
Politecnico di Milano
Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell’Informazione

Machine Learning of Compiler
Heuristics for Parallel Architectures

Doctoral Dissertation of:
Michele Tartara

Advisor:
Prof. Stefano Crespi Reghizzi

Tutor:
Prof. Andrea Bonarini

Chair of the Doctoral Program:
Prof. Carlo Fiorini

2012 - XXV edition

Politecnico di Milano
Dipartimento di Elettronica e Informazione

Piazza Leonardo da Vinci 32 I 20133 — Milano

Politecnico di Milano
Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell’Informazione

Machine Learning of Compiler
Heuristics for Parallel Architectures

Doctoral Dissertation of:
Michele Tartara

Advisor:
Prof. Stefano Crespi Reghizzi

Tutor:
Prof. Andrea Bonarini

Chair of the Doctoral Program:
Prof. Carlo Fiorini

2012 - XXV edition

To friends and friendship.

In memory of Leonardo.

Acknowledgements

Three years as a Ph.D. student can hardly be contained in a thesis: it
can just show the research you did, not all the people you have met.

I am deeply convinced that you should learn something from every
person you meet, and my Ph.D. studies at Politecnico di Milano greatly
enhanced my possibility to do so, by allowing me to travel a lot, meeting
many great people from all around the World. Listing and thanking all
of them in this small space is not possible, so I will name just a few. To
everybody else still goes my silent and heartfelt ”thank you!”.

Until a few years ago, I never thought I was going to work on languages
and compilers. Professor Stefano Crespi Reghizzi, my Advisor for the
Master thesis and during these three wonderful years, made me realize
how interesting these fields can be and let me join his research group to
actively contribute to their advancement. I want to thank him because
of this, and because he always allowed me a great degree of freedom
in choosing my research topic and, at the same time, he never left me
without his precious guidance and suggestions, especially when the good
results seemed farther away and harder to reach.

I would also like to thank Grigori Fursin, of INRIA, who reviewed the
first draft of this thesis and gave me many interesting and extremely
useful suggestions on how to refine it towards this final version, and all
the anonymous reviewers of the papers that are part of it, for giving me
precious hints along all the path of this research.

My praise goes to the “Fondazione Fratelli Agostino Enrico Rocca” for
funding the “Progetto Roberto Rocca Doctoral Fellowship” that allowed
me to spend 7 months at the Massachusetts Institute of Technology.
I am very grateful to my MIT host, Professor Saman Amarasinghe,
for having me in the COMMIT research group and for all his priceless
suggestions and guidance, to Jason Ansel for starting the PetaBricks
project, and to Professor Una-May O’Reilly for the insightful discussions
and recommendation.

A huge thank you to all the awesome “Rocca Fellows”, and especially
Andrea Ratti, for sharing with me a big part of this wonderful experi-
ence.

vii

The time I spent in Boston has had a huge impact on my life, and
I will always remember it dearly, mainly because of all the new friends
I met there. First of all, Stefano ”the social chair” Maffina. Through
him I got to know most of the people that made my stay there such
a great experience: Laura, Tasmina, Noelle, Mariana, Kerry, Elijah,
Bekka, Kyle, Juan, Tatiana, Erik, Siyang, Harrison, to name just a few
of them.

Also, my great housemates have to be remembered (in order of ap-
pearance): Guido, Björn, Tom, Andrea, Julia, Daniele. Living with you
all has been a ton of fun and a great opportunity of getting to know
really well people from abroad.

Going back to Italy, I have to thank all people I first met in Office
127 at Politecnico, for all the inspiring and fun time spent together.

In particular, in Simone Campanoni I found a great colleague, coun-
sellor and friend, even more so since my stay in Boston. His neverending
enthusiasm (some would term it “optimism”) has always been greatly
inspirational to me, and thanks to him I started to delve into the fasci-
nating worlds of compiler backends and ARM processors.

Andrea Di Biagio, Giampaolo Agosta and Gerardo Pelosi, enlightened
my path through their experience and knowledge, with lots of priceless
hints.

Spending three years next to Ettore Speziale, sharing all the steps of
our Ph.D. studies has been a great experience, that taught me a different
approach to programming, doing research, and... writing song lyrics!

To Michele Scandale, the newcomer of the office, thanks for joining
the group with his enthusiasm, his technical skills and his witty jokes.

To Alessandro “O Captain! My Captain!” Barenghi goes a very spe-
cial “thank you”, for being a great friend, a neverending source of inter-
esting facts and stories, and, of course, for the (experimentally proven)
entangled neuron. Also, thanks for introducing me to the world of inter-
national computer security competitions and thanks to all the members
of the “Tower of Hanoi” team for all the inspiring and challenging days
(and nights) spent together.

Thanks to all the friends that shared with me part of these three years:
Vito, Nick, Flavio, Silvia, life at DEI without you would have been much
less enjoyable!

And friends are important outside the university, too. To all the mem-
bers of the ”Sgruppo” (in no particular order, Luca, Letizia, Michele,
Leonardo, Simona, Marco, Eleonora, Elisa, Matteo, Thomas, Alice, Sil-
via, Antimo, Silvia) thanks for always being next to me, no matter the
physical distance.

Finally, but first and foremost, thanks to my wonderful Parents and to

viii

my family for their neverending support and guidance, and for helping
me achieving my dreams.

ix

Sommario

Le architetture dei calcolatori sono in continua evoluzione: guadagnano
nuove funzionalità e diventano più veloci, e complesse ogni volta che ne
viene rilasciata una nuova.

Al fine di sfruttarle pienamente, è necessario che anche i compilatori
vengano aggiornati, per permettere ai programmatori di avere pieno
accesso a tutta la potenza di calcolo fornita da tali architetture moderne.

Sfortunatamente, mentre la legge di Moore predice che il numero di
transistor nei processori raddoppi circa ogni due anni, la legge di Proeb-
sting ci dice che il livello di ottimizzazione fornito dai compilatori è pre-
visto raddoppiare ogni diciotto anni. Tali numeri ci danno una chiara
idea di quanto sia complicato per i compilatori tenere il passo delle
innovazioni introdotte dall’hardware.

Il problema principale è che molte ottimizzazioni di compilazione pos-
sono fornire sia un miglioramento sia un peggioramento delle prestazioni,
a seconda del codice a cui sono applicate, e a seconda di quali altre
trasformazioni vengono applicate prima e dopo quella considerata. De-
cidere se e quando applicare un algoritmo di ottimizzazione è un compito
estremamente complesso, e la complessità delle architetture rende impos-
sibile l’uso di modelli esatti per predire il risultato, perciò i compilatori
utilizzano euristiche per prendere tali decisioni.

Il processo di scrittura delle euristiche è, tradizionalmente, basato so-
prattutto sull’esperienza personale del compilatorista e include un lungo
processo di evoluzione delle stesse per prove ed errori. Molti lavori si
sono occupati di recente di provare a sostituire al compilatorista degli
algoritmi automatici per svolgere questo compito. A tale scopo sono
state sviluppate la compilazione iterativa e algoritmi di apprendimento
automatico applicato alla compilazione: ognuno di questi due approcci
presenta pregi e difetti.

Questa tesi si colloca in quest’area di ricerca. Prima di tutto, essa pre-
senta long-term learning (apprendimento di lungo termine), un nuovo
algoritmo di apprendimento che mira a definire automaticamente delle
euristiche di compilazione efficienti. Long-term learning prova a super-
are i principali ostacoli della compilazione iterativa e degli approcci di
apprendimento automatico (i lunghi tempi di compilazione e il bisogno

xi

di svolgere una lunga fase di addestramento iniziale) e al tempo stesso
ne mantiene i vantaggi. Sfide simili sono già state affrontate da recenti
lavori dell’area, ma, unica dell’apprendimento di lungo termine è la ca-
pacità di risolverli generando euristiche facilmente comprensibili (nella
forma di formule matematiche) e tenendo in considerazione il fatto che
i singoli algoritmi di trasformazione del codice non sono indipendenti,
quindi le loro euristiche necessitano di essere evolute in modo tale da
interagine bene le une con le altre.

Al fine di velocizzare ulteriormente l’esecuzione dell’algoritmo di ap-
prendimento di lungo termine, questa tesi presenta un metodo per par-
allelizzarlo su più macchine, o per eseguirlo in parallelo su una sin-
gola macchina suddividendone le risorse, usando un approaccio basato
su MapReduce. Questo approccio non è limitato all’uso su long-term
learning, ma è generale e può essere applicato alla maggior parte degli
algoritmi di compilazione iterativa.

Infine, vengono presentate due proposte di lavori futuri. Primo, un
nuovo metodo leggero di compilazione per programmi altamente dinam-
ici, che permette di suddividere il processo di compilazione tra compile-
time e runtime, mantenendo quanto più possibile i calcoli più pesanti
a compile-time ed applicando a runtime solo quelle trasformazioni che
potrebbero beneficiare della disponibilità di ulteriori informazioni non
disponibili in precedenza, uando una tecnica derivata dall’apprendimento
di lungo termine per determinare quali ottimizzazioni posticipare a run-
time. Secondo, a partire da un analisi della sensibilità delle primitive
di sincronizzazione (lock e memorie transazionali) ai guasti hardware,
viene proposto un uso dell’apprendimento di lungo termine come base
per un nuovo approccio al recupero dai guasti.

xii

Abstract

Computer architectures are continuously evolving: they become faster,
more feature rich and more complex every time a new one is released.

In order to fully exploit them, compilers have to be updated as well,
to allow the programmers to have full access to all the computational
power these modern architectures provide.

Unfortunately, while Moore’s law predicts that the number of tran-
sistors in processors doubles roughly every two years, Proebsting’s Law
tells us that the optimization level provided by compilers can be ex-
pected to double every eighteen years. Such numbers give us a clear
insight about how difficult it is for compilers to keep the pace with the
innovations introduced by the hardware.

The main problem is that most compiler optimizations can provide
either speedups or slowdowns depending on the code they are applied to
and depending on which other transformations are applied before and
after the one being considered. Deciding whether and when to apply
an optimization algorithm is a daunting task, and the complexity of the
architectures makes the usage of exact models to predict the outcome
unfeasible, so compilers rely on heuristics to make such decisions.

The process of writing heuristics is, traditionally, mostly based on the
personal experience of the compiler writer and involves a time-consuming
trial and error process. Much work has been done recently to try and
substitute the compiler writer with automated algorithms for performing
this task. Iterative compilation and machine learning approaches have
been studied, each with its own merits and shortcomings.

This thesis work is rooted in this research area. First of all, it presents
long-term learning, a new learning algorithm that aims at automatically
determining efficient compilation heuristics. Long-term learning tries
to overcome the main issue of most iterative compilation and machine
learning approaches (the long compilation times and the need for a time-
consuming initial training phase) while still providing their advantages.
Similar challenges have been faced already by recent works in the area,
but, unique to long-term learning is the ability to solve them while gener-
ating human-readable heuristics (in the form of mathematical formulas)

xiii

and while taking into consideration the fact that the single code transfor-
mation algorithms are not independent, therefore their heuristics need
to be evolved in such a way to interact well with one another.

In order to further speedup the execution of the long-term learning
algorithm, this thesis presents a method to parallelize it across multiple
machines or to execute it in parallel on a single machine by splitting up
its resources, using an approach based upon MapReduce. This approach
is not limited to long-term learning, but it is general and it can be applied
to most iterative compilation algorithms.

Finally, two proposals are presented as future work. First, a new
lightweight compilation method for highly dynamic parallel programs,
allowing one to divide the compilation process between compile-time and
runtime, keeping as much as possible of the heavyweight computations
at compile-time, and applying at runtime only those transformations
that could benefit from information not available at compile-time, using
a technique derived from long-term learning to choose which optimiza-
tions to postpone at runtime. Second, starting from an analysis of the
sensitivity to hardware faults of synchronization primitives, namely locks
and transactional memories, a use of long-term learning as the basis for
a novel approach to fault recovery is presented.

xiv

Contents

1 Introduction 1

2 Related Work 9
2.1 Execution-driven approaches 10
2.2 Iterative Compilation . 11
2.3 Machine learning algorithms 15

2.3.1 Offline machine learning 15
2.3.2 Online machine learning 21

2.4 Just-In-Time compilation 23
2.5 Autotuning . 24
2.6 General techniques . 25

2.6.1 Evolutionary algorithms 25
2.6.2 MapReduce . 29
2.6.3 Principal Component Analysis 30

3 Long-term Learning of Compiler Heuristics 31
3.1 Long-term learning compilation 32

3.1.1 Evolution . 35
3.1.2 Mutation . 38
3.1.3 Generation of new formulas 39
3.1.4 Elitism . 43
3.1.5 Knowledge base . 44
3.1.6 Computing the fitness function and updating the

knowledge base . 44
3.1.7 Compiler performance over time 46

3.2 Experimental setup . 49
3.2.1 GCC . 51
3.2.2 PetaBricks . 53

3.3 Experimental results . 55
3.3.1 GCC . 55
3.3.2 PetaBricks . 64
3.3.3 Evolution of Heuristics 67

3.4 Related work . 73

xv

Contents

3.5 Future work . 75
3.6 Conclusion . 76

4 Parallel Iterative Compilation 81
4.1 MapReduce for Iterative Compilation 82

4.1.1 Using multiple identical nodes 83
4.1.2 Using a single computer 86

4.2 Experimental setup . 88
4.3 Experimental Results . 93
4.4 Related Work . 95
4.5 Rationale . 100
4.6 Conclusion and Future Work 102

5 Future work 105
5.1 A Lightweight Approach to Compiling and Scheduling

Highly Dynamic Parallel Programs 105
5.1.1 Proposed Approach 106
5.1.2 Determining profitable optimizations 109
5.1.3 Run-time Optimization 111
5.1.4 Foreseen Applications 113
5.1.5 Concluding Remarks and Future Work 115

5.2 Analyzing the Sensitivity to Faults of Synchronization
Primitives . 115
5.2.1 Faults characterization 116
5.2.2 The Adopted Methodology 117
5.2.3 Impact of Faults on Synchronization Mechanisms . 118
5.2.4 Fault recovery guided by machine learning 129
5.2.5 Concluding Remarks 130

6 Conclusion 133

xvi

List of Figures

1.1 Moore’s Law, stating that the number of transistors in a
processor doubles every two years. The plotted data are
taken from Intel website and are about Intel processors
only. 4

2.1 The structure of an evolutionary algorithm 27

3.1 Examples of formulas generated as heuristics by the long-
term learning algorithm. 34

3.2 The workflow of a compiler using long-term learning. The
number of candidates to test is k. 35

3.3 Grammar representing all the formulas that can be used
as heuristics. S is the axiom. Integer and Double rep-
resent, respectively, integer values and double precision
floating point values. Features are represented in for-
mulas as variables, each with a unique name. This will
be substituted with their actual values by the compiler,
when the heuristic is evaluated. 37

3.4 The weights applied to the grammar to limit the expan-
sion of heuristic formulas. FormulaTypet is respectively
Integer, Double or Boolean for t equal to int, double or
bool. 40

3.5 The list of features used in heuristic formulas. 52

3.6 The list of programs used for the experimental tests. . . . 53

3.7 Execution times of automotive susan c on Hardware Con-
figuration 1 after the compilation of an increasing number
of other unrelated programs. The default configuration is
-O0. 56

3.8 Execution times of automotive susan c on Hardware Con-
figuration 1 for varying number of candidates used for
each generation. The default configuration is -O0. 57

xvii

List of Figures

3.9 Execution times of automotive susan c on Hardware Con-
figuration 2 after the compilation of an increasing number
of other unrelated programs. The test is repeated using
different training sets. Execution times improve both on
gcc -O0 and on gcc -O3 for training sets 1 and 3. The
default configuration is -O0. 58

3.10 Execution times of consumer lame on Hardware Configu-
ration 2 after the compilation of an increasing number of
other unrelated programs. The average execution times
improve on gcc -O0 but not on gcc -O3. Though, they
can be surpassed if the random generation of heuristics
explore the right area of the candidate heuristics search
space. 58

3.11 Execution times of telecom gsm on Hardware Configura-
tion 1 after the compilation of an increasing number of
other unrelated programs. 59

3.12 Execution times of automotive susan c on Hardware Con-
figuration 1 after compiling an increasing number of other
unrelated programs. The performance level improves while
becoming more stable over time. 60

3.13 Speedup obtained by various programs with respect to
gcc -O0 on Hardware Configuration 2, and compared to
gcc -O3. The average and maximum speedup are com-
puted over all the values obtained by testing the program
once after compiling each of the programs listed in Fig-
ure 3.6. 61

3.14 Speedup obtained by various programs with respect to
gcc -O3 on Hardware Configuration 1 (HC1) and 2 (HC2).
We represent the average and maximum speedup com-
puted over all the values obtained by testing the program
once after compiling with long-term learning each of the
programs listed in Figure 3.6. The speedups provided by
GCC profile driven optimization are presented as a com-
parison. The last bar, geomean is the geometric mean
of the measured speedups, computed for HC1, HC2 and
HC2 with profile driven optimization. 62

3.15 Execution times of automotive susan c on Hardware Con-
figuration 2 after the compilation of an increasing number
of other unrelated programs. The default configuration is
-O3. For each generation of candidates, a different dataset
is used. 63

xviii

List of Figures

3.16 Execution times of automotive susan c on Hardware Con-
figuration 2 after the compilation of an increasing number
of other unrelated programs. The default configuration is
-O3. For each generation of candidates, a different dataset
is used. 64

3.17 Execution times of cholesky on Hardware Configuration
1 after the compilation of an increasing number of other
programs. The speedup is computed w.r.t. PetaBricks
with no optimization knowledge at all (optimizations dis-
abled) and from the default optimization level. 65

3.18 Execution times of cholesky on Hardware Configura-
tion 1 after the compilation of an increasing number of
other programs. The speedup is computed with respect
to PetaBricks default optimization level. 66

3.19 Execution times of cholesky on Hardware Configuration
3 after the compilation of an increasing number of other
programs. The speedup is computed w.r.t. PetaBricks
default optimization level. 66

3.20 The first step of evolution of the gcse-lm heuristic. 68

3.21 The second step of evolution of the gcse-lm heuristic. . . 68

3.22 The third step of evolution of the gcse-lm heuristic. . . . 69

3.23 The fourth first step of evolution of the gcse-lm heuristic. 70

3.24 The last step of evolution of the gcse-lm heuristic. 71

3.25 The evolution of the score of candidate heuristics over time. 72

4.1 Speedup obtained with the presented approach 96

4.2 Execution times on various hardware configurations . . . 97

4.3 Execution times on various hardware configurations . . . 98

5.1 proposed compilation/execution pipeline. Micro-threaded
code is analyzed to detect profitable runtime optimiza-
tions. Compiler micro-threads are built and possibly merged
with computational micro-threads 108

5.2 graphical representation of two foreseen applications of
our proposed approach . 113

5.3 Shared counter update. Locking functions guarantee mu-
tual exclusion between threads while concurrently incre-
menting the counter . 119

5.4 Shared counter update exploiting transactional memory.
If a conflict is detected during a transaction, it is aborted
and restarted by the hardware 120

5.5 Implementation of lock acquire 120

xix

List of Figures

5.6 Implementation of lock release 120
5.7 Atomic exchange implemented using transactional mem-

ory. It is used as a building block for transactional memory-
based locks . 124

5.8 An example of fault taken from the configuration file. A
bit-flip fault named upReg will be applied to register R18
at 1100th cycle of the simulation 124

5.9 Distribution of benchmark results, varying the number of
applied faults . 127

xx

List of Tables

3.1 The values we used for the parameters of Algorithm 3.1.1,
obtained by experimentation. 79

4.1 Compilation times of the matrix multiply benchmark on
Hardware Configuration 1 with 16 compiler configurations 92

4.2 Time needed to complete the testing of the exact same
candidate (recorded on 30 repetitions) on Hardware Con-
figuration 3, run with both cores in parallel, or on a single
core . 95

4.3 Time needed to complete the compilation on Hardware
Configuration 1. Percentage with respect to execution
without MapReduce . 99

5.1 Benchmarks . 127
5.2 Benchmark results. For each configuration, 960 runs have

been performed (240 for RWL-trans) 128

xxi

1
Introduction

The complexity of modern computer architectures is constantly increas-
ing every time a new one is released. Because of this, compiler writers
cannot know in advance the exact effect of applying a given code trans-
formation, since too many characteristics (size of the cache memories,
pipeline length, degree of parallelism, etc.) actually influence the result.
This is especially when multiple interacting optimizations are consid-
ered.

Building an exact model of such architectures that can be used by
compiler to decide what optimizations to apply to a program, in which
order to apply them, or what values to assign to numerical parame-
ters required by the compilation process is computationally infeasible.
Therefore, all compilers use heuristics to make such decisions, based
on program-dependent values available at compile-time, called features.
Possible features are the average number of instructions in a basic block,
the nesting level of a loop, the average number of successors for each in-
struction, etc.

Usually, compiler experts write the heuristics manually. This is a
time-consuming task, and it is likely to yield suboptimal results since
it is entirely based on the skills of one or few experts. Deep knowledge
of the functioning of the architecture is required, including being aware
of how the memory hierarchy can provide data in an optimal fashion,
and how the functional units can be used together with the register to
provide the correct operands at the correct time, preventing avoidable
lag. Also, many parameters such as software pipelining strategies, in-

1

1 Introduction

struction scheduling, blocking factors and loop unrolling depths have to
be decided. Moreover, to obtain the best results on all architectures,
the process of defining the heuristics should be repeated for every time
a new version of the compiler is released, or a new target architecture
becomes available, since different platforms require different optimiza-
tions and therefore different heuristics. It might take several releases of
the compiler to exploit all the features of a new architecture, and, given
the current rate of evolution of the hardware, by the time the compiler
is ready, a new architecture is likely to be available.

During my Ph.D. I had the occasion of working on the internals of
many different compilers: GCC, PetaBricks [5], ILDJIT [18] and, to a
lesser extent, LLVM [78]. I started to consider the importance of simpli-
fying and speeding up the task of adapting a compiler to multiple plat-
forms and to different systems while having my first experience working
on compilers. In particular, while I was adding ARM support to the
Libjit code generation library [117] and porting the ILDJIT compiler to
work on the NHK-15 ARM platform [118] by STMicroelectronics.

Fully supporting all the characteristics of a given platform can take
a long time, and even when all the optimization algorithms are ready,
more time has to be spent developing the decision making algorithms
responsible for activating the optimizations, determining their applica-
tion order and selecting the numeric parameters (if any) needed by the
optimization algorithms. Furthermore, the focus of the optimization
process keeps changing [23]: in the 1980s the speed of the code was the
main objective. In the late 1990s, with the embedded systems becoming
more widespread, the size of the compiled code became more impor-
tant. Later, embedded systems also determined interest in optimizing
programs to reduce their power consumption.

In order to face these issues, researchers proposed various techniques
over time. Iterative compilation is the simplest one. It is a technique
used to produce better, more optimized, programs by compiling hun-
dreds of versions of each of them using different optimization settings,
and then keeping the best one as the result of the compilation process.

Usually, the objective function used to determine which program is
the best one is based on running the programs while computing their
execution times in order to find the fastest one. Still, other objective
functions are possible, like minimizing the size of the generated code or
minimizing the compilation time. Finally, it is also possible to have a
multi-objective function, aiming at minimizing more than one of these
dimensions.

The various versions of the program being compiled are created by
applying a different compiler configuration, one for each version, to the

2

source code being compiled.

Depending on the specific iterative compilation algorithm considered,
a configuration can comprise different things. It can determine the set of
optimizations to be used, it can describe the order in which the optimiza-
tion algorithms are applied, or it can define some compilation parameters
(e.g. loop unrolling factor, size of the tiles for a matrix tiling algorithm,
limits for function inlining, etc). The choice of which configurations to
try is determined by random selection or by simple space exploration
algorithms.

The main issue with iterative compilation is its slowness. Looking for
the best version of a program by compiling and testing multiple candi-
date versions requires a lot of time, and the overhead introduced by is too
high for most applications. Nevertheless, the technique is useful in some
specific areas, such as when dealing with embedded systems. Here the
available resources are scarce: the battery charge is limited, the memory
is not abundant and the processors are not too powerful, so optimizing
the programs is of paramount importance. Furthermore, on embedded
devices a program is likely to be deployed on many identical systems.
Therefore, the wide impact of each performance improvement obtained,
however small, makes the extra compilation time worth spending.

In order to reduce the time required by iterative compilation, sev-
eral researchers have introduced machine learning techniques that aim
at restricting the search space of possibly profitable versions, in order
to reduce the amount of iterations needed. Machine learning techniques
speed up the search at compile time, by building a model of the sys-
tem where the compilers are run: this model is then used to predict the
more profitable optimizations to be applied, without the need of actu-
ally running the executable files they produce. Unfortunately, machine
learning techniques require the model to be trained when the compiler
is installed on a new machine (that is, offline or at deploy time), before
being used. This is an extremely time-consuming operation, that can
last for weeks [46], and this limits the applicability of machine-learning
approaches.

Reducing the size of the space to be explored is the most important
way of improving iterative compilation techniques, but it is not the only
one. Various other methods have been proposed to speed up the process.
Leather, in his PhD thesis [80], suggests to use a statistical approach
based on confidence to determine when to stop sampling new timing
runs, in order to remove noise without performing useless iterations.
Fursin et al. [42] exploit the structure of particular programs that present
relatively stable phases, to compare multiple versions of the code within
a single run.

3

1 Introduction

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 1998 2000 2002 2004 2006 2008 2010 2012

N
um

be
r

of
 tr

an
si

st
or

s

Year

Moore's Law

Actual processor data
Trend

Figure 1.1: Moore’s Law, stating that the number of transistors in a
processor doubles every two years. The plotted data are taken from
Intel website and are about Intel processors only.

All these techniques are effective on their own, but they still require a
large number of programs to be executed to compare their performance.

Most of the work presented in this thesis will deal with developing new
techniques for performing iterative compilation based on machine learn-
ing, automatically generating human-readable heuristics while using a
reduced number of candidates.

Furthermore, trends in computer science show an ongoing shift of
paradigm, from sequential to parallel, because of the inability to further
increase clock rates due to technological and thermal issues [16], and for
exploiting the improved transistor density guaranteed by Moore’s law.

Moore’s law, formulated by Gordon E. Moore in 1965, predicted that
the number of transistors of a CPU could be expected to double each
year [91]. Later, he refined his prediction, saying that the doubling of
the number of transistors could be expected every couple of years [92].
The data in Figure 1.1 show that this still holds nowadays.

With multi-/many-core processors, the offered parallelism evolved
from an implicit form (e.g.: Out-of-Order execution [124]) to an explicit
form, where processing elements are directly controlled by programmers.

From an architectural perspective, this allows simplified processor de-
sign (by removing power- and area-hungry components, like branch pre-

4

dictors [131]) and freeing up resources to increase the number of process-
ing elements. This approach has been exploited in GPGPU designs [98],
where there is a wide number of processing element very similar to an
ALU. This leads to an increased importance of the compiler: simpler
processors are less able to reschedule instructions, therefore the com-
piler has to be smart at defining their execution order.

The push toward explicit parallelism influences programming models,
compilers and runtimes. Research has shown that no known technique
or methodology can deal with all the available parallel architectures
and challenges [9]. All the explicit parallel programming models push
programmers to define elementary units of work, called either tasks [39],
or parallel iterations [99] or work items [65], and let the compiler and/or
the runtime schedule them according to their mutual dependencies.

In this context, compilers have been used in a classical way: they per-
form translation to machine code, that is later executed. Leveraging on
the structure of the input language, some compilers perform aggressive
optimizations, such as work-items pre-scheduling [63, 114]. The gener-
ated code is always oblivious to the existence of a compiler, and the
compiler, even when it is a JIT, does not provide any kind of “service”
to the program.

As a future work, I will presents a more dynamic approach to com-
pilation, where the generated code is meant to interact with the com-
piler during execution, to exploit dynamically available information to
optimize the code on-the-fly, without the burden of a full-fledged JIT
system. The idea of splitting the compilation process between runtime
and compile time has already introduced in [62], but in the approach
I present, the compiler works together with a micro-thread scheduler.
Stalls in micro-threads containing the program code can be used to ex-
ecute the compiler optimizers, thus minimizing compiler overhead at
runtime. The decisions about how to prepare the code for compiler in-
teraction will be taken using an approach based on machine learning
techniques.

The main motivation for pursuing this approach is code optimization:
by running the compiler during code execution, more information is
available, enabling more precise optimizations. At the same time, the
machine learning approach could continuously improve the quality of
the generated code, allowing it to be fitter to be specialized at runtime.

As a side effect, this approach would benefit software deployed in
binary-only form, meant to run on many different hardware configura-
tions (e.g.: binary packages used by Linux distributions). Allowing the
program to customize itself without being compiled from a bytecode
form at deploy-time and without the need for a Just-In-Time compiler

5

1 Introduction

(that is time- and resource-consuming at runtime) could be useful in a
variety of scenarios.

This thesis will present the solutions and algorithms I developed to
solve some problems related to machine learning and iterative compila-
tion and the just described lightweight compilation technique that could
benefit from such algorithms.

In particular, in Chapter 3 introduces long-term learning, a new learn-
ing algorithm for compilers that smooths out the biggest slowness-related
issues of both iterative and machine-learning-based compilation. In par-
ticular, it drastically reduces the long compilation times typical of itera-
tive compilation drawbacks, and, at the same time, completely removes
the need for an initial training phase. The chapter shows that long-term
learning is able to improve the performance of a compiler over time,
thus allowing us to remove the initial training phase. Finally, it shows
that different compilers can benefit from the use of long-term learning,
by presenting two implementation and experimental results gathered on
multiple hardware configurations. The implementations are on top of
the PetaBricks research compiler and the GCC production-quality com-
piler.

Chapter 4 presents a novel approach based on MapReduce that is
able to improve the performance of iterative compilation techniques by
parallelizing the testing of the candidate programs on multiple machines
taken from an homogeneous cluster. The chapter also presents a method
that allows one to exploit the parallelism available in modern machines
(both UMA and NUMA ones) by applying the proposed approach to
parallelize the iterative compilation of sequential or moderately parallel
programs. Finally, the chapter includes experimental evidence of the
efficacy of the approach, obtained through a large and diversified exper-
imental campaign performed on various hardware configurations. This
parallelization approach was specifially developed for PetaBricks, and
the experimental data are gathered using such a compiler. Though, the
approach is completely general and can be applied to every iterative
compiler.

Chapter 5 shows that, even using iterative compilation and machine
learning, not every optimization can be applied at compile time. Usually
this happens when an optimization algorithm depends on some constant
that is only known at runtime, or when the optimization is determined
by the input data of the program. The chapter therefore describes a
future work possibility where a lightweight compilation approach per-
forms as much as possible of the optimization process at compile-time,
and prepares the code to be further optimized by the runtime library
using a micro-threaded approach. The selection of which optimization

6

algorithms should actually prepare the code to be modified at runtime
requires the use of heuristics that can be learned by the long-term learn-
ing algorithm. In the same chapter, another possible future work is
described. Given an analysis of the sensitivity to hardware faults of
synchronization primitives used to write parallel programs, a method to
exploit machine learning techniques similar to those presented in Chap-
ter 3 to correctly exclude the faulted parts of the system and still manage
to exploit the working ones.

7

2
Related Work

Most compute-intensive or memory-intensive programs can benefit in
speed from being tuned to work on a specific computer architecture.
Unfortunately, if the tuning process is performed by hand, it usually
takes a very long time to optimize a single program. Nevertheless, there
are certain heavy-duty scientific computational libraries and programs
that are used for computationally intensive and time-consuming tasks
and it is of paramount importance for them to be as optimized as possi-
ble. Because of this, the first works in the field of iterative optimization
were born to optimize them. Such works were not general: they did not
directly involve the compiler and were specifically targeted at the single
library, by means of multiple implementations of certain algorithms, se-
lection of compile-time constant parameters and hand-crafted makefiles
to drive the compilation process.

Only at a later time researchers began to modify compilers, to allow
this kind of optimization to be performed on a wider variety of programs.

The rest of this chapter is structured as follows. Section 2.1 presents
the early works using iterative techniques to optimize programs and
libraries: not all of these early works directly involve a compiler. Sec-
tion 2.2 describes iterative compilation and Section 2.3 presents the evo-
lution of iterative compilation with the introduction of machine learning
techniques. As shown in Section 2.4 and 2.5 these are not the only ap-
proaches to adapt an application to its target architecture. Just-In-Time
compilation and autotuning also exist and are active research areas. Fi-
nally, Section 2.6 presents certain techniques that are not directly related

9

2 Related Work

to compilation but have been used to develop the work presented in the
other chapters of this thesis.

2.1 Execution-driven approaches

The early works related to iterative compilation did not directly in-
volve compilers, but used iterative techniques to optimize programs and
libraries. These techniques were based upon building, executing and
evaluating multiple implementations of the algorithms, and can there-
fore be defined as execution-driven approaches.

