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Introduction

In the last two decades, technology advances in chip miniaturization, energy consump-
tion and wireless communication allow the development of revolutionary applications
in fields like wearable and ubiquitous computing. The term ubiquitous computing
refers to distributed technologies and applications designed to disappear in the envi-
ronment, allowing the user to unconsciously interact with it. Ubiquitous computing
requires small and smart devices deployed in the field of interest with the purpose of
sensing valuable physical variables and interact with the users. A large amount of ap-
plications has been envisioned to this future in the field of tele-medicine [141], child
care [[145]], environmental monitoring [[104], etc.

In 2001, the IST Advisory Group (ISTAG) published a white paper that describes
what living with Ambient Intelligence (Aml) might be like for ordinary people in
2010 [53]]. This document includes four user-centric scenarios that envision what tech-
nology could do in the future and what could be the role of the user with respect to the
Information Technology. Although the paper does not accurately describe the ordinary
life of current days, the paper has been used as guideline for research and development
of new devices, methodologies and techniques.

In these days, there is a considerable interest in making our city smarter under sev-
eral point of view such as urban monitoring [93]], pollution [[152]] and various social
services [114]. Smart Cities are a long-term project and the research community is
working hard toward the development of technologies that will enable Smart Cities to
become reality in a near future.

All these scenarios do not define any specific technology rather they are focused
on user-machine interaction and applications. Very often they overlap in many aspects
and thus technologies required for Aml could be useful for Smart Cities and so on. In
particular, an element is heterogeneity, since different systems will interact each other
to provide the user the required service. In Aml, devices like television, washing ma-
chine, heating system, security cameras, etc. will actively collaborate. In Smart Cities,
a traffic light could need to communicate with a meteorological station. In Ubiquitous
Computing, remarkably different devices with substantial hardware differences must
communicate each other.

One of the enabling technology is Wireless Sensor Networks (WSNs), networks
of tiny devices that cooperatively sense and act the environment in which they are
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Chapter 1. Introduction

deployed. Next Section provides a short introduction on this topic.

1.1 Wireless Sensor Networks

A WSN is an ad-hoc network composed of tiny devices with limited energy and com-
putational resources equipped with sensors to gather physical measures from the en-
vironment. In 1999, Wireless Sensor Networks (WSNs) have been considered as one
of the most important technologies for the twenty-first century [[17]. A decade of re-
search and applications proved the truth of such statement and their potential in next
generation digital systems.

In the last decade, a lot of research effort has been spent on Wireless Sensor Net-
works (WSNs), and many architectures [164], protocols [24], programming techniques
[115] have been developed. Thanks to this research, today, complex and innovative
applications can be developed in challenging application fields like medical [75] [127]]
or environmental monitoring [[104]] [108]].

The increasing complexity of Wireless Sensor Networks (WSNs) is leading to-
wards the deployment of sophisticated networked systems, and the optimal design
of WSNs can be a very difficult task in case constraints and requirements are strong.
A WSN is composed of several nodes that communicate among each other through a
wireless channel: these nodes are typically battery-powered, and equipped with low-
performance processors and small memories in order to reduce the power requirements.
A common WSN node comprises five main components [130]: a processing unit (mi-
crocontroller, processor, FPGA, ...), memories (DRAM, SRAM, Flash, ...), sensors
and actuators, multiple communication layers (physical radio, MAC, Routing, ...)
and a power supply (external power supply, batteries, solar cells, ...).

During the design phase, the cooperation of all these components must be combined
to identify the configuration that best fits the design objectives. The rising complexity
of WSNs design is also due to the combination of general-purpose architectures (which
offer flexibility, but require an optimal configuration in order to behave in an energy-
efficient way) with ad-hoc radio, MAC and routing layers. The combination of different
layers and the large number of configurable hardware and software parameters often
generates an extremely large design space, which requires a powerful CAD algorithm
to carry out the exploration.

In the last years, wireless sensor networks (WSNs) are becoming a well-established
reality in many different domains, including military applications, environment con-
trol, industrial supervision, health monitoring [164] [28]] and environmental monitor-
ing [104]. The transmission range of wireless devices can vary from few meters to sev-
eral kilometers, according to application’s requirements and energy availability. Sec-
tion [2.2] provides a deeper analysis of the application fields in WSNs.

Once retrieved, measures are elaborated and sent over the wireless channel to a
sink, where data is stored and used to monitor activities of the area of interest. WSN
nodes usually operate in hostile environments with limited energy resources ( [[104,
108]), constrained by the battery capacity, and thus the problem of achieving low power
consumption has become one of the main research focuses of research over the last
years [[164]. WSN nodes are interconnected with low-power wireless radio devices
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1.2. Motivations and Rationale
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Figure 1.1: Design Process of Wireless Sensor Network

which create an ad-hoc network infrastructure able to route data from sensing devices
to the sink.

In order to deal with the specific requirements of a given application domain, a
WSN has to meet certain performance requirements as well as to guarantee a sufficient
lifetime, which are often conflicting goals. The right tradeoff between these two objec-
tives, as well as the prevention of undesired behaviors such as unbalanced performance
among the different nodes of the WSN, can be guaranteed by accurately evaluating
the network configurations during the design phase. In order to help the designer dur-
ing the energy-performance tradeoff analysis, many Design Space Exploration (DSE)
techniques for WSNs have been proposed in the literature [[163] [118]], and most of the
classic optimization algorithms can also be adapted to WSNs with a low effort. How-
ever, providing such algorithms with an accurate system-level estimation of the WSN
performance is still an open problem, and it is necessary to guide the DSE algorithm to
the detection of the Pareto-optimal network configurations.

1.2 Motivations and Rationale

Nowadays, Wireless Sensor Network’s design requires experts from several applica-
tion fields such as computer science, electronics, telecommunication, digital signal
processing and application-specific competences (medicine, geology, biology, etc.). A
collaboration between experts in these fields is required to guarantee an optimal design
that respects given constraints and meet desired requirements.

This thesis presents a comprehensive study on the design of Wireless Sensor Net-
works including hardware platform design, network optimization and software parti-
tion. Moreover, adaptive techniques are proposed to deal with online real-time events
such as interferences.

The main contribution of this thesis is a general-purpose design flow for WSN
that defines the set and the sequence of processes to follow to obtain the specified de-
sign. The proposed design flow is a guideline for the development of automated design
tools and design frameworks. An overview of the design process of WSNs is given in
Figure[I.T} the design phase takes several inputs such as the application specification,
requirements, constraints, etc. The output is an high level definition of the final design;
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it specifies the position of the nodes, their hardware and network configuration and the
software that will run on the nodes. The output is at high-level since cannot be directly
deployed on the field, thus final operations like compilation, synthesis and network
setup are still to be done. Software, for instance, is defined in high-level languages,
that will be converted into machine-readable specification during the compilation pro-
cess. The objective of this thesis is to define how the design process should be done,
what can be done automatically and which information are required at each step of the
design flow.

The applicability and effectiveness of the proposed design flow and optimization
techniques has been verified and tested through the implementation of a design frame-
work. The vision of the proposed framework is to give the designer a powerful tool to
design WSNss. It includes:

* Automated optimization of the given design;
* Pareto-frontier analysis to detect desired trade-off in a multi-objective scenario;
* Intuitive interface that allow manual design and test of WSNs.

Although the proposed design framework is still in an early development phase, it is
able to provide high-level information to the designer in order to speedup the design
process, reducing costs and time-to-market.

In addition to design-time (offline) analysis and optimization, this thesis presents
two techniques for online real-time adaptivity (Chapter[5). This Chapter does not aim
to provide a comprehensive study on online optimization, but show the reader the limits
of design-time optimizations and the advantages of online real-time approaches. Please
note that design-time optimization are usually more effective than online optimization
for two aspects: the ability to define the design, in case of non optimality, in any aspect
(protocols, devices, etc.), and the amount of information during evaluation. However,
online real-time optimizations are able to deal with stochastic processes such as faults
or interferences effectively.

Design-time and online optimizations must be both considered during the design of
a WSN. Reliable and cost-effective design solutions are important factors to ensure
success and diffusion of WSN, thus efficient design tools to support the designer in this
phase is of extreme important.

1.3 Thesis Organization

This thesis work is organized in five core Chapters before the concluding remarks as
shown in Figure Chapter 2 presents the background and preliminary informa-
tion required to understand the work. It includes a general model for WSN nodes, an
overview of WSN applications, considerations about design methodologies and evalu-
ation techniques. Chapter [3]illustrates a set of commercial and open source hardware
platforms for WSNs, and includes a proposed sensing/processing architecture equipped
with low-power FPGAs. This is intended to provide the user a clear understanding
about kind of target platforms. Chapter [] introduces and details the proposed design
flow. This is the core chapter and includes the main contributions of this thesis such
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Chapter 6 | Application Case Studies
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Figure 1.2: Thesis Organization

as the proposed design flow, two models and a novel technique for the design space
exploration. Chapter [5] copes with online adaptivity in WSNs and is focused on the
network layer. Considering the complexity of this topic, two examples related to on-
line adaptivity in network communications are provided. Chapter [6| presents several
experimental results based on various case studies and scenarios. These application
case studies show how the proposed design flow is used in the specific field. Chapter|7]
concludes the thesis providing some hint for future development.

1.4 Publications

The various aspects of the research proposed in this thesis have been published and
presented at international conferences. The list of papers is the following:

* P. R. Grassi, . Beretta, V. Rana, D. Atienza, D. Sciuto: Knowledge-Based Design
Space Exploration of Wireless Sensor Networks. In Proc. of International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS
2012), 7 - 12 October 2012, Tampere, Finland

— This work presents a novel technique to perform design space exploration
of WSNs using both models and heuristics on the top of a Markov Decision
Process to perform the exploration

— Presented in Section

* P. R. Grassi, D. Sciuto: Energy-Aware FPGA-Based Architecture for Wireless

Sensor Networks. In Proc. of 15th Euromicro Conference on Digital System
Design (DSD 2012), 5 - 8 September 2012, Izmir, Turkey

— An FPGA-based architecture for WSNSs is presented here. The proposed ar-
chitecture uses a Flash-based FPGA to allow the system to control the energy
consumption of the device dynamically

— Presented in Section[3.2]

* P. R. Grassi, 1. Beretta, V. Rana, D. Sciuto: Tacit Consent: a Technique to Re-
duce Redundant Transmissions from Spatially Correlated Nodes in Wireless Sen-
sor Networks. In Proc. of 15th Euromicro Conference on Digital System Design
(DSD 2012), 5 - 8 September 2012, Izmir, Turkey
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— This paper introduces the Tacit Consent, a technique to reduce redundant
transmissions in cluster-based sensor networks exploiting the spatial corre-
lation of sensed data

— Presented in Section

e F. Rincon, P. R. Grassi, N. Khaled, D. Atienza, D. Sciuto: Automated Real-Time
Atrial Fibrillation Detection on a Wearable Wireless Sensor Platform. In Proc.
of 34th Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), 28 August - 1 September 2012, San Diego, USA

— This paper presents an innovative solution to accurately and timely detect
atrial fibrillations using resource constrained wireless sensor nodes

* [. Beretta, F. Rincon, N. Khaled, P. R. Grassi, V. Rana, D. Atienza: Design Explo-
ration of Energy-Performance Trade-Olffs for Wireless Sensor Networks. In Proc.
of 49th Asia and South Pacific Design Automation Conference (ASP-DAC), 3 -7
June 2012, San Francisco, USA

— This work illustrates a model-based optimization framework able to identify
the optimal energy-performance trade-off in WBSN systems

— Presented in Section 4.4.2.2]

 P. R. Grassi, V. Rana, 1. Beretta, D. Sciuto: B?*IRS: a Technique to Reduce
BAN-BAN Interferences in Wireless Sensor Networks. In Proc. of 9th International
Conference on Wearable and Implantable Body Sensor Networks (BSN 2012), 9
- 12 May 2012 London, United Kingdom

— Itintroduces a technique to reduce BAN-BAN interferences in IEEE 802.15.4
based networks in presence of up-to 4 co-located networks operating on the
same channel

— Presented in Section 5.1]

* P. R. Grassi, A. Ceppi, F. Cancaré, G. Ravazzani, M. Mancini, D. Sciuto: Au-
tomatic ldentification and Placement of Measurement Stations for Hydrological
Discharge Simulations at Basins Scale, in Proc. of European Geosciences Union
General Assembly (EGU 2012), 22 - 27 April 2012, Vien, Austria

— It illustrates a technique to identify the optimal position of sensor network
nodes for hydrological monitoring and forecasting

e I. Beretta, F. Rincon, N. Khaled, P. R. Grassi, V. Rana, D. Atienza, D. Sciuto:
Model-Based Design for Wireless Body Sensor Network Nodes. in Proc. of 13th
Latin American Test Workshop (LATW 2012), 10-13 April 2012, Quito, Ecuador

— This paper presents a model-based optimization framework and a multi-objective
exploration algorithm for Wireless Body Sensor Networks.

— Presented in Section 4.4.2.1]
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Background and Preliminaries

A Wireless Sensor Network (WSN) is designed to gather physical measures from the
environment where it has been deployed. These information can be collected in a cen-
tral node (a sink) for further analysis, or used by the network to actuate the environment.
Transmission ranges of WSNs can vary from few meters to some kilometers, according
to the application’s needs and power requirements. The typical communication medium
is the air, but other mediums have been successfully used (water [25], skin [65], etc...).
In all of these cases, a WSN is composed of several nodes whose communications are
wireless and that are able to sense (and actuate) the environment of interest.

The type of sensed variable depends on the application needs and can vary in both
sampling throughput and accuracy. A WSN must be tailored to the specific application
to deliver the correct data effectively. It is not possible to design a general purpose
system that works effectively for all kind of applications; to guarantee efficient archi-
tectures, problem-specific design approach must be adopted. If this concept is true
even for other fields of computer science, in WSN field it must be taken into consider-
ation: design choices for implantable body sensor networks are extremely different to
the design choices of a WSN for structural monitoring.

The design problem of a WSN consists in identifying the position of the nodes in
the space, their hardware/network configuration and the software definition. Only a
perfect combination of the components ensures that the network will perform its tasks
in a correct and efficient way. The identification of the optimal design choices is a very
complex task that require experts in both electronic, telecommunication and computer
science. Moreover, to implement efficient applications, experts on the target appli-
cation field are required (medical, geosciences, etc...). Unfortunately, few designers
have these skills, since they are more focused on the electronic or telecommunication
components rather than computer science or vice versa, thus teams with heterogeneous
and complementary expertises are usually required. In addition, even though the team
members have the required expertises, the identification of the optimal design can be
extremely complex. For such a reason, Computer Aided Design (CAD) automated tools
for the design of WSN are required. To develop design methodologies and automated
techniques for WSN design, it is crucial to define the WSN field and its design problem.

