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Sommario  
 

Questo lavoro e’ finalizzato allo sviluppo di un circuito general-purpose per la 

riduzione e la stabilizzazione della temperatura di sistemi di rivelazione per mezzo 

del controllo della corrente di una cella termoelettrica Peltier.  

Il lavoro e’ centrato sull’ottimizzazione di un modulo di rivelazione basato su un 

rivelatore a deriva controllata in silicio per la rivelazione di immagini 

bidimensionali di raggi X congiuntamente alla misura dell’energia di ciascun 

fotone X rivelato. In questo particolare tipo di rivelatore il raffreddamento del 

rivelatore e’ essenziale per raggiungere la risoluzione energetica ottimale grazie 

alla riduzione della corrente di buio. E’ altresi’ importante stabilizzare la 

temperatura di lavoro del rivelatore in quanto, attraverso la mobilita’ dei portatori, 

questa influenza la velocita’ di deriva e, in questo rivelatore, la misura della 

posizione di incidenza. Sulla base di questi requisiti e’ stato sviluppato e 

caratterizzato un circuito di controllo della temperatura.  

 

1. Introduction  
 

This work is focused on the development of a general-purpose circuit able to 

reduce and regulate the temperature of a detector system by controlling the current 

of a thermoelectric Peltier cooler.  

Temperature effects on the achievable performances in a semiconductor detector 

are well known. Semiconductor detectors systems used for radiation sensing (e.g. 



X-rays, gamma-rays, charged particles) feature a clear dependence of their energy 

resolution as well of their time resolution on electronic noise, on the reverse 

leakage current of the detector itself and on the transport properties of the 

generated signal charges. All these elements show a specific temperature 

dependence and therefore by controlling the detector temperature we would be able 

to improve the overall performance of the detection system.  

In this work we focused on an existing detection module based on a Controlled 

Drift Detector, that is a novel type of 2D X-ray imaging device which also 

provides energy resolution of each detected X-ray. In this system the aim is to 

reduce the temperature as much as possible in order to reduce the integration of the 

leakage current that dominates at room temperature the overall noise of the system. 

However, as in this device the position measurement is obtained by means of the 

measurement of the arrival time of the signal charges at the collecting anodes, the 

stabilization of the operating temperature, not just its low value, is an issue because 

changes in the operating temperature during the acquisition will produce changes 

in the electron velocity by way of the temperature dependence of electron mobility 

and therefore in the measured position.  

The developed circuit is based on temperature sensing from a Pt100 thermo 

resistor, placed in close thermal contact to the detector, which is read by an 

instrumentation amplifier block. This first sensing stage is followed by a second 

stage of the circuit where we make the comparison of the set temperature with the 

actual detector temperature sensed by the Pt100. The last part of the circuit 

controls the current in a Peltier cell whose cold face is in thermal contact to the 

ceramic board that holds the detector chip. Several options are included like 

temperature displays, frequency compensation.  



Chapter 2 will describe the principle of semiconductor drift detector as it is useful 

to understand the principle of operation of these special type of detectors. Chapter 

3 will describe the impact of temperature on the electronic noise and therefore on 

energy and time resolution. Chapter 4 will describe the developed circuit and the 

whole cooling system of the Controlled Drift Detector X-ray imager. Finally 

Chapter 5 shows  the first experimental characterization of the system.  

 

2. Silicon drift detector principles 

 

2.1 Concept of the Silicon Drift Detector 
 

The basic form of the Silicon Drift Detector (SDD) was proposed in 1983 by Gatti 

and Rehak .It consists of a volume of fully depleted silicon in which an electric 

field with a strong component parallel to the surface drives signal electrons 

towards a small sized collecting anode. 

The outstanding property of this type of detector is the extremely small value of 

the anode capacitance, which is practically independent of the active area. This 

feature allows to gain higher energy resolution at shorter shaping times. 

recommending the SDD for high count rate applications. 

To take the full advantage of the small output capacitance the front-end transistor 

of the amplifying electronics is integrated on the detector chip and connected to the 

anode by a short metal strip. This way the stray capacitance of the connection 

detector - amplifier is minimized, and moreover noise by electrical pickup (series 



white noise) and microphonic effects are avoided. The collecting anode is 

generally discharged from signal electrons in a continuous mode. Thus the SDD 

can be operated with dc voltages with no detector dead time caused by a clocked 

reset mechanism. 

Although the elaborated process technology used in the SDD fabrication the 

leakage current level can be so low that the drift detector can be operated with 

good energy resolution at room temperature, too (FWHM < 300 eV @ 5.9 keV). 