An example can be found in [129], where the authors describe the de-
velopment of ATLAS (Automatically Tuned Linear Algebra Software),
a library API-compatible with the BLAS library (Basic Linear Algebra
Subroutines) [32, 31], using autotuning techniques to improve its per-
formance. In particular they present their work on the general matrix
multiply function, DGEMM. The ATLAS approach consists in isolating
the machine-specific sections of the code to a restricted set of routines.
The code of such routines is created by a code generator, that varies the
parameters according to some timing runs. The search for the optimal
parameters can be sped up by the user, providing information about the
underlying hardware architecture, such as the cache size or the block-
ing factors to try. The rest of the code is architecture independent and
does not influence the performance. The basic idea of the ATLAS li-
brary is to find the fastest and biggest on-chip multiply (that is, an
algorithm able to perform the matrix multiplication without spilling to
the system memory) and then using it as a building block for obtaining
a general and efficient matrix multiplication implementation. This is
done by fitting the algorithm into the L1 cache, reordering the floating
point instructions to hide latencies, reducing the loop overhead through
loop unrolling, and exposing the parallelism of the hardware.

Another example of application-specific use of iterative tuning tech-
niques is OSKI (Optimized Sparse Kernel Interface) [128]. It is ”a col-
lection of low-level primitives that provide automatically tuned compu-
tational kernels on sparse matrices”. Its tuning process determines the
best data structure to use on a given architecture to represent the sparse
matrices. It features self-profiling techniques that are used to allow a
program to gather information about the matrix operations that are
performed, and to use such information to determine how aggressively
to tune and to guess whether tuning will be profitable. OSKI is meant
to tune the program not only to fit the hardware, but also to fit the spe-
cific input data. Therefore, its tuning process happens at runtime, and

10

2.2 Iterative Compilation

it accepts hints from the user about the data and the target architecture
to reduce the runtime overhead.

A more general approach was presented by Diniz and Rinard [30],
who worked at the compiler level. They introduced dynamic feedback,
a technique enabling the compiler to generate a single executable con-
taining multiple versions of the same source code, each compiled using a
different optimization policy. During the execution, at fixed time inter-
vals, the program switches between a sampling phase and a production
phase. While in the sampling phase, all the various versions are exe-
cuted, in turn, and their performance is measured. When the system
is switched back to the production phase, the version that proved to
be the best is used. This approach makes the programs able to adapt
to dynamically changing environments, where either the available com-
putational resources vary considerably during the execution, or where
the data sets to be elaborated during a single execution of the program
heavily differ from one another. The main drawback of this approach is
in the fact that the executables tend to be quite bloated, since they need
to contain multiple versions of the binary code. Furthermore, there is
no feedback from the actual selection performed at runtime back to the
compiler. Therefore, the compiler cannot exploit this information to im-
prove the code generated for the next programs it compiles: it can only
guess which optimizations to use during the code generation according
to some pre-defined heuristic.

2.2 Iterative Compilation

To the best of my knowledge, iterative compilation was first introduced
as the main innovation of the OCEANS project [13], and is first thor-
oughly described in the works by Kisuki et Al. [67] and Bodin et Al. [15].

Iterative compilation consists in generating many different binaries
from the same source code, using different compiler configurations that
enable different subsets of the available optimization algorithms, or that
select numeric parameters for optimizations. All the configurations are
then tested on the same dataset, and then the one that proved to perform
better is selected as the result of the compilation process. The search
space of the possible compiler configurations is too big to be explored
entirely, therefore only a subset of some hundreds of configurations is
chosen.

The two papers use different amounts of iterations in different experi-
ments, but [67] argues that for most programs 200 iterations are usually
enough to reach the maximum performance. The choice of which config-

11

2 Related Work

urations to test is not completely random, but uses an extremely simple
algorithm. The rationale for using iterative compilation was the obser-
vation that embedded systems were increasingly using general-purpose
processors, therefore their software was being written by a compiler in-
stead of being hand-crafted. Still, the resources of embedded systems
were extremely scarse, and the need to obtain optimized code was strong.
The same considerations still hold today, but the speed of current sys-
tems makes the iterative approach and its later descendants useful also
for high performance computing and, in some cases, for software in gen-
eral.

Both in [67] and [15] iterative compilation is used just to select two
parameters: the unrolling factor for the loop unrolling optimization and
the tiling size for the loop tiling algorithm. These two parameters are
critical because the two optimizations have competing objectives, and
modifying one of them has a strong impact on the performance of the
other algorithm: finding the right balance between the two is, therefore,
difficult.

Also, [67] hints about the need for multi-objective optimization (to
produce executables that are both fast and small, as later done by [58])
and about the improvements that could be obtained by using a model
to select the most promising optimizations (as later implemented by the
machine learning-based compilation techniques described in Section 2.3).

Nisbet [96], almost at the same time, introduced the use of evolu-
tionary algorithms (presented in detail in Section 2.6.1) to guide the
selection of the configurations to generate. In particular, in his GAPS
system, he used a genetic algorithm to search the solution space of legal,
ordered sets of transformations to be applied to the source code. The
implemented approach is not a 100% pure genetic algorithm approach,
though, because it also allows the user to provide specific knowledge
about the program being compiled and the architecture it will be run
on. Also, the approach is not particularly efficient: the full learning
process is run every time a new program is compiled, and it needs some
thousands of iterations to find a good solution. Better techniques to
determine good candidate configurations to try will be introduced by
later works, and are described in Section 2.3.

After [67] and [15] showed the feasibility of iterative compilation,
and [69] further expanded that work, [68] extended their research by
considering another transformation, array padding, next to loop tiling
and loop unrolling. Furthermore, it details a general, although really
simple, algorithm for learning a theoretically unlimited number n of pa-
rameters through iterative compilation. The search space is divided into
a n-dimensional coarse grid. One candidate is tested for each point of

12

2.2 Iterative Compilation

the grid. In the area surrounding the best candidates the grid is refined
with a new, more fine-grained n-dimensional grid, and the procedure
is repeated recursively. The authors test the candidate programs using
both a single data size and multiple data sizes for the input, and show
that the use of a single data size is sufficient to obtain good perfor-
mance on every data size of the actual input. Therefore, they suggest
using small input sizes for the testing, to reduce compilation times, with-
out impairing the performance of big input datasets during the actual
usage of the program. They claim to obtain an average improvement
of 35% over existing techniques by using iterative compilation over 400
candidate configurations.

[66] is the first work dealing with the choice of compiler switches
to enable and disable the optimization algorithms through an iterative
compilation approach. This kind of decision requires the exploration
of a huge search space, so it is particularly important to be able to
prune it in an efficient way. The paper uses a method called fractional
factorial design, that systematically designs a series of experiments that
determine the switches with the best chance of being optimal. It also aim
at precisely quantifying the interactions among the switches, to better
determine which combinations to actually explore.

The order in which the compiler optimization passes (or phases) are
applied is important and changing it can heavily influence the final re-
sult of the compilation. Kulkarni et al. [77] tackle this problem by using
a genetic algorithm. The big size of the search space that needs to be
analyzed leads to a compilation process that could last for hours or even
days to find the best resulting binary. So, the authors focus on trying to
reduce the number of candidate programs to test. They consider the pro-
gram functions as the compilation units and apply various techniques to
avoid testing the same code multiple times. Among these, the following
ones are worth mentioning. First of all, since the genetic algorithm can
happen to generate the same optimization sequence more than once, a
hash table of attempted sequences is maintained, along with the perfor-
mance results of each sequence, so that there is no need to test the same
sequence twice. Analogously, it is not infrequent for different sequences
to generate the same binary, usually because some of the passes cannot
be applied to the given program and, therefore, their position in the se-
quence has no influence on the final result. So, a table is kept, with the
hashes of the generated binaries and the associated performance results.
Identical binaries will not be tested again. In a similar way, they deal
with functions consisting of equivalent code, that is, code made up of
the same instruction, but with a different assignment of registers.

The main issue of iterative compilation is the long time required to test

13

2 Related Work

all the different versions of the binary produced from the same source
code. The method proposed by [42] aims to face this issue by using a
method that vaguely resembles the one introduced by [30]. The authors
argue that many programs exhibit a behavior that can be modelled with
phases of stable performance. They implemented a low-overhead perfor-
mance stability/phase detection scheme and they generate executables
containing multiple versions of the code. They take advantage of phase
intervals with the same performance to evaluate a different optimization
configuration at each interval. This way, each executable can compare
multiple candidates. The intervals are not of fixed length, but are de-
termined by the detection of stable phases. This method is used as a
building block for a more traditional iterative compilation algorithm:
the results of each set of comparisons is stored in an archive and is later
used to pick the overall best result. This is particularly useful for ap-
plying iterative compilation to programs that require very long running
times, because it allows to greatly reduce the number of executions to
perform. The authors also suggest that their approach could be used
for designing self-tuning applications, able to adapt themselves to the
data being elaborated, by switching different versions of the code. The
biggest shortcoming of the presented approach is the increased code size,
so they suggest using a big number of alternative versions when look-
ing for the best one as a step of an iterative compilation approach, and
using only a few of them if implementing an autotuning program. This
research is further expanded in [44] and [43].

The research on iterative compilation focused mainly upon reducing
the execution time of the programs. Though, in some cases, execution
time is less important than code size, especially for those embedded
systems where the program has to be burnt into a ROM: having a smaller
program could enable the use of a smaller and cheaper ROM. Cooper
et al. [22] use a genetic algorithm to look for an optimization sequence
able to reduce the size of the compiled program.

Later, in [23] and in [3], they characterize the space that an adaptive
compiler must search to perform its duty, and show that biased random
sampling is able to find good solutions quickly. With ”biased random
sampling” they describe all the algorithms such as genetic algorithms
and other iterative compilation algorithms where the selection of new
candidates is random but biased by the knowledge of which candidates
already performed well in the past.

Most iterative compilation approaches are used to optimize a sin-
gle objective function, usually the speed of the compiled executable.
Nevertheless, multiple dimensions are actually an interesting target for
optimizations, such as the size of the final executable, the compilation

14

2.3 Machine learning algorithms

times, the energy consumed during the execution of the program, etc.
Hoste and Eeckout [58] introduced COLE (Compiler Optimization Level
Exploration), a framework for automatically finding Pareto optimal1

optimization levels through multi-objective evolutionary searching. To
the best of my knowledge, this is the first work dealing with multi-
objective optimization of programs through iterative compilation. The
paper demonstrates that the automatic construction of Pareto optimal
optimization levels is feasible in practice, and performs an analysis of
such solutions to determine the importance of the various compiler op-
timizations, finding that only some of them are actually present in the
Pareto optimal optimization levels, and only a few appear in all the
levels.

The problem of finding good optimizations with iterative algorithms
takes a really long time. Along with the presented approaches, aiming
at reducing the number of iterations, other solutions have been devised,
based on the machine learning techniques presented in the next section.

2.3 Machine learning algorithms

Several researchers have introduced machine learning techniques that
aim at restricting the search space of possibly profitable optimizations
to apply to obtain good code.

The basic idea is to reduce the number of iterations and the amount of
time needed by iterative compilation. This is done by learning a model
of the target system. After the training, the model is used to predict
what optimizations to use. Depending on the specific approach, either a
set of likely good optimization configurations are compared, or just the
one supposed to be the best one is directly used to generate the final
executable program.

Machine learning algorithms can be divided into two main categories:
offline and online, and they will be presented in the next two sections.

2.3.1 Offline machine learning

Offline machine learning is the most widespread and most studied kind
of machine learning approach. It is divided into two distinct phases. The
first one is called training phase. It has to be executed when the system
is being setup. It is needed to allow the system to adapt to the specific
environment it will have to work into by learning the characteristics of

1a Pareto optimal solution is a solution that can not be beaten by another solution
along all objective functions simultaneously

15

2 Related Work

the target machine. The second one is the deploy phase (or deploy time)
and it allows the compiler to use the learned model to predict the best
optimization for a given program.

Various algorithms have been presented for applying machine learning
techniques to compilers, and they will be briefly described in this section.

One of the first works dealing with machine learning techniques for
iterative compilation is [90] by Monsifrot et al. The authors use static
program features to make decisions about the loop unrolling optimiza-
tion to be applied to fortran programs. An initial training phase is used
to learn the model, using a set of loops taken from various programs.
The model is a decision tree where each node checks the value of a fea-
ture of the program. When a new program has to be compiled, the
decision tree is used as a classification process to decide how and if to
apply loop unrolling.

Being an early work, the authors also perform a study to verify whether
it is actually possible to try and learn a heuristic for a specific archi-
tecture. They apply their approach on two different architectures, and
obtain good results on both of them. Then, they use the decision tree
learned on the first architecture to make decisions for the second one,
and vice-versa. In both cases, the obtained speedup drops by more than
90%, showing that the heuristics effectively learn how to make decisions
for the specific architecture they are trained on.

The first more complete work about machine learning techniques ap-
plied to compilation is [2], by Agakov et Al. They use program features
to correlate new programs with previous knowledge. The features they
use are characteristics of the programs that can be computed statically.
Their analyzer extracts 33 features for each program. The authors ob-
serve that the selection of the right features is of paramount importance
for the success of this approach, to capture all the possible informa-
tion about the program. At the same time, using too many features
makes it difficult and computationally expensive to use them to learn
a model. Therefore, they use Principal Component Analysis (described
in Section 2.6.3) to reduce the number of features to only 5, preserving
most of the useful information. These five features are used to train two
models (for comparison): an independent identically distributed (IID)
model, and a Markov model. The first one considers the code transfor-
mations to be independent, the second one takes into account the fact
that they are mutually interacting. They use an iterative compilation
approach based on a genetic algorithm to determine which optimizations
to enable and the number of loop unrollings to perform. The machine
learned models are used together with the features extracted from the
program to be compiled to generate the initial population of the ge-

16

2.3 Machine learning algorithms

netic algorithm, thus biasing the random search to a certain area of the
search space. The paper presents a three way comparison between the
two models and a completely random selection of the initial population.
The random search is the worst one. The IID model works well for large
search spaces, whereas the Markov model works well on smaller ones.
Therefore, the authors suggest an approach using an IID model at the
beginning, switching to the Markov model at a later time, when the
search space has already been restricted. Furthermore, the IID model
can be considered an online probabilistic

Stephenson et al., in [113], observe that a single cost function often
dictates the efficacy of a heuristic. Therefore, instead of training a model
based on neural networks or classification, they propose Meta Optimiza-
tion, a method by which a machine learning algorithm automatically
searches the priority function solution space to directly learn the cost
function itself. The cost function is a mathematical formula using the
features of the program as variables. To the best of my knowledge, they
are the first proposing such an approach. The cost function is learned by
using a genetic programming algorithm (as described in Section 2.6.1)
that represents the expression as a tree in order to manipulate it. To
keep the expressions readable and to prevent it to grow indefinitely, a
technique they call parsimony is used, that favors short expressions over
long ones. The authors show the efficacy of Meta Optimization by pro-
viding results over three optimization: hyperblock formation, register
allocation and data prefetching. Furthermore, they show that the tech-
nique can be applied in two different flavors: either to evolve general
purpose heuristics to be later used on any new program, by training
the formula over a set of benchmarks, or by creating application specific
heuristics, obtained by training them over a single program, that is the
one that has to be compiled. This second approach can be seen as a
kind of feedback directed iterative compilation.

Later, Stephenson et al. tried a different machine learning approach,
based on classification, in [112]. They experimented with two classifiers:
a nearest neighbor classifier, and a support vector machine. Both of
them are multi-class classifiers: this means they are able to distinguish
the input elements in multiple classes, and not just in two. This is
fundamental, because the presented experiment deals with learning the
unrolling factor for loops, in a scale going up to 8 unrolls. The approach
they follow is a kind of supervised learning. An initial training phase is
needed (they say that it can be weeks long). For each program, a set
of features describing it is extracted, and they are correlated with the
best unrolling factor obtainable for that loop, determined by exhaustive
analysis of the solutions search space. When a new program has to be

17

2 Related Work

compiled, the trained classifier is used to determine the right class (that
is, the right unroll factor).

The paper is also interesting because it shows that a correct feature
selection is of paramount importance to obtain good results from the
machine learning process: having many features can provide much in-
formation, but having too many features can make the learning process
harder and slower. Therefore, two methods are shown that allow us to
find out the best features to use: computing mutual information score2

and using greedy feature selection3.

The authors of [101] present another method to predict good optimiza-
tion sequences: tournament predictor. This predictor uses performance
counters to characterize dynamic features of the program and to predict
the speedup difference of two given optimization sequences. Given a set
of speedup sequences, the best one is found by pairwise comparisons be-
tween the currently known best one and all the other ones. The authors
compare their predictor with two other state of the art models: a se-
quence predictor, that is able to determine the probability of each single
optimization to be beneficial, and a speedup predictor, able to predict
the expected speedup of a given optimization sequence for a program.
In their experimental results, the tournament predictor turns out to be
the one producing the fastest executable, with the speedup predictor as
a close second and the sequence predictor a distant third.

Most of the machine learning-based approaches to compilation use
statically computable information about the program being compiled
as the features the learning is based upon. [21], by Cavazos et al.,
argues that static features characterize local code constructs, but provide
a poor global characterization once aggregated over many such code
sections, and lack the ability to describe the behavior of large control-
flow intensive programs. Therefore, they implemented a system where
the features are 60 performance counters. The model they create is able
to predict what optimizations to use for a never seen before program
by using as input features the values of the performance counters of the
program itself before being optimized. This approach requires quite an
initial training phase to be executed on the target architecture, to build

2Using the definition from [112]: “The mutual information score measures the re-
duction in uncertainty in one variable given information about another variable”.
Unfortunately, the mutual information score does not tell us anythng about how
features interact with each other.

3Greedy feature selection identifies features that perform well for a given classifier
and a given training dataset by choosing the single feature that best discriminates
the dataset, then choosing the second best features that together with the first
one best discriminates the dataset, and so on.

18

2.3 Machine learning algorithms

the model.

One of the shortcomings of machine learning techniques is that the
training phase can be fairly long, and it need to be performed on each
new platform the compiler has to be used on.

Thomson et al. [121] try to reduce the training time of the model by
focusing it on the programs that best characterize the search space of
the optimization sets. They first gather the static features of all the
programs in the training set, then apply unsupervised clustering in the
program feature space. This way, a classification of the programs ac-
cording to the similarity of their features is obtained. The most typical
program of each cluster is chosen, obtaining a subset of programs that is
representative of the whole search space but much smaller. Each of the
programs of the reduced training set is then compiled and tested with
4000 different optimizations sets, using a supervised learning technique
to learn the model. The model is then used to immediately provide the
supposedly best configuration, one-shot, without using iterative compi-
lation. This approach is shown to be 7 times faster than others during
the training phase, and is able to provide results close to the maximal
during the deploy phase.

Dubach et al., in [33], try to remove the need for the initial training
phase over a benchmark suite while retaining the possibility to use a
model to find the best candidates to test in an iterative compilation
approach. The initial, really long, training phase, is substituted by
a short one, specific for each program being compiled. Every time a
program needs to be compiled, a few version of it are generated, using
random sets of optimization, and executed. The running times, together
with the static features of the code source are used to build a program-
specific model. Using this model, the speedup times of all the unseen
sets of optimizations can be predicted. The iterative algorithm uses the
model to predict the speedup of 500 optimization sets. Then, up to 100
of the best of them are actually used to generate candidate programs to
be tested to find the best one. The experiments presented in the paper
show a varying number of programs being used to train the model: from
8 to 512. Therefore, the actual number of versions of the program that
have to be compiled and executed for every compilation process is fairly
high, even if the approach is interesting from a theoretical point of view.

Later, Dubach et al. [34] also presented a technique to allow the com-
piler to adapt to architectural changes, to find the right optimizations
across programs and architectures, without the need to perform a new
training every time the architecture changes. Only a single, initial train-
ing phase is needed: some sets of optimizations are executed on various
program/architecture pairs. Their interactions are characterized using

19

2 Related Work

performance counters. Even if this training is quite long, it needs to be
performed just once: its results are then usable on a wide variety of new,
unseen architetures and programs, therefore its cost becomes negligible.
The model that is constructed consists of a mapping from the features
of the programs to a probability distribution over good optimization
phases. When a new program needs to be compiled, the best predicted
executable is immediately generated, without iterative compilation and
without the need for a training phase specific for the target architecture.
The input required to perform each compilation is the source code of the
program to compile, a description of the machine it has to be optimized
for, and the performance counters computed by a single profiling run of
the program itself, compiled with the default optimization level.

The state of the art in iterative compilation based on machine learning
is Milepost GCC [45]. It is a “modular, extensible, self-tuning optimiza-
tion infrastructure to automatically learn the best optimizations across
multiple programs and architectures based on the correlation between
[static] program features, run-time behavior and optimizations”, and it
aims at being the first practical attempt at bringing iterative compilation
and machine learning techniques into production compilers. It is built
on top of GCC and it allows multi-objective optimization, in order to
optimize the code for speedup, code size, and compilation times. It uses
offline machine learning, so we can distinguish a training phase (where
the model used to make the prediction is built) from a deployment phase,
where the model is used (with k-nearest neighbor classification) to de-
cide which optimizations to apply to the programs being compiled. In
particular, [45] presents two models that can be used for the learning
process. The first one is a probabilistic model used to make one-shot
predictions on unseen programs, thus completely avoiding iterative com-
pilation and predicting just the single, supposedly best, optimizations
set to use. The model is a mapping from the features of a program to a
distribution over good optimizations sets. The second model is a trans-
ductive machine learning model, that is a model where optimization
combinations themselves are used as features for the learning algorithm
together with program features. This model aims at predicting whether
a combination of program features and optimization passes will give a
speedup of at least 95% of the maximal speedup. The probabilistic
model is shown to be better at improving the speed of programs.

Although most machine learning algorithms can be classified as offline,
there are also some online machine learning algorithms, that will be
presented in the next section.

20

2.3 Machine learning algorithms

2.3.2 Online machine learning

The traditional machine learning approach deals with using knowledge
from the past to make decisions about the present.

An initial training phase is responsible for building a model, and then,
during the deployment phase, this model is used to make predictions
about new situations.

This approach has two shortcomings: first, the initial training phase
is frequently extremely long, therefore limiting the applicability of these
techniques. Second, the effectiveness of the model is strongly influenced
by the choice of the training set.

To face these issues, a new category of machine learning algorithms,
namely online machine learning algorithms, has been introduced.

Online learning algorithms are not limited to using data acquired in
an initial phase, but keep learning from the data that are used along all
the life of the application itself.

The Long-term learning algorithm for compilers presented in Chap-
ter 3 is an online learning algorithm.

A good, altough old, survey of this field is [14], by Blum. It describes
a few algorithms that can be used to constantly widen the available
knowledge and improve the quality of the predictions.

Online algorithms have not been used much in the field of compilers:
usually, either the learning process takes place during the initial training
phase, or it happens while the program is being compiled by means
of iterative compilation. Though, this means that there is no model
being actually learned online: only that best candidate is being chosen,
without retaining any actual knowledge for the compiler to reuse.

One of the main example I could find of a compiler optimization
method based on online learning is described in [84]. The author of
the paper uses a Reverse k-Nearest Neighbour classifier and the features
of the program being compiled to exploit the knowledge about previ-
ously compiled programs to find out what the best set of optimzations
to apply is. If no previously compiled program is similar enough to the
one currently being analyzed, the system switches to using a random
search approach. The program is compiled and run using many differ-
ent optimization configurations. The results are stored in the database
used by the classifier to improve it for the next programs. If the classi-
fier is able to find a good fit, the optimization configuration is used to
immediately build the final executable, and the compilation process is
extremely fast. On the other hand, if no good candidate can be found,
the random search take a really long time, as in the basic iterative com-
pilation approaches.

21

2 Related Work

The IID model presented in [2] can be considered an early example of
online learning in compilers.

The work presented in [38] presents an algorithm that can be con-
sidered online machine learning, because it focuses the selection of the
next candidates by learning as it tests them, but actually only uses
the knowledge taken from multiple compilation of the same executable.
Therefore it is different from the long-term learning algorithm that we
will present in the next chapter. Furthermore, even if the obtained re-
sults are really good from the point of view of the obtained speedup,
it still needs hundreds of compilation of the single program, taking up
to a few hours, as stated in the experimental results section of the pa-
per. This is perfectly fine for tuning software for embedded systems, but
has to be reduced in order to obtain a more general usage of learning
algorithms for compilers.

Milepost GCC, already described in the previous section, is also part
of a bigger project aiming at using online learning and a collaborative
enterprise, called collective optimization [47], to speed up the acquisition
of the training data needed to use a machine learning approach with-
out the need for long training phases and iterative compilation. In this
setup, data from many users compiling different programs on different
architectures are gathered on a single, public database. One of the main
challenges presented by this approach is the need to learn across differ-
ent datasets, programs and platforms at the same time. Static function
cloning and statistical competition between pairs of sets of optimiza-
tions provide an efficient method to characterize them with a single
run, without using reference runs to calculate the speedups. Collective
optimization is performed by computing three probability distributions
used for three “maturation” stages of the programs. Programs in stage
3 are well known and heavily used. Enough information has been ac-
quired across datasets to build a program-specific probability distribu-
tion. Programs in stage 2 are known, but only a few runs have been
recorded. The probability distribution derives from information about
other programs behaving similarly (they behave alike for the sets of op-
timizations already tested). Programs in stage 1 are still unknown. A
probability distribution computed as the unweighted average of all the
available stage 3 distributions is used for programs in this stage. Still,
in order to improve multiple programs across multiple dataset over the
optimization level of GCC’s -O3 a few hundred runs (that may be split
across multiple users) are needed before a program can reach stage 3.
This method has to be considered a form of online learning, because the
knowledge base is continuously improved by the data gathered by the
users. My work, presented in the next chapter, will improve over the

22

2.4 Just-In-Time compilation

capabilities of Collective Optimization, by having comparable learning
times and performance, but increasing the readability of the model (sets
of simple mathematical formulas as heuristics, instead of a relatively
obscure statistical model) and for the ability to actually consider sets of
heuristics as a whole, instead of just considering and evolving the single
heuristics on their own.

2.4 Just-In-Time compilation

Sometimes, in order to optimize an application to run on the current
system, modifying it at compile time using the approaches presented in
Sections 2.2 and 2.3 is not enough. Certain parameters of the program
might need to be modified at runtime, exploiting the knowledge about
the specific dataset being elaborated.

The problem of adapting programs to the runtime environment and
to the specific set of data they are working on has been tackled in many
ways, mostly related to the concept of dynamic compilation, also known
as Just-In-Time (JIT) [10] compilation. According to this approach,
parts of a program are compiled while the program itself is being run,
when more information is available and can be used to perform further
optimizations.

One of the first works on JIT systems [55] deals with the fundamental
questions of JIT: determining what code should be optimized, when,
and which optimizations should be used.

JIT compilation introduces an overhead in execution time because it
causes the program to be idle while waiting for the new machine code.
Considering that most programs spend the majority of time executing
a minority of code [71], two papers [25, 28] independently proposed the
approach called mixed code, where most of the code is interpreted and
only the frequently executed part is identified, compiled and optimized
at runtime.

Some works [57, 76] exploit multi-core processors to hide compilation
latency: the compiler is run in a different thread and uses heuristics to
predict the next method to compile before it is actually needed by the
program. State of the art implementation can be found in [74].

A similar approach is used by the ILDJIT compiler [18], which I con-
tributed to develop [117, 118] before focusing on the topic of this thesis
work.

Another insteresting work in the area of JIT compilation is [62], that
proposes a technique for dividing the analysis and compilation of pro-
grams into phases, anticipating as much analisys as possible at compile

23

2 Related Work

time, and generating programs with ”holes” to be filled at runtime after
the remaining part of the analysis has been completed.

2.5 Autotuning

The JIT approach is too resource-hungry for many applications, since it
requires a full-fledged compiler to be available and running at all times
alongside the application itself.

In many cases, autotuning may be a better way to obtain a very similar
result. It consists in having the application exposing certain parameters
to be tuned to adapt its functioning to the available system resources
and input data.

Ansel et al. present PetaBricks [5], a language and compiler enabling
the programmers to provide multiple implementations of algorithms to
allow the program to decide at runtime which one to use, combining
them to form new, more complex, algorithm where possible and when
needed. It also allows the program to expose numerical parameters
to be tuned to provide the best performance on the current system.
The tuning process of PetaBricks is based on the INCREA evolutionary
algorithm, detailed in [6].

Another example of autotuning can be found in the works by Ti-
wari et Al. [122, 123]. The authors aim at building a “general-purpose,
offline auto-tuning framework for whole programs [integrating] perfor-
mance analysis tools, compiler frameworks and autotuners [and at] de-
veloping and deploying a fully automated tool-chain that can provide
end-to end tuning for full programs”. Their system is based on three
components. ROSE is able to extract computational hotspots from large
applications into separate functions. These functions are then used by
CHiLL, the second component, a polyhedral loop transformation and
code generation framework that generates multiple optimized variants
of them. Finally, the last component, Active Harmony, is responsible for
the actual autotuning phase. It allows to describe and export a set of
performance-related tunable parameters. Then, it uses a parallel search
algorithm (PRO: Parallel Ranking Order) to leverage parallel architec-
tures to simultaneously search across a set of optimization parmeter
values, lookin for the ones that best fit the runtime environment.

Autotuning techniques have been used also in other, more restricted
contexts, such as described in [26] where the authors present “an auto-
tuning environment for stencil codes that searches over a set of optimiza-
tions and their parameters to minimize runtime and provide performance
portaiblity across the breadth of existing and future architectures”.

24

2.6 General techniques

The portability toward future architectures is one of the major strenghts
of autotuning: given that the executable itself is able to adapt to the
environment, without the need for a compiler, even compiled programs
can continue to be used with good performance on changing hardware
platforms.

2.6 General techniques

Certain techniques used in this thesis are not strictly related to the field
of compilation, but are of primary importance for the development of
the following chapters. This section will briefly present them.

2.6.1 Evolutionary algorithms

Many different techniques can be used to build the model used for ma-
chine learning approaches. In this section I will briefly present those
based on evolutionary algorithms, because they are the basis upon which
Chapter 3 is developed.

Evolutionary algorithms [37] aim at exploring a solution search space
looking for the best solution of the problem at hand by mimicking the
way biological evolution works, exploiting the computational power of
modern computer to try out many different solutions, though without
the need of performing an extremely time-consuming exaustive search
of the whole search space.

At the basis of an evolutionary algorithm is a population composed
by a series of individuals. Each of the individuals represent a possible
solution to the problem that the algorithm aims to solve.

Evolutionary algorithms have a fitness function that evaluates how
good a solution each individual of the population is. Only the individuals
determined to be the fittest survive.

Each new generation is composed by a new set of individuals. The new
individual are created by evolving the fittest individuals that survived
the previous generation. This works under a locality assumption, that
is, if it is true that by applying minor modification to an individual of
the population its performance changes marginally.

When this is true, the evolution step can actually improve the popu-
lation each generation, by exploring the surrounding of the search space
starting from those points that are already known to perform well be-
cause they represent individuals that have been proven to have a high
fitness value. Therefore, we can say that evolutionary algorithms are a
biased sampling search technique.

25

2 Related Work

Clearly, the exact encoding that represents an individual depends on
the specific problem that the evolutionary algorithm aims to solve. The
creation of the individuals of the new generation is also problem depen-
dent, but we can identify a few characteristics that can be found in many
evolutionary algorithms.

Evolution This is the core of the algorithm itself. It takes one of the
best candidates of the previous generation and slightly modifies it,
creating a new candidate. In most algorithms the modification is
completely random, whereas in some implementation it is guided
to prefer certain solutions over others.

Mutation The population of the first generation is usually created ran-
domly. This means that it biases the solution found by the next
generations, leading them to explore around the area of the search
space around the spots were the individuals of the first population
were. Mutation is meant to solve this problem. It is activated
with a low probability. When it is activated, it heavily modifies
one candidate, or generates a completely random new one. This
way, it prevents the evolution process from being stuck in local
minima.

The general structure of an evolutionary algorithm is represented in
Figure 2.1

Evolutionary algorithms can be used in many different areas because
they do not impose many constraints on the tractable problems: they
just require that given two individuals representing candidate solutions,
it is possible to determine which one is the best.

They are also particularly useful in case when the availability of new
data requires the selection of the best candidate to be performed again.
The latest best population known can be used as the starting point of
a new evolution process, aimed at fitting the new data and the new
available knowledge. This is why in Chapter 3 I used an evolutionary
approach as the basis of an algorithm for optimizing a compiler to im-
prove its ability to produce good programs for its target architecture.

Genetic algorithms

Genetic algorithms are a particular kind of evolutionary algorithms.
They are meant to imitate the natural evolution process even more
closely, because they are built to mimick the process of reproduction.

In genetic algorithms the encoding representing each individual of the
population is called a gene.

26

2.6 General techniques

Create an initial population

Compute the fitness
of the individuals

Filter out individuals
with low fitness

Terminate?

Create a new population
from the remaining individuals

Return the best result(s)

Figure 2.1: The structure of an evolutionary algorithm

27

2 Related Work

In genetic algorithms, with respect to generic evolutionary algorithms,
a new evolution operator is added, called cross-over. The cross-over
operator works by considering two parent individuals instead of just one,
while generating the individuals of the next generation population. It
takes two individuals that scored high according to the fitness function,
selects a cutting point in their genes and crosses the resulting fragments,
thus obtaining two new individuals, each with about half the genetic
code of each of the two parents.

The core idea behind cross-over is that by taking the genetic code
of good individuals, the offspring is likely to yield good results. At the
same time, taking code from two different individuals helps reducing the
possibility of getting stuck in local minima.

Genetic algorithms are frequently used for machine learning-based
compilation, so it is worth mentioning them. Though, they are not used
for the work I present in Chapter 3, because the reduced number of
individuals used for each generation in such work makes an algorithms
without cross-over more practical for our purposes.