This Chapter provides some basic concepts about the design of WSNs that will help
the reader to better appreciate the thesis work. Section [2.1|presents a general structure
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of a WSN. Section [2.2] classifies the WSN applications according to their design re-
quirements and constraints. In order to provide a wide view of the design problem a set
of common parameters and metrics is introduced. Section [2.3]illustrates the theoretical
complexity of the design of WSN. Section presents the most common Hardware/-
Software co-design methodologies for embedded systems. Design evaluation is an im-
portant part of the design flow; Section [2.5|shows three evaluation techniques for WSN
highlighting pros and cons.

2.1 General Structure of a Wireless Sensor Network

A Wireless Sensor Network is composed of several nodes that communicate to accom-
plish a common task. Each device processes sensorial data, uses actuators, receives and
transmits through the network interface. Most of the WSN nodes are battery powered
in order to allow free movements or the deployment in hostile places. Moreover, energy
harvesting helps the devices to extend their lifetime.

The architecture of a WSN node strictly depends on the target application, thus
nodes can be significantly different according to their application’s needs; they can dif-
fer in sensor types, processing unit, operating system used, etc. However, WSN nodes
can be modeled in a generic way, in order to have a common mathematical structure
that could help the designer to interpret experimental results and compare alternative
designs. This Section introduces and present this mathematical abstraction. Dot nota-
tion x.y, widely used in this thesis, indicates that the feature y belongs to the component
x. If fsqm indicates the sampling frequency of a sensor, ;. fs., indicates the sampling
frequency of sensor s.

2.1.1 Generic Node Models
A WSN node ¢ is a computing device composed by:

* Processing unit (CPU, ASIC, FPGA,...)

* Network interfaces and components (network layer, mac layer and physical layer
[radio, optical, ....])

* Sensor(s) (temperature, vibration,...) (optional)
* Actuator(s) (motors, switches, ...) (optional)
* Power Unit (batteries, recharge circuit, harvesting, ...)

The proposed model, illustrated in Figure [2.1] is a general-purpose model able to de-
scribe a large variety of architectures. This model describes the relationships among
various layers of a WSN node, from sensors and actuators to network management.
From the top of the figure, sensed data, gathered by sensors (s; € S) and filtered by
custom filters (¢; € ®), are transmitted to the processing unit, which hosts applications
and manages memories. The processing unit, that is the center of the node, elabo-
rates both (filtered) sensorial data (F}) and network packets ([2%). Then applications
transmit data to the network (7%) and to the actuators (C}). Network layer is decom-
posed in three sub-layers: Network (NET), MAC and Physical (PHY). Network layer
is responsible for routing and transport (end-to-end connectivity), MAC layer ensures
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Figure 2.1: Model of the Node

synchronization and non-conflicting communications among co-located nodes, and the
Physical layer provides bit-to-bit transmissions over the communication medium. The
proposed model depicts only the data exchange among components, but it does not
constrain their implementation to specific technologies or systems such as hardware,
software, operating systems, etc. This leaves the designer with a degree of freedom
to decide how to implement the functionalities, and provides a high level model of the
node, that will be useful to compare different architectures.

Batteries and energy harvesting are modeled in a black box (power unit) that spec-
ifies the discharge model of the batteries, the harvesting capabilities, faults, etc. Simi-
larly to other components, the power unit has been left as generic as possible to avoid
imposing any constraint to its implementation.

PROCESSING

In a WSN node, processing is performed in three distinct components:

* Sensor Filters () and Actuator Controllers (V): performed after the sensors
operations and before the actuators activation, such processing is dedicated to the
filtering and controlling of sensors and actuators. Can be either implemented with
dedicated hardware (DSP, FPGA,...) or using software routines;

* Network Layer: the management of data in the network is one of the most im-
portant aspects of a WSN. The network layer routes packets through the network
interface, checks and identifies the topology of the network and so on. Such oper-
ations usually require dedicated hardware or software units. The model proposed
in this work decouples network from application data in order to effectively ex-

Paolo Roberto Grassi Politecnico di Milano 11




Chapter 2. Background and Preliminaries

press the overhead of networking in WSN. In this model, all the communications
among network layer have been explicited: application data (77,R2), network
packets (7%, R™), MAC packets (T'™,R™) and radio transmissions (7),R?). This
set of parameters allow further analysis on transmitted and received packets such
as, for instance, the overhead of the network protocol (1" — Tg);

* Processing Unit: located in the conjunction of sensors, actuators and network
interfaces, it completely controls the data in the node. It can or cannot host a
tiny operating system, depending on both application needs and technical require-
ments. The Processing Unit handles application data coordinating sensor, actuator
and network information. It can be either a micro-controller, a micro-processor,
an FPGA, or any component able to cope with sensors, actuators and network
data.

SENSORS AND ACTUATORS

The main purpose of a WSN is to sense the environment where it is deployed. A
node § € A is equipped with a set of sensors 6.5 and actuators 6.A. Each sensor
(s € 6.9) is characterized by a sampling frequency (s.fsq,) and the number of bits
used to represent the sampled data (s.bs,,,). Thus, each sensor generates a throughput
of s. T = s.fsam * S-bsam, that is an important metric to estimate the filtering needs.
Similarly, each actuator (a € J.A) is defined by a refresh frequency (a.f,.r) and the
number of bits used on each refresh (a.b,.r). The definition of the attributes of a sensor
or an actuator may vary from model to model; what is important is the definition of the
throughput the sensors/actuators generate/require.

Sensed data must be processed (filtered) before transmitting them to the network.
Filtering is performed to reduce the amount of data to transmit (aggregation) or to
extract relevant information (feature-extraction). Given data from a sensor at a given
frequency and width, a sensor filter takes sensor data as input and gives filtered data as
output. In this model, sensor filters (¢ € 0.®) are described as black boxes that take
sensor data as input and gives data as output. For instance, if ¢ € 0.® is a filter applied
to s € 0.5, it takes s.bg,,, data at a frequency of s. fs,,,, and generates ¢.b data at a
frequency ¢. f. The throughput of the filters, represented with F;, indicates the amount
of information that should be processed by the application.

Similarly, actuator’s data are managed by controllers (V), which interpret applica-
tion’s data and convert it to actuator-compatible information. The more the controller
is intelligent the less information it will require from the application. In the model, the
throughput required by the controllers labeled with Cf;.

Both filters and controller can be implemented in hardware or in software. More-
over, filters and controllers are modeled as independent entities; this allows the defini-
tion of a large variety of filtering architectures and techniques, such as DSPs or FPGAs
(see Section [3.2). Typically, filters and controllers are performed by software tasks,
but their design is extremely important to ensure power-efficient, performance-aware
design.
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POWER UNIT

One of the limitations and requirements of a WSN is the energy available on each node.
Considering that each node is usually equipped with batteries, a model for energy con-
sumption is needed. Many sensor nodes are able to recharge their batteries harvesting
energy from the environment [26,|104]]. Energy consumption and harvesting can be
modeled as a time dependent function of the battery status.

Energy consumption and harvesting are defined as the derivative of the energy in
time %. If % is positive, the node is harvesting energy, while if % is negative,
the node is consuming energy. It is important to notice that if the derivative is positive
it does not imply that the node is not consuming at all, but that the harvesting is more
effective than consumption, and the node is recharging their batteries.

Such definitions are particularly useful to define the concept of node and network
lifetime. For instance, the lifetime of a node (0 € A) is defined as the time ¢; where,
Vt' > tr, E(t') = 0. Network lifetime has different definitions [37]: in applications
that depend on every single node, the lifetime of a network can be defined as the time
until the first node runs out of battery power. Alternatively, a network can be more or
less fault tolerant and it can live as long as all live nodes are still connected to each

other. Extracting such properties from the single-node definition is not difficult.

2.1.2 Network Models

The most natural way to define WSNs is using graphs. A graph is defined as a pair
G = (V, A) where V is a set whose elements are called vertices or nodes and A is a
set of ordered pairs of vertices, called arcs. A graph can be either Directed, where arcs
have directions or Undirected, if arcs are undirected. All the concepts related to graph
theory are assumed to be known by the reader; an introduction to graph theory can be
found in [[160].

Due to the asymmetry and heterogeneity of nodes, WSNs are generally Directed
Graphs. Previous works [144,|159] proposed different models for WSNs to define
topology control, routing and connection properties. These works use the concepts
of Quasi Unit Disk Graph (QUDG) and Bounded Independence Graph (BIG) to model
the connectivity of sensor nodes. These models, given a set of nodes distributed in a
two-dimensional space, express which node can receive a transmission from a node.

Connections In a WSN, nodes communicate through a network interface to exchange
information; in such a way, connections are links between nodes. According to the
definition of QUDG given by [144], nodes with Euclidean distance at most p for some
given p € (0, 1] are adjacent. Pairs with a Euclidean distance greater than 1 are never
in each other’s transmission range. Finally, pairs with a distance between p and 1 may
or may not be connected. Summarizing, given two nodes d1, 6y € A:

¢ if d(61,d2) < p nodes are adjacent
* if d(01,02) > 1 nodes are never adjacent

* if p < d(61,92) < 1 nodes can or cannot be adjacent according to some rules.

Paolo Roberto Grassi Politecnico di Milano 13




Chapter 2. Background and Preliminaries

ll)d{a,c}-.;jc

Figure 2.2: Quasi Uniform Disk Graph

Considering that QUDG 1is not useful to describe object interferences, the simplicity
of the model is attractive. Independently from the function used to express the con-
nections, considering two nodes 01,92 € A, Ao = (d1,J2) defines a unidirectional
connection between d; and J, where 0; can communicate with d5 but d, cannot com-
municate with d;. In most of the cases, network connections are bidirectional, implying
a symmetry in the A-relation. Figure shows an example of QUDG. According to
the definition, since \,_.;, < p, these two nodes are adjacent, so they can communicate.
p < Aa—e < 1, and the two nodes can communicate since c falls into the transmission
area of a. As previously explained, the communication in the area p < d(d1,d2) < 1
can or cannot happen, according to some rules. One of the most common rule is to
create a random shape, similarly to the one shown in the Figure. Using this concept,
although p < A\, < 1, these two nodes cannot communicate.

QUDG defines only if two nodes have or not the opportunity to communicate.
Within the communication links complex propagation models should be used in or-
der to guarantee a good simulation/estimation accuracy. A good propagation model is
the Average Path Loss Model, that estimates the average path loss between two nodes.
It has been proven [[170]] that the lognormal shadowing model gives very accurate path
loss estimates in case the distance between nodes is from few meters to one hundred
meters. The following formula returns the path loss in dB as a function of the distance
between the nodes and the characteristics of the channel:

d
PL(d) = PL(d,) + 10nlog <d_0) + Xo
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Table 2.1: Network characteristics WSNs

Sensed and Network
Application Field Number of Nodes Transmitted o L.
. Organization
Variables
Structural 10-1000 Vibration Mesh
Monitoring
Body Sensor ECG, Temperature,
Networks 2-10 EMG, EEG, ... Star Networks
Multimedia Sensor 10-50 Audio, Video Mesh
Networks
Environmental Temperature,
. 30-3000 Humidity, Push Networks
Monitoring .
Brightness, ...
Batfleﬁeld 50-5000 Posmon., Speed, Mesh
Assistance Audio, ...
Unde.rwa.ter 5.150 Temperature, Water Push Networks
Monitoring Flow,
. Temperature,
Domotics 10-300 Humidity, Video, .. Star Networks
Automotive 5-50 Temperature., Speed, Star Networks
Acceleration, ...

where PL(dy) is a measured path loss at the reference distance d, 7 is the path loss
exponent and y,, a Gaussian noise with zero-mean and standard deviation equal to o.

Position In WSNs, the position of the nodes defines the set of feasible topologies of
the network and is also needed to define the right placement of sensors and actuators on
the environment, to perform the required sensing and acting actions. Since the position
is a property of nodes, we express the position of a node using the dot notation where
0.z, 0.y and J.z represent the coordinates in a 3-dimensional Euclidean Space.

2.2 Application Fields and Classification

WSNs provide useful technologies and architectures that allow several applications
to be implemented. The analysis of the physical variables, sensed over the world,
is extremely important to control events of interest for scientific purposes (cane toad
monitoring [73], etc.), to prevent catastrophic events (such as structural health moni-
toring [79]], landslides [27]], etc.), or to monitor physiological aspects like cardiac dis-
eases [[138]], posture problems [58]], brain injuries [[76].

Table [2.1] and [2.2] qualitatively illustrate some characteristics of WSNs with respect
to their application field.

Network characteristics such as number of nodes, kind of sensed variable and net-
work organization are described in Table 2.1} The amount of nodes in a network affects
the design process in terms of complexity and optimality; the higher is the amount of
nodes to be configured, the higher is the cardinality of the design space and, as a conse-
quence, the difficulty to identify the optimal design. In Table[2.1] network organization
has been classified as:
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Table 2.2: Power and Reliability Characteristics of WSNs

Application Power Supply Harvesting Fault Nodes
Field Tolerance Redundancy
Structural Battery Solar High YES
Monitoring
Body Sensor Battery Stress, Critical NO
Networks Vibration
Multimedia Cabled Low NO
Sensor
Networks
Environmental Battery Solar Low YES
Monitoring
Battlefield Battery, Cabled Solar, Stress, Critical YES
Assistance Vibration
Underwater Battery Water Flow Low YES
Monitoring
Domotics Battery, Cabled Medium YES
Automotive Cabled Critical YES

 Star Network: one-hop networks. Data are gathered by a central node that receives
sensorial information from all the nodes;

* Push Network: network with a predefined direction of data. These networks are
optimized to deliver data from sensors to sinks;

* Mesh: a network of pairs with no preferred network flows.

Please note that a final design can use custom solutions for network; the listed organi-
zations are just typical design choices.

Regarding the type of sensed variable, for the purpose of the design, what it is im-
portant is the throughput generated by each sensor node rather than its actual value.
Some application fields are characterized by a large amount of nodes (environmental
monitoring or battlefield assistance), but have low-frequency data such as temperatures
or humidity, that get less than 1 sample per minute. On the other hand, other applica-
tion fields like multimedia sensor networks have a lower amount of nodes (10-50), but
require streaming of audio-video contents, that require broadband communications.

