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1
Introduction

In the last two decades, technology advances in chip miniaturization, energy consump-
tion and wireless communication allow the development of revolutionary applications
in fields like wearable and ubiquitous computing. The term ubiquitous computing
refers to distributed technologies and applications designed to disappear in the envi-
ronment, allowing the user to unconsciously interact with it. Ubiquitous computing
requires small and smart devices deployed in the field of interest with the purpose of
sensing valuable physical variables and interact with the users. A large amount of ap-
plications has been envisioned to this future in the field of tele-medicine [141], child
care [145], environmental monitoring [104], etc.

In 2001, the IST Advisory Group (ISTAG) published a white paper that describes
what living with Ambient Intelligence (AmI) might be like for ordinary people in
2010 [53]. This document includes four user-centric scenarios that envision what tech-
nology could do in the future and what could be the role of the user with respect to the
Information Technology. Although the paper does not accurately describe the ordinary
life of current days, the paper has been used as guideline for research and development
of new devices, methodologies and techniques.

In these days, there is a considerable interest in making our city smarter under sev-
eral point of view such as urban monitoring [93], pollution [152] and various social
services [114]. Smart Cities are a long-term project and the research community is
working hard toward the development of technologies that will enable Smart Cities to
become reality in a near future.

All these scenarios do not define any specific technology rather they are focused
on user-machine interaction and applications. Very often they overlap in many aspects
and thus technologies required for AmI could be useful for Smart Cities and so on. In
particular, an element is heterogeneity, since different systems will interact each other
to provide the user the required service. In AmI, devices like television, washing ma-
chine, heating system, security cameras, etc. will actively collaborate. In Smart Cities,
a traffic light could need to communicate with a meteorological station. In Ubiquitous
Computing, remarkably different devices with substantial hardware differences must
communicate each other.

One of the enabling technology is Wireless Sensor Networks (WSNs), networks
of tiny devices that cooperatively sense and act the environment in which they are
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Chapter 1. Introduction

deployed. Next Section provides a short introduction on this topic.

1.1 Wireless Sensor Networks

A WSN is an ad-hoc network composed of tiny devices with limited energy and com-
putational resources equipped with sensors to gather physical measures from the en-
vironment. In 1999, Wireless Sensor Networks (WSNs) have been considered as one
of the most important technologies for the twenty-first century [17]. A decade of re-
search and applications proved the truth of such statement and their potential in next
generation digital systems.

In the last decade, a lot of research effort has been spent on Wireless Sensor Net-
works (WSNs), and many architectures [164], protocols [24], programming techniques
[115] have been developed. Thanks to this research, today, complex and innovative
applications can be developed in challenging application fields like medical [75] [127]
or environmental monitoring [104] [108].

The increasing complexity of Wireless Sensor Networks (WSNs) is leading to-
wards the deployment of sophisticated networked systems, and the optimal design
of WSNs can be a very difficult task in case constraints and requirements are strong.
A WSN is composed of several nodes that communicate among each other through a
wireless channel: these nodes are typically battery-powered, and equipped with low-
performance processors and small memories in order to reduce the power requirements.
A common WSN node comprises five main components [130]: a processing unit (mi-
crocontroller, processor, FPGA, ...), memories (DRAM, SRAM, Flash, ...), sensors
and actuators, multiple communication layers (physical radio, MAC, Routing, ...)
and a power supply (external power supply, batteries, solar cells, ...).

During the design phase, the cooperation of all these components must be combined
to identify the configuration that best fits the design objectives. The rising complexity
of WSNs design is also due to the combination of general-purpose architectures (which
offer flexibility, but require an optimal configuration in order to behave in an energy-
efficient way) with ad-hoc radio, MAC and routing layers. The combination of different
layers and the large number of configurable hardware and software parameters often
generates an extremely large design space, which requires a powerful CAD algorithm
to carry out the exploration.

In the last years, wireless sensor networks (WSNs) are becoming a well-established
reality in many different domains, including military applications, environment con-
trol, industrial supervision, health monitoring [164] [28] and environmental monitor-
ing [104]. The transmission range of wireless devices can vary from few meters to sev-
eral kilometers, according to application’s requirements and energy availability. Sec-
tion 2.2 provides a deeper analysis of the application fields in WSNs.

Once retrieved, measures are elaborated and sent over the wireless channel to a
sink, where data is stored and used to monitor activities of the area of interest. WSN
nodes usually operate in hostile environments with limited energy resources ( [104,
108]), constrained by the battery capacity, and thus the problem of achieving low power
consumption has become one of the main research focuses of research over the last
years [164]. WSN nodes are interconnected with low-power wireless radio devices
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1.2. Motivations and Rationale

Figure 1.1: Design Process of Wireless Sensor Network

which create an ad-hoc network infrastructure able to route data from sensing devices
to the sink.

In order to deal with the specific requirements of a given application domain, a
WSN has to meet certain performance requirements as well as to guarantee a sufficient
lifetime, which are often conflicting goals. The right tradeoff between these two objec-
tives, as well as the prevention of undesired behaviors such as unbalanced performance
among the different nodes of the WSN, can be guaranteed by accurately evaluating
the network configurations during the design phase. In order to help the designer dur-
ing the energy-performance tradeoff analysis, many Design Space Exploration (DSE)
techniques for WSNs have been proposed in the literature [163] [118], and most of the
classic optimization algorithms can also be adapted to WSNs with a low effort. How-
ever, providing such algorithms with an accurate system-level estimation of the WSN
performance is still an open problem, and it is necessary to guide the DSE algorithm to
the detection of the Pareto-optimal network configurations.

1.2 Motivations and Rationale

Nowadays, Wireless Sensor Network’s design requires experts from several applica-
tion fields such as computer science, electronics, telecommunication, digital signal
processing and application-specific competences (medicine, geology, biology, etc.). A
collaboration between experts in these fields is required to guarantee an optimal design
that respects given constraints and meet desired requirements.

This thesis presents a comprehensive study on the design of Wireless Sensor Net-
works including hardware platform design, network optimization and software parti-
tion. Moreover, adaptive techniques are proposed to deal with online real-time events
such as interferences.

The main contribution of this thesis is a general-purpose design flow for WSN
that defines the set and the sequence of processes to follow to obtain the specified de-
sign. The proposed design flow is a guideline for the development of automated design
tools and design frameworks. An overview of the design process of WSNs is given in
Figure 1.1; the design phase takes several inputs such as the application specification,
requirements, constraints, etc. The output is an high level definition of the final design;
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it specifies the position of the nodes, their hardware and network configuration and the
software that will run on the nodes. The output is at high-level since cannot be directly
deployed on the field, thus final operations like compilation, synthesis and network
setup are still to be done. Software, for instance, is defined in high-level languages,
that will be converted into machine-readable specification during the compilation pro-
cess. The objective of this thesis is to define how the design process should be done,
what can be done automatically and which information are required at each step of the
design flow.

The applicability and effectiveness of the proposed design flow and optimization
techniques has been verified and tested through the implementation of a design frame-
work. The vision of the proposed framework is to give the designer a powerful tool to
design WSNs. It includes:

• Automated optimization of the given design;

• Pareto-frontier analysis to detect desired trade-off in a multi-objective scenario;

• Intuitive interface that allow manual design and test of WSNs.

Although the proposed design framework is still in an early development phase, it is
able to provide high-level information to the designer in order to speedup the design
process, reducing costs and time-to-market.

In addition to design-time (offline) analysis and optimization, this thesis presents
two techniques for online real-time adaptivity (Chapter 5). This Chapter does not aim
to provide a comprehensive study on online optimization, but show the reader the limits
of design-time optimizations and the advantages of online real-time approaches. Please
note that design-time optimization are usually more effective than online optimization
for two aspects: the ability to define the design, in case of non optimality, in any aspect
(protocols, devices, etc.), and the amount of information during evaluation. However,
online real-time optimizations are able to deal with stochastic processes such as faults
or interferences effectively.

Design-time and online optimizations must be both considered during the design of
a WSN. Reliable and cost-effective design solutions are important factors to ensure
success and diffusion of WSN, thus efficient design tools to support the designer in this
phase is of extreme important.

1.3 Thesis Organization

This thesis work is organized in five core Chapters before the concluding remarks as
shown in Figure 1.2. Chapter 2 presents the background and preliminary informa-
tion required to understand the work. It includes a general model for WSN nodes, an
overview of WSN applications, considerations about design methodologies and evalu-
ation techniques. Chapter 3 illustrates a set of commercial and open source hardware
platforms for WSNs, and includes a proposed sensing/processing architecture equipped
with low-power FPGAs. This is intended to provide the user a clear understanding
about kind of target platforms. Chapter 4 introduces and details the proposed design
flow. This is the core chapter and includes the main contributions of this thesis such
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Figure 1.2: Thesis Organization

as the proposed design flow, two models and a novel technique for the design space
exploration. Chapter 5 copes with online adaptivity in WSNs and is focused on the
network layer. Considering the complexity of this topic, two examples related to on-
line adaptivity in network communications are provided. Chapter 6 presents several
experimental results based on various case studies and scenarios. These application
case studies show how the proposed design flow is used in the specific field. Chapter 7
concludes the thesis providing some hint for future development.

1.4 Publications

The various aspects of the research proposed in this thesis have been published and
presented at international conferences. The list of papers is the following:

• P. R. Grassi, I. Beretta, V. Rana, D. Atienza, D. Sciuto: Knowledge-Based Design
Space Exploration of Wireless Sensor Networks. In Proc. of International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS
2012), 7 - 12 October 2012, Tampere, Finland

– This work presents a novel technique to perform design space exploration
of WSNs using both models and heuristics on the top of a Markov Decision
Process to perform the exploration

– Presented in Section 4.4.3.1

• P. R. Grassi, D. Sciuto: Energy-Aware FPGA-Based Architecture for Wireless
Sensor Networks. In Proc. of 15th Euromicro Conference on Digital System
Design (DSD 2012), 5 - 8 September 2012, Izmir, Turkey

– An FPGA-based architecture for WSNs is presented here. The proposed ar-
chitecture uses a Flash-based FPGA to allow the system to control the energy
consumption of the device dynamically

– Presented in Section 3.2

• P. R. Grassi, I. Beretta, V. Rana, D. Sciuto: Tacit Consent: a Technique to Re-
duce Redundant Transmissions from Spatially Correlated Nodes in Wireless Sen-
sor Networks. In Proc. of 15th Euromicro Conference on Digital System Design
(DSD 2012), 5 - 8 September 2012, Izmir, Turkey
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– This paper introduces the Tacit Consent, a technique to reduce redundant
transmissions in cluster-based sensor networks exploiting the spatial corre-
lation of sensed data

– Presented in Section 5.2

• F. Rincon, P. R. Grassi, N. Khaled, D. Atienza, D. Sciuto: Automated Real-Time
Atrial Fibrillation Detection on a Wearable Wireless Sensor Platform. In Proc.
of 34th Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), 28 August - 1 September 2012, San Diego, USA

– This paper presents an innovative solution to accurately and timely detect
atrial fibrillations using resource constrained wireless sensor nodes

• I. Beretta, F. Rincon, N. Khaled, P. R. Grassi, V. Rana, D. Atienza: Design Explo-
ration of Energy-Performance Trade-Offs for Wireless Sensor Networks. In Proc.
of 49th Asia and South Pacific Design Automation Conference (ASP-DAC), 3 - 7
June 2012, San Francisco, USA

– This work illustrates a model-based optimization framework able to identify
the optimal energy-performance trade-off in WBSN systems

– Presented in Section 4.4.2.2

• P. R. Grassi, V. Rana, I. Beretta, D. Sciuto: B2IRS: a Technique to Reduce
BAN-BAN Interferences in Wireless Sensor Networks. In Proc. of 9th International
Conference on Wearable and Implantable Body Sensor Networks (BSN 2012), 9
- 12 May 2012 London, United Kingdom

– It introduces a technique to reduce BAN-BAN interferences in IEEE 802.15.4
based networks in presence of up-to 4 co-located networks operating on the
same channel

– Presented in Section 5.1

• P. R. Grassi, A. Ceppi, F. Cancaré, G. Ravazzani, M. Mancini, D. Sciuto: Au-
tomatic Identification and Placement of Measurement Stations for Hydrological
Discharge Simulations at Basins Scale, in Proc. of European Geosciences Union
General Assembly (EGU 2012), 22 - 27 April 2012, Vien, Austria

– It illustrates a technique to identify the optimal position of sensor network
nodes for hydrological monitoring and forecasting

• I. Beretta, F. Rincon, N. Khaled, P. R. Grassi, V. Rana, D. Atienza, D. Sciuto:
Model-Based Design for Wireless Body Sensor Network Nodes. in Proc. of 13th
Latin American Test Workshop (LATW 2012), 10-13 April 2012, Quito, Ecuador

– This paper presents a model-based optimization framework and a multi-objective
exploration algorithm for Wireless Body Sensor Networks.

– Presented in Section 4.4.2.1
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Background and Preliminaries

A Wireless Sensor Network (WSN) is designed to gather physical measures from the
environment where it has been deployed. These information can be collected in a cen-
tral node (a sink) for further analysis, or used by the network to actuate the environment.
Transmission ranges of WSNs can vary from few meters to some kilometers, according
to the application’s needs and power requirements. The typical communication medium
is the air, but other mediums have been successfully used (water [25], skin [65], etc...).
In all of these cases, a WSN is composed of several nodes whose communications are
wireless and that are able to sense (and actuate) the environment of interest.

The type of sensed variable depends on the application needs and can vary in both
sampling throughput and accuracy. A WSN must be tailored to the specific application
to deliver the correct data effectively. It is not possible to design a general purpose
system that works effectively for all kind of applications; to guarantee efficient archi-
tectures, problem-specific design approach must be adopted. If this concept is true
even for other fields of computer science, in WSN field it must be taken into consider-
ation: design choices for implantable body sensor networks are extremely different to
the design choices of a WSN for structural monitoring.

The design problem of a WSN consists in identifying the position of the nodes in
the space, their hardware/network configuration and the software definition. Only a
perfect combination of the components ensures that the network will perform its tasks
in a correct and efficient way. The identification of the optimal design choices is a very
complex task that require experts in both electronic, telecommunication and computer
science. Moreover, to implement efficient applications, experts on the target appli-
cation field are required (medical, geosciences, etc...). Unfortunately, few designers
have these skills, since they are more focused on the electronic or telecommunication
components rather than computer science or vice versa, thus teams with heterogeneous
and complementary expertises are usually required. In addition, even though the team
members have the required expertises, the identification of the optimal design can be
extremely complex. For such a reason, Computer Aided Design (CAD) automated tools
for the design of WSN are required. To develop design methodologies and automated
techniques for WSN design, it is crucial to define the WSN field and its design problem.

This Chapter provides some basic concepts about the design of WSNs that will help
the reader to better appreciate the thesis work. Section 2.1 presents a general structure
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of a WSN. Section 2.2 classifies the WSN applications according to their design re-
quirements and constraints. In order to provide a wide view of the design problem a set
of common parameters and metrics is introduced. Section 2.3 illustrates the theoretical
complexity of the design of WSN. Section 2.4 presents the most common Hardware/-
Software co-design methodologies for embedded systems. Design evaluation is an im-
portant part of the design flow; Section 2.5 shows three evaluation techniques for WSN
highlighting pros and cons.

2.1 General Structure of a Wireless Sensor Network

A Wireless Sensor Network is composed of several nodes that communicate to accom-
plish a common task. Each device processes sensorial data, uses actuators, receives and
transmits through the network interface. Most of the WSN nodes are battery powered
in order to allow free movements or the deployment in hostile places. Moreover, energy
harvesting helps the devices to extend their lifetime.

The architecture of a WSN node strictly depends on the target application, thus
nodes can be significantly different according to their application’s needs; they can dif-
fer in sensor types, processing unit, operating system used, etc. However, WSN nodes
can be modeled in a generic way, in order to have a common mathematical structure
that could help the designer to interpret experimental results and compare alternative
designs. This Section introduces and present this mathematical abstraction. Dot nota-
tion x.y, widely used in this thesis, indicates that the feature y belongs to the component
x. If fsam indicates the sampling frequency of a sensor, s1.fsam indicates the sampling
frequency of sensor s1.

2.1.1 Generic Node Models
A WSN node δ is a computing device composed by:

• Processing unit (CPU, ASIC, FPGA,...)

• Network interfaces and components (network layer, mac layer and physical layer
[radio, optical, ....])

• Sensor(s) (temperature, vibration,...) (optional)

• Actuator(s) (motors, switches, ...) (optional)

• Power Unit (batteries, recharge circuit, harvesting, ...)

The proposed model, illustrated in Figure 2.1, is a general-purpose model able to de-
scribe a large variety of architectures. This model describes the relationships among
various layers of a WSN node, from sensors and actuators to network management.
From the top of the figure, sensed data, gathered by sensors (si ∈ S) and filtered by
custom filters (φj ∈ Φ), are transmitted to the processing unit, which hosts applications
and manages memories. The processing unit, that is the center of the node, elabo-
rates both (filtered) sensorial data (Fk) and network packets (Ra

x). Then applications
transmit data to the network (T ax ) and to the actuators (Ck). Network layer is decom-
posed in three sub-layers: Network (NET), MAC and Physical (PHY). Network layer
is responsible for routing and transport (end-to-end connectivity), MAC layer ensures
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2.1. General Structure of a Wireless Sensor Network

Figure 2.1: Model of the Node

synchronization and non-conflicting communications among co-located nodes, and the
Physical layer provides bit-to-bit transmissions over the communication medium. The
proposed model depicts only the data exchange among components, but it does not
constrain their implementation to specific technologies or systems such as hardware,
software, operating systems, etc. This leaves the designer with a degree of freedom
to decide how to implement the functionalities, and provides a high level model of the
node, that will be useful to compare different architectures.

Batteries and energy harvesting are modeled in a black box (power unit) that spec-
ifies the discharge model of the batteries, the harvesting capabilities, faults, etc. Simi-
larly to other components, the power unit has been left as generic as possible to avoid
imposing any constraint to its implementation.

PROCESSING

In a WSN node, processing is performed in three distinct components:

• Sensor Filters (Φ) and Actuator Controllers (Ψ): performed after the sensors
operations and before the actuators activation, such processing is dedicated to the
filtering and controlling of sensors and actuators. Can be either implemented with
dedicated hardware (DSP, FPGA,...) or using software routines;

• Network Layer: the management of data in the network is one of the most im-
portant aspects of a WSN. The network layer routes packets through the network
interface, checks and identifies the topology of the network and so on. Such oper-
ations usually require dedicated hardware or software units. The model proposed
in this work decouples network from application data in order to effectively ex-

Paolo Roberto Grassi Politecnico di Milano 11



Chapter 2. Background and Preliminaries

press the overhead of networking in WSN. In this model, all the communications
among network layer have been explicited: application data (T ax ,Ra

x), network
packets (T nx ,Rn

x), MAC packets (Tmx ,Rm
x ) and radio transmissions (T λx ,Rλ

x). This
set of parameters allow further analysis on transmitted and received packets such
as, for instance, the overhead of the network protocol (T − T dx );

• Processing Unit: located in the conjunction of sensors, actuators and network
interfaces, it completely controls the data in the node. It can or cannot host a
tiny operating system, depending on both application needs and technical require-
ments. The Processing Unit handles application data coordinating sensor, actuator
and network information. It can be either a micro-controller, a micro-processor,
an FPGA, or any component able to cope with sensors, actuators and network
data.

SENSORS AND ACTUATORS

The main purpose of a WSN is to sense the environment where it is deployed. A
node δ ∈ ∆ is equipped with a set of sensors δ.S and actuators δ.A. Each sensor
(s ∈ δ.S) is characterized by a sampling frequency (s.fsam) and the number of bits
used to represent the sampled data (s.bsam). Thus, each sensor generates a throughput
of s.T = s.fsam · s.bsam, that is an important metric to estimate the filtering needs.
Similarly, each actuator (a ∈ δ.A) is defined by a refresh frequency (a.fref ) and the
number of bits used on each refresh (a.bref ). The definition of the attributes of a sensor
or an actuator may vary from model to model; what is important is the definition of the
throughput the sensors/actuators generate/require.

Sensed data must be processed (filtered) before transmitting them to the network.
Filtering is performed to reduce the amount of data to transmit (aggregation) or to
extract relevant information (feature-extraction). Given data from a sensor at a given
frequency and width, a sensor filter takes sensor data as input and gives filtered data as
output. In this model, sensor filters (φ ∈ δ.Φ) are described as black boxes that take
sensor data as input and gives data as output. For instance, if φ ∈ δ.Φ is a filter applied
to s ∈ δ.S, it takes s.bsam data at a frequency of s.fsam, and generates φ.b data at a
frequency φ.f . The throughput of the filters, represented with Fi, indicates the amount
of information that should be processed by the application.

Similarly, actuator’s data are managed by controllers (Ψ), which interpret applica-
tion’s data and convert it to actuator-compatible information. The more the controller
is intelligent the less information it will require from the application. In the model, the
throughput required by the controllers labeled with Ci.

Both filters and controller can be implemented in hardware or in software. More-
over, filters and controllers are modeled as independent entities; this allows the defini-
tion of a large variety of filtering architectures and techniques, such as DSPs or FPGAs
(see Section 3.2). Typically, filters and controllers are performed by software tasks,
but their design is extremely important to ensure power-efficient, performance-aware
design.
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2.1. General Structure of a Wireless Sensor Network

POWER UNIT

One of the limitations and requirements of a WSN is the energy available on each node.
Considering that each node is usually equipped with batteries, a model for energy con-
sumption is needed. Many sensor nodes are able to recharge their batteries harvesting
energy from the environment [26, 104]. Energy consumption and harvesting can be
modeled as a time dependent function of the battery status.

Energy consumption and harvesting are defined as the derivative of the energy in
time E(t)

∂t
. If E(t)

∂t
is positive, the node is harvesting energy, while if E(t)

∂t
is negative,

the node is consuming energy. It is important to notice that if the derivative is positive
it does not imply that the node is not consuming at all, but that the harvesting is more
effective than consumption, and the node is recharging their batteries.

Such definitions are particularly useful to define the concept of node and network
lifetime. For instance, the lifetime of a node (δ ∈ ∆) is defined as the time tL where,
∀t′ > tL, E(t′) = 0. Network lifetime has different definitions [37]: in applications
that depend on every single node, the lifetime of a network can be defined as the time
until the first node runs out of battery power. Alternatively, a network can be more or
less fault tolerant and it can live as long as all live nodes are still connected to each
other. Extracting such properties from the single-node definition is not difficult.

2.1.2 Network Models
The most natural way to define WSNs is using graphs. A graph is defined as a pair
G = (V,A) where V is a set whose elements are called vertices or nodes and A is a
set of ordered pairs of vertices, called arcs. A graph can be either Directed, where arcs
have directions or Undirected, if arcs are undirected. All the concepts related to graph
theory are assumed to be known by the reader; an introduction to graph theory can be
found in [160].

Due to the asymmetry and heterogeneity of nodes, WSNs are generally Directed
Graphs. Previous works [144, 159] proposed different models for WSNs to define
topology control, routing and connection properties. These works use the concepts
of Quasi Unit Disk Graph (QUDG) and Bounded Independence Graph (BIG) to model
the connectivity of sensor nodes. These models, given a set of nodes distributed in a
two-dimensional space, express which node can receive a transmission from a node.

Connections In a WSN, nodes communicate through a network interface to exchange
information; in such a way, connections are links between nodes. According to the
definition of QUDG given by [144], nodes with Euclidean distance at most ρ for some
given ρ ∈ (0, 1] are adjacent. Pairs with a Euclidean distance greater than 1 are never
in each other’s transmission range. Finally, pairs with a distance between ρ and 1 may
or may not be connected. Summarizing, given two nodes δ1, δ2 ∈ ∆:

• if d(δ1, δ2) ≤ ρ nodes are adjacent

• if d(δ1, δ2) > 1 nodes are never adjacent

• if ρ < d(δ1, δ2) ≤ 1 nodes can or cannot be adjacent according to some rules.
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Figure 2.2: Quasi Uniform Disk Graph

Considering that QUDG is not useful to describe object interferences, the simplicity
of the model is attractive. Independently from the function used to express the con-
nections, considering two nodes δ1, δ2 ∈ ∆, λ1→2 = (δ1, δ2) defines a unidirectional
connection between δ1 and δ2 where δ1 can communicate with δ2 but δ2 cannot com-
municate with δ1. In most of the cases, network connections are bidirectional, implying
a symmetry in the λ-relation. Figure 2.2 shows an example of QUDG. According to
the definition, since λa→b < ρ, these two nodes are adjacent, so they can communicate.
ρ < λa→c < 1, and the two nodes can communicate since c falls into the transmission
area of a. As previously explained, the communication in the area ρ < d(δ1, δ2) ≤ 1
can or cannot happen, according to some rules. One of the most common rule is to
create a random shape, similarly to the one shown in the Figure. Using this concept,
although ρ < λa→e < 1, these two nodes cannot communicate.

QUDG defines only if two nodes have or not the opportunity to communicate.
Within the communication links complex propagation models should be used in or-
der to guarantee a good simulation/estimation accuracy. A good propagation model is
the Average Path Loss Model, that estimates the average path loss between two nodes.
It has been proven [170] that the lognormal shadowing model gives very accurate path
loss estimates in case the distance between nodes is from few meters to one hundred
meters. The following formula returns the path loss in dB as a function of the distance
between the nodes and the characteristics of the channel:

PL(d) = PL(do) + 10η log

(
d

d0

)
+ χσ
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2.2. Application Fields and Classification

Table 2.1: Network characteristics WSNs

Application Field Number of Nodes
Sensed and
Transmitted

Variables

Network
Organization

Structural
Monitoring

10-1000 Vibration Mesh

Body Sensor
Networks

2-10 ECG, Temperature,
EMG, EEG, ... Star Networks

Multimedia Sensor
Networks

10-50 Audio, Video Mesh

Environmental
Monitoring

30-3000
Temperature,

Humidity,
Brightness, ...

Push Networks

Battlefield
Assistance

50-5000 Position, Speed,
Audio, ... Mesh

Underwater
Monitoring

5-150 Temperature, Water
Flow, Push Networks

Domotics 10-300 Temperature,
Humidity, Video, ... Star Networks

Automotive 5-50 Temperature, Speed,
Acceleration, ... Star Networks

where PL(d0) is a measured path loss at the reference distance d0, η is the path loss
exponent and χσ a Gaussian noise with zero-mean and standard deviation equal to σ.

Position In WSNs, the position of the nodes defines the set of feasible topologies of
the network and is also needed to define the right placement of sensors and actuators on
the environment, to perform the required sensing and acting actions. Since the position
is a property of nodes, we express the position of a node using the dot notation where
δ.x, δ.y and δ.z represent the coordinates in a 3-dimensional Euclidean Space.

