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ABSTRACT 
 

 

The co-work of human and industrial robots in future manufacturing industries is 

predicted to be the promising mode of production, which can exploit the highest 

flexibility of the manufacturing system. A main problem involved in this 

human-robotic interaction scenario is the tracking of human locomotion. Inspired by 

the research project ROSETTA, an algorithm to estimate the human walking speed, 

based on a surveillance camera system, is proposed in this thesis. The core of the 

algorithm is an extended Kalman filter modified to be adaptable to the human 

detection and tracking (HDT) system developed by ROSETTA. The main functionality 

of the algorithm is, by integrating the kinematic model of human walking with the 

HDT system, to estimate the velocity (including the direction) of the tracked human. 

A piece-wise filtering with velocity threshold and an information fusion technique are 

innovated in this thesis to improve the algorithm. Off-line data was utilized to 

validate the algorithm.  
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SOMMARIO 
 

 

La collaborazione di operatori umani e robot industriali nell'industria manifatturiera è 

una modalità di produzione promettente, che può sfruttare la più alta flessibilità del 

sistema manifatturiero. Un importante problema connesso a questo scenario di 

interazione uomo-robot è il riconoscimento e l'inseguimento della camminata delle 

persone. Basandosi sui risultati del progetto ROSETTA, in questa tesi si propone un 

algoritmo per stimare la velocità di un essere umano nell'atto di camminare, ripreso 

da un sistema di telecamere di sorveglianza. Il nucleo dell'algoritmo è un filtro di 

Kalman esteso modificato per adattarsi al sistema di rilevazione e inseguimento (HDT) 

sviluppato in ROSETTA. La principale funzionalità dell'algoritmo consiste, integrando 

il modello cinematico della camminata umana con il sistema HDT, nello stimare la 

velocità (inclusa la direzione) della persona inquadrata dalle telecamere. Nella tesi si 

propongono un filtro con soglia sulla velocità minima e una tecnica di fusione 

dell'informazione per migliorare l'algoritmo, validato offline con dati ottenuti dal 

sistema HDT. 
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Chapter 1  Introduction 
 
 

1.1  Overview 

 

In the modern massive production, goods are produced in a more customized way to 

satisfy the markets. A demand of quicker updating and more variety products 

prefigures the future production model, which requires manufacturers to have a 

more flexible and faster manufacturing system. The industrial robotics is always a 

good choice of the automation methods for the factories. Nevertheless, human 

workers are still the most flexible productive forces. To achieve both the productivity 

and the flexibility, a co-work of industrial robots and human workers is a promising 

way (Figure 1.1). 

 
Figure 1.1 Promising manufacturing style, co-existence of industrial robots and human 

worker 
 

A European Union funded project, “ROSETTA” (the acronym for “RObot control for 

Skilled ExecuTion of Tasks in natural interaction with humans; based on Autonomy, 

cumulative knowledge and learning”), aims at supporting industry through 

developing such technologies that facilitate to utilize and integrate industrial robots 

into otherwise manual assembly lines. 

 

The project addresses the challenges in developing methods and tools to engineer 
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and program robot stations in more intuitive ways, while still staying less specific to 

the installation. This requires a higher level of autonomy from the robot in terms of 

adapting to a changing environment and interacting with the human workers (Figure 

1.2). 

 

Figure 1.2 A possible preview of a human worker co-work with an intrinsically safe 
concept robot 

 

In the ROSETTA concept the robot is not necessarily separated from humans by any 

physical safety fences or barriers. This implies that the robot needs to be safe 

towards the human either by being intrinsically safe or by employing active safety 

systems (Figure 1.2). 

 

Regarded as a very important objective of ROSETTA, a safety system is being 

developed. It exploits the knowledge acquired from the sensor system developed in 

the project and improving skills for both co-existence and co-operation of robots and 

humans. This will allow safe intentional interactions while protecting from dangerous 

collisions. To endow the system with such capabilities, a “safety controller” is 

established.  

 

The conception of this safety controller is to track the human with a visual tracking 
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system based on commercial surveillance cameras, which are easy to be deployed in 

any robotic cell, and to predict the locomotion of the tracked human with the 

information provided by the visual tracking system. Then, by implementing a safety 

strategy developed in ROSETTA, the potential collision should be avoided with the 

prediction of human locomotion and the motion plan from the robot side. 

 

Politecnico di Milano participates in the ROSETTA project. As one of the partners, the 

Department of Electronics and Information of Politecnico di Milano is assigned to 

work on the safe human-robot interaction control. An experimental environment is 

set up in one of the department laboratory. It imitates the co-existence working 

conditions which are specified in the ROSETTA project (Figure 1.3). 

 
 

 
Figure 1.3 Experimental environment set up to simulates the co-existence of robot and 

human 

 

The conceptual structure of the safety controller is composed of three main modules: 

Human Detection and Intention Estimation (HD&IE), Safety Watcher and Interaction 

Override Control (Figure 1.4).  
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Figure 1.4 Conceptual structure of the safety controller 

 

The control loop of the safety controller is illustrated in (Figure 1.4). The “Human 

Detection and Intention Estimation” module acquires the motional information of 

human captured by the sensor, which in the ROSETTA is commercial surveillance 

cameras mounted on the ceiling of the robot cell. The images sampled by the camera 

will be analyzed by a computer image processing software, which is developed for 

and embedded in the “HD&IE” module. The “HD&IE” module also contains other 

sorts of software supporting this human tracking system, which are going to be 

introduced with details in Chapter 3. The output of the “HD&IE” is the possible 

trajectories predicted by the module. The “Safety Watcher” module will integrate it 

with the information provided by the industrial control unit of the robot. Based on 

the locomotion-map of the human and the robot, the “Safety Watcher” will assess 

the risk of dangerous collisions between the human and the robot. Then the “Safety 

Watcher” will tell the “Interaction Override Control”, whether an action should be 

taken to avoid the potential danger. In case a potential dangerous collision is 

detected, the “Interaction Override Control” will communicate with the industrial 
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controller of the robot, and override the preconcert path plan of the robot with an 

evasive action. 

 

 

1.2  Objective of the thesis 

 

The “Safety Controller” conceived in the “ROSETTA” project needs the information of 

the human locomotion to evaluate the risk of the collision against the robot. It is 

critical, that the intension of the tracked human shall be estimated and predicted as 

soon and reliable as possible. To achieve this requirement, a specific human 

detecting and tracking system is established.  

 

This thesis addresses the estimation of the human walking speed as the objective, 

which is an important feature of the human trajectory. It will be integrated in the 

human detecting and tracking system. Also as a primitive passive safety strategy, 

when an impact of human against the robot is predicted, the relative velocity of the 

human and the robot is one of the crucial criteria to assess the risk of injury [1]. 

 

1.3  Results achieved 

 

Based on the simplified kinematic model of walking human, a modified version is 

proposed to reinforce the similarity of the model with the velocity-curvature 

dependence. Then an extended Kalman filter is applied to integrate the model with 

the “front end” filter, a particle filter. The algorithm is coded in MatLab®, and 

validated by off-line data acquired by the human detection and tracking system of 

the project ROSETTA. 

 

1.4  Organization of documents 

 
List of Figures 
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Chapter 2  Model of human walking 
 

For a Gaussian-Bayesian filter, a precise state space mathematical model is preferred. 

However, free walk of human is a very complex and highly unpredictable locomotion, 

and it is not easy to model. In this chapter, a 6-states model of human walking is 

conceived, and it will be implemented in the extended Kalman filter. 

 
 

2.1  5-states model 

 

In this thesis, we are only interested in the trajectory of the human body, walking on 

the ground. Apart from neuro-ergonomic aspects, and also neglecting the limbs of 

human, the trunk of human body is simplified to a rectangular box with a proper size 

respect to the human itself. The position of the human is approximately represented 

by the geometric center of the rectangular box (Figure 2.1). Thus the trajectory of a 

walking human can be described in a Cartesian coordinate frame, which is fixed with 

the area we are interested in. 

 

 
Figure 2.1 A walking human represented by a rectangular box. 
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It is assumed that the human is walking in an area with flat terrain, and we are not 

interested in the vertical position of the human body. The Cartesian coordinate frame 

can actually be set as a two-dimensional frame, with only horizontal axes “x” and “y”. 

The human’s center of gravity is projected on the ground (“x-y” plane) as the 

geometric center of the rectangle at the bottom of the box, named as point “P”. Then, 

a human walking trajectory is defined as the path followed by the point “P” through 

the ground plane (Figure 2.2). 

 

 
Figure 2.2 Human walking trajectory on the ground plane 

 

Based on the previous representation of the human body and its positioning, some 

main kinamtic features can be observed intuitively: 

 x(t) and y(t) are the human position coordinates at time “t” on the Cartesian 

frame fix on the ground. 

 v(t) is defined as the magnitude of the horizontal linear velocity at time “t” of 

human’s center of gravity. 

 θ(t) is defined as the horizontal orientation at time “t” of human walking 

direction, it is also the angle between the tangent of the trajectory and x-axes. θ 

is positive when turning from x-axes to y-axes anti-clockwise, which follows the 

right-hand law. 
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Remark: x(t) and y(t) are the coordinates of the point “P” at time t. The box 

representing the model of the human inherits all these kinamtic features 

(Figure 2.3). 