The identification of an optimal trade-off is extremely important in WSNs. Consid-
ering body sensor networks, for instance, even if the amount of nodes is considerably
low (2-10), and the throughput is acceptable (ECG requires 125 samples-per-second at
24-bit precision, that is 3 kbits/sec), their optimization is very complex. In fact, power
and computational limitation of these nodes makes the identification of the optimal
trade-off hard to reach manually. A practical example is given in Chapter [6]

Regarding the power characteristics of WSN (See Table [2.2), the main difference
concerns the use of batteries or cabled power. In case cabled power is available, it is
strongly suggested to use it since it effectively reduces the faults due to battery deple-
tion. However, in some cases, cabled power is not available. For instance, implantable
body sensor networks require small batteries that cannot be recharged externally as well
as environmental monitoring, where nodes are deployed in hostile places with no cabled
sources available. In some cases, cabled power is available in some part of the network
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(domotics and battlefield assistance), while the other nodes are powered by batteries.
In domotics, for instance, nodes can be battery powered for economic (cost of cabling)
and aesthetic needs (no visible cables).

In case batteries are used, an effective way to increase lifetime of the network is by
harvesting energy from the environment. Energy harvesting is an open and very active
research field [109] and promises to be an enabling technology for many applications.
Nowadays, the most effective harvesting source is solar, that can be used for structural
monitoring, environmental monitoring and in battlefields. In case sun is not present
(underwater) or solar panels cannot be used (body sensor networks), other techniques
such as stress, vibration or water current can be used instead.

Reliability of WSN varies according to the final application fields. Some of them
are life-critical, while others just collect data from the environment. In the first case,
reliability is critical, and must be tackled effectively. Redundancy is the most common
way to increase the reliability of a system; if it is always possible to have redundancy
on sensors, in some cases, nodes’ redundancy cannot be applied for practical reasons.
In body sensor networks, for instance, it is not always possible to place several nodes
on the same spot to perform independent measurements.

Reliability in WSN means that the system must work in standard scenarios. Stan-
dard conditions are a set of possible scenarios that have been identified during design-
time. Examples of standard scenarios are:

* Presence of up to three co-located networks operating on the same frequencies;
* Faults of up to 10 nodes in the network;

* White noise on the sensors with specified mean and standard deviation.

These scenarios have been tested at design-time, and the deployed network will be able
to deal with these scenarios.

2.2.1 Design Considerations

An optimal design of a WSN should cope with several conflicting metrics while satis-
fying the given constraints. Optimizing a design to meet design requirements by maxi-
mizing or minimizing the metrics must take constraints into account. If hardware cost
is a limitation, it is not a good idea to place several and/or expensive nodes, since, even
if the final design is extremely optimized it will never be accepted since it violates the
cost constraint. So, in the remaining of this thesis a metric is a measurable entity that
must be optimized (minimize or maximize), while a constraint is a Boolean condition
that must be satisfied (i.e., use at most 15 nodes in the network).

Regardless problem-specific requirements and constraints, each category is charac-
terized by common design considerations. The lifetime of the system depends on both
power consumption, battery capacity and the harvesting capabilities; the more power
the application requires, the bigger the batteries and the more effective the harvest-
ing should be. Vice versa, if the size of the batteries is fixed or the harvesting is not
effective, architectures and applications must be power-aware.

Let us consider two distinct mathematical spaces: Parameters and Metrics. The
Parameters’ space (P) is a multi-dimensional space which defines all the feasible im-
plementations of the design. Examples of the dimensions of this space are, i.e., the
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position of nodes, the MAC layer, the routing protocol, the application’s implementa-
tion, and so on. The Metrics’ space (M) is a multi-dimensional space where all the
feasible values of the required metrics (such as energy consumption, packet rate, etc.)
are included.

2.2.1.1 PARAMETERS

During the design phase, a parameter is something which value can be defined by the
designer. Every design choice is related to a specific parameter: CPU frequency, MAC
protocol, radio TX power, etc. Every design project is characterized by its own specific
design parameters according to: availability (i.e., there are 100 MSP430 processors
available in stock), constraints (i.e., the law imposes the use of 2.4 GHz radio for this
application), economy/license (i.e. the company already pays a license to use a specific
standard and it will be very expensive to change the standard), etc.

For whatever reason, it is always a good idea to limit the amount of parameters and
parameters’ value such as the complexity of the design space is low enough to allow
effective design space explorations. Section [2.3] illustrates the design complexity of
WSN and will give the reader a better understanding of the problem.

2.2.1.2 METRICS

A specific combination of parameters results in a specific design that is characterized
by specific values of the metrics. A metric is a measurable indicator that provides
valuable information about the system. They differ from parameters since they cannot
be arbitrarily set by the designer, rather their value is a result of the design choices.
For example, packet-receive-ratio cannot be set at design time but depends on various
factors like radio interferences, MAC configuration, routing algorithm, etc. For such
reason, parameters are defined and metrics are evaluated (see Section @

2.3 On the Design Complexity

One of the most critical aspects of a WSN design is the cardinality of the design space
which is too big to be explored exhaustively. This section aims at quantify the cardi-
nality of the three spaces presented in this Section.

Let us consider A as a three-dimensional space whose size is equal to (X,Y, 7)
meters and let discretize the space in squared cells of side of [ meters. Assuming that
more than one node can be placed in the same cell, if we would like to place a set of
nodes A with d,,,;, < |A] < dpnae» the number of possible solutions is equal to:

TE X RV« 2\

> T
For instance, if we would like to place from 20 to 40 nodes in an area of 100m? with
| = 1m, the amount of admissible solutions is greater than 10%4°. Such cardinality dis-

courages the use of semi-random algorithms to solve placement problems, thus custom
algorithms are preferred.

Regarding the configurations’ space, the amount of possible solutions depends on
the kind of parameters. Considering the three kinds of configurations’ parameters
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(Cn,Cy and Cy), the size of the design space (upper bound) is:

(H rc\) IT lel° (H |crA>

ceChp, ceCy ceCy

where |c| corresponds to the amount of valid values of the parameter ¢, G is the amount
of groups in the network and |A| is the number of nodes in the network. Assuming
that a group includes at least one node, G < |A|. From the equation is possible to see
that node parameters’ have a greater impact on the cardinality w.r.t. network parame-
ters. It suggests that DSE on network parameters can be even performed manually, but
refinements on node parameters requires an automated process.

Regarding cardinality of the applications’ space A, since A includes all the imple-
mentations of all the possible applications, considering that there is no limit in the
amount of nodes in a PDG, the cardinality of the PDG is infinite. Moreover, a feasible
solution of a WSN design must have an application that implements the desired func-
tionality. Although the set of applications that implements the desired functionality
AT € Ais a small subset of (|AF| << |A|), its cardinality is still infinite. In fact,
a € A can be transformed in o’ € AY, with a # a/, adding dummy tasks. Since this
process can proceed to infinite, | A”| is infinite. For this reason, the automatic design of
WSN applications, requires custom techniques.

In this section, we provide a characterization of the design space (denoted as .5)
of WSNs, in order to show the complexity of this kind of systems. The parameters
space of a WSN is divided into two parts: a set of node parameters (F,), which can
assume different values on each node, and a set of network parameters (F,), which
assume one value throughout the whole network (or at least a part of it). For example,
the memory size or the type of processor are specific for each node, hence they belong
to P,, whereas the network protocol must be the same among the nodes, therefore it
belongs to P,. Each parameter p € (P, U P,) is assigned to a discrete set of values in
an interval [Dy,in, Pmaz |, Whose cardinality is denoted as [p.

Node parameters heavily affect the design space size |.S|, since each parameter can
assume an independent value on each node. Thus, when the network size (expressed
in terms of the number of nodes, V) increases, then |S| increases exponentially. More
formally, we can express the size of the design space of a WSN:

o (1) (0)

peP, qeP,

To understand the order of magnitude of |S|, let us show a relatively small example
for structural or environmental monitoring. Let us assume that 8 nodes are placed
on a 2x2x?2 tridimensional grid in the monitored area, and that the communication
is regulated by the IEEE 802.15.4 MAC protocol [[18]. Even without considering any
hardware parameter, the configuration of the MAC protocol itself contains a wide set of
possible parameters in P, (e.g., the frame and the beacon orders [18]]) and in P, (e.g.,
the choice of using the contention active communication, or the number of requested
guaranteed time slots [18]). Overall, the design space contains approximately 290
billions of solutions.
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Thus, an extensive DSE would take an unacceptable amount of time when network
simulation is the only viable way to evaluate a solution. As a consequence, a technique
that is able to reduce the number of simulations is required.

2.4 Design Methodologies and Principles

The design problem consists in the identification of the optimal configuration of the pa-
rameters such as objective functions, defined as combination of metrics, are minimized.
A specific configuration of the parameters is called solution and the process of iden-
tification of the best solution is called Design Space Exploration (DSE). In literature
such problem is generally called optimization problem but, in order to disambiguate
with respect to general optimization problems, the process of identification of optimal
design solutions, in this thesis, will be always referred with the term Design Space
Exploration or its acronym DSE.

As aforementioned, the design problem consists of two mathematical spaces: [P and
M. The dimensions of P is the set of parameters, thus the set of configurable entities of
the design, while M is the set of observable variables of the design. The main difference
among these two spaces is that the values of the variables in [P can be arbitrarily defined
at design time, while the values of M are observed after the evaluation (see Section
2.3). Values of M are affected by evaluation inaccuracies, that depends on the chosen
evaluation method.

This Section illustrates the common DSE loop, that is the basis of both manual and
automated DSE.

2.4.1 Design Automation, Frameworks and Methodologies for WSNs

Design automation of WSNs is still an open research issue. An early analysis of the de-
sign space of WSNs has been proposed by Romer and Mattern in [139] where they
present a comprehensive analysis of the typical requirements and characteristics of
WSNs. The proposed analysis is focused on metrics and applications under a quali-
tative point of view and it does not provide practical tools for the development of tools
for automated design space exploration.

Toward this direction, a high-level platform-based design methodology for WSNs
is presented in [36]]. To the best of our knowledge, this is the first design methodology
specifically designed for WSNs able to consider concurrently hardware and software.
The objectives were: first, raise the design abstraction level, second, ensure that final
design’s implementation will respect the initial requirements and, third, maximize com-
ponent reuse. A recent work [130]] proposes a complete system-level design flow for an
alternative approach based on the concept of hardware microtasks. The authors show
that hardware specialization and power gating are able to reach a power saving between
one to two orders of magnitude w.r.t. MCU-based implementations.

Other than design methodologies, different design frameworks and tools have been
proposed. A good framework for the rapid design and evaluation of WSNs is WISENES
[89], which provides a high-level model for WSN. The target WSN is designed using
the SDL language. The framework is able to simulate the WSN model and provides
a backend for the code-generation for target platforms. Lately, McGibney et al. [110]]
propose a modeling and an optimization tool for WSNs focused on building wireless
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Figure 2.3: The Design Space Exploration Loop

application. The case study illustrates that the CAD tools effectively support the WSN
designer during the design of the network. In the same year, Navarro et al. [[123] pre-
sented a simulator based on SystemC language for the design space exploration of
WSNs. Differently from the other approaches, main goal of the authors is to create a
complete and generic design framework for the automated design space exploration of
WSN rather than application specific tools.

Unfortunately, none of these approaches provide a generic and reusable formaliza-
tion of the design space of WSN which is useful for the development of automated
design space exploration algorithms for WSNs. To overcome this limitation, in this
thesis, we provide a comprehensive formalization of the design space that can be used
in any future design framework.

2.4.2 Design Space Exploration

The design of a WSN consists in the identification of a set of solutions that satisfy the
constraints and are optimal with respect to the given requirements. As aforementioned,
the process of the identification of this solution is generally known with the term De-
sign Space Exploration (DSE) and, although DSE can be performed manually, the
real challenge is the definition of automated algorithms that allow the identification of
optimal solutions automatically since manual DSE requires expertise and sometimes is
unfeasible due to the large number of design alternatives.

The DSE is an iterative process where several candidate solutions are evaluated,
searching for the optimal solutions, according to given metrics. It is composed of two
main components (Figure 2.3): Exploration and Evaluation. Exploration takes, as
input, the (constrained) Parameters’ space (IP), the Metrics’ space (M), the constraints
(K) and a set of tuples (p, m) representing the current parameters’ configuration (p €
P) and the associated value of the metrics (m € M). It provides, as output, a set of
new configurations (p’ € P) to be tested (hopefully better than p). The Evaluation
component takes the set of new configurations p’ and applies an evaluation function
on it (m’ = V(s')). The obtained tuple (p’, m’) is inserted in the solution database for
next iterations. The objective of the DSE is to identify a set of configurations P C P
such as Vp € P are Pareto-optimal. Configurations in P are also defined as optimal
configurations or optimal solutions.
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CONSTRAINTS

Design constraints are used to pre-define unfeasible or undesired design solutions and
are typically expressed with logical expressions over variables of the unconstrained
parameters’ space P. The resulting (constrained) space P € P is used in the exploration,

thus only the configurations which respect the constraints can be accepted at the end of
the design phase.

There exist two kind of constraints: strong and weak constraints. Strong constraints
define a strong relationship among variables which cannot be violated, otherwise the
design cannot be accepted. Weak constraints define relationships among variables that
suggest acceptable, but non-optimal configurations. An example of constraints in WSN
design, related to IEEE 802.15.4 protocol, is defined on Superframe Order (SO) and
Beacon Order (BO) parameters. According to the protocol, SO cannot be greater than
BO, since Superframe period cannot be greater than Beacon period, thus a strong con-
straint is SO < BO. On the other hand, an example of weak constraint is related to the
role of the nodes in such protocol. The structure of the Superframe is defined by the
network coordinator, that is a specific node which coordinates communications among
the nodes in its cluster. For such a reason non-coordinator nodes should not define such
parameters since it is not required in the design. In conclusion, if strong constraints
are used to avoid unfeasible solutions, weak constraints are introduced to reduce the
cardinality of the design space, thus improve the DSE process.

EVALUATION

The Evaluation component computes metrics values for specific input configurations
through an evaluation function. The Evaluation Function (V' (p) : P — M) is a surjec-
tive function that maps PP to M. The objective of the evaluation function is to evaluate
the quality of the given configuration with respect to the given metrics; these informa-
tion will be used during the exploration to identify newer configurations. Evaluations
can be performed either by using models, simulations or testbeds (see Section [2.5).
Evaluated configurations are inserted into a shared database that will be used by the ex-
ploration component as a knowledge base to define which new configurations probably
improve the known configurations.

