PoLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione
DOTTORATO DI RICERCA IN INGEGNERIA DELL'INFORMAZIONE

Improving Synchronization
and
Data Access
in
Parallel Programming Models

Doctoral Dissertation of:
Ettore Speziale

Advisor:
Prof. Stefano Crespi Reghizzi

Tutor:
Prof.ssa Donatella Sciuto

Supervisor of the Doctoral Program:
Prof.ssa Barbara Pernici

2012 - XXV edition

PoLIiTECNICO DI MILANO
Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, I-20133 — Milano

PoLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione
DOTTORATO DI RICERCA IN INGEGNERIA DELL'INFORMAZIONE

Improving Synchronization
and
Data Access
in
Parallel Programming Models

Doctoral Dissertation of:
Ettore Speziale

Advisor:
Prof. Stefano Crespi Reghizzi

Tutor:
Prof.ssa Donatella Sciuto

Supervisor of the Doctoral Program:
Prof.ssa Barbara Pernici

2012 - XXV edition

Acknowledgements

During the last three years I had the opportunity to study and work in
the amazing field of parallel programming. What makes this field unique
is the mixture of techniques you have to know: you have to know how
hardware works, how to compile/analyze/optimize parallel programs,
and how to support their execution at run-time. But what makes this
three-years long journey incredible was the companions I found along
the way.

First of all, I would really like to thank my advisor, Professor Stefano
Crespi Reghizzi. Beside the technical stuffs, I really like to thank him
for choosing me for some teaching duties, a task that helped improving
my poor communication skills. Second, I would like to thank STMi-
croelectronics, and, in particular, Diego Melpignano for supporting my
Ph.D. studies through a scholarship.

I would also like to thank Professor Eduard Ayguadé and Doctor Vi-
ceng Beltran, who hosted me for a long time at Barcelona Supercomput-
ing Center, and all people I meet there. From the same institution, I also
thank Professor Rosa Badia, who served as this dissertation reviewer.

Next, let me thank all people I found in the 127 office ad Dipartimento
di Elettronica e Informazione.

From the Formal Languages and Compilers Group, I thank Andrea
Di Biagio for teaching me a lot of stuffs about coding and compilers.
Moreover, I would like to thank him for the work we did together. I
thank Michele Tartara for always supporting me with administrative
duties and for many brainstorms we did together. I would like to thank
Alberto Magni and Michele Scandale, two exceptional coders that share
with me some LLVM-related development. Last, I would like to thank
Professor Giampaolo Agosta, the old man of the office, for bearing me
for such a long time.

I thank members of the Cryptology group, whit whom I shared the
office. In particular I would like to to thank Professor Gerardo Pelosi
for its advices full of wisdom, and Doctor Alessandro Barenghi for its
fools, but extremely funny, advices.

Finally, I would like to thank my parents and all friends who tolerate
my delays and misses to some social activities due to last-time duties, of-
ten encountered during Ph.D. studies. Among the other, I would like to

\%

thank Doctor Martina Maggio and Doctor Guido Salvaneschi for help-
ing me with many communication and administrative duties, and for
bearing with me for more than just three years.

vi

Sommario

Oggigiorno le architetture parallele sono il principale mezzo utilizzato
per sfruttare il crescente numero di transitori disponibili all’interno dei
circuiti integrati. Il cambiamento epocale da architetture ottimizzate
per ’esecuzione di programmi sequenziali ad architetture pensate per
I’esecuzione di codice parallelo & da imputare alla non sostenibilita delle
crescenti richieste di potenza elettrica e dall’inabilita del sottosistema
di accesso alla memoria di fornire dati al ritmo richiesto dall’unita di
esecuzione centrale. D’altronde, 1'utilizzo efficiente di multiple unita di
esecuzione parallele non € un compito banale. Infatti, per ottenere dei
guadagni prestazionali & spesso necessario ottimizzare attentamente le
applicazioni, come dimostrato da anni nel campo del calcolo ad alte
prestazioni.

Per mascherare tutta questa complessita, i modelli di programmazio-
ne parallela espongono una visione semplificata dell’architettura. Invece
di mostrare tutte le singole unita parallele, essi si avvalgono di costrutti
di alto livello, come ad esempio i cicli paralleli. La traduzione di questi
concetti sulle unita di esecuzione parallele ¢ attuato tramite una com-
binazione di compilatori ottimizzanti e librerie di supporto progettate
per guidare ’esecuzione del programma. Tuttavia, data la disponibilita
di un grande e variegato numero di architetture parallele, mascherare i
dettagli di basso livello spesso limita le prestazioni, che quindi non sono
comparabili con quelle ottenibili attraverso una ottimizzazione manuale.

Lo scopo ti questa tesi € analizzare le inefficienze legate all’utilizzo di
unita di esecuzione parallele, ed ottimizzarle tramite tecniche da appli-
care durante ’esecuzione del programma. In particolare si analizza ed
ottimizza, I’esecuzione di riduzioni contestualmente ad una operazione di
sincronizzazione tramite barriere. Dopodiché, si mostra come 1'utilizzo
di tecniche dinamiche permette di sfruttare I'affinita tra dati e compu-
tazioni per limitare il pitl possibile la penalita di accesso alla memoria
nel contesto di architetture NUMA, dal punto di vista di due modelli di
programmazione parallela: OpenMP e MapReduce. Segue quindi una
proposta di utilizzo di tecniche leggere di compilazione dinamica per
massimizzare 1'utilizzo delle architetture parallele, ed infine si analizza
la robustezza ai guasti delle primitive di sincronizzazione primitivi, un
meccanismo fondamentale utilizzato da ogni programma parallelo.

vii

Abstract

Today, parallel architectures are the main vector for exploiting available
die area. The shift from architectures tuned for sequential programming
models to ones optimized for parallel processing follows from the inabil-
ity of further enhance sequential performance due to power and memory
walls. On the other hand, efficient exploitation of parallel computing
units looks a hard task. Indeed, to get performance improvements it
is necessary to carefully tune applications, as proven by years of High
Performance Computing using MPI.

To lower the burden of parallel programming, parallel programming
models expose a simplified view of the hardware, by relying on abstract
parallel constructs, such as parallel loops or tasks. Mapping of those
constructs on parallel processing units is achieved by a mix of optimizing
compilers and run-time techniques. However, due to the availability of
an huge number of very different parallel architectures, hiding low-level
details often prevents performance to be comparable with the one of
hand-tuned code.

This dissertation aims at analyzing inefficiencies related to the usage
of parallel computing units, and to optimize them from the runtime per-
spective. In particular, we analyze the optimization of reduction compu-
tations when performed together with barrier synchronizations. More-
over, we show how runtime techniques can exploit affinity between data
and computations to limit as much as possible the performance penalty
hidden in NUMA architectures, both in the OpenMP and MapReduce
settings. We then observe how a lightweight JI'T compilation approach
could enable better exploitation of parallel architectures, and lastly we
analyze the resilience to faults induction of synchronization primitives,
a basic building block of all parallel programs.

X

Contents

Cover
Acknowledgements oo
Sommario . . . oL ... e e e e e e e e e
Abstract
Contents e
List of Figures
List of Tables

1 Introduction

2 An Overview of Parallel Computing
2.1 Introduction Lo
2.2 The Hardware Perspective
2.2.1 Flynn’s Taxonomy
2.2.2 Traditional Hardware Performance Improvements .
2.2.3 Dealing with the Power Wall
2.2.4 Dealing with the Memory Wall
2.2.5 The Case of GPGPUs-based Architectures.
2.2.6 Taking into Account the Amdahl’s Law
2.3 Parallel Programming Models
2.3.1 Programming Parallel Architectures
2.3.2 Data-parallel Programming Models
2.3.3 Task-parallel Programming Models
2.3.4 Data-flow Parallel Programming Models
2.3.5 Task/Data-flow Parallel Programming Models . . .
2.4 Workload Analysis 0.
2.5 Concluding Remarks

3 Optimizing Reductions in Shared Memory Multiprocessors
3.1 Introduction.
3.2 Backgroundo

3.2.1 Barrier Synchronization
3.2.2 Reduction Implementations
3.2.3 Atomic Operations

Contents

xii

3.3

3.4

3.5
3.6

Combining Barrier and Reduction
3.3.1 Tournament Barrier
3.3.2 Basic Reduction Design
3.3.3 Fast Path Optimization
3.3.4 Slow Path Management
3.3.5 Compact Data Representation
3.3.6 Nowait Reductions
Experimental Evaluation.
3.4.1 Benchmarks
3.4.2 GCC Optimization
3.4.3 Experimental Setup
3.4.4 Micro-benchmarks
34D Cg . e e
3.4.6 312swimm e
Related Worko oo
Concluding Remarks

Data-aware lterations Scheduling in OpenMP

4.1
4.2

4.3

4.4

4.5
4.6

Introduction oo
The Data Access Pattern Approach.
4.2.1 Data Access Pattern Definition
Runtime Extensions to Exploit Patterns
4.3.1 Iteration Space Partitioning
4.3.2 A Pattern Enabled Dynamic Scheduler
4.3.3 Work Stealing Strategy
Experimental Results o0,
4.4.1 Benchmark Suite
4.4.2 Performance Analysis
4.4.3 Remote Memory Access Analysis
Related Worko
Concluding Remarks

Task Assignment in Data Intensive Scalable Computing

5.1
5.2
5.3

Introduction Lo oo
Backgroundo oo
The LABL Approach to Task Assignment
5.3.1 Preliminaries
5.3.2 Optimization Goals
5.3.3 Lower Bounds for the Expected Job Latency .
5.3.4 Task Assignment Algorithm
53.5 Case Study
5.3.6 Formal Properties of the LABL Task Assignment .

65
65
66
67
69
69
70
72
73
73
74
76
76
7

79
79
81
82
83
85
85
87
92
94

Contents

5.4 Simulation Results 97
5.4.1 Performance Overview 98
5.4.2 Scalability L oL 99
5.4.3 Sensitivity Analysis 100

5.5 Discussion 102

5.6 Related Worko Lo 103

5.7 Concluding Remarks 105

Towards Runtime Optimization of Parallel Applications 107

6.1 Introduction. 107

6.2 Related Work 108

6.3 Proposed Approach 109
6.3.1 Compilation/Execution Pipeline 111
6.3.2 Run-time Optimization 112

6.4 Foreseen Applications 114
6.4.1 Adaptive Loop Unrolling 114
6.4.2 Dynamic Task Fusion 115

6.5 Concluding Remarks 116

Fault Sensitivity Analysis of Synchronization Primitives 117

7.1 Introduction 117

7.2 Faults characterization 118

7.3 The Methodology Adopted 119

7.4 Impact of Faults on Synchronization Mechanisms 121
7.4.1 Lock-based Critical Sections 121
7.4.2 Transactional Memory-based Critical Sections . . . 124
7.4.3 'Transactional Locking-based Critical Sections . . . 125
7.4.4 Results of the Experimental Campaign 127

7.5 Concluding Remarks 131

8 Concluding Remarks 133
137

Bibliography

xiii

List

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

5.1
5.2

of Figures

Interactions of Architectures with Instructions and Data . 10

String Copy on CISC and RISC Architectures 12
Transistor Integration 13
General Purpose Processors Evolution 14
An Example of UMA Architecture 17
An Example of NUMA Architecture 18
Heterogeneous Computing with GPGPUs 19
Plot of the Amdhal’s Law 19
Sequential SAXPY L. 23
Sequential and Parallel Execution of SAXPY 24
OpenMP SAXPY 26
Sequential SDOT 28
Sequential and Parallel Execution of SDOT 29
OpenMP SDOT 29
Cilk Sort o 32
Streamlt Low Pass Filter 34
StarSs Cholesky Decomposition 37
Serialized Reduction Example 48
Parallelized Reduction Example 49
Hand-written Reduction 50
Execution of the Tournament Barrier Algorithm 51
Layout of the Container Type 53
An Example of Reduction, 54
Path Management Algorithm 56
Reduction Micro-benchmarks Results 61
Reduction Benchmarks Results 62
Pattern Clause Syntax 67
Pattern Exampleo o o oL 68
NUMA-aware OpenMP Runtime 71
Runtime Behaviour of a Sub-team 71
LABL Task Assignment Algorithm 88
Critical Tasks Assignment 89

List of Figures

xvi

5.3
0.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Remote Tasks Assignment
Less Loaded Servers Assignment
An Example of Data Placement
Round-robin and Flow-based Assignments
Locality Aware & Bounded Latency Task Assignments . .
Performance of Analyzed Algorithms
Scalability of the Analyzed Algorithms
Resource Awareness of Analyzed Algorithms
Replication Factor Sensitivity of Analyzed Algorithms .

Proposed Dynamic Compilation/Execution Pipeline
Foreseen Applications

Lock-protected Shared Counter Update
Shared Counter Updates Through Transactional Memory
Implementation of LOCKACQUIRE
Implementation of LOCKRELEASE
Transactional Memory-based Atomic Exchange
Transactional Memory-based Lock Release
Fault Description Example
Effects of Fault Injections

100
101

. 101

. 111

115

List of Tables

2.1
2.2
2.3
2.4

3.1

4.1
4.2
4.3
4.4

7.1
7.2

Flynn’s Taxonomy of Computer Architectures 10
HPC Dwarfs and their Descriptions — Part I. 40
HPC Dwarfs and their Descriptions — Part I 41
New Dwarfs and their Descriptions 42
Reduction Benchmark Characterization 59
OpenMP Benchmarks Characterization 73
OpenMP Benchmarks Runtime Behavior 74
OpenMP Benchmarks Speedups 75
OpenMP Benchmarks Remote Accesses (in Millions) . . . 76
Fault Sensitivity Analysis Benchmarks 127
Results of Fault Injection on Benchmarks 129

xXvii

1 Introduction

The switch to parallel general purpose computing is one of the most
challenging steps in the history of computer science. Indeed, before 2005,
parallelism was mainly exploited at the hardware level, while most of the
programming models were based on the abstraction of a single execution
flow. Parallel programming was relegated highly specialized application
fields, such as High Performance Computing or Internet daemons.

Nowadays, the parallel nature of the hardware is fully exposed to
programmers, hence improving performance of applications cannot be
resolved by simply upgrading to a newest processor: the major change
between two successive generation of processors is not the performance
of the single execution unit, but the number of execution units. Thus,
a greater number of resources is available, and programmers must cor-
rectly exploit them to increase application performance.

Different factors have led to this change in the architecture evolu-
tion trend. First of all, exposing a sequential programming model while
guaranteeing excellent performance requires to automatically identify
independent instructions in the input programs and to map them onto
parallel hardware resources. Super-scalar processors perform this op-
eration at run-time, exploiting aggressive Instruction Level Parallelism
techniques in order to keep the pipeline as full as possible. Combining
this with very short pipeline stages allows to boost the core operating
frequency, and thus the number of completed instructions per clock cy-
cle. However, these techniques rely on the ability to detect parallelism at
run-time, which is definitely not an easy task [117]. Moreover, relevant
power budgets are necessary [30], and the memory subsystem technolo-
gies must be in par with processing units technologies in order to fulfill
data requests, which is not the case [150].

From the compiler perspective, exploitation of parallel hardware can
be seen as optimization of sequential applications: the compiler is in
charge of detecting parallel components in the application, and mapping
them onto different processing elements. Due to the limited knowledge
of source code achievable by automatic compiler-based analyses, these
techniques — e.g. Decoupled SoftWare Pipelining [! 1] — cannot fully
exploit all available parallel processing units, thus programming models
exposing the true parallel nature of the hardware look better for achiev-

1

1 Introduction

ing maximum performance, as proved by MPI [103] in the domain of
large scale HPC applications.

On the other hand, exposing parallel resources to the programmer
implies charging him with more responsibilities. For instance, when
using the MPI library a programmer must both organize communication
between the different processing units, and distribute data across them.
To reduce the burden of parallel programming, different programming
models focus on hiding these aspects behind high-level constructs, such
as parallel loops. The compiler, eventually assisted by a runtime, is then
in charge of mapping parallel constructs over the available processing
units.

A parallel programming model is often based on one of the follow-
ing parallel computing idioms: i) data-parallelism; ii) task-parallelism;
iii) data-flow parallelism. Each of them is specialized in handling a dif-
ferent kind of parallelism.

Data-parallel programming models support regular applications, such
as HPC codes. That code is characterized by computing a value out
of a set of input matrices. Usually, inputs are analyzed by a means of
a loop which iterations are almost independent. Programmers identify
such loops, and tell the compiler that their iterations can be scheduled
in parallel. Synchronization inside loop iterations is up to program-
mers. OpenMP [16] mainly supports parallel loops in the context of
shared memory machines. However, since in modern machines the mem-
ory access cost is not uniform across different processing units, Parti-
tioned Global Address Space languages, like Unified Parallel C [113] and
Chapel [11] have been introduced. Together with the identification of
parallel loops, they allow programmers specifying how matrices should
be distributed across available processing units. This extra information
allows the compiler to schedule iterations in order to minimize the cost of
accessing the memory. A special case of data-parallelism is represented
by languages targeting GPGPUs, like CUDA [] and OpenCL [47], that
allow fine tuning of parallel loop iterations in order to maximize perfor-
mance. On the other hand, portability is achieved only at the language
level, and little changes in the target architecture can exhibit very dif-
ferent performance. Moreover, full exploitation of GPGPUs resources
requires non trivial programming efforts.

Task-parallel programming models focus on extracting as many as
possible parallelism from applications that do not exhibits a regular
behaviour. Indeed, there are no parallel loops to identify. Rather than,
at some point, the application spawns independent computations. They
are identified by programmers, and called tasks. Since at compile-time
parallel computations cannot be identified, this approach completely

2

relies on efficient run-time techniques to manage task lifetimes. Cilk [50]
is the best known task-parallel language.

Finally, by specializing the language for a specific application domain,
it is possible to completely hide parallelism to programmers. For in-
stance, in the context of signal processing, data-flow programming mod-
els allow expressing applications by a means of graphs. Each node repre-
sents a small computation, often a filter application. Each arc is labelled
with two labels: the label at the source node represents the number of
resources produced by running the computation related to the source
node, while the label at the target node represents the number of re-
sources needed to trigger the execution of the target node computation.
The compiler analyzes the data-flow graph and builds a schedule, which
steady state can be run in a lock-step fashion by means of multiple
processing units. Streamlt [02] is the best known data-flow language.

Thesis Contribution

The main goal of this dissertation is to analyze performance problems
hidden in explicit parallel programming models, and optimize them to
enable full exploitation of parallel processing units.

Dealing with Synchronization Primitives Embarrassing parallel appli-
cations allow efficient parallelization because the work can be partitioned
into independent sections, that can be executed without any synchro-
nization by available parallel processing units. However, this kind of
application is not very common. Indeed, if multiple processing units
contribute in computing something, they must coordinate through syn-
chronization primitives.

In the HPC setting, synchronization is mainly achieved through the
barrier primitive. Due to its large usage, efficient algorithms have been
developed [72] to limit as much as possible the bottleneck it introduces
in parallel computations. A barrier synchronization is often associated
with the computation of an aggregate value — reduction. This results in
introducing two bottlenecks in the parallel computation, one due to the
barrier synchronization, and the other due to reduction computation.

The barrier execution can be seen as an opportunity to optimize reduc-
tion computation. Indeed, Chapter 3 shows how reduction computation
can be performed together with the execution of the barrier algorithm,
hence paying synchronization cost once. Results of this work have been
published in [131].

As a side note, incorrect usage of synchronization primitives is known
to be one of the most common error in concurrent, and thus parallel,

3

1 Introduction

programming. Moreover, silicon technologies have reached the point
where soft faults can happens also inside the integrated circuit rather
than only at its boundaries [13], so a key question is how faults insist-
ing on hardware related to the execution of synchronization primitives
influence parallel computations. Chapter 7 investigates the problem, by
analyzing the robustness to faults of critical sections, either protected
by means of mutexes of by exploiting hardware transactional memory.
Results of this work have been published in [6].

Efficient Data Access Many parallel architectures include memory
subsystems that exhibit different performance depending on which pro-
cessing unit is requesting the data. Thus, loads and stores must be
carefully organized to avoid incurring in expensive accesses. Traditional
approaches — e.g. PGAS languages [11, 11, , | — distribute data
structures across the memory subsystems, and then schedule computa-
tions to maximize data locality according with the selected distribution.

However, this implies programmers must take into account the dis-
tribution of data across available processing units. Chapter 4 faces the
problem from a different perspective. Instead of specifying how data
structures must be distributed, programmers specify the expect access
pattern to the data. This information is exploited by a customized
OpenMP runtime to schedule parallel loop iterations on processing units
where the expected memory access penalty is minimized. Results of this
work have been published in [27].

Efficient data access is also a relevant feature when considering the
cost, in term of needed resources, to perform a memory access. In the
setting of Data Intensive Scalable Computing, tasks access data which
is potentially spread across an entire cluster of commodity machines.
Executing tasks on machine with no local copy of input data results on
accessing disks on a remote machine, thus the resource usage is increased,
both in terms of energy requirements, and of network bandwidth.

Chapter 5 introduces a task assignment algorithm that takes into con-
sideration resource usage as well. Given a DISC job, modelled as a set of
independent tasks, it keeps under control consumed resources by means
of a latency threshold. Indeed, assignments involving expensive data
accesses are considered only up to the latency threshold. If the latency
goal is not satisfied — e.g. no assignment can be found — consuming more
resources does not allow to achieve good latency performance, hence the
algorithm assigns left tasks by containing resource consumption.

4

Runtime Optimization A key feature of parallel computing is the lack
of a reference architecture. Indeed, with respect to architectures de-
signed to support sequential programming models, explicitly parallel
hardware is shipped with a higher number of configurations. This pre-
vent the construcytion of an exact model of the target architecture,
which in turns limits aggressive compiler optimizations.

To offset such problems, some programming models exploit a Just-In-
Time compiler to delay final code emission just before the application is
run. For instance, in CUDA [0] code intended to be run on GPGPU is
distributed in form of a byte-code language, while in OpenCL [%7] kernel
source codes is distributed together with the application.

However, using a JIT compiler incurs in relevant performance penal-
ties, both in terms of raw performance and from the resource usage
perspective. Chapter 6 proposes the design of a compilation pipeline
that splits the optimization duty between compile-time and run-time.
At compile-time, code should be analyzed and code sections suitable for
run-time optimization must be detected. Then, instead of employing
code specialization, the compiler emits code to apply the optimization
at run-time. This should avoid using a full-fledged JIT compiler, while
keeping some of its features. This work was initially introduced in [52].

Thesis Structure

The rest of this dissertation is organized as follow. Chapter 2 introduces
the world of parallel computing, from both the hardware, software, and
workload perspectives. Chapter 3 describes the optimization of reduc-
tions by means of a special barrier synchronization primitive. Chapter 4
deals with the problem of locality-aware scheduling of OpenMP parallel
loop iterations, while Chapter 5 focuses on efficient task assignment in
the DISC setting. Chapter 6 introduces a proposal for a lightweight
JIT optimization pipeline, and Chapter 7 analyzes the robustness of
synchronization primitives to faults. Finally, Chapter 8 concludes.

2 An Overview of Parallel
Computing

Today, multi-core technologies are the main vector to increase perfor-
mance of computer architectures. The shift from sequential to parallel
processing has been enforced by physical limits, such as high power bud-
gets and the inability of the memory subsystem to feed high-speed CPUs,
which prevent efficient improvements of sequential performance. How-
ever, dealing with multi-core architectures is harder than programming
single-core architectures, due to the exposure of the parallel hardware to
programmers. In this chapter we propose a brief survey about parallel
architectures, parallel programming models, and workloads expected to
be run on multi-core machines.

2.1 Introduction

After decades of performance improvement guaranteed by boosting single-
core capabilities, the computer science discipline has to find alternative
ways to continue increasing performance. Indeed, semiconductors phys-
ical limits, disparity between improvements in core and memory sub-
systems, and increased power requests have been identified as the main
factors preventing performance improvement of single-core architectures.

An alternative way was found in the context of multi-core architec-
tures. Instead of providing architectures built around the concept of a
single, powerful core, starting around 2005 architecture designers started
providing processors composed by multiple simpler cores. With respect
to previous solutions, the performance of the single core is lower, but
due to Moore’s law effects, the available transistors allow to pack more
than one core per die, thus the overall performance of the processor —
as a collection of cores — is increased.

However, with respect to single-core technologies, programming multi-
core architectures has to face with a wider range of problems. For in-
stance, there is no an unique reference model, hence for each kind of
architecture, different programming models and best practices must be
employed. Moreover, it is not guaranteed that every algorithm can be

7

2 An Overview of Parallel Computing

efficiently parallelized — the parallel versions cannot scale, or even worst,
the sequential version is more efficient.

Nowadays, parallel processing is a very diversified realm. To correctly
exploit the available resources, programmers must be aware of the avail-
able parallel architectures. They also need to know the different parallel
programming models, and how each application can benefit from parallel
hardware. This allow to pursuit the most suitable parallelization strat-
egy, to select the most appropriate programming model, and to target
the most suitable architecture.

The rest of this chapter is organized as follow. Section 2.2 deals with
parallel computing from the hardware perspective, while Section 2.3 in-
troduces the best known programming models and languages for parallel
computing. Section 2.4 briefly depicts the workload expected to be run
by parallel hardware. Finally, Section 2.5 concludes.

2.2 The Hardware Perspective

During the entire life of Computer Science as a discipline, hardware has
driven the evolution of languages, programming models and software
architectures. Hardware has been continuously improved in order to
allow programs to run faster.

Language and programming models are built on top of hardware,
hence in order to achieve good performance it is needed to select the
right language and programming model for each hardware device. The
choice must be taken considering hardware features, so, due to the huge
amount of available devices, a taxonomy is required to model relevant
hardware features.

2.2.1 Flynn’s Taxonomy

Hardware can be classified considering its elementary building blocks.
In the Flynn’s taxonomy [7] each hardware device is modelled as a set
of processing umnits, in charge of executing program instructions fetched
from an instruction pool by means of instruction streams. Data is stored
in a data pool, accessed through data streams.

Classification is performed considering the number of processing units,
and how they are connected to the instruction pool and to the data pool.

Single Instruction Single Data The architecture is composed by a sin-
gle processing unit. There is a single data stream feeding the processing
unit. This kind of architecture dominates the general purpose market

8

2.2 The Hardware Perspective

up to year 2005. Today, it is used as a base building block for design-
ing large multi-core machines, and it is still used in applications were
raw computational capabilities is not a strict requisite, such as embed-
ded micro-controllers. A single core desktop processor, like the Intel
Pentium, is a representative of this class.

Single Instruction Multiple Data The architecture is composed by
multiple processing units. Every processing unit executes the same in-
struction, but data is fetched from different streams. Vector processors,
equipped with vector functional units able to apply the same operation
over large arrays, was among the firsts members of this class. Today,
GPGPUs multi-processors are the last instances of this class. Indeed,
each multi-processor is actually composed by multiple highly-coupled
processing units. Each of them executes the same instruction, while
referencing a different set of memory locations.

Multiple Instruction Multiple Data The architecture is composed by
multiple independent processing units. Each of them executes differ-
ent instructions, coming from different streams. Data needed by each
instruction is fetched from different streams. Modern multi-core proces-
sors fall into this category. Indeed, each core is completely independent
from the other, and thus it can execute whichever instruction it wants,
working on a private data stream.

Multiple Instruction Single Data The architecture is composed by
multiple processing units, executing different instructions working on
the same data. This class has been defined for symmetry purposes, so
finding a representative is not trivial. However, systolic arrays can be
interpreted as MISD architectures.

Table 2.1 summarize Flynn’s taxonomy, while Figure 2.1 gives a graph-
ical representation of how different Flynn’s classes access to instruction
and data. All architecture classes must access to both instructions and
data, respectively represented by Instruction Pool and Data Pool. Ac-
cess is performed by means of streams, represented by arrows connecting
processing units to pools.

2.2.2 Traditional Hardware Performance Improvements

Up to 2005, the majority of general-purpose architectures were SISD,
thus computer architects focused on efficiently supporting sequential ap-
plications.

2 An Overview of Parallel Computing

Table 2.1: Flynn’s taxonomy of computer architectures

Single Multiple
Instruction Instruction

Single

Data SISD MISD
Multiple

Data SIMD MIMD
- Instruction Pool o ‘ Instruction Pool ‘
g a1 |
o (a) SISD o (b) MISD

‘ Instruction Pool ‘ Instruction Pool ‘

I 7 [PU)— L [U]
A A
i rm— g

(c) SIMD (d) MIMD

Figure 2.1: Interactions of Flynn’s taxonomy classes with instruction
and data. The fundamental building-block is the processing unit. Clas-
sification is based on how processing units access data and instructions
through streams

10

2.2 The Hardware Perspective

Improvement of sequential performance was initially achieved through
extending the architecture in order to implement in hardware some
heavily-used functionalities. This in turn fostered the diffusion of Com-
plex Instruction Set Computing architectures, which became the domi-
nant ones in the 60 and ’70. Typical characteristic of CISC architectures
are specialized instructions for handling string operations and complex
memory addressing modes.

The key idea of CISC architectures is to improve program performance
by reducing the overall latency of groups of instructions. This approach
is inherently limited. Indeed complex instructions require complex hard-
ware, so the critical path in their implementations represents a limit —
more complex instructions requires longer critical paths.

For this reason, starting from the mid ’70, computer architects focused
on improving the throughput of completed instructions — the Instruc-
tions Per Cycle. An improvement of the IPC directly influences the
improvements of a section of code. Indeed, the Cycles Per Instruction,
CPI = 1/IPC is inversely proportional to the instruction completion
throughput.

To achieve this goal Reduced Instruction Set Computing architectures
split the execution of a single instruction into stages. Stages are con-
nected through a pipeline. Instructions are issued by the first stage and
committed by the last. At each clock cycle, the architecture executes
all stages of the pipeline in parallel, thus the clock cycle is determined
by the latency of the slowest stage. The latency of an instruction is the
latency of the pipeline, but instruction throughput is increased because
an instruction is completed at every clock cycle.

In this schema, RISC architectures exploit parallelism between in-
structions in a single execution flow — Instruction Level Parallelism — to
execute them in parallel, while still exposing a sequential programming
model. Semiconductor technology improvements can be effectively ex-
ploited by RISC architectures. Indeed, new technologies allow increasing
the clock frequency, thus decreasing the C'PI.

RISC architectures can guarantee performance as long as they can
keep the pipeline busy, that is at every clock cycle an instruction must
be issued to the pipeline. If this is not possible, a bubble is inserted
into the pipeline, and the overall efficiency is decreased. This behaviour
is due to hazards induced by the instruction stream. A control hazard
is generated when the pipeline stalls because the address of the next
instruction is not yet ready. A data hazard arises when data needed by
an instruction is not available. A structural hazard is due to the lack of
hardware resources for executing the instruction.

In order to keep the pipeline busy, aggressive optimization techniques

11

2 An Overview of Parallel Computing

1 cld 1 mov r8,#0x400

2 movl $src,%esi 2 loop_header:

3 movl $dst,%edi 3 sub r8,r8,#0x1

4 movl $0x400,%ecx 4 ldrb 1r9, [#src,r8]

5 rep 5 strb 19, [#dst,r8]

6 movsb 6 cbnz r8,loop_header

(a) X86 string copy (b) ARM string copy

Figure 2.2: Trivial implementation of string copy on a CISC architec-
ture (Figure 2.2(a)) and on a RISC architecture (Figure 2.2(b)). The
CISC variant employs specialized instructions, while in the RISC case
an explicit copy loop must be used

have been implemented along the years: pipeline forwarding, out-of-
order execution [I!1], branch prediction [151], In order to increase
performance, instructions have been split into a large number of short
stages, thus allowing to boost clock frequency.

Ezample 2.1. Figure 2.2(a) shows the implementation of a 1024-elements
string copy in a CISC architecture, the Intel x86 [(]. First, the direction
flag is reset (Line 1) so that subsequents instructions assume strings are
visited in ascending order, from the first character to the last. Then, the
base pointers of the two arrays are loaded into registers %esi (Line 2)
and %edi (Line 3), while, the number of elements to copy is written
into register %ecx (Line 4). The movsb instruction (Line 6) copies
the content of the memory cell referenced by %esi into the memory
pointed by ‘%edi , then it increments the two registers. The rep prefix
(Line 5) instructs the hardware to execute movsb and to decrement the
content of register %ecx until it reaches 0, thus it allows to copy the
whole $src array into the $dst array.

Ezample 2.2. Figure 2.2(b) reports the implementation of a 1024-elements
string copy in a RISC architecture, the ARM [17]. The instruction set
is not rich as in a CISC architecture, thus an explicit loop with 1024
iterations is needed in order to copy each element from the #src array
into the #dst array. The first instruction of the loop body decrements
the induction variable, stored inside register r8 (Line 3). Then, in
order to copy one element, it is necessary to load it from memory to a
temporary register (Line 4), and to perform a store (Line 5). Finally, a
cbnz is executed in order to check whether there are no more iterations
to execute (Line 6).

RISC architecture concepts was the driving force of computer archi-
tecture evolution up to year 2005. They was also integrated into popular

12

2.2 The Hardware Perspective

5 100 | E 4 1

% B] w

@ r] = | |

2 o100} | o 3

- F] .

E .] g 2 —

° 8l i 3

g 10} g1t :

g - | =

Z: 107 || \ \ I O | \ \ L]
1998 2003 2008 2013 1998 2003 2008 2013

Years Years
(a) Number of transistors vs years (b) Core frequency vs years

Figure 2.3: Transistor integration. Figure 2.3(a) reports the variation of
the number of transistors along the years. Reducing transistor size allows
to boost the switching frequency, and thus the core operating frequency.
This behaviour becomes unsustainable past year 2005 (Figure 2.3(b)),
where power requirements becomes too large. Data from Intel [3]

CISC design — internally an Intel x86 core is a RISC architecture. At
that time, limits of ILP [117] becomes unsurmountable walls. Mecha-
nism needed to keep the pipeline busy require a lot of power. Moreover,
increasing the clock frequency directly increases the dynamic power con-
sumed by the architecture. This problem is generally identified with the
term power wall [30].

Apart of the power requirements, another problem of aggressive RISC
architectures is that they primarily focus on the processor. Data haz-
ards due to memory accesses are indirectly tackled through cache hierar-
chies ', but the problem of feeding the processor with data still persists.
The inability of the memory hierarchy to fulfill the data requests by the
processor is identified with the term memory wall [150].

2.2.3 Dealing with the Power Wall

Figure 2.3(a) plots the number of transistors employed by Intel proces-
sors from 1999 to 2012 [3]. It is clear that the Moore’s law is still in
effect, indeed the number of transistors per die continually increases.

Looking at Figure 2.3(b) we can observe that the increased transistor
density has been primarily exploited to boost the core operating fre-
quency. However, as discussed before, increasing the switching frequency
of a transistor directly influences the amount of required dynamic power.
For CMOS technology, it is ruled by the following relation:

! Another power-hungry component

13

2 An Overview of Parallel Computing

200 |- o . 8 |
o
— 150 |- - S

= s .
o, 100 |- : z

a 2 2f s
=50 2 B
5
Z

O |) | 1 \ ™ L]

1998 2003 2008 2013 1998 2003 2008 2013

Years Years
(a) TDP vs years (b) Number of cores vs years

Figure 2.4: General purpose processors evolution. Increasing frequency
to improve performance leads to power-hungry designs (Figure 2.4(a)).
Acting on the number of available cores (Figure 2.4(b)) allows to con-
tains power requirements. Data from Intel [3]

1
den~§xCxV2><f

where C' is the driven capacitive load, V is the working voltage and
f is the switching frequency. Since C is a function of the number of
transistors connected to the output and of the technology, the tunable
parameters are V and f. In order to limit the consumed power while, at
the same time, increasing the switching frequency, the working voltage
has been progressively dropped from 5V to just under 1V.