2.2 Application Fields and Classification

WSNs provide useful technologies and architectures that allow several applications
to be implemented. The analysis of the physical variables, sensed over the world,
is extremely important to control events of interest for scientific purposes (cane toad
monitoring [73], etc.), to prevent catastrophic events (such as structural health moni-
toring [79], landslides [27], etc.), or to monitor physiological aspects like cardiac dis-
eases [138], posture problems [58], brain injuries [76].

Table 2.1 and 2.2 qualitatively illustrate some characteristics of WSNs with respect
to their application field.

Network characteristics such as number of nodes, kind of sensed variable and net-
work organization are described in Table 2.1. The amount of nodes in a network affects
the design process in terms of complexity and optimality; the higher is the amount of
nodes to be configured, the higher is the cardinality of the design space and, as a conse-
quence, the difficulty to identify the optimal design. In Table 2.1, network organization
has been classified as:
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Table 2.2: Power and Reliability Characteristics of WSNs

Application
Field

Power Supply Harvesting Fault
Tolerance

Nodes
Redundancy

Structural
Monitoring

Battery Solar High YES

Body Sensor
Networks

Battery Stress,
Vibration

Critical NO

Multimedia
Sensor

Networks

Cabled Low NO

Environmental
Monitoring

Battery Solar Low YES

Battlefield
Assistance

Battery, Cabled Solar, Stress,
Vibration

Critical YES

Underwater
Monitoring

Battery Water Flow Low YES

Domotics Battery, Cabled Medium YES
Automotive Cabled Critical YES

• Star Network: one-hop networks. Data are gathered by a central node that receives
sensorial information from all the nodes;

• Push Network: network with a predefined direction of data. These networks are
optimized to deliver data from sensors to sinks;

• Mesh: a network of pairs with no preferred network flows.

Please note that a final design can use custom solutions for network; the listed organi-
zations are just typical design choices.

Regarding the type of sensed variable, for the purpose of the design, what it is im-
portant is the throughput generated by each sensor node rather than its actual value.
Some application fields are characterized by a large amount of nodes (environmental
monitoring or battlefield assistance), but have low-frequency data such as temperatures
or humidity, that get less than 1 sample per minute. On the other hand, other applica-
tion fields like multimedia sensor networks have a lower amount of nodes (10-50), but
require streaming of audio-video contents, that require broadband communications.

The identification of an optimal trade-off is extremely important in WSNs. Consid-
ering body sensor networks, for instance, even if the amount of nodes is considerably
low (2-10), and the throughput is acceptable (ECG requires 125 samples-per-second at
24-bit precision, that is 3 kbits/sec), their optimization is very complex. In fact, power
and computational limitation of these nodes makes the identification of the optimal
trade-off hard to reach manually. A practical example is given in Chapter 6.

Regarding the power characteristics of WSN (See Table 2.2), the main difference
concerns the use of batteries or cabled power. In case cabled power is available, it is
strongly suggested to use it since it effectively reduces the faults due to battery deple-
tion. However, in some cases, cabled power is not available. For instance, implantable
body sensor networks require small batteries that cannot be recharged externally as well
as environmental monitoring, where nodes are deployed in hostile places with no cabled
sources available. In some cases, cabled power is available in some part of the network
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2.2. Application Fields and Classification

(domotics and battlefield assistance), while the other nodes are powered by batteries.
In domotics, for instance, nodes can be battery powered for economic (cost of cabling)
and aesthetic needs (no visible cables).

In case batteries are used, an effective way to increase lifetime of the network is by
harvesting energy from the environment. Energy harvesting is an open and very active
research field [109] and promises to be an enabling technology for many applications.
Nowadays, the most effective harvesting source is solar, that can be used for structural
monitoring, environmental monitoring and in battlefields. In case sun is not present
(underwater) or solar panels cannot be used (body sensor networks), other techniques
such as stress, vibration or water current can be used instead.

Reliability of WSN varies according to the final application fields. Some of them
are life-critical, while others just collect data from the environment. In the first case,
reliability is critical, and must be tackled effectively. Redundancy is the most common
way to increase the reliability of a system; if it is always possible to have redundancy
on sensors, in some cases, nodes’ redundancy cannot be applied for practical reasons.
In body sensor networks, for instance, it is not always possible to place several nodes
on the same spot to perform independent measurements.

Reliability in WSN means that the system must work in standard scenarios. Stan-
dard conditions are a set of possible scenarios that have been identified during design-
time. Examples of standard scenarios are:

• Presence of up to three co-located networks operating on the same frequencies;

• Faults of up to 10 nodes in the network;

• White noise on the sensors with specified mean and standard deviation.

These scenarios have been tested at design-time, and the deployed network will be able
to deal with these scenarios.

2.2.1 Design Considerations
An optimal design of a WSN should cope with several conflicting metrics while satis-
fying the given constraints. Optimizing a design to meet design requirements by maxi-
mizing or minimizing the metrics must take constraints into account. If hardware cost
is a limitation, it is not a good idea to place several and/or expensive nodes, since, even
if the final design is extremely optimized it will never be accepted since it violates the
cost constraint. So, in the remaining of this thesis a metric is a measurable entity that
must be optimized (minimize or maximize), while a constraint is a Boolean condition
that must be satisfied (i.e., use at most 15 nodes in the network).

Regardless problem-specific requirements and constraints, each category is charac-
terized by common design considerations. The lifetime of the system depends on both
power consumption, battery capacity and the harvesting capabilities; the more power
the application requires, the bigger the batteries and the more effective the harvest-
ing should be. Vice versa, if the size of the batteries is fixed or the harvesting is not
effective, architectures and applications must be power-aware.

Let us consider two distinct mathematical spaces: Parameters and Metrics. The
Parameters’ space (P ) is a multi-dimensional space which defines all the feasible im-
plementations of the design. Examples of the dimensions of this space are, i.e., the
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position of nodes, the MAC layer, the routing protocol, the application’s implementa-
tion, and so on. The Metrics’ space (M ) is a multi-dimensional space where all the
feasible values of the required metrics (such as energy consumption, packet rate, etc.)
are included.

2.2.1.1 PARAMETERS

During the design phase, a parameter is something which value can be defined by the
designer. Every design choice is related to a specific parameter: CPU frequency, MAC
protocol, radio TX power, etc. Every design project is characterized by its own specific
design parameters according to: availability (i.e., there are 100 MSP430 processors
available in stock), constraints (i.e., the law imposes the use of 2.4 GHz radio for this
application), economy/license (i.e. the company already pays a license to use a specific
standard and it will be very expensive to change the standard), etc.

For whatever reason, it is always a good idea to limit the amount of parameters and
parameters’ value such as the complexity of the design space is low enough to allow
effective design space explorations. Section 2.3 illustrates the design complexity of
WSN and will give the reader a better understanding of the problem.

2.2.1.2 METRICS

A specific combination of parameters results in a specific design that is characterized
by specific values of the metrics. A metric is a measurable indicator that provides
valuable information about the system. They differ from parameters since they cannot
be arbitrarily set by the designer, rather their value is a result of the design choices.
For example, packet-receive-ratio cannot be set at design time but depends on various
factors like radio interferences, MAC configuration, routing algorithm, etc. For such
reason, parameters are defined and metrics are evaluated (see Section 2.5).

2.3 On the Design Complexity

One of the most critical aspects of a WSN design is the cardinality of the design space
which is too big to be explored exhaustively. This section aims at quantify the cardi-
nality of the three spaces presented in this Section.

Let us consider Λ as a three-dimensional space whose size is equal to (X, Y, Z)
meters and let discretize the space in squared cells of side of l meters. Assuming that
more than one node can be placed in the same cell, if we would like to place a set of
nodes ∆ with dmin ≤ |∆| ≤ dmax, the number of possible solutions is equal to:

dmax∑
i=dmin

(
X ∗ Y ∗ Z

l3

)i �
 �	2.1

For instance, if we would like to place from 20 to 40 nodes in an area of 100m3 with
l = 1m, the amount of admissible solutions is greater than 10240. Such cardinality dis-
courages the use of semi-random algorithms to solve placement problems, thus custom
algorithms are preferred.

Regarding the configurations’ space, the amount of possible solutions depends on
the kind of parameters. Considering the three kinds of configurations’ parameters
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(Cn,Cg and Cd), the size of the design space (upper bound) is:(∏
c∈Cn

|c|

)∏
c∈Cg

|c|G
(∏

c∈Cd

|c||∆|
) �
 �	2.2

where |c| corresponds to the amount of valid values of the parameter c, G is the amount
of groups in the network and |∆| is the number of nodes in the network. Assuming
that a group includes at least one node, G < |∆|. From the equation is possible to see
that node parameters’ have a greater impact on the cardinality w.r.t. network parame-
ters. It suggests that DSE on network parameters can be even performed manually, but
refinements on node parameters requires an automated process.

Regarding cardinality of the applications’ space A, since A includes all the imple-
mentations of all the possible applications, considering that there is no limit in the
amount of nodes in a PDG, the cardinality of the PDG is infinite. Moreover, a feasible
solution of a WSN design must have an application that implements the desired func-
tionality. Although the set of applications that implements the desired functionality
AF ∈ A is a small subset of (|AF | << |A|), its cardinality is still infinite. In fact,
a ∈ AF can be transformed in a′ ∈ AF , with a 6= a′, adding dummy tasks. Since this
process can proceed to infinite, |AF | is infinite. For this reason, the automatic design of
WSN applications, requires custom techniques.

In this section, we provide a characterization of the design space (denoted as S)
of WSNs, in order to show the complexity of this kind of systems. The parameters
space of a WSN is divided into two parts: a set of node parameters (Pn), which can
assume different values on each node, and a set of network parameters (Pr), which
assume one value throughout the whole network (or at least a part of it). For example,
the memory size or the type of processor are specific for each node, hence they belong
to Pn, whereas the network protocol must be the same among the nodes, therefore it
belongs to Pr. Each parameter p ∈ (Pn ∪ Pr) is assigned to a discrete set of values in
an interval [pmin, pmax], whose cardinality is denoted as |p|.

Node parameters heavily affect the design space size |S|, since each parameter can
assume an independent value on each node. Thus, when the network size (expressed
in terms of the number of nodes, N ) increases, then |S| increases exponentially. More
formally, we can express the size of the design space of a WSN:

|S| =

(∏
p∈Pr

|p|

)
·

(∏
q∈Pn

|q|

)N

.
�
 �	2.3

To understand the order of magnitude of |S|, let us show a relatively small example
for structural or environmental monitoring. Let us assume that 8 nodes are placed
on a 2×2×2 tridimensional grid in the monitored area, and that the communication
is regulated by the IEEE 802.15.4 MAC protocol [18]. Even without considering any
hardware parameter, the configuration of the MAC protocol itself contains a wide set of
possible parameters in Pr (e.g., the frame and the beacon orders [18]) and in Pn (e.g.,
the choice of using the contention active communication, or the number of requested
guaranteed time slots [18]). Overall, the design space contains approximately 290
billions of solutions.
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Thus, an extensive DSE would take an unacceptable amount of time when network
simulation is the only viable way to evaluate a solution. As a consequence, a technique
that is able to reduce the number of simulations is required.

2.4 Design Methodologies and Principles

The design problem consists in the identification of the optimal configuration of the pa-
rameters such as objective functions, defined as combination of metrics, are minimized.
A specific configuration of the parameters is called solution and the process of iden-
tification of the best solution is called Design Space Exploration (DSE). In literature
such problem is generally called optimization problem but, in order to disambiguate
with respect to general optimization problems, the process of identification of optimal
design solutions, in this thesis, will be always referred with the term Design Space
Exploration or its acronym DSE.

As aforementioned, the design problem consists of two mathematical spaces: P and
M. The dimensions of P is the set of parameters, thus the set of configurable entities of
the design, while M is the set of observable variables of the design. The main difference
among these two spaces is that the values of the variables in P can be arbitrarily defined
at design time, while the values of M are observed after the evaluation (see Section
2.5). Values of M are affected by evaluation inaccuracies, that depends on the chosen
evaluation method.

This Section illustrates the common DSE loop, that is the basis of both manual and
automated DSE.

2.4.1 Design Automation, Frameworks and Methodologies for WSNs
Design automation of WSNs is still an open research issue. An early analysis of the de-
sign space of WSNs has been proposed by Romer and Mattern in [139] where they
present a comprehensive analysis of the typical requirements and characteristics of
WSNs. The proposed analysis is focused on metrics and applications under a quali-
tative point of view and it does not provide practical tools for the development of tools
for automated design space exploration.

Toward this direction, a high-level platform-based design methodology for WSNs
is presented in [36]. To the best of our knowledge, this is the first design methodology
specifically designed for WSNs able to consider concurrently hardware and software.
The objectives were: first, raise the design abstraction level, second, ensure that final
design’s implementation will respect the initial requirements and, third, maximize com-
ponent reuse. A recent work [130] proposes a complete system-level design flow for an
alternative approach based on the concept of hardware microtasks. The authors show
that hardware specialization and power gating are able to reach a power saving between
one to two orders of magnitude w.r.t. MCU-based implementations.

Other than design methodologies, different design frameworks and tools have been
proposed. A good framework for the rapid design and evaluation of WSNs is WISENES
[89], which provides a high-level model for WSN. The target WSN is designed using
the SDL language. The framework is able to simulate the WSN model and provides
a backend for the code-generation for target platforms. Lately, McGibney et al. [110]
propose a modeling and an optimization tool for WSNs focused on building wireless
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2.4. Design Methodologies and Principles

Figure 2.3: The Design Space Exploration Loop

application. The case study illustrates that the CAD tools effectively support the WSN
designer during the design of the network. In the same year, Navarro et al. [123] pre-
sented a simulator based on SystemC language for the design space exploration of
WSNs. Differently from the other approaches, main goal of the authors is to create a
complete and generic design framework for the automated design space exploration of
WSN rather than application specific tools.

Unfortunately, none of these approaches provide a generic and reusable formaliza-
tion of the design space of WSN which is useful for the development of automated
design space exploration algorithms for WSNs. To overcome this limitation, in this
thesis, we provide a comprehensive formalization of the design space that can be used
in any future design framework.

2.4.2 Design Space Exploration
The design of a WSN consists in the identification of a set of solutions that satisfy the
constraints and are optimal with respect to the given requirements. As aforementioned,
the process of the identification of this solution is generally known with the term De-
sign Space Exploration (DSE) and, although DSE can be performed manually, the
real challenge is the definition of automated algorithms that allow the identification of
optimal solutions automatically since manual DSE requires expertise and sometimes is
unfeasible due to the large number of design alternatives.

The DSE is an iterative process where several candidate solutions are evaluated,
searching for the optimal solutions, according to given metrics. It is composed of two
main components (Figure 2.3): Exploration and Evaluation. Exploration takes, as
input, the (constrained) Parameters’ space (P), the Metrics’ space (M), the constraints
(K) and a set of tuples 〈p,m〉 representing the current parameters’ configuration (p ∈
P) and the associated value of the metrics (m ∈ M). It provides, as output, a set of
new configurations (p′ ∈ P) to be tested (hopefully better than p). The Evaluation
component takes the set of new configurations p′ and applies an evaluation function
on it (m′ = V (s′)). The obtained tuple 〈p′,m′〉 is inserted in the solution database for
next iterations. The objective of the DSE is to identify a set of configurations P ⊆ P
such as ∀p ∈ P are Pareto-optimal. Configurations in P are also defined as optimal
configurations or optimal solutions.
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CONSTRAINTS

Design constraints are used to pre-define unfeasible or undesired design solutions and
are typically expressed with logical expressions over variables of the unconstrained
parameters’ space P̂. The resulting (constrained) space P ∈ P̂ is used in the exploration,
thus only the configurations which respect the constraints can be accepted at the end of
the design phase.

There exist two kind of constraints: strong and weak constraints. Strong constraints
define a strong relationship among variables which cannot be violated, otherwise the
design cannot be accepted. Weak constraints define relationships among variables that
suggest acceptable, but non-optimal configurations. An example of constraints in WSN
design, related to IEEE 802.15.4 protocol, is defined on Superframe Order (SO) and
Beacon Order (BO) parameters. According to the protocol, SO cannot be greater than
BO, since Superframe period cannot be greater than Beacon period, thus a strong con-
straint is SO ≤ BO. On the other hand, an example of weak constraint is related to the
role of the nodes in such protocol. The structure of the Superframe is defined by the
network coordinator, that is a specific node which coordinates communications among
the nodes in its cluster. For such a reason non-coordinator nodes should not define such
parameters since it is not required in the design. In conclusion, if strong constraints
are used to avoid unfeasible solutions, weak constraints are introduced to reduce the
cardinality of the design space, thus improve the DSE process.

EVALUATION

The Evaluation component computes metrics values for specific input configurations
through an evaluation function. The Evaluation Function (V (p) : P 7→M) is a surjec-
tive function that maps P to M. The objective of the evaluation function is to evaluate
the quality of the given configuration with respect to the given metrics; these informa-
tion will be used during the exploration to identify newer configurations. Evaluations
can be performed either by using models, simulations or testbeds (see Section 2.5).
Evaluated configurations are inserted into a shared database that will be used by the ex-
ploration component as a knowledge base to define which new configurations probably
improve the known configurations.

EXPLORATION

The exploration component analyzes the set of configurations P ⊆ P in its database in
order to identify a new set of configurations P ′ 6= P such as ∃p ∈ P ′ : ∀q ∈ P, V (p) >
V (q). In other terms, the exploration component tries to discover new configurations
with better objective functions with respect to known configurations. The exploration
terminates when termination conditions have been reached (i.e. at least a configuration
with metrics below a certain threshold), a certain amount of configurations have been
evaluated, or the exploration converges. The algorithm converges when it is not able to
improve the quality of the configurations and it can happen either because the Pareto
set has been detected or for limits of the algorithm. It can be detected by monitoring if
newer configurations do not improve the known configurations for a specific amount of
time, i.e., a defined number of iterations.

Many techniques have been used here; they can be classified in three categories:
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• Model-Based Exploration: custom techniques based on models of the problem
to optimize. Optimal configurations are identified almost analytically from the
model by inspection on equations;

• Semi-Random Exploration: when models do not exists or do not provide accu-
rate results, generic semi-random techniques (such as genetic algorithms, simu-
lated annealing, tabu-search, etc.) are preferred. These techniques require more
evaluations with respect to Model-Based Explorations, thus exploration cost is
higher. These techniques are also known with the term meta-heuristics [103];

• Hybrid Exploration: a mix of the previous two techniques. The idea is to use
approximate models to guide the exploration to optimal configurations, and then
use semi-random exploration where model accuracy is not enough. An example
of this technique has been proposed by Beltrame et al. in [32].

2.5 Design Evaluation

The evaluation of the design’s metrics is a fundamental part of the design process.
As aforementioned, metrics cannot be defined, but derive from a conjunction of many
components, thus the evaluation allows the designer to extract the effective quality of
the design. The evaluation process answers to these questions: “Does it (the design)
meet the given requirements? Does it respect design criteria and constraints? Which
design is better?”.

Design evaluation is an extremely important step in both manual or automatized de-
sign process, thus it must be defined accurately. In defining the evaluation method, two
aspects should be considered: accuracy and speed. Accuracy means that the evaluation
results adhere the reality of the phenomenon, thus they are a reliable source of informa-
tion. Moreover, some method is able to perform accurate evaluations of very specific
aspects, thus its overall accuracy is low. Speed indicates how fast results are computed;
the faster are the evaluations, the more design choices can be evaluated and compared.
Each evaluation technique is characterized by intrinsic values of accuracy and speed.
Intuitively, the higher are these two aspects, the better is the evaluation method. Unfor-
tunately, considering the design problem as a whole, none of the proposed techniques
is both accurate and fast; some of them are fast but not accurate and vice versa.

A trade-off among accuracy and speed is required and should be examined before
every design process in order to identify the technique that best fits economic require-
ments such as time-to-market and product-quality. Accurate but slow design evalu-
ations allow the designer to better analyze the system and to optimize non-functional
characteristics such as reliability, power consumption or efficiency that positively affect
product-quality but increase time-to-market. Conversely, quick evaluation techniques
enable a fast time-to-market, but do not provide any assurance about the full compliance
to the design requirements.

2.5.1 Model
Often in engineering and science, models are used to analyze processes or systems,
providing a useful tool for the investigation of such a system. Once created, a model
allows quick analysis and forecasts and it is extremely useful to investigate pre-defined
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scenarios, expecially when reproducibility of the phenomenon is difficult or expensive.
A model can be used to evaluate the quality of a solution by computing the values of
the metrics from the parameters.

Although models are good for quick analysis of the phenomenon, very often, to keep
model-complexity as low as possible, model accuracy is not enough to ensure reliable
results. When the process is complex, non-linear, or application-dependent, model’s
accuracy is below the tolerance and different evaluation techniques are preferred. On
the other hand, models are usually defined as closed systems, thus their evaluation is
extremely quick.

In the WSN field, a large amount of models have been presented in literature to
cope with different aspects of such systems. Many of these models have been inherited
from embedded system design (CPU energy consumption, sensing efficiency, ...) or
from the telecommunication and networking field (queue theory, ), but many of them
refer to peculiar aspects of WSNs (protocols, sensing correlation, ...). Model-based
evaluation has a long history, as many models have been proposed to describe the basic
components of a node (e.g., memory, radio, etc. [81] [64] [142]). However, combining
those components to form a model of the entire node is no easy task, as the model
should include meaningful information of the specific node, while being reusable and
not requiring a massive amount of experimental data to be constructed. In order to cope
with the difficulty of building reliable node characterizations, a promising trend is to
generate statistical models from a properly-selected set of experimental data [29]. The
experimental data is used to estimate the parameters of a set of simple equations, which
however do not provide an application-aware evaluation of the node.

ENERGY CONSUMPTION

Energy consumption is an important aspect in WSNs, although many models have been
proposed in the state of the art, considering that energy consumption is a fundamental
metric for sensor network design, it is quite difficult to find general purpose energy
models for WSNs. Instead, energy consumption considerations and models are always
included in analysis, protocol design and modeling. Moreover, power models of single
components such as the microcontroller [64] and the memory [81] are available out-
side the scope of wireless sensor networks. Another analysis of energy consumption
of WSNs have been analyzed in [52]. The authors analyzes both homogeneous and
heterogeneous networks and estimate its energy consumption (and lifetime) in order to
quantify the optimal number of clusters.

RADIO

Radio is a crucial component of the communication, since it is responsible in deliver-
ing each bit over the communication medium. The correct modulation-demodulation
scheme allows the radio to work with better signal-to-noise ratios mitigating the in-
terferences and transmitting more efficiently. A characterization of the radio has been
proposed in [142], where the energy consumption is related to parameters like the bit
error rate and the modulation. Similarly, [43] provides a model for an IEEE 802.15.4
transmitter, which is supported by a set of physical measurements. Received signal
strength in radio communications are rarely uniform in the space and time, rather they
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depend on the MAC layer and the direction. Using empirical data measures on the
MICA2 platform, the author of [168] defines a radio model able to overcome the dis-
crepancy among spherical radio models and the reality of radio signals.

MAC LAYER

The MAC layer is responsible to synchronize the nodes in the network avoiding col-
lisions and keeping the energy consumption as low as possible. Moreover, the MAC
layer is mainly responsible to decide sleeping and active periods of the nodes and their
synchronization. The customization of the MAC layer is fundamental in the process of
WSN design optimization, thus accurate models of this component are required.

Thanks to its standardization, the most common MAC layers in WSN belongs to the
IEEE 802.15.4 family, thus a lot of models have been created for this standard. One of
the first analysis of the IEEE 802.15.4 protocol has been conducted in [102], where the
authors present a preliminary performance evaluation of such protocol. These results
allowed the author of [151] to define the first performance model of IEEE 802.15.4; al-
though the model is focused for medical applications with implanted sensors, the model
is rather generic thus it works also in other scenarios. Lately, Kohvakka et al. [82] ex-
tended the analysis to large-scale sensor networks based on the IEEE 802.15.4 protocol.
The analysis has been conducted on the CSMA-CA mechanisms on a ZigBee clustered
network. The authors present a number of formulas to estimate the collision and re-
transmission probabilities, the power consumption and the goodput. The model has
been verified and validated by simulating the ZigBee network in WISENES simula-
tor [90]. More recently, a very accurate and complex model for the CSMA-CA mech-
anism in beacon-enabled networks has been proposed in [40] and [67]. On the other
hand, a performance analysis of GTS allocation in beacon-enabled IEEE 802.15.4 has
been presented in [129]. Current consumption modeling and measurement has been
presented in [43]. The model describes the amount of current drained from the power
source under different IEEE 802.15.4 communication operations. On the other hand,
in [146] the authors propose an alternative MAC protocol for the ZigBee standard that
introduces new power-saving policies. In [99], a model that relates the routing per-
formed at the MAC level to the node lifetime is proposed.

The development of BAN applications for medical purposes lead toward the def-
inition of new standards for IEEE 802.15.6. Although the standardization process is
still not completed, various models of such protocols have been developed. In [156],
Viittala et al. compare the model of the Ultra Wide Band (UWB) radio channel model
with real measurements conducted in an hospital in order to prove the correspondence
between the model proposed by the IEEE 802.15.6 sub-task group for WBAN with
the reality. An analysis of energy consumption for scheduled access mode in IEEE
802.15.6 has been presented in [149] in order to provide an useful model to estimate
the device lifetime. This analysis can be used for both system design offline analysis
or online optimization, to estimate power consumption of the device. A numerical for-
mulation of throughput and delay limits of IEEE 802.15.6 for an ideal channel with
no transmission error has been proposed in [154]. These studies can help the designer
to estimate the feasibility of its application in a very early development phase or, as
suggested by the authors, to help the protocol designers to optimize the packet size and
to determine the upper bound of IEEE 802.15.6 networks.
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ROUTING PROTOCOL

Modeling a routing protocol is extremely difficult, due to its time characteristics and
data dependencies. The behavior of routing protocols can be either address-centric (tra-
ditional routing), data-centric (based on routing content [84]) or probabilistic (packets
are disseminated in the network based on probabilistic phenomenon [96]) and model-
ing all these behaviors can be difficult or extremely inaccurate. More frequently, mod-
els are used to show the scientific strength of the approach or to motivate its efficacy.
In this thesis work we are interested in models to evaluate the design, not to design
better routing protocols. According to these considerations, some aspects of routing
protocols have been modeled such as energy consumption and performance. In [54],
the author presents an energy consumption model of routing protocols for mobile ad-
hoc networks. The analysis has been focused and validated on two routing protocols:
Dynamic Source Routing (DSR) and Ad hoc On-demand Distance Vector (AODV).
Another work on energy consumption modeling has been presented in [45], where the
authors model the routing as linear programming problem. Network lifetime (defined
as the time until node battery fails partition the network) is defined as objective func-
tion to be maximized. Simulations, performed with both uniform and arbitrary traffic
patterns, show that the proposed modelization helps the identification of the optimal
network lifetime.

The impact of data aggregation in sensor networks has been studied in [84,86] where
theoretical results are presented. In particular, the authors show that data-centric rout-
ing algorithm substantially improve the performance with respect to address-centric
routing. Moreover, they prove that, even if the complexity of optimal data aggregation
is theoretically an NP-hard problem, polynomial-time solutions exist.