EXPLORATION

The exploration component analyzes the set of configurations P C P in its database in
order to identify a new set of configurations P’ # P suchasdp € P’ : Vg € P,V (p) >
V(q). In other terms, the exploration component tries to discover new configurations
with better objective functions with respect to known configurations. The exploration
terminates when termination conditions have been reached (i.e. at least a configuration
with metrics below a certain threshold), a certain amount of configurations have been
evaluated, or the exploration converges. The algorithm converges when it is not able to
improve the quality of the configurations and it can happen either because the Pareto
set has been detected or for limits of the algorithm. It can be detected by monitoring if
newer configurations do not improve the known configurations for a specific amount of
time, 1.e., a defined number of iterations.
Many techniques have been used here; they can be classified in three categories:
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* Model-Based Exploration: custom techniques based on models of the problem
to optimize. Optimal configurations are identified almost analytically from the
model by inspection on equations;

* Semi-Random Exploration: when models do not exists or do not provide accu-
rate results, generic semi-random techniques (such as genetic algorithms, simu-
lated annealing, tabu-search, etc.) are preferred. These techniques require more
evaluations with respect to Model-Based Explorations, thus exploration cost is
higher. These techniques are also known with the term meta-heuristics [|103];

* Hybrid Exploration: a mix of the previous two techniques. The idea is to use
approximate models to guide the exploration to optimal configurations, and then
use semi-random exploration where model accuracy is not enough. An example
of this technique has been proposed by Beltrame et al. in [32].

2.5 Design Evaluation

The evaluation of the design’s metrics is a fundamental part of the design process.
As aforementioned, metrics cannot be defined, but derive from a conjunction of many
components, thus the evaluation allows the designer to extract the effective quality of
the design. The evaluation process answers to these questions: “Does it (the design)
meet the given requirements? Does it respect design criteria and constraints? Which
design is better?”.

Design evaluation is an extremely important step in both manual or automatized de-
sign process, thus it must be defined accurately. In defining the evaluation method, two
aspects should be considered: accuracy and speed. Accuracy means that the evaluation
results adhere the reality of the phenomenon, thus they are a reliable source of informa-
tion. Moreover, some method is able to perform accurate evaluations of very specific
aspects, thus its overall accuracy is low. Speed indicates how fast results are computed;
the faster are the evaluations, the more design choices can be evaluated and compared.
Each evaluation technique is characterized by intrinsic values of accuracy and speed.
Intuitively, the higher are these two aspects, the better is the evaluation method. Unfor-
tunately, considering the design problem as a whole, none of the proposed techniques
is both accurate and fast; some of them are fast but not accurate and vice versa.

A trade-off among accuracy and speed is required and should be examined before
every design process in order to identify the technique that best fits economic require-
ments such as time-to-market and product-quality. Accurate but slow design evalu-
ations allow the designer to better analyze the system and to optimize non-functional
characteristics such as reliability, power consumption or efficiency that positively affect
product-quality but increase time-to-market. Conversely, quick evaluation techniques
enable a fast time-to-market, but do not provide any assurance about the full compliance
to the design requirements.

2.5.1 Model

Often in engineering and science, models are used to analyze processes or systems,
providing a useful tool for the investigation of such a system. Once created, a model
allows quick analysis and forecasts and it is extremely useful to investigate pre-defined
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scenarios, expecially when reproducibility of the phenomenon is difficult or expensive.
A model can be used to evaluate the quality of a solution by computing the values of
the metrics from the parameters.

Although models are good for quick analysis of the phenomenon, very often, to keep
model-complexity as low as possible, model accuracy is not enough to ensure reliable
results. When the process is complex, non-linear, or application-dependent, model’s
accuracy is below the tolerance and different evaluation techniques are preferred. On
the other hand, models are usually defined as closed systems, thus their evaluation is
extremely quick.

In the WSN field, a large amount of models have been presented in literature to
cope with different aspects of such systems. Many of these models have been inherited
from embedded system design (CPU energy consumption, sensing efficiency, ...) or
from the telecommunication and networking field (queue theory, ), but many of them
refer to peculiar aspects of WSNs (protocols, sensing correlation, ...). Model-based
evaluation has a long history, as many models have been proposed to describe the basic
components of a node (e.g., memory, radio, etc. [81] [64] [142]). However, combining
those components to form a model of the entire node is no easy task, as the model
should include meaningful information of the specific node, while being reusable and
not requiring a massive amount of experimental data to be constructed. In order to cope
with the difficulty of building reliable node characterizations, a promising trend is to
generate statistical models from a properly-selected set of experimental data [29]. The
experimental data is used to estimate the parameters of a set of simple equations, which
however do not provide an application-aware evaluation of the node.

ENERGY CONSUMPTION

Energy consumption is an important aspect in WSNs, although many models have been
proposed in the state of the art, considering that energy consumption is a fundamental
metric for sensor network design, it is quite difficult to find general purpose energy
models for WSNs. Instead, energy consumption considerations and models are always
included in analysis, protocol design and modeling. Moreover, power models of single
components such as the microcontroller [64] and the memory [81]] are available out-
side the scope of wireless sensor networks. Another analysis of energy consumption
of WSNs have been analyzed in [52]]. The authors analyzes both homogeneous and
heterogeneous networks and estimate its energy consumption (and lifetime) in order to
quantify the optimal number of clusters.

RADIO

Radio is a crucial component of the communication, since it is responsible in deliver-
ing each bit over the communication medium. The correct modulation-demodulation
scheme allows the radio to work with better signal-to-noise ratios mitigating the in-
terferences and transmitting more efficiently. A characterization of the radio has been
proposed in [142], where the energy consumption is related to parameters like the bit
error rate and the modulation. Similarly, [43]] provides a model for an IEEE 802.15.4
transmitter, which is supported by a set of physical measurements. Received signal
strength in radio communications are rarely uniform in the space and time, rather they
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depend on the MAC layer and the direction. Using empirical data measures on the
MICAZ2 platform, the author of [168] defines a radio model able to overcome the dis-
crepancy among spherical radio models and the reality of radio signals.

MAC LAYER

The MAC layer is responsible to synchronize the nodes in the network avoiding col-
lisions and keeping the energy consumption as low as possible. Moreover, the MAC
layer is mainly responsible to decide sleeping and active periods of the nodes and their
synchronization. The customization of the MAC layer is fundamental in the process of
WSN design optimization, thus accurate models of this component are required.

Thanks to its standardization, the most common MAC layers in WSN belongs to the
IEEE 802.15.4 family, thus a lot of models have been created for this standard. One of
the first analysis of the IEEE 802.15.4 protocol has been conducted in [102], where the
authors present a preliminary performance evaluation of such protocol. These results
allowed the author of [151] to define the first performance model of IEEE 802.15.4; al-
though the model is focused for medical applications with implanted sensors, the model
is rather generic thus it works also in other scenarios. Lately, Kohvakka et al. [82] ex-
tended the analysis to large-scale sensor networks based on the IEEE 802.15.4 protocol.
The analysis has been conducted on the CSMA-CA mechanisms on a ZigBee clustered
network. The authors present a number of formulas to estimate the collision and re-
transmission probabilities, the power consumption and the goodput. The model has
been verified and validated by simulating the ZigBee network in WISENES simula-
tor [90]. More recently, a very accurate and complex model for the CSMA-CA mech-
anism in beacon-enabled networks has been proposed in [40] and [67]. On the other
hand, a performance analysis of GTS allocation in beacon-enabled IEEE 802.15.4 has
been presented in [[129]. Current consumption modeling and measurement has been
presented in [43]]. The model describes the amount of current drained from the power
source under different IEEE 802.15.4 communication operations. On the other hand,
in [[146] the authors propose an alternative MAC protocol for the ZigBee standard that
introduces new power-saving policies. In [99]], a model that relates the routing per-
formed at the MAC level to the node lifetime is proposed.

The development of BAN applications for medical purposes lead toward the def-
inition of new standards for IEEE 802.15.6. Although the standardization process is
still not completed, various models of such protocols have been developed. In [156],
Viittala et al. compare the model of the Ultra Wide Band (UWB) radio channel model
with real measurements conducted in an hospital in order to prove the correspondence
between the model proposed by the IEEE 802.15.6 sub-task group for WBAN with
the reality. An analysis of energy consumption for scheduled access mode in IEEE
802.15.6 has been presented in [[149] in order to provide an useful model to estimate
the device lifetime. This analysis can be used for both system design offline analysis
or online optimization, to estimate power consumption of the device. A numerical for-
mulation of throughput and delay limits of IEEE 802.15.6 for an ideal channel with
no transmission error has been proposed in [[154]. These studies can help the designer
to estimate the feasibility of its application in a very early development phase or, as
suggested by the authors, to help the protocol designers to optimize the packet size and
to determine the upper bound of IEEE 802.15.6 networks.
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ROUTING PROTOCOL

Modeling a routing protocol is extremely difficult, due to its time characteristics and
data dependencies. The behavior of routing protocols can be either address-centric (tra-
ditional routing), data-centric (based on routing content [84]) or probabilistic (packets
are disseminated in the network based on probabilistic phenomenon [96]) and model-
ing all these behaviors can be difficult or extremely inaccurate. More frequently, mod-
els are used to show the scientific strength of the approach or to motivate its efficacy.
In this thesis work we are interested in models to evaluate the design, not to design
better routing protocols. According to these considerations, some aspects of routing
protocols have been modeled such as energy consumption and performance. In [54],
the author presents an energy consumption model of routing protocols for mobile ad-
hoc networks. The analysis has been focused and validated on two routing protocols:
Dynamic Source Routing (DSR) and Ad hoc On-demand Distance Vector (AODV).
Another work on energy consumption modeling has been presented in [45], where the
authors model the routing as linear programming problem. Network lifetime (defined
as the time until node battery fails partition the network) is defined as objective func-
tion to be maximized. Simulations, performed with both uniform and arbitrary traffic
patterns, show that the proposed modelization helps the identification of the optimal
network lifetime.

The impact of data aggregation in sensor networks has been studied in [84,86]] where
theoretical results are presented. In particular, the authors show that data-centric rout-
ing algorithm substantially improve the performance with respect to address-centric
routing. Moreover, they prove that, even if the complexity of optimal data aggregation
is theoretically an NP-hard problem, polynomial-time solutions exist.

2.5.2 Simulation

Models provide a fast way to evaluate design metrics such as energy consumption or
performance, but are unable to give information about temporal phenomenon such as
critical runs or synchronization problems. Simulations are a powerful way to check
functional correctness of applications, protocols and algorithms, and to verify the qual-
ity of the design with respect to given metrics. Simulation of WSNss is currently a very
active field and many network simulators have been created. Unfortunately, an accurate
simulation of a sensor network requires accurate low-level models for wireless chan-
nel, interferences, clock drifts, sensor noise, etc. as well as MAC and routing protocols,
applications, and visual support. Moreover, a simulator must be efficient (simulation
time) and scalable (simulation size). A good survey on simulation frameworks can be
found in [148]]; the following analysis is inspired to this document.
Summarizing, the main characteristics of sensor network simulators are:

o Abstraction Level: a network simulation can be conducted at various levels of
abstraction such as application level, network level or physical level. Usually, the
higher is the abstraction level, the less accurate will be the simulation;

* Hardware Dependency: a simulation is performed to check the functionality of
the application before the deployment on a real hardware. Some network simu-
lators have been developed for the testing of applications for specific hardware,
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others to test the applications on generic sensor networks. The first ensure that
the simulation will work on the target hardware, but are unusable to evaluate the
algorithm on other hardware, the latter does not allow the direct deployment on a
real hardware, but give a general view of the quality of the algorithm on a wide
variety of nodes;

» Performance and Scalability: evaluation time is a crucial aspect of evaluation
methods. For simulators, performance and scalability typically depend on the lan-
guage and framework used to write the application and the level of detail of the
simulation; the more details are considered, the higher will be the computation
time required, thus the higher is the simulation time. Typically, performant simu-
lators are written in compiled languages like C/C++, while others prefer portabil-
ity instead of performance. Scalability consist in the number of nodes and events
that can be processed in a simulation, thus it deals with memory requirements
rather than efficiency of language used by the simulator;

* Graphical and Debug Support:. writing complex and distributed applications,
graphical and debug support is extremely important to discover and correct bugs.
Moreover, graphical support can be useful to analyze and discover communica-
tion patterns or to simply observe how the network works. Debug support can be
embedded into the simulation environment or carried with the technology used to
write it;

The simulation framework should be identified according to the design needs. If the
focus of the design is the definition of a powerful routing protocol, thus the simula-
tor should allow the designer to easily define, test and visualize distributed protocols,
otherwise, if the focus is on wireless interferences, so the simulator must accurately
simulate low-level behaviors.

Some of the available (open) simulators are:

* NS-2 [8]: very popular discrete event simulator for network research. It has a
strong support of TCP, routing and multicast protocols over wired and wireless
networks to simulate both LAN, mobile ad-hoc and wireless sensor networks. NS-
2 is easily extendible, thus new protocols can be included and integrated with ex-
isting infrastructure. Although an high number of protocols is publicly available,
few WSN-specific protocols have been implemented. Moreover, energy models
and hardware-dependent aspects are substantially different with respect to actual
hardware platforms and sensors;

* TOSSIM [94]]: it allows the definition and simulation of entire TinyOS-based
applications, thus it represents a good simulator in case the target platform sup-
port such operating system. The TinyOS stack can be simulated at the bit-level,
allowing experiments with low-level protocols in addition to high-level network
protocols and applications. Two plugins allow TOSSIM to simulate energy mod-
els (PowerTOSSIM) and to have graphical support (TinyViz). TOSSIM does not
capture CPU time, thus critical runs and synchronization problems cannot be stud-
ied. It requires each node to execute the same piece of code making difficult to
test heterogeneous applications;
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* UWSim [13]]: framework for Under Water Sensor Networks (UWSN) designed to
simulate marine robotics research, which is a unique characteristics of such simu-
lator. UWSim has been implemented in C++ and is distributed with a powerful 3D
library; 3D scenes can be easily configured with third-party modeling software. It
natively supports popular routing protocols such as AODV and DSR. Being devel-
oped for UWSN, as a drawback, it does not allow simulations of networks rather
than UWSN;

* Avrora [1]]: cycle-accurate simulator for AVR embedded platforms that allows
to accurately simulate both microcontroller programs and radio communications.
Rather than single-node, microcontroller-focused simulations, it is able to simu-
late complete networks. In addition, plugins enable Avrora to simulate the TinyOS
network stack. It efficiently scales to networks of up to 10.000 nodes. As major
limitation, Avrora does not support clock drift, and it is 50% slower than TOSSIM;

* SENS [10]: simulator with a modular, layered architecture with customizable
components that allows realistic simulations of sensing data (that can be defined
by the user on real measurements). Although it is a platform-independent simula-
tor, WSN nodes can be characterized and customized to fit the real hardware. In
addition, SENS provides the user various modeling and interaction mechanisms of
the physical environment. However, SENS is less customizable than other simu-
lators and the only physical phenomenon that can be detected by sensors is sound;

