diode. The value of Is is independent of the reverse voltage magnitude (up to a
certain level) but extremely sensitive to temperature variation.

When the applied reverse voltage exceeds some threshold value (for a given
diode) the reverse current increases rapidly. The diode is said to have undergone
reverse break down.

Reverse break down is caused by “impact ionization” as explained below. Elec-
trons accelerated by the large depletion layer electric field due to the applied re-
verse voltage may attain sufficient kinetic energy to liberate another electron from
the covalent bonds when it strikes a silicon atom. The liberated electron in turn may
repeat the process. This cascading effect (avalanche) may produce a large number
of free electrons very quickly resulting in a large reverse current. The power dis-
sipated in the device increases and may cause its destruction. Therefore, a diode
should prevented from operating in the reverse breakdown region.

When the diode is forward biased (i.e., p side more positive than n side) the
potential barrier is lowered and minority carriers are injected to both sides of the
junction (see Figure 8c). Two situations are relevant:

• The change in majority-carrier concentration due to the injected minority
carriers is so small in the regions outside the depletion region that its effect
can be neglected. Thus, there is no electric field in the n− region if current
flows, and injected carriers move only by diffusion. This condition is referred
to as low-level injection.

• At high-level injection, on the contrary, there is significant alteration of the
majority-carrier concentration outside the depletion region, which give rise
to an electric field. Thus carrier motion is influenced by both diffusion and
drift in this region. The presence of the electric field results in a voltage drop
across this region. Hence only a fraction of the applied voltage drops across
the junction.

The injected minority carriers eventually recombine with the majority carriers
as they defuse further into the electrically neutral drift region. The excess free
carrier density in both p and n side follows exponential decay characteristics. The
characteristic decay length is called the “minority carrier diffusion length”.

1.2 power semiconductor diode basics 11

Carrier density gradients on either side of the junction are supported by a for-
ward current i which can be expressed as

i(v) = Is

(
exp

(qv
kT

)
− 1
)

(1.1)

where

• Is is the reverse saturation current;

• v is the voltage drop across the p-n junction;

• q is the elementary charge;

• k is the Boltzmann constant;

• T is the temperature in kelvin.

Now let us consider the charge-storage effects of the device. The importance of
this effect is clear. If there were no charge storage, the device would be infinitely
fast; that is, there would be no charge inertia, and currents could be changed in
zero time. Instead, diodes take a finite time to make transition from reverse bias to
forward bias condition (switch on) and vice versa (switch off). The two forms of
charge storage are the minority-carrier injection Qs and the space charge Qd.

• Stored charge Qs. The electrons injected into the p side and the holes injected
into the n side of the diode not only generate the current i but also represent
the charge Qsn and Qsp stored in the diode.

In [1], for an abrupt p+n junction, where dopant concentration in the anode is
greater by some order of magnitude of dopant concentration in the cathode,
it is shown that the following relationship holds

Qs = τD · i(v) (1.2)

where i(v) is given by (1.1). The proportionality constant τD between the
current and the charge is a time constant which represents the minimum
time required to either store or remove the charge; it is called the transit time
of the diode.

• Space charge Qd. A change in v requires a variation in the width of the space
charge region d (see Figure 8). A change in d implies a change in the charge
associated with the charge layer. Thus, this charge must be moved into or out
of the space-charge region to balance a change in the junction voltage. This
means that a capacitance must be associated with the space-charge region.

The equivalent differential capacitance associated with a change dv of the
applied voltage v is then

Cd =
dQd

dv
(1.3)

In [1] it is shown that, for an abrupt p-n junction, the following relationship
holds

12 modeling of power semiconductor devices

0
Reverse voltage

C
d

Figure 9: Junction capacitance Cd as a function of reverse junction voltage.

Cd =
Cd(0)√
1− v

vj

(1.4)

where Cd(0) is the zero bias capacitance and vj is the built-in voltage.

For reverse bias and small forward bias, the injected charge Qs dominates; hence
the effects of Qd become negligible. This second observation is extremely impor-
tant, since as v approaches vj, the space charge-capacitance (see (1.4)) becomes
infinite. In this case, (1.4) is no longer valid.

Figure 9 shows a plot of the junction capacitance as a function of reverse junction
voltage.

1.2.2 Construction and Characteristics of Power Diodes

As mentioned before, power diodes are required to conduct several kiloampers of
current in the forward direction with very little power loss while blocking several
kilovolts in the reverse direction. Large blocking voltage requires wide depletion
layer in order to restrict the maximum electric field strength below the “impact
ionization” level. Space charge density in the depletion layer should also be low in
order to yield a wide depletion layer for a given maximum electric field strength.
These two requirements will be satisfied in a lightly doped p-n junction diode of
sufficient width to accommodate the required depletion layer. Such a construction,
however, will result in a device with high resistivity in the forward direction. Con-
sequently, the power loss at the required rated current will be unacceptably high.
On the other hand if forward resistance (and hence power loss) is reduced by in-
creasing the doping level, reverse break down voltage will reduce. This apparent
contradiction in the requirements of a power diode is resolved by introducing a
lightly doped n− “drift layer” of required thickness between two heavily doped
p+ and n+ layers as shown in Figure 10a. Figure 10b shows a photograph of some
fast power diodes.

1.2 power semiconductor diode basics 13

�������������������
�������������������
�������������������
�������������������

������
������
������
������

Anode
metalization

Epitaxial layer
(Drift region)

p+ (NaA)

A

Anode

n− (NdD)

n+ (NdK) Cathode

Cathode metalization
K

(a) Schematic cross section. (b) Photograph of fast power diodes [44].

Figure 10: Diagram of power diodes.

To arrive at the structure shown in Figure 10a a lightly doped n− epitaxial layer
of specified width (depending on the required break down voltage) and donor
atom density (NdD) is grown on a heavily doped n+ substrate (with donor atom
density NdK) which acts as the cathode. Finally the p-n junction is formed by
defusing a heavily doped (with acceptor atom density NaA) p+ region into the
epitaxial layer. This p type region acts as the anode.

Impurity atom densities in the heavily doped cathode (NdK) and anode (NaA)
are about of the same order of magnitude (1019 C m−3) while that of the epitaxial
layer (also called the drift region) is lower by several orders of magnitude (NdD ≈
1014 C m−3).

1.2.2.1 Power Diode under Reverse Bias Condition

As in the case of a p-n diode the applied reverse voltage is supported by the
depletion layer formed at the p+-n− metallurgical junction. Overall neutrality of
the space charge region dictates that the number of ionized atoms in the p+ region
should be same as that in the n− region. However, since NdD � NaA, the space
charge region almost exclusively extends into the n− drift region. Now the physical
width of the drift region d can be either larger or smaller than the depletion layer
width at the break down voltage. Consequently two type of diodes exist:

• “non punch through” type;

• “punch through” type.

In “non punch through” diodes the depletion layer boundary doesn’t reach the
end of the drift layer. On the other hand in “punch through” diodes the depletion
layer spans the entire drift region and is in contact with the n+ cathode. However,
due to very large doping density of the cathode, penetration of drift region inside
cathode is negligible. Electric field strength inside the drift region of both these
types of diode at break down voltage is shown in Figure 11.

In non punch through type diodes the electric field strength is maximum at the
p+-n− junction and decrease to zero at the end of the depletion region. Where as,
in the punch through construction the field strength is more uniform.

14 modeling of power semiconductor devices

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

p+ n− n+

E

(a) Non punch through type.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

p+ n− n+

E

(b) Punch through type.

Figure 11: Electric field strength in reverse biased power diodes.

+ -

Vb

i
KA

i

IsTj2Tj1

v

v

Figure 12: Reverse bias i-v characteristic of a power diode. v is the voltage drop across the
p+n− junction, Vb is the reverse breakdown voltage, Is is the reverse saturation
current and Tj is the junction temperature (Tj2 > Tj1).

Under reverse bias condition only a small leakage current flows in the reverse
direction (i.e. from cathode to anode). This reverse current is independent of the ap-
plied reverse voltage but highly sensitive to junction temperature variation. When
the applied reverse voltage reaches the break down voltage, reverse current in-
creases very rapidly due to impact ionization and consequent avalanche multipli-
cation process. Voltage across the device dose not increase any further while the
reverse current is limited by the external circuit. Excessive power loss and con-
sequent increase in the junction temperature due to continued operation in the
reverse brake down region quickly destroys the diode. Therefore, continued oper-
ation in the reverse break down region should be avoided. A typical I-V character-
istic of a power diode under reverse bias condition is shown in Figure 12.

1.2 power semiconductor diode basics 15

1.2.2.2 Power Diode under Forward Bias Condition

As the metallurgical p+n− junction becomes forward biased there will be injection
of excess p type carrier into the n− side. At low level injections all excess p type
carriers recombine with n type carriers in the n− drift region. At high level of
injection the excess p type carrier density distribution reaches the n−n+ junction
and attracts electron from the n+ cathode. This leads to electron injection into the
drift region across the n−n+ junction. This mechanism is called “double injection”.

Excess p and n type carriers recombine inside the drift region. If the width of
the drift region is less than the diffusion length of carries the spatial distribution
of excess carrier density in the drift region will be fairly flat and several orders
of magnitude higher than the thermal equilibrium carrier density of this region.
Conductivity of the drift region will be greatly enhanced as a consequence (also
called “conductivity modulation”).

At large forward bias, the diode current deviates from the ideal exponential
characteristic given in (1.1). This deviation is due to the presence of an ohmic
resistance in the diode as well as the effects of high-level injection. The effects
of both ohmic resistance and high-level injection can be modeled by the ohmic
resistance Rs. The value of Rs is determined by the amount the actual diode voltage
deviates from the ideal exponential characteristic at a specified current. Then, if
vAK is the voltage applied to the diode and v is the drop across the p+n− junction,
it can be written that

v = vAK − Rs · i. (1.5)

Characteristics of a forward biased power diode are shown in Figure 13.

1.2.2.3 Switching Characteristics of Power Diodes

Power diodes take a finite time to make transition from reverse bias to forward
bias condition (switch on) and vice versa (switch off).

Behavior of the diode current and voltage during these switching periods are
important due to the following reasons:

• Severe over voltage / over current may be caused by a diode switching at
different points in the circuit using the diode.

• Voltage and current exist simultaneously during switching operation of a
diode. Therefore, every switching of the diode is associated with some energy
loss. At high switching frequency this may contribute significantly to the
overall power loss in the diode.

Diodes can be subdivided into two main classes: Rectifier Diodes (Standard Re-
covery) and Fast Diodes (see 10b). Rectifier Diodes are generally used for con-
version of AC (alternating current) to DC (direct current). While optimized for
low conduction losses, Rectifier Diodes withstand only moderate dynamic stress
in transition from conducting to the blocking state. Fast Diodes, on the other hand,
are companion devices to switches in DC to AC conversion. Every switch (GTO,
IGCT or IGBT) requires a complementary diode (e.g. for “free-wheeling” reactive

16 modeling of power semiconductor devices

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

KA

x

n(x)p(x)

np(x) nn0d

np0

pn0d
pn0

pn(x)

p+ n− n+

= na =

v

(a) Excess free carrier density distribution.

+ -

i

Tj1

Tj2

KA
i

v

v

(b) i-v characteristic.

Figure 13: Characteristics of a forward biased power diode. Tj is the junction temperature
(Tj2 < Tj1).

1.2 power semiconductor diode basics 17

i

IF

t

t

Vfr

v

Figure 14: Forward current and voltage waveforms of a power diode during turn on oper-
ation.

power) in order to enable operation of the DC-AC conversion system with induc-
tive loads. Fast Diodes are optimized to accept high dynamic stress (fast transition
from conducting to blocking state). However, they generally have higher conduc-
tion losses than Rectifier Diodes.

A typical turn on transient is shown in Figure 14.
It is observed that the forward diode voltage during turn on may transiently

reach a significantly higher value Vfr compared to the steady state voltage drop at
the steady current IF.

In some power converter circuits (e.g. voltage source inverter) where a free
wheeling diode is used across an asymmetrical blocking power switch (i.e. asym-
metric IGCT) this transient over voltage may be high enough to destroy the main
power switch.

Figure 15 shows a typical turn off behavior of a power diode.
Salient features of this operation mode are:

• The diode current does not stop at zero, instead it grows in the negative
direction to IRM called “maximum reverse recovery current”, which can be
comparable to IF. In many power electronic circuits (e.g. choppers, inverters)
this reverse current flows through the main power switch in addition to the
load current. Therefore, this reverse recovery current has to be accounted for
while selecting the main switch.

• Voltage drop across the diode does not change appreciably from its steady
state value till the diode current reaches reverse recovery level. In many
power electric circuits (choppers, inverters) this may create an effective short

18 modeling of power semiconductor devices

time

IRM

0

IF

cu
rr

e
n
t

tRM

t0 t190% IRM

25% IRM

trr

Qrr

di/dt=−a

time

0

v
o
lt

a
g
e

Figure 15: Definitions for the turn-off parameters of a diode.

1.2 power semiconductor diode basics 19

circuit across the supply, current being limited only by the stray wiring in-
ductance.

• Towards the end of the reverse recovery period if the reverse current falls too
sharply, stray circuit inductance may cause dangerous over voltage across the
device. It may be required to protect the diode using an RC snubber.

During diode turn off current and voltage exist simultaneously in the device.
At high switching frequency this may result in considerable increase in the total
power loss.

Important parameters defining the turn off characteristics are (see Figure 15):

• IRM, maximum reverse recovery current. The peak value of the reverse cur-
rent during commutation at the specified conditions.

• Qrr, reverse recovery charge. The integral over time of the reverse current
during commutation at the specified conditions starting at the zero-crossing
of the current and ending when the reverse current has decayed to zero after
the tail-current phase.

• trr, reverse recovery time. The commutation time of the diode at the specified
conditions. It is measured between the current zero-crossing and the zero-
crossing of a straight line drawn between 90% of the current peak on the
rising flank and 25% of peak (on the falling flank).

• Erec, reverse recovery energy. The energy dissipated during a single reverse
recovery event. It is the integration of the product of the reverse current and
voltage from t0 to t1 (see Figure 15) as expressed by

Erec =
∫ t1

t0

i(t)v(t)dt (1.6)

In order to judge the behavior of diodes during turn-off more precisely, the
circuit conditions need to be taken into consideration with respect to switching
conditions [39]. In other words, the way a diode commutates from forward bias to
reverse bias condition (or vice versa) depends on the external circuit. The number
of power diode applications in high power systems continues to grow leading to
various dynamic constraints and hence different diode designs and behaviors. A
more detailed analysis of power diode physics is presented in [89]. Further reading
on power diode applications can be found in [77].

In parallel to the research to scale up the diode power handling limits, extensive
studies were made to model and simulate the device behavior. These two latter
activities are as much important as the first one, especially for the applications en-
gineers, since they allow to evaluate device performance without always resorting
to costly and time consuming experimental approaches. Many different types of
diode model exist, depending on the level of accuracy required, the capability of
capturing the device physical phenomena rather than providing a simple behav-
ioral model of it, the nature of the modeling approach (for example numerical or
analytic one) etc.

20 modeling of power semiconductor devices

In the following, different types of models are identified and briefly explained.
Among the whole spectrum of modeling technique, the Lumped Charge technique
is described and the key ideas are pointed out. We adopted such technique to
develop an automated parameter optimization routine during our internship at
ABB Corporate Research Center in Switzerland.

1.3 why simulate?

As we have already pointed out, it is very important to model and simulate a de-
vice behavior in order to evaluate the device performance without always recurring
to costly and time consuming experimental approaches.

In recent years, the simulation of discrete analog circuits has become more vi-
able. This has come about because of the almost relentless advances in CPU power,
the increased availability of device models from their manufacturers and the intro-
duction of easy to use and affordable simulation tools.

The pressure to reduce product development time-scales has meant that for
many projects the traditional bread-boarding phase is skipped altogether - with
or without simulation - and circuit development is carried out on the first revi-
sions of Printed Circuit Board (PCB). The use of simulation on a circuit or parts
of a circuit can help to eliminate errors in a circuit design prior to this stage and
reduce the number of PCB revisions required before the final production version is
reached. Of course, to be useful, the simulation process must therefore not be too
time consuming.

Computer simulation, does however, have many more uses. There are some
things you can do with a simulator which cannot be achieved with practical ap-
proaches. You can remove parasitic elements, you can make non-invasive measure-
ments that are impossible in real-life or you can run components outside of their
safe operating area. These abilities make simulation a valuable tool for finding out
why a particular design does not behave as expected. If the problem can be re-
produced on a simulator then its cause can be much more easily identified. Even
if a problem cannot be reproduced then this gives some clues. It means that it is
caused by something that is not modeled, a wiring parasitic perhaps.

Simulation is extremely useful for testing ideas at the system level. Sometimes it
is not easy to test a concept because the hardware to implement it is very costly or
time consuming to build. It may even be that you do not know how to implement
the idea in hardware at all. The alternative is to design a model and simulate it with
a computer. Once it has been established that the concept is viable then attention
can be given to its implementation. If it proves not to be viable, then a great deal
of time will have been saved.

1.4 classification of models

The most fundamental aspects that distinguish among different power device mod-
els are the model formulation technique and concept employed.

Very broadly, diode and IGBT models may be classified either as “micromodels”,
or as “macromodels” [91], [87]. Micromodels are closely based on the internal de-
vice physics and, if properly formulated, should yield good accuracy over a wide

1.4 classification of models 21

range of operating conditions. Because device physics unavoidably require math-
ematical equations, micromodels are also known as mathematical models. Macro-
models reproduce the external behavior of the device largely by using empirical
techniques without considering its geometrical nature and its internal physical
processes. This external behavior is usually modeled by means of simple data-
fitting empirical equations, lookup tables, or an electrical subcircuit of common
components to emulate known experimental data. Because of the latter reason,
macromodels have been mistakenly labeled as subcircuit models. Many so called
subcircuit models are actually micromodels because they used subcircuits to sim-
ulate fairly complex physics-based mathematical equations. In our work here, the
term subcircuit refers to the mode of model implementation rather than the model
formulation technique.

Because of their limitations in terms of accuracy and flexibility, macromodels
are rarely utilized nowadays. Micromodels are generally more computationally ef-
ficient, more accurate, and more related to the device structure and fabrication pro-
cess. Micromodels can be further classified as numerical models, analytical models
and hybrid models.

numerical models Numerical modeling uses the partial differential set of the
semiconductor physics and solves them using finite element or finite differ-
ence methods. A finite element Technology Computer-Aided Design (TCAD)
simulation of the reverse recovery of a single diode can take a few minutes
or tens of minutes depending on the discretization, on the circuit, and on
the physical phenomena included. From the engineering point of view, the
degree of accuracy that is achieved by an exact numerical model is not al-
ways necessary or even justified, in particular, if the input data, such as the
doping profile, is only known with a limited accuracy. In such cases, simpli-
fied numerical models may suffice. The simplifications may be in the form
of assumptions made to semiconductor physics, or in the finite-element algo-
rithms. Numerical models are suitable for device manufacturers who want
to evaluate the performance of their devices in power electronic circuit appli-
cations.

analytical models Analytical modeling relies on a set of mathematical func-
tions to describe the devices’ terminal characteristics without resorting to
finite-element methods. These equations could also be device physics related
to provide realistic simulations over a wide range of operating conditions.
The computational overheads of analytical models are far lower than those
of numerical models. Circuit simulators can solve these types of models most
efficiently. Having power device models in the libraries of simulators allows
the latter to function as general purpose power electronics circuits CAD tools.
Analytical models are, thus, very appropriate for simulation of power elec-
tronic circuits over a large number of switching cycles.

hybrid models This formulation technique uses a combination of numerical
and analytical models. A discretization approach (such as finite differences)
is used to solve the semiconductor equations in the drift region only. Analyt-
ical equations are applied to the rest of the device structure. This procedure

22 modeling of power semiconductor devices

has the advantage that a high accuracy of the charge carrier behavior may be
simulated without the long execution time associated with fully numerical
models. These models show good accuracy at the expense of computation
efficiency which can still be too high for large system simulations or for
Electro-Magnetic Interference (EMI) / Electro-Magnetic Compatibility (EMC)
simulations. Hybrid models are, thus, suitable for very detailed study of de-
vice interactions with the rest of the circuit over a few switching cycles.

We wanted to use diode models which could be rather oriented to compactness
and computational efficiency than extreme accuracy: in fact they are intended to
be used as a first tool of analysis for the designer to evaluate the performance
of a more general application. In this sense, also the complexity of the parameter
extraction procedure must be accounted for in the choice of the model. Neverthe-
less, the model should be able to predict the most relevant physical phenomena
governing the device operation.

All these factors led to the choice of the lumped-charge modeling technique [76] as
the intended diode model.

1.5 the lumped-charge modeling approach

The lumped-charge modeling technique represents a systematic technique for an-
alytical modeling. It was first introduced in 1991, based upon Linvill’s lumped pa-
rameter approach [70] and the standard charge control method [1]. In the years,
diode [68], [75], [5, 82], Silicon Controlled Rectifier (SCR) [74], GTO [73], MOS
Controlled Thyristor (MCT) [52], MOSFET [9], Bipolar Junction Transistor (BJT) [90],
IGBT [69] models have been created based on this approach.

Another important factor to be considered when choosing a model is how effi-
ciently such a model can be described. Lumped charge models can be efficiently
described with Hardware Description Language (HDL) [101], such as Verilog-A,
VHDL-AMS, MAST, etc.

1.5.1 Basics Concepts

The lumped charge technique leads to a reduction of the model complexity, while
retaining the basic structural information and internal carrier transport process of
the device. Thus, it can offer a good trade off between complexity (i.e. computation
times) and accuracy.

The lumped charge technique can be applied systematically to the model power
semiconductors following these three steps:

• The device structure is discretized into several P- or N-type regions, each of
which contains charge-storage and connection nodes. A charge-storage node
is responsible for charge-carrier storage and recombination and is usually
located near the center of a region; a connection node links junction voltage to
the charge-carrier concentration level and is located on the junction depletion
edge.

1.5 the lumped-charge modeling approach 23

• The hole and electron charge values at each node are obtained by multiplying
the local charge-carrier concentrations by the volume of the reference region,
which is typically one of the lightly doped regions.

• The charge nodes are finally linked one to each other by means of the follow-
ing six equation, derived from device physics and circuit theory:

– current density equations;

– current continuity equations;

– charge neutrality equations;

– Boltzmann relations (p-n junction equations);

– Poisson equations;

– Kirchoff current and voltage laws.

• The symbol uij is used to indicate any variable u defined between node i and
node j.

The first five describe carrier distribution and transport between the charge
nodes in the device; the last connects internal variables of the model equations
to terminal characteristics.

This systematic approach can be followed since all power semiconductor devices
can be viewed as a combination of the following representative structures:

• P+N− structure (or N+P−);

• N−N+ structure (or P−P+);

• MOS structure.

We will show how to apply the above equations to the first two structures by
considering a power diode.

1.5.2 Diode models

During our internship in ABB Corporate Research Center in Switzerland three
physics based models for the power diode has been tested:

• Lauritzen [68] model, 1991;

• Ma [75] model, 1997;

• Extended Lauritzen [5, 82] model, 2011.

These models have been developed using the lumped-charge modeling tech-
nique. Such technique provides a good trade off between accuracy and simulation
speed. Moreover, extraction of model parameters is relatively fast and simple.

These three models have increasing accuracy in the order they are listed. There-
fore it can be expected that they also have increasing simulation speed in the same
order. This is provided that convergence problems are not encountered. In Ex-
tended Lauritzen model [5, 82], Ma model is extended while maintaining the low
computational cost.

In the following, each of these three models will be discussed.

24 modeling of power semiconductor devices

0 1 2 3 4 5
t [µs]

200

150

100

50

0

50

100

150

i
[A

]

inductor value = 4 µH

inductor value = 8 µH

Figure 16: Lauritzen model, 1991. Inductive load [39] i(t) turn off switching waveform for
two different inductor values.

1.5.2.1 Lauritzen model, 1991

Lauritzen [68] model extends the basic charge-control diode model [1] to include
a gradual reverse recovery, as shown in Figure 16. It makes the following assump-
tions:

• Power diode is the p-i-n diode. A p-i-n diode is a p-n junction with a dop-
ing profile tailored so that an intrinsic layer, the “i region”, is sandwiched
between a p layer and an n layer. In practice, however, an idealized i region is
approximated by either a high-resistivity p layer or a high-resistivity n layer.
The nature of the low doping in the i region causes most of the potential
drop across this region.

• Hole and electron mobilities are equal.

• Base contraction due to the moving of the depletion region boundary is omit-
ted, which results in single fixed time constant in the reverse recovery. So the
voltage dependent reverse recovery is omitted.

• Forward conduction has attained a steady state.

• di
dt is a constant.

• A constant transit time is used.

• Emitter recombination due to high level injection is omitted.

For such reasons:

• Self-heating effect cannot be included.

1.5 the lumped-charge modeling approach 25

P+

region
N+

region

p(x) = n(x)

x

q1
q2 q3

q4

δ d

Figure 17: Charge storage locations in a p-i-n diode.

• The model should be applied to power diode with low peak inverse voltage
so that base contraction may be neglected (i.e. short base diode) [106].

• The model is valid only if the ratio between the peak of the reverse current
and the value of the current when it starts to decrease is less than 1 [66].

The process for deriving the model’s governing equations is summarized next.
High injection condition is assumed, leading to the condition that the hole and

electron distributions are equal, n(x) = p(x). Since equal hole and electron mobil-
ities are assumed, the charge distribution profiles are symmetric and the analysis
can be conducted only for the charges on one side (referring to Figure 17, they are
q1 and q2, which represent the lumped excess charges in their respective regions).
Here q1 = qAδ(p1 − pi0) and q2 = qAδ(p2 − pi0), where

• q is the electron unit charge;

• A the junction area;

• δ and d the two charge storage regions;

• p1 and p2 the average hole concentrations in the regions corresponding to q1

and q2;

• pi0 the equilibrium hole concentration.

High level diffusion is the mechanism for charge redistribution from q1 to q2,
while holes are injected directly into q1 from the p+-i junction on the left. The
discretized diffusion equation is

i(t) = −qA2Dp
dp
dx

=
qA2Dp(p1 − p2)

δ
2 +

d
2

. (1.7)

Here, Dp is the high level diffusion constant. To prevent an arbitrarily large
current from flowing between q1 and the external leads, the width δ must be made
small compared to the width d. Taking the limit for δ→ 0, (1.7) becomes

i(t) =
q0 − q2

T12

(1.8)

26 modeling of power semiconductor devices

where q0 = qAd(p1− pi0) and T12 = d2/(4Dp) is the approximate diffusion time
across region d. Applying the current continuity equation to lumped charge node
2 yields

0 =
dq2

dt
+

q2

τ
− q0 − q2

2T12

. (1.9)

Finally, the excess charge q0 can be determined by multiplying the p+-i junction
equation times qAd

q0 =
Isτ

2

[
exp

(
v

2VT
− 1
)]

. (1.10)

where Is = qA2dpi0/τ and VT is the thermal voltage. The thermal voltage depends
on absolute temperature T, the magnitude of the electrical elementary charge q and
the Boltzmann constant k as

VT =
kT
q

. (1.11)

Renaming qM = 2q2, TM = 2T12 and qE = 2q0, the model equations become:

i(t) =
qE − qM

TM
(1.12a)

0 =
dqM

dt
+

qM

τ
− qE − qM

TM
(1.12b)

qE = Is · τ ·
[

exp
(

v
n ·VT

− 1
)]

(1.12c)

In (1.12c) the emission coefficient n replaces the factor 2 in (1.10) to generalize
the equation and make it similar to the Simulation Program with Integrated Circuit
Emphasis (SPICE) equation [1]. For a complete diode model, the equations for the
junction capacitance, temperature dependence of Is and parasitic series resistance
can be added. Junction capacitance and temperature dependence of Is are modeled
with the standard SPICE equations [1], while the series resistance Rs is modeled
with (1.5).

The list of the model parameters is reported in Table 1. Section 1.6 describes
parameter extraction and refinement using a formal optimization procedure.

1.5.2.2 Ma model, 1997

This diode model improves Lauritzen [68] model. It makes the following assump-
tions:

• during forward condition, the drift current is determined by the lowest car-
rier concentration in the region, and the higher concentration carrier can be
ignored;

• during reverse recovery, drift current is negligible;

• average carrier lifetime is used in the base region.

1.5 the lumped-charge modeling approach 27

symbol description unit

Cj0 Zero bias junction capacitance F

Fc Forward bias depletion capacitance coefficient

Is Saturation current A

m Grading coefficient

n Forward emission coefficient

Rs Series resistance Ω

Tnom Parameter measurement temperature ◦C

TM Diffusion transit time s

τ Minority carrier lifetime s

vj Built-in potential V

XTI Saturation current temperature exponent

Table 1: Lauritzen model, 1991. Parameter list.

d

P+
3

2

1

p2, n2 N−

p3, n3
N+

4

5

p4, n4

v23v12 v45v34

Figure 18: Location of charge nodes in the P+N−N+ diode structure. Electron and hole
carrier concentration variables at each node and voltage drop along the device
are also shown.

Its main features are:

• it accounts for DC and switching characteristics in low and high level injec-
tion conditions (with and without emitter recombination);

• the voltage dependent reverse recovery is included;

• no self-heating effect is included;

• for the previous reasons the model applies to p-ν-n diode at all conditions
where self-heating is not significant, and the spatial variation of the carrier
lifetime in the base region is not excessive.

A typical one-dimensional forward-biased on-state charge carrier distribution in
a P+N−N+ is shown in Figure 13a.

Since the lightly doped N− region stores the excess carriers, which determine
the switching characteristics of the device, three nodes, indicated by 2, 3, and 4

in Figure 18, are chosen. Nodes 2 and 4 are connection nodes, and node 3 is a

28 modeling of power semiconductor devices

Current density equations
Current continuity equations

P+ 1 2

i

ip23 ip34

N−
N+

Boltzmann equations

4 53

J1 J2

Figure 19: Locations of the lumped-charge nodes and device equations in a 1-D P+N−N+

diode structure.

charge-storage node. Carriers in the heavily doped end regions do not penetrate
deeply beyond the vicinity of the junctions. Hence, single-charge nodes 1 and 5 are
sufficient. They serve as both connection and charge-storage nodes. At this point,
the physical picture of the charge distribution in Figure 18 can be abstracted in the
standard lumped-charge nodal representation depicted in Figure 19.

The process for converting the six groups of the fundamental semiconductor and
circuit equations into the lumped-charge equations using the nodal assignment is
outlined next.

current density equations The one dimensional current density equation
for holes is given by the following drift-diffusion relation [89]

jp = qpµpE− qDp
dp
dx

(1.13)

Then, due to the discrete nature of the lumped charge models, we must ex-
press the current as a function of the carrier concentration at each node

Jp23 = q
p2 + p3

2
µp

v23

d23

− qDp
p2 − p3

d23

(1.14)

where the first term on the right hand side is the linearized drift component
(in which the averaged carrier density has been used), the second term is the
linearized diffusion one, and d23 is the distance between node 2 and 3. For
simplicity the following approximation is used

p2 + p3

2
→ p3. (1.15)

There can be several orders of magnitude difference between carrier concen-
trations at adjacent nodes. The term where this approximation is made is
the drift term of the transport equation. The drift current is determined by
the lowest carrier concentration in the region, and the higher concentrations
are not so important. Thus, the approximation (1.15) is reasonable for for-
ward conduction. In reverse recovery, the drift current is usually negligible.

1.5 the lumped-charge modeling approach 29

Typically, the accuracy loss by these approximations can be compensated by
parameter extraction [75].

Multiplying and dividing the previous equation by the N− region width d
we obtain

Jp23 = d · qp3
Dp

VT

v23

d · d23

+ d · qDp
p2 − p3

d · d23

(1.16)

where the thermal voltage VT = Dp/µp. A new parameter Tp23 is defined as
the approximate hole diffusion transit time

Tp23 =
d23 · d

Dp
(1.17)

The hole current equation in lumped-charge form can now be derived as

ip23 = A · Jp23 =
qp3

Tp23

v23

VT
+

qp2 − qp3

Tp23

(1.18)

where A is the device active area and qpi = qdApi. An analogous derivation
can be made for ip34, in23 and in34:

ip34 =
qp3 − qp4

Tp34

+
qp3

Tp34

v34

VT
(1.19)

in23 =
qn3 − qn2

Tn23

+
qn3

Tn23

v23

VT
(1.20)

in34 =
qn4 − qn3

Tn34

+
qn3

Tn34

v34

VT
(1.21)

(1.22)

In order to simplify the model, and consequently the parameter extraction
procedure, the charge node 3 can be assumed to be in the center of the drift
region. In this way Tp23 and Tp34 become equal and, considering the parame-
ter b = µn/µp, Tn23 = Tn34 = Tp23/b.

continuity equations The continuity equations for holes is [89]

∂ p
∂t

= (Gp − Rp)−
1
q
∇ · Jp (1.23)

where (Gp − Rp) is the net hole generation/recombination rate. Since the
total charge in the N− region can be approximated by qp3, the discretized
form of the continuity equation becomes

ip23 − ip34 =
qp3 −QBp

τ3
+

dqp3

dt
(1.24)

The first term on the right-hand side represents charge-carrier recombination
(with QBp = qAdpn0 being the thermal equilibrium hole charge in the N−

30 modeling of power semiconductor devices

base region) and the second term charge variation with time. An averaged
carrier lifetime τ3 is used. The electron continuity equation for the N− base
region is similar.

Current continuity equations are not written for connections nodes 2 and
4, since the whole base charge is modeled with qp3. However, to include the
effect of end region recombination, the continuity equation can be written for
node 1 and 5 in Figure 19 [72]. End region recombination becomes important
at high current levels, since it tends to lower the injection of carriers into the
drift region, resulting in higher voltage drop across it. Neglecting the charge-
storage effects in the end region, due to the high doping level, and treating
the injection of minority carriers as a low level one:

in23 =
1
τ1

[
qn2 exp

(
v12 − φ12

VT

)
−QPn

]
(1.25)

ip34 =
1
τ5

[
qp4 exp

(
v45 − φ45

VT

)
−QNp

]
(1.26)

where

• parameters τ1 and τ5 are equal to the products of minority carrier life-
times in the end regions times the diffusion volume of the end regions
divided by the base region volume;

• QPn and QNp are the electron and hole background doping charges in
the P+ and N+ regions, respectively;

• φ12 and φ45 are the junction built-in potentials.

charge neutrality equations Outside the junction depletion region, elec-
tron and hole charges are related by the charge neutrality equations. Given
the small dielectric relaxation time (≈ 1 ps), the electron charges in the quasi-
neutral region are assumed to be instantaneously equal to the injected excess
hole charges plus the ionized background doping charge QB:

qn2 = qp2 + QB (1.27a)

qn3 = qp3 + QB (1.27b)

qn4 = qp4 + QB (1.27c)

p-n junction equations The hole concentration in the drift region is regu-
lated by the P-N junction equation, which relates the hole concentrations on
each side of the junction and the voltage drop across it

p2 = pn0 exp
(

v12

VT

)
(1.28)

pn0 being the equilibrium hole concentration in the drift region. Multiplying
by the region volume gives the charge at node 2 and, following a similar
approach, also the charge at node 4 in Figure 19 is determined:

1.5 the lumped-charge modeling approach 31

Junction depletion region

xn

P+

1

v12

2
N−

3

4 N+
5

0

Figure 20: Charge distribution in the P+N− region during a reverse-recovery transient (the
scale is relative).

qp2 = QBp exp
(

v12

VT

)
(1.29)

qn4 = QB exp
(

v45

VT

)
(1.30)

poisson equation The Poisson equation is used to describe the effects of varia-
tion of junction-depletion width under reverse bias voltage [89]

− d2v
dx2 =

ρ(x)
εSi

(1.31)

Here, εSi is the silicon dielectric constant and ρ(x) the charge density. As a
reverse bias is incremented, the depletion region expands into the drift region
and squeezes the charges into a smaller volume as shown in Figure 20.

The positive charges inside the depleted region are immobile ionized donors
(nn0) and holes (pi) injected from the P+ region, which here we assume to
travel at the saturation velocity vsat

|ip23| = qApivsat. (1.32)

Integrating (1.31) twice over the depleted region and rearranging terms gives

xn =

 2εSi(φ12 − v12)

q
(

nn0 +
|ip23|

qAvsat

)

1/2

(1.33)

where xn is the depletion boundary (see Figure 20). According to the above
equation, since the depletion width changes with the applied voltage, the
transit time Tp23, defined in (1.17), also become variable and dependent on
(d− xn):

32 modeling of power semiconductor devices

l =

 φ12 − v12

φB

(
1 + |ip23|

IB

)

1/2

(1.34)

Tp23 = Tp0(1− l)2 (1.35)

where:

φB =
qnn0d2

2εSi
(1.36)

IB = qAnn0vsat. (1.37)

kcl and kvl Kirchoff current laws (KCL) and Kirchoff voltage laws (KVL) are
annexed to the model in order to link the device internal behavior with the
external terminal quantities. Referring to Figure 18 and Figure 19:

v = v12 + v23 + v34 + v45 (1.38)

i = in23 + ip23 (1.39)

i = in34 + ip34 (1.40)

The complete set of diode model equations ready for implementation follows:

ip23 =
qp2 − qp3

bTn
+

qp3

bTn

v23

VT
(1.41)

in23 =
qp3 − qp2

Tn
+

QB + qp3

Tn

v23

VT
(1.42)

ip34 =
qp3 − qp4

bTn
+

qp3

bTn

v34

VT
(1.43)

in34 =
qp4 − qp3

Tn
+

QB + qp3

Tn

v34

VT
(1.44)

in23 =
1
τ1

[
(qp2 + QB) exp

(v12 − φ12

VT

)
−QPn

]
(1.45)

ip23 − ip34 =
qp3 −QBp

τ3
+

dqp3

dt
(1.46)

ip34 =
1
τ5

[
qp4 exp

(v45 − φ45

VT

)
−QNp

]
(1.47)

qp2 = QBp exp
(v12

VT

)
(1.48)

qp4 = QB

[
exp

(v45

VT

)
− 1
]

(1.49)

l =

 φ12 − v12

φB

(
1 + |ip23|

IB

)

1/2

(1.50)

Tn = Tn0(1− l)2 (1.51)

v = v12 + v23 + v34 + v45 (1.52)

i = in23 + ip23 (1.53)

i = in34 + ip34 (1.54)

1.5 the lumped-charge modeling approach 33

Neutrality equations (1.27) have been used to eliminate the electron charges in
the above model equations.

• Equations (1.41)-(1.44) are electron and hole current equations between nodes
2 and 3 and nodes 3 and 4. Tn is the electron transit time and equal to Tp23/b.

• Equation (1.45) combines the p-n junction equation at J1 and the simplified
continuity equations for node 1, where charge-storage effects are neglected
due to the short carrier lifetime observed in the heavily doped P+ end region.
Equation (1.47) is similar to (1.45), but for J2 and node 5 in the N+ end region.

• Equation (1.46) is identical to (1.24).

• Equations (1.48) and (1.49) are the P-N junction equations, identical to (1.29)
and (1.30).

• Equations (1.50) and (1.51) account for the J1 junction-depletion width varia-
tion effects.

• Equations (1.52)–(1.54) apply KVL and KCL to the model.

• The diffusion capacitance is embedded in the charge transport equations,
namely, current (1.41)-(1.44) and continuity (1.45)-(1.47). The depletion ca-
pacitance is embedded in the Poisson equations (1.34)-(1.51).

For a complete diode model, the equations for the junction capacitance and
parasitic series resistance can be added. Junction capacitance can be modeled with
the standard SPICE equations [1], while for series resistance Rs equation (1.5) can
be used.

Under most circumstances, the model equations can be solved directly for the
dc current-voltage (I-V) characteristic as well as for the turn-on and turn-off tran-
sients. These solutions can be used to extract model parameters.

Some of the model parameters are shown in Table 2. Section 1.6 describes pa-
rameter extraction and refinement using a formal optimization procedure.

1.5.2.3 Extended Lauritzen model, 2011

Extended Lauritzen [5, 82] model extends Ma [75] model for high voltage power
diodes by taking into account impact ionization.

Impact ionization occurs if the electric field in a junction is high enough, such
that a noticeable number of electrons or holes in the statistical distribution gain suf-
ficient kinetic energy that they can lift a valence electron by impact into the conduc-
tion band. Each ionizing carrier generates a pair of a free electron and hole, which
again can generate further electron-hole pairs, thus giving rise to an avalanche
event. Impact and avalanche generation are therefore used as synonymous expres-
sions. Impact ionization is represented by impact ionization rates αn, αp defined as
the number of electron-hole pairs generated per electron or hole per length of the
path which the assembly travels with drift velocity vn or vp, respectively. The num-
ber of electron-hole pairs generated per unit of time, i.e. the avalanche generation
rate Gav, is then given by

34 modeling of power semiconductor devices

symbol description unit

Cj0 Zero bias junction capacitance F

Fc Forward bias depletion capacitance coefficient

m Grading coefficient

Rs Series resistance Ω

Tnom Parameter measurement temperature ◦C

vj Built-in potential V

α Hole mobility coefficient

TRs Temperature dependent coefficient of series resistance K−1

TEr Temperature dependent coefficient of Er K−1

Tτ3 Temperature dependent coefficient of τ3

Tn0 Electron transit time s

τ3 Averaged carrier lifetime s

QB Thermal equilibrium electron charge in the N− region C

QBp Thermal equilibrium hole charge in the N− region C

Er Symmetric end-region recombination parameter s C

NN Low level ideality parameter

NE Medium-high level ideality parameter

φB, IB Voltage-dependent reverse-recovery parameters V, A

b Mobility ratio of electrons and holes

Table 2: Ma model, 1997. Parameter list.

1.5 the lumped-charge modeling approach 35

Gav = αn · n · vn + αp · p · vp =
1
q
(αn jn + αp jp) (1.55)

On the right-hand side, the densities of the field currents are replaced by the
total current densities, the diffusion currents are neglected because of the high
fields. The avalanche generation rate appears in carrier continuity equations.

Much experimental and theoretical work has been carried out to determine the
ionization rates and their field dependency, which is very strong. Experimental
ionization rates were found by Chynoweth [10] to follow the relationship

αn,p = an,p exp(−bn,p/E(x)) (1.56)

where E is the electric field component in the direction of current flow. The
parameters an, ap and bn, bp are constants that depend upon the semiconductor
material and the temperature. The experimental determination is done usually by
measuring carrier multiplication factors Mn and Mp, consisting of double integrals
over the ionization rates [71], which then have to be extracted.

With the avalanche generation rate (1.55) the continuity equations [71] for elec-
trons and holes in the stationary one-dimensional case take the form:

−d jp
dx

= αp jp + αn jn + qG (1.57a)

d jn
dx

= αp jp + αn jn + qG (1.57b)

(1.57c)

where G is the thermal generation rate and αp, αn are as before the field de-
pendent impact ionization rates. Equations (1.57) agree with the convention used
in Figure 21.

The total current density

j = jp + jn (1.58)

is independent of x under stationary conditions.
For a qualitative understanding we assume at first that the ionization rates are

equal, αp = αn = α, as is found e.g. in GaAs. Then equations (1.57) with (1.58)
simplify to

− d jp
dx

= αj + qG =
d jn
dx

(1.59)

Integrating over the depleted region gives

jp(0)− jp(xn) = j− jns − jps =
∫ xn

0
α dx + qxnG (1.60)

since jp(0) = j − jns and jp(xn) = jps where jns, jps are the minority carrier
saturation current densities entering the depletion layer from the neutral regions.
The current density j follows as

36 modeling of power semiconductor devices

NA, ND

p, n
−E

0 xn d x

n+p+

n−

E0

p(x) ≈ n(x)

j = jn + jp

j = jp

−E(x)

electrons

holes

Figure 21: Diode during the turn off process.

j =
jns + jps + jsc

1−
∫ xn

0 α dx
(1.61)

where jsc = qxnG. As shown by this equation, the effect of avalanche can be
expressed by a multiplication factor

M =
1

1−
∫ xn

0 α dx
(1.62)

which enhances the three components of the thermal current density.
If αn 6= αp as in the case of Si and most other semiconductors, the calculation is

much more complicated. In [71] it is shown that the avalanche multiplication can
be expressed generally by double integrals over the ionization rates. As expected,
the three components of the thermal blocking current (numerator of (1.61)) are
enhanced for αn 6= αp each by a different multiplication factor and hence the
leakage current density is generally given by

j = Mn jns + Msc jsc + Mp jps (1.63)

Under reverse bias condition, when the applied reverse voltage reaches the
break down voltage impact ionization causes the reverse current to increase very
abruptly. In this way the blocking ability is lost.

Avalanche generation can also take place during fast switching, since free carri-
ers, which have conducted the forward current before, are still present in the device
and enhance the electric field. This stored charge is partially removed during the
voltage increase, and it flows as hole current through the space charge region.

Figure 21 illustrates the process in a simplified way. Between the p-n junction at
the position x = 0 and xn the space charge region has extended, for supporting the
applied voltage. Between xn and the end of the lowly doped region exists a plasma
zone, in which n(x) ≈ p(x) holds. The effects at the right side shall be neglected
in this first approximation.

Through the space charge the current flows as hole current, j = jp. The density
of holes p can be calculated from the current density at this instant

1.5 the lumped-charge modeling approach 37

p =
j

qvsat(p)
(1.64)

In this equation vsat(p) is the saturation drift velocity of holes under the condition
of high fields. It amounts in silicon to approximately 1.0× 107 cm s−1 and is close
to the saturation drift velocity of electrons vsat(n). A current density j of 100 A cm−2

leads to p = 8.2× 1013 cm−3, which is already in the order of the background
doping of the drift region of a power diode. The hole density p can no longer be
neglected.

Holes have the same polarity as the positively charged ionized donors, hence
their density now adds to the background doping nn0 to an effective doping Neff

Neff = nn0 + p (1.65)

With the Poisson equation, Neff determines the gradient of the electric field

dE
dx

=
q

εSi
(nn0 + p) (1.66)

so that dE/ dx is increased. With this, the field shape is steeper, E0 is increased
and the voltage, which drops across the space charge of width xn, is increased
in the first instance. However, E0 can rise only up to the avalanche field strength
Ec. Ec will now be reached at an applied voltage far below the specified rated
blocking voltage of the device and avalanche will set in. This process, which is now
dominated by free carriers, is called dynamic avalanche. It leads to the characteristic
slight bend in the voltage waveform and to the characteristic rounded current
pulse. Refer to [71] for more information about dynamic avalanche in fast diodes.

Most diode compact model do not account for impact ionization and therefore
are characterized by very “angular” current waveforms with noticeable disconti-
nuities in di

dt after the maximum reverse current IRM. These effects can be seen by
comparing Figure 15 and Figure 16. Inclusion of impact ionization significantly
improves the precision of the reverse recovery current and voltage transients that
can be a source of concerns for EMI/EMC simulations.

Extended Lauritzen model follows these steps to extend Ma model and then
include dynamic avalanche:

• the Chynoweth law (1.56) is used to calculate avalanche ionization rates;

• in (1.56) the coefficients a and b are considered equal for holes and electrons;

• only the dominant of the holes moving through the space charge region is
taken into account.

• the field E(x) during reverse recovery through the N− layer is calculated
through

E(x) =
qnn0x

εSi
(1.67)

38 modeling of power semiconductor devices

This leads to a simplified expression for the impact ionization current

iii = ip23apxn exp(−bp/E(xn)) (1.68)

where ip23 has the same meaning as in Ma model.
This simplified expression can result in excessively large impact ionization at

very large electric field E. A simple way to control this undesirable behavior with-
out degrading the speed and convergence of the model is introducing a field de-
pendent lifetime τ3(E) at very high electric fields through the following expression

τ3(E) =
τH − τL

2

tanh
(

k
(

E
Eth
− 1
))

tanh k
+

τH + τL

2
(1.69)

where τ3 takes values from τL to τH. The speed of change between the two is
defined by the parameter k and Eth is a threshold value of E. For a complete diode
model, the equations for the junction capacitance and parasitic series resistance
can be added. Junction capacitance can be modeled with the standard SPICE equa-
tions [1], while for series resistance Rs equation (1.5) can be used.

Some of the model parameters are listed in Table 3. It is the same set of Ma
model except for:

• τL and τH, which replace τ3;

• Eth, a threshold value of electric field;

• ap and bp, which model impact ionization.

Model parameter can be estimated from datasheets or from a single turn-off
measurement.

Usually this procedure lacks in accuracy, i.e. it may fail to achieve very precise
fitting of the voltage and current waveforms in reverse recovery, no matter which
model we use. Therefore some refinement of the parameters must take place in
order to improve the accuracy of simulations. Employing conventional optimiza-
tion techniques to improve the model fitting is not trivial. This is particularly true
when using Ma model or Extended Lauritzen model, since model equations are
strongly coupled and very small changes in the parameters lead to very different
results.

The next section describes parameter extraction and refinement using a formal
optimization procedure.

1.6 parameter extraction

In current work, the lumped-charge modeling approach has been followed, since
it provides a good trade off between accuracy and simulation speed.

Moreover, model parameters may be fast extracted from datasheet and from
measurements, as documented in [69] or [75], for example. This procedure lacks
in accuracy. The initial estimated parameters cannot usually yield good fitting
waveforms, so they must be refined.

The parameter extraction process can be summarized in the following list and
in Figure 22:

1.6 parameter extraction 39

symbol description unit

Cj0 Zero bias junction capacitance F

Fc Forward bias depletion capacitance coefficient

m Grading coefficient

Rs Series resistance Ω

Tnom Parameter measurement temperature ◦C

vj Built-in potential V

α Hole mobility coefficient

TRs Temperature dependent coefficient of series resistance K−1

TEr Temperature dependent coefficient of Er K−1

Tτ3 Temperature dependent coefficient of τ3

Tn0 Electron transit time s

τL Carrier lifetime at low electric field values s

τH Carrier lifetime at high electric field values s

QB Thermal equilibrium electron charge in the N− region C

QBp Thermal equilibrium hole charge in the N− region C

NN Low level ideality parameter

NE Medium-high level ideality parameter

Er Symmetric end-region recombination parameter s C

φB, IB Voltage-dependent reverse-recovery parameters V, A

b Mobility ratio of electrons and holes

Eth Threshold value of electric field V m−1

ap, bp Impact ionization parameters m−1, V m−1

Table 3: Extended Lauritzen model, 2011. Parameter list.

40 modeling of power semiconductor devices

Waveform

comparison

Simulation

Measurement of

device under test

Parameter

initialization

Model parameter sensitivity and

parameter ranges definition

Parameter

refinement

Optimization

Figure 22: Diagram showing the procedure of parameter extraction.

1. Initial estimate of parameters made from device datasheets and basic mea-
surements. Typically, for diode, measurements comprise steady-state junc-
tion capacitance vs reverse junction voltage characteristics, dc i-v characteris-
tics and turn-off waveforms.

2. Study of the influence of model parameters on device characteristics. Usually
some model parameters have a greater influence on some characteristics than
on others. Concerning parameter ranges, they are not given sometimes, than
we have to define them.