Genetic programming In genetic algorithms, an individual can be any-
thing that can be represented in the gene.

Using an appropriate encoding, it is possible to represent a program
inside a gene (usually as a linearization of its abstract syntax tree), and
therefore it is possible to have the genetic algorithm evolve a program.

This technique is known as genetic programming [75].

The main restriction of genetic programming is due to the fact that,
being a genetic algorithm, it uses crossover. Therefore all the nodes of
the tree (that is, the program) need to be compatible, that is, they need
to return the same kind of data.

Grammatical evolution Grammatical evolution [108] was introduced
in order to solve the shortcoming of genetic programming.

By coupling a grammar in Backus-Naur Form[70] grammar to the
genetic programming algorithm, it is possible to have each node of the
program have a different type. It will be the grammar’s responsibility to
define which kind of node can be generated in every point of the gene.

In Chapter 3 I use an approach similar to grammatical evolution,
based on a grammar but without the cross-over operator, to guide the
creation of heuristics for an optimizing compiler.

28

2.6 General techniques

2.6.2 MapReduce

MapReduce is a programming model that allows the programmer to
expose the concurrency of programs in an easy way, and it makes it easy
to process large data sets, usually by using distributed computation
exploiting the computational power of clusters of computers.

The name comes from the two main functions that have to be im-
plemented by the programmer using this programming model, namely
Map and Reduce. This terminology comes from the world of functional
programming languages.

The Map function applies the same computation to all the elements of
the data set and returns a series of pairs (one for each input) including
a key and a result.

The Reduce function, later, takes all the data produced by the Map
function having the same key and iterates over them to compute a final
aggregated results for each key.

The full MapReduce model also includes other functions, but they are
used mainly as helpers to increase the efficiency or the efficacy of Map
and Reduce, so they will not be described here.

Since its introduction [29] by Google, the MapReduce parallel pro-
gramming model has been widely adopted in many different fields, be-
cause of its high scalability for applications where many independent jobs
have to be processed. Many implementations are available, Hadoop [120]
being the most famous and widely used of those publicly available.

Most implementations of MapReduce are meant to be used on clus-
ters of machines for high performance computing tasks. Nevertheless,
MapReduce can also be useful as a programming model for applications
that can be conveniently expressed in a concurrent way, even when they
do not require high computational power and are meant to be executed
on a single desktop computer: Ranger et al. present Phoenix [105], an
implementation of MapReduce for multi-core and multiprocessor sys-
tems. Later, Yoo et al. [132] further improved the system and Talbot
et al. rewrote it from scratch to remove some limitations and inefficien-
cies, presenting Phoenix++ [115], featuring greater scalability and much
better performance.

MapReduce has been used for easily adding concurrency to many
different tasks related to a wide variety of fields. Particularly interesting
for our purpose is the work by Gillick et Al. [49]. The authors show that
MapReduce can be profitable for offline machine learning applications,
where all the training runs are executed first, to learn the model that is
later used. In Chapter 4 I will present a technique to execute timing runs
for a machine learning-enabled compiler in parallel, using MapReduce

29

2 Related Work

inside an online machine learning algorithm, where learning takes place
at the same time when the model is used.

2.6.3 Principal Component Analysis

When using machine learning it is of paramount importance to correctly
identify the features that will convey the most information about what
is being learned, while at the same time being a really restricted number.
This is due to the fact that for many learning algorithms it is easier to
deal with fewer input data.

Most of the works presented in Section 2.3 try to reduce the size
of the input space by using a technique called Principal Component
Analysis (PCA) [130]. PCA uses a linear transformation that projects
the available variables onto a new set of orthogonal axes. The new
variable with the highest variance is projected on the first axis, the
variable with the second-highest variance on the second axis and so on.

By keeping the first n variables of the transformed system, you can
preserve most of the information of the original data while reducing the
number of variables needed to represent them.

In machine learning compilers, PCA is usually used on the set of
features extracted from the training programs. Instead of storing all
the features of the programs, they are first transformed using PCA.
Usually, different features are correlated, and storing the original data
”as is” would lead to duplicate information. PCA allows to factor out
the information into a small set of variables.

Principal Component Analysis, in its traditional form, requires all the
data to be available before it can be applied. Therefore, it can be used
only for offline learning algorithm.

Recently, though, Incremental Principal Component Analysis was in-
troduced and used in various fields [8, 24, 95], such as computer vision.
This techique is meant to behave as traditional PCA, but without the
need for having all of the data available beforehand.

A similar technique could therefore be used for online machine learn-
ing.

30

3
Long-term Learning of Compiler

Heuristics

1 Optimizing programs to exploit the underlying hardware architecture
is an important task. Much research has been done on enabling compil-
ers to find the best set of code optimizations that can build the fastest
and less resource-hungry executable for a given program. A common
approach is iterative compilation, sometimes enriched by machine learn-
ing techniques. This provides good results, but requires extremely long
compilation times and an initial training phase lasting even for days or
weeks.

We present long-term learning, a new algorithm that allows the com-
piler user to improve the performance of compiled programs with re-
duced compilation times with respect to iterative compilation, and with-
out an initial training phase. Our algorithm does not just build good
programs: it acquires knowledge every time a program is compiled and
it uses such knowledge to learn compiler heuristics, without the need for
an expert to manually define them. The heuristics are evolved during
every compilation, by evaluating their effect on the generated programs.
This is similar to what [47] does, but it is more powerful, because multi-
ple heuristics are evolved together, as sets, to ensure that they interact

1This chapter, with the title “Continuous Learning of compiler Heuristics”, has
been accepted for publication in the ACM Transactions on Architecture and Code
Optimization and for presentation at the 8th International Conference on High
Performance and Embedded Architectures and Compilers (HiPEAC’13), January
21-23, 2013, Berlin, Germany

31

3 Long-term Learning of Compiler Heuristics

correctly with one another. Furthermore, we evolve readable heuristics
instead of just a statistical model.

We present implementations of long-term learning on top of two dif-
ferent compilers, and experimental data gathered on multiple hardware
configurations showing its effectiveness.

The data show that long-term learning is able to improve the perfor-
mance of a compiler over time, without the need for any initial training
phase.

We also show that different compilers can benefit from the use of
long-term learning, by presenting two implementation and experimental
results gathered on multiple hardware configurations.

The rest of this chapter is organized as follows: Section 3.1 describes
the long-term learning compilation algorithm, Section 3.2 describes our
implementations of the algorithm and the setup of the experimental
campaign, Section 3.3 presents the results of the experiments. Related
work is presented in Section 3.4 and possible future improvements are
discussed in Section 3.5. Section 3.6 concludes.

3.1 Long-term learning compilation

Long-term learning compilation is a new continuous learning algorithm
meant to avoid the main drawbacks of both iterative and machine-
learning-based compilation: it only needs a small number of compila-
tions and test runs to be performed for each program, thus reducing
compilation times with respect to iterative compilation; at the same
time, it does not need the initial training phase usually required by
machine learning algorithms.

The aim of long-term learning is to learn a model of the target archi-
tecture, in the form of a set of heuristics that will allow the compiler to
produce highly optimized programs for that target architecture, with-
out manual tuning by an expert. This learning process takes place over
time: every time a new program is compiled, the system learns some
new piece of information to be reused during the next compilations,
therefore we say long-term learning is an online learning algorithm. [14].
Offline learning algorithms, on the other hand, have separate training
and working phases. This is possible thanks to the testing phase of the
various candidate versions of the program, that happens as a part of the
compilation process.

Long-term learning (detailed in Algorithm 4.2.1) is an evolutionary
algorithm [37].

As such, it mimics biological evolution to solve the problem of finding

32

3.1 Long-term learning compilation

the best set of compiler heuristics. Each set of compiler heuristics (also
termed candidate compiler configuration) is seen as an individual of a
population. The population evolves along a given number of generations,
each composed by the same number of individuals. The individuals of
each generation derive from the best ones of the previous generation by
modifying them slightly through a process named evolution (described in
Section 3.1.1). At the end of each generation, a fitness function evaluates
each individual according to the method explained in Section 3.1.6: the
fittest individuals are then used as the seed to generate the candidates
of the next generation.

In order to prevent stagnation of the process into local performance
maxima, evolutionary algorithms also define a mutation operation (de-
tailed in Section 3.1.2), that modifies the candidate configurations more
deeply than evolution does, allowing to look for solutions that are far
away from the current best ones in the search space. To speed up the con-
vergence of evolutionary algorithms and to improve the stability of the
solution found, a technique known as elitism (described in Section 3.1.4)
can be used: elitism copies the best candidates found by the previous
generation in the new one, without any modification.

In our system, we decided to represent each compiler heuristic con-
tained in the candidate configurations as a mathematical formula (such
as those in Figure 3.1 and in Section 3.3.3). The result value of the for-
mula is the decision made by the heuristic, and variables of the formula
represent features of the program being compiled. A feature is a value
known by the compiler at compile time that describes a characteristic
of the program (e.g. number of basic blocks in a function, loop nesting
level, etc.). A similar representation of heuristics has been used by [113],
although for a system based on offline learning. In particular, we use
static features: features that can be extracted by source code analysis,
without requiring the program to be executed.

The heuristics are not hard-coded into the compiler source code, to
allow them to evolve easily: every time the compiler needs to make
a decision, it loads the current best heuristic for that decision from a
knowledge base, evaluates the heuristic using the values of the features
and uses the obtained result as the outcome of the decision process.

In most evolutionary algorithms the individuals of each generation
descend from the individuals of the previous generation only. Not so
in long-term learning: at the end of every generation, all the available
information is stored in a knowledge base (see Section 3.1.5), and the new
candidates are evolved from the best ones of the whole knowledge base.
Moreover, we do not just store information about the best candidates,
but about all of them, together with their fitness level describing how

33

3 Long-term Learning of Compiler Heuristics

Boolean formula true

Boolean formula if((avg basic block less 15 inst < 11)) then (true)
else (avg basic block two successors > 10)

Double formula (avg method assignment inst/3)

Figure 3.1: Examples of formulas generated as heuristics by the long-
term learning algorithm.

good each heuristic has proved to be over the whole life of the compiler.
We can thus reduce the number of generations needed to obtain good
candidates, since we are using all the already gathered data instead of
partial information. The heuristics stored in the knowledge base (and
in particular, the best-scoring ones) constitute the model of the target
system that the algorithm learns over time.

We determined experimentally that our algorithm performs well with
just 3 generations and 6 candidates (including the elite) per generation.
Therefore, with less than 20 candidate configurations tested during each
compilation we can obtain good results without the need for an ini-
tial training phase, whereas other iterative approaches need hundreds
of them. It should be noted that using 6 candidates over 3 generations
leads to better results than just compiling 18 candidates in a single gen-
eration. This is due to the fact that using a single generation, all the
candidates are randomly generated starting from the pre-existing knowl-
edge of the compiler, whereas using multiple generations the candidates
of each generation are based upon the knowledge acquired during the
previous one for the specific program being compiled.

It is also worth noting that we chose not to implement a genetic algo-
rithm because that would make more difficult to use a reduced number
of candidates. Genetic algorithms require that each candidate descends
from two candidates of the previous generation, by applying a crossover
operator that mixes the genes of the two candidates. In order for this to
perform at its best, a large population is required. On the other hand,
by developing an evolutionary algorithm that is not genetic, we could de-
vise a different evolution method, starting from the knowledge contained
in the whole knowledge base, thus allowing us to use less candidates in
each generation.

The general workflow of a compiler using long-term learning is repre-
sented in Figure 3.2.

34

3.1 Long-term learning compilation

B
E
S
T

KB
new heuristics

generator

default
heuristics set

heuristics set

k

heuristics set

<heuristics set, binary, timing, features>

compile & test

all heuristics sets,
timings and features

best
binary

compile & test

compile & test

source code

<heuristics set, binary, timing, features>

<heuristics set, binary, timing, features>

Figure 3.2: The workflow of a compiler using long-term learning. The
number of candidates to test is k.

3.1.1 Evolution

In order to learn, every evolutionary algorithm needs to explore the so-
lution space by generating and testing new candidates. As the name
“evolution” suggests, new candidates are derived from the old ones in
a non-disruptive way. The idea is to start from a candidate configu-
ration known to be good, and to modify it slightly, looking for a new
configuration that yields better performance when applied.

First of all, the GetBestCandidates function of Algorithm 3.1.1
extracts from the knowledge base as many candidates as required to
reach the user-specified number k of candidates to test. They are taken
from the fittest candidates (according to the fitness function described
in Section 3.1.6) known up to the current time. Each heuristic is as-
sociated with a decision point name that univocally identifies in which
phase of the compiler it has to be used. Every time the compiler needs
to make a decision, it picks from its configuration the unique heuristic
formula corresponding to that decision point. Therefore, each configu-
ration must contain exactly one formula for each decision point name.
The set of all possible names is denoted by N in Algorithm 3.1.1. Let
Hi be the set of the names of the heuristics contained in candidate i
extracted from the knowledge base. In case Hi is not equal to N , the
missing heuristics (identified by the names in N \Hi) will be randomly
generated by the GenerateMissingHeuristics function and used to
complete the candidate just before testing it. This happens in particular
when not enough candidates where found in the knowledge base: they
are replaced by empty candidates, to be later filled in by Generate-
MissingHeuristics.

35

3 Long-term Learning of Compiler Heuristics

The GetBestCandidates function ensures that

∀i Hi ⊆ N (3.1)

Such property ensures us that the heuristics in the set are known
to work well together. By considering supersets too, it might happen
that the extra elements (to be discarded since they are not needed) are
essential to deliver the performance level promised by the score of the set
of heuristics. This would lead to generating a candidate with a poorly
performing set of heuristics.

After the candidates have been extracted from the knowledge base, on
each of them we execute the Evolve function with a given probability (p
in Algorithm 3.1.1), meant to model the exploration versus exploitation
tradeoff [61], that is the expected utility of trying new solutions instead
of reusing the old ones, proven good. When the exploration decision is
taken, Evolve determines the number of heuristics to evolve, the mini-
mum being one and the maximum being a percentage e of them. Then,
the actual evolution process takes place for randomly chosen heuristics
of the set. We allow more than one heuristic to evolve at once to enable
a group of decisions that are effective only when applied together to be
made at the same time.

When a formula is being evolved, it is parsed according to the gram-
mar in Figure 3.3, obtaining a syntax tree where every leaf represents
a numeric or boolean value or a feature name, and every internal node
represents an operator or an if expression. Then, the tree is recursively
visited, until a single terminal of the grammar is actually modified ac-
cording to the following rules:

If expression (Ift) Evolution is recursively applied to one element cho-
sen randomly between the condition formula, the then case formula and
the else case formula.

Binary operation (BinOpt) Evolution is applied to one element chosen
randomly between the left operand, the right operand and the operator.
In the first two cases, the evolution process continues recursively, in the
last case the operator is substituted with a different one taken from the
same category (Arith, Bool or Comp).

Boolean value (Boolean) The value is negated.

Feature (Feature) A different feature is used.

36

3.1 Long-term learning compilation

G =



S→ NumFormula | Formulabool

NumFormula→ Formulaint | Formuladouble

Formulaint → BinOpint | Ifint | Integer | Feature

Formuladouble → BinOpdouble | Ifdouble | Double | Feature

Formulabool → BinOpbool | Ifbool | Boolean

BinOpint → “(” Formulaint ArithOperator Formulaint “)”

BinOpdouble → “(” Formuladouble ArithOperator Formuladouble “)”

BinOpbool → “(” Formulabool LogicOperator Formulabool “)”

| “(” NumFormula ComparisonOperator NumFormula “)”

ArithOperator→ “ + ” | “− ” | “ ∗ ” | “/”

BoolOperator→ “ = ” | “#” | “ < ” | “ > ” | “ <= ” | “ >= ”

ComparisonOperator→ “and” | “or”

Ifint → “if” “(”Formulabool“)” “then” “(”Formulaint“)”

“else” “(”Formulaint“)”

Ifdouble → “if” “(”Formulabool“)” “then” “(”Formuladouble“)”

“else” “(”Formuladouble“)”

Ifbool → “if” “(”Formulabool“)” “then” “(”Formulabool“)”

“else” “(”Formulabool“)”

Figure 3.3: Grammar representing all the formulas that can be used as
heuristics. S is the axiom. Integer and Double represent, respectively,
integer values and double precision floating point values. Features are
represented in formulas as variables, each with a unique name. This
will be substituted with their actual values by the compiler, when the
heuristic is evaluated.

37

3 Long-term Learning of Compiler Heuristics

Numeric value (Integer or Double) The current value v is incre-
mented by a value in the interval [−v, v]. The resulting value can only
be in the interval [0, 2v] if v > 0 or [2v, 0] if v < 0. This is done to
prevent the value from changing too much, under the assumption that a
heuristic being evolved derives from one already evaluated as good, and
therefore does not need to be drastically changed.

The main difference between this and more traditional evolutionary
approaches applied to compilers is in the target of the evolution process.
Usually, the process aims at finding a good candidate configuration, that
is a set of compilation flag and parameters to be applied to the current
program in order to speed it up. In the case of long-term learning, on
the other hand, a candidate is not a compiler configuration but a set
of heuristics that the compiler can use to determine, on a program-by-
program basis, what the best compilation options and parameters are.
Therefore, the produced results are much more general: we are not just
learning how to deal with a single program, but we are actually learning
a model that behaves increasingly well with all the programs it interacts
with, and that can be used with unchanged efficiency even if the learning
algorithm itself is later disabled.

3.1.2 Mutation

Even if we modify multiple heuristics at once, there is a risk of getting
stuck in local maxima, since evolution only applies small modifications to
formulas. To avoid this, we implemented a mechanism able to provide
bigger evolutionary steps, traditionally named mutation [107]: every
time the evolution function operates on a node of the syntax tree of a
heuristic formula, the evolution might be turned into a mutation with
probability m.

The conceptual difference between evolution and mutation is in the
editing distance. Evolution recursively visits the tree until it modifies
a single terminal of the grammar. Mutation can be applied to either a
terminal or a non-terminal and is able to change the formula much more
deeply. The modifications applied to the formula are as follows:

Whole formula (S) The formula is substituted by a completely new
one.

If expression (Ift) Either the condition, the then case formula or the
else case formula is removed and substituted with a new sub-formula,
generated from scratch.

38

3.1 Long-term learning compilation

Binary operation (BinOpt) Either the left or right operand sub-formula
is substituted with a new sub-formula, generated using the grammar in
Figure 3.3.

Boolean value (Boolean) Same behavior as evolution: the current
value is negated.

Feature (Feature) Same behaviour as evolution: a different feature is
used.

Numeric value (Integer or Double) A random number is generated.
It can be unbounded or, where specified, comprised in an interval de-
termined by the validity range (see Paragraph “Validity range check” of
Section 3.1.3) of the heuristic itself.

After the mutation takes place, the formula is turned back into its
string representation inside the heuristic.

3.1.3 Generation of new formulas

All the formulas that can be used as heuristics in our system can be
described using the grammar in Figure 3.3. Every time a formula needs
to be generated, the grammar is used as a generative device. The gener-
ation starts from axiom S. The first choice (between Formulabool and
NumFormula) depends on the specific type of result that is needed. If
the heuristic aims to decide whether or not to activate an optimization,
a BoolFormula will be generated. If a compiler parameter has to be
heuristically determined, NumFormula will be used, in one of its two
versions (integer or double).

The choice of the right grammar is essential to generate good heuris-
tics. We want to give the system enough flexibility to find good results.
At the same time, as stated in [113], the wider the heuristic search space,
the longer it will take for the algorithm to converge upon a general solu-
tion. Any grammar could be expanded to contain more primitives able
to produce more complex formulas, so it will never be possible to gener-
ate a completely unbiased set of heuristic formulas. Since we are defining
an online learning system, it is particularly important for it to converge
rapidly, so we choose to only use basic arithmetic and logic operands
for the formulas. Machine learning techniques aim at being faster than
iterative ones by biasing the search space in some way, and experimental
results on multiple platforms and multiple test programs have proved our
choice to be valid. Future work could look for more complex primitives
able to deliver significant performance improvements.

39

3 Long-term Learning of Compiler Heuristics

Formulat →

BinOpt weight : 2
| Ift weight : 1
| FormulaTypet weight : 5
| Feature weight : 4 (only if t is int or double)

Figure 3.4: The weights applied to the grammar to limit the expansion
of heuristic formulas. FormulaTypet is respectively Integer, Double or
Boolean for t equal to int, double or bool.

Preventing indefinite growth of heuristics

Formulas generated by the grammar are defined recursively and could be
arbitrarily long. Should the grammar be used with uniform probability
of choosing any of the alternative productions, we would obtain complex
heuristics. The length of formulas would tend to increase rapidly, making
them slower to evaluate and harder to read and understand. Generating
readable heuristics is not strictly required, but can be really useful for
compiler writers. When developing new optimizations, being able to
look at a heuristic and understanding how it makes decisions is handier
than systems where the optimization decision process is less visible, such
as the ones in [84, 45].

The importance of preventing a grammar from generating too long
formulas is described in [81, 80]. They use a grammar to automatically
define complex features to be extracted from programs and used in a
classifier for implementing a machine-learning based compilation algo-
rithm. We use a similar approch, based on assigning weights to the
various productions of the rules, but in our algorithm the set of features
is fixed and we use the grammar to generate the heuristics the com-
piler will use to make decisions. In our specific case, weights are needed
only for the rules describing formulas (i.e. Formulaint, Formuladouble

and Formulabool). The weights we use are described in Figure 3.4.
The actual production to activate is chosen by a random roulette-wheel
selection algorithm2.

For every other rule with more than one production (BinOpbool, Arith-
Operator, BoolOperator, ComparisonOperator) the selection is
performed with a uniform probability, since all the alternatives generate
formulas of equivalent length.

2Given a set of elements, each with a fitness value, a roulette-wheel selection al-
gorithm chooses an element from the set with a probability proportional to the
fitness of the element itself. We use weights as the fitness value.

40

3.1 Long-term learning compilation

When the Feature production is activated, the learning algorithm
randomly chooses a feature from the set F of the features whose value
will be provided at compile time.

Reducing the search space size

The search space of possible heuristics described by Figure 3.3 is in-
finite. The long-term learning evolutionary algorithm explores it effi-
ciently, exploiting the acquired knowledge to avoid testing candidates
likely to perform poorly, and focusing on evolving the sets of heuristics
that have proven to be beneficial to the execution times of previously
compiled programs.

Every restriction of the search space helps to speed up the convergence
toward a useful solution. Therefore, we use two techniques to achieve
this.

Constant folding For every heuristic generated by the system, we ap-
ply constant folding techniques (e.g., if a fragment of a heuristic formula
is 2 ∗ 3 + 4 or 1 + 2 + 3 + 4 it will be folded to 10 in both cases) before
storing the heuristic in the knowledge base.

This way, apparently different heuristics are reduced to a single one
and the information gathered from those heuristics will converge into a
single knowledge base record, making the data about that heuristic more
complete and more useful. Having fewer heuristics makes evolution more
efficient, since there are less starting points to use. Furthermore, this
leads to simpler heuristics being stored.

Validity range check The second technique we use is applicable only to
non-boolean heuristics and is implemented as part of the scoring system
(see Section 3.1.6). It has been introduced after observing that most
numerical heuristics must generate results within a given range of values.
For example, a heuristic determining the unrolling factor of a loop has 1
as the minimum acceptable value (meaning no unrolling) and could have
a maximum around 100 (or it could also be left unbounded). A heuristic
determining the number of worker threads a program should launch
could be limited upwards by the number of cores actually available on
the machine.

To take into account such boundaries, we introduced the possibility
to specify a minumum value min and a maximum value max for ev-
ery heuristic. The formulas we use are randomly generated, and they
include as variables the features extracted by the compiler, therefore
it is possible that their evaluation might result in a value outside the

41

3 Long-term Learning of Compiler Heuristics

valid range. The trivial solution is substituting values below min with
min itself and values above max with max itself. Such an approach en-
sures valid results, but impacts negatively on the heuristics: if the value
producing the optimal executable corresponds to the min of the range,
every formula evaluating to something below min would receive a high
score. This is bad, because it would increase the number of formulas that
are considered good, increasing the number of seemingly good starting
points for the next generations. We decided instead to add a penalty
(precisely described in Section 3.1.6) for formulas evaluated outside the
valid range. Therefore, their score will become lower, favoring only the
heuristics that stay within the boundaries.

In order to further reduce the possibility of generating low-scoring for-
mulas, the min and max values are provided to the formula generation
function, that exploits them to build formulas that cannot, by construc-
tion, be evaluated outside the validity range, as far as no variables (that
is, features) are concerned.

Principal Component Analysis As described in Section 2.6.3, many
compilation approaches based on machine learning techniques use Prin-
cipal Component Analysis to reduce the number of input variables used
to train the model.

As reported in most of the previous works listed in Section 2.3, what-
ever the selection of the program features, it is always likely that part of
the information contained in each feature is superfluous because other
features contain that same information too.

Because of this, we considered using Principal Component Analysis
(PCA) for our work. Unfortunately, PCA requires all the data to be
available in advance, therefore it conflicts with the core principle of this
work of not needing any training phase.

Bibliographic research led us to find out about Incremental Principal
Component Analysis, being used in various fields [8, 24, 95] and able
to extract a reduced set of features containing the maximum amount
of information in as few variables as possible, in such a way that each
variable is orthogonal to every other variable.

We considered using incremental PCA to reduce the amount of fea-
tures we learn from, but in the end we decided not to use it: incremental
PCA ensures that a set of features of the desired size is used, but doesn’t
tell us anything about the meaning of each of the variables. When new
data arrive, the content of the new variables might be quite different
from the previous ones, because the linear transformation creating the
variables changes every time new data are available.

42

3.1 Long-term learning compilation

Given that we use the variables as components of formulas explicitly
describing the heuristics to be used, changing meaning of the underlying
variables every time new data are available (that is, every time a new
program is compiled) would lead to an unstable system, increasing the
difficulty of identifying good heuristics instead of simplifying it.

3.1.4 Elitism

If all the candidates in a generation are randomly generated, it might
happen that their results are worse than the one obtainable by using
the best set of heuristics known up to this point. Elitism is a common
solution applied by evolutionary algorithms to this problem: it improves
the stability of the learning process. Long-term learning uses a very re-
duced amount of candidates, so rapidly reaching stability is particularly
important. Therefore, we implemented three different elitism mecha-
nisms.

The GetBestCandidates function of Algorithm 3.1.1 (already de-
scribed in Section 3.1.1) extracts from the knowledge base b candidates
whose heuristic formulas have been proved to be the highest-scoring ones
when used as sets.

GenerateCandidatesFromBestHeuristics extracts from the knowl-
edge base, for each needed heuristic name n ∈ N , the h highest-scoring
heuristics. Then, combines them in sets, each containing one heuris-
tic for each needed name. These sets are returned as candidates. This
is done because heuristics receiving high scores independently from the
specific heuristic set they have been used in, are likely to receive a high
score also when introduced in a new set.

GenerateCandidatesFromMostFrequentHeuristics extracts from
the knowledge base, for each heuristic name n ∈ N , the f most fre-
quently used heuristics whose score is at least 1 (meaning they provide
no slowdown, as described in the next section). Then it combines them
in sets, each containing one heuristic for each name. These sets are re-
turned as candidates. This is done because if an heuristics is frequently
used without its score becoming too low, it means that, on average,
the heuristic is able to provide acceptable performance. Reusing such
an heuristic again provides a good fallback candidate, increasing the
stability of the algorithm.

By analyzing the learning algorithm it is possible to determine why
it could be slow to converge. Each of the elitism mechanisms aims at
removing one cause of instability. The first by keeping the current best
results across generations. The second one by forcing the creation of
candidates likely to perform well. The third one by providing an accept-

43

3 Long-term Learning of Compiler Heuristics

able fallback option in case every other candidate is not good enough.
The third one is especially useful at the beginning of the learning pro-
cess, where it might happen that best set of heuristics performs well for
all the programs compiled up to now, but still fails on a new program,
too different from the previous ones.

3.1.5 Knowledge base

The knowledge base stores information about all the tested candidates.
In particular, for every heuristic, the knowledge base contains the name
of the decision point of the compiler the heuristic will be used for, the
formula of the heuristic, the score earned by the heuristic up to the
current time and the number of previous uses of the heuristics.

The knowledge base also stores all the sets each heuristics has been
part of and, for each set, its score and its number of previous uses.

3.1.6 Computing the fitness function and updating the
knowledge base

For each candidate i, we record the execution time execT imei and we
compute the speedUp = execT ime0

execT imei
with respect to the execution time

execT ime0 of the default configuration C. Speedups greater than 1
indicate candidates actually providing a performance improvement. If
speedUp > 1, the candidate provides a performance improvement.

The UpdateKnowledgeBase function uses the speedups as the fit-
ness function of the heuristics and updates the scores contained in the
knowledge base.

Every candidate contains a set of heuristics, each controlling a com-
piler decision. We keep track of how well the heuristics of the candidate
work together by computing the score of the set of heuristics as a whole.
At the same time, we keep a score for every single heuristic, to know
how well it works whatever heuristic set it is part of.

We also keep a use count for every heuristic set and for every heuristic.
A set is counted as used every time it is used as a configuration for the
compiler, that is, every time it is used to compile a program. On the
other hand, a single heuristic is counted as used every time it is evalu-
ated, that is every time the actual values of the features are substituted
into the variables appearing in the formula of the heuristic. This means
the heuristic is counted as used every time a decision is made based on
its value. For example, a heuristic determining the unrolling factor of
loops will be evaluated (and therefore used) every time an unrollable
loop is being compiled.

44

3.1 Long-term learning compilation

The scores of both the heuristic sets and the heuristics are updated
as follows:

scoreupdated =
scoreold ∗ usecountold + scorenew ∗ validusecountnew

usecountold + usecountnew
(3.2)

where scoreold and usecountold are the score and use count stored
in the knowledge base, scorenew is the speedup measured during the
test execution, usecountnew is the number of times the heuristic has
been used during the test execution. If we are updating the score of a
heuristic set, usecountnew will always be equal to one. validusecountnew
is the number of times the result of the evaluation of the heuristic was
inside the validity range:

validusecountnew = usecountnew − (tooLow + tooHigh)

with tooLow (respectively tooHigh) being the number of times the
heuristic was evaluated lower (resp. higher) than min (resp. max).

Immediately later, the use count is incremented too:

usecountupdated = usecountold + usecountnew

On the other hand, it might happen that a candidate configuration
fails to generate a working executable, usually because some optimiza-
tions of the underlying compiler cannot be applied at the same time. If a
configuration failed, we want to penalize it. Therefore we use a scorenew
equal to zero and a usecountnew equal to 1, thus decreasing its score,
especially if this happens when the heuristic that led the configuration
to fail is fairly new and its usecountold is low.

As it can be seen from Equation (3.2), the score that is computed along
the life of the knowledge base is the expected speedup, of each heuristic
set and of each heuristic. It is used by the algorithm to determine the
best known candidates: the higher the score, the better the expected
speedup while using the heuristic.

Rationale The current scoring system was chosen because it proved
experimentally3 to be fast at learning when no knowledge is available,
while keeping the ability to improve later on. Furthermore, the method
we use to update the score of each heuristic scales well with the number

3This experimental choice does not reduce the generality of our approach, because
only a reduced number of programs (namely bitcount, qsort1 and susan c) where
used during the development of the GCC version to make this decision. Later,
performance results over the full set of benchmarks and the implementation in a
second compiler just confirmed the quality of the chosen scoring system.

45

3 Long-term Learning of Compiler Heuristics

of their executions (the cost of update is constant). This is extremely
important, since we collect data for every single candidate we test.

It is worth noting that we considered multiple scoring algorithms for
long-term learning. At first, we considered an algorithm that sorted the
candidates by speedup, then assigned a score based on the ranking (for n
candidates, decreasing from n points for the best one to 1 for the worst
one). Such an algorithm is more robust to measurement disturbance
during the test phase, since the score is unchanged as long as there is no
switch in the relative positions of one candidate with respect to another
one, whereas using the speedup is sensitive to such errors. We decided
to use the speedup itself, instead of the speedup ranking, to determine
the score for two reasons. First, it provides useful information discerning
how better a candidate is compared to another one (e.g. being twice as
fast is not as good as being four times as fast). Second, it takes into
account whether a candidate provides an actual improvement: using the
ranking-based system, if all the candidates in a set are slower than the
default configuration, the best one would still get the maximum number
of points, making it an apparently good candidate. This problem could
be partially solved by assigning zero points to candidates with speedup
below 1, but this would still lose interesting information: a candidate
scoring just below 1 might be a good one when applied to a different
program, and penalizing it too is likely a short-sighted decision.

3.1.7 Compiler performance over time

The long-term learning algorithm does not have an initial training phase:
it can immediately be used. Therefore it is important to determine what
is the performance of a pristine system based upon such algorithm.

A strict requirement of the algorithm is the availability of a default
configuration, to be used as the comparison term to compute the speedup
of each candidate. It can be a configuration where all the optimiza-
tions are disabled and all the numeric parameters of optimization al-
gorithms use generic values: the algorithm does not require any pre-
existing knowledge about the underlying hardware architecture and the
expected benefits of the compiler optimizations. It is its task to figure
this out. Nevertheless, if there is already available knowledge, the al-
gorithm is able to exploit it. The best way to do this is to use such
knowledge to define a non-trivial default configuration.