* COOJA [125]: simulator designed to test Contiki applications that, similarly to
TOSSIM, allows the designer to test the same code that will be deployed. Un-
like TOSSIM, nodes with different source code can coexist in the same network
simulation. The Contiki code can be emulated by the COOJA framework or exe-
cuted directly on MSP430 hardware. The main drawback of this simulator is the
efficiency: the code-level simulation requires several calculations, thus long and
complex simulations are very hard to perform;

* Castalia [9]]: application-level simulator for WSNs, it allows to simulate fine-
grained aspects such as wireless interferences, clock drifts, sensor noise and bias.
Radio models are based on real measurements, that makes Castalia results ex-
tremely realistic. It is delivered with highly customizable radio and MAC compo-
nents (included IEEE 802.15.4 and IEEE 802.15.6). Castalia is not a hardware-
specific simulator, thus it should be used to evaluate feasibility and correctness of
algorithms under realistic conditions;

* Shawn [55]: designed to support large-scale network simulations. Shawn has the
highest level of abstraction among the simulator presented in this thesis, which
explain its performances and scalability. However, detailed simulations of radio
propagation or other low-layer issues are not well modeled, thus the overall accu-
racy is affected;

* EmStar [59]: it simulates iPAQ-class sensors running Linux, allowing a flexible
environment to easily deploy simulated code. It can be used to test various exe-
cution platforms, combining simulation and emulation. However, EmStar uses an
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extremely simple environmental and network medium model that affects the over-
all accuracy of the simulation. Moreover, it does not support parallel simulations
and lacks algorithms that are reactive to sensed values;

* VisualSense [14]: implemented in the Ptolemy-II framework, it has the objec-
tive to accurately simulate sophisticated behaviors of wireless channels and phys-
ical processes such as acoustic channels. Although the component-oriented struc-
ture allow fast extendability, VisualSense does not provide any protocol above the
physical/wireless medium or any physical phenomenon rather than sound;

* (J)Prowler [4]: event-driven deterministic and probabilistic wireless sensor net-
work simulators developed on the top of MATLAB (Prowler) and Java (JProwler).
Initially designed to target Berkley MICA motes running TinyOS applications it
could be used to simulate more general systems. Simplified radio and MAC mod-
els allows the simulator to provide accurate results at a reasonable performance
and scalability. However, (J)Prowler is delivered with only one MAC protocol;

* MiXiM [5]: OMNET++ modeling framework designed to simulate mobile and
fixed wireless networks including wireless sensor networks, body area networks,
ad-hoc networks and vehicular networks. Thanks to the wide spectrum of target
applications, it includes several MAC and routing protocols. Although detailed
models of radio wave propagation is included, other simulators (such as Castalia
and VisualSense) have more realistic models;

* WISENES [15]: implemented in Specification and Description Language (SDL)
and delivered with a powerful GUI, WISENES is a powerful and extensible simu-
lation platform. All the components, including transmission medium and sensing
channel, are implemented in SDL that provides a formal and clear graphical nota-
tion and give the designer an easy-to use way to implement and check new compo-
nents. However, WISENES has been designed for high-level programming, thus
low-level issues are not well modeled.

In addition to these aspects, another important characteristic of the simulators is the
ability to be invoked by an external tool. This feature is extremely important during
the automatized Design Space Exploration, since the evaluations and the whole loop
are performed automatically. All of the simulators presented above can be invoked
externally, thus can be used to perform automated Design Space Exploration. Table [2.4]
presents a comparison between the simulators presented above.
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2.5.3 Testbed

The most accurate technique to evaluate a design is through direct measurements on a
real testbed. According to the application’s type, a testbed can exactly represents the
final system, or only be an approximation. For a Body Sensor Network, i.e., due to the
cardinality of nodes, testbeds are accurate, instead, for structural monitoring, testing
the final system can be extremely expensive and complex.

Due to these reasons, a testbed typically represents a general purpose network with
a generic topology (uniform, grid), which is not the final topology. The objective of
using a general-purpose testbed is to test the hardware and the implementation of the
network protocols, in order to control the correctness of the implementation on the real
platform.

Although these approximations, the accuracy of the experiments on the testbeds is
extremely high since the measurements are performed directly on the hardware that
will be used in the deployment and not on virtualization or modelization of it; if the
design works correctly on the testbed, it will work correctly on the final deployment.

To overcome maintenance and setup costs of testbeds, and to provide standard con-
ditions to compare protocols and algorithms, several publicly available testbeds have
been proposed. Some of these testbeds are:

* MoteLab [7]: an experimental Wireless Sensor Network testbed deployed in
Maxwell Dworkin Laboratory at Harvard University. It is publicly available for
development and testing of sensor network applications and is composed by 190
nodes deployed over three floors. Deployed nodes are TMote Sky sensor nodes,
which consist of an TI MSP430 running at SMHz, 10KB of RAM, 1Mbit of Flash
memory and a Chipcon CC2420 radio operating at 2.4 GHz with an indoor range
of approximately 100 meters. Each node includes light, temperature and humidity
sensors and run the TinyOS operating system. In addition, a web interface helps
the designer to deploy and control the output of its applications.

* TWIST [12]]: developed by the Telecommunication Networks Group (TKN) at
the Technische Universitit of Berlin, the TKN Wireless Indoor Sensor network
Testbed (TWIST) is a scalable and flexible testbed architecture to test indoor sen-
sor network applications. It allows the designer to extract and debug application
data and test heterogeneous sensor networks. Moreover, the testbed allows the
designer to actively monitor and control the energy consumption of nodes. The
testbed is composed by 204 nodes (102 TMote Sky and 102 eyesIFX nodes) de-
ployed on a regular grid which intra-node distance is 3m.

* INDRIYA [3]]: a three-dimensional sensor network testbed deployed on three
floors of the School of Computing at the National University of Singapore. It
is a permanent and public framework to develop and test sensor network proto-
cols and applications; a web-interface helps the user to interact with the testbed,
upload executable and run protocols and applications. The testbed is composed of
139 TelosB nodes equipped with TI MSP430 processors, 10KB of RAM, 48KB
of internal Flash, 1MB of external Flash and a Chipcon CC2420 radio operating at
2.4 GHz characterized by an indoor range of 20-30 meters. Nodes have different
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sensors among passive and active infrared, accelerometer, magnetometer, light,
temperature, and acoustic. All the nodes run the TinyOS operating system.

* WUSTL [16]: developed and deployed by the Washington University in St. Louis
to measure communication characteristics of motes, protocols and applications. It
is currently composed of 79 TelosB sensor nodes placed through several offices
over two buildings. The testbed have several gateways directly connected with
the nodes to allow fast, reliable and direct node programming and debugging.
The nodes run TinyOS operating system and data are collected in a PostgreSQL
database.

* SensLAB [11]: a very large testbed deployed over 4 research centers (INRIA
Lille, INRIA Rennes, Strasburg/LSiiT and INRIA Grenoble) that compose a net-
work of 1000 sensor nodes available to persons affiliated to corporations host-
ing SensLAB, or also any researchers for R&D on request. The main goal of
SensLLAB is to offer an accurate and efficient tool for scientific research, design,
development and testing of real large-scale sensor network applications.

The main purpose of these testbeds is to offer a common platform to develop, test
and compare protocols and applications on sensor networks. Due the large variety of
platforms and technologies available in the sensor network field, use these testbed to
compare protocols and approaches is extremely important to ensure fair comparisons
and replicable results.

According to the purpose of this thesis work, testbeds provide the most accurate and
reliable way to evaluate the designs, but both the setup and running time discourages
the use of it in the automated DSE loop. However, testbeds are required to check the
accuracy of simulation results among candidate final solutions before the final deploy-
ment.

2.5.4 Comparison Among Evaluation Techniques

In previous sections we presented three evaluation techniques, in this section we aim to
compare them in order to define the characteristics of each approach. From the anal-
ysis performed above, we extract that models are the most efficient way to evaluate
a design, while testbeds are the most time-consuming technique. On the other hand,
testbeds allow the user to evaluate the design, the protocols and the application directly
on the nodes that will be used in the deployment, thus the accuracy is extremely high.
On the contrary, models define only specific aspects of the problem, and their accu-
racy strictly depends on the complexity of the problem, thus they are the less accurate
way to evaluate a design. Simulators stands in the middle, giving a good compromise
among evaluation accuracy and speed; time-dependent operations and synchronization
problems, that are extremely complex to describe in a model, are easily implementable
in a simulator.

In an automated DSE, the evaluation speed is generally preferred over accuracy
since many solutions need to be compared with each other. Moreover, expecially dur-
ing a first-order design, an average accuracy is enough to allow the system to discrimi-
nate good from bad solutions thus, in the following, we never use testbed for automated
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DSE. So, accuracy-speed comparison is more critical considering model and simula-
tion, where models can be used for first-order analysis and simulations only a better
accuracy is desired; a deeper analysis of that will be provided in Section

Figure graphically illustrates a qualitative accuracy/speed comparison among
models, simulations and testbed. As previously presented, the best practice during a
design is using models for first-order analysis, or to identify a possible set of optimal
solutions, then refine the choice through extensive simulations and, finally, verify the
design on a real testbed.

In conclusion, considering the stochastic behavior of the wireless channel, com-
munication protocols and applications, even using an extremely accurate evaluation
method, two successive evaluations rarely give exactly the same results. More fre-
quently, the observed values vary in an interval with specific mean and variance, repre-
senting the expected value and its uncertainty. The more the evaluation method is able
to identify such statistical distribution, the more accurate the evaluation method is.
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Figure 2.4: Qualitative accuracy-speed comparison of different evaluation techniques

2.6 IEEE 802.15.4/ZigBee

IEEE 802.15.4 has been designed for low power devices with low data rate Personal
Area Networks (PAN). It specifies how the Physical Layer (PHY) and the Media Access
Control (MAC) must work. Standardization process of IEEE 802.15.4 started in 2003
and ended in 2009 with the latest updates from IEEE. IEEE 802.15.4 became popular
thanks to the diffusion of ZigBee devices that specify the standard in high-level com-
munication protocols and extend some features to provide a better energy efficiency.
For the sake of simplicity, from now on, the terms ZigBee and IEEE 802.15.4 will be
considered as synonyms.

IEEE 802.15.4 based networks are composed of a central node, called coordinator,
and a set of nodes, called members. The coordinator is the head of the network and
determines the structure of the communication. The communication is divided into
sequential frames delimited by specific packets called beacons (Figure 2.5). The coor-
dinator sends periodic packets, named beacons, that define the superframe structure.
A superframe is a portion of time, bounded by successive beacons, and it is used to
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Figure 2.5: An example of the superframe structure (from [|18|])

define how the end-devices must communicate with the coordinator. The superframe
is composed of an Active Period (SD) and an Inactive Period (BI-SD). The active
period is further divided in two periods named Contention Active Period (CAP) and
Contention Free Period (CFP). CAP starts immediately after the reception of a bea-
con from the coordinator. During the CAP, nodes access the channel by using the
CSMA/CA protocol. CFP starts at the end of the CAP and the end-devices uses Guar-
anteed Time Slots (GTS) to freely access the wireless channel. During the CFP, the
nodes access the channel using a time division protocol which slots, namely Guarantee
Time Slots, requested by each member node, are assigned by the coordinator by means

of a policy first come first first served (FCES) [18]].
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In the last decade, a considerable amount of hardware platforms have been developed
in order to test and develop applications and protocols for wireless sensor networks,
enabling the Internet of Things. These platforms are mainly general purpose platforms
equipped with low-power microcontrollers, radio interface and Flash memories. Sen-
sors are either included into the platforms or can be connected through general purpose
I/0O or daughter boards.

The goals of this chapter are twofold: first provide the reader a comprehensive re-
view of currently available commercial and open source platforms and, second, present
a research study conducted on the use of FPGAs in WSN’s nodes. Moreover, this chap-
ter would like to give the reader a deeper comprehension on the difficulties of design
and customization of WSN’s platforms.

3.1 Microcontroller Based Platforms

MICA* MOTES

Initially designed at Berkeley university,
these nodes have been widely accepted in
the research community, mainly because
of their compatibility with TinyOS. This
family includes MICA2 (Figure [3.1)) and
MICAz nodes. MICA?2 are equipped with
the MPR4*0CB processor (based on the
ATmega 128L) which provides 128KB of
program Flash memory, 512KB of Flash
for measurements and 4KB of configura-
tion EEPROM, delivered with several ra- Figure 3.1: MICA2

dios working at 315, 433, 868 and 916

MHz. MICAz are equipped with MPR2400CA processor with 128KB of program
Flash memory, 512KB of Flash for measurements, 4KB of configuration EEPROM
and a 2.4GHz ZigBee-compliant radio. Both nodes are powered with two AA batteries
and are delivered with 51-pin expansion board to connect third-party components such
as sensors or actuators.
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TELOSB

Open-source platform designed to en-
able fast-experimentation of cutting-edge
researches.  TelosB (see Figure [3.2)
has a IEEE 802.15.4 compliant inte-
grated radio working at 250 kbps and
the MSP430 Texas Instrument microcon-
troller with 10KB of RAM. The device
is equipped with 48KB of program Flash
memory, 1024KB of Measurement Flash
and 16KB of configuration EEPROM.
Similarly to MICA* platform, it is pow-
ered with two AA batteries and it natively

supports TinyOS. 16 general purpose I/O pins allow the integration of third party com-

pOI’lCI’ltS such as sensors or actuators.

TMOTESKY

Ultra low power device equipped with
humidity, light and temperature sensors, a
2.4 GHz IEEE 802.15.4 compliant Chip-
con radio working at 250 kpbs and a
8MHz MSP430 processor (see Figure
3.3). The integrated antenna allows com-
munication with up to 50m indoors, and
125m outdoors. The device has been de-
signed to be powered with two AA batter-
ies. The board includes 16 general pur-
pose I/O pins for the integration of exter-
nal components.

LIBELIUM WASP MOTES

Libelium was a spin-off of the Univer-
sity of Zaragoza born in 2006. It pro-
duces hardware for development, integra-
tion and deployment of wireless sensor
networks for Smart Cities and the Internet
of Things. Their main product for WSN
development is the WASP mote that is a
low-power general-purpose, expandable
platform (see Figure [3.4). It is equipped
with the ATmega 1281 Microcontroller
working at SMHz, with 8KB of SRAM,
4KB of EEPROM, 128KB of Flash mem-
ory and a 2GB SD card. The board has
several expansion sockets to sensors, ra-
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dios or other components. The board supports ZigBee, GPRS, Bluetooth, WiFi, RFID
and NFC modules and has been developed to natively support Over the Air Program-
ming. Libelium produces several sensor boards compatible with this platform such as
gases (CO, CO2, CH4, ...), temperature, liquid level, weight, pressure, humidity, lu-
minosity, accelerometer, soil moisture, solar radiation and GPS. The platform supports
energy harvesting through external solar panels.

