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Abstract	
 
Model based Predictive Control (MPC) is a form of control that has gained 
widespread acceptance in chemical industry due to its unique advantages 
compared to classic control methods. The main distinguishing features are the 
ability to efficiently control large scale interconnected systems and the inherent 
ability to cope with physical and other constraints of the controlled system. MPC 
controllers are designed on the basis of a dynamical model of the system that has 
to be controlled (i.e., the plant) and apply mathematical optimization techniques in 
order to obtain the optimal inputs to be applied to the plant. MPC acquires the 
current control action by solving, at each sampling instant, a finite horizon open-
loop optimal control problem, using the current state of the plant as the initial state; 
the optimization yields an optimal control sequence and the first control in this 
sequence is applied to the plant. In this thesis the focus is on linear MPC 
algorithms, i.e., MPC algorithms that can take the regulation problem. More 
specifically, the main aim of this thesis is the development of MPC algorithms in 
the environment of MATLAB and Simulink that can take input and output 
constraints into account and can guarantee stable behavior and acceptable 
performance. These aims are achieved by making improved algorithms for the 
construction of required matrixes and contributions to the constraints. On the level 
of stability, celebrated terminal state is enabled the pledge.  We concentrate our 
attention on a plant with two reactors and a separator as a sample of chemical 
plant in order to enrich the experimental results. Several simulations on the model 
of this process show the improved properties of the obtained program.  
 
 
Keywords: 
Model predictive control; chemical plant; CSTR; optimal control; constraint; 
stability 
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Sommario	
 
Il controllo predittivo, o MPC (Model Predictive Control) è una tecnica di sintesi di 
sistemi di controllo che ha riscosso un notevole successo nell’industria chimica per 
I vantaggi che può offrire rispetto a metodi classici, quali l’assegnamento degli 
autovalori o il controllo LQR. Le sue principali caratteristiche sono la possibilità di 
considerare sistemi con grandi dimensioni, tipicamente costituiti da sottosistemi 
interconnessi, a la capacità di tenere conto in modo esplicito di eventuali vincoli 
sulle variabili di processo o su altre variabili di interesse. I controllori MPC sono di 
tipo “model-based”, cioè sono progettati a partire da un modello del processo sotto 
controllo, e si basano sulla formulazione di un opportuno problema di 
ottimizzazione da risolversi a ogni istante di campionamento per determinare il 
valore da imporre alle variabili di controllo. Più nello specifico, viene risolto un 
problema di controllo su orizzonte finito dove lo stato corrente è considerato come 
stato iniziale. La soluzione del problema di ottimo consiste nel determinare la 
sequenza di controlli ottimi da imporre, almeno teoricamente, lungo tutto 
l’intervallo considerato. Tuttavia, si implementa effettivamente soltanto il primo 
valore di questa sequenza  e l’intera procedura è ripetuta al successivo istante di 
campionamento. In questo lavoro di Tesi si sviluppano in ambiente 
Matlab/Simulink due algoritmi MPC per sistemi lineari e se ne analizzano in 
dettaglio le caratteristiche e prestazioni. Entrambi gli algoritmi consentono di 
considerare vincoli sullo stato, sulle variabili di controllo e sulle uscite regolate, 
così da garantire stabilità e prestazioni. Per quanto riguarda la stabilità, è possibile 
introdurre nel problema di ottimizzazione un opportuno peso sullo stato finale 
raggiunto dal sistema al termine dell’orizzonte di predizione, vincolandolo anche 
ad appartenere a un dato insieme. Le caratteristiche di questi metodi MPC sono 
confrontate con riferimento a un processo, costituito da due reattori e da un 
separatore, in grado di rappresentare bene le problematiche tipiche di un impianto 
industriale. Nel lavoro sono riportate e commentate numerose simulazioni che 
consentono di mostrare le prestazioni ottenibili con questo approccio alla sintesi 
del controllore. 
 
 
Keywords: 
Model predictive control; chemical plant; CSTR; optimal control; constraint; 
stability   
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Notation	
 

a, b, c ∈ 	      Lower case roman symbols denote scalar or vector variables 

A, B, C ∈ 	     Upper case roman symbols denote matrix variables 

, ∈  Upper case Unicode extended characters denote augmented 

matrices 

, 	 	   Set of real numbers and positive real numbers 

≔   Assignment 

a ≔ b ⇔ the value of b is assigned to variable a 

,     (Strict) scalar inequality 

a > b ⇔ a − b has strictly positive elements 

,     (Strict) matrix inequality 

A > 0 ⇔ A is strictly positive definite 

∈   m-dimensional input vector at discrete time k 

∈   n-dimensional state vector at discrete time k 

∈   p-dimensional output vector at discrete time k 

∈   d-dimensional disturbance vector at discrete time k 

, ̅ ,    Steady state values for inputs, states and outputs 

   Reference values for outputs or setpoint 

   Prediction horizon length 

   Control horizon length 

,     Transpose of matrix A 

‖ ‖    Weighted 2-norm of a vector: ′  

   Function minimization over x, 

optimal function value is returned 
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  Motto: 

 

“There is nothing more 
practical than a good theory.” 

-Boltzmann 
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1	Introduction	

In this age of globalization, the realization of production innovation and highly 

stable operation is the chief objective of the process industry. Obviously, modern 

advanced control plays an important role to achieve this target, but the key to 

success is the maximum utilization of PID control and conventional advanced 

control. It is obvious that the three central pillars of process control – PID control, 

conventional advanced control, and linear/nonlinear model predictive control – 

have been widely used and they have to be contributed toward increasing 

productivity.  

Model predictive control (MPC) or receding horizon control (RHC) is a form of 

control in which the current control action is obtained by solving on-line, at each 

sampling instant, a finite horizon open-loop optimal control problem, using the 

current state of the plant as the initial state; the optimization yields an optimal 

control sequence and the first control in this sequence is applied to the plant. This 

is its main difference from conventional control which uses a pre-computed control 

law. 

Model predictive control is one of few suitable methods, and this fact makes it an 

important tool for the control engineer, particularly in the process industries where 

plants being controlled are sufficiently slow to permit its implementation. Other 

examples where model predictive control may be advantageously employed 
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include unconstrained nonlinear plants, for which on-line computation of a control 

law usually requires the plant dynamics to possess a special structure, and time-

varying plants. 

1.1	Motivation	

This thesis aims to reveal the principal of model predictive control, its formulation, 

historical issues and some practical tricks. Finally, by implementing this theory in a 

typical chemical process, as a plant consisting of two reactors and a separator in 

the Simulink environment, try to represent the advantages of this state of the art 

method.  To motivate the idea of using MPC control, here are some fact according 

to the international surveys and researches. 

The first fact is coming from the article “A survey of industrial model predictive 

control technology” by Quin and Badgwell (2003). According to their research, in 

Tables 1 and 2, where more than 4600 total MPC applications are reported, MPC 

technology can now be found in a wide variety of application areas. The largest 

single block of applications is in refining, which amounts to 67% of all classified 

applications. This is also one of the original application areas where MPC 

technology has a solid track record of success. A significant number of 

applications can also be found in petrochemicals and chemicals, although it has 

taken longer for MPC technology to break into these areas. 



 

Sign

aero

Table 

Tab

refin

and 

the 

othe

(pre

distr

nificant grow

ospace and

1: Summary of 

le 1 shows

ning and pe

Invensys a

food proce

ers. The ap

edictive func

ribution. W

wth areas 

d automotive

linear MPC app

s that Aspe

etrochemica

apparently 

essing, mini

pplications r

ctional cont

While only a

include the

e industries

plications by are

enTech an

als, with a 

had a bro

ing/metallu

reported by

trol) applica

a total num

e chemicals

s. 

as 

d Honeywe

handful of 

ader range

rgy, aerosp

y Adersa in

ations, so it

mber was 

s, pulp and

ell Hi-Spec

application

e of experie

pace and a

nclude a nu

t is difficult 

reported b

 paper, foo

c were high

ns in other 

ence with a

automotive 

umber of em

to report th

by SGS, th

od process

hly focused

areas. Ade

applications

areas, amo

mbedded P

heir numbe

his includes

14 

ing, 

 

d in 

ersa 

s in 

ong 

PFC 

r or 

s a 



15 
 

number of in-house SMOC (Shell multivariable optimizing controller) applications 

by Shell, so the distribution is likely to be shifted towards refining and 

petrochemical applications. 

The bottom of Table 1 lists the largest linear MPC applications to date by each 

vendor, in the form of (outputs)_(inputs). The numbers show a difference in 

philosophy that is a matter of some controversy. 

AspenTech prefers to solve a large control problem with a single controller 

application whenever possible; they report an olefins application with 603 outputs 

and 283 inputs. Other vendors prefer to break the problem up into meaningful sub-

processes. 

The nonlinear MPC (NMPC) applications reported in Table 2 are spread more 

evenly among a number of applications areas. Areas with the largest number of 

reported NMPC applications include chemicals, polymers, and air and gas 

processing. It has been observed that the size and scope of NMPC applications 

are typically much smaller than that of linear MPC applications. This is likely due to 

the computational complexity of NMPC algorithms. 
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maintained under disturbances. In addition, MPC makes it possible to maximize 

production rate by making the most use of the capability of the process and to 

minimize cost through energy conservation by moving the operating condition 

toward the control limit. Both the energy conservation and the productive capacity 

were improved by an average of 3 to 5% as the result of APC projects centered on 

MPC at Mitsubishi Chemical Corporation (MCC). 

At the end of that paper, the MPC application for energy conservation and 

production maximization of the olefin unit at MCCMizushima plant is briefly 

explained which is the largest MPC application in the world, consisting of 283 

manipulated variables and 603 controlled variables. The subsequent two 

commentaries are appreciated to declaim. 