Since the default configuration is used as the comparison term, only
the candidates improving upon it will receive a good score: the default
configuration can be seen as the worst-case fallback the system uses
when it cannot find a better configuration.

46

3.1 Long-term learning compilation

In the limit, for an infinite number of compiled programs, the system
tends to converge to the optimum, whatever the starting point.

The ideal usage for long-term learning would be to enhance the per-
formance portability enabled by iterative compilation algorithms [34]:
the compiler could be distributed with a generic configuration, contain-
ing a set of heuristics good for a family of architectures (e.g. x86-i386
architectures). While a program is being developed, every time it is
compiled, the compiler evolves as well, adapting itself to the specific
system it runs on. When it is time to release the production binary,
the evolution of heuristics can be disabled if the need to keep the per-
formance predictable arise. In order to further speedup the evolution
of heuristics, the knowledge base can be shared by all the developers
working on a project. This would also prevent them from dealing with
different binaries.

Furthermore, if multiple candidates known to be good are available,
the system could implicitly race them to find the best one: instead of
starting from an empty knowledge base, it could be initialized with the
set of candidates to be raced, all with the exact same score. The system
would thus start from such heuristics before using randomly generated
ones, and would exploit them if they proved to provide speedups.

The IID model presented in [2, 45] aims at being an online probabilistic
tuner, so it is in some way similar to long-term learning regarding the
considerations proposed in this Section. Still, there are some important
differences. First of all the fact that it needs some offline tuning to be
done (the issue was later solved in [47]). Moreover, it does not take
into consideration the fact that applying different code transformations
at the same time can have effects that are not independent from one
another. Long-term learning, on the other hand, learns heuristic sets as
a whole, thus solving this issue.

Long-term learning is meant to constantly improve the performance
of the compiler over its whole life. It would be unrealistic to think that
the target system is never going to change and that the compiler itself is
never going to be updated. Therefore, the algorithm was designed from
the beginning with the objective of being robust to this kind of events.

This paragraph presents how this is possible in different scenarios.

The target system changes First of all, let us consider the case of the
unmodified compiler with a target system that changes (a new processor
is installed, the amount of available RAM is increased, a new version of
the operating system is installed, etc.). If the current best heuristics sets
performs well with the new system configuration, nothing will change.

47

3 Long-term Learning of Compiler Heuristics

On the other hand, if some new heuristic obtains better performance, it
will be chosen more often for originating new candidates. At the same
time, the score of the old heuristics will slowly decrease, until they drift
into oblivion.

Having a new heuristic reach the top of the ranking might seem hard,
but it is not. New heuristics are able to overcome the old ones because
all the scores are determined by the speed-ups weighted by the number
of times every heuristic has been used. Therefore, old heuristics are
resilient to changing their score (since they have proven their average
speedup over time) but new ones have low weight and their score can
immediately obtain a really high value if they provide a high speed-up.

Changing program features availability Let us consider now the avail-
ability of a new version of the compiler, able to compute a new program
feature. All the old heuristic formulas are still valid. During the evolu-
tion and mutation processes, new formulas are generated, and some of
them will use the new feature. If they manage to get higher speed-ups,
they will earn higher scores and will be used more frequently.

In the opposite scenario, should the compiler lose the ability to com-
pute a feature, the heuristic formulas containing that feature will not be
able to be evaluated any more. This means their score will drop fast,
and they will stop being used.

New heuristic needed Let us consider the scenario where an updated
version of the compiler has to take a new decision and therefore needs
a completely new heuristic. Every candidate configuration used in the
past, is composed by a set of heuristics (one for each decision point
in the compiler). The names of all the needed heuristics are stored in
set N of Algorithm 4.2.1. When the compiler requires a new heuristic,
its name is added to N . The GenerateMissingHeuristics function
is called immediately before using each candidate. If a name in set N
has not a corresponding heuristic inside the candidate, GenerateMiss-
ingHeuristics will generate the formula for such heuristic, completing
the candidate.

One compiler, different histories With long-term learning, every de-
ployed compiler has its own compilation history and has generated differ-
ent heuristics, thus behaving differently from every other compiler. This
might have downsides, especially in a production environment, when it
comes to bug reporting. On the other hand, it should be considered
that this is no different from every other machine-learning based com-

48

3.2 Experimental setup

pilation approach: after the training phase, each of these compilers has
its own, unique, model, and modifies its own behavior accordingly. We
designed the knowledge base to be as small as possible and contained in
a single file. This allows different developers to easily exchange their his-
tory, when needed, such as for bug fixing or for comparing performances.
Furthermore, the learning process can easily be disabled, when needed,
using only the current best heuristics. This allows to have a traditional
compiler, but with ad-hoc heuristics, once the desired performance level
has been achieved. As for other machine-learning approaches, deciding
when to stop the learning process is up to the user: the longer, the bet-
ter. But unique to long-term learning is the possibility to never stop
it: idle CPU times could be used to compile more programs, therefore
further improving the knowledge and the performance.

3.2 Experimental setup

In order to show the viability of our approach and its applicability to
multiple compilers, we implemented long-term learning into two different
compilation toolchains (GCC and PetaBricks), and performed tests on
multiple hardware configurations.

In the GCC implementation the heuristics are used by a script to
toggle GCC command line flags. In the PetaBricks implementation the
heuristics are evaluated directly by the compiler, both to define param-
eters used by PetaBricks optimizations and to define parameters passed
to the underlying GCC.

The long-term learning algorithm implementation is divided into two
parts. The learning algorithm itself is implemented in Python [125] as
a framework, and is common to all the compilers. It chooses and learns
the heuristics. The second part is implementation specific and it gives
the compiler a way to provide the program features to the algorithm
and to use the chosen heuristics to make decisions about the compila-
tion process. The compiler-specific implementations will be described
in Section 3.2.1 and 3.2.2. In these experiments, most of the times the
heuristics are then used to decide the best command line parameters,
but this is just one possible use: in fact, the heuristic for the Petabricks
tiling algorithm is evaluated directly inside the compiler itself.

As it can be seen in the Configuration section of Algorithm 4.2.1,
long-term learning needs a few parameters to be set in order to define
its behavior. We determined the values to assign to such parameters (in
Table 3.1) through a brief experimentation.

Our implementations were tested on different hardware configurations,

49

3 Long-term Learning of Compiler Heuristics

to show that the algorithm is able to adapt compilers to multiple archi-
tectures.

Hardware Configuration 1 A machine with 4 Intel Xeon X7550 pro-
cessors (8 physical cores each) running at 2.00 GHz with 128 GB of
RAM.

Hardware Configuration 2 One core of a machine part of the CILEA
Lagrange cluster [7]. Each machine is equipped with two Intel Xeon
X5460 processors (4 physical core each) running at 3.16 GHz and 16 GB
of RAM.

Hardware Configuration 3 One processor of a machine equipped with
two Intel Xeon X5460 processors (4 physical cores each) running at 3.16
GHz and 8 GB of RAM.

We want to show that the knowledge acquired by the compiler through
long-term learning can be applied to improve the performance of new
programs. Therefore, we need to simulate the life of a compiler that has
compiled a certain number of programs previously, showing how this
affects the performance of an unseen program.

We have a set of available programs, taken from a benchmark suite.
For every simulation, we use one of the programs of the suite as the test
program and the rest as the training-set, in a Leave-One-Out Cross-
Validation [72] configuration.

Each simulation is performed as follows. First of all, the test program
is compiled using the default compiler configuration to find out the ref-
erence speed. Then, a program from the training set is compiled. Then,
the test program is compiled again, using the knowledge acquired by
the compilation of the first training program, and is then tested record-
ing its execution time. Later, we compile the second program from the
training set and then again we compile and run the test program, using
the knowledge acquired from the compilation of the first two training
programs. This procedure is repeated for each program in the training
set.

It should be noted that, in order for the experiment to be meaning-
ful, it is mandatory that the test program has never been seen by the
system before, to prevent the compiler from acquiring knowledge from
its compilation. In the simulation setup that was just described, the
test program is compiled multiple times. In order to allow this, a spe-
cial option was implemented in the compilers, enabling a program to

50

3.2 Experimental setup

be compiled using the current knowledge, but disabling write access to
the knowledge base. Such option is used every time the test program is
compiled, therefore, every time, the system behaves as if it never saw
such program before.

It is also worth noting that we use the term ”training set”, but this
does not mean that a training phase is needed: it just denotes the set
of previously compiled programs, that provide the data for the learning
process. In a production system, such programs would be the programs
compiled by the compiler during its lifetime, up to the current one.
The compiler is immediately usable, without an explicit initial training
phase.

Since the long-term learning algorithm performs many operations (like
generating formulas) randomly, it is expected that two different simu-
lations will yield different results. Therefore, in order to provide more
statistically relevant information, all the graphs shown in Section 3.3 are
plotted using data computed as the average execution time computed
over 5 runs.

The next two sections will describe compiler-specific details of our
implementations.

3.2.1 GCC

We implemented long-term learning on top of GCC 4.6.3. The compiler
specific part consists of two components.

The first component is a GCC plugin, activated during the compila-
tion process to extract the static features (that is, extracted from code
analysis, as opposed to dynamic features, extracted from runtime infor-
mation) of the program. The computed values refer to the GIMPLE [89]
intermediate representation of GCC. The choice of what features to use
is important, because only a set of features providing actual information
about the program allows to build useful heuristics. So, we decided to
use a subset of the features proved valid by [94], namely those listed in
Figure 3.5, each averaged on the values computed for the whole program
being compiled. In particular, the features we chose are simple but able
to describe the structure of the program: they allow us to automatically
find out heuristics at least as good as the hand-written ones provided
by GCC. We might implement more feature extractors in the future, to
better characterize the programs in order to further optimize them. The
second component is the interface between the Python learning frame-
work and GCC itself. It is responsible for evaluating the chosen heuris-
tics and invoking GCC itself enabling the optimizations through GCC
command line flags according to the evaluated heuristics. Unfortunately,

51

3 Long-term Learning of Compiler Heuristics

Number of basic blocks in the method
Number of basic blocks with a single successor
Number of basic blocks with two successors
Number of basic blocks with more than two successors
Number of basic blocks with a single predecessor
Number of basic blocks with two predecessors
Number of basic blocks with more than two predecessors
Number of basic blocks with a single predecessor and single successor
Number of basic blocks with a single predecessor and two successors
Number of basic blocks with two predecessors and a single successor
Number of basic blocks with two predecessors and two successors
Number of basic blocks with more than two predecessors and more than two
successors
Number of basic blocks with a number of instructions less than 15
Number of basic blocks with a number of instructions in the interval [15, 500]
Number of basic blocks with a number of instructions greater than 500
Number of edges in the control flow graph
Number of assignment instructions in the method
Number of conditional branches in the method
Number of unconditional branches in the method
Number of binary interger operations in the method

Figure 3.5: The list of features used in heuristic formulas.

GCC was not built as a research compiler and it doesn’t allow full control
over the specific optimizations to be enabled, since many of them depend
on a specific optimization level being activated. Therefore, instead of
just learning the list of optimization passes to enable, long-term learn-
ing actually learns both the optimization level (between -O0 and -O3)
and the list of optimization flags to enable (-f<optimization name>) or
disable (-fno-<optimization name>) explicitly. Is is known that some
of GCC’s optimizations are disabled by default because they are unsafe.
We deal with this by automatically discarding executable that turn out
to be not working after being generated.

The benchmark suite we used for GCC is cBench [40]. It is com-
posed by sequential C programs (listed in Figure 3.6) and derives from
MiBench [52], with modifications aimed at making it better to test the
efficiency of compiler optimizations. We chose this benchmark suite in-
stead of other well known ones (such as SPEC) because it is used by
many other works dealing with machine learning and iterative compila-
tion, making it easier to compare the results. In cBench, each benchmark
is associated with a number representing how many executions (usually
hundreds) of the program are required to obtain a total running time of
about 20 seconds for the unoptimized version. We use such total run-
ning time as the value we compute the speedup on, because the multiple

52

3.2 Experimental setup

automotive bitcount

automotive qsort1

automotive susan c

automotive susan e

automotive susan s

bzip2d

bzip2e

consumer jpeg c

consumer jpeg d

consumer lame

consumer mad

consumer tiff2bw

consumer tiff2rgba

consumer tiffdither

consumer tiffmedian

network dijkstra

network patricia

office ispell

office rsynth

office stringsearch1

security blowfish d

security blowfish e

security pgp d

security pgp e

security rijndael d

security rijndael e

security sha

telecom adpcm c

telecom adpcm d

telecom CRC32

telecom gsm

Figure 3.6: The list of programs used for the experimental tests.

executions smooth out measurement errors. cBench contains multiple
datasets for each program. Nevertheless, for most experiments we just
used one dataset for each program, because [41] showed that it sufficient
to achieve an optimization level within 5% of the best possible level.
The experiments presented in Section 3.3.1 show what happens when
multiple datasets are used.

cBench programs are sequential, so they are not influenced by the fact
that we are using parallel hardware to run them.

3.2.2 PetaBricks

PetaBricks [5] is an open source compiler and programming language de-
veloped at MIT that uses machine learning and evolutionary algorithms
to autotune [6] programs, by making both fine-grained and algorithmic
choices. PetaBricks programs work on numerical matrices as their input
and output data. The compiler produces executables that expose hooks
allowing the autotuner to adapt them to the underlying platform and
to a given input data size.

PetaBricks does not compile C programs, therefore, we used its own
benchmark suite instead of cBench to perform our tests.

The PetaBricks compiler is a source to source translator, reading its
own input format and generating C++ programs that will be later com-
piled by GCC, used as the backend compiler. Therefore, we reuse part of
the setup from the GCC long-term learning compiler. In particular, we
use the same GCC plugin to compute features about the program being
compiled. The plugin works at GIMPLE level, so the source language (C
for the cBench tests, C++ for PetaBricks-generated code) is not impor-
tant. At first, we considered using features collected from PetaBricks’s
own intermediate representation (IR), but PetaBricks has not many op-

53

3 Long-term Learning of Compiler Heuristics

timizers requiring heuristic decisions, so we mainly use them to direct
the optimizers of the underlying GCC. Therefore, such IR is too high
level to be useful for our actual setup. Though, given more PetaBricks
optimizers, PetaBricks’ own IR would provide more interesting features.

The interface between the long-term learning framework and Peta-
Bricks is written in Python, as for GCC, but instead of evaluating the
heuristics it just stores them in a configuration file passed to PetaBricks
as a parameter. We modified the PetaBricks compiler adding a compo-
nent, written in C++, able to evaluate the heuristics. This shows that
it is possible to use long-term learning with different levels of integration
with the compiler it is working on.

The optimizations the PetaBricks implementation works on include
a PetaBricks-specific parameter, influencing the code it generates: the
number of times matrices have to be split by the tiling optimizer of
PetaBricks. Furthermore, we learn the numerical optimization parame-
ters that are passed to the underlying GCC compiler, namely those re-
lated to function inlining (max-inline-insn-auto, max-inline-insns-
-single, large-function-insns, large-function-growth, large-unit-
-insns, inline-unit-growth) and to loop unrolling (max-unroll-times,
max-unrolled-insns), because PetaBricks generates C++ code con-
taining many small functions and many loops. We also learn all the
flags described in Section 3.2.1 for the GCC implementation.

We learn more optimization parameters than in the GCC implemen-
tation: this is not related to the speed of the learning process or the
speedups we obtain with or without them. It is only meant to show
the flexibility of our algorithm. In the GCC implementation we learn
heuristics to make binary decisions about which optimizations to en-
able. Here, we also show the possibility to learn heuristics that evaluate
to numerical results, both for direct use with PetaBricks optimizations
or with optimization of underlying GCC.

We choose not to integrate the long-term learning algorithm and the
autotuner because autotuning aims not only at improving the perfor-
mance of the program, but also at making it able to adapt to changing
hardware without the need to recompile the software [5]. Long-term
learning only modifies the program at compile-time. On the other hand,
as a future work, long-term learning could be used to automatically de-
termine good default values for all the parameters set by the autotuner,
removing the need to autotune the program and enabling immediate
execution as long as the actual runtime system is the same as the target
system considered at compile-time.

54

3.3 Experimental results

3.3 Experimental results

In this section we will present the results of the tests we performed using
the described experimental setup, first for GCC, then for PetaBricks.
Unfortunately, it is not possible to provide a direct comparison with
other learning-based systems, since the main aim of long-term learning
is to be able to find out heuristics for compilers that have none, while
other systems aim to improve the performance of the existing heuristics.

On the other hand, it is possible to show the characterizing feature of
our system, that is, the way it gradually evolves the heuristics to find
the best performing ones. This will be done in the last subsection of the
experimental results.

3.3.1 GCC

We performed multiple tests using GCC. We used both -O0 and -O3 as
the default configurations. The first configuration, meaning no active
optimizations, allows us to verify the ability of long-term learning to
automatically find out good heuristics for a compiler with not even a
default set of heuristics defined yet (here, we aim at reaching the same
performance as -O3 from -O0). The second configuration enables most
of GCC optimizations, generates very fast programs and is used as a
reference by most iterative compilation works. When using it as the
default configuration, we aim at learning heuristics able to improve over
its performance.

Figure 3.7 shows the results of long-term learning on Hardware Con-
figuration 1, using automotive susan c as the test program. The initial,
unoptimized, execution time drops rapidly as soon as knowledge from the
compilation of at least one other programs has been acquired, because
the system manages to find out a set of heuristics enabling the optimiza-
tions that deliver the most speedup. Later, compiling more programs,
the execution time continues to decrease slowly, as marginally better
heuristics are found.

The number of different configurations that are tested during one
compilation with long-term learning is determined by parameter k of
Algorithm 4.2.1. Figure 3.8 shows that, on Hardware Configuration
1, using just 5 candidates per generation leads to a slowly declining
learning curve, whereas using more than 6 candidates per generation
does not provide significantly faster learning, therefore we chose to set
the default to 6. We also determined experimentally that our algorithm
performs well with just 3 generations. Therefore, with less than 20
candidate configurations tested during each compilation we can obtain

55

3 Long-term Learning of Compiler Heuristics

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
tim

e

of previously compiled programs

automotive_susan_c

long-term learning
GCC -O0

Figure 3.7: Execution times of automotive susan c on Hardware Con-
figuration 1 after the compilation of an increasing number of other un-
related programs. The default configuration is -O0.

good results without the need for an initial training phase, whereas other
iterative approaches need hundreds of them. It should be noted that
using 6 candidates over 3 generations leads to better results than just
compiling 18 candidates in a single generation. This is due to the fact
that using a single generation all the candidates are randomly generated
starting from the pre-existing knowledge of the compiler, whereas using
multiple generations the candidates of each generation are based upon
the knowledge acquired during the previous one for the specific program
being compiled.

Figure 3.9 shows the execution times for the same test, automotive-
susan c, on Hardware Configuration 2, using different training sets.

Training set 1 is the same used for Figure 3.7. The training sets 2 and 3
include the same programs of training set 1, but in a different order. As
it can be seen, the behavior of the different training sets is comparable.
The descending trend is analogous for the three sets. Training set 2 is
included in the graph to show that even if the initial choice of heuristics
is not optimal, the performance tend to improve and to converge to the
minimum over time. Therefore, except for the very first programs, the
specific sequence of previously compiled programs is not much important
in determining how well the next programs will be compiled.

Figure 3.9 also contains another important information. It shows us
that long-term learning is able to devise heuristics that not only improve
the performance of the default configuration, but reach and surpass the

56

3.3 Experimental results

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
tim

e

of previously compiled programs

automotive_susan_c

5 candidates/generation
6 candidates/generation
7 candidates/generation
8 candidates/generation

GCC -O0

Figure 3.8: Execution times of automotive susan c on Hardware Con-
figuration 1 for varying number of candidates used for each generation.
The default configuration is -O0.

performance of -O3. Unfortunately, though, this does not always hap-
pen: Figure 3.10 shows an example of a test program where such that,
on average, long-term learning is able to optimize with respect to the
provided default configuration, but without reaching the performance
of -O3. Nevertheless, given enough previously compiled programs, or a
specific execution where the long term learning algorithm explores the
heuristics search space in a particularly convenient way, it will eventu-
ally converge to the best possible solution, improving over -O3 where
possible.

If the aim is to actually improve the performance of a higher opti-
mization level, such as -O3, the best approach is to set such level as the
default configuration to compute the speedup against. This way, as de-
scribed in Section 3.1.6, all the configurations yielding an execution time
higher than the default configuration will be penalized: the algorithm
selects heuristics actually improving over the default one, if they exist.

Figure 3.11 provides an example of such an improvement, recorded
on Hardware Configuration 1. It shows how long-term learning is able
to improve the performance of the telecom gsm benchmark over GCC
-O3. It is worth noting that the improvement is not as stable as those
over -O0. This is due to the fact that the execution times of good
configurations are close to those of bad configurations. Therefore, the
score assigned to good heuristics sets is only slightly higher than that of
bad sets, making the choice of the best ones more tricky.

57

3 Long-term Learning of Compiler Heuristics

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e

Number of previously compiled programs

Comparison of different training sets

training set 1
training set 2
training set 3

GCC -O0
GCC -O3

Figure 3.9: Execution times of automotive susan c on Hardware Con-
figuration 2 after the compilation of an increasing number of other un-
related programs. The test is repeated using different training sets.
Execution times improve both on gcc -O0 and on gcc -O3 for training
sets 1 and 3. The default configuration is -O0.

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e

Number of previously compiled programs

consumer_lame

average result
GCC -O0
GCC -O3

best result

Figure 3.10: Execution times of consumer lame on Hardware Configura-
tion 2 after the compilation of an increasing number of other unrelated
programs. The average execution times improve on gcc -O0 but not on
gcc -O3. Though, they can be surpassed if the random generation of
heuristics explore the right area of the candidate heuristics search space.

58

3.3 Experimental results

 10

 10.5

 11

 11.5

 12

 12.5

 0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e

of previously compiled programs

telecom_gsm

telecom_gsm
GCC -O3

Figure 3.11: Execution times of telecom gsm on Hardware Configura-
tion 1 after the compilation of an increasing number of other unrelated
programs.

If the aim is to actually improve the performance of a higher opti-
mization level, such as -O3, the best approach is to set such level as the
default configuration to compute the speedup against. This way, as de-
scribed in Section 3.1.6, all the configurations yielding an execution time
higher than the default configurations will be penalized: the algorithm
selects heuristics actually improving over the default one, if they exist.

Figure 3.11 provides an example of such an improvement, recorded
on Hardware Configuration 1. It shows how long-term learning is able
to improve the performance of the telecom gsm benchmark over GCC
-O3. It is worth noting that the improvement is not as stable as those
over -O0. This is due to the fact that the execution times of good
configurations are close to those of bad configurations. Therefore, the
score assigned to good heuristic sets is only slightly higher than that of
bad sets, making the choice of the best ones more tricky.

It is interesting to inspect the behavior of long-term learning over a
longer time span (90 programs in the training set instead of 30), shown in
Figure 3.12. Here we can clearly identify three different phases. At the
beginning (until 10 programs have been compiled) the learning process
is really fast, since it is easy to learn optimizations that provide a huge
speedup. Actually, some overfitting takes place: the first 10 programs of
this test contain some similarities with automotive susan c, therefore
its performance improves very fast. Nevertheless, the aim of long-term
learning is to optimize the compiler to perform better on average, for all

59

3 Long-term Learning of Compiler Heuristics

 8
 8.1
 8.2
 8.3
 8.4
 8.5
 8.6
 8.7
 8.8
 8.9

 9
 9.1

 0 10 20 30 40 50 60 70 80 90

E
xe

cu
tio

n
tim

e

Number of previously compiled programs

automotive_susan_c

long-term learning
GCC -O3

Figure 3.12: Execution times of automotive susan c on Hardware Con-
figuration 1 after compiling an increasing number of other unrelated
programs. The performance level improves while becoming more stable
over time.

programs. The test program is not treated in a special way. Therefore,
as the long-term learning-enabled GCC goes on compiling new programs
from the training set (programs between 10 and 50), the performance
of automotive susan c get worse, but are unstable. After the first
50 training programs have been compiled, enough knowledge has been
gathered for the performance to become more stable and predictable.
It is likely that, given even more training programs, after finding out
an heuristic set that is good, on average, for all programs, the system
would tend to converge to a heuristic set that is able to predict the
best configuration for every program, therefore further improving the
performance again.

Figure 3.13 shows the average and maximum speedup obtained by
each of the test programs along the lifetime of the compiler over the
default configuration -O0 on Hardware Configuration 2, and compares
them with the speedup over GCC -O3. More precisely, let si be the
speedup of the test program after compiling i training programs, and
let n be the total number of training programs. The values plotted in
the bar chart are computed as:

average speedup =

∑n
1 si
n

and
maximum speedup = max({s1, . . . , sn})

60

3.3 Experimental results

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

bi
tc

ou
nt

qs
or

t1

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

bz
ip

2d

jp
eg

_c

jp
eg

_d

la
m

e

m
ad

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

di
jk

st
ra

pa
tr

ic
ia

bl
ow

fis
h_

d

ad
pc

m
_c

ad
pc

m
_d

gs
m

S
pe

ed
up

Program name

Average speedup

Maximum speedup

GCC -O3

Geometric mean

Figure 3.13: Speedup obtained by various programs with respect to gcc

-O0 on Hardware Configuration 2, and compared to gcc -O3. The av-
erage and maximum speedup are computed over all the values obtained
by testing the program once after compiling each of the programs listed
in Figure 3.6.

The average speedup includes the small speedups obtained after com-
piling the first few programs, so, obviously, it is worse than GCC -O3.
But in the end, as by our aim, the algorithm is able to find heuris-
tics good enough to reach and surpass -O3, as shown by the maximum
speedup.

Figure 3.14 shows the average and maximum speedups obtained over
GCC -O3. As it can be seen, the speedups obtained over the default
configuration -O3 are not too big, but still comparable to those of GCC
profile driven optimization. This was expected. The main aim of the
long-term learning algorithm is to find a model of the target architecture,
in the form of a good compilation heuristics set, without the need for
human intervention in the process. The data we gathered show that
this actually happens: the algorithm is able to reach the performance of
GCC’s maximum optimization level after the compilation of just a short
number of programs, without the need for any training phase. Ongoing
work is trying to always ensure a sensible improvement over -O3. The
main obstacle preventing improvements over -O3 is the small speedup
each of them can provide, sometimes comparable with the measurement
errors and therefore shielded by this. Therefore, such improvements are
difficult to detect and it is not easy to select the best heuristic.

61

3 Long-term Learning of Compiler Heuristics

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bi
tc

ou
nt

qs
or

t1

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

bz
ip

2d

jp
eg

_c

jp
eg

_d

la
m

e

m
ad

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

di
jk

st
ra

pa
tr

ic
ia

bl
ow

fis
h_

d

ad
pc

m
_c

ad
pc

m
_d

gs
m

ge
om

ea
n

S
pe

ed
up

Program name

Average speedup (HC1)

Maximum speedup (HC1)

Average speedup (HC2)

Maximum speedup (HC2)

GCC profile driven optimization (HC2)

Figure 3.14: Speedup obtained by various programs with respect to gcc

-O3 on Hardware Configuration 1 (HC1) and 2 (HC2). We represent the
average and maximum speedup computed over all the values obtained by
testing the program once after compiling with long-term learning each
of the programs listed in Figure 3.6. The speedups provided by GCC
profile driven optimization are presented as a comparison. The last bar,
geomean is the geometric mean of the measured speedups, computed for
HC1, HC2 and HC2 with profile driven optimization.

62

3.3 Experimental results

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e

of previously compiled programs

susan_c
GCC -O3

Figure 3.15: Execution times of automotive susan c on Hardware Con-
figuration 2 after the compilation of an increasing number of other un-
related programs. The default configuration is -O3. For each generation
of candidates, a different dataset is used.

Experiments with multiple datasets

For the sake of completeness, this section presents the results of some
experiments where multiple datasets have been used while testing GCC
programs, instead of just one. To be precise, the existence of multi-
ple generations of candidates during the long-term learning compilation
process is exploited. When the candidates of each generation are tested,
they are all run using the same dataset, therefore allowing for an easy
comparison of the running time results. But, every time a new genera-
tion of candidates is created, it is tested using a different dataset. With
the default settings of long-term learning, each compilation comprises
three generations: this allows the resulting program to be generated
by heuristics evolved over at least three datasets, just for the current
program.

On top of this, it should be considered that the heuristics are not
evolved from scratch for the single program, but they are the result of
the long-term learning over multiple programs. Therefore, it should not
be surprising that looking at the evolution of heuristics as depicted in
Figure 3.15 and Figure 3.16, there is no apparent difference with the
corresponding figures built using a single dataset: if a heuristic is robust
enough to work on multiple programs, it is even more so when just the
dataset is changed, keeping the same program. In fact, the algorithm

63

3 Long-term Learning of Compiler Heuristics

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e

of previously compiled programs

gsm
GCC -O0

Figure 3.16: Execution times of automotive susan c on Hardware Con-
figuration 2 after the compilation of an increasing number of other un-
related programs. The default configuration is -O3. For each generation
of candidates, a different dataset is used.

is able to improve the performance over the -O3 optimization level of
GCC.

So, this shows that the reason why multiple datasets have not been
used for all the tests is just that they do not convey any sensible addi-
tional improvement to the performance of the resulting heuristics.

3.3.2 PetaBricks

The amount of data we gathered about PetaBricks is smaller than that
available for GCC, because the running time of the tests is longer, for
various reasons. First of all, the number of tests contained in PetaBricks’s
benchmark suite is bigger than that of cBench. Furthermore, every pro-
gram compiled by PetaBricks needs to be tuned by the underlying au-
totuner that adapts runtime parameters exposed by each program to
the system it is running on, using the algorithm described in [6]. It is
a genetic algorithm, and as such it requires the program to be run mul-
tiple times to find out the best configuration. This implies that every
program version generated by our long-term learning algorithm has to
be tuned before being run to measure its execution time and determine
its speedup. Since the tuning process requires at least some minutes, the
added delay with respect to the GCC implementation is not negligible.

PetaBricks programs are natively parallel, so they tend to occupy
all the resources of the machine. In order to speedup the execution of

64

3.3 Experimental results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80

E
xe

cu
tio

n
tim

e

Number of previously compiled programs

cholesky

long-term learning from optimizations disabled
long-term learning from default optimization level

PetaBricks: optimizations disabled
PetaBricks: default optimization level

Figure 3.17: Execution times of cholesky on Hardware Configuration 1
after the compilation of an increasing number of other programs. The
speedup is computed w.r.t. PetaBricks with no optimization knowledge
at all (optimizations disabled) and from the default optimization level.

the tests, we used multiple machines and we executed multiple tests
in parallel using MapReduce according to the approach described in
Chapter 4 and in [119].

Even if the time required to simulate lifelong evolution of PetaBricks
with long-term learning is long, the results are promising.

We show the running times of a test computing the Cholesky decompo-
sition of a square matrix of size 256 (Figure 3.17). The default compiler
configurations used as reference for the long-term learning algorithm are:
optimizations disabled (activated by the -O0 parameter in our modified
PetaBricks version) and default (that is, maximum) PetaBricks opti-
mization level (does not require any particular command line option).

The spikes appearing in the graph are due to the underlying auto-
tuner. Being based upon a genetic algorithm, it is not assured to always
converge to the same solution, especially when the executable it is run
on is a different version of the same program. Therefore, it is possible
that some configurations generated by long-term learning turn out to
be harder to tune than most others. We can see that after an initial
slow descent phase, long term learning is able to find a good configura-
tion. Moreover, the performance level reached is better than that of the
default optimization level of PetaBricks.

The same happens in Figure 3.18, when using a square matrix of size
1024.

65

3 Long-term Learning of Compiler Heuristics

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
tim

e

Number of previously compiled programs

cholesky

long-term learning
petabricks default optimization level

Figure 3.18: Execution times of cholesky on Hardware Configuration 1
after the compilation of an increasing number of other programs. The
speedup is computed with respect to PetaBricks default optimization
level.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 10 20 30 40 50 60 70

E
xe

cu
tio

n
tim

e

Number of previously compiled programs

cholesky

long-term learning
PetaBricks: default optimization level

Figure 3.19: Execution times of cholesky on Hardware Configuration 3
after the compilation of an increasing number of other programs. The
speedup is computed w.r.t. PetaBricks default optimization level.

66

3.3 Experimental results

Figure 3.19 shows that a comparable reduction of the running times
can be obtained on a different hardware configuration too (namely, Hard-
ware Configuration 3).

3.3.3 Evolution of Heuristics

This section will show examples of how heuristics are created and evolved
by the long-term learning algorithm along the lifetime of a compiler.

Showing on paper the full evolution of the heuristics in a knowl-
edge base is impossible because of the continuous changes and the huge
amount of different heuristics and heuristics sets in it, so here we aim
at just giving a more practical overview of what happens because of the
evolution rules explained in Section 3.1.

First of all, we will show the evolution of the heuristic for deciding
whether to activate the -fgcse-lm flag of GCC. The functionality of
this flag is as follows:

When -fgcse-lm is enabled, global common subexpression
elimination will attempt to move loads which are only killed
by stores into themselves. This allows a loop containing a
load/store sequence to be changed to a load outside the loop,
and a copy/store within the loop.

The following evolutionary sequence is the result of the compilation
of a series of programs that are part of a training set as those described
in the previous sections of this chapter.