3. Simulation of circuit behavior using parameters estimated.

4. Comparison of simulated and measured characteristics to produce an error
value.

5. Variation of the parameter values to minimize the error value.

Step 5 is the optimization procedure. Once the error value has been determined,
the parameters are varied, and the simulation in step 3 re-executed to produce
a characteristic valid for that set of parameters. This is again compared to mea-
sured characteristic in step 4, and the optimization continues accordingly. Once
termination criteria are satisfied, the optimization procedure stops. If this process
were manually carried out, it would be laborious, time consuming and it would
require extensive engineering expertise to arrive at meaningful parameter sets. An
automated parameter extraction procedure is essential.

Let us now describe the parameter extraction method more in detail.

1.6.1 Step 1: initial parameter estimation

Some methodologies that can be followed to find initial estimates of diode model
parameters are:

• Manual tuning based on the empirical value range.

• Extrapolation using manufacturer’s datasheets or measurements if they are
available. In this case, we may still need to correct parameter values manually,

1.6 parameter extraction 41

since the equations used for extrapolation can return rough, or even not-
physical, results. It is therefore fundamental to have a clear understanding
of the physical meaning of model parameters in order to understand if they
need to be corrected.

To make the initial extraction procedure practical, the two methods have been
employed jointly.

Parameter sets of Lauritzen, Ma and Extended Lauritzen models are given in Ta-
ble 1, Table 2 and Table 3, respectively. Refer to Figure 15 for the definition of some
turn-off parameters of a diode.

The following steps describe the parameter estimation, as we implemented it.

1. Grading coefficient m. As a starting guess, we set m to its value for an abrupt
p-n junction, m = 0.5 [1].

2. Diode junction capacitance at zero bias Cj0. We set Cj0 = Cd(0), where Cd(0) is
the junction capacitance at zero bias. If Cd(0) is not available from measure-
ments, we can extrapolate or interpolate them to estimate it.

3. Built-in potential vj0. Typically, vj0 may range from 0.2 to 1 V [1]. We estimate
it by minimizing the sum of squared errors between the actual capacitance
data and the corresponding SPICE model [1]

Cd(v) =
Cd(0)(

1− v
vj0

)m . (1.70)

where v is the reverse bias and m is the grading coefficient.

4. Active die area A. This parameter is usually given in the diode datasheets. Oth-
erwise, since the maximum current density J is for most power diodes from
100 A cm−2 to 150 A cm−2 [8], the active die area A can be roughly estimated
from the average forward dc current in the datasheet using

A =
IF

J
(1.71)

5. Minority carrier lifetime (τ in Lauritzen model, τ3 in Ma model). Neglecting
the recombination effect in the reverse charge, equation (1.72) is used to make
an initial estimate τ0 for the high-level lifetime

τ3 ≈ τ0 =
Qrr

IF
. (1.72)

In the case that the reverse recovery charge Qrr in the datasheet is given for
a temperature other than room temperature, the parameter τ0 can be scaled
accordingly [104].

6. Value of carrier lifetime at low and high electric field τL and τH, respectively. Ac-
tual power diodes under inductive turn-off conditions at high rail voltages
show the phenomenon of dynamic avalanche. This effect leads to the charac-
teristic slight bend in the current waveform after the minimum current IRM.

42 modeling of power semiconductor devices

time
IRM

0

cu
rr

e
n
t

tRM

90% IRM

i(t,t ′0 ,I
′
0 ,τL)

i(t,t ′′0 ,I
′′
0 ,τH)

Figure 23: Starting estimation of parameters τL and τH.

Parameter τL is therefore estimated by minimization of the sum of squared
residuals between the actual current data and the following model

i(t) = I0 exp
(
− t− t0

τL

)
(1.73)

being I0 = 90% of the reverse current peak on the rising flank and t0 the in-
stant when it occurs. Time t varies from t0 to the instant where the waveform
seems to start bending (see Figure 23). Parameter τH is estimated in a similar
way. In this case I0 is the value of the reverse current when it stops bending
and t0 is the corresponding instant. Time t varies from t0 to the end of the
switching waveform, generally. If the waveform exhibits a step decrease on
the rising flank, the exponential model (1.73) (with τH instead of τL and with
proper values of t0, I0) is fitted up to the step (see Figure 23).

7. Reverse recovery time constant τrr. After the peak of the reverse recovery current
IRM, the current decreases to zero approximately in an exponential way, with
a time constant τrr, under inductive turn-off conditions. The parameter τrr can
be approximately considered as a constant only when the diode is turned off
at low reverse voltage, for instance, 10% of its breakdown voltage [75]. When
this approximation cannot be made (see Figure 15), it is difficult to define τrr.

In [68], it is shown that the following relationship holds

IRM = a(τ3 − τrr)

[
1− exp

(
− tRM

τ3

)]
(1.74)

All parameters can be determined from an experimental waveform:

• current fall slope a;

• peak reverse current IRM and time tRM at which it occurs.

1.6 parameter extraction 43

When the parameter τrr cannot be easily defined from reverse recovery char-
acteristic, we estimated it with (1.74).

8. Electron transit time Tn0. In [75], it is shown that

1
τrr

=
n

bTn
+

1
τ3

(1.75)

where

• n is the forward emission coefficient of Lauritzen model. It is also called
“ideality factor”. We set it to its high level value n = 2 [75].

• b is the mobility ratio. We set it to its silicon value b = 3 [75].

Parameters Tn and Tn0 are equal under the same assumption for considering
τrr as a constant [75]. We estimated Tn0 with equation (1.75) even when the
latter assumption was not fulfilled.

9. Transit time of Lauritzen model TM. This parameter can be estimated from equa-
tion (1.75) assuming that n

b = 1.

10. Saturation current Is. This parameter is usually given in datasheets. In the
case it is given for a temperature other than the temperature used for circuit
simulation, it can be scaled using its temperature dependence in the SPICE

model [1]

Is(T2) = Is(T1)
(T2

T1

)XTI/n
exp

[
−qEg(300)

kT2

(
1− T2

T1

)]
where

• T1 is the temperature in the datasheet at which Is has been measured;

• T2 is the temperature used for circuit simulation;

• XTI is the saturation current temperature exponent (XTI = 3 for a pn-
junction [1]);

• n is the forward emission coefficient;

• Eg(300) is the energy gap at 300 K.

Saturation current in a power diode is extremely sensitive to temperature
variation.

11. Series resistance Rs. A starting guess of Rs can be computed by minimizing
the deviation of the actual diode voltage data from the ideal exponential
characteristic given by equation (1.5).

12. Diode base width d. If it has not been measured, it can be approximated with
equation (1.76) [75]

d =
√

2Tn0Dn (1.76)

where Dn = µnVT is the electron diffusion constant. Temperature dependence
of the electron mobility µn should be taken into account [104].

44 modeling of power semiconductor devices

13. Thermal equilibrium electron charge in the base QB and medium-high level ideality
factor NE. These two parameters set the current in the medium to high level
injection region [92]. If this data is available, QB and NE can be manually
tuned until a fairly enough match is obtained. If this data is not available, we
can estimate QB in the following way [75]:

a) Estimate the diode base volume VolB: VolB = A · d.

b) Estimate the electron charge QB: QB = qnn0VolB, being nn0 the base
background doping. Parameter nn0 is assumed to be 1014 cm−3.

The parameter NE may be set to the high level injection value of the forward
emission coefficient n, i.e., NE = 2 [75]. In our experience, this is a very
rough estimate.

14. Thermal equilibrium hole charge in the base QBp and low level ideality factor NN.
These two parameters set the current and conductance in the low level in-
jection region [92]. They can be manually tuned until a good fit of low level
injection data is obtained. Otherwise, an estimate QBp can be devised from
equations given in [75]:

a) Estimate the diode base volume VolB.

b) Estimate the electron charge QB.

c) Estimate the hole charge QBp: QBp = (VolBqni)
2/QB, where ni is the

intrinsic carrier concentration at the given temperature [71].

The parameter NN may be set to the low level injection value of the forward
emission coefficient n, i.e., NN = 1 [75], in order to have a rough starting
guess.

15. Symmetric end-region recombination parameter Er. It is quite hard to find an
initial estimate of this parameter. In [75] Er is defined as

Er = τEQE

where τE = τ1 = τ5 and the end-region charge QE is given by

QE = QB exp
(φ45

VT

)
= QBp exp

(φ12

VT

)
We assumed τ1 = τ5 ≈ τ3 and took φ12, φ45 ∈ [0.2, 1], φ12 > φ45 since φ12, φ45

are related to the built-in potential vj. We want to stress that this procedure
only helps to understand the order of magnitude of Er.

16. Voltage-dependent reverse recovery parameters IB, RB = φB/IB. Approximate val-
ues for IB and RB are computed from (1.36) and (1.37). The hole satura-
tion velocity vsat which appears in (1.37) is given by vsat = 1.62× 108/T0.52

cm s−2 [71].

17. Impact ionization rates ap, bp. Initial guesses for these two parameters can be
computed from the following relations

ap = a · εSi

qnn0d
, bp = b · d

1.6 parameter extraction 45

Proper values of ionization rates a and b can be found in [80]. Manual adjust-
ment of these parameters may be needed.

18. Threshold electric field Eth. It is the threshold field at which impact ionization
takes place. See [80] for an example of how this parameter may be initially
extracted.

1.6.2 Step 2: model parameter sensitivity and parameter ranges definition

In general, the equations of the model of an electronic device are coupled and
small changes in each parameter lead to different results in each output charac-
teristic. However, some parameters may have a stronger influence on the shape
of some characteristics than others. Identifying these relations helps to divide the
overall problem of parameter extraction into smaller and hence simpler problems
where one or more characteristics are fitted by using only a subset of the model
parameters at a time. We followed two methodologies to carry out this study:

• DC and transient analysis of the model equations. Usually, every scientist in-
troducing a new model for a device derives static and transient characteristics
from the model equations. Looking at the analytic expression of characteris-
tics provides a first hint for understanding the influence of model parameters.

• Model parameter sensitivity. Starting from an estimation of the model pa-
rameters, circuit simulations are executed repeatedly for several values of
one parameter at a time. Output characteristics are then plotted to see how
strong the influence of a parameter on each characteristic is.

In Figure 24–26 it is shown how the grading coefficient m, the zero bias junc-
tion capacitance Cj0 and the built-in potential vj0 influence the capacitance, DC
and reverse recovery characteristics of a power diode. We can see that these three
parameters determine the shape of the capacitance characteristic much more than
that of the other characteristics. If we would plot similar figures for the other pa-
rameters, we could see that they do not influence the capacitance characteristic
very much. We could therefore infer that the junction capacitance depends only
on m, Cj0 and vj0. Actually, the same conclusion can be drawn by looking at the
SPICE model for the junction capacitance (1.70). The junction capacitance Cd could
then be fitted independently from DC and reverse recovery characteristics, i.e., we
could extract m, Cj0 and vj0 from reverse bias Cd and then keep them constant when
fitting the other characteristics.

From the discussion on the junction capacitance, it should be clear that sensi-
tivity analysis is useful to understand the parameter extraction problem better.
However, its results have to be interpreted cautiously. Some of the reasons are
explained below:

• Results may depend on the starting point used for the analysis. In this case,
if the initial parameter set is a particularly bad estimate, there is the risk to
make misleading conclusions about how a characteristic is influenced by a
parameter. Usually, this does not happen when considering capacitance. In
our experience, it always appear to depend only on m, Cj0 and vj0 and to be
decoupled from DC and transient characteristics.

46 modeling of power semiconductor devices

0 5 10 15 20 25 30 35
Reverse voltage [V]

0.0

0.5

1.0

1.5

2.0

2.5

C
 [

n
F]

Capacitance at 125 °C
data to be fitted

Parameter m
0.3

0.4

0.5

0.554975

0.6

0.7

0.75

0.8

(a) Junction capacitance vs reverse bias voltage

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V [V]

0

50

100

150

200

250

I
[A

]

I-V characteristic at 125 °C
data to be fitted

Parameter m
0.3

0.4

0.5

0.554975

0.6

0.7

0.75

0.8

(b) DC current vs voltage

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V [V]

100

101

102

103

I
[A

]

I-V characteristic at 125 °C
data to be fitted

Parameter m
0.3

0.4

0.5

0.554975

0.6

0.7

0.75

0.8

(c) DC log of current vs voltage

0 2 4 6 8 10 12
t [µs]

100

50

0

50

100

150

I
[A

]

Reverse recovery current at 125 °C
data to be fitted

Parameter m
0.3

0.4

0.5

0.554975

0.6

0.7

0.75

0.8

(d) Reverse recovery current vs time

0 2 4 6 8 10 12
t [µs]

100

101

102

103

104

V
 [

V
]

Reverse recovery voltage at 125 °C
data to be fitted

Parameter m
0.3

0.4

0.5

0.554975

0.6

0.7

0.75

0.8

(e) Log of the absolute value of reverse recovery
voltage vs time

Figure 24: Sensitivity study for parameter m of Extended Lauritzen model.

1.6 parameter extraction 47

0 5 10 15 20 25 30 35
Reverse voltage [V]

0

1

2

3

4

5

6

7

C
 [

n
F]

Capacitance at 125 °C
data to be fitted

Parameter cj0
1e-09

2e-09

2.40386e-09

4e-09

5e-09

6e-09

7e-09

(a) Junction capacitance vs reverse bias voltage

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V [V]

0

50

100

150

200

250

I
[A

]

I-V characteristic at 125 °C
data to be fitted

Parameter cj0
1e-09

2e-09

2.40386e-09

4e-09

5e-09

6e-09

7e-09

(b) DC current vs voltage

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V [V]

100

101

102

103

I
[A

]

I-V characteristic at 125 °C
data to be fitted

Parameter cj0
1e-09

2e-09

2.40386e-09

4e-09

5e-09

6e-09

7e-09

(c) DC log of current vs voltage

0 2 4 6 8 10 12
t [µs]

100

50

0

50

100

150

I
[A

]

Reverse recovery current at 125 °C
data to be fitted

Parameter cj0
1e-09

2e-09

2.40386e-09

4e-09

5e-09

6e-09

7e-09

(d) Reverse recovery current vs time

0 2 4 6 8 10 12
t [µs]

10-1

100

101

102

103

104

V
 [

V
]

Reverse recovery voltage at 125 °C
data to be fitted

Parameter cj0
1e-09

2e-09

2.40386e-09

4e-09

5e-09

6e-09

7e-09

(e) Log of the absolute value of reverse recovery
voltage vs time

Figure 25: Sensitivity study for parameter Cj0 of Extended Lauritzen model.

48 modeling of power semiconductor devices

0 5 10 15 20 25 30 35
Reverse voltage [V]

0.0

0.5

1.0

1.5

2.0

2.5

C
 [

n
F]

Capacitance at 125 °C
data to be fitted

Parameter vj0
0.2

0.3

0.361608

0.5

0.6

0.7

0.8

0.9

(a) Junction capacitance vs reverse bias voltage

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V [V]

0

50

100

150

200

250

I
[A

]

I-V characteristic at 125 °C
data to be fitted

Parameter vj0
0.2

0.3

0.361608

0.5

0.6

0.7

0.8

0.9

(b) DC current vs voltage

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V [V]

100

101

102

103

I
[A

]

I-V characteristic at 125 °C
data to be fitted

Parameter vj0
0.2

0.3

0.361608

0.5

0.6

0.7

0.8

0.9

(c) DC log of current vs voltage

0 2 4 6 8 10 12
t [µs]

100

50

0

50

100

150

I
[A

]

Reverse recovery current at 125 °C
data to be fitted

Parameter vj0
0.2

0.3

0.361608

0.5

0.6

0.7

0.8

0.9

(d) Reverse recovery current vs time

0 2 4 6 8 10 12
t [µs]

100

101

102

103

104

V
 [

V
]

Reverse recovery voltage at 125 °C
data to be fitted

Parameter vj0
0.2

0.3

0.361608

0.5

0.6

0.7

0.8

0.9

(e) Log of the absolute value of reverse recovery
voltage vs time

Figure 26: Sensitivity study for parameter vj0 of Extended Lauritzen model.

1.6 parameter extraction 49

• Some parameters may influence several characteristics. For example, if we
consider Ma model, both Tn0 and τ3 have a strong effect on both the i − v
and the reverse recovery current characteristics. In these cases, sensitivity
analysis does not provide enough evidence to decide if a parameter should
be used to fit one characteristic and/or the others.

• More parameters than what it is expected seem to have an effect on a charac-
teristic. This happens when model equations are strongly coupled, for exam-
ple. Considering all the parameters selected by a sensitivity analysis in order
to fit a characteristic may be not a good idea. The larger the set of parameters
which are varied, the harder the exploration of the parameter space for the
optimizer used to fit measurements. This is due to the exponential increase
in volume associated with adding extra dimensions to a mathematical space.
This phenomenon is known as curse of dimensionality [102].

Moreover, a useless inclusion of some parameters can allow bad estimates
of some of them to be compensated by incorrect variations of other parame-
ters. A variation is said incorrect if the final parameter value does not have a
physical meaning.

Two possible approaches to help understanding the influence of model parame-
ters on output characteristics are: a deep understanding of the meaning of model
parameters and an analytical reading of the papers where device models are de-
scribed. Every good paper introducing a new model usually includes a section
describing parameter extraction for the model itself. Of course, what is stated in
such papers has to be adapted to the situation of the end-user.

It is worth pointing out that performing sensitivity analysis is essential when
fitting one characteristic at a time. We call this fitting strategy a single objective
approach. Sensitivity analysis becomes less important when a multi objective ap-
proach is adopted, which is a procedure which tries to fit several characteristics at
the same time. Both the single and the multi objective approaches will be described
later.

The last problem we consider in this section is the definition of model parameter
ranges. If empirical value ranges are not known, they have to be computed. We
performed this search as a succession of single objective optimizations, following
these steps:

1. initial estimation of model parameters;

2. selection of the most influential parameters for each characteristic, on the
basis of sensitivity analysis;

3. for each selected parameter, definition of a narrow range containing the initial
estimate;

4. variation of the selected parameters in order to minimize the error between
measured and simulated data;

5. parameter range expansion until a satisfactory solution is found by the opti-
mizer:

50 modeling of power semiconductor devices

6. repetition of this procedure for each characteristic.

Some observations are needed:

• The definition of a narrow range for a parameter depends on the parameter
itself. For example, the DC i-v characteristic is extremely sensitive to the
series resistance Rs. A good initial range for Rs would then be one decade
wide at most. Instead for another parameter whose value is known with a
bigger margin of error, like the electron charge in the base QB for example,
we could use an initial range two-decade wide.

• It is better to start with narrow rather than wide ranges. If wide ranges are
used an optimizer may return a not-physical combination of model parame-
ters more easily.

• The error minimization is carried out with the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), which is an evolutionary algorithm for difficult
non-linear non-convex optimization problems in continuous domain. This al-
gorithm will be described in Section 3.2. Being CMA a stochastic optimizer, if
it is applied several times to the same problem, each time a different solution
may be returned. Therefore, it could be useful to run CMA several times for
the same initial parameter set.

• The CMA-ES turns out to be a particularly reliable and highly competitive
evolutionary algorithm for global optimization [45]. However, in order to
lower the probability to find just a local minimum, several initial parameter
sets should be used.

• When defining the termination criterion of CMA, tolerances should not be
too strict, otherwise it may happen that big parameter variations do not cor-
respond to a big error decrease. This can be detected by plotting parameter
and objective values vs the number of objective function evaluations.

• If a parameter returned by the optimizer is close to its lower or upper bound,
a better solution could be found by making that bound less strict. The sit-
uation can be complicated if several parameters are close to their lower or
upper bound. In this case, it is necessary to decide which bounds should
be relaxed, while taking into consideration the effect that the new solution
could have on the shape of other characteristics, and hence, on value ranges
of the corresponding most influential subset of model parameters.

• If a value range has to be widened, small bound relaxations should be tried
first. Moreover, if the solution corresponding to a bound relaxation is ex-
pected to be not physical, that bound should not be relaxed.

• Bound relaxation should be carried out until at least one of the following
conditions is fulfilled:

– the solution found by the optimizer yields a good match between mea-
surements and simulations and it is not close to parameter boundaries;

– a further bound relaxation would not produce a physical solution.

1.6 parameter extraction 51

From these observations, it follows that the process of computing parameter
ranges must be carefully monitored and it could be laborious and time consuming.

1.6.3 Step 3: device and circuit simulation

Any model formulated would require a circuit simulator as a vehicle for simulation.
Lumped charge models can be implemented in Verilog-A language. Verilog-A is
a language for defining analog models with a high level of abstraction. It is the
continuous-time subset of Verilog-AMS [12].

The method of adding a Verilog-A model varies from one simulator to another.
Our work has been carried out in SIMetrix Micron-VX [17] and ngspice [14].

The aim of this subsection is to explain some of the causes of simulation failure
we experienced when using SIMetrix and ngspice.

1.6.3.1 Simulation and convergence issues in SIMetrix Micron-VX

SIMetrix Micron-VX is a commercial analog circuit simulator aimed at integrated
circuit designers. It offers support for popular IC design transistor models and
real-time noise analysis allowing the study of noise in large signal systems such
as mixers, oscillators and switched capacitor circuits. Full documentation on using
SIMetrix simulator is available online [17].

SIMetrix uses a compiler to translate Verilog-A source into program code using
the “C” language. This in turn is compiled into a shared library which has exten-
sion .sxdev. This library is then loaded into the SIMetrix memory image, making
the new device ready for use. A SIMetrix Micron-VX license is required to load a
.sxdev file. This implies that:

• A VX license can only be used by one simulation at a time. So it is not pos-
sible to have two different simulations running on the same machine exactly
concurrently.

• After loading a .sxdev file, a VX license is released. So if we have to run
several simulations on a local machine and we are using a network license,
each time the license is released after a simulation, it can be caught by another
computer in the same network.

In both the cases, the program execution is stopped until a local, or a network,
license is available once again. This may happen several times because extracting
model parameters with an automated procedure requires thousands of simulations
to be run. The total execution time could significantly increase.

A simulation can also fail for other reasons. For example, in transient and DC
analyses, SIMetrix uses the Newton-Raphson method [79] to solve nonlinear equa-
tions arising from circuit description: it consists in linearizing the equation around
a suitable initial guess and solving for it. Then the method is iterated until an
appropriate solution is found, based on the tolerance and precision requirements.

The Newton-Raphson algorithm requires some conditions to converge to a solu-
tion [79]:

• the nonlinear equation must have a solution (an isolated one);

52 modeling of power semiconductor devices

• the equations must be continuous;

• the algorithm needs the equation’s derivatives;

• the initial approximation must be close enough to the solution.

The Newton-Raphson algorithm terminates when both of the following condi-
tions hold:

1. Node voltage differences between the last iteration k and the current one
(k + 1) satisfy∣∣∣v(k+1)

i − v(k)i

∣∣∣ ≤ RELTOL ·max
{∣∣∣v(k+1)

i

∣∣∣, ∣∣∣v(k)i

∣∣∣}+ VNTOL (1.77)

2. Differences between the value of the nonlinear function defining the current
computed for last voltage and the linear approximation of the same current
computed with the actual voltage satisfy∣∣∣î(k+1)

branch − i(k)branch

∣∣∣ ≤ RELTOL ·max
(

î(k+1)
branch, i(k)branch

)
+ ABSTOL (1.78)

where

• îbranch indicates the linear approximation of the current;

• RELTOL is the relative tolerance for voltage and currents;

• VNTOL is the absolute node voltage tolerance;

• ABSTOL is the absolute current branch tolerance.

Relation (1.77) is called update criterion. This is very important in nodes charac-
terized by a high impedance, such as a reverse-biased p-n junction: in fact, there is
a large range of voltages that result in the current through the junction being less
than the absolute current tolerance. In this situation, the update criterion is more
important than the residual criterion for maintaining the accuracy of the solution.

Relation (1.78) is named the residual criterion, very important in nodes with small
impedance, such as a forward biased p-n junction. In fact, small changes in voltage
across the junction result in large changes in the current through it. In such circuits,
the residual criterion is more important than the update criterion for maintaining
the accuracy of the solution.

In DC analyses, if a solution cannot be found with the default method, most
circuit simulators use continuation techniques to try resolving the DC operating
point. These all work by repeating the iterative process while gradually varying
some circuit parameter. The circuit parameter is chosen so that at its start value
the solution is known or trivial and at its final value the solution is the operating
point that is required.

Continuation techniques available in SIMetrix are [16]:

• source stepping;

• GMIN stepping;

1.6 parameter extraction 53

• pseudo transient analysis.

For a DC analysis to fail, and assuming the default settings are being used, the
standard solving method and all the continuation methods must fail.

DC analysis is the basis for the principle of operation of the transient one. In
transient analysis, the nonlinear first-order differential equations representing the
circuit behavior are first written. Then, the time derivatives appearing in these
equations are replaced by their finite difference approximations (known as inte-
gration formulas) which discretize time. This allows to consider the transformed
equations, at each discretized instant, as a time independent nonlinear set of equa-
tions. Then, a solution can be found at each time instant with the same iterative
algorithm used in the DC analysis. Each determined solution represents the initial
condition for the following analysis.

At every instant, the error introduced by the time-step choice is estimated and
used to refine the time-step prediction.

Basically there are four reasons for convergence failure in transient analysis.

1. there is no solution to the circuit within the numerical range of the computer;

2. one or more device models contains a discontinuity or a discontinuity in its
first derivative;

3. the circuit has a discontinuity caused by undamped regenerative action;

4. the solution matrix is ill-conditioned and the machine does not have suffi-
cient accuracy to solve it up to the required tolerance.

1 and 3 are circuit problems. 2 is usually a software problem that the user can do
little about. 4 can be caused by:

• very small resistors especially if they are not connected to ground;

• very large capacitors especially if they are not connected to ground;

• very large inductors especially if they are not connected to ground;

• circuit forced to use very small time steps perhaps because of fast rise/fall
times;

• very large currents/voltages;

• very high gain loops.

By “very” in the above we mean extreme. 1000 V is not a very large voltage but
1000 MV volts is. 1 mΩ is not particularly small but 1 pΩ is.

Two other reasons why a DC or a transient simulation may fail are:

• Singular matrix errors. A singular matrix error occurs when the circuit does
not have a unique and finite solution. For example, a circuit containing a
floating capacitor does not have a unique DC solution as the capacitor can
be at any voltage. Also circuits with shorted inductors, voltage sources or a
combination of both will fail with this error.

54 modeling of power semiconductor devices

• “Time step too small” error. It means that, because of the nature of a cir-
cuit, to achieve the required accuracy, a time step smaller than the minimum
permissible was needed.

Many other errors can cause a simulation to fail. They will be discussed in Ap-
pendix A.

1.6.3.2 ngspice

ngspice is a mixed-level/mixed-signal circuit simulator. Its code is based on three
open source software packages: Spice3f5, Cider1b1 and Xspice. ngspice is part of
gEDA project [13], a full GPL’d suite of Electronic Design Automation tools. Unlike
SIMetrix, ngspice does not suffer from any license-related problem, since it is an
open source simulator.

Verilog-A models can be integrated into ngspice by using the ADMS compiler
developed by Laurent Lemaitre (http://www.noovela.com).

Methods used to carry out DC and transient analyses are similar to those imple-
mented in SIMetrix. Hence, the reasons why a circuit simulation fails are analogous
as well.

Continuation techniques available in ngspice are [14]:

• source stepping;

• GMIN stepping.

A more detailed description of the errors that can occur when using ngspice is
reported in Appendix A.

1.6.3.3 Handling non-convergence situations

In this work, the parameter extraction procedure has been carried out through
evolutionary algorithms. These methods try to find the parameter values which
minimize the error value by introducing random parameter variation [11]. This
helps to search the parameter space completely and relatively quickly. A side effect
is that combinations of model parameters which cause non-convergence situations
like those we described before, are found very often.

In Appendix A we will describe which strategies have been implemented to
handle simulation failures in order to prevent a parameter extraction process to
stop prematurely.

1.6.4 Step 4: waveform comparison

One possible method of comparison of the measured and simulated characteristics
is using the salient points of the waveforms, e.g., diode reverse recovery current,
reverse recovery time or IGBT switching time. This gives a small number of points
to match, but can suffer from low accuracy. Most importantly, the waveforms may
differ quite substantially during the switching instants, especially in di/ dt and
dv/ dt. This would give a large error in estimated power during simulation.

A much more accurate method of comparison is to calculate the sum of the
squared errors at each voltage or time point in the characteristics. This requires:

http://www.noovela.com

1.6 parameter extraction 55

0

measurements
simulation

(a) Selected slope interval.

0

measurements
simulation

(b) Time differences.

0

measurements
simulation

(c) Aligned characteristics.

Figure 27: Visual representation of the steps of the algorithm for automatic synchroniza-
tion of measured and simulated reverse recovery current.

• Normalization of transient data, so that the conditions imposed such as sup-
ply voltage and load current do not affect the consistency of the parameter
extraction, allowing comparison between different operating conditions.

• Accurate synchronization of switching waveforms, otherwise the errors in
di/ dt and dv/ dt will be significant and lead to inaccuracy of the power
loss estimates during simulation.

• A method to evaluate simulated characteristics at each voltage or time point
of measured data.

Synchronization is needed in order to match both the time scales and the slopes
(di/ dt and dv/ dt) of transient characteristics. In this work, we are interested only
in automatic synchronization techniques. Let us describe the algorithm for the
automatic synchronization of diode reverse recovery current waveform:

1. Find the slope of the falling flank of both the measured and simulated current
as between 80% of maximum and minimum.

2. Find the slope interval such that the measured characteristic can be interpo-
lated over the simulated characteristic (see figure 27a).

56 modeling of power semiconductor devices

3. Interpolate the measured time over the range of the simulated time.

4. Compute the differences between the interpolated time instants and the sim-
ulated time instants (some of them are shown in figure 27b).

5. Compute the average of the differences and apply this shift to simulated data.
Simulated and measured data are now synchronized (see figure 27c).

It may be shown that the synchronization strategy we used corresponds to a least
squared approach.

Implementation of the synchronization algorithm is robust against rugged sim-
ulated characteristics. Voltage waveforms are aligned in a similar way.

The next step is interpolating simulated data over the range of measured data
and then subtracting interpolated characteristics from measurements. A possible
strategy is to calculate the Residual Sum of Squares (RSS)

RSS =
N

∑
n=1

(yinterp_sim(n)− ymeas(n))2

where N is the number of samples. The RSS assigns more significance to any large
errors between measured and simulated waveforms. It will then focus more on
matching the switching losses than the on-state losses. This is because the instan-
taneous on-state losses are much smaller in magnitude, and become smaller still
when squared. Using the Residual Sum of Magnitudes (RSM) rather than the RSS

may help to redress this imbalance

RSM =
N

∑
n=1
|yinterp_sim(n)− ymeas(n)|

Many other error estimators may be defined. They will be presented in Ap-
pendix A. However, in our experience the RSS and the RSM are the most effective
estimators.

1.6.5 Step 5: parameter optimization

Optimization techniques rely on finding the minimum of an objective function. This
is specific to a particular problem, and must be a function of the system parameters.
In our case, an objective function is the error between a simulated waveform and its
experimental counterpart. The solution we look for is a diode parameter set which
minimizes the error between, possibly all, the measured and the simulated charac-
teristics. Therefore the goal is the simultaneous minimization of several objective
functions. A problem where p objective functions have to be minimized simulta-
neously is called a Multiobjective Optimization Problem (MOP). Expressions like
multicriteria optimization, multiperformance or vector optimization problem can
also be used.

A first approach to multiobjective optimization that can be suited to the param-
eter extraction problem is a succession of optimizations of one characteristic at a
time, until convergence is obtained. Each optimization returns values for a particu-
lar subset of the model parameters which have been selected through the sensitiv-
ity analysis. Using an expression which will be introduced in Chapter 2, we could

1.6 parameter extraction 57

interpret this technique as a nonscalarizing approach. An advantage of this method
is that it can be carried out with a single objective optimization method, like the
Levenberg-Marquardt [79] or the CMA-ES algorithm. Being CMA a stochastic opti-
mizer, it is able to find the global optimum more effectively than a deterministic
method. However, since each single optimization tries to minimize only a sub-
set of the model parameters, it is not generally true that the complete procedure
could find an optimal solution with respect to all the characteristics. The concept
of optimal solution in the context of multiobjective optimization will be introduced
in Chapter 2. The quality of the solution found by this first approach then depends
heavily on the number of waveforms being optimized and on the quality of the
initial parameter settings. As the number of characteristics to be optimized is in-
creased, or the quality of parameter initial guesses is decreased, the method will
either fail to converge to a meaningful solution or be trapped in whatever local
minimum is nearest the given starting guesses.

This method could even fail to converge if the output characteristics, or the
correspondent objective functions, are conflicting. Two or more waveforms are con-
flicting if there is no parameter set achieving the minimum error for all of them
at the same time. In this situation, the best we can do is to find a set of solutions
that are nondominated with respect to each other. While moving from one nondom-
inated solution to another, there is always a certain amount of sacrifice in one
objective(s) to achieve a certain amount of gain in the other(s). This concept will
be better explained in Chapter 2. If the characteristics are conflicting, the method
of successive single objective optimizations could jump from one local optimum to
another without converging. An example of this behavior is shown in Figure 28.

Another possible parameter extraction methodology is to combine the individ-
ual objective functions into a single composite function or move all but one ob-
jective to the constraint set and then use a single objective optimizer. In the for-
mer case, determination of a single objective is possible with methods such as the
weighted sum method, but the problem lies in the proper selection of the weights
to characterize the decision-maker’s preferences. Compounding this drawback is
that scaling amongst objectives is needed and small perturbations in the weights
can sometimes lead to quite different solutions. Moreover, if the MOP is noncon-
vex, there exist solutions that cannot be generated by the weighted sum approach
(see Section 2.3.1.1). In the latter case, the problem is that in order to move ob-
jectives to the constraint set, a constraining value must be established for each of
the former objectives. This can be rather arbitrary. In both cases, an optimization
method would return a single solution rather than a set of solutions that can be
examined for trade-offs.

A third approach is to determine an entire optimal solution set or a representa-
tive subset. As we have already said, if objective functions are conflicting, a solution
is considered optimal if it is nondominated, that is, it cannot be improved in any
objective without getting worse in at least one other objective. Such a solution is
also called a Pareto optimal solution.

For the parameter extraction problem finding elements of the Pareto set exactly
is impossible due to numerical complexity of resulting optimization problems. For
this reason, an approximated description of this set becomes an appealing alter-

58 modeling of power semiconductor devices

(a) (b)

(c) (d)

(e) (f)

Figure 28: Some iterations of the parameter extraction method for Ma diode model
through a succession of single objective optimizations. For each row, the left
figure shows DC measured data, the simulated characteristic corresponding to
the DC optimal parameter set and the simulated characteristic for the reverse
recovery optimal parameter set. The right figure shows measured reverse recov-
ery current and the simulated characteristic given by the corresponding optimal
parameter set.

1.6 parameter extraction 59

native. Population-based metaheuristics are a particular class of approximation
techniques. They have some advantages which include:

• they are not affected by MOP convexity or nonconvexity;

• they return a whole set of approximated Pareto solutions.

In our opinion, population-based metaheuristics are the best approach to deal with the
parameter extraction problem. They will be presented in Chapter 3. Of course, the
No Free Lunch (NFL) Theorem [103] implies that population-based metaheuristics
are not a universal robust solution technique for all MOPs. Then, there could be
parameter extraction problems which could be more effectively solved with other
approaches.

During our internship at ABB Corporate Research Center in Switzerland we
developed a Python library for automated parameter extraction of power electron-
ics devices which is mainly based on these techniques. Chapter 4 reports results
obtained by using this software for parameter extraction of Extended Lauritzen
model.

Let us conclude this chapter with a closer look at the implemented extraction
flow for diode compact models (shown in Figure 29):

• Compute first initial parameter estimates.

• Perform sensitivity analysis and define parameter value ranges.

• Check if capacitance characteristic can be fitted independently from DC and
reverse recovery waveforms or not. In the first case, capacitance is fitted and
the corresponding parameters are kept constant. Afterwards, DC and reverse
recovery characteristics are fitted following a successive single optimizations
approach or a multiobjective metaheuristic approach. In the second case, all
the characteristics have to be fitted jointly.

• At the end, check if reverse recovery current and voltage are conflicting or if
a good fit of reverse recovery current ensures a good fit of reverse recovery
voltage as well. In the last case, repeat the whole extraction process without
considering the reverse recovery voltage.

60 modeling of power semiconductor devices

Input targets: datasheets,
measurements

Sensitivity analysis

Initial parameter estimation

Parameter range definition

Can capacitance be
fitted independently from

DC and RR?

Are capacitance,
DC and RR

characteristics
conflicting?

Multiobj. optimization
of capacitance, DC

and RR characteristics
with metaheuristics

Fit capacitance
characteristic

Fit DC
characteristic

Fit RR
voltage

Multiobj. optimization
of DC and RR
Characteristics

with metaheuristics

Fit DC
characteristic

Fit RR
current

Fit capacitance
characteristic

Are DC and
RR characteristics

conflicting?

Iterate?

Iterate?

Export results

Fit RR
current

Fit RR
voltage

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

Figure 29: Parameter extraction flow chart for a diode.

2
M U LT I O B J E C T I V E O P T I M I Z AT I O N

The aim of this chapter is to give an overview of multiobjective programming. All
these concepts will be used to state the parameter extraction problem as a MOP and
to describe the approach that has been developed to solve it. In Sections 2.1 and
2.2 we review theoretical foundations of multiobjective programming. Most of the
material in these sections can be found in [30] where the results are presented in a
more extensive way. In Section 2.1 we define MOPs and relevant solution concepts.
Section 2.2 contains a summary of properties of the solution sets. In Section 2.3,
some methods for generating individual elements or subsets of the solution sets
are collected.

2.1 problem formulation and solution concepts

2.1.1 Problems with multiple objectives

In order to understand how easily problems with multiple objectives can arise in
real world problems, let us consider the following examples of decision problems,
where a “good” or “best” solution has to be chosen among a set of “alternatives”,
whose quality is measured according to certain criteria.

Example 2.1. We want to buy a new car and have identified four models we like:
an Audi A4, an Alfa Romeo Giulietta, a Great Wall Hover, a Hyundai Genesis. The
decision will be made according to price, petrol consumption, and power. We pre-
fer a cheap and powerful car with low petrol consumption. In this case, we face a
decision problem with four alternatives (or feasible solutions) and three objectives.
The characteristics of the four cars are shown in Table 4 (data is invented).

How do we decide, which of the four cars is the “best” alternative, when the
most powerful car is also the one with the highest petrol consumption, so that we
cannot buy a car that is cheap as well as powerful and fuel efficient. However, we
observe that with any one of the three criteria alone the choice is easy.

Criteria

Price Consumption Power

(Euros)
(l

100 km

)
(kW)

Alternatives

Audi 46 000 14.1 195.0

Alfa Romeo 26 000 7.8 125.0

Great Wall 18 000 15.0 93.0

Hyundai 34 000 15.5 223.0

Table 4: Criteria and alternatives in Example 2.1.

61

62 multiobjective optimization

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y

f2 (x) =x2 −3x+3

f1 (x) =
√
x+1

Figure 30: Objective functions of Example 2.3.

Example 2.2. In the assignment of a number of university exams into a limited
number of time period there are three main groups of people who are affected by
the results of the process:

• administration of the university: usually sets the minimum standards to
which the timetables must confirm;

• departments: may have demands for specific classrooms for examinations,
may prefer to place large exams early in the timetables, etc;

• students: usually prefer exams to be spread out in time and to have a break
between consecutive exams, may be concerned about the order in which ex-
ams are scheduled, etc.

Consequently, the quality of a timetable can be assessed from various points
of view. Usually the problem is subject to several constraints which can be split
into two categories: hard and soft constraints. Hard constraints must not be vio-
lated under any circumstances. Soft constraints are desirable but can be violated if
necessary. They express the priorities of the three categories presented above.

Criteria are defined with respect to the soft constraints that are imposed on
specific problems. Each criterion expresses a measure of the violation of the corre-
sponding constraint. The goal is the simultaneous minimization of all these criteria.
However, it is clear that the criteria may be partially or totally conflicting. For ex-
ample, two exams which should be scheduled immediately before/after each other
may have common students, but this is usually not desirable from a student’s point
of view.

2.1 problem formulation and solution concepts 63

Example 2.3. Consider a mathematical problem with two criteria and one decision
variable. The criteria or objective functions, which we want to minimize simultane-
ously over the nonnegative real line, are

f1(x) =
√

x + 1 and f2(x) = x2 − 3x + 3 (2.1)

plotted in Figure 30. We want to solve the optimization problem

“ min
x≥0

”(f1(x), f2(x)). (2.2)

The question is, what are the “minima” and the “minimizers” in this problem?
Note that again, for each function individually the corresponding optimization
problem is easy: x1 = 0 and x2 = 1.5 are the (unique) minimizers of f1 and f2 on
x ∈ R : x ≥ 0, respectively.

We see that in Example 2.1, if we move from one alternative to another, there is
always a certain amount of sacrifice in one objective(s) to achieve a certain amount
of gain in the other(s). That is to say, there is no car which is better than the others
in any criterion at the same time. In Example 2.3 all x in [0, 1.5], where one of the
functions is increasing, the other is decreasing. Historically, the first reference to
address such situations of conflicting objectives is usually attributed to Pareto [81].
In honor of Pareto, these alternatives are today often called Pareto optimal solutions
of multiple objective optimization problems. The expression efficient solutions can
also be used.

2.1.2 Decision Space and Objective Space

The fundamental notions of decision (or variable) and objective (or criterion) space
are informally introduced next.

Let us consider Example 2.1 again, where we consider price and petrol con-
sumption only for the moment. We can illustrate the criterion values in a two-
dimensional coordinate system.

From Figure 31 it is easy to see that Great Wall and Alfa Romeo are the efficient
choices. For both there is no alternative that is both cheaper and consumes less
petrol. In addition, both Hyundai and Audi are more expensive and consume more
petrol than Alfa Romeo.

We call X = {Great Wall, Alfa Romeo, Hyundai, Audi} the feasible set, or the set
of alternatives of the decision problem. The space, of which the feasible set X is a
subset, is called the decision space.

If we denote price by f1 and petrol consumption by f2, then the mappings
fi : X → R are criteria or objective functions and the optimization problem can
be stated mathematically as in Example 2.3

“ min
x∈X

”(f1(x), f2(x)). (2.3)

The image of X under f = (f1, f2) is denoted by

Y := f (X) :=
{

y ∈ R2 ∣∣ y = f (x) for some x ∈ X
}

64 multiobjective optimization

15000 20000 25000 30000 35000 40000 45000 50000 55000
Price (Euros)

8

10

12

14

16

C
o
n
su

m
p
ti

o
n
 (
l/

1
0
0k
m

)

Great Wall

Alfa Romeo

Hyundai

Audi

Figure 31: Objective space in Example 2.1.

and referred to as the image of the feasible set, or the feasible set in objective
space. The space from which the objective values are taken is called the objective
(or criterion) space.

In Example 2.3 the feasible set is

X = { x ∈ R | x ≥ 0 } (2.4)

and the objective functions are

f1(x) =
√

x + 1 and f2(x) = x2 − 3x + 3. (2.5)

The decision space is R because X ⊂ R. The criterion space is R2. To obtain the
image of the feasible set in criterion space we substitute y1 for f1(x) and y2 for
f2(x) to get x = y2

1− 1 (solving y1 =
√

1 + x for x). Therefore we obtain y2 = (y2
1−

1)2 − 3(y2
1 − 1) + 3 = y4

1 − 5y2
1 + 7. The graph of this function (shown in Figure 32)

is the analogue of Figure 31 for Example 2.1. Note that x ≥ 0 translates to y1 ≥ 1,
so that Y := f (X) is the part of the graph to the right of the vertical line y1 = 1.

Computing the minimum of y2 as a function of y1, we see that the efficient
solutions x ∈ [0, 1.5] found before correspond to values of y1 = f1(x) ∈ [1,

√
2.5]

and y2 = f2(x) ∈ [0.75, 3]. These points on the graph of y2(y1) with 1 ≤ y1 ≤
√

2.5
and 0.75 ≤ y2 ≤ 3 are called nondominated points.

The right angle attached to the efficient point ŷ = (ŷ1, ŷ2) illustrates that there
is no other point y ∈ f (X), y 6= ŷ such that y1 ≤ ŷ1 and y2 ≤ ŷ2. This is true for
the image under f of any x ∈ [0, 1.5]. This observation confirms the definition of
nondominated points as the image of the set of efficient points under the objective
function mapping.

In the examples, we have seen that we will often have many efficient solutions
of a multicriteria optimization problem. Obviously, a final choice has to be made
among efficient solutions. This aspect of decision making, the support of decision

2.1 problem formulation and solution concepts 65

0 1
√

2.5 2
y1

0

2

4

6

8

10

12

14

16

y 2

y1 ≥1

y2 =y 4
1 −5y 2

1 +7

Figure 32: Objective space in Example 2.3.

makers in the selection of a final solution from a set of mathematically “equally
optimal” solutions, is often referred to as Multi Criteria Decision Aid (MCDA).

Although finding efficient solutions is the most common form of multicriteria
optimization, the field is not limited to that concept. There are other possibilities
to cope with multiple conflicting objectives.

2.1.3 Notions of Optimality

So far, the minimization in multiobjective optimization problems has been written
in quotation marks

“ min
x∈X

”(f1(x), . . . , fp(x)) (2.6)

because we can associate different interpretations with the “min”.
For example we may want to find the set of efficient solutions (Pareto optimal

solutions), that is, those solutions that cannot be improved in any objective without
getting worse in at least one other objective

{ x ∈ X | @x̂ ∈ X subject to (s.t.) fk(x̂) ≤ fk(x) ∀k = 1, . . . , p ∧ f (x̂) 6= f (x) }
(2.7)

We can imagine situations in which there is a ranking among the objectives. In
Example 2.1, price might be more important than petrol consumption, this in turn
more important than power. This means that even an extremely good value for
petrol consumption cannot compensate for a slightly higher price. Then the crite-
rion vectors (f1(x), f2(x), f3(x)) are compared lexicographically (see Table 5 for a
definition of the lexicographic order and Section 2.3.2.1 for more on lexicographic
optimization) and we want to solve

lexminx∈X(f1(x), f2(x), f3(x)). (2.8)

66 multiobjective optimization

0.0 1.0
√

2.5 2.0
y1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y 2

y1 ≥1

(ŷ1 ,ŷ2)

Figure 33: Nondominated points in Example 2.3.

In Example 2.1 we should choose the Great Wall because for this ranking of objec-
tives it is the unique optimal solution (the cheapest).

Let us assume that in Example 2.3 the objective functions measure some negative
impacts of a decision (environmental pollution, etc.) to be minimized. We might
not want to accept a high value of one criterion for a low value of the other. It is
then appropriate to minimize the worst of both objectives. Accordingly we would
solve

min
x≥0

max
i=1,2

fi(x). (2.9)

This problem is illustrated in Figure 34, where the solid line shows the maximum
of f1 and f2. The optimal solution of the problem is obtained for x ≈ 0.7445,
see Figure 34.

In the last two examples, we got unique optimal solutions, and there are no
incomparable values. And indeed, in the min-max example one could think of
this problem as a single objective optimization problem. However, both have to be
considered as multicriteria problems, because the multiple objectives are in the for-
mulation of the problems. Thus, in order to define the meaning of “min”, we have
to define how objective function vectors (f1(x), . . . , fp(x)) have to be compared for
different alternatives x ∈ X. The different possibilities to do that arise from the fact
that for p ≥ 2 there is no canonical order on Rp as there is on R. Therefore weaker
definitions of orders have to be used.

2.1.4 Orders and Cones

In this section we will first introduce binary relations and some of their properties
to define several classes of orders. The second main topic is cones, defining sets of
nonnegative elements of Rp. They can be used to derive a geometric interpretation

2.1 problem formulation and solution concepts 67

0 x ∗ 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y

f2 (x) =x2 −3x+3

f1 (x) =
√
x+1

Figure 34: Min-max solutions of Example 2.3.

of orders. An indication of the relationship between orders and cones has already
been shown in Figure 33, where we used a cone (the negative orthant of R2) to
confirm that ŷ is nondominated.

Let S be any set. A binary relation on S is a subset R of S× S.

Definition 2.4. A binary relation R on S is called:

• reflexive if (s, s) ∈ R ∀s ∈ S;

• irreflexive if (s, s) /∈ R ∀s ∈ S;

• symmetric if (s1, s2) ∈ R =⇒ (s2, s1) ∈ R ∀s1, s2 ∈ S;

• asymmetric if (s1, s2) ∈ R =⇒ (s2, s1) /∈ R ∀s1, s2 ∈ S;

• antisymmetric if (s1, s2) ∈ R ∧ (s2, s1) ∈ R =⇒ s1 = s2 ∀s1, s2 ∈ S;

• transitive if (s1, s2) ∈ R ∧ (s2, s3) ∈ R =⇒ (s1, s3) ∈ R ∀s1, s2, s3 ∈ S;

• negatively transitive if (s1, s2) /∈ R ∧ (s2, s3) /∈ R =⇒ (s1, s3) /∈ R ∀s1, s2, s3 ∈
S;

• connected if (s1, s2) ∈ R ∨ (s2, s1) ∈ R ∀s1, s2 ∈ S with s1 6= s2;

• strongly connected (or total) if (s1, s2) ∈ R ∨ (s2, s1) ∈ R ∀s1, s2 ∈ S.

Definition 2.5. A binary relation R on a set S is:

• an equivalence relation if it is reflexive, symmetric and transitive;

• a preorder (quasi-order) if it is reflexive and transitive.

68 multiobjective optimization

notation definition name

y1 5 y2 y1
k 6 y2

k k = 1, . . . , p weak componentwise order

y1 ≤ y2 y1
k 6 y2

k k = 1, . . . , p; y1 6= y2 componentwise order

y1 < y2 y1
k < y2

k k = 1, . . . , p strict componentwise order

y1 ≤lex y
2 y1

k∗ < y2
k∗ or y1 = y2 lexicographic order

y1 ≤MO y
2 max

k=1,...,p
y1

k ≤ max
k=1,...,p

y2
k max-order

Table 5: Some orders on Rp.

If R is a preorder the pair (S, R) is called a preordered set. In the context of
(pre)orders we shall write s1 � s2 as shorthand for (s1, s2) ∈ R and s1 � s2 for
(s1, s2) /∈ R and indifferently refer to the relation R or the relation �. According to
Ehrgott [30] this notation can be read as “preferred to”.

Given any preorder �, two other relations can be defined, ≺ and ∼:

s1 ≺ s2 ⇐⇒ s1 � s2 ∧ s2 � s1 (2.10)

s1 ∼ s2 ⇐⇒ s1 � s2 ∧ s2 � s1 (2.11)

Actually, ≺ and ∼ can be seen as the strict preference and equivalence (or indif-
ference) relation, respectively, associated with the preference defined by preorder
�.

The most import classes of relations in multicriteria optimization are partial
orders and strict partial orders, which are introduced now.

Definition 2.6. A binary relation � is called

• partial order if it is reflexive, transitive and antisymmetric;

• strict partial order if it is asymmetric and transitive.

