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Chapter1

Overview

“These aren’t the droids you’re looking for.”

Obi-Wan Kenobi

Nowadays electronic devices and, more generally, embedded systems surround

us anywhere: they can be found in mobile phones, cars, washing machines, air-

planes. It is estimated that the 99% of the worldwide production of processors,

today, is used in these systems. Despite they do not look like proper computers,

they can hide tens or thousands of microprocessors, running tens or millions lines

of program code. A common aspect of these systems lies in their time constraints:

they must respond to inputs in real time, and they’re known as real time systems.

These systems are typically powered by ad-hoc operating systems, known as RTOS

(which stands for Real-Time Operating Systems), that are characterized by a very

small footprint, and performance-oriented architectures. During the last years, a

young and new actor came to tread the boards and joined the embeddedworld, aris-

ing the curiosity of many developers: Android. This operating system (built by

GoogleTM within the AOSP - Android Open Source Project), which benefits from

a huge and active community of developers, has succeeded in becoming one of

the top mobile platforms on the market in a very short time-span. Despite not

being as ”lightweight and small footprint”-centric as Real Time Operating Systems,

Android still offers a lot of opportunities to Embedded Developers: first of all, a

very intuitive graphic interface. While a large number of embedded devices have

little to no human interface, a substantial number of devices which would tradi-

tionally be considered ”embedded” do have user interfaces. In this field, Android
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4 Overview

Figure 1.1: Generic stack of processing execution

comes as a bridge connecting the users that are already familiar with its interface,

to embedded systems they need to interact with. Despite in the past common GUIs

were window-centric and desktop-like, after iOS andAndroid birth the way people

interact with mobile instruments and devices has changed, towards a more touch-

based experience. This change, combined with Android’s open source licensing,

has been a terrific mix that increased embedded developers’ interest in Android

open source project.

1.1 Typical internal flow

Android OS lies on a properly forked and customized Linux kernel. In Figure

1.1 a very simple idea of the stack, and a possible processing flow is shown, and

explained below.

To better put this example into context, let’s consider a potential surveillance

application, which runs on an Android device. Android applications are written in

Java programming language, and use the API offered by the operative system to ex-
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1.1 Typical internal flow 5

ecute their tasks, such as interacting with the UI, or acquiring frames from the cam-

era. 1 The kernel is - among other things - responsible of the hardware control, and

of the basic management of resources: it allows the native code and the Java code

interacting with the device peripherals, the webcam, in our case. 3 Android kernel

is quite different from the ”vanilla” kernel in fact, whereas the kernel shipped by a

Linux distribution can easily be replaced by a kernel from kernel.orgwith little to no

impact to the rest of the distribution’s components, Android’s user-space compo-

nents will simply not work unless they’re running on an ”Androidized” kernel. Each

computing cycle is processed by the device CPU, which is identified with the name

of Host. 2 These CPUs are typically single, dual or, more recently, quad core units

(usually identified as multi-core architectures): everything processed by the device,

an audio or video stream, a picture, a view or a gesture, is the result of one to thou-

sands of CPU computing cycles. Lately CPUs have been assigned an assistant to

perform some specific and performance-oriented computations: GPGPUs. 4 The

well known GPU acronym stands for Graphic Processing Unit, while the GPGPU

acronym stands for General Purpose computing on Graphic Processing Unit: this

means that the powerful capabilities of GPUs can be exploited to perform - usu-

ally parallelized - general purpose computing. GPGPUs find many applications in

the most different fields, from high performance computing and grid computing,

to physics simulations, to cryptographic computations, to audio/video DSP, FFT,

and so on. It’s easy to understand how versatile GPGPUs can be, and how their

use can significantly improve CPUs performances. The currently dominant open

GPGPU computing language is OpenCL which provides parallel computing, using

task-based and data-based parallelism. More on OpenCL will be discussed in Sec-

tion 2.2. As mentioned above, OpenCL can be used to give an application access

to GPU for non graphical computing. Now, imagine that it’s possible to use not

one general purpose processing unit, but much more than that: in fact, unlike for

CPUs, where the term multi-core is used, when we speak about GPGPUs, we’re in-

creasingly using the termmany-core, where the number of cores is today around 64.

5 Connecting the dots backwards, it’s now trivial understanding how the surveil-

lance application can benefit from this use of a specific processing unit: while the

CPU works and handles its own tasks, each frame from the camera can be pro-

cessed simultaneously by a GPGPU, performing, for instance, some face detection

algorithms. In addition, what if instead of just one application, we had more ap-

plications let’s say, one for each camera, simultaneously running? 6 How can the
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6 Overview

system properly exploit all these resources optimizing their use?

1.2 Barbeque Run-Time Resource Manager

Generally speaking resource managers lie just above the kernel 7 and they’re

meant to manage the available resources in the most efficient way: this role comes

more and more relevant when there are, like nowadays, multi/many-cores (which

are resources) and multiple applications or threads simultaneously running: the

ability of a system to run-time reconfigure itself adapting applications and compu-

tational resources to the changing of the working conditions becomes a core fea-

ture which, if well performed, can sensibly increase computing performances and

power consumption

Within Politecnico di Milano the Barbeque Open Source Project [11] intends to give

an answer to the run-time resource management matter with particular attention

to identify the optimal trade-off between the Quality-of-Service (QoS) requirements

of the applications and the time varying resources availability. A detailed insight

about Barbeque will be given in Section 2.1.

One of the features that sets Barbeque apart from other RTRM, and which is one

of the key concepts of this work, is the portability. As stated above, lately Android

attracted the attention of the embedded systems developers, and Barbeque was de-

ployed to run under this operating system as well but there hasn’t been, so far,

any support to make it directly accessible to Java applications. Barbeque is writ-

ten in C/C++ language, while the high-level tier of Android, which includes the

application one, is written in Java language: this work aims to fill the gap in the

between, taking advantage of the Android Native Development Kit (NDK) and of

the Java Native Interface (JNI). More information about this can be found in the

next chapter.
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Chapter2

Prior Art

“The best of prophets of the future is the past.”

Lord Byron

2.1 Barbeque Open Source Project

As briefly mentioned in section 1.2 the Barbeque Open Source Project (BOSP)

is proposed as a portable and extensible framework for run-time resource manage-

ment [7]. It supports both homogeneous and heterogeneous platforms: in homoge-

neous platforms, resources of the same type provide the same capabilities, and we

can have, for instance, a set of elements equipped with the same architecture and

performances as well. In the latter case, the heterogeneous one, platforms can pro-

vide different and specialized computing architectures: during the past few years,

heterogeneous computers composed of CPUs and GPUs have revolutionized com-

puting. By matching different parts of a workload to the most suitable processor,

tremendous performance gains have been achieved.

Much of this revolution has been driven by the emergence of many-core processors

such as GPUs. For example, it is now possible to buy a graphics card that can ex-

ecute more than a trillion floating point operations per second (teraflops). These

GPUs were designed to render beautiful images, but for the right workloads, they

can also be used as high-performance computing engines for applications from sci-

entific computing to augmented reality.

An example can be a device which embeds in addition to its main CPU (possibly
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8 Prior Art

multi-core) an hardware accelerator, e.g. a GPU, to process a specific a computing

intensive stream of data. In a wider vision, since we saw that GPGPUs are be-

ing used always more frequently as general purpose processing units, to perform

complex computations not strictly related to graphical ones, this is the situation

that is going to be the main scenario in the next years. Being able to manage re-

sources among homogeneous as well as heterogeneous platforms is a big strength

of BOSP approach, given that it’s currently one of the few, if not the only one, to do

so. Furthermore, another peculiarity of Barbeque is its hybrid solution between the

centralized and the distributed resource allocation: initially a centralized policy is

defined, and it’s then refined in a distributed hierarchical manner.

To have an application which is able to adapt and reconfigure itself at run-time, it

must be able to be executed according to several configurations, as resource usage

levels. Each configuration is called Application Working Mode (AWM) and must

be provided by the application developers. The AWMwill be described by an XML

file, named Recipe. Depending on the AWM which has been assigned to it, the ap-

plication will be able to choose the best Operative Point (OP) to match the QoS for

the end user. OPs are a collection of application specific parameters, bounded to

each AWM. A single AWM could support multiple OPs, e.g. the same kind and

amount of computational resources could accommodate multiple values of appli-

cation specific parameters.

As can be easily guessed, the applications play an active role on the self-adaptiveness

of the system. To support these activities a Run-Time Library (RTLib) is given,

which supports the application by providing a rich set of features related to the

interaction between the application and the framework, as well as supporting the

application specific run-time management activities.

2.1.1 Abstract Execution Model (AEM)

To simplify the coding, the RTLib provides the Abstract ExecutionModel (AEM).

Basically it is defined via a callback based API: the developer just needs to imple-

ment the application specific logic into the body of few methods. AEM could be

represented by a generic state machine and specialized for each specific stream pro-

cessing application, by simply defining the operations associated to each different

state, as shown in Figure 2.1.

The AEM API provides the application developers an event-based program-

ming model, where events are generated by the library, according to the previously
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2.1 Barbeque Open Source Project 9

Figure 2.1: Abstract Execution Model

defined execution model, and managed by a set of application defined call-back

methods. This means that the integration of a new application requires the devel-

oper just to implement the application specific logic into the body of few methods,

described below.

The statemachine in Figure 2.1 is implemented by the bbque::rtlib::BbqueEXC

base class, which defines also a default implementation for all the exposed call-back

methods (white parallelograms, methods with the on prefix). Briefly, the main call-

back methods are:

❏ onSetup: This is the application defined call-back method to host all the

EXC initialization code. This method will be called by the base class right

after the constructor and it’s the right place to host all the code to prepare the

ground for the stream processing, e.g. opening input and output channels,

setup internal data structures for the processing cycle to start.

❏ onConfigure: This is the application defined call-back method to host the

required configuration code to switch to a new assigned AWM. The currently

assigned working mode is defined by its ID with reference to the IDs defined

by the Recipe specified at the EXC instantiation time. It is up to the appli-
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10 Prior Art

cation developer to know the proper mapping between an AWM ID and the

corresponding application parameters

❏ onSuspend: If the execution of the EXC should be suspended, for example

because there are temporary no resources available for it, than this method is

called back right after the completion of the current processing cycle.

This method is intended to host all the necessary code required to keep safe

all the resources allocated on the accelerator in anticipation of an imminent

suspension of the EXC. Once the execution will be resumed the correspond-

ing onResume method is called.

❏ onResume: This method is intended to host all the necessary code required

to resume the execution of a previously suspended EXC.

❏ onRun: This is one of the main call-back methods which is required to be

coded into an application. It is intended to host all the code required to ac-

tually process a cycle of the stream processing application, e.g. decoding a

single video frame.

The amount of data to be processed by a single call of this method it is not

technically upper bounded. However, it is worth to consider its execution

time and the effects on the latencies forced on the run-time management of

the whole system.

Once there are not more data to be processed, this method should return

RTLIB EXC WORKLOAD NONE to actually terminate the processing cycle. In

this case the next onMonitor will not be called and the executionwill continue

with the onRelease. The BarbequeRTRM does its best in avoiding to interrupt

an application while it is executing this method. However, in case the latency

introduced by a single call of this method should not be compliant with the

run-time management goals (e.g. scheduling a just started high-priority ap-

plication) the RTRM has the capability to force a termination of this method,

i.e. eventually also by kill a ”not responding” application. The code to mon-

itor execution performances of a single call of this method should be better

placed into the onMonitor call-back.

❏ onMonitor: This method is called right after each execution of onRun, thus

this is the most suitable place for all the run-time monitoring code. The ap-

plication developer could exploit this method to implement an application
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2.2 OpenCL 11

specific run-time management policy, e.g. to tune some application specific

parameters based on the behaviors obtained during the previous cycle execu-

tion.

❏ onRelease: This is the application defined call-back method to host all the

EXC shutdown code. This method will be called by the base class right before

the destructor and it’s the right place to host all the code to clean-up every-

thing since the stream processing application is going to be terminated, e.g.

closing input and output channels, release internal data structures.

Considering this short overall view of the AEM, it should be clear that the main

purpose of the AEM API is to relieve the application developer from the cumber-

some code required to make an application run-time tunable. This complexity is

factorized based on a generic stream processing work flow and completely masked

to the actual application by a set of well defined call-back methods.