Past year 2005, the frequency of the cores did not further increase,
due to the inability of exploiting ILP and of the huge power requests.
The connection between frequency and power can be easily seen in Fig-
ure 2.4(a), which plots the Thermal Design Power of Intel processors
from 1999 to 2012 [3]. The TDP growth stops at the same time of core
frequency.

To contain power requests, architecture designers removed power-
hungry components required by aggressive ILP techniques. With re-
spect to processors of the ILP-era, these new processors have shorter
pipelines, a narrow instruction issue window, and static scheduling in-
stead of dynamic scheduling. Sometimes, in-order execution is preferred
to out-of-order execution.

However, relying on simpler processors do not necessarily mean that
we cannot execute more complex applications. Indeed, for many duties,
these processors allow to execute a wide range of applications, without
any performance penalty. At the same time, simple designs allow to

14

2.2 The Hardware Perspective

better accommodate emerging performance indicators, such as power
consumption.

On the other hand, for some applications raw performance is an es-
sential requisite. For instance, given a time budget, HPC applications
need faster processors in order to perform more accurate simulations.
Another example is related to graphic-intense applications, who aim at
improving the user experience quality year after year.

To provide raw performance for such kind of applications, mecha-
nism other than ILP should be exploited. In the general purpose CPUs
market, past 1995 architecture designers started the trend of exposing
parallel features to the programmer. For example, the concept of vec-
tor instructions has been borrowed from vector processors [127] and
adapted to general purpose CPUs, leading to vector instruction set ex-
tensions [50, 115].

The exposure of hardware parallel feature to the programmer reached
a critical point around 2005. Indeed, vector instruction sets just intro-
duced new data types and instructions, thus available parallelism can
be efficiently masked by well-written libraries. In order to get more
performance, parallelism must be exploited in a more explicit way.

Initially, Symmetric Multi Threading (e.g. Intel Hyper-treading [101])
designs allowed to execute more than one independent execution flow on
the same core. Stalls due to hazards in one execution flow are used to
execute another execution flow. The natural evolution of this approach
is Symmetric Multi Processing, where the architecture exposes multiple
independent processing elements. This technique, initially exploited at
multiple package level — i.e. installing more than one single-core proces-
sor on the same motherboard —, has been widely applied at the single
package level —i.e. putting more than one core on the same die — starting
from 2005.

Figure 2.4(b) reports the number of cores per Intel processors starting
from 1999 up to 2012 [3]. Comparing it with Figure 2.3(a), it is clear
that past 2005, increasing the number of cores became the primary way
to exploit available transistors.

The modus operandi of architecture designers is clear. First, build
a simple architecture to contain power requirements, then replicate the
design multiple times to guarantee performance. This methodology leads
to architectures that can be classified as MIMD in Flynn’s taxonomy.

2.2.4 Dealing with the Memory Wall

The problem of feeding a processor with data is orthogonal to the power
problem, however the same techniques used to cope with the power wall

15

2 An Overview of Parallel Computing

can also be useful for fighting the memory wall.

On SISD machines there is an unique path for accessing the main
memory — all accesses must pass through the memory controller. It is
on charge of serializing all memory accesses. The primary measure of its
efficiency is the bandwidth, that is the number of bytes it can transfer
from/to the memory per second.

Along the years, the memory controller has been integrated with the
processor, and they start sharing the same die. It works closely with the
cache hierarchy, and, together, they are responsible for ensuring memory
consistency [12].

Vectorial instruction set extensions usually provide instructions ac-
cessing memory with a relaxed consistency. This allows super-scalar
out-of-order processors to perform a more aggressive instruction reorder-
ing and to skip the cache hierarchy while accessing memory needed for
that kind of instructions. The net result is an increased bandwidth for
vector-related instructions.

Due to memory consistency and caching constraints, memory accesses
generated by non-vector instructions cannot use this fast-path to the
memory. Considering that the memory access latency and bandwidth
do not evolve like the performance of the core, it is clear that the mem-
ory controller quickly becomes a bottleneck. Moreover, past 2005, the
increasing number of cores per die imposes a further load on the memory
controller. Indeed, instead of feeding one core, the memory controller
now has to provide data for all cores in the die.

Regardless of the number of cores, architectures where the memory
access latency is constant among all processors are called Uniform Mem-
ory Access architectures. Figure 2.5 reports an example of a 4-core UMA
architecture. Each core has a private cache hierarchy, thus as long as
memory requests can be fulfilled by caches, each core can perform ac-
cesses independently.

When an access to the main memory is generated, regardless of the
originating core, it must be handled by the memory controller. This is
usually implemented using a simple design, such as a shared bus.

To remove the bottleneck, the number of paths to access the memory
must be incremented. That is, each core must be equipped with a private
memory controller, directly connected to a different memory module.
Accesses to that module are called local accesses. When a core has to
access to a memory module different from the local one, it performs
a remote access. In that case, the access must be performed by mean
of the memory controller of another core, thus with respect to a local
access, the latency is greater. On the other hand, the overall bandwidth
is increased.

16

2.2 The Hardware Perspective

’ Core ‘ ’ Core ‘ ’ Core ‘ ’ Core ‘
I ! I !
First-level First-level First-level First-level
Cache Cache Cache Cache
I ! I !
Second- Second- Second- Second-
level Cache level Cache level Cache level Cache
Bus
!

Memory

Figure 2.5: An example of UMA architecture. The latency of an access to
main memory is constant across all cores. This is due to the availability
of an unique path for accessing the main memory

Such kind of architectures, where the memory access latency depends
on the core originating the access and on the accessed memory mod-
ule are called Non Uniform Memory Access architectures. The core,
the cache hierarchy, the memory controller, and the local memory mod-
ule constitute a node. Communication between nodes is ensured by an
interconnect network.

Figure 2.6 reports an example of NUMA architecture composed by
four nodes, each composed by one core with a two-level private cache
hierarchy.

UMA designs are still used in small multi-core architectures. When
the number of available cores becomes greater than eight, NUMA de-
signs becomes more attractive. Usually, a hybrid solution is adopted.
For instance, consider an architecture composed by four interconnected
processors. Each processor is equipped with four cores and is attached
to a local memory module. Such an architecture has NUMA character-
istics between the four processors, and UMA characteristics inside the
single processor.

2.2.5 The Case of GPGPUs-based Architectures

Up to the end of the last millennium, graphics boards were in charge of
handling output to the screen. The actual computation of what to dis-
play was performed on the CPU, with little assistance from the graphics

17

2 An Overview of Parallel Computing

Core ‘ ‘ Core ‘ ‘ Core ‘ ‘ Core
!) I !
First-level First-level First-level First-level
Cache Cache Cache Cache
!) I !
Second- Second- Second- Second-
level Cache level Cache level Cache level Cache
! ! ! !
‘ Memory ‘ ‘ Memory ‘ ‘ Memory ‘ ‘ Memory ‘
Interconnect

Figure 2.6: An example of NUMA architecture. The latency of an access
to main memory is a function of the core where the access occurs and
of the physical location of the accessed address. This is due to the need
to walk the interconnect network when accessing a memory location not
stored in the memory element directly connected to the core where the
access initiates

board itself.

Starting with NVIDIA GeForce 265 [%], part of graphics rendering
started to be offloaded on the graphics board. Graphics hardware then
took the characteristics of stand-alone processors, able to substitute the
CPU in performing complex graphics operations. The term Graphics
Processing Unit was introduced to refer to that kind of graphics proces-
Sors.

GPU architectures focus on performing large numbers of mostly in-
dependent operations on points — vertices — composing a scene to be
rendered. This kind of computation sports remarkable similarities with
the kind of scientific code known as massively parallel. For instance con-
sider N-body simulations or PDE solvers. The same function is applied
to all points of the input domain, to iteratively update some property
— e.g. the position in the case of an astronomical N-body simulation,
or the temperature in the case of a PDE solver simulating heat conduc-
tion. Functions are applied in parallel to all points in the domain, and
synchronization happens only at the bounds of the computation, that is
at the start/end of the iterative step.

In order to exploits GPUs for efficiently executing this kind of applica-
tions, GPU designers started supporting a limited form of programma-
bility, leading to General Purpose GPUs.

18

CPU

Compute

‘ Support

I
‘ Main Memory ‘

I
Compute ‘

Support

GPU

Figure 2.7: Heterogeneous com-
puting with GPGPUs. Hot spots
of the application run on the
GPGPU to exploit its better com-

2.2 The Hardware Perspective

1.6 =
o, I FE DI
=]
3
o 14 -
o, -
& -
g ol2p T .
> o
@) 3

1 | | | | i

1 2 3 4
Specific Speedup

—— Fenn =0.20- - - Fepp = 0.35
Fenn = 0.50 = = = Sgpee = 1000

Figure 2.8: Plot of the Amdhal’s
law for different values of the en-
hanced fraction F,,,. The bold
dashed line is the overall speedup
achieved with F,;, = 0.35 and a

putational capabilities specific speedup Sgpec = 1000

GPGPUs are basically large sets of synchronous processors. They are
specialized on executing massively parallel programs, with little syn-
chronization and a regular behaviour. According to Flynn’s taxonomy,
GPGPUs fall into the SIMD category, although NVIDIA refers to them
using the Single Instruction Multiple Threads name, pointing out the
ability of executing SIMD code with no fixed vector width [7], thus with
an increased efficiency with respect to the most widespread SIMD ar-
chitecture at that time — vectorial instruction set extension.

Starting from NVIDIA GeForce8300GT [J], massively parallel pro-
cessors start to be available at modest prices. This lead to a renewed
interest in heterogeneous architectures, that could be composed by a
general purpose processor, and one or more GPGPUs.

In the GPGPUs setting, the general purpose processor is used to drive
the computation. If application hot spots exhibit regular behaviours,
they can be offloaded to the GPGPUs, taking advantage of the more
specialized hardware. The control processor and the accelerator commu-
nicates through the main memory. An example of this setup is depicted
in Figure 2.7.

With respect to a typical CPU, a GPGPU dedicates a higher ratio of
its area to computational resources. This allows excellent speedups [12]
on applications which hot spots can be efficiently mapped on the GPG-
PUs. On the other hand, the greater die area dedicated to support

19

2 An Overview of Parallel Computing

computation on the CPU — e.g. caches — allows to execute a more wider
range of applications with reasonable efficiency.

There is a growing trend in the semiconductor industry towards de-
signs that take cues from the GPGPU experience — e.g. coupling CPU
cores with heterogeneous parallel accelerator on the same die [2,].
The goal is to minimize the overhead of performing data movement be-
tween the CPU and the GPU. On the other hand, in HPC environments,
stand-alone architectures still dominates the market [, 10], due to the
request of higher peak performance.

2.2.6 Taking into Account the Amdahl’s Law

Given a program and an optimization, let Fg,; the fraction of the pro-
gram improved by the optimization and Sspe. the speedup due to the
optimization on the fraction F,,;,. Amdahl’s law states that the overall
speedup of the program due to the optimization Sy, is related to the
enhanced fraction F,:

1
(1 _ Fenh) _|_ genh

spec

Sover =

The main consequence of Amdahl’s law is that the maximum achiev-
able speedup of an optimization is bound by the optimized fraction:

1
lim Soper = ————
Sspec_>+00 over 1 - Fenh

Figure 2.8 depicts this behaviour. It plots the overall speedup Syper
for different values of the enhanced fraction F,; varying the specific
speedup Sspec. The dashed bold line represents the overall speedup that
can be achieved with a specific speedup of 1000x over the 30% of a
program. Comparing it with the dotted line, representing the overall
speedup when optimizing 50% of the program, one can observe that a
more modest speedup of 4x is more effective.

Performance gains expected due to parallel execution are also subject
to Amdahl’s law. For instance, consider the case where a fraction of the
program can be perfectly parallelized. The specific speedup due to the
optimization Sspe. is thus linear in the number of available processing
elements Np.. The Amdahl’s law can be rewritten as following:

1
(1_Fenh)+FN67:eh

It does not matter how many processing elements are available in the
architecture. The overall speedup is still bounded by the unoptimized

20

Sover =

2.3 Parallel Programming Models

section of the program, in this case the sequential part, thus increas-
ing the number of processing elements does not guarantee performance
scaling.

2.3 Parallel Programming Models

Explicitly exposing hardware parallel features allows architecture design-
ers to increase the overall hardware performance. On the other hand,
with respect to past advancements, this kind of greater performance
improvement comes with greater responsibility [95].

To take advantage of parallel processing elements, two different ap-
proaches can be followed: implicit and explicit techniques.

The goal of implicit techniques is to hide as much as possible the par-
allelism available in the target architecture. Actual exploitation of par-
allelism is either achieved at run-time or at compile-time. For instance
consider ILP: the hardware dynamically detects independent instruc-
tions in programs, executing them in parallel using different functional
units.

As stated before, ILP cannot guarantee further performance improve-
ments. Automatic parallelization techniques try to preserve the ab-
straction of sequential programming model, by exploiting compile-time
techniques to split programs into independent parts. However, their ef-
fectiveness is limited by the structure of the program: techniques based

on the analysis of loop indexes, such as Polyhedral Analysis [13], requires
loops with a fairly regular structure, while attempts to auto-parallelize
general-purpose code — e.g. Decoupled Soft Ware Pipelining [! 1] — have

to deal with inabilities of compilers to provide accurate analysis of pro-
gram properties, such as alias sets.

In order to fully exploit parallel processing elements, explicit tech-
niques rely on exposing the hardware parallelism to programmers. This
allows to communicate more information to the compiler, that can in
turn generate more efficient code. Furthermore, with respect to auto-
matic parallelization techniques, programmers can identify larger paral-
lel sections, thus potentially achieving better speedups — we must shift
from sequential to parallel programming models.

2.3.1 Programming Parallel Architectures

A programming model is an abstraction of an architecture, which mod-
els how computations are described and run. A programming language
implements a programming model, thus allowing to write programs ac-
cording to it.

21

2 An Overview of Parallel Computing

The programming model concept has a strong connection with the
hardware architecture. Indeed, almost all architectures can be pro-
grammed using different programming models, but, usually, given an
architecture, there is one programming model that allows to fully ex-
ploits its resources. For instance, programs written in an imperative
way can fully exploit a general purpose single-core processor.

When dealing with programming models — and architectures — built
around the concept of a single execution flow, writing a program usually
is just one step of a relatively simple process. Given a problem, first an
algorithm that solves it must be found. Then, a program implementing
the algorithm is written. Finally, the program is compiled and run on
the target architecture.

In this scenario, we can increase the performance of the program in
different ways: improve the algorithm, tune the implementation, or buy
better hardware. These three actions are usually quite independent.

Parallel programming models are built around the concept of multiple
execution flows. They are usually specialized in handling some kind of
computations and/or are suited for certain class of parallel architectures.

The aforementioned process of writing and optimizing programs can-
not be used with parallel programming models. Indeed, the algorithm,
the program, and the architecture are all closely related. Working on
one component at time does not guarantee performance.

For instance consider the problem of sorting data. If we are going
to target a GPGPUs, employing a comparison-based sorting algorithm,
like quick-sort, does not guarantee efficient exploitation of hardware re-
sources. On the other hand, bitonic-sort perfectly matches GPGPU
hardware features, so it is the ideal candidate. Finally, we must take
into account the program, thus the algorithm must be coded according
to GPGPUs best practices — e.g. correct handling of memory hierarchy
and coalesced accesses.

2.3.2 Data-parallel Programming Models

One of the first parallel programming models arises from the needs of the
High Performance Computing community. Typical applications include
computational fluid dynamics, molecular dynamics, and astrophysics
simulations. A key parameter is the problem size, that is an indica-
tor of the dimension of the problem to be solved. It is often related to
the size of input data or to the accuracy of simulations.

To cope with increasingly larger problems, some kind of parallelism
is necessary. A key aspect of HPC applications is that many operations
are naturally parallel. Figure 2.9 shows one example: Single precisions A

22

2.3 Parallel Programming Models

1 void saxpy(int n, float a, float *x, float x*xy) {

2 for(int i = 0; i < n; ++1i)
3 y[i] += a * x[i];
4 }

Figure 2.9: The SAXPY kernel is a BLAS level-1 routine. From the
programming model point of view, its key feature is the absence of de-
pendencies between different iterations of the loop

times X Plus Y, a level-1 BLAS routine [91]. Given two arrays of floating
point values y and x, and a floating point scalar a, every element of the
y array is incremented by the corresponding element of array x times a.

The update of a single element of the array is a simple operation, and
cannot be parallelized. On the other hand, if we consider two different
updates, we can see that they are completely independent. The cause of
greater performance needs — the large working set — is in this case also
the mean to achieve greater performance.

Data-parallel programming models target this kind of applications. It
is often said that an application suitable for a data-parallel programming
model exhibits a regular behaviour: it is not control-intensive and it
performs a large number of operations, often on large arrays accessed
with fixed strides.

Figure 2.10(a) reports the sequential execution of a SAXPY kernel,
together with its data dependencies. Each node represents an iteration
of the loop. An arc between two nodes ¢ and r represents a dependency.
Solid arcs represent dependencies that cannot be eliminated. For exam-
ple, in each iteration a cell of array y is read and later written (WAR
dependency) — there is no way to get rid of this dependency. Dashed arcs
represent dependencies that can be eliminated. For instance, the loop
induction variable i is only used to detect the array elements accessed
by each iteration. It has a regular behaviour: during each iteration it
is read and then incremented by a constant amount. This allows to
predict the value of i in each iteration, so the associated loop-carried
dependency can be eliminated. The dependency graphs becomes uncon-
nected, and thus all the unconnected components — the iterations — can
be executed in parallel.

If the single iteration is composed by a small number of simple in-
structions, vector processors or vector instruction set extensions allows
to mask parallel iterations execution behind vector data types — the
loop is said to be wvectorized. Automatic compiler-based parallelization
techniques, such as the ones based on polyhedral analysis [!3], are also

23

2 An Overview of Parallel Computing

(a) Sequential (b) Parallel

Figure 2.10: Sequential and parallel execution of SAXPY. A node
marked with label i represents the i-th iteration of the loop. The only
loop-carried dependency is the one related to the loop induction vari-
able i (Figure 2.10(a)), thus all iterations can potentially be executed
in parallel (Figure 2.10(b))

effective in parallelizing such simple loops.

When the complexity of the iteration increases, these techniques can-
not be used. Indeed, instructions composing the iteration cannot be
mapped to vector instructions, and automatic techniques fails in pre-
cisely detecting all dependencies related to the iteration — they cannot
parallelize the loop.

For instance, automatic-parallelization techniques requires a perfect
knowledge of both loop structure and dependencies of the loop. Without
these information, they cannot proceed with automatic parallelization,
because they cannot guarantee that the original semantic of the program
is preserved.

The Fork-Join Programming Abstraction

Another approach to exploiting data-parallelism is the concept of explicit
parallel loop. All of its iterations are guaranteed to be independent,
so they can be executed in any order, and therefore in parallel. The
reference model is known as fork-join.

Independent execution flows are identified with the term thread. When
a thread reaches a parallel loop, it spawns a parallel computation, and

24

2.3 Parallel Programming Models

thus it creates — forks — a certain number of threads to help him exe-
cuting the iterations of the parallel loop. The spawning thread is called
master thread, while the spawned threads are called slave threads. Itera-
tions of the loop are thus distributed across all threads, and executed in
parallel. When there are no more iterations to execute, all threads meet
at the end of the parallel loop — with a join operation. Spawned threads
terminate their execution, while the master thread continues executing
with the statement following the parallel loop.

Figure 2.10(b) shows the execution of SAXPY using data-parallelism.
Parallel execution is managed according to the fork-join model. The
original SAXPY loop is considered a parallel loop, and thus all iterations
can be executed in parallel. The top gray rectangle represents the fork
phase, while the one at the bottom represents the join phase.

Parallel loops are the basic building block of data-parallel program-
ming models. In all of them, the programmer must assist the compiler
and/or the runtime to detect parallel loops.

In Fortran it is not possible to define a parallel loop, but several
statements allows to express natural parallel computations. Indeed it is
possible to perform member-wise operations between arrays or matrices.
The Fortran compiler can take advantage of this information to either
generate vector code or parallel code.

The OpenMP programming model [10] provides a set of compiler di-
rectives allowing to tag parallel loops. It is an extension of C, C++,
and Fortran languages. Directives are exploited to partition iterations
either at compile-time, by evenly dividing iterations across threads, or at
run-time, to better adapt to unbalanced workloads. Threads are usually
executed by general purpose multi-core processors, but some attempts
have been made to target other architectures, such as GPGPUs [97].
Data is accessed by threads through shared memory.

Figure 2.11 reports the SAXPY kernel parallelized thought OpenMP
directives. The #pragma omp parallel for directive allows to declare
the tagged loop as a parallel one. The compiler emits the code of both
master and slave threads. Just before entering the parallel loop, the
master thread evenly divides iterations across available slave threads.
Usually, the OpenMP runtime use all cores of the target machine to
execute the parallel loop. Let Np. the number of cores, since one core is
used by the master thread, N,. — 1 slave threads are created. Together
with the master thread, they execute the n iterations of the parallel
loop, so each thread executes at most n/Np, iterations.

In the OpenMP programming model there is a single unified address
space, shared among all threads. While this facilitates programs writ-
ing, it constitutes a problem when targeting NUMA architectures. In-

25

2 An Overview of Parallel Computing

1 void saxpy(int n, float a, float *x, float =xy) {

2 int 1i;

3

4 #pragma omp parallel for
5 for(i = 0; i1 < n; ++1i)

6 y[i]l += a * x[i];

7 }

Figure 2.11: OpenMP version of the SAXPY kernel. The pragma at-
tached to the loop is an hint to the compiler and to the runtime. It
states that all loop iterations can be executed in parallel

deed, equally partitioning parallel loop iterations among available worker
threads can generate an uneven partition, due to the different latency
of memory accesses.

Dealing with NUMA Effects

In the context of shared memory programming models, Partitioned Global
Address Space languages divide the shared address space into sections.
Data structures are manually distributed by programmers on those sec-
tions. Distribution allows to take advantage of NUMA features on under-
lying architecture. Parallel computations are mainly expressed by means
of parallel loops, together with locality constraints — i.e. programmers
must specify which iterations must be executed by each thread. Unified
Parallel C [113], Fortress [I1], Chapel [11], and X10 [125] are the best
known PGAS languages.

Massively Parallel Languages

According to Amdahl’s law, optimizations must insist on application
hot spots. The effectiveness of an optimization is both related to its
specific performance gain and to its applicability. From the architecture
point of view, an heterogeneous design, composed by multiple processing
elements, each optimized for executing a particular kind of code, allows
to boost the specific speedup.

The duty of a programming model for an heterogeneous architecture is
to allow efficient exploitation of high specific speedups through language
constructs that should be used to express hot spot computations.

In the context of the data-parallel programming model, CUDA [(] and
OpenCL [27] both focus on heterogeneous architectures. The two pro-
posals are quite similar, so the following considerations about OpenCL

26

2.3 Parallel Programming Models

can also be applied to CUDA.

Programs are organized into an host part and a device part. The host
part usually run on a general purpose processor, and it is in charge of
controlling heavyweight computations spawned on the device. These
computations are application hotspots. In the OpenCL terminology,
they are called N-Dimensional Range kernels, but it fact each of them
represents a perfect loop nest. Loop iterations are called work-items.
They can be grouped according to a hyper-rectangle ? geometry into
work-groups.

With respect to OpenMP, the master thread role is taken by the
thread running on the host. It simply submits NDRange kernels to the
device in form of a set of homogeneous work-groups. The device executes
them, possibly exploiting two level of parallelism: between work-groups
and between work-items. Indeed work-groups are completely indepen-
dent, and each of them is composed by independent work-items. Syn-
chronization can be achieved only inside work-groups — i.e. work-items
belonging to a work-group can employ barrier constructs to meet at a
synchronization point.

The term massively parallel is often associated with both CUDA and
OpenCL. It refers to the huge number of available processing elements
in target architectures — usually a GPGPU —, and to the features of
applications suited for these languages, which usually expose a large
parallelism degree, with little or no synchronization between work-items.

CUDA and OpenCL both aim at achieving the maximal exploitation
of computing resources. To do this, a programmer is given complete
control of the target device. This approach, however, requires writing
a lot of boilerplate code, such as transferring data to the accelerator.
Moreover, performances are very sensible to even minimal variation in
the architectural parameters. To cope with these problems, OpenMP-
like extensions to C, C++, and Fortran have been proposed [1,],
but they cannot compete with the performance of hand-written code.

Aggregating Values

An important class of computations involved in the process of large
data-sets is the reduction. It consists of producing an aggregate value
out of a set of values. In the context of HPC, scalar product is a good
representative of this kind of computation. Figure 2.12 shows a serial
implementation of the SDOT BLAS level-1 routine [9].

This kind of computation represents a challenge for every data-parallel
programming model. Problems arise from the dependency in the SDOT

2CNN thinks orthotope is better

27

2 An Overview of Parallel Computing

1 float sdot(int n, float *x, float x*y) {
float sum = 0.0;

for(int i = 0; i < n; ++1i)
sum += x[i] * y[il;

return sum;

3

0w N O o ks W N

Figure 2.12: The SDOT kernel is a BLAS level-1 routine. The sum vari-
able is used to accumulate the partial value of the dot product. Since it
is updated at every loop iteration, a loop-carried dependency is induced

loop. While there are no dependencies on the accessed arrays, there
is a loop-carried dependency related to the update of the accumulator
used during the reduction — the sum variable. In Figure 2.13(a) the loop-
carried dependency is represented by a solid arc between each pair of
iterations.

To parallelize the loop, the dependency on sum must be eliminated.
Since there are no other dependencies in the loop, the key idea is to
execute all iterations in parallel. Each iteration first compute a local
reduction, then it executes a communication step, in order to aggregate
its partial reduction value to the global one. Figure 2.13(b) depicts this
process, where light gray nodes represent communication steps.

With respect to the SAXPY example, reported in Figure 2.10, paral-
lelizing SDOT requires restructuring the body of the loop, to break the
loop-carried dependency. However, during the split we have assumed the
order in which sum is updated does not matter, that is sum is updated
by means of an associative and commutative operator.

This assumption does not always hold. For example, consider a loop
were each iteration appends a character to a string. Since the appending
operation is neither associative nor commutative, we cannot parallelize
the loop in this way.

Data-parallel programming models allow to perform reductions on
variables involving associative and commutative operators. Usually, a
directive can be attached to a parallel loop, to inform the compiler about
both the accumulator, and the operator to be used for it. Figure 2.14
reports an OpenMP version of SDOT. The reduction clause identifies
reduction-related information.

Generally speaking, operators and data-types involved in reductions
are defined by language specifications. However some languages |1, 1]

28

2.3 Parallel Programming Models

PA—

—
—

(a) Sequential (b) Parallel

Figure 2.13: Sequential and parallel execution of SDOT. A node marked
with label i-th represents the i-th iteration of the loop. Parallel exe-
cution (Figure 2.13(b)) is achieved by eliminating the sum loop-carried
dependency (Figure 2.13(a)) through privatization, together with a com-
munication step at the end of each iteration — light gray nodes

1 float sdot(int n, float *x, float *y) {
float sum = 0.0;
int i;

for(i = 0; i < mn; ++i)

2
3
4
5 #pragma omp parallel for reduction (+:sum)
6
7 sum += x[i] * y[i];

8

9

return sum;

10 }

Figure 2.14: SDOT kernel parallelized via OpenMP directives. The
reduction clause informs the compiler to privatize sum, and to aggre-
gate partial reductions using the + operator

29

2 An Overview of Parallel Computing

allow using user-defined reductions, involving more complex operations
and/or data-types.

CUDA and OpenCL are a special case. There is no built-in support
for reductions, but to fully exploit the target architecture some coding
patterns — e.g. hierarchical reductions — must be exploited.

From a performance point of view, reductions are critical operations
because they induce a bottleneck in parallel execution. Indeed, accesses
to the shared accumulator must be coordinated during updates. This
requires serializing the execution, and thus can limit the scalability of
the application.

2.3.3 Task-parallel Programming Models

The absence of regularities in the behaviour of an application does not
prevent its parallelization. It simply means that the data-parallel pro-
gramming model is not suitable. For example, consider the problem of
recursively ordering an array. It is clearly control-intensive, and the data
access pattern is not ruled by the algorithm, but by the values found in
the array at run-time.

Recursive ordering can be achieved through a simple scheme: split
the array into two sections, recursively order them, and then merge the
two ordered partitions. The recursion steps operate on disjoint portions
of the array, so they can be executed in parallel due to the absence of
any dependency. On the other hand, merging must be executed after
the two parallel sorting terminates.

Most of the irregularity of this problem comes from the fact that the
number of potentially parallel recursive calls is not known. A compiler
cannot predict, even symbolically, this number, because of dependencies
on run-time values. At run-time, just before starting the sort operation,
it is also not possible to predict the number of recursive calls, because
the computation will be ruled by data found in the array. Parallelism
is discovered while executing the application, so a programming model
able to generate parallel computations at run-time is needed.

Task-parallel programming models are built around the abstraction
of task, that is a chunk of parallel computation, usually identified by
tagging a section of code or a function. Task definition only identifies
the unit of parallelism. To start a parallel computation, the programmer
explicitly creates new tasks. This is referred to with the term spawning.
By spawning a task, the programmer simply declares that it can be
executed in parallel with the current execution flow. It is up to the
runtime to execute the task at the most suitable time. Synchronization
between tasks is usually achieved by joining: a task can wait for the

30

2.3 Parallel Programming Models

termination of another task before proceeding with its execution.

Relationships between tasks can be represented by means of a task-
graph. Each node in the graph represents a spawned task. There are
two kind of arcs: spawning and joining. A spawning arc from a node ¢
to a node r, means that task ¢ has spawned task r, while a joining arc
from a node ¢ to a node r means that task r has joined task g — task r
has waited for ¢ completion.

The best known implementation of the task-based parallel program-
ming model is Cilk [56]. It is based on the C language. Tasks are
functions tagged with the cilk keyword. To spawn a task, the program-
mer invokes a task by preceding it with the spawn keyword. A task can
wait for the termination of all spawned tasks using the sync statement.
Before terminating its execution, a task must wait for the termination
of all tasks it has spawned — an implicit sync statement is executed at
the end of each task.

Figure 2.15 shows the implementation of recursive array ordering in
Cilk. The cilk_sort function represents a task. Input parameters are
the array to order x, a support array tmp, and the length of both arrays
n. The base case is represented by sorting a “small” array, which is
performed through quick sort (Line 3). For bigger arrays, cilk_sort call
itself recursively twice (Line 7 and Line 8). This spawns a couple of tasks,
each ordering a section of the input array x. Before proceeding with the
merge step (Line 12), each tasks needs to wait for the termination of
spawned tasks (Line 10).

A strong property of the data-parallel programming model is that the
structure of the parallel computation is known; it behaves according
to the fork-join model. This allows to perform part of the scheduling
decisions at compile-time, thus reducing the run-time overhead.

With the task-parallel programming model, this is not possible. In-
deed, while the ability of spawning tasks on-demand, allows to take ad-
vantage of all parallelism discovered at run-time, it ends up in generating
arbitrary task-graphs, with no regularities. No scheduling decisions can
be performed at compile-time, and thus higher run-time overhead are
expected.

The problem can be partially addressed, by enforcing tasks to be
spawned and joined with a “nice” behaviour. In the case of Cilk, the
implicit sync statement at the end of each task induces a particular
organization of the task-graph. All computations are said to be fully
strict, and aggressive run-time scheduling techniques can be applied [29].

Moreover, the ability of spawning tasks must walk together with the
programmer responsibility of identifying when to stop spawning them.
Indeed, past this cut-off value, the overhead of spawning parallel com-

31

2 An Overview of Parallel Computing

1 ¢cilk void cilk_sort(float *x, float *tmp, int n) {
if(n < QUICK_SIZE) {

quick_sort(x, n);

return;

2

3

4

5 }
6

7 spawn cilk_sort(x, tmp, n / 2);

8 spawn cilk_sort(x + n / 2, tmp + n / 2, n / 2);
9

10 sync;

11

12 spawn cilk_merge(tmp, tmp + n / 2, x);

13}

Figure 2.15: Parallel sorting in Cilk. The array x is ordered following a
divide-et-impera approach. Recursive calls to cilk_sort can be executed
in parallel — they work on different sections of the x array. The sync
statement ensures that cilk_merge is called after the two recursive sorts
complete

putations is too big, and it is not balanced by the expected performance
gain.

The task-based parallel programming model is implemented by many
languages and libraries. Among the others, X10 [128] handles tasks
according to a relaxed version of Cilk fully strict computations [(0],
while in the Intel Thread Building Blocks C++ library [7], the task is a
central concept — it is also used to execute data-parallel computations.
OpenCL [27] allows to execute tasks, but this is equivalent to executing
kernels consisting of just one work-group made up by one work-item.
Moreover, it is not possible spawning new tasks inside a task. On the
other hand, through the usage of out-of-order queues, it is possible ex-
ploiting a limited version of task-parallelism.

2.3.4 Data-flow Parallel Programming Models

In many programming models, data assumes a passive role. Even where
there is a strong attention to data (e.g. the object-oriented program-
ming model), it does not collaborate on defining the structure of the
application. At most, it influences the choice of data-structures and/or
algorithms employed by a particular application.

However, some applications can be modelled according to the accessed
data. For example, consider a signal-processing application, like a FM-

32

2.3 Parallel Programming Models

radio. It consists of different filters, connected through a pipeline. The
first stage captures the signal from an hardware medium, while the last
reproduces the signal. Central stages decode the signal.

A stage is essentially a description of an elementary operation. It reads
some data samples from the previous stages, which are then transformed
into new samples, and finally communicated to next stages. The whole
process can be described by means of a data-flow graph, where nodes
represent stages and arcs represent connection between couple of nodes.

Given a couple of nodes ¢ and r, the connecting arc ¢ — r is labelled
with an input rate g, and an output rate r;,. This models the fact that
when the computation associated with state ¢ is executed, g+ samples
are emitted on arc ¢ — r. The output rate r;;, is related to the activation
of node r. Indeed, when node ¢ has emitted at least r;, samples, the
computation related to node r can be executed. Arcs act as a medium
in transferring data from nodes, thus they are often identified with the
term channels.

It is clear that data is driving the computation — when channel con-
straints are satisfied, computation is triggered — so, this class of pro-
gramming models is called data-flow programming model. Streamlt [(2]
is the best representative implementation.

Figure 2.16 shows a simple Streamlt example: a low pass filter. Stages
are identified with filter blocks. Each filter is characterized by an input
and an output channel, described by means of a -> operator connecting
the type of elements read/written from/to channels. The void type
has the meaning of no-channel, so as the case of FloatSource (Line 7),
there is only one output channel, that transfers float values to the next
stage. The LowPassFilter (Line 18) reads float values from the previous
stage and write them to the next, while the FloatPrinter (Line 25) just
consumes float values.