Throughout this work, we use several orders on the Euclidean space Rp. These
notations are not unique in multiobjective literature therefore they should always
be checked when consulting another source. Let

y1 = (y1
1, . . . , y1

p),y
2 = (y2

1, . . . , y2
p) ∈ Rp,

and if y1 6= y2 let k∗ := min
{

k
∣∣ y1

k 6= y2
k

}
. Notations and names in Table 5 will be

used for the most common ((strict) partial) orders on Rp appearing in this work.
With the (weak, strict) componentwise orders, we define subsets of Rp as fol-

lows:

• R
p
= := { y ∈ Rp | y = 0 }, the nonnegative orthant of Rp;

• R
p
≥ := { y ∈ Rp | y ≥ 0 } = R

p
= \ {0};

• R
p
> := { y ∈ Rp | y > 0 } = int R

p
=, the positive orthant of Rp.

Note that for p = 1 we have R≥ = R>. Throughout this work, for S ⊆ Rn or
S ⊆ Rp

2.1 problem formulation and solution concepts 69

• int(S) is the interior of S.

The notion of cone in Rp (R2 for purpose of illustration) can be used to derive a
geometric interpretation of properties of orders. Since (partial) orders can be used
to define “minimization” or “maximization”, this interpretation makes it possible
to analyze multicriteria optimization problems geometrically [30].

Definition 2.7. A subset C ⊆ Rp is called a cone, if αd ∈ C ∀d ∈ C and ∀α ∈ R,
α > 0.

Example 2.8. Figure 35a shows the cone C =
{
d ∈ R2

∣∣ dk ≥ 0, k = 1, 2
}
= R2

=.
This is the cone of nonnegative elements of the weak componentwise order. Fig-
ure 35b shows a smaller cone C ⊂ R2

=.

0 1 2 3 4 5 6 7
y1

0

1

2

3

4

5

6

7

y 2

C= 2

(a)

0 1 2 3 4 5 6 7
y1

0

1

2

3

4

5

6

7

y 2

C

(b)

Figure 35: Illustration of two cones.

Let S, S1, S2 ⊂ Rp and α ∈ R. We denote by:

αS := { αs | s ∈ S } (2.12)

S1 + S2 :=
{

s1 + s2
∣∣∣ s1 ∈ S1, s2 ∈ S2

}
. (2.13)

In particular, −S = { −s | s ∈ S }. If S1 = {s} is a singleton, we also write s + S2

instead of {s}+ S2. These notations do not involve any set arithmetic, e.g. 2S 6=
S + S in general.

Definition 2.9. A cone C ⊆ Rp is called:

• nontrivial or proper if C 6= ∅ and C 6= Rp;

• convex if αd1 + (1− α)d2 ∈ C ∀d1,d2 ∈ C and α ∈ (0, 1);

• pointed if for d ∈ C,d 6= 0,−d /∈ C, i.e., C ∩ (−C) ⊆ {0}.
Given an order relation R on Rp, we can define a set

CR :=
{
y2 − y1

∣∣∣ y1Ry2
}

. (2.14)

Proposition 2.10. Let R be compatible with scalar multiplication, i.e., ∀ (y1,y2) ∈ R
and α > 0 it holds that (αy1, αy2) ∈ R. Then CR defined in (2.14) is a cone.

70 multiobjective optimization

Example 2.11. Let us consider the weak componentwise order on Rp. Here y1 5 y2

if and only if y1
k ≤ y2

k ∀ k = 1, . . . , p or y2
k − y1

k ≥ 0 ∀ k = 1, . . . , p. Therefore

C5 = { d ∈ Rp | dk ≥ 0, k = 1, . . . , p } = R
p
=.

Let us consider Definition (2.14) with y1 ∈ Rp fixed, i.e.,

CR(y
1) =

{
y2 − y1

∣∣∣ y1Ry2
}

.

If R is an order relation, y1 + CR(y
1) is the set of elements of Rp that y1 has

preference over.
The set CR(y) is the same for all y ∈ Rp if the order relation R is compatible

with addition, i.e. if (y1 + z,y2 + z) ∈ R ∀ z ∈ Rp and ∀ (y1,y2) ∈ R.

Proposition 2.12. If R is compatible with addition and d ∈ CR, then 0Rd.

Proposition 2.12 means that if R is compatible with addition, the sets CR(y),y ∈
Rp, do not depend on y.

Theorem 2.13. Let R be a binary relation on Rp which is compatible with scalar multipli-
cation and addition. Then the following statements hold:

• 0 ∈ CR if and only if R is reflexive;

• CR is pointed if and only if R is symmetric;

• CR is convex if and only if R is transitive.

Example 2.14. The weak componentwise order 5 is compatible with addition and
scalar multiplication. C5 = R

p
= contains 0, is pointed, and convex.

The max-order ≤MO is compatible with scalar multiplication, but not with addi-
tion (e.g. (−3, 2) ≤MO (3, 1), but this relation is reversed when adding (0, 3)). Fur-
thermore, ≤MO is reflexive, transitive, but not antisymmetric (e.g. (1, 0) ≤MO (1, 1)
and (1, 1) ≤MO (1, 0)).

We have defined cone CR given relation R. We can also use a cone to define an
order relation. Let C be a cone. Define RC by

y1RCy
2 ⇐⇒ y2 − y1 ∈ C. (2.15)

Proposition 2.15. Let C be a cone. Then RC defined in (2.15) is compatible with scalar
multiplication and addition in Rp.

Theorem 2.16. Let C be a cone and let RC be as defined in (2.15). Then the following
statements hold:

• RC is reflexive if and only if 0 ∈ C;

• RC is antisymmetric if and only if C is pointed;

• RC is transitive if and only if C is convex.

Theorems 2.13 and 2.16 show equivalence of some partial orders and pointed
convex cones containing 0. Thanks to these two results we can give a geometric
interpretation to multiobjective optimization problems.

2.1 problem formulation and solution concepts 71

2.1.5 Multiobjective optimal solutions

By the choice of an order � on Rp we can define the meaning of “min” in the
problem formulation

“ min
x∈X

”f (x) = “ min
x∈X

”(f1(x), . . . , fp(x)). (2.16)

With the multiple objective functions we can evaluate objective value vectors

(f1(x), . . . , fp(x)).

However, we have seen that these vectors y = f (x), x ∈ X are not always compared
in objective space, i.e., Rp, directly.

In Example 2.3 we have formulated the optimization problem

min
x∈X

max
i=1,2

fi(x). (2.17)

That is, we have used a mapping ϑ : R2 → R from objective space R2 to R, where
the min in (2.17) is defined by the canonical order on R.

In general, the objective function vectors are mapped from Rp to an ordered
space, e.g. (RP,�), where comparisons are made using the order relation �. This
mapping is called the model map.

Without loss of generality, we can assume that every multiobjective optimization
problem can be stated as (2.16) since maximizing an objective function g(x) is
equivalent to minimizing −g(x). Then a MOP can be formally stated as a tuple

((X, Rp,f), ϑ, (RP,�)),

where:

• X is the feasible set;

• Rp the objective space;

• f = (f1, . . . , fp) : X → Rp is the objective function vector;

• (RP,�) is the ordered set;

• ϑ is the model map.

Example 2.17. Let us look at a problem of finding efficient solutions

min
x≥0

(
√

x + 1, x2 − 4x + 1). (2.18)

Here the feasible set is X = { x | x ≥ 0 } = R=, the objective function vector is
f = (f1, f2) = (

√
x + 1, x2 − 4x + 1), and the objective space is Rp = R2. Since

we compare objective function vectors componentwise, the model map is given by
ϑ(y) = y and denoted “id”, the identity mapping, henceforth. The ordered set is
then (RP,�) = (R2,≤). The problem (2.18) is classified as

((R=, R2,f), id, (R2,≤)). (2.19)

72 multiobjective optimization

Example 2.18. If we have a ranking of objectives as described in Example 2.1 in
Section 2.1.1, we compare objective vectors lexicographically. See Table 5 for a
definition of lexicographic order. In Example 2.1

X = {Great Wall, Alfa Romeo, Hyundai, Audi}
is the set of alternatives (feasible set), f1 is price, f2 is petrol consumption, and f3

is power. We define ϑ(y) = (y1, y2,−y3) (note that more power is preferred to less).
The problem is then classified as

((X, R3,f), ϑ, (R3,≤lex)). (2.20)

Definition 2.19. A feasible solution x∗ ∈ X is called an optimal solution of a multi-
objective optimization problem

((X, Rp,f), ϑ, (RP,�))
if there is no x ∈ X, x 6= x∗ such that

ϑ(f (x)) � ϑ(f (x∗)). (2.21)

For an optimal solution x∗, ϑ(f (x∗)) is called an optimal value of the MOP.

Since we are often dealing with orders which are not total, a positive definition
of optimality, like ϑ(f (x∗)) � ϑ(f (x)) ∀ x ∈ X, is not possible in general. More-
over, for specific choices of ϑ and (RP,�), specific names for optimal solutions and
values are commonly used, such as efficient solutions or lexicographically optimal
solutions.

We now check Definition 2.19 with Examples 2.17 and 2.18.

Example 2.20. With the problem ((R=, R2,f), id, (R2,≤)) the optimality defini-
tions reads: there is no x ∈ X, x 6= x∗, such that f (x) ≤ f (x∗), i.e., fk(x) ≤
fk(x∗) ∀ k = 1, . . . , p, and f (x) 6= f (x∗). This is efficiency as we know it.

Example 2.21. For ((X, R3,f), ϑ, (R3,≤lex)) with ϑ(y) = (y1, y2,−y3), x∗ ∈ X is an
optimal solution if there is no x ∈ X, x 6= x∗, such that

(f1(x), f2(x),− f3(x)) ≤lex (f1(x∗), f2(x∗),− f3(x∗)). (2.22)

2.1.6 Efficiency and Nondominance

Here we focus on multiobjective optimization problems of finding efficient solu-
tions

min
x∈X

(f1(x), . . . , fp(x)) (2.23)

The model map is given by the identity mapping introduced in Section 2.1.5. The
image of the feasible set X under the objective function mapping f is denoted as
Y := f (X).

Definition 2.22. A feasible solution x̂ ∈ X is called efficient or Pareto optimal if there
is no other x ∈ X such that f (x) ≤ f (x̂). If x̂ is efficient, f (x̂) is called nondominated
point. If x1, x2 ∈ X and f (x1) ≤ f (x2) we say x1 dominates x2 and f (x1) dominates
f (x2). The set of all efficient solutions x̂ ∈ X is denoted XE and called the efficient
set or the Pareto optimal set. The set of all nondominated points ŷ = f (x̂) ∈ Y,
where x̂ ∈ XE, is denoted YN and called the nondominated set or the Pareto front.

2.1 problem formulation and solution concepts 73

In Chapter 3, the terms efficient and nondominated are equally referred to elements
of X and Y. However, it should be clear from the context what we are talking about.

Several other, equivalent, definitions of efficiency are frequently used. In partic-
ular, x̂ is efficient if:

1. there is no x ∈ X such that fk(x) ≤ fk(x̂) for k = 1, . . . , p and fi(x) < fi(x̂)
for some i ∈ {1, . . . , k};

2. there is no x ∈ X such that f (x)− f (x̂) ∈ −R
p
= \ {0};

3. f (x)− f (x̂) ∈ Rp \
{
−R

p
= \ {0}

}
∀ x ∈ X;

4. f (X) ∩
(
f (x̂)−R

p
=

)
= {f (x̂)};

5. there is no f (x) ∈ f (X) \ {f (x̂)} with f (x) ∈ f (x̂)−R
p
=;

6. f (x) 5 f (x̂) for some x ∈ X implies f (x) = f (x̂).

With the exception of the last, these definitions can be illustrated graphically.
Definition 2.22 and equivalent definitions 1., 4., and 5. consider f (x̂) and check for
images of feasible solutions to the left and below (in direction of−R

p
=) of that point.

See Figure 36a. In equivalent definitions 2. and 3., through f (x)−f (x̂), the set Y =

f (X) is translated so that the origin coincides with f (x̂), and the intersection of
the translated set Y with the negative orthant is checked. This intersection contains
only f (x̂) if x̂ is efficient. See Figure 36b.

Nondominated points are defined by the componentwise order on Rp. When we
use the the weak and strict componentwise order instead, we obtain definitions of
strictly and weakly nondominated points, respectively.

Definition 2.23. A feasible solution x̂ ∈ X is called weakly efficient or weakly Pareto
optimal if there is no x ∈ X such that f (x) < f (x̂), i.e. fk(x) < fk(x̂) ∀ k = 1, . . . , p.
The point ŷ = f (x̂) is then called weakly nondominated.

A feasible solution x̂ ∈ X is called strictly efficient or strictly Pareto optimal if there
is no x ∈ X, x 6= x̂ such that f (x) 5 f (x̂). The weakly (strictly) efficient and
nondominated sets are denoted XwE(XsE) and YwE, respectively.

From the definitions it is clear that

YN ⊂ YwN (2.24)

and
XsE ⊂ XE ⊂ XwE (2.25)

In Figure 37 nondominated and weakly nondominated points are compared.
As in the case of efficiency, weak efficiency has several equivalent definitions.

We mention only two. A feasible solution x̂ ∈ X is weakly efficient if and only if

1. there is no x ∈ X such that f (x̂)− f (x) ∈ int R
p
= = R

p
>;

2. (f (x̂)−R
p
>) ∩Y = ∅.

74 multiobjective optimization

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

YN

f (x̂)

f (x̂)−R
p
=

YN

f (x)

f (X)

(a) Definitions 1., 4., and 5.

f (x)− f (x̂)

−R
p
=

f (X)− f (x̂)

(b) Definitions 2. and 3.

Figure 36: Illustration of definitions of efficient solutions.

There is no such concept as strict nondominance for sets Y ⊂ Rp. By definition,
strict efficiency prohibits solutions x1, x2 with f (x1) = f (x2), i.e. strict efficiency
resembles unique optimal solutions in scalar optimization

x̂ ∈ XsE ⇐⇒ x̂ ∈ XE ∧ | { x | f (x) = f (x̂) } | = 1. (2.26)

According to Definition 2.22, an efficient solution does not allow improvement
of one objective function while retaining the same values on the others. Improve-
ment of some criterion can only be obtained at the expense of the deterioration
of at least one other criterion. These trade-offs among criteria can be measured
by computing the increase in objective fi, say, per unit decrease in objective f j. In
some situations such trade-offs can be unbounded. We give an example below and
introduce Geoffrion’s definition of efficient solutions with bounded trade-offs, so
called properly efficient solutions.

2.1 problem formulation and solution concepts 75

0.5 0.0 0.5 1.0 1.5
y1

0.5

0.0

0.5

1.0

1.5

y 2

Y

YwN

YN

Figure 37: Nondominated and weakly nondominated points.

Example 2.24. Let the feasible set in decision and objective space be given by

X =
{
(x1, x2) ∈ R2 ∣∣ (x1 − 1)2 + (x2 − 1)2 ≤ 1, 0 ≤ x1, x2 ≤ 1

}
, (2.27)

and Y = X as shown in Figure 38.
We have YN =

{
(y1, y2) ∈ Y

∣∣ (y1 − 1)2 + (y2 − 1)2 = 1
}

. The closer ŷ is moved
towards (1, 0), the larger an increase of y1 is necessary to achieve a unit decrease
in y2. In the limit, an infinite increase of y1 is needed to obtain a unit decrease in
y2.

Definition 2.25 (Geoffrion (1968)). A feasible solution x̂ ∈ X is called properly
efficient, if it is efficient and if there is a real number M > 0 such that ∀ i and x ∈ X
satisfying fi(x) < fi(x̂) there exists an index j such that f j(x̂) < f j(x) and

fi(x̂)− fi(x)
f j(x)− f j(x̂)

≤ M. (2.28)

The corresponding point ŷ = f (x̂) is called properly nondominated.

According to Definition 2.25 properly efficient solutions therefore are those effi-
cient solutions that have bounded trade-offs between the objectives.

Example 2.26. In Example 2.24 consider the solution x̂ = (1, 0). We show that x̂
is not properly efficient. We have to prove that for all M > 0 there is an index
i ∈ {1, 2} and some x ∈ X with fi(x) < fi(x̂) such that

fi(x̂)− fi(x)
f j(x)− f j(x̂)

> M (2.29)

∀ j ∈ {1, 2} with f j(x) > f j(x̂).

76 multiobjective optimization

0.0 0.2 0.4 0.6 0.8 1.0
y1

0.0

0.2

0.4

0.6

0.8

1.0

y 2

Y

YN

ŷ

Figure 38: Properly nondominated point ŷ.

Let i = 1 and choose xε with xε
1 = 1− ε, 0 < ε < 1 and xε

2 = 1−
√

1− ε2, i.e. xε

is efficient because (xε
1 − 1)2 + (xε

2 − 1)2 = 1. Since xε ∈ X, xε
1 < x̂1 and xε

2 > x̂2 we
have i = 1, j = 2. Thus

fi(x̂)− fi(x
ε)

f j(xε)− f j(x̂)
=

1− (1− ε)

1−
√

1− ε2
=

ε

1−
√

1− ε2

ε→0−−→ ∞. (2.30)

The set of all properly efficient solutions and properly nondominated outcomes
(in the sense of Geoffrion) are denoted by XpE and YpN , respectively.

Some further definitions of proper efficiency have been given by Borwein, Ben-
son, and Kuhn and Tucker [30].

Let yI
k := min { fk(x) | x ∈ X } be the (global) minimum of fk(x), k = 1, . . . , p.

The point y I ∈ Rp,y I = (yI
1, . . . , yI

p) is called the ideal point of the MOP.
The point yN with yN

k := max { fk(x) | x ∈ XE } is called the nadir point of the
MOP.

The ideal and nadir points for a nonconvex problem are shown in Figure 39. We
have yI

k ≤ yk and yk ≤ yN
k for any y ∈ YN . y I and yN are tight lower and upper

bounds on the efficient set. These points give an indication of the range of the
values which nondominated points can attain. Since the ideal point is found by
solving p single objective optimization problems its computations can be consid-
ered easy. On the other hand, the computation of yN involves optimization over
the efficient set, a very difficult problem.

2.2 properties of the solution sets

In this section some properties of nondominated and efficient sets are presented in
order to enhance an understanding of the concepts of nondominance. Proofs can
be found in [30].

2.2 properties of the solution sets 77

y I

yN

Y
YN

Figure 39: Efficient set, ideal, and nadir point.

So let Y ⊂ Rp. Let YN = { y ∈ Y | @y∗ ∈ Y such that y∗ ≤ y }. In particular
YN ⊂ Y.

Proposition 2.27. YN =
(
Y + R

p
=

)
N .

According to Proposition 2.27, nondominated points are located in the “lower
left” part of Y: adding R

p
= to Y does not change the nondominated set. This propo-

sition is shown in Figure 40.
A second result is that efficient points must belong to the boundary of Y, ∂Y.

Proposition 2.28. YN ⊂ ∂Y.

The next results concern the nondominated set of the (Minkowski) sum of two
sets and a set multiplied by a positive scalar.

Proposition 2.29. (Y1 + Y2)N ⊂ (Y1)N + (Y2)N .

Proposition 2.30. (αY)N = α(YN), for α ∈ R, α > 0.

If all the objective functions fk, k = 1, . . . , p of the MOP are convex and the feasible
set X is convex then the problem is called convex MOP. The outcome set Y of a
convex MOP is R

p
=-convex, i.e., Y + R

p
= is a convex set.

Another topological property of efficient and nondominated sets is connected-
ness. Connectedness is an important property when it comes to determine these
sets. If YN or XE is connected, the whole nondominated or efficient set can possibly
be explored starting from a single nondominated/efficient point using local search
ideas. Connectedness will also make the task of selecting a final compromise solu-
tion from among the set of efficient solutions XE easier, as there are no “gaps” in
the efficient set.

In Figure 41 two sets Y are shown, one of which has a connected nondominated
set and the other has not. Apparently, connectedness cannot be expected, when Y
is not R

p
=-convex.

78 multiobjective optimization

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

Y

Y + R
p
=

0 1 2 3 4 5

0

1

2

3

4

5

Figure 40: Nondominated points of Y and Y + R
p
= are the same.

Definition 2.31. A function f : S → R defined on a convex set S ⊆ Rn is called
quasiconvex if ∀ x, y ∈ S and λ ∈ [0, 1] we have

f (λx + (1− λ)y) ≤ max{ f (x), f (y)}. (2.31)

If furthermore
f (λx + (1− λ)y) < max{ f (x), f (y)} (2.32)

∀ x 6= y and λ ∈ (0, 1), then f is called strictly quasiconvex.

Theorem 2.32. Assume that f1, . . . , fp are continuous and that X ⊂ Rn satisfies one of
the following conditions

• X is a compact, convex set;

• X is a closed, convex set and ∀ y ∈ Y, X(y) := { x ∈ X | f (x) 5 y } is compact.

Then the following statements hold:

• if fk : Rn → R are quasiconvex on X for k = 1, . . . , p then XwE is connected;

• if fk : Rn → R are strictly quasiconvex on X for k = 1, . . . , p then XE is connected.

Since convex functions are continuous and the image of a connected set under a
continuous function is connected, it follows that the sets YwN and YN are connected
under the assumptions stated in Theorem 2.32, if the objective functions fk, k =

1, . . . , p are continuous. However connectedness of YN can be proved under more
general assumptions.

Definition 2.33. A set Y ⊂ Rp is called R
p
=-compact, if the set (y − R

p
=) ∩ Y is

compact ∀ y ∈ Y.

Theorem 2.34. If Y is closed, convex, and R
p
=-compact then YN is connected.

2.3 generation of the solution sets 79

Y

(a) YN is not connected.

Y

(b) YN is connected.

Figure 41: Connectedness of YN .

2.3 generation of the solution sets

There are three general approaches to multiobjective optimization, scalarization
methods, nonscalarizing methods, and approximating methods. The first two techniques
convert the MOP into a Single-objective Optimization Problem (SOP), a sequence
of SOPs, or another MOP. Under some assumptions solution sets of these new pro-
grams yield solutions of the original problem. Solving the SOP typically yields one
solution of the MOP so that repetitive solution scheme is needed to obtain a subset
of solutions of the MOP.

A different approach is to determine an entire Pareto optimal solution set or
a representative subset. Since the exact solution set is very often not attainable,
approximating methods have been developed to find an approximated description
of this set.

In this section we present some of the most common scalarization and non-
scalarizing methods and we explain why they have not been used to deal with the
parameter refinement problem, after it has been formulated as a MOP. A particular
class of approximating methods have been chosen instead, known as population-
based metaheuristics. They have been already applied to parameter extraction [60].

For a survey on scalarizing and nonscalarizing techniques, the reader is referred
to [33]. Population-based metaheuristics that we implemented to perform parame-
ter extraction are presented in detail in Chapter 3.

2.3.1 Scalarization methods

The traditional approach to solving MOPs is by scalarization which involves formu-
lating a MOP-related SOP by means of a real-valued scalarizing function typically
being a function of the objective functions of the MOP, auxiliary scalar or vector
variables, and/or scalar or vector parameters. Sometimes the feasible set of the

80 multiobjective optimization

MOP is additionally restricted by new constraint functions related to the objective
functions of the MOP and/or the new variables introduced.

2.3.1.1 The Weighted Sum Method

In the weighted sum approach a MOP

min
x∈X

(f1(x), . . . , fp(x)) (2.33)

of the Pareto class
((X, Rp,f), id, (Rp,≤)) (2.34)

is solved (i.e. its efficient solutions be found) by minimizing a weighted sum of the
objective functions

min
x∈X

p

∑
k=1

λk fk(x), (2.35)

which in terms of the classification of Section 2.1.5 is written as

((X, Rp,f), 〈λ, ·〉 , (R,≤)), (2.36)

where 〈λ, ·〉 denotes the scalar product in Rp.
Let Y ⊂ Rp. For a fixed λ ∈ R

p
≥ we denote by

S(λ, Y) :=
{
ŷ ∈ Y

∣∣∣∣ 〈λ, ŷ〉 = min
y∈Y
〈λ,y〉

}
(2.37)

the set of optimal points of Y with respect to λ.
Figure 42 gives an example of a set S(λ, Y) consisting of two points y1 and y2.

These points are the intersection points of a line
{
y ∈ R2

∣∣ 〈λ,y〉 = ĉ
}

. Points y1

and y2 are nondominated. Considering c as parameter, and the family of lines{
y ∈ R2 ∣∣ 〈λ,y〉 = c

}
,

we see that in Figure 42 ĉ is chosen as the smallest value of c such that the intersec-
tion of the line with Y is nonempty.

Graphically, to find ĉ we can start with a large value of the parameter c and
translate the line in parallel towards the origin as much as possible while keeping a
nonempty intersection with Y. Analytically, this means finding elements of S(λ, Y).

Now the questions are:

• Does this process always yield nondominated points? (Is S(λ, Y) ⊂ YN?)

• If so, can all nondominated points be detected this way?

(Is YN ⊂ ∪λ∈R
p
≥

S(λ, Y)?)

The following Theorem gives the answers.

Theorem 2.35. 1. Let x̂ ∈ X be an optimal solution of (2.35). The following state-
ments hold:

• if λ > 0 then x̂ ∈ XpE;

• if λ ≥ 0 then x̂ ∈ XwE;

2.3 generation of the solution sets 81

λ

Y

0

1

2

3

4

5

6

0 1 2 3 4 5 6

y1

y2

{
y ∈ R2

∣∣ 〈λ,y〉 = ĉ
}

Figure 42: A set S(λ, Y).

• if λ ≥ 0 and x̂ is a unique optimal solution of (2.35) then x̂ ∈ XsE.

2. Let X be a convex set and fk, k = 1, . . . , p be convex functions. Then the following
statements hold:

• if x̂ ∈ XpE then there exists some λ > 0 such that x̂ is an optimal solution
of (2.35);

• if x̂ ∈ XwE then there exists some λ ≥ 0 such that x̂ is an optimal solution
of (2.35).

Point 2 of the previous theorem states that the weighted sum method allows
computation of all the properly efficient and weakly efficient solutions for convex
problems by varying λ. For nonconvex problems, however, it may work poorly.
Consider the two following examples.

Example 2.36. In Figure 43, the feasible set in objective space for a nonconvex prob-
lem is shown (Y is not R2

=-convex). Since all objective vectors y = (f1(x), f2(x)),

which attain the same value c = ∑2
k=1 λk fk(x) of the weighted sum objective, are

located on a straight line, the minimization problem (2.37) amounts to pushing
this line towards the origin, until it intersects the boundary of Y. In Figure 43 this
is illustrated for two weighting vectors (λ1, λ2) and (λ′1, λ′2), that lead to the non-
dominated points y and y′. The third point ŷ ∈ YN is properly nondominated, but
none of its preimages x under f can be an optimal solution of (2.35) for any choice
of (λ1, λ2) ∈ R

p
>.

Example 2.37. Let X =
{
x ∈ R2

=

∣∣∣ x2
1 + x2

2 ≥ 1
}

and f (x) = x. In this case

XE =
{
x ∈ X

∣∣ x2
1 + x2

2 = 1
}

, yet x̂1 = (1, 0) and x̂2 = (0, 1) are the only feasi-
ble solutions that are optimal solutions of (2.35) for any λ ≥ 0 (see Figure 44).

82 multiobjective optimization

Y

λ′1y1 + λ′2y2 = c′

YN

0

1

2

3

4

5

6

0 1 2 3 4 5 6
y1

y2
λ1y1 + λ2y2 = c

y

ŷ

y′

Figure 43: Properly nondominated ŷ ∈ YN .

Another problem concerning the weighted sum method lies in the proper selec-
tion of the weights to characterize the decision-maker’s preferences. In practice,
it can be very difficult to precisely and accurately select these weights, even for
someone familiar with the problem domain. General applicability and ease of use
are then sacrificed. Compounding this drawback is that scaling amongst objectives
is needed and small perturbations in the weights can sometimes lead to quite dif-
ferent solutions.

2.3.1.2 The ε-Constraint Method

In the ε-constraint method there is no aggregation of criteria, instead only one
of the original objectives is minimized, while the others are transformed to con-
straints.

The multicriteria optimization problem (2.33) is replaced by the ε-constraint
problem

min
x∈X

f j(x)

subject to fk(x) ≤ εk k = 1, . . . , p k 6= j,
(2.38)

where εk ∈ Rp, k = 1, . . . , p k 6= j.
Figure 45 illustrates a biobjective problem, where an upper bound constraint is

put on f1(x). The optimal values of (2.38) problem with j = 2 for two values of ε1

are indicated. These show that the constraints fk(x) ≤ εk might or might not hold
with equality at an optimal solution of (2.38).

The following theorem justifies the approach.

2.3 generation of the solution sets 83

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Y

YN

ŷ2

ŷ1

Figure 44: The weighted sum method fails for nonconvex problems.

Optimal solution
of P2(ε

b
1)

Optimal solution of P2(ε
a
1)

f2(x)

f1(x)

Y

εb
1 εa

1

Figure 45: Optimal solutions of ε-constraint problems.

Theorem 2.38. 1. Let x̂ be an optimal solution of (2.38) for some j. Then x̂ is weakly
efficient.

2. Let x̂ be a unique optimal solution of (2.38) for some j. Then x̂ ∈ XsE (and therefore
x̂ ∈ XE).

3. The feasible solution x̂ ∈ X is efficient if and only if there exists an ε̂ ∈ Rp such
that x̂ is an optimal solution of (2.38) for all j = 1, . . . , p.

The proof can be found in [30]. Point 3 shows that with appropriate choices of
ε all efficient solutions can be found. This result is independent of the structure
of X, i.e., it is also true for nonconvex problems. However, as the proof shows,
these ε j values are equal to the actual objective values of the efficient solution one
would like to find. A confirmation or check for efficiency is obtained rather than
the discovery of efficient solutions.

84 multiobjective optimization

This method has two main drawbacks.

• It is usually necessary to solve the problem (2.38) repeatedly to obtain several
solutions of the original MOP with different trade-offs among objectives. It is
therefore important to ask whether it can be solved with acceptable compu-
tational effort. Ehrgott and Ryan [32] report on a bicriteria set partitioning
model in airline crew scheduling. They show that the problem (2.38) cannot
be solved within acceptable time.

• Another issue is related to properly efficient solutions. In practical situations,
decision makers are usually interested in properly efficient solutions rather
than just efficient ones. The ε-constraint method as it has been presented so
far does not provide results on proper efficiency of optimal solutions.

In [31] two modifications of the ε-constraint method are proposed to deal with
these two issues.

2.3.2 Nonscalarizing approaches

In contrast to scalarizing approaches discussed in Section 2.3.1, nonscalarizing ap-
proaches do not explicitly use a scalarizing function but rather rely on other opti-
mality concepts. In this section we summarize the most important approaches.

2.3.2.1 The Lexicographic Approach

Lexicographic optimization problems arise when conflicting objectives exist in a
decision problem but the objectives have to be considered in a hierarchical manner.
Section 2.1.3 presents a very simple lexicographic optimization problem. In [95] the
problem of optimizing the water resources planning for Lake Verbano (Lago Mag-
giore) in northern Italy is described. The goal is to determine an optimal policy
for the management of the water supply over some planning horizon. The objec-
tives are to maximize flood protection, minimize supply shortage for irrigation,
and maximization of electricity generation. This order of objectives is prescribed
by law, so that the problem indeed has a lexicographic nature.

In lexicographic optimization first a ranking of the objectives is defined, then
objective vectors are compared lexicographically. Let π : {1, . . . , p} → {1, . . . , p}
be a permutation and consider the permutation (fπ(1), . . . , fπ(p)) of the objective
functions. Let fπ : Rn → Rp be (fπ(1), . . . , fπ(p)). The lexicographic problem is
formulated as

lexminx∈X f
π(x) (2.39)

Definition 2.39. A feasible solution x̂ ∈ X is lexicographically optimal or a lexico-
graphic solution if there is no x ∈ X such that fπ(x) <lex f

π(x̂).

Recall that y1 <lex y
2 if y1

q < y2
q where q = min

{
k
∣∣ y1

k 6= y2
k

}
and that the

lexicographic order is total. Therefore, in addition to Definition 2.39, we can state
that x̂ ∈ X is lexicographically optimal, if

fπ(x̂) ≤lex f
π(x) ∀ x ∈ X. (2.40)

2.3 generation of the solution sets 85

First, we establish the relationship between lexicographically optimal solutions and
efficient solutions.

Proposition 2.40. Let x̂ ∈ X be such that fπ(x̂) ≤lex f
π(x) ∀ x ∈ X. Then x̂ ∈ XE.

While the essential feature of efficiency is the existence of tradeoff between ob-
jectives, lexicographic optimality implies a ranking of the objectives in the sense
that optimization of fπ(k) is only considered once optimality for objectives

{π(1), . . . , π(k− 1)}

has been established. That means objective fπ(1) has the highest priority, and only
in the case of multiple optimal solutions objectives fπ(2) and further objectives are
considered. This priority ranking implies the absence of tradeoffs between criteria.
An improvement in an objective fπ(k) can never compensate the deterioration of
any fπ(i), i < k.

The hierarchy among criteria allows us to solve lexicographic optimization prob-
lems sequentially, minimizing one objective fπ(k) at a time and using optimal ob-
jective values of fπ(i), i < k as constraints, as shown in Algorithm 2.1.

Algorithm 2.1 Lexicographic Optimization

Input: feasible set X and permutation of the objective functions fπ

Output: set of lexicographically optimal solutions
Xπ

1 ← X
k← 1
while k ≤ p do

solve the single objective optimization problem

min
x∈Xπ

k

fπ(k)(x) (2.41)

if (2.41) has a unique optimal solution x̂k then
x̂k is the unique optimal solution of the lexicographic optimization prob-

lem return x̂k
else if (2.41) is unbounded then

the lexicographic optimization problem is unbounded, stop
else if k = p then return

{
x ∈ Xπ

p

∣∣∣ fπ(p)(x) = minx∈Xπ
p

fπ(p)(x)
}

end if
Xπ

k+1 ←
{

x ∈ Xπ
k

∣∣∣ fπ(k)(x) = minx∈Xπ
k

fπ(k)(x)
}

k← k + 1
end while

Algorithm 2.1 also gives a correct solution if fπ(k) is unbounded over X, but
bounded over Xπ

k . Note that, if a problem

min
x∈Xπ

k

fπ(k)(x)

is unbounded, it is not possible to define Xπ
k+1.

Proposition 2.41. If x̂ is a unique optimal solution of (2.41) with k < p, or if x̂ is an
optimal solution of (2.41) with k = p then fπ(x̂) ≤lex f

π(x) ∀ x ∈ X.

86 multiobjective optimization

Proposition 2.42. If x is a unique optimal solution of (2.41) for some k ∈ {1, . . . , p},
then x ∈ XsE.

Note that the inclusion Xπ = ∪πXπ
p ⊂ XE is usually strict, which means that not

all the efficient points can be found with the lexicographic approach.

Example 2.43. Let X = [0, 1] and f1(x) = x, f2(x) = 1− x. Clearly XE = X. The
optimal solution of

(([0, 1], R2,f), id, (R2,<lex))

is x̂ = 0, the optimal solution of

(([0, 1], R2,f), π, (R2,<lex)),

where π(y1, y2) = (y2, y1) is x̂ = 1. Therefore Xπ = {0, 1} 6= XE.
Moreover, because of the uniqueness of both lexicographically optimal solutions

in this example Xπ ⊂ XsE, and again the inclusion is strict, as XE = XsE.

2.3.2.2 The Max-ordering Approach

The max-ordering approach does only consider the objective function fk which has
the highest (worst) value. The preference relation of the max-ordering approach is
y1 ≤MO y

2 if
max

k=1,...,p
y1

k ≤ max
k=1,...,p

y2
k .

The max-ordering problem is formulated as

min
x∈X

max
k=1,...,p

fk(x). (2.42)

An optimal solution of (2.42) is weakly efficient. Furthermore, if XE 6= ∅ and (2.42)
has an optimal solution then there exists an optimal solution of (2.42) which is
efficient, and consequently a unique optimal solution of (2.42) is efficient.

It is possible to include a weight vector λ ∈ R
p
≥ so that the weighted max-

ordering problem becomes
min
x∈X

max
k=1,...,p

λk fk(x). (2.43)

Theorem 2.44. Let Y ⊂ R
p
>.

1. Let λ ∈ R
p
≥. If x̂ ∈ X is an optimal solution of (2.43) then x̂ ∈ XwE.

2. If x̂ ∈ XwE there exists a λ ∈ R
p
> such that x̂ is an optimal solution of (2.43).

The max-ordering problem (2.42) can be solved as a single objective optimization
problem. Let z be maxk=1,...,p fk(x). Then (2.42) can be rewritten as

min z

subject to fk(x) ≤ z k = 1, . . . , p

x ∈ X.

(2.44)

Section 2.1.3 presents a very simple max-ordering problem.
A common application of max-ordering problems is location planning. Ehrgott

describes the problem of locating rescue helicopters in South Tyrol, Italy [29].

2.3 generation of the solution sets 87

The objective in this problem is to minimize the distance between potential ac-
cident sites and the closest helicopter location. In order to minimize worst case
response times in an emergency, the problem can be formulated as follows. Let
xh = (xh

1 , xh
2), h ∈ H denote the variables that define helicopter locations and

(ak
1, ak

2), k ∈ 1, . . . , p the potential emergency sites. Optimal helicopter locations are
found by solving

min
x∈R2|H|

max
k∈1,...,p

fk(x) (2.45)

where fk(x) is defined as

fk(x) = min
h∈H

wk‖xh − ak‖2. (2.46)

Operator ‖ · ‖2 denotes the Euclidean norm.

2.3.2.3 Lexicographic Max-Ordering Optimization

An optimal solution of a max-ordering optimization problem is not necessarily
efficient, because the max-ordering optimality concept considers only one of the
p objective values at each x ∈ X, namely the worst. A straightforward idea is
to extend this to consider the second worst objective, the third worst objective,
etc., in the case that the max-ordering problem has several optimal solutions. This
approach is similar to lexicographic optimization and considers a ranking of the
objective values f1(x), . . . , fp(x). The difference is that the ranking is from worst to
best value and thus depends on x. This result is called lexicographic max-ordering
optimality, because it is a combination of max-ordering and lexicographic optimal-
ity, where the lexicographic order is applied to a nonincreasing ordered sequence
of the objectives.

Definition 2.45. 1. For y ∈ Rp let

sort(y) := (sort1(y), . . . , sortp(y))

such that sort1(y) ≥ · · · ≥ sortp(y) be a function that reorders the compo-
nents of y in a nonincreasing way.

2. A feasible solution x̂ ∈ X is called a lexicographic max-ordering solution (lex-
MO solution) if

sort(f (x̂)) ≤lex sort(f (x)) ∀ x ∈ X. (2.47)

A lexicographic max-ordering optimization problem can be written as

min
x∈X

sort(f (x)). (2.48)

According to this definition, we apply a mapping sort : Rp → Rp to the objective
vectors f (x), which reorders the components, and apply the lexicographic order
to compare reordered objective vectors.

This means that sort is used as model map and the lexicographic order for com-
parison. Thus a lexicographic max-ordering problem is denoted by

((X, Rp,f), sort, (Rp,<lex)). (2.49)

The set of optimal solutions will be denoted by Xlex-MO and its image in objective
space by Ylex-MO = f (Xlex-MO).

88 multiobjective optimization

Theorem 2.46. The following relationship between lex-MO solutions, efficient solutions,
and max-ordering solutions holds

Xlex-MO ⊂ XE ∩ XMO (2.50)

and Xlex-MO = XE ∩ XMO if f (x) is the same ∀ x ∈ XMO.

Inclusion (2.50) in Theorem 2.46 indicates that the intersection of the efficient set
and XMO does not contain just the lex-MO solutions in general.

Example 2.47. Consider problem data with feasible set X = {a, b, c, d, e, f }, for
which the objective function values are shown in Table 6.

x f (x) sort f (x)

a (1, 3, 8, 2, 4) (8, 4, 3, 2, 1)

b (4, 3, 8, 1, 1) (8, 4, 3, 1, 1)

c (7, 5, 4, 6, 1) (7, 6, 5, 4, 1)

d (3, 7, 4, 6, 5) (7, 6, 5, 4, 3)

e (4, 7, 5, 6, 5) (7, 6, 5, 5, 4)

f (5, 6, 7, 3, 8) (8, 7, 6, 5, 3)

Table 6: Feasible solutions and objective values in Example 2.47.

The sorted objective vectors are also shown for convenience. It is easily seen
that XMO = {c, d, e}, that XE = {a, b, c, d, f }, and that Xlex-MO = {c}. Therefore
Xlex-MO ⊂ XMO ∩ XE, but the inclusion is strict. Note that lexicographically opti-
mal solutions with respect to all permutations are a, b, c, d, so that Xπ ⊂ XE and
Xlex-MO ⊂ Xπ and both of these inclusions are strict.

Lex-MO solutions are not necessarily lexicographically optimal, because even if
sort defines a permutation of f (x), it is one which depends on x, see Example 2.43,
where Xlex-MO = {0.5} and Xπ = {0, 1}.

The following theorem states that XE can be identified by solving lex-MO prob-
lems with positive weights λ for the objective functions.

Theorem 2.48. A feasible solution x̂ ∈ X is efficient if and only if there exists a λ ∈ R
p
>

such that x̂ is an optimal solution of the lex-MO optimization problem

lexminx∈X sort((λ1 f1(x), . . . , λp fp(x))). (2.51)

Finding the solution of lex-MO problems is not always a straightforward task.
If we apply a procedure like Algorithm 2.1, we would have to solve the max-
ordering problem first. Then fix the value of the worst objective, solve the max-
ordering problem for the remaining p− 1 objectives and so on. Unfortunately, we
do not know which objective will be the worst, and there may be several max-
ordering solutions x with the worst value obtained for different objectives. Taking
into account all possible combinations would mean p! sequences of the objectives,
which would be computationally prohibitive in general.

2.3 generation of the solution sets 89

Example 2.49. Consider the problem in Example 2.47. Let us apply a procedure
like Algorithm 2.1, where the single objective optimization problem to solve at
each iteration is similar to (2.44).

Define X1 = X and k = 1. Solve the problem

min z

subject to f j(x) ≤ z j = 1, 2, 3, 4, 5

x ∈ X1.

(2.52)

We obtain three max-ordering solutions {c, d, e} with f1(c) = 7, f2(d) = f2(e) = 7.
No termination condition is met: (2.52) has not a unique optimal solution, it is not
unbounded and k ≤ 5. To define the next problem to solve we have to fix the value
of the worst objective, namely f1 or f2. Let us fix f2 first. Set X2 = {c, d, e} and
k = 2. Solve the problem

min z

subject to f j(x) ≤ z j = 1, 3, 4, 5

x ∈ X2.

We obtain two max-ordering solutions {d, e} with f4(d) = f4(e) = 6. No termina-
tion condition is met. Fix f4 and set X3 = {d, e} and k = 3. Solve the problem

min z

subject to f j(x) ≤ z j = 1, 3, 5

x ∈ X3.

We have f5(d) = f3(e) = f5(e) = 5 for the two max-ordering solutions {d, e}. We
have again obtained the worst value for two different objectives. No termination
condition is met. So let us fix f3 and set X4 = {d, e} and k = 4. Solve the problem

min z

subject to f j(x) ≤ z j = 1, 5

x ∈ X4.

We obtain two max-ordering solutions {d, e} with f5(d) = f5(e) = 5. No termina-
tion condition is met. Fix f5 and set X5 = {d, e} and k = 5. Solve the problem

min z

subject to f j(x) ≤ z j = 1

x ∈ X5.

We have only one solution, {d}. We still do not know if it is lexicographic max-
ordering optimal or just max-ordering optimal. We could have fixed f5 instead
of f3 to define the single objective problem for k = 4. In this case the problem
would have returned the optimal solution {d} immediately. Moreover, we could
have fixed f1 instead of f2 to define the problem for k = 2. In this case the optimal
solution {c} would have been returned. Now, if we compare c and d, we see that
only c is a lex-MO solution.

We had to take into account several sequences of the objectives to find the lex-
MO solution c. This can be computationally prohibitive in general.

90 multiobjective optimization

There are exceptions, however. In [30] it is shown that lex-MO problems are
easily solved when X is a finite set or the MOP is convex.

3
E V O L U T I O N A RY A L G O R I T H M S F O R S O LV I N G PA R A M E T E R
E X T R A C T I O N P R O B L E M S

Evolutionary Computation (EC) is a generic term for several stochastic search
methods which computationally simulate the natural evolutionary process. EC

embodies the techniques of Genetic Algorithm (GA)s, Evolution Strategy (ES)s
and Evolutionary Programming (EP), collectively known as Evolutionary Algo-
rithm (EA)s [11]. These techniques are loosely based on natural evolution and the
Darwinian concept of survival of the fittest [43]. Common between them are the re-
production, random variation, competition and selection of contending individuals
within some population [11].

In this chapter an overview is presented describing EAs we used to perform pa-
rameter extraction of a compact model of a generic device. Section 3.1 describes ba-
sic EA structural terms and concepts. Section 3.2 introduces the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). The CMA-ES is a stochastic method for
real-parameter (continuous domain) optimization of non-linear, non-convex func-
tions. Two variants of this method are presented: a non-elitist variant which we
used to optimize one output characteristic at a time of an electronic device, and an
elitist variant which is the starting point for developing a multi-objective version
of the CMA-ES. Section 3.3 introduces some further terminology and notation used
in successive sections. Section 3.4 presents the components of multi-objective EA.
In Section 3.5 a description of the Multi Objective Evolutionary Algorithm (MOEA)s
implemented in the Python library for parameter extraction is provided. In Sec-
tion 3.6 the issue of MOEA’s scalability to many-objective problems is addressed.
These problems are encountered in parameter extraction of semiconductor devices
when fitting a compact model against a large number of output characteristics.
Section 3.7 reviews some methodologies for statistical performance assessment of
stochastic multiobjective optimizers.

3.1 ea basics

The following presentation describes basic EA structural terms and concepts; the
described terms’ “meanings” are normally analogous to their genetic counterparts.

In EA terminology, a solution vector x ∈ X, where X is the feasible space
(see Section 2.1.2), is called an individual or a chromosome. Chromosomes are made
of discrete units called genes which take on certain values (alleles) from some ge-
netic alphabet. A locus identifies a gene’s position within the chromosome. Each
gene controls one or more features of the chromosome. In first EA implementa-
tions, genes were assumed to be binary digits. In later implementations, more
varied gene types have been introduced, like real-valued gene types. Normally,
a chromosome corresponds to a unique solution x in the feasible space. This re-
quires a mapping between the solution space and the chromosomes. This mapping
is called an encoding. In fact, EAs work on the encoding of a problem, not on the

91

92 evolutionary algorithms for solving parameter extraction problems

Figure 46: Generalized EA data structures and terminology [11].

problem itself. Finally, a given set a chromosomes is termed a population. These
concepts are pictured in Figure 46 (for both binary and real-valued chromosomes)
and in Figure 47.

In parameter extraction problems, an individual is a particular realization of the
parameter set of a device model. Each parameter represents a specific gene and
it is mapped to another real number by all the implemented population-based
metaheuristic. We have then worked with real-valued chromosomes.

Just as in nature, Evolutionary Operator (EVOP)s operate on an EA’s population
attempting to generate solutions with higher and higher fitness. The three major
EVOPs associated with EAs are mutation, recombination and selection. Illustrating
this, Figure 48 shows bitwise mutation on an encoded string where a 1 is changed
to a 0, or vice versa. Figure 49 shows single-point crossover (a form of recombina-
tion) operating on two parent binary strings; each parent is cut and recombined
with a piece of the other. Above-average individuals in the population are selected
to become members of the next generation more often than below-average indi-
viduals. The selection EVOP effectively gives strings with higher fitness a higher
probability of contributing one or more children in the next generation. Figure 50

shows the operation of the common roulette-wheel selection (a fitness proportional
selection operator) on two different populations of four strings each. Each string
in the population is assigned a portion of the wheel proportional to the ratio of its
fitness and the population’s average fitness.

Real-valued chromosomes also undergo these same EVOPs even if implemented
differently (see [21, 22, 26, 27]).

An EA requires both an objective and fitness function, which are fundamentally
different. The objective function defines the EA’s optimality condition (and is a fea-
ture of the problem domain) while the fitness function (in the algorithm domain)
measures how “well” a particular solution satisfies that condition and assigns a
corresponding real-value to that solution.

When describing EAs, genotype refers to decision variable space X, whereas phe-
notype refers to objective function space Y.

3.1 ea basics 93

Figure 47: Key EA components [11].

Figure 48: Bitwise mutation [11].

Figure 49: Single-point crossover [11].

94 evolutionary algorithms for solving parameter extraction problems

Figure 50: Roulette wheel selection [11].

Many other selection techniques are implemented by EAs, e.g., tournament and
ranking [3]. Tournament selection operates by randomly choosing some number q
individuals from the generational population and selecting the “best” to survive
into the next generation. Binary tournaments (q = 2) are probably the most com-
mon. Ranking assigns selection probabilities solely on an individual’s rank, ignor-
ing absolute fitness value. Two other selection techniques are the (µ+ λ) and (µ, λ)

selection strategies, where µ represents the number of parent solutions and λ the
number of children. The former selects the µ best individuals drawing from both
the parents and children, the latter selects µ individuals from the child population
only.

The choice of EA selection technique influences two conflicting goals that are
common to all EA search: exploration and exploitation [3]. One goal is achieved at
the expense of another. Before starting a discussion about EAs for multi-objective
optimization, the CMA-ES will be introduced in the next section. The CMA-ES is
an evolutionary algorithm for difficult non-linear non-convex single objective opti-
mization problems in continuous domain.

3.2 the cma evolution strategy for single objective optimization

The CMA-ES is an evolutionary algorithm for difficult non-linear non-convex opti-
mization problems in continuous domain. The CMA-ES is typically applied to
unconstrained or bounded constraint optimization problems, and search space di-
mension between three and a hundred. The method should be applied if derivative
based methods, e.g. quasi-Newton BFGS or conjugate gradient [79], fail due to a
rugged search landscape (e.g. discontinuities, sharp bends or ridges, noise, local
optima, outliers). If second order derivative based methods are successful, they are
usually faster than the CMA-ES [46].

Similar to quasi-Newton methods (but not inspired by them), the CMA-ES is a
second order approach estimating a positive definite matrix within an iterative pro-
cedure (more precisely: a covariance matrix, that is, on convex-quadratic functions,
closely related to the inverse Hessian [48]). This makes the method feasible on non-
separable and/or badly conditioned problems. Unlike quasi-Newton methods, the

3.2 the cma evolution strategy for single objective optimization 95

CMA-ES does not use or approximate gradients and does not even presume or
require their existence. This makes the method feasible on non-smooth and even
non-continuous problems, as well as on multimodal and/or noisy problems. Two
studies showed that it was able to find the global optimum on some test func-
tions [47], [45].

The CMA-ES has several invariance properties. Two of them are:

• Invariance to order preserving (i.e. strictly monotonic) transformations of
the objective function value. For example, the performance of CMA-ES when
optimizing ‖x‖2 or 3‖x‖0.2 − 100 is identical.

• Invariance to angle preserving (rigid) transformations of the search space
(including rotation, reflection, and translation), if the same transformation is
applied to the initial search point.