It should be noted that not every compiled program determines an
immediate evolution of each heuristic: the evolution happens according
to the probabilities listed in Table 3.1 and to the weights of Figure 3.4.
Therefore, even if the heuristic hereafter presented was evolved along
the compilation of about 90 programs, it is only 5 steps long, because
during all the other compilations, either other heuristics in the heuristics
set were changed, or the attempted changes did not impact positively
on the result and where therefore discarded.

As Figure 3.20 show, at first the heuristic is generated as a constant
false value.

Afterwards, in Figure 3.21, a mutation influencing the whole formula
kicks in, substituting the constant value with a more complex heuristic,
including a conditional statement and depending on the average number
of basic blocks with less than 15 instructions (avg basic block less -

15 inst) and on the average number of edges in the control flow graph
(avg edges in cfg).

67

3 Long-term Learning of Compiler Heuristics

S

Formula_bool

false

Figure 3.20: The first step of evolution of the gcse-lm heuristic.

S

Formula_bool

If_bool

if BinOp_bool

cond

Formula_bool

then

BinOp_bool

else

-98 >= NumFormula false avg_edges_in_cfg >= 93

66 - avg_basic_block_less_15_inst

Figure 3.21: The second step of evolution of the gcse-lm heuristic.

68

3.3 Experimental results

S

Formula_bool

If_bool

if BinOp_bool

cond

Formula_bool

then

Formula_bool

else

-98 >= NumFormula false true

66 - avg_basic_block_less_15_inst

Figure 3.22: The third step of evolution of the gcse-lm heuristic.

69

3 Long-term Learning of Compiler Heuristics

S

Formula_bool

If_bool

if BinOp_bool

cond

Formula_bool

then

Formula_bool

else

63 >= NumFormula false true

66 - avg_basic_block_less_15_inst

Figure 3.23: The fourth first step of evolution of the gcse-lm heuristic.

The next step (Figure 3.22 is again a mutation, influencing the else

branch of the conditional statement. The binary operation that was
there is removed and substituted by a constant true value.

Then, an evolution modifies the formula to the form visible in Fig-
ure 3.23, with the first numeric value changed from -98 (that used to
make the formula be always evaluated to get the else branch) to 63.
With this change, the formula can now take both branches.

The last evolutionary step (visible in Figure 3.24) is actually composed
by two different evolutionary steps. One changes the then branch from
false to true, and the other one changes the else branch from true

to false. This is an intended side effect of how the long-term learning
algorithm is written: it sets a minimum number of differences between
heuristics sets, but not a maximum number, so it might happen that a
heuristic is actually modified twice in a generation.

It is worth noting that this is just one possible evolutionary sequence
for this flag: given that the generation and evolution of the heuristics
happens with random techniques, every compiler history will likely be
completely different, because different heuristics will be generated, and
they will interact in different ways with one another.

70

3.3 Experimental results

S

Formula_bool

If_bool

if BinOp_bool

cond

Formula_bool

then

Formula_bool

else

63 >= NumFormula true false

66 - avg_basic_block_less_15_inst

Figure 3.24: The last step of evolution of the gcse-lm heuristic.

71

3 Long-term Learning of Compiler Heuristics

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12

S
co

re
 o

f t
he

 h
eu

ris
tic

Number of previously compiled programs

Heuristics Score Evolution

true
false

((avg_basic_block_less_15_inst * 10) > 49)

Figure 3.25: The evolution of the score of candidate heuristics over time.

Visualizing the evolution of a full heuristics set on paper is unfortu-
nately not possible, because of the extremely high dimensionality of the
problem.

Still, we can at least show the evolution of the score of alternative
candidate heuristics for the same role. The graph in Figure 3.25 has
been intentionally simplified to reduce the clutter in the image and make
it more readable for the sake of this example. It represents the evolution
of the score of three different heuristics for deciding whether to enable
the -fweb flag of GCC, over the compilation of 12 programs. In a
real-world version, the graph would contain hundreds of lines (one for
each candiate version of a given heuristic) and would extend for a much
higher number of compilations (all those made by the compiler during its
lifetime). Furthermore, a graph like this could be plotted for every single
heuristic that the compiler has to learn. Though, it should be noted that,
in order for the knowledge base file to be as small as possible, it does not
contain all the information required to plot this graph, because it only
stores aggregate versions of these data. In order to plot this graph, an
ad-hoc version of the learning-algorithm has been used, able to dump
all the data.

In the graph being considered, two of the plotted heuristics are the
trivial ones (always true and always false). The third one is a more
complex heuristic.

It is interesting to observe that the scores are continuosly evolving,
because, in this specific execution, all the three heuristics are actually
tested against the programs being compiled, and so there is more in-

72

3.4 Related work

formation that the compiler can use to learn. In this example, we can
observe that when a new heuristic is introduced, it initially behaves par-
ticularly well and gets a really high score (so that it will be more likely
to generate offspring in the following generations) but then its score is
averaged with that of the following compilations, and stabilizes around
a lower value. This continuous (but decreasing with time) modifica-
tion of the scores is what allows the long-term learning to quickly adopt
new heuristics that proved good, while at the same time preserving the
overall stability.

3.4 Related work

Many researchers have worked towards building compilers without the
need for compiler programmers to manually define whether to apply
each optimization algorithm.

The authors of [42] exploit periods of stable performance (called phases)
that can be found in programs to remove the need for a full execution of
a program in order to evaluate a single optimization. Multiple versions
of the code for a phase are compiled in the program. Each of the versions
is executed for part of the running time, determining which one is the
fastest through low-overhead profiling. This allows them to create self-
tuning applications. Evaluating optimization performance online is also
the aim of [79]. Their system is implemented in a Java VM, and could be
used to identify and optimize performance-critical code sections, though
using the Java JIT compiler instead of just choosing between multiple
pre-compiled versions of code.

[2] show that it is possible to learn a model that predicts good opti-
mizations based on the analysis of static program features. Experimen-
tal results from [21] suggest that using performance counters instead
of static features better characterizes the program, allowing to further
reduce the number of configurations to test.

Another approach was proposed by [33]. Every time they need to
compile a program, they build a model by compiling and testing a small
number (as low as 8) of versions of the program. Then, they use this
model to predict –without execution– the performance of 500 randomly
generated points of the search space. Up to 100 of the best points from
this set are executed to find the actual best version. The problem with
this approach is the need to build a program-specific model, and the fact
that it does not reuse knowledge acquired from previous compilation.

Thomson et al. [121] try to reduce the training time of the model by
focusing it on the programs that best characterize the search space of

73

3 Long-term Learning of Compiler Heuristics

the optimization sets. They first gather the static features of all the
programs in the training set, then apply unsupervised clustering in the
program feature space. This way, a classification of the programs ac-
cording to the similarity of their features is obtained. The most typical
program of each cluster is chosen, obtaining a subset of programs that is
representative of the whole search space but much smaller. Each of the
programs of the reduced training set is then compiled and tested with
4000 different optimizations sets, using a supervised learning technique
to learn the model. The model is then used to immediately provide the
supposedly best configuration, one-shot, without using iterative compi-
lation.

The workflow proposed by [84] uses a reverse k-Nearest Neighbors
classifier [73] to determine if the program being compiled is similar to a
previously met one. If it is, the best configuration that was recorded for
the similar program is used, without the need for any test execution. If
the program is an outlier, iterative compilation with random search is
used to search for good configurations. Information about all the tested
candidate configurations is stored. This approach is similar to long-
term learning because it does not need a training phase and reduces
the number of times iterative compilation has to be used. On the other
hand, when it is used, hundreds of executions are needed. Furthermore,
it uses a classifier instead of predicting actual heuristics. If the learning
process is stopped to increase the compilation speed, heuristics allow
outliers to be compiled with good but non-optimal results. This is not
possible with classifiers.

The main differences between long-term learning and other approaches
are as follows. Most works about machine learning applied to compilers
just aim at improving the performance of the compiled programs. Long-
term learning, on the other hand, also aims at finding the best compiler
heuristics expressed through human-readable formulas, that are easier to
understand for compiler writers with respect to classifiers and other more
complex models. To the best of our knowledge, the only other works
with the same aim are those by [113], using mathematical formulas,
and [90], using decision trees. Furthermore, most works learn the single
heuristics independently, whereas we also score sets as a whole, capturing
the interactions between heuristics. Finally, most works just deal with
changing command line flags, whereas our approach is more integrated
in the compiler and can change internal parameters of the algorithms as
well, as shown with PetaBricks tiling algorithm.

The LLVM compiler implements an only slightly related concept with
its lifelong program analysis and transformation [78]. Here, “lifelong”
refers to the lifetime of the program (“interprocedural optimizations per-

74

3.5 Future work

formed at link-time [...], machine-dependent optimizations at install time
on each system, dynamic optimization at runtime, and profile-guided op-
timization between runs”) instead of the lifetime of the compiler as in
long-term learning.

Autotuning [122] is another machine-learning-based approach to im-
prove the performance of programs, and it is also used by PetaBricks [5],
on top of which we based one of our implementations.

3.5 Future work

Various directions for improvements are possible, and we mention just
a few.

Sometimes, different compiler configurations applied to the same source
file might lead to identical binaries [77]. Moreover, since long-term learn-
ing is a multi-generation learning algorithm and uses elitism, it is likely
that some candidates will be present, identical, in multiple generations.
Therefore, we might end up testing the same binary candidate more
than once. To prevent this we might compute a hash of the binary file,
reusing previously recorded execution times where available. The de-
fault parameters of our long-term learning implementation test a total
of 18 candidates (as explained in Section 3.3.1) during a compilation.
Given that the timing runs are the slowest step of our algorithm, being
able to avoid even just one of them, would sensibly speed up the com-
pilation process. This is particularly important when dealing with the
candidates in a single generation: they all derive from the exact same
knowledge base, so there is a higher probability of generating similar
candidates. Furthermore, each generation only has a very low number
of candidates, so if two of them are equal, the explorarion of the search
space is being greately reduced. The default settings of our long-term
learning implementation test a total of 18 candidates (as explained in
Section 3.3.1) during a compilation. The timing runs are the slowest
step of our algorithm, so, avoiding even just one of them, would sensibly
speed up the compilation process.

Currently, the selection of what program features to use in heuris-
tic formulas is done randomly. A statistical approach computing the
correlation between features used and the obtained speedup is likely to
perform better. Also, adding the ability to compute more static pro-
gram features, and the ability to use dynamic features derived from
performance counters, we could improve the ability of the system to
characterize the program being compiled, thus further increasing the
quality of the result and the obtainable speedups.

75

3 Long-term Learning of Compiler Heuristics

The current version of long-term learning always tests a fixed number
of candidate configurations. Although low, this number still might cause
quite long compilation times. We could use program features to deter-
mine how many candidates to actually test. If we can determine that
many similar programs have been compiled before, we could trust the
current heuristics and just generate the best candidate accordingly (as
in [84]), if the program is completely different from anything known, the
full set of 18 candidates should be tested. Intermediate configurations
(for example with just 1 or 2 generations instead of 3) could also be
used when only some data is available from previously compiled similar
programs.

For the work presented in this chapter, we decided to use GCC be-
cause, being at the heart of PetaBricks, we could share part of the im-
plementation effort for the two compilers. LLVM [78] could be another
interesting compiler on which to implement long-term learning, as it pro-
vides a wide variety of optimization passes and the possibility to write
a pass manager to decide which ones to execute using our algorithm.

3.6 Conclusion

This chapter presented long-term learning, a novel algorithm to deter-
mine the best set of heuristics that a compiler can use to make decisions
about which optimizations to enable and what values to assign to pa-
rameters, without any human intervention.

Experimental results on multiple architectures confirm that, when im-
plemented in the GCC compiler, the algorithm is able to obtain good
results starting from no knowledge at all about good optimizations,
reaching and sometimes surpassing the performance of GCC’s maximum
optimization level. The same holds when the algorithm is implemented
in the PetaBricks compiler: the performance we obtain is better than
that obtainable by the unmodified compiler.

We also verified that when some initial knowledge is provided by the
compiler writer, the algorithm is able to improve the performance, some-
times marginally, sometimes in a significant way.

Also, long-term learning improves over exisiting algorithms by being
able to learn sets of heuristics as a whole, instead of single heuristics,
and by learning complex decision trees as human-readable formulas. The
first feature is important because it allows to take into consideration the
interactions of various code transformations, that can be non-trivial:
heuristics that are efficient when considered on their own, can yield
poor results when in a group because of such interactions. The second

76

3.6 Conclusion

feature is important because it enables compiler writers to understand
more easily when and how a code transformation should be applied, but
without giving them the burden of having to find this out by manual
experimentation.

Long-term learning improves the compiler by using the information it
gathers from the execution time of the compiled programs. In order to
compute it, it needs input data for the programs to be provided. There-
fore, the ideal use of a long-term learning compiler is probably inside a
test-driven development workflow, where the test data are prepared be-
fore the program itself and are already available during the compilation.

Long-term learning is meant to learn compiler heuristics, therefore, it
is not strictly required for it to always be active. It allows the user to
obtain compiler heuristics targeted at producing good programs for the
architecture they will actually run on, not just good programs obtained
by the iterations performed while the algorithm is active. Therefore,
once satisfying heuristics have been learned, the long-term learning al-
gorithm can be completely disabled, leaving a fast compiler producing
optimized programs. Also, given two identical systems, the heuristics
learned on one system can be ported on the other immediately giving
good results on new programs.

77

3 Long-term Learning of Compiler Heuristics

Algorithm 3.1.1: The long-term learning algorithm for compil-
ing one program. Variables marked as Input have to be provided
by the user of the compiler. Variables marked as Configuration
are defined by the implementation and are not directly accessible
to the user

Input: numGenerations, number of candidate generations;
src, source code of the program to be compiled;
k, number of compiler configurations (S={C1, C2, . . . , Ck}) to be
generated. Each is a set of compiler heuristics;
d, input data for the program timing runs;

Output: bin, binary code generated by the best performing heuristics set;
Configuration: C, set of default compiler heuristics;

b, number of top-scoring candidates to be preserved by elitism;
h, number of candidates to be built with top-scoring heuristics;
f , number of candidates to be built with the most frequently used
heuristics;
N , set of names of the heuristics that need to be part of a
configuration;
p, probability of exploring new candidates instead of exploiting
current knowledge;
e, maximum evolution rate, i.e. maximum percentage of
heuristics that can be evolved;
F , set of names of the features that can be used in formulas;
m, probability of a mutation to occur instead of an evolution;
KB, knowledge base including heuristics, sets of heuristics, and
their usage information;

for i = 1 to numGenerations do
R � ∅;
bin0 � Compile(src, C);
execT ime0 � GetExecTime (bin0);
speedUp0 � 1;

R � R ∪ {
〈
bin0, C, speedUp0

〉
};

// Elitism

Elite1 � GetBestCandidates (b, KB, N);
Elite2 � GenerateCandidatesFromBestHeuristics (h, KB, N);
Elite3 � GenerateCandidatesFromMostFrequentHeuristics (f , KB, N);
Elite = Elite1 ∪ Elite2 ∪ Elite3;
// Evolution and mutation

missingCandidates = k − |Elite|;
NewCandidates � GetBestCandidates (missingCandidates, KB, N);
foreach Ci ∈ NewCandidates do

if UniformRandom(0, 1) < p then
Ci �Evolve (Ci, e, F , m);

S � Elite ∪ NewCandidates;
foreach Ci ∈ S do

// Generation of new formulas

Ci � GenerateMissingHeuristics (Ci, N , F);
// Computing the fitness function

bini � Compile(src, Ci);
execT imei � GetExecTime (bini, d);
speedUpi = execT ime0/execT imei;
R � R ∪ {〈bini, Ci, speedUpi〉};

bin � SelectBestProgram (R);
// Updating the knowledge base

KB � UpdateKnowledgeBase(KB, R);
return bin, KB

78

3.6 Conclusion

Table 3.1: The values we used for the parameters of Algorithm 3.1.1,
obtained by experimentation.

Parameter Value

top-scoring candidates preserved by elitism (b) 1
candidates built with top-scoring heuristics (h) 1
candidates built with most frequently used heuristics (f) 1
needed heuristics (N) compiler-dependent:

see Section 3.2.1
and 3.2.2

exploration probability (p) 0.2
maximum evolution rate (e) 0.3
available program features (F) see Figure 3.5
mutation probability (m) 0.3

79

4
Parallel Iterative Compilation:
Using MapReduce to Speedup

Machine Learning in Compilers

1 Research has proved that machine learning and iterative compilation
techniques can be profitable when applied to compilers to improve the
optimizations they perform on programs. Unfortunately, these tech-
niques are hampered by the long training times they require. Even if
much research (such as [42]) has been spent in trying to mitigate this
issue, most techniques still require multiple compilations and executions
of programs at compile time or during a training phase. Testing these
candidates in parallel is a good way of shortening iterative and machine
learning compilation times.

This chapter shows that parallel execution of multiple training runs
can be naturally mapped on the MapReduce programming model and is
effective in reducing execution times for iterative compilation. The pre-
sented technique allows parallel execution on multiple identical worker
nodes or on a single machine by splitting its resources. Experimental
results show that an almost-linear speedup can be obtained.

In particular, the main contributions of this chapter are as follows.
We present a novel approach based on MapReduce that is able to

improve the performance of iterative compilation techniques by paral-
lelizing them on multiple identical machines. In particular, each machine

1Part of this chapter was previously published in [119].

81

4 Parallel Iterative Compilation

compiles and tests one or more different versions of the program, in par-
allel with all the other computational nodes. The results of these test
runs are later gathered and used to determine which version obtained
the best performance.

We also present a method that allows one to exploit the parallelism
available in modern machines by applying a variant of the proposed
MapReduce approach on a single machine. Using this method, the ma-
chine can be split in such a way to allow us to parallelize the iterative
compilation of sequential or moderately parallel programs.

Finally, we show experimental evidence of the efficacy of both the
approach for multiple machines and the one for a single machine. The
experimental results have been obtained through a large and diversified
experimental campaign performed on various hardware configurations.

The rest of the chapter is organized as follows: Section 4.1 presents our
proposed approach for accelerating iterative compilation with MapRe-
duce. Section 4.2 describes the specific iterative compilation problem
used to validate our technique. Section 4.3 shows the experimental
results we obtained on diverse hardware configurations. Section 4.4
presents the related work and Section 4.6 concludes.

4.1 MapReduce for Iterative Compilation

In this section we present a new way to speedup iterative compilation,
based on the MapReduce paradigm.

What most iterative compilation approaches do is summarized by the
algorithm presented in Algorithm 4.1.1. We can consider the sequence of
operations comprising the compilation, the execution of enough timing
runs, and the scoring of the result of a given configuration as a single
task. We name this task the testing of the configuration.

The main reason for iterative compilation to be slow is that it needs
to obtain multiple versions of the program to be compiled. Each version
consists of an executable binary (bini in Algorithm 4.1.1) and derives
from the same source code (src) by applying a different candidate con-
figuration (Ci). Each of the binaries has to be executed multiple times
in order to determine the fittest choice. The meaning of ”configuration”
of a candidate depends on the specific iterative compilation problem at
hand: it might be a set of compilation flags, a set of compiler heuristics,
a set of numerical parameters, etc.

Compiling and running the candidate binaries are time consuming
operations. Furthermore, the actual number of candidates to be tested
is high, usually ranging in the hundreds. Statistical soundness also re-

82

4.1 MapReduce for Iterative Compilation

Algorithm 4.1.1: Iterative compilation

Input: src, source code;
r, number of runs;
k, number of compiler configurations
(S={C1, C2, . . . , Ck}) to be generated

Output: bin∗, binary code generated by the best performing
compiler configuration

// Compiles a program through iterative compilation

1 S � GenerateCandidateConfigurations(k)
2 R � ∅
// Each iteration of the following cycle can be

executed in parallel by a map worker

3 foreach Ci ∈ S do
4 bini � Compile(src, Ci)

5 t � 0
6 for i = 1 to r do
7 t � t+GetExecTime(bini)
8 avgT imei � t/r
9 scorei � ComputeScore(avgT imei)

R � R ∪ { 〈bini, scorei〉 }
// The following operation can be done by a reduce

worker

10 bin∗ � SelectBestProgram(R)
11 return bin∗

quires that each of them is run enough times to smooth out noise from
the measuring. Even considering the ideal case, where each of these op-
erations is fast on its own, the process as a whole is slow, and can easily
sum up to hours.

Section 4.1.1 will present an approach based on MapReduce to speed
up the testing of the candidates on a cluster of identical computation
nodes, while Section 4.1.2 will show that a similar technique can be
applied to a single computer too.

4.1.1 Using multiple identical nodes

It is immediate to see that the testing of a configuration is completely
independent from the testing of every other configuration, therefore we
can execute them in parallel.

83

4 Parallel Iterative Compilation

In particular, it is natural to implement such parallel execution ac-
cording to the MapReduce programming model, defining the functions
as follows:

Map Each invocation of the map function receives one candidate con-
figuration as its input. The worker node executing the map function
takes care of the full testing of the candidate. It compiles the source
code applying optimizations and transformations as instructed by the
configuration. Then, it runs the generated binary multiple times, sum-
ming up the running times and computing their average to smooth out
noise. Finally, it assigns a score to the binary, according to a fitness
function. This function is specific of the iterative compilation problem
at hand, and it depends on the running time of the program and, some-
times, on the generated code size or on the compilation time. The map
function returns the compiled binary together with its score.

Reduce It is executed by a single worker node. It receives the list of
candidate binaries and their scores, and returns the best binary.

The MapReduce paradigm as presented in Google’s paper [29] allows
the user to specify some functions that perform support tasks (splitter,
partitioning, combiner). In the model we propose, there is no need for
such functions.

The splitter function divides the input data in chunks to be processed
by the various map nodes. It is useless to us, because the data (that is,
the set of candidate configurations) are trivially split: each candidate is
a map job on its own.

The partitioning function takes the output of the map workers and
divides it among the various reduce nodes, according to their interme-
diate key. We do not need it because there is a single reduce node, so,
no need to partition intermediate data.

The combiner function is executed on the same worker nodes as the
map functions. It allows to pre-process some of the intermediate results
before they are sent to the reduce nodes, in order to reduce traffic on the
network. Usually it implements the same code of the reduce function.
In our application scenario this function is not needed: even if itera-
tive compilation requires the testing of many candidates, still there are
hudreds of them for each compilation process, therefore the amount of
data that will actually be sent on the network is negligible with respect
to the execution times of the candidates.

Iterative compilation and machine learning techniques are applied to

84

4.1 MapReduce for Iterative Compilation

compilation to build a model of complex systems that cannot be easily
described by the compiler writer themselves. Therefore, it is obvious
that the MapReduce approach we propose can only be applied to an
environment composed of identical worker nodes, or, at least, identi-
cal map nodes. This way, the compiler is actually able to learn the
characteristics of the underlying hardware platform and select the best
candidate program, even if the various computations are performed on
physically distinct nodes.

The need for identical computation nodes might look like a strong
limitation, reducing the applicability of the technique, but it is actu-
ally not so. As stated in [113], computing costs are now low enough to
make it feasible to dedicate a cluster of machines to searching a solution
space. This is even more evident considering that machine learning in
compilers has been mostly applied to embedded systems [34]. Embed-
ded systems are strongly resource-constrained, therefore developers try
to exploit them as much as possible by applying every possible opti-
mization. Also, programs are likely to be developed for devices that are,
or will be, produced in large numbers, so it should be neither difficult
nor expensive to use several of them in parallel to speedup the compila-
tion phase. Furthermore, [47] showed that it is possible to learn across
different machines, so, as stated in Section 4.6, we could use a similar
technique to extend this work with the ability to support heterogeneous
clusters.

Section 4.3 will show that the approach can also be beneficial when
applied to a computing cluster composed by identical nodes. Here, in
the typical setup, an application runs on a single one node, elaborating
a part of the dataset. Other copies of the application run on the other
nodes, working on a different part of the dataset. Therefore, we can use
our MapReduce-based approach to compile the application optimizing
it to run on a single node, using multiple nodes to test the various
candidate versions in parallel.

In order to perform a fair comparison, all the candidates have to be
tested on the same dataset. The test data are generated by (or stored
on) the master node, and they have to be delivered to all the map nodes.
The easiest way to accomplish this is to use a network filesystem, com-
mon to all nodes, such as NFS [102] or AFS [59]. Such an approach
guarantees a transparent access to the common dataset, and also to the
source files of the program to be compiled.
Nevertheless, the shared filesystem is not strictly required: its function-
ality could be substituted by the transmission of more data (namely, the
dataset and the source files) to all the map nodes as part of the job to
be run. They could also be pre-distributed to all the computation nodes

85

4 Parallel Iterative Compilation

before starting the actual testing, except in the case where the dataset
is generated by the master node.

Parallelism is sometimes difficult to exploit for computation because
of the overhead introduced by the communication between threads or,
even worse, nodes of a distributed computation. In our approach, the
overhead due to the transmission of the data of a job over the network
connecting the nodes is masked by being executed in parallel by the
nodes and it is negligible with respect to the time each node will have
to spend testing the candidate. Furthermore, the running times are
recorded after the transmission is completed, so it does not influence
the testing of the candidates.

4.1.2 Using a single computer

Under certain conditions, the presented technique can also be applied
when a cluster of machines is not available.

Nowadays, processors with an increasing number of cores are com-
monplace, but many programs are written in a sequential fashion, and
they do not exploit the parallelism of the machine. Other programs
only have a fixed, small degree of parallelism, using no more than a few
threads.

The authors of [115] showed that MapReduce is a profitable program-
ming model not just for distributed computation, but also for shared-
memory systems. Therefore, we can exploit the existing but unused
parallelism of the machine to parallelize iterative compilation.

Given a computer with n times as many computing cores as the max-
imum number of threads of the program to be compiled, and n times
the maximum estimated amount of RAM the program will need during
its execution, it is possible to split the computing resources n-fold, and
use them to run n map nodes, to test multiple programs at the same
time.

In order to minimize the interaction between candidates, the best
approach is to assign the cores to the programs according to physical
connections they have on the CPUs. For example, if a group of cores
share the same L2 cache, they should preferably be all assigned to a
single running candidate.

Starting multiple MapReduce workers is not enough to ensure that
resources are split in the correct way: the operating system scheduler
can allocate them according to its own decisions, unless it is instructed
to behave differently. As an example, hereafter we present the tools
that can be used in a Linux environment to explicitly split the resources
among different programs.

86

4.1 MapReduce for Iterative Compilation

According to the specific hardware configuration, two main courses of
action can be identified to split the resources among the programs, de-
pending on whether the system has Uniform Memory Access (UMA) or
Non-Uniform Memory Access (NUMA) [56]. NUMA systems are better
than UMA systems when it comes to being used for parallel iterative
compilation with MapReduce. Each NUMA node is directly connected
to its own memory banks, with a private bus between the CPU and the
memory. So, as long as each process is limited to use only the RAM that
is local to the node it is running on, for our purpose a NUMA system
can be considered similar to a cluster of physically different computers
with a shared file system.

UMA On UMA systems, we can use the ulimit tool to define the
maximum amount of memory that is available for the program. The
taskset tool can be then used to bind the map worker process to the
right cpu cores.

NUMA NUMA systems provide the numactl tool, that can be used
to bind a running process to one or more specific NUMA nodes, and to
only allow access to the local memory of those nodes. This will prevent
most possible interferences with other processes.

The main difference between the Phoenix MapReduce for shared-
memory systems, described in [115], and our MapReduce approach, is
that Phoenix is implemented on top of the pthreads library, whereas we
use the same network-based MapReduce implementation that we use in
the distributed scenario. The speed difference of the two implementa-
tions has not been measured, since it is beyond the scope of this chapter.
The loopback network interface should be fast enough to introduce a
negligible overhead. Nevertheless, if our approach is implemented with
the aim of being used exclusively in a non-distributed environment, a
Phoenix-like implementation could provide better performance, since it
is specifically targeted at this kind of systems.

Some works, like [88], try to improve the resource usage while running
programs in parallel on machines with shared resources. In particular,
they try to detect contention of resources to limit cross-core application
interference for latency-sensitive applications and throughput-oriented
applications. This kind of approach, altough interesting is not the right
one for our goals, because it still leads to 4% of contention on aver-
age, which is far too much for being able to detect the small speedups
that can be obtained by certain compiler configurations. The MapRe-

87

4 Parallel Iterative Compilation

duce methodology that we present, with almost no measurable resource
contention, is much more suitable for iterative compilation.

4.2 Experimental setup

The description and the evaluation of the specific learning process we
used to gather the experimental data presented in Section 4.3 is beyond
the aim of this chapter. Nevertheless, for the sake of clarity, we will
briefly present the iterative compilation approach we implemented, and
provide more specific details about how MapReduce is used in it.

As described in Chapter 1, there are two main research fields dealing
with improving the quality of compiler optimizations through the use of
computing power: machine learning and iterative compilation.

The problem with machine learning is that, at deployment time, it
requires a long training phase (i.e. sometimes lasting days, or weeks) to
allow the compiler to accurately learn the model it will use to predict
what optimizations to apply and how to apply them.

Iterative compilation, on the other hand, does not require an initial
training phase, but it needs many different versions of each program to
be compiled, tested and compared, in order to find the best one.

We decided to develop a hybrid model, to harness the best of both
worlds while avoiding some of their defects. We call this model long-term
learning.

In long-term learning, as in many machine learning techniques applied
to compilation, we give the compiler a way to predict what the best pro-
gram to be generated is. In particular, we use an approach similar to
Meta-Optimization [113]: the model we learn is made of the formulas
representing the heuristics to be applied by the compiler. Though, we
learn them while we compile the applications, thus removing the offline
training phase (at deployment time) that has to be performed by most
compilers using machine learning.
This is made possible by an iterative-compilation-like approach. Every
time a program is compiled, multiple versions of it are compiled, us-
ing different configurations. Each configuration is composed by a set of
heuristics. As in iterative compilation, the best program is kept. At
the same time, though, the information about which set of heuristics
performed better is recorded. The next time a program is compiled,
better heuristic sets will be generated, evolving them from this infor-
mation. This greatly reduces the configuration search space, therefore
fewer versions of the program have to be tested with respect to tradi-
tional iterative compilation techniques. Also, since we are learning the

88

4.2 Experimental setup

Algorithm 4.2.1: Simplified representation of the long-term
learning algorithm as implemented in PetaBricks

Input: src, source code;
n, size of data matrix to be generated for testing;
C, set of default compiler heuristics;
r, number of runs;
DB, knowledge base including a set of heuristics with the
corresponding usage information;
k, number of compiler configurations (S={C1, C2, . . . , Ck}) to
be generated. Each is a set of compiler heuristics

Output: bin∗, binary code generated by the best performing
heuristics set;
DB, knowledge base updated with information collected
during the execution of the algorithm

// Performs one instance of long term learning through

iterative compilation.

1 testData � MatrixGeneration(n)

2 bin0 � Compile(src, C)
3 configFile0 � Autotune(bin0);

4 t � 0
5 for i = 1 to r do
6 t � t+GetExecTime(bin0, testData, configFile0)
7 avgT ime0 � t/r

8 S � GenerateCandidateConfigurations(k, DB)
9 R � ∅

10 foreach Ci ∈ S do
11 bin � Compile(src, C)
12 configFile � Autotune(bin);

13 t � 0
14 for i = 1 to r do
15 t � t+GetExecTime(bin, testData, configFile)
16 avgT ime � t/r
17 speedUp � avgT ime0/avgT ime
18 R � R ∪ { 〈bin, C, speedUp〉 }

19 bin∗ � SelectBestProgram(R)
20 DB � UpdateKnowledgeBase(DB, R)

21 return bin∗, DB

heuristics (therefore, the model) that produce the best results, when a
satisfying level of performance has been reached, the learning process
can be completely disabled for all the subsequent compilations, thus

89

4 Parallel Iterative Compilation

Algorithm 4.2.2: Long-term learning in PetaBricks, with
MapReduce applied.

Input: src, source code;
n, size of data matrix to be generated for testing;
C, set of default compiler heuristics;
r, number of runs;
DB, knowledge base including a set of heuristics with the
corresponding usage information;
k, number of compiler configurations (S={C1, C2, . . . , Ck}) to
be generated. Each is a set of compiler heuristics

Output: bin∗, binary code generated by the best performing
heuristics set;
DB, knowledge base updated with information collected
during the execution of the algorithm

// Performs one instance of long term learning through

iterative compilation.

1 testData � MatrixGeneration(n)

2 bin0 � Compile(src, C)
3 configFile0 � Autotune(bin0);

4 t � 0
5 for i = 1 to r do
6 t � t+GetExecTime(bin0, testData, configFile0)
7 avgT ime0 � t/r

8 S � GenerateCandidateConfigurations(k, DB)
9 R � ∅

10 foreach Ci ∈ S do
11 Map (src, Ci, r, testData, avgT ime0, R)

12 (bin∗, DB) � Reduce(R, DB)

13 return bin∗, DB

completely removing the need for multiple iterations.