With moderate cooling by a single stage Peltier element the SDD’s energy 

resolution (FWHM < 175 eV @ 5.9 keV) can already be compared to that of a 

Si(Li) or Ge detector requiring expensive and inconvenient liquid nitrogen cooling. 

As the device is fully depleted the total thickness of 300 µm is sensitive to the 

absorption of X-rays. This feature translates to a detection efficiency > 90% at 10 

keV and > 50% at 20 keV while at the low energy end the detection efficiency is 

limited by the transmission of the Be entrance window . 

The spectrum of a ݁ܨହହ source recorded with a SDD at Peltier temperature (appr. -

10°C) with Gaussian shaping of 0.5 µsec shows an energy resolution in terms of 

FWHM of the Mn-Kα line at 5.9 keV typically better than 175 eV. The active area 

of the SDD is 5 ݉݉ଶ. Selected chips have a FWHM < 160 eV, as shown in Fig. 

2.1. The peak-to-background ratio is typically 700, with a special collimator it is > 

3000. 
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capacitance, and this leads to low noise (white parallel noise) and hence to 

excellent energy resolution. 

Position is calculated from the time between primary ionization (the passage of the 

particle) and collection of the signal charge at the anode, while the energy is found 

from the total collected charge. As a consequence, optimization of electronics will 

depend strongly on the type of information required. 

As the charge-transfer loss in silicon drift devices is usually negligible, energy 

resolution can be derived in the same way as for planar diodes but taking into 

account the very small detector capacitance. We therefore will concentrate here on 

position-measurement precision. 

In order to measure the position, the readout electronics will in general convert the 

charge signal sensed at the readout electrode into a pulse or a bipolar signal. The 

center of this pulse, or the zero crossing of the bipolar signal, will be taken as a 

measurement of the arrival time. 

The position measurement precision (i.e. the time resolution) is inversely 

proportional to the signal charge while it is directly proportional to the shaping 

time constant and to the electronic noise. Position resolution will therefore be 

limited by effects within the detector and by the electronic noise generated in the 

readout electronics. Effects of the first kind are: 

 

• variation of the drift time with the depth of generation of the signal charge; 

• widening of the signal peak due to diffusion and electrostatic repulsion, 

  and the corresponding statistical fluctuations;  

• dark current flowing in the detector. 

 

The first of these effects is intrinsic to the detector and its influence on the 

measurement precision is independent of the properties of the readout system. 



Reasons for this effect are inhomogeneities in the field distribution due to (for 

example) the finite width of the field-shaping electrodes and nonuniformities 

in crystal doping. 

The second effect depends on the drift time - therefore on the position of incidence 

and electric field strength- and on the level of charge generation, while the dark 

current in the detector is to a large extent dependent on the quality of the 

technological process. In addition, it is a strong function of temperature. It can be 

reduced markedly when draining the surface-generated current to an electrode 

separated from the signal electrode. 

 

The question of matching a detector with its readout electronics can be seen as 

choosing the optimal shaping of the signal in order to obtain maximum 

measurement precision. We will restrict ourselves here, therefore, to a few 

remarks. The width of the output signal pulse will be a convolution of the signal 

width due to diffusion and the shaping of the electronics. Superimposed on the 

signal is the electronic noise created by the dark current of the detector and by the 

readout electronics. As the shaping time is increased, it will produce a decrease of 

the series electronic noise but at the same time an increase of the contribution from 

the parallel noise. As the diffusion width is dependent on the drift field and the 

position of incidence of the radiation, each operating condition of the device would 

in principle require its own signal shaping condition in order to obtain optimum 

measurement precision. Furthermore, this optimum shaping is dependent on the 

point of incidence, the amount of ionization charge, and on the angle of incidence 

of ionizing particle tracks. 
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fluorescence energy .experiment at low fluorescence energy are more demanding for the energy 
resolution because the separation between the fluorescence and scattering peaks is smaller. 

.  

 

where F is the Fano factor (about 0.12 in the silicon at room temperature ), E is the 

mean energy required of the photon and ߝ is the mean energy required to generate 

an electron - hole pair (3.62eV at 300K,and 3,76eV at 77 in silicon). In Fig. 3.1 the 

required resolution ∆ܧ௠௥ as well as the intrinsic resolution  detector ∆ܧ௜ and the 

maximum acceptable value of the electronic noise contribution  ∆ܧ௘ is plotted in 

the range 2.5-4 keV. From the Fig.3.1 it's possible to see that the Eq.(1) can be 

satisfied only for energies greater than 2.5 keV ,because for lower energies  ∆ܧ௜ ൐ 

 ௠௥ as shown as in Fig 3.1, the energy range from 2.7 to 4 keV, the requiredܧ∆

electronic resolution is comprised between 4 and 14 rms. 