A skilled operator made the following comment on this MPC application: “We had 

operated the Ethylene fractionator in constant pressure mode for more than 20 

years. I was speechless with surprise that we had made an enormous loss for 

many years, when I watched the MPC decreased the column pressure, improved 

the distillation efficiency, and maximized the production rate.” Another process 

control engineer said “I had misunderstood that setpoints were determined by 

operation section and process control section took the responsibility only for 

control. I realized MPC for the first time; it makes the most use of the capability of 
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equipments, determines setpoints for economical operation, and maintains both 

controlled variables and manipulated variables close to the setpoints.” 
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2	Dynamic	model	of	chemical	process	

2.1	Introduction	to	process	control	

In recent years the performance requirements for process plants have become 

increasingly difficult to satisfy. Stronger competition, tougher environmental and 

safety regulations, and rapidly changing economic conditions have been key 

factors in tightening product quality specifications. A further complication is that 

modern plants have become more difficult to operate because of the trend toward 

complex and highly integrated processes. For such plants, it is difficult to prevent 

disturbances from propagating from one unit to other interconnected units. 

In view of the increased emphasis placed on safe, efficient plant operation, it is 

only natural that the subject of process control has become increasingly important 

in recent years. Without computer-based process control systems it would be 

impossible to operate modern plants safely and profitably while satisfying product 

quality and environmental requirements. Thus, it is important for Automation 

engineers to have an overview about the process control. 

2.2	Process	dynamic	

The term process dynamics refers to unsteady-state (or transient) process 

behavior. By contrast, most of the engineering may emphasize steady-state and 

equilibrium conditions in subjects as material and energy balances, 

thermodynamics, and transport phenomena. But process dynamics are also very 
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important. Transient operation occurs during important situations such as start-ups 

and shutdowns, unusual process disturbances, and planned transitions from one 

product grade to another.  

2.3	Process	control 	

The primary objective of process control is to maintain a process at the desired 

operating conditions, safely and efficiently, while satisfying environmental and 

product quality requirements. The subject of process control is concerned with 

how to achieve these goals. In large-scale, integrated processing plants such as 

oil refineries or ethylene plants, thousands of process variables such as 

compositions, temperatures, and pressures are measured and must be controlled. 

Fortunately, large numbers of process variables (mainly flow rates) can usually be 

manipulated for this purpose. Feedback control systems compare measurements 

with their desired values and then adjust the manipulated variables accordingly. 

The foundation of process control is process understanding. Thus, we continue 

with a basic question-What is a process? For our purposes, a brief definition is 

appropriate: 

Process: The conversion of feed materials to products using chemical and 

physical operations. In practice, the term process tends to be used for both the 

processing operation and the processing equipment. 
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Note that this definition applies to three types of common processes: continuous, 

batch, and semibatch. 

Following, we consider representative of continuous processes which is a main 

subject of this thesis. Here briefly summarize key control issues. 

The process control problem has been characterized by identifying three important 

types of process variables. 

• Controlled variables (CVs): The process variables that are controlled. The 

desired value of a controlled variable is referred to as its set point. 

• Manipulated variables (MVs): The process-Variables that can be adjusted in 

order to keep the controlled variables at or near their set points. Typically, the 

manipulated variables are flow rates. 

• Disturbance variables (DVs): Process variables that affect the controlled 

variables but cannot be manipulated. Disturbances generally are related to 

changes in the operating environment of the process, for example, its feed 

conditions or ambient temperature. Some disturbance variables can be measured 

on-line, but many cannot. 
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The specification of CVs, MVs, and DVs is a critical step in developing a control 

system. The selections should be based on process knowledge, experience, and 

control objectives. 

  	



24 
 

2.4	The	hierarchy	of	process	control	activities		

As mentioned earlier, the chief objective of process control is to maintain a 

process at the desired operating conditions, safely and efficiently, while satisfying 

environmental and product quality requirements. 

If we emphasized one process control activity and try to keeping controlled 

variables at specified set points, there are other important activities, also that we 

will now briefly describe. 

In Fig.3 the process control activities are organized in the form of a hierarchy with 

required functions at the lower levels and desirable, but optional, functions at the 

higher levels. The time scale for each activity is shown on the left side of Fig.3. 

Note that the frequency of execution is much lower for the higher-level functions. 

2.4.1	Measurement	and	actuation	(Level	1)	

Measurement devices (sensors and transmitters) and actuation equipment (for 

example, control valves) are used to measure process variables and implement 

the calculated control actions. These devices are interfaced to the control system. 

Clearly, the measurement and actuation functions are an indispensable part of any 

control system. 
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2.4.2	Safety	and	environmental/equipment	protection	(Level	2)	

The Level 2 functions play a critical role by ensuring that the process is operating 

safely and satisfies environmental regulations. Generally, process safety relies on 

the principle of multiple protection layers that involve groupings of equipment and 

human actions. One layer includes process control functions, such as alarm 

management during abnormal situations, and safety instrumented systems for 

emergency shutdowns. The safety equipment operates independently of the 

regular instrumentation used for regulatory control in Level 3a.  

2.4.3	Regulatory	control	(Level	3a)	

As mentioned earlier, successful operation of a process requires that key process 

variables such as flow rates, temperatures, pressures, and compositions be 

operated at, or close to, their set points. This Level 3a activity, regulatory control, 

is achieved by applying standard feedback and feedforward control techniques. If 

the standard control techniques are not satisfactory, a variety of advanced control 

techniques are available. 

2.4.4	Multivariable	and	constraint	control	(Level	3b)	

Many difficult process control problems have two distinguishing characteristics:    

(i) significant interactions occur among key process variables, and (ii) inequality 

constraints exist for manipulated and controlled variables. The inequality 
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constraints include upper and lower limits. Limits on controlled variables reflect 

equipment constraints and the operating objectives for the process.  

The ability to operate a process close to a limiting constraint is an important 

objective for advanced process control. For many industrial processes, the 

optimum operating condition occurs at a constraint limit. For these situations, the 

set point should not be the constraint value because a process disturbance could 

force the controlled variable beyond the limit. Thus, the set point should be set 

conservatively, based on the ability of the control system to reduce the effects of 

disturbances. 

The standard process control techniques of Level 3a may not be adequate for 

difficult control problems that have serious process interactions and inequality 

constraints. For these situations, the advanced control techniques of Level 3b, 

multivariable control and constraint control, should be considered. In particular, the 

model predictive control (MPC) strategy was developed to deal with both process 

interactions and inequality constraints. MPC is the main subject of this thesis 

report. 

2.4.5	Real‐time	optimization	(Level	4)	

The optimum operating conditions for a plant are determined as part of the 

process design. But during plant operations, the optimum conditions can change 

frequently owing to changes in equipment availability, process disturbances, and 
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economic conditions. Consequently, it can be very profitable to recalculate the 

optimum operating conditions on a regular basis. The new optimum conditions are 

then implemented as set points for controlled variables. 

The Level 4 activities also include data analysis to ensure that the process model 

used in the RTO calculations is accurate for the current conditions. 

2.4.6	Planning	and	scheduling	(Level	5)	

The highest level of the process control hierarchy is concerned with planning and 

scheduling operations for the entire plant. For continuous processes, the 

production rates of all products and intermediates must be planned and 

coordinated based on equipment constraints, storage capacity, sales projections, 

and the operation of other plants, sometimes on a global basis. Thus, planning 

and scheduling activities pose difficult optimization problems that are based on 

both engineering considerations and business projections. 
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`  

Figure 3: Hierarchy of process control activities 
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2.5	Continuous	stirred	tank	reactor	models	

Continuous stirred-tank reactors have widespread application in industry and 

embody many features of other types of reactors. Chemical reactors are the most 

influential and therefore important units that a chemical engineer will encounter. To 

ensure the successful operation of a continuous stirred tank reactor (CSTR), it is 

necessary to understand their dynamic characteristics. A good understanding will 

ultimately enable effective control systems design. Consequently, a CSTR model 

provides a convenient way of illustrating modeling principles for chemical reactors. 

To describe the dynamic behavior of a CSTR, mass, component and energy 

balance equations must be developed. This requires an understanding of the 

functional expressions that describe chemical reaction. A reaction will create new 

components while simultaneously reducing reactant concentrations. The reaction 

may give off heat or my require energy to proceed. Hereafter the goal is a short 

introduction of equations and modeling, while entire specification and 

circumstances are available in any chemical dynamic references. 

2.5.1	The	mass	balance	

Rate of mass flow in – Rate of mass flow out = Rate of change of mass within 

system 
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components can appear / disappear because of reaction (remember that the 

overall mass of reactants and products will always stay the same). If there are N 

components N – 1 component balances and an overall mass balance expression 

are required. Alternatively a component balance may be written for each species. 

A component balance for the jth chemical species is, 

Rate of flow of jth component in – rate of flow of jth component out + rate of 

formation of jth component from chemical reactions = rate of change of jth 

component 

2.5.3	Adding	a	chemical	reaction	to	the	stirred	tank	model	

Assume that the reaction may be described as, A → B, i.e. component A reacts 

irreversibly to form component B. Further, assume that the reaction rate is 1st 

order. Therefore the rate of reaction with respect to CA is modeled as, 

 

The negative sign implies that CA disappears because of reaction. The component 

balance differential equation is  
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Where k0 is a pre-exponential (or Arrhenius) factor, E is the activation energy, T is 

the reaction temperature and R is the gas law constant. 

There are other considerations to complete the model of CSTR like, rate of heat 

transfer through a cooling coil / jacket and dynamics of the reactor wall which have 

been neglected for this short overview.  

In summary, the dynamic model of the CSTR is nonlinear as a result of the many 

product terms and the exponential temperature dependence of k in above 

equation. Consequently, it must be solved by numerical integration techniques. 

Additional species or chemical reactions may involve. If the reaction mechanism 

involved production of an intermediate species, A → B → C, then unsteady-state 

component balances for both A and B would be necessary, or balances for both A 

and B could be written. Information concerning the reaction mechanisms would 

also be required. 