As a final remark, the run-timemanagement solution proposed by the BarbequeRTRM

framework is based on the exploitation of a hierarchical control. A system-wide

run-time resource manager is in charge to partition the available resources, among

all the running application, while each application is in charge of fine tuning it-

self. This application specific tuning is represented by the code which corresponds

to the region in the bottom right dashed square of Figure 2.1. Here is where the

Quality-of-Experience (QoE) evaluation and run-time tuning takes place.

2.2 OpenCL

Speaking of heterogeneous systems, we discussed how these platforms can per-

form tremendously good, if properly exploited.

A natural question is why these many-core processors are so fast compared to tra-

ditional single core CPUs.

❏ The fundamental driving force is innovative parallel hardware.

Many-core processors organize their - billions of - transistors into many par-

allel processors, consisting of hundreds of floating point units

❏ Another important reason for their speed advantage is new parallel software.

Computing systems come out of the - hopefully perfect - combination of hardware

and software: without a proper software which can exploit at best all the available
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resources, state-of-the-art hardware can be useless. Parallel hardware delivers per-

formance by running multiple operations at the same time. To be useful, parallel

hardware needs software that executes as multiple streams of operations running

at the same time; in other words, you need parallel software.

C language nicely abstracts a sequential computer, but to fully exploit heteroge-

neous computers, new programming models came out, which can abstract a mod-

ern parallel computer: typically techniques established so far in graphics can be

used as a guide towards this path.

And here we come with OpenCL: few lines of story behind this programming lan-

guage. Going back to some years ago, a project named Brook for GPU took life at

Stanford University: the basic idea behind Brookwas to treat GPU as a data-parallel

processor. Brook was built as a proof of concept, nevertheless Ian Buck, a graduate

student at Stanford, went on to NVIDIA to develop CUDA, an extension of Brook,

which introduced many improvements to its predecessor as, for instance, the con-

cept of cooperating thread arrays, or thread blocks.

OpenCL (Open Computing Language) - born in 2008 - provides a logical extension

of the core ideas from GPU Computing, the era of ubiquitous heterogeneous par-

allel computing. OpenCL has been carefully designed by the Khronos Group with

input from many vendors and software experts. OpenCL benefits from the experi-

ence gained using CUDA in creating a software standard that can be implemented

by many vendors. OpenCL implementations run now on widely used hardware,

including CPUs and GPUs from NVIDIA, AMD, and Intel, as well as platforms

based on DSPs and FPGAs.

With OpenCL, you can write a single program that can run on a wide range of sys-

tems, from cell phones, to laptops, to nodes in massive super-computers. No other

parallel programming standard has such a wide reach. This is one of the reasons

why OpenCL is so important.

OpenCL was defined with two different programming models in mind: task

parallelism and data parallelism, thus we can even think in terms of a hybrid

model: tasks that contain data parallelism.

❏ In a data-parallel programming model, programmers think of their problems

in terms of collections of data elements that can be updated concurrently. The

parallelism is expressed by concurrently applying the same stream of instruc-

tions (a task) to each data element. The parallelism is in the data.
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❏ In a task-parallel programming model, programmers directly define and ma-

nipulate concurrent tasks. Problems are decomposed into tasks that can run

concurrently, which are then mapped onto processing elements (PEs) of a

parallel computer for execution. This is easiest when the tasks are completely

independent, but this programming model is also used with tasks that share

data. The computation with a set of tasks is completed when the last task is

done.

2.2.1 Platform model

The OpenCL platform model defines a high-level representation of any hetero-

geneous platform used with OpenCL, and it’s shown in Figure 2.2

Figure 2.2: Platform model

An OpenCL platform always includes a single Host which interacts with the

environment external to the OpenCL program, and is connected to one or more

OpenCL devices. The device - can be a CPU, a GPU, a DSP... - is where the streams of

instructions (called kernels) are actually executed. The OpenCL devices are further

divided into compute units which are further divided into one or more processing

elements (PEs), where the actual computations really are performed.
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2.2.2 Execution model

An OpenCL application consists of two distinct parts: the host program and a

collection of one or more kernels. The OpenCL execution model defines how an

OpenCL application maps onto processing elements, memory regions, and the

host. The host program runs on the host, the kernels execute on the OpenCL devices.

They do the real work of an OpenCL application. Kernels are typically simple func-

tions that transform input memory objects into output memory objects. OpenCL

defines two types of kernels:

❏ OpenCL kernels: functions written with the OpenCL C programming lan-

guage and compiled with the OpenCL compiler. All OpenCL implementa-

tions must support OpenCL kernels.

❏ Native kernels: functions created outside of OpenCL and accessed within

OpenCL through a function pointer. These functions could be, for example,

functions defined in the host source code or exported from a specialized li-

brary.

2.2.3 Context

The computational work of an OpenCL application takes place on the OpenCL

devices. The host, however, plays a very important role in the OpenCL application.

It is on the host where the kernels are defined. The host establishes the context for

the kernels. As the name implies, the context defines the environment within which

the kernels are defined and execute. To be more precise, we define the context in

terms of the following resources:

❏ Devices: the collection of OpenCL devices to be used by the host

❏ Kernels: the OpenCL functions that run on OpenCL devices

❏ Program objects: the program source code and executables that implement

the kernels. Program objects are built at runtime.

❏ Memory objects: a set of objects inmemory that are visible to OpenCL devices

and contain values that can be operated on by instances of a kernel. These are

explicitly defined on the host and explicitly moved between the host and the

OpenCL devices.
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2.3 Java Native Interface (JNI)

As mentioned in Chapter 1 the element which acts as a bridge between the Java

and the Native world, is JNI, initially released in early 1997. With JNI, the devel-

oper can achieve two main goals: reusing her native code within a Java environ-

ment, and optimizing the execution with regard to performances, so that intensive

operations can run natively, instead of being interpreted, as Java pattern requires

- except for the peculiar case of the JIT-ed code, where the bytecode is compiled

Just In Time to run natively (this operation commonly runs at launch time, but can

happen at install time, or at method invoke time).

The JNI is a powerful feature that allows you to take advantage of the Java plat-

form, but still utilize code written in other languages. As a part of the Java virtual

machine implementation, the JNI is a two-way interface that allows Java applica-

tions to invoke native code and vice versa.

The JNI is designed to handle situations where you need to combine Java applica-

tions with native code, and it can support two types of native code: native libraries

and native applications.

❏ JNI can be used to write native methods that allow Java applications to call

functions implemented in native libraries: Java applications call native meth-

ods in the same way that they call methods implemented in the Java pro-

gramming language. Behind the scenes, however, native methods are imple-

mented in another language and reside in native libraries.

❏ JNI supports an invocation interface that allows you to embed a Java virtual

machine implementation into native applications. Native applications can

link with a native library that implements the Java virtual machine, and then

use the invocation interface to execute software components written in the

Java programming language. Part of this feature can be seen as the use of the

Java methods callbacks that will be illustrated in the next chapters.

JNI is an interface that can be supported by all Java virtual machine implemen-

tations on a wide variety of host environments. With the JNI:

❏ Each virtual machine implementor can support a larger body of native code.

❏ Development tool vendors do not have to deal with different kinds of native

method interfaces.
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Figure 2.3: JNI flow

❏ Most importantly, application programmers are able to write one version of

their native code and this version will run on different implementations of

the Java virtual machine.

2.3.1 Typical JNI use

JNI per se basically needs two components to be used: the javah JDK tool, which

builds c-style header files from a given Java class (that will be implemented after-

wards in a proper native source file, which includes the mentioned header), and

the jni.h header file, which maps the Java types to their native counterparts. The

whole flow (shown in Figure 2.3) mainly lies in four steps:

❏ implement a Java class, declare the methods you want to call on the native

environment as native, and compile it

❏ generate the header file through the javah -jni command

❏ implement as native C/C++ code the function whose signatures have been

generated during the step above

❏ compile the file above as a shared library, which will be loaded by the java

class
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2.3.2 JNI under Android: NDK

It is frequent, for developers who work on the Android framework - especially

when their device introduces some new hardware components - the need for ac-

cessing to native functions, or drivers, from the Java side. Hence Android can be

seen as a typical example of a situation where Java and Native worlds have to

strictly cooperate: this is where using JNI can be useful (although each developer

must carefully decide whether to use it, or to choose any possible alternative in-

stead of embedding portions of native code, such as using already implemented

Java libraries or interfaces). This being said, there’s a toolset that lets developers

embed components that make use of native code into Android applications very

easily, with no need to necessarily follow the typical JNI steps mentioned above:

this toolkit is named ”Android Native Development Kit” (NDK), which can be found

at: http://developer.android.com/tools/sdk/ndk/index.html). The

use of the NDK condenses the steps above in just one main step, which will do

almost everything at once, through the ndk-build command.

Under Android it becomes very easy to embed native code and, basically, the pro-

cedure can be resumed as follows:

❏ Download and install the Android NDK (one shot action)

❏ Develop your Android application, declaring the functions you want to ac-

cess to as nativemethods, and use them as if they were (as actually are) Java

methods

❏ Write your native codewithin a jni folder, andwrite an appropriate makefile

(Android.mk) to export the compiled code as shared library

❏ Launch the ndk-build command within the application folder

❏ Launch your application, and that’s all.

A detailed description and some examples of JNI implementations can be found

in Appendix A

Android Run-Time Resource Management - JNI Based Integration of the BarbequeRTRM Framework

http://developer.android.com/tools/sdk/ndk/index.html




Chapter3

Run-Time Resource Management of

Android Applications

“My favorite things in life don’t cost any money.

It’s really clear that the most precious resource

we all have is time.”

Steve Jobs

In the previous chapter, was described what the BOSP project is, and how it is

structured, and some elements about JNI were given as well.

As previously mentioned, Barbeque is developed in native (C/C++) code and, as a

consequence of its characteristic of portability, an Android-ready build can be de-

ployed directly from its menu (through the make menuconfig command). Once

Barbeque has been built, the aforementioned package is automatically deployed

to the first device reachable by the Android Debug Bridge (adb), a versatile com-

mand line tool that lets you communicate with an emulator instance or connected

Android-powered device. Once Barbeque is deployed to an Android system, it is

possible to run it, and to write native applications that exploit its functionalities,

and implement its callback methods.

But Android applications, as it is known, are developed in Java language: so, how

can we let Android developers building their own Java applications which interact with

Barbeque?

The answer will be described in this chapter, and sometimes documented with

short code listings and clarifying figures.
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To have a general idea of how the whole stack is structured, and where this work

gives its contribute, we can analyse Figure 3.1.

Three main sections can be identified within the aforementioned diagram: the

Java, the native, and the hardware one. The system shown is clearly an heteroge-

neous one, as we can see in the hardware section, where there’s a GPGPU platform

(typically it will be identified, within this work, as a specific many-core accelera-

tor platform by STMicroelectronics), and a general Host platform, which can be a

multi-core processor.

In the first one, which is Java-coded and Android-specific, an activity and a service can

be found: the former corresponds to a user screen, and it’s the class which directly

interacts with the user, the latter corresponds to a generic android service which

extends our BarbequeService. This service class statically loads, when created,

the shared object which maps the native library (Listing 3.6). The activity and the

service communicate to each other thanks to a messaging paradigm, already imple-

mented in Android and largely discussed in 3.2.1. Moving from here to the second

section, the native one, the first block we encounter is what we called JNI Bridge, a

portion of code that represents a sort of midland between the pure Java code, and

the pure native code: this intermediate code is, precisely, the Java-Native Interface

(JNI). This block, along with the block which lays below it, is built as shared library,

as indicated with the dashed line. The native libraries can be found right below

the JNI bridges: in the figure we put the RTLib (Sections 2.1, 3.1), and a generic

GPGPU library. The latter is inserted into a GPGPU SDK, while the former is part

of the BarbequeRTRM, and lets any application interacting to it, through the already

described native command and callbacks (Section 2.1). Both the communication

streams between the GPGPU SDK and the BarbequeRTRM go through the Linux

Kernel and the respective drivers to the last section, the hardware one. Here the hard-

ware platforms are placed: the GPGPU with its own (reconfigurable) firmware, the

Host cpu, the memory the two share, and the possible peripherals (eg. a webcam,

or a keyboard). BarbequeRTRM interacts with both the GPGPU and the Host pro-

cessors, controlling the resources availability and applying the best possible both

hardware and software configuration to provide the best run-time experience and

resources allocation.
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Figure 3.1: System block diagram
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Stream example: From within the Activity, two messages are dispatched, and de-

livered to the BbqueService class:

❏ MSG CREATE: to create an execution context. This command is executed on

the shared librarywhich calls the native function in charge of creating an RTLib

instance and register it to the Barbequemanager. If everything goes smoothly,

a specific value is returned.