 

The main kinematic equations are as followed: 

�
ẋ(t) =  v(t) ∙ cos(θ(t))
ẏ(t) =  v(t) ∙ sin(θ(t))

� (2-1) 

 

 
Figure 2.3 Top view of human walking trajectory with velocity and angle 

 

Obviously, these elementary kinematic states are quite insufficient to construct the 

model of a walking human. To distinguish the walking model from other locomotion, 

we have to put on some constraints to describe the behavior of a walking human. 

The neuroscience approaches in modeling human motion pointed out the critical 

role of the curvature. To prevent curvature discontinuities, we propose to make the 

curvature a variable of the system [2]: 

k =  
1
R

 (2-2) 

R is the radius of curvature (m), and k is defined as the curvature (1/m), i.e. the 

reciprocal of the radius of curvature. According to the geometric relationships, we 

can establish a 5-states kinematic model of human walking: 
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⎩
⎪
⎨

⎪
⎧

ẋ(t) =  v(t) ∙ cos(θ(t))
ẏ(t) =  v(t) ∙ sin(θ(t))
θ̇(t) =  k(t) ∙ v(t)

k̇(t) =  σ(t)
v̇(t) = a(t)

�  (2-3) 

σ is the derivative of the curvature and a is the linear acceleration. With this 5-states 

model, the human walking model can be simulated as a monocycle [2]. This 5-states 

“monocycle” model constraints the point “P” (position of human) which should 

move along a trajectory with curvature having 1st-order continuity. In a more 

intuitive way, it can be interpreted as follows: when a human is walking normally, 

he/she can not jump sideways.   

 

In this 5-states model, σ (the derivative of the curvature) and a (the linear 

acceleration) are considered as two inputs. But, they are almost impossible to be 

predicted or to be estimated. What we can do, is setting these two variables as 

normally distributed random variables. As the choice in this thesis, “σ” and “a” will 

be treated as process noise of the model. 

 

2.2  Velocity-curvature dependence 

 

As mentioned in section 2.1, the 5-states model (2-3) described the walking human 

as a monocycle, featured by  

θ̇(t) =  k(t) ∙ v(t) (2-4) 

However, it is easy to get a paradox in equation (2-4): when the linear speed is 

getting lower, the steering speed θ̇ is getting lower too, if we assume “k” is kept 

constant. On the contrary, the common situation is, when a human is walking at a 

lower speed, he/she is easier to redirect his/her walking. This defect of the model 

will lead to greater covariance of the system when the walking speed is low. And will 

keep affecting the filter to make results under-estimated. And for the assumption of 

k remaining constant, the clarification is as follows: in the 5-states kinematic model 

(2-3), the only constraint on it is its continuity. The linear velocity v and the curvature 
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k are independent. The variation of k is driven just by its derivative σ, which can be 

considered as an input. So k is just a proportion between θ̇ and v, i.e. θ̇(t)  ∝ v(t). 

 

In order to overcome this problem, some improvements should be conceived. 

Previous neuroscience research [3] sheds a light upon a possible solution: the 

dependence of curvature on velocity.  

 

In the literature, some curved locomotor paths are studied with the hypothesis that, 

also during locomotion, movement obey the so-called “two-thirds power law” stating 

that the angular velocity of the end effector (here the entire body) is proportional to 

the two-thirds root of its curvature (ω = k ∙ R2/3). For self-contentment in this thesis, 

a brief introduction of “power law” of velocity-curvature will be developed as 

followed. 

 

The relationship between geometrical (radius of curvature) and kinematic (tangential 

velocity) properties of movement trajectories has been studied in handwriting and 

drawing in a 2D or 3D space. A specific rule had been found, which can be expressed 

as:  

v(t) =  α ∙ R(t)β (2-5) 

where v is the tangential velocity, R is the radius of curvature, β is a constant 

exponent, and α is the “velocity gain factor”, which is a piecewise constant. For 

complex trajectories, the velocity gain factor α is constant within some identifiable 

geometrical segments and discontinuously changes at the transition points that 

separate two consecutive segments. This observation, of identifiable units of motor 

action, suggests a segmentation strategy for the description of complex movements. 

Although α changes from one segment to another, the β exponent was empirically 

found to be near 1/3 for all parts of the trajectory (derived from “two-thirds power 

law”). Thus the one-third power law provides a quantitative description of both 

movement generation and segmentation [4]. In the work by S. Vieilledent et al. [5], 
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the power law was applied to 2D human locomotor trajectories on elliptical paths. 

They tested several subjects with an optoelectronic video motion capture device. 

Each subject followed the shape of the proposed pathways (Figure 2.4).  

 
Figure 2.4 A typical subject is walking alone the ellipse shaped path drawn on the ground 
 

By varying the dimension and shape of the paths, a set of data including velocity and 

curvature were recorded at a sample rate (60 Hz). To analyze the acquired data, a 

“log” transformation of the “power law” equation (2-5) was executed: 

log�v(t)� = log(α) +  β ∙ log (R(t)) (2-6) 

Then correlation of velocity and curvature can be analyzed statistically by plotting 

them in log-log scales (Figure 2.5). Some observations were summarized from the 

plots in the literature: 

 The relationship between tangential velocity and radius of curvature of a 

locomotor trajectory along specific elliptical pathways is presented. 

 The shape of pathways has a significant effect on the correlation coefficient. 
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Figure 2.5 Log-log plots of velocity-curvature by varying the shape of the paths with 

regression line, “R” is the correlation coefficient in these plots. 
 

Although violations of the “one-third power law” are reported in some papers (eg. 

[6]), this empirical hypothesis is proved to be practically helpful in this thesis in the 

following chapters. 
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Concerning the violations of the “two-third power law” and its shape-sensitivity, the 

authors of previously presented literatures did not provide precise values of the 

parameters in the equation (2-5). Only some approximate estimation can be found in 

their experiments. To adapt this empirical hypothesis to the walking human model of 

this thesis, some approximation also should be made.  

 

Another issue shall be considered: when human is changing direction while walking, 

his/her tangential velocity should be constrained by the curvature he/she follows, 

but not vice versa. When human is slowing down the velocity, it does not 

predestinate a presence of steering. More intuitively speaking, when a vehicle is 

going to make a turn, it shall slow down its velocity. When a vehicle is slowing down, 

it may not change its direction. 

 

2.3  6-states model with velocity threshold 

 

As previously discussed, to model the dependence of velocity-curvature, a 

non-deterministic variable should be conceived. This variable should embody the 

willingness of the steering while walking at a certain speed. The original “power law” 

equation (2-5) can be interpreted as follow: 

 

k(t) =  αrev ∙ v(t)βrev ∙ st(t) (2-7) 

 

k is the curvature, v is the tangential velocity, 𝛼𝑟𝑒𝑣 and 𝛽𝑟𝑒𝑣 are the parameters 

derived from equation (2-5), and “st” is the so-called “steering willingness”. “st” 

drives the locomotion of steering like an input. The curvature of steering is 

constrained by the instantaneous velocity in the relation of “𝛼𝑟𝑒𝑣 ∙ 𝑣(𝑡)𝛽𝑟𝑒𝑣”, which is 

considered in this thesis as the maximum curvature human can achieve at the certain 

linear velocity v. Thus “st” is suggested to be a normally distributed random variable 

on the interval (-1,1).  
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To implement this additional constraint on curvature to the state space model, the 

equation (2-7) should be differentiated with respect to time.  

dk
dt

=  αrev ∙ βrev ∙ v(t)βrev−1 ∙ a(t) ∙ st(t) (2-8) 

a is the linear acceleration, which is assumed previously to be a normally distributed 

random variable. Replacing the curvature equation in 5-states model (2-3) with the 

constrained equation of curvature (2-8), we have the new 5-states model (2-9).  

⎩
⎪
⎨

⎪
⎧

ẋ(t) =  v(t) ∙ cos(θ(t))
ẏ(t) =  v(t) ∙ sin(θ(t))
θ̇(t) =  k(t) ∙ v(t)

k̇(t) =  αrev ∙ βrev ∙ v(t)βrev−1 ∙ a(t) ∙ st(t)
v̇(t) = a(t)

� (2-9) 

In this new 5-states model, we have “a(t)·st(t)”, a product of two random variables 

[7]. Implementing the theorem provided by the literature [7], the distribution of the 

product would be similar to the one reported in (Figure 2.6).  

 

 
Figure 2.6 The PDF of V = XY for X~N(0,1) and Y~N(0,1) 

 

For the variance of a and st Var(a·st), the result can be computed according to the 

equation in [8]. As a matter of fact, the product of these two random variables can 

be approximated by a new random variable with suitable mean value and variance. 

In this thesis, the new random variable is called “cn”. To put this random variable into 
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the system, we have to introduce it as a new state, which is a pure process noise. 

Thus a 6-states model (2-10) is proposed. 

⎩
⎪⎪
⎨

⎪⎪
⎧

ẋ(t) =  v(t) ∙ cos(θ(t))
ẏ(t) =  v(t) ∙ sin(θ(t))
θ̇(t) =  k(t) ∙ v(t)

k̇(t) =  αrev ∙ βrev ∙ v(t)βrev−1 ∙ cn(t)
cṅ(t) = w(t)
v̇(t) = a(t)

� (2-10) 

w(t)~N(0,W1) is a normal distributed random variable, a(t) ~N(0,W2) is also a normal 

distributed random variable, and assuming w(t)⊥a(t). 