Reactions involving multiple species are described by high-order, highly coupled, 

nonlinear reaction models because several component balances must be written. 

Although the modeling task becomes much more complex, the same principles 

illustrated above can be extended and applied. 
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2.6	Case	object	

Real industrial chemical processes typically contain several reaction steps and 

multiple recycle streams. Most process synthesis, controllability, and flexibility 

studies in the literature have considered much simpler systems. In this report we 

present a simplified version of a real complex industrial process. This example 

illustrates many important characteristics of such systems like a complex flow 

sheet, significant interactions among units with recycle streams, and numerous 

byproduct / intermediate components. We think that this process would be utilized 

by researchers in the areas of process synthesis and process control as a test 

case for studying various techniques and approaches to problems in design and 

control. 

Refer to a rich plant modeling, taken from the article “Cooperative distributed 

model predictive control” by Stewart, Venkat, Rawlings, Wright and Pannocchia 

(2010); we consider in this thesis report, a plant consisting of two reactors and a 

separator. A stream of pure reactant A is added to each reactor and converted to 

the product B by a first-order reaction as illustrated in Figure 6. The product is lost 

by a parallel first-order reaction to side product C. The distillate of the separator is 

split and partially redirected to the first reactor. 
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0.01       	

̅
     	

̅
 

̅ 	 	 	      1  

Table 3: Steady state and parameters 

Parameter  Value  Units  Parameter  Value  Units 

  29.8	 m 3 m2	

  0.542	 wt % 3 m2	
  0.393	 wt % 1 m2	
  315	 K 0.15 kg/m3

  30	 m 25 kJ/kg	K
  0.503	 wt % 2.5 kg/m	s
  0.421	 wt % 2.5 kg/m	s
  315	 K 2.5 kg/m	s
  3.27	 m 1 wt %
  0.238	 wt % 313 K	
  0.570	 wt % 0.02 1/s	
  315	 K 0.018 1/s	
  8.33	 kg/s / ‐100 K	
  10	 kJ/s / ‐150 K	
  0.5	 kg/s ‐40 kJ/kg
  10	 kJ/s ‐50 kJ/kg
  66.2	 kg/s 3.5 	
  10	 kJ/s 1.1 	
  318.56	 K 0.5 	

 

Chemical processes have been traditionally operated using linear controllers, 

although it is well recognized that a characteristic of chemical processes 

presenting a challenging control problem is the inherent nonlinearity of the 

process. Linear controllers can yield satisfactory performance, if the process is 

operated “close” to a nominal steady state or is fairly “linear”. Many times the 

process dynamic characteristics will change dramatically due to a large 
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disturbance or due to significant setpoint changes from an on-line optimization 

routine. 

Consequently, chemical manufacturing processes present many challenging 

control problems, including nonlinear dynamic behavior. Other common process 

characteristics that cause control difficulty for linear and nonlinear systems alike 

are: 

 multivariable interactions between manipulated and controlled variables 

 unmeasured state variables 

 unmeasured and frequent disturbances 

 high-order and distributed processes 

 uncertain and time-varying parameters 

 constraints on manipulated and state variables 

 deadtime on inputs and measurements 
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3	Model	Predictive	Control		

The only advanced control methodology which has made a significant impact on 

industrial control engineering is predictive control. It has so far been applied mainly 

in the petrochemical industry, but is currently being increasingly applied in other 

sectors of the process industry. The main reasons for its success in these 

applications are: 

1. It handles multivariable control problems naturally. 

2. It can take account of actuator limitations. 

3. It allows operation closer to constraints (compared with conventional control), 

which frequently leads to more profitable operation. Remarkably short pay-back 

periods have been reported. 

4. Control update rates are relatively low in these applications, so that there is 

plenty of time for the necessary on-line computations. 

In addition to the “constraint-aware optimizing” variety of predictive control, there is 

an 'easy-to-tune, intuitive' variety, which puts less emphasis on constraints and 

optimization, but more emphasis on simplicity and speed of computation, and is 

particularly suitable for single-input, single-output (SISO) problems. This variety 

has been applied in high-bandwidth applications such as servomechanisms, as 

well as to relatively slow processes. 
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Model predictive control is an appropriately descriptive name for a class of model 

based control schemes that utilize a process model for two central tasks (i) explicit 

prediction of future process behavior, and (ii) computation of appropriate corrective 

control action required to drive the predicted output as close as possible to the 

desired target values. The overall objectives of an MPC may be summarized as: 

• Prevent violations of input and output constraints. 

• Drive some output variables to their optimal setpoints, while maintaining 

other outputs within specified ranges. 

• Prevent excessive movement of the input variables. 

• Control as many process variables as possible when a sensor or actuator is 

not available. 

The ideas appearing to a greater or lesser degree, in all predictive controls are 

basically: 

• dependence of the control law on predicted behavior, 

• explicit use of models to predict the process output at future time instants, 

• calculation of control sequence minimizing an objective function, and 

• receding horizon strategy, i.e., updating of input and shifting of the horizon 

towards the future at each time instant. 

 



41 
 

Predictive control is intuitive and used in our daily activities like walking, driving, 

studying and so on. Think about the course of studying in a school. Basically one 

has to do a set of things: 

• Predict: When one sets a target for a “desired” grade, one has to plan and work 

towards the target. It may be too early to consider the final target at beginning of a 

term. Instead, one should think a few days or a few weeks ahead and predict what 

performance may be achieved over this shorter time window. The target within the 

shorter time period can be, for example, certain “desired” grades in the 

assignment, quiz, etc. 

• Plan: Compare the predicted performance with the shorter time target. If a 

difference is to be expected, for example, lower than the target, then additional 

efforts should be considered, subject to constraints of course, such as there are 

only 24 hours a day. 

• Act: If it is expected that the additional efforts likely make one meet the target, 

then the additional efforts will be put into action. Although a set of the additional 

efforts, for today, tomorrow, and so on, has been planned days or weeks ahead, 

only the effort planned for today can actually be materialized today. In the next 

day, the procedure of prediction and planning is repeated, and a new set of efforts 

is determined. Thus the next day’s action will be taken according to the new 

planning. This process proceeds continuously until the end of the term. 
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Other well-known daily-life analogies in MPC literature include crossing a road and 

playing chess. In chess, a good player predicts the game a few steps ahead based 

on the moves of the opponent, and plans a few future moves. However, only one 

move can actually be applied each time. Based on the following-up move of the 

opponent, a new set of predictions has to be made and a new set of future moves 

is determined as a result. This procedure is repeated throughout the game. 
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3.1	Historical	issues	on	MPC	in	process	control	

When MPC was first advocated by Richalet, Rault, Testud and Papon (1976) for 

process control, several proposals for MPC had already been made, such as Lee 

and Markus (1967), and, even earlier, a proposal, by Propoi (1963), of a form of 

MPC, using linear programming, for linear systems with hard constraints on 

control. However, the early proponents of MPC for process control proceeded 

independently, addressing the needs and concerns of industry. Existing 

techniques for control design, such as linear quadratic control, were not widely 

used, perhaps because they were regarded as addressing inadequately the 

problems raised by constraints, nonlinearities and uncertainty. The applications 

envisaged were mainly in the petro-chemical and process industries, where 

economic considerations required operating points (determined by solving linear 

programs) situated on the boundary of the set of operating points satisfying all 

constraints. The dynamic controller therefore has to cope adequately with 

constraints that would otherwise be transgressed even with small disturbances. 

The plants were modeled in the early literature by step or impulse responses. 

These were easily understood by users and facilitated casting the optimal control 

and identification problems in a form suitable for existing software. 

Thus, IDCOM (identification and command), the form of MPC proposed in Richalet 

et al. (1976,1978), employs a finite horizon pulse response (linear) model, a 

quadratic cost function, and input and output constraints. The model permits linear 
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estimation, using least squares. The algorithm for solving the open-loop optimal 

control problem is a “dual” of the estimation algorithm. As in dynamic matrix 

control (DMC; Cutler & Ramaker, 1980; Prett & Gillette, 1980), which employs a 

step response model but is, in other respects, similar, the treatment of control and 

output constraints is ad hoc. This limitation was overcome in the second-

generation program, quadratic dynamic matrix control (QDMC; Garcia & Morshedi, 

1986) where quadratic programming is employed to solve exactly the constrained 

open-loop optimal control problem that results when the system is linear, the cost 

quadratic, and the control and state constraints are defined by linear inequalities. 

QDMC also permits, if required, temporary violation of some output constraints, 

effectively enlarging the set of states that can be satisfactorily controlled. The third 

generation of MPC technology, introduced about a decade ago, distinguishes 

between several levels of constraints (hard, soft, ranked), provides some 

mechanism to recover from an infeasible solution, addresses the issues resulting 

from a control structure that changes in real time, and allows for a wider range of 

process dynamics and controller specifications (Qin & Badgwell, 1997). In 

particular, the Shell multivariable optimizing control (SMOC) algorithm allows for 

state-space models, general disturbance models and state estimation via Kalman 

filtering (Marquis & Broustail, 1988). The history of the three generations of MPC 

technology, and the subsequent evolution of commercial MPC, is well described in 

the last reference. The substantial impact that this technology has had on industry 
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is confirmed by the number of applications (probably exceeding 2000) that make it 

a multi-million dollar industry. 