❏ MSG START: to kick start the Barbeque state machine (see Figure 2.1): from

this very moment on, Barbeque typically executes its cycle of onRun and

onMonitor callbacks along with potential others, depending on the resource

availability and needs (e.g. it may call the onConfigure, when the applica-

tion reconfiguration is requested)

Figure 3.2: Call flow for MSG START

What happens during the aforementioned calls is shown in Figure 3.2. The

activity (in this specific case the call is triggered by a button, from the user interface)

obtains a message and sends it to the correspondent instance of the service 1 : the

latter executes the native call 2 on the shared library, which embeds an instance

of the RTLib that, in turn, interacts with Barbeque 3 . Barbeque performs its own

checks and routines 4 and its response - which is returned as a native value by the
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RTLib to the JNI bridge 5 - is then sent back by the service to the activity through

the messagewith the correspondent label 6 .

This being done, while Barbeque keeps calling the onRun, which executes the

elementary piece of code needed to process an atomic element of the stream (e.g. a

frame of a video stream), the need for the application reconfiguration could arise: if

so, Barbeque receives a signal from the hardware layer, and notifies this situation to

the Service, by executing the onConfigure callback; depending on the implemen-

tation of this callback method, the application reconfigures its settings to perform

at best according to the available resources.

3.1 RTLib JNI bridge

As described in Section 2.1, the Run-Time Library (RTLib) supports the applica-

tion which needs to interact with Barbeque Framework, by providing a rich set of

features as well as supporting the application-specific run-time management activ-

ities. When some JNI mentions were made in Section 2.3, and deeply described

in Appendix A, whenever it is needed to expose some native functions to the Java

side, it is required to express their signatures following a very specific pattern, let’s

analyse a brief example: if we need to call a native function foo from within a Java

class ExampleClass, which belongs to the package com.examples.my, there are

two main steps we have to take:

1. Declare within the Java class the method

public native void foo();

without any implementation, so that it’s visible to the class

2. Implement a native function with the specific signature:

Java com example my foo(JNIEnv *env, jobject thiz)

This being said, to expose RTLib native functions, we had to create a native

wrapper class, which makes all the already working functions accessible to Java

through the appropriate signature, wrapping each call within its correspondent

JNI name. An example of a native signature from Barbeque’s RTLib can be seen at

Listing 3.1, its wrapping function to expose it through JNI can be seen at Listing

3.2, and the Java declaration and usage is shown at 3.3.

1 RTLIB_ExitCode_t RTLIB_Init(const char* name, RTLIB_Services_t **services);

Listing 3.1: RTLib native function signature from rtlib.h

Android Run-Time Resource Management - JNI Based Integration of the BarbequeRTRM Framework



24 Run-Time Resource Management of Android Applications

1 //Global reference to the RTLib instance

2 RTLIB_Services_t *rtlib = NULL;

3

4 // RTLIB_ExitCode_t RTLIB_Init(const char *name, RTLIB_Services_t **rtlib)

5 JNIEXPORT jint

6 Java_it_polimi_dei_bosp_BbqueService_RTLIBInit(

7 JNIEnv *_env, jobject _thiz,

8 jstring _name) {

9 const char *name = _env->GetStringUTFChars(_name, 0);

10 RTLIB_ExitCode_t result;

11

12 obj = (jobject)_env->NewGlobalRef(_thiz);

13

14 result = RTLIB_Init(name, &rtlib);

15 if (result != RTLIB_OK) {

16 LOGE("RTLIB initialization failed");

17 return (-result);

18 }

19

20 LOGI("RTLIB initialization done");

21 return RTLIB_OK;

22 }

Listing 3.2: RTLib wrapping example of Listing 3.1

1 public native int RTLIBInit(String mode);

2

3 public void onCreate() {

4 Log.d(TAG, "onCreated");

5 creationTime = System.currentTimeMillis();

6 super.onCreate();

7 int response;

8 response = RTLIBInit("test");

9 Log.d(TAG, "Response from RTLIBInit is:"+response);

10 }

Listing 3.3: Java declaration and usage of the JNI function declared at Listing 3.2

within the Java class it.polimi.dei.bosp.BbqueService

The aforementionedwrapping concerns the Java-to-Native call. Barbeque Frame-

work strongly relies on callbacks, which were wrapped as well as straight calls.

In Listing 3.4, an example of the callback wrapping for the onRun function is

shown: the framework will call the onRun function as usual, but the Java callback

will be performed, thanks to the

env->CallIntMethod(obj, cb[ON RUN].method)

The way we chose to proceed is mutuated from the Tutorial3 shown into Appendix
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A.3. During the initialization of the library, a call to fill a callbacks array is called,

where the structure callback t of the array is shown in Listing 3.5

1 RTLIB_ExitCode_t

2 BbqueAndroid::onRun() {

3 LOGD("Callback onRun(), %d", Cycles());

4 if (env->CallIntMethod(obj, cb[ON_RUN].method))

5 return RTLIB_EXC_WORKLOAD_NONE;

6 return RTLIB_OK;

7 }

Listing 3.4: RTLib wrapping example for the onRun callback

1 typedef struct {

2 const char* name;

3 const char* signature;

4 jmethodID method;

5 } callback_t;

6

7 typedef enum {

8 ON_SETUP = 0,

9 ON_CONFIGURE,

10 ON_SUSPEND,

11 ON_RESUME,

12 ON_RUN,

13 ON_MONITOR,

14 ON_RELEASE,

15 CB_COUNT // This must be the last entry

16 } cbid_t;

17

18 static callback_t cb[CB_COUNT];

Listing 3.5: RTLib wrapping example for the onRun callback

The makefile Android.mkwill let this library being built as a shared library: how it

is done, is shown in Appendix A.

To sum up, this first part of the work consisted in creating some native code to

wrap the pre-existing functions into JNI-compliant signatures, and the calls to native

callbacks into proper JNI-based Java method invocations.

This being done, all that remains will be coded within the Java environment:

it’s easy to understand how writing this small portion of native code helped us in

adapting the RTLib instead of writing all from scratch in Java language.

Now, we can analyse how the integration into Android has been implemented, and

a full-working Android Java API to Barbeque has been developed.
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3.2 Software design

To make RTLib functions available to the Android Apps developer an Android

Service has been developed. The basic idea is to provide the developer with a main

Service class that can be extended by a customized service, that will actually

implement the callback methods, so that they will be executed whenever Barbeque

will call them.

3.2.1 BbqueService

A Service is an application component that can perform long-running opera-

tions in the background and does not provide a user interface. Another application

component can start a service and it will continue to run in the background even

if the user switches to another application, which is exactly what we needed: our

Service ”maps” the RTLib, and it’s a kind of interface to that, always running and

handling the interaction with Barbeque. Additionally, a component can bind to a

service to interact with it and even perform interprocess communication (IPC): we

are going to analyse this communication aspect in 3.2.1.3.

A service is ”bound” when an application component (like an Activity) binds to it

by calling bindService(). A bound service runs only as long as another applica-

tion component is bound to it. Multiple components can bind to the service at once,

but when all of them unbind, the service is destroyed. To properly bind a service,

you need to implement a couple of callback methods: onStartCommand() to al-

low components to start it and onBind() to allow binding. Our Service is called

BbqueService, and obviously extends the Android Service class, and is going

to be a bound service, since we will need to open a communication channel between

it and the Activity.

A schema of the bound service life cycle is depicted at Figure 3.3.

The first operation that the service class will perform when instantiated will be

loading the shared library, as shown in Listing 3.6.

1 static {

2 System.loadLibrary("bbque_rtlib");

3 }

Listing 3.6: Service loads shared library

The BbqueServicemainly consists of three sections:
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Figure 3.3: Bound service life cycle

❏ Native methods declaration

❏ Callbacks implementation

❏ Messaging handling

3.2.1.1 Native methods declaration

The BbqueService declares all the signatures corresponding to the native

functions he wants to access as ”public native”, as we saw for example at line

1 of Listing 3.3. Those methods are called whenever needed, within the service

class, through proper public methods, that are visible to the custom service that will

extend it: doing so, the developer is able to create her own Android service which

extends our BarbequeService and accesses to RTLib native methods.

Themain RTLib functions were exposed as native calls, which can be performed

within the service (and therefore any activity which is bound to it), by sending the

proper message: in Table 3.1 the message code and the native method correspon-
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dence is shown.

Message code Native method

MSG ISREGISTERED EXCisRegistered()

MSG CREATE EXCCreate(name,recipe)

MSG START EXCStart()

MSG WAIT COMPLETION EXCWaitCompletion()

MSG TERMINATE EXCTerminate()

MSG ENABLE EXCEnable()

MSG DISABLE EXCDisable()

MSG GET CH UID EXCGetChUid()

MSG GET UID EXCGetUid()

MSG SET CPS EXCSetCPS()

MSG SET CTIME US EXCSetCTimeUs()

MSG CYCLES EXCCycles()

MSG DONE EXCDone()

MSG CURRENT AWM EXCCurrentAWM()

Table 3.1: The correspondence between message code (left) and native method called

(right) is shown. Each message code can be used to execute calls from the

Activity to the Service, and vice versa: this means that for each task to ac-

complish, the activity and the service have a unique code which identifies

the task, and sets up the communication

By extending the Android Service class, our BbqueService overrides the

onCreate() method, which is called whenever a service is instantiated and, in

our specific case, also bound.

3.2.1.2 Callbacks implementation

Basically the service declares, in addition to native methods, all the callback

methods needed by the native RTLib wrapper. They just send a broadcast intent,

to notify they’ve been called. They can then be overridden by the customized service

that extends the BbqueService, so that the callback from the native library will

be then diverted to the service-to-be. In Listing 3.4 the native JNI callback for the

onRunmethod is shown: its Java counterpart can be found at Listing 3.7.

1 public int onRun() {

2 Log.d(TAG,"onRun called");
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3 intent.putExtra("BBQ_DEBUG", "onRun called");

4 intent.putExtra("INTENT_TIMESTAMP",

5 System.currentTimeMillis()-creationTime);

6 intent.putExtra("APP_NAME", name);

7 sendBroadcast(intent);

8 return 0;

9 }

Listing 3.7: Example for the onRun callback - Service side

In addition to the onCreate, the callbacks the developer can customise by

overriding can be found in Table 3.2;

Callback

onSetup()

onConfigure(int)

onSuspend()

onResume()

onRun()

onMonitor()

onRelease()

Table 3.2: Apart from the onRun() method overriding, which is mandatory to let

the application execute its processing block when Barbeque calls back, the

methods above listed can be (and should be) implemented as well, to prop-

erly exploit the run-time auto-configuration of the application.

3.2.1.3 Message handling

A bound service offers a client-server interface that allows components to in-

teract with the service, send requests, get results, and even do so across processes

with interprocess communication (IPC). Consequently to our approach of imple-

menting a service to act as an interface to RTLib, we needed a lightweight and well

structured messaging protocol to allow the activity communicating with the service,

and by this, to the native library. This protocol was identified into the Messenger

class. Using Messenger is the simplest way to perform interprocess communica-

tion (IPC), because it queues all requests into a single thread so that you don’t have

to design your service to be thread-safe. The service defines a Handler (Listing 3.8,

line 1) that responds to different types of message objects. This Handler is the basis
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for a Messenger that can then share an IBinderwith the client (Listing 3.8 line 20-

21), allowing the client to send commands to the service usingmessage objects (Table

3.1). Additionally, the client can define a Messenger of its own so the service can

sendmessages back: a double definition of a proper Handler within the two classes

(client and server) lets the two communicate bidirectionally. As an implementing

choice, we decided that the two directions of the same task (e.g. starting the pro-

cessing from the activity, and receiving the response by the service) share the same

message code.

1 protected class BbqueMessageHandler extends Handler {

2 @Override

3 public void handleMessage(Message msg) {

4 switch (msg.what) {

5 case MSG_ISREGISTERED:

6 isRegistered(msg.replyTo);

7 break;

8 case MSG_CREATE:

9 create(msg.replyTo, msg.obj);

10 break;

11 default:

12 super.handleMessage(msg);

13 }

14 }

15 }

16

17 final Messenger mMessenger = new Messenger(new BbqueMessageHandler());

18

19 @Override

20 public IBinder onBind(Intent intent) {

21 return mMessenger.getBinder();

22 }

Listing 3.8: Messenger protocol implementation - Service side

What is shown in Listing 3.8 is a portion of the service code needed to properly

handle the receiving of messages sent by another component, typically the caller

activity. As can be guessed, the parameter replyTo at lines 6 and 9, contains the

reference to the dual Messenger object belonging to the caller: hence through this

reference the service is able to reply with its own response message to the caller, as

shown in Listing 3.9, line 12.