A work action is associated to each filter. It describes the computa-
tion performed by the filter. Moreover it declares how many elements are
read from the input channel, and how many are written to the output
channel for each activation of the filter. In the case of FloatPrinter, at
each activation, one element is consumed — pop — from the input channel
(Line 26). The FloatSource filter exhibits the opposite behaviour: at
each activation, one element is produced — push — on the output channel
(Line 12. Obviously, is it possible to both consume and produce ele-
ments, such as in the case of LowPassFilter — not reported for brevity.

Finally, each filter can have a state. For instance, the FloatSource
filter has a state (Line 8), representing the next element to push on the
output channel. The FloatPrinter is an example of a stateless filter —
it is only made of the work function.

33

2 An Overview of Parallel Computing

1 void->void pipeline Pipe {
add FloatSource();
add LowPassFilter (250000000, 1000, 64, 2);
add FloatPrinter ();

}

void->float filter FloatSource {
float x;

© 0w N O o ks W N

init { x = 0; }

= = e
N o= O

work push 1 {
push(x)
x = x + 1.0;

=
s W

H
w
[

}

=R e
[ESTCN

float->float filter LowPassFilter (float rate,
float cutOff,
int taps,
int decimation) {

NN N
N o= O ©

}

[\
w

24

25 float->void filter FloatPrinter {
26 work pop 1 {

27 println (pop ());

28 }

Figure 2.16: A Streamlt low pass filter. The filtering pipeline Pipe is
composed by 3 stages. The work block associated to each filter specify
the action to execute; FloatSource produces samples for LowPassFilter.
The last stage, FloatPrinter, prints filtered values on standard output

34

2.3 Parallel Programming Models

The pipeline block allows to connect stages into a pipeline. In this
case, the aforementioned stages are connected one after the other, in a
linear fashion (Line 1), but more complex data-flow graphs, involving
stream splitting, joining, and back-edges, are possible.

The data-flow parallel programming model does not focus on paral-
lelism, it focus on data. Programmers identify sequence of operations
that allow to transform an input data stream to an output data stream.
Thanks to the explicit representation of communications by mean of
arcs, it is possible to analyze the data-flow graph, and to build a stage-
firing sequence at compile-time. Moreover, having multiple processing
elements, it is possible to execute more than one stage at the same time.
Indeed, the whole pipeline advances in lock-step mode, and in the steady-
state, the current step of each stage can be executed in parallel [63] with
the others.

Languages implementing the data-flow parallel programming model
usually provide near-zero runtime overheads, due to the compile-time
schedule of the data-flow graph. On the other hand, this simple model
prevents the expression of all possible computations. For example, it is
not possible to employ channels with variable capacity, and aggressive
compile-time optimizations can be achieved only with a subset of possi-
ble data-flow graphs. However, using this kind of data-flow graphs one
can model a significant number of applications [139], so this program-
ming model has reached some degree of interest both in academy and in
industry, especially in the domain of signal processing.

2.3.5 Task/Data-flow Parallel Programming Models

The task-parallel programming model allows to express arbitrary irreg-
ular applications, but does not address the problem of synchronizing
data accesses performed by different tasks. Indeed, if at least two tasks
can update concurrently a chunk of memory, synchronization primitives
must be employed to avoid a data race.

On the other hand, the data-flow parallel programming model ab-
stracts from how the computation is executed, focusing on data de-
pendencies of the application. This allows the elimination of explicit
synchronization statements, at the cost of a constrained programming
model.

The task/data-flow parallel programming model tries to get the best of
the two approaches. Basically, it acts like a task-parallel programming
model. The programmer identifies and spawns tasks explicitly, but each
task is also described by its data dependencies. Tasks are organized in
a task-graph according to their data dependencies, which are tracked

35

2 An Overview of Parallel Computing

at run-time. Tasks with no predecessors represent ready tasks. The
runtime is responsible of moving them from the task-graph to the ready
queues of worker threads that will execute them.

Data dependencies refer to memory locations, identified by means of a
base address and a size. An input dependency models a location that will
be read by the task, while an output dependency is related to a location
that will be written by the task. An input/output dependency includes
both. It is clear that input dependencies rule the execution of the task.
Indeed, either the referred location has no known dependencies, or the
referred location has to be written by another task — it is one of its
output dependencies.

Figure 2.17 reports the implementation of Cholesky decomposition
exploiting the task-data flow parallel programming model provided by
the StarSs [24, 35] language. The input of function cholesky is the NT x
NT blocked matrix A. Each block is a TS X TS sub-matrix. The algorithm
applies different operations on blocks of matrix A, without any explicit
synchronization. Every call to spotrf (Line 3), strsm (Line 6), sgemm
(Line 10), and ssyrk (Line 12) spawns a new task, by inserting it into
the task-graph according to its data dependencies.

Tasks and dependencies are identified by tagging functions or code
blocks. For example, the function spotrf (Line 20) is a task accessing
a memory chunk through the formal parameter A. The inout clause
tells the StarSs compiler and runtime that the chunk referenced by A is
an input/output dependence of size TS X TS X sizeof(float). In the
case of the strsm function (Line 24), both parameters refer to a matrix
with the same size, but only B is an input/output dependency. Matrices
referenced through parameter T will be accessed in read-only mode.

The master thread continues spawning tasks until the end of the func-
tion, where it waits for slave threads to finish executing all spawned
tasks (Line 16). Meanwhile, as soon as a task completes, its output
dependencies are declared satisfied and tasks with corresponding input
dependencies can be moved to the ready queues.

For instance, at the first iteration of the outer loop, the master thread
spawns an instance of task spotrf. Then it starts spawning strsm tasks.
The first spawned strsm task, must wait for the spawned sportf, because
of the dependence between spotrf parameter A and strsm parameter T.
As the calculation progress, more dependencies will be resolved, and
thus the parallelism degree of the application increases.

With respect to the task-parallel programming model, a lesser amount
of manual synchronization has is required, thus a reduction of program-
ming errors related to data-races is expected. On the other hand, the
data-flow graph does not expose any regularity, so that aggressive run-

36

Nl = S

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

2.3 Parallel Programming Models

void cholesky (float x*A) A

for(int k = 0;

k < NT; ++k) {

spotrf (A[k*xNT + k]);

for(int i =

k

+ 1; i < NT; ++i)

strsm (A[k*NT + k], A[k*NT + i]);

for(int i =
for (int j

k

1; i < NT; ++i) {
+

+
k 1; j < i; ++3)

sgemm (A[k*NT + il, A[k*NT + il], A[j*NT + il);

ssyrk (A[k*NT + il, A[i*NT + il);

}

#pragma css taskwait

3

#pragma css task inout ([TS][TS]A)
void spotrf (float =*A);

#pragma css task
void strsm(float
#pragma css task
void sgemm(float
#pragma css task

void ssyrk(float

input ([TSI[TSIT) \
inout ([TS][TSIB)
*xT, float *B);

input ([TSI[TSJA, [TSIITSIB) \
inout ([TS][TSIC)
*A, float *B, float *C);

input ([TSI[TSIA) \
inout ([TS][TSIC)
xA, float *C);

Figure 2.17: Cholesky decomposition using StarSs. The cholesky func-
tion operates on the blocked symmetric positive-defined matrix A. Each
block is a TS X TS elements sub-matrix, and matrix A is composed by
NT x NT blocks. Employed routines are actually tasks, thus they can be
executed in parallel with the task running cholesky, according to data
dependencies expressed by mean of input, output, and inout clauses

37

2 An Overview of Parallel Computing

time techniques cannot be exploited. However, it is possible combining
a task-data flow scheduler with a traditional task scheduler, allowing
aggressive scheduling techniques on tasks with no explicit data depen-
dencies, as shown in [111].

2.4 Workload Analysis

The traditional way for evaluating the performance of a computer system
requires running a benchmark suite and comparing the output score with
a reference value. Actually, the role of a benchmark suite is to evaluate
the performance of the computing system under a given workload, hence
for each scenario a specific benchmark suite is needed.

In the realm of sequential computing, the features of benchmark suites
are well known. Usually general purpose suites employ a mix of programs
written using mainstream languages. For instance, in the case of SPEC
CPU2006 [7!], benchmarks are written in C, C++ and Fortran. The
usage of C and C++ is due to their relevance in system software, while
Fortran has been chosen due to its usage in numerical code. If we con-
sider enterprise applications, benchmark suites, such as DaCapo [2¥],
are often based on Java applications. In any case, a system is exer-
cised to check whether it can efficiently execute current applications on
architectures based on the SISD model. If multi-threaded applications
are included in the suite, they often exploit an embarrassing paralleliza-
tion scheme, with highly independent parallel portion, and almost zero
communication cost, such as in the case of multi-threaded servers.

When looking at parallel computing, most of benchmark suites come
from the HPC domain. The dominant language is Fortran, while paral-
lelization is expressed by means of explicit parallel constructs, such as
OpenMP parallel loops or MPI processes, as done in SPEC OMP2001 [19]
and SPEC MPI2007 [105]. The first targets small scale parallel comput-
ers, where processing units share a common address space, while the
second is specialized in benchmarking large scale installations, where
coordination is achieved by means of message passing.

With respect to benchmark suites defined for sequential applications,
we have to deal with more hardware configurations. Indeed, since a ref-
erence parallel architecture is not available, benchmark results cannot
be easily generalized. For instance, consider an optimized algorithm,
which MPI implementation achieves good performance. We cannot say
that performance will be preserved if we change the size of the clus-
ter. This enforces us to evaluate the algorithm with different hardware
configurations, trying to detect how it scales, that is how efficiently it

38

2.4 Workload Analysis

employs available parallel processing units,

This issue suggest us that in the context of parallel computing, bench-
marking should be a challenging task, especially when considering ap-
plications other than the ones related to the HPC domain. The main
problem is that there is no consolidated environment that allows us to
extract relevant program features inside a benchmark and to stress a
well known architecture. The only thing we know is that we have to
exploit parallel computing to increase performance, but we have not a
wide spectrum of parallel applications from which extracting a bench-
mark suite, we do not known the target architecture, and we do not
known which programming model to use.

Moreover, the lack of a clear benchmarking environment does not fa-
cilitate the comparison between different architectures and/or program-
ming models, especially when considering not only the raw wall clock,
but also emerging requirements such as limited power budgets, or lan-
guage usability.

On the other hand, this is also an opportunity to reverse the research
perspective. In the past, computer architects added new features, such
as SIMD instruction set extensions, hoping that they would be useful
for application programmers. Languages and programming models were
extended to support these features, by exporting them to the application
programmer. Now, instead of focusing on benchmarks, it is necessary
to identify a set of interesting kernels for next generation applications.
They should be used both to drive research in parallel computing — i.e.
improving support for future applications needs instead of providing new
features, hoping that they will be useful — and to establish a common
baseline for benchmark definitions and comparison of non-functional fea-
tures, such as the usability of a language.

Those kernels are called patterns, but they are not related to the
design of applications, such as the ones in [5%]. They refer to important
problems, such as dense linear algebra routines or graph traversal.

Relevant patterns were initially searched in HPC applications, lead-
ing to the identification of 7 common kernels [12], called dwarfs, each
mainly characterized by how data is accessed, and thus by the exposed
communication pattern. Table 2.2 and Table 2.3 report the description
of the HPC dwarfs.

With the increased relevance of parallel computation also in the gen-
eral purpose market, the dwarfs list was analyzed and extended, leading
to the identification of 6 more dwarfs [1%]. As it can be seen in Table 2.4,
the description of new dwarfs is more concise with respect to the HPC
dwarfs. This is due to the fact that it is not clear which is the best ap-
proach to write parallel program involving these dwarfs, but their goal is

39

2 An Overview of Parallel Computing

Table 2.2: HPC dwarfs and their descriptions (from [1%]) — part I

Dwarf

Description

Dense linear algebra

Sparse linear algebra

Spectral methods

N-body methods

Data are dense matrices or vectors. Gener-
ally, such applications use unit-stride mem-
ory accesses to read data from rows, and
strided accesses to read data from columns
Data sets include many zero values. Data
is usually stored in compressed matrices to
reduce the storage and bandwidth require-
ments to access all of the nonzero values.
Because of the compressed formats, data is
generally accessed with indexed loads and
stores

Data are in the frequency domain, as op-
posed to the time or spatial domains. Typi-
cally, spectral methods use multiple butter-
fly stages which combine multiply-and-add
operations and a specific pattern of data
permutation, with all-to-all communication
for some stages and strictly local for others
Depends on interactions between many dis-
crete points. Variations include particle-
particle methods, where every point de-
pends on all others, leading to an O(n?)
calculation, and hierarchical particle meth-
ods, which combine forces or potentials
from multiple points to reduce the compu-
tational complexity to O(nlogn) or O(n)

40

2.4 Workload Analysis

Table 2.3: HPC dwarfs and their descriptions (from [1%]) — part II

Dwarf Description

Structured grids Represented by a regular grid; points on
grid are conceptually updated together. It
has high spatial locality. Updates may be in
place or between 2 versions of the grid. The
grid may be subdivided into finer grids in
areas of interest, and the transition between
granularities may happen dynamically

Unstructured grids An irregular grid where data locations are
selected, usually by underlying character-
istics of the application. Data point loca-
tion and connectivity of neighboring points
must be explicit. The points on the grid are
conceptually updated together. Updates
typically involve multiple levels of mem-
ory reference indirection, as an update to
any point requires first determining a list
of neighboring points, and the loading val-
ues from those neighboring points

Monte Carlo Calculations depend on statistical results of
repeated random trials. Considered embar-
rassing parallel

41

2 An Overview of Parallel Computing

Table 2.4: New dwarfs and their descriptions (from [1%])

Dwarf Description
Combinatorial logic Functions that are implemented with logi-
cal functions and stored state
Graph traversal Visits many nodes by following successive

edges. These applications typically involve
many levels of indirection, and a relatively
small amount of computation
Dynamic Computes a solution by solving simpler
programming overlapping subproblems. Particularly use-
ful in optimization problems with a large
set, of feasible solutions

Backtrack and Find an optimal solution by recursively di-

branch-and-bound viding the feasible region into sub-domains,
and then pruning subproblems that are
suboptimal

Construct graphical Constructs graphs that represent random

models variables as nodes and conditional de-

pendencies as edges. FExamples include
Bayesian networks and Hidden Markov
Models

Finite state machine A system whose behaviour is defined by
states, transitions defined by inputs and the
current state, and events associated with
transitions or states

perfectly matched: they still point out a set of relevant kernels expected
to be employed by next generation applications.

Analyzing the dwarfs, while keeping in mind their instances in the
parallel computing world, we can detect a set of relevant problems that
should be addressed.

First of all, to guarantee performance improvements, it is mandatory
to act on the sequential part of the application. Indeed, Amdahl’s law
still puts a limit on the maximum obtainable speedup. In the case of
parallel applications, synchronization between threads is a well known
bottleneck.

Another important issue is represented by efficient data access. In-
deed, modern parallel architectures access data in a non-uniform way. To
reduce fetching delays, the distribution of data above memory modules

42

2.5 Concluding Remarks

must be exploited to produce a parallel schedule aiming at maximizing
the number of access to local memory modules.

When looking at the architecture, from the software point of view, it is
clear that handling all possible target devices is not a viable option, and
we cannot compile and distribute software only for few architectures,
because the features of the device that will execute the software are not
guaranteed to be known at compile-time. Adapting to a wide range of
architectures has been traditionally tackled by means of Just-In-Time
compilation, however its cost is still relevant, due to the need of execut-
ing a compiler at run-time. This implies that less intrusive techniques
must be developed to limit as much as possible the overhead of run-time
code analysis and specialization.

Lastly, the increased transistor density has modified the behaviour of
architectures with respect to faults: they happen also inside processing
units, so we must understand how they affect computation under this
new faulting hypotheses. Indeed, from the point of view of parallel
software, we know that incorrect synchronization is one of the most
widespread reasons of incorrect behaviour, so it is of particular interest
to look at what happens when a fault occurs on hardware components
responsible of synchronizing the execution of parallel applications.

2.5 Concluding Remarks

In this chapter we proposed a brief survey about parallel architectures,
parallel programming models, and workloads stressed by current and
future applications.

From the architecture point of view, we have shown that there is
no single reference design for parallel computers. Indeed, each design
is suitable for a particular execution pattern, which can execute very
efficiently. On the other hand, trying to execute patterns not suited for
a given parallel architecture results on low performance gains, or even
no gain at all.

From the programming model point of view, we have observed a sim-
ilar scenario. The choice of the correct programming model for an ap-
plication intended to be run on a parallel architecture is mandatory to
achieve performance. We have shown that despite the parallelization
scheme adopted by each programming model, there are some shared
problems. Indeed, optimization of synchronization primitives is a key
point to allow a group of threads to collectively reach a given goal.
Moreover, efficient data access plays a central role in modern parallel
architectures, so the programming model is responsible of linking, in

43

2 An Overview of Parallel Computing

the most simple way, code execution with data placement, to allow the
hardware minimizing expensive data transfers.

Finally, a set of relevant problems, called patterns, have been intro-
duced. They represent the kernels of current — and future — applications,
so if we want to exploit parallelism as a mean for achieving performance,
we must take them into consideration.

44

3 Optimizing Reductions in Shared
Memory Multiprocessors

Reduction operations play a key role in modern massively data paral-
lel computation. However, current implementations in shared memory
programming APIs such as OpenMP are often computation bottlenecks
due to the high number of atomic operations involved. We propose a re-
duction design that exploits the coupling with a barrier synchronization
to optimize the execution of the reduction. Experimental results show
how the number of atomic operations involved is dramatically reduced,
which can lead to significant improvement in scaling properties on large
numbers of processing elements. We report a speedup of 1.53x on the
312.swim_m over the baseline.

3.1 Introduction

When considering data parallelism, reduction operations are a key com-
ponent of many algorithms. Typical implementations of the reduction
construct fall into three categories: either the reduction is performed
in a critical section by a single thread; or atomic read-modify-write in-
structions are used to concurrently aggregate data; or the availability of
fast barrier synchronization is exploited to divide the reduction into two
smaller operations, each executed by a different thread. The last case is
commonly used, e.g., in GPGPU code [¢7]. On the other hand, standard
benchmark kernels such as streamcluster from the PARSEC [20] suite
employ the first method. Other benchmark suites employ the reduc-
tion support provided by the OpenMP [16] Application Programming
Interface (API).

In the case of OpenMP, a reduction clause is associated with a paral-
lel loop directive and defines a reduction operation using a combination
operator specified in the clause. Support for reduce-like constructs is lim-
ited to associative and commutative binary operators and, in the case
of Fortran, intrinsic procedures, which are also associative and commu-
tative functions. Therefore the reduction loops can be parallelized by
associating each thread with a subset of the elements to be combined.
The partial reduction value computed by each thread can then be com-

45

3 Optimizing Reductions in Shared Memory Multiprocessors

bined in pairs recursively until a single reduction value is produced. This
process takes a logarithmic number of steps with respect to the initial
number of threads.

The parallel loop implements a fork-join model, which requires a sin-
gle implicit synchronization. In the general case, a single barrier syn-
chronization is needed to ensure that all iterations of a parallel loop are
completed at the join point before moving to other parts of the program.
This implicit synchronization can be removed with a nowait clause, while
explicit synchronizations can also be used to handle data dependencies.

On the other hand, the reduction step, which always takes place at the
end of a parallel loop, requires more synchronization. This synchroniza-
tion overhead leads the reduction step to cause loss of scalability, to the
point where reduction overhead can become a critical issue, as shown by
Fiirlinger et al. [57] for the 312.swim_-m SPEC OMP2001 benchmark.

The goal of this work is to introduce an optimized barrier synchro-
nization and reduction step, by allowing the intermediate values of the
reduction to be carried along by the inter-thread communication re-
quired for the barrier synchronization.

The proposed solution is demonstrated by means of both OpenMP and
pthread-based implementations. The pthread implementation is stand-
alone and introduces a combined barrier-reduction function.

In the case of OpenMP, we replace libgomp ' barrier synchronizations
involved in a reduction with a tournament barrier [72], which is both
more efficient and scalable, and mirrors the tree structure of the parallel
reduction. We then use the atomically-accessible flags of the tournament
barrier to store partial reduction values, thus removing the need for locks
in communicating the partial values.

An experimental campaign conducted on the reduction benchmarks
from most representative suites shows speedups up to 1.53x.

The rest of this chapter is organized as follows. Section 3.2 gives a brief
overview of barrier synchronization and reduction implementations state
of the art. Section 3.3 provides a detailed description of our solution,
while Section 3.4 shows its worth through an experimental campaign on
both benchmark applications and synthetic micro-benchmarks. Finally,
Section 3.5 provides comparison with the state of the art in reduction op-
timization and Section 3.6 draws some conclusions and highlights future
research directions.

Llibgomp is the OpenMP runtime implementation provided by the GNU GCC com-
piler [1].

46

3.2 Background

3.2 Background

In this Section, we review the background in barrier synchronization
algorithms and parallel reduction implementation, with an eye to the
implementation of both features in OpenMP.

3.2.1 Barrier Synchronization

Barrier synchronization overheads account for a large fraction of the
communication time in parallel /concurrent applications.

Barriers can be used with both message passing and shared memory
programming models. In this chapter, we will describe barrier algo-
rithms in terms of the shared memory programming model, since it is
the one implemented in OpenMP.

The goal of an optimized barrier algorithm is in both cases to minimize
the communication involved during each barrier operation. In the case
of message passing, this is represented by the packets sent, while for
shared memory the communication is obtained through the execution
of atomic instructions, as their execution is guaranteed to be correctly
observed by threads other than the one performing them.

The minimization of barrier synchronization overheads has been ad-
dressed by a large number of studies [109] proposing new barrier algo-
rithms. In general terms, we can identify three class of barrier algo-
rithms: centralized, dissemination and tree barrier.

Centralized The barrier state is represented by a shared centralized
structure, such as a counter; each thread atomically increments the
counter, then it spins over the counter, using atomic operations in the
process, until the expected final value is reached.

Dissemination The barrier state is a partitioned into sections, each
accessed by a subset of threads using the barrier; splitting the state
allows to minimize communication needed to keep a consistent state. In
general, more communication operations are needed than in a centralized
barrier, but since most communications access different sections of the
barrier state, conflicts are reduced, producing an overall reduction in
execution time.

Tree The barrier state is partitioned, spread across threads using the
barrier and laid out in a tree structure; this results in high memory con-
sumption to maintain a tree data structure, but minimizes both com-
munication and conflicts.

47

3 Optimizing Reductions in Shared Memory Multiprocessors

1 GOMP_barrier (); J J J
2 tid = omp_get_thread_num(); ‘ ‘ -
3 if (tid == 0) { | } l
4 red = 0; . . .
5 for(i = 0; i < SIZE; ++i) '
6 red += datal[il;
7 X
8 GOMP_barrier ();
(a) Code (b) Execution

Figure 3.1: Serialized reduction example. After the parallel loop, the
master thread aggregates data of all the others. Reduction is constrained
between two barrier operations, represented by gray blocks. During re-
duction computation, worker threads inactivity is represented by means
of dashed arcs

The centralized barrier class includes the central counter barrier [55],
used in libgomp; the butterfly barrier [32] belongs to the dissemination
class; the tournament barrier [72] is an example of a tree barrier. A full
analysis of the state of the art is beyond the scope of this chapter, but
a good survey is provided by Nanjegowda et al. [109].

Distributing the barrier state among threads is a mandatory feature
in the message passing programming models — it allows to distribute the
communication traffic. However, it is also important in the shared mem-
ory programming model, as it allows to reduce the number of invocations
of the cache coherency protocols.

3.2.2 Reduction Implementations

A reduction operation computes a scalar value as a combination of values
in a sequence. In a OpenMP parallel region, a reduction is almost always
followed by a barrier operation. This allows the reduction value to be
correctly seen by all threads after leaving the barrier.

The reduction itself can be executed in several different ways. In the
most trivial scheme, the reduction is computed by the master thread
between two barrier operations, as depicted in Figure 3.1. The reduc-
tion is computed sequentially. The first barrier (Line 1) ensures that the
master thread sees a consistent state of the memory — all other threads
must have finished the previous phase — before starting aggregating val-
ues (Line 5). The second barrier (Line 8) blocks other threads until

48

3.2 Background

1 private_red = 0;
2 for(i = lw; i < up; ++1i)
3 private_red += datalil; |
4 atomic_add (&red,
5 private_red);
6 GOMP_barrier ();
(a) Code (b) Execution

Figure 3.2: Parallelized reduction example. Reduction is computed con-
currently. Just before the end of the parallel loop, each thread aggregates
its local reduction value to the global one by means of atomic operations.
Only one barrier operation, represented by a gray block, is executed

the reduction is completed. Such a simple scheme obviously sacrifices
all opportunities for parallelization, and involves two barrier synchro-
nizations, but the reduction itself is computed without performing any
read-modify-write atomic instruction.

In general, however, the OpenMP compiler parallelizes the reduction.
In this scenario, reported in Figure 3.2, the reduction value is a variable
shared among all threads. Each thread performs a partial reduction over
private data (Line 3), and then safely aggregate the partial reduction
value to the global one (Line 5). In addition to parallelization, this
scheme allows the elimination of the first barrier. On the other hand,
the global aggregation can be performed inside a critical section, or
be executed through an atomic read-write-modify instruction — both of
which are expensive.

If the hardware architecture supports fast barrier synchronization, it
is also possible to perform reductions in a logarithmic number of rounds,
using a divide et impera approach, as depicted in Figure 3.3. Rounds
(Line 4) are executed in a lock-step fashion, exploiting barriers (Line 7)
for coordination. Inside each of them, only a subset of threads are active,
the ones that are computing partial reductions (Line 6). At the last
round, only one thread is active. It is in charge of computing the final
reduction value (Line 10). Since this implementation requires log,(n)
barrier synchronizations, where n is the size of the sequence, it is only
acceptable when there is hardware support for fast barriers.

3.2.3 Atomic Operations

To allow threads to coordinate their execution, modern microprocessors
support atomic memory access operations. In some cases, the atomicity

49

3 Optimizing Reductions in Shared Memory Multiprocessors

GOMP_barrier (); J J J

1

2 tid = omp_get_thread_num(); ‘]
3 sred[tid] = dataltid]; ! J !

4 for(i = 1; i < SIZE; i *= 2) { ! !

5 if(tid % (2%i) == 0) ‘ : :

6 sred[tid] += datal[tid + il; | | |

7 GOMP_barrier (); oo
s} |
9 if (tid == 0)

10 red = sred[0];

11 GOMP_barrier ();

(a) Code (b) Execution

Figure 3.3: Hand-written reduction. Under the hypothesis of fast barrier
operations, it is possible computing the reduction using a reduction tree.
At each round, only some threads are active, the ones that are comput-
ing the reduction, represented by solid arcs. Rounds are executed in a
lock-step mode. In the last round, only one thread is active, the one
computing the whole reduction value

is guaranteed by hardware properties for memory read and write opera-
tions. For example, on the Intel x86 P6 family processors every load and
store aligned to 8/16/32/64 bits fitting into a cache line is atomic [30].

However, in most cases the atomic operations are more complex than
simple reads or writes. The two most popular classes of atomic opera-
tions are the read-modify-write and the compare-and-swap.

Atomic read-modify-write instructions atomically read a value from
memory, perform an arithmetic or logic operation, and write the result
in the same memory address from which the operand was read. On
modern microprocessors, the atomicity is implemented on top of the
cache coherency mechanism [70].

Compare-and-swap instructions allow to atomically read a value from
the memory, and optionally replace it with the content of an operand.
Compare-and-swap operations are more powerful than any atomic read-
modify-write instruction [73], but costs are comparable — in both cases,
the time spent achieving atomicity is the dominant cost factor.

50

3.3 Combining Barrier and Reduction

n
_y M0
- 1
// /
/ //
/ -
| _-7
ni ¢ n2
P r
’ ! , [
/ 1 / 1
! / 1 !
I / I /
7 7
! s ! z
« «
ng —— N4 nyg — —— Ng
to t1 to t3

Figure 3.4: Execution of the tournament barrier algorithm. Each thread
enters into the barrier via a statically assigned leaf. The dashed path
is followed by threads entering in an active node. They climb the tree
until a passive node or the root node is reached

3.3 Combining Barrier and Reduction

To mitigate reduction overhead, we can combine the execution of each
reduction and its associated barrier. This allows to pay synchronization
cost once, while performing two operations — reduction and barrier.

To improve performance, we also aim at reducing the usage of atomic
read-modify-write instructions as much as possible. Thus, we choose
the tournament barrier [72] as a starting point for our reduction design,
since it achieves synchronization without performing any atomic read-
modify-write instruction [109].

3.3.1 Tournament Barrier

The tournament barrier employs a binary tree data structure, where
each of the threads that need to be synchronized is statically associated
to an arbitrarily chosen leaf. Thus, for synchronizing n threads, the
algorithm uses a tree with 2n — 1 nodes. The algorithm operates in
logy n rounds.

Ezxample 3.1. Consider the four threads and the associated barrier tree
shown in Figure 3.4. The barrier tree is a complete binary tree, with
four leaves, n3 to ng. Odd numbered nodes are active, while even num-
bered ones are passive, except for the root node ng. At the beginning
each thread is assigned to a leaf node. Threads ty and to enter into
active nodes and start spinning until they are signalled by their siblings.
Threads t; and t3 enter passive nodes, signal their siblings, and start

51

3 Optimizing Reductions in Shared Memory Multiprocessors

spinning until they are notified during the exit phase. Once ty and t2
have been notified by ¢; and t3, they move to n; and no respectively,
starting a new synchronization round. In this round ¢y moves to an
active node, while t5 to a passive node. Thus ty progresses to the root
node ng, while t5 waits spinning. Once g reaches the root node, it starts
the barrier exit phase. First tg returns to n; and signals to 2 to leave
the barrier, then it moves to ng, signals ¢; that synchronization has been
performed and leaves the barrier; to, in turn, notifies £3. Once notified,
t1 and t3 leave the barrier.

The standard tournament barrier avoids atomic read-modify-write in-
structions by exploiting point-to-point synchronization — each node con-
tains a flag variable, which is written only by its sibling. Thus, each flag
variable is only written by a single thread and hence no conflicts can
occur.

However, such feature comes at a cost — the tournament barrier con-
sumes more memory than other barrier algorithms. Moreover, the size
and alignment of the flag must be carefully chosen to avoid false-sharing
— indeed, if two flag variables share the same cache line, every update to
one of the two triggers the execution of the cache-coherency algorithm,
thus degrading performance. The flag must thus have a size equal to the
cache line, even though it only carries one bit of information — all other
bits are just padding. E.g., on a machine with a 64-byte (512-bits) wide
cache line, each flag includes 511 bits of unused padding.

3.3.2 Basic Reduction Design

The key idea of our design is to exploit the free space available in the
tournament barrier flag variable to propagate the partial results of the
reduction operation, computing them within the nodes.

To this end, flag variables are stored into the widest type that allows
atomic read/write access without locking — we will call this type the
container type in the rest of the chapter. They are also aligned to the
cache line size, to avoid false-sharing.

The container type is split into two sections, shown in Figure 3.5(a):
flag bit stores the state of the barrier operation (1 bit); payload stores
the state of the reduction operation (n — 1 bits, where n is the size of
the container type).

In the case of a 64-bit machine with a 64-byte wide cache line, the
container type is a 64-bit integer, aligned to 64-bytes.

As depicted in Figure 3.5(a), the first bit is the flag bit, while the
remaining bits of the container type represent the payload.

52

3.3 Combining Barrier and Reduction

auxiliary
01101...11
container container
01101...11 00000. .. 00
f— k— kA k]
payload flag payload path flag
(a) Base (b) Extended

Figure 3.5: Layout of the container type. In the base version only one
bit is needed to encode the barrier state, all others can be used to pack
partial reduction values. The extended layout uses one more bit to find
whether the reduction partial value is packed into the container payload
or stored in the auxiliary variable

All bits needed to align the container to the cache line are wasted,
since we cannot access them atomically without using locks and thus
adding an overhead that would prevent the algorithm from achieving a
speedup with respect to existing designs.

A thread entering a passive node stores into its active sibling both
the flag bit and the payload containing its own partial reduction result.
Then, it waits to be notified by its active sibling by spinning on its own
flag variable. At each spin, the value of the flag bit is extracted from
the container and checked.

A thread entering an active node first spins over its flag variable,
waiting for the thread associated with the passive sibling node to reach
the barrier. At each spin, the container flag variable is read and the flag
bit is extracted and checked. If the flag bit is set, the payload is also
extracted and aggregated with the private partial result of the thread.
The thread then enters the parent node, starting a new round of the
algorithm.

When a thread returns to an active node after visiting its parent,
the same operations are performed as in the exit phase of the basic
tournament barrier algorithm. The thread notifies its passive sibling
that synchronization has been achieved by setting the flag bit into its
flag variable.

In our design, reaching the root node has a double meaning: not only
all threads have reached the barrier, but the reduction is also computed,
and its value is stored in the current thread private memory space. To
make this value readable to all threads, it is necessary to store it in

53

3 Optimizing Reductions in Shared Memory Multiprocessors

//W no
Tt0:4/, T‘n1:2
/
I - T T T T T -
n1 « \nz
L L
/ /
/ /
7’250:2/ Tt2:2,
’/ ’I“n3:1 ’1 Tn5:1
ng L "~ny ns = ng
Tt021§ Tt1:1§ g’f‘tzzl %’I“tgzl
to t1 to t3

Figure 3.6: An example of reduction. There are four threads, each
proposing 1 as the value to be aggregated. The reduction operator
is sum. The r;, variable refers to the partial reduction seen by thread
t;, while r,, is the value of the partial reduction inside node n;. The
reduction is computed along the dashed path. Partial reductions are
computed while moving from a node to its parent. Passive nodes sends
their partial reduction values to associated active nodes

a global-accessible variable and then force a memory fence operation.
At this point the reduction is completed and the tournament barrier
algorithm can proceed, notifying threads that synchronization has been
achieved.

Ezample 3.2. We want to compute the sum of a sequence of unsigned
integer values. Assume that the sequence to be reduced has been split
into four subsequences, and partial aggregate values have been computed
by each of the four threads, as shown in Figure 3.6. Each thread ¢;
(1 € [0 : 3]) enters the barrier carrying a partial aggregate value p;. The
algorithm performs the same steps as in the standard tournament barrier
implementation show in Figure 3.4. In addition, at each step threads
in passive nodes pack their partial aggregate value together with the
flag value into their sibling node. Therefore in the first step ¢; and t3
store their partial values p; and p3 into nodes n3 and ns. Then, ty and to
before moving to the second step extract from their respective containers
the payload and compute new partial values by aggregating respectively
po + p1 and p2 + p3. In the second step to packs its computed partial
value into ni, where it is extracted by ¢y and combined to obtain the
global reduction value pg + p1 + p2 + p3. This value is published by #g
when it reaches the root node ng. The exit phase is unmodified with
respect to Example 3.1.

54

3.3 Combining Barrier and Reduction

3.3.3 Fast Path Optimization

The basic reduction design represents a fast execution path, which is only
semantically correct under the condition that the reduction data-type
fits the size of the container payload. To handle the remaining cases, a
fall-back slow path will be introduced in Section 3.3.4.