2.5.2 Simulation
Models provide a fast way to evaluate design metrics such as energy consumption or
performance, but are unable to give information about temporal phenomenon such as
critical runs or synchronization problems. Simulations are a powerful way to check
functional correctness of applications, protocols and algorithms, and to verify the qual-
ity of the design with respect to given metrics. Simulation of WSNs is currently a very
active field and many network simulators have been created. Unfortunately, an accurate
simulation of a sensor network requires accurate low-level models for wireless chan-
nel, interferences, clock drifts, sensor noise, etc. as well as MAC and routing protocols,
applications, and visual support. Moreover, a simulator must be efficient (simulation
time) and scalable (simulation size). A good survey on simulation frameworks can be
found in [148]; the following analysis is inspired to this document.

Summarizing, the main characteristics of sensor network simulators are:

• Abstraction Level: a network simulation can be conducted at various levels of
abstraction such as application level, network level or physical level. Usually, the
higher is the abstraction level, the less accurate will be the simulation;

• Hardware Dependency: a simulation is performed to check the functionality of
the application before the deployment on a real hardware. Some network simu-
lators have been developed for the testing of applications for specific hardware,
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others to test the applications on generic sensor networks. The first ensure that
the simulation will work on the target hardware, but are unusable to evaluate the
algorithm on other hardware, the latter does not allow the direct deployment on a
real hardware, but give a general view of the quality of the algorithm on a wide
variety of nodes;

• Performance and Scalability: evaluation time is a crucial aspect of evaluation
methods. For simulators, performance and scalability typically depend on the lan-
guage and framework used to write the application and the level of detail of the
simulation; the more details are considered, the higher will be the computation
time required, thus the higher is the simulation time. Typically, performant simu-
lators are written in compiled languages like C/C++, while others prefer portabil-
ity instead of performance. Scalability consist in the number of nodes and events
that can be processed in a simulation, thus it deals with memory requirements
rather than efficiency of language used by the simulator;

• Graphical and Debug Support: writing complex and distributed applications,
graphical and debug support is extremely important to discover and correct bugs.
Moreover, graphical support can be useful to analyze and discover communica-
tion patterns or to simply observe how the network works. Debug support can be
embedded into the simulation environment or carried with the technology used to
write it;

The simulation framework should be identified according to the design needs. If the
focus of the design is the definition of a powerful routing protocol, thus the simula-
tor should allow the designer to easily define, test and visualize distributed protocols,
otherwise, if the focus is on wireless interferences, so the simulator must accurately
simulate low-level behaviors.

Some of the available (open) simulators are:

• NS-2 [8]: very popular discrete event simulator for network research. It has a
strong support of TCP, routing and multicast protocols over wired and wireless
networks to simulate both LAN, mobile ad-hoc and wireless sensor networks. NS-
2 is easily extendible, thus new protocols can be included and integrated with ex-
isting infrastructure. Although an high number of protocols is publicly available,
few WSN-specific protocols have been implemented. Moreover, energy models
and hardware-dependent aspects are substantially different with respect to actual
hardware platforms and sensors;

• TOSSIM [94]: it allows the definition and simulation of entire TinyOS-based
applications, thus it represents a good simulator in case the target platform sup-
port such operating system. The TinyOS stack can be simulated at the bit-level,
allowing experiments with low-level protocols in addition to high-level network
protocols and applications. Two plugins allow TOSSIM to simulate energy mod-
els (PowerTOSSIM) and to have graphical support (TinyViz). TOSSIM does not
capture CPU time, thus critical runs and synchronization problems cannot be stud-
ied. It requires each node to execute the same piece of code making difficult to
test heterogeneous applications;
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• UWSim [13]: framework for Under Water Sensor Networks (UWSN) designed to
simulate marine robotics research, which is a unique characteristics of such simu-
lator. UWSim has been implemented in C++ and is distributed with a powerful 3D
library; 3D scenes can be easily configured with third-party modeling software. It
natively supports popular routing protocols such as AODV and DSR. Being devel-
oped for UWSN, as a drawback, it does not allow simulations of networks rather
than UWSN;

• Avrora [1]: cycle-accurate simulator for AVR embedded platforms that allows
to accurately simulate both microcontroller programs and radio communications.
Rather than single-node, microcontroller-focused simulations, it is able to simu-
late complete networks. In addition, plugins enable Avrora to simulate the TinyOS
network stack. It efficiently scales to networks of up to 10.000 nodes. As major
limitation, Avrora does not support clock drift, and it is 50% slower than TOSSIM;

• SENS [10]: simulator with a modular, layered architecture with customizable
components that allows realistic simulations of sensing data (that can be defined
by the user on real measurements). Although it is a platform-independent simula-
tor, WSN nodes can be characterized and customized to fit the real hardware. In
addition, SENS provides the user various modeling and interaction mechanisms of
the physical environment. However, SENS is less customizable than other simu-
lators and the only physical phenomenon that can be detected by sensors is sound;

• COOJA [125]: simulator designed to test Contiki applications that, similarly to
TOSSIM, allows the designer to test the same code that will be deployed. Un-
like TOSSIM, nodes with different source code can coexist in the same network
simulation. The Contiki code can be emulated by the COOJA framework or exe-
cuted directly on MSP430 hardware. The main drawback of this simulator is the
efficiency: the code-level simulation requires several calculations, thus long and
complex simulations are very hard to perform;

• Castalia [9]: application-level simulator for WSNs, it allows to simulate fine-
grained aspects such as wireless interferences, clock drifts, sensor noise and bias.
Radio models are based on real measurements, that makes Castalia results ex-
tremely realistic. It is delivered with highly customizable radio and MAC compo-
nents (included IEEE 802.15.4 and IEEE 802.15.6). Castalia is not a hardware-
specific simulator, thus it should be used to evaluate feasibility and correctness of
algorithms under realistic conditions;

• Shawn [55]: designed to support large-scale network simulations. Shawn has the
highest level of abstraction among the simulator presented in this thesis, which
explain its performances and scalability. However, detailed simulations of radio
propagation or other low-layer issues are not well modeled, thus the overall accu-
racy is affected;

• EmStar [59]: it simulates iPAQ-class sensors running Linux, allowing a flexible
environment to easily deploy simulated code. It can be used to test various exe-
cution platforms, combining simulation and emulation. However, EmStar uses an

28 Politecnico di Milano Paolo Roberto Grassi



i
i

“main” — 2012/12/12 — 14:41 — page 29 — #21 i
i

i
i

i
i

2.5. Design Evaluation

extremely simple environmental and network medium model that affects the over-
all accuracy of the simulation. Moreover, it does not support parallel simulations
and lacks algorithms that are reactive to sensed values;

• VisualSense [14]: implemented in the Ptolemy-II framework, it has the objec-
tive to accurately simulate sophisticated behaviors of wireless channels and phys-
ical processes such as acoustic channels. Although the component-oriented struc-
ture allow fast extendability, VisualSense does not provide any protocol above the
physical/wireless medium or any physical phenomenon rather than sound;

• (J)Prowler [4]: event-driven deterministic and probabilistic wireless sensor net-
work simulators developed on the top of MATLAB (Prowler) and Java (JProwler).
Initially designed to target Berkley MICA motes running TinyOS applications it
could be used to simulate more general systems. Simplified radio and MAC mod-
els allows the simulator to provide accurate results at a reasonable performance
and scalability. However, (J)Prowler is delivered with only one MAC protocol;

• MiXiM [5]: OMNET++ modeling framework designed to simulate mobile and
fixed wireless networks including wireless sensor networks, body area networks,
ad-hoc networks and vehicular networks. Thanks to the wide spectrum of target
applications, it includes several MAC and routing protocols. Although detailed
models of radio wave propagation is included, other simulators (such as Castalia
and VisualSense) have more realistic models;

• WISENES [15]: implemented in Specification and Description Language (SDL)
and delivered with a powerful GUI, WISENES is a powerful and extensible simu-
lation platform. All the components, including transmission medium and sensing
channel, are implemented in SDL that provides a formal and clear graphical nota-
tion and give the designer an easy-to use way to implement and check new compo-
nents. However, WISENES has been designed for high-level programming, thus
low-level issues are not well modeled.

In addition to these aspects, another important characteristic of the simulators is the
ability to be invoked by an external tool. This feature is extremely important during
the automatized Design Space Exploration, since the evaluations and the whole loop
are performed automatically. All of the simulators presented above can be invoked
externally, thus can be used to perform automated Design Space Exploration. Table 2.4
presents a comparison between the simulators presented above.
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2.5.3 Testbed
The most accurate technique to evaluate a design is through direct measurements on a
real testbed. According to the application’s type, a testbed can exactly represents the
final system, or only be an approximation. For a Body Sensor Network, i.e., due to the
cardinality of nodes, testbeds are accurate, instead, for structural monitoring, testing
the final system can be extremely expensive and complex.

Due to these reasons, a testbed typically represents a general purpose network with
a generic topology (uniform, grid), which is not the final topology. The objective of
using a general-purpose testbed is to test the hardware and the implementation of the
network protocols, in order to control the correctness of the implementation on the real
platform.

Although these approximations, the accuracy of the experiments on the testbeds is
extremely high since the measurements are performed directly on the hardware that
will be used in the deployment and not on virtualization or modelization of it; if the
design works correctly on the testbed, it will work correctly on the final deployment.

To overcome maintenance and setup costs of testbeds, and to provide standard con-
ditions to compare protocols and algorithms, several publicly available testbeds have
been proposed. Some of these testbeds are:

• MoteLab [7]: an experimental Wireless Sensor Network testbed deployed in
Maxwell Dworkin Laboratory at Harvard University. It is publicly available for
development and testing of sensor network applications and is composed by 190
nodes deployed over three floors. Deployed nodes are TMote Sky sensor nodes,
which consist of an TI MSP430 running at 8MHz, 10KB of RAM, 1Mbit of Flash
memory and a Chipcon CC2420 radio operating at 2.4 GHz with an indoor range
of approximately 100 meters. Each node includes light, temperature and humidity
sensors and run the TinyOS operating system. In addition, a web interface helps
the designer to deploy and control the output of its applications.

• TWIST [12]: developed by the Telecommunication Networks Group (TKN) at
the Technische Universität of Berlin, the TKN Wireless Indoor Sensor network
Testbed (TWIST) is a scalable and flexible testbed architecture to test indoor sen-
sor network applications. It allows the designer to extract and debug application
data and test heterogeneous sensor networks. Moreover, the testbed allows the
designer to actively monitor and control the energy consumption of nodes. The
testbed is composed by 204 nodes (102 TMote Sky and 102 eyesIFX nodes) de-
ployed on a regular grid which intra-node distance is 3m.

• INDRIYA [3]: a three-dimensional sensor network testbed deployed on three
floors of the School of Computing at the National University of Singapore. It
is a permanent and public framework to develop and test sensor network proto-
cols and applications; a web-interface helps the user to interact with the testbed,
upload executable and run protocols and applications. The testbed is composed of
139 TelosB nodes equipped with TI MSP430 processors, 10KB of RAM, 48KB
of internal Flash, 1MB of external Flash and a Chipcon CC2420 radio operating at
2.4 GHz characterized by an indoor range of 20-30 meters. Nodes have different
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sensors among passive and active infrared, accelerometer, magnetometer, light,
temperature, and acoustic. All the nodes run the TinyOS operating system.

• WUSTL [16]: developed and deployed by the Washington University in St. Louis
to measure communication characteristics of motes, protocols and applications. It
is currently composed of 79 TelosB sensor nodes placed through several offices
over two buildings. The testbed have several gateways directly connected with
the nodes to allow fast, reliable and direct node programming and debugging.
The nodes run TinyOS operating system and data are collected in a PostgreSQL
database.

• SensLAB [11]: a very large testbed deployed over 4 research centers (INRIA
Lille, INRIA Rennes, Strasburg/LSiiT and INRIA Grenoble) that compose a net-
work of 1000 sensor nodes available to persons affiliated to corporations host-
ing SensLAB, or also any researchers for R&D on request. The main goal of
SensLAB is to offer an accurate and efficient tool for scientific research, design,
development and testing of real large-scale sensor network applications.

The main purpose of these testbeds is to offer a common platform to develop, test
and compare protocols and applications on sensor networks. Due the large variety of
platforms and technologies available in the sensor network field, use these testbed to
compare protocols and approaches is extremely important to ensure fair comparisons
and replicable results.

According to the purpose of this thesis work, testbeds provide the most accurate and
reliable way to evaluate the designs, but both the setup and running time discourages
the use of it in the automated DSE loop. However, testbeds are required to check the
accuracy of simulation results among candidate final solutions before the final deploy-
ment.

2.5.4 Comparison Among Evaluation Techniques
In previous sections we presented three evaluation techniques, in this section we aim to
compare them in order to define the characteristics of each approach. From the anal-
ysis performed above, we extract that models are the most efficient way to evaluate
a design, while testbeds are the most time-consuming technique. On the other hand,
testbeds allow the user to evaluate the design, the protocols and the application directly
on the nodes that will be used in the deployment, thus the accuracy is extremely high.
On the contrary, models define only specific aspects of the problem, and their accu-
racy strictly depends on the complexity of the problem, thus they are the less accurate
way to evaluate a design. Simulators stands in the middle, giving a good compromise
among evaluation accuracy and speed; time-dependent operations and synchronization
problems, that are extremely complex to describe in a model, are easily implementable
in a simulator.

In an automated DSE, the evaluation speed is generally preferred over accuracy
since many solutions need to be compared with each other. Moreover, expecially dur-
ing a first-order design, an average accuracy is enough to allow the system to discrimi-
nate good from bad solutions thus, in the following, we never use testbed for automated
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DSE. So, accuracy-speed comparison is more critical considering model and simula-
tion, where models can be used for first-order analysis and simulations only a better
accuracy is desired; a deeper analysis of that will be provided in Section 4.4.3.1.

Figure 2.4 graphically illustrates a qualitative accuracy/speed comparison among
models, simulations and testbed. As previously presented, the best practice during a
design is using models for first-order analysis, or to identify a possible set of optimal
solutions, then refine the choice through extensive simulations and, finally, verify the
design on a real testbed.

In conclusion, considering the stochastic behavior of the wireless channel, com-
munication protocols and applications, even using an extremely accurate evaluation
method, two successive evaluations rarely give exactly the same results. More fre-
quently, the observed values vary in an interval with specific mean and variance, repre-
senting the expected value and its uncertainty. The more the evaluation method is able
to identify such statistical distribution, the more accurate the evaluation method is.

Figure 2.4: Qualitative accuracy-speed comparison of different evaluation techniques

2.6 IEEE 802.15.4/ZigBee

IEEE 802.15.4 has been designed for low power devices with low data rate Personal
Area Networks (PAN). It specifies how the Physical Layer (PHY) and the Media Access
Control (MAC) must work. Standardization process of IEEE 802.15.4 started in 2003
and ended in 2009 with the latest updates from IEEE. IEEE 802.15.4 became popular
thanks to the diffusion of ZigBee devices that specify the standard in high-level com-
munication protocols and extend some features to provide a better energy efficiency.
For the sake of simplicity, from now on, the terms ZigBee and IEEE 802.15.4 will be
considered as synonyms.

IEEE 802.15.4 based networks are composed of a central node, called coordinator,
and a set of nodes, called members. The coordinator is the head of the network and
determines the structure of the communication. The communication is divided into
sequential frames delimited by specific packets called beacons (Figure 2.5). The coor-
dinator sends periodic packets, named beacons, that define the superframe structure.
A superframe is a portion of time, bounded by successive beacons, and it is used to
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Figure 2.5: An example of the superframe structure (from [18])

define how the end-devices must communicate with the coordinator. The superframe
is composed of an Active Period (SD) and an Inactive Period (BI-SD). The active
period is further divided in two periods named Contention Active Period (CAP) and
Contention Free Period (CFP). CAP starts immediately after the reception of a bea-
con from the coordinator. During the CAP, nodes access the channel by using the
CSMA/CA protocol. CFP starts at the end of the CAP and the end-devices uses Guar-
anteed Time Slots (GTS) to freely access the wireless channel. During the CFP, the
nodes access the channel using a time division protocol which slots, namely Guarantee
Time Slots, requested by each member node, are assigned by the coordinator by means
of a policy first come first first served (FCFS) [18].
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Target Platforms

In the last decade, a considerable amount of hardware platforms have been developed
in order to test and develop applications and protocols for wireless sensor networks,
enabling the Internet of Things. These platforms are mainly general purpose platforms
equipped with low-power microcontrollers, radio interface and Flash memories. Sen-
sors are either included into the platforms or can be connected through general purpose
I/O or daughter boards.

The goals of this chapter are twofold: first provide the reader a comprehensive re-
view of currently available commercial and open source platforms and, second, present
a research study conducted on the use of FPGAs in WSN’s nodes. Moreover, this chap-
ter would like to give the reader a deeper comprehension on the difficulties of design
and customization of WSN’s platforms.

3.1 Microcontroller Based Platforms

MICA* MOTES

Figure 3.1: MICA2

Initially designed at Berkeley university,
these nodes have been widely accepted in
the research community, mainly because
of their compatibility with TinyOS. This
family includes MICA2 (Figure 3.1) and
MICAz nodes. MICA2 are equipped with
the MPR4*0CB processor (based on the
ATmega 128L) which provides 128KB of
program Flash memory, 512KB of Flash
for measurements and 4KB of configura-
tion EEPROM, delivered with several ra-
dios working at 315, 433, 868 and 916
MHz. MICAz are equipped with MPR2400CA processor with 128KB of program
Flash memory, 512KB of Flash for measurements, 4KB of configuration EEPROM
and a 2.4GHz ZigBee-compliant radio. Both nodes are powered with two AA batteries
and are delivered with 51-pin expansion board to connect third-party components such
as sensors or actuators.
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TELOSB

Figure 3.2: TelosB

Open-source platform designed to en-
able fast-experimentation of cutting-edge
researches. TelosB (see Figure 3.2)
has a IEEE 802.15.4 compliant inte-
grated radio working at 250 kbps and
the MSP430 Texas Instrument microcon-
troller with 10KB of RAM. The device
is equipped with 48KB of program Flash
memory, 1024KB of Measurement Flash
and 16KB of configuration EEPROM.
Similarly to MICA* platform, it is pow-
ered with two AA batteries and it natively
supports TinyOS. 16 general purpose I/O pins allow the integration of third party com-
ponents such as sensors or actuators.

TMOTESKY

Figure 3.3: TMoteSky

Ultra low power device equipped with
humidity, light and temperature sensors, a
2.4 GHz IEEE 802.15.4 compliant Chip-
con radio working at 250 kpbs and a
8MHz MSP430 processor (see Figure
3.3). The integrated antenna allows com-
munication with up to 50m indoors, and
125m outdoors. The device has been de-
signed to be powered with two AA batter-
ies. The board includes 16 general pur-
pose I/O pins for the integration of exter-
nal components.

LIBELIUM WASP MOTES

Figure 3.4: Libelium Waspmote

Libelium was a spin-off of the Univer-
sity of Zaragoza born in 2006. It pro-
duces hardware for development, integra-
tion and deployment of wireless sensor
networks for Smart Cities and the Internet
of Things. Their main product for WSN
development is the WASP mote that is a
low-power general-purpose, expandable
platform (see Figure 3.4). It is equipped
with the ATmega 1281 Microcontroller
working at 8MHz, with 8KB of SRAM,
4KB of EEPROM, 128KB of Flash mem-
ory and a 2GB SD card. The board has
several expansion sockets to sensors, ra-
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dios or other components. The board supports ZigBee, GPRS, Bluetooth, WiFi, RFID
and NFC modules and has been developed to natively support Over the Air Program-
ming. Libelium produces several sensor boards compatible with this platform such as
gases (CO, CO2, CH4, ...), temperature, liquid level, weight, pressure, humidity, lu-
minosity, accelerometer, soil moisture, solar radiation and GPS. The platform supports
energy harvesting through external solar panels.

SHIMMER PLATFORM

Figure 3.5: The SHIMMER platform

The SHIMMER [42] is a small, low-
power commercial wireless sensor plat-
form specifically designed for noninva-
sive biomedical research (see Figure 3.5).
It is equipped with an ultra-low-power
16-bit microcontroller (TI MSP430), that
runs at a maximum clock frequency of
8MHz and includes 10KB of RAM and
48KB of Flash, as well as some peripher-
als such as an 8-channel analog to dig-
ital (A/D) converter and a direct mem-
ory access unit (DMA). This platform
has also two radios (Bluetooth and IEEE
802.15.4-compliant), a 3-axis accelerom-
eter and an expansion port to connect
a daughter board that can include ad-
ditional sensors such as electrocardio-
gram (ECG), electromyogram (EMG),
galvanic skin response (GSR), 3-axis
accelerometers, gyroscope, magnetome-
ter, temperature, pressure, strain gauges,
GPS, tilt and vibration. SHIMMER plat-
form has been used as target device in this
thesis for Body Sensor Networks applica-
tions.

ORACLE SUN SPOT

Figure 3.6: Oracle Sun SPOT

Originally developed by Sun Microsys-
tems and now owned by Oracle, Sun
SPOTs are java enabled sensor networks
designed to encourage and support the
evolution of the internet network. This
device is compose by two boards: pro-
cessor and sensor board (see Figure 3.6).
The 8th revision of the processor board
includes an AVR AT91SAM9G20 pro-
cessor working at 133 MHz with 125KB
of RAM, 1MB of Flash memory and a
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temperature sensor. The sensor board has
4 digital GPIO pins, 4 analog lines, a 3-axis accelerometer, lo-fi speaker, I2C connector
and an IR receiver and transmitter. This board has not been designed for ultra low-
power applications, but to allow high-level application development and to encourage
the Java development for future internet of things.

ARDUINO

Figure 3.7: Arduino Fio

A very popular open-source prototyping
platform delivered with an open-source
easy-to-use programming environment.
Arduino projects are entirely open-source
and boards can be assembled or pur-
chased from an authorized reseller. The
designer developed several boards with
different sizes, performance and end-
purposes. In this thesis, the target plat-
form is the Arduino Funnel I/O (FIO), a small device designed for wireless applications
(see Figure 3.7). It includes an ATmega328P processor running at 8MHz with 2KB of
SRAM, 1KB of EEPROM and 32 KB of Flash memory. The board has 14 digital I/O
pins (of which 6 provide PWM output), 8 analog I/O, a socket to connect XBee radios
and a connector for Lithium Polymer batteries. The board natively supports the Over
the Air Programming (OTA).

3.1.1 Comparison of Platforms
Heterogeneity of hardware boards and devices increases the amount of available design
alternatives making the design process harder. Table 3.1 presents a brief comparison
of hardware characteristics of these nodes. The nodes have been compared in terms of
processor, memory, supported operating system and I/O capabilities. All these boards
present some input/output pins to connect external sensors or actuators, according to
project’s needs, thus sensors are not specified.

All the boards have an 8MHz processor except for the Oracle Sun SPOT that is
equipped with a 133MHz processor (motivated by the use of Java on the platform but
definitely not energy-friendly). Memory is an important aspect in modern WSN nodes
and conceptually, the higher is the amount of memory available the better it is. How-
ever, 10KB of RAM are enough for many applications; in [138], for example, the
authors show how to implement an accurate atrial fibrillation detection algorithm using
only 10KB of RAM. On the other hand, Flash memory are typically used to store his-
torical data from sensors or configuration data; high flash memory capacity (i.e. 2GB
in Libelium Motes) could be useful if data are not transmitted continuously to the sink.
Concluding, EEPROM are use just to store boot program, thus its size is usually very
limited.

The supported operating system is extremely important to guarantee a wide diffusion
of the device on the market. The most popular OS for WSN is TinyOS, that is supported
by many platforms. For the Oracle Sun SPOT, Java is not an operating system, but the
technology that is supported. The other platforms can be programmed in C, C++ or
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derivated dialects like nesC (TinyOS); it provides a reasonable code density and a good
execution efficiency.

As aforementioned, I/O characteristics are extremely important to ensure the success
of a platform. The platform must be able to support any kind of external device like
sensors, actuators or radios. In fact, almost all the platforms do not have an embedded
radio interface on them in order to allow the user to buy the device that best fits its
needs. For example, Arduino FIO has a dedicated slot to connect various kinds of
radios and MAC layers.

All the platforms presented in this Section are similar in one characteristic: they
all are classical processor-based platforms with a set of I/O directly connected to the
processor. In these platforms the software and the OS are in charge of performing
sampling, computation, filtering, communication and to manage power-aware policies.
The next Section presents an alternative node, based on FPGAs, specifically designed to
manage high-throughput data such as audio or video keeping the energy consumption
lower than 4mW.

3.2 An FPGA-based Platform

Activity of WSN nodes depends on the kind of sensed data. In case of low sample
rates, an higher duty cycle ensures a strong reduction of power consumption thanks to
long sleeping periods, while high sample rates are more energy demanding. In case
of high sample rates (above 100 Hz) if strong signal processing must be performed,
intra-sample time cannot be enough to process information using low-power micro-
controllers. When applications are characterized by high throughput data, i.e video or
audio sensors, additional devices, like DSPs or FPGAs, are required. Recent works
show that FPGAs are valuable candidates for data signal processing in Wireless Sensor
Networks [144]. Flexibility and performance efficiency of FPGAs are interesting char-
acteristics for future use in WSN nodes. Reprogrammability, reconfigurability, perfor-
mance and effective hardware/software codesign are powerful features of FPGA-based
systems which makes of FPGA-based WSNs energy and performance aware platforms.

With respect to SRAM FPGAs, recent Flash based FPGAs can be considered as
the second generation of FPGAs; overcoming the limits of non-volatility of previous
SRAM-based FPGAs, Flash-based FPGAs are promising in low-power, real-time ap-
plications [23]. The ability to preserve the LUTs configuration after a shutdown, known
as live at power-up, perfectly fits battery powered systems, where the device can be en-
tirely shutdown to preserve energy. A SRAM FPGA must be completely reconfigured
after each power-up, due to volatility nature of memories, causing a waste of time and
power. Considering that the FPGA reconfiguration is one of the most power consuming
activities of a FPGA, and considering that the time needed to reconfigure the complete
device takes several milliseconds, a reconfiguration on each start up is unfeasible when
data are sampled at medium/high frequencies.

This Section provides an evaluation of Flash-based FPGAs technology for novel
WSN’s nodes. Differently from SRAM-based FPGAs, thanks to Live at power-up,
Flash-based FPGAs allows the system to effectively control the power consumption of
the system at runtime. For this purpose, this Section presents a controller to manage
energy consumption in Flash-based FPGAs systems. Dynamic energy consumption,
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3.2. An FPGA-based Platform

evaluated on a real case study with a real testbed, shows an overall energy consumption
on the FPGA lower than 4mW, which allows the system to work with batteries.

3.2.1 Related Works
Advanced applications in Wireless Sensor Networks require high-frequency sampled
data [144] [111] [27] for complex, accurate and reliable analysis. Increasing the effi-
ciency of filtering data from sensors on a wireless sensor node is fundamental in order
increase the range of applicability of wireless sensor networks.