In the context of long-term learning, a heuristic is a (possibly condi-
tional) mathematical formula depending on some characteristics of the
program being compiled, called features. We now provide an example
of heuristic. A well-known compiler optimization is loop unrolling: it
consists in replicating multiple times the body of a loop in order to
reduce the overhead due to checking the loop condition after every iter-
ation. We need to use a heuristic to decide the most profitable number
of unrolling to apply to a loop. A heuristic for such a task looks like

90

4.2 Experimental setup

Algorithm 4.2.3: Map function

Input: src, source code;
C, compiler configuration;
r, number of runs;
testData, data to be used for the test;
avgT ime0, execution time for the default compiler
configuration;
R, result set to be updated

Output: R, result set updated with the result of this test

1 bin � Compile(src, C)
2 configFile � Autotune(bin);

3 t � 0
4 for i = 1 to r do
5 t � t+GetExecTime(bin, testData, configFile)
6 avgT ime � t/r
7 speedUp � avgT ime0/avgT ime
8 R � R ∪ { 〈bin, C, speedUp〉 }

Algorithm 4.2.4: Reduce function

Input: R, result set to be updated;
DB, knowledge base including a set of heuristics with the
corresponding usage information

Output: bin∗, binary code generated by the best performing
heuristics set;
DB, knowledge base updated with information collected
during the execution of the algorithm

1 bin∗ � SelectBestProgram(R)
2 DB � UpdateKnowledgeBase(DB, R)

3 return bin∗, DB

this:

if loopNest >= 2 and loopBodySize <= 4 then 6 else 0

where loopNest, and loopBodySize are features: they are characteristics
of the loop for which the unroll factor is being decided. Their values are
computed by the compiler and then fed into the formula itself to obtain
the unroll factor to be applied to the loop.

Our MapReduce approach to speedup iterative compilation is being
developed on top of the PetaBricks compiler [5]. PetaBricks is an open
source compiler and programming language developed at MIT that uses
machine learning and evolutionary algorithms to autotune [6] programs,
by making both fine-grained and algorithmic choices.

91

4 Parallel Iterative Compilation

No mapreduce 1 Worker 2 Workers 3 Workers

28.79 min 31.14 min 15.26 min 10.48 min

Table 4.1: Compilation times of the matrix multiply benchmark on Hard-
ware Configuration 1 with 16 compiler configurations

PetaBricks programs work on numerical matrices as their input and out-
put data. The compiler produces executables that expose hooks allowing
the autotuner to adapt them to the underlying platform and to a given
input data size.

Long-term learning (shown in Algorithm 4.2.1) is implemented by
modifying PetaBricks with the ability to learn heuristics to take decisions
about the optimizations.

Because of how PetaBricks programs work, each candidate binary,
built from the same source code with a different set of heuristics, needs
to be autotuned before being tested. The autotuning process can be
quite long, thus making our MapReduce approach convenient, even if
there are less candidates than in a traditional iterative compilation ap-
proach. An example of this can be seen in Table 4.1, that shows the
testing times for a matrix multiply benchmark (taken from Petabricks
benchmarks) autotuned for square matrixes of size up to 1024. When
multiple programs are being compiled, the savings can easily sum up to
hours, even with just a few workers.

Algorithm 4.2.2 shows the iterative compilation algorithm underlying
our long-term learning approach, in its MapReduce form (Algorithms
4.2.3 and 4.2.4 show the Map and Reduce functions respectively). It
is easy to see that it is an instance of the general iterative compilation
algorithm presented in Algorithm 4.1.1. The main differences are the
need for autotuning after each binary is generated, the presence of a
knowledge base storing the long-term learning data, and the need for a
”default candidate” to compare against.

Every time an instance of long-term learning runs, our MapReduce
approach is used to parallelize the testing of the candidate heuristic sets.

It is worth noting that in this application of the approach we propose,
the fitness function is the speedup of the program compiled with each set
of heuristics. The speedup is computed with respect to a version of the
program compiled with a default, fixed set of heuristics. This version is
tested prior to starting the MapReduce job.

92

4.3 Experimental Results

4.3 Experimental Results

This section presents the experimental results that show the profitability
of the approach we presented in Section 4.1. The exact application we
used as the experimental setup to gather the data hereafter presented is
the one we detailed in Section 4.2.

In order to show the wide applicability of our approach, we used a
variety of hardware platforms and setups. For each of them, we ran
and timed a series of executions, varying the number of heuristic sets
to be tested, and the number of worker nodes we used. The minimum
number of sets of heuristics is 4, because it is the minimum number that
can be used by our long term learning approach (because of the elitism
mechanisms described in 3.1.4). The maximum number of heuristics
varies for each hardware configuration. It depends on how many ex-
ecutions we could run given the constrained computing time available
on the machines. The maximum number of worker nodes depends on
the underlying hardware platform. Every point of data on the graphs
represents the average running time of three different run, in order to
reduce the effect of noise on the measurement.

Our long-term learning framework is written in Python, and the MapRe-
duce implementation is based upon the MinceMeat.py library [36]. The
library is open source, and we improved it by adding the possibility
of manipulating multiple sets of data without the need for the worker
nodes to establish a new network connection to the master node. This
was only for the sake of making the usage of the library more practical,
and does not have any impact on the performance of the original library.

Here are the hardware configurations we used to run the tests:

Hardware Configuration 1 3 different machines, used as 3 worker
nodes. Each machine is equipped with four Intel Xeon X7550 processors
(8 physical cores each) running at 2.00 GHz and 128 GB of RAM.

Hardware Configuration 2 1 machine, used as 4 worker nodes. The
machine is equipped with four AMD Opteron 8378 processors (4 physical
cores each) running a 2.40 GHz and 32 GB of RAM. Each processor is
a NUMA node with four cores and 8 GB of local RAM, and is used for
running a MapReduce worker node.

Hardware Configuration 3 1 machine, used as 2 worker nodes. The
machine is equipped with an Intel Pentium D processor (2 physical cores)
running at 2.80 GHz, with 2 GB of RAM. This is a UMA system, so

93

4 Parallel Iterative Compilation

each worker node is statically assigned one of the cores, and 1 GB of
RAM.

Hardware Configuration 4 10 different machines, part of the CILEA
Lagrange cluster [7], used as 10 worker nodes. Each machine is equipped
with two Intel Xeon X5460 processors (4 physical core each) running at
3.16 GHz and 16 GB of RAM.

The graph in Figure 4.2(a) presents the results for Hardware Config-
uration 1. Figure 4.2(b) is Hardware Configuration 2 and Figure 4.3(a)
is Hardware Configuration 3. Finally, Figure 4.3(b) shows the perfor-
mance of Hardware Configuration 4. The behavior on all the Hardware
Configurations is comparable: every instance of the long term learning
algorithm we run includes a sequential part, namely the generation of
test data and the compilation and testing of the program compiled with
the default set of heuristics. Then, MapReduce partitions the testing of
all the candidate programs among the available map worker threads, in
parallel. Therefore, we can compute the maximum theoretical speedup
according to Amdahl’s Law [56]. Given c compiler configurations to test
and N worker nodes, we consider the sequential part2 to be S = 1/(c+1)
and the parallel part to be P = c/(c+ 1). The results we obtain (shown
in Figure 4.1(a)) are close to the theoretical speedup s(N) = 1

S+P/N .

As shown in Table 4.3 and Figure 4.1(b), the influence of the sequential
part becomes less important with the growing number of heuristics, al-
lowing our approach to scale almost linearly with the number of available
worker nodes.

The results of Figure 4.3(b) are less regular than all the other results.
This is due to the network filesystem connecting the nodes, that is shared
by all the nodes of the cluster. Processors and RAM of the nodes can
be requested for exclusive use to run the tests, but the filesystem is
common to all the nodes of the cluster. In our experimental setup the
recorded times include the time the filesystem takes to transfer the data
to the computation node. Because of this, other users of the cluster
could affect the measurement.

It is worth noting that the time we measure to plot these graphs is
the total execution time of the iterative compilation, because we want
to show the speedup that can be obtained through MapReduce for the
whole process. On the other hand, the time measured for determining

2The sequential part consists in the compilation and execution of the candidate
obtained by using the default configuration that will be used as a reference. This
is executed before the parallel execution of all the other c candidates starts.

94

4.4 Related Work

Configuration Mean Variance

Single core 66.5124 s 0.014
Parallel (core 1) 66.7308 s 0.019
Parallel (core 2) 66.6710 s 0.014

Table 4.2: Time needed to complete the testing of the exact same can-
didate (recorded on 30 repetitions) on Hardware Configuration 3, run
with both cores in parallel, or on a single core

how good each candidate is only includes the running time of the candi-
date: the timing starts after the data have been moved locally, therefore
is not influenced by the filesystem performance. This way, the candidate
comparison is more fair.

Figure 4.1(a) shows the speedup that can be obtained when compiling
a program with 64 different sets of heuristics on the various hardware
configurations. Hardware Configuration 4 has the less linear speedup,
because its number of nodes is big with respect to the number of compiler
configurations to be tested. Figure 4.1(b) shows that, given a fixed
number of nodes the more configurations are tested, the closer to linear
the speedup is.

To show that there is no interference between tests executed in parallel
on a single machine by splitting the available resources, we performed
another experiment: we picked a program, and tested it on Hardware
Configuration 3, the more constrained we have, that is more likely to
show interferences between parallel testing if they exist. For 30 times,
in parallel on the two cores, we compile the program with the default
set of heuristics and autotune it. Then, we do the same on a single core,
leaving the other unloaded. Being the exact same program with the same
configuration, we expect the results to be very similar. The actual results
can be seen in Table 4.2: the timings for the single core execution of
this benchmark are comparable with those of the two parallel execution,
confirming there is no interference.

4.4 Related Work

In the field of machine learning some research has been carried on aiming
at exploiting parallelism to speed up the learning algorithms.

Low et al.[85] observe that designing and implementing efficient, prov-
ably correct parallel machine learning algorithms is challenging. There-
fore, they propose GraphLab, a framework that improves common pat-

95

4 Parallel Iterative Compilation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

S
p

e
e
d

u
p

 w
.r

.t
.

se
q

u
e
n
ti

a
l
e
xe

cu
ti

o
n

Number of worker nodes

Hardware Configuration 1
Hardware Configuration 2
Hardware Configuration 3
Hardware Configuration 4

Maximum theoretical speedup

(a) Speedup over using a single worker node for 64 compiler configurations. The
maximum theoretical speedup is computed according to Amdahl’s law.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
p

e
e
d

u
p

 w
.r

.t
.

se
q

u
e
n
ti

a
l
e
xe

cu
ti

o
n

Number of worker nodes

4 compiler configurations
10 compiler configurations
20 compiler configurations
30 compiler configurations

Linear speedup

(b) Speedup over using a single worker node for varying numbers of compiler config-
urations

Figure 4.1: Speedup obtained with the presented approach

96

4.4 Related Work

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

ti
m

e
 (

se
co

n
d

s)

Number of compiler configurations

No MapReduce
1 worker thread

2 worker threads
3 worker threads

(a) Hardware Configuration 1

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

ti
m

e
 (

se
co

n
d

s)

Number of compiler configurations

No MapReduce
1 worker thread

2 worker threads
3 worker threads
4 worker threads

(b) Hardware Configuration 2

Figure 4.2: Execution times on various hardware configurations

97

4 Parallel Iterative Compilation

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

ti
m

e
 (

se
co

n
d

s)

Number of compiler configurations

No MapReduce
1 worker thread

2 worker threads

(a) Hardware Configuration 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30 35 40

ti
m

e
 (

se
co

n
d

s)

Number of compiler configurations

No MapReduce
1 worker thread

2 worker threads
3 worker threads
4 worker threads
5 worker threads
6 worker threads
7 worker threads
8 worker threads
9 worker threads

10 worker threads

(b) Hardware Configuration 4

Figure 4.3: Execution times on various hardware configurations

98

4.4 Related Work

Tested compiler configurations 2 Worker 3 Workers

4 74.01 % 73.43 %
10 67.62 % 53.78 %
20 63.04 % 49.68 %
30 61.75 % 41.36 %
40 61.53 % 43.63 %
50 53.34 % 35.96 %

Table 4.3: Time needed to complete the compilation on Hardware Con-
figuration 1. Percentage with respect to execution without MapReduce

terns in machine learning an parallelism, such as MapReduce, and en-
ables machine learning experts to to easily design and implement efficient
scalable parallel algorithms by composing problem specific computation,
data-dependencies, and scheduling.

Much research effort has been spent in making compilers able to ex-
tract parallelism from sequential programs [17, 100].

Not as much work has gone into parallelizing the compiler itself, prob-
ably because this is usually a less important issue: most of the effort in
this area was about Just-In-Time compilers, for hiding compilation la-
tencies at runtime [19, 74]. The authors of [127] use different machines
in parallel to prepare different variants of code to be executed, using
runtime profiling, dynamic code generation and pruning of the search
space to identify the most promising code variants to use.

MapReduce, in particular, has not been used much with compilers. To
the best of our knowledge, the only work in this direction was MRCC
[86]. MRCC is “an open source compilation system that uses MapRe-
duce to distribute C code compilation across the servers of the cloud
computing platform”, on top of Hadoop [120]. This means that it com-
putes the dependency graph of the various C source files composing the
program and then uses MapReduce to compile multiple independent files
at the same time. Such an approach is completely different from the one
we propose, that is based upon machine learning and performs multiple
compilation of the same files with different parameters. Therefore, we do
not present a timing comparison of MRCC and our system, that would
be meaningless.

In the area of iterative compilation not much research has been ded-
icated to parallelization as a way to reduce the execution times. The
authors of [60] and [21] use parallel execution of tests on a cluster to vali-
date their work, though without using MapReduce. Section 4.5 presents

99

4 Parallel Iterative Compilation

a few reasons why this is an important topic to consider and why MapRe-
duce is a good choice for implementing it.

On the other hand, we can identify some other work looking for ways
to reduce the time needed to perform the iterative compilation process.

Most of them focus on trying to prune the search space, thus reduc-
ing the number of candidates that need to be tested. Nisbet [96] uses
a genetic algorithm to guide the candidate selection process. Kisuki
et al. [68] use a simple algorithm based on recursively refining a n-
dimensional coarse grid over the search space. Kulkarni et al. [77] in-
troduce a number of techniques, mainly based on memoization, to avoid
running again candidates that have already been tested.

Fursin et al. [42] try to reduce the time needed to test the candidates
themselves. Instead of performing a full run for each candidate, they
suggest identifying phases of stable performance in the program. For
each phase, multiple versions of the code are generated in a single ex-
ecutable file. At runtime, the various candidates are tested during a
single execution of the program, and the best one is chosen.

4.5 Rationale

Parallelizing iterative compilation algorithms might seem like a straight-
forward problem. In fact, many papers on the topic of iterative compila-
tion dedicate just a couple of lines to stating that the tests are executed
on multiple machines, or do not say anything at all about that. This is
likely due to the fact that the basic idea of testing different candidate
configurations in parallel is in fact a so-called embarassingly parallel
problem, with no need of complex synchronization procedures between
the various parallel jobs.

The problem is that there is no standard for this kind of task, there-
fore every researcher has to come up with its own solution from scratch.
Defining a standardized procedure for dealing with this problem would
allow reasearchers to implement and share a common framework, focus-
ing on more interesting parts of the compilation process.

The aim of this chapter is to propose such a framework, built on top of
an existing, well known and widespread technology, namely MapReduce.

The choice of MapReduce is due to the following reasons. First of
all, it fits perfectly the problem at hand. The map function can be
used to test the various candidates and the reduce function can select
the best result of the test runs. Moreover, MapReduce is a well known
programming paradigm, easy to understand and really widespread. This
makes it easier to find ready-made libraries implementing it for many

100

4.5 Rationale

programming languages, reducing the burden on the compiler writer.
Such libraries can provide features for dealing more efficiently with the
job queues, distributing the compilation and testing tasks to the free map
nodes, thus minimizing the running time, with no time spent writing an
home-brewed version of such algorithms.

Furthermore, many existing computing clusters, both academic ones
and commercial ones, already support MapReduce, so it is particularly
easy to find the computing resources where to use a system implemented
according to such a paradigm.

On top of this, this chapter also aims at showing that such an ap-
proach can be a practical way to better exploit the computational re-
sources of a single machine, when it is powerful enough, by splitting
them. The chapter presented an example of how to do this on UMA
and NUMA machines, discussing the benefits and shortcomings of the
two approaches, and showing that the results obtained on a variety of
hardware configurations confirm the viability of the approach.

Being able to split the resources of a single machine with no side
effects on the obtained measurements could lead to a great reduction in
the execution times of many iterative and machine learning compilation
approaches.

This should not be seen as an alternative to other approaches to reduce
these times, such as the one described in [47]. Actually, our MapReduce
algorithm is studied to fit well with any approach requiring multiple
compilation and executions, and could be used to further improve most
of them.

Particularly interesting is the comparison with Collective Optimiza-
tion [47], that aims as well at parallelizing the burden of training the
model. This comparison cannot be a quantitative one, but only a qual-
itative one, because the approaches are too different: Collective Op-
timization divides the task of building the optimization model across
different users over time, whereas our MapReduce approach aims at us-
ing multiple machines at the same time.

The capability of Collective Optimization to learn across different
hardware configurations is its strongest advantage, and it could be ex-
tremely useful to implement a similar approach on top of MapReduce,
to avoid the limitation of requiring an homogeneous computing clus-
ter. The two metodologies could therefore be used together with good
results.

Another method for expediting the evaluation of multiple candidate
versions of the code is described in [42]. The paper describes a method
for exploiting the structure of particular programs that present rela-
tively stable phases to compare multiple versions of the code in a single

101

4 Parallel Iterative Compilation

run. Of course, each executable needs to already contain the various
versions of the code to compare, thus leading to an increase in its size.
Therefore, even this approach could be compatible with the proposed
MapReduce methodology. By creating multiple executables, each with
some code versions, it would be possible to test many of them without
the need to increase to much the size of each one. It should also be
considered that MapReduce on its own does not require any particular
program structure, whereas phase tuning requires the program to ex-
hibit phases. So, if the two approaches are not used together, we can
say that phase tuning is good for parallel programs, using many com-
putational resources, as long as they have phases: this way, a single
executable can be run a single time on its own on a computer in order
to find the best candidate. On the other hand, MapReduce is better for
applications with a low degree of parallelism, where the computational
resources (and particularly, the processor cores) of a computer can be
split to allow multiple programs to run together.

4.6 Conclusion and Future Work

We presented a novel approach, based on the MapReduce programming
model, that allows one to speed up the execution of iterative compila-
tion, through parallel execution of the tests that are usually executed
sequentially but are independent and can therefore be run at the same
time. The experimental campaign on four different hardware configu-
rations showed that the speedup is almost linear with the number of
worker nodes dedicated to the execution of the tests.

Taking into account more specific issues of compilation, we can envi-
sion new improvements to further increase the performance of the sys-
tem. It is known that different sets of optimization can happen to gen-
erate the same compiled program [77]. Therefore, we could implement a
two-phase MapReduce setup. In the first phase, the map function com-
piles the program with the given optimization settings and computes a
hash of the generated executable file. Then, the reduce function com-
pares the hashes, removing duplicates. In the second phase, a new map
function executes the timing runs for each non-duplicate program and
computes their scores, whereas the new reduce function selects the best
one.
Another improvement could come from changing the way new heuristics
are generated: instead of immediately generating all the possible con-
figurations to be tested, we could generate only a subset of them, of the
same cardinality as the number of map workers (or a multiple thereof).

102

4.6 Conclusion and Future Work

We could then test these candidates, and generate the next ones by
evolving the best scoring ones in this set, until the desired number of
tested candidates is reached.

Fursin and Temam [47] showed that is is possible to acquire knowledge
about program optimization using data coming from a wide variety of
different hardware platforms, while at the same time removing the need
for a long training phase. They did this by building a set of probabil-
ity distributions that correlate the behaviour of different architectures.
One probability distribution is generic and enables optimizations that
have proved to work well in general. One is built by using informa-
tion from architectures that proved to behave similarly for a given op-
timization algorithm, according to the test run that have already been
executed. The last distribution is specific for the architecture at hand
and is learned when enough samples have been provided, by compiling
enough programs. Using probability distributions akin to the one used
for collective learning in [47] we could allow the users to exploit clusters
of non-homogeneous machines to perform the parallel testing of the var-
ious versions of the program being compiled. This way, we could further
widen the applicability of our approach by removing the need for the
worker nodes to be identical machines.

The presented approach is not mutually exclusive with other methods
meant to speed up the process of iterative compilation. Machine learning
or other methods can be used used to prune the search space of the
possible solutions in advance, or to focus the search in a given direction,
thus reducing the number of candidates to be tested, by excluding those
that are likely to perform poorly. At the end of the search process,
when the candidates have been selected and they need to be tested,
our approach can be applied to speedup their testing through parallel
execution. This cannot be done when the generation of each candidate
depends on each of the previous ones, but it is applicable in every case
where a set of candidates is generated at the same time and then they
can be tested in parallel.

103

5
Future work

This chapter will present some examples of ongoing works that could
benefit from using techniques derived from or built upon long-term learn-
ing.

Such works have already been published in international venues, ex-
cluding the part regarding long-term learning itself.

5.1 A Lightweight Approach to Compiling and
Scheduling Highly Dynamic Parallel Programs

1 This section describes a dynamic and lightweight compilation approach
able to shepherd the execution of highly dynamic parallel programs at
runtime without the need for a full-fledged Just-In-Time compiler.

The proposed approach allows one to apply profitable optimizations
that could not be used at compile-time due to lack of sufficient infor-
mation. It also enables one to optimize code fragments multiple times,
depending on the specific conditions of the execution environment at
runtime, while limiting the performance overhead to a negligible amount.

The section will also show the importance of the techniques developed
in Chapter 3 for the lightweight approach we hereby present.

In particular, Section 5.1.1 introduces our approach to perform run-
time compilation using lightweight compilation micro-threads and run-

1Part of this section was previously presented as a poster in HotPar ’12 [111] and
was developed in cooperation with my colleague Ettore Speziale.

105

5 Future work

time scheduling. Section 5.1.4 discusses scenarios where our technique
can be useful and Section 5.1.5 concludes.

5.1.1 Proposed Approach

In this section we present a new kind of compiler optimizations, able to
adapt to highly dynamic execution environments without adding exces-
sive overhead at runtime.

Optimizations built according to our approach are divided in two
phases, one to be executed at compile time and one at runtime. The
runtime phase is extremely lightweight and is assigned the task of mod-
ifying the program to actually apply the optimization according to the
current state of the execution environment, whereas the compile-time
phase has to generate the machine code of the program in such a way
to allow this to happen

The need for offloading most of the optimization-related computation
on the static compiler has already been assessed by other works, such
as [97]. Another example of cooperation between compiler and runtime
can be found in [53] for GPUs.

With respect to the traditional static/dynamic compilation flow, where
compilation and execution phases are clearly separated, we have to face
two specific issues.

Expected profitability: not all optimizations have to be delayed
at runtime. We aim at applying an optimization at runtime only if
there are no sufficient information to apply it at compile-time and a
considerable improvement is expected. At the same time, since code
is generated at compile-time, we free the runtime environment from
the burden of applying trivial but needed optimizations, such as copy
propagation, that a traditional JIT approach has to perform during
program execution.

Moreover, delaying at runtime all applicable optimizations is not fea-
sible, because we aim at keeping a lower overhead with respect to tra-
ditional JITs. This naturally leads to a careful selection of which opti-
mizations to delay, based on their expected profitability, as described in
Section 5.1.2.

Compiler interference: runtime application of optimizations leads
to possible conflicts between optimizers and the running optimized code.
This happens because there is no strong separation between the compil-
ing and running phases of the program. To guarantee consistency, it is
necessary to coordinate optimization and execution of the code.

To handle these issues, we define a model that allows to detect, handle
and apply profitable optimizations. We represent the program using a

106

5.1 A Lightweight Approach to Compiling and Scheduling Highly Dynamic Parallel Programs

set of micro-threads (similar to those described in [35, 39, 65]). Part of
these micro-threads are defined by the programmer or by the compiler
and contain the code of the program being written. We call them compu-
tational micro-threads. The remaining micro-threads are called compiler
micro-threads. They are generated by the compiler and contain the code
that is able to apply optimizations at runtime.

Each compiler micro-thread is associated to a computational one, and
manipulates one of its optimizable regions, that are the sections of the
code of a computational micro-thread that can be modified by a runtime
optimization. The dual of an optimizable region is an optimizing region.
It is defined as all the code of a computational thread that is not part
of the corresponding optimizable region. The optimizing region is the
region where the optimizer micro-thread can safely run concurrently
with the computational micro-thread to apply its optimization.

Compilation/Execution Pipeline

With reference to Figure 5.1, our compilation approach is split into two
parts: generation of compiler micro-threads and runtime optimization.

The first step is intended to be part of a static compilation pipeline,
and its goal is preparing the code to be optimized at runtime. We
want to consider only optimizations that cannot be applied at compile-
time, so this step should be run after standard compiler optimizations.
First of all, it has to look at the input code to find candidate applica-
ble runtime optimizations. It is not possible to apply all optimizations,
because interferences between them are possible. Therefore, they must
be scored with respect to the expected profitability (according to one
of the methods presented in Section 5.1.2). Then, the model based on
optimizable/optimizing regions allows to represent such interferences on
the computational micro-thread control flow graph. A pre-scheduler an-
alyzes the interferences and selects the best optimizations. Finally, the
corresponding compiler micro-threads are generated from a library of
micro-optimizers. For each computational micro-thread, multiple com-
piler micro-threads can be generated, one for each optimization.

It is worth noting that the micro-threaded model is a purely logical
one: we aim at minimizing runtime overhead, therefore if the system
is implemented on a computing architecture with high costs of inter-
thread communication the micro-threads can be multiplexed into a sin-
gle mixed micro-thread. To do this, the pre-scheduler analyzes the com-
putational micro-thread and compiler micro-threads, and schedules in
a single mixed micro-thread the instructions from both, according to
constraints imposed by optimizable and optimizing regions. Merging

107

5 Future work

Micro-threaded Code

Micro-analyzers

Pre-scheduler Micro-optimizers

Compiler

Object Code

Compiler Micro-thread Generation

Run-time Optimization

Micro-scheduler

� 4

� N

♦ ♣

Logical View

� + � ♦

♣ 4 + N

Actual View

O Computational Micro-thread

H Compiler Micro-thread

O + H Mixed Micro-thread

Figure 5.1: proposed compilation/execution pipeline. Micro-threaded
code is analyzed to detect profitable runtime optimizations. Compiler
micro-threads are built and possibly merged with computational micro-
threads

108

5.1 A Lightweight Approach to Compiling and Scheduling Highly Dynamic Parallel Programs

different micro-threads together was proven to be effective for schedul-
ing Single Instructions Multiple Threads programs [83, 82, 114]. In our
approach, micro-threads are not homogeneous, but we think that similar
techniques have to be used to limit as much as possible the overhead of
runtime optimizations.

The output of the pre-scheduler is a set of threads containing micro-
threaded code intended to be run by a runtime micro-scheduler. From
the logical point of view, the runtime scheduler has to manage both
computational and compiler micro-threads, but, due to pre-scheduling,
it actually has to manage mixed micro-threads too: therefore, some
of the micro-threads need synchronization, whereas some other micro-
threads have already been merged by the pre-scheduler, thus eliminating
the need for explicit synchronization.

5.1.2 Determining profitable optimizations

Deciding what optimizations can be profitably applied at runtime is of
paramount importance for the approach we are proposing. At the same
time, unfortunately, this is an extremely difficult task: the complexity of
modern computing architectures makes it impossible to fully model them
to predict the exact outcome of applying an optimization algorithm to
the code of a program. This holds even more when multiple interactive
optimizations have to be considered. It is obvious that deciding which
optimizations are likely to provide the best outcome when applied at
runtime is at least as difficult.

A similar problem has been faced before for selecting the set of opti-
mizations to use during the compilation process of a program. Therefore,
we could exploit all the research that was directed at finding a solution
for that issue.

In particular, machine learning techniques have been shown to be able
to provide a valid solution.

Classic machine learning techniques

Dubac et al. [33] show a technique that is able to predict the speedup
that an optimization algorithm can provide, with a good degree of pre-
cision. First they train a predictor, by taking a set of training programs
and correlating some static features (extracted by analysing their source
code) with the effect of various optimizations applied to the programs.

Then, every time a new program needs to be compiled, they compute
its static features and they show that they are able to correctly predict
the speedup obtainable by applying every optimization the predictor

109

5 Future work

was trained on.

In an analogous way, we could predict the expected speedup obtain-
able by selecting an optimization for being applied at runtime with our
lightweight compilation approach.

Even better decisions about what optimizations to apply at runtime
could be taken by using a predictor trained on dynamic features of the
program (such as performance counters) instead of just static features,
as suggested by Cavazos et al. [21]. This is due to the fact that dynamic
features better describe the behaviour of the program at runtime, there-
fore they would be particularly apt for our objective of deciding which
optimizations could benefit the most from being postponed.

Long term learning

The kind of predictor described in the previous paragraph needs a long
training phase, to be executed offline. This can be acceptable in general,
but sometimes it is important for the system to be able to adapt dynam-
ically to a continuously changing environment runtime environment, or
to improve its ability to deal with a specific kind of programs that is
compiled more frequently than others.

In such a case, an approach similar to the one presented in Chapter 3
is better.

It is worth noting that such an approach does not just find the single
optimizations that perform well when postponed at runtime, but it is
implicitly able to determine the best set of heuristics that perform well
when used together. This is due to the way we score single heuristics
and sets of heuristics, as explained in Section 3.1.6

Deciding whether to postpone the optimizations singularly The de-
cision about whether to apply an optimization at runtime can be trusted
to one heuristic. The system will have to learn one heuristic for each
optimization algorithm.

The variables used inside the heuristic formulas will be features of the
program, either static or dynamic. One reason why we might postpone
an optimization to runtime is when a value we need to use to decide
how to apply the optimization itself is not available at compile time.
Therefore, we will also provide the heuristic generators with features
indicating whether certain values, used by the optimizers, are available
or not.

In case the optimization cannot be applied without a certain value,
this will force it to be applied at runtime when the value is not available.
On the other hand, if the value is useful but not required, the generated

110

5.1 A Lightweight Approach to Compiling and Scheduling Highly Dynamic Parallel Programs

heuristics will take care of evaluating whether it is better to postpone it
or not, likely by using the knowledge about the availability of the value.

Determining the expected profitability Another possible approach
based on the techniques described in Chapter 3 is to have the heuristic
generator determine a set of heuristics, one for each optimizer: by eval-
uating each of these heuristics for the specific program we are dealing
with, we will obtain a value for each of them, representing the expected
profitability. The values will be used to determine a ranking of the
heuristics.

The highest scoring ones will be postponed at runtime, the rest will
be kept at compile time.

Given a fitness function that awards the better performing programs,
the heuristics will automatically evolve in such a way to give a higher
score to those programs that benefit the most from being optimized at
runtime.

5.1.3 Run-time Optimization

The compiler micro-threads have to change the code of their associated
computational micro-thread to optimize it. This can be done explicitly,
using self-modifying code, or implicitly, using branch tables.

The compiler micro-thread is generated together with the optimizable
region code it is associated to. Indeed, knowing the layout of the opti-
mizable region, it is possible to generate instructions performing binary
rewriting at runtime, without influencing other regions of code of the
computational micro-thread.

The strength of self-modifying code is the ability to generate the most
suitable instructions for a given optimizable region. However, the cost of
code morphing is considerable. An entire region of code must be rewrit-
ten. This requires editing the memory locations that store the optimiz-
able region. Moreover, if the code is shared by multiple micro-threads,
code cannot always be modified: the conditions triggering runtime op-
timization for a given micro-thread could be not valid for the others.
Despite these limitations, self-modifying code can be an effective opti-
mization strategy, if exploited for highly profitable optimizations, like
inner loops vectorization.

A branch table, on the other hand, is a collection of unconditional
jumps to different locations. At runtime, an index is used to select
where to jump to. It can be implemented using different techniques,
and is used to translate switch statements or to implement virtual ta-
bles. In our context, branch tables enable compiler micro-threads to

111

5 Future work

change the execution flow of the associated computational micro-thread
without changing its code. When our logical model is implemented, an
optimizable region should be represented as a collection of sub-regions
linked using branch table-based jumps. Compiler micro-threads just
have to modify the indices used to select the active jump in branch
tables, thus implicitly modifying the control flow graph of the computa-
tional micro-thread.

With respect to self-modifying code, branch tables impose less runtime
overhead, since applying an optimization simply amounts to setting a
set of indices. On the other hand, all the possible fragments of code
used to optimize the region need to be generated at compile-time. The
low runtime overhead makes this strategy suitable for highly dynamic
scenarios, where the compiler micro-thread has to modify the execution
flow more often.

To trigger an optimization, compiler micro-threads must observe the
state of the associated computational micro-thread. If an optimization
was postponed at runtime because the value of a variable was unknown
at compile-time, the observed state will surely include that variable as
one of the elements to be considered to decide when and how to apply
the optimization at runtime, as discussed in Section 5.1.2.

It is worth noting that our approach enables a wide range of runtime
optimizations. We use branch tables to restructure the execution flow
and, where this is not sufficient, we also allow code morphing to apply
deeper modifications. The use of branch tables should not be perceived
as just a static branch prediction [12], since it is not performed stati-
cally, but is dynamically changed every time it is needed, as a result of
modifications in the execution environment.