The efficiency of the fast path strictly depends on the ability of the
base tournament barrier algorithm to parallelize the reduction operation
as well as to minimize the number of atomic operations. The reduction
parallelism is achieved by exploiting the hierarchical structure of the
barrier tree, while independence derives from limiting the entities per-
forming the partial reductions to two, namely reader and writer. Thus
an f-way tournament barrier [65] would not be as effective as a base
algorithm for our purpose.

The fast path requires only one memory fence. The thread that
reaches the root node performs this memory fence to make the final
result of the reduction visible to all threads.

While the ability to take the fast path is dependent on the reduction
data type, it is independent from the operator used to aggregate values.
As long as partial reduction values fit into the container payload, atomic
read-modify-write operations and memory fences can be avoided.

3.3.4 Slow Path Management

The slow path is designed as an extension of the basic reduction algo-
rithm to handle the case when the reduction data-type does not fit the
container payload.

To this end, the container layout has been further modified, as shown
in Figure 3.5(b), to reserve space for a 1 bit field — the path field. Con-
sequently, the payload field is shrunk by 1 bit. An auxiliary variable is
added to the node state to hold the partial reduction value.

Figure 3.7 shows the pseudo-code of the path management algorithm.
When the thread in the passive node needs to propagate the reduction
value to the thread associated with the active sibling, the management
algorithm is invoked. If the partial reduction does not fit into the payload
(Line 2), it is stored into the auxiliary variable (Line 5) associated with
the active sibling of the current node. Then a memory fence is issued
(Line 6). Finally the flag and path fields of the container are set.

Correspondingly, active nodes detect where to read the reduction par-
tial value by reading the path bit of their container. If the path bit is
set, the slow path has been taken, and the reduction partial value can
be found in the auxiliary variable associated with the active node. Oth-

55

3 Optimizing Reductions in Shared Memory Multiprocessors

Algorithm: PATHMANAGEMENT

Input: a partial reduction value data
a passive tournament barrier node node
Result: reduction information is communicated to the active sibling of
node

1 sibling « GETSIBLING (node)

2 if FITS (data, payload_size) then

3 sibling.containter « PACK (data, FAST, flag)
4 else

5 sibling.auxiliary < data

6 MFENCE ()

7 siblig.container « PAck (0, SLOW, flag)

Figure 3.7: Path management algorithm. When the partially reduced
value fits the payload, the fast path is taken; otherwise a slow path
involving a memory fence is triggered

erwise, the fast path has been executed — the reduction partial value is
packed into the payload (Line 3).

Note that the memory fence is necessary to guarantee that the par-
tial reduction value is stored into the auxiliary variable before the flag
and path bits are set, but induces an increased latency. Such fence in-
structions are not issued on reductions performed using the fast path,
since in this case the partial reduction values and the flags are written
atomically.

Since modern processors are usually 64-bit based, the payload is large
enough to hold partial reduction values of most native scalar data-types.
Therefore the slow path is rarely taken. In the next Section, we show
how to deal with larger data types and still benefit from the fast path.

3.3.5 Compact Data Representation

Taking the fall-back slow path is not always necessary when the data
size is too wide by just 2 bits. As an example, consider a reduction
over 32-bit unsigned integers on a 32-bit machine. Since we use 1 bit to
represent the flag and 1 for the path field, the payload is not wide enough
to store a 32-bit unsigned integer. Thus, in the many cases where the
values involved in the reduction never exceed 239 — 1, we could still use
the fast path — the same might not be true in the case of signed integers,
though.

The packing function used to store the partial reduction values into the
payload is therefore parametrized with respect to the reduction data type

56

3.3 Combining Barrier and Reduction

and values. When working with the widest unsigned integer type that
allows atomic read/write access, the packing function checks whether
the value can actually fit into the payload (i.e., the two most significant
bits are not set).

In these cases, the algorithm is not forced to take the slow path over
all nodes — path selection strictly depends on the actual value of the
reduction in each active thread. If a partial reduction value follows a
slow path, this does not force a slow path for the other threads. In
many cases, such as when a reduction is used to sum partial counters, it
is more likely to overflow payload bounds only in the last rounds of the
algorithm, which also involve only few threads, thus using a fast path in
most nodes of the barrier tree.

To exploit this path optimization in the very common case where
reductions are performed over word-size floating point values, we need
to recover two bits from the floating point representation, without losing
precision. IEEE double precision floating point numbers [79] fp are
represented over 64 bits, (fpes ... fpo), with the following interpretation:
sign = fpes holds the sign, exp = (fpg2 ... fps2) represent the biased
exponent, and all other bits hold the mantissa (except the first digit,
which is implicitly set at 1). Thus fp represent the floating point number
(—1)%9m x 262p=1023 5 (1.0 4 mantissa).

To preserve precision, the algorithm cannot simply discard the least
significant bits of the mantissa. We therefore operate in the same way as
for the integers, assuming implicit values for two bits. These bits, and
the relative assumed values, must be chosen to maximize the execution
frequency of the fast path.

The distribution of mantissa bits is hard to predict, and making the
sign implicit would limit the fast path to just positive or negative values.
Thus, we have to choose two bits from the exponent. Since the exponent
is biased, the first two bits of the exponent partition the space of float-
ing point numbers in four equally sized subspaces. The 10, subspace
contains exponents ranging from 1 to 512, making it a good candidate
for the assumed value. The 112 subspace represents very large numbers
(in modulo), that are expected to appear late if at all in the reduction,
while 005 represents very small values, which would often be overshad-
owed by larger values early in the partial computations. Finally, the
01, subspace contains exponents between —511 and 0, which makes it
an excellent candidate, since it represents most of the range (2, —2) (ex-
cluding the values with a modulo close to zero), which is suitable for
many computations.

In the end, the choice between 019 and 102 mostly depends on the
application domain. For the experiments reported in this chapter, we

o7

3 Optimizing Reductions in Shared Memory Multiprocessors

use the 012 setup.

3.3.6 Nowait Reductions

Sometimes, it is necessary to aggregate different variables at a synchro-
nization point, and there are no data dependencies among the different
reduction operations. In the case of multiple consecutive reductions, we
could still use a combined reduction/barrier operation for each reduction
operation. However, this scheme enforces some useless synchronizations,
as once a thread has reached a passive node and has sent its reduction
partial value to its active sibling, it is no longer necessary to wait at
the barrier, as synchronization is not actually needed except in the last
reduction. We call this kind of reduction a nowait reduction.

Nowait reductions are easily expressed within OpenMP programs.
Work-sharing constructs can be tagged with the nowait clause to avoid
a barrier operation before leaving the construct. If a reduction clause is
also present, our combined barrier algorithm can be executed in nowait
mode to compute the reduction value, issuing fewer atomic instructions
than the standard implementation.

The base algorithm has been modified to support nowait reductions.
A thread t; reaching a passive node sends the reduction partial value to
its sibling ¢;, and starts waiting for a synchronization achieved signal.
Once notified, thread ¢; performs the local aggregation pass, and then
releases thread t; before moving to the parent node. This allows ¢; to
leave the barrier earlier with respect to the base algorithm, and the exit
phase is not performed at all.

This scheme keeps only those threads that are actually working to
compute partial values of the reduction in the barrier, while all other can
proceed to the next program statement. When the following statement
is also a combined barrier/reduction operation, reductions are pipelined.

When operating in nowait mode, the thread reaching the tree root
does not issue any memory fence, since synchronization is not needed,
and so publishing the reduction global value is not mandatory. Conse-
quently, if global synchronization is needed, the last barrier operation
cannot be performed in nowait mode.

3.4 Experimental Evaluation

In this Section we provide an experimental evaluation of the proposed
technique. While there is no standard suite dedicated to reduction
benchmarking, the three most popular suites all include one bench-
mark specifically chosen to measure the effectiveness of this operation.

58

3.4 Experimental Evaluation

Table 3.1: Reduction benchmark characterization

Benchmark Reductions Operator Data type

cg (class C) 3900 + floating point

312.swim_m 2400 + floating point
fast 50000 & unsigned integer
slow 50000 & unsigned integer
mized 50000 + unsigned integer
mults 50000 & unsigned integer

To supplement these benchmarks, we also employ micro-benchmarks to
measure specific properties.

3.4.1 Benchmarks

We select a set of benchmarks from the most popular suites target-
ing shared memory parallel applications: SPEC OMP2001 [20] and
NAS [23]. Firlinger et al. [77] show the bottlenecks for the SPEC
OMP2001 benchmarks. According to their analysis, 312.swim_m and
310.wupwise_m are the only benchmark in the suite where reductions
have a significant impact, though 3$10.wupwise-m uses complex data
types, and thus is not optimizable in our framework, since we need to
carry the payload in an atomically accessible data type, not just a data
type fitting the cache line. NAS also provides a single interesting bench-
mark, cg.

In addition to evaluation on benchmark applications, synthetic micro-
benchmarks are useful to analyze the performance properties of the pro-
posed reduction design. The only well known micro-benchmark suite for
OpenMP constructs is EPCC [36]. The EPCC syncbench benchmark is
designed to stress reduction computations. Its kernel is an omp parallel
region. However, the GCC OpenMP implementation introduces implicit
barriers at both region start and end. Since the region body in the
benchmark does not perform any relevant computation, GCC-induced
synchronizations dominate the benchmark runtime, making it all but
impossible to use it for its designated purpose. Moreover, syncbench
does not help in understanding the behavior of the reduction design.
Therefore, we employ four synthetic micro-benchmarks.

Table 3.1 shows the resulting benchmark set, characterized by the dy-
namic count of reduction operations, as well as by the type of reductions
and the data types involved. The set covers all interesting data types:

59

3 Optimizing Reductions in Shared Memory Multiprocessors

integers and floating point numbers, in the latter case including both
single and double precision.

3.4.2 GCC Optimization

All benchmarks are parallelized exploiting OpenMP directives. Thus,
we have introduced compiler support for our combined barrier and re-
duction implementation in GCC. When a reduction clause that can be
optimized is found, a GCC optimization pass identifies the barrier op-
erations executed after the reduction, and replaces both with the in-
vocation of our combined reduction and barrier. To this end, we have
also augmented the GCC OpenMP runtime, libgomp, with our barrier
implementation. To measure the efficiency of the combined barrier and
reduction (and not the efficiency of the barrier alone), we still rely on
the default barrier implementation (a central counter barrier) in all cases
except those where the combined barrier and reduction is used.

3.4.3 Experimental Setup

The experimental campaign has been conducted on a AMD NUMA ma-
chine with four nodes, each a quad core Opteron 8378 processor. Each
core has a 64KBytes L1 data cache, a 64KBytes L1 instruction cache,
and a unified L2 512KBytes cache. All cores within a node share an
unified 6MBytes L3 cache. Cache line size is 64Bytes Inter-node com-
munication is supported by a fully-connected network.

All benchmarks are compiled with the GCC 4.6 compiler in two fla-
vors: base and peak. Base compilation is the reference execution ob-
tained using an unmodified GCC compiler and runtime, while peak
compilation applies optimization to use our combined reduction-barrier.

For each flavor, we register both the execution times and the number
of atomic operations performed. All benchmarks are run with a number
of threads varying from 1 to 16 — the maximum available hardware
parallelism.

3.4.4 Micro-benchmarks

The fast micro-benchmark stresses the execution of the fast path. Con-
versely the slow micro-benchmark always triggers the slow path. The
mixed micro-benchmark evaluates the case where execution starts from
the fast path and then triggers the slow path. Finally, the multi micro-
benchmark targets the nowait reduction behavior in the case of multiple
reductions in the same loop. Figure 3.8 summarizes micro-benchmarks
results.

60

3.4 Experimental Evaluation

2 FH S 2,000 | S
o — 3
- X %
e w 1,500 |-
- S
5 1,000 |-
£ <
i T 500 Es
A 5]
N 0 | s IE
1 2 4 8 1 2 4 8 16

No. of Threads No. of Threads

II fast II slow II fast II slow

E] mixed E Ej multi E] E] mixed B B multi

(a) Execution time (b) Atomic operations

Figure 3.8: Reduction micro-benchmarks results

In all cases, we compare our design with the libgomp baseline. The
results show that for the fast path and the multiple nowait reductions
the number of atomic operations is very low and scales well over a larger
amount of threads. However, the multi micro-benchmark shows that
greater benefits are achieved when nowait reductions are involved since
in this case our design significantly reduces the amount of synchroniza-
tion, thus obtaining a major performance improvement over the libgomp
baseline.

On the other hand, the slow and mizred micro-benchmarks show that
our design does not significantly degrade performance even when the
slow path is triggered.

3.45 cg

The cg benchmark computes the eigenvalues of a sparse matrix using the
conjugate gradient method [%3], relevant to the field of computational
fluid dynamics. The structure of the code includes a top-level loop that
contains an OpenMP parallel region. The parallel region computes the
aggregate value used in subsequent loop iterations by means of a reduc-
tion at the end of the region. It is important to note that an omp master
construct is used to compute an intermediate aggregate value, and an
explicit barrier is used to block all other threads.

We have executed the benchmark using the C data set.

Even if our reduction implementation is effective in reducing the num-
ber of issued atomic operations, as shown in Figure 3.9(b), the run-time

61

3 Optimizing Reductions in Shared Memory Multiprocessors

2 - . S 200 =
—
X
=t 1.5 . 3 150 |~ .
= S
8 1 . S 100 - =
& <
0.5 |- * g 50 L *
; L
oL | “ o oolm B =
1 2 4 8 16 1 2 4 8 16
No. of Threads No. of Threads
’ I I Cgl I 312.swim_m ’ I I cg I I 312.swim_m ‘
(a) Execution time (b) Atomic operations

Figure 3.9: Reduction benchmarks results

is dominated by the omp master sections, thus run-times do not scale
well.

3.4.6 312.swim_m

This benchmark numerically solves a shallow water modelling problem
relevant to weather prediction [20]. It repeatedly executes a computa-
tionally intensive loop body containing a parallel OpenMP region. At
the end of the parallel region three reductions are computed.

Our algorithm generates two nowait reductions followed by a com-
bined reduction-barrier.

As shown in Figure 3.9(a) and 3.9(b) the number of atomic operations
performed by the peak version is always lower than the baseline, while
run-times are lower or equal to the baseline when working with more
than 4 threads.

When working with only few threads, atomic operations are often
uncontested. Thus, the base implementation can outperform the peak
implementation in these cases. On the other hand, when the number of
threads grows the performance of the peak optimization stabilizes and
are always better than the baseline.

3.5 Related Work

In the context of distributed computing, where communication is more
expensive than in shared memory architectures, the MPI standard [103]

62

3.6 Concluding Remarks

includes the notion of collective operations to perform multiple opera-
tions in one step, and reduce the number of exchanged messages.
Shirako and Sarkar [132] introduce the concept of phaser accumulator
to combine reduction and barrier operations in presence of dynamic par-
allelism. They rely on atomic read-modify-write instructions to send re-
duction partial values safely to the phaser. They also propose a tree-like
structure for phasers, with the goal of improving phaser scalability [131].
The key difference between our work and the one by Shirako and
Sarkar [131] is that we target a static workload and focus on enabling
the fast path as much as possible through compact data representation.
Shirako and Sarkar [131], on the other hand, focus on the ability to scale
dynamically, and therefore the synchronization tree must be specified.
Pipeline reduction is another optimization that is only available in our

design.
Shirako and Sarkar [131] compare their work with the OpenMP run-
time using the EPCC Syncbench [36]. This makes comparison with our

work difficult both because of the characteristics of the EPCC Syncbench
described in Section 3.4.1 and the different goals, as our work is geared
towards a language agnostic reduction design.

Intel TBB [5] employs a similar structure to Shirako and Sarkar [131],
with a costly dynamic creation of the reduction tree.

Chun and Xuejwen [!1] address the optimization of barriers and re-
ductions with a different approach — rather than handling the fast paths
at runtime, they rely on new primitives for expressing constrained forms
of barrier and reduction constructs.

3.6 Concluding Remarks

In this chapter, we have proposed a reduction design to take advantage of
coupling with a barrier synchronization. Our design exploits the unused
space in the flag variables of a tournament barrier to carry a partial
reduction value, thus reducing the amount of atomic operations.

Our experimental campaign shows a significant reduction in the num-
ber of atomic operations employed to perform the reductions, as well as
a speedup of 1.53x on the 312.swim_m benchmark.

Future directions for this research include affinity-guided association
of threads to barrier tree leaves, as well as an adaptive data-compaction
method to increase the frequency of the fast path further.

63

4 Data-aware lterations Scheduling
in OpenMP

In modern NUMA architectures, preserving data access locality is a
key issue to guarantee performance. We define, for the OpenMP [1(]
programming model, a type of architecture-agnostic programmer hint
to describe the behaviour of parallel loops. These hints are only related
to features of the program, in particular to the data accessed by each
loop iteration. The runtime will then combine this information with
architectural information gathered during its initialization, to guide task
scheduling, in case of dynamic loop iteration scheduling. We prove the
effectiveness of the proposed technique on the NAS parallel benchmark
suite [%3], achieving an average speedup of 1.21x.

4.1 Introduction

To achieve performance in NUMA architectures, it is essential to provide
data access locality, that is, data located in a given node are accessed
as much as possible from the cores of the same node, and as little as
possible from the other ones [100),]. Recent works targeting OpenMP
on Linux focus on exploiting specialized page allocation policies [27] such
as explicit data distribution, which allows the programmer to select a
precise distribution to be implemented at initialization time. The nezt-
touch policy, introduced in [31, (1], allows dynamic data relocation by
exploiting memory protection mechanisms.

However, such works incur in one or more of the following drawbacks:
they rely on programmer knowledge of the underlying architecture, thus
negating a major benefit of OpenMP, architecture independence [I11];
they lack dynamism, since they provide only a single data distribution
strategy which might not cover all the access patterns the program em-
ploys during different phases of its execution; or, they do not deal with
workload balancing, which in turn adversely affects irregular parallel
applications.

In this work, we take into account these issues, providing a solution to
maintain thread-data affinity across the lifetime of the application, which
relies on programmer hints describing only the application behavior, and

65

4 Data-aware Iterations Scheduling in OpenMP

exploiting them through a specialized runtime, balancing the workload
by means of work-stealing.

The rest of this chapter is organized as follows. Section 4.2 introduces
the syntax and semantics of the proposed hints, while Section 4.3 pro-
vides details on our runtime design and implementation, and Section 4.4
provides an experimental evaluation. Finally, Section 4.5 provides a
brief survey of related works, and Section 4.6 draws some conclusions
and highlights future research directions.

4.2 The Data Access Pattern Approach

The OpenMP standard provides support for parallel loops through the
!, The parallel loop syntax is restricted
to force the loop bounds to be loop invariants, since the runtime must
always be able to evaluate the iteration space. Once the iteration space
has been computed, iterations are first grouped into chunks ? and then
mapped to the active threads of the parallel team according to the
scheduling policy implemented by the runtime. Programmers can in-
fluence the behaviour of the runtime system only by forcing a iteration
scheduling policy and specifying a minimum chunk size.

omp for and omp do directives

Even though OpenMP allows the programmer to choose among differ-
ent scheduling strategies, to address the problem of mapping iterations
over the threads in a team, there is no support for expressing thread-data
affinity [33, 120].

The key idea of our approach is to allow the runtime to identify the
portion of data which will be accessed by the iterations of a parallel
loop. These iterations will then be scheduled to threads according to a
novel dynamic scheduling policy, which will try to preserve locality as
much as possible.

To this end, we extend the existing OpenMP parallel loop directive
through a new clause representing the data access pattern, that is the
way loop iterations access the data. The runtime will then use the
thread-data affinity information derived from the data access pattern to
improve the existing dynamic iteration scheduling policy, by scheduling
threads on the cores nearest to the memory where the related data are
stored. While automated approaches to page placement do not require
changes to the API, identifying and exploiting thread-data affinity at

1omp for and omp do model the same type of parallel loop, in C and Fortran
respectively. For brevity in the rest of the paper we will refer to omp for but the
same considerations apply to omp do as well.

%We use the term chunk to refer to a set of iterations as specified in OpenMP [16].

66

4.2 The Data Access Pattern Approach

Axiom — pattern(Clause)
Clause — DataStructure [PESeq]
PESeq — PESeq , PatternEzpr

| PatternExpr
PatternExpr — RangeFExpr | SliceExpr
RangeExpr — FExpr : Expr

| Eapr |+
SliceExpr — "~ Expr

Figure 4.1: Pattern clause syntax. Fxpr is any expression of runtime
constants, while DataStructure can be any array or pointer variable
name

compile time might not be feasible, and is in general a very complex
task [33]. By contrast, a skilled programmer is able to identify more
effectively the patterns used by threads when accessing data, and thus
provide precise hints to the runtime. This is, anyway, mandatory if a
fine-tuning of the application performances is desired [27, ,].

A key difference with respect to previous works [27], including PGAS
languages [11, |, is that to minimize the programming efforts when
writing parallel programs, our approach does not rely on explicit data
distribution and exploitation of the processor space.

4.2.1 Data Access Pattern Definition

A data access pattern binds iterations in a parallel loop with the portion
of memory accessed at runtime. We formally define the data access
pattern and the OpenMP syntactic extension needed to support it as
follows.

Definition 4.1. A data access pattern is an equivalence relation over
the elements of a k-dimensional array data structure. An equivalence
class under the data access pattern relation is called tile. Data access
pattern relations are described by means of pattern clauses, defined by
the grammar in Figure 4.1 and its associated semantics.

In our OpenMP extension, a pattern clause (or, for brevity, a pattern)
is associated to a loop directive. The first argument of a pattern clause
is a reference to the shared data structure that is concurrently accessed
by iterations in the loop. The rest of the pattern clause consists of
a sequence of pattern expressions, one for each dimension. A pattern
expression can be either a range expression or a slice expression. A range
expression is used to identify a range of indices in a given dimension of

67

4 Data-aware Iterations Scheduling in OpenMP

1 #pragma omp for collapse(2) \ CSLICE
pattern (A["RSLICE, "CSLICE]) —
for(i = 0; i < ROWS; i += RSLICE) T
for(j = 0; j < COLS; j += CSLICE) l b
for(k = 0; k < RSLICE; ++k)
for(h = 0; h < CSLICE; ++h)
Ali+k][j+h] = ...;

RSLICE

2
3
4
5
6
7

Figure 4.2: Pattern example. Matrix A is accessed in a block-wise fashion
by the collapsed parallel loop

the data structure, that are associated to all tiles. A slice expression
identifies the size of each tile in a given dimension.

A range expression has the form [n:m]. Both n and m must be loop
invariant. Their value is thus known at runtime before the loop execution
starts. The lower bound of a range expression may be omitted when it
matches exactly the lower bound of the associated dimension. Hence, a
pattern expression m is an alias for [1b:m], where 1b is the lower bound
of the index for the dimension considered. The * operator is also a
shorthand for [1b:ub], where 1b and ub are the lower bound and the
upper bound values of the index for a given dimension. The latter range
expression variants allow a more compact definition of the pattern clause
in many practical cases, but do not add any expressive power.

A slice expression takes the form ~n, where n is a runtime constant.

Figure 4.2 demonstrates the data access pattern semantics. The two
slice expressions define bi-dimensional tiles of size RSLICE x CSLICE on
matrix A, thus representing the block-wise accesses performed by the
loop nest.

The mapping between tiles and iterations is defined as follows: if
there is no slice expression in the pattern there is a single tile which is
accessed by all iterations; otherwise, tiles and iterations are associated
by a bijective relation, that depends on both the iteration indices and
the sign of the loop increment expressions. In a normalized loop nest,
each slice expression is associated to one loop index 7; and the tiles can
be ordered with respect to the indices iy of the dimension d associated
to the slice expression divided by the tile size n. Iterations of loop index
1; are mapped to tiles with ig/n = i;.

Back to the example in Figure 4.2, assuming RSLICE = CSLICE = 2, and
A a 4 x 4 square matrix, the pattern identifies four tiles. The iterations
with index i = 0 are associated to data items of indices 0 and 1 on the
first dimension. The same holds for loop index j, which is associated to

68

4.3 Runtime Extensions to Exploit Patterns

the slice expression corresponding to the second dimension of A. Thus,
iteration i, j = (0, 0) is mapped to the data in A[0] [0], A[0] [1], A[1] [O],
and A[1][1].

4.3 Runtime Extensions to Exploit Patterns

To employ the information encoded in the pattern clauses, we propose an
extension of the OpenMP runtime. The runtime analyzes each pattern
expressions to identify the size of the memory tiles accessed by iterations.
The tile information can then be exploited at runtime to group together
iterations that will probably touch the same set of virtual memory pages.
Since at runtime the base address of the patterned data structure is
known, it is always possible to identify the set of memory pages that
are expected to be touched by the iterations of the loop. This is true
also for dynamically allocated data-structures for which the size can be
assumed equal to the tile size times the size of the iteration space.

Since the runtime aims at maximizing the number of local accesses,
while avoiding, if possible, to incur in the penalty of long latency due
to remote memory accesses, the information obtained analyzing pattern
clauses is used to identify groups of iterations (blocks) that need to be
scheduled together on the same node. Iterations that access the same
memory pages (or different pages physically mapped to the same node)
are grouped within the same block. The dynamic scheduling policy is
thus driven by the collected pattern information.

The implementation used in this work is based on the libgomp [!]
OpenMP runtime and uses the Linux NUMA API [35] to detect virtual

page mappings.

4.3.1 Iteration Space Partitioning

To exploit the hints provided by the pattern information, the runtime
has to partition the iteration space so to minimize the number of remote
accesses.

Finding an optimal partition is known to be NP-complete. Obviously,
such complexity cannot be handled at runtime even with moderate num-
bers of iterations. Therefore, we propose a straightforward heuristic ap-
proach to minimize the time spent by the runtime in analyzing pattern
information while still providing a good, even if potentially sub-optimal,
partitioning. To further reduce the overhead, we base the partitioning
of the iterations of each loop on the information obtained from a single
pattern.

69

4 Data-aware Iterations Scheduling in OpenMP

The algorithm implemented in the proposed heuristic approach per-
forms a linear scan of the iteration space in search of opportunities for
grouping adjacent iterations. Let a and b be two adjacent iterations of
the analyzed parallel loop. Both a and b will be mapped to the same
block if at least one of the following conditions is satisfied: iteration a
accesses to the same set of memory pages touched by iteration b; the
set of pages touched by a are physically mapped to a node that is the
same for the pages touched by b; pages touched by both a and b are not
physically mapped to any node in the system.

Let us now formally introduce the concept of iteration block.

Definition 4.2. Let [b and ub be respectively the lower and upper bound
of the iteration space I of the analyzed loop. A block of iterations is
defined as a range of indices of the form [base, last], where base > b and
last < ub.

Let B be the set of blocks obtained from the partitioning phase, and
let b € B be a block of iterations. We call r(b) the range of indices
described by b.

The runtime limits the maximum number of blocks to reduce the algo-
rithm complexity while maintaining the required flexibility to cope with
irregular workloads. The limit has been set, considering the outcome
of an experimental campaign, to twice the number of available nodes in
the system. To cope with the imposed constraints, different blocks of
iterations may be merged.

When no pattern clause is specified for a given parallel loop, the it-
eration space is evenly partitioned into a number of blocks equal to
the number of available nodes. Since the output of the partitioning al-
gorithm is not necessarily the optimal partition, we later introduce a
runtime work stealing mechanism to reduce the effects of an unbalanced
distribution of the workload.

4.3.2 A Pattern Enabled Dynamic Scheduler

At the end of the partitioning stage, the iteration space of the parallel
loop is divided into blocks of iterations. When a loop has associated pat-
tern information, the runtime knows exactly which pages are touched
by each iteration block. The runtime assigns a work queue to each
NUMA node. The work queue is used to store information about iter-
ation blocks. A global work queue is reserved for those blocks that are
not related to any of the active NUMA nodes.

The algorithm that maps blocks to work queues uses the iteration-
data affinity information coming from the analysis of the pattern. Each

70

4.3 Runtime Extensions to Exploit Patterns

local _queue.is_empty
A
next == last

local_queue \ @/_\@
\ e d

' global _queue.is_empty

\ next == last

N \
no — T ni

Figure 4.4: Runtime behaviour
of a sub-team. Local Fetch
I (LF): fetch blocks from the

local_queue of the local node;

global_queue

" " Global Fetch (GF): fetch blocks

from the global_queue; Steal It-

Figure 4.3: Runtime system with erations (SI): steal blocks from

four distributed work queues the local_queue of mneighbour
and a global queue nodes

thread of the parallel team analyzes the set of blocks in parallel. Let b
be a block and let P, be the set of pages touched by iterations of b. The
algorithm counts how many pages in P, are mapped to each node. The
node with the highest number of mapped pages is finally selected as the
target node for the block b. If none of the nodes is related to any of the
pages in Py, b is assigned to the global queue.

Figure 4.3 shows the internal state of the runtime system in the case
of a ccNUMA architecture with four nodes. The internal state of each
node is composed of a working queue called local_queue and two integer
fields next and last, used respectively to store the lower bound and the
upper bound index of the range of iteration indices associated to the
current block.

At runtime, parallel teams are split into sub-teams, each associated to
a distinct NUMA node. A sub-team associated to a node n is composed
only by threads of the team that are running on node n. Threads are
mapped to sub-teams at runtime when a new team starts. The runtime
behaviour of a sub-team can be formally described by a finite state
automaton as shown in Figure 4.4.

Each sub-team starts executing in the initial state LF'. Threads of a
sub-team whose working state is LF', are only allowed to fetch blocks
from the local work queue of the node in which they are running. When

71

4 Data-aware Iterations Scheduling in OpenMP

the local block queue is empty and no iterations are available in the
current block, the sub-team moves from LF to GF, where the sub-team
fetches blocks from the global queue. In both states, iterations are se-
lected using the Guided Self Scheduling algorithm [121].

The idea is to exploit the locality of accesses preventing when possible
threads from accessing remote pages. To this end, at first threads are
forced to execute iterations from the local queue to maximize the prob-
ability of local accesses. Only when there are no more iterations associ-
ated to the local node, threads start fetching iterations from the global
queue. Since global queue only stores blocks related to virtual pages that
are still not mapped, there is an high probability that threads accessing
the global queue will own those pages because of the first-touch policy
implemented by the OS. The first-touch policy is the default policy for
NUMA-aware Linux systems. It consists of placing memory pages on
those nodes that first access the data during the program execution.

4.3.3 Work Stealing Strategy

When the global queue is empty and there are no iterations available in
the local queue, the sub-team transitions from GF to SI. While in SI,
threads start stealing blocks of iterations from the queues associated to
other nodes. According to the implemented work stealing policy, threads
in ST start stealing from the work queues of the nearest neighbour nodes.
Since the runtime is aware of the distance between nodes (identified by
means of calls to the Linux NUMA API), each sub-team knows which
nodes are the best candidates for stealing.

The work stealing procedure iterates over the neighbours set of a node
n in search of available blocks of iterations. By default the current
neighbour node (npeign) is initially set equal to the node that hosts the
current sub-team (n).

As long as there are iterations to fetch from the work queue of 7,¢ign,
threads fetch new iterations from their work queues. Eventually, when
the work queue of the current neighbour becomes empty, a new neigh-
bour is selected.

The selection strategy is based on the NUMA distance between nodes
of the underlying architecture. In the case described in Figure 4.3,
(dist(ng,m;)|t € [0 : 3]) = (0,1,1,2). The distance relation dist(n,n;)
imposes a partial ordering of the nodes n; € K. We need, for each node,
a sequence of nodes to poll for the next neighbour, called a neighbours
vector. To obtain the vectors, we make this a total ordering by imposing
that, when dist(n,n;) = dist(n,nj), n; < n; if i < j.

72

4.4 Experimental Results

Table 4.1: OpenMP benchmarks characterization

Parallel Dynamic

Bench loops loops Patterns
bt.c 28 14 9
cg.c 18 16 16
ft.b 8 6 6
is.c 9 2 2
lu.c 26 10 9

mg.b 14 11 11
sp.c 33 20 20
ua.c 68 56 56

4.4 Experimental Results

In this Section, we provide an experimental validation of our approach.
The main findings are that the proposed approach based on pattern
clauses is able to consistently reduce the number of remote memory
accesses, and that the reduction directly translates into a significant
performance improvement.

The experimental campaign has been conducted on a AMD ccNUMA
machine with four nodes, each a quad core Opteron 8378 processor.
Each core has a two-level private cache hierarchy. L1 cache is composed
by a 64KBytes data cache and by a 64KBytes instruction cache. L2
cache is an unified 512KBytes cache. All cores within a node share an
unified 6144KBytes L3 cache. Inter-node communication is supported
by a ring network topology.

AMD event based counters have been used to measure memory ac-
cesses. Separate runs have been used for performance and memory ac-
cess profiling, to avoid memory access counter sampling overhead in
timing measurements.

4.4.1 Benchmark Suite

We employ the NAS Parallel Benchmark suite, OpenMP version 3.3 [33].
We do not report on DC' and EP, since these benchmarks do not have
any OpenMP loop constructs (omp for and omp do). The benchmarks
have been modified in order to make use of dynamic scheduling. Ta-
ble 4.1 shows the number of total loops, dynamically scheduled loops,
and loops tagged with the pattern clause.

We compare the baseline libgomp runtime implementation opportunely

73

4 Data-aware Iterations Scheduling in OpenMP

Table 4.2: OpenMP benchmarks runtime behaviour
Blocks fetched from

Time in
Bench Local Global Steal opt. loops
(7] (%] (7] [72]
bt.c 65.72 0.01 34.27 90.55
cg.c 99.61 0.03 0.36 87.26
ft.b 76.40 0.00 23.60 66.69
is.c 66.67 0.00 33.33 51.30
lu.c 80.21 0.21 19.58 26.49
mg.b 35.16 22.26 42.58 66.82
sp.c 70.03 0.00 29.97 91.92
ua.c 88.36 0.13 11.51 78.28

extended to support a Guided Self Scheduling strategy for dynamically
scheduled loop iterations with our optimized runtime. This choice is
dictated by the fact that the libgomp dynamic scheduler provides only
poor performance, thus comparing with it would result in a significant
bias due to Guided Self Scheduling.

For all experiments we use 16 threads, each pinned on a different core.

4.4.2 Performance Analysis

Table 4.2 describes the runtime behaviour of the benchmarks, showing
the percentage of blocks fetched in each of the states of the automaton
in Figure 4.4 along with the percentage of the execution time spent in
loops tagged with pattern clauses. A high percentage of fetches from
local queues denotes a good distribution of the data structures, which is
effectively exploited by the iteration scheduling thanks to correct pattern
information. On the other hand, blocks fetched through work stealing
have higher probability of resulting in remote accesses since they were
originally intended to be executed on a different node.

Table 4.3 shows the speedups obtained by our optimized runtime with
respect to the baseline. Two scenarios are provided: Best, where the
proposed work stealing policy based on NUMA distances is used; and
Worst, where neighbour vectors are reversed. This shows that the order
of the neighbours counts: the last column (A) shows the maximum
performance loss in case of random neighbours selection. However, the
results also show that the impact of this policy is not so large as to make
the runtime less effective than the baseline. Thus, the Worst scenario

74

4.4 Experimental Results

Table 4.3: OpenMP benchmarks speedups

Speedup
Bench Worst Best A
bt.c 1.14 1.27 0.13
cg.c 1.81 1.82 0.01
ft.b 1.12 1.19 0.07
is.c 1.00 1.00 0.00
lu.c 1.02 1.05 0.03
mg.b 1.00 1.00 0.00
sp.c 1.18 1.23 0.05
ua.c 1.07 1.08 0.01

shows the impact of the iteration scheduling optimization, while the Best
scenario adds the impact of an effective work-stealing policy.