Invariance properties are very important since they imply uniform behavior on
classes of functions and therefore allow the generalization of empirical results.

The user is not required to tune strategy internal parameters. Setting of good
(default) strategy parameters is part of the algorithm itself. The default population
size λ is comparatively small to allow for fast convergence. Restarts with increasing
population size improve the global search performance [2].

For a comprehensive introduction to the CMA-ES, we suggest to go through
the tutorial slides presented by Anne Auger and Nikolaus Hansen at the Genetic
and Evolutionary Computation Conference (GECCO) 2011, available at http://
www.lri.fr/~hansen/cmaesintro.html.

Before introducing two variants of the CMA-ES in Section 3.2.4 and Section 3.2.5,
a few required fundamentals are summed up.

3.2.1 Eigenvalue Decomposition of a Positive Definite Matrix

A symmetric, positive definite matrix, C ∈ Rn×n, is characterized in that

xTCx > 0, ∀x ∈ Rn \ {0}

The matrix C has an orthonormal basis of eigenvectors, B = [b1, . . . , bn], with
corresponding eigenvalues d2

1, . . . , d2
n > 0. It can then be written as

C = BD2BT, (3.1)

where

• D = diag(d1, . . . , dn) is the diagonal matrix with square roots of eigenvalues
of C as diagonal elements.

• D2 = DD = diag(d1, . . . , dn)2 = diag(d2
1, . . . , d2

n) is a diagonal matrix with
eigenvalues of C as diagonal elements.

The matrix decomposition (3.1) is unique, apart from signs of column of B and per-
mutations of columns in B and D2 respectively, given all eigenvalues are different.

http://www.lri.fr/~hansen/cmaesintro.html
http://www.lri.fr/~hansen/cmaesintro.html

96 evolutionary algorithms for solving parameter extraction problems

Given the decomposition (3.1), the inverse C−1 can be computed via

C−1 = (BD2BT)−1

= (BT)−1D−2B−1

= BD−2BT

= B diag
(1

d2
1

, . . . ,
1
d2

n

)
.

The square root of C is defined as

C
1
2 = BDBT

and therefore

C−
1
2 = BD−1BT

= B diag
(1

d1
, . . . ,

1
dn

)
BT.

3.2.2 The Multivariate Normal Distribution

A multivariate normal distribution, N(m, C), has a unimodal, “bell-shaped” den-
sity, where the top of the bell corresponds to the distribution mean, m. The distri-
bution N(m, C) is uniquely determined by its mean m ∈ Rn and its symmetric
and positive definite covariance matrix C ∈ Rn×n. Covariance (positive definite)
matrices can be identified with the (hyper-)ellipsoid

{
x ∈ Rn

∣∣ xTC−1x = 1
}

, as
shown in Figure 51. The ellipsoid is a surface of equal density of the distribution.
The principal axes of the ellipsoid correspond to the eigenvectors of C, the squared
axes lengths correspond to the eigenvalues. The eigenvalue decomposition is given
by (3.1). If D = σI, where σ ∈ R+ and I denotes the identity matrix, C = σ2I and
the ellipsoid is isotropic (see Figure 51a). If B = I, then C = D2 is a diagonal
matrix and the ellipsoid is axis parallel oriented (see Figure 51b). In the coordinate
system given by the columns of B, the distribution N(0, C) is always uncorrelated.

The normal distribution N(m, C) can be written in different ways

N(m, C) ∼m+ N(0, C)

∼m+ C
1
2 N(0, I)

∼m+ BD BTN(0, I)︸ ︷︷ ︸
∼N(0,I)

∼m+ B DN(0, I)︸ ︷︷ ︸
∼N(0,D2)

,

(3.2)

where “∼” denotes equality in distribution. The last row can be well interpreted,
from right to left

• N(0, I) produces an isotropic distribution as in Figure 51a.

• D scales the isotropic distribution within the coordinate axes as in Figure 51b.
DN(0, I) ∼ N(0, D2) has n independent components. The matrix D can be
interpreted as (individual) step-size matrix and its diagonal entries are the
standard deviations of the components.

3.2 the cma evolution strategy for single objective optimization 97

(a) N(0, σ2I) (b) N(0, D2) (c) N(0, C)

Figure 51: Ellipsoids depicting one-σ lines of equal density of six different normal distri-
butions, where σ ∈ R+, D is a diagonal matrix, and C is a positive definite full
covariance matrix.

• B defines a new orientation for the ellipsoid, where the new principal axes
of the ellipsoid correspond to the columns of B.

Equation (3.2) is useful to compute N(m, C) distributed vectors, because N(0, I)
is a vector of independent (0, 1)-normally distributed numbers that can easily be
realized on a computer.

3.2.3 Randomized Black Box Optimization

Let us consider the problem of minimization of a single objective function

z : Rn → R, x 7→ z(x).

Black box optimization refers to the situation where function values of evaluated
search points are the only accessible information on z. This situation may happen
when the search landscape is rugged because it comprises discontinuities, sharp
ridges, local optima, etc.

Stochastic black box search algorithms are regarded to be robust in such diffi-
cult situations. The CMA-ES belongs to this class of algorithms. In particular, it is
designed to tackle, additionally, ill-conditioned and non-separable problems, i.e.
problems which cannot be solved by solving 1-dimensional problems separately.

A stochastic black box search algorithm is outlined in Algorithm 3.1. In the
CMA-ES the search distribution, P is a multivariate normal distribution. Given all
variances and covariances, the normal distribution has the largest entropy of all
distributions in Rn. Furthermore, since it is isotropic, it does not favor any coordi-
nate direction. Both makes the normal distribution a particularly attractive tool for
randomized search.

According to the notation introduced in Section 3.1, let µ be the number of
parents and λ the number of offspring of an evolution strategy. The (µ, λ)-CMA-
ES is presented in Section 3.2.4. We used this variant of the CMA-ES to perform
single objective optimizations. Section 3.2.5 presents the (1 + λ)-CMA-ES, which
is an elitist algorithm used to develop an adaptation of the CMA-ES to multi-
objective optimization.

98 evolutionary algorithms for solving parameter extraction problems

Algorithm 3.1 Stochastic black box search.

Input: objective function z, search distribution P, function for updating strategy
parameters Fθ

Output: local (possibly global) optimum
1: Initialize distribution parameters θ(0)

2: Set population size λ ∈N

3: Initialize generation counter t, t← 0
4: repeat
5: Sample λ independent points from distribution P(x|θ(t))→ x1, . . . ,xλ

6: Evaluate the sample x1, . . . ,xλ on z
7: Update parameters θ(t+1) ← Fθ(θ

(t),x1, . . . ,xλ, z(x1), . . . , z(xλ))

8: t← t + 1
9: until termination criterion is met

3.2.4 The non-elitist CMA-ES with weighted recombination

In this section, a concise description of the (µ, λ)-CMA-ES is given. For a full
description of this algorithm, see [48]. The following nomenclature is used:

• µ ≤ λ is the parent population size, i.e. the number of points selected to
compute the new mean m(t+1) of the search distribution.

• yk ∼ N(0, C), for k = 1, . . . , λ, are realizations from a multivariate normal
distribution with zero mean and covariance matrix C.

• B, D result from an eigenvalue decomposition of the covariance matrix C
with C = BD2BT (see Section 3.2.1).

• x ∈ Rn, for k = 1, . . . , λ. Sample of λ search points.

• wi=1,...,µ ∈ R+ are positive weight coefficients for recombination.

• 〈y〉w = ∑
µ
i=1 wiyi:λ step of the distribution mean disregarding step-size σ.

• yi:λ = (xi:λ −m)/σ, see xi:λ below.

• xi:λ ∈ Rn, ith best point out of x1, . . . ,xλ from Algorithm 3.2, line 8. The in-
dex i : λ denotes the index of the ith ranked point, that is z(x1:λ) ≤ z(x2:λ) ≤
· · · ≤ z(xλ:λ).

• µeff =
(
∑

µ
i=1 w2

i
)−1 is the variance effective selection mass, see [48]. It holds

1 ≤ µeff ≤ µ.

• C−
1
2 = BD−1BT, see B, D above. From the definitions it follows

C−
1
2 〈y〉w = B 〈g〉w

with 〈g〉w = ∑
µ
i=1 wigi:λ.

• E(·) is the expected value of a random variable. In particular

E(‖N(0, I)‖) =
√

2Γ
(n + 1

2
)
/Γ
(n

2
)
≈
√

n
(
1− 1

4n
+

1
21n2

)
.

3.2 the cma evolution strategy for single objective optimization 99

• hσ =

1 if ‖pσ‖√

1−(1−cσ)2(t+1)
<
(
1.4 + 2

n+1

)
E(‖N(0, I)‖)

0 otherwise
, where t is the gen-

eration number. The Heaviside function hσ stalls the update of pc in Algo-
rithm 3.2, line 14, if ‖pσ‖ is large. This prevents a too fast increase of axes
of C in a linear surrounding, i.e. when the step-size is far too small. This is
useful when the initial step-size is chosen far too small or when the objective
function changes in time.

• δ(hσ) = (1− hσ)cc(2− cc) ≤ 1 is of minor relevance. In the (unusual) case of
hσ = 0, it substitutes for the second summand from Algorithm 3.2, line 15.

Algorithm 3.2 (µ/µw, λ)-CMA-ES

Input: Objective function z
Output: A local minimum of the objective function

1: Set parameters λ, µ, wi=1,...,µ, cσ, dσ, cc, c1, and cµ to their default values accord-
ing to Table 7

2: Initialize evolution paths pσ ← 0,pc ← 0, covariance matrix C← I
3: Initialize generation counter t← 0
4: repeat
5: for k = 1, . . . , λ do . Sample new population of search points
6: gk ∼ N(0, I)
7: yk ← BDgk ∼ N(0, C)

8: xk ←m+ σyk ∼ N(m, σ2C)

9: end for
Selection and recombination

10: 〈y〉w ← ∑
µ
i=1 wiyi:λ where ∑

µ
i=1 wi = 1.wi > 0

11: m←m+ σ 〈y〉w = ∑
µ
i=1 wixi:λ

Step-size control
12: pσ ← (1− cσ)pσ +

√
cσ(2− cσ)µeffC−

1
2 〈y〉w

13: σ← σ · exp
(

cσ
dσ

(
‖pσ‖

E(‖N(0,I)‖) − 1
))

Covariance matrix adaptation
14: pc ← (1− cc)pc + hσ

√
cc(2− cc)µeff 〈y〉w

15: C← (1− c1 − cµ)C + c1(pcp
T + δ(hσ)C) + cµ ∑

µ
i=1 wiyi:λy

T
i:λ

16: t← t + 1
17: until termination criterion is met

100 evolutionary algorithms for solving parameter extraction problems

Selection and recombination:

λ = 4 + b3 ln nc, µ′ = λ
2 , µ = bµ′c

wi =
w′i

∑
µ
j=1 w′j

, w′i = ln(µ′ + 0.5)− ln i i = 1, . . . , µ

Step-size control:

cσ = µeff+2
n+µeff+5 , dσ = 1 + 2 max

(
0,
√

µeff−1
n+1 − 1

)
+ cσ

Covariance matrix adaptation:

cc =
4+µeff/n

n+4+2µeff/n

c1 = 2
(n+1.3)2+µeff

cµ = min
(

1− c1, 2 µeff−2+1/µeff
(n+2)2+µeff

)
Table 7: Default strategy parameters of the non-elitist CMA, where µeff =

1
∑

µ
i=1 w2

i
≥ 1 and

∑
µ
i=1 wi = 1, taken from [48].

The CMA-ES overcomes typical problems that are often associated with evolu-
tionary algorithms.

1. Poor performance on badly scaled and/or highly non-separable objective
functions. Line 15 adapts the search distribution to badly scaled and non-
separable problems.

2. The need to use large population sizes. A strategy which is often used by evo-
lutionary algorithms in order to prevent the degeneration of the population
into a subspace is using large population sizes. In the CMA-ES, the popula-
tion size can be freely chosen, because the learning rates c1 and cµ in line 15

prevent the degeneration even for small population sizes, e.g. λ = 9. Small
population sizes usually allow to achieve faster convergence, large popula-
tion sizes help to avoid local optima.

3. Premature convergence of the population. Step-size control in line 13 pre-
vents the population to converge prematurely. It does not prevent the search
to be trapped in a local optimum.

3.2.5 A Single-Objective Elitist CMA Evolution Strategy

In this section a single-objective, elitist CMA-ES with (1+ λ)-selection is presented.
This algorithm is the starting point for developing a variant of the CMA-ES for
multi-objective optimization. For a detailed study of this algorithm, see [53].

In the (1 + λ)-CMA-ES, the following nomenclature is used:

3.2 the cma evolution strategy for single objective optimization 101

• Each individual a, is a 5-tuple a = [x, p̄succ, σ,pc, C] comprising its candidate
solution vector x ∈ Rn, an average success rate p̄succ ∈ [0, 1], the global step
size σ ∈ R+, an evolution path pc ∈ Rn, and the covariance matrix C ∈ Rn×n.

• z : Rn → R,x 7→ z(x) is the objective function to be minimized.

• λ
(t+1)
succ =

∣∣∣{ i = 1, . . . , λ
∣∣∣ z(x(t+1)

i) ≤ z(x(t)
parent)

}∣∣∣ is the number of successful
offspring.

• N(m, C) is a multi-variate normal distribution with mean vector m and co-
variance matrix C. The notation x ∼ N(m, C) denotes that random variable
x is distributed according to the distribution N(m, C).

• x
(t)
1:λ ∈ Rn is the best point from

{
x
(t)
1 , . . . ,x(t)

λ

}
, that is, z(x(t)

1:λ) ≤ z(x(t)
i) for

all i = 1, . . . , λ.

Algorithm 3.3 (1 + λ)-CMA-ES

Input: Number of offspring λ, damping parameter d, target success probability
ptarget

succ , success rate averaging parameter cp, cumulation time horizon parameter
cc, covariance matrix learning rate ccov, objective function z

Output: A minimum of the objective function
1: t← 0
2: Initialize a(t)parent
3: repeat
4: a(t+1)

parent ← a(t)parent
5: for k = 1, . . . , λ do
6: x

(t+1)
k ∼ N(x

(t)
parent, σ(t)2

C(t))

7: end for

8: updateStepSize
(

a(t+1)
parent,

λ
(t+1)
succ
λ

)
9: if z(x(t+1)

1:λ) ≤ z(x(t)
parent) then

10: x
(t+1)
parent ← x

(t+1)
1:λ

11: updateCovariance
(

a(t+1)
parent,

x
(t+1)
parent−x

(t)
parent

σ
(t)
parent

)
12: end if
13: t← t + 1
14: until termination criterion is met

The (1 + λ)-CMA-ES is given in Algorithm 3.3. It works as follows:

• λ new candidate solutions are sampled, lines 5–7.

Algorithm 3.4 updateStepSize(a = [x, p̄succ, σ,pc, C], psucc)

1: p̄succ ← (1− cp) p̄succ + cp psucc

2: σ← σ · exp
(

1
d

p̄succ−ptarget
succ

1−ptarget
succ

)

102 evolutionary algorithms for solving parameter extraction problems

• The step size is updated based on the success rate psucc = λ
(t+1)
succ /λ with

a learning rate cp(0 < cp ≤ 1), line 8. This update rule is shown in Algo-
rithm 3.4. It implements the well-known heuristic that the step size should
be increased if the success rate (i.e., the fraction of offspring better than the
parent) is high, and the step size should be decreased if the success rate is
low. The rule is reflected in the argument to the exponential function. For
p̄succ > ptarget

succ the argument is greater than zero and the step size increases;
for p̄succ < ptarget

succ the argument is smaller than zero and the step size de-
creases; for p̄succ = ptarget

succ the argument becomes zero and no change of σ

takes place.

Algorithm 3.5 updateCovariance(a = [x, p̄succ, σ,pc, C],xstep ∈ Rn)

1: if p̄succ < pthresh then
2: pc ← (1− cc)pc +

√
cc(2− cc)xstep

3: C← (1− ccov)C + ccov · pcp
T
c

4: else
5: pc ← (1− cc)pc

6: C← (1− ccov)C + ccov · (pcp
T
c + cc(2− cc)C)

7: end if

• If the best new candidate solution was better than the parent individual
(see line 9), the covariance matrix is updated, line 11. The covariance up-
date method is given in Algorithm 3.5. The update of the evolution path pc

depends on the value of p̄succ. If the smoothed success rate p̄succ is above
pthresh < 0.5, the update of the evolution path is stalled. This prevents a too
fast increase of axes of C when the step size is far too small. If the smoothed
success rate p̄succ is low, the update of pc is given by an exponential smooth-
ing. The constants cc and ccov (0 ≤ ccov < cc ≤ 1) are learning rates for the
evolution path and the covariance matrix, respectively. The evolution path
is used to update the covariance matrix. The new covariance matrix is a
weighted mean of the old covariance matrix and the outer product of pc.
In the second case (Alg. 3.5, line 5), the second summand in the update of pc

is missing and the length of pc shrinks. The term cc(2− cc)C (Alg. 3.5, line 6)
compensates for this shrinking in C.

Simulation results of the (1 + λ)-CMA-ES are shown in [53].

3.3 using multi-objective evolutionary algorithms

Evolutionary algorithms for dealing with multiobjective optimization problems, or
MOEAs, are metaheuristics which deal simultaneously with a set of possible solu-
tions (the population). This allows to find several members of the Pareto optimal
set in a single “run” of the algorithm, instead of having to perform a series of sep-
arate runs. Evolutionary algorithms are less susceptible to the shape or continuity
of the Pareto front (e.g. they can easily deal with discontinuous or concave Pareto
fronts), whereas these two issues are a real concern for mathematical programming

3.4 design issues and components of multi-objective evolutionary algorithms 103

1 3 4 2a 5

General MOEA Tasks:

1. Initialize Population
2. Fitness Evaluation
2a. Vector/Fitness Transformation
3. Recombination
4. Mutation
5. Selection

2a

Loop

2
(1, 2, . . . , p)

2
(1, 2, . . . , p)

Figure 52: MOEA task decomposition.

techniques, see Section 2.3.1.1, for example. Additionally, they have the ability to
find several alternative trade-offs.

Figure 52 shows a general MOEA’s task decomposition. Task 2 computes p
(where p ≥ 2) fitness functions. In addition, because MOEAs expect a single fit-
ness value with which to perform selection, processing is sometimes required to
transform MOEA solutions’ fitness vectors into a scalar (task 2a).

3.3.1 Pareto Notation

During MOEA execution, a “current” set of Pareto optimal solutions (with respect
to the current MOEA generational population) is determined at each EA generation
and termed Pcurrent(t), where t represents the generation number. Some MOEA im-
plementations which will be presented also use a secondary population storing
nondominated solutions found through the generations [11]. Corresponding vec-
tors of this set must be periodically tested and solutions whose associated vectors
are dominated removed.

This secondary population is named Pknown(t). This term is also annotated with
t to reflect its possible changes in membership during MOEA execution. Pknown(0)
is defined as the empty set (∅) and Pknown alone as the final set of solutions
returned by the MOEA at termination. Different secondary population storage
strategies exist; the simplest is when Pcurrent(t) is added at each generation (i.e.,
Pcurrent(t)∪ Pknown(t− 1)). At any given time, Pknown(t) is thus the set of Pareto op-
timal solutions yet found by the MOEA through generation t. The true Pareto optimal
set (termed Ptrue) is not explicitly known for problems of any difficulty.

Pcurrent(t), Pknown and Ptrue are sets of MOEA genotypes; each set’s correspond-
ing phenotypes form a Pareto front. The associated Pareto front for each of these
solution sets is called PFcurrent(t), PFknown and PFtrue.

3.4 design issues and components of multi-objective evolution-
ary algorithms

In this section, we focus on important issues while designing a MOEA. We will
make use of notation introduced in Section 3.3.1.

The ultimate goal of a multi-objective optimization algorithm is to identify so-
lutions in the Pareto optimal set. Achieving the exact Pareto front of an arbitrary

104 evolutionary algorithms for solving parameter extraction problems

problem is usually quite difficult. MOEAs try to approximate it as well as possi-
ble. With this concern in mind, a MOEA should achieve the following conflicting
goals [108]:

goal 1 . Progress towards points on PFtrue. The best known Pareto front should
be as close as possible to the true Pareto front.

goal 2 . Maintain diversity of: points on PFknown and/or on Pknown. Solutions in
the best-known Pareto front, PFknown (phenotype), and/or in the best-known
Pareto optimal set, Pknown (genotype), should be uniformly distributed in
order to provide the decision-maker a true picture of trade-offs.

goal 3 . Provide the decision-maker with a limited number of PFknown points.

In Table 8, highlights of the MOEAs available in the Python library for param-
eter extraction with their advantages and disadvantages are given. In order to
introduce these MOEAs, we describe the techniques they implement to attain the
goals in multi-objective optimization. These techniques are listed below as follows
according to their support to such goals:

goal 1 . Progress towards points on PFtrue.

• Dominance-based ranking.

• Contributing hypervolume.

• Elitism.

goal 2 . Maintain diversity of: points on PFknown and/or on Pknown.

• Fitness sharing/niching.

• Crowding distance.

• Contributing hypervolume.

Let us introduce some notations which will be used in the following sections:

• Pt is the population at generation t;

• N is the population size;

• zq is the qth objective function;

• p is the number of objectives.

3.4.1 Dominance-based ranking

Dominance-based ranking approaches explicitly utilize the concept of Pareto dom-
inance in evaluating fitness or assigning selection probability to solutions. The pop-
ulation is ranked according to a dominance rule, and then each solution is assigned
a fitness value based on its rank in the population. A lower rank corresponds to a
better solution in the following discussions.

The following procedure is an example of a Pareto ranking technique which
sorts a population into different nondomination levels:

3.4 design issues and components of multi-objective evolutionary algorithms 105

a
l

g
o

r
i
t

h
m

f
i
t

n
e

s
s

a
s

s
i
g

n
m

e
n

t
d

i
v

e
r

s
i
t

y
m

e
c

h
a

n
i
s

m
e

l
i
t

i
s

m
e

x
t

e
r

n
a

l
p

o
p

u
l

a
t

i
o

n
a

d
v

a
n

t
a

g
e

s
d

i
s

a
d

v
a

n
t

a
g

e
s

N
SG

A
-I

I
[2

4
]

R
an

ki
ng

ba
se

d
on

no
n-

do
m

in
at

io
n

so
rt

in
g

C
ro

w
di

ng
di

s-
ta

nc
e

Ye
s

N
o

Si
ng

le
pa

ra
m

et
er

(N
),

w
el

l
te

st
ed

,
ef

fic
ie

nt

C
ro

w
di

ng
di

s-
ta

nc
e

w
or

ks
in

ob
je

ct
iv

e
sp

ac
e

on
ly

SP
EA

2
[1

0
9
]

St
re

ng
th

of
do

m
i-

na
to

rs
D

en
si

ty
ba

se
d

on
th

e
k-

th
ne

ar
es

t
ne

ig
hb

or

Ye
s

Ye
s

W
el

l
te

st
ed

,
no

pa
ra

m
et

er
fo

r
cl

us
te

ri
ng

,
ex

-
tr

em
e

po
in

ts
ar

e
pr

es
er

ve
d

C
om

pu
ta

ti
on

al
ly

ex
pe

ns
iv

e
fit

-
ne

ss
an

d
de

ns
it

y
ca

lc
ul

at
io

n

SP
EA

2
+

[6
2

]
St

re
ng

th
of

do
m

i-
na

to
rs

D
en

si
ty

ba
se

d
on

th
e

k-
th

ne
ar

es
t

ne
ig

hb
or

Ye
s

Ye
s

Im
pr

ov
ed

SP
EA

2
,

de
ns

it
y

ca
lc

u-
la

ti
on

in
bo

th
ob

je
ct

iv
e

an
d

de
ci

si
on

sp
ac

e

C
om

pu
ta

ti
on

al
ly

ex
pe

ns
iv

e
fit

-
ne

ss
an

d
de

ns
it

y
ca

lc
ul

at
io

n

PA
ES

[6
3
]

Pa
re

to
do

m
in

an
ce

is
us

ed
to

re
pl

ac
e

a
pa

re
nt

if
of

f-
sp

ri
ng

do
m

in
at

es

C
el

l-
ba

se
d

de
n-

si
ty

as
ti

e
br

ea
ke

r
be

tw
ee

n
of

fs
pr

in
g

an
d

pa
re

nt

Ye
s

Ye
s

R
an

do
m

m
ut

at
io

n
hi

ll-
cl

im
bi

ng
st

ra
t-

eg
y,

ea
sy

to
im

-
pl

em
en

t,
co

m
pu

-
ta

ti
on

al
ly

ef
fic

ie
nt

N
ot

a
po

pu
la

ti
on

ba
se

d
ap

pr
oa

ch
,

pe
rf

or
m

an
ce

de
-

pe
nd

s
on

ce
ll

si
ze

s

M
O

-C
M

A
-E

S
[5

3
]

R
an

ki
ng

ba
se

d
on

no
n-

do
m

in
at

io
n

so
rt

in
g

an
d

co
nt

ri
bu

ti
ng

hy
pe

rv
ol

um
e

C
on

tr
ib

ut
in

g
hy

pe
rv

ol
um

e
Ye

s
Ye

s
In

va
ri

an
ce

ag
ai

ns
t

ro
ta

ti
on

of
th

e
se

ar
ch

sp
ac

e

H
yp

er
vo

lu
m

e
co

m
pu

ta
ti

on
ex

po
ne

nt
ia

l
in

th
e

nu
m

be
r

of
ob

je
ct

iv
es

Ta
bl

e
8
:L

is
t

of
M

O
EA

s
im

pl
em

en
te

d
in

th
e

Py
th

on
lib

ra
ry

fo
r

pa
ra

m
et

er
ex

tr
ac

ti
on

.

106 evolutionary algorithms for solving parameter extraction problems

a

f

b

g

i

e

c

j

k

l

d

h
n

m

F1

z2

z1

F2
F3

F41

1

1

1

1

2

2

2

2

3

3

3

4

4

Figure 53: Example of NSGA-II ranking.

step 1 . Set i = 1 and TP = Pt.

step 2 . Identify nondominated solutions in TP and assign them to Fi.

step 3 . For every solution x ∈ Fi assign rank r1(x, t) = i.

step 4 . Set TP = TP \ Fi. If TP = ∅, stop, else set i = i + 1 and go to Step 2.

In the procedure above, F1, F2, . . . , are called nondominated fronts, and F1 is the
Pareto front of population Pt. If it is not carefully implemented, its worst-case
complexity will be O(Np3) [24].

The Non Dominated Sorting Genetic Algorithm II (NSGA-II) [24] uses a more ef-
ficient nondominated sorting procedure with O(Mp2) computational complexity.
Figure 53 illustrates an example of the NSGA-II ranking method. The same pro-
cedure is adopted in the Multi-Objective Covariance Matrix Adaption Evolution
Strategy (MO-CMA-ES) [53].

In the Strength Pareto Evolutionary Algorithm 2 (SPEA2), an external archive
At of a fixed size stores nondominated solutions that have been investigated up
to generation t [109]. Each individual x in the archive At and the population Pt is
assigned a strength value s(x, t), representing the number of solutions it dominates

s(x, t) = | { y | y ∈ Pt ∪ At ∧ i � j } |

where | · | denotes the cardinality of a set and the symbol � corresponds to the
Pareto dominance relation (see Section 2.1.4). On the basis of the s values, the raw
fitness r2(x, t) of an individual x is calculated as

r2(x, t) = ∑
j∈Pt∪At,j�i

s(j, t).

Figure 54 shows an example of the computation of raw ranks used by the SPEA2.
A similar ranking method has been used in the Improved Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2+) [62].

3.4 design issues and components of multi-objective evolutionary algorithms 107

a

f

b

g

i

e

c

j

k

l

d

h
n

m

z1

z2
0

0

0

0

0

2

7

7

12

14

16

21

14

26

Figure 54: Example of SPEA2 raw rank computation.

Like the other MOEAs, the Pareto Archived Evolution Strategy (PAES) [63] com-
pares solutions according to a dominance rule.

3.4.2 Diversity

Maintaining a diverse population is an important consideration in MOEAs to obtain
solutions uniformly distributed over the Pareto front. Without taking preventive
measures, the population tends to form relatively few clusters in MOEAs. This
phenomenon is called genetic drift [11]. We will describe the approaches for pre-
venting genetic drift implemented in the MOEAs considered in this work.

fitness sharing/niching . In this case, one must count how many solutions
are located within the same neighborhood (or niche), and the fitness is de-
creased proportionally to the number of individuals sharing the same neigh-
borhood.

In the SPEA2 [109] the density estimation is given by the inverse of the dis-
tance to the kth nearest neighbor. For each individual x the distances (in
objective space) to all individuals y in archive and population are calculated
and stored in a list. After sorting the list in increasing order, the kth element
gives the distance sought, denoted as σk

i . Parameter k can be specified by the
user. Otherwise is taken as follows: k =

√
N + N̄, being N̄ the size of the

archive. Afterwards, the density d(x, t) corresponding to x is defined by

d(x, t) =
1

σk
i + 2

.

The final fitness of an individual x is then computed as f (x, t) = d(x, t) +
r2(x, t).

The SPEA2+ [62] tries to maintain diversity of the solution in the objective
and the decision space. Nondominated solutions are stored in two external

108 evolutionary algorithms for solving parameter extraction problems

z2

z1

xcd2(x)

cd1(x)

Figure 55: Definition of crowding distance.

archives AO
t , AV

t . Density estimation is performed following the same method
used in SPEA2, but distances are calculated in the objective space for each
individual x ∈ AO

t ∪ Pt and in the decision space for each individual x ∈
AV

t ∪ Pt. Archive AO
t is the same as At in SPEA2 implementation.

crowding distance . The aim of crowding distance methods is to obtain a uni-
form spread of solutions along the best-known Pareto front without using
a fitness sharing parameter like parameter k used by SPEA2 and SPEA2+.
NSGA-II [24] uses a crowding distance approach as follows (see Figure 55):

step 1 . Rank the population and identify nondominated fronts F1, F2, . . . , FR.
For each front j = 1, . . . , R repeat Steps 2 and 3.

step 2 . For each objective function q, sort the solutions in Fj in ascending
order. Let l = |Fj| and x[1,q] represent the ith solution in the sorted
list with respect to the objective function q. Assign cdq(x[1,q]) = ∞ and
cdq(x[l,q]) = ∞, and for i = 2, . . . , l − 1 assign

cdq(x[i,q]) =
zq(x[i+1,q])− zq(x[i−1,q])

zmax
q − zmin

q
.

step 3 . To find the total crowding distance cd(x) of a solution x, sum the
solution’s crowding distances with respect to each objective

cd(x) =
p

∑
q=1

cdq(x).

The main advantage of this crowding approach is that a measure of popula-
tion density around a solution is computed without requiring a user-defined
parameter such as the kth closest neighbor.

3.4 design issues and components of multi-objective evolutionary algorithms 109

contributing hypervolume . Let A′ be a subset of the decision space and
let the nondominated solutions in A′ be denoted by A′E. The hypervolume
measure or S-metric can be defined as the Lebesgue measure Λ (i.e., the
volume) of the union of hypercuboids in the objective space [11]

Saref(A′) = Λ

 ⋃
a∈A′E

{
(z1(a

′), . . . , zp(a
′))
∣∣ a � a′ � aref

} ,

where aref is an appropriately chosen reference point. The contributing hy-
pervolume of a point a ∈ A′E is given by

∆S(a, A′) := Saref(A′)− Saref(A′ \ {a}).

The rank s(a, A′) of an individual a can be defined recursively based on
its contribution to the hypervolume. The individual contributing least to the
hypervolume of A′ gets the worst rank. The individual contributing least to
the hypervolume of A′ without the individual with the worst rank is assigned
the second worst rank and so on.

For two objectives, this ranking can be calculated efficiently in log-linear time
in the number of individuals using appropriate data structures and the equa-
tion for ∆S(a, A′) given by [34]. The scaling behavior is exponential in the
number of objectives in the worst case [97].

Let A′ be now a set of nondominated solutions with the same level of non-
dominance. In the MO-CMA-ES, solutions in A′ are ranked according to how
much they contribute to the hypervolume of A′. This strategy has two effects:

• It promotes diversity of solutions. A uniformly distributed set of solu-
tions would mean a larger hypervolume metric value (hence better) than
a set of clustered solutions.

• It pushes the population towards PFtrue. Consider two nondominated so-
lutions with the same level of nondominance x1 and x2. If the contribut-
ing hypervolume of x1 is greater than that of x2, selecting x1 instead of
x2 will yields a better approximation Pknown of Ptrue.

cell-based density. The objective space is divided in p-dimensional cells. The
number of solutions in each cell is defined as the density of the cell, and the
density of a solution is equal to the density of the cell in which the solution is
located. This density information is used to achieve diversity similarly to the
fitness sharing approach. This technique has been implemented in PAES [63].
Figure 56 shows a graphical illustration of PAES’ grid subdivision.

3.4.3 Elitism

Elitism in the context of single-objective EAs means that the best solution found so
far during the search always survives to the next generation. In this respect, all non-
dominated solutions discovered by a MOEA are considered elite solutions. However,
implementation of elitism in multi-objective optimization is not as straightforward

110 evolutionary algorithms for solving parameter extraction problems

z2

z1

30 0 0

111 0

0012

Figure 56: Graphical illustration of the grid subdivision approach used by PAES.

as in single objective optimization mainly due to the large number of possible
elitist solutions. As discussed in [107] MOEAs using elitist strategies tend to out-
perform their non-elitist counterparts. Two strategies have been used to implement
elitism:

• maintaining elitist solutions in the population;

• storing elitist solutions in an external secondary list and reintroducing them
to the population.

3.4.3.1 Strategies to maintain elitist solutions in the population

Random selection does not ensure that a nondominated solution will survive to the
next generation. A straightforward implementation of elitism in a MOEA is to copy
all nondominated solutions in population Pt to population Pt+1, then fill the rest of
Pt+1 by selecting from the remaining dominated solutions in Pt. This will not work
when the total number of nondominated parent and offspring solutions is larger
than N. We will describe the approaches followed by NSGA-II and MO-CMA-ES to
address this problem.

NSGA-II uses a fixed population size of N. In generation t, an offspring popu-
lation Qt of size N is created from parent population Pt and nondominated fronts
F1, F2, . . . , FR are identified in the combined population Pt ∪ Qt. The next popula-
tion Pt+1 is filled starting from solutions in F1, then F2, and so on as follows. Let
k be the index of a nondominated front Fk such that |F1 ∪ F2 ∪ · · · ∪ Fk| ≤ N and
|F1 ∪ F2 ∪ · · · ∪ Fk ∪ Fk+1| > N. First, all solutions in fronts F1, F2, . . . , Fk are copied
to Pt+1, and then the least crowded (N − |Pt+1|) solutions in Fk+1 are added to
Pt+1. This approach makes sure that all nondominated solutions (F1) are included
in the next population if |F1| ≤ N, and the secondary selection based on crowding
distance promotes diversity. The population size N is an important parameter.

MO-CMA-ES follows the same strategy but it uses the contributing hypervolume
instead of the crowding distance as second sorting criterion.

3.4 design issues and components of multi-objective evolutionary algorithms 111

3.4.3.2 Elitism with external populations

When an external list is used to store elitist solutions, several issues must be ad-
dressed. The first issue is which solutions are going to be stored in elitist list A.
Some MOEAs store nondominated solutions identified so far during the search, and
A is updated each time a new solution is created by removing elitist solutions dom-
inated by a new solution or adding the new solution if it is not dominated by any
existing elitist solution. This is a computationally expensive operation. Another is-
sue is the size of the list A. Since there might possibly exist a very large number
of Pareto optimal solutions for a problem, the elitist list can grow extremely large.
Therefore, pruning techniques have been proposed to control the size of A.

Both SPEA2 and SPEA2+ use external lists to store nondominated solutions discov-
ered so far in the search.

Let N̄ be the size of the external list At. The update operation of At in SPEA2

works as follows:

step 1 . Copy all nondominated individuals, i.e., those which have a fitness lower
than one, to the archive of the next generation

At+1 = { x | x ∈ Pt ∪ At ∧ f (x, t) < 1 } .

step 2 . If the nondominated front fits exactly into the archive (|At+1| = N̄), stop.
Else, if the archive is too small (|At+1| < N̄), go to Step 3; else, the archive is
too large (|At+1| > N̄), then go to Step 4.

step 3 . Sort Pt ∪ At according to the fitness value and copy the first N̄ − |At+1|
individuals x with f (x, t) ≥ 1 from the resulting ordered list to At+1.

step 4 . Perform archive truncation by iteratively removing individuals from At+1

until |At+1| = N̄. At each stage, the individual which has the minimum dis-
tance (in objective space) to another individual is chosen. If there are several
individuals with minimum distance the tie is broken by considering the sec-
ond smallest distances and so forth.

The update operation of archives AO
t and AV

t in SPEA2+ is very similar. Let N̄
be the size of both AO

t and AV
t . Then:

step 1 . Copy all nondominated individuals in Pt, AO
t and AV

t to AO
t+1, AV

t+1.

step 2 . If the nondominated front fits exactly into the archives (|AO
t+1|, |AV

t+1| =
N̄), stop. Else, if the archives are too small (|AO

t+1|, |AV
t+1| < N̄), go to Step 3;

else, the archive are too large (|AO
t+1|, |AV

t+1| > N̄), then go to Step 4.

step 3 . Sort Pt ∪ AO
t ∪ AV

t according to the fitness value and copy the first N̄ −
|AO

t+1| individuals x with f (x, t) ≥ 1 from the resulting ordered list to
AO

t+1, AV
t+1.

step 4 . Perform archive truncation in objective space to the individuals in AO
t+1

and archive truncation in decision space in AV
t+1 until |AO

t+1|, |AV
t+1| = N̄.

112 evolutionary algorithms for solving parameter extraction problems

Figure 57: PAES archiving and acceptance logic [63].

3.4 design issues and components of multi-objective evolutionary algorithms 113

Also the PAES uses an external archive to store elitist solutions. The base ver-
sion of the algorithm begins with the initialization of a single chromosome (the
current solution) which is then evaluated using the objective functions. A copy is
made and a mutation operator is applied to the copy. This mutated copy is evalu-
ated and forms the new candidate solution. The current and candidate solutions are
then compared according to Pareto dominance. If neither solution dominates the
other, the new candidate solution is compared with solutions saved in the archive.
Candidates which dominate some individuals in the archive are always accepted
and archived. Candidates which are dominated by the archive are always rejected,
while those which are nondominated are accepted and/or archived based on the
degree of crowding in their grid location. This archiving and acceptance logic is
made explicit in Figure 57.

3.4.4 Constraint handling

We considered parameter extraction problems with only two types of constraints:

• box constraints on the parameters of a model of an electronic device;

• promoting model parameter values which do not cause a circuit simulator to
abort.

The first constraint type is crucial when recombination and mutation operators
generate chromosomes whose alleles lie outside the ranges defined at step 2 of
the parameter extraction procedure (see Section 1.6.2). In this case, we used a
constraint handling technique based on repairing infeasible solutions in order to
make them feasible.

The second constraint type has been considered because particular combina-
tions of model parameters can cause simulation failures. The reasons why a circuit
simulation aborts are explained in Section 1.6.3 and in Appendix A. In this case,
constraints are not given in algebraic form, so the exact location of the boundary
between the feasible and infeasible regions is unknown. There is no way to quan-
tify the amount by which a constraint is violated. Another important detail is that,
for a given chromosome (hence a given set of parameter values), if a simulation of
a specific output characteristic fails, simulations of other characteristics may end
successfully. For all these reasons we implemented a penalty method where the fit-
ting error associated to each failed simulation is set to a high value (the penalty
factor). In this way, an individual corresponding to an aborted simulation will not
be able to dominate any other solution with respect to the penalized objective.

The definition of the penalty factors in a penalty function is not straightforward.
Ideally, the penalty should be kept as low as possible, just above the limit below
which infeasible solutions are optimal [11]. This is due to the fact that if the penalty
is too high or too low, then the problem might become very difficult for an evo-
lutionary algorithm to solve [20]. If the penalty is too high and the optimum lies
at the boundary of the feasible region, the EA will be pushed inside the feasible
region very quickly, and will not be able to move back towards the boundary with
the infeasible region. On the other hand, if the penalty is too low, a lot of the
search time will be spent exploring the infeasible region because the penalty will
be negligible with respect to the objective function [11].

114 evolutionary algorithms for solving parameter extraction problems

3.5 structure of selected moeas

Although the NFL theorems [103] indicate that there is no “best” MOEA, certain
MOEAs have been experimentally shown to be more likely effective (robust) than
others for specific MOP benchmarks and certain classes of real-world problems.
Among these MOEAs we selected and implemented:

• NSGA-II [24];

• SPEA2 [109];

• SPEA2+ [62];

• PAES [63];

• MO-CMA-ES [53].

In the following sections, we present the pseudocode of these MOEAs.

3.5.1 Nondominated Sorting Genetic Algorithm-II (NSGA-II)

The pseudocode of the NSGA-II [24] in shown in Algorithm 3.6. This algorithm is
currently used in most MOEA comparisons.

3.5.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The procedure of the SPEA2 [109] is given in Algorithm 3.7. The SPEA2 and NSGA-
II are two of the most prominent MOEAs used when comparing a newly designed
MOEA. They rely heavily on their density estimator mechanisms.

3.5.3 Improved Strength Pareto Evolutionary Algorithm 2 (SPEA2+)

SPEA2+ [62] adds three mechanisms to SPEA2 in order to improve its searching
ability:

• an archive mechanism to maintain diversity of the solutions in the objective
and decision spaces;

• a crossover mechanism named neighborhood crossover;

• a different mating selection method.

The first strategy has already been described in Section 3.4.2 and in Section 3.4.3.
Let us consider the crossover operator. In [62], Kim et al. state that effective

crossover often cannot be performed in MOEAs, as the searching directions of each
individual are very different from one another. Therefore, they propose neighbor-
hood crossover, which performs crossover with individuals neighboring each other
in objective space. In neighborhood crossover, individuals that match in the search
direction are crossed over to generate offspring that are similar to the parents.

Binary tournament selection is used in SPEA2 as a method for mating selection.
Using this selection technique results in an increase in nondominated individuals

3.5 structure of selected moeas 115

Algorithm 3.6 NSGA-II algorithm

Input: Vector of objective functions z, population size N, maximum number of
generations g

Output: Approximate Pareto optimal solutions Pknown, PFknown
1: Create a random parent population P0 of size N
2: Use the fast nondominated sorting algorithm to identify the nondominated

fronts F1, F2, . . . , FR in P0

3: Assign to each solution a rank equal to its nondomination level
4: Create a child population Q0 of size N
5: Binary tournament selection on P0 based on nondomination rank
6: Recombination and mutation
7: for t = 0 to g− 1 do
8: Set Rt = Pt ∪Qt

9: Use the fast nondominated sorting algorithm to identify the nondominated
fronts F1, F2, . . . , FR in Rt

10: Set Pt+1 ← ∅, i← 1
11: while |Pt+1|+ |Fi| ≤ N do
12: Calculate crowding distance in Fi
13: Include ith nondominated front in the parent pop, Pt+1 ← Pt+1 ∪ Fi
14: Check the next front for inclusion, i← i + 1
15: end while
16: Sort Fi in descending order with respect to crowding distances
17: Choose the first (N − |Pt+1|) elements of Fi, Pt+1 ← Pt+1 ∪ Fi[1 : (N −
|Pt+1|)]

18: Create a new population Qt+1

19: Binary tournament selection on Pt+1 based on nondomination rank and
the crowding distance as second level sorting criterion

20: Recombination and mutation
21: end for

116 evolutionary algorithms for solving parameter extraction problems

Algorithm 3.7 SPEA2 algorithm

Input: Vector of objective functions z, population size N, archive size N̄, maxi-
mum number of generations g

Output: Approximate Pareto optimal solutions Pknown, PFknown
1: Create a random parent population P0 of size N
2: Create empty archive A0 ← ∅
3: for t = 0 to g− 1 do
4: For each individual x ∈ Pt ∪ At calculate fitness value f (x, t)
5: Copy all nondominated individuals in Pt ∪ At to At+1

6: if |At+1| > N̄ then
7: Perform archive truncation on At+1 in objective space until |At+1| = N̄
8: else if |At+1| < N̄ then
9: Sort Pt ∪ At in ascending order with respect to fitness values

10: Fill At+1 with dominated individuals in Pt ∪ At

11: end if
12: Create a new population Pt+1

13: Binary tournament selection on At+1 based on fitness values f (·, t)
14: Recombination and mutation
15: end for

within the external elitist list, and in most cases all individuals become nondomi-
nated in the later stages of the search [62]. Thus, use of binary tournament selection
to generate the population sacrifices diversity of nondominated individuals. There-
fore, in the proposed method, as the mating selection method, all of the archive
AO

t+1 is copied to the population used in the search. This copy operation maintain
the diversity of the population to allow for a more global search.

3.5.4 Pareto Archived Evolution Strategy (PAES)

PAES [63] consists of a (1+ 1) evolution strategy (i.e., a single parent that generates
a single offspring) in combination with a historical archive that records some of
the nondominated solutions previously found. As the termination criterion, we
considered the maximum number of objective function evaluations.

The archiving and acceptance logic used in lines 9–11 is made explicit in Fig-
ure 57. PAES is intended as a good baseline approach, against which more involved
methods may be compared, and may also serve well in some real-world applica-
tions when local search seems superior to or competitive with population-based
methods [63].

Other implementations of PAES have been proposed, namely (1 + λ)-PAES and
(µ + λ)-PAES [63].

3.5.5 Covariance Matrix Adaptation for Multi-objective Optimization (MO-CMA-ES)

In this section, some variants of the CMA-ES for multi-objective optimization are
presented noting that they continue to be modified and improved in newer ver-
sions.

3.5 structure of selected moeas 117

Algorithm 3.8 SPEA2+ algorithm

Input: Vector of objective functions z, population size N, archive size N̄, maxi-
mum number of generations g

Output: Approximate Pareto optimal solutions Pknown, PFknown
1: Create a random parent population P0 of size N
2: Create empty archives AO

0 ← ∅, AV
0 ← ∅

3: for t = 0 to g− 1 do
4: For each individual x ∈ Pt ∪ AO

t ∪ AV
t calculate fitness value f (x, t)

5: Copy all nondominated individuals in Pt ∪ AO
t ∪ AV

t to AO
t+1 and AV

t+1
6: if |AO

t+1| > N̄ then
7: Perform archive truncation on AO

t+1 in objective space until |AO
t+1| = N̄

8: Perform archive truncation on AV
t+1 in variable space until |AV

t+1| = N̄
9: else if |AO

t+1| < N̄ then
10: Sort Pt ∪ AO

t ∪ AV
t in ascending order with respect to fitness values

11: Fill AO
t+1 and AV

t+1 with dominated individuals in Pt ∪ AO
t ∪ AV

t
12: end if
13: Create a new population Pt+1

14: Set Pt+1 ← AO
t+1

15: Neighborhood crossover and mutation
16: end for

Algorithm 3.9 PAES algorithm

Input: Vector of objective functions z, archive size N̄, number of subdivisions of
the objective space in the grid used for encouraging diversity ndiv

Output: Approximate Pareto optimal solutions Pknown, PFknown
1: Generate random current solution C
2: Evaluate and add to archive A
3: repeat
4: Mutate C to generate new candidate solution C′

5: Evaluate C′

6: if C � C′ then
7: Discard C′

8: else
9: Compare candidate solution C′ with archive members

10: Update archive A
11: Select new current solution from candidate and current solution
12: end if
13: until termination criterion is met

118 evolutionary algorithms for solving parameter extraction problems

In the CMA-ES Section 3.2 a small population size is usually sufficient and only
one set of strategy parameters is maintained. In multi-objective optimization prob-
lems a large population is needed to evolve a diverse set of solutions, each ide-
ally representing a Pareto optimal solution. The optimal strategy parameters for
the members of this population may differ considerably and should therefore be
adapted individually. This suggests that it is reasonable to apply a multi-objective
selection mechanism to a population of individuals each of which uses the strat-
egy adaptation of the CMA-ES (for details about the covariance matrix adaptation
see Section 3.2 and [48]). For this reason, Igel et al. [53] first develop a single objec-
tive, elitist CMA-ES with (1 + λ)-selection. In this elitist (1 + λ)-CMA-ES the par-
ent population consists of a single individual generating λ offspring and the best
individual out of parent and offspring becomes the parent of the next population.
A multi-objective version of CMA-ES, named MO-CMA-ES, is then implemented by
considering a population of (1+ λ) evolution strategies, which are subject to multi-
objective selection using nondominated sorting and the contributing hypervolume.

The (1 + λ)-CMA-ES is presented in Section 3.2.5.
The multi-objective selection criterion can be defined as follows. Let A be a set

of individuals and a, a′ two individuals in A. Additionally, the following notation
is used:

• r(a′, A) is the level of nondominance of a′, as it is computed by the NSGA-II
(see Figure 53);

• AE,r(a′,A) is the nondominated front (better, the Pareto set) whose rank is
given by r(a′, A);

• s(a′, AE,r(a′,A)) is the rank of a′ computed considering its contribution to the
hypervolume of AE,r(a′,A).

We can now introduce the relation ≺s,A

a ≺s,A a′ ⇐⇒ r(a, A) < r(a′, A) or

[(r(a, A) = r(a′, A)) ∧ (s(a, AE,r(a′,A)) > s(a′, AE,r(a′,A)))]. (3.3)

That is, a is better than a′ when compared using ≺s,A if either a has a better level
of nondominance or a and a′ are on the same level but a contributes more to the
hypervolume when considering the points at that level of nondominance.

Now we have all the ingredients for a multi-objective CMA-ES. The µ× (1 + λ)-
MO-CMA-ES is presented in Algorithm 3.10. In this algorithm a population of µ

elitist (1+ λ)-CMA-ES is maintained. The kth individual in generation t is denoted
by a(t)k = [x

(t)
k , p̄(t)succ,k, σ

(t)
k ,p(t)c,k , C(t)

k].
Some comments:

• λ
(t+1)
succ,R(t),i

=
∣∣∣{ l = 1, . . . , λ

∣∣∣ a′(t+1)
i,l ≺s,R(t) a(t)i

}∣∣∣ is the number of successful

offspring from parent a(t)i . This is a parent-based notion of success.

• R(t)
≺:i is the best individual in R(t) with respect to ≺s,R(t) .

• In every generation t each of the µ parents generates λ offspring, lines 5–10.