The contribution of electronic noise is usually expressed in term of  Equivalent 

Noise  Charge (ENC) that is the amount of charge which, applied as ߜ-pulse of 

current to the detector, would give at the output of electronic measurement chain a 

signal equal to the rms value of the output signal due to the noise only: 

௘ሺܸ݁ሻܧ∆ ൌ
ாே஼	ሺ௖௢௨௟௢௠௕ሻ

௤	ሺ௖௢௨௟௢௠௕ሻ
         (3) 

Let's evaluate the ENC for the detector amplifier system represented schematically 

in Fig 2.2. the capacitance ܥௗ includes the detector capacitance, the stray 

capacitance of the connection detector and preamplifier input capacitance ܥ௜ is 

usually the gate to source capacitance of the input JFET. The considered noise 

sources are: the series white noise  ܽ௪ due to the thermal in the JFET channel, the 

series  ܽ௙|݂| noise of the JFET , and the parallel white noise ܾ௪ due to the leakage 
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In the silicon drift detector the input capacitance is very small, thus  the series 

white noise become small  become very small, but still if we decrease  the 

temperature, the noise will become lower . 

3.1.2 Parallel white noise 
 

A realistic detector will draw some leakage current, which has statistical 

fluctuations. These fluctuations can be represented as a noise current source ܾ௪ 

feeding into the amplifier input. This current source ܾ௪ equal to : 

ܾ௪=2ܫݍ௟                   (7) 

where ܫ௟ is the sum of  leakage current of the detector and of the input transistor 

biasing current. In order to reduce the parallel white noise, we have to reduce the 

reverse leakage current which flows in the detector .  

 

3.2 The leakage current  
 

This leakage current in a p-n diode is generally a combination of diffusion current 

and generation current components:             ݍට
஽ು
ఛು

௡೔
మ

ேವ
൅

௤௡೔ௐ

ఛ೐
                        (8) 

where ܦ௉ is the diffusion coefficient, ߬௉ is the minority lifetime, W is the depletion 

width, ݊௜ is the intrinsic carrier concentration,	 ஽ܰ is the dopants concentration, q is 

an electron charge, and 1 ߬௘ൗ  is the generation rate in the depleted area.  

The diffusion component is caused by the minority carriers generated in the neutral 

area, diffusing to the edge of the space charge region, and therefore it is 

independent of the applied reverse bias, at least until the full depletion is reached. 

If the generation centers are distributed uniformly, the generation component is 



directly proportional to the depletion width, W; from which the generated carriers 

(minority and majority) are collected.  

From the relationship in Equation 8 we can see that the leakage current is strongly 

dependent on the intrinsic carrier concentration. The leakage current increase with 

the increase of the intrinsic carrier concentration. 

 

3.3 Intrinsic carrier concentration dependence on temperature 
 

The thermal excitation of a carrier from the valence band to the conduction band 

creates free carriers in both bands. The concentration of these carriers is called the 

intrinsic carrier concentration, denoted by ni. Semiconductor material which has no 

impurities added to it in order to change the carrier concentrations is called 

intrinsic material. The intrinsic carrier concentration is the number of electrons in 

the conduction band or the number of holes in the valence band in intrinsic 

material. This number of carriers depends on the band gap of the material and on 

the temperature of the material. A large band gap will make it more difficult for a 

carrier to be thermally excited across the band gap, and therefore the intrinsic 

carrier concentration is lower in higher band gap materials. Alternatively, 

increasing the temperature makes it more likely that an electron will be excited into 

the conduction band, which will increase the intrinsic carrier concentration. in the 

fig 3.4  shows the relationship between temperature and  the intrinsic carrier 

concentration. 
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For the sake of simplicity, the drift field E in a two-dimensional and circular 

shaped assumed SDD with radius R can be described by the ratio of the voltage 

difference between center and edge to the maximum electron drift path R. 

Furthermore, the electron drift velocity can also be expressed as the ratio of its drift 

path in the SDD to its drift time. In this simple model, the difference between the 

maximum and the minimum electron drift time is taken as a measure for the time 

resolution ∆ݐௌ஽஽. From this it follows that the relation of time resolution and 

electron mobility can be expressed via: 

ௌ஽஽ሺܶሻݐ∆ ൌ
ோ

ఓ°.ா
∙ ቀ

்

°்
ቁ
௡
൅ ܿ                       (11) 

with ߤ° as the electron mobility at the reference value °ܶ and c as a constant, 

representing to ∆ݐௌ஽஽.  at T = 0 K. In comparison with equation 9, it shows that the 

constant a thus includes geometrical characteristics of the detector, of the electrical 

field and of material properties. 