Structure health monitoring requires real-time analysis of sensed data for a con-
tinuous monitoring of structure’s condition. Work proposed in [111] presents an high-
frequency distributed sensing system for structure monitoring application using MICA2
motes and MICA sensor boards. The system is able to record approximately 90 seconds
of continuous data at 250Hz.

Detection of shooters in urban environment [144] requires high tolerance of multiple
sensor failures, high accuracy and the ability to overcome multipath effects. The pro-
posed approach extends the MICA2 motes with a multi-purpose acoustic sensor board
designed with three independent acoustic channels and a Xilinx Spartan II FPGA, used
for signal processing purposes. The system is able to detect the shooter with an accu-
racy of 1.3 meters and an average latency under 2 seconds. The paper does not consider
any kind of power management techniques and the power consumption of the system
is not reported.

A different kind of acoustic sensor network application is presented in [73]. The
paper presents a system for the monitoring of amphibian populations in the monsoonal
woodlands of northern Australia. The application requires sampling frequencies of
10kHz to differentiate the calls of cane toad from other 8 native frogs. Since Mica
motes provide only 200Hz of sampling frequency, the authors increase the clock rate
of Analog to Digital Converter to achieve a sampling frequency of 10kHz, but no power
consumption results are presented.

From the analysis of acoustic data from sensors it is possible to detect rock collapses.
In [27] the authors present an hybrid wireless-wired monitoring system that samples
data at 1kHz using a dsPIC24 microcontroller. Considering the filters on the data, such
microcontroller limits the maximum sampling frequency to few kHz. The system is
powered by batteries and photovoltaic energy. This application could benefit from the
use of low power FPGAs.

A recent work in the field of Wireless Multimedia Sensor Networks (WMSN) [147]
takes advantage of FPGAs to implement an improved CSMA/CA mechanism for IEEE
802.15.4 protocol to allow reliable and timeliness transmission of voice data. The ar-
chitecture has been tested on a Xilinx Spartan-3E FPGA, performances results are pre-
sented but energy consumption is not taken into account. The authors of [167] present
an FPGA-based Wireless Vision Sensor nodes. The architecture includes a microcon-
troller and an Altera EP2C35 FPGA to provide low-power HW image compression.

An important feature of FPGAs is the reconfigurability, which allow the system to
be dynamically adapted to different scenarios. In [116], the authors present a reconfig-
urable WSN node. The node is implemented on the Altera Cyclone II FPGA, tested in
a real case study. Similarly, an architecture for dynamic reconfiguration of advanced
WSN node is presented in [134]. The authors illustrates how dynamic reconfiguration
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Table 3.2: SRAM vs Flash FPGAs

PROS CONS

SRAM

• Fast programmability

• Small configuration
bitstreams

• High performance

• High chip density

• Need to be programmed
on each power up

• High power
consumption

Flash

• Live at power up

• Low static power
consumption

• Efficient power control
mechanisms

• Low chip density

• High cost

can be achieved on Flash-FPGA devices.

3.2.2 SRAM vs Flash FPGAs
A Field Programmable Gate Array (FPGA) is composed of a dense array of pro-
grammable components (such as memories, logic gates, DSPs, etc.). Thanks to FPGAs
reconfigurable, high-performance, general-purpose architectures for WSNs can be de-
signed. The ability to reprogram an FPGA (statically and dynamically), coupled with its
parallel architecture, makes FPGAs an interesting device for digital signal processing
on WSNs nodes. Reduced power consumption of modern FPGAs offer the opportunity
to use HW processing in a WSN node that, differently from microcontrollers, allows
the implementation of dedicated hardware cores.

Memories, used to store data and configuration information, dispersed on the FPGA,
can be created using SRAM or Flash technology. In SRAM FPGAs, data and configura-
tion are stored into volatile memories whose content is lost when the device is powered
off. On the other hand, Flash FPGAs store the information in non-volatile memories,
thus the content is kept even if the device is not powered. As previously mentioned,
this is called live at power-up and is one of the main characteristics that makes Flash
FPGA an enabling technology for low-power applications such as WSNs.

Table 3.2 analyzes pros and cons of SRAM and Flash FPGAs. Let us consider the
following three power modes:

• Active: FPGA is working at full speed. This mode provides maximum power
consumption and performance

• Sleep: clock and I/O ports are turned off, the internal state is maintained but the
device is on.

• Shutdown: the FPGA is powered-off. In this mode, the power consumption of
the device is zero

Figure 3.8 shows an example of sleep-on-sleep-shutdown cycle which provides a quali-
tative comparison between power consumption in SRAM and Flash FPGAs. In a WSN,
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3.2. An FPGA-based Platform

Figure 3.8: A comparison between SRAM and Flash FPGAs in a sleep-on-sleep-shutdown cycle (From
[31])

this cycle is commonly repeated every sample received from sensors. Time (or fre-
quency) depends on the sampled variable. At the beginning of the cycle, the FPGA is
powered-on, thus it passes from shutdown-sleep to static. During this phase, SRAM
FPGAs require energy and time to power-on and configure the device. In Flash-based
FPGAs such transition is negligible in both power consumption and time, since it does
not require any (re-)configuration. Static and dynamic power consumption are rela-
tively higher in SRAM FPGAs since they are typically designed toward performance.
As clock frequency increases, both power consumption and temperature increases ac-
cordingly in both cases. When the device has to be powered off (or it is required to enter
in sleep mode), the clock is stopped, power consumption and temperature decreases.
During the sleep phase, SRAM FPGAs require a certain amount of energy to keep data
and configuration of the device, while Flash-FPGAs have a power consumption near to
zero, thanks to the non-volatility of memories.

More formally:

• Pon: power consumption in Active mode;

• Ps: power consumption in Sleep mode;

• Poff : power consumption in Shutdown mode;

• PA→B: power required to switch from mode A to mode B, i.e. Pon→s is the power
required to switch from Active to Sleep mode;

• ton: average time in Active mode;

• ts: average time in Sleep mode;

• toff : average time in Shutdown mode;

• tA→B: time required to switch from mode A to mode B.
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Considering an interval of

T = ton + ts + toff + ton→s + ts→off +
∑
A∈S

∑
B∈S

tA→B

the power consumption of the system is given by

P =
Ponton + Psts + Poff toff +

∑
A∈S

∑
B∈S PA→BtA→B

T

�
 �	3.1

where S indicates the set of available states (Active, Sleep and Shutdown). Un-
der the same circumstances (same clock frequency, same design, etc.), overall power
consumption is higher in SRAM FPGAs with respect to Flash FPGAs. In particular,
power consumption of FPGAs during the sleep mode is extremely lower in Flash FP-
GAs with respect to SRAM FPGAs since SRAM technology requires energy to keep
the configuration. Moreover,

tSRAMoff→on >> tFLASHoff→on

due to SRAM re-configuration. In WSNs, frequent sampling forces the system to
switch from sleep to active mode (and viceversa) frequently, to gather and compute
samples from sensors. If the sample frequency is defined with fsam and the time re-
quired to compute a sample is tc, the system works correctly if and only if:

1

fsam
< tc + ts + ton→s + ts→on

�
 �	3.2

if sleep is used or
1

fsam
< tc + ts + ton→off + toff→on

�
 �	3.3

if the device is shutdown instead of using sleep. In both cases, let us assume that
tc = ton, thus the system is active if and only if it is computing data. Considering that

P SRAM
on ' P FLASH

on

and
P SRAM
s ≥ P FLASH

s

due to SRAM technology, and considering the reconfiguration time

tSRAMoff→on >> tFLASHoff→on

SRAM FPGAs do not offer an effective solution for low-power application (w.r.t. Flash
FPGAs), since in both sleep-on-sleep or shutdown-on-shutdown cycles, Flash FPGAs
have a lower energy consumption.

As an example, please consider a configuration time of 100ms (toff→on), a negligible
shutdown time (ton→off = 0) and a computing time of 1 ms (ton), which corresponds
to 100 thousand cycles at 10MHz of clock cycle, that is a great amount of time to
process even complex data series. According to this information, an on-off cycle to save
power with a SRAM FPGA is unfeasible for sampling rates higher than 10Hz, which
throughput is too low to justify the use of a FPGA insead of using a microcontroller.
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3.2. An FPGA-based Platform

On the other side, in case the toff→on period is reduced to few microseconds (i.e. 5 µs),
the effective power consumption of the device is related to the activity of the device. In
this configuration, the sampling frequency can rise up to 1 kHz.

In conclusion, SRAM FPGAs are not good candidates for low-power applications
with periodical tasks, which is a typical situation in WSN systems.

3.2.3 FPGA-based WSN Node
Nowadays, not so many vendors produce Flash-based FPGAs. Microsemi produces dif-
ferent families of pure Flash-based FPGAs; in this Section only the IGLOO family is
considered for the experiments. On the other hand, other vendors propose hybrid solu-
tions, where SRAM FPGAs, equipped with Flash memory are able to guarantee live at
power-up reconfiguring the FPGA at each start-up. Xilinx offers a Flash-based version
of low-cost Spartan-3 FPGAs, called Spartan-3AN which couples high performance
of leading-edge SRAM FPGAs with non-volatile memories. Similarly, LatticeXP FP-
GAs, from Lattice Semiconductor, use a combination of non-volatile FLASH cells and
SRAM technology to guarantee live at power-up.

If Active and Shutdown modes are supported by every FPGA, the Sleep mode is
supported only by recent Microsemi IGLOO FPGAs, some FPGAs of the Microsemi
ProASIC3 family and LatticeXP FPGAs. Microsemi supports the Sleep mode with
Flash*Freeze technology [22] and, similarly, LatticeXP FPGAs support it [92]. Al-
though the presented architecture is focused and verified on Microsemi IGLOO FP-
GAs, the approach presented here can be easily extended to future Flash-based FPGAs
supporting the Sleep mode.

Let us assume that the FPGA is able to switch from Sleep to Active, and vice versa,
using a dedicated pin called Sleep Pin. Sleep Pin must be accessible from the sys-
tem and from an external component (i.e. a microcontroller or an ADC). The FPGA
switches from Active to Sleep when the pin goes high and switches back when the pin
goes low. The transition to and from Shutdown mode needs an external circuitry that
controls the power of the device but this is not considered here.

A WSN node is composed of sensors, actuators, a network interface, power sup-

ply unit (batteries, external, solar, etc.) and a processing unit. In case the digital signal
processing requirements are demanding (such as for high throughput sensorial infor-
mation), additional processing units are required. In a WSN node, FPGAs can be used
to perform signal processing only (in this case an external microcontroller is required),
or to manage both signal processing and operating system (a soft core on the FPGAs).
Figure 3.9 shows the two aforementioned scenarios. On the top of the Figure, the mi-
crocontroller is external to the FPGA (like in [167]), while the second Figure shows the
microcontroller implemented in the FPGA. The second solution offer more flexibility
with respect to the first one, thus in the experimental results this architecture is used.

Thanks to this architecture, the FPGA can process the information from sensors (or
the control for the actuator) completely in parallel. In fact, a dedicated IP core should
be implemented for each sensor (or actuator) in order to exploit the performances of
the FPGA. Using this strategy, an array of sensors for an event detector system (i.e. for
landslide monitoring) can be easily implemented on the FPGA. In addition, as shown
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Figure 3.9: Two FPGA-based WSN node’s architectures

in Section 3.2.1, Multimedia Wireless Sensor Networks [147] take advantage from the
FPGA processing capabilities to improve the performance of communication.

Thanks to their programmability, FPGAs offer a unique opportunity to create an
high performance, low power, general purpose WSN node. In fact, the node can be pro-
duced, according to the two architectures proposed in Figure 3.9 with no prior knowl-
edge on the amount of sensors/actuators or signal processing algorithms that will run
on it. The FPGA exposes a set of digital I/O pins that can be used to connect any type
of sensor/actuator and can be configured to perform application specific processing.

CONTROLLING POWER CONSUMPTION

The Sleep mode allows the system to reduce the power consumption of the device by
switching off all the input/output signals of the FPGA including clock and reset. Energy
aware applications require system architectures able to directly and effectively control
the Sleep mode at runtime. To reach this objective I developed an Intellectual Property
(IP) called Sleep IP able to manage the FPGA during the Sleep mode, allowing the
system to go into Active mode after a predefined period of time.

Considering that all the input/output pins are blocked during the Sleep mode, none
of the clock/reset/interrupt can be seen by the FPGA. Microsemi IGLOO FPGAs are
equipped with an internal digital pin called Freeze Pin, which allows the system to enter
the Sleep (Freeze) mode when the pin is set to one, and to exit when the pin is set to
zero.

The proposed component is shown in Figure 3.10 and is characterized by the fol-
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3.2. An FPGA-based Platform

Figure 3.10: The ring oscillator is used to create a clock signal during the Freeze mode

lowing input/output ports:

• AMBA SLAVE SIGNALS [IN/OUT]: to connect the component to the AMBA bus;

• FREEZE_PIN [OUT]: to control the Sleep mode;

• INT [IN]: a pin to send a direct request to enter into the Sleep Mode.

and the following registers are accessible through the bus:

• THRESHOLD [READ/WRITE]: used to define the number of clock cycles in which
the system is in Sleep mode;

• ACTIVE [WRITE]: if a 1 is written into, the FPGA switch from Active to Sleep
mode;

• INT_ENABLE [READ/WRITE]: used to define if the INT port is enabled. If zero,
no INT signal will be considered;

• BUS_ENABLE [READ/WRITE]: used to define if the ACTIVE register must be con-
sidered to switch the device to the Sleep mode.

Since the system does not have any clock input, we instantiate a chain of inverters in
order to generate a clock signal during the Sleep mode to count how many time is spent
in this mode in order to allow the FPGA to return back to Active mode correctly. The
number of inverters must be odd to generate an oscillation. Such system oscillates at a
certain frequency given by the amount of inverters of the chain. Higher is the number of
inverters, lower is the generated frequency. The generated clock increments a counter
which value is used by a comparator to detect if the FPGA must return to Active mode.
The comparator check if the input value overcomes a given threshold. In this case, the
Freeze PIN is set to zero, forcing the FPGA to exit from the Sleep mode.

To enter into the Sleep mode, an external pin (INT) is used; when the value of this
pin moves from 0 to 1, the system enters in the Sleep mode. Another, way to enter into
sleep mode is to write a one into a specific register.

The component has an AMBA slave interface, used to configure the core during the
active period. The master of the AMBA bus (typically the processor) can change the
value of the threshold or force the system to enter in Sleep mode without using the INT
port. The FSM is under the domain clock of the AMBA bus, while both the counter
and the comparator works under the domain clock of the oscillator. During the Active
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Figure 3.11: A complete bus-based system

Figure 3.12: The circuit used to detect a landslide event

mode, the OSC_RESET is set to 0, thus the inverter chain does not oscillate; it reduces
the energy consumption. According to that, the FSM and the counter/comparator do
not evolve at the same time, since the inverter chain oscillates only during the sleep
period, when the system clock is stopped, and vice versa.

The IP can be used in various custom or bus-based designs. Generally, the AMBA
bus interface can be used to reprogram the parameters of the IP according to the appli-
cation’s needs. An application can require to freeze the FPGA for a certain period of
time writing a 1 to the ACTIVE register. At the same time, custom component can be
directly connected to the IP, using the INT port, in order to have a way to control the
power, even a processor.

A complete system is proposed in Figure 3.11. The whole system is implemented
on the FPGA, according to the second example of Figure 3.9. It includes a processor,
which is the master on the bus, a set of cores connected to different sensors on the
board and connected to the INT pin of the Sleep IP. The INT signals of the cores are
connected to an AND port in order to force the switch if and only if all of them finished
their computation. This is a common connection when multiple components control
the FPGA modes since it is not desired that the FPGA switches to the Sleep mode when
some component is still computing data. A slave radio interface is connected to the bus
in order to guarantee a connection with an external radio device.

The presented Sleep IP and the architecture in Figure 3.11 are intended to be generic
and reusable in many WSN applications. Regardless the amount of sensors connected
to the FPGA, the use of a set of separate cores for the filtering and signal processing is
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3.2. An FPGA-based Platform

crucial to exploit parallelism on the FPGA. Moreover, HW cores for digital signal pro-
cessing reduce the processing load on the microcontroller that can be used to manage
network communications and user’s applications.

APPLICATION CASE STUDY

The proposed architecture has been implemented on a real case study in order to val-
idate the approach with valuable experiments. The reference application is an event
detector architecture for landslide applications, and the algorithm used to detect an
event is based on [27]. The algorithm compares recent sampled data with historical
data. In this architecture, the system stores the updated value of the average, made on
the last 256 samples (long average), with the last 64 samples (short average).

The landslide event detector core is depicted in Figure 3.12. It takes sensor data as
input, squared it and stores the value in two FIFOs (one for short sample and another
one for long sample). The absolute value of the average of the FIFOs is kept updated
by adding the difference between the output value and the input value. The average
is compared and, if and only if the difference between the averages overcomes a pre-
defined threshold, an event message is sent to the processor. The implemented circuit
spends 12 clock cycles to compute a new sample and to establish if an event occurs.
Since data come from sensors at a predefined sampling frequency, usually more than
three orders of magnitude slower than the system’s frequency, in more than 95% of the
time, the FPGA is idle. In this case, and in other related cases, using the Sleep mode
between consecutive samples can be an effective way to increase the power efficiency
of sensor nodes.

In this case study the FPGA filters data from the sensors, sending data to the micro-
processor only if an event is detected. Three accelerometer’s sensors are connected to
the FPGA using the I/O pins of the FPGA. In order to test the ability of the FPGA to
switch from and to the Sleep mode, no interrupt signal from the ADC-chain is used.

The system has been implemented on a Microsemi IGLOO AGL600-FGG256 FPGA
[21]. The processor is the IP core 8051s [20] and a Digimesh XBee module [51] has
been used for wireless communications.

EXPERIMENTAL RESULTS

To prove the efficacy of the approach, three experiments have been performed: the
first experiment validates the whole system, the second experiment evaluates the power
consumption with various values of sampling frequency, system frequency and number
of inverters, and the third experiment evaluates the power consumption of the proposed
Sleep IP.

In the first experiment a landslide event is simulated in order to check if the sys-
tem is able to correctly and timely deliver the information through the XBee interface.
Another XBee interface has been connected to a PC, waiting for data. In this experi-
ment, clock frequency of the FPGA is set to 10 MHz and sampling frequency is equal
to 1kHz. As expected, if no vibrations are applied on the system, no messages are sent
to the system. Once a vibration is applied on the accelerometers, a package is immedi-
ately sent to the PC. As aforementioned, this test has been conducted to validate if the
system is able to work as a whole. A Digimesh XBee module has been used on both
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Figure 3.13: Power consumption of the simulated circuit with fixed fsam
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Figure 3.14: Power consumption of the simulated circuit with fixed fsys

sides (FPGA and PC).
The second experiment aims at evaluating the correlation between parameters and

power consumption. The parameters are: the sampling frequency (fsam) and the sys-
tem’s clock frequency (fsys). In this experiment, only the power consumption of the
FPGA is considered, and no messages over the XBee are sent and no stimulus on the ac-
celerometers is applied. Testing this configuration is important since a landslide event
is (hopefully) very rare. Moreover, in case a landslide event occurs, the power con-
sumption used to deliver the information is not critical as delivering it correctly. The
system has been tested varying the parameters as follows:

• fsam = 1kHz, 10kHz, 20kHz, 50kHz

• fsys = 2MHz, 5MHz, 10MHz, 25MHz

In all the experiments, a chain of 401 inverters is used. The results of the ex-
periments are plotted in Figure 3.13 and 3.14. The results show that minimum en-
ergy consumption is achieved combining fsam and fsys properly. For example, for
fsam = 1kHz, fsys ' 2MHz is a good solution, while for fsam = 50kHz, the optimal
solution is fsys ' 10MHz. Considering that Pon > Ps, computing the data as soon
as possible is important. As sampling frequency increases, higher system frequencies
offer a better energy solution.
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Regarding sampling frequency (Figure 3.14), as expected, higher is the sampling
frequency, higher is the power consumption since frequent wake-ups are required. In
addition, the solution with fsys = 2MHz crosses all the others for increasing values
of the sampling frequency, and a similar behavior can be observed on fsys = 5MHz.
Low values of fsys increase ton (since the amount of clock cycles is fixed), while higher
values of fsys increases Pon. Considering the Equation 1, a tradeoff between fsys and
fsam is needed to keep the overall power consumption of the system as low as possible.

It is important to notice that, in all the configurations, even with high sampling rates,
average energy consumption of the FPGA is below 4 mW, that allows the system to be
battery powered.

The third experiment aims at estimating the relationship between the number of
inverters used in the ring oscillator and the power consumption of the ring oscillator
and the counter. Power consumption measurements were performed on only the Sleep
IP, excluding the other components, that are off during the sleep phase. Figure 3.15
shows the power consumption of the device with respect to the number of inverters
composing the ring oscillator. It shows a minimum power consumption of than 220µW
with 2000 inverters. Considering that the Microsemi IGLOO AGL600v5 consumes,
in Sleep (Freeze) mode, more or less 36µW [21], the minimum overhead of the ring
oscillator is about 180µW .

Regarding the relationship between frequency and number of inverters, we measure
2.5ns of delay for each inverter in the chain, obtaining the following relation:

fosc =
1

2.5nsNinv

�
 �	3.4

where Ninv represents the number of inverters in the chain. According to our exper-
iments, three inverters generate 133MHz of clock frequency, 400 inverters create a
frequency of 1MHz, and 2000 inverters creates 200kHz of clock frequency.

Considering that the inverter switches if the value of the input changes, the average
switching activity of the inverter chain is the same for each length of the chain. What
changes is the power consumption of the counter, since it counts at different frequen-
cies. It explains why the power consumption decreases when the number of inverters
increases.

The size of the circuit linearly depends on the number of inverters used to generate
the clock. Synthesis results shows the following relation between the number of Invert-
ers (Ninv) and the used Core Cells (C) (a metric used by the synthesizer to represent
the number of logic primitives in the design, i.e. logic gates or memory cells):

C = 200 +Ninv

�
 �	3.5

where 200 is the size of the counter and the management logic. The FPGA used here,
the AGL600v5, has 13824 Core Cells. According the these results, a chain of 500
inverters is a reasonable tradeoff between power consumption and area occupation. In
such situation, the power consumption of the Sleep mode is about 330µW with an area
occupation of 5% on an AGL600v5.
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Figure 3.15: Power consumption of the ring oscillator with respect to the number of inverter used to
implement the ring oscillator

3.3 Concluding Remarks

This Chapter provides a list of microcontroller-based platforms and a proposed FPGA-
based node. The purpose of this Section was to provide the reader a list of (traditional)
available platforms, and present an alternative approach in WSN’s node design. By an-
alyzing the available platforms it is clear that the number of design alternatives is high,
and the identification of the optimal design is not trivial. The innovative contribution
of this chapter is the study of a FPGA-based sensor node, that I developed and tested
on a real case study. Next Chapter introduces a novel Design Flow for Wireless Sensor
Networks in order to guide the designer during the design process toward the optimal
design solution.
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4
The Proposed Design Flow

A complete and satisfactory design of a working Wireless Sensor Network requires the
definition of three aspects: the position of the nodes (topology), their hardware and net-
work configuration (HW/NET Configuration) and the software (SW Development).
All these components are mandatory to have a working WSN and the constraints of
a WSN makes WSN design very challenging such as it is even described as requiring
“2.5 Ph.D’s” [72]. The identification of a trade-off among power, performance and
reliability needs an efficient engineering work.

This Chapter introduces a WSN-specific design flow aiming at guiding the devel-
oper through the design process from the high-level application specification, design
requirements and constraints to the final deployment. The proposed design flow has
been specifically designed to meet WSN requirements, and all the processes that com-
pose such flow are focused on specific parts of the final design such as their topology,
hardware, software, etc.

It has been designed for both manual and computer aided design, in fact input/output
interfaces have been specified to integrate automated optimization tools that support
the user during the design process. This Chapter illustrates also examples on how to
use optimization tools into the design flow and presents an innovative optimization
technique based on Markov Decision Processes.

4.1 An Iterative Three-Step Design Flow

The design process of a Wireless Sensor Network is composed of three phases: place-
ment, HW/NET configuration and SW development. Although these phases will
be presented to be executed in order, it is a good practice to use a Spiral Model ap-
proach [35], where all the design flow is re-executed until no further optimizations are
possible. For the sake of simplicity, this Section illustrates a single iteration of the
design flow.

The placement phase consists in the identification of the optimal position of the
nodes to ensure coverage and connectivity requirements. The position of the nodes
highly affects the performance and the kind of network organization to be used as well
as their power consumption.

Placement problem has been deeply analyzed in the past decade [166], resulting in
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the development of several placement algorithms. As an example, relay node placement
algorithms detect the optimal position of relay nodes (routing nodes) such that the num-
ber of relay nodes is minimized, connectivity is ensured and reliability is maximized.
Relay node placement has been analyzed for large scale [150], constrained [113], fault-
tolerant [66] placement. Although the problem has been deeply analyzed, it remains an
open issue in WSN design and a general solution has not been identified yet, requiring
customized algorithms for different application fields.

Hardware and network design is a crucial aspect to design efficient and reliable
sensor networks. Nowadays, many low-cost, low-energy hardware platforms have been
proposed and adopted in many application fields. The HW/NET configuration phase
consists in the identification of the optimal hardware and network configuration such
that the resulting system performs as expected. In this phase, each component of the
node (processing unit, MAC layer, routing protocol, etc.) must be selected among a
large set of different design alternatives. Moreover, each component can be further
tuned with a large set of configuration’s parameters (i.e. memory size, radio TX power,
etc.). The identification of the optimal configuration is extremely important to design
efficient WSNs.

When topology and hardware/network configuration have been defined, the designer
can proceed with the development of the application. SW development consists in the
design and implementation of the software components able to implement the desired
application’s functionalities. Applications for WSNs typically read data from devices,
perform some signal processing and transmit it to a central node. Software develop-
ment for WSN is a very active research field and many solutions such as operating
systems, programming languages or software abstractions have been proposed, devel-
oped and applied in various application fields [115]. Although many solutions have
been proposed, the specific application’s definition is usually technology-dependent,
thus applications cannot be easily ported among different devices. A generic software
model is preferred for a better hardware/software codesign.

Figure 4.1 illustrates the proposed design flow. The design problem has been di-
vided in two distinct functional part: the application definition (or application-specific
aspects) and the architecture and network definition. Note that architecture and net-
work definition are not application-independent since their customization depends on
both sensing position and sw specification.