We can see that, for most benchmarks, we obtain a speedup between
1.05x and 1.27x for the Best scenario. There are three exceptions: MG,
IS and CG.

MG is the only benchmark where the initial distribution of frequently
accessed data structures is performed by the master thread alone. Since
we rely on the first-touch policy to provide the initial distribution, a
large number of remote accesses is generated regardless of the iteration
scheduling policy. Note that the pattern definition leads the runtime to
place most of the iterations on the node where the master thread resides,
thus leading to a reduced amount of blocks fetched from local queues.

IS benchmark implements a bucket sort algorithm. FExcluding the
time spent in initializing data structures, most of the time is spent on
a fast data parallel loop used to sort keys of each bucket. There are
several instances of non-linear accesses where array indices are obtained
from table lookups. This type of access cannot be optimized, since it is
by design hard to predict, to provide the required randomness. While
the proposed technique cannot obtain a speedup, it still does not impose
an overhead with respect to the baseline.

CG obtains the highest speedup, a remarkable 1.82x. It performs
sparse matrix multiplication, which can easily lead to irregular accesses.
However, the benchmark provides an initial data distribution that com-
bined with the data access pattern information allows a massive im-
provement in data access regularity, which immediately translates into
a performance improvement.

75

4 Data-aware Iterations Scheduling in OpenMP

Table 4.4: OpenMP benchmarks remote accesses (in millions)

Bench Base Pattern Savings

[%]

bt.c 70,777.56 54,787.53 22.59
cg.c 40,969.86 3,592.73 91.23

ft.b 4,824.42 4,494.31 0.90
is.c 851.71 844.01 6.84
lu.c 37,674.95 32,731.91 13.12
mg.b 2,504.46 2,486.34 0.72

sp.c 269,485.03 192,971.48 28.39
ua.c 115,912.76 85,196.04 26.50

4.4.3 Remote Memory Access Analysis

Table 4.4 shows the reduction in remote memory accesses obtained by
our runtime with respect to the baseline. Memory access reduction is
at the base of performance improvement, so these results mirror the
performance speedups.

It is especially interesting to consider the reduction in CG, where
remote memory accesses are strongly minimized thanks to the pattern
information.

In IS, the data access patterns are mostly unpredictable, as memory
accesses are defined through non-affine array functions. This makes it
hard to find good pattern information for most of the parallel loops in
the code. While the savings in terms of remote accesses are small, they
are sufficient to offset the overhead imposed by the pattern evaluation
and iteration space partitioning phases.

In MG, most frequently accessed data structures are allocated on a
single node, which forces all threads on other nodes to perform remote
accesses. Thus, no significant reduction is obtained. Moreover, the high
amount of global fetches shows that part of data structures were not
preallocated at all.

4.5 Related Work

Several different approaches are proposed in literature to mitigate the
memory latency penalty due to remote accesses. Some of these ap-
proaches rely on the ability of the runtime system [31] or the OS it-
self [22] to implicitly trigger the migration of worker threads to avoid
the cost of remote accesses.

76

4.6 Concluding Remarks

Other approaches, such as PGAS languages [1 1, 125] rely on the ability
of the programmer to manually distribute data structures concurrently
accessed by threads at runtime. These languages provide the program-
mer a mean to force a specific dynamic page placement policy for those
shared data structures that will be heavily accessed by loops. On the
other hand, our solution does not rely on explicit distribution hints,
though it can take advantage of an initial data distribution provided by
means of the first-touch policy.

Dynamic data distribution based on memory protection mechanisms
has been introduced in [31, 61, 93]. Memory pages forming shared data
structures can be dynamically tagged, to trigger a page migration to
the next node touching them (next-touch strategy). Our approach is
orthogonal with respect to this strategy, since we reduce the number of
remote accesses without triggering redistributions.

In [I11] the authors propose a dynamic data redistribution solution
similar to [34, 61] but based on information akin to our proposed data
access pattern, which is, contrary to our solution, computed at runtime
by means of profiling.

4.6 Concluding Remarks

We propose an optimized OpenMP runtime design for NUMA machines
to exploit thread-data affinity in parallel programs by means of pro-
grammer hints that take into account only the application behavior.
Our experimental campaign shows a reduction in the number of remote
accesses for most NAS benchmarks.

The approach could be further improved by removing unnecessary
pattern evaluations when multiple subsequent loops share the same pat-
tern. Moreover, opportunities for data redistribution could be automat-
ically detected at compile-time by analysing pattern variations between
subsequent loops.

Future extensions could include adding thread migration to handle
the cases of multiple concurrent applications as well as the case of appli-
cations with multiple phases, alternating I/O bound phases with CPU
bound ones. We also expect that combining our technique with a next-
touch strategy would further reduce the remote accesses, while limiting
the number of pages moved.

Furthermore, identifying patterns requires skill and time. It would be
worth exploring both static analysis and profiling based techniques to
provide recommended patterns to the programmer.

7

5 Task Assignment in Data
Intensive Scalable Computing

MapReduce and other Data-Intensive Scalable Computing paradigms
have emerged as the most popular solution for processing massive data
sets, a crucial task in surviving the “Data Deluge”. Recent works have
shown that maintaining data locality is paramount to achieve high per-
formance in such paradigms. To this end, suitable task assignment algo-
rithms are needed. Current solutions use round-robin task assignment
policies, which was shown to yield suboptimal results. In this paper, we
propose and evaluate new algorithms for task assignment on a model of
the Hadoop framework, comparing them with state-of-the-art solutions
proposed in theoretical works as well as with the current Hadoop task
assignment policies.

5.1 Introduction

The data-intensive computing paradigm has recently received significant
attention in both research and industrial ICT communities due to the
exponential increase of data available for analytical processing—the so-
called “Data Deluge” [77]. The cloud computing scenario represents the
most important arena where the potential impact and the effectiveness of
data-intensive computing are most visible. The Cloud is an abstraction
for the complex infrastructure underlying the Internet and refers to both
the applications delivered as services over the network and the hardware
and software resources that provide those services. As a key concept,
the cloud computing paradigm shifts data storage and computing power
away from the user endpoints, across the network, and into large clusters
of machines hosted by cloud providers (e.g., Amazon, Google).

The research challenges aimed at exploiting the full potential of data-
intensive computing lie in designing clusters and software frameworks
to improve performance of massive simultaneous computations, energy
efficiency, and reliability of the provided services. In this regard, MapRe-
duce is the leading software framework, composed of both a program-
ming model and an associated run-time system, introduced by Google

79

5 Task Assignment in Data Intensive Scalable Computing

in 2004 to support distributed computing on large data sets, through
splitting the workload over large clusters of commodity PCs [1%, 19].

A critical issue to achieve good performance on large scale MapReduce
systems lies in ensuring that as many data accesses as possible are exe-
cuted locally. To this end, a data processing job is parallelized in a set
of tasks, which are assigned to servers which will execute them. How-
ever, purely locality-based scheduling may lead to long latencies, since
a specific computation may access data stored on busy servers. Thus,
locality-aware, latency minimizing scheduling algorithms have been de-
signed [73] to reduce latency while still exploiting locality.

In this chapter we present an algorithm for task assignment on a
cluster of servers that balances latency and resource usage, while also
taking into account the workload running on the target cluster. The pro-
posed algorithm is able to achieve an efficient trade-off between latency
and resource usage through employing a novel heuristic technique. A
simulation-based analysis of the performance of the proposed algorithm
against the state-of-the-art solutions is presented, showing that it is able
to obtain lower latencies than the standard locality aware round-robin
strategy [13%], as well as lower resource consumption than the flow-based
algorithm reported in [53] together with a better computational com-
plexity. Moreover, we show that our algorithm and the flow-based one
are Pareto-optimal with respect to latency and resource consumption,
while the round-robin is not.

On the other hand, we does not deal with fault tolerance in MapRe-
duce systems. While this is also a critical issue in achieving perfor-
mances, it is a different issue from load balancing, which is best covered
with specialized approaches that act during the task execution rather
than at task assignment. We also do not deal with job scheduling, and
therefore with fair-share scheduling among users, as this goal is better
achieved at the level of job scheduling.

The remainder of the chapter is organized as follows. Section 5.2
reports a brief summary of background information about MapReduce
systems. Section 5.3 defines the abstract model on which the proposed
task assignment algorithm is designed. An operative description of the
algorithm as well as the description of its properties are also reported.
Section 5.4 presents the evaluation of the proposed algorithm, in com-
parison with existing practices and theoretical works, while Section 5.5
analyze the interaction of our proposal with other scheduling goals. Sec-
tion 5.6 provides an overview of closely related works, and Section 5.7
draws some conclusions and highlights future directions.

80

5.2 Background

5.2 Background

A MapReduce system is a framework for distributed computation over
large data sets that implements both the MapReduce programming
model and an associated run-time system. It mimics the functional
programming constructs map and reduce and enables the programmer
to abstract from common distributed programming issues such as: load
balancing, network performances and fault-tolerance. In spite of its
simplicity, the MapReduce programming model turns out to effectively
fit many problems encountered in the practice of processing large data
sets although a preliminary decomposition of the problem into multi-
ple MapReduce jobs is often needed [39, &1]. Typical applications are
Web indexing, report generation, click-log file analysis, financial analy-
sis, data mining, machine learning, bio-informatics and scientific simu-
lations [15, 19].

The MapReduce programming model is based on the iteration over
data-independent inputs where the required operations are: i) computa-
tion of key/value pairs from each piece of input (map phase); ii) grouping
of all intermediate values by the key value; iii) reduction of each data
group to a few computed values (reduce phase). Word counting is a toy
example that considers a set of text documents as input and a list of the
occurrences of each word as output, where the key/value pair is given
by “word” /“counting” instances.

Actual implementations of proprietary [/, 19] and open-source [I35]
instances of a MapReduce system employ dedicated clusters of com-
modity machines. Each cluster is managed by a master server that is
in charge of keeping track of all jobs while they are queued and pro-
cessed in the distributed system. A job-tracker running on the master
server schedules the received jobs and assigns their tasks on target slave
servers. Fach slave server runs a task-tracker that schedules the corre-
sponding tasks, on a first-come/first-served strategy, consistently with
the local computational resources and operating system policies. Due
to the simplicity of the MapReduce programming model, a user will sel-
dom submit a single job, since, the composition of more jobs in complex
workloads (or applications) allows to take better advantage of the sys-
tem. A MapReduce application is, in general, a Directed Acyclic Graph
(DAG) where the nodes represent jobs and the arcs represent data de-
pendences [39]. Therefore a job can only be executed after all of its
predecessors have been completed.

Canonical solutions to the scheduling of a DAG solve a constrained
optimization problem where the figure of merit is the expected latency of
every job and the constraints are represented by the available resources.

81

5 Task Assignment in Data Intensive Scalable Computing

A variant of this setting is to employ the minimization of resources as a
figure of merit, and the maximum latency allowed for each job as a con-
straint. However, these strategies cannot be applied in the job-tracker,
because they need a precise knowledge of the foreseen latency of each
job as well as the available resources. The latency of a MapReduce job
is not trivial to predict. This is due to both the heterogeneity of ap-
plications submitted by different users, and to the presence of straggled
tasks and execution failures, which can change unpredictably the actual
latency of the executed job [#0]. In addition, the submission rate of the
jobs in a Data Intensive Scalable Computing (DISC) cluster is quite low
— on average, one job per 2-3 minutes [10, 86] — and thus the time to
fill a queue of jobs to schedule is high. Given the aforementioned con-
siderations, the scheduling strategy for the job-tracker of a MapReduce
system should take into account the cluster workload variation over time.
Therefore, online scheduling algorithms represent the prime choice.

Indeed, proprietary and open-source MapReduce systems adopt on-
line scheduling strategies. Apache Hadoop [}1] is an open-source Java
implementation of MapReduce, originally designed to implement par-
allel processing in local networks, whose job-tracker employs a round-
robin strategy (over the available resources) to assign the tasks in each
job over the slave servers. A more accurate task assignment algorithm
is proposed in [53], where the authors describe a flow-based algorithm
aimed at minimizing the completion time of the considered job and show
how such solution is near-optimal within an additive constant from the
optimum solution obtained through the fully combinatorial exploration
of task assignments.

We extend the abstract system model presented in [53], to effec-
tively obtain a trade-off between job latency and throughput. Moreover,
through taking into account a pre-existing workload, we better represent
the challenges of an on-line task assignment.

5.3 The LABL Approach to Task Assignment

In this section, we introduce the main contribution of this work, a Lo-
cality Aware Bounded Latency (LABL) task assignment algorithm. We
will now provide some preliminary concepts and definitions, followed by
a description of the algorithm. We describe the formal properties of
the LABL task assignment algorithm, and show that its running time
complexity is linear whit respect to the size of the input job.

82

5.3 The LABL Approach to Task Assignment

5.3.1 Preliminaries

We will first introduce some preliminary definitions, required to clearly
describe our proposal.

Definition 5.1. A job is a set of tasks, T = {t1,...,t,}. The tasks are
mutually independent and do not have any control or data dependencies
among them. Thus, the job can be fully parallelized.

In a MapReduce implementation, the tasks are partitioned between
map and reduce operations. The reduce tasks must be scheduled after
the map tasks have completed [135]. Without loss of generality, it is safe
to model jobs as composed only of reduce tasks or only of map tasks.
A job composed of both types of tasks is split in two homogeneous jobs
for the purpose of the model, with the provision that the reduce job is
scheduled only after the corresponding map job has completed. Note
also that, in practice, the distribution of latencies of reduce tasks is
remarkably similar to that of map tasks [0], so it is not necessary to
keep track of map and reduce jobs separately.

Definition 5.2. A cluster is modelled as a set of homogeneous servers,
S = {s1,...,8n}, each of which is assumed to be able to execute a
given task with the same execution time, provided that a copy of the
corresponding data is locally accessible.

The locality of the data processed as the input of each task is crucial
for the performance of the whole system. Indeed, the overall perfor-
mance in terms of both job latency and total system workload largely
depends on the initial data placement on the cluster.

Definition 5.3. Given a job T and a cluster S, a data placement func-
tion p specifies the subset of servers where the execution of a task ¢ can
be completed through accessing a local copy of the necessary data.

p:T—25AYteT,p(t)C S

The number of data copies available for a given task ¢t € T is denoted
as |p(t)|. A task ¢ is denoted as local to a server s if s € p(t), and as
remote otherwise.

As previously mentioned, the considered abstract model assumes a
set of homogeneous tasks and a set of homogeneous servers, in such a
way that all the tasks which data is locally available run in the same
amount of time (w),) and all tasks running on servers where remote data
accesses must be employed also exhibit the same execution time (wyem).

83

5 Task Assignment in Data Intensive Scalable Computing

The execution time experienced by the latter type of tasks depends
on the total number of remote data accesses observed in the system.
However, the additional overhead (with respect to the execution time of
a task accessing data in place) does not incur in large variations when
the network traffic of the system is in a steady state [73]. Therefore, the
usual conservative assumption about the execution time experienced by
tasks accessing remote data (fitting most of the practical environments)
considers these execution times constant (over the entire set of tasks).
In particular, the execution times are three times higher than the ones
of tasks accessing data in place [53,].

Definition 5.4. Given a job T and a cluster S, an assignment corre-
sponds to the execution of a number of tasks {t1,...,} C T on a single
server s € S, and is denoted as a pair (s,{t1,...,}). A Task Assign-
ment, A, is a collection of pairs (s',7") with s’ € S, T" C T, such that
every task in T and every server in S is present in one and only one
assignment.

A (¢, 7 : §eSTCT
TV e ST CTHS T ¢ =S NT =T

The assignment of tasks to servers dynamically influences the subse-
quent assignment choices, due to the potential change of both network
traffic and workload level of the cluster. The job-tracker, running on
the master server, is the system actor in charge of orchestrating the
workload distribution thus, it can dynamically evaluate the load of each
server. Assuming wjo. and wpen as the unitary task execution times
for processing local and remote data, respectively, the evaluation of any
server load is abstracted through the definition of the following function.
We call the time wioe a unit of work.

Definition 5.5. Let T" be a job, S be a cluster, and A a given task as-
signment. The load of any server s € S is evaluated through a function,
¢, which maps s to the numerical value of its current workload (mea-

sured in units of work). The workload of s in assignment 4 includes the
set of tasks 7' C T', such that (s,7") € A. Then,

¢(S) = ¢s + w10c|ﬁoc| + wrem|frem‘

where Tioe = {t € T : s € p(t)} and Tyem = {t € T : s & p(t)} denote
the sets of task that access data to be processed locally or remotely,
respectively, while ¢, is a constant factor that takes into account the
load due to the tasks that are already running on s before the assignment
(s,T) is put into effect.

84

5.3 The LABL Approach to Task Assignment

Note that, without loss of generality, we consider that at least one
server so has an initial workload ¢5, = 0, i.e. there is at least one
free server. To understand the rationale of this choice, consider a load
¢ for a given cluster S, leading to an assignment A. Now, consider a
second load ¢’ such that Vs € S, ¢, = ¢, 4 1. The same assignment is
generated under this second workload, except that the starting time of
each task is increased by one unit of time. Thus, to provide a uniform
scale for latency measurements, we normalize ¢ so that the condition
dsg € S| ¢p5, = 0 holds.

5.3.2 Optimization Goals

Given a job T and a cluster S, the proposed task assignment strategy
aims at achieving a trade-off between the job latency and the total re-
source accounting of the target cluster. The figures of merit used to
evaluate the effectiveness of a task assignment algorithm alg and the
resulting Task Assignment A are the following;:

i) The resource accounting is defined as the total number Ca14(T") of
units of work consumed to execute the job:

Calg(T) = Z (¢(‘9) - ¢s)

ses

ii) The latency la1g(T) is defined as the maximum completion time for
a task of the job, normalized to the minimum starting time for a
task:

larg(T) = max o(s)

iii) The throughput is defined as the ratio Ra14(7") between the number
of tasks in the job and its resource accounting:

Rarg(T) = CaZ(‘T)

5.3.3 Lower Bounds for the Expected Job Latency

We start from the insight that it is possible to drive the online task
assignment procedure taking as a reference a lower bound on the job
latency. Such a reference allows the assignment procedure to start with

85

5 Task Assignment in Data Intensive Scalable Computing

a predetermined minimum job latency limit, discarding unfeasible sce-
narios a-priori and taking into account remote assignments that would
not be considered under lower latency limits.

Given a job T and a idle cluster S (i.e. Vs € S,¢s = 0), if each
task can access the data to be processed on every server locally (i.e.,
Vt € T,p(t) = S), then a trivial lower bound for the job latency is
given by [wiec|T|/|S|]. Weakening these assumptions through removing
either the hypothesis that each server is initially idle or the hypothesis
of a uniform placement of data for each task, leads to solve two simpler
problems prior to apply any task assignment operation. These problems
are more formally stated as follows.

Problem 5.1. Let S be a cluster with initial workload defined by func-
tion ¢(s) = ¢s,Vs € S, and T be a set of tasks that can locally access
the data to be processed on any server S : Vi € Tp(t) = S.

Considering the execution cost of each task as wy,. (that is, ignoring
the impact of the data placement), a lower bound for the job latency
can easily be computed a-priori as:

” ’lU]OC’T‘ 1
r= +) o(s
EBMEE A

The straightforward solution of Problem 5.1 follows from considering
each task as a local one since the data is assumed to be uniformly repli-
cated on each server.

Problem 5.2. Let S be a cluster with initial workload defined by func-
tion ¢(s) = ¢s,Vs € S, and T be a set of tasks whose data is replicated
on servers according to a data placement function p : T+ 2%. Assuming
a limit [for the expected job latency, the set S can be partitioned as
S = Sint[[]USsup [[]USwusy [l], where Sgup[l] = {s € S|l—ps > wrem} is the
set of servers that can only execute local tasks within the latency limit [,
Shusy[l] = {s € S|l—¢s < 0} is the set of servers that are busy with work-
load from previous jobs. Finally, the set of servers that cannot execute
remote tasks within the latency limit [is Sin¢[l] = S\ (Sin[l] U Shusy[l])-
The set of tasks T" can also be partitioned as T' = Tjoc[l] U Trem[l], where
Trem[l] = {t € T|p(t) € Shusyll]} is the set of tasks that can only be
executed remotely within [and Tioc[l] = T\ Treml!] is the set of tasks
that can be run within [on servers with local access to data.

Considering the execution time of any task in Tj,. as w,. and the
execution time of any task in Tiem as Wrem (> Wioc), a lower bound for
the expected job latency is derived as:

86

5.3 The LABL Approach to Task Assignment

~
|
-
®
(I
v
~
®
E_

o) ST (- >l

SeSsupUSinf

where all] is the cost of the execution of the given job following an “ideal”
assignment of both local and remote tasks within the latency limit [(in
this way, the data placement function is employed only for partitioning
the job in the local Tj,[l] and remote Tien[l] task sets but not to solve
assignment conflicts, if any):

a[l] = wrem’Trem [l” + wloc|Tloc [l”

The first inequality states that the servers in Sg,, can provide, as a
whole, enough units of work to manage the execution of all remote tasks
within the latency limit of [, while the second inequality constraints the
available number of units of work on the entire cluster to be greater
than the resource allocation needed to schedule each local task locally
and each remote task remotely assuming no resource conflict. Therefore,
the minimum among the aforementioned latency limits gives a lower
bound [** which guarantee a more accurate estimate with respect to
the previous bound [*, thus allowing to initialize our on-line assignment
algorithm with a threshold that guarantee a faster convergence.

5.3.4 Task Assignment Algorithm

The LABL Task Assignment algorithm, reported in Figure 5.1, takes
as input a job T, a cluster S and a lower bound [for the expected job
latency that will be employed to drive the assignments computed as
output. The initial value of the job latency limit [is equal to the lower
bound [**, computed as shown in the previous section.

The main loop of the algorithm iterates until all tasks are assigned
to a server and is structured in three phases each of which acts on a
different partition of the set of slave servers. At the beginning, the
following subsets of servers and tasks are considered. Sj.¢ includes all
servers that can execute at least one local task within the limit [but
not a remote one, while Sq,, includes those servers that can execute at
least one remote task within the limit [. Servers in the complementary
set Shusy = S\ (Sinf U Ssup) will not be considered until the limit { for
the job latency is increased, thus leading to consider them in Si,f or Squp
in subsequent iterations of the main loop. The job T is partitioned in
two subsets: Tio. and Tiem, where Tiy. includes any task that can be

87

5 Task Assignment in Data Intensive Scalable Computing

Algorithm: TASKASSIGNMENT
Input: S = {s1,...,Sm}, set of servers
T ={t1,...,t,}, set of tasks
[, initial server load limit
Output: A =
(s,T):s5€5,T e p(T);
V(S/,j—\v), (S//,fﬁ), s % 8" A /1’:1/ N 1’3// =0
1, set of assignments
// Place tasks on servers through trading off the job latency and
// data movement

1 A<D

> while T # () do

3 Sint < {8 € 85,1 — Wrem < &(8) <1}

1 Soup = {s€5,0<4(s) <1 — Wrem}

5 Tioe « {t € T, p(t) N {Sint U Ssup} # 0}

6 Trem < {t €T, p(t) N (S\ {Sint U Ssup}) = 0}
// Place most constrained tasks in Tj,c on most loaded servers unable to
// execute a remote task while limiting their load under [
// (i.e. servers in Siyf)
// TIOCUTrem =T

7 A« ASSIGNCRITICALTASKS (Sint, Tioc, [)

s A< AUA

9 Toc < Tloc\ EXTRACTASSIGNMENTS (Z)

// Place remote tasks on servers s having a load such that
/~/ l— ¢(S) > Wrem

10 A« ASSIGNREMOTETASKS (Ssup, Trem, {)

n A< AUA

12 Trem < Trem\ EXTRACTASSIGNMENTS (A)

// Place tasks on less loaded servers storing the corresponding data
13 T+ Tioc UTrem

14 A « AsSIGNTOLESSLOADEDSERVERS (S, T,1)

15 T « T\ EXTRACTASSIGNMENTS (A)
16 l«l+1
7 return A

[

Figure 5.1: Locality Aware & Bounded Latency (LABL) task assign-
ment algorithm. The algorithm is composed by different phases, exe-
cuted until all tasks have been assigned. See Figure 5.2, Figure 5.3, and
Figure 5.4 for algorithms executed by ASSIGNCRITICALTASKS, ASSIGN-
REMOTETASKS, and ASSIGNTOLESSLOADEDSERVERS respectively

88

5.3 The LABL Approach to Task Assignment

Algorithm: AsSIGNCRITICALTASKS
Input: Siys = {s1,...,Sm}, set of servers
Toc = {t1,-..,tn}, set of tasks
[, server load limit
Output: A =
(5,7):5€5,T € p(Tioe);
V(S/,T\/)7 (8/171’—7//)7 s % 8" A T" n j—?// —0
}, set of assignments
// Place most constrained tasks in on most loaded servers unable to
// execute a remote task while limiting their load under [
1 A
2 while Sj;; # 0 do
// Get s€S s.t. ¢(8)>¢(si), VS;ESint, si#$
3 s« EXTRACTMOSTLOADEDSRV (Sinf)
4 T« p~Y(s) // Set containing tasks working on s local data
s T 0 // Set of tasks foreseen to be assigned to s
¢ while T # 0 and ¢(s) <1 — wioe do
/] Get teT s.t. |p(t)|<|p(t:)], V€T, t;#t
7t + EXTRACTMOSTCONSTRAINEDTASK (T)
s T<Tu{t}
o A< AU{(s,T)}
o return A

=

Figure 5.2: Critical tasks assignment. To maximize the usage of available
resources, servers who cannot execute tasks remotely are loaded with
locally executable tasks. Tasks selection is done according to the number
of servers who can access data locally, in order to assign most constrained
tasks first

executed on at least one server in SinrU Ssup and Trem includes any task
that can only be executed remotely before the limit /.

The body of the main loop is divided in three phases. In the first phase
(Figure 5.2), we assign as many tasks as possible from Tj,. to servers
in Siut, without exceeding the limit [. The tasks from Tj,. are selected
in ascending order of |p(t)| (i.e., ranked by the number of servers where
they can access data locally), so as to assign first those tasks that can
only be executed on few servers, and are therefore more likely to cause
violations of the target latency [. This is due to the fact that the initial
value of [is [**, which has been computed without taking into account
the effect of many tasks having data on a small group of servers.

In the second phase (Figure 5.3), we assign tasks from Tyep, to servers

89

5 Task Assignment in Data Intensive Scalable Computing

Algorithm: ASSIGNREMOTETASKS
Input: Seup = {51,---,Sm}, set of servers
Trem = {t1,...,tn}, set of tasks
[, server load limit
Output: A = {
(5,T): s € 8,T € p(Trem);
V(Sl,fv), (Sl/’f/l)’ PP f/ N T\// =0
}, set of assignments
// Place remote tasks on servers having a load such that they
// can execute within the target latency
1 A<
2 if CONSIDERREMOTEASSIGNMENTS (I) = true then
3 Sl
4+ while T}.,, # 0 do
5 t+« EXTRACTTASK (Trem)
6 5+ EXTRACTSRV (Ssup)
7 T < EXTRACTASSIGNMENT (E, s)
s T<Tu{t}
o A< AU{(s,T])}
10 if ¢(s) <1 — wrem then
11 Ship < St U {s}

sup sup

12 if Sgup = ¢ then
!

13 Ssup < Ssup

14 Séup < @

15 return A

Figure 5.3: Remote tasks assignment. In order to execute tasks within
the estimated deadline [, remote tasks are assigned to servers whose load
allows executing at least one of them. This phase is optional. Indeed,
it is executed only when the current value of [is below the threshold
function CONSIDERREMOTEASSIGNMENTS

90

5.3 The LABL Approach to Task Assignment

Algorithm: AsSIGNTOLESSLOADEDSERVERS
Input: S = {s1,...,8m}, set of servers
T={t1,...,t,}, set of tasks
[, initial server load limit
Output: A =
(s,T):s5€8,T e p(T):;
V(S/,T\/)7 (8/171’—7//)7 s % 8" A f" n j—?// —0
}, set of assignments
// Place tasks on less loaded servers storing the corresponding data
L A
2 while T # () do
t « ExTRACTTASK (T)
s « EXTRACTLEASTLOADEDSRYV (p(t))
if ¢(s) <1 — wio. then
¢ T < EXTRACTASSIGNMENT (ﬁ, s)
7 T<Tu{t}
s A< AU{(s,T)}

9 return A

ot - W

Figure 5.4: Less loaded servers assignment. The last phase of the algo-
rithm is to distribute remaining tasks across available servers. Servers
are considered according to their load, while tasks are assigned only if
the latency bound given by [is respected. If some task is left unassigned,
the three phases will be repeated, considering an augmented value of [

in Sgyp, without exceeding the limit /. During the first iteration of the
main loop, all tasks from Ty might be assigned, because the limit [
is initially set to [**, which guarantees that all tasks that need to be
executed remotely can be completed within [**.

In the third phase (Figure 5.4), we assign as many tasks as possible
from Tj,c to servers in Sgup, without exceeding the limit /. Finally, if
some tasks are still unassigned, the algorithm increases the limit [by
one unit, recomputes the four subsets (Tioc;, Trem; Sint, Ssup) and iterates
the three phases.

Note that the second phase forces the assignment of as many remote
tasks as possible, employing time that could be usefully exploited by
other jobs in return for a potentially very low latency gain. Thus, the al-
gorithm triggers the execution of the second phase by means of a thresh-
old function (CONSIDERREMOTEASSIGNMENTS in Figure 5.3, Line 2)
that is true until a given latency limit is reached, and false thereafter.

91

5 Task Assignment in Data Intensive Scalable Computing

Servers

| |
to t1 t2 t3 ta ts te tr ts to tio ti1 ti2 t13 tia tis tie tir tis tio
Tasks

Figure 5.5: An example of data placement. A marker at coordinate
(ti,sj) means that data accessed by t; during its execution is stored on
server s;

5.3.5 Case Study

To understand the behavior of the LABL algorithm, we compare it to
the locality-aware round-robin [13%] and flow-based algorithms [53], us-
ing a limited number of servers, |S| = 10, and tasks, |T'| = 20. The task
execution times are set at wioe = 1, Wrem = 3. Figure 5.5 reports the
considered data placement, with a maximum data replication factor of
2. Figure 5.6 reports assignments generated by the round-robin algo-
rithm [13%] and the flow-based algorithm [53], while Figure 5.7 shows
assignments generated by the LABL algorithm, when the execution of
the second phase is stopped after the first iteration.

The round-robin algorithm cycles through the list of servers in a pre-
determined arbitrary order until all tasks have been assigned (in the
example, starting from sp, then s, s3, etc.). At each step, a task is
assigned to a server. The algorithm tries to exploit the data placement
by assigning a local task to the current server. If this is not possible, a
remote task is assigned. The greedy choices of the round-robin algorithm
results in a final assignment (see Figure 5.6(a)) with high job latency
and high resource consumption (lyy = 8, Crr(T') = 32).

The approach reported in [53] improves the round-robin strategy and
describes an algorithm that allows to choose the minimum latency as-
signment among a list of |T'| possibilities. Each assignment is computed
through a flow-based approach to maximize the assignment of local tasks
(while limiting the load of the corresponding servers under a temporary
threshold) followed by a greedy strategy necessary to complete the as-
signment of remote tasks. Figure 5.6(b) shows the assignment resulting
from the aforementioned strategy (ls10y = 6). We note that the greedy
choice, applied to assign the remote tasks, can often lead to resource
consumption higher than the minimal one: Ct104(7T) = 26 > 20.

Figure 5.7 depicts the assignments computed by the LABL algorithm

92

5.3 The LABL Approach to Task Assignment

T
8 g n 8 n
% T tg B % 7 B
z 6 8 T B E 6 Fig B
e i
2 5 FT 9 f1 B 2 5 s 0| f1 6| (13 B
'E 4 e 9] [t2| Fi2 te| t1 n E 4 |eg 18 |t7| [F2 9] f19 13 n
23 ey to 12 ty N 231 s ty to tg 13
o - . o - —
E 21 s 12 E 21 s t2 16 14
&1 il N &1 11| n
0 B 0r B
N S S I O S S A N S I N I O S A
s1 S2 S3 Sa S5 Se¢ ST S8 S9 S10 S1 Sz S3 S4 S5 S¢ ST S8 S9 S10
Servers Servers
‘ [Initial load [Assigned tasks ‘ [Initial load [IO0] Assigned tasks
(a) Round-robin: Cr(T") = 32 units (b) Flow-based: Ctiow(T") = 26 units

Figure 5.6: Round-robin (5.6(a)) and flow-based (5.6(b)) assignments

T
8| " - 8| -
% T 13 B '&ss T B
z 6 tg B 2 e 7T A A Al R i -1
] S —— ol -1 - - 21— - S 5 gy p o - N -
g [t i 3 g 77 G
0 OO I i I Ea [171 I .
E 1 ﬁ T3 g] 13 1 B T 9
= 3 to tg 4 2 3 g to g tg 1
(%} 2 | o 2
=1 t3 2 =1 tg t3 12|
& 1 g 1 11| n
0 0
A I (N I N S S N S I I Y S N N
S1 82 83 S4 S5 S6 S7 S8 S9 S10 S1 S2 S3 S4 S5 S¢ ST S8 S9 Si0
Servers Servers
B nitial load D000 Assignment [= 4 I Initial load [0 Assignment | = 4
[Assignment [= 5 [Assignment | = 5[] Assignment [= 6

(a) Cupe(T) = 20 units. Remote as- (b) Cre(T) = 24 units. Remote as-
signment performed considering latency signments performed considering latency
threshold | = 4 threshold I € {4,5}

Figure 5.7: Locality Aware & Bounded Latency task assignments

when taking as input an initial job latency limit [= 4. The algorithm ex-
hibits different behaviors in terms of total job latency and minimization
of resource allocation depending on the configuration of the threshold
function (see CONSIDERREMOTEASSIGNMENTS in Figure 5.3, Line 2)
that stops the execution of the second phase of the algorithm from a
specified iteration on. Figure 5.7(a), shows the assignments obtained
when the second phase is executed only at the first iteration.

Note that this has no effect on the final assignment since, at the first
iteration, there is no tasks that needs to access data remotely. Indeed,
the initial servers load specified in Figure 5.7(a) suggests that only tasks
local to server so may be considered for remote assignment. The data
placement function specifies that ¢15 is the only task that can be assigned
on So, however t15 is also local to server sy. Thus, t15 has to be assigned

93

5 Task Assignment in Data Intensive Scalable Computing

on s7. The final assignment in Figure 5.7(a) uses resources sparingly
(Cuapr(T') = 20, equal to the minimum), at the cost of an increased
latency (lLag. = 8).

To decrease latencies, it is necessary to consider the explicit handling
of remote tasks up to the second iteration (Figure 5.7(b)). This allows to
assign tasks tg and ¢13 remotely, contributing to lower the overall latency,
at the cost of an increased resource usage. With respect to the assign-
ment found by the flow-based algorithm, we achieve the best possible
combination of job latency l1ap. = 6 and resource usage Crp(7T') = 24.