3.5 structure of selected moeas 119

Algorithm 3.10 µ× (1 + λ)-MO-CMA-ES

1: t← 0
2: Initialize a(t)k for k = 1, . . . , µ

3: Set P0 =
{

a(t)k

∣∣∣ 1 ≤ k ≤ µ
}

4: repeat
5: for k = 1, . . . , µ do
6: for h = 1, . . . , λ do
7: a′(t+1)

k,h ← a(t)k

8: x
′(t+1)
k,h ∼ N(x

(t)
k , σ

(t)2

k C(t)
k)

9: end for
10: end for
11: R(t) =

{
a′t+1

k,h , a(t)k

∣∣∣ 1 ≤ k ≤ µ ∧ 1 ≤ h ≤ λ
}

12: P(t+1) ← ∅
13: for i = 1, . . . , µ do
14: a(t+1)

i ← R(t)
≺:i

15: P(t+1) ← P(t+1) ∪ a(t+1)
i

16: end for
17: for i = 1, . . . , µ do
18: updateStepSize

(
a(t+1)

i , λ
(t+1)
succ,R(t),i

)
19: if a(t+1)

i was an offspring then

20: updateCovariance
(

a(t+1)
i , x

(t+1)
i −x(t)

i

σ
(t)
i

)
21: end if
22: end for
23: t← t + 1
24: until stopping criterion is met

120 evolutionary algorithms for solving parameter extraction problems

• The step sizes of a parent and its offspring are updated (line 18) depending
on whether the mutations were successful, that is, whether the offspring are
better than the parent according to the relation ≺s,R(t) (see eq. (3.3)). We stress
again that this is a parent-based notion of success. Another notion of success
will be introduced shortly.

• The covariance matrix of the offspring is updated taking into account the
mutation that has led to its genotype (line 20).

• Both the step size and the covariance matrix update are the same as in the
single-objective (1 + λ)-CMA-ES.

• The best µ individuals in R(t) sorted by ≺s,R(t) form the next parent genera-
tion, lines 12–16.

Empirical evaluations of the MO-CMA-ES are reported in [53].
We implemented the µ× (1+ λ)-MO-CMA-ES and two other variants which are

supposed to improve its performance.
In the first variant a different strategy is proposed for the covariance matrix

adaptation [93]. In the µ× (1 + λ)-MO-CMA-ES described in [53], each individual
learns its own covariance matrix for the mutation distribution considering only its
parent and offspring. However, the optimal mutation distribution of individuals
that are close in decision space are likely to be similar if we presume some notion of
continuity of the optimization problem. Therefore, Voß et al. [93] proposed an inter-
individual transfer of information in the MO-CMA-ES considering also successful
mutations of neighboring individuals for the covariance matrix adaptation. A full
description of this new updating strategy and its empirical evaluation may be
found in [93]. We applied it to parameter extraction problems. Results are shown
in Chapter 4.

The second variant is based on the improved step size adaptation scheme de-
scribed in [94]. In Algorithm 3.10, a mutation is regarded as successful if the off-
spring ranks better that its parent in the elitist, rank-based selection procedure. In
contrast, in [94] a mutation is regarded as successful if the offspring is selected into
the next parental population. This criterion reduces the computational complexity
of the MO-CMA-ES. Moreover, it leads to larger step sizes and thereby counteracts
premature convergence. We refer to [94] for a description of this updating method
and its empirical results. We applied it to parameter extraction problems with and
without recombination of strategy parameter presented in [93]. Results are shown
in Chapter 4.

3.6 many-objective optimization basics

MOEAs usually work very well on two-objective problems. Their search ability is,
however, severely deteriorated by the increase in the number of objectives. Multi-
objective problems with four or more objectives are often referred to as many-
objective problems.

This situation easily happens in parameter extraction problems, since there can
be several several output characteristics that have to be fitted with a device com-
pact model. For example, as it is shown in Chapter 1, the behavior of a power diode

3.6 many-objective optimization basics 121

can be described through at least four output characteristics: junction capacitance
vs reverse bias voltage, DC current–voltage characteristic, reverse recovery current
and voltage under a single turn-off condition. In Chapter 1, we showed that fitting
of the capacitance characteristic can be carried out independently from the other
characteristics. In Chapter 4, we will show that the problem can be further simpli-
fied to the simultaneous optimization of the DC i–v and reverse recovery current
curves only.

However, there can be more challenging situations. For example, reverse recov-
ery current and voltage measurements could be collected for different values of the
supply voltage and/or the load current. It could also be necessary to fit turn-on
characteristics. The situation is even worse if a more sophisticated devices than a
diode is analyzed, like an IGBT, which is characterized by a higher number of out-
put characteristics, or several devices and their corresponding models are studied
all together. The higher the number of characteristics to be fitted, the more difficult
a multi-objective parameter extraction problem. We are currently working on an
extraction problem for Extended Lauritzen diode model with seven objectives: DC
i–v, reverse recovery current and voltage under three different turn-off conditions.

It is also important to note that, when optimizing several models at the same
time, a multi-objective optimization has to be carefully monitored in order not to
create models which are more behavioral and less physical [7].

For these reasons, we studied how to deal with many-objective problems.
When applying a MOEA to a many objective problem, we may encounter a num-

ber of serious difficulties such as:

1. Deterioration of the search ability of Pareto dominance-based algorithms,
such as NSGA-II [24] and SPEA2 [109]. When the number of objectives increases,
almost all solutions in each population become nondominated. This severely
weakens the Pareto dominance-based selection pressure toward the Pareto
front. That is the convergence property of MOEAs is deteriorated.

2. Exponential increase in the number of solutions required for approximating
the entire Pareto front. The goal of a population-based MOEA is to find
a set of nondominated solutions that well approximates the entire Pareto
front. Since the Pareto front is a hyper-surface in objective space, the number
of solutions required for its approximation exponentially increases with the
dimensionality of the objective space (i.e., with the number of objectives).
That is, we may need thousands of nondominated solutions to approximate
the entire Pareto front of a many objective problem.

3. Difficulty of the visualization of solutions. This can make the choice of a final
solution very hard in many-objective optimization.

The first difficulty has been pointed out in some studies [61], [83], [58].
A scalability improvement of MOEAs to many-objective problems can be achieved

by increasing the selection pressure toward the Pareto front.
One approach based on this idea is to modify Pareto dominance in order to

decrease the number of nondominated solutions in each population [85]. In order
to increase the selection pressure toward the Pareto front by the Pareto sorting in
NSGA-II, Sato et al. modified Pareto dominance as shown in Figure 58 where the

122 evolutionary algorithms for solving parameter extraction problems

��
��
��
��

��
��
��
��

��
��
��
��

������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

B

C

A

(a) Original Pareto dominance.

��
��
��
��

��
��
��
��

��
��
��
��

������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A

B

C

(b) Modified Pareto dominance.

Figure 58: Illustration of the modification of Pareto dominance.

dominated region by each solution is delimited by a dotted line. When we use the
standard Pareto dominance, in Figure 58a, all three solutions are nondominated
with each other. On the other hand, solution A is dominated by solution B if we
use the modified dominance in Figure 58b. In this manner the selection pressure
toward the Pareto front can be strengthened because the number of nondominated
solutions in each population is decreased by the use of the modified Pareto dom-
inance. The extend of the modification of Pareto dominance (i.e., the angle of the
dominated region in Figure 58b) should be adjusted to the number of objectives.
Roughly speaking, the increase in the number of objectives requires a wider angle
of the dominated region in Figure 58b as suggested in [85]. The modification of
Pareto dominance leads to the decrease in the diversity of solutions [85].

An alternative approach to the modification of Pareto dominance is to assign
different ranks to nondominated solutions [88, 65, 18]. As in the case of the modi-
fication of Pareto dominance, the introduction of different ranks to nondominated
solutions leads to the increase in the selection pressure toward the Pareto front and
the decrease in the diversity of solutions.

Another idea for the scalability improvement of MOEAs to many-objective prob-
lems is to use different scalarizing functions for fitness evaluations [57, 56].

These three classes of methods (modification of the Pareto dominance, assign-
ment of different ranks to nondominated solutions, use of scalarizing functions)
are not well suited to solve parameter extraction problems in our opinion. Their
weaknesses are similar to those that have been discussed in Section 1.6:

• Defining the extend of the modified Pareto dominance or selecting proper
weights to characterize the decision-maker’s preferences can be quite difficult
and very much problem dependent.

• Scalarizing methods are sensitive to the shape of the Pareto front: a weighted-
sum approach cannot return any solution on the concave portion of the
Pareto front.

For these reasons, we followed different strategies to deal with three or more ob-
jectives.

3.6 many-objective optimization basics 123

The second difficulty of many-objective optimization (i.e., the exponential in-
crease in the number of nondominated solutions that are necessary for the approx-
imation of the Pareto front) has often been tackled by incorporating preference
information in MOEAs [35], [25]. Preference information is used to concentrate on a
small region of the Pareto front while MOEAs are used to find multiple nondomi-
nated solutions in such a small region of the Pareto front.

We implemented the procedure described in [25]. First, the decision-maker is
asked to specify reference points (in objective space). The procedure will then look
for points on the Pareto frontier which are close to the reference points provided.
It is therefore able to handle multiple preference conditions simultaneously and
for each preference condition, a set of Pareto-optimal solutions is the target set of
solutions, instead of one solution. Another capability of this method is that it is
indifferent to the shape of the Pareto frontier (such as convex or non-convex, con-
tinuous or discrete, connected or disconnected and others). In [25], this approach
has been embedded in the NSGA-II. The resulting MOEA was called Reference point
based Non Dominated Sorting Genetic Algorithm II (R-NSGA-II). However, a similar
strategy can also be adopted with other MOEAs. The main ideas behind choosing
the preferred set of solutions are:

1. Solutions closer to the reference points (in the objective space) are to be em-
phasized more.

2. Solutions within a ε-neighborhood to a near-reference-point solution are de-
emphasized in order to maintain a diverse set of solutions near each reference
point.

As usual, both parent and offspring populations are combined together and a
nondominated sorting is performed. In the following, we describe an iteration of
the R-NSGA-II, which incorporates the above two ideas:

step 1 . An ε-clearing idea is applied to nondominated fronts. For a given non-
dominated front, a random solution is picked from the nondominated set
first. Thereafter, all solutions having a sum of normalized differences in ob-
jective values of ε or less from the chosen solution are discouraged to remain
in the race. This way, only one solution within a ε-neighborhood is empha-
sized. Then, another solution from the nondominated set (and is not already
considered earlier) is picked and the above procedure is performed, until
all the individuals in the front have been considered. The algorithm is then
repeated for the next nondominated front, until the total number of individ-
uals that survive the varepsilon-procedure is enough to fill the next parental
population.

step 2 . For each reference point and for each “survived” nondominated front,
the normalized Euclidean distance (see equation (3.4)) of each solution of the
front is calculated and the solutions are sorted in ascending order of distance.
This way, the solution closest to the reference point is assigned a rank of one.

step 3 . After such computations are performed for all reference points, the mini-
mum of the assigned ranks is assigned as the preference distance to a solution.
This way, solutions closest to all reference points are assigned the smallest

124 evolutionary algorithms for solving parameter extraction problems

preference distance of one. The solutions having next-to-smallest Euclidean
distance to all reference points are assigned the next-to-smallest preference
distance of two, and so on.

step 4 . Solutions with a smaller preference distance are preferred in the tourna-
ment selection and in forming the new parent population. Solutions from the
cleared nondominated fronts are chosen front-wise up and the preference dis-
tance is used to choose a subset of solutions from the last front which cannot
be entirely chosen to maintain the population size of the next population.

The above procedure emphasizes each objective function equally. If the decision-
maker is interested in biasing some objectives more than others, a suitable weight
vector can be used with each reference point and instead of emphasizing solutions
with the shortest weighted Euclidean distance from a reference point, solutions
with a shortest weighted Euclidean distance from the reference point can be em-
phasized

dij =

√√√√ p

∑
i=1

wi

(zi(x)− r̄i

zmax
i − zmin

i

)2
(3.4)

where zmax
i and zmin

i are the population maximum and minimum function values
of the ith objective and r̄i is the ith component of the reference point. Note that
this weighted distance can also be used to find a set of preferred solutions in the
case of problems having non-convex Pareto front.

Simulation results of the R-NSGA-II are shown in [25] and in Chapter 4. In [25]
the effects of different choices for the parameter ε are also shown.

A direct approach to the handling of the third difficulty associated to a many-
objective problem (the difficulty of the visualization of solutions) is to decrease the
number of objectives. Dimensionality reduction (i.e. objective selection) can rem-
edy not only the third difficulty but also the other difficulties. We implemented the
objective reduction method proposed in [23], which is based on Principal Compo-
nent Analysis (PCA). It should be used to solve those large objective (p) problems
which degenerate to possess a lower-dimensional Pareto optimal front (lower than
p).

In some problems, even though, apparently there may exist a conflicting sce-
nario between objectives, for two randomly picked feasible solutions, there may
not exist any conflict between the same objectives, for two solutions picked from
near the Pareto optimal front. That is, although a conflict exists elsewhere, some
objectives may behave in a non-conflicting manner, near the Pareto optimal re-
gion. In such cases, the Pareto front will be of dimension lower than the number
of objectives. Then some of the objectives are redundant. This may happen in pa-
rameter extraction problems, where there are strong couplings between different
characteristics. For example, in Chapter 4 optimization of reverse recovery voltage
is dropped from the simultaneous optimization of DC i–v, reverse recovery current
and reverse recovery voltage characteristics, since current and voltage look quite
interrelated in the proximity of the Pareto front. This provides computational evi-
dence of the physical coupling between current and voltage in the phenomena of
turn-off.

3.6 many-objective optimization basics 125

A principal component analysis is concerned with explaining the covariance
structure of a set of variables through a few linear combinations of these variables.
Although p components are required to reproduce the total system variability, of-
ten much of this variability ca be accounted for by a small number k of the principal
components. If so, there is (almost) as much information in the k components as
there is in the original p variables. The k principal components can then replace
the initial p variables, and the original data set, consisting of N measurements on
p variables, is reduced to a data set consisting of N measurements on k principal
components.

Algebraically, principal components are particular linear combinations of the p
original variables z1, z2, . . . , zp (the objective functions, in our case). Geometrically,
these linear combinations represent the selection of a new coordinate system ob-
tained by rotating the original system with z1, z2, . . . , zp as the coordinate axes. The
new axes represent the directions with maximum variability.

We refer to [59] for a comprehensive introduction to PCA. In the following, we
will present how this technique can be applied to multi-objective optimization.

pca for multiobjective optimization. In the context of a p-objective opti-
mization problem being solved using N population members, the initial data
matrix will be of size p×N. A PCA is then carried out on the correlation ma-
trix R, since variables can be measured on different scales, or on a common
scale with widely differing ranges. Principal components are nothing but the
eigenvectors of the correlation matrix. The eigenvector corresponding to the
largest eigenvalue is referred as the first principal component, the one cor-
responding to the second largest eigenvalue is called the second principal
component and so on. The elements of a principal component denote the rel-
ative contribution of each objective. A positive value denotes an increase in
objective value moving along this principal component (axes) and a negative
value denotes a decrease.

The algorithm proposed in [23] starts with analyzing the first principal com-
ponent and then proceeds to analyzing the second principal component and
so on, till all the significant components are considered. The decision-maker
has to provide a threshold cut, and when the cumulative contribution of all
previously principal components exceeds the threshold cut, no more prin-
cipal components are analyzed. The choice of the threshold cut is very im-
portant. If it is too high, many redundant objectives may be chosen by the
PCA; if it is too small, important objectives may be ignored. To emphasize
the contributions of the eigenvectors, the matrix RRT is used, instead of R, to
find eigenvalues and eigenvectors. This does not change the eigenvectors of
the original correlation matrix R, but the eigenvalues get squared and more
emphasized.

The complete PCA procedure is given in Algorithm 3.11. The final reduction
(line 33) is implemented as follows. We return to a reduced correlation matrix
(only columns and rows corresponding to non-redundant objectives) and in-
vestigate if there still exists a set of objectives having identical positive or
negative correlation coefficients with other objectives and having a positive
correlation among themselves. This will suggest that any one member from

126 evolutionary algorithms for solving parameter extraction problems

Algorithm 3.11 Principal Component Analysis for Multi-Objective Optimization

Input: Population of individuals P, threshold cut TC
Output: List L of non-redundant objectives

1: Initialize list L, L← ∅
2: Compute the correlation matrix R
3: Compute eigenvalues λ̂i and eigenvectors êi of RRT

4: Add to L both objectives contributing the most positive and most negative to
the first principal component

5: i← 2
6: while Cumulative proportion of variance up to the (i − 1)th component is
≤ TC do

7: if λ̂i ≤ 0.1 then
8: L← L ∪

{
j
∣∣∣ j = argmaxl=1,...,p |êl

i |
}

9: else if êl
i > 0 for l = 1, . . . , p then

10: L← L ∪
{

j
∣∣∣ j = argmaxl=1,...,p êl

i

}
11: else if êl

i < 0 for l = 1, . . . , p then
12: L← L ∪ { 1, . . . , p }
13: break
14: else
15: Find the highest positive element mpos of êi
16: Find the most negative element mneg of êi
17: if mpos < |mneg| then
18: if mpos ≥ 0.9|mneg| then
19: Add to L both the objectives corresponding to mpos and mneg

20: else
21: Add to L only the objective corresponding to mneg

22: end if
23: else
24: if mpos ≥ 0.8|mneg| then
25: Add to L both the objectives corresponding to mpos and mneg

26: else
27: Add to L only the objective corresponding to mpos

28: end if
29: end if
30: end if
31: i← i + 1
32: end while
33: Perform final reduction using the reduced correlation matrix

3.6 many-objective optimization basics 127

such group would be enough to establish the conflicting relationships with
the remaining objectives. In such case, the one which was chosen the earliest
(corresponding to the largest eigenvalue) by the PCA. Other objectives from
the set are not considered further.

A systematic and rigorous way of representing the relationships between multi-
ple variables – in our case, objective functions – is given by parallel coordinates [96].

The approach of parallel coordinates places all the axes parallel to each other
thus allowing any number of axes to be shown in a flat representation. Figure 59

illustrates a representation that deals with three objectives associated to a parame-
ter extraction problem. Each line in the graph connects the performance objectives
achieved by an individual member of an approximated Pareto front and represents
a potential solution to the extraction problem.

It can be shown that the geometrical features of a surface in p-dimensional space
are preserved in the parallel coordinate system [96]. This is important because it
allows these features to be easily identifiable when represented in parallel coordi-
nates and therefore the relationship between the variables that give rise to these
features can be visualized. For example, in Figure 59, “crossing lines” indicate con-
flict between the two adjacent objectives. The degree of conflict is demonstrated
by the intensity, or degree to which, the lines cross. Conversely, lines that do not
cross demonstrate objectives which are in relative harmony with one another. Ob-
jectives 1 and 2 are clearly conflicting, while objectives 2 and 3 seem to be less in
conflict. As we have already said, it is not physically surprising that reverse recov-
ery current and voltage are not strongly conflicting because of the coupling in the
phenomena of turn-off. Therefore, parallel coordinate plots may help in reducing
the dimensionality of the problems, like the PCA. We suggest to use both the ap-
proaches when performing dimensionality reduction. In [35] parallel coordinate
plots have been applied to a real-world problem in order to focus on a specific
region of interest on the Pareto front and to isolate a desired design solution.

Other properties of parallel coordinates are:

• Clustering is easily diagnosed [96].

• There is no loss of data in the representation, which in turn ensures that there
is a unique representation for each unique set of data [96].

• Linear relationships can be diagnosed. A linear rescaling of one or more
of the axes is sometimes helpful because it guides the eye in looking for
approximately parallel line segments. Nonlinear relationships can also be
highlighted by applying suitable nonlinear transformations to the axes.

• It requires multiple views (different orderings of objectives) to see different
trade-offs. In [96], an algorithm is proposed to find a minimal set of permu-
tations of the objective axes so that every possible adjacency is present and
trade-offs can be seen more easily.

• It can be hard to see what is going on when many vectors are represented.
In [96] some countermeasures to this problem are described.

128 evolutionary algorithms for solving parameter extraction problems

dc_S_ABS rr_current_SSQ_ABS rr_voltage_SSQ_ABS
-1.9e+04

2.6e+04

7.1e+04

1.2e+05

-3.0e-01

4.1e-01

1.1e+00

1.8e+00

-2.3e-01

3.5e-01

9.2e-01

1.5e+00

Permutations
of the objectives

1,2,3

2,3,1

(a) First permutation of objectives.

rr_current_SSQ_ABS rr_voltage_SSQ_ABS dc_S_ABS
-3.0e-01

4.1e-01

1.1e+00

1.8e+00

-2.3e-01

3.5e-01

9.2e-01

1.5e+00

-1.9e+04

2.6e+04

7.1e+04

1.2e+05

Permutations
of the objectives

1,2,3

2,3,1

(b) Second permutation of objectives.

Figure 59: Parallel coordinate plots of three objectives: DC residual sum of magnitudes
(dc_S_ABS), RR current residual sum of squares (rr_current_SSQ_ABS), RR volt-
age residual sum of squares (rr_voltage_SSQ_ABS). Two permutations of the
objectives are needed to show every possible adjacency.

3.7 moea performance assessment 129

relation interpretation in objective space

strictly dominates A < B every z2 ∈ B is strictly dominated by at least one
z1 ∈ A

dominates A ≤ B every z2 ∈ B is dominated by at least one z1 ∈ A

better A / B every z2 ∈ B is weakly dominated by at least one
z1 ∈ A and A � B

weakly dominates A 5 B every z2 ∈ B is weakly dominated by at least one
z1 ∈ A

incomparable A ‖ B neither A 5 B nor B 5 A

indifferent A ∼ B A 5 B and B 5 A

Table 9: Selected preference relations on Pareto front approximations; the corresponding
relations on Pareto set approximations are defined by considering the associated
Pareto front approximations. Minimization of all objectives is assumed. The rela-
tions >,≥,= and . are defined accordingly with reversed order of the arguments,
e.g., A > B is equivalent to B < A. Notice that A < B =⇒ A ≤ B =⇒ A / B
and two indifferent Pareto front approximations are identical, while this does not
need to hold for two indifferent Pareto set approximations.

3.7 moea performance assessment

This section introduces statistical methodologies for comparing the performance
of two or more MOEAs. Much of the material covered in this section can be found
in [64]. In the following, quality assessment in the objective space will be addressed.
The term approximation set will be used as an alias for an approximated Pareto
front returned by an optimizer, PFknown. The set of all approximation sets over the
objective space is represented by Ω. The preference relations on Rp listed in Table 5

can be extended to Ω as defined in Table 9. Without loss of generality, minimization
is assumed for all objectives.

3.7.1 Outperformance

Suppose we would like to assess the quality of the outcome of two multi-objective
optimizers. Assume that the two algorithms to be compared are deterministic, i.e.,
with each optimizer exactly one approximation set is associated. The most natural
way to compare two approximation sets A and B generated by two different multi-
objective optimizers is to use weak Pareto dominance. There can be four situations
(see Table 9):

1. A is better than B;

2. B is better than A;

3. A and B are incomparable;

4. A and B are indifferent.

130 evolutionary algorithms for solving parameter extraction problems

����

��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

B
A

z2

z1

(a)

����

��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

A
B

z2

z1

(b)

����

��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

A

B

z1

z2

(c)

Figure 60: Three examples illustrating the limitations of statements purely based on weak
Pareto dominance. In both figures on the left, the approximation set A dom-
inates the approximation set B, but in one case the two sets are much closer
together than in the other case. On the right, A and B are incomparable, but in
most situations A will be more useful to the decision-maker than B.

Often, though, we are interested in more precise statements that quantify the dif-
ference in quality on a continuous scale. For instance, in cases 1 and 2 we may be
interested in knowing how much better the preferable approximation set is, and
in case 3 one may ask whether either set is better than the other in certain aspects
not captured by the preference structure. This is illustrated in Figure 60.

For this reason, quantitative performance measures have been introduced. Since
the term performance refers to both quality and time, while the measures we will
present only capture the former aspect, we will use the term quality indicator in-
stead.

Definition 3.1. A (unary) quality indicator is a function I : Ω → R that assigns
each approximation set a real number.

In combination with the ≤ or ≥ relation on R, a quality indicator I defines a
total order of Ω and thereby induces a corresponding preference structure: A is
preferable to B if and only if I(A) > I(B), assuming that the indicator values are
to be maximized. That means we can compare the outcomes of two multi-objective
optimizers by comparing the corresponding indicator values. An example of indi-
cator value is given by the hypervolume indicator, introduced in Section 3.4.2. It
will be described in greater detail later.

Every quality indicator represents certain assumptions about the preferences of
the decision-maker. As a consequence, every comparison of multi-objective opti-
mizers is not only restricted to the selected benchmark problems and parameter
settings, but also to the quality indicator(s) under consideration.

The total order of Ω imposed by the choice of I should not contradict the par-
tial order of Ω that is imposed by the weak Pareto dominance relation. That is,
whenever an approximation set A is preferable to B with respect to weak Pareto
dominance, the indicator value for A should be at least as good as the indicator
value for B; such indicators are called Pareto compliant. In this work, only Pareto
compliant indicators have been used.

3.7 moea performance assessment 131

Many of the indicators that have been proposed in the literature are not Pareto
compliant. These quality indicators are called Pareto non-compliant. Pareto non-
compliant indicators are useful, for instance, to refine the preference structure of
a Pareto compliant indicator for approximation sets having identical indicator val-
ues.

The above discussion was restricted to unary quality indicators only, although
an indicator can take an arbitrary number of approximation sets as arguments.

3.7.2 Stochasticity

In Section 3.7.1 we assumed that each algorithm under consideration always gen-
erates the same approximation sets for a specific problem. However, MOEAs are
stochastic. If a stochastic multi-objective optimizer is applied several times to the
same problem, each time a different approximation set may be returned. By run-
ning a specific algorithm several times on the same problem instance, one obtains
a sample of approximation sets. Now, comparing two stochastic optimizers means
comparing the two corresponding approximation set samples. This leads to the
issue of statistical hypothesis testing.

There exist two basic approaches in the literature to analyze two or several sam-
ples of Pareto set approximation statistically. The more popular approach first
transforms the approximation set samples into samples of real values using quality
indicators; then, the resulting samples of indicator values are compared based on
standard statistical testing procedures.

The alternative approach, the attainment function method, summarizes a sample of
approximation sets in terms of a so-called empirical attainment function. To explain
the underlying idea, suppose that a certain stochastic multi-objective optimizer is
run once on a specific problem. For each objective vector z in the objective space,
there is a certain probability p (do not confuse it with the number of objectives) that
the resulting approximation set contains an objective vector that weakly dominates
z. We say p is the probability that z is attained in one optimization run of the
considered algorithm. The true attainment function is usually unknown, but it can
be estimated on the basis of the approximation set samples: one counts the number
of approximation sets by which each objective vector is attained and normalizes
the resulting number with the overall sample size.

Example 3.2. Consider Figure 61. For the scenario on the right, the three approx-
imation sets cut the objective space into four regions: the upper right region is
attained in all of the runs and therefore is assigned a relative frequency of 1, the
lower left region is attained in none of the runs, and the remaining two regions
are assigned relative frequencies of 1/3 and 2/3 because they are attained in one
respectively two of the three runs. In the scenario on the left, the objective space
is partitioned into six regions; the relative frequencies are determined analogously
as shown in the figure.

A third approach proposed in [64] consists in ranking the obtained approxima-
tions by using the dominance relation, in the same way that dominance-based
fitness assignment ranks objective vectors in MOEAs. First, all approximation sets
generated by the different optimizers under consideration are pooled, and then

132 evolutionary algorithms for solving parameter extraction problems

����

��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

z1

z2

1/3 2/3 3/3

2/3

1/3

0/3

(a)

����

��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

z1

z2

0/3 1/3 2/3 3/3

(b)

Figure 61: Hypothetical outcomes of three runs for two different stochastic optimizers (left
and right). The numbers in the figures give the relative frequencies according to
which the distinct regions in the objective space were attained.

each approximation set is assigned a rank reflecting the number of approxima-
tion sets in the pool that are better (see nomenclature introduced at the beginning
of Section 3.7.1). At the end, for each algorithm, a set of ranks is obtained, We can
then verify whether the rank distributions for the algorithms differ significantly or
not.

In this work, we followed the quality indicator and empirical attainment func-
tion approaches to evaluate the quality of the outcome of MOEAs when applied
to parameter extraction problems. These two approaches will be described in Sec-
tion 3.7.3 in greater detail.

3.7.3 Sample Transformations

The three comparison methodologies outlined in the previous section have in com-
mon that the sample of approximation sets associated with an algorithm is first
transformed into another representation–a sample of indicator values, an empiri-
cal attainment function, or a sample of ranks–before the statistical testing methods
are applied. In the following, quality indicators and empirical attainment function
methods are reviewed.

3.7.3.1 Quality Indicators

In this section, two unary quality indicators (see definition 3.1) are presented:

the hypervolume indicator IH . It measures the hypervolume of that por-
tion of the objective space that is weakly dominated by an approximation
set A, and has to be maximized (see Figure 62). It has also been considered
in Section 3.4.2. In order to measure this quantity, the objective space must be
bounded–if it is not, then a bounding reference point that is (at least weakly)
dominated by all points should be used, as shown in the figure.

3.7 moea performance assessment 133

One can also consider the hypervolume difference to a reference set R, and
we will refer to this indicator as I−H . Given an approximation set A, the indi-
cator value is defined as

I−H (A) = IH (R) − IH (A) (3.5)

where smaller values correspond to higher quality–in contrast to the original
hypervolume IH.

The IH indicator has a desirable property: given two approximation sets A
and B such that A / B, then IH(A) > IH(B)–provided that the bounding point
is strictly dominated by all the points in A and B. Therefore, the hypervolume
indicator is always able to detect if a set is not better than another. From
IH(A) < IH(B) one can infer that A cannot be better than B. As we already
pointed out, computation of the hypervolume indicator is exponential in the
number of objectives [97] and is polynomial in the number of points in the
approximation set.

the unary epsilon indicators I1
ε and I1

ε+ . The epsilon indicator family has
been introduced in [110] and comprises a multiplicative and an additive
version–both exist in unary and binary form. The binary multiplicative ep-
silon indicator, Iε(A, B), gives the minimum factor ε by which each point in
B can be multiplied such that the resulting transformed approximation set is
weakly dominated by A

Iε(A, B) = inf
ε∈R

{
∀z2 ∈ B ∃z1 ∈ A

∣∣∣ z1 �ε z
2
}

.

This indicator relies on the ε-dominance relation, �ε, defined as

z1 �ε z
2 ⇐⇒ ∀i ∈ 1, . . . , p : z1

i ≤ ε · z2
i

for a minimization problem, and assuming that all points are positive in all
objectives. On this basis, the unary multiplicative epsilon indicator, I1

ε (A) can
then be defined as

I1
ε (A) = Iε(A, R), (3.6)

where R is any reference set of points. An equivalent unary additive epsilon
indicator I1

ε+ is defined analogously, but is based on additive ε-dominance

z1 �ε+ z
2 ⇐⇒ ∀i ∈ 1, . . . , p : z1

i ≤ ε + z2
i .

Both unary indicators are to be minimized. An indicator value smaller than
1 (I1

ε) respectively 0 (I1
ε+) implies that A strictly dominates the reference set

R.

For the unary epsilon indicators, it holds that whenever A / B, then I1
ε (A) ≤

I1
ε (B) respectively I1

ε+(A) ≤ I1
ε+(B). Unlike the hypervolume indicator, it

may happen that I1
ε (A) = I1

ε (B) but A is better than B, or vice versa, actually.
However, like the hypervolume indicator, from I1

ε (A) > I1
ε (B) respectively

I1
ε+(A) > I1

ε+(B), one can deduce that A is not better than B. In some cases,
the hypervolume and epsilon indicators may return opposite preference or-
derings for a pair of approximation sets A and B. An example of such case is

134 evolutionary algorithms for solving parameter extraction problems

D

CB

A

minimize

minimize

Bounding
point

Figure 62: The hypervolume indicator measures the size of the dominated region, bounded
by some reference point. Here four different sets A, B, C, D are shown by increas-
ing order of darkness of the shaded region, with A / B / C / D. A is different to
B mainly in the extent, B is better than C in proximity to the Pareto front, and C
is better than D mainly in evenness. Thus, the hypervolume indicator is capable
of detecting differences in any of these different aspects.

given in Figure 63. From such a result, it logically follows that the two sets A
and B are incomparable, because the epsilon and the hypervolume indicators
are Pareto-compliant.

The situation is different if the indicators used are Pareto non-compliant. It is
possible that all such indicators judge A being preferable to B, when in fact
B is better than A according to Pareto dominance.

For any finite approximation set A, and any finite reference set R, the unary
epsilon indicator is cheap to compute: the runtime complexity is of order
O(p · |A| · |R|), where p is the number of objectives.

Some important aspects need to be considered when quality indicators are to be
used for sample transformation.

combination of quality indicators . Different quality indicators normally
reflect different decision-maker preferences. A combination of Pareto com-
pliant indicators can yield interpretations that are more powerful than can
be made by a single indicator alone. As we have already said, it two Pareto
compliant indicators contradict one another on the preference ordering of
two approximation sets, then this implies that the two sets are incomparable.
This does not hold for Pareto non-compliant indicators.

scaling and normalization. Scaling and normalization can be necessary in
order to allow different objectives to contribute approximately equally to
indicator values, for indicators such as IH and I1

ε+. We scaled each objective

3.7 moea performance assessment 135

��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

A

B

Bounding
reference
point

minimize

minimize

Figure 63: Two incomparable approximation sets A and B. Under the hypervolume indica-
tor, B is the better set, but under the epsilon indicator A is better with respect
to the reference set (the two X points connected by the dashed line), since I1

ε (A)
is one, while I1

ε (B) is greater than one. This discrepancy indicates that the two
sets are incomparable.

value between [1, 2], because the epsilon indicator I1
ε+ requires all objective

values being strictly positive

z′i =
zi − zmin

zmax
i − zmin

i
+ 1 (3.7)

where zmin
i and zmax

i are minimum and maximum objective values attained
by the reference set under consideration.

reference points and sets . The reference point z+ bounding the dominated
region in the hypervolume indicator, see Figure 62, must be set in such a way
that the objective vectors contained in the approximation sets A1, A2, . . . , Ar

under consideration strictly dominate the reference point

∀i = 1, . . . , r, ∀z ∈ Ai ∀j = 1, . . . , p : zj < z+j .

As to the reference approximation set in the context of the hypervolume and
epsilon indicators, the Pareto front is the ideal reference because it can yield
more power to the indicators. However, in parameter extraction problems the
Pareto front is unknown. We then followed this approach:

• All approximation sets generated by the algorithms under consideration
are combined, and then the dominated objective vectors are removed
from this union. The remaining points, which are nondominated by any
of the approximation sets, form the reference set.

The advantage of this method is that the reference set weakly dominates
all approximation sets under consideration; however, whenever additional
approximation sets are included in the comparison, the reference set needs
to be re-computed.

136 evolutionary algorithms for solving parameter extraction problems

3.7.3.2 Empirical Attainment Function

The attainment function of a multi-objective optimizer is a function α : Rp → [0, 1]
such that, for each objective vector z ∈ Rp, α(z) is the probability that the op-
timizer attains objective vector z in a single run. Each objective vector attained
by an optimizer is also referred to as an attained goal. The attainment function is
a first order moment measure. It describes the location of the approximation set
distribution generated by the optimizer. Higher order moments are needed if the
variability across runs is to be assessed, and to assess dependencies between the
probabilities of attaining two or more goals in the same run [36].

The attainment function can be estimated from a sample of r independent runs
of an optimizer via the Empirical Attainment Function (EAF) defined as

αr(z) =
1
r

r

∑
i=1

I(Ai 5 z) (3.8)

where Ai is the ith approximation set of the optimizer and I(·) is the indicator
function, which evaluates to one if its argument is true and zero if its argument
is false. In other words, the EAF gives for each objective vector in the objective
space the relative frequency that it was attained, i.e., weakly dominated by an
approximation set, with respect to the r runs.

The outcomes of two optimizers can be compared by performing a correspond-
ing statistical test on the resulting two EAFs, as will be explained in In addition,
EAFs can also be used for visualizing the outcomes of multiple runs of an op-
timizer. For instance, one may be interested in plotting all the goals that have
been attained (independently) in 50% of the runs. This is defined in terms of a
k%-approximation set:

Definition 3.3. An approximation set A is called the k%-approximation set of an
EAF αr(z), if and only if it weakly dominates exactly those objective vectors that
have been attained in at least k percent of the r runs.

We can then plot the attainment surface of such an approximation set, defined as:

Definition 3.4. An attainment surface of a given approximation set A is the union
of all tightest goals that are known to be attainable as a result of A. Formally, this
is the set

{
z ∈ Rp

∣∣ A 5 z ∧ AC < z
}

.

Roughly speaking, the k%-attainment surface divides the objective space in two
parts: the goals that have been attained and the goals that have not been attained
with a frequency of at least k percent.

Example 3.5. Suppose a stochastic multi-objective optimizer returns the approxi-
mation sets depicted in Figure 64 for five different runs on a biobjective optimiza-
tion problem. Minimization for both the objectives is assumed. The corresponding
attainment surfaces are shown in Figure 65; they summarize the underlying em-
pirical attainment function.

Using EAFs to produce a visual representation of an optimizer’s performance
is effective and complementary to the use of quality indicators for the following
reasons:

3.7 moea performance assessment 137

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

8500 9000 9500 10000

80
00

85
00

90
00

95
00

Approximation sets

objective 1

ob
je

ct
iv

e
2

● run 1
run 2
run 3
run 4
run 5

Figure 64: A plot showing five approximation sets. The two objectives are to be minimized.

• Decision makers may have preferences towards certain regions of or shapes
of Pareto front, not generally (or easily) expressible before optimization.

• Some quality indicators do not adequately express the amount by which one
approximation set should be judged better than another.

• Looking at approximation set shape can provide insight into the strengths
and weaknesses of an optimizer, or provide information about how it is work-
ing. For example, an optimizer may converge well in the center of the Pareto
front only, or more at the extremes, perhaps depending on how it balances
elitism and diversity mechanisms.

• Visualization methods can provide a “sanity check” to validate any quality
indicators being used.

The attainment function approach distinguishes itself from the dominance rank-
ing and indicator approaches by the fact that the transformed sample are multi-
dimensional, i.e., defined on the objective space and not on R. Thereby less infor-
mation is lost by the transformation. However, the approach is computationally
expensive and therefore only applicable in the case of a few objective functions.
In this work, the EAF approach has been applied only to a biobjective parameter
extraction problem.

138 evolutionary algorithms for solving parameter extraction problems

8400 8600 8800 9000 9200 9400 9600 9800 1e+04
objective 1

80
00

85
00

90
00

95
00

ob
je

ct
iv

e
2

Attainment surfaces

20%
40%
60%
80%
worst

Figure 65: Attainment surface plots for the approximation sets in Figure 64. Both the ob-
jectives are to be minimized. Since we considered five runs, the 20%-attainment
surface corresponds to the tightest goals attained in at least one run, the 40%-
attainment surfaces corresponds to the tightest goals attained in at least two
runs, and so on.

3.7 moea performance assessment 139

3.7.4 Statistical Testing

The previous section has described two different transformations that we applied
to samples of approximation sets generated from multiple runs of an optimizer.
The ultimate purpose of generating the samples and applying the transformations
is to (a) describe and (b) make inferences about the underlying random approxima-
tion set distributions of the (two or more) optimizers, thus enabling us to compare
their performance.

Boxplots are useful to summarize a random sample from a distribution. In Chap-
ter 4 they will be used to supplement statistical inferences made from indicator
samples.

The statistical inference we would like to make, if it is true, is that one opti-
mizer’s underlying approximation set distribution is better than another one’s. This
fact cannot be determined definitively because we only have access to finite-sized
samples of approximation sets.

It is standard practice to assume that the data is consistent with an explanation
known as the null hypothesis, H0, and then test how likely this is to be true, given
the data H0 will often state that two samples A and B are drawn from the same
distribution or from distributions with the same mean value. The probability of
obtaining a finding at least as “impressive” as that obtained, assuming the null hy-
pothesis is true, is called the p-value and is computed using an inferential statistical
test. The significance level, often denoted as α, defines the largest acceptable p-value
and represents a threshold that is user-defined. A p-value lower than the chosen
significance level α then implies that there is enough statistical evidence to reject
the null hypothesis in favor of an alternative hypothesis, HA, at a significance level of α.
The definition of the alternative hypothesis usually takes one of two forms. If HA
is of the form “sample A comes from a better distribution than sample B” then the
statistical test is a one-tailed test.If HAis of the form “sample A and sample B are
from different distribution” then it is a two-tailed test. The testing procedure that
we followed to compare MOEA’s performance on parameter extraction problems
is based on two-tailed tests.

Statistical inference about experimental data is sometimes performed by using
parametric statistical tests. These tests are based on assuming the data is drawn
from a distribution that closely approximates a known distribution, e.g. the normal
distribution or Student’s t distribution. Such known distributions are completely
defined by their parameters. Parametric tests are powerful–that is, the null hypoth-
esis is rejected in most cases where it is indeed false. However, the assumption of
normality cannot be theoretically justified for stochastic optimizer outputs, and it
is difficult to empirically test for normality with relatively small samples (less than
100 runs). Therefore it is safer to rely on nonparametric tests [15], which make no
assumptions about the distributions of the variables.

Two main types of nonparametric tests exist: rank tests and permutation tests.
Rank tests are the less powerful but are also less sensitive to outliers and computa-
tionally cheap. Permutation tests are more powerful but they can be expensive to
compute for large samples.

140 evolutionary algorithms for solving parameter extraction problems

In the following, we describe the methods we used for nonparametric inference
testing. We will also briefly discuss issues relating to matched samples and multi-
ple inference testing.

3.7.4.1 Comparing Sample Indicators Values

In this work, the hypervolume and the epsilon indicators, which are Pareto compli-
ant, have been used to compare the approximation sets. Different Pareto compliant
indicators assess slightly different preferences and this helps to build up a bet-
ter picture of overall approximation set quality. However, using several indicators
does bring into play two possible pitfalls that should be avoided:

• If the locations, e.g., means, of the distributions from two indicators are being
tested independently, the independence of the two results should be stated
explicitly. For example, a statement of the form “the approximation sets of
optimizer A are preferable to those of B under both I1 and I2” is not cor-
rect, even if the mean values are significantly higher for both indicators. This
is because one could interpret that individual approximation sets tend to ex-
hibit a higher quality under both indicators, while this is not necessarily true.
A correct statement would be: “the approximation sets of optimizer A are
preferable to those of B under I1 and, independently, under I2”.

• Multiple testing issues, arising, as in this work, from using the same set of
samples for multiple comparisons, are dealt with (see Section 3.7.4.4).

3.7.4.2 Comparing Empirical Attainment Functions

The EAF of an optimizer is a generalization of a univariate Empirical Cumulative
Distribution Function (ECDF) [19]. In order to test if two ECDFs are different, the
Kolmogorov-Smirnov (KS) test can be applied [15]. This test measures the maxi-
mum difference between the ECDFs and assesses the statistical significance of this
difference. It does not determine whether one algorithm’s entire EAF is “above”
the other one

αA
r (z) ≥ αB

r (z) ∀z in the objective space,

or not. Visualizing the EAFs allows checking for such specific differences. For two-
objective problems, plotting significant differences in the empirical attainment
functions of two optimizers, using a pair of plots, can be done by color-coding
either:

• levels of difference in the sample probability

• levels of statistical significance of a difference in sample probability, of attain-
ing a goal, for all goals.

For simplicity of implementation, we pursued the first option, even if the second
one is more informative.

An example of such a pair of plots is shown in Figure 66.

3.7 moea performance assessment 141

Figure 66: Individual differences between the probabilities of attaining different goals on
a two-objective minimization problem with optimizer A1 and optimizer A2,
shown using a color-coded plot. The figure also shows the grand best and worst
attainment surfaces (the same in both plots), that is, the borders beyond which
the goals are never attained or always attained, computed from the combined
collection of approximation sets. This two surfaces delimit the area where differ-
ences may exist. In the left plot, darker regions indicate goals that are attained
more frequently by A1 than by A2. In the right plot, the reverse is shown. In
addition, the 50%-attainment surface of each algorithm is also plotted.

142 evolutionary algorithms for solving parameter extraction problems

3.7.4.3 Matched Samples

When comparing stochastic optimizers, there are two slightly different situations.
In one case, each run of each optimizer is a completely independent random sam-
ple; that is, the initial population, the random seed, and all other random variables
are drawn independently and at random on each run. In the other case, the influ-
ence of one or more random variables is partially removed from consideration. In
our work, we followed the latter strategy. The initial population and the random
seed used by the algorithms have been matched in corresponding runs, so that the
runs (and hence the final quality indicator values) have been taken together. In the
former situation, if the statistical testing detects a difference in the distributions
of indicator values resulting from the stochastic optimizers, only a general perfor-
mance difference can be stated. In the latter situation the statistical testing reveals
whether there is a difference in the indicator value distributions given the same ini-
tial population, and the inference in this case relates to each optimizer’s ability to
improve the initial population. While the former scenario is more general, the latter
may give more statistically significant results.

If matched samples have been collected, one can use the Wilcoxon signed rank
test [15] for comparison of two optimizers and the Friedman test with the cor-
responding post-hoc tests for comparison of more optimizers, as it is suggested
in [28]. Below, the Friedman test is presented, since it has been used in the two
problems shown in Chapter 4.

friedman test. The Friedman test is a nonparametric equivalent of the repeated
measures ANOVA [15]. It ranks the algorithms for each data set separately,
the best performing algorithm getting the rank of 1, the second best rank 2,
and so on. In case of ties average ranks are assigned. In our case, each group
of matched runs and the corresponding indicator values corresponds to a
single data set, in terms of the Friedman test.

Let rj
i be the rank of the jth of k algorithms on the ith of N data sets. The

Friedman test compares the average ranks of algorithms, Rj =
1
N ∑j rj

i . Under
the null-hypothesis, which states that all the algorithms are equivalent and
so their ranks Rj should be equal, the Friedman statistic

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(3.9)

is distributed according to χ2
F with k− 1 degrees of freedom, when N and k

are big enough (as a rule of a thumb, N > 10 and k > 5). For a smaller num-
ber of algorithms and data sets, exact critical values have been computed [15].

Iman and Davenport [54] showed that Friedman’s χ2
F is undesirably conser-

vative and derived a better statistic

FF =
(N − 1)χ2

F

N(k− 1)− χ2
F

(3.10)

which is distributed according to the F-distribution with k − 1 and (k −
1)(N − 1) degrees of freedom.

3.7 moea performance assessment 143

If the null hypothesis is rejected, we can proceed with a post-hoc test in order to
find the concrete pairwise comparisons which produce differences. The post-hoc
procedure involves comparing all optimizers with each other. When so many tests
are made, a certain proportion of the null hypothesis is rejected due to random
chance.

Multiple hypothesis testing is a complicated issue. We will only touch on the
correct procedure in Section 3.7.4.4.

3.7.4.4 Multiple Testing

The confidence levels resulting from a statistical testing procedure for measuring
the differences between distributions only has a meaning if certain assumptions
are true. One of these assumptions is that the data on which the test has been
carried out is not being used to make more than one inference. Imagine the same
set of data was used to make five different inferences, and each had a significance
level α of 0.05. The chance that at least one of the inferences will be a type-1 error
(i.e. the null hypothesis is wrongly rejected) is 1− (0.955) ' 23%, when assuming
that the null hypothesis was true in every case.

Multiple testing issues in the case of assessing stochastic multiobjective optimiz-
ers can arise for at least two different reasons:

• There are more than two algorithms and we wish to make inferences about
the performance differences between all or a subset of them.

• There are multiple hypothesis that we wish to test with the same data, e.g.
differences in the distributions of more than one indicator.

The issue of multiple hypothesis testing is a well-known statistical problem. We
considered two approaches to minimize the problem:

• For each indicator to be investigated for distribution differences among the
optimizers, new independent data has been generated which has not been
used for any other indicator.

• For each indicator, pairwise comparisons of all MOEAs have been performed
on the same data but we used methods for correcting the p-values for the
reduction in confidence associated with data re-use.

In this work, statistical procedures proposed by García and Herrera [40] for
comparing k× k algorithms have been used. In the following, these procedures are
shortly described.

A set of pairwise comparisons can be associated with a set or family of hypothe-
ses. As it is explained in [28] explained, the test statistics for comparing the ith and
jth classifier is

z =
Ri − Rj√

k(k+1)
6N

being Ri the average rank computed through the Friedman test for the ith classifier,
k the number of algorithms to be compared and N the number of data sets used
in the comparison.

144 evolutionary algorithms for solving parameter extraction problems

The z value is used to find the corresponding p-value from the table of normal
distribution, which is then compared with an appropriate level of significance α.
Two basic procedures are:

• Nemenyi [40] procedure: it adjusts the value of α in a single step by dividing
the value of α by the number of comparisons performed, m = k ∗ (k− 1)/2.
This procedure is the simplest but it also has little power.

• Holm [40] procedure: it adjusts the value of α in a step down method. Let
p1, . . . , pm be the ordered p-values (smallest to largest) and H1, . . . , Hm be
the corresponding hypotheses. Holm’s procedure rejects H1 to H(i−1) if i is
the smallest integer such that pi > α/(m − i + 1). Other alternatives were
developed by Hochberg [49], Hommel [50] and Rom [84]. They are easy to
perform, but they often have a similar power to Holm’s procedure when
considering all pairwise comparisons.

The hypotheses being tested belonging to a family of all pairwise comparisons
are logically interrelated so that not all combinations of true and false hypotheses
are possible. For example, suppose that we want to test the three hypotheses of
pairwise equality associated with the pairwise comparisons of three optimizers
Ai, i = 1, 2, 3. From the relations among the hypotheses, it can be seen that if
any one of them is false, at least one other must be false. For example, if A1 is
better/worse than A2, then it is not possible that A1 has the same performance as
A3 and A2 has the same performance as A3 . A3 must be better/worse than A1 or
A2 or the two classifiers at the same time. Thus, there cannot be one false and two
true hypotheses among these three.

Based on this argument, Shaffer proposed two procedures which use the logical
relation among the family of hypotheses for adjusting the value of α [86].

• Shaffer’s static procedure: following Holm’s step down method, at stage i,
instead of rejecting Hi if pi ≤ α/(m − i + 1), reject Hi if pi ≤ α/ti, where
ti is the maximum number of hypotheses which can be true given that any
(i − 1) hypotheses are false. It is a static procedure, that is, t1, . . . , tm are
fully determined for the given hypotheses H1, . . . , Hm, independent of the
observed p-values.

• Shaffer’s dynamic procedure: it increases the power of the first by substitut-
ing α/ti at stage i by the value α/t∗i , where t∗i is the maximum number of
hypotheses that could be true, given that the previous hypotheses are false. It
is a dynamic procedure since t∗i depends not only on the logical structure of
the hypotheses, but also on the hypotheses already rejected at step i. In this
work, this procedure has not been used, since it is included in the method
proposed by Bergmann and Hommel [6].

In [6] a procedure was proposed based on the idea of finding all elementary
hypotheses which cannot be rejected. Let us consider the following definition:

Definition 3.6. An index set of hypotheses I ⊆ {1, . . . , m} is called exhaustive if
exactly all Hj, j ∈ I, could be true.

3.7 moea performance assessment 145

Under this definition, Bergmann-Hommel procedure rejects all Hj with j not in
the acceptance set A, which is defined as

A =
⋃
{ I | Iexhaustive, min { pi | i ∈ I } > α/|I| } .