Also the Mn-ܭఈ peak center was plotted as a function of SDD temperature in Fig 

2.6. Below 130 K the observed tendency might be caused by a reduced 

performance of the FET at low temperatures. Above 130 K, the peak centers show 

an increasing behavior with increasing temperature. The linear fit in fig 3.6 

delivers a gradient of 0.19 channels perKelvin, which corresponds to 0.6 eV/K. 

To understand this gradient, the behavior of the peak shifts was compared to the 

temperature dependence of the electron-hole pair creation energy in silicon. The 

SDDs’ output signal height for an X-ray, from which the ADC derives a 

corresponding peak center, is proportional to the energy of this incident X-ray and 

therefore to the number of the created electrons. The number of created electrons 

on the contrary is inversely proportional to the electron-hole pair creation energy in 
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4. Development of a cooling system for an X-ray 
imager based on a Controlled Drift Detector 

 

4.1 Cooling system. 
 

The introduction of a cooling system arises from the need to increase the energy 

resolution obtainable from the entire experimental apparatus, going to improve the 

performance, from the point of view of noise, the detector and the first part of the 

chain of signal acquisition. In this chapter the construction and operation of such 

an apparatus including the electronic system for regulating the temperature is 

treated. 

4.2 Thermoelectric cooler (Peltier) 
 

The basic idea behind the Peltier effect is that whenever DC current passes through 

the circuit of heterogeneous conductors, heat is either released or absorbed at the 

conductors' junctions, which depends on the current polarity. The amount of heat is 

proportional to the current that passes through conductors. The basic thermoelectric 

(Peltier) cooler  unit is a thermocouple, which consists of a p-type and n-type 

semiconductor elements, or pellets. Copper commutation tabs are used to 

interconnect pellets that are traditionally made of Bismuth Telluride-based alloy, 

shown in Fig 4.1. 

Thus, a typical thermoelectric cooler (TEC) consists of thermocouples connected 

electrically in series and sandwiched between two Alumina ceramic plates. The 

number of thermocouples may vary greatly - from several elements to hundred of 
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4.3 Controlled Drift Detector system module  
 

As we have seen in the previous chapter, the most important element to be cooled 

is the detector, in such a way as to reduce the dominant contribution of noise at 

room temperature related to the leakage current, and thus be able to discriminate 

energies much closer together. It is recalled that, around room temperature, the 

leakage current is reduced approximately by a factor of about 2 down to 8 ° C in 

temperature.  

But, even the cooling of electronics closer to the detector may include some 

benefits. In particular the buffers present on the motherboard of the detector 

dissipate a power far from negligible that it degrades the performance with regard 

to the thermal noise, and contributes to heat the working environment 

(motherboard and detector box) also indirectly by influencing the detector itself. 

The structure currently realized only takes care of cooling the detector even  if it 

has already been provided for a parallel structure very similar, and independent 

from the point of view of measurement and regulation of temperature, for cooling 

the buffer. 

The detector chip is pasted on a ceramic made especially for the present system, 

which works as an interface with the motherboard with on board part of the 

electronics for the signal reading and the polarization of the device. The ceramic is 

formed by the superposition of three layers of alumina which are passed between 

the conductor tracks in addition to those present on the two outer surfaces to have a 

total of four levels of slopes. The tracks were then connected through micro-

solderings or bondings to the motherboard and to the detector. Since the bondings 
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Optionally you can keep the water at lower temperatures (with suitable liquids 

even to values below 0 ° C) but there is a risk that the occurrence of condensation 

on the bottom of the box that may short the electronic circuit. 

The same issue is also present within the detector box, so even worst for low 

temperatures achievable (to below 0 ° C) where it would formation of ice due to 

water vapor in the air, and consequently possible short circuits could happen, 

which could damage the detector and control electronics. To overcome this 

problem the box of the detector (detector box) is completely sealed and through 

two openings, nitrogen can enter and expel the air and humidity present. Inserting 

inside a sensor for humidity reading was possible to monitor any interruptions in 

the flow of nitrogen to allow to turn off as soon as the cooling system. 

The system is completed by the box containing the electronics that takes care of 

the measurement and display of temperature and electronics for the control of the 

Peltier with the purpose of maintaining the desired temperature value. For the 

temperature measurement is made using a PT100 bonded to the ceramic of the 

detector. 

4.4 Thermal model of the system 
 

Because the system is realized constituted by real elements, due to the finite 

thermal conductivity and  the reduced section, all the parts used have a thermal 

resistance to heat flow transported. The consequence is a temperature difference 

between the two heads of the various blocks used, which results in a reduction of 

performance achievable by the system and the minimum temperature at which the 

flow rate can be ceramic of the detector. For an estimate of the performance 

obtainable with the system realized you can build one equivalent electrical diagram 



shown in Fig 4.6 , in which the various elements used are modeled according to 

their size and thermal conductivity.  