 

The new 6-states model is featured by the constrained curvature based on the 

velocity-curvature dependence. The derived equation (2-7) provides the possibility to 

endow the curvature with a dynamic maximum variance depending on the linear 

velocity v, instead of a constant one. The functional mechanism of the dynamic 

maximum variance is illustrated in the following. 

 

 
Figure 2.7 Illustration of the advantage of “dynamic maximum variance” 

 

In this graphical demonstration (Figure 2.7), the circle point 𝑃�  indicates the 

estimated position at time t1 or t2 which are not necessarily correlated; the 

“petaling” indicates the instantaneous tangential velocity and the steering variance 
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with radius and arc respectively. According to the model (2-10), the position at next 

time instance t1/t2+ts , is expected inside the “petaling”. 

 

The “good measurement” means the measurement from the sensor with small 

deviation to the true value sampled at t2+ts, and “bad measurement” means the 

measurement with greater deviation to the true value sampled at t1+ts, ts is the 

sampling time.  

 

The graph represents how the measurements are followed by estimators. For 

example, in plot b, the estimator 𝑃�(𝑡1) is tracking the measurement z(t1+ts). Since 

the measurement z(t1+ts) is a “bad measurement” and it is out of the “petaling” of 

𝑃�(𝑡1), we would trust more the estimator than the measurement. Of course it is 

under the assumption that 𝑃�(𝑡1) is a good estimator. Thus when to predict the 

position at (t1+ts), 𝑃�(𝑡1 + 𝑡𝑠) is supposed to be closer to the “petaling” than 

measurement z(t1+ts), i.e. 𝑃�(𝑡1 + 𝑡𝑠) will be closer to the true trajectory. 

 

In “plot a”, with a smaller but constant variance of steering, the model will recognize 

the both “good” and “bad” measurements as corrupted ones. And in the prediction, 

the estimated states will be over rectified, i.e. a “good” measurement may be 

rectified. On the other side, in “plot c”, the filter has a bigger variance, which 

consequently accepts both the measurements as well sampled ones. And in the 

prediction, the states will be under rectified, i.e. a “bad” measurement may be not 

rectified. Compared with constant variance, the advantage of “dynamic variance” is 

conspicuous. Regulated by the velocity-curvature dependence, the possibility of 

steering during walking is better estimated than the previous 5-states model. 

 

However, the model has its limitations. When the linear velocity is too low, the SNR is 

getting worse, i.e. the amplitude of the velocity is too small to distinguish itself from 

the noise. The variance of the system diverges quickly. A linear velocity threshold is 

suggested in this thesis, to overcome the problem. When the linear velocity goes 
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below the threshold, the model is not applied as long as the velocity stays under the 

threshold. Instead, the estimators will only rely on the current measurements, i.e. 

the estimates are simply the duplicates of the measurements. The linear velocity will 

be calculated as the difference of the position with respect to the sampling time. As 

the velocity threshold is set about 0.3 m/s, which is quite low, the period under the 

threshold is called “Pseudo-stationary”. When the speed is continuously above the 

threshold for three times, the model will be applied again. This piece wise method is 

conceived based on the consideration that a potential injury risk is much greater on 

the high speed object. 
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Chapter 3  Visual tracking system 
 

 
In order to present a self-contained element, we include in this thesis a description 

of the visual tracking system, which has been developed before this thesis. 

 

 

3.1  Visual tracking system based on surveillance cameras 

 

As a task in ROSETTA project, the safety controller system should be easy to be 

deployed in the existing-facilities, especially for the sensor technologies applied in 

the system. The installation of the sensors must be effortless, low cost and without 

any restrictions on the objective, the human. Nevertheless, the measurements from 

the sensor technology should be adequate for the scenario. Compared with 

mechanical motion capture systems, inertial motion capture systems and magnetic 

motion capture systems, the visual capture system based on surveillance cameras, 

e.g. a visual tracking system based on multi-cameras [16], is more suitable. This 

visual tracking system just needs to mount commercial cameras on the ceilings of 

robotic cells, and calibrate once when installed. Moreover, it does not need to put 

any other devices on the human, which makes it more comfortable and convenient 

for the human.  
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Figure 3.1 Image from visual tracking system described in [18]. 

 

Applying the computer vision techniques and a specific model of human, the visual 

tracking system can track the motion of human in the images captured by the 

surveillance cameras (Figure 3.1).  

 

 

3.2  Particle filter 

 

A particle filter is usually employed to filter the images captured from the visual 

tracking system [17], [18]. It provides a probability distribution over possible states 

rather than an exact state. The key feature of the particle filter is that the posterior is 

approximately represented by a set of particles, each particle including a state vector 

and an associated weight, which indicates the probability of the state vector. 

 

In this thesis, the particle filter implemented in the visual tracking system is 

providing the possible positions of the tracked human, in the form of x and y 

coordinates. And each position was given a probability indicating the reliability of the 
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states. The information generated by the particle filter will be considered as the 

inputs of the following extended Kalman filter. 
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Chapter 4  Speed estimation based 

on extended Kalman filter 
 

There are many various algorithms about estimating the positioning and tracking of 

human, based on different tracking devices. In the previous chapter, a particle filter is 

applied to the visual tracking system, to filter the noise and imprecision of the image 

process. However, the particle filter assumes that the velocity of the human is 

constant. The simplified kinamtic model does not concern the tangential velocity of 

the human. And it focuses on the geometric characteristics of the trajectory. In this 

thesis, an EKF is proposed to fuse the position “measured” by the “front end” 

particle filter, to estimate the linear tangential velocity of the walking human. 

 
 

4.1  Extended Kalman filter introduction 

 

For system identification purpose, we consider the previously derived dynamic 

state-space model of walking human (2-10): 

⎩
⎪⎪
⎨

⎪⎪
⎧

ẋ(t) =  v(t) ∙ cos(θ(t))
ẏ(t) =  v(t) ∙ sin(θ(t))
θ̇(t) =  k(t) ∙ v(t)

k̇(t) =  αrev ∙ βrev ∙ v(t)βrev−1 ∙ cn(t)
cṅ(t) = w(t)
v̇(t) = a(t)

�                         (2-10) 

The state-space model can be translated into a compact form (4-1): 

�̇�(𝑡) =  𝑓(𝑥) +  𝑤(𝑡)                                             (4-1) 

In which:  
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x(t) =  

⎣
⎢
⎢
⎢
⎢
⎡

x(t)
y(t)
θ(t)
k(t)

cn(t)
v(t) ⎦

⎥
⎥
⎥
⎥
⎤

  and 𝑤(𝑡) is the process noise of the model, 𝑤(𝑡)~𝑁(0,𝑄). 

 

The stochastic estimation of the current state is presented through the posterior 

probability density function (PDF) when all the measurement up to the current time 

instant and all the inputs up to the previous time instant are given. Bayes filter 

calculates the posterior PDF in two steps: 1) prediction and 2) update. Using the 

Bayes rule and the Markov property, that is if the current state is known, the future 

state is independent of the past states, the prediction and update step can be 

formulated as the likelihood. In order to construct the posterior PDF, the prior should 

be available including the initial PDF. 

 

A Bayes filter requires integration over the state space, which is often impossible to 

calculate analytically. In some cases, the posterior distribution can be calculated such 

as the case of a linear Gaussian state-space model (i.e., KF). The well-known Bayes 

filter, Kalman Filter (KF), presents an optimal solution by assuming that the posterior 

density is Gaussian. In order for the posteriors to be Gaussian at every time step, the 

following conditions have to be satisfied. 

1) The initial PDF is Gaussian. 

2) f(x) (the propagation function of the states) is a linear function with added zero 

mean Gaussian noise. 

3) The function of measurements is a linear function of x(t) with added zero mean 

Gaussian noise. 

 

The KF assumes that the posteriors of the process noise and the measurement noise 

are zero-mean Gaussian distributions, and the initial state (x(0)), the covariance of 

process noise (Q), and the covariance of measurement noise are known. 
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Although our kinamtic model of a walking human is simplified, the state function is 

still non-linear. The standard Kalman filter can not be applied directly. The extended 

Kalman filter (EKF) is an optimal estimator in the least-square sense for estimating 

the states of dynamic nonlinear systems, and it is, thus, a viable and computationally 

efficient candidate for the online determination of position and speed in some 

locomotion tracking scenarios. The EKF consists of using the classical Kalman filter 

equations to the first-order approximation of the nonlinear model about the last 

estimate. A brief introduction of the EKF is necessary to help explaining the 

derivation of the algorithm implemented in this thesis. 