5.3.6 Formal Properties of the LABL Task Assignment

In this section, we analyze the properties the LABL Task Assignment
algorithm. We first prove that the algorithm can be configured by ma-
nipulating the CONSIDERREMOTEASSIGNMENTS threshold function to
achieve strong properties on load balance and resource usage. Subse-
quently, we analyze the computational complexity of the LABL algo-
rithm.

Theorem 5.1. Under the condition that CONSIDERREMOTEASSIGN-
MENTS 1is true for all iterations of the main loop, the LABL Task As-
signment algorithm produces an assignment Apapr, with

< i
max o(s) < min &(8) + Wrem

Proof. Let spax be one of the servers such that the latency of the com-
puted assignment is lparg = @(Smax) and Smin be another server such that
the execution of the tasks on it makes its final completion time @(Smin)
equal to the minimum latency among the servers in S. The proof will
be developed through a reductio ad absurdum.

Assume that ¢(Smax) > @(Smin) + Wrem holds at the end of the LABL
algorithm execution, and that the latency of the computed assignment
is lpapr. = lowt- Such an hypothesis implies that in the last-but-one
iteration of the outer loop of the LABL algorithm, there was a number n
of tasks that could not be assigned within the latency limit [= [,y — 1.
In the case n = 1, this task would have been assigned to the server
Smin in the second phase of the algorithm, as the hypothesis guarantees
enough resources for the remote execution of it. This contradicts the
initial assumption as the aforementioned last iteration would not have
occurred, and therefore the latency of the computed assignment would
have been lLABL = lout — 1.

94

5.3 The LABL Approach to Task Assignment

In case n > 1, each task can be sequentially assigned for remote
execution to a server, starting from the one having workload equal to
®(Smin), as long as the number of tasks and the number of servers sat-
isfying the condition ¢(s) + wWrem < lout — 1 allows the assignments. If
all tasks are assigned, then the last iteration would not have occurred,
thus having the same conditions of the former case. Otherwise, the re-
maining tasks must be assigned at the next iteration when [= [y as
the servers in the last-but-one iteration could have included only tasks
requesting an execution time in [wjoe, Wrem — 1] Which is not obviously
the case. In the last iteration there would have been only servers that
could satisfy assignments of tasks with an execution time ranging from
Wioe 1O Wrem. Therefore the difference between the maximum and the
minimum workload would be ¢(Smax) — #(Smin) < Wrem, that contradicts
the hypothesis. O

Corollary 5.1. If Theorem 5.1 holds and the server sy, € S with
minimum workload satisfies the condition ¢(Smin) < U**, then the optimal
latency 1°Pt for the given assignment problem is bounded as follows:

opt
lrasr — Wrem < 1°P% <lpmp

Proof. The lower bound given by [** is lesser than or equal to [°P* by
definition, while [°P* is, in turn, lesser than or equal to the latency
limit computed by the LABL algorithm: [I** < [°P* < [;,p;. Now, if
Theorem 5.1 holds, then lpapr, = ¢(Smax) and @(Smin) > lLapr — Wrem-
Therefore, noting that [** must be greater than or equal to @(Smin),
leads to the thesis. O

Theorem 5.2. The LABL Task Assignment algorithm, under the con-
dition that CONSIDERREMOTEASSIGNMENTS is false for all values of
I > 1", produces an assignment Arapr with a total resource usage

Crapr(T) < 1™ x |S]| — Z¢s
ses
Proof. If CONSIDERREMOTEASSIGNMENTS is false for all [except [**,
the second phase of the LABL algorithm is executed only once, that is
the assignment of remote tasks is performed only in the first iteration
(i.e., when [= [*).

If all the tasks are assigned in the first iteration (that is, the algorithm
computes a final latency lony = [**) then the resource allocation in terms
of units of work is due to the servers in Sgup U Sinf = S\ Shusy, as in Shusy
there are only servers with a workload that doesn’t allow to cope with
either local or remote tasks. Therefore the following relation holds:

95

5 Task Assignment in Data Intensive Scalable Computing

Y=gy = Y (-6

sessupUSinf seS

The inequality right side (> o (I** — ¢s) = 1" X [S| =D cg®s) is
always smaller than the left one (Crag.), as the workload of servers in
Shusy is by definition greater than or equal [**.

If the LABL assignment algorithm terminates with [,y > [**, then
through remembering that the latency limit given by [** guarantees (by
definition) that the whole cluster S can allocate all the remote tasks (see
the first condition in the definition of I** in Section 5.3.3), and following
the theorem hypothesis the assignment of tasks in the first and third
phase of the algorithm will proceed through allocating the tasks locally,
it is easy to infer that the whole number of units of work actually spent
by the cluster (Cpapr.), at the end of the computation, will not be greater
than I"* x |S| = > . &s. O

Theorem 5.3. The LABL Task Assignment algorithm operates in time

log | T T
O (10 71 x 171 % a0

where |T| is the number of tasks and maxier (|p(t)]) is the mazximum
number of data copies available for a task.

Proof. We represent p(t) as adjacency lists sorted by server load and
p~1(s) as adjacency lists sorted by |p(t)]. The sorting of subsets of T
can be performed employing a counting sort algorithm, and has there-
fore O (|T| + maxer (|p(t)])) complexity, since the number of keys is
at most maxer (|p(t)]). The sorting of subsets of S can also be per-
formed employing a counting sort algorithm, and therefore its complex-
ity is O (|S| + maxses (¢(s))), since there are at most maxseg (¢(s))
keys. Note that the maximum values of |p(t)| and ¢(s) are two orders of
magnitude smaller than |T'| and |S| in real world cases, so using count-
ing sort or other distribution sort algorithms is a reasonable choice. In
particular, ¢(s) < max{¢s, **} initially, and ¢(s) < max{¢s,[} in suc-
cessive iterations.

Computing the four sets Sint, Ssup; Tioc and Trem amounts to a single
scan of S and T. Since in general |S| < |T|, the construction is over-
all O (|T]). The first phase scans the entire Si,s. At most wyem tasks
are assigned for each s € Sj,¢, since doing otherwise would lead to vi-
olating the latency bound. The complexity of this phase is therefore
O (]S]). The second phase scans the entire Tyem, and assigns all tasks
to the least loaded servers in a round robin way. The complexity of this

96

5.4 Simulation Results

phase is straightforward, as it performs O (|Tiem|) operations, which is
also O (|T'|). While the complexity of the third phase, as explained in
Figure 5.1 is O (|T), it is possible to implement it by iterating on the
servers in Sg,p and assigning as many task to each server as it can handle
within the latency bound. This leads to a complexity of O (|S]).
Overall, the complexity of each loop iteration is thus bounded by
O (IT| + maxeer |p(t)]) + O (|S] + maxses ¢(s)). Since we increase [by
one at each iteration, the number of iterations of the main loop is given
by liag. — I™*, where Ipppr, is the latency of the assignment. Note that,
even if we allocated every task remotely, [pap; would be limited by

Wrem|T'| + D e 5 ¢s
leapr < 5]

Considering that [** is at most equal to (wioc|T'| + D cg @s)/]S], it
follows that lpap. — I** < (Wrem — Wioc)|T|/|S|. In general, it can be
assumed that |T'| ~ ¢|S|, where c is a small factor typically ranging from
2 up to 10 [1%, 0], therefore the outer loop is executed only a fixed
number of times.

However, we ensure this by means of the threshold limit of [imposed
by CONSIDERREMOTEASSIGNMENTS. Thereafter, we perform a reduced
loop including only the first and third phases. This reduced loop, per
se, has a complexity O (|T \2), but it can be usefully restructured whit
respect to the general presentation to reduce the complexity. Specifically,
since we are now only assigning tasks ¢ to servers in p(t), we can work
as follows: for each s € S, compute a set R, = {t € p~!(s) if t € T},
and sort each set by |p(t)].

We now iterate over the servers s € S in a round-robin way, removing
one element of Rg at each iteration and assigning it to s if it has not
been already assigned. This guarantees completion in

o <logT| X Z\&I) =0 <10gIT\ x |T| x Iglea;w(t)\)

sES

which becomes the most computationally intensive phase of the algo-
rithm. O

5.4 Simulation Results

We conducted an experimental campaign to compare the behavior of the
LABL Task Assignment with the round-robin and flow-based algorithms.
We employed as a starting point a real-world configuration from [1%],

97

5 Task Assignment in Data Intensive Scalable Computing

which provides statistical data on the execution of MapReduce jobs at
Google during an entire month.

The experiments are conducted in a simulation environment, schedul-
ing one job on a set of servers having an existing workload. This is done
to simulate the online scheduling process: given the mean inter-arrival
time of 2-3 minutes reported in [0, 50], the job tracker will have com-
pleted the scheduling process of the job before a second one arrives. On
the other hand, due to the long computation times, previously scheduled
jobs will still be active while the new one is being scheduled.

The simulation assumes tasks to require the same time w,. to be exe-
cuted on any server storing the necessary data. Since the time wy,. also
represents a unit of work, we will consider w. = 1 in all experiments.
Whenever a task is assigned to a server that does not have the required
data, the data must be fetched, leading the execution time to increase to
Wrem- We set wrem = 3 in all experiments, following the same approach
as [03].

We explore a configuration space considering a number of servers |5
ranging from 1600 up to 2000, and a number of tasks |T| between 3200
and 3500, though we will only show subsets of the overall configuration
space in some experiments for the sake of clarity. The data placement
is randomly determined such that |p(¢)] is in the range [1, pmax| for all
tasks, where pmax is a parameter fixed at 4 in all experiments, except
when evaluating the sensitivity of the algorithms to the replication fac-
tor. In all the experiments, the initial load is randomly assigned, within
the range [0, 5]. In all cases, the reported data has been obtained as the
average of the results gathered from 30 runs of the same experiment.

5.4.1 Performance Overview

The experiment reported in Figure 5.8 compares the effectiveness of
the LABL Task Assignment with both the round-robin and flow-based
algorithms, in terms of throughput, resource accounting and latency. We
explore a configuration space with |S| = 2000, |T'| = {3200, ...,3500}.

Data for the LABL algorithm are reported for configurations with
threshold latency [set to I** and I** + 1.

Figure 5.8(a) shows the throughput achieved by the three algorithms.
The LABL algorithm, in both versions, yields a better throughput, i.e.
the task assignment is able to consistently save resources, leaving more
server time for other jobs.

Figure 5.8(b) reports in a scatter-plot the latency and resource con-
sumption obtained by the three algorithms on the 2000 servers cluster,
showing increasing number of tasks in the job by lighter shades. Fig-

98

5.4 Simulation Results

- T
§ T T § T 3.5
) 097 e H —£ & ‘E 5,000 i . ,,_2
o 2
= El X
= 085 - =] . 0
E} b—o—o o o o 0 = L | 3.4
2 5 4500 g
f‘g 0.8 |- h £ 5
2, =
5 075 g g 4,000 - y 3.3 8
: 2 ¢ :
o 07 = g =}
2 H———e—’e’_‘w 5 4
2 S 3,500 .
= | | | | | | | 3 | | | | | | 3.2
= @ B
= 3.2 325 3.3 3.35 34 345 3.5 é 6 7 8 9 10 11
Number of Tasks x10° Latency [units of work]
—o— Flow-based —F— LABL [= I** + 1 @ Flow-based MLABL I =1** 41
—— LABL I =[** —6— Round-robin ¢ LABL I =1**@® Round-robin
(a) Throughput (b) Pareto efficiency

Figure 5.8: Performance of analyzed algorithms

ure 5.8(b) shows that the flow-based algorithm consistently obtains op-
timal latencies, while the LABL algorithm reduces resource usage. The
LABL algorithm and the flow-based algorithm produce solutions that
are Pareto-optimal, while the round-robin algorithm produces solutions
that are Pareto-dominated by all the others.

On the overall, the flow-based and LABL algorithms produce solutions
of interest respectively to optimize latency and resource usage. How-
ever, the flow-based algorithm has a higher computational complexity,
O(|T|? x |S]) [73], making the LABL solution more attractive.

5.4.2 Scalability

The experiment reported in Figure 5.9 evaluates the robustness of the
four algorithms to changes in the availability of servers. Given a set of
tasks T', |T'| = 3450, a data placement, and an initial workload, we pro-
gressively increase the number of servers that are available for scheduling
from a minimum of |S| = 1600 to a maximum |S| = 2000.

A desirable property for the scheduling algorithm is that the number of
available servers has only limited impact on the latency — assuming there
are enough servers to actually execute the job. Figure 5.9(a) shows that
only the round-robin algorithm is significantly impacted by the change
in server availability. This is because the round-robin algorithm makes
greedy choices, which easily prove suboptimal. The other three algo-
rithms behave in a more graceful way, as their greedy choices are less
aggressive — all four algorithms have greedy components within their
heuristics, to limit the complexity, but the greedy component is domi-
nant only in the round-robin algorithm. The LABL algorithm produces

99

5 Task Assignment in Data Intensive Scalable Computing

14 s
12:%

10 (- -

5,000 |- .

4,500 |- .

4,000 + S\Q\/Z/A ,
3,500 |- @:6/@%6 |

| | | | |
1.6 1.7 1.8 1.9 2

Latency [units of work]

| | | | |
1.6 1.7 1.8 1.9 2

Resource Accounting [units of work]

Number of Servers x10? Number of Servers x10°
—o— Flow-based —H— LABL I =1** 41 —e— Flow-based —F— LABL [=1** 41
—o—LABLI=1"* —6— Round-robin —¢— LABLI=(** —6— Round-robin
(a) Latency (b) Resource accounting

Figure 5.9: Scalability of the analyzed algorithms

Task Assignments with higher latencies than the flow-based algorithm.
This is expected since, as shown in Section 5.4.1, the LABL algorithm
trades off latency to save resources.

Figure 5.9(b) shows the impact of server availability on the resource
usage. The impact is minimal on the round-robin algorithm, while the
other three algorithms all tend to consume more resources when these
are available, by placing remote tasks on free servers in an attempt to
reduce latency. However, the LABL algorithm, in both versions, always
outperforms the flow-based algorithm, thanks to its greater focus on
reducing resource usage.

5.4.3 Sensitivity Analysis

The experiments reported in Figure 5.10 and Figure 5.11 evaluate the
sensitivity of resource usage to, on one hand, the number of tasks to
execute and the number of available servers, and, on the other hand,
the replication factor, i.e. the average number of copies of the data
accessed by a task.

In the first case, only the resource accounting for the flow-based (Fig-
ure 5.10(a)) and LABL algorithm with [= [** + 1 (Figure 5.10(b))
are shown, as these algorithms have proven to be the most effective
ones (see Figure 5.9). Figure 5.10 depicts a family of curves repre-
senting resource accounting as a function of the number of available
servers |S| = {1600, ...,2000}, considering the number of tasks to as-
sign |T'| = {3200, ...,3500} as a parameter.

As expected, the LABL algorithm consumes less resources. The re-
sults also show that the behavior of the LABL algorithm is much more

100

Resouce Accounting [units of work]

5.4 Simulation Results

Resouce Accounting [units of work]

%
S
B
4,500 | S 4,500 |- u
Z
=i
2.
4,000 |- - w0 4,000
E
g
3,500 |- . 8 3,500 | u
=
[
3,000 |- . S 3,000 |- u
| | | | | 8 | | | | |
1.6 1.7 1.8 1.9 2 é 1.6 1.7 1.8 1.9 2
Number of Servers x10° Number of Servers x10°
—a— 3200 tasks —@— 3300 tasks —— 3200 tasks —@— 3300 tasks
—@— 3400 tasks —O0— 3500 tasks —@— 3400 tasks —— 3500 tasks
(a) Flow-based (b) LABL I =10**+1

Figure 5.10: Resource awareness of analyzed algorithms

<
3
z
4,500 |- - B 4,500 |-
2z
=
=
4,000 + = o 4,000 |-
k=
=
. 5
3,500 |-] 8 3,500 |
)
<t
b & b
3,000 = = 3,000 |-
| | | | | 5 | | | | |
1.6 1.7 1.8 1.9 2 é 1.6 1.7 1.8 1.9 2
Number of Servers x10° Number of Servers x10°
—e— Max Repl. Factor 2 —e— Max Repl. Factor 3 —m— Max Repl. Factor 2 —l— Max Repl. Factor 3
—@— Max Repl. Factor 4 —a— Max Repl. Factor 5 —@— Max Repl. Factor 4 —g— Max Repl. Factor 5
—o— Max Repl. Factor 6 —0— Max Repl. Factor 7 —f— Max Repl. Factor 6 —— Max Repl. Factor 7
(a) Flow-based (b) LABLI=10"+1

Figure 5.11: Replication factor sensitivity of analyzed algorithms

101

5 Task Assignment in Data Intensive Scalable Computing

stable. Moreover, the flow-based algorithm is characterized by a higher
resource usage when scheduling more tasks. Focusing on the replica-
tion factor, Figure 5.11 shows only the resource accounting employed by
the flow-based and LABL algorithm (with [= [** + 1), as a function
of the cluster size. The round-robin strategy is not considered since it
consistently employs a higher number of resources (see Figure 5.9(b)).
We vary the maximum replication factor pmax from 2 to 7, so that the
average replication factor ranges in [1.5,4]. Thus, the generated data
placements have |p(t)| uniformly distributed in the range [1, pmax| for all
tasks.

The results show that the LABL algorithm is less sensitive to the
replication factor than the flow-based one. The flow-based algorithm
takes greater advantage from the increased locality given by the presence
of more replicas of each data item, but the LABL algorithm is still able
to achieve a lower resource usage. Note that a higher replication factor
does impact on the overall costs — keeping up to date copies of the data
across the network is bound to have a significant communication cost,
so the ability to achieve good resource utilization with a low replication
factor is a strong asset of the LABL algorithm.

5.5 Discussion

We will now discuss the interactions of the LABL algorithm with other
scheduling goals such as fairness and adaptivity, as well as potential
optimizations.

Scheduling for Fairness The fairness property is often desirable in
large-scale clusters that are accessed by multiple users. That is, the
applications submitted by any user should not be delayed indefinitely.
Online scheduling strategies, such as the LABL algorithm, can be inte-
grated into higher level policies aimed at providing such fairness guar-
antees, that is, at user-application scheduling level rather than at task-
scheduling. Indeed, the LABL algorithm could effectively replace the
round-robin algorithm that is used as the task assignment component
of the Hadoop fair scheduler [53, 135].

Scheduling Jobs from Multiple Applications It is possible that, for
a given job, some servers of the cluster have no copies of the required
data for any of its tasks — or a set of servers S’ C S has only copies of
data needed for a set of tasks 77 C T, but |T"| < |9’|, leaving |S’| — |T"|
servers idle. In this case, the servers cannot be used to run a local

102

5.6 Related Work

task, either leading to execution delays, if they are used to run a remote
task, or to an under-utilization of resources. To further improve resource
utilization and throughput, it is possible to schedule jobs from multiple
applications at the same time, as these are likely to use different data
sets. It is worth noting, however, that scheduling multiple jobs increases
the throughput at a cost in latency.

The LABL scheduling algorithm, however, can easily handle the sched-
ule of sets of tasks belonging to different jobs coming from independent
applications, through simply merging the two sets. The key issue is se-
lecting jobs that map on data held in different servers of the cluster, so
as to allow servers that cannot run tasks locally for one job to be used
for the other job.

Adaptive Scheduling A latency-aware scheduling is more attractive
when the cluster is under-utilized, as it allows to minimize application
latency, providing a better response time to the user. On the other
hand, a resource-aware scheduling becomes increasingly important as the
cluster utilization grows. Indeed, in a cluster under a heavy workload, a
scheduling policy that favors latency may easily lead to low availability
for other jobs. A common solution is to artificially limit the amount of
resources that a single job can take. The LABL algorithm does that, by
construction, optimizing the resource accounting of the scheduled job,
while still providing a strong latency limit. Thus, it adapts better to
workload variations, as shown in Section 5.4.3.

5.6 Related Work

The MapReduce programming model has been formalized in a number
of ways. In [%1] MapReduce computations have been compared to the
PRAM model, focusing on analyzing how PRAM algorithms can be
expressed using MapReduce.

Among the studies on task assignment, in [107] the authors focus on al-
locating tasks of multiple jobs in both on-line and off-line scenarios, pro-
viding a generalization of the Flexible-Flow Shop problem. However, the
authors do not take into account the impact of data placement, which is
critical due to the size of the exchanged data. In [53] the Hadoop round-
robin based task allocator is compared with a flow-based task allocator,
showing that careful consideration of data placement allows to limit job
latency. An in-depth comparison with both algorithms is provided in
Section 5.4. Job latency reduction has been tackled in [153] consider-
ing a production-quality scenario, showing how careful job speculation

103

5 Task Assignment in Data Intensive Scalable Computing

helps on limiting the latency penalty introduced by straggled tasks (i.e.,
remotely executed tasks on the critical path), at the cost of an increased
resource consumption. This technique, while applicable to all tasks, is
more effective on reduce tasks, since map tasks are much less likely to
be straggled.

In a typical MapReduce implementation, the set of available resources
is equally exposed to all jobs. In [120], on the other hand, a different
processing resources are exposed to each job depending on its workload
profile in terms of CPU, disk and memory usage. Thus, a task tracker
can maximize the use of its resources through executing tasks from jobs
with different profiles. This scheme can be easily combined with our
own, since in our approach the set of resources is an input parameter,

whilst the key aspect of [120] is the definition of the resource set for each
job profile.
In [115], a framework to estimate the latency of a MapReduce job as

a function of the employed resources is introduced. The scheme is based
on a job profile obtained through the execution of the same job on a
smaller data set. This work, while not directly related to our own, could
be adapted to provide stronger latency bounds for task assignment. This
solution, however, would incur in the cost of job profiling.

In [119], FLEX, a scheduler for MapReduce systems, is proposed as
a replacement for the Hadoop fair scheduling algorithm. With respect
to our work, FLEX does not take into account data locality, and works
on multiple jobs at the same time in an epoch-based scheme. Similarly,
in [154] multiple jobs are managed, aiming at fairness and data locality,
but with no latency guarantees.

The task assignment problem is common to all Data-Intensive Scalable
Computing schemes. However, the solutions need to be tailored to the
specific setup: e.g., [1 15, 117] deal with cloud-based MapReduce services,
which rely on a heavy use of virtualization techniques. Virtualization
is not attractive for every Data-Intensive Scalable Computing scenario,
due to the need to spawn new virtual machines at high frequency —
job completion times follow a long tailed distribution, with 80% of the
successful jobs completing within 6 minutes, as shown in [3(] for a 10-
month timeframe on a production Yahoo! Hadoop cluster. In [¢1], on
the other hand, a typical cluster of commodity machines is used to run
tasks with dependencies, leading to different problems, such as the need
to keep dependent tasks on near machines to minimize communications.

104

5.7 Concluding Remarks

5.7 Concluding Remarks

We have presented an algorithm for assigning the tasks of a job to servers
in a MapReduce cluster. The proposed algorithm balances the trade-
off between latency and resource consumption. A comparison is drawn
with both the locality-aware round-robin [/ 2%] and the flow-based algo-
rithm [53], substantially improving the resource accounting while still
providing a limited increase in latency. Since resource accounting is a
proxy of energy consumption, the proposed algorithm can be effectively
employed to fine tune the Quality of Service towards green solutions.
Simulation results support the insight that a practical implementation
would benefit from the proposed approach.

Future works include integrating the LABL task assignment algorithm
within a higher level job scheduling framework, which would also man-
age fault tolerance issues. In addition, as a further refinement of the
proposed technique, the cluster interconnect topology will be taken into
account to model the remote execution time.

105

6 Towards Runtime Optimization
of Parallel Applications

This chapter describes a dynamic and lightweight compiler able to guide
the execution of parallel programs at runtime without the need for a
full-fledged Just-In-Time compiler. The proposed approach allows us
to apply profitable optimizations that could not be used at compile-
time due to lack of sufficient information. It also enables us to optimize
code fragments multiple times, depending on the specific conditions of
the execution environment at runtime, while limiting the performance
overhead to a negligible amount.

6.1 Introduction

When dealing with parallel languages, compilers have been used in a
classical way: they perform translation to machine code, that is later
executed. Leveraging on the structure of the input language, some
compilers perform aggressive optimizations, such as work-items pre-
scheduling [%7, . The generated code is always oblivious to the
existence of a compiler, and the compiler, even when it is a JIT, does
not provide any kind of “service” to the program.

This work presents a more dynamic approach to compilation. We
generate code meant to interact with the compiler during execution, to
exploit dynamically available information to optimize the code on-the-
fly, without the burden of a full-fledged JIT system. In our approach the
compiler works together with a micro-thread scheduler. Pipeline stalls
in micro-threads containing the program code can be used to execute
the compiler optimizers, thus minimizing compiler overhead at runtime.

The main motivation for pursuing this approach is code optimization:
by running the compiler during code execution, more information is
available, enabling more precise optimizations.

As a side effect, our approach would benefit software deployed in
binary-only form, meant to run on many different hardware configu-
rations (e.g.: binary packages used by Linux distributions). Allowing
the program to customize itself without being compiled from a bytecode
form at deploy-time and without the need for a Just-In-Time compiler

107

6 Towards Runtime Optimization of Parallel Applications

(that is time- and resource-consuming at runtime) could be useful in a
variety of scenarios.

Section 6.2 of this chapter deals with existing approaches to runtime
compilation and code modification. Section 6.3 introduces our approach
to perform runtime compilation using lightweight compilation micro-
threads and runtime scheduling. Section 6.4 discusses scenarios where
our technique can be useful and Section 6.5 concludes.

6.2 Related Work

The problem of adapting programs to the runtime environment and to
the specific set of data they are working on has been tackled in many
ways, mostly related to the concept of dynamic compilation, also known
as Just-In-Time (JIT) [21]. According to this approach, parts of a pro-
gram are compiled while the program itself is being run, when more
information is available than at compile time and can be used to per-
form further optimizations.

One of the first works on JIT systems [(9] deals with the fundamental
questions of JIT: determining what code should be optimized, when,
and which optimizations should be used. We deal with similar ques-
tions, but we decide at compile time what code to optimize and which
optimizations to apply, and postpone to runtime the task of answering
“when” and “how” to optimize the code.

JIT compilation introduces an overhead in execution time because it
causes the program to be idle while waiting for the new machine code.
Considering that most programs spend the majority of time executing
a minority of code [90], two papers [, 17] independently proposed the
approach called mized code, where most of the code is interpreted and
only the frequently executed part is identified, compiled and optimized
at runtime.

Some works [75, 92] exploit multi-core processors to hide compilation
latency: the compiler is run in a different thread and uses heuristics to
predict the next method to compile before it is actually needed by the
program. State of the art implementation can be found in [91].

All JIT-related works assume a compiler is running alongside the pro-
gram. This causes a big overhead because of the memory and the time
it takes to compile a new, optimized version of the code. On the other
hand, the approach we propose does not need a full-fledged compiler
running alongside the program. It only applies lightweight transforma-
tions to code specifically generated at compile-time to allow it, thus
requiring much less resources, while being only slightly less flexible than

108

6.3 Proposed Approach

a full-fledged JIT compiler.

Staged compilation is another low-overhead approach. It splits the
compilation in a static and a dynamic stage. The static one compiles
“templates”, building blocks for the dynamic stage that connects them
and fills the holes left by the static stage with run-time values [10].

An example of a state of the art JIT compiler is the HotSpot Java
Virtual Machine [91, |, that uses adaptive optimization on top of a
mixed code approach, with continuous monitoring and profiling of the
program during its execution. It performs non-conservative optimiza-
tions, such as inlining frequently called virtual methods. To deal with
Java’s dynamic class loading it uses dynamic de-optimization. When the
assumptions that led to a non-conservative optimization become false,
the code is de-optimized back to a safe version, and then new optimiza-
tions are applied.

HotSpot supports two different compilers, namely the “Client” one
and the “Server” one. The HotSpot Client Compiler [01] is focused on
optimizing client applications, where the responsivity of the application
is more important than deep optimization. The HotSpot Server Com-
piler [I 10] aims at optimizing the server applications, where it is worth
spending more time compiling parts of the application. Therefore, the
compiler features all the classic optimizations, as well as some Java spe-
cific ones.

A different approach to adapting programs to the runtime environ-
ment is self-modifying code. Von Neumann architectures [!10] represent
code in the same way as data. Therefore, a program is able to mod-
ify its own code while running, changing its own behavior. The main
drawback of self-modifying code is the difficulty for many programmers
to understand, write and maintain such code. Self-modifying code is
used in [102] to write an operating system kernel and in Knuth’s MIX
architecture [¢9] for the subroutine calling convention.

6.3 Proposed Approach

We present a new kind of compiler optimizations, able to adapt to highly
dynamic execution environments without adding excessive overhead at
runtime.

Optimizations built according to our approach are divided in two
phases, one to be executed at compile time and one at runtime. The
runtime phase is extremely lightweight and is assigned the task of mod-
ifying the program to actually apply the optimization according to the
current state of the execution environment, whereas the compile-time

109

6 Towards Runtime Optimization of Parallel Applications

phase has to generate the machine code of the program in such a way
to allow this to happen

The need for offloading most of the optimization-related computation
on the static compiler has already been assessed by other works, such
as [1 12]. Another example of cooperation between compiler and runtime
can be found in [67] for GPGPUs.

With respect to the traditional static/dynamic compilation flow, where
compilation and execution phases are clearly separated, we have to face
two specific issues.

Expected profitability Not all optimizations have to be delayed at run-
time. We aim at applying an optimization at runtime only if there are
no sufficient information to apply it at compile-time and a considerable
improvement is expected. At the same time, since code is generated at
compile-time, we free the runtime environment from the burden of ap-
plying trivial but needed optimizations, such as copy propagation, that
a traditional JI'T approach has to perform during program execution.

Moreover, delaying at runtime all applicable optimizations is not fea-
sible, because we aim at keeping a lower overhead with respect to tra-
ditional JITs. This naturally leads to a careful selection of which opti-
mizations to delay, based on their expected profitability.

Compiler interference Runtime application of optimizations leads to
possible conflicts between optimizers and the running optimized code.
This happens because there is no strong separation between the compil-
ing and running phases of the program. To guarantee consistency, it is
necessary to coordinate optimization and execution of the code.

To handle these issues, we define a model that allows us to detect,
handle and apply profitable optimizations. We represent the program
using a set of micro-threads (similar to those described in [71, 50, 87]).
Part of these micro-threads are defined by the programmer or by the
compiler and contain the code of the program being written. We call
them computational micro-threads. The remaining micro-threads are
called compiler micro-threads. They are generated by the compiler and
contain the code that is able to apply optimizations at runtime.

Each compiler micro-thread is associated to a computational one, and
manipulates one of its optimizable regions, that are the sections of the
code of a computational micro-thread that can be modified by a runtime
optimization. The dual of an optimizable region is an optimizing region.
It is defined as all the code of a computational thread that is not part
of the corresponding optimizable region. The optimizing region is the

110

6.3 Proposed Approach

’ Micro-threaded Code

Compiler

‘ Pre-scheduler ‘%‘ Micro-optimizers

Compiler Micro-thread Generation

Object Code

Run-time Optimization

Logical View

,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

II] Computational Micro-thread

v Compiler Micro-thread
vV + VY | Mixed Micro-thread

Figure 6.1: Proposed compilation/execution pipeline. Micro-threaded
code is analyzed to detect profitable runtime optimizations. Compiler
micro-threads (filled-in symbols) are built and possibly merged with
computational micro-threads (empty symbols), generating mixed micro-
threads (both symbols)

region where the optimizer micro-thread can safely run concurrently
with the computational micro-thread to apply its optimization.

6.3.1 Compilation/Execution Pipeline

With reference to Figure 6.1, our compilation approach is split into two
parts: generation of compiler micro-threads and runtime optimization.
The first step is intended to be part of a static compilation pipeline,
and its goal is preparing the code to be optimized at runtime. We want
to consider only optimizations that cannot be applied at compile-time,
so this step should be run after standard compiler optimizations. First
of all, it has to look at the input code to find candidate applicable run-
time optimizations. It is not possible to apply all optimizations, because

111

6 Towards Runtime Optimization of Parallel Applications

interferences between them are possible. Therefore, they must be scored
with respect to the expected profitability. Then, the model based on op-
timizable/optimizing regions allows us to represent such interferences on
the computational micro-thread control flow graph. A pre-scheduler an-
alyzes the interferences and selects the best optimizations. Finally, the
corresponding compiler micro-threads are generated from a library of
micro-optimizers. For each computational micro-thread, multiple com-
piler micro-threads can be generated, one for each optimization.

It is worth noting that the micro-threaded model is a purely logical
one: we aim at minimizing runtime overhead, therefore if the system
is implemented on a computing architecture with high costs of inter-
thread communication the micro-threads can be multiplexed into a sin-
gle mixed micro-thread. To do this, the pre-scheduler analyzes the com-
putational micro-thread and compiler micro-threads, and schedules in
a single mixed micro-thread the instructions from both, according to
constraints imposed by optimizable and optimizing regions. Merging
different micro-threads together was proven to be effective for schedul-
ing Single Instructions Multiple Threads programs [95, 90,]. In our
approach, micro-threads are not homogeneous, but we think that similar
techniques have to be used to limit as much as possible the overhead of
runtime optimizations.

The output of the pre-scheduler is a set of threads containing micro-
threaded code intended to be run by a runtime micro-scheduler. From
the logical point of view, the runtime scheduler has to manage both
computational and compiler micro-threads, but, due to pre-scheduling,
it actually has to manage mixed micro-threads too: therefore, some
of the micro-threads need synchronization, whereas some other micro-
threads have already been merged by the pre-scheduler, thus eliminating
the need for explicit synchronization.

6.3.2 Run-time Optimization

The compiler micro-threads have to change the code of their associated
computational micro-thread to optimize it. This can be done explicitly,
using self-modifying code, or implicitly, using branch tables.

The compiler micro-thread is generated together with the optimizable
region code it is associated to. Indeed, knowing the layout of the opti-
mizable region, it is possible to generate instructions performing binary
rewriting at runtime, without influencing other regions of code of the
computational micro-thread.

The strength of self-modifying code is the ability to generate the most
suitable instructions for a given optimizable region. However, the cost of

112

6.3 Proposed Approach

code morphing is considerable. An entire region of code must be rewrit-
ten. This requires editing the memory locations that store the optimiz-
able region. Moreover, if the code is shared by multiple micro-threads,
code cannot always be modified: the conditions triggering runtime op-
timization for a given micro-thread could be not valid for the others.
Despite these limitations, self-modifying code can be an effective opti-
mization strategy, if exploited for highly profitable optimizations, like
inner loop vectorization.

A branch table, on the other hand, is a collection of unconditional
jumps to different locations. At runtime, an index is used to select
where to jump to. It can be implemented using different techniques,
and is used to translate switch statements or to implement virtual ta-
bles. In our context, branch tables enable compiler micro-threads to
change the execution flow of the associated computational micro-thread
without changing its code. When our logical model is implemented, an
optimizable region should be represented as a collection of sub-regions
linked using branch table-based jumps. Compiler micro-threads just
have to modify the indices used to select the active jump in branch
tables, thus implicitly modifying the control flow graph of the computa-
tional micro-thread.