The design flow takes, as input, a set of information concerning application specifi-
cation, the constraints, requirements and metrics. These information guide the design
space exploration and the optimizations such that the resulting design, ready for deploy-
ment, is correct with respect to the user requirements and constraints. The design of a
WSN starts from sensing coverage. It defines the position and the kind of sensors in the
network such that all the data required in the application are correctly gathered from
the environment. Next, the SW development process defines a high-level specifica-
tion of the software that runs on the network according to the given sensor placement.
At the same time, sensing coverage completion allows the designer to proceed with
the evaluation of the network connectivity and the hardware design processes. The
first is used to place intermediate (relay, secondary, ...) nodes in order to have a con-
nected network, while the second specifies the hardware platforms that best suits the
user needs. At this point, given the software and hardware specifications, it is possible
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4.1. An Iterative Three-Step Design Flow

Figure 4.1: The Proposed Design Flow

to define the operating system (OS definition). At the same time it is possible to de-
fine which protocols (MAC, routing, transport, ...) will provide good performance from
the given network topology (Network Protocol Definition), then the given protocols
should be configured accordingly (Network Configuration). Once hardware, network
and OS have been defined, the software must be translated into a compilable language,
partitioned and mapped on the nodes (SW Partition & Mapping). All these processes
can be repeated several times to refine the solution. Once the final design has been
identified, it is ready for the final deployment.

In the remaining of the section, a more detailed definition of each process is given.

SENSING COVERAGE

This process is in charge of defining which sensors are needed, how many and in which
position these must be placed. It takes high-level application definitions such as “[...]
the system must be able to track an object in the area of interest [...]”, and provides
a specification of the required sensors (such as nine cameras, two microphones and
five proximity sensors) and their position in the three-dimensional space. Figure 4.2
illustrates the detail of this process. It takes application-specific requirements as input
and provides two distinct outputs: the sensors list (which sensor is required) and the
sensors position (where sensors are located in the 3D space). The specification of
the application requirements must be as clear as possible in order to place the right
amount of sensors in the right position. A specification can be, for example, “place
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Figure 4.2: Sensing Coverage Process

the sensors such as the temperature of the area is read by at least three sensors and
the distance between sensors must be at least 10 meters. This specification tells the
user to have a three-sensor redundancy, but specifies that these measurements must be
taken from different positions (at least 10 meters away). With this specification, even
an automatic algorithm can be used. However, in some cases, the position of the sensor
is pre-determined (i.e. place a 3-lead ECG sensing environment).

Considering the output, for SW development and Hardware design, the required in-
formation is the list of sensors, not their exact position. In fact, for SW development
the list of sensors is mandatory in order to know which data can be used, and for HW
design, the list of sensors is mandatory to know how to design the sensing nodes. On
the other side, the Network Connectivity process requires the exact position of nodes in
order to detect the position nodes of the additional nodes to guarantee network connec-
tivity; the kind of sensors (temperature, humidity, etc.) is marginal for this process.

A correct definition of the sensing position is extremely important for two reasons:
first, the sensors must be able to detect the phenomenon of interest correctly and, sec-
ond, the position of the sensors is a strict constraint for the placement, thus it must be
defined carefully to design an efficient network. This process is application-dependent,
since the designers (or the algorithms) must know the application’s characteristics and
peculiarities. Therefore, algorithms automating this task should be specifically de-
signed for the application [169] [166]. A new alternative approach, is given in Section
6.

SW DEVELOPMENT

In this process the user must define the application assuming that the system is not
composed of several nodes, but is a whole system whose inputs are sensors and outputs
are actuators. This abstraction allows the user to define a design-independent definition
of the software, thus the user should not optimize the code for specific hardware or
networks. The idea behind this process is to provide a general definition of how the ap-
plication should work; it will be the objective of the SW partition and mapping process
to define how the code must be executed on the network.

The overview of the process is given in Figure 4.3. The process takes the list of
sensors identified in Sensing Coverage and the application-specific requirements. Dif-
ferently from all the other processes, this is usually executed manually since it results
in a piece of code that satisfies the application requirements.
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Figure 4.3: Software Development Process

The output of this process is a high-level definition of the software application that
will run on the nodes. To perform this task the language used to define the application
should be chosen having in mind that it should be translated into a compilable language
automatically. For such a reason, in this thesis, a general purpose script is proposed; an
example of the proposed language is given in Algorithm 1

Algorithm 1: prova

a = r e a d ( " t e m p e r a t u r e " , " node_0 " )
b = r e a d ( " t e m p e r a t u r e " , " node_1 " )
c = ( a + b ) / 2

i f c < 18 t h e n
w r i t e ( " h e a t " , " node_2 " , 1 )

e l s e
w r i t e ( " h e a t " , " node_2 " , 0 )

end i f

n o t i f y ( a , " s i n k " )
n o t i f y ( b , " s i n k " )

The purpose of this piece of code should be immediate to the reader. The code
states that the temperatures should be read from node_0 and node_1 respectively, then
its average is computed in c, and compared to a threshold (18). In case the temperature
is below 18, an actuator is activated (heat to 1), otherwise it is switched off. At the
end both temperatures are sent to the sink node (that will be defined in the network
connectivity process). Note that the position of the sensors have been identified in the
previous process.

Next Section will illustrate how to convert this piece of code into a DFG, a useful
mathematical representation that will be used at the end of this Chapter by the SW
partition and mapping process.

NETWORK CONNECTIVITY

Connectivity of the network is extremely important to meet design objectives. This
process is responsible for placing the minimum number of nodes that satisfy the con-
nectivity requirements. Requirements and constraints can be specified in many ways
according to the design needs. Figure 4.4 illustrates the relationship with the other
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Figure 4.4: Network Connectivity Process

processes. It takes, as first input, the position of the sensors identified by Sensing Cov-
erage; it represents a strong constraint since these nodes cannot be placed elsewhere.
Then it takes the placement constraints and requirements. The first indicates, i.e., the
amount of available nodes, the presence of forbidden areas, etc. The latter indicates the
connectivity requirements or the metrics to optimize during the placement. An example
of placement requirement is: create a network such that all the nodes can communi-
cate with each other using at least two independent paths. Moreover, connectivity
requirements can take into consideration fault tolerance: create a network such that,
even in presence of three node-faults, the network remains connected. Differently from
sensing coverage, this process is application independent, since it does not require any
knowledge on the final purpose of the network to operate.

It produces the exact position of nodes (in addition to the position of sensing nodes)
in the network. The position can be determined automatically or manually, according to
the preferences of the user. Several placement algorithms have been proposed in liter-
ature [150] [113] [166] [34] [133] [66], thus no additional techniques will be provided
in this thesis. Note that in the first iteration of the design flow, no network algorithms
have been identified, so the algorithms must make assumptions on future networks or-
ganizations (plain, two-tier, cluster-based, etc...); in any case, the other iterations will
converge to optimal solutions.

HARDWARE DESIGN

In this process the designer should identify or create a hardware platform that best
fits its needs. The design of the network interface is not included in this process, but
has been split in other two processes. Instead, this process is focused in identifying
the platform to compute sensorial data and/or perform complex operations. Here the
designer must decide to use a microcontroller-based general purpose platform (see Sec-
tion 3.1) or a custom solution (such as ASIC or FPGA-based platforms). It is important
to execute this process before the definition of the operating system since the OS is
usually not supported by all the platforms, thus the hardware platform is a constraint
to the next processes. Inverting the order of processes (perform OS definition prior
the hardware definition) usually leads to non-optimal solutions since the definition of
the correct hardware platform is more important then the specific OS with respect to
energy, performance and reliability, thus it is discouraged.
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4.1. An Iterative Three-Step Design Flow

Figure 4.5: Hardware Design Process

Figure 4.5 illustrates the process. As usual, the process takes constraints and require-
ments as input. In the specific case, constraints can be related to energy consumption,
stock availability or cost, that must be respected in order to have a design that will be
accepted by the customer, while requirements are those aspects that must be optimized
such as cost, performance, etc. The other input, is the list of sensors required by the
application; considering that this process produces the final hardware configuration,
sensors are part of this output. The output is the final hardware configuration of the
nodes, network interfaces excluded. It includes the processing and sensing elements as
well as power sources, harvesting techniques and memories.

NETWORK PROTOCOL DEFINITION

Networking is so relevant in a WSN so that the identification of the optimal protocols is
extremely important to obtain optimal design solutions. The objective of this process is
the identification of the radio, MAC and routing protocols that are most suitable for the
given design requirements and metrics. Figure 4.6 illustrates the process. This process
can be constrained by the availability of licenses or laws (i.e. only 2.4 GHz radio are
allowed) and must optimize several metrics such as energy, performance or reliability.
However, this process leads to the definition of an high-level network organization, thus
no fine-grained optimizations are possible; in fact, this process typically uses models
instead of simulations to evaluate the solutions. The other input is the position of the
nodes, that dramatically affects the kind of network protocol that will be chosen. The
output, as aforementioned, is an coarse-grained high-level network organization.

An example of output of this process is:

• Radio: CC2420, 2.4 GHz radio

• MAC Layer: IEEE 802.15.4

• Routing: LEACH protocol + AODV for routing through cluster-heads

Although this process is theoretically independent from hardware design, the processes
have a relationship, since the definition of a hardware platform could constraint the
identification of network interfaces and vice versa. For instance, if the designer chooses
the SHIMMER platform, the radio cannot be changed. Vice versa, if the designer
decides to use a specific radio, the available platforms that support the chosen radio are
limited. The designer is free to decide the order of these two phases.
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Figure 4.6: Network Protocol Definition Process

Figure 4.7: Network Configuration Process

NETWORK CONFIGURATION

Once the network protocols have been identified, they must be configured in order to
perform optimally. All the network protocols, MAC protocols in particular, are char-
acterized by tens of parameters whose configuration is a difficult task for non-experts,
thus it should be performed automatically; this thesis presents several examples on how
to configure network protocols automatically. There could be several constraints that
specify invalid configurations: in IEEE 802.15.4, for instance, the value of the Frame-
Order must be higher than the value of the BeaconOrder. Requirements are similar to
those specified in Network Protocol Definition, but in this case they can be effectively
optimized. The other input comes from Network Protocol Definition that specifies the
protocols and the network organization to be used in the project. These two processes
have been divided since a combined optimization could be practically unfeasible; how-
ever, the user can decide to perform these two processes simultaneously. The output
of this process is a detailed network configuration: all the parameters have a specific
value. The process is depicted in Figure 4.7.

Considering that most of the designers are not expert in telecommunication, this
process should be performed automatically. This Chapter and in Chapter 6 provide
some example on how to perform this automatically.
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Figure 4.8: Operating System Definition Process

OS DEFINITION

The definition of the operating system (or its absence) is important to define how the
application runs on the nodes and how the code must be translated and compiled. This
process, depicted in Figure 4.8, identifies the right OS and its configuration according
to the given constraints and requirements. There are two main sources of constraints:
external constraints or hardware constraints. The external constraints can be defined at
the beginning of the project and can depend on external aspects like licenses, required
services or preferred SW platforms. In fact, the definition of the Operating System
could even be constrained, for instance, by the preferences of the maintainers who
could prefer one technology instead of another. On the other hand, hardware constraints
come from the Hardware Design process, that previously defined the hardware platform
which determines how the code can be executed on the node. For example, if the
previous phase decides to use the Arduino FIO (see Chapter 3), TinyOS cannot be used
as well as Java.

The high-level software definition, provided by the SW development process is use-
ful not to decide which OS to use, but how it should be configured to optimally run the
given code. In fact, for example, if the software requires an automatic node-discovery,
the OS should support it and must configure it correctly.

At the end, the process generates a specification of the chosen OS and its configura-
tion (in terms of parameters and required services).

SW PARTITION AND MAPPING

This is the last process of the design flow. The objective of this process is to take
the software specification, the position of the nodes, their hardware, network and OS
definition, and provides an optimal partition and mapping of the application code on the
nodes. In other terms, this process must define exactly how the code must be executed
on the nodes, in particular, which piece of code must be executed by each node. The
granularity of the partition can be determined by the user and can be defined as task-
level or instruction-level.

This process, illustrated in Figure 4.9, takes several inputs such as high-level soft-
ware specification, constraints, requirements, network configuration, node placement,
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Figure 4.9: Software Partition and Mapping

OS details and hardware specification, and provides, as output, the final design ready
to be deployed. The process, detailed in Section 4.5.1, takes the high-level software
specification (defined in SW development process), partition the code into sub-tasks
and maps these tasks on the node, considering the execution and transmission costs.
The mapping is extremely important to ensure an efficient execution of the code. In
fact, it is a bad practice to put all the tasks on a single node, since it can be unfeasible
to transmit data wirelessly due to channel overutilization. Moreover, this process trans-
lates the high-level software definition, specified in SW development, into a compilable
piece of code that will be deployed to run on the nodes.

FINAL DEPLOYMENT

Once the final design has been identified, the system is ready for the physical deploy-
ment. It involves the creation (if required) and configuration of the nodes and their
physical deployment. This process has been defined outside the design flow since it is
not part of the design process, but a consequence of the design.

The next Section illustrates the mathematical spaces where the various parts of the
design flow operate. It provides a clear view on the complexity of the automated design
space exploration and, at the same time, would like to be a reference point for the
people working in this field such as all the algorithms will share the same structures,
thus providing compatibility.

4.1.1 Implemented Design Flow
The design of WSN consists of the definition of a large number of elements such as:
position of nodes, network configuration, hardware configuration, software develop-
ment, etc. To develop an optimized WSN, the design should master all the aspects
related to a WSN, including application-specific optimizations and algorithm. More-
over, the design process must take into account the time-to-market, that is constantly
critic in today’s markets, thus the need of time and cost effective design methodologies
are required.

The actors involved in the design of a WSN are:
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4.1. An Iterative Three-Step Design Flow

• Application/DSP Expert: sensorial data are extremely important in a WSN. This
actor is involved in the design of application-dependent digital signal processing
algorithms that will run on the node. Their tasks are: definition of position of
sensors in the environment and the design of sensor’s filters and actuator’s con-
trollers.

• Network Designer: this actor is responsible for the design and configuration of
the communication’s layer of the network. Sometimes, new protocols can be de-
signed to have an optimized design. It includes: radio, MAC, routing protocols
and network layers.

• Hardware Designer: this actor is responsible for the design and configuration
of nodes’ hardware. It includes: the design of application-specific platforms, the
identification and configuration of the best platform among several available plat-
forms (see Chapter), etc.

• Software Engineer: this actor is responsible for the design of the software archi-
tecture of the WSN. He is involved in: the identification and configuration of the
operating system, partition, mapping and compilation of the distributed software
in the network.

Figure 4.10 maps the roles and responsibilities of these actors in the design flow pro-
posed in Chapter 4. The strong relationship among inputs and outputs of design flow’s
processes require an active and effective collaboration in the development team. More-
over, remembering that the design flow iterates on all the activities until no further
optimizations are possible, the involvement in the design process lasts until the design
is deployed.

Since the management and maintenance of such heterogeneous teams is time and
cost expensive, the development of automated design tools could effectively tackle
these problems and reduce design costs.

IMPLEMENTATION DETAILS

The design framework has been implemented in Python and C++. Python has been
chosen according to the KISS (Keep It Simple, Stupid) principle. It is used to imple-
ment the high-level aspects of the framework such as: management of files, projects,
plugins and design phases. C++ is used to perform computational-demand tasks such
as optimization algorithms, simulations, models, etc. Thanks to the high flexibility of
Python, C++ components can be easily integrated into the framework when required.

To allow the framework to be easily extendible, all the optimization’s algorithms
and tools must be compiled separately in order to make the development process easily
manageable. Moreover, in this way the optimization algorithms are free to be imple-
mented with whatever language, style and using all the required libraries. The only
constraint is to keep input and output files adherent to the framework’s definitions.

The framework provides a set of libraries to perform common tasks such as compare
solutions or extract the Pareto frontier, and gives the wrappers to available evaluations’
tools like simulators or models.

The framework itself presents a set of black-box components invoked in specific or-
ders, according to design and user’s needs. During the Network Configuration process,
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Figure 4.10: Roles and Responsibilities of the Actors in the Design Flow
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4.2. The Design Space

for instance, the framework searches for the available algorithms and gives the user the
choice. Once the user decides which algorithm should be used, the framework invokes
and controls the optimization by providing a graphical output to the user. Once the task
has been completed, the list of identified solutions is added to the project. Now the
designer is free to optimize the network manually or perform another optimization.

For the framework, the design consists of several optimizations performed on the
network. In case design is still not complete to perform an evaluation (i.e. MAC layer
not been defined), general purpose solutions are used instead. For instance, if the MAC
layer has not been defined yet, an ideal MAC layer is used instead. The purpose of
this substitution is only to have all the necessary components to perform a simulation;
by keeping these components fixed during the optimization process, the optimization
process gives reasonable results. Note that this technique is used only during the first
execution of the design flow since once all the processes have been performed, all the
components of the design are identified. Further iterations have the objective to further
optimize the network.

The information about the design project, analyzed solutions, simulations’ output,
etc. are saved in XML files in order to make the framework more interoperable with
other tools. Moreover, the use of external files rather than internal structures, allows to
manage plugins in an extremely flexible way. For the framework, a plugin is whatever
piece of code that belongs to a specific design flow process and it is able to read input
data and provide correct output data. However, although a plugin is usually an opti-
mization algorithm - belonging to a specific (or a set of) design flow’s process(es) - it
can even be something different.

It specifies:

• The size of the environment in meters and the amount of nodes to be placed;

• The characteristics of the wireless channel (useful for the simulation);

• The available routing and mac layers with their parameters.

The framework reads the file and allows the user to select the preferred configuration or,
in alternative, it explores the design space searching for an optimal (and feasible) con-
figuration. As mentioned in Chapter 4, the size of the design space is extremely huge,
thus the user or the algorithm should identify non-optimal solutions before evaluation
(that could take several minutes or even hours).

4.2 The Design Space

As technology and research advances, the amount of design alternatives increases. It
increases the complexity of design since a higher amount of feasible solutions must
be evaluated, and the identification of the Pareto set is more difficult. In the design
of WSNs, a good tradeoff among conflicting metrics required a deep exploration of
the design space. In such scenario, the designer must be supported during the design
phase, thus Computer Aided Design (CAD) tools are required. Automated design space
exploration algorithm effectively help the designer during the design phase [34] [32].
Integration of many optimization/exploration algorithms in future design frameworks
for WSNs is crucial to ensure a wide diffusion of WSNs.
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This Section presents a formalization of the design space of WSNs. The proposed
formalization helps the automated algorithms to explore the design space and to define
the solutions such as different optimization algorithms can be integrated to cooperate
in the identification of the optimal solutions’ set. In order to validate and show the
effectiveness of the formalization, two different case studies are presented. In this
Section we would like to propose a formalization of the design space of WSN. It has
been defined by analyzing how the design space of WSN is made, in particular, how P ,
M and K are characterized in a WSN.

As mentioned in Section 2.4.2, the Design Space Exploration of a WSN relies in
the identification of configurations (or solutions) P ⊆ P such that P contains Pareto-
optimal solutions. This Section explains how the P space is made in a WSN.

The parameter space (P) of WSNs consists of three subspaces:

• Placement Space (Λ): a three dimensional space that defines where nodes can be
placed. Each node must be placed in a specific position in R3;

• HW/NET Configuration Space (C): all the possible configurations of the sensor
network and nodes (such as network interfaces and protocols, operating system
preferences and policies, etc.);

• SW Application Space (A): the set of all implementable applications on the given
network;

According to this parameters’ space, in a network ∆, a node δ ∈ ∆ is located in
(x, y, z) ∈ Λ, characterized by a specific HW/NET configuration c ∈ C and pro-
grammed with an application code a ∈ A. As a result, each node of the network is
defined by the tuple:

δ ≡ 〈λ, c, a〉
And a solution is defined as a vector of tuples as follows:

(〈λ0, c0, a0〉, 〈λ1, c1, a1〉, ..., 〈λn, cn, an〉)
where n corresponds to the cardinality of the network. Summarizing, the design of

a WSN consists in the identification of a set of nodes ∆ such as the tuple 〈λ, c, a〉 is
defined for each node, and the resulting metrics respect given requirements. Informally
speaking, placement defines "where nodes are", HW/NET configuration defines "who
nodes are" (the role in the network) and application tells the network "what they do".

4.2.1 Placement Space
In a working WSN, each node must be located in a specific position (x, y, z) ∈ Λ.
The placement problem is the identification of the exact positions of nodes such that
coverage and connectivity requirements are guaranteed.

The solution of the placement phase consists in a set of nodes in a three-dimensional
space. Please note that the topology of the network (that tells how nodes are connected)
is not part of the placement’s solution since it could depend on the MAC and routing
layers that impose specific topologies (for instance a two-tier network). For that reason,
the connections among nodes (the actual topology), do not belong to the placement
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solution and the output of the placement algorithms is only a set of nodes placed in
Λ, regardless the (internal) model used to place the nodes; it improves the integration
of the algorithms in the design frameworks. An example of a placement solution is
provided in Figure 4.11.

Figure 4.11: Each node of the network must be assigned to a specific position in Λ

4.2.2 HW/NET Configuration Space
Each node is composed of various hardware (processing unit, radio, etc.) and software
components (MAC, routing, transport, etc.) that can be characterized with a certain
amount of customization parameters. The value of certain parameters is not indepen-
dent among the nodes; network interfaces, for instance, must be the equal, thus the
choice of the network interface must be done network-level, rather than node-level.

For such a reason, configuration space C is further divided in three partitions:

• Network Parameters (Cn): the values assigned to those parameters must be the
same for the entire network. It typically involves network interfaces or protocols;

• Group Parameters (Cg): the values of those parameters must be the same for the
nodes belonging to the same group, but can have different values between nodes
of distinct groups. This set includes, i.e. network coordinators, cluster-heads, etc.
that require same, or similar, network configurations to operate;

• Node Parameters (Cd): the values of those parameters are independent from node
to node.

The classification of the parameters in these spaces is left to the designer but, generally,
network and group parameters usually refer to communication aspects such as radio,
MAC or routing protocols, while node parameters refer to specific aspects of a node
such as the amount of memory or the transmission power.

Another important aspect in defining the configuration space are the dependencies.
c2 ∈ C depends on c1 ∈ C if ∃c1 ⇒ ∃c2. For example, the parameter Superframe
Order (SO) must be defined if and only if IEEE 802.15.4 protocol is chosen as MAC,
otherwise, the value and the existence of this parameter is completely irrelevant.

To describe the configuration space completely and correctly, a tree-based structure
called Configuration Tree (CT) is introduced. In a CT, nodes can be of two kinds:
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Figure 4.12: An example of Configuration Tree (CT). Diamond node represents a choice node while
circle nodes are normal nodes. Letters inside nodes indicate if the parameter is a Network parameter
(Cn), group parameter (Cg) or a node parameter (Cd)

choice nodes and normal nodes. A choice node is connected to various nodes that
defines different design alternatives and it is used to define different, mutually exclusive
scenarios (such as the MAC protocol to be used). The designer (or the algorithm) must
select one and only one design alternative, otherwise the solution is unfeasible. A
normal node defines a specific configuration parameter, whose valid values are defined
in a list.

An example of CT is given in Figure 4.12 where two MAC protocols (TMAC and
IEEE 802.15.4) and two parameters for each protocol are defined. Letters inside nodes
indicate if the parameter is a network parameter (Cn), group parameter (Cg) or a node
parameter (Cd). Parameters’ dependencies are defined by lines: solid lines indicates
a normal node and choice options with dashed lines. A feasible solution is {MAC
Protocol = 802.15.4, SOG0 = 5, SOG1 = 4, Min BEN0 = 3, Min BEN1 = 3, Min BEN2 =
4, Min BEN3 = 5}, where N0 and N1 belongs to G0, and N2 and N3 belongs to G1.

CT has several advantages: it is a compact way to define the configurations parame-
ters, it takes into account design alternatives, it defines existence dependencies between
parameters. Tools for the automated design space exploration can take advantage from
this structure to perform efficient (and correct) exploration of the design space.

4.2.3 SW Application Space
A common and generic way to define software applications is using Program Depen-
dence Graphs (PDG) [57]. A PDG is a graph where nodes are tasks or conditions
and arcs are data or control dependencies. Although, traditionally, nodes in the PDG
represent a single instruction, they can be even used to define more complex tasks (data
and control dependencies must be defined accordingly). To take advantage from PDG
description, it is important to define technology-independent tasks or instructions (such
as "read from sensor X" or "send data to node Y"). In that way, application develop-
ment is not constrained to specific technologies (such as hardware devices or operating
systems), and the design space exploration can analyze all the possible configurations.

Once the application and configurations have been defined, from the PDG it is al-
ways possible to generate platform-specific executable code. An example of PDG is
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Figure 4.13: An example of Program Dependence Graph (PDG). Square boxes represent tasks, diamond
boxes Boolean conditions, solid lines data dependencies and dashed lines control dependencies

Figure 4.14: PDG for Algorithm

provided in Figure 4.13. In this example, task 5 can be executed if and only if task 4
has been previously executed and cond 1 is true. Please note that dependencies are only
true-dependencies, so only RAW dependencies [70] are considered here; false depen-
dencies are solved by renaming variables, obtaining a Single State Assignment (SSA)
representation.

To give a better understanding of the PDG, a practical example of a PDG represen-
tation is provided in Figure 4.14; this is the PDG representation of the Algorithm 1 in
Section 4.1. From the translation in PDG it is possible to notice that although the NO-
TIFY functions have been written after the conditional block, they have no relationship
with it, thus they can be executed in parallel. For the purpose of automated design of
WSN, PDG is a very powerful representation since it allows the algorithm to estimate
the amount of messages that must be transmitted between nodes to execute the desired
application; for more information, please read Section 4.5.

4.2.4 Constraints
As aforementioned, design constraints are a set of (logical) conditions applied on P
that reduce the number of possible solutions in the design. The resulting space P ∈ P̂
is then used for the exploration (P̂ represents the unconstrained space). Various types
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of constraints can be defined on each one of the three design subspaces:

• Placement constraints can be used to restrict the place where nodes can be placed.
They can be defined with Boolean conditions on (x, y, z);

• Configuration constraints are defined on the CT in order to specify particular re-
lationships between parameters;

• Applications constraints can be used to constrain the application’s implementation
(i.e. sensing task must be performed on the node that holds the sensor).

Differently from parameters’ dependencies, constraints cannot be included directly into
the CT and must be checked on each solution to verify if it satisfies the constraints or
not. In order to leave the user free to define the constraints using whichever format,
optimization algorithms must be designed in order to keep these constraints into con-
sideration.

In addition, constraints can help the user to guide the design space exploration to
good solutions quickly. In fact, they can be used to avoid not only unfeasible solutions,
but also to avoid non-optimal solutions identified by previous experiments. Section
4.4.3.1 presents a very effective solution on how to use knowledge to speedup the design
space exploration phase.

4.3 Placement

The placement problem consists in the identification of the optimal position of nodes
such that sensing information are gathered correctly (sensing coverage) and the net-
work satisfies connectivity and reliability requirements (network connectivity). As
previously stated, many solutions were proposed to find a solution to this process, thus
no additional algorithm has been developed. This Section will only provide an overview
of the techniques proposed in literature.