Therefore, the acceptance set is the index set of null hypotheses which are retained.
For this procedure, one has to check for each subset I of {1, . . . , m} if I is exhaus-
tive, which leads to intensive computation. Let E be the set containing all the
possible exhaustive sets of hypotheses for a certain comparison. A rapid algorithm
for computing E was described in [51]. Once the E set is obtained, the hypotheses
that do not belong to the A set are rejected.

In order to control the family-wise error, i.e. the probability of making at least
one type I error in any of the comparisons, instead of adjusting the value of α, p-
values can be modified to take into account that multiple tests are conducted. Such
modified p-values are called adjusted p-value (APV)s. An APV can be compared
directly with any chosen significance level α.

In the following, we show how to compute the APVs for some of the post-hoc
procedures described before. The following notation is used:

• Indexes i and j correspond each one to a concrete comparison or hypothe-
sis in the family of hypotheses, according to an incremental order by their
p-values. Index i refers to the hypothesis in question whose APV is being
computed and index j refers to another hypothesis in the family.

• pj is the p-value obtained for the jth hypothesis.

• m is the number of possible comparisons in an all pairwise comparisons of k
optimizers, that is, m = k(k−1)

2 .

• tj is the maximum number of hypotheses which can be true given that any
(j− 1) hypotheses are false.

Methods of p-value adjustment:

• Nemenyi APVi: min{v, 1}, where v = m · pi;

• Holm APVi: min{v, 1}, where v = max
{
(m− j + 1)pj

∣∣ 1 ≤ j ≤ i
}

;

• Shaffer static APVi: min{v, 1}, where v = max
{

tj pj
∣∣ 1 ≤ j ≤ i

}
;

• Bergmann-Hommel APVi: min{v, 1}, where

v = max
{ ∣∣ I| ·min

{
pj
∣∣ j ∈ I

}
|Iexhaustive, i ∈ I

}
.

In [40] García and Herrera give some recommendations:

• Nemenyi’s test is very conservative and may not detect many of the obvious
differences. It should not be used.

• Since the benefit of using information about logically related hypotheses is
noticeable, the use of Shaffer static procedure is encouraged.

• Bergmann-Hommel’s procedure is the best performing one, but it is also
the most computationally expensive. It may be useful to use it when the
differences among the optimizers compared are not very significant.

4
E X P E R I M E N T S

In this chapter, the problem of parameter extraction for Extended Lauritzen model
is addressed. Some results have already been discussed in [5, 82].

The complete extraction procedure is outlined in Section 1.6. Here we focus on
the use of four MOEAs for the simultaneous optimization of several diode output
characteristics:

• NSGA-II;

• R-NSGA-II;

• MO-CMA-ES with population-based step size adaptation, named as MO-CMA-
ES-P;

• MO-CMA-ES with population-based step size adaptation and recombination of
learning strategy parameters, named as MO-CMA-ES-P-REC.

These algorithms have been described in Chapter 3. The first two optimizers were
chosen because NSGA-II is currently used in most MOEA comparisons. The MO-
CMA-ES is a promising algorithm for multi-objective optimization. In [94] and
[93], it is shown that the population-based step size update rule and the recombi-
nation strategy clearly improve its performance. The study of the impact of both
these procedures on the performance of the MO-CMA-ES is an ongoing work [94].

Two MOEA experiments were designed in order to investigate if these algo-
rithms could find fast, high-quality solutions to this parameter extraction problem,
and answer the following questions:

• Is there any difference in the performance of selected MOEAs?

• Is there a best overall method for the parameter extraction problem?

• What is the effect of considering more than two objective functions on the
performance of each optimizer?

The design of every MOEA experiment must conform to an accepted “standard” ap-
proach as reflected in any scientific method. When employing the scientific method,
the detailed design of MOEA experiments can draw heavily from outlines pre-
sented by Barr et al. [4]. This generic article discusses computational experiment
design for heuristic methods, providing guidelines for reporting results and ensur-
ing their reproducibility. On the basis of these guidelines:

• optimization codes for the selected MOEAs have been developed;

• a statistical experimental design has been devised to evaluate the relative
efficiencies of the algorithms;

• a rigorous statistical analysis of the performance of the algorithms has been
implemented following the procedures described in Section 3.7.

147

148 experiments

symbol description unit

Cj0 Zero bias junction capacitance F

Fc Forward bias depletion capacitance coefficient

m Grading coefficient

Rs Series resistance Ω

Tnom Parameter measurement temperature ◦C

vj Built-in potential V

α Hole mobility coefficient

TRs Temperature dependent coefficient of series resistance K−1

TEr Temperature dependent coefficient of Er K−1

Tτ3 Temperature dependent coefficient of τ3

Tn0 Electron transit time s

τL Carrier lifetime at low electric field values s

τH Carrier lifetime at high electric field values s

QB Thermal equilibrium electron charge in the N− region C

QBp Thermal equilibrium hole charge in the N− region C

NN Low level ideality parameter

NE Medium-high level ideality parameter

Er Symmetric end-region recombination parameter s C

φB, IB Voltage-dependent reverse-recovery parameters V, A

b Mobility ratio of electrons and holes

Eth Threshold value of electric field V m−1

ap, bp Impact ionization parameters m−1, V m−1

Table 10: Extended Lauritzen model, 2011. Parameter list.

4.1 problem statement and preliminary studies

The main goal was to find a good parameter set for Extended Lauritzen model in
order to fit four separate characteristics:

• junction capacitance vs. reverse bias voltage;

• dc forward-bias i–v characteristic;

• reverse recovery current and reverse recovery voltage at a load current of
6000 A and a supply voltage of 3200 V.

The reference temperature was 140 ◦C. Data to be fitted was obtained from TCAD

simulations calibrated in order to closely reproduce the behavior of an ABB fast
diode. In the following, the term “measurements” will refer to this set of data.

The complete parameter list of Extended Lauritzen model is recalled in Table 10

for convenience. While using this model, the following choices were made:

4.1 problem statement and preliminary studies 149

• The forward bias depletion capacitance coefficient was set to its default value
in the SPICE model Fc = 0.5 [1].

• Validity of equations for temperature dependence of model was not verified.
For this reason, α, TRs , TEr and Tτ3 have never been changed.

• The voltage-dependent reverse recovery parameter φB was substituted by
RB = φB/IB in the model implementation.

• The threshold value of electric field was devised empirically

Eth = 1.3× 105 V m−1.

• The impact ionization parameter bp was set to its initial estimate 1× 105.
A precise estimate of bp is not necessary as we now explain. In Extended
Lauritzen model, the impact ionization current is given by equation (1.68),
which is recalled below for convenience

iii = ip23apxn exp(−bp/E(xn)). (4.1)

In equation (4.1), very small changes in parameter bp can be compensated
by the multiplicative factor ap. A rough estimate of bp is therefore enough.
Moreover, parameter bp should not be optimized. Since it is the argument of
an exponential function, a significant change of parameter bp could only be
compensated by a change of ap by several orders of magnitudes. In our ex-
perience, using a physical range for ap which is several decades wide would
influence all the other model parameter and it would make very difficult for
the optimizer to explore the parameter space.

Sensitivity analysis (see Section 1.6.2) shows that the shape of the capacitance
characteristic is mainly influenced by the zero bias junction capacitance Cj0, the
grading coefficient m and the built-in potential vj0, and that they do not affect the
other characteristics noticeably. These results are not surprising, since the equa-
tions for modeling junction capacitance only depend on Cj0, m and vj0. The param-
eters Cj0, m and vj0 were therefore extracted by optimizing the capacitance charac-
teristic. The non-elitist CMA-ES (see Section 3.2.4) was used to minimize the RSM

starting from the initial estimate which can be computed with the procedure de-
scribed in Section 1.6.1. Explored parameter ranges for capacitance parameters are
reported in Table 11, while the optimum found is depicted in Figure 67. Optimal
values of Cj0, m and vj0 were fixed in subsequent optimizations.

Finally, the parameter space to be explored for fitting dc and transient character-
istics is represented in Table 12. Its dimension is n = 13.

At this point, there are still three characteristics that have to be fitted:

• dc forward-bias i–v characteristic;

• reverse recovery current and reverse recovery voltage at a load current of
6000 A and a supply voltage of 3200 V.

Mathematically, this fitting problem was translated into a multi-objective minimiza-
tion problem with three objectives:

150 experiments

parameter unit lower bound upper bound

Cj0 F 5.9× 10−8 1.5× 10−7

m 0.4 1

vj0 V 0.4 1

Table 11: Ranges for Extended Lauritzen model parameters influencing the capacitance
characteristic.

5 10 15 20 25 30
V [V]

0

10

20

30

40

50

C
 [

n
F]

measurements
simulation

Figure 67: Comparison between measured and optimized simulated capacitance charac-
teristic. The residual sum of magnitudes (RSM) was used as error estimator
to make the CMA-ES not to focus on error minimization at low reverse volt-
age too much. The optimum found by CMA is: Cj0 = 7.798 664× 10−8 F, m =
0.483 217 2, vj0 = 0.4 V.

4.1 problem statement and preliminary studies 151

parameter unit lower bound upper bound

Rs Ω 2× 10−4 8× 10−4

Tn0 s 1× 10−6 5× 10−5

τL s 5× 10−7 5× 10−6

τH s 5× 10−7 1× 10−5

QB C 1× 10−8 5× 10−4

QBp C 1× 10−12 1× 10−8

NN 1 4

NE 1 12

Er s C 1× 10−6 1× 10−3

RB Ω 1 50

IB A 1× 102 1× 104

b 1 6

ap m−1 1 50

Table 12: Ranges for Extended Lauritzen model parameters influencing dc and transient
characteristics.

• RSM between measured and simulated dc data. This error estimator helps to
redress the imbalance between errors at low voltage values, where current
values are also low, and errors at high voltage values, where the current is
very high.

• RSS between measured and simulated reverse recovery data for both current
and voltage. These error estimators focus more on matching the switching
losses that the on-state losses (see Section 1.6.4).

Sensitivity analysis shows that optimizations of dc and transient characteristics
are clearly conflicting and that a conflict may also exist between optimizations of
reverse recovery current and reverse recovery voltage.

In the first MOEA experiment, all the three objectives were retained. Results are re-
ported in Section 4.3. They suggest that, although a conflict between optimizations
of transient current and voltage may exist somewhere in the objective space, these
two characteristics behave in a less-conflicting manner near the Pareto-optimal re-
gion. That is, fitting of reverse recovery voltage benefits from improvements in
fitting reverse recovery current. This is not surprising, because current and volt-
age are physically coupled in the phenomena of turn-off. Therefore, in the second
MOEA experiment only two objectives were considered: RSM between measured
and simulated dc data, and RSS between measured and simulated reverse recovery
current data. Results are shown in Section 4.4.

152 experiments

4.2 algorithmic alternatives and computing environment

In this section, we present some structural characteristics of the four MOEA codes
that were tested in this study. Additional material may be found in Appendix A.

All codes are written in Python 2.6 and C++. Programs are based on the in-
spyred Python library [42]. inspyred is a free, open source framework for creating
biologically-inspired computational intelligence algorithms in Python, including
evolutionary computation, swarm intelligence, and immunocomputing. In partic-
ular, the inspyred library provides basic components to easily build MOEAs.

nsga-ii . The NSGA-II is already available in the inspyred library. However we had
to implement some corrections to the crowding distance assignment proce-
dure. In [24], the Simulated Binary Crossover (SBX) operator [21] and polyno-
mial mutation operator [22] were used for real-coded GAs. The SBX operator
is available in the inspyred library, but its implementation is a little bit differ-
ent from that proposed in [21]. For this reason, we wrote our own code for
the SBX operator. We also wrote a code for the polynomial mutation operator,
because it is not available in the current version of the inspyred library.

After performing the two MOEA results described above, we found another
error in the implementation of NSGA-II available in the inspyred library: the
binary tournament selection is only based on nondomination rank. Crowd-
ing is not used as second level sorting criterion. When randomly selecting
two solutions x and y, the selection operator chooses the solution with the
lower rank. But if solutions are in the same nondominated front, the selector
chooses the winner randomly instead of selecting the solution with a higher
crowding distance. Our code did not correct this error in time. However,
we believe that this error did not worsen the convergence of the NSGA-II
to the true Pareto optimal front, because it shows similar performances to
R − NSGA − I I, whose selection operator has been correctly implemented,
in both the MOEA experiments. In our opinion, only the diversity of solu-
tions generated by this algorithm may have been affected somehow. In Fig-
ure 77, the 50%-attainment surfaces for the second test problem are shown.
One could guess that the NSGA-II mainly explores the center of the Pareto
frontier. This may be explained by the loss of solution diversity due to the
error in our code.

r-nsga-ii . The R-NSGA-II is an extension of the NSGA-II for dealing with many-
objective optimization problems [25]. Since it is not available in the inspyred
library, we had to implement the modified crowding distance operator and
tournament selection operator described in Section 3.6. All codes are written
in Python 2.6. The interface of the NSGA-II was then used to integrate the
algorithm in the inspyred library. The R-NSGA-II uses the same crossover
and mutation operators employed by the NSGA-II.

mo-cma-es . The MO-CMA-ES is not available in the inspyred library. It is based
on an elitist variant of the single-objective CMA-ES, named (1+ λ)-CMA-ES,
which is described in Section 3.2.5. The strategy adaptation mechanism of the

4.3 first test case 153

feature description

Computer model Acer Aspire 5738ZG

Processor Intel© Pentium© mobile processor T4300 (1 MB L2

cache, 2.10 GHz, 800 MHz FSB), supporting Intel© 64
architecture

Operating system Linux 2.6.32-41-generic-pae i686

Programming languages
Python 2.6.5. Additional packages: scipy 0.11.0,
numpy 1.6.2, inspyred 1.0

C++. Compiler: g++. Compiler optimization level:
O3

Table 13: Description of the computing environment.

(1 + λ)-CMA-ES is combined with multi-objective selection using nondomi-
nated sorting and the contributing hypervolume as second sorting criterion.

We implemented the (1 + λ)-CMA-ES in Python. Instead, the computation
of the contributing hypervolume is written in C++, because it is computa-
tionally expensive. The procedure is based on codes available in the Shark
Machine Learning Library© [55]. We then use the C interface to Python, re-
ferred to as the Python C Application Programming Interface (API), to write
an interface which allows to call C++ code from Python. The official elec-
tronic Python documentation has a tutorial for the C API, called “Extending
and Embedding the Python Interpreter” [38], and a reference manual for the
API [37]. The C API is also covered in books [67].

The population-based step size adaptation and the recombination of learning
strategy parameters are written in Python.

The computing environment is described in Table 13.

4.3 first test case

This section presents the design and analysis phases of the first MOEA experiment.
It consisted in a multi-objective minimization problem with three objective func-
tions:

• RSM between measured and simulated dc data;

• RSS between measured and simulated reverse recovery data for both current
and voltage.

4.3.1 Choosing MOEA parameters and quality measures

In designing this experiment, the goal was to identify the relative quality of the
solutions generated by the four MOEAs. In this manner, the experiment should
provide some answers to the questions posed in the introduction of this chapter.

154 experiments

For each MOEA, we chose a reasonable set of values and made no effort in
finding the best strategy parameter setting.

For NSGA-II and R-NSGA-II, we used a population size of 120 and a generation
number of 250. We were guided in choosing these values by the test problems pro-
vided in the C library implementing the NSGA-II available at http://www.iitk.
ac.in/kangal/codes.shtml. The chosen values represent a trade-off between ex-
ploration of the objective space and computational effort requested by the optimiz-
ers. As Deb et al. did in [24], we set the mutation probability to pm = 0.08, which is
slightly higher than the inverse of the decision space dimension, and the crossover
probability to pc = 0.9. The distribution indices of the mutation and crossover op-
erators were set to ηm = 20 and ηc = 10, respectively. The same values were used
in [25] to solve a pool of many-objective optimization problems. For the R-NSGA-
II, we chose ε = 0.001 as niching parameter, like Deb et al. did in [25] to solve two
engineering design problems, and the following three reference points (objectives
are considered in the following order: RSM-dc, RSS-rr-current, RSS-rr-voltage):

1. (50, 1× 10−4, 1× 10−2): good solutions with respect to all the objectives are
preferred;

2. (50, 2, 2): solutions achieving a good fitting of dc i–v, but a bad fitting of
reverse current and reverse voltage are preferred;

3. (1× 104, 1× 10−4, 0.07): solutions achieving a good fitting of reverse current
and reverse voltage, but a bad fitting of dc i–v are preferred.

The reference points were chosen after a series of single-objective optimizations of
each characteristic.

In the two variants of the MO-CMA-ES, we set the population size µ to 100, the
number of offspring per parent λ to 1, and the generation number to 250 to allow
for a better comparison with the other two MOEAs. For the strategy parameters
of each individual implementing the (1+ λ)-CMA-ES we used the same setting as
Igel et al. [53]. In particular, since we rescaled all the decision variables between 0
and 1, the initial step size σ(0) was set to 0.3 [48].

The quality indicators for comparing the optimizers were the hypervolume dif-
ference to a reference set I−H and the unary additive epsilon indicator I1

ε+. For both
the indicators, smaller values correspond to higher quality. The reference set was
generated by combining all approximation sets generated by the optimizers and
then selecting the nondominated points of this union.

4.3.2 Design of the experiment

For each indicator to be investigated for distribution differences among MOEAs,
new initial populations, and hence new approximation set samples, were gener-
ated which were not used for any other indicator. Moreover, the initial popula-
tion and the random seed used by the optimizers were matched in corresponding
runs, so that the runs, and hence the final quality indicator values, were taken
together (see Section 3.7.4.3). For each indicator-MOEA pair, 30 MOEA runs were
performed. The size of the approximation set samples used for the statistical test-

http://www.iitk.ac.in/kangal/codes.shtml
http://www.iitk.ac.in/kangal/codes.shtml

4.3 first test case 155

ing procedure described in Section 3.7.4 was therefore 30. The total number of
initial populations to be generated npop is then given by

npop = No. of indicators · sample size

= 2 · 30

= 60,

while the total number of runs nruns is equal to

nruns = No. of indicators · sample size ·No. of MOEAs

= 2 · 30 · 4
= 240.

Algorithm 4.1 Generation of initial populations for a MOEA comparison.

Input: Random number generator rng-r from Python module random, random
number generator rng-n from Python module numpy.random, number of initial
populations to be generated npop, size of approximation set samples s, number
of device model parameters npar, lower and upper bounds of model parameters
lb, ub

Output: List of initial populations L
1: Set the internal state of rng-r with a seed provided by the user
2: Initialize the population list L← ∅
3: for i = 1, . . . , npop do
4: x ← rng-r.random() . x ∼ U(0, 1)
5: y← rng-r.randint(0, 9) . y ∼ U{0, 1, . . . , 8}
6: w← x · 10y

7: Set the internal state of rng-n with w
8: Initialize population Pi, Pi ← ∅
9: for j = 1, . . . , s do

10: Initialize individual cj, cj ← 0

11: for k = 1, . . . , npar do
12: cj,k ← rng-n.uniform(lbk, ubk) . cj,k ∼ U(lbk, ubk)

13: end for
14: Pi ← Pi

⋃{cj}
15: end for
16: L← L

⋃{Pi}
17: end for

In the following, the randomized procedure to set up the MOEA experiment
is described. The notation U(a, b) represents a continuous uniform distribution on
[a, b], while U{1, 2, . . . , n} represents a discrete uniform distribution on the integers
from 1 to n.

1. Instantiate a random number generator from Python module random and
another one from module numpy.random. Let us refer to these two generators
as rng-r and rng-n, respectively.

2. Generate initial populations. Algorithm 4.1 illustrates the complete proce-
dure. The seed mentioned at line 1 was set to 7297463985.

156 experiments

Algorithm 4.2 Generate random seeds for MOEA runs.

Input: Random number generator rng-r from Python module random, number of
initial populations npop

Output: List of MOEA random seeds R
1: Set the internal state of rng-r with a seed provided by the user
2: Initialize R, R← ∅
3: for i = 1, . . . , npop do
4: x ← rng-r.random() . x ∼ U(0, 1)
5: y← rng-r.randint(0, 9) . y ∼ U{0, 1, . . . , 8}
6: w← x · 10y

7: R← R
⋃{w}

8: end for

3. Generate random seeds for matched MOEA runs. The complete procedure
is given in Algorithm 4.2. The seed mentioned at line 1 was set to 334961315.
Since both the initial population and the random seed used by the optimiz-
ers were matched in corresponding runs, we generated as many seeds as
matched MOEA runs.

4. Shuffle initial populations. The internal state of rng-r is set through a user-
provided seed and initial populations are shuffled. For this step, the seed was
498431465.

5. Shuffle random seeds for MOEAs. The internal state of rng-r is set through
a user-provided seed and MOEA random seeds are shuffled. As a seed, we
used 6674654.

6. Create a list of npop indicator names. Each name refers to the indicator being
computed for a single final approximation set. Then shuffle this list. The in-
ternal state of rng-r is set through a user-provided seed and indicator names
are shuffled. As a seed, we used 29843216513.

7. Match the lists of shuffled populations, MOEA random seeds and indicator
names element; pair each element of the resulting list with each MOEA in
order to define a list of matched MOEA runs.

8. Shuffle the list of MOEA runs. The internal state of rng-r is set through a
user-provided seed and indicator names are shuffled. As a seed, we used
54431774111.

Finally, the Python package multiprocessing was used to perform shuffled
MOEA runs in parallel on our two-core machine.

4.3.3 Analysis of the results

In this section, performance assessment methodologies described in Section 3.7 are
employed.

4.3 first test case 157

runs

normalize

bound

filter

indicators
(hyp, eps)eaf

Friedman test

post-hoc procedure

Population plots

Surface plots

Box plots

Convergence
study

Comparison

Figure 68: MOEA performance assessment flow.

The starting point is the set of runs for all combinations of quality indicator to
compute, optimization methods and initial populations. For each run we obtain
three files:

• one file contains all objective vectors explored by the optimizer;

• another file contains the final approximation set;

• the last file contains the approximation set computed at each generation.

According to Figure 68, one can at first try to visualize individual runs using
approximation set plots. This can be easily done in biobjective problems (see ex-
ample 3.5). In the current MOEA experiment, since we had three objectives, these
graphs were not used.

There are three procedures that perform a post-processing on the approximation
sets found by the optimizers:

bound. This procedure calculates lower and upper bounds of the objective vec-
tors. To this end, all objective vectors explored by all the optimizers are col-
lected, and the maximal and minimal values in each objective dimension are
determined.

158 experiments

algorithm ranking

nsga2 1.36

r-nsga2 1.6

mo-cma-es-p 3.56

mo-cma-es-p-rec 3.4

Table 14: First test case: average rankings of the algorithms with respect to the hypervol-
ume indicator. Friedman statistic considering reduction performance (distributed
according to chi-square with 3 degrees of freedom): 70.68. P-value computed by
Friedman Test ≈ 5× 10−11. Iman and Davenport statistic considering reduction
performance (distributed according to F-distribution with 3 and 87 degrees of
freedom) ≈ 106.0932. P-value computed by Iman and Daveport Test ≈ 6× 10−29.

normalize . Based on the bounds determined above, this procedure transforms
all objective vectors contained in a given file in such a way that all values lie
in the interval [1, 2].

filter . This procedure collects all normalized objective vectors from all popula-
tions and extracts the objective vectors which are nondominated. In this way,
a reference set for the unary indicators is generated. The extraction of the non-
dominated vectors is carried out with the filter tool, which is part of the
Platform and Programming Language Independent Interface for Search Al-
gorithms (PISA), available for download from http://www.tik.ee.ethz.ch/
pisa/.

As a next step, empirical attainment functions can be plotted to obtain perfor-
mance information complementary to the use of quality indicators. We used two
tools to compute and plot EAFs:

• the eaf program of the PISA;

• the eaf package of the R Project for Statistical Computing, available at http:
//cran.r-project.org/web/packages/eaf/.

These two programs are only designed for a biobjective problem. They will be used
in the second test case in Section 4.4.

Based on the normalized approximation sets and the reference set, the unary hy-
pervolume indicator I−H and the unary additive epsilon indicator I1

ε+ are employed
to compare the different MOEAs. The PISA performance assessment tools currently
contain the programs hyp_ind and eps_ind for computing I−H and I1

ε+, respectively.
The distribution of the resulting transformed approximation sets are graphically
visualized in Figure 69 and in Figure 70. These boxplots suggest that Pareto sets
of MO-CMA-ES-P and MO-CMA-ES-P-REC are preferable to those computed by
NSGA-II and R-NSGA-II under the hypervolume indicator and, independently,
under the epsilon indicator.

The Friedman test (see Section 3.7.4.3) is used to compare indicator values of the
four optimizers. Results of the comparisons over the hypervolume and the epsilon
indicators are shown in Table 14 and in Table 15, respectively. Since the p-values

http://www.tik.ee.ethz.ch/pisa/
http://www.tik.ee.ethz.ch/pisa/
http://cran.r-project.org/web/packages/eaf/
http://cran.r-project.org/web/packages/eaf/

4.3 first test case 159

● ●

mocmaes_p mocmaes_p_rec nsga2 r_nsga2

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Hypervolume Indicator

Figure 69: First test case: comparison of hypervolume indicator values through boxplots.

algorithm ranking

nsga2 1.8

r-nsga2 1.6

mo-cma-es-p 3.5

mo-cma-es-p-rec 3.1

Table 15: First test case: average rankings of the algorithms with respect to the addi-
tive epsilon indicator. Friedman statistic considering reduction performance (dis-
tributed according to chi-square with 3 degrees of freedom): 47.88. P-value com-
puted by Friedman Test ≈ 3× 10−10. Iman and Davenport statistic considering
reduction performance (distributed according to F-distribution with 3 and 87
degrees of freedom) ≈ 32.9658. P-value computed by Iman and Daveport Test:
≈ 3× 10−14.

160 experiments

●
●

●

mocmaes_p mocmaes_p_rec nsga2 r_nsga2

0.
00

05
0.

00
10

0.
00

15
0.

00
20

0.
00

25
0.

00
30

0.
00

35

Epsilon Indicator

Figure 70: First test case: comparison of additive epsilon indicator values through boxplots.

4.3 first test case 161

computed by the Friedman test are extremely small, we can conclude that the
optimizers are statistically significantly different with respect to the hypervolume
indicator and, independently, the additive epsilon indicator.

Whether the Friedman test rejects the hypothesis that MOEAs have equal indi-
cator distributions, we can proceed with a post-hoc test in order to find the con-
crete pairwise comparisons which produce differences. The following procedures,
which are described in Section 3.7.4.4, are employed:

• Nemenyi’s test. This is the most conservative procedure and many of the
obvious differences may not be detected.

• Holm’s test.

• Shaffer’s static test.

• Bergmann-Hommel’s dynamic test. This is the most powerful procedure, be-
cause it may detect small differences among the optimizers. However, it is
also the most difficult to understand and computationally expensive.

The adjusted p-values for pairwise comparisons of the optimizers over the hy-
pervolume and the epsilon indicators are shown in Table 16 and Table 17, respec-
tively. Using an overall significance level of α = 0.001 for the post-hoc test of each
indicator, the four procedures that we mentioned above reject these hypotheses:

• nsga2 vs. mo-cma-es-p;

• nsga2 vs. mo-cma-es-p-rec;

• r-nsga2 vs. mo-cma-es-p;

• r-nsga2 vs. mo-cma-es-p-rec.

We can conclude that there is enough statistical evidence to support the fact
that MO-CMA-ES-P and MO-CMA-ES-P-REC are preferable to NSGA-II and R-
NSGA-II under the hypervolume indicator and, independently, under the epsilon
indicator.

We rely on the open source software supplied by García and Herrera [40] for the
Friedman test and the corresponding post-hoc tests.

Finally, we are interested in measuring the convergence of solutions to the Pareto
optimal front (see Figure 68). This study could allow us to understand if the gen-
eration number can be decreased while maintaining good quality solutions or it
has to be increased. Of course, a change in this parameter will affect the total
execution time of the optimizers. In order to measure convergence, we use the
I−H indicator, i.e., we compute the difference in hypervolume between the refer-
ence set (recall that the reference here is the set of pooled nondominated vectors
because the true Pareto front is not available) and the current Pareto frontier (ap-
proximation set) at each generation and for each MOEA. Then, for each MOEA, we
collect hypervolume values of corresponding generations and plot them through
boxplots (see Figure 71 and Figure 72). In these figures, smaller values correspond
to approximation set which are closer to the reference set, as usual.

Obviously, a final choice has to be made among Pareto solutions. Figure 73

and Figure 74 show some Pareto points computed by the MO-CMA-ES-P, which

162 experiments

i
h

y
p

o
t

h
e

s
i
s

u
n

a
d

j
u

s
t

e
d

p
p

N
em

e
p

H
olm

p
Shaf

p
Berg

1
nsga

2
vs

.m
o-cm

a-es-p
4×

10 −
11

2×
10 −

10
2×

10 −
10

2×
10 −

10
2×

10 −
10

2
nsga

2
vs

.m
o-cm

a-es-p-rec
1×

10 −
9

6×
10 −

9
5×

10 −
9

3×
10 −

9
3×

10 −
9

3
r-nsga

2
vs

.m
o-cm

a-es-p
1×

10 −
8

7×
10 −

8
5×

10 −
8

4×
10 −

8
4×

10 −
8

4
r-nsga

2
vs

.m
o-cm

a-es-p-rec
2×

10 −
7

1×
10 −

6
6×

10 −
7

6×
10 −

7
2×

10 −
7

5
nsga

2
vs

.r-nsga
2

0.3681
2.2087

0.7362
0.7362

0.7362

6
m

o-cm
a-es-p

vs
.m

o-cm
a-es-p-rec

0.6171
3.7025

0.7362
0.7362

0.7362

Table
1

6:First
test

case:adjusted
p-values

for
the

post-hoc
test

of
the

hypervolum
e

indicator.

4.3 first test case 163

i
h

y
p

o
t

h
e

s
i
s

u
n

a
d

j
u

s
t

e
d

p
p N

em
e

p H
ol

m
p S

ha
f

p B
er

g

1
r-

ns
ga

2
vs

.m
o-

cm
a-

es
-p

1
×

10
−

8
7
×

10
−

8
7
×

10
−

8
7
×

10
−

8
7
×

10
−

8

2
ns

ga
2

vs
.m

o-
cm

a-
es

-p
3
×

10
−

7
2
×

10
−

6
2
×

10
−

6
1
×

10
−

6
1
×

10
−

6

3
r-

ns
ga

2
vs

.m
o-

cm
a-

es
-p

-r
ec

7
×

10
−

6
4
×

10
−

5
3
×

10
−

5
2
×

10
−

5
2
×

10
−

5

4
ns

ga
2

vs
.m

o-
cm

a-
es

-p
-r

ec
1
×

10
−

4
6
×

10
−

4
3
×

10
−

4
3
×

10
−

4
1
×

10
−

4

5
m

o-
cm

a-
es

-p
vs

.m
o-

cm
a-

es
-p

-r
ec

0.
23

01
1.

38
08

0.
46

03
0.

46
03

0.
46

03

6
ns

ga
2

vs
.r

-n
sg

a2
0.

54
85

3.
29

10
0.

54
85

0.
54

85
0.

54
85

Ta
bl

e
1

7
:F

ir
st

te
st

ca
se

:a
dj

us
te

d
p-

va
lu

es
fo

r
th

e
po

st
-h

oc
te

st
of

th
e

ad
di

ti
ve

ep
si

lo
n

in
di

ca
to

r.

164 experiments

●

● ● ● ● ● ●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

nsga2 convergence

Generation Number

(a) Convergence of NSGA-II.

●

●

●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

r_nsga2 convergence

Generation Number

(b) Convergence of R-NSGA-II.

Figure 71: First test case: convergence study for the NSGA-II and the R-NSGA-II. For these
two optimizers, the hypervolume distribution does not noticeably improve after
200 and 220 generation, respectively.

4.3 first test case 165

●● ●

●
●

● ●
● ● ● ●

●● ●● ●● ●
● ● ●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

mo_cma_es_p convergence

Generation Number

(a) Convergence of MO-CMA-ES-P.

●● ●
●

●● ●

●● ●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

mo_cma_es_p_with_recomb convergence

Generation Number

(b) Convergence of MO-CMA-ES-P-REC.

Figure 72: First test case: convergence study for the MO-CMA-ES-P and the MO-CMA-
ES-P-REC. For these two optimizers, the hypervolume distribution does not
noticeably improve after 220 and 240 generations, respectively.

166 experiments

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 6.96862e-05

IB, red pt = 235.027

NE, red pt = 11.8796

NN, red pt = 1.43652

QB, red pt = 0.0005

Qp0, red pt = 8.41314e-10

RB, red pt = 32.2886

T0, red pt = 1.44795e-06

ap, red pt = 5.32681

b, red pt = 5.96794

rs, red pt = 0.000358668

tauH, red pt = 8.61166e-06

tauL, red pt = 1.58829e-06

objectives (from top to bottom): S_ABS=540.722, SSQ_ABS=0.375859, SSQ_ABS=1.02938

(a)

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 3.45867e-05

IB, red pt = 325.815

NE, red pt = 7.26065

NN, red pt = 1.48255

QB, red pt = 0.0005

Qp0, red pt = 5.02073e-09

RB, red pt = 13.6262

T0, red pt = 1.25909e-05

ap, red pt = 4.02973

b, red pt = 1.26648

rs, red pt = 0.000420039

tauH, red pt = 1.41619e-06

tauL, red pt = 2.43954e-06

objectives (from top to bottom): S_ABS=1779.24, SSQ_ABS=0.0628443, SSQ_ABS=0.0576501

(b)

Figure 73: First test case: two Pareto points found by the MO-CMA-ES-P. The spike in (b)
was not penalized because the error was calculated up to 12 microseconds since
Extended Lauritzen model does not model the step variation of the current at
12 microseconds.

4.3 first test case 167

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000
I
[A

]
measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 0.000672892

IB, red pt = 281.066

NE, red pt = 2.83458

NN, red pt = 1.09138

QB, red pt = 1.90401e-05

Qp0, red pt = 8.57137e-11

RB, red pt = 10.7457

T0, red pt = 1.41588e-05

ap, red pt = 41.0503

b, red pt = 2.12096

rs, red pt = 0.000499418

tauH, red pt = 5e-07

tauL, red pt = 3.58352e-06

objectives (from top to bottom): S_ABS=5815.32, SSQ_ABS=0.00937086, SSQ_ABS=0.27398

(a)

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 0.000482149

IB, red pt = 499.662

NE, red pt = 2.76254

NN, red pt = 1

QB, red pt = 3.70903e-06

Qp0, red pt = 2.96851e-10

RB, red pt = 10.9767

T0, red pt = 1.94433e-05

ap, red pt = 37.3493

b, red pt = 1.88997

rs, red pt = 0.000484217

tauH, red pt = 6.84385e-07

tauL, red pt = 3.77345e-06

objectives (from top to bottom): S_ABS=6181.61, SSQ_ABS=0.00192275, SSQ_ABS=0.100302

(b)

Figure 74: First test case: another two Pareto points found by the MO-CMA-ES-P. The
oscillating behavior in (a) was not penalized because the error was calculated
up to 12 microseconds since Extended Lauritzen model does not model the step
variation of the current at 12 microseconds.

168 experiments

Correlation matrix

1.0 −0.101 28 −0.202 23

−0.101 28 1.0 0.513 05

−0.202 23 0.513 05 1.0

Eigenvalues of the squared correlation matrix

1.268 12 0.996 89 0.734 99

Proportion of variance

0.422 71 0.332 30 0.244 99

Cumulative proportion of variance

0.422 71 0.755 01 1.0

Eigenvectors of the squared correlation matrix

−0.134 13 −0.987 55 −0.082 24

−0.696 84 0.153 00 −0.700 72

−0.704 57 0.036 68 0.708 68

Table 18: A principal component analysis of the reference set for the first test case.

is identified as one of the best performing algorithm by the post-hoc procedure.
A decision-maker could be interested in selecting the Pareto point depicted in
Figure 74b, since it represents a good trade-off between all objectives.

The whole reference set is represented in Figure 75. Crossing lines are evident be-
tween DC and reverse recovery current, while reverse recovery current and reverse
recovery voltage seem to be in relative harmony with one another. This suggests
that the Pareto optimal front PFtrue could be less than 3-dimensional, and hence
one objective between the reverse current RSS and the reverse voltage RSS could be
redundant (see Section 3.6).

A PCA (see Algorithm 3.11) is performed on the reference set used for the unary
quality indicators in order to identify redundant objectives. Results are summa-
rized in Table 18. No redundant objective is identified by the PCA. Nevertheless, in
the second test case, the reverse voltage RSS is removed from further consideration
since it appears in Figure 75 that it benefits from improvements in reverse current.

4.4 second test case

In the second MOEA experiment, the reverse voltage RSS is dropped and the simul-
taneous optimization of the following two objectives is carried out:

• RSM between measured and simulated dc data;

• RSS between measured and simulated reverse recovery current.

4.4 second test case 169

dc_S_ABS rr_current_SSQ_ABS rr_voltage_SSQ_ABS
-1.9e+04

2.6e+04

7.1e+04

1.2e+05

-3.0e-01

4.1e-01

1.1e+00

1.8e+00

-2.3e-01

3.5e-01

9.2e-01

1.5e+00

Permutations
of the objectives

1,2,3

2,3,1

(a) First permutation of objectives.

rr_current_SSQ_ABS rr_voltage_SSQ_ABS dc_S_ABS
-3.0e-01

4.1e-01

1.1e+00

1.8e+00

-2.3e-01

3.5e-01

9.2e-01

1.5e+00

-1.9e+04

2.6e+04

7.1e+04

1.2e+05

Permutations
of the objectives

1,2,3

2,3,1

(b) Second permutation of objectives.

Figure 75: First test case: parallel coordinate plot of an approximation set computed by
MO-CMA-ES-P. dc_S_ABS, rr_current_SSQ_ABS and rr_voltage_SSQ_ABS stand
for DC RSM, reverse recovery current RSS and reverse recovery voltage RSS, re-
spectively. Only two permutations of the objectives are needed to show every
possible adjacency.

170 experiments

4.4.1 Choosing MOEA parameters and quality measures

In order to set MOEA strategy parameters for this problem, the following choices
were made, with respect to the first test case:

• For each optimizer, a smaller population size of 100 was used, instead of
120. This is because the less the number of objectives the less the number of
solutions required for approximating the entire Pareto front (see Section 3.6).
In the two variants of the MO-CMA-ES, the number of offspring per parent
was always 1.

• The generation number was not changed.

• For NSGA-II and R-NSGA-II, the same mutation probability, crossover probabil-
ity, mutation distribution index and crossover distribution index were used.

• For the R-NSGA-II, the niching parameter was not modified. Three reference
points were specified also in this case (objectives are considered in the fol-
lowing order: RSM-dc, RSS-rr-current):

1. (50, 1× 10−4): good solutions with respect to both the objectives are
preferred;

2. (50, 2): solutions achieving a good fitting of dc i–v, but a bad fitting of
reverse current are preferred;

3. (1× 104, 1× 10−4): solutions achieving a good fitting of reverse current
but a bad fitting of dc i–v are preferred.

• In the two variants of the MO-CMA-ES, the strategy parameters of each in-
dividual implementing the (1 + λ)-CMA-ES were initialized as in the first
problem.

• The hypervolume difference to a reference set I−H and the unary additive
epsilon indicator I1

ε+ were again selected as quality indicators. The reference
set was generated by pooling all approximation sets and then extracting all
nondominated objective vectors.

4.4.2 Design of the experiment

This experiment was set up by using the same design procedure followed for the
first test case (see Section 4.3.2). User-provided seeds are listed in Table 19. For
each indicator-MOEA pair we performed 30 MOEA runs, as before.

4.4.3 Analysis of the results

In Figure 76 the first four runs of NSGA-II, R-NSGA-II, MO-CMA-ES-P and MO-
CMA-ES-P-REC are shown. The visual comparison is difficult and no conclusion
can be drawn about MOEA performance from this figure.

Since only two objectives are considered in the current problem, we can use em-
pirical attainment functions to provide valuable and complementary information

4.4 second test case 171

102 103 104 105

dc_S_ABS

10-3

10-2

10-1

100

101

102
rr

_c
u
rr

e
n
t_

S
S
Q

_A
B

S
nsga2
r_nsga2

mo_cma_es_p

mo_cma_es_p_with_recomb

(a)

102 103 104 105

dc_S_ABS

10-3

10-2

10-1

100

101

102

rr
_c

u
rr

e
n
t_

S
S
Q

_A
B

S

nsga2
r_nsga2

mo_cma_es_p

mo_cma_es_p_with_recomb

(b)

Figure 76: Second test case: representation of the first four approximation sets generated
by NSGA-II, R-NSGA-II, MO-CMA-ES-P and MO-CMA-ES-P-REC (Figure (a)),
and their corresponding attainment surfaces (Figure (b)).

172 experiments

design step seed

Generation of initial populations 1 540 651 080

Generation of MOEA starting seeds 84 161 851 033

Shuffling of initial populations 88 410.32

Shuffling of MOEA starting seeds 3 874 011 982

Shuffling of quality indicators 798 012 133

Shuffling of MOEA runs 47 560 487 564 397

Table 19: Second test case: seeds provided to the experimental design procedure.

102 103 104 105 106

dc_S_ABS

10-3

10-2

10-1

100

101

102

rr
_c

u
rr

e
n
t_

S
S
Q

_A
B

S

nsga2
r_nsga2

mo_cma_es_p

mo_cma_es_p_with_recomb

Figure 77: Second test case: 50%-attainment surfaces of the optimizers.

4.4 second test case 173

(a) (b)

(c) (d)

(e) (f)

Figure 78: Second test case: individual differences between the probabilities of attaining
different goals with NSGA-II, R-NSGA-II, MO-CMA-ES-P and MO-CMA-ES-P-
REC.

174 experiments

algorithm ranking

nsga2 1.6

r-nsga2 1.4

mo-cma-es-p 3.5

mo-cma-es-p-rec 3.5

Table 20: Second test case: average rankings of the algorithms with respect to the hypervol-
ume indicator. Friedman statistic considering reduction performance (distributed
according to chi-square with 3 degrees of freedom): 72.36. P-value computed by
Friedman Test ≈ 7× 10−11. Iman and Davenport statistic considering reduction
performance (distributed according to F-distribution with 3 and 87 degrees of
freedom) ≈ 118.9592. P-value computed by Iman and Daveport Test ≈ 1× 10−30.

to the use of quality indicators. Figure 77 visualizes the 50%-attainment surface
of the optimizers. One could guess that MO-CMA-ES-P and MO-CMA-ES-P-REC
can better capture the whole spectrum of the Pareto front, while NSGA-II and R-
NSGA-II focus on exploring the central region of the front. This behavior of NSGA-
II is probably due to an error in our implementation of the algorithm which has
been discussed in Section 4.2. From Figure 77, we can also argue that solutions
generated by NSGA-II and MO-CMA-ES-P tend to dominate solutions generated
by R-NSGA-II and MO-CMA-ES-P-REC, respectively. In Figure 78, differences in
the empirical attainment functions of the four optimizers are plotted. We can make
the following observations:

• both NSGA-II and R-NSGA-II converge better than the two variants of MO-
CMA-ES in the center of the Pareto front (left-side plots of Figure 78c–(f)),
while the latter optimizers converge more at the extremes (right-side plots of
Figure 78c–(f));

• NSGA-II and R-NSGA-II do not exhibit big performance differences (Fig-
ure 78a);

• MO-CMA-ES-P converge better than MO-CMA-ES-P-REC in the center of the
Pareto front (Figure 78b).

As a next step, the unary hypervolume indicator I−H and the unary additive ep-
silon indicator I1

ε+ are applied using the normalized approximation sets and the
reference set. Indicator distributions are depicted in Figure 79 and in Figure 80.
These boxplots suggest that there are performance differences between the two
variants of the MO-CMA-ES and the other two optimizers under the hypervolume
indicator and, independently, under the epsilon indicator. From the epsilon indica-
tor, one could also infer that MO-CMA-ES-P slightly outperforms MO-CMA-ES-P-
REC. This is also confirmed by a statistical comparison based on the Friedman test
and the corresponding post-hoc procedure.

Results of Friedman test for the comparisons of the optimizers over the hypervol-
ume and the epsilon indicators are shown in Table 20 and in Table 21, respectively.
Since the p-values computed by Friedman test are extremely small, we can con-

4.4 second test case 175

●

●

●

mocmaes_p mocmaes_p_rec nsga2 r_nsga2

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Hypervolume Indicator

Figure 79: Second test case: comparison of hypervolume indicator values through box-
plots.

algorithm ranking

nsga2 1.8

r-nsga2 1.76

mo-cma-es-p 3.6

mo-cma-es-p-rec 2.76

Table 21: Second test case: average rankings of the algorithms with respect to the addi-
tive epsilon indicator. Friedman statistic considering reduction performance (dis-
tributed according to chi-square with 3 degrees of freedom): 44.28. P-value com-
puted by Friedman Test ≈ 1× 10−9. Iman and Davenport statistic considering
reduction performance (distributed according to F-distribution with 3 and 87
degrees of freedom) ≈ 28.0866. P-value computed by Iman and Daveport Test:
≈ 9× 10−13.

176 experiments

●

●

●

●

mocmaes_p mocmaes_p_rec nsga2 r_nsga2

0.
00

1
0.

00
2

0.
00

3
0.

00
4

Epsilon Indicator

Figure 80: Second test case: comparison of additive epsilon indicator values through box-
plots.

4.4 second test case 177

clude that the optimizers are statistically significantly different with respect to the
hypervolume indicator and, independently, the additive epsilon indicator.

In order to find the concrete pairwise comparisons which produce differences,
the following procedures are used (see Section 3.7.4.4):

• Nemenyi’s test;

• Holm’s test;

• Shaffer’s static test;

• Bergmann-Hommel’s dynamic test.

The adjusted p-values for pairwise comparisons of the optimizers over the hyper-
volume and the epsilon indicators are shown in Table 22 and Table 23, respectively.
Under the hypervolume indicator, there is strong statistical evidence against the
following hypotheses (see Table 22):

• nsga2 vs. mo-cma-es-p;

• nsga2 vs. mo-cma-es-p-rec;

• r-nsga2 vs. mo-cma-es-p;

• r-nsga2 vs. mo-cma-es-p-rec.

Under the epsilon indicator, only the following algorithms are statistically sig-
nificantly different according to every post-hoc procedure:

• nsga2 vs. mo-cma-es-p;

• r-nsga2 vs. mo-cma-es-p.

Using an overall significance level of α = 0.05, there is enough statistical evi-
dence to reject the following additional hypotheses (see Table 23):

• nsga2 vs. mo-cma-es-p-with-recomb;

• r-nsga2 vs. mo-cma-es-p-with-recomb;

• mo-cma-es-p vs. mo-cma-es-p-with-recomb.

Thus, the hypervolume and the epsilon indicators do not agree on the statistical
significance of performance differences between the optimizers.

In conclusion, there is enough statistical evidence to argue that MO-CMA-ES-P
performs better than both NSGA-II and R-NSGA-II under the hypervolume indica-
tor and, independently, under the epsilon indicator. Additionally, these two quality
indicators may contradict one another on the performance ordering of NSGA-II, R-
NSGA-II and MO-CMA-ES-P-REC. This then implies that the approximation sets
generated by these three algorithms may be incomparable (see Section 3.7).

MOEA convergence to the reference set is depicted in Figure 81 and in Figure 82.
A final choice has to be made among Pareto solutions. Figure 83 and Figure 84

show some Pareto points computed by the MO-CMA-ES-P, which is identified as
a good performing algorithm by the post-hoc procedure. Reverse recovery voltage

178 experiments

i
h

y
p

o
t

h
e

s
i
s

u
n

a
d

j
u

s
t

e
d

p
p

N
em

e
p

H
olm

p
Shaf

p
Berg

1
r-nsga

2
vs

.m
o-cm

a-es-p
3×

10 −
10

2×
10 −

9
2×

10 −
9

2×
10 −

9
2×

10 −
9

2
r-nsga

2
vs

.m
o-cm

a-es-p-w
ith-recom

b
3×

10 −
10

2×
10 −

9
2×

10 −
9

2×
10 −

9
2×

10 −
9

3
nsga

2
vs

.m
o-cm

a-es-p
1×

10 −
8

7×
10 −

8
5×

10 −
8

4×
10 −

8
4×

10 −
8

4
nsga

2
vs

.m
o-cm

a-es-p-w
ith-recom

b
1×

10 −
8

7×
10 −

8
5×

10 −
8

4×
10 −

8
4×

10 −
8

5
nsga

2
vs

.r-nsga
2

0.5485
3.2910

1.0970
1.0970

1.0970

6
m

o-cm
a-es-p

vs
.m

o-cm
a-es-p-w

ith-recom
b

1.0
6.0

1.0970
1.0970

1.0970

Table
2

2:Second
test

case:adjusted
p-values

for
the

post-hoc
test

of
the

hypervolum
e

indicator.

4.4 second test case 179

i
h

y
p

o
t

h
e

s
i
s

u
n

a
d

j
u

s
t

e
d

p
p N

em
e

p H
ol

m
p S

ha
f

p B
er

g

1
r-

ns
ga

2
vs

.m
o-

cm
a-

es
-p

1
×

10
−

8
7
×

10
−

8
7
×

10
−

8
7
×

10
−

8
7
×

10
−

8

2
ns

ga
2

vs
.m

o-
cm

a-
es

-p
2
×

10
−

8
1
×

10
−

7
1
×

10
−

7
7
×

10
−

8
7
×

10
−

8

3
r-

ns
ga

2
vs

.m
o-

cm
a-

es
-p

-w
it

h-
re

co
m

b
0.

00
27

0.
01

62
0.

01
08

0.
00

81
0.

00
81

4
ns

ga
2

vs
.m

o-
cm

a-
es

-p
-w

it
h-

re
co

m
b

0.
00

37
0.

02
24

0.
01

12
0.

01
12

0.
00

81

5
m

o-
cm

a-
es

-p
vs

.m
o-

cm
a-

es
-p

-w
it

h-
re

co
m

b
0.

00
69

0.
04

16
0.

01
39

0.
01

39
0.

01
39

6
ns

ga
2

vs
.r

-n
sg

a2
0.

92
03

5.
52

21
0.

92
03

0.
92

03
0.

92
03

Ta
bl

e
2

3
:S

ec
on

d
te

st
ca

se
:a

dj
us

te
d

p-
va

lu
es

fo
r

th
e

po
st

-h
oc

te
st

of
th

e
ad

di
ti

ve
ep

si
lo

n
in

di
ca

to
r.

180 experiments

● ● ● ● ● ● ●
●
●

●
●

●
●

●
●

●
●

●
● ●

●●
●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

0.
04

nsga2 convergence

Generation Number

(a) Convergence of NSGA-II.

● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

0.
04

r_nsga2 convergence

Generation Number

(b) Convergence of R-NSGA-II.

Figure 81: Second test case: convergence study for the NSGA-II and the R-NSGA-II. For
these two optimizers, the hypervolume distribution does not noticeably improve
after 180 and 200 generation, respectively.

4.4 second test case 181

●

●

●●

●

●● ●
●●● ●

● ● ●● ●● ●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

0.
04

mo_cma_es_p convergence

Generation Number

(a) Convergence of MO-CMA-ES-P.