 

For now, we consider a general non-linear dynamic system with the observation 

model: 

xk = f(xk−1, uk−1) + wk−1 

zk = h(xk) +  vk−1      (4-2) 

Where “k” is the time step, “wk” and “vk” are the process and observation noises 

which are both assumed to be zero mean Gaussian noise with covariance Qk and Rk 

respectively. The function “f(•)” can be used to compute the predicted state from the 

previous estimate and similarly the function “h(•)” can be used to compute the 

predicted measurement from the predicted state. However, “f(•)” and “h(•)” cannot 

be applied to the covariance directly. Instead a matrix of partial derivatives (the 

Jacobian) is computed. At each time step, the Jacobian is evaluated with current 

predicted states. These matrixes can be used in the Kalman filter equations. This 

process essentially linearizes the non-linear function around the current estimate. 

Discrete-time predict and update equations are computed as follow: 

 

 

Predict 

Predicted stat estimate: x�k|k−1 = f(x�k−1|k−1, uk−1) 

Predicted covariance Pk|k−1 =  Fk−1 Pk−1|k−1Fk−1T +  Qk−1 
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estimate: 

Update 

Innovation or 

measurement residual: 

y�k =  zk − h�x�k|k−1� 

Innovation (or residual) 

covariance: 

Sk =  Hk Pk|k−1Hk
T +  Rk 

Local optimal Kalman gain: Kk =  Pk|k−1 Hk
T  Sk−1 

Updated state estimate: x�k|k = x�k|k−1 +  Kk y�k 

Updated estimate 

covariance: 

Pk|k = (I −  Kk Hk) Pk|k−1 

Jacobians 

State transition Jacobian Fk−1 =  
∂f
∂x

|x�k−1|k−1,uk−1 

Observation Jacobian Hk =  
∂h
∂x

|x�k|k−1 

 

The recursion equations given above is a first-order extended Kalman filter. Higher 

order EKFs may be obtained by retaining more terms of the Taylor series expansions. 

However, higher order EKFs tend to only provide performance benefits when the 

measurement noise is small, which in the case are not needed. 

 

To implement the previously derived continuous-time state transition equations of 

walking human (2-10), they have to be converted into discrete-time equations. The 

discretization is executed with Euler-forward method.  

⎩
⎪⎪
⎨

⎪⎪
⎧

x(i + 1) =  x(i) + T ∙ v(i) ∙ cos(θ(i))
y(i + 1) =  y(i) + T ∙ v(i) ∙ sin(θ(i))
θ(i + 1) =  θ(i) + T ∙ k(i) ∙ v(i)

k(i + 1) =  k(i) + T ∙ αrev ∙ βrev ∙ v(k)βrev−1 ∙ cn(k)
cn(i + 1) = w(i)

v(i + 1) = v(i) + T ∙ a(i)

�           (4-3) 

In the discrete-time state transition equations (4-3), “T” is the sampling time. It is not 

a constant in this case, because in the visual tracking system the acquisition time of 
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the image and its processing time involve very heavy computation. In the 

demonstrations of the system, the sampling time is usually varied in a range of 

“20ms ~ 50ms”. As in the modeling stage “cn” is the state describing the willingness 

of turning, and it is assumed as a noise with a normal distribution. In another word, 

the previous “thought of turning” does not have an influence on the current 

“thought of turning”. So when “cn” is propagating, it shall not have any information 

about the previous state.  

 

For the observe model the discretization is trivial. 

�z1
(i) =  x(i) +  v1

z2(i) =  y(i) +  v2
�                                                                       (4-4) 

“zi” is the measurements feeding the extended Kalman filter, which are composed 

with the Cartesian coordinates and the measurement noise “v1” and “v2”.  

 

The Jacobians are computed as follow: 

∂f
𝜕𝑥

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 −T ∙ v ∙ sinθ 0 0 T ∙ cosθ

0 1 T ∙ v ∙ cos θ 0 0 T ∙ sinθ

0 0 1 T ∙ v 0 T ∙ k

0 0 0 1 T ∙ α/v −T ∙ α ∙ cn/v2

0 0 0 0 0 0

0 0 0 0 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

For the parameter α in the Jacobian, it can be approximated from the original 

equation of “power law”.  
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4.2  Fusion of particle filter and extended Kalman filter 

 

The particle filter implemented in the system will generate a set of particles bearing 

their weights. Each particle represents the possible position at a certain time, with 

the possibility indicated by its weights. As in this particle filter, some approximations 

have been already executed, such as the assumption of the constant linear tangential 

velocity. The possibility calculated by the particle filter associated to the particles is 

derated by its impreciseness. To increase the reliability of the output of the particle 

filter, instead of choosing the most possible particle as the result, several subordinate 

particles should be chosen as well. Thus “the measurements” vector will increase its 

dimension, including a new variable: “possibility” of the position. 

 

To exploit this “possibility” of the position, the particle filter at “front end” is 

considered as a multi-sensor with “variant accuracy”, which will provide 

measurements to the extended Kalman filter. However, the so-called “variant 

accuracy” can not be directly interpreted into the variance matrix (R). Moreover, the 

“accuracy”, which is expressed by the possibility of the particle, is not time invariant. 

In this scenario, a fusion technique could be used to bridge the particle filter and the 

extended Kalman filter. 

 

The information fusion of Kalman filtering has been studied and widely applied to 

integrated navigation systems for maneuvering targets, such as airplanes, ships, cars 

and robots. When multiple sensors measure the states of the same stochastic system, 

generally we have two different types of methods to process the measured sensor 

data. The first method is the centralized filter [9], where all measured sensor data are 

communicated to a central site for processing. The advantage of this method is that it 

involves minimal information loss. However, it can result in severe computational 

overhead due to overloading of the filter with more data than it can handle. 

Consequently, the overall centralized filter may be unreliable or suffer from poor 
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accuracy and stability when there is severe data fault. 

 

The second method is the decentralized filter where the information from local 

estimators can yield the global optimal or suboptimal state estimate according to 

certain information fusion criterion. The advantage of this method is that the 

requirements of communication and memory space at the fusion center are 

broadened, and the parallel structures would lead to increase in the input data rates. 

Furthermore, decentralization leads to easy fault detection and isolation. However, 

the precision of the decentralized filter is generally lower than that of the centralized 

filter when there is no data fault. 

 
Figure 4.1 Block chart of two different fusion algorithms, (a) is the centralized filter, (b) is 

the decentralized filter. 
 

In the paper of Shu-Li Sun et al. [10], the two different algorithms have been 

discussed. Based on the decentralized fusion algorithm, the author proposed a new 

multi-sensor optimal information fusion criterion weighted by matrices in the linear 

minimum variance sense. It is equivalent to the maximum likelihood fusion criterion 

under the assumption of normal distribution. Based on this optimal fusion criterion, 

a general multi-sensor optimal information fusion decentralized Kalman filter with a 

two-layer fusion structure is given for discrete time linear stochastic control systems 

with multiple sensors and correlated noises (Figure 4.2). The theorem of the optimal 

fusion decentralized filter gives the relationship between variance of the optimal 

information fusion estimator (P), multi-estimators’ weights (Ai) and their variance (Pi) 
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respectively.  

x� =  A1 ∙  x1� + A2 ∙  x2� +  … +  Al ∙  xl�                                   (4-5) 

Let x1� , i = 1, 2, …, l be unbiased estimators of an n-dimensional stochastic vector x. 

The variance and cross covariance matrices are denoted by Pii (i.e. Pi) and Pij , 

respectively. Then the optimal fusion (i.e. linear minimum variance) estimator with 

matrix weights is given as 

x� =  A1 ∙  x1� + A2 ∙  x2� +  … +  Al ∙  xl�                                   (4-6) 

where the optimal matrix weights Ai, i = 1, 2, …, l are computed by 

A = Σ−1 e (eT Σ−1 e)−1                                        (4-7) 

where Σ=(Pij), I, j=1, 2, …, l is an nl×nl symmetric positive definite matrix, A = 

[A1, A2, … , Al]
T and e=[In, … , In,]T are both nl × n matrices. The corresponding 

variance of the optimal information fusion estimator is computed by 

P = (eTΣ−1 e )−1                                                      (4-8) 

 

 
Figure 4.2 Multi-sensor optimal information fusion decentralized Kalman filter with a 

two-layer fusion structure [10] 
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According to the equations given above, a relationship can be drawn to compute the 

variance of each “sensor”, i.e. each particle, provided the possibility of its 

measurement.  

 

 
Figure 4.3 Propagation of “measurements” of each “sensor” 

 

In (Figure 4-3), the flow chart is presenting the propagation scheme of particles 

generated by the particle filter, to the optimal fusion central. Before deriving the 

iterative equations, a main assumption shall be made: for the simplicity of the 

computation, the particles are not correlated to each other. And to demonstrate the 

derivation, two particles are considered as the circumstance. Under the assumption, 

the matrix Σ = (Pij), I, j=1, 2, … , l, can be constructed as a block diagonal matrix: 

Σ =  �P1 0
0 P2

�  (4-9) 

P1, P2 are covariance matrix of each particle, in this thesis, it is the covariance of “x, y” 

(Cartesian coordinates) of human at each time for each particle. Practically “x” and 

“y” are uncorrelated, thus P1 and P2 are diagonal themselves, too. So “Σ” is a diagonal 

matrix, and it is easy to get the inverse by computing the reciprocal of the elements 

on the diagonal. 