Deployment Analysis in Underwater Acoustic Wireless Sensor Network (Pompili
et al.) [137] This paper deals with the sensor coverage in underwater acoustic WSNs.
The objective of this work is to determine the minimum number of sensors to achieve
optimal sensing and communication coverage. Although the target applications are
underwater acoustic sensor networks, their analysis can be extended to other kind of
sensor networks since they present several mathematical investigations on sensing cov-
erage. Figure 4.15 illustrates a triangular-grid deployment: subfigure (a) illustrates the
overall grid deployment obtained using a triangular-based distribution and subfigure
(b) shows the coverage issues (uncovered area) of this kind of deployment. For more
details on the mathematical formulations and analysis, please read [137].

Relay Node Placement in Large Scale Wireless Sensor Networks (Tang et al.) [150]
In this paper, the authors provide two polynomial time approximation algorithms to
place relay nodes in a two-tier network to solve the Connected Relay Node Single Cover
(CRNSC) and the 2-Connected Relay Node Double Cover (2CRNDC) problems. A
relay node is an intermediate node, without sensors, used to route data from sensors to
sink. The relay node placement belongs to the network connectivity process, and aims
at identifying the position of relay nodes given the position of sensing nodes.
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Figure 4.15: Triangular-grid deployment. (a): Grid structure and side margins; (b): Uncovered area
(from [137])

The objective of the CRNSC problem is to find the minimum number of relay nodes
and their corresponding location so that each sensor node is covered by at least one
relay node, and that the network composed by the relay nodes is connected. On the
other side, the objective of the 2CRNDC problem is to find a minimum number of
relay nodes and their corresponding locations so that each sensor node is covered by at
least two relay nodes, and that the network of relay nodes is 2-connected.

In both the proposed approaches, the algorithm divides the space into cells of fixed
size and, as first step, places into each cell the minimum amount of relay nodes such
that all the sensors are connected to at least one relay node. Then, for all the relay nodes
Hi in each cell Bi, the algorithm identifies the set of relay nodes required to connect
the cell on its right and bottom placing the nodes on the grid. The second algorithm is
conceptually similar to the first, except that the first step ensures that all the sensors are
connected to at least two relay nodes, and the second terminates when the network of
relay nodes is 2-connected. For more details on these algorithms, please read [150].

Genetic Algorithm Based Node Placement Methodology for Wireless Sensor Net-
works (Bhondekar et al.) [34] In this paper, the authors present a multi-objective
genetic algorithm to perform placement and high-level role assignment in WSN. The
authors decode the 2D space into a numeric vector, where each item of the vector corre-
sponds to a specific location into the (X, Y ) field. The value of the vector item indicates
whether the node is inactive (not placed into this field) or, in case of activity, which is
its role. In the presented work, the authors consider three operative modes, but the pro-
posed approach can be generalized to an arbitrarily amount of operative modes. The
bitstream representation used by the genetic algorithm is depicted in Figure 4.16.

The fitness function used in that work is a linear composition of metrics such as
application-specific parameter, connectivity parameters and energy-related parameter.
However, the fitness function can be arbitrary defined by the user according to its needs.

Optimal Placement of Base Stations in a Two Tiered Wireless Sensor Network
(Paul et al.) [133] Another known problem is the identification of the optimal po-
sition of base stations given a placed network. In this paper, the authors provide a
geometrical solution using a partitioning technique. The network is clustered in a two
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Figure 4.16: Bitstream representation of the network layout (from [34])

Figure 4.17: Selection of BS locations using node partitioning technique (from [133])

tiered WSN, where two types of nodes are deployed: Sensor Nodes and Cluster Heads
(CH). The proposed solution provides two major benefits: first, the algorithm does not
suffer convergence issues and, second, the solution is identified deterministically, as
opposed to the randomness caused by meta-heuristics such as Particle Swarm Opti-
mization proposed in [71]. Figure 4.17 illustrates an example of how this technique
works; for more details, please read [133].

This Section presented an overview of various works on node placement; the pro-
posed analysis does not aim to be exhaustive since the placement problem is very com-
plicated and is hardly generalizable, thus any application requires a specific placement
algorithm. This Section illustrates some general approaches to show how the problem
has been tackled in the past.

4.4 Hardware/Network Configuration

The second phase of the design concerns the HW/NET configuration. In this phase,
the designer must define the hardware of the nodes (processor, memory, sensors, etc...),
the network interfaces and protocols, and their configuration. At the end of this phase,
the design is composed of nodes configured with general-purpose applications (used to
test the network) and to estimate the quality of the configuration.

This Section presents three classes of techniques to perform HW/NET configu-
ration: simulation-based techniques, model-based techniques, and hybrid tech-
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niques. Simulation-based techniques are general purpose techniques that use simu-
lation data to guide the Design Space Exploration. Meta-heuristics such as genetic
algorithms, simulated annealing, tabu search, etc. are examples of simulation-based
techniques. On the other hand, model-based techniques aim at identifing the optimal
design by analyzing models of the node. In this Section, a specific model and the cor-
respective analysis is shown. At the end of the section, a novel hybrid technique is
presented. Considering that simulation-based techniques are accurate but extremely
slow, model-based techniques are fast but not-so-accurate (at least as accurate as the
model), an hybrid technique is required. The proposed algorithm simulates the design
only if the accuracy of the model is not accurate enough; it reduces the amount of sim-
ulations required to identify Pareto-optimal solutions, reducing the overall amount of
time required during this phase of the project.

4.4.1 Simulation-based Design Space Exploration
As mentioned in Chapter 2, evaluations can be performed with models, simulations or
testbeds. Simulations offer a good trade-off between evaluation speed and accuracy.
Simulation-based Design Space Exploration is a technique that uses simulators to eval-
uate the solution. Differently from model-based techniques, the quality of the identified
solutions should be more accurate.

This Section illustrates a set of meta-heuristics [103] techniques to perform DSE
in WSN. These techniques do not require any knowledge on the problem to optimize,
thus they only need a clear specification of the design space. However, if this is an
advantage, it is even its major limitation, in fact, the lack of knowledge requires the
algorithms to perform a large amount of evaluations (simulations) to extract information
on the problem to optimize. An analysis of how it could impact the effectiveness of the
design space is given in Section 4.4.3.

META-HEURISTICS ON WIRELESS SENSOR NETWORKS

Meta-heuristics refer to many algorithms that use some degree of randomness to find
the optimal (hopefully global) solution of a specific problem [103]. Some of them are
included in the domain of stochastic optimization, while others, like Markov Deci-
sion Processes (MDP) do not belong to this class. A meta-heuristic is applied to those
problems where no accurate models are available, when the optimality of the solution
cannot be described analytically. Instead, the optimality of the solution is known only
after the evaluation, so when its quality has been made explicit.

Algorithm 2: General Behavior of Meta-Heuristics

1 initialize(S)
2 repeat
3 {s0} = selection(S)
4 evaluation({s0})
5 S = S ∪ {s0}
6 until final conditions satisfied;

The general behavior of a meta-heuristics is depicted in Algorithm 2 and it is com-
posed of five parts:
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• Initialization (line 1): data structures as well as configuration databases are ini-
tialized;

• Main Loop (lines 2 to 6): the algorithm iterates until certain conditions are sat-
isfied. These conditions can be the maximum number of evaluated solutions or
convergence;

• Selection (line 3): this function generates a new solution starting from the set of
the evaluated solutions S;

• Evaluation (line 4): the given solution {so} is evaluated and metrics are extracted;

• Update (line 5): the database of solutions is updated with the latest evaluated
solution {s0}.

Meta-heuristics mainly differ in the selection, where research studies are mainly fo-
cused. Genetic Algorithms, for instance, use crossover and mutation, while Simulated
Annealing uses local move. Crossover requires (at least) two solutions, called parents,
and generates a child solution mixing the characteristics (parameters) of the parents.
Mutation is a change of a random parameter with a random value within the set of ac-
ceptable values. Local Move is a small change of the solution; it is usually implemented
changing a single parameter with another value whose distance is limited (i.e. ±1).

A comparison between meta-heuristics is presented in Chapter 6, where IEEE 802.15.4
and IEEE 802.15.6 have been optimized using meta-heuristics.

4.4.2 Model-based Design Space Exploration
Model-based Design Space Exploration is very effective and quick if accurate models
are available. Differently from simulation-based techniques, presented in the previous
Section, model-based techniques are problem-specific, since problem-specific models
are required. In order to show the reader how to perform a model-based DSE, two
approaches are presented in the next Sections.

4.4.2.1 MODEL-BASED DESIGN FOR WIRELESS BODY SENSOR NETWORK
NODES

Wearable wireless body sensor networks (WBSNs) for health monitoring and diag-
nosis, as well as emergency detection, are gaining popularity and will deeply change
healthcare delivery in the next years [131]. A WBSN node is a low-power device that
collects vital signs, preprocesses and then sends them to a coordinator that performs
most of the workload [153].

The design of WBSN nodes is mainly focused on maximizing the lifetime of the
node by reducing the energy consumption, although other performance requirements
such as the delay and quality of the delivered data must be kept into account. As
a design may depend on tens of parameters, an efficient multi-objective optimization
framework is required to explore the design space and to identify the Pareto-optimal so-
lutions. The most critical part of this process is to provide a fast yet reliable estimation
of all the optimization metrics. Three possible techniques to evaluate a solution are: a)
an exhaustive set of experiments, which however cannot be automated; b) a network
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Figure 4.18: Block diagram of the reference node architecture

simulation, which is slow and hence impractical when a large number of potential so-
lutions needs to be explored; c) an analytical model of the node, which favors a quick
optimization and a better analysis of the node behavior.

In this work, the model-based optimization problem is analyzed from a different
perspective, i.e., by narrowing the scope of the model to WBSNs and focusing on
their most typical features (defined in [153]). In particular, this allows the designers
to discard those aspects that are not generally required, such as complex networking
or task assignment. In this way, they are able to analytically capture aspects like life-
time, transmission quality and application performance with a high precision, while
still keeping the model general and reusable. Then, an adapted version of the multi-
objective simulated annealing algorithm to perform the design space exploration and
find the Pareto-optimal configurations is proposed. This has been tested on a real ap-
plication for ECG monitoring that uses compressed sensing [105], and is implemented
on the SHIMMER™ [42] state-of-the-art commercial platform.

ARCHITECTURE OF THE TARGET NODE

As a reference, a popular WBSN architecture is considered: a software application
for data processing is executed on a microcontroller, and the remaining services are
delegated to an operating system. Figure 4.18 provides a structural outlook of this class
of nodes. Assume that a node transmits its data to a central coordinator through the
typical star topology used in WBSNs. Each node in the network generates a constant
traffic, thus avoiding data bursts that may interfere with the periodic transmission of the
other nodes in the network. The result of this assumption is that the data delivery delay
can be analytically estimated, and that the characterization of the network is simplified
and can be seamlessly included in the node model.

• The sensor component describes the hardware that conditions and samples the
raw signal at a frequency that depends on the signal and on constraints such as the
Nyquist–Shannon theorem. Then, the samples are quantized by an A/D converter
using a number of bits that depends on its resolution;

• The applications components comprise all the software programs used to process
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the sensed data, including filtering, feature extraction, compression and aggrega-
tion. For illustration and without loss of generality, let consider the compressed
sensing application [105], which reduces the amount of data by exploiting the
sparsity of many body signals. In particular, the sampled signal is compressed
with a certain ratio, which is set equal to one if no compression is adopted;

• The operating system (OS) provides services such as the interaction with the hard-
ware, the software-level management of the sensing, the memory and the radio
transmission. The OS also manages a set of queues, including the ones for in-
terprocess communication, and the one containing the packets to be transmitted.
Furthermore, the OS implements a MAC protocol to share the access to the wire-
less medium among the nodes in the star-topology network;

• The microcontroller (µC) is the component of the platform in charge of execut-
ing the OS and the software applications. Depending on the hardware, techniques
such as dynamic voltage scaling [64] might be available to allow the microcon-
troller to be active for a limited time (duty cycle), and to switch to a low-power
state when there is no task to be executed;

• The memory bank is used to store the data required by the applications and the OS.
Although a larger memory exhibits a higher energy consumption [81], a limited
size may affect the capacity of the internal queues, and hence the performance of
the applications and the throughput of the transmission;

• The radio component describes the hardware used to modulate and transmit the
data through the wireless channel. Depending on the characteristics of the plat-
form, the wireless transmission power and the modulation scheme can be adjusted,
even dynamically [142], to determine the distance that is covered with a predeter-
mined packet error rate (PER).

RELATED WORK

Model-based optimization of wireless sensor nodes is a topic that has been already
explored in the literature. However, most of the related works characterize the energy
consumption of one of the node components shown in Figure 4.18, whereas just few
of them aim at optimizing multiple components and performance metrics, which is
instead the purpose of our work. However, the models of the single components cannot
capture the interdependencies that exist between the different parts of the node, and in
particular they often discard the effects of the application. In [146], the authors propose
an alternative MAC protocol for the ZigBee standard that introduces new power-saving
policies. In [99], a model that relates the routing performed at the MAC level to the
node lifetime is proposed. However, both works assume a multi-hop routing, and thus
they cannot be applied to the star topologies used in WBSNs [153].

A few existing works have tried to propose an optimization that considers several
components of the node. In [36] the authors propose a platform-based design method-
ology for industrial control. Although the work considers all the aspects of the node
design, it is not based on an analytical model, and it mainly focuses on the genera-
tion of a complex network, which is not a critical aspect in WBSNs. In [88], differ-
ent energy/delay tradeoffs are explored by exploiting voltage and modulation scaling.
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Similarly, [163] proposes a model-based optimization framework for star-topology net-
works, and a genetic algorithm to reduce the energy consumption by acting on the
voltage and the modulation level. However, the number of parameters involved in the
optimization is a small subset of the ones that can be tuned on real nodes. In [118],
the authors propose an optimized transmission schedule to minimize the packet delay.
The work shows good potential if transmission delay is the main objective, but it is
not proved to scale in more sophisticated multi-objective optimization scenarios. A
very relevant example of application-driven design is proposed in [68], where a multi-
objective optimization involving all the system components is provided in the field of
wildlife monitoring. The work shows how a deep knowledge of the final application
can lead to an optimized node lifetime, while guaranteeing the quality of service (high
data rate and low distortion). However, it heavily relies on the experimental data and
hence is very specific for the target domain.

THE PROPOSED MODEL-BASED OPTIMIZATION FRAMEWORK

The proposed model-based optimization framework is targeted to WBSN nodes whose
architecture has been depicted in Figure 4.18. The framework includes two parts: a
node model that estimates the relevant quality metrics associated to the system, and an
algorithm to find the optimal configurations.

Analytical Node Model The node model includes fundamental parts that describe
the common structures of every WBSN node, and advanced parts that can be further
detailed according to the specific scenario (e.g., the application, the communication
channel), and parameters that need to be determined through experimental data. The
contribution to the energy consumption of each component is characterized, although
the level of detail differs from component to component depending on the number of
relevant design parameters.

The proposed model is comprehensive as it captures the interdependencies between
different components. The main metric, i.e., the overall energy consumption, is ex-
pressed as a function of the all hardware components of the system (sensor, microcon-
troller, memory and radio), whose behavior is influenced by the applications and the
OS. In particular, the energy consumption per second is expressed as:

Enode = Esensor + EµC + Ememory + Eradio .
�
 �	4.1

However, since the straightforward reduction of the energy consumption may lead to
the loss of performance in one or more components of the node, we defined a set of
performance metrics that only involve one or two components, in order to keep them
monitored during the design.

Sensor The sensor component consists of a transducer to detect the signal, and a hard-
ware circuit to sample the data at a frequency fsampling and quantize it with a resolution
of ρADC bytes. The energy consumption of the former can be considered as a con-
stant related to the specific sensor, while the latter is linearly related to the sampling
frequency [41]:

Esensor = Etransducer + [α1 · fsampling + α0] ,
�
 �	4.2
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where α1 is a constant depending on the capacitance and the square of the supply volt-
age [41] of the A/D converter, while α0 describes leakage effects and is determined
experimentally.

Although specific metrics can be defined to estimate the performance of the sen-
sor, e.g. the signal-to-quantization-noise ratio, a more meaningful evaluation can be
obtained by combining it with the subsequent application component.

Applications The applications are software programs that do not directly dissipate
energy, but influence the performance of the microcontroller, the memory and the radio.
In particular, the applications define the duty cycle (ψapp) of the microcontroller, the
memory requirement (σapp) and the average number of memory accesses per second
(γapp), which can be determined using software profiling. As previously assumed, data
can be compressed at the application level with ratioCR, which generates the following
amount of packets to be transmitted per second (Rp):

Rp = fsampling ·
CR · ρADC
Hpayload

,
�
 �	4.3

where Hpayload is a parameter that defines the number of data bytes included in each
communication packet, and hence Hpayload/ρADC denotes the number of samples per
packet.

In order to evaluate the performance of the applications, domain-specific metrics can
be defined. If compression is the only processing performed at the application level,
such a metric is defined as the quality of the reconstructed signal.

Operating System The OS is composed of software routines that implement services
such as the packet queue and the MAC layer. The software routines of the OS can be
modeled as any other software application, thus requiring a duty cycle ψOS from the
microcontroller, and a maximum memory σOS that is accessed γOS times per second
on average. For the sake of analysis, a separation between memory required by the
transmission queue and the remaining memory occupied by the OS is required, since
a detailed model of the transmission queue is crucial to characterize the throughput of
the system.

The MAC layer implemented in the OS manages the access to the wireless channel
shared among a known number of nodes (Nnodes) connected to the WBSN coordinator.
The access policy defined by the MAC algorithm can be modeled using two quantities:
a transmission window of length ∆tx when the node can transmit without conflicts,
and the number of times this window is repeated per second, Ntx. Those quantities
can be directly computed for contention-free access mechanisms, but they can also be
determined statistically for contention-based policies. In order to enforce the access
policy, the algorithm may require a number of control messages to be exchanged from
the node to the coordinator. This number, denoted as ΦNode→C , and the length of those
messages as HNode→C), and the opposite as ΦC→Node, of length HC→Node. Finally, the
MAC protocol defines the control information that must be included in each packet
(typically a header and a checksum), thus determining the final length Hpacket of each
packet. The transmission queue, which can contain up to λ packets, has then a size of
λHpacket bytes.
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A set of performance metrics can be defined for the OS component, like the through-
put and the packet delivery delay. In particular, the system should guarantee a through-
put of Rp packets per second as required by the application, but certain packets might
need to be retransmitted with a probability equal to PER. Let R(r)

p the packet rate in-
cluding the retransmissions, which is equal to Rp · [1 +$(PER)], where $(PER) is
the estimated number of retransmissions, including possible multiple retransmissions
of the same packet. Then, a sufficient condition to guarantee that the desired throughput
is met is the following:

Ntx

⌊
∆tx

Tpacket

⌋
≥ R(r)

p ∧ λ ·Ntx ≥ Rp ,
�
 �	4.4

where Tpacket is the packet transmission time, and Ntx · b∆tx/Tpacketc is the maximum
channel capacity guaranteed by the MAC layer. The second condition prevents the
capacity of the queue from being a bottleneck and to avoid dropped packets. If the
conditions are satisfied, the worst-case estimation of the packet delivery delay is:

Delay =
1

Ntx

·
∑Ntx−1

i=Ntx−ν i

ν
, ν =

⌈
Rp

R
(r)
p

·Ntx

⌉
,
�
 �	4.5

where ν indicates the fraction of theNtx transmission windows that are required to send
Rp packets. Delay is then computed by considering that all the retransmissions occur
before the Rp packets are transmitted.

Microcontroller Similarly to the sensor, the consumption of the microcontroller is
expressed as a function of its frequency fµC . The processor needs to be active for
a duty cycle defined by the application and the OS, before switching to a low-power
mode where only leakage effects occur:

EµC = (ψapp + ψOS) · β1 · fµC + β0 ,
�
 �	4.6

where β1 depends on the capacitance and on the square of the supply voltage, and β0

describes the leakage effects and should be determined experimentally. Note that, if
the specific scenario does not allow the microcontroller to switch to a low power state,
ψapp + ψOS should be set equal to one.

Memory The system memory is used for the execution of the applications and the
OS, and to store the packets queue. The memory sizeM , which is also the main quality
metric for the design of the memory component, can be written as:

M = σapp + σOS + λHpacket .
�
 �	4.7

The energy consumption of a memory component is due to two factors [81]: a dynamic
consumption due to the memory accesses, and a leakage that is known to be propor-
tional to the memory size and appears when the memory is not being accessed. The
software applications and the OS access the memory γapp and γOS times per second,
respectively. The transmission queue is filled with a number Rp of packets per second
and, since the defined throughput guarantees that no packet is dropped, it is eventually
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read at the same rate. Assuming that the memory access in read and write modes has
the same cost, the energy consumption can be expressed as:

Ememory = (2 ·Rp + γapp + γOS) · Tmem · ζaccess+
[1− (2 ·Rp + γapp + γOS) · Tmem] ·M · ζidle ,

�
 �	4.8

where Tmem is the access time in read or write mode, while ζidle and ζaccess are hardware
parameters that define the consumption in idle and accessing modes.

Radio The energy consumed by the radio depends on the number of packets that are
sent and received. In particular, when a transmission of one bit takes place, the energy
consumption can be expressed as:

Etx = [Pcarrier + Pr] · Tbit ,
�
 �	4.9

where Pcarrier is the power required to generate the signal carrier, Pr is the remaining
consumption related to the radio circuit. Tbit indicates the average time to transmit
one bit, which also includes all the control information added by the physical layer
[142]. The value of Pcarrier can be determined according to the desired PER. In
particular, given the level of noise at the receiver, it is possible to compute the signal-
to-noise ratio and consequently the bit error rate (BER), as a function of Pcarrier and
the modulation scheme [142]. Once the BER is known, the packet error rate can be
expressed as the probability of one bit being erroneous in a packet of length H bytes,
i.e., 1− (1−BER)8H .

The energy required to receive a bit (Erx) is computed as in (4.9), where Pcarrier
is equal to zero, and Pr has a different value during the receiving phase. As a conse-
quence, the energy consumption of the radio can be expressed as:

Eradio =Etx ·
[
R(r)
p · 8Hpacket + ΦNode→C · 8HNode→C

]
+ Erx · [ΦC→Node · 8HC→Node] .

�
 �	4.10

Node Optimization The proposed model provides an accurate evaluation of the node,
hence it is suitable for scalar or multi-objective exploration to find a set of Pareto-
optimal configurations. However, even in an existing platform where all the hardware
constants are already fixed, the optimization may still involve tens of design parame-
ters, ranging from low-level hardware aspects to the tuning of software algorithms. In
order to show how the design space can be efficiently explored using the estimation
provided by the proposed node model, a heuristic algorithm, based on simulated an-
nealing [80], is introduced. The choice of this technique is motivated by its ability to
handle a large number of design parameters, its scalability from single-objective [80]
to multi-objective optimizations [121], and its good convergence properties. The pro-
posed Multi-Objective Simulated Annealing (MOSA) algorithm is shown in Algorithm
3, and it features a different non-dominance policy with respect to the standard MOSA
to improve the stability of the algorithm and consequently the quality of the results.

In order to set up the optimization, one or more metrics (e.g., Enode, Delay, M ,
PER) should be picked as objective functions, thus generating a cost vector Cost(S)
for each node configuration S. Since the single-objective simulated annealing inher-
ently finds a single solution, the MOSA requires multiple executions (Nexecutions) of
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Algorithm 3: Multi-Objective Simulated Annealing
for i = 1 ... Nexecutions do
S ← GenerateRandomConfiguration()
T ← T0
repeat
S′ ← GenerateNeighbor(S)
if Cost(S′) dominates Cost(S) then
S ← S′

else if Cost(S) dominates Cost(S′) OR
no domination between Cost(S) and Cost(S′) then

if RandomNumber() < P (T ) then
S ← S′

end if
end if
T ← Annealing(T )

until T < Tmin

end for

the annealing process [121] to populate the Pareto set: the larger Nexecutions, the more
accurate the Pareto set is, although the MOSA outputs Pareto solutions from the early
executions.

Each execution starts from an initial temperature T0 (typical values are 300 or higher)
and a random initial configuration S. A new candidate solution S ′ is then obtained by
randomly modifying one of the parameters of S and, if the S ′ dominates S, then it is ac-
cepted. If the candidate is dominated by the current best, it can still be accepted with a
probability P . Different criteria to compute P can be found in the literature [121]: after
analyzing them, is possible to conclude that the best way to compute P only involves
the temperature T as follows:

P (Cost(S), Cost(S ′), T ) = e−C/T , C ∈ R .
�
 �	4.11

According to the classical formulation of the MOSA [121], a non-dominance condi-
tion between Cost(S) and Cost(S ′) leads to the acceptance of the candidate, in order
to explore more solutions. This approach, however, may discard a good solution even
at low temperatures. In this framework, a different technique has been proposed, which
employes the transition probability even in non-dominance scenarios and allows the
algorithm to converge as the temperature decreases.

The annealing scheme should guarantee that the temperature decreases slowly enough
to allow the algorithm to converge. A popular scheme is the geometric one, where the
temperature T is multiplied by a constant value lower than 1 (typical values are 0.99 or
higher) at each iteration. The execution finishes when the temperature reaches a lower
bound Tmin (typically close to 5), that corresponds to a low transition probability.

A Case Study The considered real system samples the ECG and uses the compressed
sensing [105] to reduce the amount of data to be transmitted. The compressed signal is
then sent to a smartphone that acts as a central coordinator, reconstructs the ECG and
performs analysis and detection tasks. The choice of compressed sensing is motivated
by the improved node lifetime, indeed, experimental results [105] showed that com-
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pressing and sending data can increase the node lifetime by 9.7% when compared to
transmission of the raw ECG.

The system is implemented on the Shimmer™commercial platform [42], which fea-
tures an ultra low-power microcontroller working at a maximum frequency of 8MHz,
10kB of RAM memory, and a radio implementing the IEEE 802.15.4 communication.
A 3-lead ECG sensor is connected through a daughter board. On the software side,
FreeRTOS [2] was ported on the node, to control the sensing, the queue services and
the beacon-enabled mode of the IEEE 802.15.4 MAC layer [18]. In this MAC protocol,
a beacon is periodically sent by the coordinator to define the time structure in terms of
superframes. A superframe is a time interval divided into an inactive and an active part,
the latter being further divided into a contention-free and a contention-active portions.
In this case study, only the contention-free part is used, so the transmission only occurs
during guaranteed time slots (GTSs).

Mapping the Case Study on the Analytical Model The proposed model provides a
good characterization of many parts of the target node, but additional information can
be included to further describe the application, the memory, the MAC and the radio
modulation.

At the application level the duty cycle ψapp required by the compressed sensing, in
the current implementation, it only marginally depends on the value of CR. The per-
formance metric considered for this component is the percentage root-mean-square dif-
ference (PRD), which quantifies the difference between the original ECG and the one
reconstructed by the coordinator from the compressed data. By analyzing the experi-
mental data provided in [105], the PRD can be expressed as a fifth-order polynomial
function of CR:

PRD = ω5CR
5 − ω4CR

4 + ω3CR
3 − ω2CR

2 + ω1CR− ω0 ,
�
 �	4.12

where the coefficients ωn are positive constant values.
The total available memory on the node is 10kB: according to the experimental

results, 6.5kB are required by the compressed sensing application (σapp), while 3.5kB
are reserved for the FreeRTOS routines (σOS) and for the transmission queue, whose
size is then upperbounded. In particular, for a packet length Hpacket of 127B (i.e., the
maximum value for the selected MAC), λ must be lower than 10.