The first element to be analyzed is the Peltier cell whose main characteristics are 

reported here in table 1: 

 

Qmax 33.4 W

ΔTmax 67 °C

Vmax 15.4 V

Imax 3.9 A

table 1 

 

This cell is capable of transferring a thermal power from a side of said cold face to 

another said hot face thereby creating a difference T at its ends. The Peltier used 

is able to provide a ΔTmax = 67 ° C polarized with the maximum current and zero 

load, that is with zero heat flow.  By increasing the flow of heat transferred T 

obtainable decreases linearly as can be seen in the graph in Fig 4.5 

With maximum load ,that is a transfer of power equal to 33.4 W, the T obtained 

would be invalid. In the ideal case the power to be transferred would be only that 

of the detector, over a factor of 100 below the maximum power which can be 

dissipated, and then the T would be close to 67 ° C, but in the actual situation in 

the flow joins the power transported by convection from buffers and preamplifiers. 

 for transporting the heat, the cell dissipates the same power that must be disposed 

of from the hot face through the heat exchanger with water at 15 ° C, taking care to 

reduce the one that returns to the cold face through alternative routes. For this 
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The resistance indicated by Rbc is the most important, it links between the pcb 

motherboard (and therefore the area incorporating the buffer) and the cooling 

circuit of the detector with the ceramic and the copper column. . The contribution 

to this resistance is given by the bonding of very high value, with a size of 104, 

because of the small supply section (diameter of 25 microns), while the preferential 

path for the heat, placed in parallel, is linked to the four tweezers metallic support 

of the ceramic. This results in a total value of around 280 K / W. In complete 

project, then cooling also buffers, a high value for this resistance is desirable in 

order to maintain isolates the two systems of cooling and can adjust them 

independently. 

Finally Rdc represents the thermal resistance offered by the path between the 

detector chip and the copper block at the bottom of it, consists mainly of the glue 

fixing the chip to ceramics and ceramics same. Its value is around the 8.2 K / W 

and with 250mW of power which crosses add a drop of 2 ° C. 

The resistance of the heat exchanger and that of the bottom of the box are 

negligible, around 0.015 K / W and even if the power that passes through them is 

high even having to move the energy dissipated from the cell, the thermal head and 

limited (less than 1 ° C ). 

Regarding buffers the project, still to be realized, requires a further Peltier cell 

identical to that used for the detector, and modeled in the diagram with Fe, Re and 

Pe and parallel with the usual thermal resistance offered by nylon screws Rpe. 

Above the peltier is thought to realize a column of copper similar to that used for 

the detector, connected in this case by means of two flat plates to a further block of 

copper fixed to the motherboard shown if Fig 4.7 . 
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Even this resistance is of high value, 520 K / W helping to isolate the two cooling 

channels. The diagram also shows the strengths and Rhea Rba representing 

alternative paths between PCB and bottom of the box, mainly due to the support 

pillars of the motherboard and the transport of heat by convection. 

It therefore remains to estimate the temperature drop undergone by the water flow 

in the heat exchanger. The duct portion taken into consideration is that between the 

inlet sections and outlet of the heat exchanger. If we assume a steady state, 

conservation of energy requires that the incoming energy per unit time in the heat 

exchanger is equal to the outgoing one. In reference to figure then the power to the 

outlet section of the heat exchanger holds: 

௢ܲ ൌ ௜ܲ ൅ ௗܲ                         (12) 

where Pd is the power to be dissipated in the heat exchanger inlet. Even for the 

mass of water which passes through the exchanger unit of time mh2o [kg / s], said 

flow rate, the same principle applies. At this point it is necessary to define the 

thermal capacity of the fluid with regard to the flow rate using the specific heat at 

constant pressure water ܥ௉ுమை	= 4186 [J / (kg * K)]:     (13) 

capacity of heat flow ܥுమை ൌ ݉ுమை.  ௣ுమை                      (14)ܥ

Consequently, the thermal power absorbed by the water is equal to ܥுమை. ሺ ௢ܶ െ ௜ܶሻ 

where ௢ܶ and ௜ܶ are respectively the temperatures of the water at the entrance and 

exit of the heat exchanger. For the first principle exposed this power corresponds 

to the power Pd to be disposed of, and then: 

஽ܲ ൌ .ுమைܥ ሺ∆ܶሻ               (15) 



With a power ஽ܲ to dissipate around 60 W, due for the most part to the electrical 

power of the Peltier cell, and a minimum flow rate of the chiller of 11 l / min, the 

DT obtained should be less than 0.1 K. 