SHIMMER PLATFORM

The SHIMMER is a small, low-

power commercial wireless sensor plat- — e Fachares st sover slching
form specifically designed for noninva- ' K

sive biomedical research (see Figure[3.5).
It is equipped with an ultra-low-power
16-bit microcontroller (TI MSP430), that
runs at a maximum clock frequency of
8MHz and includes 10KB of RAM and
48KB of Flash, as well as some peripher- ' Light Weight
als such as an 8-channel analog to dig- =R
ital (A/D) converter and a direct mem-
ory access unit (DMA). This platform ‘1
has also two radios (Bluetooth and IEEE
802.15.4-compliant), a 3-axis accelerom-
eter and an expansion port to connect
a daughter board that can include ad-
ditional sensors such as electrocardio-
gram (ECG), electromyogram (EMG),
galvanic skin response (GSR), 3-axis
accelerometers, gyroscope, magnetome-
ter, temperature, pressure, strain gauges,
GPS, tilt and vibration. SHIMMER plat-
form has been used as target device in this  Figure 3.5: The SHIMMER platform
thesis for Body Sensor Networks applica-

tions.

Shimmer SR7 Madule
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ORACLE SUN SPOT

Originally developed by Sun Microsys-
tems and now owned by Oracle, Sun
SPQOTs are java enabled sensor networks
designed to encourage and support the
evolution of the internet network. This
device is compose by two boards: pro-
cessor and sensor board (see Figure [3.6).
The 8th revision of the processor board
includes an AVR AT91SAM9G20 pro-
cessor working at 133 MHz with 125KB
of RAM, 1MB of Flash memory and a Figure 3.6: Oracle Sun SPOT
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temperature sensor. The sensor board has

4 digital GPIO pins, 4 analog lines, a 3-axis accelerometer, lo-fi speaker, I2C connector
and an IR receiver and transmitter. This board has not been designed for ultra low-
power applications, but to allow high-level application development and to encourage
the Java development for future internet of things.

ARDUINO

A very popular open-source prototyping
platform delivered with an open-source
easy-to-use programming environment.
Arduino projects are entirely open-source
and boards can be assembled or pur-
chased from an authorized reseller. The
designer developed several boards with
different sizes, performance and end-
purposes. In this thesis, the target plat-
form is the Arduino Funnel I/0 (FIO), a small device designed for wireless applications
(see Figure[3.7). It includes an ATmega328P processor running at 8MHz with 2KB of
SRAM, 1KB of EEPROM and 32 KB of Flash memory. The board has 14 digital I/O
pins (of which 6 provide PWM output), 8 analog I/0O, a socket to connect XBee radios
and a connector for Lithium Polymer batteries. The board natively supports the Over
the Air Programming (OTA).

Figure 3.7: Arduino Fio

3.1.1 Comparison of Platforms

Heterogeneity of hardware boards and devices increases the amount of available design
alternatives making the design process harder. Table [3.1] presents a brief comparison
of hardware characteristics of these nodes. The nodes have been compared in terms of
processor, memory, supported operating system and I/O capabilities. All these boards
present some input/output pins to connect external sensors or actuators, according to
project’s needs, thus sensors are not specified.

All the boards have an 8MHz processor except for the Oracle Sun SPOT that is
equipped with a 133MHz processor (motivated by the use of Java on the platform but
definitely not energy-friendly). Memory is an important aspect in modern WSN nodes
and conceptually, the higher is the amount of memory available the better it is. How-
ever, 10KB of RAM are enough for many applications; in [138], for example, the
authors show how to implement an accurate atrial fibrillation detection algorithm using
only 10KB of RAM. On the other hand, Flash memory are typically used to store his-
torical data from sensors or configuration data; high flash memory capacity (i.e. 2GB
in Libelium Motes) could be useful if data are not transmitted continuously to the sink.
Concluding, EEPROM are use just to store boot program, thus its size is usually very
limited.

The supported operating system is extremely important to guarantee a wide diffusion
of the device on the market. The most popular OS for WSN is TinyOS, that is supported
by many platforms. For the Oracle Sun SPOT, Java is not an operating system, but the
technology that is supported. The other platforms can be programmed in C, C++ or
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derivated dialects like nesC (TinyOS); it provides a reasonable code density and a good
execution efficiency.

As aforementioned, I/0 characteristics are extremely important to ensure the success
of a platform. The platform must be able to support any kind of external device like
sensors, actuators or radios. In fact, almost all the platforms do not have an embedded
radio interface on them in order to allow the user to buy the device that best fits its
needs. For example, Arduino FIO has a dedicated slot to connect various kinds of
radios and MAC layers.

All the platforms presented in this Section are similar in one characteristic: they
all are classical processor-based platforms with a set of I/O directly connected to the
processor. In these platforms the software and the OS are in charge of performing
sampling, computation, filtering, communication and to manage power-aware policies.
The next Section presents an alternative node, based on FPGAs, specifically designed to
manage high-throughput data such as audio or video keeping the energy consumption
lower than 4mW.

3.2 An FPGA-based Platform

Activity of WSN nodes depends on the kind of sensed data. In case of low sample
rates, an higher duty cycle ensures a strong reduction of power consumption thanks to
long sleeping periods, while high sample rates are more energy demanding. In case
of high sample rates (above 100 Hz) if strong signal processing must be performed,
intra-sample time cannot be enough to process information using low-power micro-
controllers. When applications are characterized by high throughput data, i.e video or
audio sensors, additional devices, like DSPs or FPGAs, are required. Recent works
show that FPGAs are valuable candidates for data signal processing in Wireless Sensor
Networks [144]. Flexibility and performance efficiency of FPGAs are interesting char-
acteristics for future use in WSN nodes. Reprogrammability, reconfigurability, perfor-
mance and effective hardware/software codesign are powerful features of FPGA-based
systems which makes of FPGA-based WSNs energy and performance aware platforms.

With respect to SRAM FPGAs, recent Flash based FPGAs can be considered as
the second generation of FPGAs; overcoming the limits of non-volatility of previous
SRAM-based FPGAs, Flash-based FPGAs are promising in low-power, real-time ap-
plications [23]]. The ability to preserve the LUTs configuration after a shutdown, known
as live at power-up, perfectly fits battery powered systems, where the device can be en-
tirely shutdown to preserve energy. A SRAM FPGA must be completely reconfigured
after each power-up, due to volatility nature of memories, causing a waste of time and
power. Considering that the FPGA reconfiguration is one of the most power consuming
activities of a FPGA, and considering that the time needed to reconfigure the complete
device takes several milliseconds, a reconfiguration on each start up is unfeasible when
data are sampled at medium/high frequencies.

This Section provides an evaluation of Flash-based FPGAs technology for novel
WSN’s nodes. Differently from SRAM-based FPGAs, thanks to Live at power-up,
Flash-based FPGAs allows the system to effectively control the power consumption of
the system at runtime. For this purpose, this Section presents a controller to manage
energy consumption in Flash-based FPGAs systems. Dynamic energy consumption,
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evaluated on a real case study with a real testbed, shows an overall energy consumption
on the FPGA lower than 4mW, which allows the system to work with batteries.

3.2.1 Related Works

Advanced applications in Wireless Sensor Networks require high-frequency sampled
data [[144] [111] [27] for complex, accurate and reliable analysis. Increasing the effi-
ciency of filtering data from sensors on a wireless sensor node is fundamental in order
increase the range of applicability of wireless sensor networks.

Structure health monitoring requires real-time analysis of sensed data for a con-
tinuous monitoring of structure’s condition. Work proposed in [[111]] presents an high-
frequency distributed sensing system for structure monitoring application using MICA?2
motes and MICA sensor boards. The system is able to record approximately 90 seconds
of continuous data at 250Hz.

Detection of shooters in urban environment [ 144]] requires high tolerance of multiple
sensor failures, high accuracy and the ability to overcome multipath effects. The pro-
posed approach extends the MICA2 motes with a multi-purpose acoustic sensor board
designed with three independent acoustic channels and a Xilinx Spartan II FPGA, used
for signal processing purposes. The system is able to detect the shooter with an accu-
racy of 1.3 meters and an average latency under 2 seconds. The paper does not consider
any kind of power management techniques and the power consumption of the system
is not reported.

A different kind of acoustic sensor network application is presented in [[73]]. The
paper presents a system for the monitoring of amphibian populations in the monsoonal
woodlands of northern Australia. The application requires sampling frequencies of
10k H z to differentiate the calls of cane toad from other 8 native frogs. Since Mica
motes provide only 200H z of sampling frequency, the authors increase the clock rate
of Analog to Digital Converter to achieve a sampling frequency of 10k H z, but no power
consumption results are presented.

From the analysis of acoustic data from sensors it is possible to detect rock collapses.
In [27] the authors present an hybrid wireless-wired monitoring system that samples
data at 1kHz using a dsPIC24 microcontroller. Considering the filters on the data, such
microcontroller limits the maximum sampling frequency to few kHz. The system is
powered by batteries and photovoltaic energy. This application could benefit from the
use of low power FPGAs.

A recent work in the field of Wireless Multimedia Sensor Networks (WMSN) [[147]]
takes advantage of FPGAs to implement an improved CSMA/CA mechanism for IEEE
802.15.4 protocol to allow reliable and timeliness transmission of voice data. The ar-
chitecture has been tested on a Xilinx Spartan-3E FPGA, performances results are pre-
sented but energy consumption is not taken into account. The authors of [167] present
an FPGA-based Wireless Vision Sensor nodes. The architecture includes a microcon-
troller and an Altera EP2C35 FPGA to provide low-power HW image compression.

An important feature of FPGAs is the reconfigurability, which allow the system to
be dynamically adapted to different scenarios. In [116]], the authors present a reconfig-
urable WSN node. The node is implemented on the Altera Cyclone II FPGA, tested in
a real case study. Similarly, an architecture for dynamic reconfiguration of advanced
WSN node is presented in [134]. The authors illustrates how dynamic reconfiguration
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Table 3.2: SRAM vs Flash FPGAs

| PROS | CONS
* Fast programmability

* Need to be programmed

* Small configuration
on each power up

SRAM bitstreams

* High performance * High power

consumption
* High chip density
» Live at power up
* Low static power * Low chip density
Flash consumption
* High cost

« Efficient power control
mechanisms

can be achieved on Flash-FPGA devices.

3.2.2 SRAM vs Flash FPGAs

A Field Programmable Gate Array (FPGA) is composed of a dense array of pro-
grammable components (such as memories, logic gates, DSPs, etc.). Thanks to FPGAs
reconfigurable, high-performance, general-purpose architectures for WSNs can be de-
signed. The ability to reprogram an FPGA (statically and dynamically), coupled with its
parallel architecture, makes FPGAs an interesting device for digital signal processing
on WSNs nodes. Reduced power consumption of modern FPGAs offer the opportunity
to use HW processing in a WSN node that, differently from microcontrollers, allows
the implementation of dedicated hardware cores.

Memories, used to store data and configuration information, dispersed on the FPGA,
can be created using SRAM or Flash technology. In SRAM FPGAs, data and configura-
tion are stored into volatile memories whose content is lost when the device is powered
off. On the other hand, Flash FPGAs store the information in non-volatile memories,
thus the content is kept even if the device is not powered. As previously mentioned,
this is called live at power-up and is one of the main characteristics that makes Flash
FPGA an enabling technology for low-power applications such as WSNs.

Table [3.2) analyzes pros and cons of SRAM and Flash FPGAs. Let us consider the
following three power modes:

* Active: FPGA is working at full speed. This mode provides maximum power
consumption and performance

* Sleep: clock and I/O ports are turned off, the internal state is maintained but the
device is on.

* Shutdown: the FPGA is powered-off. In this mode, the power consumption of
the device is zero

Figure[3.§]shows an example of sleep-on-sleep-shutdown cycle which provides a quali-
tative comparison between power consumption in SRAM and Flash FPGAs. In a WSN,
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Figure 3.8: A comparison between SRAM and Flash FPGAs in a sleep-on-sleep-shutdown cycle (From
[31)))

this cycle is commonly repeated every sample received from sensors. Time (or fre-
quency) depends on the sampled variable. At the beginning of the cycle, the FPGA is
powered-on, thus it passes from shutdown-sleep to static. During this phase, SRAM
FPGAs require energy and time to power-on and configure the device. In Flash-based
FPGAs s such transition is negligible in both power consumption and time, since it does
not require any (re-)configuration. Static and dynamic power consumption are rela-
tively higher in SRAM FPGA s since they are typically designed toward performance.
As clock frequency increases, both power consumption and temperature increases ac-
cordingly in both cases. When the device has to be powered off (or it is required to enter
in sleep mode), the clock is stopped, power consumption and temperature decreases.
During the sleep phase, SRAM FPGAs require a certain amount of energy to keep data
and configuration of the device, while Flash-FPGAs have a power consumption near to
zero, thanks to the non-volatility of memories.
More formally:

* P,,: power consumption in Active mode;
* P,: power consumption in Sleep mode;
* P,r¢: power consumption in Shutdown mode;

* P4, p: power required to switch from mode A to mode B, i.e. P,,_, is the power
required to switch from Active to Sleep mode;

* ton: average time in Active mode;
* t¢: average time in Sleep mode;
* torf: average time in Shutdown mode;

* t4_,p: time required to switch from mode A to mode B.

Paolo Roberto Grassi Politecnico di Milano 43




Chapter 3. Target Platforms

Considering an interval of

T = ton +1s + 2foff + lonss + ts—)off + Z Z lasB
A€eS BeS

the power consumption of the system is given by

P=

Ponton + Psts + Pofftoff + ZAES ZBES PA—>BtA—>B
T .

where S indicates the set of available states (Active, Sleep and Shutdown). Un-
der the same circumstances (same clock frequency, same design, etc.), overall power
consumption is higher in SRAM FPGAs with respect to Flash FPGAs. In particular,
power consumption of FPGAs during the sleep mode is extremely lower in Flash FP-
GAs with respect to SRAM FPGAs since SRAM technology requires energy to keep
the configuration. Moreover,

FLASH

tSRAM
of f—on

of f—on >>1

due to SRAM re-configuration. In WSNs, frequent sampling forces the system to
switch from sleep to active mode (and viceversa) frequently, to gather and compute
samples from sensors. If the sample frequency is defined with f,,,, and the time re-
quired to compute a sample is ¢., the system works correctly if and only if:

1
7 <tet bt o+ toson
if sleep is used or
1
f < Zfc—i_ts_‘_ton~>off—i_toffﬁon

if the device is shutdown instead of using sleep. In both cases, let us assume that
tc = ton, thus the system is active if and only if it is computing data. Considering that

SRAM ., pFLASH
POTL - PO'I’L

and
SRAM FLASH
Ps Z Ps

due to SRAM technology, and considering the reconfiguration time

FLASH

tSRAM
of f—on

of f—on >>1

SRAM FPGAs do not offer an effective solution for low-power application (w.r.t. Flash
FPGAs), since in both sleep-on-sleep or shutdown-on-shutdown cycles, Flash FPGAs
have a lower energy consumption.