The strong relationship between computational and compiler micro-
threads motivates us to emphasize the importance of having an ef-
fective and efficient pre-scheduler. Data related to a computational
micro-thread must be collected and analyzed by the corresponding com-
piler micro-threads. Moreover, compiler micro-threads change the be-
haviour of the computational micro-thread. By scheduling the different
micro-threads together we aim at avoiding communication delays be-
tween them. This guarantees deterministic interactions between micro-
threads, as well as high performance. Even if it is strongly discouraged,
our proposal does not prevent scheduling compiler micro-threads inde-
pendently. However, in this case it is required to consider explicit syn-
chronization between micro-threads, possibly exploiting weak memory
consistency models [1] to limit communication overhead.

The authors of [87] observe that current production-quality compilers
have issues with vectorization because the required analyses, such as in-

112

5.1 A Lightweight Approach to Compiling and Scheduling Highly Dynamic Parallel Programs

Computational
Micro-
thread

Compiler
Micro-
thread

(a) adaptive loop unrolling

Task No. 1Task No. 2

T1

T2

Task Graph

Compiler Micro-thread

(b) dynamic task fusion

Basic Block

Unrolled Body

Branch-table Read

Branch-table Write

Task

(c) legend

Figure 5.2: graphical representation of two foreseen applications of our
proposed approach

terprocedural alias analysis, are not available. Such an analysis is really
hard to implement at compile time, but pointers can be disambiguated
at runtime. This further supports the need for splitting the compilation
effort between compile-time and runtime, as allowed by our approach.

5.1.4 Foreseen Applications

In this section we present two examples of optimization that would ben-
efit from our approach. Figure 5.2 gives a brief overview.

113

5 Future work

Adaptive Loop Unrolling

The classic loop unrolling optimizations [11] can lead to improved, un-
affected or worsened execution times depending on whether the right
unroll factor is chosen [20, 27]. This is a challenging task, requiring
good knowledge of the target architecture [109]. In most cases, this is
only available at runtime, and is exploited using a JIT compiler. Unfor-
tunately, JITs are really heavyweight and time consuming.

With our approach, we estimate a maximum sensible unrolling factor
k at compile-time. We unroll the code of the loop k times and insert
a branch table read between each pair of unrolled loop bodies, as in
Figure 5.2(a). This is the optimizable region. At runtime, the compiler
micro-thread determines the best unrolling factor n ≤ k (according to
the size of caches, the number of required iterations, etc.) and modifies
the n-th branch table read so that it jumps back to the loop header, and
all the other ones so that they either jump to the next instruction, or
are substituted by nop instructions.

This approach is much lighter that a full-fledged JIT, but it does not
enable the application of further optimizations on the unrolled code.
However, if the underlying architecture is micro-programmed, the ma-
chine code will be rewritten and optimized by the hardware, making our
code comparable to that unrolled by a JIT.

Dynamic Task Fusion

Task based data-flow programming models have been proven to be an
attractive way to tackle some parallel applications [110]: tasks are gener-
ated on the fly, thus they require the use of a runtime scheduler to select
and start them according to data and control dependencies. Therefore,
after each task finishes executing, control has to return to the scheduler
so that it can start the next task.

Using our approach, we can define an optimizable region just before
the end of the machine code of each task, made of just a branch table
read. As shown in Figure 5.2(b), at runtime, a compiler micro-thread
supports the scheduler: it observes the state of the system and modifies
the corresponding branch table to have it point to the beginning of the
code of the next ready task. Therefore, tasks can be executed contin-
uously, without the overhead of reaching back to the scheduler at the
end of each of them. The modification of the branch table takes place
as soon as the compiler micro-thread is aware of the next ready task,
therefore the current and the next task will be executed one immediately
after the other, as if fused together. Some call to the scheduler will still

114

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

be needed, for example in order to mark a task as finished, unlocking
the depending ones.

When the task graph is known at compile time, more aggressive opti-
mizations can be performed [50]. Our approach does not allow this, but
it limits the scheduling overhead that arises when inter-dependent tasks
have to be executed (as tackled in [126]) and handles highly dynamic
applications where the task graph is known only at runtime, even if the
code is generated at compile-time.

5.1.5 Concluding Remarks and Future Work

In this section we presented a novel lightweight approach to optimize
highly dynamical parallel programs, based on the use of compiler micro-
threads that modify the running program at runtime, adapting it to
the current environment. We described some optimizations that could
be implemented using our methodology, to show it is general enough
to be applied to a wide variety of algorithms. At the same time, it
does not need to be completely general-purpose, since it is not meant to
completely replace other techniques, such as JIT compilation.

Our methodology aims at easing the optimization of code at runtime,
with low overhead. We are currently planning its implementation, to
conduct an extensive and accurate experimental campaign to verify it.

The authors of [42] try to obtain similar results by generating mul-
tiple versions of code and then picking the best one at runtime. This
approach, while simpler to implement, tends to generate executables
that are too big, which is not an option in many environments. The
lightweight compilation that we propose aims at solving this issue, by
allowing an executable to change at runtime without multiple versions
of the code and without a full compiler being needed to compile it just
in time.

5.2 Analyzing the Sensitivity to Faults of
Synchronization Primitives

2 Modern multi-core processors provide primitives to allow parallel pro-
grams to atomically perform selected operations. Unfortunately, the
increasing number of gates in such processors leads to a higher proba-
bility of faults happening during the computation. In this section, we

2Part of this section was previously published in [51], and it was developed in co-
operation with my colleagues Ettore Speziale and Paolo Roberto Grassi, with the
supervision of Professor Mariagiovanna Sami.

115

5 Future work

perform a comparison between the robustness of such primitives with
respect to faults, operating at a functional level. We focus on locks, the
most widespread mechanism, and on transactional memories, one of the
most promising alternatives. The results come from an extensive exper-
imental campaign based upon simulation of the considered systems. We
show that locks prove to be a more robust synchronization primitive,
because their vulnerable section is smaller. On the other hand, trans-
actional memory is more likely to yield an observable wrong behaviour
in the case of a fault, and this could be used to detect and correct the
error. We also show that implementing locks on top of transactional
memory increases its robustness, but without getting on par with that
offered by locks. Finally, we present a possible fault recovery approach
based on the learning techniques developed in the previous chapters.

5.2.1 Faults characterization

For our purposes, we organize faults into two different classes: the ones
that affect the general computation - here defined general faults - and
the ones that specifically affect mechanisms related to critical sections,
either protected by locks or by transactions. Critical sections are par-
ticularly sensitive sections of code that are present in multi-threaded
programs: wrong access to one of them by one of the concurrent threads
can produce relevant errors in the program and can cause deadlocks or
starvations, leading to the inability for the program to finish its exe-
cution. Hereafter we will only focus on critical section-related faults:
we ignore other (general) types of faults, such as program counter cor-
ruption, that are beyond the scope of our analysis. Moreover, we aim
at a technology-independent analysis: no assumptions are made here
concerning the causes of faults, but we actually consider functional er-
rors - affecting the outcome of specific instructions or operations. This
will lead us to examine errors as affecting memory words or registers,
often collapsing a number of different faults into one “equivalent” error
type. In the same spirit, uniform random distributions will be adopted
(thus abstracting from other possible distributions due to technological
peculiarities).

According to Gawkowski et al. [48], the following outcomes can derive
from applying faults to a program:

Correct Result (CR) the program correctly terminates its execution,
computing the right value.

116

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

Incorrect Result (IR) the program gracefully terminates its execution,
but the computed value is not correct and the system does not detect
the error.

Fault Detected by the System (FDS) an hardware exception occurs.
The system terminates the faulted program following predetermined
policies.

Timeout (T) the program does not respect its timing requirements
and is terminated by the system.

User-defined Message (UM) the program detects a misbehaviour,
that is signalled to the user.

We follow the same classification, with the exception of User-defined
Messages, since we did not add any error correction/detection machinery
to the analyzed programs.

5.2.2 The Adopted Methodology

In order to obtain an indication of the respective performances of lock-
based and transactional-memory-based solutions (as far as sensitivity
to faults is concerned) we chose to set up an experimental environment
(based on simulation tools) capable of simulating the operation of a
realistic multiprocessor system as well as of supporting fault injection
and simulating behavior after fault.

This choice is due to the fact that the only viable alternative would
be to perform an analysis starting from the netlist of a hardware device.
This device should support both lock based and transactional synchro-
nization primitives. Moreover, it should be a neutral, publicly available
benchmark (a personal choice would risk to be biased). Since such a
device was not available, we decided to go for a simulation approach, so
as to provide at least a first analysis that, although less precise, is more
general and a good starting point for further work.

To obtain the experimental results presented here, we started from
the SESC simulator. SESC is “a microprocessor architectural simulator
[...] that models [...] chip multiprocessors, [...]”. CPUs used as nodes are
MIPS processors, with “a full out-of-order pipeline with branch predic-
tion, caches, buses, and every other component of a modern processor
necessary for accurate simulation” [106]. More specifically, SESC oper-
ates at at functional-block level simulating the execution of a program.

In order to support the simulation of parallel programs, SESC pro-
vides its own implementation of a POSIX-like threading library, called

117

5 Future work

libapp. libapp is much simpler than pthread, but it provides all that
is needed for the aim of the present section - at least insofar as lock-
based synchronization is concerned. Namely, libapp provides fork/wait
primitives and lock/unlock primitives. While this allows us to proceed
with the analysis of fault impact on lock-based solutions, to perform our
comparison we also need an implementation of a transactional memory
- which is not provided by SESC.

On the other hand, SuperTrans [103], developed by University of
Florida’s Advanced Computing and Information Systems Laboratory, is
“a multicore, cycle-accurate and multiple issue simulator built on top of
the SuperESCalar (SESC) framework that is capable of simulating three
of the most common dimensions of hardware transactional memory (Ea-
ger/Eager [4, 93], Eager/Lazy [4, 104], Lazy/Lazy [54])”. SuperTrans,
just as SESC, is released as open source. It includes all that is part of
SESC (therefore, the lock based management of memory) plus a trans-
actional memory module. For these reasons, we chose SuperTrans as
the tool for transactional-memory related simulations; being based on
SESC, it granted the kind of consistency that was mandatory to compare
results of simulations obtained on the two systems.

In order to explore the effects of faults, we modified SuperTrans by
adding a new software component, that we named fault injector, allowing
us to specify where and when to inject faults during the simulation,
so that we can observe the outcome of the management of the mutual
exclusion between two or more processes trying to access a single critical
section. The fault injector can support an arbitrary number of faults.
The characteristics of the faults can be completely specified by the user
or randomly generated.

5.2.3 Impact of Faults on Synchronization Mechanisms

In order to evaluate how faults affect the behavior of programs run by
systems that use, respectively, locks or transactional memory to protect
the critical sections, we carried out an extensive experimental campaign,
using a small set of synthetic benchmarks (depicted in Table 5.1) that
implement well known concurrency problems, such as shared counter or
reader/writer interactions [116]. Using such simple examples allows us
to easily inject faults exactly in the registers and cache lines that will
be accessed by the code while inside a critical section. Therefore we can
verify the effect of faults on the more likely sources of problems related
specifically to the synchronization mechanism adopted rather than to
the general effects of faults on program’s execution. Moreover, these
small benchmarks share the same structure of most complex concurrent

118

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

Algorithm: shared inc lock

Data: a shared counter cnt
Result: cnt safely incremented by 1

1 lock acquire(cnt.lock)
2 cnt.n← cnt.n + 1
3 lock release(cnt.lock)

Figure 5.3: Shared counter update. Locking functions guarantee mutual
exclusion between threads while concurrently incrementing the counter

applications, so that the results we obtain are actually general. Studying
the effect of faults on synchronization primitives has a direct impact on
determining how the behaviour of the application will change because of
them. In fact, many years of research on operating systems [116] prove
the importance of the correct behaviour of such primitives.

We will now describe in detail how faults are injected in the micro-
benchmarks and what are the results obtained using the SC micro-
benchmark as a running example. Section 5.2.3 reports on fault injection
in lock-based critical sections, while Section 5.2.3 refers to transactional-
memory-based critical sections, Section 5.2.3 describes faulting critical
sections protected with transactional-memory-based locks - a solution
that, while non-realistic, allows us to complete our fault-related anal-
ysis with this alternative derived from the two basic criteria. Finally,
Section 5.2.3 presents the experimental campaign setup and its results.

Lock-based Critical Sections

From the users perspective, protecting a critical section cs requires in-
voking a lock acquire function before entering cs. This guarantees that
no more than one thread at a time enters the critical section. To leave cs,
a thread must invoke a lock release function. This allows other threads
to access cs. Figure 5.3 shows how these routines can be employed to
safely increment a shared-counter.

Such locking/unlocking routines are built on top of hardware synchro-
nization instructions, such as atomic eXCHanGe, Compare And Swap,
and Load Linked/Store Conditional. No other ad hoc hardware capabil-
ities are exploited to implement the routines: the remaining code seg-
ments are implemented using standard instructions. Figures 5.5 and 5.6
show lock acquire and lock release routines respectively.

Any fault generated inside a critical section can corrupt the current

119

5 Future work

Algorithm: shared inc trans

Data: a shared counter cnt
Result: cnt safely incremented by 1

1 trans begin()
2 cnt← cnt + 1
3 trans commit()

Figure 5.4: Shared counter update exploiting transactional memory. If
a conflict is detected during a transaction, it is aborted and restarted
by the hardware

Algorithm: lock acquire

Data: a lock lock
Result: lock locked by current thread

1 while XCHG(lock, LOCKED) = LOCKED do
2 repeat NOP until lock 6= LOCKED

Figure 5.5: Implementation of lock acquire

Algorithm: lock release

Data: a lock lock
Result: lock unlocked

1 lock ← UNLOCKED

Figure 5.6: Implementation of lock release

120

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

thread’s private data, as well as the private data of other threads and
shared data. This happens because a critical section’s body contains
only non lock-related instructions and the locking algorithm has no
knowledge of the data accessed and of the instructions executed inside
it.

If we consider critical section boundaries, identified by lock acquire
and lock release routines, we see that a fault affecting data accessed
by these routines is catastrophic because they control the access to the
critical section. Even in the presence of transient faults, the program
behavior is radically modified: more than one thread will access the crit-
ical section at the same time, performing a computation at the wrong
time. The faulted program behavior matches classical concurrent pro-
gramming errors, such as lost update, dirty read/write,

For our experimental campaign, we start by injecting faults affecting
lock acquire. The most important operation performed here is XCHG
(Figure 5.5, Line 1): it atomically replaces the memory word where lock
resides with the LOCKED constant, returning the value stored there
before the swap took place. We identify three elements such that faults
affecting them are critical for the synchronization process, namely: lock,
the register containing the LOCKED constant, and the return value.

To emulate faults on lock we consider them just by their outcome:
having the program reading/writing the wrong memory location, there-
fore causing XCHG to return a wrong value. Such value is later read
(Figure 5.5, Line 1) by a comparison instruction to detect whether to
enter the critical section, so this fault can allow the current thread to
enter the critical section, even if the lock is not held. The program be-
havior cannot be predicted, and both CR and IR can be observed. A
write on the wrong address could be detected, depending on the specific
address, if a FDS situation (e.g. segmentation fault) occours.

Altering the LOCKED word results in writing the wrong marker in
the lock memory location. If it turns out to be equal to the valid marker
UNLOCKED, the current thread enters the critical section without the
other threads being aware that the lock has been taken. Therefore, they
can in turn enter the critical section, leading to erroneous behaviour.
We can observe the same behaviour also if the written marker is invalid,
because every value not equal to LOCKED allows the execution to
enter the critical section. We can observe CR if the dynamic schedule
does not result in a data race, IR or FDS otherwise.

A transient fault on the return value can result in two different be-
haviours: if the faulted return value is equal to LOCKED, the current
thread spends some cycles (Figure 5.5, Lines 1 and 2) waiting for the
lock to be released, without corrupting data. Otherwise, the current

121

5 Future work

thread enters the critical section, incurring into a potential data race.
We can observe the same program behaviour as in the previous case:
CR, IR, or FDS.

As a final remark, it is worth noting that in the case of a thread trying
to enter a critical section it is very unlikely to incur into T behaviour
(provided only transient faults are applied, as in our experiments). For
this to happen, the value accessed through the lock variable (Figure 5.5,
Line 1) should always be equal to the value of the LOCKED constant:
this requires either to continuously fault lock in such a way to end up
reading from memory locations containing the LOCKED value, or to
fault the return value of the XCHG instruction every time in such a
way that it results equal to LOCKED. Similar considerations apply to
the spin wait loop, too (Line 2).

The lock release routine is a simple store to memory. Its behaviour
can be altered by injecting faults on lock and on the UNLOCKED
marker. Modifying lock shows the same behaviour as writing to an
invalid memory address, potentially generating CR, IR, and FDS be-
haviours.

Finally, a fault affecting UNLOCKED results in generating an in-
valid marker that corrupts lock, but the locking algorithm is not influ-
enced: the first thread entering into the critical section restores lock to
a consistent state. On the other hand, writing the valid but incorrect
value LOCKED results on T behaviour: the lock is released incorrectly,
preventing any thread from entering the critical section.

Transactional Memory-based Critical Sections

In order to protect a critical section using transactional memory, the
user employs three routines: trans begin (instructing the transactional
memory to save the current context), trans commit (to publish the
memory operations performed), and trans abort (to explicitly terminate
and restart a transaction). Figure 5.4 shows how transactional memory
can be used to protect a shared counter update.

In transactional memory approach, critical section access control is
distributed; every memory operation inside a critical section is validated
by the transactional controller in order to detect conflicts. Detection is
performed by analyzing the read set, (the set of memory locations read
by a thread), and the write set, (the set of memory locations written by
a thread). To emulate errors corrupting the read set as well as the write
set, requires one can collapse the various fault causes into faults affecting
the addresses manipulated by the transactional controller. Therefore, we
will inject faults near memory access opcodes so as to affect the system

122

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

immediately before memory access.

Corrupting the read set can be modeled as reading from the wrong
memory location. A transactional load, LWX, both interacts with the
transactional controller and fetches data from memory. As a result,
the read set of the faulted processor becomes inconsistent and a wrong
value is read from the memory. If the wrong value is used for subsequent
computations, it can produce IRs. The same behaviour can occur even
if the read value does not directly produce a corrupted value. In fact,
the transactional controller could be unable to detect a conflict due to
the corrupted read set, thus allowing a transaction to commit when it
should have been aborted instead. Moreover, if the corrupted address is
later used for a memory store to a location not accessible by the faulted
processors, a FDS occurs.

If faults lead to corrupting the write set, the same behaviour can
observed. In this case the faulted instruction is the transactional write,
SWX; as in the case of LWX, the instruction also interacts both with
the transactional controller and the memory. Depending on the fault-
affected value, an IR or FDS can occur. The difference with respect to
faulting the read set is that an FDS can occur immediately.

Hardware implementations of transactional memory introduce three
new opcodes, namely XBEGIN , XCOMMIT , and XABORT re-
spectively implementing trans begin, trans commit, and trans abort.
All these operations do not use general purpose hardware; they inter-
act directly with the transactional memory controller, thus to simu-
late faults relative to them we cannot just inject faults into registers
or non-transactional memory, but we have to fault the simulated hard-
ware primitives themselves. Faults concerning this scenario corrupt pro-
cessor context saved by XBEGIN and restored by XCOMMIT and
XABORT . Since these faults would be very much dependent on a spe-
cific implementation and technology, we do not consider them; obviously,
extending the set of faults would increase the sensitivity to faults of the
system.

Transactional Locking-based Critical Sections

As shown in Section 5.2.3, we can inject a wide variety of faults on locks,
but the lock is directly manipulated only at critical section bounds, so
there is not much possibility for such faults to happen. Every other fault
happening inside a critical section protected by locks is not related to
locks themselves: as such it could happen whatever the synchronization
primitive being used, and is therefore not interesting for this study. On
the other hand, transactional memory is vulnerable to a narrow class

123

5 Future work

Algorithm: trans xchg

Data: an address addr
Data: a value val
Result: val written into addr, old value returned

1 trans begin()
2 old← mem[addr]
3 mem[addr]← val
4 trans commit()
5 return old

Figure 5.7: Atomic exchange implemented using transactional memory.
It is used as a building block for transactional memory-based locks

[upReg]

generator = ’uniform ’

regNo = ’R18’

kind = ’bitFlip ’

atTime = 1100

Figure 5.8: An example of fault taken from the configuration file. A
bit-flip fault named upReg will be applied to register R18 at 1100th

cycle of the simulation

of faults, see Section 5.2.3, but they expose more faulting opportunity
because as long as the transaction is active every memory access could
be influenced by faults in the read set or the write set.

This observation led us to try to implement locks “on top of” transac-
tional constructs. While this is not a viable solution for real systems, it
allows us to study whether transactional memory helps reducing fault-
ing opportunities. The locking and unlocking algorithms are the same
used for lock-based critical sections (Figure 5.5 and 5.6). In order to
exploit transactional memory, we replaced the XCHG instruction with
an equivalent routine written using transactional constructs. Its imple-
mentation can be seen in Figure 5.7. The lock release routine has been
modified so as to be protected by a transaction.

For faults happening inside the critical section we can make the same
observations as for locks, because the critical section does not contain
any special instruction.

On the other hand, we note that injecting faults on critical section

124

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

boundaries requires injecting faults on the transactions protecting the
atomic exchange. The kind of faults that can be injected are the same
as for transactional memory: basically, we can fault the read set and the
write set.

In this particular critical section, the read set and the write set are
identical: they consist just of the word used to store the lock. Faulting
the lock address can thus produce FDS, IR, or T behaviours. The
first arises when the faulted lock address refers to a memory region
that cannot be written by the faulted thread. If the word identified
by the faulted address can be written, a data race can occur, possibly
generating either CR or IR. The T behaviour occurs when reading from
the faulted address causes the faulted thread to spend too much time in
the lock busy-wait loop.

Results of the Experimental Campaign

Our experimental campaign focused on the micro-benchmarks reported
in Table 5.1. We coded each micro-benchmark in three different flavour,
each employing a different primitive to protect its critical sections. The
lock flavour, uses locks, trans uses transactions, while trans-lock adopts
locks implemented by means of transactions.

Each micro-benchmark was first run without applying any faults. Ob-
serving the execution trace we detected points where faults could be
injected, as suggested in Section 5.2.3, 5.2.3, and 5.2.3. Each flavour
exposes different faultable points. Faults will affect execution with the
lock flavour while acquiring and releasing the lock. The trans flavour is
faultable while accessing the read set and the write set, i.e. near each
LWX and SWX. The trans-lock flavour exposes the same faultable
points as trans, but the critical section is shorter.

We wanted to see the evolution of the behaviour of the micro-benchmarks
subject to an increasing number of faults. Therefore, for each of them
we injected an increasing number of faults, from 1 to 4. For each bench-
mark, for each given number of faults, we performed 960 3 runs. Before
each run we randomly extract i faultable points taken from those ob-
served by analyzing the execution trace. To allow for some randomness,
each fault was randomly applied between 1 and 4 cycles before the time
instant it was registered in the original execution trace. In case of faults
applied to registers, we randomly generated the number of the register
bit to fault. For faults applied to cache line reads, we randomly gener-
ated the loaded word bit to fault. Figure 5.8 shows a generated fault
entry in the SESC configuration file format.

3240 for RWL-trans.

125

5 Future work

Table 5.2 reports individual benchmark results, while Figure 5.9 shows
the percentage of CR, IR, FDS, and T for each flavour, varying the
number of applied faults.

The lock flavour is the most robust, because there are fewer points
where a fault can be injected. Moreover, the fault must be injected at
a precise time, otherwise the locking algorithm tends to mask the fault
and thus overcomes a previous soft fault. In fact, the locking algorithm
usually rewrites the content of the lock word at the beginning of the
critical section, while trying to acquire the ownership via the XCHG
instruction, and at its end, while releasing the lock. Moreover, not all
faults injected on locks can be observed, because even if two threads
happen to enter in a critical section at the same time, they could not
incur in a data race, depending on the specific scheduling taking place.

Looking at Table 5.1 we see that the trans flavour obtains the worst
outcome, with less CR compared to the lock flavour, because transac-
tional memory exposes more faultable points. However, the probability
that a fault will be detected (FDS) is greater, because most failures are
due to accesses to wrong memory areas. These are detected by the oper-
ating system and could, in principle, be used to perform error correction,
thus increasing the number of correct results.

Finally, implementing locks on top of transactional memory, i.e. the
trans-lock flavour, increases the robustness with respect to trans, because
each transaction lasts only as long as needed to change the lock value,
but it cannot achieve the robustness of the lock flavour, because as short
as that time span can be, every single access to memory during it can
be subject to faults. Let us now analyse in detail the outcome of each
benchmark.

Shared Counter and Shared Multi Counter the critical section associ-
ated to SC is the shorter of all the benchmark suite, while SMC employs
a longer critical section, updating more than a shared counter at time.

The lock flavour is the most susceptible to short critical sections. In-
deed, on such scenario the program hot spot is lock acquisition, so any
fault that induces spending some extra cycles in the lock waiting loop,
greatly lowers performance, generating a considerable amount of T be-
haviour. When increasing the length of the critical section, the number
of T behavior decreases, as shown by the SMC micro-benchmark, where
we can observe a greater number of CR.

Both trans and trans-lock flavours follow the same trends in both SC
and SMC. To obtain T behaviour, read and/or write sets of a transaction
must be faulted in order to read/write data from/to the shared data,

126

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

Figure 5.9: Distribution of benchmark results, varying the number of
applied faults

Table 5.1: Benchmarks

SC concurrent increment of a shared counter. Each
thread performs 8 atomic increments.

SMC concurrent increment of shared counters. Each
thread executes 4 critical sections, incrementing 16
counters each time.

RW reader/writer problem. Threads are partitioned
into two equally sized sets: readers and writers.
Writers produce items writing them into a global
buffer. Readers read items from the buffer. When
all items have been produced, the readers concur-
rently write all the read items into another buffer
read by the main thread to perform a final sanity
check. Buffers are implemented using arrays.

RWL reader/writer problem. Same behaviour of RW, but
shared buffers are implemented using single-linked
lists.

127

5 Future work

T
a
b

le
5.2:

B
en

ch
m

a
rk

resu
lts.

F
or

each
con

fi
gu

ration
,

960
ru

n
s

h
ave

b
een

p
erform

ed
(240

for
R

W
L

-tran
s)

B
e
n

ch
m

a
rk

C
R

IR
F

D
S

T
[%

]
[%

]
[%

]
[%

]
F

1
F

2
F

3
F

4
F

1
F

2
F

3
F

4
F

1
F

2
F

3
F

4
F

1
F

2
F

3
F

4

S
C

lo
ck

8
2

76
7
1

6
3

3
5

6
9

4
9

13
17

11
10

10
11

tra
n

s
50

2
5

1
3

7
8

12
14

14
42

63
73

79
0

0
0

0
tra

n
s-lo

ck
5
5

35
1
8

1
0

5
6

8
8

40
59

74
82

0
0

0
0

S
M

C
lo

ck
9
2

86
8
1

8
0

4
4

6
5

3
8

9
11

1
2

4
4

tra
n

s
51

2
4

1
4

10
8

10
12

14
40

64
73

74
1

2
1

2
tra

n
s-lo

ck
5
7

34
2
1

1
3

6
10

10
11

37
55

69
75

0
1

0
1

R
W

lo
ck

8
7

77
68

6
1

3
3

4
5

4
9

15
19

6
11

13
15

tra
n

s
59

33
1
8

9
3

4
4

5
19

38
46

56
19

25
32

30
tra

n
s-lo

ck
5
8

30
12

1
1

1
2

7
2

25
38

54
59

16
30

27
28

R
W

L
lo

ck
8
9

83
73

6
4

0
1

2
3

4
8

10
16

7
8

15
17

tra
n

s
48

19
1
1

4
3

2
3

3
27

48
60

64
22

31
26

29
tra

n
s-lo

ck
5
6

35
17

1
0

1
2

2
5

26
39

54
58

17
24

27
27

128

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

forcing an abort. Both the micro-benchmarks have a small amount of
shared data, so the probability of this outcome is negligible.

Reader/Writer and Reader/Writer List the RW micro-benchmark
uses arrays to implement shared buffers, while RWL relies on single-
linked list, thus critical sections are longer and access memory more
frequently.

Locking-based techniques exhibit the same behaviour in the two micro-
benchmarks. On the other hand, the trans flavour is heavily influenced
by using single-linked lists. Using more complex structures results in
more memory accesses, mostly related to list navigation. Thus, the
probability of incurring into a FDS increases.

5.2.4 Fault recovery guided by machine learning

This section presented an analysis of the sensitivity to faults of locks
and transactional memories.

In this subsection we will show how we can to recover from hardware
faults affecting the proper execution of programs by using an approach
based on long-term learning, similar to the one presented in Chapter 3.

First of all, we need to detect that a fault has happened. This can be
done with either a lock-based or a transactional memory based synchro-
nization system.

As we previously stated, there are three possible execution outcomes
indicating a failure: Incorrect Result (IR), Fault Detected by the System
(FDS) or Timeout (T).

We cannot detect IRs because that would require having an oracle
able to predict the correct result of the execution. This was possible in
the case of the tests we run for this fault sensitivity analisys, but is not
applicable in a realistic environment. Though, as shown in Figure 5.9,
IRs are just a small fraction of the failing executions, so even by just
focusing on the other ones we can greatly improve the behaviour of the
system.

On the other hand, FDS and T faults are easily detected in a real
environment using the same technique used for this analysis. When we
know a program has failed because of a fault, we can try to apply various
recovery algorithms. Here we present two of them, based on long-term
learning.

Compilation-based approach

This approach is a direct application of the one described in Chapter 3.

129

5 Future work

Let us suppose that we have a compiler that is able to statically define,
at compile time, what system resources to assign to a program, basing
the decision upon a set of heuristics automatically learned by the long-
term learning algorithm.

When a fault is detected, the program is recompiled from scratch.
During the compilation process, different candidate versions of the pro-
gram will be tested to determine their performance.

The candidates trying to use faulted components will fail to execute
correctly, therefore they will be automatically penalized by the scoring
system of long-term learning, thus leading to the creation of heuristics
able to only compile programs using the non-faulted resources of the
system.

The implementation would be particolarly lightweight: the learning
of the heuristics should be activated only during the recovery after the
failure of a program. For every other compilation, we could just use the
currently existing ones, knowing that they are already able to perform
a correct allocation of the resources.

Runtime-based approach

The previous approach only involves the compiler, so it is general and
can be applied to every program, without limitations.

Nevertheless, it can be useful, in some cases, to be able to not recom-
pile a program to deal with a fault. For example, in case of a server
providing a high availability service, it could be problematic to shut
down the program to substitute it with a new executable.

Therefore, a runtime library could be implemented, responsible for
managing the allocation of the resources requested by the program. This
library would perform the allocation choices using a set of heuristics
learned through long-term learning. Every time a decision has to be
made, the heuristics are used and evolved. Therefore, at the time of the
evaluation of the heuristics there is always complete information about
the current status of the system, and the heuristics are actually able to
guide the execution in such a way to avoid using the faulted components.

This runtime-based approach requires the long-term learning algo-
rithm to be implemented inside the runtime library itself.

5.2.5 Concluding Remarks

In this section we analyzed the behavior of locks and transactional mem-
ory when they are affected by faults. We injected from 1 up to 4 faults
during the execution of selected benchmarks and analyzed the outcome

130

5.2 Analyzing the Sensitivity to Faults of Synchronization Primitives

of the execution. As it is easy to understand, while the number of faults
grows, the probability of a visible failure increases. The important re-
sult is that locks proved to be more fault resilient because they expose
a smaller “faultable surface”, and it is therefore more unlikely for a
fault to have the execution fail. We did not consider a specific hard-
ware implementation, and focused only on observing the functionality
of the synchronization primitives under the effect of faults. Nonetheless,
it should be considered that transactional memory requires specialized
hardware components to be added to the system, and this components
are themselves subject to faults. This suggests that the actual fault tol-
erance of transactional memory could be lower than our results suggest.
Further experimental campaign should be conducted in order to prove
this point. On the other hand, our results show that with transactional
memory the system is more likely to be able to detect the presence of
faults. Further experiments could determine whether fault detection and
recovery capabilities could be more effective or easier to implement in
a transactional memory based system. Finally, we presented a possible
fault recovery system based on the machine learning techniques detailed
in the previous chapters.

131

6
Conclusion

The complexity of modern computing architecture makes the task of
fully exploiting them increasingly hard. Heterogeneity and the growing
level of parallelism, with multi-core processors nowadays being common-
place even in smartphones and embedded systems and with many-cores
becoming more and more widespread, poses new challenges to program-
mers and, especially, compiler writers.

In this dissertation I presented my contributions towards the goal of
enabling programs to better adapt to the characteristics of the available
underlying hardware. Most of them are related to machine learning
techniques applied to the compilation process.

In particular, the first and biggest contribution is the definition of a
novel evolutionary algorithm, called Long-term learning. In order to take
decisions about the optimization algorithms that adapt the programs to
the target architecture, compilers have to use heuristics because they
cannot precisely predict the outcome of applying them. Traditionally,
such heuristics have been hand-written by compiler experts, but this is
a time consuming and error prone task.

Long-term learning is meant to automatically build good compilation
heuristics for a compiler that has none, adapting automatically to the
target architecture, exploting its characteristics and making the most
out of the available optimization algorithms. At the same time, it aims
at building readable heuristics instead of just a model that is working
but hard to understand.

We showed that long-term learning is able to efficiently perform this

133

6 Conclusion

task by gathering experimental results on three different hardware con-
figurations, using two different implementations of our algorithm on two
compilers, GCC and PetaBricks. The results show that, in a short time,
long-term learning is able to find readable heuristics that are as good
as the handwritten ones an expert could come up with. Given enough
time, it can further improve over them, surpassing the maximum level
of performance they can reach.