●

●

●

●

●

●
●

● ● ● ● ●●● ●●● ● ●

0 20 40 60 80 100 130 160 190 220 250

0.
00

0.
01

0.
02

0.
03

0.
04

mo_cma_es_p_with_recomb convergence

Generation Number

(b) Convergence of MO-CMA-ES-P-REC.

Figure 82: Second test case: convergence study for the MO-CMA-ES-P and the MO-CMA-
ES-P-REC. For both the optimizers, the hypervolume distribution does not no-
ticeably improve after 200.

182 experiments

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 2.32062e-06

IB, red pt = 1107.07

NE, red pt = 10.3636

NN, red pt = 1.76793

QB, red pt = 0.000472643

Qp0, red pt = 1e-08

RB, red pt = 6.9187

T0, red pt = 2.21623e-06

ap, red pt = 48.3107

b, red pt = 4.18362

rs, red pt = 0.000379013

tauH, red pt = 7.40961e-06

tauL, red pt = 1.93895e-06

(a)

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 6.06374e-06

IB, red pt = 208.793

NE, red pt = 9.16166

NN, red pt = 1.31697

QB, red pt = 0.0005

Qp0, red pt = 1e-08

RB, red pt = 22.2009

T0, red pt = 4.82499e-06

ap, red pt = 1

b, red pt = 5.15625

rs, red pt = 0.000411317

tauH, red pt = 1.95929e-06

tauL, red pt = 3.52882e-06

(b)

Figure 83: Second test case: two Pareto points found by the MO-CMA-ES-P. In this MOEA
experiment, only the dc and reverse recovery current characteristics were opti-
mized. However, in order to provide additional information, reverse recovery
voltage is also shown. The spike in (a) was not penalized because the error
was calculated up to 12 microseconds since Extended Lauritzen model does not
model the step variation of the current at 12 microseconds.

4.4 second test case 183

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000
I
[A

]
measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 0.000605613

IB, red pt = 358.964

NE, red pt = 1.8732

NN, red pt = 1.47173

QB, red pt = 2.93047e-05

Qp0, red pt = 4.4701e-11

RB, red pt = 13.628

T0, red pt = 1.56332e-05

ap, red pt = 9.66271

b, red pt = 2.29571

rs, red pt = 0.000501841

tauH, red pt = 7.93632e-07

tauL, red pt = 4.0932e-06

(a)

0 1 2 3 4 5

V [V]

2000

0

2000

4000

6000

8000

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

3000

2500

2000

1500

1000

500

0

500

I
[A

]

measured

simulated

4 6 8 10 12 14 16 18

time [µs]

1000

0

1000

2000

3000

4000

5000

6000

V
 [

V
]

measured

simulated

EM, red pt = 2.1593e-05

IB, red pt = 156.45

NE, red pt = 2.58892

NN, red pt = 2.38719

QB, red pt = 0.000340842

Qp0, red pt = 1.07422e-09

RB, red pt = 17.5928

T0, red pt = 1.14966e-05

ap, red pt = 5.79748

b, red pt = 2.61835

rs, red pt = 0.000388545

tauH, red pt = 8.99696e-07

tauL, red pt = 3.85732e-06

(b)

Figure 84: Second test case: another two Pareto points found by the MO-CMA-ES-P. In
this MOEA experiment, only the dc and reverse recovery current characteristics
were optimized. However, in order to provide additional information, reverse
recovery voltage is also shown. The oscillating behavior in (b) was not penal-
ized because the error was calculated up to 12 microseconds since Extended
Lauritzen model does not model the step variation of the current at 12 microsec-
onds.

184 experiments

is plotted to check if a good fitting of this characteristic is achieved even if it is not
considered as an objective function.

A decision-maker could be interested in selecting the Pareto point depicted in
Figure 84a, since it represents a good trade-off between all objectives. This pro-
vides further evidence of the physical coupling between current and voltage in the
phenomena of turn-off and, hence, of the absence of conflict between these two
characteristics near the Pareto optimal region.

5
C O N C L U S I O N S A N D F U T U R E W O R K

In Chapter 4 two experiments were presented in order to investigate the effi-
ciency and effectiveness of the automated parameter extraction procedure based
on MOEAs which we described in Section 1.6.

Several MOEAs are available in the Python library for parameter extraction
that we developed during our internship at ABB Corporate Research Center in
Switzerland. In experiments we compared NSGA-II, R-NSGA-II and two variants of
the MO-CMA-ES.

Empirical evaluation revealed that MOEAs are:

• Robust: they do not require computation of initial guesses of device model
parameters. Then the quality of final solutions does not depend on such
estimates. Moreover the user is not asked to tune optimizer’s parameters.

• Effective: they can effectively solve parameter extraction problems with con-
flicting objectives and are not affected by objective space convexity or non-
convexity. They also return several solutions in a single run, thus providing
the decision-maker a true picture of trade-offs.

• Simple and high-impact: once physical ranges of model parameters have
been defined, the user does not have to monitor MOEA progress nor to take
corrective actions. In this sense, extracting model parameters with MOEAs is a
completely automated procedure. Tremendous savings in time and engineer-
ing resources could then be achieved. A detailed understanding of neither
the device compact model nor the optimization algorithm is requested to
perform the extraction.

• Generalizable: since MOEAs are not model specific and they do not require
experienced user guidance to succeed, it is easy to port them with confidence
from one silicon technology to another.

The MO-CMA algorithm with population-based step size adaptation, named
MO-CMA-ES-P, appeared to be the superior method. It significantly outperformed
the NSGA-II and R-NSGA-II in both tests. Combining this step size adaptation proce-
dure with recombination of strategy parameters proposed in [93] did not improve
performance of the MO-CMA-ES, surprisingly. This could be essentially due to er-
rors in our implementation of the recombination strategy and/or to a very rugged
search landscape which prevents effective transfer of information between neigh-
boring individuals.

At present, we suggest the use of the MO-CMA-ES-P to practicing engineers in
the power electronics community. In this algorithm the multi-objective selection is
based on the contributing hypervolume, whose computation is exponential in the
number of objectives [97]. We do not regard this bad scaling behavior as a sever
drawback, because in real-world applications the costs for generating offspring

185

186 conclusions and future work

and selection can often be neglected compared to the time needed for objective
function evaluation.

Further work is needed in order to investigate whether MOEAs are a universal
solution technique for all parameter extraction problems. Extraction of different
device compact models should be performed and MOEAs should be “stress tested”
by optimizing as many objectives as possible. At present we are working on a
parameter extraction problem for Extended Lauritzen model with seven objectives.
One could also try to optimize several different devices at the same time. However,
in the latter case, the possibility of behavioral models being inadvertently created
would increase [7].

A
S O F T WA R E S T R U C T U R E

During our internship at ABB Corporate Research Center in Switzerland we de-
veloped a Python library to perform automated parameter extraction of lumped
charge models. Implemented algorithms are general enough to be safely ported
from one silicon technology to another. The software also provides a pool of post-
processing routines to assess performance of multi-objective optimizers.

Here is a list of the software that has been developed:

• YAML files: text files which have been written in YAML format, defining sets
of instructions to perform single objective optimizations, multi objective op-
timizations and sensitivity analyses.

• plotting_prm.yaml: a text file written in YAML sintax with a set of default
instructions to plot simulated, measured and errors values. It must be in the
same directory where model_fitting.py lies.

• extr_print.py: functions for reading simulation files generated by SIMetrix.

• initial_parameter_estimation.py: compute starting guesses for parame-
ters of Lauritzen, Ma and Extended Lauritzen diode models.

• model_fitting.py: computation of fitting errors between measured and sim-
ulated device characteristics.

• moments.py: functions for calculating moments of a curve.

• ngspice_extr_print.py: functions for reading simulation files generated by
ngspice.

• opt_parser.py: module which provides routines for single and multi objec-
tive optimizations and sensitivity analysis.

• plotSimPrm.py: this module defines a container class for plotting options of
figures with simulated and measured data.

• performance_assessment_of_moea.py: module which provide routines for
postprocessing of computational experiments with MOEAs.

• RR.py: module for aligning measured and simulated diode reverse recovery
characteristics and for extracting diode characteristic values.

• runSimulation.py: routines for running SIMetrix and ngspice.

• inspyredABB: module extending the inspyred Python library for creating evo-
lutionary computations in Python.

• smeasure_module: C++ library for computing the hypervolume indicator.

187

188 software structure

• scripts: a collection of scripts. The main scripts are:

– sensitivity_single_char.py: sensitivity analysis for a single device
characteristic. Not recommended.

– new_sensitivity_analysis.py: sensitivity analysis for all characteris-
tics of a device. Recommended.

– optimize_single_char_with_simplex.py: single objective optimization
with the simplex algorithm. Not recommended.

– optimize_single_char_with_cma.py: optimization of a single character-
istic with the (µ, λ)-CMA-ES. Recommended.

– optimization_loop_with_cma.py: parameter extraction performed as a
succession of single objective optimizations carried out with the CMA-ES.
Not recommended.

– process_optimization_loop_results.py: postprocessing of the results
of the previous script.

– multi_objective_optimization.py: optimization of several characteris-
tics through a MOEA. Recommended.

– run_moea_tests.py: designing and running computational experiments
with MOEAs.

– moeas_performance_assessment.py: analysis of the results of a MOEA
comparison.

– single_moea_performance_assessment.py: analysis of the results of a
single MOEA run.

All routines were written in Python 2.6.5 and C++. In addition to a standard
Python distribution, the following Python packages have been used:

• PyYAML 3.10: YAML implementation for Python. It can be downloaded from
http://pyyaml.org/wiki/PyYAML.

• NumPy 1.6.2: array processing for numbers, strings, records, and objects.

• SciPy 0.11.0: scientific library for Python.

• inspyred 1.0: framework for creating evolutionary computations in Python,
available at http://pypi.python.org/pypi/inspyred/1.0.

• scikits.ann: this Python module provides a numpy-compatible Python wrap-
per around the Approximate Nearest Neighbor library (http://www.cs.umd.
edu/~mount/ANN/). It can be downloaded from http://pypi.python.org/
pypi/scikits.ann.

• cma.py: module implementing the (µ, λ)-CMA-ES, available at http://www.
lri.fr/~hansen/cmaesintro.html.

Other additional programs used in the Python library are:

• sed: a stream editor used to filter text. sed is available for both Windows
(http://gnuwin32.sourceforge.net/packages/sed.htm) and GNU operat-
ing systems (http://www.gnu.org/software/sed/sed.html).

http://pyyaml.org/wiki/PyYAML
http://pypi.python.org/pypi/inspyred/1.0
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://pypi.python.org/pypi/scikits.ann
http://pypi.python.org/pypi/scikits.ann
http://www.lri.fr/~hansen/cmaesintro.html
http://www.lri.fr/~hansen/cmaesintro.html
http://gnuwin32.sourceforge.net/packages/sed.htm
http://www.gnu.org/software/sed/sed.html

A.1 building a vector of variable parameters 189

• taskkill, a console command available on Microsoft Windows XP, Vista and 7

to terminate a process tree.

First we will present some fundamental classes and functions which are used
throughout the code. Then we will explain how to run single objective and multi-
objective optimizations and how to perform sensitivity analysis.

a.1 building a vector of variable parameters

The model parameters to optimize are collected in an instance of the VariablePrm
class.

The main attributes of this class are:

• names, list of names of variable model parameters.

• values, array of values of variable model parameters. These values are sub-
ject to transformations specified in the transformation attribute.

• bounds, list of lower and upper bounds of variable model parameters. These
values are subject to transformations specified in the transformation at-
tribute.

• transformation, list of transformations applied to variable parameter values
and bounds. Currently supported transformations are: log10, normalization
between 0 and 1, affine transformations.

This class has methods to

• transform variable parameter values and bounds;

• invert variable parameter transformations;

• set values and bounds;

• compute a penalty value to be added to the error between simulated and
measured data when an optimizer returns a vector of variable model param-
eters which violates bounds.

a.2 computing errors between measured and simulated data

All classes and functions described in this subsection are implemented in the
model_fitting.py module.

a.2.1 The curveFamily class

The curveFamily class can store measured or simulated waveforms. Some opera-
tors and functions are provided: largest value, smallest value, average value, addi-
tion, subtraction, multiplication, division and power of curveFamily objects.

If measured and simulated waveforms are not defined at the same points, sim-
ulated data has to be interpolated over measured data points. Interpolation is per-
formed by the curveFamily.interpolate_sim method. If data interpolation fails
for any reason, it is reported to the calling function.

190 software structure

a.2.2 The errorFamily class

The errorFamily class calculates a pool of error estimators between two waveforms
stored in two curveFamily objects. Waveforms must be defined at the same points.
These two waveforms can correspond to measured and simulated data or to any
pair of waveforms to be compared. Some of the implemented error estimators are
listed below:

• sum of absolute errors

S_ABS =
N

∑
n=1
|yinterp_sim(n)− ymeas(n)|;

• sum of squares of absolute errors

SSQ_ABS =
N

∑
n=1

(yinterp_sim(n)− ymeas(n))2;

• sum of squares of relative errors

SSQ_REL =
N

∑
n=1

(yinterp_sim(n)− ymeas(n)
ymeas(n)

)2
;

• variance estimator

VAR_EST =
1

N − 1

N

∑
n=1

(yinterp_sim(n)− ymeas(n))2;

• square root of the sum of absolute errors

RMSE =
√

SSQ_ABS;

• square root of the sum of relative errors

RMSErel =
√

SSQ_REL;

• normalized root mean square absolute error

NRMSE =
RMSE

ymeas,max − ymeas,min
;

• largest absolute error

max
n=1,...,N

|yinterp_sim(n)− ymeas(n)|;

• largest relative error

max
n=1,...,N

∣∣∣yinterp_sim(n)− ymeas(n)
ymeas(n)

∣∣∣,
where N is the number of samples. We recommend the use of SSQ_ABS to assign
more significance to any large errors between measured and simulated waveforms
and the use of S_ABS to redress the imbalance between errors which are high in
magnitude and errors which are smaller in magnitudes. The use of other error
estimators is deprecated.

A.2 computing errors between measured and simulated data 191

a.2.3 SSQ class hierarchy

Usually measured and simulated data are processed in different ways for each
diode or IGBT characteristic before computing errors. After processing data, meth-
ods of the SSQ class can be used to:

• compute error estimators: SSQ.calc_error;

• plot absolute and relative errors: SSQ.plot_AbsErr and SSQ.plot_RelErr, re-
spectively;

• plot simulated and measured data: SSQ.plot_sim_data.

SSQ.plot_AbsErr, SSQ.plot_RelErr and SSQ.plot_sim_data methods use meth-
ods of model_fitting.plotSim class to plot figures.

The plotSim class reads the file plotting_prm.yaml which has a set of default
instructions for data plotting written in YAML syntax. plotSim is a subclass of
the plotSimPrm class which is defined in plotSimPrm.py. The plotSimPrm class is
specially designed to read plotting_prm.yaml.

From the SSQ class several subclasses are derived, one for each diode or IGBT

characteristic. Here is the complete list of the derived classes:

• SSQ_ID_VG: to be used with IGBT transfer characteristic simulations (gate-
emitter voltage vs collector current).

• SSQ_QG_VG: designed for IGBT gate charge simulations.

• SSQ_OC_ALL: designed for IGBT “output” characteristics (collector-to-emitter
voltage vs. collector-to-emitter current) simulations at several gate-to-emitter
voltage values.

• SSQ_OC_VG: designed for IGBT output characteristics simulations at a single
gate-to-emitter voltage value.

• SSQ_ONSTATE: designed for IGBT on-state simulations.

• SSQ_EonEoff_metrics: designed for IGBT turn-off and turn-on simulations.

• SSQ_DiodeDC: designed for diode dc i–v simulations.

• SSQ_DiodeRR: designed for diode reverse recovery current simulations. This
class uses functions and classes defined in the RR.py module to automatically
synchronize measured and simulated waveforms and to compute diode char-
acteristic parameters. The module moments.py is used to compute current
curve moments.

• SSQ_DiodeRR_V: designed for diode reverse recovery voltage simulations. It
uses functions and classes from the RR.py module to automatically synchro-
nize measured and simulated waveforms.

• SSQ_DiodeCap: designed for diode capacitance simulations.

Classes for diode simulations can be used for parameter extraction, while classes
for IGBT simulations are not up to date.

The following section explains how simulation files generated by SIMetrix or
ngspice are read.

192 software structure

a.3 reading simulation files

Simulation files generated by SIMetrix are read by the extr_print function de-
fined in the extr_print.py module. Whenever a simulation fails, this is reported
in the simulation file through a warning or an error string. If extr_print() finds
such a kind of string, it will raise an exception which will be catched by the
runSimulation function in the runSimulation.py module.

a.4 running a simulation

The runSimulation function in the runSimulation.py module is used to run a
circuit simulation with SIMetrix or ngspice. Below we briefly explain how it works:

• It takes a realization of the vector of compact model parameters.

• It writes these values to a text file, named “sed” file.

• It takes the path to a “template” file describing the circuit simulation written
in SIMetrix or ngspice syntax. In this file, some circuit, diode and/or IGBT
parameters are undefined.

• It creates a circuit file ready to be used in SIMetrix or ngspice by running the
program sed on the sed and template files.

• It runs SIMetrix or ngspice.

• It reads the simulation file produced by SIMetrix or ngspice.

• It calculates error estimators between simulated and measured data.

• It saves simulated and measured data used in error calculation to text files.

• It returns error estimators calculated before.

Whether a simulation or the error computation fails, an exception is raised. This
exception is caught by runSimulation. The next section describes how exceptions
are handled.

a.5 exception handling

Exceptions are used to report errors that may happen when running a simulation
or computing fitting errors between measured and simulated data. Several excep-
tions have been identified in order to implement a different handling approach for
each of them.

All the exceptions that have been identified are:

• Exceptions defined in extr_print.py:

– TempFileError: in the simulation file created by SIMetrix an error mes-
sage appears which says that SIMetrix could not open temporary files
for writing because another instance of SIMetrix was writing to the same

A.5 exception handling 193

files. The corresponding circuit file is saved to a directory for failed sim-
ulations. This may happen when several SIMetrix instances are started
in an interleaved way during a multiobjective optimization. If this excep-
tion is thrown several times for the same parameter set, runSimulation
will kill the whole program.

– SimulationError: in the simulation file created by SIMetrix an error
message appears which says that the current simulation is aborted be-
cause of a simulation error. runSimulation saves the simulation file cre-
ated by SIMetrix to a directory for failed simulations.

– SingularMatrix: in the simulation file created by SIMetrix an error
message appears which says that the current simulation is aborted be-
cause the current set of model parameters give a singular matrix. The
runSimulation function saves the simulation file created by SIMetrix to
a directory for failed simulations.

– MissingLicense: in the simulation file created by SIMetrix an error
message says that the user has no license to load Verilog-A models.
If this exception is thrown several times for the same parameter set,
runSimulation will kill the whole program.

– MissingFile: SIMetrix did not produce any output file. The reason why
this happens is probably due to SIMetrix instances clashing for some
reasons. The current circuit file is saved to a directory for failed simula-
tions. If this exception is thrown several times for the same parameter
set, runSimulation will kill the whole program.

• Exceptions defined in nspice_extr_print.py:

– AdmsCodeError: in the simulation file containing what ngspice prints
to the standard output, a message may be found saying that an error
occurred in the interface code to the Verilog-A model. This is due to
weird combinations of model parameters.

– SimulationError: an error message was printed to the standard error
because the current simulation was aborted. This is due to weird combi-
nations of model parameters.

– NgspiceFatalError: an error message was printed to the standard error
saying that ngspice was killed because of a fatal error. This may happen,
for example, when there is an error in the circuit file or ngspice cannot
find a shared library where the Verilog-A model is defined.

• Exceptions defined in model_fitting.py: InterpolationError. This excep-
tion is thrown when simulated data points cannot be interpolated over mea-
sured data points because simulated data are weird.

• Exceptions defined in RR.py: RRerror. The SSQ_DiodeRR and SSQ_DiodeRR_V
classes defined in model_fitting.py raise this exception whether simulated
and measured data are too different, or diode characteristic parameters can-
not be extracted or synchronization of simulation and measured waveforms
fails.

194 software structure

• Exceptions defined in runSimulation.py:

– ConvergenceError: a simulation cannot converge within the time limit
set in runSimulation. It will then be killed.

– TreeKillError: Python tried to kill a SIMetrix instance and the parent
process twice. This error is handled as a ConvergenceError exception
by runsimulation.

Now we have all the basic ingredients to deal with the problem of fitting one or
several device characteristics at the same time.

a.6 fitting of a single characteristic

Given a lumped charge model, fitting a device characteristic means to find model
parameter values which minimize an error estimator between measured and sim-
ulated data. This is a single objective optimization problem.

In our case, the chosen objective function (error estimator) is not easy to mini-
mize because:

• model equations are coupled;

• small changes in parameter values can lead to very different results;

• there is no explicit expression for the objective as function of model param-
eters so we cannot infer anything about its structure which can help us to
choose the optimization algorithm, except that it is usually nonlinear.

Some commonly used nonlinear optimization technique are the Nelder-Mead
method [78], quasi-Newton methods (like BFGS), nonlinear conjugate gradient
methods and the Levenberg-Marquardt method [79]. These algorithms may fail
to find a good solution if the search landscape is rugged (e.g. it has sharp bends,
discontinuities, outliers, noise, and local optima). The CMA-ES can still perform
very well on rugged landscapes.

Two scripts have been written to fit one characteristics at a time:

• scripts/optimize_single_char_with_simplex.py: optimization of a single
characteristic with the Nelder-Mead algorithm. Deprecated.

• scripts/optimize_single_char_with_cma.py: single objective optimization
with the CMA-ES. Recommended.

In the next section we explain how to define an objective function to minimize.

a.6.1 Designing a single objective optimization

A lot of instructions have to be specified in order to set up a single objective opti-
mization.

All these instructions must be written in a text file using the YAML language.
By parsing this file with function load from the yaml Python module, a Python
dictionary is created. Each (key, value) pair of this dictionary stores information
written in YAML language.

A.6 fitting of a single characteristic 195

In the following, a YAML file for optimization of diode reverse recovery current
is described. The complete code can be found in Appendix B.

• title: this should be a string identifying the simulation type.

title: Reverse recovery

• variable: the value associated to this key is a dictionary. Each key of this
dictionary is the name of a parameter to optimize. For example:

variable:
ap model impact ionization current.
ap:

startpt: !!float 2.729878e+01
bounds: [1, 50]
transformation: scale01
...

In this example, ap is the name of a parameter to optimize. startpt is the
starting value of the parameter. This field is mandatory. The tag !!float
forces YAML to interpret the following expression as a float number rather
than a string. bounds is a list specifying the search interval for parameter ap.
In this example we set the lower bound to 1 and the upper bound to 50. We
could set just the lower bound

bounds: [1, !!null]

or the upper bound

bounds: [!!null , 50]

or none of them by omitting the bounds field. Note that a white space charac-
ter is always required after the YAML tag !!null. transformation is a string or
a list of strings which must match names of parameter transformations im-
plemented in opt_parser.py. Transformations are applied in the same order
they are listed. In our example, parameter ap must be normalized between 0
and 1

transformation: scale01

Currently supported transformations are:

– Normalization between 0 and 1, indicated by the string scale01.

– log10-transformation, indicated by the string log10.

– Shifting by a fixed value, indicated by the string shifting. The value of
the shifting must be specified.

– Scaling by a fixed factor, indicated by the string scaling. The scaling
factor must be specified.

196 software structure

If we want to apply all the previous transformations to a parameter, with a
shifting factor of 4 and a scaling factor of 5, we should write

transformation:
- log10
- scale01
- shift: 4
- scaling: 5

If a variable parameter does not have to be transformed, the transformation
field can be omitted.

• fixed: the value associated to this key is a dictionary with fixed parameters.
These are device model parameters that must not be optimized and circuit
parameters. For each (key, value) pair, key is the name of a fixed parameter
and value is its numeric value. For example

fixed:
Zero biased junction capacitance
cj0: !!float 7.798664e-08
...
Load current
ILOAD: &ILOAD !!float 6000
...

• simulation: the value associated to this key is a dictionary containing infor-
mation which is necessary to run a circuit simulation. In our example:

simulation:

SIM_TEMPLATE: ...

DEST_DIR: ...

PARAMETER_FILE: parameters.txt

ITER_FILE: iterRR.txt

SHARED_LIBRARIES: ...

SIMULATION_FILE_BASENAME: simulationRR

SIMULATION_SAVE: 0

NGSPICE_COMMAND_LINE_OPTIONS: ""

– SIM_TEMPLATE. This is the path to the template of the circuit we want to
simulate. This file is a template because no value is assigned to model

A.6 fitting of a single characteristic 197

parameters and to some circuit parameters. These values will be speci-
fied by runSimulation which will produce a circuit file ready to be run
in SIMetrix or ngspice (see Section A.4).

Both absolute and relative paths can be used. If relative paths are speci-
fied they must be consistent with the current working directory.

– DEST_DIR: name of the destination directory where all files generated
during a single objective optimization are saved.

– PARAMETER_FILE: name of the file where model parameters of all simu-
lations are saved.

– ITER_FILE: basename of the file where a simulation counter is stored.

– SHARED_LIBRARIES: name of the shared library created from a Verilog-A
description of the device model under test. If only models embedded
into the circuit simulator are used, this field can be left empty. Both rel-
ative and absolute paths can be used. Relative paths must be consistent
with the current working directory.

– SIMULATION_FILE_BASENAME: basename of the file with interpolated sim-
ulated data and measured data used for error calculation.

– SIMULATION_SAVE: a flag. If this flag is true, simulation and measured
data used for error calculation will be saved to files.

– NGSPICE_COMMAND_LINE_OPTIONS: additional ngspice command line op-
tions needed to run the current simulation. No additional command
must be specified to run a reverse recovery simulation.

• fitting: the value associated to this key is a dictionary containing informa-
tion which is needed to compute the error between measured and simulated
data. In our example:

fitting:

MEAS_DATA: !!python/object/apply:numpy.loadtxt
args: ["..."]
kwds: {skiprows: 0, comments: "#"}

SSQ: DiodeRR

OPTIONS_FOR_READING_SIMULATION_DATA:
time:

column_index: 0
current:

column_index: 1
sign: -1

voltage:
column_index: 2
sign: -1

198 software structure

SCALING_OF_WAVEFORM: *ILOAD

SCALING_FACTOR: !!float 1e-6

EXTRACT_FROM_CHAR:
- Qrr
- Erec
- IrMoments:

wfunctions:
wfunc_1st_derivative: {}
wfunc_2nd_derivative: {}

momentOrders: [2,3,4]

FITTING_KWARGS:
step_over_Irr_ratio: 0.05
delta_fraction_before_fold: 0.05
delta_fraction_after_fold: 0.05
factor_for_dVdt: 0.9

CHECK_CURVE_MOMENTS: 0

MAX_LOG_LOSS: !!float 10

BOUNDS: [!!null , !!float 12e-6]

ERROR_WRT_YLOG: 0

– MEAS_DATA: a call to the numpy.loadtxt function is written in YAML
language in order to load measured data. After parsing the text file
with the whole set of YAML instructions, the value associated to this
key is an array with measured data. In this way, data loading can be
performed once for all.

– SSQ: ending name of the SSQ class used for error calculation.

– OPTIONS_FOR_READING_SIMULATION_DATA: a set of instructions to read
the simulation file generated by SIMetrix or ngspice correctly. Each vari-
able (time, current and voltage) is mapped to the corresponding column
index in simulation data matrix. Moreover, depending on conventions
used in the circuit file, column signs may have to be inverted.

– SCALING_OF_WAVEFORM: measured and simulated waveforms are divided
by this value. For example, diode reverse recovery current is normalized
to the load current to allow comparisons between different operating
conditions, as suggested in [8].

– SCALING_FACTOR: a conversion factor used to express measured time
points in seconds.

– EXTRACT_FROM_CHAR: a list of diode/IGBT characteristic values to be ex-
tracted. This list is currently used only in the SSQ_DiodeRR class. If no

A.6 fitting of a single characteristic 199

characteristic has to be extracted, this field can be left empty. In our ex-
ample, we extract the reverse recovery charge Qrr, the reverse recovery
energy Erec and some moments of the current characteristic i(t).

– FITTING_KWARGS: this is a dictionary of optional keyword arguments
passed to the class which computes the error between measured and
simulated data. It is currently used only in the SSQ_DiodeRR class. If
no optional keyword argument is needed, an empty dictionary must be
given.

– CHECK_CURVE_MOMENTS: this flag is used only in the SSQ_DiodeRR class.
If it evaluates to true, moments of a simulated current waveform are
compared to a statistical distribution to check if the simulation can be
rejected before computing the error [41]. This statistical distribution is
updated each time a simulation is carried out by applying an online un-
supervised learning approach [105]. A statistic is computed as function
of moments of the simulated curve. If the value of this statistic is too
high, the simulation is rejected.

– MAX_LOG_LOSS: this is a threshold value which the statistic computed on-
line from simulated waveform moments is compared to. If this statistic
is bigger than the threshold, the simulation is rejected.

– BOUNDS: a list defining lower and/or upper bounds of the explanatory
variable in the fitting error calculation. These bounds have nothing to
do with model parameter lower and upper bounds. They have to be
specified in SI base units. The !!null YAML tag indicates that there is
no bound. In our example, we considered only time points up to 12 µs.

– ERROR_WRT_YLOG: if this flags evaluates to true, measured and simulated
data are log10-transformed before the fitting error is computed.

• optimization: the value associated to this key is a dictionary containing in-
formation given to the optimization procedure. In our example:

optimization:
value: SSQ_ABS

DEFAULT_ERR: [!!float 1e3]

SUMMARY_FILE: summary.txt

optimizer_options:
sigma0: !!float 0.3

maxfevals: 999999

maxiter: 2000

tolfun: !!float 1e-4

200 software structure

tolfunhist: !!float 1e-5

tolx: !!float 1e-8

eval_initial_x: False

– value: name of the error between measured and simulated data to com-
pute. It must be one of the error computed by the errorFamily class
(see Section A.2.2).

– DEFAULT_ERROR: a list of one element representing a high error value re-
turned when a simulation fails. As we wrote in Section 3.4.4, the default
error value should be kept as low as possible, just above the limit be-
low which infeasible solutions are optimal. Of course, this default value
depends on the error estimator to be minimized.

– SUMMARY_FILE: basename of the file where the following information is
saved at the end of an optimization:

* the termination criterion that was met;

* parameters that minimize the objective function;

* minimum of the objective function;

* number of performed iterations of the optimizer;

* number of objective function calls made.

– optimizer_options: a dictionary of options given to the chosen opti-
mizer. In our example, some options for the CMA-ES are shown.

• options: a dictionary where various options are collected. In our example,
we have:

options:
MEAS_LINES: ’color="b", xdata=self.MEAS.x*1e6’

SIM_LINES: ’color="r", xdata=self.SIM.x*1e6’

SIMULATION_FIGURE: >
ylabel(’i [A]’);
...

ABSERR_LINE: ’color="k", xdata=AbsErr.x*1e6’
RELERR_LINE: ’color="k", xdata=RelErr.x*1e6’

ABSERR_FIGURE: >
ylabel(’Absolute error’);

RELERR_FIGURE: >
xlabel(’t [’ + unichr(181) + ’s]’);
ylabel(’Relative error’);

A.6 fitting of a single characteristic 201

FAILURES_DIRNAME: "..."

FAILURES_FILE: failures.log

ERROR_SAVE: 0

ERROR_FILE: errorsRRI.txt

ORDER_OF_ERRORS:
- S_ABS
- SSQ_ABS
- SSQ_REL
- VAR_EST
- RMSE
- RMSErel
- NRMSE
- MAX_ABSERR
- MAX_RELERR
- RelErr_Qrr
- RelErr_Erec

– MEAS_LINES: options for plotting measured waveforms.

– SIM_LINES: options for plotting simulated waveforms.

– SIMULATION_FIGURE: additional options for figures where measured and
simulated data are plotted.

– ABSERR_LINE: options for plotting the absolute error.

– RELERR_LINE: options for plotting the relative error.

– ABSERR_FIGURE: additional options for figures where the absolute error
is plotted.

– RELERR_FIGURE: additional options for figures where the relative error is
plotted.

– FAILURES_DIRNAME: name of the directory where files generated by a
failed simulation are saved;

– FAILURES_FILE: basename of the file where failed simulations are re-
ported.

– ERROR_SAVE: if this flag evaluates to true, several fitting errors will be
saved each time the objective function is evaluated.

– ERROR_FILE: basename of the text file where fitting errors are saved if
ERROR_SAVE is true.

– ORDER_OF_ERRORS: a list of strings specifying in which order fitting errors
are saved. In our example, we also save the relative error in the reverse
recovery charge Qrr and in the reverse recovery energy Erec.

Once a YAML file for single objective optimization has been properly edited, an
optimization can be run using the optimize_single_char_with_cma.py script.

202 software structure

a.6.2 Post processing of single objective optimization results

Once a single objective optimization has terminated, the destination directory will
contain the following files:

• A copy of the YAML file used to set up the optimization.

• A file where the simulation counter has been saved.

• A sub-directory containing a plot of the optimum parameter set.

• A file with parameter values of every simulation, including failed simula-
tions. Parameter values of each simulation are saved column-wise.

• If ERROR_SAVE was set to true, a file with several error estimators computed
for every simulation, including failed simulations. For each simulation, dif-
ferent error estimators are saved column-wise.

• If SIMULATION_SAVE was set to true, simulation data used for error calculation
for each parameter set.

When loading parameters and errors of all simulations into two dimensional
arrays, parameters and errors of the ith simulation correspond to the ith row of
parameter and error arrays, respectively.

This correspondence is exploited by post-processing routines which plot param-
eter and error trends versus simulation number. We expect that as the simulation
number increases, parameters converge and all errors decrease, with slightly dif-
ferent trends among different error estimators.

Postprocessing of single objective optimizations can be performed by running
the script script/plot_single_char.py. Actually, this script can be used while an
optimization is still running to check how an optimizer is working.

a.7 concurrent fitting of several characteristics

In Chapter 1, parameter extraction of power semiconductor devices has been for-
mulated as a multi-objective optimization problem. In our work, MOEAs have been
chosen as preferred solving methods for this kind of problems.

In the Python library for parameter extraction, the following MOEAs are avail-
able:

• NSGA-II;

• PAES.

• R-NSGA-II;

• SPEA2;

• SPEA2+;

• MO-CMA-ES.

A.7 concurrent fitting of several characteristics 203

a.7.1 Designing a multi objective optimization

As for single objective optimization, the set of instructions for running a multi-
objective optimization must be specified in a text file using the YAML language. In
the following section, a YAML file for optimization of diode i–v, reverse recovery
current and reverse recovery voltage with the NSGA-II is briefly described. This file
was used within the first MOEA experiment presented in Section 4.3. The complete
code can be found in Appendix B.

• As for single objective optimization, the following three fields must be speci-
fied:

– title: brief description of the YAML file;

– variable: dictionary of parameters to be optimized;

– fixed: dictionary of fixed parameters.

Structures of both the variable and the fixed dictionary are the same as
before. A starting value for each parameter in variable must be specified
anyway, even if it is not used by the multi-objective algorithm.

• multiobjopt: a dictionary with two entries:

– characteristics: a dictionary defining a multi-objective optimization
problem. This dictionary has an entry for each characteristic to be opti-
mized. In our example:

multiobjopt:
characteristics:

dc:
...

rr_current:
...

rr_voltage:
...

The entry associated to each characteristic is a dictionary with a very
similar structure to that of a YAML file for single objective optimization.
Indeed, each dictionary has the following entries: title, simulation,
fitting, optimization and options. The first three entries are identical
to the corresponding entries of a YAML file for single objective optimiza-
tion. Some changes appear in the optimization field. In our example:

multiobjopt:
characteristics:

...
rr_current:

...
optimization:

value: SSQ_ABS

DEFAULT_ERR: [!!float 100]

204 software structure

OBJECTIVE_LIST: [SSQ_ABS]

REFERENCE_POINTS:
SSQ_ABS: [!!float 1e-4, 2, !!float 1e-4]

WEIGHT_LIST: [1]

* value: this is always a string with the name of one of the error
estimators computed by the errorFamily class (see Section A.2.2).
Two other strings are possible: WeightedSum and ManyObjectives.
In the former case, a weighted sum of the objectives specified in
OBJECTIVE_LIST is computed. In the latter case, objectives specified
in OBJECTIVE_LIST are optimized separately.

* DEFAULT_ERR: a list with as many default error values as the objec-
tives defined in both value and OBJECTIVE_LIST fields. These errors
are returned when the simulation fails.

* OBJECTIVE_LIST: list of objectives extracted from current character-
istic. Each objective can be one of the error estimators computed
by the errorFamily class or the relative error between measured
and simulated diode characteristic values, like the reverse recovery
charge Qrr.

* REFERENCE_POINTS: reference points for the R-NSGA-II. For each ob-
jective in OBJECTIVE_LIST, values must be specified to define the
reference points which will be used by the R-NSGA-II. In our exam-
ple, three reference points are provided.

* WEIGHT_LIST: list of weights. These weights can be used to build a
weighted sum of the objectives in OBJECTIVE_LIST or to bias some
of these objectives more than others in the R-NSGA-II.

In the options field, some keys which can be found in files for single
objective optimization are missing because they have been collected in
another position of the global YAML file.

– moea_options: options given to the multi-objective evolutionary algo-
rithm. See Chapter 3 for a proper explanation of these options. In our
example:

multiobjopt:
characteristics:

...
moea_options:

pop_size: 120

max_generations: 250

nb_of_subgroups: 5

epsilon_for_niching: !!float 1e-3

A.7 concurrent fitting of several characteristics 205

seed_file: "..."

crossover_rate: 0.9

mutation_rate: 0.08

distribution_index_for_crossover: 10

distribution_index_for_mutation: 20

EPS: !!float 1e-14

• options: various options for the multi-objective optimization procedure. In
our example:

options:
ROOT_DIR: "..."

SIMULATION_SAVE: 0

FAILURES_DIRNAME: "..."

FAILURES_FILE: failures.log

ERROR_SAVE: 0

STATISTICS_FILE: statistics.txt

INDIVIDUALS_FILE: individuals.txt

FINAL_PARETO_FRONTIER: ...

GENERATION_WISE_PARETO_FRONTIER: ...

SUCCESS_REPORT: success.txt

– ROOT_DIR: name of the destination directory where multi-objective opti-
mization results are saved.

– SIMULATION_SAVE: if this flag evaluates to true, simulation and measured
data used for error calculation will be saved for each characteristic. In
YAML files for single objective optimization, this flag can be found in
the simulation field.

– ERROR_SAVE: if this flag evaluates to true, several fitting errors will be
saved for each characteristic. In YAML files for single objective opti-
mization, this flag can be found in the options field.

– STATISTICS_FILE: basename of the file with generation statistics of the
population throughout the run.

206 software structure

– INDIVIDUALS_FILE: basename of the file with all individuals generated
by the multi-objective optimizer.

– FINAL_PARETO_FRONTIER: basename of the file with the approximated
Pareto frontier found by the optimizer.

– GENERATION_WISE_PARETO_FRONTIER: basename of the file with the ap-
proximated Pareto frontier computed generation-wise.

– SUCCESS_REPORT: basename of the file used to report that the optimizer
ended successfully.

Once a YAML file for multi objective optimization has been properly edited, the
multi_objective_optimization.py script can be used to run the optimization.

a.7.2 Post processing of multi objective optimization results

The opt_parser.processMOEAresults class provides methods to analyze the re-
sults of a multi-objective optimization run. An example of application is given in
the single_moea_performance_assessment.py script.

The processMOEAresults class provides methods to:

• plot a scattergraph or a scattergraph matrix of solutions generated by a MOEA

in the objective space.

• plot a parallel coordinate graph of solutions generated by a MOEA in the
objective space. This diagram is particularly useful to represent high dimen-
sional data. It can also help to detect some relationships between plotted data,
as shown in Section 3.6.

• extract nondominated vectors at each generation.

• make a GIF animation of the progression of the approximated Pareto frontier
of the nondominated vectors throughout generations.

• extract the final approximated Pareto frontier.

• control the extent of obtained Pareto solutions by using the same ε-clearing
procedure implemented in the R-NSGA-II. This is usually done to provide the
decision-maker with a limited number of representative Pareto points.

• perform dimensional reduction (i.e., objective selection) with the principal
component analysis proposed in [23].

All these methods are employed in the single_moea_performance.py script. This
script also plots simulated characteristics corresponding to Pareto solutions in or-
der to help the decision-maker in selecting a final parameter set.

a.8 performance comparison of several moeas

The performance_assessment_of_moeas module provides routines to design a per-
formance comparison of MOEAs and to analyze its results, as shown in Chapter 4.
These routines are employed in two scripts:

A.8 performance comparison of several moeas 207

• run_moea_tests.py: design and execute a MOEA experiment;

• moea_performance_assessment.py: analyze the data.

A set of instructions must be provided to both these scripts through a text file
written in YAML language. In the following, an example of such a file is described.
It was used to perform the first MOEA experiment presented in Section 4.3. The
complete code is given in Appendix B.

• MOEA_LIST: list of MOEAs to compare. In our example:

MOEA_list: [nsga2, r_nsga2, mo_cma_es_p, mo_cma_es_p_with_recomb]

• yaml_file_list: list of YAML files associated to MOEAs included in the
comparison. In the first test case, for the NSGA-II and the R-NSGA-II, we used
the YAML file described in Section A.7.1.

• Performance_indicators: list of quality indicators used in the MOEA com-
parison.

Performance_indicators: [hyp, eps]

• Sample_size: size of approximation set samples in the MOEA comparison;

• ROOT_DIR: destination directory of the experiment’s results;

• INITIAL_POPS: name of the child directory of ROOT_DIR where initial popula-
tions are saved;

• Number_of_processes: number of parallel CPU processes which MOEA runs
are distributed over;

• List_of_runs: basename of the file where the list of tests to run is saved;

• BOUNDS: basename of the file where lower and upper bounds of the objective
vectors are saved;

• Script_for_post_process_of_single_moea: this is the absolute path to the
Python script for postprocessing of single MOEA run;

• Script_for_eafdiffplot: absolute path to the R script for plotting differ-
ences in the empirical attainment functions of two data set in the biobjective
case;

• Script_for_boxplots: absolute path to the R script for plotting quality indi-
cator boxplots;

• REFERENCE_SET: basename of the file where the reference set for computing
unary indicators is saved;

• PISA: dictionary containing absolute paths to PISA software tools used in
MOEA comparison analysis;

• multipleTest: absolute path to the source code by García and Herrera that
implements post-hoc procedures described in Section 3.7.4.4.

B
YA M L F I L E E X A M P L E S

Listing 1: A YAML file for optimization of diode reverse recovery waveform.

YAML

title: Reverse recovery

Variable used in sensitivity analysis
variable:

ap model impact ionization current.
ap:

startpt: !!float 2.729878e+01
bounds: [1, 50]
transformation: scale01

tauL , tauH and Eth model a smooth change
in the carrier life time depending on the LT parameter.
tauL:

startpt: !!float 3.829042e-06
bounds: [!! float 1e-6, !!float 1e-5]
transformation: scale01

tauH:
startpt: !!float 7.272543e-07
bounds: [!! float 1e-7, !!float 5e-6]
transformation: scale01

EM:
startpt: !!float 1.724436e-04
bounds: [!! float 1e-6, !!float 1e-3]
transformation: [log10 , scale01]

IB and RB are the two new parameters for
voltage dependent transit time function.
IB:

startpt: !!float 4.591270e+02
bounds: [!! float 1, !!float 300]
transformation: [log10 , scale01]

RB:
startpt: !!float 1.123330e+01
bounds: [100, 1000]
transformation: scale01

Transit time of electrons
T0:

startpt: !!float 1e-5

209

210 yaml file examples

bounds: [!! float 1e-6, !!float 1e-5]
transformation: scale01

Mobility ratio
b:

startpt: 3.639822
bounds: [1, 6]
transformation: scale01

Fixed parameters
fixed:

Diode parameters

bp model impact ionization current.
bp: !!float 1e5

startpt: !!float 1e5
bounds: [!! float 5e4 , !!float 5e5]
trasformation: scale01

Threshold between tauL and tauH
Eth: !!float 1.3e5

startpt: !!float 1.3e5
bounds: [!! float 6e4 , !!float 2e5]
transformation: scale01

Thermal equilibrium electron charge in the base
QB: !!float 4.999933e-04

Thermal equilibrium hole charge in the base
Qp0: !!float 5.477687e-10

Series resistance
rs: !!float 3.617722e-04

Ideality factors
NN: 1.68713

NE: !!float 1.159609e+01

Built -in potential - T=300K
vj0: 0.4

Grading coefficient
m: 0.4832172

Zero biased junction capacitance
cj0: !!float 7.798664e-08

Coefficient for depletion cap formula in forward bias
fc: !!float 0.5

Hole mobility coefficient

yaml file examples 211

alpha: !! float -2.2

Temperature coefficient of series resistance
Trs: !!float 0.0

Temperature coefficient of EM
TEM: !!float 0

Temperature dependent coefficient of tau3
Ttau: !!float 0.66

Default Device temperature in deg C
Tnom: !!float 140

Circuit parameters

VCC: &VCC !!float 3200

INITIAL_V: !!float -4.590986

LSTRAY: !!float 2.15e-6

ILOAD: &ILOAD !!float 6e3

LCL: !!float 3e-7

CCL: !!float 1e-5

LS2: !!float 1.5e-6

RS: 7.3

ABSTOL: !!float 5e-4

VNTOL: !! float 1e-3

RELTOL: !!float 1e-3

Final time of transient analysis in MICROSECONDS.
TSTOP: 17

simulation:

Circuit file
SIM_TEMPLATE: " /home/ d a n i e l e /workspace/ p a r a m e t e r _ e x t r a c t i o n

/ d p i n t h _ t a u _ i i _ i d f _ R R _ c i r c u i t . n g s p i c e "

Destination directory where simulation files are saved.
DEST_DIR: " /media/ACER/Users/ D a n i e l e /Documents/ P o l l i t e c n i c o

/01 _ t e s i _ s i m u l a z i o n i /tmp "

212 yaml file examples

Name of the file with parameter values for each
simulation.

PARAMETER_FILE: parameters.txt

File with iteration number
ITER_FILE: iterRR.txt

Shared libraries with diode model definition
SHARED_LIBRARIES: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n / l i b d p i n t h _ t a u _ i i _ i d f . so "

Basename of the file where simulation data are saved
SIMULATION_FILE_BASENAME: simulationRR

If SIMULATION_SAVE is True , simulation data will be saved
to files

SIMULATION_SAVE: 0

Command line options for starting ngspice
NGSPICE_COMMAND_LINE_OPTIONS: " "

fitting:

Measured data array
MEAS_DATA: !! python/object/apply:numpy.loadtxt

args: [" /media/ACER/Users/ D a n i e l e /Documents/ABB
/02 _measurement_data /02_TCAD_DATA/RR_I_V_int .
t x t "]

kwds: {skiprows: 0, comments: " # " }

SSQ class used for error calculation
SSQ: DiodeRR

Map variables to column indices in simulation data matrix
.

Moreover , according to conventions used in circuit files ,
vector signs have or do not have to be inverted.

If sign = 1, there is no need for inversion. Otherwise
set sign = -1

OPTIONS_FOR_READING_SIMULATION_DATA:

time:
column_index: 0

current:
column_index: 1
sign: -1

voltage:
column_index: 2
sign: -1

yaml file examples 213

Scale for waveforms. Reverse recovery current is divided
by SCALING_OF_WAVEFORM

before error is computed.
SCALING_OF_WAVEFORM: *ILOAD

Scaling factor to express time values from data files in
seconds

SCALING_FACTOR: !! float 1e-6

Parameters that should be extracted from current
simulation

EXTRACT_FROM_CHAR:
- Qrr
- Erec
- IrMoments:
wfunctions:
wfunc_1st_derivative: {}
wfunc_2nd_derivative: {}
momentOrders: [2,3,4]

Optional keyword arguments to be passed to the class used
for error calculation

FITTING_KWARGS: {}
step_over_Irr_ratio: 0.05
delta_fraction_before_fold: 0.05
delta_fraction_after_fold: 0.05
factor_for_dVdt: 0.9

Choose if curve moments should be checked for outlier
detection

CHECK_CURVE_MOMENTS: 0

Maximum logarithmic loss. If the logaritmic loss
associated to moments of

a simulated characteristics is bigger than this value ,
such characteristics

is rejected and an exception is raised.
MAX_LOG_LOSS: !! float 10

Independent variable bounds for error calculation. Use
base SI units.

Use !!null tag if there is no lower/upper bound.
BOUNDS: [!!null , !!float 12e-6]

If ERROR_WRT_YLOG is True , measured and simulated data
have to be

log -transformed before error computation.
ERROR_WRT_YLOG: 0

Threshold used to decide when absolute error has to be
used instead of relative error in SSQ_ABS_REL
computation

RELERR_th: !!float 10

214 yaml file examples

optimization:

Error to be extracted
value: SSQ_ABS

Error returned by the optimizer if an exception occurs.
Choose DEFAULT_ERR value according to the error estimator

specified in the ’value’ field.
DEFAULT_ERR: [!! float 1e3]

Name of the file with optimization results
SUMMARY_FILE: summary.txt

optimizer_options:
Initial global step -size. If the optimum is expected

to be in the
initial search interval [a,b]**n we may choose sigma0

= 0.3*(b-a),
as it is suggested in Nikolaus Hansen , "The CMA

Evolution Strategy: A Tutorial", March 12, 2011.
So if parameters are scaled between [0,1] eventually ,

sigma0 = 0.3*(1 -0) = 0.3.
sigma0: !! float 0.3

Maximum number of function evaluation
maxfevals: 999999

Maximum number of iteration
maxiter: 2000

Termination criterion: tolerance in function value
tolfun: !! float 1e-4

Termination criterion: tolerance in function value
history

tolfunhist: !!float 1e-5

Termination criterion: tolerance in x-changes
tolx: !!float 1e-8

eval_initial_x: False

options:

Option for plotting measured data line
MEAS_LINES: ’ c o l o r =" b " , xdata = s e l f .MEAS. x *1 e6 ’

Option for plotting simulated data line
SIM_LINES: ’ c o l o r =" r " , xdata = s e l f . SIM . x *1 e6 ’

yaml file examples 215

Options for figures that will be generated
SIMULATION_FIGURE: >

ylabel(’ i [A] ’);
legend ([’ measured ’ , ’ s i m u l a t e d ’], loc= ’ lower r i g h t ’ ,

prop=FontProperties(size= ’ s m a l l ’));

Option for plotting error lines
ABSERR_LINE: ’ c o l o r =" k " , xdata =AbsErr . x *1 e6 ’
RELERR_LINE: ’ c o l o r =" k " , xdata = R e l E r r . x *1 e6 ’

Options for absolute error figure
ABSERR_FIGURE: >

ylabel(’ Absolute e r r o r ’);

Option for relative error figure
RELERR_FIGURE: >

xlabel(’ t [’ + unichr (181) + ’ s] ’);
ylabel(’ R e l a t i v e e r r o r ’);

Directory where wrong simulation files and an exception
report are saved

FAILURES_DIRNAME: " /media/ACER/Users/ D a n i e l e /Documents/
P o l l i t e c n i c o /01 _ t e s i _ s i m u l a z i o n i / b c t m _ d i o d e _ f a i l u r e s "

File where exceptions are reported
FAILURES_FILE: failures.log

Flag used to choose if errors should be saved or not
ERROR_SAVE: 0

Name of the file where all types of errors will be saved
ERROR_FILE: errorsRRI.txt

Errors are saved in the following order
ORDER_OF_ERRORS:

- S_ABS
- SSQ_ABS
- SSQ_ABS_L
- SSQ_REL
- SSQ_REL_L
- VAR_EST
- RMSE
- RMSErel
- NRMSE
- MAX_ABSERR
- MAX_RELERR
- MEAN_RELERR

- SSQ_ABS_REL
- RelErr_Qrr
- RelErr_Erec �

Listing 2: A YAML file for multi-objective optimization with the NSGA-II/R-NSGA-II.