The industrial proponents of MPC did not address stability theoretically, but were 

obviously aware of its importance; their versions of MPC are not automatically 

stabilizing. However, by restricting attention to stable plants, and choosing a 

horizon large compared with the “settling” time of the plant, stability properties 

associated with an infinite horizon are achieved. Academic research, stimulated by 

the unparalleled success of MPC, commenced a theoretical investigation of 

stability. Because Lyapunov techniques were not employed initially, stability had to 

be addressed within the restrictive framework of linear analysis, confining attention 

to model predictive control of linear unconstrained systems. The original finite 

horizon formulation of the optimal control problem (without any modification to 

ensure stability) was employed. Researchers therefore studied the effect of control 

and cost horizons and cost parameters on stability when the system is linear, the 

cost is quadratic, and hard constraints are absent. A typical result establishes the 

existence of finite control and cost horizons such that the resultant model 

predictive controller is stabilizing. 
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3.2	Open	loop	optimal	control	problem	

The system to be controlled is usually described, or approximated, by an ordinary 

differential equation, but since the control is normally piecewise constant, is 

usually modeled, in the MPC literature, by a difference equation. 

Consider the system 	

1 , ,  

where ∈ and ∈  are the state and input vector, respectively. We 

assume that the origin is an equilibrium point (f(0, 0) = 0). 

We presumed the system to be specified in discrete time. One reason is that we 

are looking for solutions to engineering problems. In practice, the controller will 

always be implemented through a digital computer by sampling the variables of 

the system and transmitting the control action to the system at discrete time 

points. Another reason is that for the solution of the optimal control problems for 

discrete-time systems, we will be able to make ready use of powerful 

mathematical programming software. However, in many instances the discrete 

time model is an approximation of the continuous time model. 

According to the optimal control theory, the problem is to minimize the 

performance index J (performance objective or cost function).  
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, , ,  

with respect to the future control sequence of input u from the time  to 1. 

, 1 , … , 1  

Generally the solution of the optimal control problem can be founded by solving 

the Hamilton-Jacobi-Bellman equation (HJB) as follow,	

, min , , , 1  

with the boundary condition  , . 

The plant model generally can be linearized around the operation point to yield the 

linearized plant formulation. By considering a linear system 

1  

where  ∈ , ∈  and are calculated as 

̅ , 			,					 ̅ , 	 

such that ̅ ,  denotes the operating points. 
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Before introducing the quadratic cost function, it is restored to express some 

definitions. Expressions like  and , where x, u are vectors, Q and R are 

symmetric matrices and  indicate the transpose of vector x, are called 

quadratic forms, and are often written as ‖ ‖  and ‖ ‖  respectively. They are 

just compact representations of certain quadratic functions in several variables. 

Considering a linear system and a quadratic cost function  

, ,				 0, 0 

,				 0 

where Q and S are state weighting or penalty and R is input weighting.  

The problem is turned into Linear Quadratic Control (LQ), where the HJB 

approach reduced to ,    with     . 

The solution is Finite Horizon (FH) problem and completely defined by the control 

law  

	 1 ′ ′ 1 ′  

where ′ 1 ′ 1 1 ′ 1  

with its boundary condition   . 
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Meant for continuous processes which are operating over a long time period, it 

would be interesting to solve the infinite horizon problem. 

If we consider the Infinite Horizon (IH) cost function 

,				 0, 0 

with the assumption of reachability of pair (A,B) and observablity  of pair (A,C), 

where Q=C’C, then the optimal control law is     With  

 ′          

such that  is the unique positive definite solution of the Riccati equation, which 

equal to  

 ′	 	 ′  .        

In order to consider the disturbances or unmeasurable states, Kalman predictor 

(KP) can be applied, where there are some equivalency of parameters in the 

formulation of LQ and KP. Moreover Linear Quadratic Gaussian (LQG) control can 

be considered where in the stochastic system, the disturbances and the initial 

state satisfy the assumption introduced for the KP, and the state is not 

measurable. 
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3.3	Closed‐loop	_	open‐loop	analysis	

Through considering the system as   1 							 ∈ , ∈   

and modifying the performance index as  

, , ‖ ‖ ‖ ‖ 	 	‖ ‖  

Where   0, 0, 0  and outlining N as the so-called 

prediction horizon, the stated problem is formed to minimizing the above 

performance index J. Here we divide the general problem in three categories, and 

try to formulate the problem with some consideration on the stability: 

1- IH-LQ: 

2- FH optimal control 

3- Receding Horizon (RH) 

3.3.1	IH‐LQ		

According to the previous result by the infinite horizon cost function and with the 

assumption of reachability and observability, the optimal control law is 

 

where K is calculated as  ′  
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such that is obtained by finding the P as the unique positive definite solution of the 

algebraic Riccati equation (ARE). 

′	 	 ′  

Confined by these conditions for noted control law, the closed-loop system is 

asymptotically stable. 

3.3.2	FH	optimal	control	

The optimal solution is given by the state-feedback control law 

,				 0,1, … , 1 

Where K(i) is         	 1 ′ 1    

which is obtained by finding the P(i) as the solution of the difference Riccati 

equation (DRE)  

1 ′	 1 	 1 ′ 1  

with initial condition P(N)=S. 

In order to find the open loop solution of FH optimal control, we recall the 

Lagrange equation 
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,			 0 

And define the related matrices  , , ,  . 

1
2

⋮
1

  ⋮   
1

⋮
2
1

  

					 		0 					0
				 	 					0

…				 … 					…

			… 				0 				0
			… 				0 				0
			… 			… 			…

			

… 					0
… 				

 

where 0 is zero matrix. 

Thus, the future state variables are given by following formula: 

 

Moreover by defining augmented weighting matrices ,  with the following 

construction,	

0
0 ⋯ 0 0

0 0
⋮ ⋱ ⋮

0 0
0 0

⋯ 0
0

     ,

0
0

⋯ 0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯ 0
0

 



53 
 

and minimizing the modified performance index  ̅with respect to U(k), the open 

loop solution is as follow: 

,				 0,1, … , 1 

where  depends on matrices , , 	 	  and is calculated as follows. 

The new modified performance index is  

̅ , , 	 	 	 	 ′  

where with respect to the original cost function, the terms  has been 

ignored, since it does not depend on U(k). By minimizing this new performance 

index which can be rewrite in the form of quadratic function of U(k), its minimum 

turns out to be   ′  .   

Thus, by letting   ′  ,    is obtainable. 

Note1: in the nominal case, the closed-loop and the open-loop solutions coincide. 

Note2:  if there are constraints on the control and/or state variables, the closed-

loop solution is not available, while the open-loop one can be reformulated as a 

mathematical programming problem and can be easily solved by means of a QP 

(quadratic programming) method with reduced computational time. 
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The RH principle allows one to obtain the state-feedback time-invariant control 

law. 

ĸ  

Intended for constrained systems, this control law is implicitly defined, while in the 

unconstrained case, it coincides with the first element of the open-loop solution 

and the first element of the closed-loop solution obtained by iterating the Riccati 

equation backwards from P(N)=S. 

First element of the open-loop solution is: 	

0 	

First element of the closed-loop solution is:  

0  ,   0 1 ′ 1  

Thus the receding horizon solution formed as 	

0 0  

Noted that, it is not a-priori guaranteed that the RH control law stabilizes the 

closed-loop. In some cases, stability may be achieved only with the large 

prediction horizon. 

From this point upward, the formulation of the MPC can be modified according to 

the applications, nevertheless the principle of receding horizon endure intrinsic in 
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all of these formulations. As a matter of fact that the subject of this report is 

setpoint tracking or in general terms, regulation problem to control some 

parameters within operation region in the chemical processes, the effect of 

introducing reference signals and disturbances with their considerations, are going 

to be discussed here after.  
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3.4	MPC	formulation	without	integral	action	

Consider the system with disturbances 

1
 

where       ∈ , ∈ , ∈ , ∈ 	     and  

 ∈ , ∈ 	, ∈ . 

The new cost function which is penalizing the tracking error with respect to the 

reference signal yo is  

, ,

‖ ‖ ‖ ‖ 	

	‖ ‖  

Again, we define the new matrices , , , , ,  with following 

constructions, 

1
2

⋮
1

   ,

1
2

⋮
1

   , ⋮     
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						 									0 					0
				 						 					0

… … …

… 				0 				0
… 				0 				0
… 			… 			…

			

… 0
…

  ,
1

⋮
1

 

 

						 									 					0
				 						 					

… … …

… 				0 				0
… 				0 				0
… 			… 			…

					
0
0
0

…
… 		

0
 

where 0 and I are zero and identity matrices. 

Note here that matrices , 	, 	 are time independent and they can be 

computed offline.  

Then, the future outputs (output predictions) are formed as  

 

By defining the future output, the problem is equivalent to minimize the modified 

cost function 

̅ , , 	 ° 	 ° 	 	 ′  

In the unconstrained case, the optimal solution is 
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°  

which depends on the future reference signals Yo(k) and on the future 

disturbances D(k). The optimal solution arise the motivation to state that, the 

model predictive control can “anticipate” future reference variations or the effect of 

known disturbances. 

Note1: there is not any integral action which has been forced in the feedback 

control law, therefore with assumption of providing the closed-loop stability, for 

constant reference signal, steady state zero error regulation cannot be achieved. 

Note2: In all above considered cases, the state x(k) has been assumed to be 

measurable. Otherwise an observer can be utilized.  Likewise to estimate the 

disturbance d(k) when it is unmeasurable. 

Note3: When the future disturbance is unknown, it is a common practice to set  

	,					 0 . 

In the case of control regulation with the constant reference signals y0, by 

assuming that there exists a pair ̅ ,   such that 

̅ ̅
̅  

a more significant performance index has been fashioned as follow: 
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, , ‖ ‖ ‖ ‖ 	 	‖ ‖  

This performance index penalizes the control deviation with respect to the desired 

equilibrium point. 