Σ−1 =  �P1
−1 0

0 P2−1
�     (4-10) 

On the other hand, the probability of the particle should be converted to the weight 
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correspond to the optimal matrix weights Ai. A most intuitive way is to normalize the 

possibility to estimate the weight. 

a1 =  
p1

p1 + p2
 ;  a2 =  

p2
p1 + p2

 ; 

And construct weight matrix A as follow: 

A =  �

a1 0
0 a1
a2 0
0 a2

� 

Derived from equation (4-7) and (4-8), we can have the equation: 

A P−1 =  Σ−1 e     (4-11) 

“P” is assumed to be positive definite, so its inverse should exist. Expand the matrix: 

�

a1 0
0 a1
a2 0
0 a2

�   �pp1−1 0
0 pp2−1

� =  �P1
−1 0

0 P2−1
�   �

1 0
0 1
1 0
0 1

�  (4-12) 

From equation (4-12), we can solve Σ-1 element-wise.  

a1P1 = P ;  a2P2 = P 

The weight is time dependent as the possibility of the particle, at each time instance 

the weight is updated by the particle filter. So the variance of each channel is 

calculated recursively on the previous system variance. 

P1(t|t − 1) = P(t−1)
a1(t) 

, P2(t|t − 1) = P(t−1)
a2(t) 

  (4-13) 

 

To implement this optimal information fusion technique in the extended Kalman filter, 

we have to structure two channels for the incoming data. Each channel is fed by a 

common prediction step, and then has its own correction steps. For the update step, 

a unique estimator and its variance will be computed based on the fusion central. 
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Figure (4.4) Block diagram of extended Kalman filter with the fusion technique 

 

In Figure (4.4), the prediction step is executed with the standard EKF equations. The 

recursion is a first-order Taylor expansion based on the estimator at time (t-1). Then 

the predicted state x�(t|t-1) is sent via the parallel channels to two individual 

correction steps. Each correction step is fed by the particle filter with selected 

particles. In this thesis, the particles are selected by the most 2 possible ones. The 

variance of each channel is calculated according to the equation (4-14) and (4-13). 

And use the variance to compute the Kalman gain for each channel. The new 

estimator at time “t” will be the weighted sum of these two channels outputs. And 

the variance for the system is computed by equation (4-8). 

 

In the case the dimension of measurements is not consistent with the dimension of 

model states, the channel variance could be computed either as the prediction 

variance or as the innovation variance. The weight can be treated as a scaling 

variable.  

 

Under the assumption of uncorrelation of the particles and uncorrelation of the 

variance at each time instance, the fusion algorithm implemented in this thesis is an 

approximate way to estimate the individual variance of each particle. As a matter of 
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fact, the particles are actually propagating inside the particle filter, the uncorrelation 

of the particle can not be ensured.  

 

4.3  Tuning of extended Kalman filter 

 

The Kalman filtering equations provide an estimate of the state x�(t|t) and its error 

covariance P(t|t) recursively. The estimate and its quality depend on the system 

parameters and the noise statistics fed as inputs to the estimator. This section 

analyzes the effect of uncertainties in the statistical inputs to the filter. In the 

absence of reliable statistics or the true values of noise covariance matrices Qt and Rt, 

the expression: 

Pt|t = (I − Kt Ht) Pt|t−1(I− Kt Ht)T +  Kt Rt Kt
T                         (4-14) 

no longer provides the actual error covariance. In other words Pt|t is not equal to the 

expected value of  �xt −  x�t|t��xt −  x�t|t�
T

. In most real time applications the 

covariance matrices that are used in designing the Kalman filter are different from 

the actual noise covariance matrices. 

 

Tuning of Kalman Filter is very important to reach a small and reasonable delay in 

tracking. The tuning process includes identification of the measurement and process 

noise covariance matrices. The measurement noise covariance matrix Rt can be 

determined by off-line sample measurements as explained in [11]. However, 

determination of process noise covariance matrix Qt−1 is not straightforward.  

 

The determination of the process noise covariance is generally more difficult as we 

typically do not have the ability to directly observe the process we are estimating. 

Sometimes a relatively simple (poor) process model can produce acceptable results if 

one “injects” enough uncertainty into the process via the selection of Q. Certainly in 

this case one would hope that the process measurements are reliable. 

In either case, whether or not we have a rational basis for choosing the parameters, 
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often times superior filter performance (statistically speaking) can be obtained by 

tuning the filter parameters Q and R. The tuning is usually performed off-line, 

frequently with the help of another (distinct) Kalman filter in a process generally 

referred to as system identification. We note that under conditions where Q and R 

are in fact constant, both the estimation error covariance and the Kalman gain will 

stabilize quickly and then remain constant. If this is the case, these parameters can 

be pre-computed by either running the filter off-line.  

 

It is frequently the case however that the measurement error (in particular) does not 

remain constant, which is the case in this thesis. Also, the process noise is sometimes 

changed dynamically during filter operation—becoming Qt —in order to adjust to 

different dynamics. For example, in the case of tracking the head of a user of a 3D 

virtual environment we might reduce the magnitude of if the user seems to be 

moving slowly, and increase the magnitude if the dynamics start changing rapidly. In 

such cases might be chosen to account for both uncertainties about the user’s 

intentions and uncertainty in the model. 

 

In this thesis, not all the states are observable. And the covariance can not be 

estimate off-line statically due to the high dynamic system. The best we can do is 

choose simple parameterizations for P(0), Q and R (typically identity matrices 

multiplied by a scalar to tuned). In most cases the EKF matrices are designed and 

tuned by trial-and-error procedures. By varying the matrix elements in a range of 

several decades, we try to get the best fit for the specific application, using either 

simulations or experimental data acquired in the demos. 

 

Other than the covariance matrixes, the initial states also have a great influence in 

the performance of the filter. To suppress the variance, the initial value should be 

estimated properly. The closer to the mean value, the less iteration steps are needed 

to rectify the states.  
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Chapter 5  Validations 
 

The algorithm of the human walking speed estimation is validated with offline data, 

which was acquired from the human detection and tracking system of the project 

ROSETTA in the experimental scenario.  

 

 

5.1  Set up of the experimental scenario 

 

An experimental scenario (Figure 5.1) has been set up to simulating the circumstance 

of the co-existence of human and robot. An environment of approximately 3m×2.5m, 

with a single entrance has been selected. An industrial robot is placed in the center 

of this space, surrounded by an interference area (red area marked with number 3 in 

Figure 5.1) that covers the workspace of the selected task. Two tables, representing 

workstations, have been also added, at the left and right side of the robot, each one 

with a corresponding cooperation area (blue areas marked with number 2 in Figure 

5.1). 
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Figure 5.1  Layout of the experimental scenario 

Two more areas, which are far from the robot and have to be intended as 

coexistence area (blue areas crossed with a line and marked with number 1 in Figure 

5.1), have been added as well. The robotic cell has been equipped with two ceiling 

mounted surveillance cameras. The two cameras have been suspended at about 3m 

and located at a distance that ensures a complete overlap on the interference area. 

 

 
Figure 5.2  A snapshot of the experimental scenario 

camera 
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A preliminary software architecture (Figure 5.3), including the human detection and 

tracking and the intention estimation software, has been implemented to 

demonstrate the HDT-IE functionality.  

 

 
Figure 5.3  Software architecture of HDT-IE 

 

A set of five volunteers was selected to perform five different experiments of human 

detection and intention estimation in a robotic cell. The experiments are focused on 

walking humans. Each experiment is structured according to the following steps: 

1. the volunteer enters the robotic cell from a door located in the bottom-right 

corner; 

2. the volunteer steps towards a preconceived destination; 

3. the volunteer stops at the destination and performs a simple task; 

4. the volunteer comes back to the entrance door; 

5. the volunteer leaves the robotic cell. 



41 
 

 
Figure 5.4  A sequence of frames extracted from a coexistence experiment (the box 
around the volunteer is created by the HDT algorithm). 
 

Experiments have been following the protocol described above. The sequence of 

frames (Figure 5.4) illustrating the functionality of the HDT system, is to be read from 

left to right and from top to bottom. Also notice that the robot was moving during 

the experiments, however its motion is masked by the system in order to avoid any 

misinterpretation of this motion as coming from a moving person. These 

experimental data of walking trajectories were then used to validate the algorithm. 
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Figure 5.5 Examples of trajectories 

 

The HDT computes the states associated to the tracked people and forwards them to 

the extended Kalman filter. The algorithm computes the predicted state in terms of 

Cartesian position and the velocity of the moving person. 2D plots of the estimated 

trajectories are shown in Figure 5.5, superimposed to the picture of the robotic cell 

already shown in Figure 5.2, for the same trajectories as in Figure 5.6. 
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Figure 5.6  The estimated 2D paths reported into the robotic cell environment 
 

The typical trajectories in Figure 5.6 approaching different areas represent three 

different interaction behaviors: 

 

1. Coexistence areas: two areas (blue areas crossed with a red line and marked 

with number 1) far from the robot, where the volunteer is supposed to 

perform a simple manipulation task; 

2. Cooperation areas: two areas (blue areas marked with number 2) near the 

robot, where the volunteer is supposed to perform a simple manipulation task; 

3. Interference area: an area (red area marked with number 3) close to the robot, 

where the volunteer should not enter. 

 

For each trajectory, the volunteers repeated the same predestinated routs for five 

times. For each trial a set of data was generated by the particle filter. The sets of data 

contain the following information: 
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 The time stamp for each particle. 