As an example, please consider a configuration time of 100ms (Z,f¢—0n), a negligible
shutdown time (¢,,,—,0¢f = 0) and a computing time of 1 ms (¢,,), which corresponds
to 100 thousand cycles at 10MHz of clock cycle, that is a great amount of time to
process even complex data series. According to this information, an on-off cycle to save
power with a SRAM FPGA is unfeasible for sampling rates higher than 10Hz, which
throughput is too low to justify the use of a FPGA insead of using a microcontroller.

44 Politecnico di Milano Paolo Roberto Grassi




3.2. An FPGA-based Platform

On the other side, in case the ?, 7., period is reduced to few microseconds (i.e. 5 us),
the effective power consumption of the device is related to the activity of the device. In
this configuration, the sampling frequency can rise up to 1 kHz.

In conclusion, SRAM FPGAs are not good candidates for low-power applications
with periodical tasks, which is a typical situation in WSN systems.

3.2.3 FPGA-based WSN Node

Nowadays, not so many vendors produce Flash-based FPGAs. Microsemi produces dif-
ferent families of pure Flash-based FPGAs; in this Section only the IGLOO family is
considered for the experiments. On the other hand, other vendors propose hybrid solu-
tions, where SRAM FPGAs, equipped with Flash memory are able to guarantee /ive at
power-up reconfiguring the FPGA at each start-up. Xilinx offers a Flash-based version
of low-cost Spartan-3 FPGAs, called Spartan-3AN which couples high performance
of leading-edge SRAM FPGAs with non-volatile memories. Similarly, LatticeXP FP-
GAs, from Lattice Semiconductor, use a combination of non-volatile FLASH cells and
SRAM technology to guarantee live at power-up.

If Active and Shutdown modes are supported by every FPGA, the Sleep mode is
supported only by recent Microsemi IGLOO FPGAs, some FPGAs of the Microsemi
ProASIC3 family and LatticeXP FPGAs. Microsemi supports the Sleep mode with
Flash*Freeze technology [22] and, similarly, LatticeXP FPGAs support it [92]. Al-
though the presented architecture is focused and verified on Microsemi IGLOO FP-
GAs, the approach presented here can be easily extended to future Flash-based FPGAs
supporting the Sleep mode.

Let us assume that the FPGA is able to switch from Sleep to Active, and vice versa,
using a dedicated pin called Sleep Pin. Sleep Pin must be accessible from the sys-
tem and from an external component (i.e. a microcontroller or an ADC). The FPGA
switches from Active to Sleep when the pin goes high and switches back when the pin
goes low. The transition to and from Shutdown mode needs an external circuitry that
controls the power of the device but this is not considered here.

A WSN node is composed of sensors, actuators, a network interface, power sup-

ply unit (batteries, external, solar, etc.) and a processing unit. In case the digital signal
processing requirements are demanding (such as for high throughput sensorial infor-
mation), additional processing units are required. In a WSN node, FPGAs can be used
to perform signal processing only (in this case an external microcontroller is required),
or to manage both signal processing and operating system (a soft core on the FPGAs).
Figure shows the two aforementioned scenarios. On the top of the Figure, the mi-
crocontroller is external to the FPGA (like in [167]]), while the second Figure shows the
microcontroller implemented in the FPGA. The second solution offer more flexibility
with respect to the first one, thus in the experimental results this architecture is used.
Thanks to this architecture, the FPGA can process the information from sensors (or
the control for the actuator) completely in parallel. In fact, a dedicated IP core should
be implemented for each sensor (or actuator) in order to exploit the performances of
the FPGA. Using this strategy, an array of sensors for an event detector system (i.e. for
landslide monitoring) can be easily implemented on the FPGA. In addition, as shown
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Figure 3.9: Two FPGA-based WSN node’s architectures

in Section [3.2.1] Multimedia Wireless Sensor Networks [147] take advantage from the
FPGA processing capabilities to improve the performance of communication.

Thanks to their programmability, FPGAs offer a unique opportunity to create an
high performance, low power, general purpose WSN node. In fact, the node can be pro-
duced, according to the two architectures proposed in Figure [3.9] with no prior knowl-
edge on the amount of sensors/actuators or signal processing algorithms that will run
on it. The FPGA exposes a set of digital I/O pins that can be used to connect any type
of sensor/actuator and can be configured to perform application specific processing.

CONTROLLING POWER CONSUMPTION

The Sleep mode allows the system to reduce the power consumption of the device by
switching off all the input/output signals of the FPGA including clock and reset. Energy
aware applications require system architectures able to directly and effectively control
the Sleep mode at runtime. To reach this objective I developed an Intellectual Property
(IP) called Sleep IP able to manage the FPGA during the Sleep mode, allowing the
system to go into Active mode after a predefined period of time.

Considering that all the input/output pins are blocked during the Sleep mode, none
of the clock/reset/interrupt can be seen by the FPGA. Microsemi IGLOO FPGAs are
equipped with an internal digital pin called Freeze Pin, which allows the system to enter
the Sleep (Freeze) mode when the pin is set to one, and to exit when the pin is set to
Zero.

The proposed component is shown in Figure [3.10] and is characterized by the fol-
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Figure 3.10: The ring oscillator is used to create a clock signal during the Freeze mode

lowing input/output ports:
* AMBA SLAVE SIGNALS [IN/OUT]: to connect the component to the AMBA bus;
* FREEZE_PIN [OUT]: to control the Sleep mode;
* INT [IN]: a pin to send a direct request to enter into the Sleep Mode.

and the following registers are accessible through the bus:

* THRESHOLD [READ/WRITE]: used to define the number of clock cycles in which
the system is in Sleep mode;

* ACTIVE [WRITE]: if a 1 is written into, the FPGA switch from Active to Sleep
mode;

* INT_ENABLE [READ/WRITE]: used to define if the INT port is enabled. If zero,
no INT signal will be considered;

* BUS_ENABLE [READ/WRITE]: used to define if the ACTIVE register must be con-
sidered to switch the device to the Sleep mode.

Since the system does not have any clock input, we instantiate a chain of inverters in
order to generate a clock signal during the Sleep mode to count how many time is spent
in this mode in order to allow the FPGA to return back to Active mode correctly. The
number of inverters must be odd to generate an oscillation. Such system oscillates at a
certain frequency given by the amount of inverters of the chain. Higher is the number of
inverters, lower is the generated frequency. The generated clock increments a counter
which value is used by a comparator to detect if the FPGA must return to Active mode.
The comparator check if the input value overcomes a given threshold. In this case, the
Freeze PIN is set to zero, forcing the FPGA to exit from the Sleep mode.

To enter into the Sleep mode, an external pin (INT) is used; when the value of this
pin moves from O to 1, the system enters in the Sleep mode. Another, way to enter into
sleep mode is to write a one into a specific register.

The component has an AMBA slave interface, used to configure the core during the
active period. The master of the AMBA bus (typically the processor) can change the
value of the threshold or force the system to enter in Sleep mode without using the INT
port. The FSM is under the domain clock of the AMBA bus, while both the counter
and the comparator works under the domain clock of the oscillator. During the Active
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Figure 3.12: The circuit used to detect a landslide event

Sensor Data

mode, the OSC_RESET is set to 0, thus the inverter chain does not oscillate; it reduces
the energy consumption. According to that, the FSM and the counter/comparator do
not evolve at the same time, since the inverter chain oscillates only during the sleep
period, when the system clock is stopped, and vice versa.

The IP can be used in various custom or bus-based designs. Generally, the AMBA
bus interface can be used to reprogram the parameters of the IP according to the appli-
cation’s needs. An application can require to freeze the FPGA for a certain period of
time writing a 1 to the ACTIVE register. At the same time, custom component can be
directly connected to the IP, using the INT port, in order to have a way to control the
pOWer, even a processor.

A complete system is proposed in Figure [3.11] The whole system is implemented
on the FPGA, according to the second example of Figure[3.9] It includes a processor,
which is the master on the bus, a set of cores connected to different sensors on the
board and connected to the INT pin of the Sleep IP. The INT signals of the cores are
connected to an AND port in order to force the switch if and only if all of them finished
their computation. This is a common connection when multiple components control
the FPGA modes since it is not desired that the FPGA switches to the Sleep mode when
some component is still computing data. A slave radio interface is connected to the bus
in order to guarantee a connection with an external radio device.

The presented Sleep IP and the architecture in Figure[3.11]are intended to be generic
and reusable in many WSN applications. Regardless the amount of sensors connected
to the FPGA, the use of a set of separate cores for the filtering and signal processing is

48 Politecnico di Milano Paolo Roberto Grassi




3.2. An FPGA-based Platform

crucial to exploit parallelism on the FPGA. Moreover, HW cores for digital signal pro-
cessing reduce the processing load on the microcontroller that can be used to manage
network communications and user’s applications.

APPLICATION CASE STUDY

The proposed architecture has been implemented on a real case study in order to val-
idate the approach with valuable experiments. The reference application is an event
detector architecture for landslide applications, and the algorithm used to detect an
event is based on [27]. The algorithm compares recent sampled data with historical
data. In this architecture, the system stores the updated value of the average, made on
the last 256 samples (long average), with the last 64 samples (short average).

The landslide event detector core is depicted in Figure [3.12] It takes sensor data as
input, squared it and stores the value in two FIFOs (one for short sample and another
one for long sample). The absolute value of the average of the FIFOs is kept updated
by adding the difference between the output value and the input value. The average
is compared and, if and only if the difference between the averages overcomes a pre-
defined threshold, an event message is sent to the processor. The implemented circuit
spends 12 clock cycles to compute a new sample and to establish if an event occurs.
Since data come from sensors at a predefined sampling frequency, usually more than
three orders of magnitude slower than the system’s frequency, in more than 95% of the
time, the FPGA is idle. In this case, and in other related cases, using the Sleep mode
between consecutive samples can be an effective way to increase the power efficiency
of sensor nodes.

In this case study the FPGA filters data from the sensors, sending data to the micro-
processor only if an event is detected. Three accelerometer’s sensors are connected to
the FPGA using the I/O pins of the FPGA. In order to test the ability of the FPGA to
switch from and to the Sleep mode, no interrupt signal from the ADC-chain is used.

The system has been implemented on a Microsemi IGLOO AGL600-FGG256 FPGA
[21]]. The processor is the IP core 8051s [20] and a Digimesh XBee module [51]] has
been used for wireless communications.

EXPERIMENTAL RESULTS

To prove the efficacy of the approach, three experiments have been performed: the
first experiment validates the whole system, the second experiment evaluates the power
consumption with various values of sampling frequency, system frequency and number
of inverters, and the third experiment evaluates the power consumption of the proposed
Sleep IP.

In the first experiment a landslide event is simulated in order to check if the sys-
tem is able to correctly and timely deliver the information through the XBee interface.
Another XBee interface has been connected to a PC, waiting for data. In this experi-
ment, clock frequency of the FPGA is set to 10 MHz and sampling frequency is equal
to 1kHz. As expected, if no vibrations are applied on the system, no messages are sent
to the system. Once a vibration is applied on the accelerometers, a package is immedi-
ately sent to the PC. As aforementioned, this test has been conducted to validate if the
system is able to work as a whole. A Digimesh XBee module has been used on both
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sides (FPGA and PC).

The second experiment aims at evaluating the correlation between parameters and
power consumption. The parameters are: the sampling frequency (fsu,) and the sys-
tem’s clock frequency (f,). In this experiment, only the power consumption of the
FPGA is considered, and no messages over the XBee are sent and no stimulus on the ac-
celerometers is applied. Testing this configuration is important since a landslide event
is (hopefully) very rare. Moreover, in case a landslide event occurs, the power con-
sumption used to deliver the information is not critical as delivering it correctly. The
system has been tested varying the parameters as follows:

* fsam = 1kHz, 10kHz, 20kHz, 50kHz
* fsys = 2MHz, SMHz, 10MHz, 25MHz

In all the experiments, a chain of 401 inverters is used. The results of the ex-
periments are plotted in Figure [3.13] and [3.14] The results show that minimum en-
ergy consumption is achieved combining fsq, and f,,s properly. For example, for
fsam = 1kHz, foys >~ 2M H z is a good solution, while for f,,,, = 50kH z, the optimal
solution is f,,s ~ 10M Hz. Considering that F,, > P,, computing the data as soon
as possible is important. As sampling frequency increases, higher system frequencies
offer a better energy solution.
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Regarding sampling frequency (Figure [3.14), as expected, higher is the sampling
frequency, higher is the power consumption since frequent wake-ups are required. In
addition, the solution with f,,; = 2M Hz crosses all the others for increasing values
of the sampling frequency, and a similar behavior can be observed on f,,, = 5M Hz.
Low values of f, increase t,,, (since the amount of clock cycles is fixed), while higher
values of f,,s increases F,,. Considering the Equation 1, a tradeoff between f,s and
fsam 18 needed to keep the overall power consumption of the system as low as possible.

It is important to notice that, in all the configurations, even with high sampling rates,
average energy consumption of the FPGA is below 4 mW, that allows the system to be
battery powered.

The third experiment aims at estimating the relationship between the number of
inverters used in the ring oscillator and the power consumption of the ring oscillator
and the counter. Power consumption measurements were performed on only the Sleep
IP, excluding the other components, that are off during the sleep phase. Figure [3.15]
shows the power consumption of the device with respect to the number of inverters
composing the ring oscillator. It shows a minimum power consumption of than 220,
with 2000 inverters. Considering that the Microsemi IGLOO AGL600vS5 consumes,
in Sleep (Freeze) mode, more or less 36uW [21]], the minimum overhead of the ring
oscillator is about 1801V .

Regarding the relationship between frequency and number of inverters, we measure
2.5ns of delay for each inverter in the chain, obtaining the following relation:

1
[ T R T —— 4
J 2.51n8N;ne

where N;,, represents the number of inverters in the chain. According to our exper-
iments, three inverters generate 1330/ H =z of clock frequency, 400 inverters create a
frequency of 1M H z, and 2000 inverters creates 200k H z of clock frequency.

Considering that the inverter switches if the value of the input changes, the average
switching activity of the inverter chain is the same for each length of the chain. What
changes is the power consumption of the counter, since it counts at different frequen-
cies. It explains why the power consumption decreases when the number of inverters
increases.