In theory, considering only the power dissipated by the detector and the resistance 

overall crossed towards the heat exchanger, one could cool to -38 ° C with the 

water temperature maintained at 15 ° C. Now it remains to estimate the 

temperature reached under field conditions, having also dissipate some of the heat 

from the environment inside the detector box. 

4.5 Electronics for the closed loop regulation of the temperature 
 

As we have discussed previously, the temperature does not intervene only in the 

amount of noise of the detector but also modifies the mobility of the charge 

carriers. A variation of the temperature behaves accordingly also a variation in the 

time of drift of charge packets from the pixels to the anodes. Choosing the desired 

working temperature is very often important to keep it stable as possible for the 

entire duration of the measurement made. This reduces the variation in the 

enlargement of the electron cloud from acquisition to the next. So you can get 

more precise measurements with only one initial calibration of the detector. At the 

same time allows to simplify the reconstruction of the scanned image since the 

drift time of the center of each pixel remains constant. 

The cooling system is completed by an electronic control box outside the detector 

with which you can monitor the temperature of the detector, set the desired 

temperature and edit it by means of the Peltier. In summary the electronic acts as a 

linear closed loop within the system since it reads a temperature, compares it with 

the temperature set by the user and, based on the difference detected and the 



control method implemented, acts on the Peltier cell's current to match the two 

values. 

The system is composed by three main blocks: the first is in charge of the 

temperature reading by means of a PT100 resistance, the subsequent amplification 

of the corresponding electrical signal and of its packaging, so as to have it in an 

easily readable format, for example with a tester; the second compare the measured 

temperature with the desired temperature and implements the type of adjustment 

chosen also taking care to keep the temperature stable over time and to limit the 

oscillations that can occur in closed loop. The third block then functions as the 

power stage and controls the Peltier cell, by setting the current that flows according 

to the signal coming from the regulator block.  

To supply the electronic control system of the temperature is chosen a voltage of 

15V because the cell Peltier from 33.4W can be polarized to the maximum with 

this value. Since it was decided to feed every block with the same source, all other 

voltages required and all references are machined from a suitable bias network 

4.5.1 Thermo resistor PT100 
 

The heat resistance, commonly called resistance thermometer is a temperature 

sensor that exploits the variation of the resistivity of certain materials as the 

temperature varies. In particular for metals there is a linear relationship that binds 

resistivity and temperature: 

ሺܶሻߩ ൌ ௢ሺߩ ௢ܶሻ. ሼ1 ൅ ሺܶߙ െ ௢ܶሻሽ        (16) 

where T is the temperature ,	ߩሺܶሻ is the resistivity of the material at a temperature 

T, ߩ௢ is the resistivity of the material at a temperature ௢ܶ ,and ߙ is a coefficient that 



depends on the material = 0.00358 ̊  .ଵିܥ Exploiting the relationship between 

resistance and resistivity (via the section S and the length L of the conductor): 

ܴ ൌ
ܮߩ
ܵ

 

we obtain that: 

ܴ ൌ ܴ௢. ሼ1 ൅ ሺܶߙ െ ௢ܶሻሽ         (17) 

with ܴ௢ = 100Ω .so at T= ௢ܶ ,we sense 0 degree. 

 

4.5.2 temperature reading Circuit by PT100 
 

The temperature is measured by a PT100 resistance welded as close as possible to 

the detector. In particular the resistance, which has a flat side and thermally 

conductive in order to better adapt to the surface to be measured, has been welded 

on ceramic support to the detector. Since the resistance requires a bias current, the 

link from the ceramic to the box containing the electronic control takes place by 

means of four wires, two for the polarization and two for reading, so as to measure 

only the signal and not the voltage drops that occur along the path. 

In Fig 4.8 is the schematic of the proposed analog circuit that deals with the 

reading and the polarization of the signal coming from the PT100. 

The circuit  is polarized between the ground (VEE) and +15 V (VCC)  supplied 

from an external power supply while analog ground is defined a referenced by the 

signal along the amplification chain. The analog ground is derived from +15 V via 

a suitable network present on the second tab, that of the temperature regulation. 
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This offset must be deleted from the circuit that follows in order to have a voltage 

differential with respect to the analog ground of 0V to 0 ° C and make easier the 

conversion of the signal. if there is one degree difference between ܶ	ܽ݊݀	 ௢ܶ: 

 ܴ ൌ 100 ∗ ሼ1 ൅ 0.00358ሽ = 100.358 Ω 

so the difference in the resistor per degree equal to ∓ 0.358 Ω ,so  For each degree 

of difference is obtained a useful signal (without the offset component) of input 

equal to  ∓ 35.8 µv . 