With respect to self-modifying code, branch tables impose less runtime
overhead, since applying an optimization simply amounts to setting a
set of indices. On the other hand, all the possible fragments of code
used to optimize the region need to be generated at compile-time. The
low runtime overhead makes this strategy suitable for highly dynamic
scenarios, where the compiler micro-thread has to modify the execution
flow more often.

To trigger an optimization, compiler micro-threads must observe the
state of the associated computational micro-thread. If an optimization
was postponed at runtime because the value of a variable was unknown
at compile-time, the observed state will surely include that variable as
one of the elements to be considered to decide when and how to apply
the optimization at runtime.

It is worth noting that our approach enables a wide range of runtime
optimizations. We use branch tables to restructure the execution flow
and, where this is not sufficient, we also allow code morphing to apply
deeper modifications. The use of branch tables should not be perceived
as just a static branch prediction [23], since it is not performed stati-
cally, but is dynamically changed every time it is needed, as a result of
modifications in the execution environment.

The strong relationship between computational and compiler micro-
threads motivate us to emphasize the importance of having an effec-

113

6 Towards Runtime Optimization of Parallel Applications

tive and efficient pre-scheduler. Data related to a computational micro-
thread must be collected and analyzed by the corresponding compiler
micro-threads. Moreover, compiler micro-threads change the behaviour
of the computational micro-thread. By scheduling the different micro-
threads together we aim at avoiding communication delays between
them. This guarantees deterministic interactions between micro-threads,
as well as high performance. Even if it is strongly discouraged, our pro-
posal does not prevent scheduling compiler micro-threads independently.
However, in this case it is required to consider explicit synchronization
between micro-threads, possibly exploiting weak memory consistency
models [12] to limit communication overhead.

The authors of [09] observe that current production-quality compilers
have issues with vectorization because the required analyses, such as in-
terprocedural alias analysis, are not available. Such an analysis is really
hard to implement at compile time, but pointers can be disambiguated
at runtime. This further supports the need for splitting the compilation
effort between compile-time and runtime, as allowed by our approach.

6.4 Foreseen Applications

In this section we present two examples of optimization that would ben-
efit from our approach. Figure 6.2 gives a brief overview.

6.4.1 Adaptive Loop Unrolling

The classic loop unrolling optimizations [2?] can lead to improved, un-
affected or worsened execution times depending on whether the right
unroll factor is chosen [37, 16]. This is a challenging task, requiring
good knowledge of the target architecture [129]. In most cases, this is
only available at runtime, and is exploited using a JIT compiler. Unfor-
tunately, JITs are really heavyweight and time consuming.

With our approach, we estimate a maximum sensible unrolling factor
k at compile-time. We unroll the code of the loop k times and insert
a branch table read between each pair of unrolled loop bodies, as in
Figure 6.2(a). This is the optimizable region. At runtime, the compiler
micro-thread determines the best unrolling factor n < k (according to
the size of caches, the number of required iterations, etc.) and modifies
the n-th branch table read so that it jumps back to the loop header, and
all the other ones so that they either jump to the next instruction, or
are substituted by nop instructions.

This approach is much lighter that a full-fledged JIT, but it does not
enable the application of further optimizations on the unrolled code.

114

6.4 Foreseen Applications

Task No. 1 Task No. 2 Task Graph

Computational Compiler

Micro- Micro-
thread thread

Compiler Micro-thread

(a) Adaptive loop unrolling (b) Dynamic task fusion

Figure 6.2: Graphical representation of two foreseen applications of our
proposed approach. White diamond nodes represents optimization ac-
tions, while gray diamond nodes are the optimized region

However, if the underlying architecture is micro-programmed, the ma-
chine code will be rewritten and optimized by the hardware, making our
code comparable to that unrolled by a JIT.

6.4.2 Dynamic Task Fusion

Task based data-flow programming models have been proven to be an
attractive way to tackle some parallel applications [133]: tasks are gener-
ated on the fly, thus they require the use of a runtime scheduler to select
and start them according to data and control dependencies. Therefore,
after each task finishes executing, control has to return to the scheduler
so that it can start the next task.

Using our approach, we can define an optimizable region just before
the end of the machine code of each task, made of just a branch table
read. As shown in Figure 6.2(b), at runtime, a compiler micro-thread
supports the scheduler: it observes the state of the system and modifies
the corresponding branch table to have it point to the beginning of the
code of the next ready task. Therefore, tasks can be executed contin-
uously, without the overhead of reaching back to the scheduler at the
end of each of them. The modification of the branch table takes place

115

6 Towards Runtime Optimization of Parallel Applications

as soon as the compiler micro-thread is aware of the next ready task,
therefore the current and the next task will be executed one immediately
after the other, as if fused together. Some call to the scheduler will still
be needed, for example in order to mark a task as finished, unlocking
the depending ones.

When the task graph is known at compile time, more aggressive opti-
mizations can be performed [(3]. Our approach does not allow this, but
it limits the scheduling overhead that arises when inter-dependent tasks
have to be executed (as tackled in [I/11]) and handles highly dynamic
applications where the task graph is known only at run-time, even if the
code is generated at compile-time.

6.5 Concluding Remarks

In this chapter we presented a novel lightweight approach to dynamically
optimize parallel programs, based on the use of compiler micro-threads
that modify the running program at runtime, adapting it to the current
environment.

We described some optimizations that could implemented using our
methodology, to show that is general enough to be applied to a wide
variety of algorithms. At the same time, though, it does not need to be
completely general-purpose, since it is not meant to completely replace
other techniques, such as static optimization or JI'T compilation.

116

7 Fault Sensitivity Analysis of
Synchronization Primitives

Modern multi-core processors provide primitives to allow parallel pro-
grams to atomically perform selected operations. Unfortunately, the
increasing number of gates in such processors leads to a higher proba-
bility of faults happening during the computation. In this chapter, we
perform a comparison between the robustness of such primitives with
respect to faults, operating at a functional level. We focus on locks, the
most widespread mechanism, and on transactional memories, one of the
most promising alternatives. The results come from an extensive exper-
imental campaign based upon simulation of the considered systems. We
show that locks prove to be a more robust synchronization primitive,
because their vulnerable section is smaller. On the other hand, trans-
actional memory is more likely to yield an observable wrong behaviour
in the case of a fault, and this could be used to detect and correct the
error. We also show that implementing locks on top of transactional
memory increases its robustness, but without getting on par with that
offered by locks.

7.1 Introduction

The dramatic increase of multi/many-core systems’ complexity leads to
extensive introduction of a wide variety of parallel applications and algo-
rithms, and therefore to the necessity of efficient and safe ways to allow
synchronization among threads. Locks are (historically) the first and still
the most popular software synchronization primitive [75]. Using locks
requires the programmer to carefully avoid several common mistakes in
the design of massively parallel programs, that would lead to erroneous
behavior such as starvation or deadlocks; moreover, it has been argued
that lock-based synchronization would make actions such as modifica-
tions or extensions of existing programs more exposed to programming
errors. To avoid these risks, Herlihy and Moss [7] proposed the Trans-
actional Memory concept, allowing “lock-less synchronization”. Nowa-
days many different implementations of transactional memory have been
proposed, either software [70, | or hardware [15, 38, (5, | based.

117

7 Fault Sensitivity Analysis of Synchronization Primitives

Much effort has gone into discussing various developments for locks
and transactional memory, focusing on performances and - more re-
cently - on power consumption [59,]. Yet, a further aspect should
be taken into account as well, namely, the impact of hardware faults on
the synchronization solution. The increasing integration level, density
and scaling in transistor dimensions will have great impact on the reli-
ability of next-generation systems. A non-negligible amount of “hard”
(permanent) faults is likely to affect the chip even during its working
lifetime; decreasing geometries moreover make it more probable that
“soft” (temporary) faults will affect some of the gates during computa-
tion. In particular, “upsets” affecting memory elements should be taken
care of: given a set of processors concurrently executing a task, if one
of the processors hangs because of a memory fault this could block all
other processors waiting for synchronization with it, so that the erro-
neous behavior would propagate in a dramatic fashion throughout the
system.

In this chapter, we aim at analyzing the effect of faults on synchro-
nization primitives. In particular, we compare the sensitivity to faults
of locking techniques and hardware transactional memory, adopting
technology-independent fault assumptions for both cases and explor-
ing - through extensive simulations - the outcome of comparable fault
distributions. Many papers present fault analysis and handling for sin-
gle threaded systems [123,], but to the best of our knowledge, this
is the first investigation about the differences between these primitives
with respect to fault sensitivity performed by using experimental results.

The rest of this chapter is organized as follows: Section 7.2 describes
the faults we are considering, Section 7.3 presents the methodology we
used for performing the simulations, Section 7.4 shows the experimental
results and Section 7.5 concludes.

7.2 Faults characterization

Our focus is here on soft (transient) faults, more specifically on faults
identified as “Single Event Upsets” (SEUs) [13]. For our purposes, we
organize faults into two different classes: the ones that affect the general
computation - here defined general faults - and the ones that specifically
affect mechanisms related to critical sections, either protected by locks
or by transactions. Critical sections are particularly sensitive sections of
code that are present in multi-threaded programs: wrong access to one
of them by one of the concurrent threads can produce relevant errors
in the program and can cause deadlocks or starvations, leading to the

118

7.3 The Methodology Adopted

inability for the program to finish its execution. Hereafter we will only
focus on critical section-related Single Event Upsets (SEU): we ignore
other (general) types of faults, such as program counter corruption, that
are beyond the scope of our analysis. Moreover, we aim at a technology-
independent analysis: no assumptions are made here concerning the
causes of faults, but we actually consider functional errors - affecting
the outcome of specific instructions or operations. This will lead us to
examine errors as affecting memory words or registers, often collapsing a
number of different faults into one “equivalent” error type. In the same
spirit, uniform random distributions will be adopted (thus abstracting
from other possible distributions due to technological peculiarities).

According to Gawkowski et al. [60], the following outcomes can derive
from applying faults to a program:

Correct Result (CR) The program correctly terminates its execution,
computing the right value.

Incorrect Result (IR) The program gracefully terminates its execution,
but the computed value is not correct and the system does not detect
the error.

Fault Detected by the System (FDS) An hardware exception oc-
curs. The system terminates the faulted program following predeter-
mined policies.

Timeout (T) The program does not respect its timing requirements
and is terminated by the system.

User-defined Message (UM) The program detects a misbehaviour,
that is signalled to the user.

We follow the same classification, with the exception of User-defined
Messages, since we did not add any error correction/detection machinery
to the analyzed programs.

7.3 The Methodology Adopted

In order to obtain an indication of the respective performances of lock-
based and transactional-memory-based solutions (as far as sensitivity
to faults is concerned) we chose to set up an experimental environment
(based on simulation tools) capable of simulating the operation of a

119

7 Fault Sensitivity Analysis of Synchronization Primitives

realistic multiprocessor system as well as of supporting fault injection
and simulating behavior after fault.

This choice is due to the fact that the only viable alternative would
be to perform an analysis starting from the netlist of a hardware device.
This device should support both lock based and transactional synchro-
nization primitives. Moreover, it should be a neutral, publicly available
benchmark (a personal choice would risk to be biased). Since such a
device was not available, we decided to go for a simulation approach, so
as to provide at least a first analysis that, although less precise, is more
general and a good starting point for further work.

To obtain the experimental results presented here, we started from
the SESC simulator. SESC is “a microprocessor architectural simulator
[...] that models [...] chip multiprocessors, [...]”. CPUs used as nodes are
MIPS processors, with “a full out-of order pipeline with branch predic-
tion, caches, buses, and every other component of a modern processor
necessary for accurate simulation” [121]. More specifically, SESC oper-
ates at at functional-block level simulating the execution of a program.

In order to support the simulation of parallel programs, SESC pro-
vides its own implementation of a POSIX-like threading library, called
lthapp; libapp is much simpler than pthread, but it provides all that
is needed for the aim of the present work - at least insofar as lock-
based synchronization is concerned. Namely, libapp provides fork/wait
primitives and lock/unlock primitives. While this allows us to proceed
with the analysis of fault impact on lock-based solutions, to perform our
comparison we also need an implementation of a transactional memory
- which is not provided by SESC.

On the other hand, SuperTrans [!19], developed by University of
Florida Advanced Computing and Information Systems Laboratory, is
“a multicore, cycle-accurate and multiple issue simulator built on top
of the SuperESCalar (SESC) framework that is capable of simulating
three of the most common dimensions of hardware transactional mem-
ory (Eager/Eager [15, 105], Eager/Lazy [15, 122], Lazy/Lazy [05])”. Su-
perTrans, just as SESC, is released as open source. It includes all that
is part of SESC (therefore, the lock based management of memory) plus
a transactional memory module. For these reasons, we chose Super-
Trans as the tool for transactional-memory related simulations; being
based on SESC, it granted the kind of consistency that was mandatory
to compare results of simulations obtained on the two systems.

In order to explore the effects of faults, we modified SuperTrans by
adding a new software component, that we named fault injector, allowing
us to specify where and when to inject faults during the simulation,
so that we can observe the outcome of the management of the mutual

120

7.4 Impact of Faults on Synchronization Mechanisms

exclusion between two or more processes trying to access a single critical
section. The fault injector can support an arbitrary number of faults.
The characteristics of the faults can be completely specified by the user
or randomly generated.

7.4 Impact of Faults on Synchronization
Mechanisms

In order to evaluate how faults affect the behavior of programs run by
systems that use, respectively, locks or transactional memory to protect
the critical sections, we carried out an extensive experimental campaign,
using a small set of synthetic benchmarks (depicted in Table 7.1) that
implement well known concurrency problems, such as shared counter or
reader/writer interactions [130]. Using such simple examples allows us
to easily inject faults exactly in the registers and cache lines that will
be accessed by the code while inside a critical section. Therefore we can
verify the effect of faults on the more likely sources of problems related
specifically to the synchronization mechanism adopted rather than to
the general effects of faults on program’s execution. Moreover, these
small benchmarks share the same structure of most complex concurrent
applications, so that the results we obtain are actually general. Studying
the effect of faults on synchronization primitives has a direct impact on
determining how the behaviour of the application will change because of
them. In fact, many years of research on operating systems [!3(] prove
the importance of the correct behaviour of such primitives.

We will now describe in detail how faults are injected in the micro-
benchmarks and what are the results obtained using the SC micro-
benchmark as a running example. Section 7.4.1 reports on fault injection
in lock-based critical sections, while Section 7.4.2 refers to transactional-
memory-based critical sections, Section 7.4.3 describes faulting critical
sections protected with transactional-memory-based locks - a solution
that, while non-realistic, allows completing our fault-related analysis
with this alternative derived from the two basic criteria. Finally, Sec-
tion 7.4.4 presents the experimental campaign setup and its results.

7.4.1 Lock-based Critical Sections

From the users perspective, protecting a critical section cs requires in-
voking a LOCKACQUIRE function before entering cs. This guarantees
that no more than one thread at a time enters the critical section. To
leave cs, a thread must invoke a LOCKRELEASE function. This allows

121

7 Fault Sensitivity Analysis of Synchronization Primitives

Algorithm: SHRDINCLOCK

Input: a shared counter cnt
Result: cnt safely
incremented by 1

1 LOCKACQUIRE (cnt.lock)
2 ent.n < cent.n+ 1
3 LOCKRELEASE (cnt.lock)

Figure 7.1: Shared counter up-
date. Locking functions guar-
antee mutual exclusion between
threads while concurrently in-

Algorithm: SHRDINCTRANS

Input: a shared counter cnt
Result: cnt safely
incremented by 1

1 TRANSBEGIN ()
2 ent < cent+1
3 TRANSCOMMIT ()

Figure 7.2: Shared counter
update exploiting transactional
memory. If a conflict is de-
tected during a transaction, it
is aborted and restarted by the

crementing the counter hardware

other threads to access cs. Figure 7.1 shows how these routines can be
employed to safely increment a shared-counter.

Such locking/unlocking routines are built on top of hardware synchro-
nization instructions, such as atomic eXCHanGe, Compare And Swap,
and Load Linked/Store Conditional. No other ad hoc hardware capabil-
ities are exploited to implement the routines: the remaining code seg-
ments are implemented using standard instructions. Figures 7.3 and 7.4
show LOCKACQUIRE and LOCKRELEASE routines respectively.

Any fault generated inside a critical section can corrupt the current
thread’s private data, as well as the private data of other threads and
shared data. This happens because a critical section’s body contains
only non lock-related instructions and the locking algorithm has no
knowledge of the data accessed and of the instructions executed inside
it.

If we consider critical section boundaries, identified by LOCKACQUIRE
and LOCKRELEASE routines, we see that a fault affecting data accessed
by these routines is catastrophic because they control the access to the
critical section. Even in the presence of transient faults, the program
behavior is radically modified: more than one thread will access the crit-
ical section at the same time, performing a computation at the wrong
time. The faulted program behavior matches classical concurrent pro-
gramming errors, such as lost update, dirty read/write,

For our experimental campaign, we start by injecting faults affecting
LOCKACQUIRE. The most important operation performed here is XCHG
(Figure 7.3, Line 2): it atomically replaces the memory word where
lock resides with the LCK constant, returning the value stored there

122

7.4 Impact of Faults on Synchronization Mechanisms

Algorithm: LOCKACQUIRE
Input: a lock lock

Result: lock locked by current
thread

1 val « XcHG (lock, LCK)
2 while val = LCK do
3 repeat NOP until

Algorithm: LOCKRELEASE
Input: a lock lock

lock # LCK Result: lock unlocked
4 wval « XcHa (lock, LCK) 1 lock « UNLCK
Figure 7.3: Implementation of Figure 7.4: Implementation of
LOCKACQUIRE LOCKRELEASE

before the swap took place. We identify three elements such that faults
affecting them are critical for the synchronization process, namely: lock,
the register containing the LC'K constant, and the return value.

To emulate faults on lock we consider them just by their outcome:
having the program reading/writing the wrong memory location, there-
fore causing XCHG to return a wrong value. Such value is later read
(Figure 7.3, Line 2) by a comparison instruction to detect whether to
enter the critical section, so this fault can allow the current thread to
enter the critical section, even if the lock is not held. The program be-
havior cannot be predicted, and both CR and IR can be observed. A
write on the wrong address could be detected, depending on the specific
address, if a F'DS situation (e.g. segmentation fault) occurs.

Altering the LC K word results in writing the wrong marker in the lock
memory location. If it turns out to be equal to the UNLCK marker,
the current thread enters the critical section without the other threads
being aware that the lock has been taken. Therefore, they can enter
the section too, leading to wrong behaviour. We can observe the same
behaviour also if the written marker is invalid, because every value not
equal to LC'K allows entering the critical section. We can observe CR
if the dynamic schedule does not result in a data race, IR or FDS
otherwise.

A transient fault on the return value can result in two different be-
haviours: if the faulted return value is equal to LC' K, the current thread
spends some cycles (Figure 7.3, Lines 2 and 3) waiting for the lock to be
released, without corrupting data. Otherwise, the current thread enters
the critical section, incurring into a potential data race. We can observe
the same program behaviour as in the previous case: CR, IR, or F'DS.

As a final remark, it is worth noting that in the case of a thread trying
to enter a critical section it is very unlikely to incur into 7' behaviour

123

7 Fault Sensitivity Analysis of Synchronization Primitives

(provided only transient faults are applied, as in our experiments). For
this to happen, the value accessed through the lock variable (Figure 7.3,
Line 2) should always be equal to the value of the LCK constant: this
requires either to continuously fault lock in such a way to end up reading
from memory locations containing the LC' K value, or to fault the return
value of the XCHG instruction every time in such a way that it results
equal to LCK. Similar considerations apply to the spin wait loop, too
(Line 3).

The LOCKRELEASE routine is a simple store to memory. Its behaviour
can be altered by injecting faults on lock and on the UN LC' K marker.
Modifying lock shows the same behaviour as writing to an invalid mem-
ory address, potentially generating CR, IR, and F'DS behaviours.

Finally, a fault affecting UNLCK results in generating an invalid
marker that corrupts lock, but the locking algorithm is not influenced:
the first thread entering into the critical section restores lock to a con-
sistent state. On the other hand, writing the valid but incorrect value
LCK results on T behaviour: the lock is released incorrectly, preventing
any thread from entering the critical section.

7.4.2 Transactional Memory-based Critical Sections

In order to protect a critical section using transactional memory, the
user employs three routines: TRANSBEGIN (instructing the transactional
memory to save the current context), TRANSCOMMIT (to publish the
memory operations performed), and TRANSABORT (to explicitly ter-
minate and restart a transaction). Figure 7.2 shows how transactional
memory can be used to protect a shared counter update.

In transactional memory approach, critical section access control is
distributed; every memory operation inside a critical section is validated
by the transactional controller in order to detect conflicts. Detection is
performed by analyzing the read set, (the set of memory locations read
by a thread), and the write set, (the set of memory locations written by
a thread). To emulate errors corrupting the read set as well as the write
set, requires one can collapse the various fault causes into faults affecting
the addresses manipulated by the transactional controller. Therefore, we
will inject faults near memory access opcodes so as to affect the system
immediately before memory access.

Corrupting the read set can be modeled as reading from the wrong
memory location. A transactional load, LW X, both interacts with the
transactional controller and fetches data from memory. As a result,
the read set of the faulted processor becomes inconsistent and a wrong
value is read from the memory. If the wrong value is used for subsequent

124

7.4 Impact of Faults on Synchronization Mechanisms

computations, it can produce I Rs. The same behaviour can occur even
if the read value does not directly produce a corrupted value. In fact,
the transactional controller could be unable to detect a conflict due to
the corrupted read set, thus allowing a transaction to commit when it
should have been aborted instead. Moreover, if the corrupted address is
later used for a memory store to a location not accessible by the faulted
processors, a F'DS occurs.

If faults lead to corrupting the write set, the same behaviour can
observed. In this case the faulted instruction is the transactional write,
SW X; as in the case of LW X, the instruction also interacts both with
the transactional controller and the memory. Depending on the fault-
affected value, an IR or F'DS can occur. The difference with respect to
faulting the read set is that an F'DS can occur immediately.

Hardware implementations of transactional memory introduce three
new opcodes, namely XBEGIN, XCOMMIT, and XABORT respectively
implementing TRANSBEGIN, TRANSCOMMIT, and TRANSABORT. All
these operations do not use general purpose hardware; they interact di-
rectly with the transactional memory controller, thus to simulate faults
relative to them we cannot just inject faults into registers or into non-
transactional memory, but we have to fault the simulated hardware
primitives themselves. Faults concerning this scenario corrupt processor
context saved by XBEGIN and restored by XcoOMMIT and XABORT. Since
these faults would be very much dependent on a specific implementation
and technology, we do not consider them; obviously, extending the set
of faults would increase the sensitivity to faults of the system.

7.4.3 Transactional Locking-based Critical Sections

As shown in Section 7.4.1, we can inject a wide variety of faults on locks,
but the lock is directly manipulated only at critical section bounds, so
there is not much possibility for such faults to happen. Every other fault
happening inside a critical section protected by locks is not related to
locks themselves: as such it could happen whatever the synchronization
primitive being used, and is therefore not interesting for this study. On
the other hand, transactional memory is vulnerable to a narrow class
of faults, see Section 7.4.2, but they expose more faulting opportunity
because as long as the transaction is active every memory access could
be influenced by faults in the read set or the write set.

This observation led us to try to implement locks “on top of” transac-
tional constructs. While this is not a viable solution for real systems, it
allows us to study whether transactional memory helps reducing fault-
ing opportunities. The locking and unlocking algorithms are the same

125

7 Fault Sensitivity Analysis of Synchronization Primitives

Algorithm: TRANSXCHG

Input: an address addr
a value wval
Result: val written into addr,
old value returned

TRANSBEGIN ()
old — mem][addr]
memladdr] < val
TRANSCOMMIT ()
return old

Ul W N =

Figure 7.5: Atomic exchange im-
plemented using transactional
memory. It is used as a building
block for transactional memory-
based locks

Algorithm: TRANSRELEASE

Input: a lock lock
Result: lock unlocked

1 TRANSBEGIN ()
2 lock « UNLCK
3 TRANSCOMMIT ()

Figure 7.6: Lock release routine
implemented on top of transac-
tional memory. A normal store
cannot be used because all lock-
related operations must be put
under control of the transac-
tional memory controller

used for lock-based critical sections (Figure 7.3 and 7.4). In order to
exploit transactional memory, we replaced the XCHG instruction with
an equivalent routine written using transactional constructs. Its imple-
mentation can be seen in Figure 7.5. The lock release routine, reported
in Figure 7.6, has been modified so as to be protected by a transaction.

For faults happening inside the critical section we can make the same
observations as for locks, because the critical section does not contains
any special instruction.

On the other hand, we note that injecting faults on critical section
boundaries requires injecting faults on the transactions protecting the
atomic exchange. The kind of faults that can be injected are the same
as for transactional memory: basically, we can fault the read set and the
write set.

In this particular critical section, the read set and the write set are
identical: they consist just of the word used to store the lock. Faulting
the lock address can thus produce FDS, IR, or T' behaviours. The
first arises when the faulted lock address refers to a memory region
that cannot be written by the faulted thread. If the word identified
by the faulted address can be written, a data race can occur, possibly
generating either CR or I R. The T behaviour occurs when reading from
the faulted address causes the faulted thread to spend too much time in
the lock busy-wait loop.

126

7.4 Impact of Faults on Synchronization Mechanisms

Table 7.1: Fault sensitivity analysis benchmarks

SC concurrent increment of a shared counter.
FEach thread performs 8 atomic increments.

SMC concurrent increment of shared counters.
Fach thread executes 4 critical sections, in-
crementing 16 counters each time.

RW reader/writer problem. Threads are parti-
tioned into two equally sized sets: readers
and writers. Writers produce items writ-
ing them into a global buffer. Readers read
items from the buffer. When all items have
been produced, the readers concurrently
write all the read items into another buffer
read by the main thread to perform a fi-
nal sanity check. Buffers are implemented
using arrays.

RWL reader/writer problem. Same behaviour of
RW, but shared buffers are implemented us-
ing single-linked lists.

7.4.4 Results of the Experimental Campaign

Our experimental campaign focused on the micro-benchmarks reported
in Table 7.1. We coded each micro-benchmark in three different flavour,
each employing a different primitive to protect its critical sections. The
lock flavour, uses locks, trans uses transactions, while trans-lock adopts
locks implemented by means of transactions.

Each micro-benchmark was first run without applying any faults. Ob-
serving the execution trace we detected points where faults could be
injected, as suggested in Section 7.4.1, 7.4.2, and 7.4.3. Each flavour
exposes different faultable points. Faults will affect execution with the
lock flavour while acquiring and releasing the lock. The trans flavour is
faultable while accessing the read set and the write set, i.e. near each
LWX and SWX. The trans-lock flavour exposes the same faultable
points as trans, but the critical section is shorter.

We aim at observing the evolution of the behaviour of the micro-
benchmarks subject to an increasing number of faults. Therefore, for
each of them we injected an increasing number of faults, from 1 to 4.
For each benchmark, for each given number of faults, we performed

127

7 Fault Sensitivity Analysis of Synchronization Primitives

100

5

Result Frequencies [%]
ot
S
T

25 - =
0L |
1 2 3 4
AL M N n
 gonerse . EEREEREEEEE
2 generator = ’uniform’ A== = i =
g = = =
=)
3 reglNo R18 g g § §
4 kind = ’bitFlip’
5 atTime = 1100 Faults

BN CR N IR
Figure 7.7: An example of fault [FDS [z T

taken from the configuration file.
A Dbit-flip fault named upReg
will be applied to register R18
at 1100*" cycle of the simulation

Figure 7.8: Distribution of
benchmark results, varying the
number of applied faults

960 ' runs. Before each run we randomly extract i faultable points
taken from those observed by analyzing the execution trace. To allow
for some randomness, each fault was randomly applied between 1 and 4
cycles before the time instant it was registered in the original execution
trace. In case of faults applied to registers, we randomly generated the
number of the register bit to fault. For faults applied to cache line reads,
we randomly generated the loaded word bit to fault. Figure 7.7 shows
a generated fault entry in the SESC configuration file format.

Table 7.2 reports individual benchmark results, while Figure 7.8 shows
the percentage of CR, IR, FDS, and T for each flavour, varying the
number of applied faults.

The lock flavour is the most robust, because there are fewer points
where a fault can be injected. Moreover, the fault must be injected at
a precise time, otherwise the locking algorithm tends to mask the fault
and thus overcomes a previous soft fault. In fact, the locking algorithm
usually rewrites the content of the lock word at the beginning of the
critical section, while trying to acquire the ownership via the XCHG
instruction, and at its end, while releasing the lock. Moreover, not all
faults injected on locks can be observed, because even if two threads
happen to enter in a critical section at the same time, they could not

1240 for RWL-trans.
128

7.4 Impact of Faults on Synchronization Mechanisms

Table 7.2: Results of fault injection on benchmarks

Benchmark CR IR
%] (%]
F,. F» F3 F4 F; F2 F3 Fyu
lock 82 76 71 63 3 5 6 9
SC trans 50 25 13 7 8 12 14 14
trans-lock 55 35 18 10 5 6 8 8
lock 92 86 &1 80 4 4 6 5
SMC trans 51 24 14 10 8 10 12 14
trans-lock 57 34 21 13 6 10 10 11
lock 87 77 68 61 3 3 4 5
RW trans 59 33 18 9 3 4 4 5
trans-lock 58 30 12 11 1 2 7 2
lock 89 K83 73 64 0 1 2 3
RWL trans 48 19 11 4 3 2 3 3
trans-lock 56 35 17 10 1 2 2 5
FDS T
[%%] [%]
F, F, F3 F, F;, Fy F3 Fyu
lock 4 9 13 17 11 10 10 11
SC trans 42 63 73 79 0 0 0 0
trans-lock 40 59 74 82 0 0 0 0
lock 3 8 9 11 1 2 4 4
SMC trans 40 64 73 T4 1 2 1 2
trans-lock 37 55 69 75 0 1 0 1
lock 4 9 15 19 6 11 13 15
RW trans 19 38 46 56 19 25 32 30
trans-lock 25 38 54 59 16 30 27 28
lock 4 8 10 16 7 8 15 17

RWL trans 27 48 60 64
trans-lock 26 39 54 58

N
~N N
N W
N
N DD
~N
N DN
~N ©

129

7 Fault Sensitivity Analysis of Synchronization Primitives

incur in a data race, depending on the specific scheduling taking place.

Looking at Table 7.1 we see that the trans flavour obtains the worst
outcome, with less CR compared to the lock flavour, because transac-
tional memory exposes more faultable points. However, the probability
that a fault will be detected (FDS) is greater, because most failures are
due to accesses to wrong memory areas. These are detected by the oper-
ating system and could, in principle, be used to perform error correction,
thus increasing the number of correct results.

Finally, implementing lock on top of transactional memory, i.e. the
trans-lock flavour, increases the robustness with respect to trans, because
each transaction lasts only as long as needed to change the lock value,
but it cannot achieve the robustness of the lock flavour, because as short
as that time span can be, every single access to memory during it can
be subject to faults. Let us now analyse in detail the outcome of each
benchmark.

Shared Counter and Shared Multi Counter The critical section as-
sociated to SC' is the shorter of all the benchmark suite, while SMC
employs a longer critical section, updating more than a shared counter
at time.

The lock flavour is the most susceptible to short critical sections. In-
deed, on such scenario the program hot spot is lock acquisition, so any
fault that induces spending some extra cycles in the lock waiting loop,
greatly lowers performance, generating a considerable amount of T be-
haviour. When increasing the length of the critical section, the number
of T behavior decreases, as shown by the SMC micro-benchmark, where
we can observe a greater number of C'R.

Both trans and trans-lock flavours follow the same trends in both SC
and SMC. To obtain T behaviour, read and/or write sets of a transaction
must be faulted in order to read/write data from/to the shared data,
forcing an abort. Both the micro-benchmarks have a small amount of
shared data, so the probability of this outcome is negligible.

Reader/Writer and Reader/Writer List The RW micro-benchmark
uses arrays to implement shared buffers, while RWL relies on single-
linked list, thus critical sections are longer and access memory more
frequently.

Locking-based techniques exhibit the same behaviour in the two micro-
benchmarks. On the other hand, the trans flavour is heavily influenced
by using single-linked lists. Using more complex structures results in
more memory accesses, mostly related to list navigation. Thus, the

130

7.5 Concluding Remarks

probability of incurring into a FDS increases.

7.5 Concluding Remarks

In this chapter we analyzed the behavior of locks and transactional mem-
ory when they are affected by faults. We injected from 1 up to 4 faults
during the execution of selected benchmarks and analyzed the outcome
of the execution. As it is easy to understand, while the number of faults
grows, the probability of a visible failure increases. The important re-
sult is that locks proved to be more fault resilient because they expose a
smaller “faultable surface”, and it is therefore more unlikely for a fault
to have the execution fail. We did not consider a specific hardware im-
plementation, and focused only on observing the functionality of the
synchronization primitives under the effect of faults.

Nonetheless, it should be considered that transactional memory re-
quires specialized hardware components to be added to the system, and
this components are themselves subject to faults. This suggests that the
actual fault tolerance of transactional memory could be lower than our
results suggest. Further experimental campaign should be conducted in
order to prove this point. On the other hand, our results show that with
transactional memory the system is more likely to be able to detect the
presence of faults. Further experiments could determine whether fault
detection and recovery capabilities could be more effective or easier to
implement in a transactional memory based system.

131

8 Concluding Remarks

Current trend in computer architectures is to exploit the available die
area to integrate more than one processing unit in the same integrated
circuit. Thus, we are moving from architectures characterized by few
powerful cores, to designs that employ multiple simpler cores. From the
hardware perspective, overall performance is increased without request-
ing huge power budgets.

However, with respect to previous designs, programming parallel ar-
chitectures is a challenging task. Indeed, problems due to incorrect
coordination between available processing units constitute an hazard
difficult to tackle. Moreover, achieving good performance requires per-
fect knowledge of the target architecture.

Parallel programming models deal with these problems by providing
a simplified view of the parallel hardware. This allows to avoid most
of the low-level issues due to incorrect synchronization and to achieve
reasonable performance. However, this simplification often prevents full
exploitation of the target architecture. This dissertation main goal was
to investigate such problems.

In Chapter 3 an analysis of a widely used computational pattern in-
volving barrier synchronization, reduction computation, has been per-
formed in order to check for possible optimizations. We have shown
that executing the barrier operation together with reduction computa-
tion allows to mitigate bottlenecks introduced by synchronization.

Later, we considered the problem of efficient data access. Indeed,
modern parallel architectures employ NUMA memory subsystems, hence
schedule of parallel computations to minimize the expected memory ac-
cess penalty is mandatory for achieving good performance. This prob-
lem has been analyzed from the OpenMP perspective in Chapter 4 — to
schedule parallel loop iterations — and from the MapReduce perspective
in Chapter 5 — to assign map tasks to worker machines.

From a compiler perspective, aggressive optimization of parallel pro-
grams is difficult due to the lack of a reference parallel architecture.
Indeed, performance of parallel code is highly dependent on the config-
uration of the underlying architecture. Thus, the compiler cannot setup
an accurate cost model that can be used to evaluate the effectiveness
of optimizations for a wide range of machines. Usually, using a JIT

133

8 Concluding Remarks

compiler allows to address this issue. However, it has to be run just
before the application is started, thus incurring in performance penal-
ties. In Chapter 6 we have proposed a compilation scheme that splits
the duty of program optimization between an analysis part performed at
compile-time and an optimization part performed at run-time. The run-
time optimization must be very lightweight and must enable applying
optimization with low overhead.