The beacon-enabled IEEE 802.15.4 MAC layer can also be easily included in the
node. Two protocol-specific parameters need to be defined: the Superframe Order
(SFO), and the Beacon Order (BCO). The former determines the active period or
superframe duration (SD), while the latter defines the interval between two beacons
(BI) as follows:

SD = 15.36ms · 2SFO , BI = 15.36ms · 2BCO .
�
 �	4.13

The superframe structure can be mapped on the transmission window ∆tx of our model,
as the average transmission time per second is equal to SD divided by the number of
nodes in the network. Similarly, BI defines how many times a superframe is repeated,
hence it can be related to Ntx:

∆tx =
SD

Nnodes

, Ntx =
1

BI
.

�
 �	4.14
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In terms of control messages, the standard does not require any control message from
node (thus ΦNode→C = 0), whereas the coordinator sends a number of beacons that
depends on BI , and an acknowledgment for each transmitted packet, hence:

ΦC→Node = R(r)
p +

1

BI
.

�
 �	4.15

Finally, the estimation of the PER for this case study can be obtained by computing
the BER for the 4-PSK modulation [142] with the selected value of Pcarrier.

Node Optimization The proposed MOSA has been used to determine a set of Pareto-
optimal node configurations for the case study application. The design parameters
available on the target platform are fµC , CR, Hpayload, λ, BCO, SFO, and Ptx, while
the cost function includes Enode, PRD, Delay, and PER. For the sake of illustra-
tion, it has been adopted a coarse discretization of the parameters to reduce the design
space to 108 solutions, which can be explored by an exhaustive algorithm to provide a
comparison between the MOSA and the real Pareto set.

The estimation provided by the proposed model proves to be effective as the error
with respect to the experimental data is very low (i.e., it does not exceed the 1.9%).
Moreover, results show that the proposed MOSA effectively explores the Pareto set,
as the optimal solutions found by the MOSA perfectly match the ones found by the
exhaustive algorithm, and cardinality of the Pareto set scales well with the number of
executions. The solutions show a wide range of tradeoffs, e.g., the difference between
the extreme values of Etx exceeds 44%, the values of the PRD span from 0 to 93 (the
maximum range is up to 100), and it is possible to achieve real-time transmission as
well as packet latencies of tens of seconds.

Let us compare the proposed exploration technique with the other state-of-the-art
approaches. Those works aiming at energy minimization, such as the one in [163],
only produce a single solution that minimizes Enode, which is also found by the pro-
posed MOSA. A more interesting comparison involves the proposed approach and a
multi-objective optimization of energy and delay, as proposed in [88]. Figure 4.19
shows that both approaches can identify the Pareto curve in terms of energy and delay.
However, [88] shows some limitations when the application is considered, as it gen-
erates solutions with a high PRD (see Figure 4.20) and a high PER, and only finds
2.3% of the solutions found by the proposed approach. Finally, the executions of the
MOSA and the approach in [88] takes a few minutes, whereas the exhaustive search
takes a few hours and does not scale well on larger solution spaces.
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Figure 4.19: Delay and energy consumption of the Pareto solutions found by the proposed approach (on
the left), and the work in [88] (on the right)
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Figure 4.20: PRD and energy consumption of the Pareto solutions found by the proposed approach (on
the left), and the work in [88] (on the right)

Summary This work presented a model-based optimization framework for the de-
sign of WBSN nodes. Interdependencies between the most recurring components of
a WBSN node, and their effects on the energy consumption have been modeled and a
multi-objective optimization algorithm to explore the optimal tradeoffs available in the
design space has been proposed. The proposed model has been validated on a real case
study, showing how it can effectively handle real standards, and how the optimization
algorithm finds solutions that are consistent in terms of both energy and performance.

4.4.2.2 DESIGN EXPLORATION OF ENERGY-PERFORMANCE TRADE-OFFS FOR
WIRELESS SENSOR NETWORKS

This second example is focused on the design of WBSN with trade-offs among energy
and performance in mind.
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The evaluation of a particular WSN includes aspects that span across multiple layers
(from the network to the hardware, to the application level), and it can be performed
in three ways [29]: a set of physical experiments, a network simulation or an analyt-
ical model. However, when a large number of configurations needs to be evaluated
during the DSE phase, both the empirical experiments and the simulation approaches
become impractical, as the former cannot be automated, while the latter takes an unac-
ceptable amount of time. Conversely, the analytical model enables a fast evaluation and
a deep understanding of the dynamics of the network, but its definition raises several
challenges related to its accuracy and reusability. In fact, a detailed characterization
of a specific WSN has been shown to lead to efficient network designs [68], but such
a model requires a detailed knowledge of the application and the target platform, and
it cannot be reused to model different classes of WSNs. On the other hand, a generic
system-level model that can be easily instantiated to a specific WSN would greatly
simplify the task of the designer, but no model with these characteristics has been pro-
posed yet, as it is complex to define a characterization that can describe all the different
classes of WSNs with a sufficient accuracy.

Although the definition of a general model is limited by the great differences among
the WSN domains, differently from the previous example, it is shown that it is possible
to focus the scope of the model to wide classes of networks in order to capture their
most relevant aspects, thus providing a model that is both detailed and reusable on many
instances of WSNs. A multi-layer characterization of the nodes and of their interactions
in a well-defined class of WSNs leads to an accurate estimation with respect to both
actual and simulated data, and that a DSE algorithm greatly benefits from a model-
based evaluation in terms of execution time. Furthermore, in order to provide a coherent
system-level estimation of the network during the DSE, a set of performance metrics
that belong to different layers (i.e., delay, application quality, energy consumption) is
proposed; it leads to the determination of the optimal energy-performance tradeoffs.
As a proof of concept, the proposed model targets the wide class of wearable wireless
body sensor networks (WBSNs), which are a rising technology in the field of human
health monitoring [131] both for medical and personal use. Experimental evaluations
conducted on a real-world WBSN show that the proposed model never generates an
estimation error greater than 1.74%.

Related Work Over the last years, model-based evaluation as a support for DSE has
been extensively explored in many fields. In the WSN domain, node and network
models have been traditionally proposed to characterize specific aspects of the network,
and to validate new protocols [146] or energy management strategies [163]. None of
them, however, guarantees a general system-level description that can be easily adapted
to describe a real WSN.

At the node level, analytical models for all the most common hardware blocks were
proposed even before the advent of WSNs. In particular, detailed energy characteri-
zations are available for hardware circuits, sensors and microcontrollers [64], memory
banks [81], and radio circuits [142] [43]. However, these models do not consider any
interdependency between the different parts of the system, hence they are not sufficient
to describe the behavior of a set of networked nodes. In [163], the authors relate the
energy consumption and the throughput of the node to the supply voltage of the micro-
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controller and the modulation level of the radio. Although the work is a good example
of how different aspects of the node (i.e., sensing, processing and transmission) can be
combined, the parameters that are considered are only a small subset of the ones that
can be found on real nodes.

At the network level, several works propose a model of different media access con-
trol (MAC) protocols, and in particular the widely-adopted IEEE 802.15.4 [18] stan-
dard. For example, [82] characterizes the behavior of the IEEE 802.15.4 MAC layer
on large-scale networks, both in terms of energy consumption and packet transmission
probability. In [151], a similar analysis is proposed for WBSNs, with a particular em-
phasis on the radio activity of the node. The works in [83] and [128] focus on the part
of the IEEE 802.15.4 standard that works in TDMA mode, and propose two separate
techniques to estimate the expected packet delay. However, none of the aforementioned
network models propose an in-depth analysis of the application executed by the nodes,
which is crucial to have a coherent global evaluation of the WSN.

Another important aspect of the trade-off analysis is the definition of a set of metrics
that capture all the relevant dynamics of the network. Traditionally, energy consump-
tion is always a major concern during the network evaluation [146] [163] [82], but other
metrics such as throughput and end-to-end delay may be considered. For example, dif-
ferent energy/delay tradeoffs are explored as a function of the voltage and the radio
modulation in [88]. However, no application-related metric is generally proposed in
order to characterize the overall behavior of the network as seen by the end user.

As a conclusion, none of the existing models provides a coherent system-level de-
scription that can be applied to real-world WSNs, mainly because they only focus on
specific aspects of the system and often neglect the final application. This example
shows that a general –and yet reliable– analytical model for the nodes and the whole
network can be defined if its scope is limited to a set of WSNs sharing similar structures
and application domains.

System-Level Model for WBSNs A typical WBSN [153] follows the structure illus-
trated in Figure 4.21. The network comprises a set of low-power nodes that can be
worn by the same person or by different ones (e.g., the patients in a hospital, or a team
of athletes) to monitor one or more vital signs to be sent to a central network coordina-
tor. Once the signal has been sensed, each node performs a data pre-processing using
a software application executed on a microcontroller-based hardware architecture (see
Figure 4.21), and finally sends the output to the coordinator through the wireless chan-
nel. The coordinator is responsible for the analysis of the data, and the definition of the
network activity (e.g., the enforcement of the MAC protocol). In WBSNs, a star topol-
ogy network is generally employed, hence the communication between a node and the
coordinator is direct [153]. Moreover, the wireless channel is shared among the nodes
using a collision-free, time-division multiple access (TDMA) policy, which leads to a
lower energy consumption with respect to a contention access. These assumptions are
sufficient to characterize a wide set of networks in the WBSN domain in order to define
an abstract model that can be easily adapted to real nodes and standards, as shown later
by means of a case study.
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Network
Coordinator

Figure 4.21: Overview of a typical WBSN

Network Model The network model captures the interactions among the nodes and,
in particular, how they share the wireless channel. For this purpose, the N nodes of the
network are now considered as black boxes generating an output stream of φout bytes
per second (B/s). The transmission is regulated by the MAC protocol, which aims
at assigning a transmission interval ∆

(n)
tx (the index denotes that the quantity refers to

node n) per second to each node, by acting on protocol-specific parameters that form a
configuration χmac. Each node is then in charge of tuning the throughput φ(n)

out in order
to be able to deliver its data in the time ∆

(n)
tx .

To describe the MAC layer, the following abstractions that capture its most recurring
characteristics are introduced:

• a data overhead due to packetization and flow control, consisting of a number
of extra bytes that are required to transmit φout (e.g., headers and tails). This
overhead will be indicated as Ω(φout, χmac) (measured in Bytes/sec);

• a control overhead, which includes the control messages (e.g., synchronization
packets and acknowledgements) that are exchanged between a node and the co-
ordinator. These messages generate an energy dissipation due to their trans-
mission/reception. The volume of control messages from the coordinator to the
node and vice versa is defined as Ψc→n(χmac) and Ψn→c(χmac) (measured in
Bytes/sec);

• a timing overhead per second, i.e., time intervals where the channel is unavailable,
either because of the transmission of control messages or because the network is
kept idle. This quantity is ∆control(χmac);

• a time discretization. Since a protocol does not generally assign an arbitrary and
continuous transmission time to each node. δ is the base time unit that is used in
the selected protocol, thus transmissions’ intervals are expressed as multiples of
δ.

The goal of the network design is to size the transmission intervals to enable each node
to deliver all its data and the corresponding control information. This is modeled as
an assignment problem that is tailored for the typical star-topology TDMA transmis-
sion of WBSNs, but it can be also adapted to a contention access protocol (in fact, the
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∆
(n)
tx ’s can be statistically determined as the average amount of time a node can suc-

cessfully transmit per second, as shown in [40] for the CSMA/CA). In particular, the
MAC protocol has to find a number k(n) for each node n such that:

∆
(n)
tx = k(n) · δ ≥ Ttx

(
φ

(n)
out + Ω

(
φ

(n)
out, χmac

)) �
 �	4.16

where Ttx(·) denotes the transmission time required to send the specified amount of
data, and depends on the physical radio. Additionally, the assignment of the transmis-
sion intervals by the MAC protocol must be constrained in order not to exceed the total
of one second:

N∑
i=1

∆
(i)
tx + ∆control(χmac) = 1

�
 �	4.17

From the DSE perspective, allowing the network to stay silent for a long time leads
to good solutions in terms of energy consumption, but in practice it increases the data
delay. Hence, we define the delay function d(χmac) to quantify the average (or the
maximum) time between the generation of the data and the instant it is received by
the coordinator. Such a function cannot be defined in the general case, but it can be
determined according to the specific MAC and the traffic patterns of the nodes, as we
show in the case study.

Node Model A typical WBSN node follows the microcontroller-based architecture
shown in Figure 4.21. This Section introduces a model that captures the interde-
pendency among the hardware components in terms of consumption and application-
related metrics, as well as the influence of the network configuration on the single node.
The node has been characterized by means of a configuration χnode, which includes
the configurable parameters both on the hardware side (e.g., frequency, transmission
power), and on the software side. All the parameters that cannot be tuned, or that are
not relevant for a system-level optimization, will not be detailed in this model.

The node first samples the physiologic signal with a frequency fs, and the samples
are then quantized by an A/D converter to produce values of Ladc bytes, thus generat-
ing an input stream φin of fs · Ladc (B/s). The sampling activity leads to an energy
dissipation that can be expressed as:

Esensor = Etransducer + [αs,1 · fs + αs,0]
�
 �	4.18

A linear function of fs (with coefficients αs,1 and αs,0) captures the behavior of the A/D
circuit [41], whereas Etransducer is an overhead included by the transducer.

The input stream φin is then processed by an application, which typically consists of
filtering or data compression. The behavior of the application layer is determined by a
set of parameters (e.g., approximation factors and compression ratios), which determine
three key aspects:

• the output stream φout. From a quantitative perspective, the application can be
modeled as a function h that processes the input stream φin and produces a certain
amount of results to be transmitted. As a consequence, the output of the node is
equal to φout = h(φin, χnode) and, if an estimation of the transmission errors is
available (e.g., [142]), then the average amount of retransmitted data can be added
to the original φout;
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• the resource usage. The vector u = (Dutyapp,Mapp, γapp, u4, ..., un) represents
these quantities. It contains n elements, one for each hardware resource that can
be tuned on the target platform. A different notation is used to identify the duty
cycle of the application on the microcontroller (Dutyapp), the amount of memory
required during the execution (Mapp), and the number of memory accesses (γapp),
which will be used later for energy considerations. The resource usage depends
on how the node is tuned (i.e., χnode) and on the amount of data to be processed.
Hence, a function vector k = (k1, ..., kn) is defined such that u = k(φin, χnode),
where ki(φin, χnode) computes the usage of resource i.

• the output quality. As the application generally introduces an approximation, let
be e(φin, χnode) an application-specific function that measures the loss of quality
between the original and the transmitted data.

The execution on the microcontroller generates an energy dissipation that linearly
depends on the duty cycle and on the operating frequency (fµC) [41]:

EµC = Dutyapp · [αµC,1 · fµC + αµC,0]
�
 �	4.19

The execution also leads to an energy consumption due to memory access, which
can be estimated as follows [81]:

Emem = γappTmem · Eacc + (1− γappTmem) 8Mapp · Ebit
idle

�
 �	4.20

This equation includes two contributions: a dynamic consumption due to the γapp mem-
ory accesses, and a residual that occurs during idle periods and is proportional to the
memory size. In the equation, Tmem indicates the access time, Eacc defines the con-
sumption of a single access, and Ebit

idle denotes the dissipation per bit due to leakage.
Finally, the output stream φout and the control information need to be transmitted

to the coordinator by the radio unit during the assigned transmission intervals. The
physical radio determines the transmission time in Equation (4.16) and the dissipation
associated to the reception (Erx) and the transmission (Etx) of one bit, the latter being
related to the power of the carrier signal [142], which must be chosen to achieve a low
packet error rate. Thus, the energy consumption due to the radio can be expressed as:

Eradio = [8 (φout + Ω(φout, χmac)) + 8Ψn→c(χmac)] · Etx
+ 8Ψc→n(χmac) · Erx .

�
 �	4.21

Then, after including the contribution of all the analyzed layers, the overall node
consumption can be expressed as:

Enode = Esensor + EµC + Emem + Eradio .
�
 �	4.22

System-Level Evaluation Metrics The performance metrics of each node (i.e., Enode
and e(φin, χnode)) into consistent network-level objective functions. As already stated,
finding balanced configurations is a major concern while combining the different met-
rics, in order to avoid situations where the coordinator receives data of different quality,
or where heavily optimized nodes are alternated to other nodes with an insufficient life-
time. As a consequence, the network-level energy consumption (Enet) is a weighted
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combination of the average energy consumption of the nodes, and the sample standard
deviation of this quantity over the WBSN:

Enet =
N∑
i=1

E
(n)
node

N
+ ϑ ·

√√√√ 1

N − 1

N∑
i+1

[
E

(n)
node −

N∑
i=1

E
(n)
node

N

]2

,
�
 �	4.23

where ϑ is a positive constant that determines the importance of the balance among the
nodes. A network-level application quality metric can be defined in a similar way, by
combining all the loss-of-quality functions e(n)(φin, χnode) as we did in Equation (4.23)
for E(n)

node.

A Real-World WBSN Case Study The proposed multi-layer model for WBSNs can
be easily used to model a real network that uses a commercial platform and widespread
standards. The illustrative case study consists of a WBSN for electrocardiography
(ECG) monitoring. It is assumed the following scenario: a hospital whereN patients (in
this example,N = 6) are wearing a node that is connected to a central base station. The
nodes reduce the size of the output stream by applying one of the two available data
compression techniques, i.e., digital wavelet transform (DWT) [33] and compressed
sensing (CS) [105]. The two techniques have different properties in terms of complex-
ity, signal quality and hardware requirements: for the sake of illustration, the half of
the nodes employ DWT, and the remaining ones execute CS.

The target application is the SHIMMER commercial platform [42], which includes
an ultra low-power microcontroller, 10kB of RAM memory, and an IEEE 802.15.4 [18]
radio module. The transmission is performed using the beacon-enabled mode of the
IEEE 802.15.4 MAC layer [18]. Considering the set of parameters on the node and
the MAC protocol, the number of possible network configurations of this case study
exceeds the tens of millions, thus making a deep DSE impractical by using network
simulation or by collecting experimental data. The proposed model, on the other hand,
contains all the structures that are needed to fully describe the target network.

IEEE 802.15.4 Network Model The proposed system-level WBSN model can cap-
ture the relevant dynamics of the beacon-enabled mode of the IEEE 802.15.4 [18] MAC
protocol. In this protocol, a beacon is periodically sent by the coordinator to define the
structure of the next superframe, a time interval whose structure is shown in Figure
4.22. The superframe is divided into an inactive and an active part, the latter being
divided into 16 slots, 7 of which (known as guaranteed time slots, GTSs) are granted
using a TDMA-like protocol.

The IEEE 802.15.4 MAC configuration is defined as

χmac = {Lpayload, SFO,BCO,∆(1)
tx , ...,∆

(N)
tx }

where Lpayload is the payload in a data packet, and SFO andBCO denote the super-
frame and the beacon orders, which in turn determine the interval between two beacons
(BI) and the duration of the active part (SD) (see Figure 4.22) [18]. Finally, the ∆

(n)
tx ’s

indicate the transmission time allocated to each node.
The IEEE 802.15.4 MAC protocol can be easily mapped on the proposed model’s

equations. For example, the data overhead introduced by the MAC is equal to 13 bytes
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

INACTIVEGTSGTSGTS

Contention-Free Period (CFP)Contention Access Period (CAP)

Beacon Beacon

Superframe Duration (SD) = 15.36 ms * 2SFO

Beacon Interval (BI) = 15.36 ms * 2BCO

Figure 4.22: Structure of the IEEE 802.15.4 superframe

(11 for the header, 2 for the checksum) for each packet, hence Ω(φ
(n)
out, χmac) = 13 ·

φ
(n)
out/Lpayload. In terms of control overhead, the protocol does not require any control

message from node (thus Ψn→c(χmac) = 0), whereas the coordinator sends a number
of beacons (of variable length, which we denote as Lbeacon) that depends on the number
of superframes per second (i.e., 1/BI), and an acknowledgment (4 bytes) for each
transmitted packet, thus Ψc→n(χmac) = 4 · φ(n)

out/Lpayload + Lbeacon/BI . Furthermore,
∆control(χmac) is the time required by the coordinator to transmit 1/BI beacons per
second, plus at least 9 slots reserved for contention access (which are not exploited in
this case study), and the inactive period of the superframes.

The model can handle additional protocol-specific constraints on the assignment
of the ∆

(n)
tx ’s. Firstly, the ∆

(n)
tx ’s cannot be arbitrarily assigned because of the time

discretization imposed by the slots. Hence, the base transmission time δ is equal to the
slot length, i.e., SD/16, and all the ∆

(n)
tx ’s are expressed as multiples of δ. Then, as

the protocol specifies that at most 7 slots can be used as GTSs, the overall transmission
time that can be allocated for the nodes is constrained as follows:

∑N
i=1 ∆

(i)
tx ≤ 7/16 ·

SD/BI .
Finally, thanks to the nature of data compression that leads to a uniform output

rate, a simple delay model (based on the one in [83]) can be formulated. In particular,
the worst-case delay for a node n occurs when the remaining nodes use all their slots
(and the control overhead for all the corresponding frames) before node n is enabled to
transmit:

d(n)(χmac) ≤
N∑

i=1, i 6=n

∆
(i)
tx +

⌈
1

7

N∑
i=1, i 6=n

∆
(i)
tx

⌉
∆control .

�
 �	4.24

Shimmer Node Model Since the SHIMMER platform is already implemented, some
parameters are fixed. In particular, the sampling frequency is determined by the na-
ture of the ECG signal and is fixed to fs=250Hz, and the resolution LADC of the A/D
converter is set to 12 bits, thus generating a constant input stream φin = 375 B/s.
The contribution of the 10kB memory block is also constant, as the memory accesses
are determined by the Shimmer-specific implementations of the DWT and CS algo-
rithms [105]. At the radio level, the power of the carrier signal has been set to a suf-
ficient level in order to minimize the probability of a packet error, thus avoiding an
increment of φout due to retransmission. Hence, the configuration of a node is char-
acterized as χnode = {CR, fµC}, where CR is the compression ratio, and fµC is the
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Figure 4.23: Estimation of the node consumption with different configurations

frequency of the microcontroller.
The output stream φout can be easily expressed as a function of CR, i.e., φout =

h(φin, χnode) = φin ·CR, which holds for both the DWT and the CS applications. How-
ever, the two compressions show different duty cycles and loss-of-quality functions.
The duty cycle of the Shimmer implementations of DWT and CS show a marginal de-
pendency on CR, but there is a relation with respect to fµC ∈ χnode. By analyzing the
execution, we can define the resource usage function as k(φin, χnode) = (kDWT , kCS) =
(2265.6/fµC , 388.8/fµC). To estimate the quality of the application, similarly to the
previous example, the percentage root-mean-square difference (PRD) [105], which
quantifies the difference between the original ECG and the one reconstructed by the
coordinator, is considered. Although the actual PRD value can only be determined
by measuring or simulating the actual reconstructed signal, an analytical estimation
is computed using two fifth-order polynomial functions P (DWT )

5 (CR) and P (CS)
5 (CR)

that fit the experimental data provided in [105].

Experimental Results The first set of experiments aims at validating the estimation
provided by the model. The model equations have been validated against the actual
experimental data obtained under different operating conditions. Figure 4.23 shows the
estimation of the overall energy consumption of the nodes with set of realistic config-
urations χnode. The energy estimation proves to be very accurate, as the average error
on all the fµC’s and CR’s is equal to 0.88% for the CS, and to 0.13% for DWT, and the
maximum error does not exceed 1.74%. The model also predicts that the DWT cannot
complete its execution with fµC = 1 MHz because its duty cycle exceeds 100%. Figure
4.24 shows the estimation error for the PRD’s, which proves to be very low (0.92%
for the CS, 0.46% for the DWT), thus showing that the model accurately estimates a
crucial metric that can be exactly determined only by analyzing or simulating the actual
compressed ECG.

To validate the network model, the estimated delay has been compared to the results
of a network simulation performed using the popular Castalia framework [9]. The
choice of a network simulator over experimental data is justified by the possibility of
deeply monitoring the packet flow. In spite of being a worst-case estimation, the delay
function in Equation (4.24) provides an average overestimation lower than 100 ms over
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Figure 4.24: Estimation of the application behavior by means of the PRD metric

a set of 130 simulations with realistic φout’s and χmac’s, which is acceptable in this
application.

Design Space Exploration Performance The proposed WBSN model has been em-
ployed in a set of multi-objective optimization techniques, including genetic algo-
rithms (which have been already used in the WSN domain [163]) and simulated an-
nealing [121], without experiencing any relevant difference in terms of quality of the
solutions. However, in terms of execution time, the proposed evaluation clearly out-
performs a complete network simulation, in fact, a network simulation takes 5 to 10
minutes in our case study, while the model can be evaluated approximately 4800 times
per second.

Figure 4.25 shows the optimal tradeoffs between the three metrics included in our
model and, in order to underline the importance of considering all these metrics, these
solutions are compared to the ones found by using a state-of-the-art energy/delay model
[88]. It can be observed that the Pareto set generated according to the energy/delay
model only contains a subset (i.e., approximately 7%) of the tradeoffs that are found
using the proposed model: this is due to the fact that the energy/delay model does
not include an additional application-aware metric. As a consequence, it only approx-
imates the energy/delay curve, but it does not allow the DSE algorithm to recognize
the solutions that are optimal in terms of PRD. In order to detect the large number
of Pareto tradeoffs characterized by acceptable mid-range PRD’s, the proposed multi-
layer model must be employed.
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Figure 4.25: Tradeoffs detected using the proposed model and a state-of-the-art energy/delay model [88]

Summary This example highlights the benefits of a quick and accurate analytical
evaluation in the context of model-based design of WSNs. Although WSNs show a
wide range of different characteristics in different fields, it is possible to formulate
abstract system-level models for broad classes of networks, which share common ar-
chitectural and network structures, or more generally belong to the same domain. As
a proof of concept, the class of WBSNs has been considered in order to prove that a
general and comprehensive model can be defined and it can be applied to real networks
with a low effort and a high accuracy. The results on a real case study show that the
estimation error for energy and performance never exceeds 1.74% with respect to real
data, while the estimation time is up to six orders of magnitude lower than an evaluation
performed by a network simulator.