 The ID of the particle: in case more than one person enters the robot cell. But it 

will be neglected because the experiment focused on one human tracking 

scenario. 

 Coordinate of x-axes and y-axes. 

 The probability represents the reliability of each particle. It is normalized, i.e. 1 

indicates the best probability while 0 indicates the worst probability. 

 

The human walking speed estimation proposed in this thesis is validated by the data 

sets described above. 

 

 

5.2  Results and analysis 

 

A standard algorithm has been implemented on the group of data sets. The so called 

“standard algorithm” is a modified extended Kalman filter specified in Chapter 4. The 

modified extended Kalman filter is featured by: 

 The 6-states human walking model (velocity-curvature dependence). 

 The data fusion technique. 

 The piece wise filtering with a speed threshold 

The results and analysis focus on the following problems: 

1. 6-states human walking model versus 5-states model. 

2. Best particle versus multi-particles with secondary reliability. 

3. Algorithm with a velocity threshold versus algorithm without a velocity 

threshold. 

4. Tuning of the process variance Q 

5. The reliability of the estimated states 

 

1. 6-states human walking model versus 5-states model. 
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As discussed in Chapter 2, the difference between these two models is the 

velocity-curvature dependence. So the validation is to compare the two models with 

the same data set, to explore the ability of modeling the human walking. To have a 

more general conclusion, three different scenarios (coexistence, cooperation and 

interference) are combined together to simulate the situation that the system is 

working continuously, i.e. a human had entered and exited three times the robot cell 

in single trial (Figure 5.7 and Figure 5.8).  

 
Figure 5.7  Position estimation of 6-states model 

 
Figure 5.8  Position estimation of 5-states model 

 

To reject other factors, the both algorithms are synchronized with their parameters, 
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except the additional state in the 6-states model, i.e. both algorithms work with the 

same structure and initialization. To analyze the comparison of these two models, 

one of the trials is selected to demonstrate the difference. It is observed that: 

 Both the models can track the measurements with the same errors (Figure 5.7 

and Figure 5.8). By changing the variance matrixes of process and measurements 

(Q and R), the errors stayed synchronized between two models.  

 The linear velocity profiles of two models are almost overlapping (Figure 5.9).  

 Differences can be observed in the angle θ profiles (Figure 5.10). The θ profile of 

5-states model is smoother than the one of 6-states. 

 

Generally, the two models do not distinguish from each other obviously. From the 

position and linear velocity estimation, no significant impact from the 6th state can 

be observed. However one difference should be highlighted in this point. The 

variation of the angle θ shows that the 6-states model is more sensitive to the 

turning angle θ (Figure 5.10). Although it can not be confirmed the sensitiveness of 

the 6-states model indicates the better accuracy. Due to the absence of a more 

precise reference value to compare with, a superficial observation was left to be 

studied. As a probe into the causes of the ineffectiveness of this 6th state, the 

approximation during modeling the velocity-curvature dependence can be a factor. 

Also the un-modeled neural and ergonomic mechanism in the velocity-curvature 

degrades the behavior of this 6-states human walking model. 

 

 

 
Figure 5.9  Walking speed estimated by two models 
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Figure 5.10 Theta estimated by two models (5-states vs. 6-states) 

 
 

2. Best particle versus multi-particles with secondary reliability 

This comparison is about the validation of the fusion algorithm proposed in Section 

4.2. To analyze the performance of the algorithms with or without the fusion 

technique, we have to refer the estimations to the true value. So the validation of the 

fusion algorithm is based on artificial data sets, in which the “true” trajectories exit. 

Another reason to implement an artificial data set is that, the fusion algorithm does 

not involve the nature of human walking. The variety of the algorithms, different to 

the previous comparison about the velocity-curvature dependence, is about the 

algorithm itself.  

Three typical trajectories are selected: straight line with a constant acceleration; 

curve with a constant linear velocity; curve with acceleration and deceleration 

(Figure 5.11). Each imaginary data set is built up with one “true” trajectory without 

noise and three trajectories with normal distributed noise. Each noisy trajectory is 

assigned a reliability associated to the variance of its noise, to simulate the output of 

the particle filter.  
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Figure 5.11 Artificial trajectories with speed profiles 

 

All these trajectories have been applied both the algorithms with or without fusion 

technique. One of the three data sets is a curved line trajectory with a velocity profile 

described in Figure 5.11. This trajectory (Figure 5.12) is picked to illustrate the 

comparison. From the filtered linear velocity and angle profiles (Figure 5.13), we can 

observe that: with the same tracking delay, the algorithm with the fusion technique 

is more stable and precise. The same observation is also obtained in the other two 

trajectories. Thus the fusion algorithm in the extended Kalman filter is validated to 

be effective.  
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Figure 5.12 Imaginary trajectory with its noisy variations 
 

 
Figure 5.13 Comparison of algorithm w/o the fusion technique 

 

3. Algorithm with a velocity threshold versus algorithm without a 

velocity threshold 

The unicycle model described in Chapter 2 can simulate human walking properly at a 

relative higher speed (assumed >0.4 m/s). When the speed is low or the human is 
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standing still, due to the limitation of the model discussed in Chapter 2, the unicycle 

model can no more properly track the direction the human is facing. The speed 

threshold is set to distinguish the high speed walking from the low speed walking 

(pseudo stationary). It endows the standard algorithm with the capability to filter the 

trajectory piece wise, and to compensate the drawback of the unicycle model. 

 

To validate the argument above, a true data set has been selected to demonstrate 

the comparison of the algorithms with or without a speed threshold (Figure 5.14). A 

standard algorithm with the speed threshold (0.4 m/s) was applied to the trajectory. 

The estimations of the linear velocity, the angle θ and the velocity variance are 

plotted in Figure 5.15. To justify the performance of the estimation, a trajectory was 

reconstructed with the start point (x(0),y(0)) and the estimated velocity v and angle θ 

(Figure 5.16). The estimated velocity and angle can follow the shape of the trajectory 

without position corrections as expected.  

 

 
Figure 5.14 Trajectory selected and the estimation with the standard algorithm. 
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Figure 5.15 Speed, angle and speed variance profiles of algorithm with speed threshold. 
(With the process variance matrix Q tuned for the standard algorithm.) 

 

 

Figure 5.16 The trajectory was rebuilt based on the estimated velocity and angle. 
 
 

In the comparison with the standard algorithm, the algorithm without a speed 

threshold provides a great variance of angle θ, which corrupts the velocity estimation 
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via the unicycle model (2-10). The algorithm without a speed threshold can even be 

unstable (Figure 5.17), when started with a small tolerance, i.e. a small process 

variance which is tuned for the standard algorithm. In Figure 5.17, the algorithm 

loses the tracking of both angle θ and velocity after the first low speed area (v > 0.4 

m/s). This behavior can be interpreted as: the unicycle model tries to track the states 

including the angle θ even in the low speed period. Thus it senses a great variation of 

θ. Because of a small process variance Q, the algorithm “trusts” more the model 

than the measurement. So the algorithm believes the great variation is caused by the 

measurement. In the correction step of the algorithm, the states are over estimated. 

 

 
Figure 5.17 Speed, angle and speed variance profiles of algorithm without speed threshold. 

(With the process variance matrix Q tuned for the standard algorithm with a speed 
threshold.) 

 

By enlarging the process variance matrix Q, the system can be stabilized with the cost 

of greater velocity variance and the inaccuracy of the estimation (Figure 5.18), i.e. 

the states are under estimated. 
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Figure 5.18 Speed, angle and speed variance profiles of algorithm without speed threshold. 

(With the process variance matrix Q tuned to stabilize the algorithm without a speed 
threshold.) 

 

The result can be observed from the comparison, that the standard algorithm (with a 

speed threshold) can track the human locomotion properly even with some 

distortion from the low speed area. And the variance of the linear velocity is still in 

an acceptable range. The algorithm without a speed threshold can only track the 

human locomotion properly before the first time the speed is lower than 

approximately 0.3 m/s.  

 

 

4. Tuning of the process variance Q 

By the trial and error method, the process variance matrix was tuned for the 

standard algorithm based on the real trajectories captured by HDT. Additionally, the 

response speed of the extended Kalman filter has been considered. The previous 

described imaginary data sets were used as reference objects. Especially the variance 

of the linear velocity has a great impact on the response speed of the extended 

Kalman filter (Figure 5.19). There is a trade off in between the accuracy and the 

response speed of the algorithm. 
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Figure 5.19 Sensitivity of the response speed with process variance of the linear velocity. 

 
 
 

5. The reliability of the estimated states 

 

Although the algorithm can track all the trajectories captured by HDT with a speed 

variance approximately σ2 ≈ 0.8, in the absence of a reference value to be compared 

with, the reliability of the estimated states can be validated in the sense of the 

consistency in between the measurements and the kinematic model. It is assumed 

that the kinematic model can imitate properly the behavior of human walking at a 

relative high linear velocity. If the estimation fits both the trajectory and the 

kinematic model well, i.e. in a small variance, it is considered at least as a stable 

version of extended Kalman filter. 