Finally, due to the increased probability of soft faults in modern par-
allel architectures, in Chapter 7 we have conducted a study about how
faults affect the execution of critical sections, protected by means of locks
or by exploiting hardware transactional memory. The study is motivated
by the fact that many programming errors related to parallel computing
involve incorrect usage of synchronization primitives, hence the interest
on understanding the impact of faulted synchronization primitives on
the overall program.

In this dissertation, we have focused on improving the performance of
basic building blocks found in every parallel programming model. Whilst
such building blocks can help the development of lightweight runtimes,
able to efficiently coordinate the access to data, a key question is repre-
sented by the expressiveness of such programming models. Indeed, the
performance of hand-tuned MPI code is not matched by any available
parallel programming model, due to simplifications introduced to ease
programmers life.

From this dissertation point of view, little can be done to further im-
prove such basic blocks. Indeed, most of parallel architectures are built
up many simple sequential cores, which communication mechanisms are
still based on fundamental synchronization primitives and uniform data
access. While the engineering practice of replicating a functional unit
in order to improve the performance of a system as a whole has been
demostrated effective in many engineering field, in the context of com-
puter architectures a leap is requested in order to move the computing
model towards a more collaborative environment. Hardware transac-
tional memory is an example of such move, however, it presents many
drawbacks — e.g. high power consumption, scalability, fault sensitivity
— mainly due to the fact that the execution model is still too much
sequential.

An interesting future challenge is finding the right language abstrac-
tions that allow to match multiple goals: i) ease programmers from
considering the hardware configuration of the target machine, such pro-
cessors interconnet topology and memory hierarchy ii) enable aggres-
sive optimizations by the compiler iii) solve the problem of performance
portability, that currently represents a major drawback of parallel pro-

134

grams Our insight is that these goals can be reached only by enforcing the
collaboration between programmer, compiler, and runtime. The next
generation parallel programming model should be able to hide hardware
details to programmers using an high-level interface allowing the appli-
cation of aggressive optimization by the compiler. We also think that
the compiler should be kept into consideration also at runtime, an ob-
jective that can be satisfied only by improving current JIT technologies
to make their overhead acceptable.

135

Bibliography

[1]

2]

GNU libgomp, 2010. URL http://gcc.gnu.org/onlinedocs/
libgomp/.

AMD Fusion” Family of APUs: Enabling a Superior, Immersive,
PC Experience, 2012. URL http://www.amnd.com/us/Documents/
48423 _fusion_whitepaper_WEB.pdf.

Intel ARK Products Information, 2012. URL http://ark.intel.
com/.

Intel Many Integrated Core (MIC) Architecture — Advanced,
2012. URL http://www.intel.com/content/www/us/en/
architecture-and-technology/many-integrated-core/
intel-many-integrated-core-architecture.html.

Intel"" Thread Building Blocks for Open Source, 2012. URL
http://threadingbuildingblocks.org.

NVIDIA CUDA™, 2012. URL http://www.nvidia.com/
object/cuda_home_new.html.

NVIDIA GeForce GTX 200 GPU Architectural Overview,
2012. URL http://www.nvidia.com/docs/I0/55506/GeForce_
GTX_200_GPU_Technical_Brief.pdf.

GeForce 256 — The World’s First GPU, 2012. URL http://wuw.
nvidia.com/page/geforce256.html.

NVIDIA GeForce 8800GT, 2012. URL http://wuw.nvidia.com/
object/product_geforce_8800_gt_us.html.

NVIDIA’s Next Generation CUDA™ Compute
Architecture: KeplerTM GK110, 2012. URL
http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

OpenHMPP, new Standard for Many-core, 2012. URL http://

WWw . openhmpp . org.

137

http://gcc.gnu.org/onlinedocs/libgomp/
http://gcc.gnu.org/onlinedocs/libgomp/
http://www.amd.com/us/Documents/ 48423_fusion_whitepaper_WEB.pdf
http://www.amd.com/us/Documents/ 48423_fusion_whitepaper_WEB.pdf
http://ark.intel.com/
http://ark.intel.com/
http://www.intel.com/content/www/us/en/ architecture-and-technology/many-integrated-core/ intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/ architecture-and-technology/many-integrated-core/ intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/ architecture-and-technology/many-integrated-core/ intel-many-integrated-core-architecture.html
http://threadingbuildingblocks.org
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/docs/IO/55506/ GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.nvidia.com/docs/IO/55506/ GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/object/product_geforce_8800_gt_us.html
http://www.nvidia.com/object/product_geforce_8800_gt_us.html
http://www.nvidia.com/content/PDF/kepler/ NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/ NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.openhmpp.org
http://www.openhmpp.org

Bibliography

[12]

[13]

[14]

[16]

[17]

[18]

[21]

22]

138

Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Con-
sistency Models: A Tutorial. IEEE Computer, 29(12):66-76, 1996.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Addison Wesley,
second edition, 2009.

Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The
Fortress Language Specifications, version 0.954. Sun Microsys-
tems, Inc., 2006.

C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, and Sean Lie. Unbounded Transactional
Memory. In HPCA, pages 316-327. IEEE Computer Society, 2005.
ISBN 0-7695-2275-0.

OpenMP Application Program Interface, version 3.0. ARB, 2008.
URL http://wuw.openmp.org.

ARMuv7 Architecture Reference Manual. ARM, 2010.

Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William L.
Plishker, John Shalf, Samuel W. Williams, and Katherine A.
Yelick. The Landscape of Parallel Computing Research: A View
from Berkeley. Technical report, 2006.

Vishal Aslot and Rudolf Eigenmann. Performance Characteris-
tics of the SPEC OMP2001 Benchmarks. SIGARCH Computer
Architecture News, 29(5):31-40, 2001.

Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner,
Wesley B. Jones, and Bodo Parady. SPEComp: A New Benchmark
Suite for Measuring Parallel Computer Performance. In Rudolf
Eigenmann and Michael Voss, editors, WOMPAT, volume 2104 of
Lecture Notes in Computer Science, pages 1-10. Springer, 2001.
ISBN 3-540-42346-X.

John Aycock. A Brief History of Just-In-Time. ACM Comput.
Surv., 35(2):97-113, 2003.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler
Transformations for High-Performance Computing. ACM Comput.
Surv., 26(4):345-420, 1994.

http://www.openmp.org

[23]

[24]

[25]

Bibliography

Thomas Ball and James R. Larus. Branch Prediction For Free. In
PLDI pages 300-313, 1993.

Pieter Bellens, Josep M. Pérez, Rosa M. Badia, and Jesus Labarta.
Memory — CellSs: a Programming Model for the Cell BE Archi-
tecture. In SC, page 86. ACM Press, 2006. ISBN 0-7695-2700-0.

Andrea Di Biagio, Ettore Speziale, and Giovanni Agosta. Exploit-
ing Thread-Data Affinity in OpenMP with Data Access Patterns.
In Euro-Par (1), pages 230-241, 2011.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai
Li. The PARSEC Benchmark Suite: Characterization and Archi-
tectural Implications. In Andreas Moshovos, David Tarditi, and
Kunle Olukotun, editors, PACT, pages 72-81. ACM, 2008. ISBN
978-1-60558-282-5.

John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic,
Jonathan Harris, C. Alexander Nelson, and Carl D. Offner. Ex-
tending OpenMP for NUMA Machines. In SC, 2000.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel,
Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In Peri L.
Tarr and William R. Cook, editors, OOPSLA, pages 169-190.
ACM, 2006. ISBN 1-59593-348-4.

Robert D. Blumofe and Charles E. Leiserson. Scheduling Multi-
threaded Computations by Work Stealing. J. ACM, 46(5):720-748,
1999.

Shekhar Borkar. Thousand Core Chips — A Technology Perspec-
tive. In DAC, pages 746-749, 2007.

Edward Bortnikov. Open-source Grid Technologies for Web-scale
Computing. SIGACT News, 40(2):87-93, 2009.

Eugene D. Brooks. The Butterfly Barrier. Int. J. Parallel Pro-
gram., 15(4):295-307, 1986.

139

Bibliography

[33]

Francois Broquedis, Frangois Diakhaté, Samuel Thibault, Olivier
Aumage, Raymond Namyst, and Pierre-André Wacrenier.
Scheduling Dynamic OpenMP Applications over Multicore Ar-
chitectures. In IWOMP, volume 5004 of LNCS, pages 170-180.
Springer, 2008. ISBN 978-3-540-79560-5.

Frangois Broquedis, Nathalie Furmento, Brice Goglin, Raymond
Namyst, and Pierre-André Wacrenier. Dynamic Task and Data
Placement over NUMA Architectures: An OpenMP Runtime
Perspective. In IWOMP, volume 5568 of LNCS, pages 79-92.
Springer, 2009. ISBN 978-3-642-02284-5.

Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras,
Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, and Jesus
Labarta. Productive Cluster Programming with OmpSs. In Em-
manuel Jeannot, Raymond Namyst, and Jean Roman, editors,
Euro-Par (1), volume 6852 of Lecture Notes in Computer Science,
pages 555-566. Springer, 2011. ISBN 978-3-642-23399-9.

J. Mark Bull. Measuring Synchronisation and Scheduling Over-
heads in OpenMP. In In Proceedings of First European Workshop
on OpenMP, 1999.

Steve Carr and Ken Kennedy. Improving the Ratio of Memory
Operations to Floating-Point Operations in Loops. ACM Trans.
Program. Lang. Syst., 16(6):1768-1810, 1994.

Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDon-
ald, Chi Cao Minh, Woongki Baek, Christos Kozyrakis, and Kunle
Olukotun. A Scalable, Non-blocking Approach to Transactional
Memory. In HPCA, pages 97-108. IEEE Computer Society, 2007.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen
Adams, Robert R. Henry, Robert Bradshaw, and Nathan Weizen-
baum. FlumeJava: Easy, Efficient Data-parallel Pipelines. In
Benjamin G. Zorn and Alexander Aiken, editors, PLDI, pages
363-375. ACM, 2010. ISBN 978-1-4503-0019-3.

Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy H.
Katz. The Case for Evaluating MapReduce Performance Using
Workload Suites. In MASCOTS, pages 390-399. IEEE, 2011. ISBN
978-1-4577-0468-0.

Huang Chun and Yang Xuejun. Improve OpenMP Performance by
Extending BARRIER and REDUCTION Constructs. In Alexan-

Bibliography

der V. Veidenbaum, Kazuki Joe, Hideharu Amano, and Hideo
Aiso, editors, ISHPC, volume 2858 of Lecture Notes in Computer
Science, pages 529-539. Springer, 2003. ISBN 3-540-20359-1.

Phillip Colella. Defining Software Requirements for Scientific
Computing, 2004.

Cristian Constantinescu. Trends and Challenges in VLSI Circuit
Reliability. IEEE Micro, 23(4):14-19, 2003.

Chapel Language Specification, version 0.91. Cray Inc., 2012.

R. J. Dakin and Peter C. Poole. A Mixed Code Approach. Comput.
J., 16(3):219-222, 1973.

Jack W. Davidson and Sanjay Jinturkar. Aggressive Loop Un-
rolling in a Retargetable Optimizing Compiler. In CC, pages 59—
73, 1996.

J. L. Dawson. Combining Interpretive Code with Machine Code.
Comput. J., 16(3):216-219, 1973.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, pages 137-150, 2004.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data
Processing Tool. Commun. ACM, 53(1):72-77, 2010.

Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and
Hunter Scales. AltiVec Extension to PowerPC Accelerates Me-
dia Processing. IEEE Micro, 20(2):85-95, 2000.

Alejandro Duran, Roger Ferrer, Eduard Ayguadé, Rosa M. Badia,
and Jesus Labarta. A Proposal to Extend the OpenMP Tasking
Model with Dependent Tasks. International Journal of Parallel
Programming, 37(3):292-305, 2009.

Speziale Ettore and Michele Tartara. A Lightweight Approach to
Compiling and Scheduling Highly Dynamic Parallel Programs. In
HotPar’12 (Poster), 2012.

Michael J. Fischer, Xueyuan Su, and Yitong Yin. Assigning Tasks
for Efficiency in Hadoop: Extended Abstract. In SPAA, pages
30-39, 2010.

Michael J. Flynn. Very High Speed Computing Systems. Proceed-
ings of the IEEE, 54:1901-1909, 1966.

141

Bibliography

[55]

[63]

142

Eric Freudenthal and Allan Gottlieb. Process Coordination with
Fetch-and-Increment. In ASPLOS, pages 260268, 1991.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
Implementation of the Cilk-5 Multithreaded Language. In Jack W.
Davidson, Keith D. Cooper, and A. Michael Berman, editors,
PLDI, pages 212-223. ACM, 1998. ISBN 0-89791-987-4.

Karl Firlinger, Michael Gerndt, and Jack Dongarra. Scalability
Analysis of the SPEC OpenMP Benchmarks on Large-scale Shared
Memory Multiprocessors. In Yong Shi, G. Dick van Albada, Jack
Dongarra, and Peter M. A. Sloot, editors, International Confer-
ence on Computational Science (2), volume 4488 of Lecture Notes
in Computer Science, pages 815-822. Springer, 2007. ISBN 978-
3-540-72585-5.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, first edition, 2008.

Epifanio Gaona-Ramirez, Rubén Titos-Gil, Juan Fernandez, and
Manuel E. Acacio. Characterizing Energy Consumption in Hard-
ware Transactional Memory Systems. In SBAC-PAD, 2010.

Piotr Gawkowski, Janusz Sosnowski, and B. Radko. Analyzing
the Effectiveness of Fault Hardening Procedures. In IOLTS, pages
14-19. IEEE Computer Society, 2005. ISBN 0-7695-2406-0.

Brice Goglin and Nathalie Furmento. Enabling High-performance
Memory Migration for Multithreaded Applications on LINUX. In
IPDPS, pages 1-9, 2009.

Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin,
Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry
Hoffmann, David Maze, and Saman P. Amarasinghe. A Stream
Compiler for Communication-exposed Architectures. In Kourosh
Gharachorloo, editor, ASPLOS, pages 291-303. ACM Press, 2002.
ISBN 1-58113-574-2.

Michael I. Gordon, William Thies, and Saman P. Amarasinghe.
Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in
Stream Programs. In John Paul Shen and Margaret Martonosi,
editors, ASPLOS, pages 151-162. ACM, 2006. ISBN 1-59593-451-
0.

[64]

[65]

[66]

[67]

[68]

[73]

[74]

Bibliography

Paolo Roberto Grassi, Mariagiovanna Sami, Ettore Speziale, and
Michele Tartara. Analyzing the Sensitivity to Faults of Synchro-
nization Primitives. In DFT, pages 349-355. IEEE, 2011. ISBN
978-1-4577-1713-0.

Dirk Grunwald and Suvas Vajracharya. Efficient Barriers for Dis-
tributed Shared Memory Computers. In Howard Jay Siegel, ed-
itor, IPPS, pages 604-608. IEEE Computer Society, 1994. ISBN
0-8186-5602-6.

Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar.
Work-first and Help-first Scheduling Policies for Async-finish Task
Parallelism. In IPDPS, pages 1-12, 2009.

Andrei Hagiescu, Huynh Phung Huynh, Weng-Fai Wong, and
Rick Siow Mong Goh. Automated Architecture-Aware Mapping
of Streaming Applications Onto GPUs. In IPDPS, pages 467-478,
2011.

Lance Hammond, Vicky Wong, Michael K. Chen, Brian D. Carl-
strom, John D. Davis, Ben Hertzberg, Manohar K. Prabhu,
Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Trans-
actional Memory Coherence and Consistency. In ISCA, pages 102—
113. IEEE Computer Society, 2004. ISBN 0-7695-2143-6.

Gilbert Josep Hansen. Adaptive Systems for the Dynamic Run-
time Optimization of Programs. PhD thesis, 1974.

John L. Hennessy and David A. Patterson. Computer Architecture
- A Quantitative Approach. Morgan Kaufmann, fourth edition,
2007.

John L. Henning. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Computer Architecture News, 34(4):1-17, 2006.

Debra Hensgen, Raphael Finkel, and Udi Manber. Two Algorithms
for Barrier Synchronization. Int. J. Parallel Program., 17(1):1-17,
1980.

Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Pro-
gram. Lang. Syst., 13(1):124-149, 1991.

Maurice Herlihy and J. Eliot B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In ISCA,
pages 289-300, 1993.

143

Bibliography

[75]

[76]

[84]

[85]

[86]

144

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann, 2008.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William
N. Scherer I1II. Software Transactional Memory for Dynamic-sized
Data Structures. In PODC, pages 92-101, 2003.

Antony J. G. Hey and Anne Trefethen. The Data Deluge: An
e-Science Perspective. In Fran Berman, Geoffrey C. Fox, and An-
thony J. G. Hey, editors, Grid Computing - Making the Global
Infrastructure a Reality, pages 809-824. John Wiley & Sons, Inc.,
New York, NY, USA, 2003.

Urs Holzle and David Ungar. A Third-Generation SELF Im-
plementation: Reconsiling Responsiveness with Performance. In
OOPSLA, pages 229-243, 1994.

IEEFE 754-2008, Standard for Floating-Point Arithmetic. IEEE,
2008.

Intel 64 and IA-32 Architectures Software Developer’s Manual. In-
tel, 20009.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Ku-
nal Talwar, and Andrew Goldberg. Quincy: Fair Scheduling for
Distributed Computing Clusters. In Jeanna Neefe Matthews and
Thomas E. Anderson, editors, SOSP, pages 261-276. ACM, 2009.
ISBN 978-1-60558-752-3.

Stephen Jenks and Jean-Luc Gaudiot. Exploiting Locality and Tol-
erating Remote Memory Access Latency Using Thread Migration.
Int. J. Parallel Program., 25(4):281-304, 1997. ISSN 0885-7458.

H. Jin and M. Frumkin. The OpenMP Implementation of NAS
Parallel Benchmarks and its Performance. Technical report,
NASA, 1999.

Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A
Model of Computation for MapReduce. In SODA, pages 938-948,
2010.

Ralf Karrenberg and Sebastian Hack. Whole-function Vectoriza-
tion. In CGO, pages 141-150, 2011.

Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan.
An Analysis of Traces from a Production MapReduce Cluster. In
CCGRID, pages 94-103. IEEE, 2010.

[87]

[33]

[39]

[90]

[91]

Bibliography

The OpenCL Specification, version 1.1. Khronos OpenCL Working
Group, 2010.

Andi Kleen. An NUMA API for Linux, 2004. URL http://www.
halobates.de/numaapi3.pdf.

Donald E. Knuth. The Art of Computer Programming, Volume I:
Fundamental Algorithms. Addison-Wesley, 1968.

Donald E. Knuth. An Empirical Study of FORTRAN Programs.
Softw., Pract. Exper., 1(2):105-133, 1971.

Thomas Kotzmann, Christian Wimmer, Hanspeter Mossenbock,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of
the Java HotSpot™ Client Compiler for Java 6. TACO, 5(1),
2008.

Chandra Krintz, David Grove, Vivek Sarkar, and Brad Calder.
Reducing the Overhead of Dynamic Compilation. Softw., Pract.
Ezper., 31(8):717-738, 2001.

Stefan Lankes, Boris Bierbaum, and Thomas Bemmerl. Affinity-
On-Next-Touch: An Extension to the Linux Kernel for NUMA
Architectures. In Roman Wyrzykowski, Jack Dongarra, Konrad
Karczewski, and Jerzy Wasniewski, editors, PPAM (1), volume
6067 of LNCS, pages 576-585. Springer, 2009. ISBN 978-3-642-
14389-2.

C. L. Lawson, Richard J. Hanson, D. R. Kincaid, and Fred T.
Krogh. Basic Linear Algebra Subprograms for Fortran Usage.
ACM Trans. Math. Softw., 5(3):308-323, 1979.

Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, Jung-Ho
Park, Honggyu Kim, Thanh Tuan Dao, Yongjin Cho, Sung Jong
Seo, Seung Hak Lee, Seung Mo Cho, Hyo Jung Song, Sang-Bum
Suh, and Jong-Deok Choi. An OpenCL Framework for Heteroge-
neous Multicores with Local Memory. In PACT, pages 193-204,
2010.

Jun Lee, Jungwon Kim, Junghyun Kim, Sangmin Seo, and Jaejin
Lee. An OpenCL Framework for Homogeneous Manycores with
No Hardware Cache Coherence. In PACT, pages 5667, 2011.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP
to GPGPU: a Compiler Framework for Automatic Translation

145

http://www.halobates.de/numaapi3.pdf
http://www.halobates.de/numaapi3.pdf

Bibliography

[98]

[99]

100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

146

and Optimization. In Daniel A. Reed and Vivek Sarkar, editors,
PPOPP, pages 101-110. ACM, 2009. ISBN 978-1-60558-397-6.

Stan Lee and Steve Ditko. The Amazing Spider-Man. Amazing
Fantasy, (15), 1962.

Saeed Maleki, Yaoqing Gao, Maria Jesus Garzaran, Tommy Wong,
and David A. Padua. An Evaluation of Vectorizing Compilers. In
PACT, pages 372-382, 2011.

Jaydeep Marathe and Frank Mueller. Hardware Profile-guided
Automatic Page Placement for ccNUMA Systems. In PPOPP,
pages 90-99. ACM, 2006. ISBN 1-59593-189-9.

Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton,
David A. Koufaty, Alan J. Miller, and Michael Upton. Hyper-
Threading Technology Architecture and Microarchitecture. Intel
Technology Journal, 6(1):1-12, 2002.

Henry Massalin. Synthesis: An Efficient Implementation of Fun-
damental Operating System Services. PhD thesis, 1992.

MPI: A Message-Passing Interface Standard, Version 2.2. Mes-
sage Passing Interface Forum, 2009.

Markus Mock, Craig Chambers, and Susan J. Eggers. Calpa: a
Tool for Automating Selective Dynamic Compilation. In MICRO,
pages 291-302, 2000.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill, and David A. Wood. LogTM: Log-based Transactional Mem-
ory. In HPCA, pages 254-265. IEEE Computer Society, 2006.

Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. Energy Reduc-
tion in Multiprocessor Systems Using Transactional Memory. In
Kaushik Roy and Vivek Tiwari, editors, ISLPED, pages 331-334.
ACM, 2005. ISBN 1-59593-137-6.

Benjamin Moseley, Anirban Dasgupta, Ravi Kumar, and Tamé&s
Sarlés. On Scheduling in Map-Reduce and Flow-Shops. In Ra-
jmohan Rajaraman and Friedhelm Meyer auf der Heide, editors,
SPAA, pages 289-298. ACM, 2011. ISBN 978-1-4503-0743-7.

Matthias S. Miiller, G. Matthijs van Waveren, Ron Lieberman,
Brian Whitney, Hideki Saito, Kalyan Kumaran, John Baron,
William C. Brantley, Chris Parrott, Tom Elken, Huiyu Feng, and

[109)]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Bibliography

Carl Ponder. SPEC MPI2007 - an Application Benchmark Suite
for Parallel Systems Using MPI. Concurrency and Computation:
Practice and Experience, 22(2):191-205, 2010.

Ramachandra Nanjegowda, Oscar Hernandez, Barbara M. Chap-
man, and Haoqiang Jin. Scalability Evaluation of Barrier Algo-
rithms for OpenMP. In IWOMP, pages 42-52, 2009.

Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constan-
tine D. Polychronopoulos, Jesis Labarta, and Eduard Ayguadé.
A Transparent Runtime Data Distribution Engine for OpenMP.
Scientific Programming, 8(3):143-162, 2000. ISSN 1058-9244.

Dimitrios S. Nikolopoulos, Ernest Artiaga, Eduard Ayguadé, and
Jestis Labarta. Scaling Non-regular Shared-memory Codes by
Reusing Custom Loop Schedules. Scientific Programming, 11(2):
143-158, 2003.

Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin
Williams, David Yuste, Albert Cohen, and Ayal Zaks. Vapor
SIMD: Auto-vectorize Once, Run Everywhere. In CGO, pages
151-160, 2011.

The OpenA cc™ Application Programming Interface, version 1.0.
OpenACC Standard Committee, 2010.

Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. Au-
gust. Automatic Thread Extraction with Decoupled Software
Pipelining. In MICRO, pages 105-118. IEEE Computer Society,
2005. ISBN 0-7695-2440-0.

Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan Jain.
Purlieus: Locality-aware Resource Allocation for MapReduce in a
Cloud. In Scott Lathrop, Jim Costa, and William Kramer, editors,
SC, page 58. ACM, 2011. ISBN 978-1-4503-0771-0.

Michael Paleczny, Christopher A. Vick, and CIiff Click. The Java
HotSpot™ Server Compiler. In Java Virtual Machine Research
and Technology Symposium, 2001.

Jongse Park, DaeWoo Lee, Bokyeong Kim, Jaehyuk Huh, and
Seungryoul Maeng. Locality-aware Dynamic VM Reconfiguration
on MapReduce Clouds. In HPDC, pages 27-36, 2012.

Alex Peleg and Weiser Uri. MMX Technology Extension to the
Intel Architecture. IEEE Micro, 16(4):42-50, 1996.

147

Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

148

James Poe, Chang-Burm Cho, and Tao Li. Using Analytical Mod-
els to Efficiently Explore Hardware Transactional Memory and
Multi-Core Co-Design. In SBAC-PAD, pages 159-166. IEEE Com-
puter Society, 2008. ISBN 978-0-7695-3423-7.

Jorda Polo, Claris Castillo, David Carrera, Yolanda Becerra, lan
Whalley, Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé.
Resource-Aware Adaptive Scheduling for MapReduce Clusters. In
Middleware, pages 187-207, 2011.

Constantine D. Polychronopoulos and David J. Kuck. Guided
Self-Scheduling: A Practical Scheduling Scheme for Parallel Su-
percomputers. IEEE Trans. Computers, 36(12):1425-1439, 1987.

Ravi Rajwar, Maurice Herlihy, and Konrad K. Lai. Virtualizing
Transactional Memory. In ISCA, pages 494-505. IEEE Computer
Society, 2005.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Ran-
gan, and David I. August. SWIFT: Software Implemented Fault
Tolerance. In CGO, pages 243-254. IEEE Computer Society, 2005.
ISBN 0-7695-2298-X.

Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos
Prvulovic, Luis Ceze, Smruti Sarangi, Paul Sack, Karin Strauss,
and Pablo Montesinos. SESC Simulator, 2011. URL http:

//sesc.sourceforge.net/.

Rice University. High Performance Fortran Language Specifica-
tion. SIGPLAN Fortran Forum, 12(4):1-86, 1993.

Nathan Robertson and Alistair P. Rendell. OpenMP and NUMA
Architectures I: Investigating Memory Placement on the SGI Ori-
gin 3000. In International Conference on Computational Science,
volume 2660 of LNCS, pages 648—656. Springer, 2003. ISBN 3-
540-40197-0.

Richard M. Russell. The Cray-1 Computer System. Commun.
ACM, 21(1):63-72, 1978.

Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and
David Grove. X10 Language Specification, version 2.2. IBM, 2012.

Vivek Sarkar. Optimized Unrolling of Nested Loops. In ICS, pages
153-166, 2000.

http://sesc.sourceforge.net/
http://sesc.sourceforge.net/

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

138

[139]

Bibliography

Nir Shavit and Dan Touitou. Software Transactional Memory. In
PODC; pages 204-213, 1995.

Jun Shirako and Vivek Sarkar. Hierarchical Phaser for Scal-
able Synchronization and Reductions in Dynamic Parallelism. In
IPDPS, 2010.

Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N.
Scherer. Phaser Accumulators: A New Reduction Construct for
Dynamic Parallelism. In IPDPS, pages 1-12, 2009.

Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic
Task Scheduling for Linear Algebra Algorithms on Distributed-
memory Multicore Systems. In SC, 2009.

Ettore Speziale, Andrea Di Biagio, and Giovanni Agosta. An Opti-
mized Reduction Design to Minimize Atomic Operations in Shared
Memory Multiprocessors. In IPDPS Workshops, pages 1300-1309.
IEEE, 2011. ISBN 978-1-61284-425-1.

John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan
Aarts, Mike Murphy, Ziang Hu, and Wen mei W. Hwu. Effi-
cient Compilation of Fine-grained SPMD-threaded Programs for
Multicore CPUs. In CGO, pages 111-119, 2010.

Andrew S. Tanenbaum and Albert S. Woodhull. Operating Sys-
tems Design and Implementation. Prentice Hall, third edition,
2006.

Christian Terboven, Dieter an Mey, Dirk Schmidl, Henry Jin, and
Thomas Reichstein. Data and Thread Affinity in OpenMP Pro-
grams. In MAW ’08: Proceedings of the 2008 workshop on Mem-
ory access on future processors, pages 377-384. ACM, 2008. ISBN
978-1-60558-091-3.

The Apache Software Foundation. Hadoop MapReduce. http:
//hadoop.apache.org/mapreduce, Feb 2012.

William Thies and Saman P. Amarasinghe. An Empirical Charac-
terization of Stream Programs and its Implications for Language
and Compiler Design. In Valentina Salapura, Michael Gschwind,
and Jens Knoop, editors, PACT, pages 365-376. ACM, 2010. ISBN
978-1-4503-0178-7.

149

http://hadoop.apache.org/mapreduce
http://hadoop.apache.org/mapreduce

Bibliography

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

150

Mustafa M. Tikir and Jeffrey K. Hollingsworth. Using Hardware
Counters to Automatically Improve Memory Performance. In SC,
page 46. IEEE Computer Society, 2004. ISBN 0-7695-2153-3.

Robert M. Tomasulo. An Efficient Algorithm for Exploiting Multi-
ple Arithmetic Units. IBM Journal of Research and Development,
11(1), 1967.

Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards
Dense Linear Algebra for Hybrid GPU Accelerated Manycore Sys-
tems. Parallel Computing, 36(5-6):232-240, 2010.

UPC Language Specifications, version 1.2. UPC Consortium,
2005.

Hans Vandierendonck, George Tzenakis, and Dimitrios S.
Nikolopoulos. A Unified Scheduler for Recursive and Task
Dataflow Parallelism. In Lawrence Rauchwerger and Vivek Sarkar,
editors, PACT, pages 1-11. IEEE Computer Society, 2011. ISBN
978-1-4577-1794-9.

Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Re-
source Provisioning Framework for MapReduce Jobs with Perfor-
mance Goals. In Middleware, pages 165-186, 2011.

John von Neumann. First Draft of a Report on the EDVAC.
Annals of the History of Computing, IEEE, 15(4), 1993.

David W. Wall. Limits of Instruction-Level Parallelism. In
David A. Patterson, editor, ASPLOS, pages 176-188. ACM Press,
1991. ISBN 0-89791-380-9.

Cheng Wang, Ho-Seop Kim, Youfeng Wu, and Victor Ying.
Compiler-Managed Software-based Redundant Multi-Threading
for Transient Fault Detection. In CGO, pages 244-258. IEEE
Computer Society, 2007. ISBN 978-0-7695-2764-2.

Joel L. Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khan-
dekar, Vibhore Kumar, Sujay Parekh, Kun-Lung Wu, and An-
drey Balmin. FLEX: A Slot Allocation Scheduling Optimizer for
MapReduce Workloads. In Indranil Gupta and Cecilia Mascolo,
editors, Middleware, volume 6452 of Lecture Notes in Computer
Science, pages 1-20. Springer, 2010. ISBN 978-3-642-16954-0.

[150]

[151]

[152]

[153]

[154]

Bibliography

William A. Wulf and Sally A. McKee. Hitting the Memory Wall:
Implications of the Obvious. SIGARCH Comput. Archit. News,
23(1), 1995.

Tse-Yu Yeh and Yale N. Patt. Two-Level Adaptive Training
Branch Prediction. In MICRO, pages 51-61, 1991.

Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and
Tsvika Kurts. A Fully Integrated Multi-CPU, GPU and Mem-
ory Controller 32nm Processor. In ISSCC, pages 264-266. IEEE,
2011. ISBN 978-1-61284-303-2.

Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy H.
Katz, and Ion Stoica. Improving MapReduce Performance in Het-
erogeneous Environments. In Richard Draves and Robbert van
Renesse, editors, OSDI, pages 29-42. USENIX Association, 2008.
ISBN 978-1-931971-65-2.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled
Elmeleegy, Scott Shenker, and Ion Stoica. Delay Scheduling: a
Simple Technique for Achieving Locality and Fairness in Cluster
Scheduling. In EuroSys, pages 265-278, 2010.

151

	Cover
	Acknowledgements
	Sommario
	Abstract
	Contents
	List of Figures
	List of Tables

	Introduction
	An Overview of Parallel Computing
	Introduction
	The Hardware Perspective
	Flynn's Taxonomy
	Traditional Hardware Performance Improvements
	Dealing with the Power Wall
	Dealing with the Memory Wall
	The Case of GPGPUs-based Architectures
	Taking into Account the Amdahl's Law

	Parallel Programming Models
	Programming Parallel Architectures
	Data-parallel Programming Models
	Task-parallel Programming Models
	Data-flow Parallel Programming Models
	Task/Data-flow Parallel Programming Models

	Workload Analysis
	Concluding Remarks

	Optimizing Reductions in Shared Memory Multiprocessors
	Introduction
	Background
	Barrier Synchronization
	Reduction Implementations
	Atomic Operations

	Combining Barrier and Reduction
	Tournament Barrier
	Basic Reduction Design
	Fast Path Optimization
	Slow Path Management
	Compact Data Representation
	Nowait Reductions

	Experimental Evaluation
	Benchmarks
	GCC Optimization
	Experimental Setup
	Micro-benchmarks
	cg
	312.swim_m

	Related Work
	Concluding Remarks

	Data-aware Iterations Scheduling in OpenMP
	Introduction
	The Data Access Pattern Approach
	Data Access Pattern Definition

	Runtime Extensions to Exploit Patterns
	Iteration Space Partitioning
	A Pattern Enabled Dynamic Scheduler
	Work Stealing Strategy

	Experimental Results
	Benchmark Suite
	Performance Analysis
	Remote Memory Access Analysis

	Related Work
	Concluding Remarks

	Task Assignment in Data Intensive Scalable Computing
	Introduction
	Background
	The LABL Approach to Task Assignment
	Preliminaries
	Optimization Goals
	Lower Bounds for the Expected Job Latency
	Task Assignment Algorithm
	Case Study
	Formal Properties of the LABL Task Assignment

	Simulation Results
	Performance Overview
	Scalability
	Sensitivity Analysis

	Discussion
	Related Work
	Concluding Remarks

	Towards Runtime Optimization of Parallel Applications
	Introduction
	Related Work
	Proposed Approach
	Compilation/Execution Pipeline
	Run-time Optimization

	Foreseen Applications
	Adaptive Loop Unrolling
	Dynamic Task Fusion

	Concluding Remarks

	Fault Sensitivity Analysis of Synchronization Primitives
	Introduction
	Faults characterization
	The Methodology Adopted
	Impact of Faults on Synchronization Mechanisms
	Lock-based Critical Sections
	Transactional Memory-based Critical Sections
	Transactional Locking-based Critical Sections
	Results of the Experimental Campaign

	Concluding Remarks

	Concluding Remarks
	Bibliography