The main novelty of long-term learning with respect to other algo-
rithms having a similar objective consists in generating, heuristics based
on human-readable mathematical formulas instead of some statistical
model much harder to understand. Furthermore, it also learns sets of
heuristics considering them as a whole, therefore taking their interac-
tions into account, instead of assuming they are independent. Moreover,
long-term learning has no need for an inital training phase, that is usu-
ally required by other machine learning based compilation approaches.
It is an online learning algorithm and it keeps learning every time a
new program is compiled, acquiring knowledge and using it for the next
compilations.

Long-term learning is partially based upon iterative compilation. As
such, it needs to test multiple candidate versions of the program it is
compiling. Because of this, this thesis presented a method to parallelize
the testing of candidates of a generic iterative compilation approach
using MapReduce. The parallelization can be over a set of identical
machines in a cluster or, under certain conditions, on a single machine,
partitioning its computational resources. The efficacy and efficiency of
this method were proven by implementing it into the PetaBricks com-
piler and by conduction an extensive experimental campaing showing
that it can reach almost linear speedups over four different hardware
configurations. Still, the method is general and can be applied to most
iterative compilation approaches, allowing them to better exploit the
parallelism provided by many modern computing architectures.

Finally, a couple of possible future works are suggested as well. First,
to complete the contribution to the development of compilers targeted
at modern architectures, I presented a proposal for a new lightweight
approach to compiling parallel programs. This approach, jointly devel-
oped with a colleague of mine, divides the burden of applying compiler
optimizations between compile time and runtime. As much work as pos-
sible is done at compile time, preventing the need to have a full-fledged
compiler at runtime. The choice of what optimizations to postpone at
runtime is analogous to those tipically faced by iterative compilation
and machine learning techniques applied to compilation. Therefore, this
thesis presented a method to apply a technique derived from long-term

134

learning in order to define the heuristics that will take care of making
such decision.

Second, starting from a project, developed with some colleagues, about
an analysis of the sensitivity to hardware faults of various synchroniza-
tion primitives, a novel approach for fault recovery is suggested, using
heuristics obtained through long-term learning to determine the alloca-
tion of the required system resources while avoiding the faulted compo-
nents.

135

Publications

During my PhD studies I explored various research topics. This thesis
derives from the main one I chose and developed more thoroughly. Still,
some other works were complete enough to be published or presented at
various international or national conferences and venues.

Here is a list of all of them.

• M. Tartara, S. Crespi Reghizzi. Continuous Learning of Compiler
Heuristics. To appear in the ACM Transactions on Architecture
and Code Optimization, and to be presented at the 8th Interna-
tional Conference on High-Performance and Embedded Architec-
tures and Compilers, January 21-23, 2013, Berlin, Germany.

• M. Tartara, S. Crespi Reghizzi. Parallel Iterative Compilation:
Using MapReduce to Speedup Machine Learning in Compilers. The
Third International Workshop on MapReduce and its Applications
(MAPREDUCE’12), HPDC’2012, Delft, the Netherlands, June
18-19, 2012.

• E. Speziale, M. Tartara. A Lightweight Approach to Compiling
and Scheduling Highly Dynamic Parallel Programs. Poster session
of the 4th USENIX Workshop on Hot Topics in Parallelism (Hot-
Par’12), Berkeley CA, USA, June 7-8, 2012.

• P. R. Grassi, M. Sami, E. Speziale, M. Tartara. Analyzing the
Sensitivity to Faults of Synchronization Primitives, IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT’11), Vancouver, Canada, October
3-5, 2011.

• M. Tartara, S. Crespi Reghizzi and S. Campanoni. Extending ham-
mocks for parallelism detection. Italian Conference on Theoreti-
cal Computer Science (ICTCS). Camerino, Italy, 15-17 September
2010.

• C. Silvano, W. Fornaciari, S. Crespi Reghizzi, G. Agosta, G. Palermo,
V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, A. Di Biagio, E.

137

6 Conclusion

Speziale, M. Tartara, D. Siorpaes, H. Huebert, B. Stabernack,
J. Brandenburg, M. Palkovic, P. Raghavan, C. Ykman-Couvreur,
A. Bartzas, S. Xydis, D. Soudris, T. Kempf, G. Ascheid, R. Le-
upers H. Meyr, J. Ansari, P. Mahonen, and B. Vanthournout,
2PARMA: Parallel Paradigms and Run-time Management Tech-
niques for Many-core Architectures, ISVLSI 2010: IEEE Annual
Symposium on VLSI, pages 494-499, Lixouri, Kefalonia - Greece,
July 2010.

• S. Campanoni, M. Tartara, S. Crespi Reghizzi, ILDJIT: A parallel,
free software and highly flexible Dynamic Compiler. Conferenza
Italiana sul Software Libero, Cagliari, June 2010.

• M. Tartara, S. Campanoni, G. Agosta and S. Crespi Reghizzi. Par-
allelism and Retargetability in the ILDJIT Dynamic Compiler. in
ARCS ’10 - 23th International Conference on Architecture of Com-
puting Systens 2010 - Workshop Proceedings, Hannover, February
2010, pp. 285-291.

• M. Tartara, S. Campanoni, G. Agosta, and S. Crespi Reghizzi.
Just-in-time compilation on ARM processors. In ICOOOLPS ’09:
Proceedings of the 4th workshop on the Implementation, Compi-
lation, Optimization of Object-Oriented Languages and Program-
ming Systems, pages 70–73, New York, NY, USA, 2009. ACM.

138

Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Con-
sistency Models: A Tutorial. IEEE Computer, 29(12):66–76, 1996.

[2] Felix V. Agakov, Edwin V. Bonilla, John Cavazos, Björn Franke,
Grigori Fursin, Michael F. P. O’Boyle, John Thomson, Marc Tou-
ssaint, and Christopher K. I. Williams. Using Machine Learning
to Focus Iterative Optimization. In CGO, pages 295–305. IEEE
Computer Society, 2006.

[3] Lelac Almagor, Keith D. Cooper, Alexander Grosul, Timothy J.
Harvey, Steven W. Reeves, Devika Subramanian, Linda Torczon,
and Todd Waterman. Finding Effective Compilation Sequences.
In David B. Whalley and Ron Cytron, editors, LCTES, pages 231–
239. ACM, 2004.

[4] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, and Sean Lie. Unbounded Transactional
Memory. In HPCA, pages 316–327. IEEE Computer Society, 2005.

[5] Jason Ansel, Cy P. Chan, Yee Lok Wong, Marek Olszewski, Qin
Zhao, Alan Edelman, and Saman P. Amarasinghe. PetaBricks: a
Language and Compiler for Algorithmic Choice. In Michael Hind
and Amer Diwan, editors, PLDI, pages 38–49. ACM, 2009.

[6] Jason Ansel, Maciej Pacula, Saman P. Amarasinghe, and Una-
May O’Reilly. An Efficient Evolutionary Algorithm for Solving
Incrementally Structured Problems. In Natalio Krasnogor and
Pier Luca Lanzi, editors, GECCO, pages 1699–1706. ACM, 2011.

[7] Claudio Arlandini and Alice Invernizzi. LAGRANGE: un nuovo
server per il calcolo ad alte prestazioni. Bollettino del CILEA,
0(110), 2008.

[8] Matej Artac, Matiaz Jogan, and Ales Leonardis. Incremental PCA
for On-line Visual Learning and Recognition. In Pattern Recog-
nition, 2002. Proceedings. 16th International Conference on, vol-
ume 3, pages 781 – 784 vol.3, 2002.

139

Bibliography

[9] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William
L. Plishker Lester, John Shalf, Samulel W. Williams, and Kather-
ine A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical report, EECS Department, Uni-
versity of California, Berkeley, 2006.

[10] John Aycock. A Brief History of Just-In-Time. ACM Comput.
Surv., 35(2):97–113, 2003.

[11] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler
Transformations for High-Performance Computing. ACM Comput.
Surv., 26(4):345–420, 1994.

[12] Thomas Ball and James R. Larus. Branch Prediction For Free. In
PLDI, pages 300–313, 1993.

[13] Michel Barreteau, François Bodin, Zbigniew Chamski, Henri-
Pierre Charles, Christine Eisenbeis, John R. Gurd, Jan Hooger-
brugge, Ping Hu, William Jalby, Toru Kisuki, Peter M. W. Knij-
nenburg, Paul van der Mark, Andy Nisbet, Michael F. P. O’Boyle,
Erven Rohou, André Seznec, Elena Stöhr, Menno Treffers, and
Harry A. G. Wijshoff. OCEANS - Optimising Compilers for
Embedded Applications. In Patrick Amestoy, Philippe Berger,
Michel J. Daydé, Iain S. Duff, Valérie Frayssé, Luc Giraud, and
Daniel Ruiz, editors, Euro-Par, volume 1685 of Lecture Notes in
Computer Science, pages 1171–1175. Springer, 1999.

[14] Avrim Blum. On-line Algorithms in Machine Learning. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms, vol-
ume 1442 of Lecture Notes in Computer Science, pages 306–325.
Springer, 1996.

[15] François Bodin, Toru Kisuki, Peter M.W. Knijnenburg,
Micheal F.P. O’Boyle, and Erven Rohou. Iterative Compilation
in a Non-Linear Optimisation Space, 1998.

[16] Shekhar Borkar. Thousand Core Chips – A Technology Perspec-
tive. In DAC, pages 746–749, 2007.

[17] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas B.
Jablin, and David I. August. Revisiting the Sequential Program-
ming Model for the Multicore Era. IEEE Micro, 28(1):12–20, 2008.

140

Bibliography

[18] Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi,
and Andrea Di Biagio. A highly flexible, parallel virtual machine:
Design and experience of ildjit. Softw., Pract. Exper., 40(2):177–
207, 2010.

[19] Simone Campanoni, Martino Sykora, Giovanni Agosta, and Ste-
fano Crespi Reghizzi. Dynamic Look Ahead Compilation: A Tech-
nique to Hide JIT Compilation Latencies in Multicore Environ-
ment. In Oege de Moor and Michael I. Schwartzbach, editors, CC,
volume 5501 of Lecture Notes in Computer Science, pages 220–235.
Springer, 2009.

[20] Steve Carr and Ken Kennedy. Improving the Ratio of Memory
Operations to Floating-Point Operations in Loops. ACM Trans.
Program. Lang. Syst., 16(6):1768–1810, 1994.

[21] John Cavazos, Grigori Fursin, Felix V. Agakov, Edwin V. Bonilla,
Michael F. P. O’Boyle, and Olivier Temam. Rapidly Selecting
Good Compiler Optimizations using Performance Counters. In
CGO, pages 185–197. IEEE Computer Society, 2007.

[22] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian.
Optimizing for Reduced Code Space using Genetic Algorithms.
In Y. Annie Liu and Reinhard Wilhelm, editors, Workshop on
Languages, Compilers, and Tools for Embedded Systems, pages 1–
9. ACM, 1999.

[23] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adap-
tive Optimizing Compilers for the 21st Century. The Journal of
Supercomputing, 23(1):7–22, 2002.

[24] Issam Dagher. Incremental PCA-LDA algorithm. In Compu-
tational Intelligence for Measurement Systems and Applications
(CIMSA), 2010 IEEE International Conference on, pages 97 –101,
sept. 2010.

[25] R. J. Dakin and Peter C. Poole. A Mixed Code Approach. Comput.
J., 16(3):219–222, 1973.

[26] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David A. Patterson, John Shalf,
and Katherine A. Yelick. Stencil Computation Optimization and
Auto-Tuning on State-of-the-Art Multicore Architectures. In SC,
page 4. IEEE/ACM, 2008.

141

Bibliography

[27] Jack W. Davidson and Sanjay Jinturkar. Aggressive Loop Un-
rolling in a Retargetable Optimizing Compiler. In CC, pages 59–
73, 1996.

[28] J. L. Dawson. Combining Interpretive Code with Machine Code.
Comput. J., 16(3):216–219, 1973.

[29] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, pages 137–150, 2004.

[30] Pedro C. Diniz and Martin C. Rinard. Dynamic Feedback: An
Effective Technique for Adaptive Computing. In Marina C. Chen,
Ron K. Cytron, and A. Michael Berman, editors, PLDI, pages
71–84. ACM, 1997.

[31] Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S.
Duff. A Set of Level 3 Basic Linear Algebra Subprograms. ACM
Trans. Math. Softw., 16(1):1–17, 1990.

[32] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Richard J. Hanson. An Extended Set of FORTRAN Basic Lin-
ear Algebra Subprograms. ACM Trans. Math. Softw., 14(1):1–17,
1988.

[33] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin,
Michael F. P. O’Boyle, and Olivier Temam. Fast Compiler Opti-
misation Evaluation Using Code-Feature Based Performance Pre-
diction. In Utpal Banerjee, José Moreira, Michel Dubois, and Per
Stenström, editors, Conf. Computing Frontiers, pages 131–142.
ACM, 2007.

[34] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grigori
Fursin, and Michael F. P. O’Boyle. Portable compiler optimisation
across embedded programs and microarchitectures using machine
learning. In David H. Albonesi, Margaret Martonosi, David I. Au-
gust, and José F. Mart́ınez, editors, MICRO, pages 78–88. ACM,
2009.

[35] Alejandro Duran, Roger Ferrer, Eduard Ayguadé, Rosa M. Badia,
and Jesús Labarta. A Proposal to Extend the OpenMP Tasking
Model with Dependent Tasks. International Journal of Parallel
Programming, 37(3):292–305, 2009.

[36] Michael Fairley. mincemeat.py - MapReduce on Python.
http://remembersaurus.com/mincemeatpy/, 2012 (retrieved).

142

Bibliography

[37] David B. Fogel. What is evolutionary computation? Spectrum,
IEEE, 37(2):26, 28 –32, feb 2000.

[38] Björn Franke, Michael F. P. O’Boyle, John Thomson, and Grig-
ori Fursin. Probabilistic source-level optimisation of embedded
programs. In Yunheung Paek and Rajiv Gupta, editors, LCTES,
pages 78–86. ACM, 2005.

[39] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
Implementation of the Cilk-5 Multithreaded Language. In PLDI,
pages 212–223, 1998.

[40] Grigori Fursin. Collective benchmark (cBench), A collec-
tion of open-source programs with multiple datasets assem-
bled by the community to enable realistic benchmarking and
research on program and architecture optimization., 2010.
http://ctuning.org/cbench.

[41] Grigori Fursin, John Cavazos, Michael F. P. O’Boyle, and Olivier
Temam. MiDataSets: Creating the Conditions for a More Realis-
tic Evaluation of Iterative Optimization. In Koen De Bosschere,
David R. Kaeli, Per Stenström, David B. Whalley, and Theo Un-
gerer, editors, HiPEAC, volume 4367 of Lecture Notes in Com-
puter Science, pages 245–260. Springer, 2007.

[42] Grigori Fursin, Albert Cohen, Michael F. P. O’Boyle, and Olivier
Temam. A Practical Method for Quickly Evaluating Program
Optimizations. In Thomas M. Conte, Nacho Navarro, Wen mei
W. Hwu, Mateo Valero, and Theo Ungerer, editors, HiPEAC, vol-
ume 3793 of Lecture Notes in Computer Science, pages 29–46.
Springer, 2005.

[43] Grigori Fursin, Albert Cohen, Michael F. P. O’Boyle, and Olivier
Temam. Quick and Practical Run-Time Evaluation of Multiple
Program Optimizations. T. HiPEAC, 1:34–53, 2007.

[44] Grigori Fursin, Cupertino, Miranda, Sebastian Pop, Albert Co-
hen, and Olivier Temam. Practical Run-time Adaptation with
Procedure Cloning to Enable Continuous Collective Compilation.
In GCC Developpers Summit, 2007.

[45] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbig-
niew Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-
Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, François Bodin,
Phil Barnard, Elton Ashton, Edwin V. Bonilla, John Thomson,

143

Bibliography

Christopher K. I. Williams, and Michael F. P. O’Boyle. Milepost
GCC: Machine Learning Enabled Self-tuning Compiler. Interna-
tional Journal of Parallel Programming, 39(3):296–327, 2011.

[46] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namo-
laru, Elad Yom-Tov, Ayal Zaks, Bilha Mendelson, Phil Barnard,
Elton Ashton, Eric Courtois, Francois Bodin, Edwin Bonilla, John
Thomson, Hugh Leather, Chris Williams, and Michael O’Boyle.
Milepost GCC: Machine Learning Based Research Compiler. In
Proceedings of the GCC Developers’ Summit, June 2008.

[47] Grigori Fursin and Olivier Temam. Collective Optimization: a
Practical Collaborative Approach. TACO, 7(4):20, 2010.

[48] Piotr Gawkowski, Janusz Sosnowski, and B. Radko. Analyzing
the Effectiveness of Fault Hardening Procedures. In IOLTS, pages
14–19. IEEE Computer Society, 2005.

[49] Dan Gillick, Arlo Faria, and John Denero. MapReduce: Dis-
tributed Computing for Machine Learning, 2006.

[50] Michael I. Gordon, William Thies, and Saman P. Amarasinghe.
Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in
Stream Programs. In ASPLOS, pages 151–162, 2006.

[51] Paolo Roberto Grassi, Mariagiovanna Sami, Ettore Speziale, and
Michele Tartara. Analyzing the Sensitivity to Faults of Synchro-
nization Primitives. In DFT, pages 349–355. IEEE, 2011.

[52] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M.
Austin, Trevor Mudge, and Richard B. Brown. MiBench: a
Free, Commercially Representative Embedded Benchmark Suite.
In Proceedings of the Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop, WWC ’01, pages 3–14, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[53] Andrei Hagiescu, Huynh Phung Huynh, Weng-Fai Wong, and
Rick Siow Mong Goh. Automated Architecture-Aware Mapping
of Streaming Applications Onto GPUs. In IPDPS, pages 467–478,
2011.

[54] Lance Hammond, Vicky Wong, Michael K. Chen, Brian D. Carl-
strom, John D. Davis, Ben Hertzberg, Manohar K. Prabhu,
Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Trans-
actional Memory Coherence and Consistency. In ISCA, pages 102–
113. IEEE Computer Society, 2004.

144

Bibliography

[55] Gilbert Josep Hansen. Adaptive Systems for the Dynamic Run-
time Optimization of Programs. PhD thesis, 1974.

[56] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3 edition, 2003.

[57] Urs Hölzle and David Ungar. A Third-Generation SELF Im-
plementation: Reconsiling Responsiveness with Performance. In
OOPSLA, pages 229–243, 1994.

[58] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization
level exploration. In Mary Lou Soffa and Evelyn Duesterwald,
editors, CGO, pages 165–174. ACM, 2008.

[59] John H. Howard. On Overview of the Andrew File System. In
USENIX Winter, pages 23–26, 1988.

[60] Michael R. Jantz and Prasad A. Kulkarni. Eliminating false phase
interactions to reduce optimization phase order search space. In
Kathail et al. [64], pages 187–196.

[61] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement Learning: A Survey. CoRR, cs.AI/9605103, 1996.

[62] Sam Kamin, Baris Aktemur, and Michael Katelman. Staging static
analyses for program generation. In Stan Jarzabek, Douglas C.
Schmidt, and Todd L. Veldhuizen, editors, GPCE, pages 1–10.
ACM, 2006.

[63] Ralf Karrenberg and Sebastian Hack. Whole-function Vectoriza-
tion. In CGO, pages 141–150, 2011.

[64] Vinod Kathail, Reid Tatge, and Rajeev Barua, editors. Proceed-
ings of the 2010 International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems, CASES 2010, Scotts-
dale, AZ, USA, October 24-29, 2010. ACM, 2010.

[65] Khronos OpenCL Working Group. The OpenCL Specification, ver-
sion 1.1, 2010.

[66] Youfeng Wu Kingsum Chow. Feedback-Directed Selection and
Characterization of Compiler Optimizations. In Proceedings of
the 2nd Workshop on Feedback-Directed Optimization, 1999.

145

Bibliography

[67] Toru Kisuki, Peter M. W. Knijnenburg, Michael F. P. O’Boyle,
François Bodin, and Harry A. G. Wijshoff. A Feasibility Study
in Iterative Compilation. In Constantine D. Polychronopoulos,
Kazuki Joe, Akira Fukuda, and Shinji Tomita, editors, ISHPC,
volume 1615 of Lecture Notes in Computer Science, pages 121–
132. Springer, 1999.

[68] Toru Kisuki, Peter M.W. Knijnenburg, Micheal F.P. O’Boyle, and
Harry A. G. Wijshoff. Iterative Compilation in Program Opti-
mization, 2000.

[69] Peter M. W. Knijnenburg, Toru Kisuki, and Michael F. P. O’Boyle.
Combined selection of tile sizes and unroll factors using iterative
compilation. The Journal of Supercomputing, 24(1):43–67, 2003.

[70] Donald E. Knuth. Backus normal form vs. Backus Naur form.
Commun. ACM, 7(12):735–736, December 1964.

[71] Donald E. Knuth. An Empirical Study of FORTRAN Programs.
Softw., Pract. Exper., 1(2):105–133, 1971.

[72] Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accu-
racy Estimation and Model Selection. In IJCAI, pages 1137–1145.
Morgan Kaufmann, 1995.

[73] Flip Korn and S. Muthukrishnan. Influence Sets Based on Reverse
Nearest Neighbor Queries. In Weidong Chen, Jeffrey F. Naughton,
and Philip A. Bernstein, editors, SIGMOD Conference, pages 201–
212. ACM, 2000.

[74] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of
the Java HotSpotTMClient Compiler for Java 6. TACO, 5(1), 2008.

[75] John Koza and Riccardo Poli. Genetic Programming. In Ed-
mund K. Burke and Graham Kendall, editors, Search Methodolo-
gies, pages 127–164. Springer US, 2005.

[76] Chandra Krintz, David Grove, Vivek Sarkar, and Brad Calder.
Reducing the Overhead of Dynamic Compilation. Softw., Pract.
Exper., 31(8):717–738, 2001.

[77] Prasad A. Kulkarni, Stephen Hines, Jason Hiser, David B. Whal-
ley, Jack W. Davidson, and Douglas L. Jones. Fast searches for
effective optimization phase sequences. In William Pugh and Craig
Chambers, editors, PLDI, pages 171–182. ACM, 2004.

146

Bibliography

[78] Chris Lattner and Vikram S. Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation. In CGO,
pages 75–88. IEEE Computer Society, 2004.

[79] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder.
Online performance auditing: using hot optimizations without get-
ting burned. In Michael I. Schwartzbach and Thomas Ball, editors,
PLDI, pages 239–251. ACM, 2006.

[80] Hugh Leather. Machine Learning in Compilers. PhD thesis, In-
stitute of Computing Systems Architecture, School of Informatics,
University of Edinburgh, 2011.

[81] Hugh Leather, Edwin V. Bonilla, and Michael F. P. O’Boyle. Au-
tomatic feature generation for machine learning based optimizing
compilation. In CGO, pages 81–91. IEEE Computer Society, 2009.

[82] Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, Jung-Ho
Park, Honggyu Kim, Thanh Tuan Dao, Yongjin Cho, Sung Jong
Seo, Seung Hak Lee, Seung Mo Cho, Hyo Jung Song, Sang-Bum
Suh, and Jong-Deok Choi. An OpenCL Framework for Heteroge-
neous Multicores with Local Memory. In PACT, pages 193–204,
2010.

[83] Jun Lee, Jungwon Kim, Junghyun Kim, Sangmin Seo, and Jaejin
Lee. An OpenCL Framework for Homogeneous Manycores with
No Hardware Cache Coherence. In PACT, pages 56–67, 2011.

[84] Shun Long. Sustainable Learning-Based Optimization Based on
RKNN Outlier Detection. In 5th Workshop on Statistical and
Machine learning approaches to Architecture and Compilation
(SMART 2011), 2011.

[85] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos Guestrin, and Joseph M. Hellerstein. Distributed graphlab:
A framework for machine learning in the cloud. PVLDB, 5(8):716–
727, 2012.

[86] Zhiqiang Ma and Lin Gu. The limitation of mapreduce: A probing
case and a lightweight solution. In CLOUD COMPUTING 2010:
Proc. of the 1st Intl. Conf. on Cloud Computing, GRIDs, and
Virtualization, pages 68–73, 2010.

[87] Saeed Maleki, Yaoqing Gao, Maŕıa Jesús Garzarán, Tommy Wong,
and David A. Padua. An Evaluation of Vectorizing Compilers. In
PACT, pages 372–382, 2011.

147

Bibliography

[88] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou
Soffa. Contention aware execution: online contention detection
and response. In Andreas Moshovos, J. Gregory Steffan, Kim M.
Hazelwood, and David R. Kaeli, editors, CGO, pages 257–265.
ACM, 2010.

[89] Jason Merrill. GENERIC and GIMPLE: A New Tree Representa-
tion for Entire Functions. In Proceedings of the 2003 GCC Summit.
Red Hat, Inc., 2003.

[90] Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine
learning approach to automatic production of compiler heuristics.
In Donia Scott, editor, AIMSA, volume 2443 of Lecture Notes in
Computer Science, pages 41–50. Springer, 2002.

[91] Gordon E. Moore. Cramming More Components onto Integrated
Circuits. Electronics, 38(8), 1965.

[92] Gordon E. Moore. Excerpts from A Conversation with Gordon
Moore: Moore’s Law, 2005.

[93] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill, and David A. Wood. LogTM: Log-based Transactional Mem-
ory. In HPCA, pages 254–265. IEEE Computer Society, 2006.

[94] Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and
Ari Freund. Practical aggregation of semantical program proper-
ties for machine learning based optimization. In Kathail et al. [64],
pages 197–206.

[95] Hugo Viera. Neto and Nehmzow Ulrich. Incremental PCA: An
alternative approach for novelty detection. In Proc. Towards Au-
tonomous Robotic Systems (TAROS’05), 2005.

[96] Andy Nisbet. GAPS: A Compiler Framework for Genetic Algo-
rithm (GA) Optimised Parallelisation. In Peter M. A. Sloot, Mar-
ian Bubak, and Louis O. Hertzberger, editors, HPCN Europe, vol-
ume 1401 of Lecture Notes in Computer Science, pages 987–989.
Springer, 1998.

[97] Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin
Williams, David Yuste, Albert Cohen, and Ayal Zaks. Vapor
SIMD: Auto-vectorize Once, Run Everywhere. In CGO, pages
151–160, 2011.

148

Bibliography

[98] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Com-
pute Architecture: Fermi. Technical report, 2009.

[99] OpenMP Architecture Review Board. OpenMP Application Pro-
gram Interface, version 3.0, 2008.

[100] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. Au-
gust. Automatic Thread Extraction with Decoupled Software
Pipelining. In MICRO, pages 105–118. IEEE Computer Society,
2005.

[101] Eunjung Park, Sameer Kulkarni, and John Cavazos. An evaluation
of different modeling techniques for iterative compilation. In Ra-
jesh K. Gupta and Vincent John Mooney, editors, CASES, pages
65–74. ACM, 2011.

[102] Brian Pawlowski, David Noveck, David Robinson, and Robert
Thurlow. The NFS version 4 protocol. In In Proceedings of the 2nd
International System Administration and Networking Conference
(SANE 2000, 2000.

[103] James Poe, Chang-Burm Cho, and Tao Li. Using Analytical Mod-
els to Efficiently Explore Hardware Transactional Memory and
Multi-Core Co-Design. In SBAC-PAD, pages 159–166. IEEE Com-
puter Society, 2008.

[104] Ravi Rajwar, Maurice Herlihy, and Konrad K. Lai. Virtualizing
Transactional Memory. In ISCA, pages 494–505. IEEE Computer
Society, 2005.

[105] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary R.
Bradski, and Christos Kozyrakis. Evaluating MapReduce for
Multi-core and Multiprocessor Systems. In HPCA, pages 13–24.
IEEE Computer Society, 2007.

[106] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos
Prvulovic, Luis Ceze, Smruti Sarangi, Paul Sack, Karin Strauss,
and Pablo Montesinos. SESC Simulator, 2011.

[107] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education, 2010.

[108] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical Evo-
lution: Evolving Programs for an Arbitrary Language. In Wolf-
gang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C.

149

Bibliography

Fogarty, editors, EuroGP, volume 1391 of Lecture Notes in Com-
puter Science, pages 83–96. Springer, 1998.

[109] Vivek Sarkar. Optimized Unrolling of Nested Loops. In ICS, pages
153–166, 2000.

[110] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic
Task Scheduling for Linear Algebra Algorithms on Distributed-
memory Multicore Systems. In SC, 2009.

[111] E. Speziale and M. Tartara. A Lightweight Approach to Compiling
and Scheduling Highly Dynamic Parallel Programs. 2012.

[112] Mark Stephenson and Saman P. Amarasinghe. Predicting Unroll
Factors Using Supervised Classification. In CGO, pages 123–134.
IEEE Computer Society, 2005.

[113] Mark Stephenson, Saman P. Amarasinghe, Martin C. Martin, and
Una-May O’Reilly. Meta optimization: improving compiler heuris-
tics with machine learning. In Ron Cytron and Rajiv Gupta, edi-
tors, PLDI, pages 77–90. ACM, 2003.

[114] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan
Aarts, Mike Murphy, Ziang Hu, and Wen mei W. Hwu. Effi-
cient Compilation of Fine-grained SPMD-threaded Programs for
Multicore CPUs. In CGO, pages 111–119, 2010.

[115] Justin Talbot, Richard M. Yoo, and Christos Kozyrakis.
Phoenix++: modular MapReduce for shared-memory systems. In
Proceedings of the second international workshop on MapReduce
and its applications, MapReduce ’11, pages 9–16, New York, NY,
USA, 2011. ACM.

[116] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Sys-
tems Design and Implementation. Prentice Hall, third edition,
2006.

[117] Michele Tartara, Simone Campanoni, Giovanni Agosta, and Ste-
fano Crespi Reghizzi. Just-In-Time compilation on ARM proces-
sors. In Proceedings of the 4th workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and Pro-
gramming Systems, ICOOOLPS ’09, pages 70–73, New York, NY,
USA, 2009. ACM.

150

Bibliography

[118] Michele Tartara, Simone Campanoni, Giovanni Agosta, and Ste-
fano Crespi Reghizzi. Parallelism and Retargetability in the ILD-
JIT Dynamic Compiler. In Michael Beigl and Francisco J. Cazorla-
Almeida, editors, ARCS Workshops, pages 285–291. VDE Verlag,
2010.

[119] Michele Tartara and Stefano Crespi Reghizzi. Parallel Iterative
Compilation: Using MapReduce to Speedup Machine Learning
in Compilers. In Proceedings of third international workshop on
MapReduce and its Applications Date, MapReduce ’12, pages 33–
40, New York, NY, USA, 2012. ACM.

[120] The Apache Software Foundation. Hadoop MapReduce. http:

//hadoop.apache.org/mapreduce, Feb 2012 (retrieved).

[121] John Thomson, Michael F. P. O’Boyle, Grigori Fursin, and Björn
Franke. Reducing training time in a one-shot machine learning-
based compiler. In Guang R. Gao, Lori L. Pollock, John Cavazos,
and Xiaoming Li, editors, LCPC, volume 5898 of Lecture Notes in
Computer Science, pages 399–407. Springer, 2009.

[122] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary W. Hall,
and Jeffrey K. Hollingsworth. A scalable auto-tuning framework
for compiler optimization. In IPDPS, pages 1–12. IEEE, 2009.

[123] Ananta Tiwari, Jeffrey K. Hollingsworth, Chun Chen, Mary W.
Hall, Chunhua Liao, Daniel J. Quinlan, and Jacqueline Chame.
Auto-tuning full applications: A case study. IJHPCA, 25(3):286–
294, 2011.

[124] Robert M. Tomasulo. An Efficient Algorithm for Exploiting Multi-
ple Arithmetic Units. IBM Journal of Research and Development,
11(1), 1967.

[125] Guido van Rossum. Python Programming Language. In USENIX
Annual Technical Conference. USENIX, 2007.

[126] Hans Vandierendonck, George Tzenakis, and Dimitrios S.
Nikolopoulos. A Unified Scheduler for Recursive and Task
Dataflow Parallelism. In PACT, pages 1–11, 2011.

[127] Michael Voss and Rudolf Eigenmann. Adapt: Automated de-
coupled adaptive program transformation. In ICPP, pages 163–,
2000.

151

Bibliography

[128] Richard Vuduc, James W. Demmel, and Katherine A. Yelick.
OSKI: A library of automatically tuned sparse matrix kernels.
Journal of Physics: Conference Series, 16(1):521+, 2005.

[129] R. Clinton Whaley and Jack J. Dongarra. Automatically Tuned
Linear Algebra Software. In SC, page 38. IEEE, 1998.

[130] Svante Wold, Kim Esbensen, and Paul Geladi. Principal compo-
nent analysis. Chemometrics and Intelligent Laboratory Systems,
2(1–3):37 – 52, 1987. Proceedings of the Multivariate Statistical
Workshop for Geologists and Geochemists.

[131] Tse-Yu Yeh and Yale N. Patt. Two-Level Adaptive Training
Branch Prediction. In MICRO, pages 51–61, 1991.

[132] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis.
Phoenix rebirth: Scalable MapReduce on a large-scale shared-
memory system. In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC), IISWC ’09,
pages 198–207, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

152