1 protected void create(Messenger dest, Object obj) {

2 String messageString = obj.toString();

3 String params[] = messageString.split("#");

4 name = params[0];
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5 recipe = params[1];

6 Log.d(TAG, "create, app: "+name+" with recipe "+recipe);

7 int response = EXCCreate(name, recipe);

8 Message msg = Message.obtain(null, MSG_CREATE,

9 response,

10 0);

11 try {

12 dest.send(msg);

13 replyTo = dest;

14 } catch (RemoteException e) {

15 e.printStackTrace();

16 }

17 }

Listing 3.9: Messenger protocol implementation - Service side

The Message.obtain(...) can be used with different signatures, and An-

droid designers provided the developers with some standard parameters, to be

used in basic cases, and typically there are two int called arg1 and arg2 as well

as a generic Object called obj which, as a only constraint, has to implement the

Parcelable interface. The overhead added by a message, in terms of time, is

around 170˜200 microseconds per message.

Being clear how the BbqueServicewas implemented, and how themessaging

protocol works, we can briefly see how a developer can set up her own Activity.

3.2.2 Activity: common aspects

In Section 3.3 two sample activities that were realised within this work are

deeply analysed and commented, but here some common aspects, and best prac-

tices to follow when developing applications that need to interact with Barbeque

framework are described.

The bound service concept was broadly described above: the activity has to bind

itself to the service, and this is typically done withing the onStart() callback

method, which is overridden from the parent main Activity class, as shown in

Listing 3.10, where the CustomService.class which appears at line 5 is a ser-

vice which extends our BbqueService.

1 @Override

2 protected void onStart() {

3 super.onStart();

4 // Binding to the service.

5 bindService(new Intent(this, CustomService.class),

6 mConnection, Context.BIND_AUTO_CREATE);
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7 }

Listing 3.10: Activity: bind to a Service

The mconnection object that we pass to the bindService method is an ob-

ject of type ServiceConnection, and its construction is shown in Listing 3.11.

The mService object which appears at lines 5 and 10 is the one we use to send

messages to the CustomService: obviously, given that the latter extends the

BbqueService, each message sent through the mServicewill be sent to this one

as well.

1 private final ServiceConnection mConnection = new ServiceConnection() {

2 @Override

3 public void onServiceConnected(ComponentName className,

4 IBinder service) {

5 mService = new Messenger(service);

6 mBound = true;

7 }

8 @Override

9 public void onServiceDisconnected(ComponentName className) {

10 mService = null;

11 mBound = false;

12 }

13 };

Listing 3.11: Activity: creation of the ServiceConnection object

The message handling into the activity is absolutely dual with respect to the one

described at 3.2.1.3.

3.3 Testing applications

With the JNI wrapper, properly compiled, and the Java class which implements

the Barbeque service, we are ready to test the Barbeque framework by analysing two

Java applications specifically developed for this purpose. The first one just tests the

calls to Barbeque, and the callbacks from Barbeque, while the second one consists

of a face detection application which uses a library by ST Microelectronics developed

to work on the many-core STHorm platform, codename P2012. Such a platformwill

be the ideal application field for a RTRM as Barbeque.
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3.3.1 BOSP testing application

With respect to what has been described in the previous sections, to build a

customised application the developer has to create a service - which extends the

BbqueService and one (or more than one) activity.

Custom service This very compact CustomService basically does three main

things:

❏ Declares a CustomeMessageHandler, which extends the default barbeque

message handler BbqueMessageHandler (Listing 3.8, line 1) to handle new

custom messages others than the default ones (in which cases it will call the

super implementation of the handler. An example can be seen at Listing 3.12

1 class CustomMessageHandler extends BbqueMessageHandler {

2 @Override

3 public void handleMessage(Message msg) {

4 switch (msg.what) {

5 case MSG_CYCLES:

6 Log.d(TAG, "Message cycles setting: " + msg.arg1);

7 cycle_n = msg.arg1;

8 break;

9 default:

10 super.handleMessage(msg);

11 }

12 }

13 }

Listing 3.12: CustomService: message handler overriding

In our implementation, the custommessage added to the default ones will be

used to set, from the activity, the number of onRun cycles to be performed.

❏ Overrides the onBind method, to return an IBinder interface to the ac-

tivity that will execute the binding, which now links to its own instance of

Messenger object, as shown in Listing 3.13

1 final Messenger cMessenger = new Messenger(new CustomMessageHandler());

2

3 @Override

4 public IBinder onBind(Intent intent) {

5 return cMessenger.getBinder();
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6 }

Listing 3.13: CustomService: onBind overriding

❏ Overrides Barbeque callbacksmethods or, at least, the onRun, which ismanda-

tory to have a working application. The code related to this overriding is

shown at Listing 3.14, and a screenshot of the execusion can be found at Fig-

ure 3.4, where the displayed information in the TextView 1 comes from

lines 5-6 of the aforementioned listing.

1 @Override

2 public int onRun() {

3 int cycles = EXCCycles();

4 Log.d(TAG, "onRun called, cycle: " + cycles);

5 intent.putExtra("BBQ_DEBUG", "onRun called, cycle: " + cycles);

6 sendBroadcast(intent);

7 try {

8 Thread.sleep(1000);

9 if (cycles >= cycle_n)

10 return 1;

11 } catch (InterruptedException e) {

12 }

13 return 0;

14 }

Listing 3.14: CustomService: onRun overriding

This being done, the CustomService is ready to be bound to an application

component, typically our activity, and to interact with Barbeque native code as

well. The binding configuration must be explicitly declared in the configuration

file named AndroidManifest.xml, which is local to any Android application.

Within the <application> node, the following line must be added:

<service android:name=".CustomService" ></service>

Testing activity The activity developed to test the integration of the Barbeque

basic features is shown in Figure 3.4. Below each part, with its related behind-code

is analysed.

1 TextView shows messages which come as Barbeque responses to methods

invocations through the messaging protocol
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Figure 3.4: Barbeque testing application screenshot

2 isRegistered button triggers the dispatch of the MSG IS REGISTERED mes-

sage, which is directly handled by the BbqueService as shown at Listing

3.8 line 5

3 Create button triggers the dispatch of the MSG CREATE message, which is di-

rectly handled by the BbqueService. For the sake of clarity, the code behind

this button is shown at Listing 3.15, to be considered ad part of the flow re-

ceived by the service as shown at Listing 3.8 line 8 and, from there, forwarded

to Listing 3.9.

1 public void btnCreate(View v) {

2 Log.d(TAG, "Create button pressed...");

3 if (!mBound) return;

4 Message msg = Message.obtain(null, CustomService.MSG_CREATE, 0, 0);

5 msg.obj = APP_NAME+"#"+APP_RECIPE;

6 try {

7 msg.replyTo = mMessenger;

8 mService.send(msg);

9 } catch (RemoteException e) {

10 e.printStackTrace();

11 }
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12 }

Listing 3.15: BbqueActivity: Create button code

4 Terminate button triggers the dispatch of themessage MSG TERMINATE, which

at the end, in the service calls the EXCTerminate()

5 EditText field is used to set the number of onRun cycles we want the appli-

cation to execute. When the current cycles number exceeds the upper bound,

the execution is terminated, and Barbeque calls the onRelease callback.

6 Start button triggers the dispatch of the MSG CYCLESwhich is handled by the

CustomService to set a local variable, and consequently the MSG START

message, is sent, and handled by the BbqueService

7 Broadcast Console button opens the Bbque Broadcast Console 8 which basically

outputs all the intents broadcasted by the service. More on this will be dis-

cussed further.

To receive intents sent by the service, and output them into the TextView 1 ,

a listener to them has been enabled. At first a BroadcastReceiver is created,

which overrides the onReceive methods in which body the code to be executed

whenever an intent it’s receiver of is contained. The code is shown at Listing 3.16

How these intents are broadcast by the service is described within the next para-

graph.

1 IntentFilter receiverFilter = new IntentFilter ();

2 BroadcastReceiver receiver = new BroadcastReceiver() {

3 @Override

4 public void onReceive(Context context, Intent intent) {

5 String bbqDebugIntent = intent.getStringExtra("BBQ_DEBUG");

6 output.setText(bbqDebugIntent);

7 }

8 };

9 @Override

10 public void onCreate(Bundle savedInstanceState) {

11 //...

12 receiverFilter.addAction("it.polimi.dei.bosp.BBQUE_INTENT");

13 registerReceiver(receiver, receiverFilter);

14 //...

15 }

Listing 3.16: BbqueActivity: Intent handling
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Barbeque Broadcast Console Barbeque Broadcast Console (BBC) is an activity, called

by the main Barbeque activity we’ve seen in the previous paragraph, which ex-

plores the possibilities offered by the intents mechanism provided by Android.

Intents are asynchronous messages which allow Android components to request

functionalities from other components of the Android system. For example an

Activity can send an Intent to the Android system which starts another Activity.

Therefore Intents allow to combine loosely coupled components to perform certain

tasks. An Intent can also contain data.

The BBC implements a BroadcastReceiver as seen for the previous activity

(Listing 3.16), but is able to retrieve much more information, from the intent it has

registered a filter for with the method:

receiverFilter.addAction("it.polimi.dei.bosp.BBQUE INTENT");

as show in Listing 3.17

1 BroadcastReceiver receiver = new BroadcastReceiver() {

2 @Override

3 public void onReceive(Context context, Intent intent) {

4 String entry = String.format("[%7.3f - %-15s] %s \n",

5 ((float)(intent.getLongExtra("INTENT_TIMESTAMP",0)))/1000,

6 intent.getStringExtra("APP_NAME"),

7 intent.getStringExtra("BBQ_DEBUG"));

8 console.append(entry);

9 final int scrollAmount = console.getLayout().getLineTop(

10 console.getLineCount())-console.getHeight()+10;

11 // if there is no need to scroll, scrollAmount will be <=0

12 if(scrollAmount>0)

13 console.scrollTo(0, scrollAmount);

14 else

15 console.scrollTo(0,0);

16 }

17 };

Listing 3.17: BBCActivity: Intent handling

Whenever an intent from the service is received, the action retrieves all the attributes

associated to that very specific intent.

In Listing 3.7 the intent dispatching from within the service is shown, with regard

to the onRun callback. A partial log of the output is shown at 8 in Figure 3.4.
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3.3.2 STHorm Face Detection

STHorm (codename Platform2012) is a many-core embedded architecture that

has been designed by STMicroelectronics and by CEA as a scalable and customiz-

able acceleration device. [9] A test chip in 28nm is being sampled now, featuring

69 processors in less than 20mm2. Our testing application currently runs on an em-

ulated platform, but is meant to show one of the many possible applications that

can be coded directly in Java, and supported by the BarbequeRTRM, which is being

deployed to be tested on the aforementioned platform.

This application has been largely reimplemented, and integrated to exploit our new

BbqueService, which is the core of this work.

A sequence diagram to clarify the whole process is provided at Figure 3.5

Figure 3.5: STHorm Face Detection activity - Sequence diagram

We mainly have five actors, and the communication between the activity and

the service is implemented exploiting the messaging protocol we mentioned before.

In Figure 3.5, four main steps have been identified.

1 The activity initialises the Camera object. The preview feature of the Android

Camera has been chosen: it already outputs camera frames to a Surface ob-

ject, and its frame rate is high enough to give to the user a good user expe-

rience. On top of this surface we put an ImageView object, where we print,

if and whenever available, the rectangles indicating the faces within the pic-

ture.

Whenever a new frame is available from the camera, it is shown on the sur-

face, and a callback is executed by default within Android: within themethod

onPreviewFrame, it’s possible to save (for example into a double buffer, as

we did) frames for future use.
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2 The Service mentioned is an abstraction of both the basic BbqueService

and a customized STHormFDService, which extends the former, and im-

plements its own processing code, including the onRun overriding. Thus,

whenever an onRun callback is performed by Barbeque, amessage is sent to the

activity, asking for a new frame. The activity replies sending back the most

recent frame, taken from the aforementioned double buffer.