 

 
  

Var = 0.2 

Var = 4 
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Chapter 6  Conclusion and future 

work 
 
 

Inspired by the ROSETTA project, an algorithm is proposed to estimate the human 

walking speed based on a visual tracking system. The core of the algorithm is an 

extended Kalman filter with some modification to be adapted to the scenario of 

ROSETTA.  

 

From the modeling of human walking, a simplified kinematic model (unicycle) has 

been excerpted from previous work of ergonomic science. The velocity-curvature 

dependence was added to the model, which was meant to improve the model. Based 

on a visual tracking system developed by ROSETTA, an extended Kalman filter was 

applied to integrate the human walking model with the particle filter. The extended 

Kalman filter was modified to be adaptable to the experimental scenario. Finally the 

algorithm was tuned to be optimized with off-line data sets. 

 

The algorithm was designed and tested in MATLAB®. The numerical simulations show 

that: the algorithm can track the human walking trajectory with a bounded process 

variance, and the estimation of the walking speed is reliable in the sense that the 

estimation fits both the measurement and the kinematic model of a walking human.  

 

The modified extended Kalman filter has been tested to justify the modifications 

proposed in this thesis. The comparison demonstrates the effectiveness of the piece 

wise filtering with a speed threshold and the fusion technique applied in the 

algorithm. However, the velocity-curvature dependence embedded in the kinematic 

model did not give sufficient arguments during the validation to support its 

superiority. 
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Summing up, this thesis proposed a stable version of extended Kalman filter, which is 

dedicated to estimate the human walking velocity based on the visual tracking 

system subjected in ROSETTA project.  

 

For the future work, the algorithm can be implemented into the real HDT-IE system, 

Combined with the motion plan of the industrial robot in the cell, an assessment of 

collision for safety could be obtained on-line. Surely, if it is possible, the algorithm 

should be validated again with reference to estimations from other tracking systems. 

And the velocity-curvature dependence is a promising topic in the intention 

estimation of human walking.  
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Appendix I  MATLAB® script of the algorithm 
 

Q = [ 0.01        0            0          0           0          0 

    0           0.01         0          0           0          0 

    0           0            0.5        0           0          0 

    0           0            0       0.5         0          0 

    0           0            0          0           0.5        0 

    0           0            0          0           0          0.05 ]; 

%process variance matrix for high speed 

 

R = [   0.1         0 

    0           0.1     ]; 

%measurement variance matrix for hight speed 

 

Q_ls = [0.1         0           0           0 

    0           0.1         0           0 

    0           0           2           0 

    0           0           0           0.5 ]; 

%process variance matrix for low speed 

 

R_ls = [    0.5         0 

    0           0.5     ]; 

%measurement variance matrix for low speed 

 

%reserve space for estimated states and initialize 

%the parameters 

x_updated = zeros(9,size(data,2)); 

PP = zeros(6,6,size(data,2)); 

PP_ls = zeros(4,4,size(data,2)); 

TT = zeros(1,size(data,2)); 

entr_counter = 0; 

exit_counter = 0; 

present_flag = zeros(1,size(data,2)); %human presents in the area 

P_buffer = zeros(6,6); 

P_buffer_ls = zeros(4,4); 

p_norm = zeros(1,size(data,2)); 

p_norm_ls = zeros(1,size(data,2)); 

low_flag = zeros(1,size(data,2)); 

fast_counter = 3; 

low_counter = 0; 

lowspeed = zeros(1,size(data,2)); 

lowspeed_counter = 0; 

lost_tr = zeros(1,size(data,2)); 
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weight = zeros(2,size(data,2)); 

 

speed_threshold = 0.4;    %   m/s   <<<<<<<<<<<<<<<<<<<<<<speed threshold 

 

 

%main============================================ 

 

for i=2:size(data,2) 

 

    % finding entrance & exit 

    %An algorithm to make sure, whether a human is in the area 

    %A counter is set to count the sample number, whose reliability is beyond 

    %the threshold. If 4 out 5 samples are beyond the threshold, the flag is 

    %raised to indicate the present of a human. 

    %The same algorithm is applied to detect the exit. 

    if exit_counter >=9 

        present_flag(1,i-4:i) = 0; 

        exit_counter = 0; 

    elseif exit_counter < 0; 

        exit_counter = 0; 

    end 

 

    if entr_counter >= 5 

        present_flag(1,i)= 1; 

        entr_counter = 0; 

    elseif entr_counter <0 

        entr_counter = 0; 

    end 

 

    if present_flag(1,i-1) == 0 && data(5,i)>=0.9 

        entr_counter = entr_counter+1; 

    elseif present_flag(1,i-1) == 0 && data(5,i)<0.9 

        entr_counter = entr_counter-1; 

    end 

 

    if present_flag(1,i-1) == 1 && data(5,i)>=0.9 

        present_flag(1,i)= 1; 

        exit_counter = exit_counter-1; 

    elseif present_flag(1,i-1) == 1 && data(5,i)<0.9 

        exit_counter = exit_counter+3; 

    end 

 

 

    if present_flag(1,i) == 1 %<------a human is detected, the filter is runing 
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        % starting algorigthem 

 

        % initial guess of model 

 

        if present_flag(1,i-1) == 0 

            %the first data of entrance,initialization is needed 

 

            delta_x = data(3,i) - data(3,i-3); 

            delta_y = data(4,i) - data(4,i-3); 

            delta_s = sqrt(delta_x^2+delta_y^2); 

            delta_t = data(1,i) - data(1,i-3); 

            %The estimate of the initial states is based on the previous 

            %valid data 

 

            xp = data(3,i); 

            yp = data(4,i); 

            theta = atan2(data(4,i)-data(4,i-3),data(3,i)-data(3,i-3)); 

            k = 0.1; 

            cn = 0.001; 

            v = delta_s/delta_t; 

 

            P_updated = P_buffer; 

            P_updated_ls = P_buffer_ls; 

        end 

 

        % EKF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

        T = data(1,i) - data(1,i-1); 

        %time step of each sample, i.e. sampling time 

 

        t_scale = T/0.025; 

        %a time step scale to scale the covariance P 

 

        TT(1,i) = T; 

        %recording the time step 

        % speed threshold 

        %To stabilize the speed threshold, a flip flop with a tolerance is used to 

        %isolate the high/low speed interval 

 

        if low_flag(1,i-1) == 0 && abs(v)>= speed_threshold 

            low_counter = low_counter - 1; 

        elseif low_flag(1,i-1) == 0 && abs(v)< speed_threshold 

            low_counter = low_counter + 1; 
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        end 

 

 

        if low_flag(1,i-1) == 1 && abs(v) >= speed_threshold 

            fast_counter = fast_counter + 1; 

        elseif low_flag(1,i-1) == 1 && abs(v) < speed_threshold 

            fast_counter = fast_counter - 1; 

        end 

 

        if fast_counter >=3 && low_flag(1,i-1) == 1 

            low_flag(1,i) = 0; 

            low_counter = 0; 

        elseif fast_counter >=3 && low_flag(1,i-1) == 0 

            low_flag(1,i) = 0; 

        elseif fast_counter < 0; 

            fast_counter = 0; 

        end 

 

        if low_counter >= 2 && low_flag(1,i-1) == 0 

            low_flag(1,i)= 1; 

            fast_counter = 0; 

        elseif low_counter >= 2 && low_flag(1,i-1) == 1 

            low_flag(1,i)= 1; 

        elseif low_counter <0 

            low_counter = 0; 

        end 

 

        if low_flag(1,i) == 0                    % highspeed 

            % predict 

            %prediction step 

            alfa = 1; 

            vv = abs(v); 

 

            x_predicted = [ xp + T*v*cos(theta) 

                yp + T*v*sin(theta) 

                theta + T*k*v 

                k - T*alfa/v^3*cn 

                cn 

                v                 ]; 

            %predicted estimate state 

 

            df_dx = [1       0    -T*v*sin(theta)    0      0                 T*cos(theta) 

                   0       1     T*v*cos(theta)    0      0                T*sin(theta) 

                   0       0     1               T*v    0                 T*k 



61 
 

                   0       0     0               1      T*alfa/v^3         3*T*alfa*cn/v^4 

                   0       0     0               0      1                 0 

                   0       0     0               0      0                 1   ]; 

            %Jacobian of model 

 

            P = df_dx * P_updated * df_dx' + Q      ; 

            P = sqrt(t_scale) * P; 

            %time scale to compentsate the variety of the time step 

 

            % update 

            dh_dx = [   1       0       0     0       0     0 

                0       1       0     0       0     0       ]; 

            %derivative of measurements respect to predicted states 

 

            z_predicted = dh_dx * x_predicted; 

 

            if data(5,i)<0.8 

                outlayer = 0; 

            else 

                outlayer = 1; 

            end 

            %checking unvalid data 

 

            meas_resi1 =   data([3,4],i) - z_predicted; 

            meas_resi2 =   data([6,7],i) - z_predicted; 

 

            weight(:,i) = [ data(5,i)/(data(5,i)+data(8,i)) 

                data(8,i)/(data(5,i)+data(8,i))]; 

 

            W1 = 1/weight(1,i); 

            W2 = 1/weight(2,i); 

 

            K1 = P * dh_dx' / (W1*(dh_dx * P * dh_dx') + R); 