Note 4: this performance index does not penalize the state, subsequently in this 

case proper observability or detectability assumption is advisable. 
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1
 

So the state-space form of the system plus integrators and by neglecting the 

disturbances is obtained: 

1
1 0

	 	 

0  

While the Performance index with tracking error and control variation is 

, ,

‖ ‖ ‖ ‖ 	

	‖ ‖  

In unconstrained case, the RH control law is linear as follow 

 

But in the block diagram view of this system, the integrator disappears due to the 

feedback term on signal v, as illustrated in Figure 8-2. 
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3.6	Extension	to	the	basic	formulation	

The main MPC algorithms are characterized by a number of “tricks” which make 

them very different from a classical LQ algorithm. Some of these tricks are Control 

horizon, Minimum prediction horizon, Reference filtering, Filtering of disturbances 

and High level optimization. Among them, we just take a short view on control 

horizon which will be used in the generation of MPC algorithm of chemical plants. 

If the prediction horizon N is sufficiently large, the number of optimization variables 

(or the future control increments) can make the optimization problem difficult to 

solve. For this reason, and to obtain a slower control action, it is often assumed 

that the control variables remain constant after Nu<N time instants. 

1 ,				 , … , 1 

or 	

0,				 , … , 1 

In this case, the cost function can be written as follow 

, ,

‖ ‖ 	 ‖ ‖

	‖ ‖  

which is going to be used widely, by the advantages of easier optimization 

problem. 
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4	Stability	

Early versions of MPC and generalized predictive control did not automatically 

ensure stability, thus requiring tuning. It is therefore not surprising that research in 

the 1990s devoted considerable attention to this topic. Indeed, concern for stability 

has been a major engine for generating different formulations of MPC. In time, 

differences between model predictive, generalized predictive, and receding 

horizon control became irrelevant; we therefore use MPC as a generic title in the 

consequence for that mode of control in which the current control action is 

determined by solving on-line an optimal control problem. 

4.1	Stability	analysis	

Model predictive control of constrained systems is nonlinear necessitating the use 

of Lyapunov stability theory, that the value function (of a finite horizon optimal 

control problem) could be used as Lyapunov function to establish stability of 

receding horizon control of unconstrained systems when a terminal equality 

constraint is employed. These results extended that the value function as a 

Lyapunov function for establishing stability of model predictive control of time-

varying, constrained, nonlinear, discrete-time systems (when a terminal equality 

constraint is employed); thereafter, the value function was almost universally 

employed as a natural Lyapunov function for stability analysis of model predictive 

control. 
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4.1.1	Definitions	

While asymptotic convergence of the state x(k) in the form of lim → x k → 0  is a 

desirable property, it is generally not sufficient in practice. We would also like a 

system to stay in a small neighborhood of the origin when it is disturbed by a little. 

Formally this is expressed as Lyapunov stability. 

Consider the system  

1 , 0  

Where  is an arbitrary (discontinuous) function and  ̅ is equilibrium point if 

	 ̅ 	 ̅. 

Letting ⊆  an open neighborhood of ̅  , then ̅  is stable, unstable, attractive, 

asymptotically stable and exponentially stable according to the following 

conditions: 

Stable, if, for each 0, there is  such that 

‖ ̅‖ 	 → 	 ‖ ̅‖  for any 0. 

Unstable, if not stable. 

Attractive in  if  
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lim → ‖ ̅‖ 0 for any  ∈ . 

Asymptotically stable in  , if it is stable and attractive in . 

Exponentially stable in  , if there exist   0, ∈ 0,1     such that 

‖ ̅‖ ‖ ̅‖	  for any 0. 

The ε, δ requirement for stability definition takes a challenge-answer form. To 

demonstrate that the origin is stable, for any value of ε  that a challenger may 

chose (however small), we must produce a value of δ such that a trajectory 

starting in a δ neighborhood of the origin will never leave the ε neighborhood of the 

origin. 

Function :	 →   is a K function if it is continuous, strictly increasing with  

0 0. 

Usually to show Lyapunov stability of the origin for a particular system, one 

constructs a so called Lyapunov function, i.e., a function satisfying the conditions 

of the following theorem. 

Let ⊆ be a positively invariant set for the system 

1  
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containing a neighborhood of the equilibrium x 0 . 

Undertake that , ,  be the class K functions and assume that there exist a 

nonnegative scalar function :	 → , 0 0 such that 

‖ ‖ ,						∀ ∈  

‖ ‖ ,						∀ ∈  

∆ ‖ ‖ ,						∀ ∈  

Then the origin is an asymptotically stable equilibrium in . Moreover, if  

‖ ‖ ≔ ‖ ‖  , ‖ ‖ ≔ ‖ ‖ , ‖ ‖ ≔ ‖ ‖  for some , , , 0 and 

, then the origin is exponentially stable in . 

We use the extension of the Lyapunov theory by considering non continuous 

Lyapunov functions (the cost function in constrained MPC control) and refer to 

Figure10. 

4.1.2	RH	and	IH‐LQ	control	

Considering linear system with measurable state  

1 				 

and its performance index  

, ∑ ‖ ‖ ‖ ‖ 	 	‖ ‖  . 
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4.2	Stabilizing	modifications		

There are many methods for modifying the open-loop optimal control problem ( ) 

employed in model predictive control of constrained systems so that closed-loop 

stability could be guaranteed. 

The modifications correspond, mainly for the terminal cost and the terminal 

constraint set.  

4.2.1	Constrained	IH‐LQ	control	

Considering the following IH constrained problem 

min , ‖ ‖ ‖ ‖ 	  

∈ 				,			 0 

∈ 				,			 0 

where U and X are closed sets containing the origin, Q>0, R>0. 

The solution of this problem cannot be computed with the HJB equation or with the 

open-loop solution in view of the infinite number of constraints to be considered. 

However the solution of the stated optimization problem can be found by solving, 

with a sufficiently long prediction horizon N and with the RH strategy. Thus the FH 

optimal control problem is 
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min , ‖ ‖ ‖ ‖ 	 	‖ ‖  

∈ 				,			 0, … , 1 

∈ 				,			 0, … , 1 

It must be assumed that x(k) belongs to the positively invariant admissible set for 

, that is the set of states which can be satisfied by fulfilling the state and control 

constraints. 

|∃ ∈ : ∈ , 0, 	 ∞	  

Define now the positively invariant admissible set  associated to the IH-LQ 

control law   , 

∈ 	→
∈ , 0

∈ , 0
 

 

In order to compute X , first note that  0, 0		 is a level line of the 

Lyapunov function     for the closed-loop system with the IH-LQ control 

law. Therefore, in the unconstrained case, 

|  
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The computation of an upper bound of N can be performed with results available 

in the literature. Assuming that this value has been determined, in view of the 

dynamic programming approach, the solution of  coincides with the solution of 

. In fact, the terminal cost of  is the cost to go of the IH problem. 

The discussion above reveals the presence of several ingredients that have been 

found useful in developing stabilizing model predictive controllers; these 

ingredients are a terminal cost, a terminal constraint set, and a local controller. 

There are more conditions in the relevant literature on these ingredients, which if 

satisfied, ensure that the model predictive controller is stabilizing. 
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4.3	Achievements	on	MPC	stability	

Research on stability of model predictive controlled systems has now reached a 

relatively mature stage. The important factors for stability have been isolated and 

employed to develop a range of model predictive controllers that are stabilizing 

and differ only in their choice of the three ingredients (i) terminal cost, (ii) terminal 

constraint set and (iii) local controller, that are common to most forms of model 

predictive control. These conditions are merely sufficient and several researchers 

are seeking relaxations.  
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5	Simulation	in	MATLAB	and	Simulink	

5.1	Model	of	the	system	

According to the plant which consist of two reactors and a separator and their 

models which are described in Chapter 2, the plant has been divided in three 

subsystems and consequently three MATLAB functions have been constructed by 

utilizing differential equation in mfiles, relatively. These files are available in 

Appendix A. 

5.2	Linearization	

The model of the system has been described regarding the dynamic previously 

introduced, in differential equations. As it hold the nonlinear properties, first it must 

be converted to the linear model (Linearization continues/discrete).  

How to compute the linearized model? There are many ways to linearize a 

nonlinear model and mostly work around the equilibrium point. One of the simplest 

ways in the environment of Simulink is by using the block “Timed-Based 

Linearization” which allows to numerically computing at the given time instant the 

linearized model of an overall nonlinear system. This block calls “linmod” or 

“dlinmod” to create a linear model for the system when the simulation clock 

reaches the time specified by the Linearization time parameter. No trimming is 

performed. The linear model is stored in the base workspace as a structure, along 
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with information about the operating point at which the snapshot was taken. 

Multiple snapshots are appended to form an array of structures. 

In order to use “Timed-Based Linearization” block, the open loop system must be 

built, define the inputs and define the additional input port, which correspond to the 

real input of linearized system. The same way to define the output of linearized 

model with output ports must be applied. Then the system must be executed for 

constant values. There have to be sure that at the time that Simulink wants to 

compute the linearized model, the system must be in steady state. Simulink 

automatically computes the linearized model, by giving small variation to each 

input and looking at the result on each output (numerically linearization technique). 

This approach is critical sometimes and need some precautions since for the 

unstable system, it can be very dangerous. However for stable system, there is a 

prior guarantee that after the linearization time, system remains in steady state 

position, and the result is reliable.  

There are ways to simulate the model, like S-function and etc., but there is a 

simple way to use MATLAB functions in Simulink with a simple trick. This trick is 

schemed in Figure 12. 
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method is surprisingly practical. By these matrices, the linearized model can be 

prepared.  Therefore once we yield the linearized model, by means of off-line 

calculated matrices of the model, they can be exploited for controller design.  
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5.3	Required	matrix	construction	

In order to use MPC formulation in MATLAB and in general framework, we need to 

construct some matrices. With the reference to the Chapter 3, about the 

formulation of MPC, the constructions of these matrices are coming in the 

following. 