The signal undergoes a first amplification by means of an input stage with an INA 

gain set by R5 equal to : 

ܩ ൌ 5 ൅
଼଴	௞	Ω

ோହ
         (19) 

and R5 its value selected to be  820 Ω ,so the gain equal to 103. Output of the 

amplifier is thus obtained a signal of about 3.7 mV / ° C, relative to analog ground 

and the offset is not yet eliminated. 

A second stage, constituted by the amplifier U6  OP193F in the figure, allows to 

amplify the signal again to obtain outgoing -10 mV / ° C. The required gain 

calculated as ratio (var3+ R10) / R8, finely adjustable via potentiometer var3 

feedback, is therefore approximately equal to - 2.7  shown in this equation: 

௢௣ଵଽଷܩ ൌ
ோభబା௩௘௥య

ோఴ
     (20) 

where R10=27k	Ω ,ver3=10k max, and R8=12K. This second stage also takes care 

to remove the offset by comparing the input signal with a negative voltage, 

adjustable by trimmer var4, positive input. 



This trimmer has been adjusted so as to give a voltage equal to about Vos ⋅ GINA 

2.7/3.7 ≅ 0.7V, obtained by dividing the offset, amplified output to the second 

stage, for the gain seen from the entrance of positive 3.7. As for the signal at each 

node of this first circuit, also the comparison voltage for the elimination of offset is 

referred to the analog ground (AGnd)  which equal to 4.256 V. the range of the 

voltage entering to the - input of U6 can calculated like the following equations : 

ଵܸ ൌ
ோమభ

ோభలାோమభାோభవ||௏௘௥ర
ሺܸܥܥ െ  ሻ           (21)݀݊ܩܣ

ଶܸ ൌ
ோమభାோభవ||௏௘௥ర

ோభలାோమభାோభవ||௏௘௥ర
ሺܸܥܥ െ  ሻ           (22)݀݊ܩܣ

where ଵܸ ,	 ଶܸ are the voltages which can appear on the negative terminal of the 

amplifier OP193F in two cases ,when the trimmer at low and high values , 

ܴଶଵ=4k7 Ω ,	ܴଵ଺=100k Ω	, ܴଵଽ ൌ 18	kΩ	, Ver4 ൌ 10	kΩ	max. from calculation we 

have got  difference  in voltage between them ≅ 0.7V over the analog ground and 

that's what we need to eliminate the offset voltage comes from the INA. 

 The differential signal output from the circuit with respect to the analog ground 

will then be negative for temperatures above 0 ° C and positive for lower 

temperatures. 

4.5.3  Temperature regulation and control of the Peltier current  
 

On a second stage Fig 4.9  were made the following sections of the control system: 

the network that implements the type of operation to be performed, the network of 

power for driving the Peltier cell. This stage  receives in the  input, the voltage 

value of the read and amplified PT100 and provides in the output, the current 

require for the Peltier. 
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SET voltage will be between 2.17v and 3.373 referred to REF1,the corresponding 

temperature range will be between (35 Ԩ and -87 Ԩ  ). 

The second stage shown, constituted by the amplifier U1B and the power transistor 

IRF1540, sets the current in the Peltier cell as a function of the control voltage 

coming from the first stage. 

The feedback amplifier operates in practice as a buffer and, by acting on the Vgs of 

the transistor, brings the voltage read on the positive input terminal and to the 

heads of the power resistor R9 = 0.1 Ω. The current that is invoked by the 

transistor through the load is the same as that flowing in the resistance. 

The diode D1 between the first and the second stage performs a camping voltage to 

about 0.7V above the analog ground and limits the current flowing through the 

resistive divider following. By means of the trimmer var1 is instead possible to set 

the limit value of the current that can flow in the load. For the present system, it 

was decided to set the maximum current in the cell Peltier to 3.3 A 

To avoid the risk of destroying the device, a value that corresponds to a maximum 

voltage, set by the trimmer on the input terminal, of 340 mV and obtained when 

the output of the stage regulator rises above the value for camping of the diode. 

Given the high value of the current request, in addition to cell Peltier also the 

transistor used must be able to dissipate a high power during certain operating 

conditions, especially when the cell is working with half of its maximum current. 

The value to be disposed of is in fact of 14.6 W for a current of 1.95 A. To dispose 

of as much as possible the heat generated, the transistor has been screwed to a heat 

sink with fan in such a way that the maximum temperature not ascended above 

60 °C. However in purpose apparatus that value should be reached only during the 

transition phases as for the temperatures of the operating conditions provided 



below 0 °C the cell is working with a current exceeding 3A and a negligible 

dissipation on the transistor. 