            K2 = P * dh_dx' / (W2*(dh_dx * P * dh_dx') + R); 

            K = P * dh_dx' / ((dh_dx * P * dh_dx') + R); 

 

            x_updated1 = x_predicted + outlayer * K1 * meas_resi1; 

            x_updated2 = x_predicted + outlayer * K2 * meas_resi2; 

 

            x_updated(1:6,i) = weight(1,i) * x_updated1 + weight(2,i) * x_updated2; 

 

            P_updated = (eye(6,6) - K * dh_dx) * P; 

            P_updated = P_updated / sqrt(t_scale); 

            xp =    x_updated(1,i); 
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            yp =    x_updated(2,i); 

            theta = x_updated(3,i); 

            k =     x_updated(4,i); 

            cn = x_updated(5,i); 

            v =     x_updated(6,i); 

 

            PP(:,:,i) = P_updated; 

            P_buffer = P_updated; 

 

            % lowspeed 

        elseif low_flag(1,i) == 1 

            %At low speed period, the states are estimated without curvature 

 

            x_predicted_ls = [  xp + T*v*cos(theta) 

                yp + T*v*sin(theta) 

                theta 

                v                 ]; 

            %predicted estimate state 

 

            df_dx_ls = [    1       0       -T*v*sin(theta)     T*cos(theta) 

                0       1       T*v*cos(theta)      T*sin(theta) 

                0       0       1                   0 

                0       0       0                   1             ]; 

            %jacobian of model 

 

            P_ls = df_dx_ls * P_updated_ls * df_dx_ls' + Q_ls; 

 

            P_ls = sqrt(t_scale) * P_ls; 

 

            % update 

            dh_dx_ls = [   1       0       0     0 

                0       1       0     0 ]; 

 

            z_predicted_ls = dh_dx_ls * x_predicted_ls; 

 

            if data(5,i)<0.8 

                outlayer = 0; 

            else 

                outlayer = 1; 

            end 

 

            meas_resi1_ls =   data([3,4],i) - z_predicted_ls; 

            meas_resi2_ls =   data([6,7],i) - z_predicted_ls; 
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            weight(:,i) = [ data(5,i)/(data(5,i)+data(8,i)) 

                data(8,i)/(data(5,i)+data(8,i))]; 

 

            W1 = 1/weight(1,i); 

            W2 = 1/weight(2,i); 

 

            K1_ls = P_ls * dh_dx_ls' / (W1*(dh_dx_ls * P_ls * dh_dx_ls') + R_ls); 

            K2_ls = P_ls * dh_dx_ls' / (W2*(dh_dx_ls * P_ls * dh_dx_ls') + R_ls); 

            K_ls = P_ls * dh_dx_ls' / ((dh_dx_ls * P_ls * dh_dx_ls') + R_ls); 

 

            x_updated1_ls = x_predicted_ls + outlayer * K1_ls * meas_resi1_ls; 

            x_updated2_ls = x_predicted_ls + outlayer * K2_ls * meas_resi2_ls; 

 

            x_updated([1:3,6],i) = weight(1,i) * x_updated1_ls + weight(2,i) * x_updated2_ls; 

 

            P_updated_ls = (eye(4,4) - K_ls * dh_dx_ls) * P_ls; 

            P_updated_ls = P_updated_ls / sqrt(t_scale); 

 

            xp =    x_updated(1,i); 

            yp =    x_updated(2,i); 

            if abs(v) >= 0.15 

                theta = x_updated(3,i); 

            elseif abs(v) < 0.15 

                theta = atan2(data(4,i)-data(4,i-2),data(3,i)-data(3,i-2)); 

            end 

            %In case the speed is almost zero, the tracking of theta is 

            %totally lost. The angle have to be estimated geometrically. 

 

            k = 1/v; 

 

            v =     x_updated(6,i); 

 

            PP_ls(:,:,i) = P_updated_ls; 

            P_buffer_ls = P_updated_ls; 

 

 

        end 

 

 

    end 

 

 

end 

  



64 
 

Bibliography 
 
 
[1]. Susanne Oberer-Treitz; Arnold Puzik; Alexander Verl; Fraunhofer-Institut für 

Produktionstechnik und Automatisierung IPA, Stuttgart. “Measuring the Collision 
Potential of Industrial Robots”, ISR / ROBOTIK , Germany, 2010 

 
[2]. Gustavo Arechavaleta; Jean-Paul Laumond; Halim Hicheur; Alain Berthoz. “An 

Optimality Principle Governing Human Walking”. IEEE transactions on robotics, 
VOL. 24, NO. 1, February 2008 

 
[3]. Stephane Vieilledent; Yves Kerlirzin; Stephane Dalbera; Alain Berthoz. 

“Relationship between velocity and curvature of a human locomotor 
trajectory” ,france, 2 April 2001 

 
[4]. H. Hicheur, S. Vieilledent, M. J. E. Richardson, T. Flash, A. Berthoz. “Velocity and 

curvature in human locomotion along complex curved paths: a comparison with 
hand movements”, Experimental Brain Research Apri, Volume 162, Issue 2, page 
145-154, 2005 

 
[5]. Stephane Vieilledent; Yves Kerlirzin; Stephane Dalbera; Alain Berthoz. 

“Relationship between velocity and curvature of a human locomotor trajectory”,   
Neuroscience letters, vol. 305, no1, page 65-69 (24 ref.), 2001 

 
[6]. S. Schaal; D. Sternad. “Origins and violations of the 2/3 power law in rhythmic 

three-dimensional movements”, Experimental Brain Research 136, page 60–72, 
2001 

 
 
[7]. Andrew G. Glena; Lawrence M. Leemisb; John H. Drewb. “Computing the 

distribution of the product of two continuous random variables”, Computational 
Statistics & Data Analysis Volume 44, Issue 3, Page 451–464, 1 January 2004 

 
[8]. George W. Bohrnstedta; Arthur S. Goldbergerb. “On the Exact Covariance of 

Products of Random Variables”, Journal of the American Statistical Association  
Volume 64, Issue 328, pages 1439-1442, 1969 

 
[9]. D. Willner C. B. Chang ;  K. P. Dunn. “Kalman filter algorithm for a multisensor 

system”, Decision and Control including the 15th Symposium on Adaptive 
Processes, IEEE Conference, 1976 

 
[10]. Shu-Li Sun; Zi-Li Deng. “Multi-sensor optimal information fusion Kalman 

filter” Automatica, Volume 40, Issue 6, June 2004, Pages 1017–1023 



65 
 

 
[11]. Wang, J.; Wilson, W.J. “3D relative position and orientation estimation using 

Kalman filter for robot control”, Robotics and Automation, 1992. Proceedings., 
1992 IEEE International Conference on 2638 - 2645 vol.3  

 
[12]. Hakan Ardo; Kalle Agstrom. “Bayesian formulation of image patch matching 

using cross-correlation”. In Third ACM/IEEE International Conference on 
Distributed Smart Cameras, 2009. 

 
[13]. OpenCV: http://opencv.willowgarage.com/wiki/.63 
 
[14]. Liyuan Li; Weimin Huang; Irene Y. H. Gu; and Qi Tian. “Foreground object 

detection from videos containing complex background”. In Proceedings of the 
eleventh ACM inter-national conference on Multimedia, MULTIMEDIA ’03, pages 
2–10, New York, NY, USA 

 
[15]. P. KadewTraKuPong; R. Bowden. “An improved adaptive background mixture 

model for real-time tracking with shadow detection”. In Proceedings of the 2nd 
European Workshp on Advanced Video-Based Surveillance Systems 
(AVBS ’01)),NewYork, NY, USA, September 2001. 

 
[16]. James Black; Dr. Tim Ellis. “Multi camera image tracking”, Image and Vision 

Computing, Volume 24, Issue 11, 1 November 2006, Pages 1256–1267 
 
[17]. Chunhua Shen; Anton van den Hengel; and Anthony Dick. “Probabilistic 

multiple cue integration for particle filter based tracking”, Proc. VIIth Digital 
Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and 
Adriaansen T. (Eds.), 10-12 Dec. 2003 

 
[18]. Shaohua Kevin Zhou; R. Chellappa; B. Moghaddam. “Visual tracking and 

recognition using appearance-adaptive models in particle filters”, Image 
Processing, IEEE volume 13, issue 11, pages 1491-1506 

 


	cover
	WLF_thesis_v3
	ABSTRACT
	SOMMARIO
	Chapter 1  Introduction
	1.1  Overview
	1.2  Objective of the thesis
	1.3  Results achieved
	1.4  Organization of documents

	Chapter 2  Model of human walking
	2.1  5-states model
	2.2  Velocity-curvature dependence
	2.3  6-states model with velocity threshold

	Chapter 3  Visual tracking system
	3.1  Visual tracking system based on surveillance cameras
	3.2  Particle filter

	Chapter 4  Speed estimation based on extended Kalman filter
	4.1  Extended Kalman filter introduction
	4.2  Fusion of particle filter and extended Kalman filter
	4.3  Tuning of extended Kalman filter

	Chapter 5  Validations
	5.1  Set up of the experimental scenario
	5.2  Results and analysis

	Chapter 6  Conclusion and future work
	Appendix I  MATLAB® script of the algorithm
	Bibliography