As the result of linearization procedure is obtained in the continuous mode, first we 

must convert the system matrices from continuous to discrete-time models with 

specified sampling time in order to obtain (A, B, C) matrices in discrete mode. The 

effect of disturbances can be introduced within construction of matrix M. by making 

this M matrix equal to zero, can simply neglect the disturbances. In next step, by 

using “DLQR” command in MATLAB, which is the Linear-quadratic (LQ) state-

feedback regulator for discrete-time state-space system, the optimal gain matrix K 

can be calculated, such that the state-feedback law minimizes the quadratic cost 

function. In addition to the state-feedback gain K, DLQR returns the infinite horizon 

solution S of the associated discrete-time Riccati Equation and the closed-loop 

eigenvalues.  

Subsequently, by defining the weighting matrices, prediction horizon, control 

horizon and finally constraint on inputs (manipulated variables) and outputs/states, 

relative matrices have been formed. To insure the stability, terminal constraint has 

been formed finally and been enforced to zero. 
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There is also one specific algorithm for reduced size of matrices in the case that 

the control horizon is less than prediction horizon, which can reduce the 

computations. 
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5.4	Optimization	by	Quadprog	

The main advantages of this MPC algorithm is gained by using the “Quadprog” 

command in MATLAB for optimization which is the utmost significant part of each 

MPC algorithm. Quadratic programming is the problem of finding a vector that 

minimizes a quadratic function, possibly subject to linear constraints. These 

constraints can be equality constraints or inequality ones. 

Basically in Quadprog we need to have the method for computing the performance 

index, subject to some constraints. 

As the Quadprog in MATLAB has its own formulation, the required construction 

must be applied, as follow: 

min 	 ′   such that 
.
.  

where the syntax is :        , , , , ,  

5.4.1	Optimization	for	controller	without	Integral	action	

Regarding the case of controller without integral action and referring to the 

introduced formula in Chapter 3, the following performance index is subject to 

some modification as per the project requirements. 
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min ‖ ‖ 	 ‖ ‖ 	

	‖ ‖  

′ 2 ′

1
2

′ 2  

where the first term is not depend on U(k), so can be neglected in minimization, 

thus 

min 	
1
2

′ 	 ° ′	 	  

where ,   2 ′ 	 	      and     2 ′ 	 	 	 . 

Note that in this case the term  is the input deviation from the equilibrium 

point. 

 

5.4.2	Optimization	for	controller	with	Integral	action	

Refer to the pre-defined formula for the MPC with control action, and construction 

of matrices F and H, the performance index is developed. 
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min ‖ ‖ 	 ‖ ‖ 	 	‖ ‖  

min 	
1
2

	 ° 	 

Note that in this case the term  is the input increment. 

1    
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5.5	Constraints	

MPC controller is nothing, but applying the first vector of Quadratic programming 

optimization as a control variable to the plant. By contributing different constraint 

for inputs, outputs and adding terminal constraint to this approach, different results 

may arise due to the theory of MPC control which has been discussed in Chapters 

3 and 4. 

Nearly every application imposes constraints; actuators are naturally limited in the 

force (or equivalent) they can apply, safety limits states such as temperature, 

pressure and velocity and efficiency often dictates steady-state operation close to 

the boundary of the set of permissible states. The prevalence of hard constraints is 

accompanied by a lack of control methods for handling them, despite a continuous 

demand from industry that has had, in their absence, to resort often to ad hoc 

methods 

The formulations for constraint cases are divided in two portions. Inequality 

constraints are related to the saturation or high/low limits in input, or may some 

technological limits or safety issues on output or state. Equality constraint is cause 

of some guarantee for stability which may lead to computing terminal state or 

terminal constraint, all according to the subject of optimization in quadratic 

programming method. The general form of inequality constraint is: 
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In controller without integral action, it turns to 

∆ ° ,  ,  

and with integral action case, it becomes 

° ,  ,  . 

To construct the inequality constraint in general form, we have 

 →
.
.  

 , →
. .
. .  

which can be mixed together for the cases of input and output (state) constraint. 

.

0
0 .  

Designed for equality constraint in general form, the result by forcing terminal 

constraint to zero is as follow 

0	 	 	 	 	 	 	 

0 	 …  

… 	  
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6	Experimental	results	

In this thesis report, two methods for implementing the MPC controller are 

discussed and related formula and considerations have been disposed.  The first 

approach is the controller without integral action and the second one is by 

concerning the integral action. In order to assess the control performance and 

stability issue of the model predictive controller structured in the previous chapters, 

we perform the simulations and try to conclude with an overview of the different 

controllers with enforcing assortments of parameters, compared here. To 

recognize the advantages and disadvantages of each method, the plots of control 

and state variables are depicted in this chapter.  

As the problem arises in the multivariable space, the stream of graphs is settled to 

illustrate the contribution of changed parameter in the entire system, or in some 

case by associating two selected variables. In point of fact, in the methodology of 

centralized controller, there is not any independent loop in the system and all the 

loops are coupled. For this intention the construction of any decoupling and 

modifying the problem to the different SISO cases like decentralized control 

approach is intolerable. Contained by this tactic, better recognition of a plant as a 

unique system has been achieved.  

  	



93 
 

6.1	Results	for	the	MPC	controller	without	integral	action	

To commencement the analysis of the plant, the constrained MPC algorithm 

without any Integral action is presumed. Resembling a general control tuning 

analysis method, we apply the step to a setpoint and illustrate the result in that 

output trajectory and the effect of this parameter changing, in the other system 

parameters as well.  

6.1.1	Simulation	1:	tuning	the	level	of	first	reactor	

The leading term in the first simulation is the Level of reactor1 (H1), where the 

step of 5 units in its setpoint makes the following Figures 19, 20, 21. The weighting 

rates for all inputs are equal to 0.00001, and for outputs is one. The prediction 

horizon and control horizon are both equal to 10. Table 4 indicates the essential 

parameters in this simulation. 

Table 4: Simulation1 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 All	equal to	0.0001
Output	Weighting	rate Q	 	 All	equal	to	1
Input	Min.	Constraint	 Umin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 All	equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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6.1.2	Simulation	2:	input	weighting	effect	

Through increasing the weighting rate of the first input among the others by the 

value of 1.1, and with respect to the parameters in Table 5, the following result has 

been achieved in Figure 23. 

Table 5: Simulation2 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 R Ff1 equal	to	1.1

The	rest equal	to	0.0001
Output	Weighting	rate Q	 	 All	equal	to	1
Input	Min.	Constraint	 Umin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 All	equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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6.1.3	Simulation	3:	output	weighting	effect	

To following the trend, the weighting rate of controlled variable H1 has been 

changed and increased to 10 and the result with respect to Table 6 is available in 

Figure 24. 

Table 6: Simulation3 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 All	equal	to	0.0001
Output	Weighting	rate Q	 	 Q H1 equal	to	10

The	rest	equal	to	1
Input	Min.	Constraint	 Umin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 All	equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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6.1.4	Simulation	4:	prediction	and	control	horizons	

Another parameter which is quite important in the field of predictive controllers is 

prediction horizon and control horizon. By laying N=6 and Nu=1 and respected 

parameter in Table 7, the resulted plot is in Figure 25. 

Table 7: Simulation4 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 6
Control	Horizon	 Nu	 	 1
Input	Weighting	rate R	 	 All	equal	to	0.0001
Output	Weighting	rate Q	 	 All	equal	to	1
Input	Min.	Constraint	 Umin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 All	equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.



 

 

In th

dram

How

6.1.5

To e

MPC

can 

Figure 

his case, du

matically an

wever, less 

5	Simulation

experience 

C controller

be presum

25: Result of ho

ue to the s

nd variables

optimizatio

n	5:	disturba

some distu

r, an initial 

med as an 

orizons with H1

slighter hori

s experienc

on effort req

ance	effect

urbances a

perturbatio

initial distu

setpoint change

zons of pre

ce more os

quires for co

nd evaluate

on has bee

urbance or

e in Ff1, Ff2, H1

ediction, th

scillation, w

omputation

e the respo

en forced to

r the actua

 and H2 (norma

e settling t

which is quit

with reduc

onse of the 

o an input v

ator disturba

alized) 

ime increas

te predictab

ced horizons

 plant with 

variable wh

ance. For 

103 

sed 

ble. 

s.  

the 

hich 

this 



 

dete

100 

refe

Acco

trigg

rejec

of t

cont

ermination, 

and squa

rred to Tab

ording to F

gered by st

ct the distu

he MPC c

trolled varia

drive the m

ared the sy

ble 4. 

F

Figure 26, t

tep disturba

rbance, ho

controller, t

ables. 

manipulated

ystem resp

Figure 26: Resul

the system 

ance in the

wever sinc

the steady

d variable F

ponses in F

lt of disturbance

is started 

e manipulat

e there is n

y state erro

Ff1 with a s

Figure 26.

e in the system

from its ste

ted variable

no integral a

ors have b

step of 4 u

All the pa

eady state 

e, where th

action in th

been obse

units after t

arameters 

condition a

he system c

he construct

rved in so

104 

ime 

are 

 

and 

can 

tion 

ome 



105 
 

6.1.6	Simulation	6:	input	constraint	

Since one of the advantages of MPC algorithm is its ability to conclude the 

limitation on process inputs or outputs/states, here are some experimental results 

by forcing the constraint to the system. 

We start from the first manipulated variable Ff1 and set the constraint terms 

maximum to 15 and minimum to zero. Other parameters are available in Table 8. 

The following is the result in Figure 27. 

Table 8: Simulation6 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 All	equal	to	0.0001
Output	Weighting	rate Q	 	 All	equal	to	1
Input	Min.	Constraint	 Umin 	 Umin Ff1 0

rest equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 Umax Ff1 15

rest equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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6.1.8	Conclusion	on	MPC	controller	without	integral	action	

Within these experiment graphs of the MPC controller without integral action, the 

anticipated results have been achieved. The output tuning with new setpoint 

worked in the proper way and the controller make the system stable after due 

times, however there are some steady state errors according to the non-availability 

of the integral action.   