The switch is used to switch on or switch off the second stage of the power 

transistor thus will also switch on and of the Peltier. 

4.5.4 The derivation of the reference voltages  
 

All references used in this circuit  are derived from the part of the circuit shown in 

Fig 4.10. One of the two regulators used TL431 (U7) fixed 2.5 V across the 

resistor R14 = 10k and consequently a current of 250μA. The same current flows 

through R1 so as to obtain a total voltage drop at the terminals of the two resistors 

10.75V. The analog ground (AGnd)  used as reference for PT100 signal is fed to 

the lower end of R14. Its value is 15v-10.75v =4.25v. 

A second reference value, indicated in the figure with REF1, is maintained at 2.5V 

below the analog ground, then to 1.75V. The last reference, indicated with REF2, 

is set by diode D2 to approximately 0.7 V above the negative supply (VEE) of 0V. 

Be noted that all references used within the chain of reading and comparison of the 

signal are connected to analog ground in turn maintained at a fixed distance to 

either the positive. 
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Pin number Connected to 

1 VEE 

2 VCC 

table 5 

The connector N1 is mounted to connect the current required for the Peltier from 

the circuit to the connector for the Peltier through wires. 

All the amplifiers used in the circuit will be mounted through sockets. All the 

trimmers (ver1,ver2,ver3,and ver4 ) will be mounted on the edge  of  the board. all 

the trimmer will be side adjustment.  

 

4.7 The display DPM160 
 

The DP160 is a 4.5 digits display which act as a voltmeter shown in Fig 4.15. We 

will use this display to measure and monitor the  the setting voltage proportional to 

the setting temperature, and reading voltage proportional to the reading 

temperature referred to the AGnd and also to display the reading of humidity 

sensor referred to the Ground VEE. the full scale range of this display is 200mv . 

we need a full scale range of 20V, thus we will scale the full scale range by two 

resistor (100K and 910K)  as it shown in Fig 4.15. the input of this display comes 

from the selector MRX 204  .we will use a floating battery of  9v to power on the 

display and also switch to turn on and off the display. this display and  its switch   

will be mounted on the wall of the box .  
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5. Experimental results  
 

Starting from the generation voltages which will be used as a reference' voltages in 

the circuit . the analog ground AGnd measured and it's equal to 4.291 v. the 

voltage REF1 is measured and its value is 1.787v. finally REF2 measured and its 

value is 0.67 V. 

The current which will flow the PT100 is measured and its value is 94.5ܣߤ. we 

used a trimmer instead of the PT100 to test the output of the stage of INA126 and 

this is the result we have got shown in table 6  : 

 Value of the PT100 Output of the INA126 referred to AGnd 

89.26 Ω 0.874v 

96.42 Ω 0.944 v 

99.64 Ω 0.975v 

100 Ω 0.979v 

100.358 Ω 0.982v 

103.58 1.014v 

110.74 1.084v 

table 6 

from this results it appears that the gain of INA ൎ 103.59 .  

the value trimmer ver4 is set in order to eliminate the  offset voltage of the INA  

.Also the value of the trimmer is set in order to have at the output of the OP193 ,an 

output of -10mv/Ԩ.and after the setting them we measured the output of the 

OP193 and here we have some results of the test shown in table 7: 

 



 

PT100 Corresponding 

temp 

OP193 output 

referred to AGnd 

89.26 Ω -30Ԩ 300mv 

96.42 Ω -10Ԩ 101mv 

99.64 Ω -1Ԩ 9.89mv 

100 Ω 0Ԩ 0v 

100.358 Ω 1Ԩ -10mv 

103.58 10Ԩ -100.45mv 

110.74 30Ԩ -299.8mv 

table 7 

from the result we see that we have got an output voltage of the OP193 =-10mv/Ԩ. 

the first part of the second stage is the OPAMP LM358,the positive input of this 

amplifier is the setting voltage proportional to the setting temperature  and the 

negative input is the output comes from OP193 .this amplifier works as a 

comparator . if the positive input is higher it will give an output of 13.636v  

otherwise it will give an output of 5.6mv .we test this stage with the feedback 

network of this amplifier ,and without .we can see the results from this two graphs  

first the test without the feedback network shown in Fig 5.1. in this case the 

transient happened so fast due to  the open loop in the feedback . which will make 

the gain very high . we fixed the setting temperature at 0Ԩ  means at 4.291 vand 

we change the value of the measured temperature between 4.261 v and 4.31v   in 

the Fig 5.2 we test the output of the LM358  with feedback capacitor and resistor 

(C1 and R1) .now the transit happened in longer time because output stage will not 

saturate at the supply voltages and the duration of the output transient will be 

limited by the time constant of the feedback network.  
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Fig 5.2 
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