The size of the circuit linearly depends on the number of inverters used to generate
the clock. Synthesis results shows the following relation between the number of Invert-
ers (Ninv) and the used Core Cells (C') (a metric used by the synthesizer to represent
the number of logic primitives in the design, i.e. logic gates or memory cells):

C' =200 + Ny,

where 200 is the size of the counter and the management logic. The FPGA used here,
the AGL600vS, has 13824 Core Cells. According the these results, a chain of 500
inverters is a reasonable tradeoff between power consumption and area occupation. In
such situation, the power consumption of the Sleep mode is about 330,/ with an area
occupation of 5% on an AGL600vS.
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Figure 3.15: Power consumption of the ring oscillator with respect to the number of inverter used to
implement the ring oscillator

3.3 Concluding Remarks

This Chapter provides a list of microcontroller-based platforms and a proposed FPGA-
based node. The purpose of this Section was to provide the reader a list of (traditional)
available platforms, and present an alternative approach in WSN’s node design. By an-
alyzing the available platforms it is clear that the number of design alternatives is high,
and the identification of the optimal design is not trivial. The innovative contribution
of this chapter is the study of a FPGA-based sensor node, that I developed and tested
on a real case study. Next Chapter introduces a novel Design Flow for Wireless Sensor
Networks in order to guide the designer during the design process toward the optimal
design solution.
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A complete and satisfactory design of a working Wireless Sensor Network requires the
definition of three aspects: the position of the nodes (topology), their hardware and net-
work configuration (HW/NET Configuration) and the software (SW Development).
All these components are mandatory to have a working WSN and the constraints of
a WSN makes WSN design very challenging such as it is even described as requiring
“2.5 Ph.D’s” [72]. The identification of a trade-off among power, performance and
reliability needs an efficient engineering work.

This Chapter introduces a WSN-specific design flow aiming at guiding the devel-
oper through the design process from the high-level application specification, design
requirements and constraints to the final deployment. The proposed design flow has
been specifically designed to meet WSN requirements, and all the processes that com-
pose such flow are focused on specific parts of the final design such as their topology,
hardware, software, etc.

It has been designed for both manual and computer aided design, in fact input/output
interfaces have been specified to integrate automated optimization tools that support
the user during the design process. This Chapter illustrates also examples on how to
use optimization tools into the design flow and presents an innovative optimization
technique based on Markov Decision Processes.

4.1 An lterative Three-Step Design Flow

The design process of a Wireless Sensor Network is composed of three phases: place-
ment, HW/NET configuration and SW development. Although these phases will
be presented to be executed in order, it is a good practice to use a Spiral Model ap-
proach [35]], where all the design flow is re-executed until no further optimizations are
possible. For the sake of simplicity, this Section illustrates a single iteration of the
design flow.

The placement phase consists in the identification of the optimal position of the
nodes to ensure coverage and connectivity requirements. The position of the nodes
highly affects the performance and the kind of network organization to be used as well
as their power consumption.

Placement problem has been deeply analyzed in the past decade [[166], resulting in
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the development of several placement algorithms. As an example, relay node placement
algorithms detect the optimal position of relay nodes (routing nodes) such that the num-
ber of relay nodes is minimized, connectivity is ensured and reliability is maximized.
Relay node placement has been analyzed for large scale [150], constrained [[113], fault-
tolerant [[66] placement. Although the problem has been deeply analyzed, it remains an
open issue in WSN design and a general solution has not been identified yet, requiring
customized algorithms for different application fields.

Hardware and network design is a crucial aspect to design efficient and reliable
sensor networks. Nowadays, many low-cost, low-energy hardware platforms have been
proposed and adopted in many application fields. The HW/NET configuration phase
consists in the identification of the optimal hardware and network configuration such
that the resulting system performs as expected. In this phase, each component of the
node (processing unit, MAC layer, routing protocol, etc.) must be selected among a
large set of different design alternatives. Moreover, each component can be further
tuned with a large set of configuration’s parameters (i.e. memory size, radio TX power,
etc.). The identification of the optimal configuration is extremely important to design
efficient WSNGs.

When topology and hardware/network configuration have been defined, the designer
can proceed with the development of the application. SW development consists in the
design and implementation of the software components able to implement the desired
application’s functionalities. Applications for WSNs typically read data from devices,
perform some signal processing and transmit it to a central node. Software develop-
ment for WSN is a very active research field and many solutions such as operating
systems, programming languages or software abstractions have been proposed, devel-
oped and applied in various application fields [115]. Although many solutions have
been proposed, the specific application’s definition is usually technology-dependent,
thus applications cannot be easily ported among different devices. A generic software
model is preferred for a better hardware/software codesign.

Figure [4.T] illustrates the proposed design flow. The design problem has been di-
vided in two distinct functional part: the application definition (or application-specific
aspects) and the architecture and network definition. Note that architecture and net-
work definition are not application-independent since their customization depends on
both sensing position and sw specification.

The design flow takes, as input, a set of information concerning application specifi-
cation, the constraints, requirements and metrics. These information guide the design
space exploration and the optimizations such that the resulting design, ready for deploy-
ment, is correct with respect to the user requirements and constraints. The design of a
WSN starts from sensing coverage. It defines the position and the kind of sensors in the
network such that all the data required in the application are correctly gathered from
the environment. Next, the SW development process defines a high-level specifica-
tion of the software that runs on the network according to the given sensor placement.
At the same time, sensing coverage completion allows the designer to proceed with
the evaluation of the network connectivity and the hardware design processes. The
first is used to place intermediate (relay, secondary, ...) nodes in order to have a con-
nected network, while the second specifies the hardware platforms that best suits the
user needs. At this point, given the software and hardware specifications, it is possible
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Figure 4.1: The Proposed Design Flow

to define the operating system (OS definition). At the same time it is possible to de-
fine which protocols (MAC, routing, transport, ...) will provide good performance from
the given network topology (Network Protocol Definition), then the given protocols
should be configured accordingly (Network Configuration). Once hardware, network
and OS have been defined, the software must be translated into a compilable language,
partitioned and mapped on the nodes (SW Partition & Mapping). All these processes
can be repeated several times to refine the solution. Once the final design has been
identified, it is ready for the final deployment.
In the remaining of the section, a more detailed definition of each process is given.

SENSING COVERAGE

This process is in charge of defining which sensors are needed, how many and in which
position these must be placed. It takes high-level application definitions such as “/...]
the system must be able to track an object in the area of interest [...]”, and provides
a specification of the required sensors (such as nine cameras, two microphones and
five proximity sensors) and their position in the three-dimensional space. Figure 4.2
illustrates the detail of this process. It takes application-specific requirements as input
and provides two distinct outputs: the sensors list (which sensor is required) and the
sensors position (where sensors are located in the 3D space). The specification of
the application requirements must be as clear as possible in order to place the right
amount of sensors in the right position. A specification can be, for example, “place
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the sensors such as the temperature of the area is read by at least three sensors and
the distance between sensors must be at least 10 meters. This specification tells the
user to have a three-sensor redundancy, but specifies that these measurements must be
taken from different positions (at least 10 meters away). With this specification, even
an automatic algorithm can be used. However, in some cases, the position of the sensor
is pre-determined (i.e. place a 3-lead ECG sensing environment).

Considering the output, for SW development and Hardware design, the required in-
formation is the list of sensors, not their exact position. In fact, for SW development
the list of sensors is mandatory in order to know which data can be used, and for HW
design, the list of sensors is mandatory to know how to design the sensing nodes. On
the other side, the Network Connectivity process requires the exact position of nodes in
order to detect the position nodes of the additional nodes to guarantee network connec-
tivity; the kind of sensors (temperature, humidity, etc.) is marginal for this process.

A correct definition of the sensing position is extremely important for two reasons:
first, the sensors must be able to detect the phenomenon of interest correctly and, sec-
ond, the position of the sensors is a strict constraint for the placement, thus it must be
defined carefully to design an efficient network. This process is application-dependent,
since the designers (or the algorithms) must know the application’s characteristics and
peculiarities. Therefore, algorithms automating this task should be specifically de-
signed for the application [169] [166]. A new alternative approach, is given in Section
0

SW DEVELOPMENT

In this process the user must define the application assuming that the system is not
composed of several nodes, but is a whole system whose inputs are sensors and outputs
are actuators. This abstraction allows the user to define a design-independent definition
of the software, thus the user should not optimize the code for specific hardware or
networks. The idea behind this process is to provide a general definition of how the ap-
plication should work; it will be the objective of the SW partition and mapping process
to define how the code must be executed on the network.

The overview of the process is given in Figure 4.3] The process takes the list of
sensors identified in Sensing Coverage and the application-specific requirements. Dif-
ferently from all the other processes, this is usually executed manually since it results
in a piece of code that satisfies the application requirements.
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The output of this process is a high-level definition of the software application that
will run on the nodes. To perform this task the language used to define the application
should be chosen having in mind that it should be translated into a compilable language
automatically. For such a reason, in this thesis, a general purpose script is proposed; an
example of the proposed language is given in Algorithm [I]

Algorithm 1: prova

a = read("temperature","node_0")
b = read ("temperature","node_1")
c=(a+b)/ 2
if ¢ < 18 then
write ("heat","node_2",1)
else
write ("heat","node_2",0)
end if

notify (a,"sink")
notify (b," sink ")

The purpose of this piece of code should be immediate to the reader. The code
states that the temperatures should be read from node_0 and node_1I respectively, then
its average is computed in ¢, and compared to a threshold (18). In case the temperature
is below 18, an actuator is activated (heat to 1), otherwise it is switched off. At the
end both temperatures are sent to the sink node (that will be defined in the network
connectivity process). Note that the position of the sensors have been identified in the
previous process.

Next Section will illustrate how to convert this piece of code into a DFG, a useful
mathematical representation that will be used at the end of this Chapter by the SW
partition and mapping process.

NETWORK CONNECTIVITY

Connectivity of the network is extremely important to meet design objectives. This
process is responsible for placing the minimum number of nodes that satisfy the con-
nectivity requirements. Requirements and constraints can be specified in many ways
according to the design needs. Figure [4.4] illustrates the relationship with the other
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Figure 4.4: Network Connectivity Process

processes. It takes, as first input, the position of the sensors identified by Sensing Cov-
erage; it represents a strong constraint since these nodes cannot be placed elsewhere.
Then it takes the placement constraints and requirements. The first indicates, i.e., the
amount of available nodes, the presence of forbidden areas, etc. The latter indicates the
connectivity requirements or the metrics to optimize during the placement. An example
of placement requirement is: create a network such that all the nodes can communi-
cate with each other using at least two independent paths. Moreover, connectivity
requirements can take into consideration fault tolerance: create a network such that,
even in presence of three node-faults, the network remains connected. Differently from
sensing coverage, this process is application independent, since it does not require any
knowledge on the final purpose of the network to operate.

It produces the exact position of nodes (in addition to the position of sensing nodes)
in the network. The position can be determined automatically or manually, according to
the preferences of the user. Several placement algorithms have been proposed in liter-
ature [[150] [113]] [166] [34] [133] [[66], thus no additional techniques will be provided
in this thesis. Note that in the first iteration of the design flow, no network algorithms
have been identified, so the algorithms must make assumptions on future networks or-
ganizations (plain, two-tier, cluster-based, etc...); in any case, the other iterations will
converge to optimal solutions.

HARDWARE DESIGN

In this process the designer should identify or create a hardware platform that best
fits its needs. The design of the network interface is not included in this process, but
has been split in other two processes. Instead, this process is focused in identifying
the platform to compute sensorial data and/or perform complex operations. Here the
designer must decide to use a microcontroller-based general purpose platform (see Sec-
tion[3.1) or a custom solution (such as ASIC or FPGA-based platforms). It is important
to execute this process before the definition of the operating system since the OS is
usually not supported by all the platforms, thus the hardware platform is a constraint
to the next processes. Inverting the order of processes (perform OS definition prior
the hardware definition) usually leads to non-optimal solutions since the definition of
the correct hardware platform is more important then the specific OS with respect to
energy, performance and reliability, thus it is discouraged.
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Hardware Requirements
(Cost, Performance, etc...)

Figure4.5|illustrates the process. As usual, the process takes constraints and require-
ments as input. In the specific case, constraints can be related to energy consumption,
stock availability or cost, that must be respected in order to have a design that will be
accepted by the customer, while requirements are those aspects that must be optimized
such as cost, performance, etc. The other input, is the list of sensors required by the
application; considering that this process produces the final hardware configuration,
sensors are part of this output. The output is the final hardware configuration of the
nodes, network interfaces excluded. It includes the processing and sensing elements as
well as power sources, harvesting techniques and memories.

NETWORK PROTOCOL DEFINITION

Networking is so relevant in a WSN so that the identification of the optimal protocols is
extremely important to obtain optimal design solutions. The objective of this process is
the identification of the radio, MAC and routing protocols that are most suitable for the
given design requirements and metrics. Figure [4.6]illustrates the process. This process
can be constrained by the availability of licenses or laws (i.e. only 2.4 GHz radio are
allowed) and must optimize several metrics such as energy, performance or reliability.
However, this process leads to the definition of an high-level network organization, thus
no fine-grained optimizations are possible; in fact, this process typically uses models
instead of simulations to evaluate the solutions. The other input is the position of the
nodes, that dramatically affects the kind of network protocol that will be chosen. The
output, as aforementioned, is an coarse-grained high-level network organization.
An example of output of this process is:

* Radio: CC2420, 2.4 GHz radio
* MAC Layer: IEEE 802.15.4
* Routing: LEACH protocol + AODV for routing through cluster-heads

Although this process is theoretically independent from hardware design, the processes
have a relationship, since the definition of a hardware platform could constraint the
identification of network interfaces and vice versa. For instance, if the designer chooses
the SHIMMER platform, the radio cannot be changed. Vice versa, if the designer
decides to use a specific radio, the available platforms that support the chosen radio are
limited. The designer is free to decide the order of these two phases.
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NETWORK CONFIGURATION

Once the network protocols have been identified, they must be configured in order to
perform optimally. All the network protocols, MAC protocols in particular, are char-
acterized by tens of parameters whose configuration is a difficult task for non-experts,
thus it should be performed automatically; this thesis presents several examples on how
to configure network protocols automatically. There could be several constraints that
specify invalid configurations: in IEEE 802.15.4, for instance, the value of the Frame-
Order must be higher than the value of the BeaconOrder. Requirements are similar to
those specified in Network Protocol Definition, but in this case they can be effectively
optimized. The other input comes from Network Protocol Definition that specifies the
protocols and the network organization to be used in the project. These two processes
have been divided since a combined optimization could be practically unfeasible; how-
ever, the user can decide to perform these two processes simultaneously. The output
of this process is a detailed network configuration: all the parameters have a specific
value. The process is depicted in Figure

Considering that most of the designers are not expert in telecommunication, this
process should be performed automatically. This Chapter and in Chapter [6| provide
some example on how to perform this automatically.
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