Regarding the prediction and control horizons, we can declare that input horizon 

can be shorter than prediction (output) horizon, by losing some degree of freedom. 

Hence, loss of performance and decreased computational time in the way of 

smaller Quadratic Program, are resulted, which is a tradeoff for design the 

controller. However in this case, since the constraints are checked up to prediction 

horizon, feasibility is maintained. 

Input disturbances can be rejected perfectly, within operating region.  

Concerning the weight ratio for input and output, it can be concluded that the 

larger ratio of output by input weighting, the more aggressive the controller is. 

Physical constraints can apply to the controller within MPC method and controller 

experience less aggressiveness, when small control deviations have been chosen. 
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6.2	Results	for	MPC	controller	with	integral	action	

Resembling the case of controller without integral action, here we start analysis of 

the plant with the constrained MPC algorithm and Integral action. As a general 

control tuning analysis method, we apply the step to the setpoint and illustrate the 

result in that output trajectory and the influence of this parameter changing, in the 

complete system variables, as well.  

Noted that MPC controller with the integral action aimed the augmented system in 

state space, thus the controller is driven by the state deviation plus output variation 

from the setpoint. Consequently, segregation of outputs through states is 

conceivable. To employ this benefit, the outputs are defined as [H1, T1, H2, T2, 

H3, T3] while the states are remained as [H1, xA1, xB1, T1, H2, xA2, xB2 T2, H3, 

xA3, xB3, T3] 

6.2.1	Simulation	8:	tuning	the	level	of	first	reactor	

The leading term in this simulation is the Level of reactor1 (H1), where the step of 

5 units in the setpoint makes the following Figures 29, 30, 31. All the significant 

parameters are depicted in Table 10.  
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6.2.2	Simulation	9:	input	weighting	effect	

Through increasing the weighting rate of the first input among the others by the 

value of 10 and with respect to the parameters in Table 11, the following result has 

been achieved in Figure 33. 

Table 11: Simulation9 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 R Ff1 equal	to	10

The	rest equal	to	0.0001
Output	Weighting	rate Q	 	 All	equal	to	1
Input	Min.	Constraint	 Umin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 All	equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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6.2.3	Simulation	10:	output	weighting	effect	

To following the trend, the weighting rate of controlled variable H1 has been 

increased and changed to 10 and the result with respect to Table 12 is available is 

in Figure 34. 

Table 12: Simulation10 parameters 

Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 All	equal	to	0.0001
Output	Weighting	rate Q	 	 Q H1 equal	to	10

The	rest	equal	to	1
Input	Min.	Constraint	 Umin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 Umax 	 All	equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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According to Figure 36, the system started from its steady state condition and 

triggered by a step disturbance in the input variable, where the system can reject 

the disturbance and since there is an integral action in the construction of the MPC 

controller, the zero steady state errors have been observed in controlled variables. 

6.2.6	Simulation	13:	input	constraint	

Since one of the advantages of MPC algorithm is its ability to conclude the 

constraint on process inputs or outputs/states, here are some experimental results 

by forcing the constraint to the system. 

We start from the first manipulated variable dFf1 which is the variation of input Ff1, 

according to the formula in the chapter 3.5 for MPC controller with integral action, 

and set the constraint maximum to one deviation unit. The following is the result in 

figure 37. Other parameters are available in Table 13. 

Table 14: Simulation13 parameters 

 Parameter	 value

Sampling	time	 Tc 	 s 	 0.25
Prediction	Horizon	 N	 	 10
Control	Horizon	 Nu	 	 10
Input	Weighting	rate R	 	 All	equal	to	0.0001
Output	Weighting	rate Q	 	 All	equal	to	1
Input	Min.	Constraint	 dUmin 	 All	equal	to	‐inf.
Input	Max.	Constraint	 dUmax 	 dUmax Ff1 1

rest equal	to	inf.
Output	Min.	Constraint	 Ymin 	 All	equal	to	‐inf.
Output	Max.	Constraint	 Ymax 	 All	equal	to	inf.
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6.2.8	Conclusion	on	MPC	controller	with	integral	action	

Within these experiment results of the MPC controller with integral action, the 

anticipated results have been achieved. The output tuning with new setpoint 

worked in the proper way and the controller make the system stable after proper 

times which is settled on the setpoint value due to the availability of integral action.   

Regarding the prediction and control horizons, we can assert that input horizon 

can be shorter than prediction (output) horizon, by losing some degree of freedom. 

Hence, loss of performance and decreased computational time with smaller 

Quadratic Program, are resulted, which is a tradeoff for design the controller. 

However in this case also, since the constrained are checked up to prediction 

horizon, feasibility is maintained. Larger control horizon makes the controller to 

perform better but increases the complexity. Smaller the prediction horizon derives 

the controller to be more aggressive. On the other hand, control variable deviation 

constraint can set the controller less aggressive. 

Input disturbances can be rejected perfectly, within the operating region.  

Concerning the weight ratio for input and output, it can be concluded that the 

larger ratio of the output by input weighting (Q/R), make the controller more 

aggressive. 
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As the ability to operate a process close to a limiting constraint is an important 

objective for advanced process control, for many industrial processes, the 

optimum operating condition occurs at a constraint limit. For these situations, the 

set point should not be the constraint value because a process disturbance could 

force the controlled variable beyond the limit. Thus, the set point should be set 

conservatively, based on the ability of the control system to reduce the effects of 

disturbances.  
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Appendix	A	
 

We here present the MATLAB codes for all part of program to enrich the content 

and been referred within the thesis report. Codes for modeling the subsystems is 

presented only for the first subsystem, while can be duplicated for the second and 

third subsystem. MPC algorithm, referring to the body of the report, has been 

generated through the approaches for controller without integral action and with 

integral action. 

A.1	MATLAB	codes	of	first	subsystem	model		
% states   
% 
H1=u(1); 
xA1=u(2); 
xB1=u(3); 
T1=u(4); 
% 
% inputs 
% 
Ff1=u(5); 
FR=u(6); 
Q1=u(7); 
% 
% inputs from other states 
% 
xA3=u(8); 
xB3=u(9); 
T3=u(10); 
% 
F1=kv1*H1; 
x3s=alfaA*xA3+alfaB*xB3+alfaC*(1-xA3-xB3); 
xAR=(alfaA*xA3)/x3s; 
xBR=(alfaB*xB3)/x3s; 
kA1=kA*exp(-EAR/T1); 
kB1=kB*exp(-EBR/T1); 
%  
dx(1)=(1/(rho*A1))*(Ff1+FR-F1); 
dx(2)=(1/(rho*A1*H1))*(Ff1*xA0+FR*xAR-F1*xA1)-kA1*xA1; 
dx(3)=(1/(rho*A1*H1))*(FR*xBR-F1*xB1)+kA1*xA1-kB1*xB1; 
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dx(4)=(1/(rho*A1*H1))*(Ff1*T0+FR*TR-F1*T1)-
(1/Cp)*(kA1*xA1*DHA+kB1*xB1*DHB)+Q1/(rho*A1*Cp*H1); 
dx(5)=F1; 
 

A.2	MATLAB	codes	 for	preparation	of	MPC	parameters	without	 integral	
action	
Tc=.25; 
[A,B]=c2d(AA,BB,Tc); 
C=CC; 
[n,m]=size(B); 
[p,n]=size(C); 
M=zeros(n,1); 
d=1; 
% 
R=diag([1.10  0.000010  0.000010  0.000010  0.000010  0.000010]); 
QY=diag([10  1  1  1  1  1  1  1  1  1  1  1]); 
Q=C'*QY*C; 
[K,P,E] = DLQR(A,B,Q,R); 
S=P; 
SY=eye(p); 
% 
umin=[-1000000 ; -1000000;  -1000000 ; -1000000 ; -1000000 ; -1000000]; 
umax=[1000000 ; 1000000 ; 1000000 ; 1000000 ; 1000000 ; 1000000]; 
% 
ymin=[-1000000 ; -1000000 ; -1000000 ;-1000000; -1000000 ; -1000000; -
1000000; -1000000; -1000000; -1000000; -1000000; -1000000]; 
ymax=[1000000 ;  1000000;  1000000;   1000000;  1000000 ;  1000000; 
1000000; 1000000; 1000000; 1000000; 1000000; 1000000 ]; 
% 
Np=10; 
Nu=10; 
% 
% construction of matrices for quadprog of output 
% 
H=2*(CBT'*QTY*CBT+RT); 
D=zeros(Np*d,1); 
 

A.3	MATLAB	codes	for	construction	of	matrixes	without	integral	action	
% construct the matrices for predictive control of linear systems 
% A,B : matrix of the system (possibly extended first with integrators) 
% Q, S, QY, SY, R : weight matrices of state, final state, output, final 
output, control 
% Np, Nu : horizons of prediction and control 
% umin,umax, dumin,dumax : limits on the values ??of control and 
variation 
% of control 
[n,n]=size(A); 
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[n,m]=size(B); 
[p,n]=size(C); 
[n,d]=size(M); 
% 
% construction of the matrices AT, BT, QT, RT, MT, CAT,CBT,QTY, CMT 
% 
AT=[]; 
CAT=[]; 
for i=1:Np 
 AT=[AT;A^i]; 
 CAT=[CAT;C*A^i]; 
end 
BT=[]; 
MT=[]; 
CBT=[]; 
CMT=[]; 
for i=1:Np 
    TE=[]; 
    CTE=[]; 
    ME=[]; 
    CME=[]; 
    for j=1:i 
        TE=[A^(j-1)*B TE]; 
        CTE=[C*A^(j-1)*B CTE]; 
        ME=[A^(j-1)*M ME]; 
        CME=[C*A^(j-1)*M CME]; 
    end 
    TE=[TE zeros(n,(Np-i)*m)]; 
    CTE=[CTE zeros(p,(Np-i)*m)]; 
    BT=[BT;TE]; 
    CBT=[CBT;CTE]; 
    ME=[ME zeros(n,(Np-i)*d)]; 
    CME=[CME zeros(p,(Np-i)*d)]; 
    MT=[MT;ME]; 
    CMT=[CMT;CME]; 
end 
  