216 yaml file examples

YAML

Caution: spacing is important.
For example:
- always keep at least one blank space character after a

colon
- use the same indentation level for each key of a dictionary
- always keep at least one blank space character after YAML

tags like !!float , !!null (when it appears in a list)

title: Fitting of TCAD DC and RR data with BCTM model and NSGA -
II/R-NSGA -II algorithms

Variable parameters
variable:

Medium -high level ideality factor
NE:

startpt: 6
bounds: [1, 12]
transformation: scale01

Low level ideality factor
NN:

startpt: 2
bounds: [1, 4]
transformation: scale01

Thermal equilibrium electron charge in the base
QB:

startpt: !!float 7.343108e-08
bounds: [!! float 1e-8, !!float 5e-4]
transformation: [log10 , scale01]

Thermal equilibrium hole charge in the base
Qp0:

startpt: !!float 8.93262473015e-10
bounds: [!! float 1e-12, !!float 1e-8]
transformation: [log10 , scale01]

Series resistance
rs:

startpt: !!float 5e-4
bounds: [!! float 2e-4, !!float 8e-4]
transformation: scale01

EM:
startpt: !!float 1e-5
bounds: [!! float 1e-6, !!float 1e-3]
transformation: [log10 , scale01]

yaml file examples 217

ap model impact ionization current.
ap:

startpt: !!float 7.676612
bounds: [1, 50]
transformation: scale01

Mobility ratio
b:

startpt: 3
bounds: [1, 6]
transformation: scale01

tauL , tauH and Eth model a smooth change
in the carrier life time depending on the Emax parameter.
tauL:

startpt: !!float 9.2553992915e-07
bounds: [!! float 5e-7, !!float 5e-6]
transformation: scale01

tauH:
startpt: !!float 3.71485855789e-06
bounds: [!! float 5e-7, !!float 1e-5]
transformation: scale01

Transit time of electrons
T0:

startpt: !!float 1.874952e-06
bounds: [!! float 1e-6, !!float 5e-5]
transformation: [log10 , scale01]

RB and IB are the two new parameters for
voltage dependent transit time function.
IB:

startpt: !!float 1e3
bounds: [!! float 1e2, !!float 1e4]
transformation: [log10 , scale01]

RB:
startpt: !!float 10
bounds: [!! float 1, !!float 50]
transformation: scale01

Fixed parameters
fixed:

Diode parameters

Built -in potential - T=300K
vj0: 0.4

Grading coefficient for junction capacitance
m: 0.4832172

218 yaml file examples

Zero biased junction capacitance
cj0: !!float 7.798664e-08

bp models impact ionization current.
bp: !!float 1e5

Threshold between tauL and tauH
Eth: !!float 1.3e5

Point where SPICE capacitance becomes linear
fc: 0.5

Hole mobility coefficient
alpha: !!float -2.2

Temperature coefficient of series resistance
Trs: !!float 0.0

Temperature coefficient of EM
TEM: !!float 0

Temperature dependent coefficient of tau3
Ttau: !!float 0.66

Default Device temperature in deg C
Tnom: !!float 140

Circuit parameters

VCC: &VCC !!float 3200

INITIAL_V: !!float -4.590985744762529741

LSTRAY: !! float 2.150000e-06

ILOAD: &ILOAD !!float 6000

LCL: !!float 3e-7

CCL: !!float 1e-5

LS2: !!float 1.5e-6

RS: 7.3

ABSTOL: !! float 1e-3

VNTOL: !!float 1e-3

RELTOL: !! float 1e-3

Final time of transient analysis in MICROSECONDS.
TSTOP: 18

yaml file examples 219

Inputs for multi -objective optimization
multiobjopt:

characteristics:

dc:

title: I-V characteristic

simulation:

Circuit file
SIM_TEMPLATE: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ D C _ c i r c u i t . n g s p i c e "

Destination directory where files produced by
capacitance simulations are saved.

DEST_DIR: " /media/ACER/Users/ D a n i e l e /Documents/
P o l l i t e c n i c o /01 _ t e s i _ s i m u l a z i o n i /22

aa_dpinth_tau_ii_idf_TCAD_mop_DC_RR_nsga2/dc
"

Name of the file with parameter values for
each simulation.

PARAMETER_FILE: parameters.txt

File with iteration number
ITER_FILE: iterDC.txt

Shared libraries with diode model definition
SHARED_LIBRARIES: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n / l i b d p i n t h _ t a u _ i i _ i d f . so
"

Basename of the file where simulation data
are saved

SIMULATION_FILE_BASENAME: simulationDC

Command line options for starting ngspice
NGSPICE_COMMAND_LINE_OPTIONS: " "

fitting:

Measured data array
MEAS_DATA: !! python/object/apply:numpy.loadtxt

args: [" /media/ACER/Users/ D a n i e l e /
Documents/ABB/02 _measurement_data
/02_TCAD_DATA/
TCAD_not_measurement_T140C_IV . t x t
"]

220 yaml file examples

kwds: {skiprows: 0, comments: " # " }

SSQ class used for error calculation
SSQ: DiodeDC

Scale for waveforms. Reverse recovery current
is divided by SCALING_OF_WAVEFORM

before error is computed.
SCALING_OF_WAVEFORM: 1

Independent variable bounds for error
calculation. Use base SI units.

Use !!null tag if there is no lower/upper
bound.

BOUNDS: [!!null , !!null]

If ERROR_WRT_YLOG is True , measured and
simulated data have to be

log -transformed before error computation.
ERROR_WRT_YLOG: 0

Threshold used to decide when absolute error
has to be used instead of relative error in
SSQ_ABS_REL computation

RELERR_th: !!float 10

Keyword arguments to be passed to the class
used for error calculation

FITTING_KWARGS: {}

optimization:

Error to be extracted
If you change this , change also [’multiobjopt

’][’ characteristics ’][*][’ optimization ’][’
DEFAULT_ERR ’]

value: S_ABS

Error returned by the optimizer if an
exception occurs.

Choose DEFAULT_ERR value according to the
error estimator specified in [’multiobjopt
’][’ characteristics ’][*][’ optimization ’][’
value ’]

If [’multiobjopt ’][’ characteristics ’][*][’
optimization ’][’value ’] is equal to ’
ManyObjective ’, DEFAULT_ERR

must be a list with as many error values as
the parameters specified in [’multiobjopt
’][’ characteristics ’][*][’ optimization ’][’
OBJECTIVE_LIST ’].

DEFAULT_ERR: [!! float 1e6]

yaml file examples 221

List of objective functions extracted from
current characteristic.

OBJECTIVE_LIST: [S_ABS]

Needed by R-NSGA -II algorithm.
There must be a key entry for each element in

’OBJECTIVE_LIST ’.
REFERENCE_POINTS:

S_ABS: [50, 50, !! float 1e4]

This weight list can be used in different
ways:

- to build a weighted sum of the values
specified in ’OBJECTIVE_LIST ’ if a weighted
sum approach

should be used for a many objective problem
- to bias some objectives of ’OBJECTIVE_LIST ’

more than others in the reference point
method by Deb et all.

- ...
WEIGHT_LIST: [1]

options:

Option for plotting measured data line
MEAS_LINES: ’ marker = " . " , m a r k e r s i z e =2 ’

Option for plotting simulated data line
SIM_LINES: ’ ’

Options for figures that will be generated
SIMULATION_FIGURE: >

xlabel(’V [V] ’ , size= ’ s m a l l ’);
ylabel(’ I [A] ’ , size= ’ s m a l l ’);
legend ([’ measured ’ , ’ s i m u l a t e d ’], loc= ’

upper l e f t ’ , prop=FontProperties(size= ’
s m a l l ’));

Option for plotting error lines
ABSERR_LINE: ’ c o l o r =" k " ’
RELERR_LINE: ’ c o l o r =" k " ’

Options for absolute error figure
ABSERR_FIGURE: >

ylabel(’ Absolute e r r o r ’);

Option for relative error figure
RELERR_FIGURE: >

xlabel(’V [V] ’);
ylabel(’ R e l a t i v e e r r o r ’);

Name of the file where all types of errors
will be saved

222 yaml file examples

ERROR_FILE: errorsDC.txt

Errors are saved in the following order
ORDER_OF_ERRORS:

- S_ABS
- SSQ_ABS
- SSQ_ABS_L
- SSQ_REL
- SSQ_REL_L
- VAR_EST
- RMSE
- RMSErel
- NRMSE
- MAX_ABSERR
- MAX_RELERR
- MEAN_RELERR

- SSQ_ABS_REL

rr_current:

title: reverse recovery current

simulation:

Circuit file - check
OPTIONS_FOR_READING_SIMULATION_DATA also.

SIM_TEMPLATE: " /home/ d a n i e l e /workspace/
p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ R R _ c i r c u i t . n g s p i c e "

Destination directory where files produced by
capacitance simulations are saved.

DEST_DIR: " /media/ACER/Users/ D a n i e l e /Documents/
P o l l i t e c n i c o /01 _ t e s i _ s i m u l a z i o n i /22

aa_dpinth_tau_ii_idf_TCAD_mop_DC_RR_nsga2/
r r _ c u r r e n t "

Name of the file with parameter values for
each simulation.

PARAMETER_FILE: parameters.txt

File with iteration number
ITER_FILE: iterRR.txt

Shared libraries with diode model definition
SHARED_LIBRARIES: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n / l i b d p i n t h _ t a u _ i i _ i d f . so
"

Basename of the file where simulation data
are saved

SIMULATION_FILE_BASENAME: simulationRR

yaml file examples 223

Command line options for starting ngspice
NGSPICE_COMMAND_LINE_OPTIONS: " "

fitting:

Measured data array
MEAS_DATA: !! python/object/apply:numpy.loadtxt

args: [" /media/ACER/Users/ D a n i e l e /
Documents/ABB/02 _measurement_data
/02_TCAD_DATA/RR_I_V_int . t x t "]

kwds: {skiprows: 0, comments: " # " }

SSQ class used for error calculation
SSQ: DiodeRR

Map variables to column indices in simulation
data matrix.

Moreover , according to conventions used in
circuit files , vector signs have or do not
have to be inverted.

If sign = 1, there is no need for inversion.
Otherwise set sign = -1

OPTIONS_FOR_READING_SIMULATION_DATA:

time:
column_index: 0

current:
column_index: 1
sign: -1

voltage:
column_index: 2
sign: -1

Scale for waveforms. Reverse recovery current
is divided by SCALING_OF_WAVEFORM

before error is computed.
SCALING_OF_WAVEFORM: *ILOAD

Scaling factor to express time values from
data files in seconds

SCALING_FACTOR: !! float 1e-6

Parameters that should be extracted from
current simulation

EXTRACT_FROM_CHAR:
- Qrr
- Erec
- IrMoments:
wfunctions:
wfunc_1st_derivative: {}
wfunc_2nd_derivative: {}

224 yaml file examples

momentOrders: [2,3,4]

Optional keyword arguments to be passed to
the class used for error calculation

FITTING_KWARGS: {}
step_over_Irr_ratio: 0.05
delta_fraction_before_fold: 0.05
delta_fraction_after_fold: 0.05
factor_for_dVdt: 0.9

Choose if curve moments should be checked for
outlier detection

CHECK_CURVE_MOMENTS: 0

Maximum logarithmic loss. If the logaritmic
loss associated to moments of

a simulated characteristics is bigger than
this value , such characteristics

is rejected and an exception is raised.
MAX_LOG_LOSS: !! float 10

Independent variable bounds for error
calculation. Use base SI units.

Use !!null tag if there is no lower/upper
bound.

BOUNDS: [!!null , !!float 12e-6]

If ERROR_WRT_YLOG is True , measured and
simulated data have to be

log -transformed before error computation.
ERROR_WRT_YLOG: 0

Threshold used to decide when absolute error
has to be used instead of relative error in
SSQ_ABS_REL computation

RELERR_th: !!float 10

optimization:

Error to be extracted
If you change this , change also [’multiobjopt

’][’ characteristics ’][*][’ optimization ’][’
DEFAULT_ERR ’]

value: SSQ_ABS

Error returned by the optimizer if an
exception occurs.

Choose DEFAULT_ERR value according to the
error estimator specified in [’multiobjopt
’][’ characteristics ’][*][’ optimization ’][’
value ’]

yaml file examples 225

If [’multiobjopt ’][’ characteristics ’][*][’
optimization ’][’value ’] is equal to ’
ManyObjective ’, DEFAULT_ERR

must be a list with as many error values as
the parameters specified in [’multiobjopt
’][’ characteristics ’][*][’ optimization ’][’
OBJECTIVE_LIST ’].

DEFAULT_ERR: [!! float 100]

List of objective functions extracted from
current characteristic.

OBJECTIVE_LIST: [SSQ_ABS]

Needed by R-NSGA -II algorithm
There must be a key entry for each element in

’OBJECTIVE_LIST ’.
REFERENCE_POINTS:

SSQ_ABS: [!! float 1e-4, 2, !! float 1e-4]

This weight list can be used in different
ways:

- to build a weighted sum of the values
specified in ’OBJECTIVE_LIST ’ if a weighted
sum approach

should be used for a many objective problem
- to bias some objectives of ’OBJECTIVE_LIST ’

more than others in the reference point
method by Deb et all.

- ...
WEIGHT_LIST: [1]

options:

Option for plotting measured data line
MEAS_LINES: ’ c o l o r =" b " , xdata = s e l f .MEAS. x *1 e6 ,

marker = " . " , m a r k e r s i z e =2 ’

Option for plotting simulated data line
SIM_LINES: ’ c o l o r =" r " , xdata = s e l f . SIM . x *1 e6 ’

Options for figures that will be generated
SIMULATION_FIGURE: >

xlabel(’ t ime [’ + unichr (181) + ’ s] ’ , size=
’ s m a l l ’);

ylabel(’ I [A] ’ , size= ’ s m a l l ’);
legend ([’ measured ’ , ’ s i m u l a t e d ’], loc= ’

lower r i g h t ’ , prop=FontProperties(size= ’
s m a l l ’));

Option for plotting error lines
ABSERR_LINE: ’ c o l o r =" k " , xdata =AbsErr . x *1 e6 ’
RELERR_LINE: ’ c o l o r =" k " , xdata = R e l E r r . x *1 e6 ’

226 yaml file examples

Options for absolute error figure
ABSERR_FIGURE: >

ylabel(’ Absolute e r r o r ’);

Option for relative error figure
RELERR_FIGURE: >

xlabel(’ t [’ + unichr (181) + ’ s] ’);
ylabel(’ R e l a t i v e e r r o r ’);

Name of the file where all types of errors
will be saved

ERROR_FILE: errorsRR.txt

Errors are saved in the following order
ORDER_OF_ERRORS:

- S_ABS
- SSQ_ABS
- SSQ_ABS_L
- SSQ_REL
- SSQ_REL_L
- VAR_EST
- RMSE
- RMSErel
- NRMSE
- MAX_ABSERR
- MAX_RELERR
- MEAN_RELERR

- RelErr_Qrr
- RelErr_Erec

rr_voltage:

title: reverse recovery voltage

simulation:

Circuit file - check
OPTIONS_FOR_READING_SIMULATION_DATA also.

SIM_TEMPLATE: " /home/ d a n i e l e /workspace/
p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ R R _ c i r c u i t . n g s p i c e "

Destination directory where files produced by
capacitance simulations are saved.

DEST_DIR: " /media/ACER/Users/ D a n i e l e /Documents/
P o l l i t e c n i c o /01 _ t e s i _ s i m u l a z i o n i /22

aa_dpinth_tau_ii_idf_TCAD_mop_DC_RR_nsga2/
r r _ v o l t a g e "

Name of the file with parameter values for
each simulation.

PARAMETER_FILE: parameters.txt

yaml file examples 227

File with iteration number
ITER_FILE: iterRRV.txt

Shared libraries with diode model definition
SHARED_LIBRARIES: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n / l i b d p i n t h _ t a u _ i i _ i d f . so
"

Basename of the file where simulation data
are saved

SIMULATION_FILE_BASENAME: simulationRRV

Command line options for starting ngspice
NGSPICE_COMMAND_LINE_OPTIONS: " "

fitting:

Measured data array
MEAS_DATA: !! python/object/apply:numpy.loadtxt

args: [" /media/ACER/Users/ D a n i e l e /
Documents/ABB/02 _measurement_data
/02_TCAD_DATA/RR_I_V_int . t x t "]

kwds: {skiprows: 0, comments: " # " }

SSQ class used for error calculation
SSQ: DiodeRR_V

Map variables to column indices in simulation
data matrix.

Moreover , according to conventions used in
circuit files , vector signs have or do not
have to be inverted.

If sign = 1, there is no need for inversion.
Otherwise set sign = -1

OPTIONS_FOR_READING_SIMULATION_DATA:

time:
column_index: 0

current:
column_index: 1
sign: -1

voltage:
column_index: 2
sign: -1

Scale for waveforms. Reverse recovery current
is divided by SCALING_OF_WAVEFORM

before error is computed.
SCALING_OF_WAVEFORM: *VCC

228 yaml file examples

Scaling factor to express time values from
data files in seconds

SCALING_FACTOR: !! float 1e-6

Independent variable bounds for error
calculation. Use base SI units.

Use !!null tag if there is no lower/upper
bound.

BOUNDS: [!!null , !!float 12e-6]

If ERROR_WRT_YLOG is True , measured and
simulated data have to be

log -transformed before error computation.
ERROR_WRT_YLOG: 0

Threshold used to decide when absolute error
has to be used instead of relative error in
SSQ_ABS_REL computation

RELERR_th: !!float 10

optimization:

Error to be extracted
If you change this , change also [’multiobjopt

’][’ characteristics ’][*][’ optimization ’][’
DEFAULT_ERR ’]

value: SSQ_ABS

Error returned by the optimizer if an
exception occurs.

Choose DEFAULT_ERR value according to the
error estimator specified in [’multiobjopt
’][’ characteristics ’][*][’ optimization ’][’
value ’]

If [’multiobjopt ’][’ characteristics ’][*][’
optimization ’][’value ’] is equal to ’
ManyObjective ’, DEFAULT_ERR

must be a list with as many error values as
the parameters specified in [’multiobjopt
’][’ characteristics ’][*][’ optimization ’][’
OBJECTIVE_LIST ’].

DEFAULT_ERR: [!! float 100]

List of objective functions extracted from
current characteristic.

OBJECTIVE_LIST: [SSQ_ABS]

Needed by R-NSGA -II algorithm
There must be a key entry for each element in

’OBJECTIVE_LIST ’.
REFERENCE_POINTS:

SSQ_ABS: [!! float 1e-2, 2, 0.07]

yaml file examples 229

This weight list can be used in different
ways:

- to build a weighted sum of the values
specified in ’OBJECTIVE_LIST ’ if a weighted
sum approach

should be used for a many objective problem
- to bias some objectives of ’OBJECTIVE_LIST ’

more than others in the reference point
method by Deb et all.

- ...
WEIGHT_LIST: [1]

options:

Option for plotting measured data line
MEAS_LINES: ’ c o l o r =" b " , xdata = s e l f .MEAS. x *1 e6 ,

marker = " . " , m a r k e r s i z e =2 ’

Option for plotting simulated data line
SIM_LINES: ’ c o l o r =" r " , xdata = s e l f . SIM . x *1 e6 ’

Options for figures that will be generated
SIMULATION_FIGURE: >

xlabel(’ t ime [’ + unichr (181) + ’ s] ’ , size=
’ s m a l l ’);

ylabel(’V [V] ’ , size= ’ s m a l l ’);
legend ([’ measured ’ , ’ s i m u l a t e d ’], loc= ’

lower r i g h t ’ , prop=FontProperties(size= ’
s m a l l ’));

Option for plotting error lines
ABSERR_LINE: ’ c o l o r =" k " , xdata =AbsErr . x *1 e6 ’
RELERR_LINE: ’ c o l o r =" k " , xdata = R e l E r r . x *1 e6 ’

Options for absolute error figure
ABSERR_FIGURE: >

ylabel(’ Absolute e r r o r ’);

Option for relative error figure
RELERR_FIGURE: >

xlabel(’ t [’ + unichr (181) + ’ s] ’);
ylabel(’ R e l a t i v e e r r o r ’);

Name of the file where all types of errors
will be saved

ERROR_FILE: errorsRR.txt

Errors are saved in the following order
ORDER_OF_ERRORS:

- S_ABS
- SSQ_ABS
- SSQ_ABS_L
- SSQ_REL

230 yaml file examples

- SSQ_REL_L
- VAR_EST
- RMSE
- RMSErel
- NRMSE
- MAX_ABSERR
- MAX_RELERR
- MEAN_RELERR

- RelErr_Qrr
- RelErr_Erec

Options needed by the multi -objective evolutionary
algorithm

moea_options:

Mandatory options

Population size
pop_size: 120 #200 #300

Maximum number of generations
max_generations: 250 #400 #500

Number of subgroups in which the list of new
candidates should be divided

before evaluating candidates.
nb_of_subgroups: 5

Parameter used in reference -point -based NSGA -II
procedure.

epsilon_for_niching: !! float 1e-3

File with seeds
seed_file: " /media/ACER/Users/ D a n i e l e /Documents/

P o l l i t e c n i c o /01 _ t e s i _ s i m u l a z i o n i /random_pop . t x t "

Non -mandatory options

The rate at which crossover is performed
crossover_rate: 0.9

The rate at which mutation is performed
mutation_rate: 0.08

The non -negative crossover distribution index
distribution_index_for_crossover: 10

The non -negative mutation distribution index
distribution_index_for_mutation: 20

Minimum distance between coordinates to perform
crossover

EPS: !!float 1e-14

yaml file examples 231

options:

Destination directory with multi objective optimization
results

ROOT_DIR: " /media/ACER/Users/ D a n i e l e /Documents/ P o l l i t e c n i c o
/01 _ t e s i _ s i m u l a z i o n i /22

aa_dpinth_tau_ii_idf_TCAD_mop_DC_RR_nsga2 "

If SIMULATION_SAVE is True , simulation data will be saved
to files

SIMULATION_SAVE: 0

Directory where wrong simulation files and an exception
report are saved

FAILURES_DIRNAME: " /media/ACER/Users/ D a n i e l e /Documents/
P o l l i t e c n i c o /01 _ t e s i _ s i m u l a z i o n i / b c t m _ d i o d e _ f a i l u r e s "

File where exceptions are reported
FAILURES_FILE: failures.log

Flag used to choose if errors should be saved or not
ERROR_SAVE: 0

Basename of the file with generational statistics of the
population throughout the run

STATISTICS_FILE: statistics.txt

Basename of the file with every individual during each
generation of the run

INDIVIDUALS_FILE: individuals.txt

File with the final Pareto frontier
FINAL_PARETO_FRONTIER: final_pareto_frontier.txt

File with the Pareto frontier computed generation -wise
GENERATION_WISE_PARETO_FRONTIER:

generation_wise_pareto_frontier.txt

File where MOEA success is reported
SUCCESS_REPORT: success.txt �

Listing 3: A YAML file for designing a MOEA performance comparison.

YAML

Caution: spacing is important.
For example:
- always keep at least one blank space character after a

colon
- use the same indentation level for each key of a dictionary

232 yaml file examples

- always keep at least one blank space character after YAML
tags like !!float , !!null (when it appears in a list)

MOEAs to be compared.
#MOEA_list: [nsga2 , r_nsga2 , paes , spea2 , spea2plus ,

mo_cma_es_p , mo_cma_es_p_with_recomb]
MOEA_list: [nsga2 , r_nsga2 , mo_cma_es_p ,

mo_cma_es_p_with_recomb]

YAML files with inputs for each MOEA.
yaml_file_list:

- " /home/ d a n i e l e /workspace/ p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ t c a d _ m o p _ d c _ r r i _ r r v _ n s g a 2 _ i n p u t . t x t "

- " /home/ d a n i e l e /workspace/ p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ t c a d _ m o p _ d c _ r r i _ r r v _ n s g a 2 _ i n p u t . t x t "

- " /home/ d a n i e l e /workspace/ p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ t c a d _ m o p _ d c _ r r i _ r r v _ m o _ c m a _ e s _ i n p u t .
t x t "

- " /home/ d a n i e l e /workspace/ p a r a m e t e r _ e x t r a c t i o n /
d p i n t h _ t a u _ i i _ i d f _ t c a d _ m o p _ d c _ r r i _ r r v _ m o _ c m a _ e s _ i n p u t .
t x t "

MOEA performance is evaluated w.r.t. the following
performance indicators.

#Performance_indicators: [dom_rank , hyp , eps , r2, r3, eaf1 ,
exec_time]

Performance_indicators: [hyp , eps]

Number of different runs for each algorithm and for each
performance indicator to be considered.

Sample_size: 30

ROOT_DIR: " /media/ACER/Users/ D a n i e l e /Documents/ P o l l i t e c n i c o /01

_ t e s i _ s i m u l a z i o n i /100

_ d p i n t h _ t a u _ i i _ i d f _ t c a d _ m o p _ d c _ r r i _ r r v _ m o e a _ c o m p a r i s o n _ 0 1 "

Relative path of the directory where initial populations are
saved.

The parent directory will be ROOT_DIR.
INITIAL_POPS: initial_pops

Number of processes MOEA runs are distributed over
Number_of_processes: 2

Relative path of the file where the list of tests to be run
is saved.

yaml file examples 233

The parent directory will be ROOT_DIR.
List_of_runs: run_list.txt

File with lower and upper bounds of the objective vectors
BOUNDS: bounds.txt

Script for running a complete analysis of a single MOEA run
Script_for_post_process_of_single_moea: " /home/ d a n i e l e /

workspace/ p a r a m e t e r _ e x t r a c t i o n / s c r i p t s /
s ing le_moea_per formance_assessment . py "

R script for plotting differences between the empirical
attainment functions of two

data set in the biobjective case.
Script_for_eafdiffplot: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n / s c r i p t s / p l o t _ e a f _ d i f f e r e n c e s . R"

R script for plotting indicator boxplots
Script_for_boxplots: " /home/ d a n i e l e /workspace/

p a r a m e t e r _ e x t r a c t i o n / s c r i p t s / i n d i c a t o r _ b o x p l o t . R"

Basename of the file with the reference set for the unary
indicators

REFERENCE_SET: reference_set.txt

Specify paths to PISA software tools
PISA:

filter: " /home/ d a n i e l e / S c a r i c a t i / d i s t r i b u t i o n _ f i n a l /
t o o l s _ c _ s o u r c e / f i l t e r "

eaf: " /home/ d a n i e l e / S c a r i c a t i / d i s t r i b u t i o n _ f i n a l /
a t t a i n m e n t _ c _ s o u r c e / e a f "

eps_ind: " /home/ d a n i e l e / S c a r i c a t i / d i s t r i b u t i o n _ f i n a l /
i n d i c a t o r s _ c _ s o u r c e / eps_ind "

hyp_ind: " /home/ d a n i e l e / S c a r i c a t i / d i s t r i b u t i o n _ f i n a l /
i n d i c a t o r s _ c _ s o u r c e /hyp_ind "

Path to the multiple testing software by Garcia and Herrera
multipleTest: " /home/ d a n i e l e / S c a r i c a t i / m u l t i p l e T e s t /Friedman " �

B I B L I O G R A P H Y

[1] P. Antognetti and G. Massobrio. Semiconductor Devices Modeling with SPICE.
McGraw-Hill, Inc., New York, NY, USA, 1990.

[2] N. Auger and N. Hansen. A restart CMA evolution strategy with increas-
ing population size. In B. McKay et al., editors, The 2005 IEEE International
Congress on Evolutionary Computation (CEC’05), volume 2, pages 1769–1776,
2005.

[3] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, NY, USA, 1996.

[4] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R. Stewart. De-
signing and reporting on computational experiments with heuristic methods.
Journal of Heuristics, 1:9–32, 1995.

[5] M. Bellini, I. Stevanovic, and D. Prada. Improved lumped charge model for
high voltage power diode and automated extraction procedure. In Proceed-
ings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2011.

[6] G. Bergmann and G. Hommel. Improvements of general multiple test proce-
dures for redundant systems of hypothses. Multiple Hypotheses Testing, pages
100–115, 1988.

[7] A. T. Bryant, X. Kang, E. Santi, P. R. Palmer, and J. L. Hudgins. The use of a
formal optimization procedure in automatic parameter extraction of power
semiconductor devices. In Power Electronics Specialist Conference, volume 2,
pages 822–827, 2003.

[8] A. T. Bryant, X. Kang, E. Santi, P. R. Palmer, and J. L. Hudgins. Two-step
parameter extraction procedure with formal optimization for physics-based
circuit simulator IGBT and p-i-n diode models. IEEE Transactions on power
electronics, 21(2):295–309, March 2006.

[9] I. Budihardjo and P. O. Lauritzen. The lumped-charge power mosfet model,
including parameter extraction. In IEEE Transactions on Power Electronics,
volume 10, pages 379–387, 1995.

[10] A. G. Chynoweth. Ionization rates for electrons and holes in silicon. Physical
Review, 109:1537–1540, 1958.

[11] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Al-
gorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Com-
putation Series. Springer, second edition, 2007.

[12] The Designer’s Guide community. Verilog-A/MS, 2012. URL http://www.
designers-guide.org/VerilogAMS/.

235

http://www.designers-guide.org/VerilogAMS/
http://www.designers-guide.org/VerilogAMS/

236 bibliography

[13] The gplEDA community. GPL electronic design automation tools, 2012. URL
http://www.gpleda.org/.

[14] The Ngspice community. Ngspice circuit simulator, 2012. URL http:
//ngspice.sourceforge.net/.

[15] J. W. Conover. Practical nonparametric statistics. John Wiley and Sons, New
York, NY, USA, 3 edition, 1999.

[16] ©SIMetrix Technologies. Simulator Reference Manual, March 2011.

[17] ©SIMetrix Technologies. Analog, mixed signal circuit simulation software
tool, SIMetrix, SIMPLIS, Micron VX, DVM, 2012. URL http://www.simetrix.
co.uk/index.html.

[18] D. W. Corne and J. D. Knowles. Techniques for highly multiobjective opti-
mization: Some nondominated points are better than others. In Proc. of 2007
Genetic and Evolutionary Computation Conference, pages 773–780, 2007.

[19] V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall. Inferential perfor-
mance assessment of stochastic optimizers and the attainment function. In
Lectures Notes in Computer Science 1993: Proceedings of the First International
Conference on Evolutionary Multi-Criterion Optimization - EMO 2001, pages
213–225. Springer-Verlag, 2001.

[20] L. Davis. Genetic Algorithms and Simulated Annealing. Morgan Kaufman, Los
Altos, CA, 1987.

[21] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search
space. Technical report, Indian Institute of Technology Kanpur, 1994.

[22] K. Deb and M. Goyal. A combined genetic adaptive search (geneas) for
engineering design. Computer Science and Informatics, 26:30–45, 1996.

[23] K. Deb and D. K. Saxena. On finding pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective op-
timization problems. KanGAL report number 2005011, Indian Institute of
Technology Kanpur, 2005.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6:
182–197, 2000.

[25] K. Deb, J. Sundar, U. B. Rao, and S. Chaudhuri. Reference point based multi-
objective optimization using evolutionary algorithms. International Journal of
Computational Intelligence Research, 2(3):273–286, 2006.

[26] K. Deep and M. Thakur. A new crossover operator for real coded genetic
algorithms. Applied Mathematics and Computation, 188:895–911, 2007.

[27] K. Deep and M. Thakur. A new mutation operator for real coded genetic
algorithms. Applied Mathematics and Computation, 193:211–230, 2007.

http://www.gpleda.org/
http://ngspice.sourceforge.net/
http://ngspice.sourceforge.net/
http://www.simetrix.co.uk/index.html
http://www.simetrix.co.uk/index.html

bibliography 237

[28] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Jour-
nal of Machine Learning Research, 7:1–30, 2006.

[29] M. Ehrgott. Location of rescue helicopters in south tyrol. International Journal
of Industrial Engineering, 9:16–22, 2002.

[30] M. Ehrgott. Multicriteria Optimization. Springer, 2nd edition, 2005.

[31] M. Ehrgott and S. Ruzika. Improved ε-Constraint method for multiobjective
programming. Journal of Optimization Theory and Applications, 138(1), 2008.

[32] M. Ehrgott and D. Ryan. Constructing robust crew schedules with bicriteria
optimization. Journal of Multi-Criteria Decision Analysis, 11(3):139–150, 2002.

[33] M. Ehrgott and M. Wiecek. Multiobjective programming. In J. Figueira,
S. Greco, and M. Ehrgott, editors, Multicriteria Decision Analysis: State of the
Art Surveys, pages 667–722. Kluwer Academic Publishers, 2005.

[34] M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm using the
hypervolume measure as selection criterion. In Third International Conference
on Evolutionary Multi-Criterion Optimization (EMO 2005), volume 3410, pages
62–76. Springer-Verlag, 2005.

[35] P. J. Fleming, R. C. Purshouse, and R. J. Lygoe. Many-objective optimization:
An engineering design perspective. In Lecture Notes in Computer Science 3410:
Evolutionary Multi-Criterion Optimization - EMO 2005, pages 14–32. Springer,
2005.

[36] C. M. Fonseca, V. Grunert da Fonseca, and L. Paquete. Exploring the per-
formance of stochastic multiobjective optimizers with the second-order at-
tainment function. In Lectures Notes in Computer Science 3410: Third Inter-
national Conference on Evolutionary Multi-Criterion Optimization - EMO 2005,
pages 250–264. Springer, 2005.

[37] The Python Software Foundation. Python/C API reference manual, 2012.
URL http://docs.python.org/2/c-api/.

[38] The Python Software Foundation. Extending and embedding the
python interpreter, 2012. URL http://docs.python.org/2/extending/
index.html{#}extending-index.

[39] N. Galster, M. Frecker, E. Carroll, J. Vobecky, and P.Hazdra. Application-
specific fast-recovery diode: Design and performance. In PCIM, April 1998.

[40] S. García and F. Herrera. An extension on “Statistical Comparisons of Classi-
fiers over Multiple Data Sets” for all pairwise comparisons. Journal of Machine
Learning Research, 9:2677–2694, 2008.

[41] J. M. Gareth. Curve alignment by moments. Annals of Applied Statistics, 1(2):
480–501, 2007.

[42] Aaron Garrett. inspyred: Bio-inspired algorithms in python, 2012. URL http:
//pypi.python.org/pypi/inspyred/1.0.

http://docs.python.org/2/c-api/
http://docs.python.org/2/extending/index.html{#}extending-index
http://docs.python.org/2/extending/index.html{#}extending-index
http://pypi.python.org/pypi/inspyred/1.0
http://pypi.python.org/pypi/inspyred/1.0

238 bibliography

[43] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, first
edition, 1989.

[44] The ABB Group. The abb group - automation and power technologies, 2012.
URL http://www.abb.com/.

[45] N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 func-
tion testbed. In Workshop Proceedings of the GECCO Genetic and Evolutionary
Computation Conference, pages 2389–2395. ACM, July 2009.

[46] N. Hansen. The CMA Evolution Strategy, 2012. URL http://www.lri.fr/
~hansen/cmaesintro.html.

[47] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multi-
modal test functions. In X. Yao et al., editors, Parallel Problem Solving from
Nature PPSN VIII, volume 3242 of LNCS, pages 282–291. Springer, 2004.

[48] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial, June 2011.

[49] Y. Hochberg. A sharper Bonferroni procedure for multiple tests significance.
Biometrika, 75:800–802, 1988.

[50] G. Hommel. A stagewise rejective multiple test procedure. Biometrika, 75:
383–386, 1988.

[51] G. Hommel and G. Bernhard. A rapid algorithm and a computer program
for multiple test procedures using logical structures of hypotheses. Computer
Methods and Programs in Biomedicine, 43:213–216, 1994.

[52] Z. Hossain et al. A physics-based MCT model using the lumped-charge
modeling technique. In IEEE Power Electronics Specialists Conf., pages 23–28,
1996.

[53] C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-
objective Optimization. Evolutionary Computation, 15(1):1–28, 2007.

[54] R. L. Iman and J. M. Davenport. Approximations of the critical region of the
Friedman statistic. Communications in Statistics, pages 571–595, 1980.

[55] Ruhr-Universität Bochum Institut für Neuroinformatik. Shark machine learn-
ing library, 2012. URL http://shark-project.sourceforge.net/index.
html.

[56] H. Ishibuchi and Y. Nojima. Optimization of scalarizing functions through
evolutionary multiobjective optimization. In Lecture Notes in Computer Sci-
ence 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pages 51–65.
Springer, 2007.

[57] H. Ishibuchi, T. Doi, and Y. Nojima. Incorporation of scalarizing fitness func-
tions into evolutionary multiobjective optimization algorithms. In Lecture
Notes in Computer Science 4193: Parallel Problem Solving from Nature - PPSN IX,
pages 493–502. Springer, 2006.

http://www.abb.com/
http://www.lri.fr/~hansen/cmaesintro.html
http://www.lri.fr/~hansen/cmaesintro.html
http://shark-project.sourceforge.net/index.html
http://shark-project.sourceforge.net/index.html

bibliography 239

[58] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary many-objective
optimization: A short review. In Proc. of 2008 IEEE Congress on Evolutionary
Computation, pages 2424–2431, 2008.

[59] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis, 6/E.
Pearson, New York, NY, USA, 2008.

[60] M. Keser and K. Joardar. Genetic algorithm based mosfet model parameter
extraction. Technical Proceedings of the 2000 International Conference on Modeling
and Simulation of Microsystems, pages 341–344, 2000.

[61] V. Khara, X. Yao, and K. Deb. Performance scaling of multi-objective evo-
lutionary algorithms. In Lecture Notes in Computer Science 2632: Evolutionary
Multi-Criterion Optimization - EMO 2003, pages 367–390. Springer, 2003.

[62] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe. SPEA2+: Improving the
performance of the strength pareto evolutionary algorithm 2. In Lecture Notes
in Computer Science, Vol. 3242 (Proc. of PPSN VIII), pages 742–751. Springer,
2004.

[63] J. D. Knowles and D. W. Corne. The pareto archived evolution strategy:
A new baseline algorithm for multiobjective optimisation. In Congress on
Evolutionary Computation, pages 98–105. IEEE Service Center, 1999.

[64] J. D. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assess-
ment of stochastic. TIK-report no. 214, ETH Zürich, Computer Engineering
and Networks Laboratory, February 2006.

[65] M. Köppen and K. Yoshida. Substitute distance assignments in NSGA-II for
handling many-objective optimization problems. In Lecture Notes in Computer
Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pages 727–
741. Springer, 2007.

[66] R. Kraus, K. Hoffmann, and H. J. Mattausch. A precise model for the tran-
sient characteristics of power diodes. In Conf. Rec. IEEE PESC ’92, pages
863–869, 1992.

[67] H. P. Langtangen. Python Scripting for Computational Science. Springer, 3rd
edition, 2009.

[68] P. O. Lauritzen and C. L. Ma. A simple diode model with reverse recovery.
IEEE Transactions on Power Electronics, 6(2), April 1991.

[69] P. O. Lauritzen, G. K. Andersen, and M. Helsper. A basic igbt model with
easy parameter extraction. In IEEE Proc. of Power Electronics Specialists Conf.,
2001.

[70] J. G. Linvill and J. F. Gibbons. Transistors and Active Circuits. McGraw-Hill,
1962.

[71] J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker. Semoconduc-
tor Power Devices. Springer, 2011.

240 bibliography

[72] C. L. Ma, P. O. Lauritzen, and P. Y. Lin. A physically-based lumped charge
p-ν-n diode model. In Proc. European Power Electronics Conf., pages 23–28,
Brighton, England, 1993.

[73] C. L. Ma, P. O. Lauritzen, and J. Sigg. A physics-based gto model for circuit
simulation. In IEEE Power Electronics Specilists Conf., pages 872–878, 1995.

[74] C. L. Ma, P. O. Lauritzen, and J. Sigg. Modeling of high-power thyristors
using the lumped-charge modeling technique. In 6th European Conf. on Power
Electronics and Applications, 1995.

[75] C. L. Ma, P. O. Lauritzen, and J. Sigg. Modeling of power diodes with the
lumped-charge modeling technique. IEEE Transactions on PowerElectronics, 12

(3):398–405, May 1997.

[76] C. L. Ma et al. A systematic approach to modeling power semiconductor
devices based on charge control principles. In Proceedings of IEEE Power
Electronics Specialists Conference, pages 31–37, 1994.

[77] N. Mohan, T. M. Undeland, and W. P. Robbins. Power electronics: converters,
applications, and design. John Wiley & Sons, 2003.

[78] J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7:308–313, 1965.

[79] J. Nocedal and S. Wright. Numerical Optimization, Second Edition. Springer
Series in Operations Research and Financial Engineering. Springer, 2006.

[80] R. Van Overstraeten and H. De Man. Measurement of the ionization rates in
diffused silicon p-n junctions. Solid-State Electronics, 13:583–608, 1970.

[81] V. Pareto. Manuel d’économie politique. F. Rouge, 1896.

[82] D. Prada, M. Bellini, I. Stevanovic, J. Victory, and J. Vobecky. Parameter ex-
traction procedure with multiobjective optimization for high voltage power
diode. preprint.

[83] R. C. Purshouse and P. J. Fleming. Evolutionary many-objective optimiza-
tion: An exploratory analysis. In Proc. of 2003 IEEE Congress on Evolutionary
Computation, pages 2066–2073, 2003.

[84] D. M. Rom. A sequentially rejective test procedure based on a modified
Bonferroni inequality. Biometrika, 77:663–665, 1990.

[85] H. Sato, H. E. Aguirre, and K. Tanaka. Controlling dominance area of so-
lutions and its impact on the performance of MOEAs. In Lecture Notes in
Computer Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007,
pages 5–20. Springer, 2007.

[86] J. P. Shaffer. Modified sequentially rejective multiple test procedures. Journal
of the American Statistical Association, 81(395):826–831, 1986.

[87] K. Sheng, W. Williams, and S. J. Finney. A review of igbt models. IEEE
Transactions on Power Electronics, 15:1250–1266, November 2000.

bibliography 241

[88] A. Sülflow, N. Drechsler, and R. Drechsler. Robust multi-objective opti-
mization in high dimensional spaces. In Lecture Notes in Computer Science
4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pages 715–726.
Springer, 2007.

[89] S. M. Sze and Kwok K. Ng. Physics of Semiconductor Devices. John Wiley and
Sons, 2007.

[90] N. Talwalkar, P. O. Lauritzen, B. Fatemizadeh, D. Perlman, and C. L. Ma. A
power bjt model for circuit simulation. In IEEE Power Electronics Specialists
Conference Record., volume 1, pages 50–55, 1996.

[91] Cher Ming Tan and King-Jet Tseng. Using power diode models for circuit
simulations-a comprehensive review. IEEE Transactions on Industrial Electron-
ics, 46:637–645, 1999.

[92] Sentinel IC Technologies. Abb power diode model and extraction analysis.
Confidential and proprietary report, ABB Switzerland Ltd and Sentinel IC
Technologies, November 2011.

[93] T. Voß, N. Hansen, and C. Igel. Recombination for learning strategy pa-
rameters in the MO-CMA-ES. In Fifth International Conference on Evolution-
ary Multi-Criterion Optimization (EMO 2009), pages 155–168. Springer-Verlag,
2009.

[94] T. Voß, N. Hansen, and C. Igel. Improved step size adaptation for the MO-
CMA-ES. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, pages 487–494. ACM, 2010.

[95] E. Weber et al. Lexicographic optimisation for water resources planning: The
case of lake Verbano, Italy. In A. Rizzoli and A. Jakeman, editors, Integrated
Assessment and Decision Support – Proceedings of the First Biennial Meeting of
the International Environmental Modelling and Software Society, pages 235–240,
June 2002.

[96] E. J. Wegman. Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85(411):664–675, 1990.

[97] L. While. A new analysis of the LebMeasure algorithm for calculating hy-
pervolume. In Third International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2005), volume 3410, pages 326–340. Springer-Verlag, 2005.

[98] Wikipedia. Flexible ac transmission system, 2011. URL http://en.
wikipedia.org/wiki/Flexible_AC_transmission_system.

[99] Wikipedia. High-voltage direct current, 2011. URL http://en.wikipedia.
org/wiki/High-voltage_direct_current.

[100] Wikipedia. Adjustable-speed drives, 2011. URL http://en.wikipedia.org/
wiki/Variable_speed_drives.

[101] Wikipedia. Hardware description language, 2012. URL http://en.
wikipedia.org/wiki/Hardware_description_language.

http://en.wikipedia.org/wiki/Flexible_AC_transmission_system
http://en.wikipedia.org/wiki/Flexible_AC_transmission_system
http://en.wikipedia.org/wiki/High-voltage_direct_current
http://en.wikipedia.org/wiki/High-voltage_direct_current
http://en.wikipedia.org/wiki/Variable_speed_drives
http://en.wikipedia.org/wiki/Variable_speed_drives
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language

242 bibliography

[102] Wikipedia. Curse of dimensionality, 2012. URL http://http://en.
wikipedia.org/wiki/Curse_of_dimensionality.

[103] D. H. Wolpert and W. G. Macready. No free lunch theorem for optimization.
IEEE Transactions on Evolutionary Computation, 1:67–82, 1997.

[104] X.Kang, A. Caiafa, E. Santi, J.L. Hudgins, and P.R. Palmer. Parameter ex-
traction for a power diode circuit simulator model including temperature
dependent effects. In Applied Power Electronics Conference and Exposition, vol-
ume 1, pages 452–458, 2002.

[105] K. Yamanishi, Jun-Ichi Takeuchi, G. Williams, and P. Milne. On-line unsu-
pervised outlier detection using finite mixtures with discounting learning
algorithms. Data Mining and Knowledge Discovery, 8(3):275–300, 2004.

[106] A. T. Yang, Y. Liu, and J. T. Yao. An efficient nonquasistatic diode model for
circuit simulation. IEEE Trans. Computer-Aided Design, 13:231–239, February
1994.

[107] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-
ative case study and the strength pareto approach. In IEEE Transactions on
Evolutionary Computation, volume 3, pages 257–271, 1999.

[108] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8:173–195, 2000.

[109] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, editors, EUROGEN 2001, Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial Problems, pages
95–100, 2002.

[110] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fon-
seca. Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.

http://http://en.wikipedia.org/wiki/Curse_of_dimensionality
http://http://en.wikipedia.org/wiki/Curse_of_dimensionality

	Preface
	Prefazione
	Contents
	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Acronyms
	1 Modeling of Power Semiconductor Devices
	1.1 Overview of Power Semiconductor Devices
	1.1.1 Semiconductor Devices
	1.1.2 Power semiconductor devices

	1.2 Power Semiconductor Diode Basics
	1.2.1 Review of Basic p-n Diode Characteristics
	1.2.2 Construction and Characteristics of Power Diodes

	1.3 Why Simulate?
	1.4 Classification of Models
	1.5 The Lumped-Charge Modeling Approach
	1.5.1 Basics Concepts
	1.5.2 Diode models

	1.6 Parameter extraction
	1.6.1 Step 1: initial parameter estimation
	1.6.2 Step 2: model parameter sensitivity and parameter ranges definition
	1.6.3 Step 3: device and circuit simulation
	1.6.4 Step 4: waveform comparison
	1.6.5 Step 5: parameter optimization

	2 Multiobjective optimization
	2.1 Problem Formulation and Solution Concepts
	2.1.1 Problems with multiple objectives
	2.1.2 Decision Space and Objective Space
	2.1.3 Notions of Optimality
	2.1.4 Orders and Cones
	2.1.5 Multiobjective optimal solutions
	2.1.6 Efficiency and Nondominance

	2.2 Properties of the Solution Sets
	2.3 Generation of the Solution Sets
	2.3.1 Scalarization methods
	2.3.2 Nonscalarizing approaches

	3 Evolutionary algorithms for solving parameter extraction problems
	3.1 EA Basics
	3.2 The CMA Evolution Strategy for single objective optimization
	3.2.1 Eigenvalue Decomposition of a Positive Definite Matrix
	3.2.2 The Multivariate Normal Distribution
	3.2.3 Randomized Black Box Optimization
	3.2.4 The non-elitist CMA-ES with weighted recombination
	3.2.5 A Single-Objective Elitist CMA Evolution Strategy

	3.3 Using Multi-Objective Evolutionary Algorithms
	3.3.1 Pareto Notation

	3.4 Design issues and components of Multi-Objective Evolutionary Algorithms
	3.4.1 Dominance-based ranking
	3.4.2 Diversity
	3.4.3 Elitism
	3.4.4 Constraint handling

	3.5 Structure of selected MOEAs
	3.5.1 Nondominated Sorting Genetic Algorithm-II (NSGA-II)
	3.5.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)
	3.5.3 Improved Strength Pareto Evolutionary Algorithm 2 (SPEA2+)
	3.5.4 Pareto Archived Evolution Strategy (PAES)
	3.5.5 Covariance Matrix Adaptation for Multi-objective Optimization (MO-CMA-ES)

	3.6 Many-Objective Optimization Basics
	3.7 MOEA Performance Assessment
	3.7.1 Outperformance
	3.7.2 Stochasticity
	3.7.3 Sample Transformations
	3.7.4 Statistical Testing

	4 Experiments
	4.1 Problem Statement And Preliminary Studies
	4.2 Algorithmic Alternatives and Computing Environment
	4.3 First test case
	4.3.1 Choosing MOEA parameters and quality measures
	4.3.2 Design of the experiment
	4.3.3 Analysis of the results

	4.4 Second Test Case
	4.4.1 Choosing MOEA parameters and quality measures
	4.4.2 Design of the experiment
	4.4.3 Analysis of the results

	5 Conclusions and Future Work
	A Software Structure
	A.1 Building a vector of variable parameters
	A.2 Computing errors between measured and simulated data
	A.2.1 The curveFamily class
	A.2.2 The errorFamily class
	A.2.3 SSQ class hierarchy

	A.3 Reading simulation files
	A.4 Running a simulation
	A.5 Exception Handling
	A.6 Fitting of a single characteristic
	A.6.1 Designing a single objective optimization
	A.6.2 Post processing of single objective optimization results

	A.7 Concurrent fitting of several characteristics
	A.7.1 Designing a multi objective optimization
	A.7.2 Post processing of multi objective optimization results

	A.8 Performance comparison of several MOEAs

	B YAML file examples
	Bibliography