3 The Service has received the frame, and calls some native code to process it:

this is possible, again, through a JNI call. The Service gets back an array with

the number of faces found into the frame and, if any, the coordinates of the

rectangles corners that enclose each face.

4 The Service dispatches the retrieved information to the activity, through ames-

sage, and rectangles are drawn upon the camera preview surface.

The previous enumeration is repeated for any frame the onRun is able to pro-

cess, at the speed set by the user, from the slider element (SeekBar) available on

the interface.
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Experimental results

“No amount of experimentation

can ever prove me right;

a single experiment can prove me wrong.”

Albert Einstein

It’s a very challenging aspect to analyse how a customized and innovative run-

time resource manager performs, when integrated into the Android system, and its

JVM. In this work some basic measures were done, mostly time related, and every

now and then some improvement suggestion are given.

4.1 Experimental setup

Android ships with a debugging tool called the Dalvik Debug Monitor Server

(DDMS), which provides port-forwarding services, screen capture on the device,

thread and heap information on the device, logcat, process, and radio state infor-

mation, incoming call and SMS spoofing, location data spoofing, and more. This

page provides a modest discussion of DDMS features; it is not an exhaustive explo-

ration of all the features and capabilities. To perform our analysis, we mainly used

two instruments:

❏ Traceview: a graphical viewer for execution logs created by using the Debug

class to log tracing information in the code. Traceview can help debugging

your application and profiling its performance.
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❏ dmtracedump: a tool that provides an alternate way of generating graphical

call-stack diagrams from trace log files. The tool uses the Graphviz Dot utility

to create the graphical output, so you need to install Graphviz before running

dmtracedump. The dmtracedump tool generates the call stack data as a tree

diagram, with each call represented as a node. It shows call flow (from parent

node to child nodes) using arrows. dmtracedump provides the possibility to

export the .trace binary output file into a human readable text file, an html

file, or a png diagram.

Some bash scripting has been used as well, to post-process trace logs.

4.2 Measures and considerations

4.2.1 Native response time

The main goal of this work was to integrate the native code into the Java environ-

ment, which is the default one for Android applications.

Some tests were performed, with respect to some native commands, as:

❏ EXCisRegistered

❏ EXCCreate

❏ EXCStart

Two main situations can be considered, to analyse some performances and, in

particular, the overhead added to the native code: we sampled the execution time

for the EXCmethods (native calls through JNI), and the execution time for the Java

methods within the service that, in turn, call the EXCmethods.

In Table 4.1 we can see the added time needed to perform the native call through the

JNImechanism from the Java environment, which was calculated in 227.033±23 µs.

# samples min time [ µs ] max time [ µs ] avg time[ µs ] CI 99% [ µs ]

30 186 417 227.033 ±23.004

Table 4.1: EXCisRegistered timings on the sample application BbqueActivity on 30

samples

This native call is performed within a Java call, which runs within the Bbque-

Service: it’s interesting to analyse how much time overhead is added by the whole
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Java procedure, from the actual Java call, to the response, and an example can be

seen in Table 4.2, where are shown the statistic data regarding 30 samples. In ad-

dition to data, the correspondent graphical representation of the table is shown in

Figure 4.1, where the traceview output can be found.

call avg time[ µs ] σ CI 99% [ µs ]

isRegistered 1051.233 244.352 ±115.100

Messenger.send 347.700 144.251 ±67.948

EXCisRegistered 227.033 48.836 ±23.004

Log.d 225.567 29.376 ±13.837

Message.obtain 69.900 10.512 ±4.952

Table 4.2: BbqueService.isRegistered() timings on the sample application

BbqueActivity, with detail of inner children methods on 30 samples

Figure 4.1: isRegistered() execution stack - traceview

The same considerations will be done for the EXCCreate function, which is the

one that creates the execution context. Data on 60 samples are given in Table 4.3.

The native call executes in an average time of 1.463± 0.187ms.

# samples min time [ µs ] max time [ µs ] avg time[ µs ] CI 99% [ µs ]

60 1042 3807 1463.317 ±187.423

Table 4.3: EXCCreate timings on the sample application BbqueActivity

on 60 samples.

The aforementioned results can be contextualised within the ”parent” Java call,

which is typically executed by the BbqueService.create() method. The re-

sults shown in Table 4.4 refer to the native result BbqueActivity of Table 4.3.
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call avg time[ µs ] σ CI 99% [ µs ]

create 4925.017 672.085 ±223.856

EXCCreate 1463.317 562.702 ±187.423

String.split 1383.267 632.963 ±210.825

StringBuilder.append 243.061 72.662 ±13.973

Messenger.send 417.550 243.547 ±81.120

Log.d 229.350 28.768 ±9.582

Message.obtain 106.517 196.555 ±65.468

Table 4.4: BbqueService.create() timings on the sample application BbqueActiv-

ity on 60 samples

Figure 4.2: create() execution stack - traceview

In addition to the basic information we can get from data, we can notice that a

simple split operation on a string costs a lot, if compared to the main operation run

by this method, almost the same amount of time.

Generally the EXCCreate takes much more time than the isRegistered above,

because of its JNI implementation, where the native function operates on strings,

to retrieve the application name and the recipe.

The last native call that was mentioned at the beginning of this chapter, is the

EXCStart. As done for the previous functions its time profiling is shown at Ta-

ble 4.5. The traceview process execution stack of the Java start method (which,

in turn, calls the EXCStart) is shown at Figure 4.3, and statistics out of 30 start

samples is given at Table 4.6.

Some considerations about the aforementioned methods: being those calls em-

bedded within the BbqueService, they generally won’t be overridden, therefore their

performances can vary only depending on the running architecture, not on the im-
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# samples min time [ µs ] max time [ µs ] avg time[ µs ] CI 99% [ µs ]

30 554 1737 793.200 ±126.380

Table 4.5: EXCStart timings on the sample application BbqueActivity

on 30 samples.

call avg time[ µs ] σ CI 99% [ µs ]

start 1615.233 350.317 ±165.014

EXCStart 793.200 268.299 ±126.380

Messenger.send 379.700 157.081 ±73.992

Log.d 234.917 55.385 ±18.447

Message.obtain 72,933 15.929 ±7.503

Table 4.6: BbqueService.start() timings on the sample application BbqueActivity

on 30 samples

plementation. They will also likely be called not frequently, therefore the small

overhead added by the Java/JNI code can be considered absolutely reasonable.

4.2.2 Messaging system overhead and performances

As described in 3.2.1.3 the Messenger class was used to pass messages among

processes, in particular between the activity and the service, and vice versa.

It’s interesting to analyse how this mechanism can influence performances and

completion time. Data were sampled, again, from the BbqueActivity performing

basic operations, like the isRegistered, the create and the startmethods.

The first thing that pops up, among data, is that the delivery time of messages can

vary between one or even two orders of magnitude: this is because messages are

continuously used by Android as an IPC method, and they don’t have priorities nor

any parallelism. By the tests here conducted, for example, some of the messages

were enqueued behind system ones, therefore they were affected by the execution

time of system functionalities, as UI interactions. This appears to be a huge limita-

tion of this messaging system, but still we have to consider the delay it introduces

within the context of processing big streams of data which, once the computation

is started, is an atomic activity.

In the tables that follow, calls stack with in/out methods timings is shown.

As an example, if we consider the isRegistered call, which starts from a UI but-
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Figure 4.3: start() execution stack - traceview

ton, and we measure the time which elapses between the message sending, to the

correspondent actual method execution within the service class, we see that a mes-

sage, to be delivered and its action triggered, takes a time which is one order of

magnitude bigger than the time needed for the execution of the method itself. As

will be discussed later, however, this impact is almost negligible, especially when

compared to themain computation that typically is performedwithin coremethods

of the service, as the onRun.

btnIsRegistered IN [ms] OUT [ms] δ(i-1) δ

Messenger.send 1434.054 1434.376 - 0.322

Other operations executed for UI rendering, through message sending

Message.dispatch 1446.117 1447.881 11.741 1.764

CustomService.CustomMessageHandler 1446.135 1447.863 0.018 1.728

BbqueService.BbqueMessageHandler 1446.155 1447.847 0.020 1.692

BbqueService.isRegistered 1446.175 1447.829 0.020 1.654

Time from ”Messenger.send” end to ”isRegistered” start 11.799

Table 4.7: Button isRegistered? press: timings on the sample application. IN = in-

stant method enters, OUT = instant method exits, δ(i-1) = IN(i)-IN(i-1), δ

= OUT(i)-IN(i)

Before considering more data samples, it’s worth noticing that the message han-

dler implementationwithin the BbqueService described in 3.2.1.3, when extended

by the CustomService it brings an additional cost in terms of computation time,

since the switch structure will be repeated twice: this comes clear at Table 4.7,

where there’s a double 18-20 microseconds time.

In addition to the single example given so far, we provide a statistic which is shown

in Table 4.8, where times corresponding to the last line of Table 4.7 were sampled
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on 30 runs.

# samples min [ms] max [ms] avg [ms] σ CI 99% [ms]

30 11.054 17.104 12.552 1.334 ±0.618

Table 4.8: Time elapsed from ”Messenger.send” exit to ”isRegistered” enter, on the

sample application BbqueActivity on 30 samples.

Given these data, we can consider the Messenger protocol very fast and reli-

able, with the only limitation of being sequential and queue-based without any

possibility to set a priority, being used by the operative system as well.

The same considerations can be done for the remaining methods we took into

consideration previously, the create and the start. Details on time needed to a mes-

sage to trigger the call are shown in Tables 4.9 (create), 4.11 (start) and the statistics

on message delivery timings are shown in Tables 4.10 (create), 4.12 (start).

btnCreate IN [ms] OUT [ms] δ(i-1) δ

Messenger.send 1380.490 1380.787 - 0.297

Other operations executed for UI rendering, through message sending

Message.dispatch 1393.090 1397.626 12.303 4.536

CustomService.CustomMessageHandler 1393.108 1397.607 0.018 4.499

BbqueService.BbqueMessageHandler 1393.126 1397.588 0.018 4.443

BbqueService.create 1393.145 1397.569 0.019 4.424

Time from ”Messenger.send” end to ”create” start 12.358

Table 4.9: Button Create press: timings on the sample application. IN = instant method

enters, OUT = instant method exits, δ(i-1) = IN(i)-IN(i-1), δ = OUT(i)-IN(i)

# samples min [ms] max [ms] avg [ms] σ CI 99% [ms]

60 11.591 42.381 13.501 4.006 ±1.334

Table 4.10: Time elapsed from ”Messenger.send” exit to ”create” enter, on the sample

application BbqueActivity on 60 samples.

The data above confirm the generally small time overhead of the integration

implementing choice: we will see later that the time needed to the activity-service

paradigm to communicate is acceptable in the overall performance context.

Before continuing, at Table 4.13 the statistic data about the onRun callback maxi-
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btnStart IN [ms] OUT [ms] δ(i-1) δ

Messenger.send 1822.847 1827.347 - 4.500

Other operations executed for UI rendering, through message sending

Message.dispatch 1840.771 1842.979 13.424 2.208

CustomService.CustomMessageHandler 1840.794 1842.961 0.023 2.167

BbqueService.BbqueMessageHandler 1840.814 1842.943 0.020 2.129

BbqueService.start 1840.833 1842.925 0.019 2.092

Time from ”Messenger.send” end to ”start” start 13.486

Table 4.11: Button Start press: timings on the sample application. IN = instant method

enters, OUT = instant method exits, δ(i-1) = IN(i)-IN(i-1), δ = OUT(i)-IN(i)

# samples min [ms] max [ms] avg [ms] σ CI 99% [ms]

30 12.586 53.410 15.861 7.261 ±3.420

Table 4.12: Time elapsed from ”Messenger.send” exit to ”start” enter, on the sample

application BbqueActivity on 30 samples.

mum rate are given: the elapsed time between two onRun callbacks was measured

on 100 samples. Notice that testing performances are likely highly affected by the

Android tracing system (which sometimes dramatically slows down performances)

and by the emulated environment. All tests should be run on the real target plat-

form, to have a more reliable statistic.

# samples min [ms] max [ms] avg [ms] σ CI 99% [ms]

100 8.432 12.268 9.755 0.789 ±0.204

Table 4.13: Time elapsed between two onRun executions on the sample application

BbqueActivity on 100 samples.

With these data, we could consider as a limit case where the onRun method

computing tends to zero, the processing rate as high as 100 operations per second.