QT=[]; 
QTY=[]; 
for i=1:Np-1 
    QT=[QT;zeros(n,(i-1)*n) Q zeros(n,(Np-i)*n)]; 
    QTY=[QTY;zeros(p,(i-1)*p) QY zeros(p,(Np-i)*p)]; 
end 
QT=[QT;zeros(n,(Np-1)*n) S]; 
QTY=[QTY;zeros(p,(Np-1)*p) SY]; 
RT=[]; 
for i=1:Np 
    RT=[RT;zeros(m,(i-1)*m) R zeros(m,(Np-i)*m)]; 
end 
% 
% reduction of the matrices BT and RT if Nu<Np 
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% 
if Np>Nu 
    for i=1:Np-Nu 
        BT(:,(Nu-1)*m+1:Nu*m)=BT(:,(Nu-1)*m+1:Nu*m)+BT(:,(Nu-
1+i)*m+1:(Nu+i)*m); 
        CBT(:,(Nu-1)*m+1:Nu*m)=CBT(:,(Nu-1)*m+1:Nu*m)+CBT(:,(Nu-
1+i)*m+1:(Nu+i)*m); 
    end 
    BT=BT(:,1:Nu*m); 
    CBT=CBT(:,1:Nu*m); 
    RT=RT(1:Nu*m,1:Nu*m); 
    for i=1:Np-Nu 
        RT((Nu-1)*m+1:Nu*m,(Nu-1)*m+1:Nu*m)=RT((Nu-1)*m+1:Nu*m,(Nu-
1)*m+1:Nu*m)+R; 
    end 
end 
% 
% construction of control constraint matrix 
% 
Avinc=eye(Nu*m); 
Avinc=[Avinc;-eye(Nu*m)]; 
Avinc=[Avinc;CBT]; 
Avinc=[Avinc;-CBT]; 
% 
Bvinc=[]; 
for i=1:Nu 
    Bvinc=[Bvinc;umax]; 
end 
for i=1:Nu 
    Bvinc=[Bvinc;-umin]; 
end 
for i=1:Np 
    Bvinc=[Bvinc;ymax]; 
end 
for i=1:Np 
    Bvinc=[Bvinc;-ymin]; 
end 
% 
Cvinc=zeros(Nu*m,p); 
Cvinc=[Cvinc;zeros(Nu*m,p)]; 
Cvinc=[Cvinc;CAT]; 
Cvinc=[Cvinc;-CAT]; 
% matrices for Terminal constraint 
% 
Afin=A^Np; 
Bfin=BT(end-n+1:end,:); 
Mfin=MT(end-n+1:end,:); 
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A.4	MATLAB	codes	for	MPC	function	without	integral	action	
x0=u(1:12); 
f=2*(CAT*x0)'*QTY*CBT; 
b=Bvinc+Cvinc*x0; 
AF=Bfin; 
BF=-Afin*x0; 
 USOL=QUADPROG(H,f,Avinc,Bvinc,AF,BF); 
dx=USOL(1:m); 
 

A.5	 MATLAB	 codes	 for	 preparation	 of	 MPC	 parameters	 with	 integral	
action	
Tc=.25; 
[A,B]=c2d(AA,BB,Tc); 
  
CI=[1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 1 0 0 0 0 0 0 0 0;... 
    0 0 0 0 1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 1 0 0 0 0;... 
    0 0 0 0 0 0 0 0 1 0 0 0;0 0 0 0 0 0 0 0 0 0 0 1]; 
%  
A=[A zeros(12,6);CI*A eye(6)]; 
B=[B;CI*B]; 
C=eye(18); 
[n,m]=size(B); 
[p,n]=size(C); 
M=zeros(n,1); 
d=1; 
% 
R=diag([10.10  0.000010  0.000010  0.000010  0.000010  0.000010]); 
QY=diag([10  1  1  1  1  1  1  1  1  1  1  1  10  1  1  1  1  1]); 
Q=QY; 
[K,P,E] = DLQR(A,B,QY,R); 
S=P; 
SY=eye(p); 
% 
umin=[-1000000 ; -1000000;  -1000000 ; -1000000 ; -1000000 ; -1000000]; 
umax=[1000000 ; 1000000 ; 1000000 ; 1000000 ; 1000000 ; 1000000]; 
ymin=[-1000000 ; -1000000 ; -1000000 ;-1000000; -1000000 ; -1000000; -
1000000; -1000000; -1000000; -1000000; -1000000; -1000000; -1000000; -
1000000; -1000000; -1000000; -1000000; -1000000]; 
ymax=[1000000 ;  1000000;  1000000;   1000000;  1000000 ;  1000000; 
1000000; 1000000; 1000000; 1000000; 1000000; 1000000; 1000000; 1000000 ; 
1000000; 1000000; 1000000; 1000000 ]; 
% 
Np=10; 
Nu=10; 
% 
% construction of matrices for quadprog of output 
% 
H=2*(CBT'*QTY*CBT+RT); 
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D=zeros(Np*d,1); 
 

A.6	MATLAB	codes	for	construction	of	matrixes	with	integral	action  
 
% construct the matrices for predictive control of linear systems 
% A,B : matrix of the system (possibly extended first with integrators) 
% Q, S, QY, SY, R : weight matrices of state, final state, output, final 
output, control 
% Np, Nu : horizons of prediction and control 
% umin,umax, dumin,dumax : limits on the values ??of control and 
variation 
% of control 
  
[n,n]=size(A); 
[n,m]=size(B); 
[p,n]=size(C); 
[n,d]=size(M); 
% 
% construction of the matrices AT, BT, QT, RT, MT, CAT,CBT,QTY, CMT 
% 
AT=[]; 
CAT=[]; 
for i=1:Np 
 AT=[AT;A^i]; 
 CAT=[CAT;C*A^i]; 
end 
BT=[]; 
MT=[]; 
CBT=[]; 
CMT=[]; 
for i=1:Np 
    TE=[]; 
    CTE=[]; 
    ME=[]; 
    CME=[]; 
    for j=1:i 
        TE=[A^(j-1)*B TE]; 
        CTE=[C*A^(j-1)*B CTE]; 
        ME=[A^(j-1)*M ME]; 
        CME=[C*A^(j-1)*M CME]; 
    end 
    TE=[TE zeros(n,(Np-i)*m)]; 
    CTE=[CTE zeros(p,(Np-i)*m)]; 
    BT=[BT;TE]; 
    CBT=[CBT;CTE]; 
    ME=[ME zeros(n,(Np-i)*d)]; 
    CME=[CME zeros(p,(Np-i)*d)]; 
    MT=[MT;ME]; 
    CMT=[CMT;CME]; 
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end 
  
QT=[]; 
QTY=[]; 
for i=1:Np-1 
    QT=[QT;zeros(n,(i-1)*n) Q zeros(n,(Np-i)*n)]; 
    QTY=[QTY;zeros(p,(i-1)*p) QY zeros(p,(Np-i)*p)]; 
end 
QT=[QT;zeros(n,(Np-1)*n) S]; 
QTY=[QTY;zeros(p,(Np-1)*p) SY]; 
RT=[]; 
for i=1:Np 
    RT=[RT;zeros(m,(i-1)*m) R zeros(m,(Np-i)*m)]; 
end 
% 
% reduction of the matrices BT and RT if Nu<Np 
% 
if Np>Nu 
    for i=1:Np-Nu 
        BT(:,(Nu-1)*m+1:Nu*m)=BT(:,(Nu-1)*m+1:Nu*m)+BT(:,(Nu-
1+i)*m+1:(Nu+i)*m); 
        CBT(:,(Nu-1)*m+1:Nu*m)=CBT(:,(Nu-1)*m+1:Nu*m)+CBT(:,(Nu-
1+i)*m+1:(Nu+i)*m); 
    end 
    BT=BT(:,1:Nu*m); 
    CBT=CBT(:,1:Nu*m); 
    RT=RT(1:Nu*m,1:Nu*m); 
    for i=1:Np-Nu 
        RT((Nu-1)*m+1:Nu*m,(Nu-1)*m+1:Nu*m)=RT((Nu-1)*m+1:Nu*m,(Nu-
1)*m+1:Nu*m)+R; 
    end 
end 
% 
% construction of control constraint matrix 
% 
Avinc=eye(Nu*m); 
Avinc=[Avinc;-eye(Nu*m)]; 
Avinc=[Avinc;CBT]; 
Avinc=[Avinc;-CBT]; 
% 
Bvinc=[]; 
for i=1:Nu 
    Bvinc=[Bvinc;umax]; 
end 
for i=1:Nu 
    Bvinc=[Bvinc;-umin]; 
end 
for i=1:Np 
    Bvinc=[Bvinc;ymax]; 
end 
for i=1:Np 
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    Bvinc=[Bvinc;-ymin]; 
end 
% 
Cvinc=zeros(Nu*m,p); 
Cvinc=[Cvinc;zeros(Nu*m,p)]; 
Cvinc=[Cvinc;-CAT]; 
Cvinc=[Cvinc;CAT]; 
% matrices for Terminal constraint 
% 
Afin=A^Np; 
Bfin=BT(end-n+1:end,:); 
Mfin=MT(end-n+1:end,:); 
     
     

A.7	MATLAB	codes	for	MPC	function	with	integral	action	
x0=u(1:18); 
f=2*(CAT*x0)'*QTY*CBT; 
b=Bvinc+Cvinc*x0; 
AF=Bfin; 
BF=-Afin*x0; 
USOL=QUADPROG(H,f,Avinc,b,AF,BF); 
dx=USOL(1:m); 
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