This is obviously a theoretical value (based on an emulation).
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4.2.3 STHormFaceDetection Application: performance profiling

As mentioned in Section 3.3.2, the application that was used to test the integra-

tion of Barbeque is a Face Detection application, developed by STMicroelectronics.

We had the opportunity to run the Java application on the system simulator pro-

vided by STMicroelectronics [8], and some performance data were collected, and

are shown in the following tables. The data we present here concern the mere

method execution, but the actual time perceived by the user is bigger, because of

other operation that are executed in the meanwhile.

We let the application run and process 30 frames, with and without the face detec-

tion filter, and results can be seen at Tables 4.14 and 4.15. In Figure 4.4 a graphical

representation of the 30 samples is shown, with focus on the main processingmeth-

ods and their execution elapsed time with respect to each onRun.

Function min [ms] max [ms] avg [ms] σ CI 99% [ms]

onRun 166.254 209.550 189.052 14.706 ±6.927

decodeYUV 132.859 158.004 142.547 5.650 ±2.662

FDetectRun 1.271 4.766 1.6282 0.630 ±0.297

Table 4.14: BbqueFDApplication - 30 frames processing with FD filter ON

Figure 4.4: Performance of the DecodeYUV420SP and FDetectRun with respect to the

onRun

Asmentioned before, perceived execution time appears beingmuch higher, and

it empirically is around 3 to 4 seconds: this aspect is still under investigation.
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Function min [ms] max [ms] avg [ms] σ CI 99% [ms]

onRun 158.898 200.605 176.262 10.959 ±5.162

decodeYUV 139.322 167.840 151.780 6.029 ±2.840

Table 4.15: BbqueFDApplication - 30 frames processing with FD filter OFF

In conclusion, it’s worth considering that all the tracing mechanism slew down

the whole execution, therefore the data provided so far should be considered as a

worst case and, in general, correct with regard to the proportions and not neces-

sarily to the absolute values. The onRun, for instance, from the logcat, goes almost

twice faster. More precise measures can be collected when the application will be

running on the real platform.
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Conclusions

“Imagination is more important

than knowledge.”

Albert Einstein

During this work we analysed how it’s possible to integrate the native Barbe-

queRTRM framework within Android by exposing its functionalities to the typical

Android Java application environment. This goal was reached mainly by using the

JNI interface, creating a sort of bridge between the two worlds. The main func-

tions were mapped by an android service specifically designed to be extended by

application-specific services that developers can design ad-hoc, embedding their

core tasks.

Beside this, two applicationswere developed, to test this integration, a BarbequeRTRM

testing application, and a face detection application, which was derived by an STMi-

croelectronics application, and properly customised to exploit our own custom ser-

vice.

During the experimental session, we gathered some data to analyse the impact of

the Java-code overhead, and to profile some design choices, like the Android mes-

saging system, which we decide to adopt as communication channel between the

application activity and the service: we determined a downside, which is due to the

Android system messaging use, that queues all messages without priority. How-

ever, still this issue doesn’t affect the computing performances executed within the

service, being limited to the user-interaction code path.

This work, so far, provides the developers with a Java-based API that lets her ac-
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cessing to the BarbequeRTRM framework, and some measures that can be used to

consider possible future improvements, as well the overall performances of the sys-

tem integration.

As future work, there’s a wide range of possibilities as, for instance:

❏ Real STHORM device testing: our tests were run on an emulator, therefore the

most significant step would be testing this solution on the real device, which

will be actually available for January 2013. Measures on the real platform,

which consists of 64 cores, will give the real feedback on the use of a resource

manager like BarbequeRTRM.

❏ Eclipse integration: to have a better integration with the development frame-

work (Eclipse IDE is used by default to develop Android applications) it’s

possible to implement an Eclipse plugin to make easier to developers the cre-

ation of their own BarbequeRTRM compliant services, for example with a wiz-

ard approach, which already prepares the main service code to be completed

with the application specific functionalities.

❏ Monitor application: a Java application that uses the provided API to moni-

tor and profile the system performances, as well as to control BarbequeRTRM

whenever necessary.

❏ Improve the STHORM Face Detection application: implementing different mes-

saging solutions to compare their performances, still considering that, in some

cases, messaging impact can be a minor issue, especially if compared to the

real computing time.
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Tutorials

A.1 Tutorial1

The complete code from this tutorial can be found at the Github repository:

https://github.com/thoeni/ndk-tutorials/tree/master/tutorial1.

Eventually, after this brief introduction, we can get to the most interesting part of

the tutorial: the Java activity, and the native code, which are respectively placed

into the src and the jni directories.

The activity isn’t any different from a regular Android activity except for two things:

methods that correspond to native functions are declared as native, and a shared

library is statically loaded by the System.loadLibrary()method.

Basically, this tutorial, illustrates how to call a native function from within the Java

activity, and how to call the native function which, in turn, calls back the Java ac-

tivity: the methods that perform these operations are, respectively foo1(String)

and foo2, declaredwithin the Tutorial1Activity, as shown in Listing A.1, line

1 and line 2.

1 public native String foo1(String message);

2 public native void foo2();

3

4 public void foo3Callback() {

5 String message = "foo3Callback called back by foo2";

6 output.setText(message);

7 }

8

9 static {

10 System.loadLibrary("tutorial1");
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11 }

Listing A.1: Part of Tutorial1Activity.java

In the same piece of code, we can see - line 4 - a regular public void method,

named foo3Callback() which will be called by the native code, and - line 9

- the static declaration to load the shared library that will be generated by the

ndk-build command.

For this first tutorial, we analyse entirely the native code. These are the basics of

JNI, and later on, we won’t need to specify everything this much: the C code can

be seen at Listing A.2

1 #include <jni.h>

2 #include <android/log.h>

3

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <string.h>

7

8 #define LOG_TAG "tutorial1"

9 #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,

10 LOG_TAG,__VA_ARGS__)

11 #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,

12 LOG_TAG,__VA_ARGS__)

13

14 jstring Java_com_android_tutorial1_Tutorial1Activity_foo1(

15 JNIEnv* env, jobject thiz, jstring message) {

16 //To print out a char* we have to convert

17 //the jstring to char*

18 const char *nativeString = (*env)->GetStringUTFChars(env,

19 message, 0);

20 LOGI("foo1 called! Input parameter: %s", nativeString);

21 //Then we have to release the memory allocated for

22 //the string

23 (*env)->ReleaseStringUTFChars(env, message, nativeString);

24 return (*env)->NewStringUTF(env, "JNI call J2C performed!");

25 }

26

27 void Java_com_android_tutorial1_Tutorial1Activity_foo2(

28 JNIEnv* env, jobject thiz) {

29 LOGI("foo2 called!");

30 //Get class from the calling object

31 jclass clazz = (*env)->GetObjectClass(env, thiz);

32 if (!clazz) {

33 LOGE("callback_handler: failed to get object Class");

34 goto failure;

35 }
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36 //Get the methodID from the class which the calling

37 //object belongs

38 jmethodID method = (*env)->GetMethodID(env, clazz,

39 "foo3Callback", "()V");

40 if (!method) {

41 LOGE("callback_handler: failed to get method ID");

42 goto failure;

43 }

44 //Call the method on the calling object, defined by the

45 //methodID

46 (*env)->CallVoidMethod(env, thiz, method);

47

48 failure: return;

49 }

Listing A.2: tutorial1.c

The first thing that we can see is the #include <jni.h> at line 1: this is the

header file - included with the JDK - that maps Java types to their native counter-

parts (Table A.1).

There are two functions (line 14 and line 27): their names have a specific format

which maps the full name of the ”caller” Java class - where the underline character

replaces the typical Java dot notation - and, at the end, there’s the name of the func-

tion, which corresponds to the nativemethod declared into our class.

Let’s take foo1 as example: the method declaration in Listing A.1:1 is natively im-

plemented in Listing A.2:14. As it’s done for the name, the input parameters and

the return type have to match as well, therefore we have that the java String type

is mapped to a native jstring type (thanks to the jni.h library that we included

some lines above); the same goes for the input (String/jstring again), with a

peculiarity: native functions mapped to Java methods through JNI paradigm al-

ways have two more parameters, a JNIEnv*which is a pointer to the current Java

environment, and a jobject which is a reference to the caller object. Given this,

depending on the variety of input(s) and of the output type, we’re able to properly

create the correct JNI function declaration: from now on, with some attentions, na-

tive code can freely run.

In this tutorial I decided to pass a String as input to have the opportunity to show

how the developer should proceed when she needs to handle variable types that

are not primary ones. In this case, we have to explicitly convert the string from

jstring to a ”native-friendly” char*: if you don’t, the error is sometimes not as

verbose as you would expect it to be, and it’s quite hard to debug this situation,
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therefore pay attention to the Java/native types mismatch. As the reader can easily

understand, we declare a native string, which will save the result of the right-hand

side function (Listing A.2:18) GetStringUTFChars which obtains string charac-

ters represented in the Unicode format. The third parameter indicates whether we

want a copy, or the pointer to the actual java string: in the latter case, the developer

must pay attention not to modify the contents of the returned string. This parame-

ter is typically set to NULL, and the JVM will autonomously determine the choice

to pick.

We can finally log our parameter as information. When the native code finishes

using the UTF-8 string obtained through GetStringUTFChars, it calls ReleaseS-

tringUTFChars, thus the memory taken by the UTF-8 string can be freed.

To satisfy the return type declared for this foo1, we return a new string. The pro-

cedure shown at Listing A.2:24 is specific for generating a jstring object: we’ll see

further in this article that from the native code we are able to find java classes, in-

stantiate them as jobjects, and call methods on them.

foo2 function represents a very simple example of a JNI callback: typically, when-

ever we need to callback a Java method implemented into the class that made the

call, we go through three main steps:

❏ get the class (jclass), starting from the object (jobject) which made the

call, through the GetObjectClass Listing A.2:31

❏ get themethod identifier, through the GetMethodID, which performs a search

for the method in the given class. The lookup is based on the name and type

descriptor of the method. If the method does not exist, GetMethodID returns

NULL Listing A.2:38

❏ call the method, on the caller object, passing the methodID Listing A.2:46

The code in Listing A.2:27-49 is easy to read, despite for a detail that we are going

to analyse: at line 38, the GetMethodID function, takes as input 4 parameters:

❏ JNIEnv*, the pointer to the Java environment

❏ jobject, the caller object, that we passed to the native function as input

parameter

❏ const char*, the string which identifies the name of the method to call

back
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Signature Java Type Native

Type

Z boolean jboolean

B byte jbyte

C char jchar

S short jshort

I int jint

L long jlong

F float jfloat

D double jdouble

- void void

Table A.1: Types correspondence Java/JNI and signatures

Signature Java Type

Lcom/qualified/class; com-qualified-class

[type type[]

Table A.2: Signatures for objects and arrays

❏ const char*, the ”signature” of the method, called the method descriptor:

despite it could seem bizarre, it’s very easy to understand. The first part,

between the round brackets, represents the input parameters, and their types;

the last identifier, after the closed round bracket, represents the return type. In

our case, ()Vmeans void foo3Callback(). If our function was, let’s say,

float foo3Callback(int i) we would write, as its descriptor: (I)F.

And, again, with float foo3Callback(int i, float f, int j) we

would write (IFI)F. A guide table is given at Table A.1. We will see how to

declare complex descriptors, with strings, objects and arrays further.

We still miss the last step, which allows the Java class to load the shared native

library: the native code needs to be compiled by the ndk-build command. Before

doing this, we have to create the Android.mk into the jni directory. The content

of this file, for this tutorial, is shown at Listing A.3: after defining the name of

the module that will be compiled, its source file, and local libs that we want to

use, through the include $(BUILD SHARED LIBRARY) instruction, we tell the

Android Run-Time Resource Management - JNI Based Integration of the BarbequeRTRM Framework



58 Tutorials

Figure A.1: Tutorial1 performing a callback

compiler to create the shared object. Doing so, this library will be available to be

loaded by Java classes. The use of ndk-build command is highly suggested, since

it will generate all the files and folders that our environment needs.

1 LOCAL_PATH:= $(call my-dir)

2

3 include $(CLEAR_VARS)

4

5 LOCAL_MODULE := tutorial1

6 LOCAL_CFLAGS := -Werror

7 LOCAL_SRC_FILES := tutorial1.c

8 LOCAL_LDLIBS := -L$(SYSROOT)/usr/lib -llog

9

10 include $(BUILD_SHARED_LIBRARY)

Listing A.3: Android.mk for tutorial1.c

An example of the activity performing a callback can be found at Figure A.1: the

output visible at the top of the screen comes from the Java method at Listing A.1:5

So far we introduced the main components needed to develop within the An-

droid NDK, and we saw a simple example where an activity calls - and is called

back by - a native function.

In the next section, we’ll add some features to this first example.
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A.2 Tutorial2

The complete code from this tutorial can be found at the Github repository:

https://github.com/thoeni/ndk-tutorials/tree/master/tutorial2.

Often we deal with threads, and we want to implement asynchronous calls from

native to Java environment. Asynchronous calls are easy to do when the direction

is Java to native, while the other way around - implemented through the callback

mechanism - isn’t that easy to figure out.

This example will consist of basic activity (almost identical to the one we used for

Tutorial1), that will be able to ”run” and ”stop” a routine. This routine will consist

of a loop of four different callbacks, that will run into a thread: the loop exit condi-

tion is based on a flag that will be set and unset by the activity.

In addition to the basic blocks we saw for Tutorial1 at Listing A.1, we can find at

Listing A.4 the lines relevant to understand how Tutorial2 performs.

1 int int0;

2 float float0;

3 String string0;

4

5 public void onCreate(Bundle savedInstanceState) {

6 // [...]

7 init();

8 handler = new Handler();

9 }

10

11 // [...]

12

13 public void callback1() {

14 System.out.println("callback1 called");

15 handler.post(callback1Thread);

16 }

17

18 Runnable callback1Thread = new Runnable() {

19 @Override

20 public void run() {

21 output.setText("callback 1, no params");

22 }

23 };

24

25 public int callback2(int param0, float param1,

26 String param2) {

27 System.out.println("callback2 called, params are: "

28 + param0 + " " + param1 + " " + param2);

29 int0 = param0;

30 float0 = param1;
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31 string0 = param2;

32 handler.post(callback2Thread);

33 return 0;

34 }

35

36 Runnable callback2Thread = new Runnable() {

37 @Override

38 public void run() {

39 output.setText("callback 2, params are: "

40 + int0 + ", " + float0 + ", " + string0);

41 }

42 };

43

44 public void callback3(String param0) {

45 System.out.println("callback 3, param is: "

46 + param0);

47 string0 = param0;

48 handler.post(callback3Thread);

49 }

50

51 Runnable callback3Thread = new Runnable() {

52 @Override

53 public void run() {

54 output.setText("callback 3, param is: " + string0);

55 }

56 };

57

58 public float callback4(float param0) {

59 System.out.println("callback 4, param is: " + param0);

60 float0 = param0;

61 handler.post(callback4Thread);

62 return param0;

63 }

64

65 Runnable callback4Thread = new Runnable() {

66 @Override

67 public void run() {

68 output.setText("callback 4, param is: " + float0);

69 }

70 };

71

72 // [...]

73

74 public native void init();

75 public native void foo1();

76 public native void foo2();

77

78 static {

79 System.loadLibrary("tutorial2");
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80 }

Listing A.4: Part of Tutorial2Activity.java source code

At Listing A.4:1-3 we declare three global variables where some callback values

will be stored, and that will be accessed during some of the callbacks methods exe-

cution.

Within the onCreatemethod we call the first out of three native methods, named

init(): the corresponding native function initialises some parameters and re-

trieves the various methodIDs.

Then callback methods declarations follow, at Listing A.4:13-70: for each callback

method, there’s a corresponding Runnable object which represents a command

that can be executed, and is often used to run code in a different thread. This class

declares an abstract voidmethod, which therefore is mandatory to implement,

and is the run()method: within this methodwe can put the active part of the code

that must be executed and, typically, we use this to change the output view and dis-

play some values on the screen.

Below (Listing A.4:74-76) there are the declarations of three native functions.

Compared to the examplewe considered for the Tutorial1, this native code is slightly

more complex, and uses a thread and some JNI specific types we haven’t had the

chance to introduce before. To start, here we use the JNI OnLoad function (Listing

A.5), which performs initialization operations for a given native library and returns

the JNI version required by the native library. The virtual machine implementation

calls JNI OnLoadwhen the native library is loaded, therefore we can use it to save

a reference to the current Virtual Machine which - unlike the case of the JNIEnv*

that is local to each call - lives along the whole life of the application.

1 static JavaVM *gJavaVM;

2

3 jint JNI_OnLoad(JavaVM* vm, void* reserved)

4 {

5 JNIEnv *env;

6 gJavaVM = vm;

7 LOGI("JNI_OnLoad called");

8 if ( (*vm)->GetEnv(vm, (void**) &env, JNI_VERSION_1_4)

9 != JNI_OK) {

10 LOGE("Failed to get the environment using GetEnv()");

11 return -1;

12 }

13 return JNI_VERSION_1_4;
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14 }

Listing A.5: Part of tutorial2.c - JNI OnLoad

The init() function saves global references to the caller object and, hence, to the

caller class the objects belongs to. Besides it saves the references to the methodIDs

statically declared into the callback t structure (specifically defined for this ex-

ample).

In Listing A.6 an extract of the structure declaration (lines:1-15), the global vari-

ables to save the global references to (lines:17-18), the same GetMethodID imple-

mentation we already saw (line:35) and the NewGlobalRef() function (lines:26-

28), which creates a new global reference to the object referred to by the second

argument. Global references must be explicitly disposed of by calling the proper

function: DeleteGlobalRef. Since init() native method is called within the

onCreate, this whole procedure will be executed the first time we run the activity,

and when we launch it again after having destroyed it.

Now we can see what happens when the user calls foo1, and starts the testing

routine.

1 callback_t cb[] = {

2 // cb[0]

3 {

4 "callback1",

5 "()V",

6 JNI_WRAPPER_rVOID,

7 },

8 // cb[1]

9 {

10 "callback2",

11 "(IFLjava/lang/String;)I",

12 JNI_WRAPPER_rINT_p,

13 },

14 //[...]

15 };

16

17 static jobject gObject;

18 static jclass gClass;

19

20 void

21 Java_com_android_tutorial2_Tutorial2Activity_init(

22 JNIEnv* env, jobject thiz)

23

24 LOGI("init native function called");

25 //[...]
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daemonStart() randomCaller()

callMethodWrapper(

JNIEnv*, int , nvalue[], int)

pthread_create(...)

return

callMethodWrapper(env, i, par, npar)

call<Type>Method[A]( ... )

return

fl
a
g
=

1
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a
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=
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callMethodWrapper(env, i+1, par, npar)

call<Type>Method[A]( ... )

returndaemonStop()

flag=0

Tutorial2Activity

NativeJava

Figure A.2: Tutorial2 sequence diagram

26 gObject = (jobject)(*env)->NewGlobalRef(env, thiz);

27 jclass clazz = (*env)->GetObjectClass(env, thiz);

28 gClass = (jclass)(*env)->NewGlobalRef(env, clazz);

29 //[...]

30 int i = sizeof cb / sizeof cb[0];

31 //[...]

32 while(i--) {

33 LOGI("Method %d is %s with signature %s", i,

34 cb[i].cbName, cb[i].cbSignature);

35 cb[i].cbMethod = (*env)->GetMethodID(env, clazz,

36 cb[i].cbName, cb[i].cbSignature);

37 }

38 }

Listing A.6: Part of tutorial2.c - init()

foo1 has no parameters, and its return value is void: its main code consists of a call

to the function daemonStart(), therefore it’s useless to show its code, though can

be easily found on-line at the repository address. daemonStart(), in turn, creates

a pthread and exits, and this is traditional C code, so far.

The function that is launched as thread is called randomCaller(), and uses the

gJavaVM variable to retrieve the current JNIEnv and send it as input parameter

to another function, which is a wrapper that, depending on the input parameters,

chooses which method has to be called. A sequence diagram to clarify its working

is shown in Figure A.2. Unlike Tutorial1, this example uses a thread, and there’s a

proper procedure to attach the current thread to the JVM, as shown in Listing A.7.
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1 void *randomCaller() {

2 flag = 1;

3 JNIEnv *env;

4 int isAttached = 0;

5 int status = (*gJavaVM)->GetEnv(gJavaVM, (void **) &env,

6 JNI_VERSION_1_4);

7 if(status < 0) {

8 LOGE("callback_handler: failed to get JNI environment,

9 assuming native thread");

10 status = (*gJavaVM)->AttachCurrentThread(gJavaVM, &env,

11 NULL);

12 if(status < 0) {

13 LOGE("callback_handler: failed to attach current

14 thread");

15 }

16 isAttached = 1;

17

18 /*

19 * callMethodWrapper(i++)

20 * sleep(2);

21 */

22

23 if(isAttached)

24 (*gJavaVM)->DetachCurrentThread(gJavaVM);

25 }

Listing A.7: tutorial2.c - thread attachment in randomCaller()

At Listing A.7:5 is called the GetEnv function on the global reference of the JVM:

this function sets *env to NULL if the current thread is not attached to the given

virtual machine instance, and returns JNI EDETACHEDwhich corresponds to -2; if

the specified interface is not supported, it sets *env to NULL, and returns the value

JNI EVERSION which corresponds to -3. Otherwise, sets *env to the appropri-

ate interface, and returns JNI OK, which corresponds to 0. Since we know we are

running this code within a thread, the status value will be -2, and the thread at-

tachment will be attempted (Listing A.7:10): the AttachCurrentThread function

sets up the current native thread to run as part of a virtual machine instance. Once

a thread is attached to the virtual machine instance, it can then make JNI func-

tion calls to perform such tasks as accessing objects and invoking methods. The

DetachCurrentThread function (Listing A.7:24) informs a virtual machine in-

stance that the current thread no longer needs to issue JNI function calls, allowing

the virtual machine implementation to perform clean-ups and free resources.

How the switch condition works inside the randomCaller is easy to understand

Android Run-Time Resource Management - JNI Based Integration of the BarbequeRTRM Framework



A.2 Tutorial2 65

Figure A.3: Tutorial2 running example

(Listing A.7:18-21), hence the full code isn’t presented in this paper, nonetheless it’s

important to stress the peculiarity of a calling method, call<Type>MethodA()

Listing A.9:24: to test this cycle, the randomCaller defines some variables, and

calls the wrapper passing four arguments to it. An example about this can be seen

in Listing A.8: at line:11 the developer sets as input parameters the env variable,

the ordinal number of the chosen callback method (Listing A.6:9-13), the array of

native params (which is a struct we defined) and the size of this array.

1 nvalue v1, v2, v3, npar[3];

2 v1.type = INT;

3 v1.i = 12;

4 v2.type = FLOAT;

5 v2.f = 2.3;

6 v3.type = STRING;

7 v3.s = "string";

8 npar[0] = v1;

9 npar[1] = v2;

10 npar[2] = v3;

11 callMethodWrapper(env, 1, npar, 3);

Listing A.8: Part of tutorial2.c - method calls in randomCaller()

The callMethodWrapper function is partially shown in Listing A.9: the for at

line:7maps all the native values to jvalue[], which is a struct already defined

for the JNI environment. It comes quite useful in this case because we can take

advantage of the call<Type>MethodA function, where the A at the end of its

name means that it takes as fourth parameter an jvalue array.

1 int callMethodWrapper(JNIEnv* env, int mid, nvalue npar[],

2 int parSize) {

3 jvalue jpar[parSize];
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4 //[ ... ]

5 if (parSize > 0) {

6 int i;

7 for (i=0; i<parSize; i++) {

8 switch (npar[i].type) {

9 case INT:

10 jpar[i].i = npar[i].i;

11 break;

12 case FLOAT:

13 jpar[i].f = npar[i].f;

14 break;

15 case STRING:

16 jpar[i].l = (*env)->NewStringUTF(env, npar[i].s);

17 break;

18 }

19 }

20 }

21 switch (cb[mid].jniWrapper) {

22 //[ ... ]

23 case JNI_WRAPPER_rINT_p:

24 (*env)->CallIntMethodA(env, gObject, cb[mid].cbMethod,

25 jpar);

26 break;

27 //[ ... ]

28 }

Listing A.9: Part of tutorial2.c - callingMethodWrapper

A screenshot of Tutorial2 activity and logcat during the execution can be found at

Figure A.3

A.3 Tutorial3

For this tutorial, we apply all we’ve seen so far, adding some concepts that can

let us taking advantage of the native code through some mechanisms which are

typical of Android: we’ll introduce a Service, and two different messaging sys-

tems, to enable a communication channel between the Activity and the Service.

Doing so, we’ll decouple the View (the activity) and the Controller (the service):

the only interface to the Native environment will be the Service, and the Activity

will be used only as a ”trigger” for Java calls to Native, and as a ”display” of calls

coming from the Service (and, to it , from the Native). A sample sequence dia-

gram of this tutorial can be found at Figure A.4: we’ll refer to this figure often, to

understand the structure of this application.

The activity, as one of its first tasks, will bind the service: this will also implicitly
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Figure A.4: Tutorial3 sequence diagram

invoke the startService method, therefore this will be executed into the ”onStart()”

method. The service we are going to bind, is the ”custom” one, which extends our

own service, called Tutorial3Service that loads the shared native library (in the same

say we say for tutorial1 and tutorial2).

When the service is created, typically, it calls an "init()" function, which ini-

tialises the shared library performing some actions, that we consider will be de-

scribed into the Service class.

Generally speaking, this tutorial, except for the service and the activity-service

communication channel, it’s exactly the same as the previous one. The native code

is the same. This being said, let’s analyse the high level part, how to implement a

service, and hot to enable the communication between the activity and the service.

Within the AndroidManifest.xml file, we have to explicitly declare that the ap-

plication we are going to build will interface itself with a service , and we do this

by adding the Listing A.10:8:

1 package com.android.tutorial3;

2

3 <application android:label="Tutorial3"

4 android:debuggable="true">

5 [...]

6 <activity ... >

7 [...]

8 </activity>

9 <service android:name=".CustomService"></service>

10 </application>

Listing A.10: AndroidManifest.xml
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Typically a Service is implemented to run in background mode, and to perform

operations that don’t need to appear on the foreground; a Service is run into the

same thread as the Application one. After binding an Activity to a Service, the

onCreate() and the onStartCommand() are called, the service is launched, and

we’re able to communicate with it.

Let’s see how to set the communication channel between the activity and the service

up. Among the possible available methods, we chose two of them:

❏ the Messenger class to handle the Activity to Service communication

❏ the Intent class, and sendBroadcast() method to support the Service to

Activity communication

In Listing A.11 the code to be added to implement the server side Messenger

receiver and handler is shown.

1 //** Available messages to the Service ***

2 static final int MSG_RUN_FOO1= 1;

3 static final int MSG_RUN_FOO2 = 2;

4 //****************************************

5

6 /* *

7 * Instantiate the target - to be sent to clients - to

8 * communicate with this instance of Service

9 */

10 final Messenger mMessenger = new Messenger(

11 new IncomingHandler());

12

13 @Override

14 public IBinder onBind(Intent intent) {

15 return mMessenger.getBinder();

16 }

17

18 /**

19 * Handler of incoming messages from clients.

20 */

21 class IncomingHandler extends Handler {

22 @Override

23 public void handleMessage(Message msg) {

24 switch (msg.what) {

25 case MSG_RUN_FOO1:

26 Toast.makeText(getApplicationContext(),

27 "Calling foo1()!", Toast.LENGTH_SHORT).show();

28 foo1();

29 break;

30 case MSG_RUN_FOO2:

31 Toast.makeText(getApplicationContext(),
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32 "Calling foo2()!", Toast.LENGTH_SHORT).show();

33 foo2();

34 break;

35 default:

36 super.handleMessage(msg);

37 }

38 }

39 }

Listing A.11: Tutorial3Service.java - message handling

The nMessenger is the object the service will share with the activity. In Listing

A.12 the correspondent code from the Activity class, which allows it to interact

with the service thanks to the nMessenger object.

1 /**

2 * Messenger for communicating with the service.

3 */

4 Messenger mService = null;

5

6 /**

7 * Flag indicating whether we have called bind on

8 * the service.

9 */

10 boolean mBound;

11

12 /**

13 * Class for interacting with the main interface

14 * of the service.

15 */

16 private final ServiceConnection mConnection =

17 new ServiceConnection() {

18 @Override

19 public void onServiceConnected(

20 ComponentName className,

21 IBinder service) {

22 mService = new Messenger(service);

23 mBound = true;

24 }

25 @Override

26 public void onServiceDisconnected(

27 ComponentName className) {

28 mService = null;

29 mBound = false;

30 }

31 };

32

33 /* *

34 * Buttons interacts with the Service through
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35 * Messenger paradigm.

36 */

37

38 public void button0(View v) {

39 if (!mBound) return;

40 Message msg = Message.obtain(

41 null, CustomService.MSG_RUN_FOO1, 0, 0);

42 try {

43 mService.send(msg);

44 } catch (RemoteException e) {

45 e.printStackTrace();

46 }

47 }

48

49 public void button1(View v) {

50 if (!mBound) return;

51 Message msg = Message.obtain(

52 null, CustomService.MSG_RUN_FOO2, 0, 0);

53 try {

54 mService.send(msg);

55 } catch (RemoteException e) {

56 e.printStackTrace();

57 }

58 }

Listing A.12: Tutorial3Activity.java - message handling

As it’s easy to infer, when the service is connected - within the mConnection - a

new Messenger object is created (giving it as input the IBinder service inter-

face (Listing A.12:22). On this object, the activity will be able to call the send(msg)

method, to send simple messages to the service beneath. Anytime the activity will

send a message, the handleMessage() method will process the what attribute,

and execute the proper branch of the switch. The main difference from the pre-

vious example lays in the service, which acts as a controller between activity and

native code, while in Section A.2 we had the activity loading and calling straight

to the native library. From now on, the activity is ready to communicate with the

Service

So far we’ve seen how the activity can communicate with the service; the vice versa

has been implemented - in this tutorial - taking advantage of the possibility into An-

droid platform to broadcast some messages, which, in this case, are called Intents.

As done before, let’s see the pieces of code which implement this functionality into

the service class, and into the activity class, which are shown, respectively, in List-

ing A.13 and Listing A.14.
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1 public void _callback1() {

2 callback1();

3 Intent intent = new Intent(

4 "com.android.tutorial3.TUTORIAL_3_INTENT");

5 intent.putExtra("CALLBACK_EXEC",1);

6 sendBroadcast(intent);

7 }

Listing A.13: Tutorial3Service.java - intent broadcasting

The Intent is created passing to the constructor a String which will be used to

identify it, and listen to this specific intent, when broadcast; an extra parameter is

put (in our example we use it to identify the callback method integer identifier),

and the intent is then sent. Listing A.13:4-6

1 /**

2 * IntentFilter used to receive broadcast intents launched

3 * by service

4 */

5 IntentFilter receiverFilter = new IntentFilter ();

6

7 @Override

8 public void onCreate(Bundle savedInstanceState) {

9 //[...]

10 receiverFilter.addAction(

11 "com.android.tutorial3.TUTORIAL_3_INTENT");

12 registerReceiver(receiver, receiverFilter);

13 }

14

15 /**

16 * Broadcast receiver: catches messages sent by the

17 * Tutorial3Service

18 */

19 BroadcastReceiver receiver = new BroadcastReceiver() {

20 @Override

21 public void onReceive(

22 Context context, Intent intent) {

23 int running = intent.getIntExtra("CALLBACK_EXEC", 0);

24 switch (running) {

25 case 1:

26 Toast.makeText(

27 getApplicationContext(),"Exec. callback1",

28 Toast.LENGTH_SHORT).show();

29 break;

30 //[...]

31 }

32 }

Android Run-Time Resource Management - JNI Based Integration of the BarbequeRTRM Framework



72 Tutorials

33 };

Listing A.14: Tutorial3Activity.java - intent catching

An intent filter can be declared into the AndroidManifest or, at runtime, into the

Activity. In our example, we chose the second option. At Listing A.14:10-12 the

IntentFilter is initialised and it’s registered to the BroadcastReceiverwhich

is declared some lines beneath, at Listing A.14:19. By overriding the onReceive

method, we put the code which is run when the specific intent is caught. In this

example we just throw a toast message on the screen.

The native code is the same we already discussed in Section A.2.

In Figures from A.5 to A.8 is shown the traceview log of the first call to foo1()

from the button0, which sends a message of the class Messenger to the class

Tutorial3Service which, in turn, calls the corresponding native function to

spawn a thread, that then performs the callbacks.
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Figure A.5: Messenger class connected to Button0

Figure A.6: Binder process handling the Message

A.4 Java object handling within native code

It’s possible that you would need to pass to the Java world a reference to an

object that doesn’t exist yet.

We’ll analyse how it’s possible to find a class, create an instance of this class, and

call some methods on it.

Let’s suppose we created a class, called Param, within the tutorial2 package,

which looks like the one in A.15

1 package com.android.tutorial2;

2
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Figure A.7: IncomingHandler asked to call foo1 ()V on Tutorial3Service

Figure A.8: Thread triggered by service performs callback1 ()V

3 public class Param {

4 private int[] iParams;

5 private float[] fParams;

6 private String[] sParams;

7

8 public Param(int[] iP, float[] fP, String[] sP) {

9 setiParams(iP);

10 setfParams(fP);

11 setsParams(sP);

12 }

13

14 public int[] getiParams() {

15 return iParams;

16 }
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17 public void setiParams(int[] iParams) {

18 this.iParams = iParams;

19 }

20 public String[] getsParams() {

21 return sParams;

22 }

23 public void setsParams(String[] sParams) {

24 this.sParams = sParams;

25 }

26

27 public float[] getfParams() {

28 return fParams;

29 }

30 public void setfParams(float[] fParams) {

31 this.fParams = fParams;

32 }

33 }

Listing A.15: Java class Param

Suppose that we need to create a Param object, assign some values to its fields, and

pass its reference to a Java method through the callback mechanism. Let’s see the

main steps to achieve this aim.

To begin, we need to get a reference to the Param class, and we do this as follow:

1 //Find the "Param" Class

2 cls = (*env)->FindClass(env, "com/android/tutorial2/Param");

We can then create java arrays and, depending on the type of array we are going

to create, we have to use a different constructor function, for instance, to create a

jint array:

1 int isize = 3;

2 jint iparams[isize] = {0, 1, 2};

3 //###Create a new Array of integers###

4 iarr = (*env)->NewIntArray(env, isize);

5 //Fill the array with the integer input parameter

6 (*env)->SetIntArrayRegion(env, iarr, 0, isize, iparams);

Now the object iarr is a Java array of integers.

The same thing can be done for floats, as follows:

1 int fsize = 2;

2 jfloat fparams[fsize] = {1.2, 3.2};

3 //###Create a new Array of floats###

4 farr = (*env)->NewIntArray(env, fsize);

5 //Fill the array with the float input parameter
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6 (*env)->SetFloatArrayRegion(env, farr, 0, fsize, fparams);

Now, for the String we don’t have any ready-to-use function to create an array

of String objects, therefore we can use the more general NewObjectArray func-

tion, as follows:

1 int ssize = 2;

2 char* sparams[ssize] = {"ab","cd"};

3 sarr = (*env)->NewObjectArray(

4 env, ssize, (*env)->FindClass(

5 env, "java/lang/String"), NULL);

6 for (i=0; i<ssize; i++)

7 (*env)->SetObjectArrayElement(

8 env, sarr, i, (*env)->NewStringUTF(

9 env, sparams[i]));

Now, we have three Java arrays correctly initialised: we can create an object of

the Param class, and use its constructor (A.15:8) to initialise it with these newly

generated arrays:

1 jmethodID constructor;

2 //Find the constructor of the Param object, which takes as

3 //parameter an int array and a float array

4 constructor = (*env)->GetMethodID(env, cls, "<init>",

5 "([I[F[Ljava/lang/String;)V");

6 //Create the Object with its constructor, and the arrays as

7 //parameters

8 obj = (*env)->NewObject(

9 env, cls, constructor, iarr, farr, sarr);

10 //Call the callback method passing the object as input

11 //parameter

12 (*env)->CallStaticVoidMethod(

13 env, gClass, cb[id].cbMethod, obj);

As we saw in A.1, the following signature "([I[F[Ljava/lang/String;)V"

indicates a method - in this case <init> identifies the constructor method - which

has a void return, and has input structured like:

❏ [I - array of integers: int[]

❏ [F - array of floats: float[]

❏ [Ljava/lang/String; - array of objects L indicates object, of type

java/lang/String: String[]
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Therefore this signaturemeans void <init> (int[], float[], String[]),

which is exactly how the Param constructor is defined at A.15:8.
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