4.4.3 Hybrid Design Space Exploration
A critical aspect of the Design Space Exploration (DSE) is the evaluation of a WSN
configuration. Among the possible evaluation techniques, network models provide a
deep understanding of the network dynamics that can be exploited during the DSE,
but their definition is generally difficult and requires a deep knowledge of the working
domain [29]. As a consequence, the evaluation is typically performed using extensive
network simulations [56], which are more accurate and reusable. However, a WSN
simulation may take from several minutes to hours (depending on the network size)
to be completed, and it should be repeated tens of times (generally more than 30) to
mitigate the effects of randomness and ensure reliable statistical results. Moreover, a
simulator can be considered as a black box that does not provide any information about
the inner dynamics of the network, therefore no reasoning can be performed by the DSE
algorithm. As a consequence, simulation is employed in the context of semi-random
algorithms (e.g. genetic algorithms or simulated annealing), which however require a
high number of evaluations – and hence an unacceptable amount of time – to converge.
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4.4.3.1 KNOWLEDGE-BASED DESIGN SPACE EXPLORATION OF WIRELESS SEN-
SOR NETWORKS

The technique that will be introduced in this Section has already been presented in [62].
It is a knowledge-based DSE algorithm that effectively tackles the design complexity of
WSNs, by combining the domain knowledge of the analytical models with the gener-
ality and the flexibility of network simulators. Unlike semi-random algorithms, which
require an evaluation at each step, the proposed approach performs several moves by re-
lying on a set of domain-specific rules, thus greatly reducing the number of simulations.
For this purpose, the Markov decision process (MDP) algorithm [32] has been adapted
to the WSN domain. Moreover, its inherited scalability issues have been tackled to face
the large design spaces of WSNs. In addition, a general domain knowledge has been
introduced for the most popular WSN MAC layer, i.e., the IEEE 802.15.4 [18], which
can be reused on any WSN based on this protocol. Validation results prove that the
proposed approach effectively reduces the number of simulations with respect to state-
of-the-art semi-random algorithms from 60 to 87% on multiple real-world scenarios.

State of the Art Design space exploration is a well established research topic in many
different fields, such as embedded architectures or system-level design. However, auto-
matic DSE is still immature in WSN design, where the complexity of the network and
the peculiarity of each application domain often push the developers towards manual
and ad hoc optimizations (e.g., the work in [68] for wildlife monitoring).

The main obstacle towards the complete automation of the DSE of WSNs is a rapid
and accurate evaluation of a solution. Currently, the two evaluation techniques [29] are
models and simulations. Analytical models describe the WSN dynamics by means of
a set of equations that provide a white-box view of the system, thus extensive analysis
are possible. When a model-based evaluation is employed, the DSE is considerably
faster compared to simulation-based approaches, but the accuracy of the model is typi-
cally guaranteed only for specific domains or for specific aspects of the WSN. In fact,
only models that have been proposed for single classes of WSNs (e.g., [151] for body
area networks) or for specific protocols (e.g. [82], [40] and [129] for three different
operations of the IEEE 802.15.4 MAC layer) show an accuracy that is comparable to a
simulation. On the other hand, simulations are usually more precise and reusable, and
they better profile all the aspects related to communication, energy and resource usage
of distributed applications. However, a robust simulation takes several from minutes to
hours, thus making it impractical for extensive DSEs.

In this context, the evaluation technique heavily affects the choice of the optimiza-
tion algorithms. When an analytical description of the WSN (or, at least, of a spe-
cific part of it) is available, the optimization can be performed using ad hoc heuristic
algorithms (e.g., in [61] to solve the network connectivity problem) or efficient tech-
niques such as convex optimization (e.g., [118] for energy/delay optimization). The
simulation-based estimation, on the other hand, has a black-box nature that does not
allow any analytical consideration during the execution of the algorithm. This limita-
tion leads to the employment of semi-random approaches such as genetic algorithms
(e.g., [56] for placement and role assignment), multi-objective evolutionary algorithms
(e.g., [119] for gossip-based WSNs), simulated annealing and Bayesian networks (e.g.,
[112] for a cross-layer optimization of cognitive wireless networks). However, given
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Table 4.1: Speed and accuracy of existing DSE techniques

Low Accuracy High Accuracy

Slow Simulation-based
( [56] [119] [112])

Fast Model-based MDP( [61] [118])

the high execution time required by a simulation, the class of semi-random algorithms
does not scale well on large design spaces that are typical of real-world WSNs.

Model-based and simulation-based exploration offer a speed/accuracy tradeoff that
is summarized in Table 4.1. The proposed technique combines the high accuracy and
reliability of a solution that is evaluated by a simulator, and the high speed that can
be achieved when we include model information, calibrated with the simulator, in the
DSE. In particular, the rationale is to move within the design space by exploiting the
model information until they are accurate, and then use the simulation whenever it is
strictly necessary.

Markov Decision Process The proposed knowledge-based design space exploration
algorithm for the WSN domain is based on a discrete-space Markov decision process
(MDP). The classical MDP approach, which has been successfully applied in other
domains such as multiprocessor systems design [32], has been tailored to the WSN do-
main in order to enhance its performance and to increase its scalability. The proposed
algorithm combines the available domain knowledge – which may come from an an-
alytical model or by an analysis of the specific application – with a simulation-based
network evaluation, in order to obtain an accurate and yet efficient DSE for WSNs.

In this approach, the DSE is considered as a path from the initial configuration P to
a final configuration P̂ . The path is identified by applying sequential transformations
on the parameters, and the quality of these transformations is evaluated thanks to both
models and simulations. The configuration P is composed by a set of parameters such
as P = {p1, ...pk...pn} and an action a ∈ A specifies how a configuration should be
modified (i.e. "double the CPU frequency"). Actions transform the configurations as
follows:

Definition 1. Given a configuration of parameters P = {p1, ...pk...pn} and an action
a ∈ A, a transformation τ(pk, a) produces a new configuration P ′ = {p1, ...p

′
k...pn}

where pk 6= p′k

Once a transformation τ(p, a) has been performed, its effect on the metrics is eval-
uated using movement vectors:

Definition 2. A movement vector is a vector of intervals in the metrics space corre-
sponding to a transformation vector in the parameter space defined as:

Φ = 〈f1(τ(pk, a)), f2(τ(pk, a)), ...fi(τ(pk, a)), 〉

where i = |M |, and
−→
f = f1, f2, ..., fi are functions that determine the effect of the

transformation τ on each metric mj ∈M .
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Figure 4.26: An example of actions on P. The metrics space is partitioned in 6 areas and centroids are
illustrated with black dots

Movement vectors are used to estimate the metrics of a configuration P ′ generated
from an action a applied to a configuration P . For each metric mi ∈ M , an interval
in the metrics space [mL

i ,m
H
i ] specifies the range where the actual (real) value of the

metric is included.
−→
f functions and movement vectors Φ are problem-specific (based

on a model), thus problem-specific models are required.
For instance, the effect of the action "double the operational frequency of a proces-

sor" could in the worst case increase of up to two times of the energy consumption
(mH) or, in the best case, leave it unaltered (mL). Thus, the movement vector associ-
ated with this action is [E, 2E], where E indicates the current energy consumption. It
indicates that, whereas the action "double the operational frequency of a processor" is
applied on a configuration P , the energy consumption of the resulting configuration P ′

belongs to the interval [E, 2E].
To tackle exploration accuracy, the metrics space is partitioned according to a pa-

rameter
−→
λ defined for the exploration.

−→
λ is a vector of scalars that specifies the max-

imum width of a partition for each metric. Partitioning is used to divide large areas
into smaller areas such as the maximum error is defined by λ, given by the difference
between the present value of the metrics (to be determined through simulation) and the
centroid of the partition that best approximates it. An example of an action on a param-
eter is illustrated in Figure 4.26 where action a, applied to P , generates P ′ = τ(P, a).
The metrics M(P ′) are evaluated from M(P ) through domain knowledge Φ and re-
sults in an area included into 〈[m11,m12], [m21,m22]〉. The area is partitioned in six
partition (whose centroids are depicted with black dots) according to

−→
λ .

The utility function (Ψ) has the utility property [140] and is a function of the met-
rics M . In a multi-objective exploration, metrics are combined in order to be able to
enumerate the solutions. Ψ can be linear (w1m1 + w2m2 + ... + wimi) or exponential
(mw1

1 + mw2
2 + ... + mwi

i ). To obtain the Pareto curve, the exploration is performed in
a multivariate environment, thus

−→
W = {w1, w2, ...wi} must change during the explo-

ration in order to explore all the directions of the metrics space. In a two-dimensional
metrics space, this can be achieved, i.e., using the scalarizing function mα

1m
(1−α)
2 with

α in [0, 1].
The exploration is modeled as a MDP:
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Definition 3. A MDP is a tuple < S,A, TP ,R > where:

• S is the set of possible states describing a solution of the DSE problem;

• A is the set of possible actions that can be applied on the states;

• TP : S × A → Π(S) is the state transition function as the probability density
function for every state-action pair;

• R : S × A× S ′ → R is the expected reward for each state-action pair.

The behavior of the MDP is described with the Decision Tree D, a tree-based struc-
ture used to evaluate the various configurations. A node s ∈ S in D represents a state
of the system expressed by the tuple 〈P,M〉, where P is a point in the parameters space
and M a point in the metrics space. An edge e ∈ E is defined as:

e = 〈si, sj, a, TP (si, a, sj)〉

and it represents the transition probability (given by the transition function TP ) from
state si to state sj when action a is applied.

Figure 4.27: Example of a Decision Tree D. Cumulative return V is computed using the Value Iteration
Algorithm (see Algorithm 4)

Each partition identifies a new node in the decision tree, and the reward of the actions
(R) is computed as the difference between parent (Ψp) and child (Ψc) utility functions:

R = Ψp −Ψc

�
 �	4.25

For each partition 〈s, a, s′〉, the probability TP i(si, a, sk) is computed as the number of
times 〈s, a〉 ends in s′ when traversing the decision tree from root to leaf. The decision
tree is progressively built by iterating on the newly generated nodes breadth-first, until
either is not possible to apply any other action on the leaf nodes or the l-th level is
reached. During the creation of D, in order to avoid useless exploration, opposite
actions are included into a forbidden list such as they will not be applied. For example,
if the action Increase CPU frequency is applied, the action Decrease CPU frequency in
included into the forbidden list since it voids the previous action.

An example of the Decision Tree D is shown in Figure 4.27. From the initial state
s0, two actions are applied (a1, a2) resulting in three states (s1, s2, s3) where s1 and s2
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are two partitions. Actions a3 and a1 are further applied on the second level of the
tree. For each state, metrics are associated; this example has two metrics that must be
minimized. Rewards estimate the benefits of the actions on Ψ and are used to guide the
exploration to better solutions. To determine the reward of the actions, Value Iteration
Algorithm (see Algorithm 4) is used on D. For all the states in the tree and for all the
available actions, the reward of an action Q(s, a) is computed by adding the reward
of choosing that action (R(s, a, s′)) with the cumulative return on the destination node
(V (s′)) scaled by γ. γ is a scalar value (0 ≤ γ ≤ 1) used to control the influence
of (expected) cumulative returns. Transition probability TP (s, a, s′) is considered in
the formula. In this specific example, V is computed by considering γ = 0.6 and the
utility function m1−α

0 + mα
1 with α = 0.5. According to the metrics, the algorithm

identifies a2 as the best action in this situation; in fact, s7 is optimal with respect to the
given metrics. The new state is s3 and no simulation is required since no uncertainty is
detected here.

Algorithm 4: Strategy Evaluation Algorithm

1 initialize V (s) = 0
2 repeat
3 forall the s ∈ S do
4 forall the a ∈ A do
5 Q(s, a) =

∑
s′∈S

TP (s, a, s′)[R(s, a, s′) + γV (s′)]

6 end
7 V (s) = maxaQ(s, a)

8 end
9 until strategy converges;

The overall exploration strategy is illustrated in Algorithm 5. It starts (first step)
by generating an initial configuration P0 (line 32) – that can be identified randomly or
pseudo-randomly. Once P0 has been evaluated by simulation and the initial state s0 has
been generated (line 6), the set of states to be examined (S) is initialized (line 7).

The second step of the algorithm solves the MDP. For each state in s, all possible
actions are applied, generating the configurations that differ from s0 by one parameter
(lines 13-26). For all the generated configurations (obtained by applying a in si), sk
metrics are partitioned, D and TP (si, a, sk) are updated. The generation of the Deci-
sion Tree continues until no new states are available or the maximum depth l has been
reached. At this point (line 27) the best value iteration algorithm [140] is applied and
the best_actions are updated on D.

The third step applies the best_action of s0 in s0 to get the set of reachable states
(NS). At this point, three situations are possible:

1. No Uncertainty: the action can lead to a single state. The action is determined
with an accuracy λ and no simulation is necessary;

2. Uncertainty of the First Kind: the action leads to a set of states and the algorithm
maps the same action to all of them. It means that, whichever state the system
will end into, the same next action is chosen. In case the amount of states is
below a given thresholdK, simulation is not required and parallel exploration will
follow, otherwise simulation is required; K controls the amount of solutions to be
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Algorithm 5: Overall Exploration Strategy

1 Identify the configuration parameters
−→
P

2 Define the movement vectors Φ
3 num_runs=0
4 repeat
5 Generate an initial configuration P0

6 sinit = Simulate(P0)
7 Initialize the set of states to be examined S = sinit
8 repeat
9 depth = 0

10 reset D
11 get an element s0 ∈ S, S = S − s0
12 s = s0
13 repeat
14 snew = {}
15 forall the si in s do
16 forall the a applicable in si do
17 apply a in si creating child nodes sk
18 partition sk metrics
19 update D and TP (si, a, sk)
20 snew = snew + sk
21 add a to forbidden action list of si
22 end
23 end
24 s = snew
25 depth++
26 until s = ∅ or depth == l;
27 Value Iteration Algorithm(D)
28 NS = τ(s0, best_action(s0))
29 if |NS| ≥ K or (∃si, sj ∈ NS: best_action(si) 6= best_action(sj) and i 6= j) then
30 snext = Simulate(Ps0 )
31 if snext /∈ NS then
32 Error −→ Restart From Line
33 end
34 NS = snext
35 end
36 if convergency then
37 Simulate(Ps0 )
38 else
39 S = S +NS
40 end
41 until S = ∅;
42 num_runs++
43 until num_runs ≥ MAXRUNS;
44 Change Utility Function
45 Repeat All
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(a) Simulation not required

(b) Simulation required

(c) Simulation required

Figure 4.28: Uncertainties of First and Second Kind with K = 3

explored and is used to tackle the scalability of the algorithm. Parallel explorations
could evolve differently since they start from different partitions, thus they must
be considered separately;

3. Uncertainty of the Second Kind: the action leads to a set of states, but the al-
gorithm maps two or more different actions on those states. In this situation,
simulation is needed to determine to which state the action really leads to.

Three examples of uncertainties are shown in Figure 4.28. In 4.28(a) an uncertainty of
the first kind is detected and |NS| < K thus simulation is not required. In 4.28(b) an
uncertainty of the first kind is detected but |NS| ≥ K thus simulation is required. In
4.28(c) simulation is required since an uncertainty of the second kind is detected.

In other terms, simulation is performed only if the cardinality of NS (the amount
of states reached by the best action) is above a given value K or the action a brings
the system to a set of states and the Value Iteration Algorithm mapped different actions
to each of those states. In case simulation results snext are not contained in NS the
exploration restarts from line 32, otherwise NS is updated with the actual value snext.
At this point the algorithm checks if convergence has been reached (line 36); in the
positive case, a simulation is performed (line 37) to get the real values of the metric of
s0 (unless it has been previously simulated), otherwise, S is updated and the exploration
continues.

Step one, two and three are repeated until a maximum number of runs (MAXRUNS)
has been performed.

In the last step, the weights −→w of the utility function Ψ are updated (line 44) and
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the algorithm is entirely repeated. It allows to change the direction of the exploration in
order to cope multi-objective optimizations. The algorithm stops when no more utility
functions can be used.

In conclusion, the algorithm explores all the possible actions for all the reachable
states with an event horizon of l to determine an optimal local action considering var-
ious sequences of actions. The effectiveness of the approach strictly depends on the
quality of the movement vectors; as the accuracy of movement vectors increases, the
amount of required simulations decreases. In fact, in the optimal case, movement vec-
tors identify areas with size lower than λ, thus No Uncertainty is detected. In this case,
assuming that movement vectors are accurate, simulation is required at the beginning
(line 6) and end (line 37) only, thus simulations are minimized and exploration speed
is maximized. In the worst case, non accurate movement vectors may conduct to Un-
certainties of First (with |NS| > K) or Second Kind, thus simulations are required at
each step, leading to slower explorations. More generally, to control the accuracy and
the speed of the exploration (number of states in the MDP) two mechanisms have been
identified:

• Control the minimum desired accuracy with λ. It identifies the size of the
partitions during the generation of the Decision Tree; increasing λ reduces the
number of partitions (states), improving the evaluation speed, but it increases the
approximation error;

• Define a good event horizon l, which determines the maximum depth of the
Decision Tree. It limits the number of steps required for the creation/evaluation of
the MDP. Reducing l improves the speed of MDP evaluation since fewer states are
generated into the decision tree D. On the other hand, the higher is l the higher is
the lookahead of the algorithm.

Domain Knowledge Definition For IEEE 802.15.4 Networks The proposed ap-
proach requires the movement vectors to guide the exploration to optimal solutions.
A domain knowledge definition for the IEEE 802.15.4 MAC layer is presented here.
The proposed MDP does not require accurate movement vectors to operate [32], thus
users do not need to provide accurate models to use this methodology; moreover, move-
ment vectors are reusable. However, this analysis has two main goals: first, to show in
practice how to build a set of domain-specific rules to exploit the potential of the MDP
algorithm. Second, it provides a good characterization of one the most popular MAC
protocols in WSNs, hence the proposed rules can be reused.

The IEEE 802.15.4 standard [18] has been introduced to satisfy energy requirements
of emergent devices. The protocol is quite common, thus the proposed knowledge
domain can be useful for future works. The results presented here are based on the
models presented in [102] [151] [82] [40] [67] [129]. For the details of the protocol,
please refer to Section 2.6 of this thesis.

The metrics of interests are Average Energy Consumption (E), to be minimized, and
Percentage of Packets Received (P), to be maximized. The IEEE 802.15.4 is character-
ized by a certain amount of node and network parameters. For the sake of simplicity,
the analysis has been restricted to four parameters: SuperframeOrder, BeaconOrder,
enableCAP and requestGTS. According to the state of the art, these parameters have
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considerable effects on the metrics of interests, thus their optimization is important to
the final design. In all the equations the following constraint must be satisfied:

(0 ≤ P ≤ 100) ∧ (E ≥ 0)
�
 �	4.26

In case the equation is not satisfied, P and E are set to the nearest value which satisfies
the equation. I.e., if P < 0 then P is set to zero. The next two sections presents in
detail the movement vectors. In all the equations, E and P represents the actual value
of the metrics while Ê and P̂ represents their estimated (next) value.

Beacon Order and Superframe Order Beacon Order (BO) and Superframe Order
(SO) define the main structure of the superframe since they determine the distance be-
tween the beacons and the size of the active period. The ratio between SO and BO
defines the duty cycle between active and inactive period. The overall effect of increas-
ing BO and decreasing SO is similar, since both actions modify the duty cycle in the
same way. Increasing BO or decreasing SO will halve the duty cycle, thus both E and P
can be reduced by 2. Resulting movement vectors to actions increase BO and decrease
SO are:

Ê =

[
E

2
, E

] �
 �	4.27

P̂ =

[
P

2
, P

] �
 �	4.28

On the other hand, actions that decrease BO and increase SO have an opposite
behavior, since duty cycle is doubled:

Ê = [E, 2E]
�
 �	4.29

P̂ = [P, 2P ]
�
 �	4.30

All these actions can be applied if and only if the constraint:

FO ≤ BO
�
 �	4.31

is satisfied. This constraint is imposed by the standard [18].

Guaranteed Time Slots Each node requires a certain amount of GTS to the coordina-
tor, according to the requestGTS parameter. The coordinator assigns the GTS according
to the policy first come first served (FCFS). It implies that if requested GTS are not de-
signed properly, performances of the network dramatically decreases.

The maximum amount of available slots in slotted IEEE 802.15.4 is given by the
following formula:

M = NSS −
⌊
minCAP

BSD ∗ 2FO

⌋ �
 �	4.32

where NSS is the Number of Superframe Slots, minCAP is the minimum number of
symbols in CAP and BSD is the Base Slot Duration.

The average amount of slots per node is equal to:

A =
M

N

�
 �	4.33
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and the overall amount of requested slots is equal to:

U =
N∑
i=0

G(i)
�
 �	4.34

where G(i) represents the value of requestGTS of node i. From [129] and experimental
results, it can be noted that, increasing the GTS requests improves P and reduces E. P
is improved because contention is reduced and E decreases since nodes wake-up are
scheduled more efficiently in CFP with respect to CAP. In particular, when a GTS slot
is allocated and few packets are in the buffer, the node sleeps during CAP and wake-ups
just at the beginning of the GTS slot. In addition, since IEEE 802.15.4 uses a TDMA
protocol during CFP, no additional energy is required to perform Carrier Sense.

According to the FCFS policy, if GTS have been already allocated and it is not possi-
ble to satisfy the request, the request is rejected and the node is obliged to communicate
into the CAP. GTS requests are rejected if the amount of requested GTS slots (Equation
4.34) overcomes the maximum amount of slots in CFP (Equation 4.32). Moreover, in
order to balance GTS requests, the amount of GTS requests per node n (G(n)) should
not overcome the average GTS requests (Equation 4.33). The effect of increasing/de-
creasing GTS is limited to a single-slot of a single-node, so the value of P and E should
be divided by NM to provide more accurate movement vectors.

Action increase requestGTS on node n results in:

Ê =

{ [
E − E

NM
, E
]

if U ≤M ∧G(n) ≤ A[
E,E + E

NM

]
otherwise

�
 �	4.35

P̂ =

{ [
P, P + P

NM

]
if U ≤M ∧G(n) ≤ A[

P − P
NM

, P
]

otherwise

�
 �	4.36

On the other hand, action decrease requestGTS has the following movement vec-
tors:

Ê =

{ [
E,E + E

NM

]
if U ≤M ∧G(n) ≤ A[

E − E
NM

, E
]

otherwise

�
 �	4.37

P̂ =

{ [
P − P

NM
, P
]

if U ≤M ∧G(n) ≤ A[
P, P + P

NM

]
otherwise

�
 �	4.38

Enable CAP Considering the enableCAP parameter, two actions are possible: acti-
vate and deactivate CAP. The overall effect of enabling CAP is the increase of energy
consumption (due to CAP period) and an increase of packets received. Similarly to
GTS, the action has an effect on a single node only, thus both E and P changes are
scaled to N. Moreover, the higher is the amount of GTS requests of a node, the lower is
the effect of activation/deactivation of CAP, so the metrics are divided by G(n)+1.

Differently from energy, packets received have a known behavior in case G(n) is
equal to zero. In fact, when G(n) = 0 and CAP is not enabled, the amount of packets
sent by a node n is equal to zero, thus activating CAP when G(n) = 0 has a increases
the number of packets received (

[
P
N
, 100
N

]
); the deactivation of CAP when G(n) = 0

has the opposite effect. The movement vectors of the action activate CAP are:
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Ê =

[
E,E +

E

N(G(n) + 1)

] �
 �	4.39

P̂ =

{ [
P + P

N
, P + 100

N

]
if G(n) = 0[

P, P + P
N(G(n)+1)

]
otherwise

�
 �	4.40

for the action deactivate CAP, the movement vectors are:

Ê =

[
E − E

N(G(n) + 1)
, E

] �
 �	4.41

P̂ =

{ [
P − 100

N
, P − P

N

]
if G(n) = 0[

P − P
N(G(n)+1)

, P
]

otherwise

�
 �	4.42

Initial Points Selection In the classical MDP, the set of initial points is randomly
generated but, especially with large design spaces, the probability to obtain bad (or even
unfeasible) results is high. Therefore, the selection of the initial points can be guided
by the model since, considering that the knowledge base has been already created to
compute the actions, the same information can be used to extract the initial points.

To define the rules for the selection of the initial points, we conduct several experi-
ments on star networks with 4, 6 and 8 nodes with various packet rates (5, 15, 30, 50,
65, 80

[
pkts
sec

]
) in order to cover a large set of applications. All the experiments where

conducted with Castalia simulator [9] (see next Section). From the experimental re-
sults, we notice that assigning a requestGTS greater than the average (A), reduces the
quality of the solution, so we suggest to create the initial population with a starting
value of requestGTS randomly chosen in the interval [0, A]. In addition, a value of Bea-
con Order lower than 3 or greater than 12 does not usually provide good results, thus
we generate the initial solution with BO included into [3, 12]. Another aspect concerns
the duty cycle (FO

BO
); good solutions usually have a duty cycle included into [0.25, 0.85]

in all the configurations.
Summarizing, to determine the initial points, we propose to generate the set of initial

points in such a way: 
0 ≤ G(n) ≤ A ∀n ∈ N
3 ≤ BO ≤ 12

0.25 ≤ FO
BO
≤ 0.85

�
 �	4.43

so that these constraints are all satisfied.
Experimental results in the next Section show that a considerable improvement on

search efficiency is obtained if initial points are determined using this technique.

Experimental Results The proposed approach has been validated on two sets of ex-
periments. Each solution is evaluated with Castalia [9], a popular simulator for Wireless
Sensor Networks and Body Area Networks, based on the OMNeT++ framework [155].
The design space for all the experiments is presented in Table 4.2. The design space has
been explored in four different scenarios described in Table 4.3. These scenarios have
been chosen in order to cover a large set of applications (i.e. Body Area Networks [91]).
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Table 4.2: Explored Design Options for the Experimental Results

Parameter From To
Beacon Order 1 14
Frame Order 1 14
Enable Cap false true
requestGTS 0 6

Table 4.3: Experimental Scenarios

Num of Packet Rate Size of the
Nodes (Pkts/Sec) Design Space

Scenario 1 4 30, 65, 80 7.5 ∗ 106

Scenario 2 6 15, 40, 60 1.4 ∗ 109

Scenario 3 8 5, 15, 30 2.9 ∗ 1011

Scenario 4 10 5, 10, 15 5.6 ∗ 1013

Since the cardinality of the design space is extremely high in all the scenarios, the
optimal Pareto curve cannot be extracted with an exhaustive search, thus it has been
obtained by running all the exploration algorithms for 3000 iterations (solutions) for
20 iterations each. The distance between the Pareto sets have been compared using the
Average Distance from Reference Set (ADRS) [126]. The ADRS is usually measured
in terms of percentage and should be minimized.

Evaluation of the Proposed Algorithm The first set of experiments aims at evaluat-
ing the improvements achieved thanks to the tailoring of the standard MDP technique to
the WSN field. Table 4.4 presents a comparison between the standard implementation
of the MDP algorithm and the one proposed within this work. The experimental results
shown in Table 4.4 demonstrate that the ADRS of the initial points of the proposed al-
gorithm is considerably lower than the ones obtained with [32]. This advantage makes
it possible to increase the overall performance of the algorithm, so that the ADRS of the
final solutions found by our algorithm is always lower than the ones obtained with [32].
In addition to this, the proposed algorithm is able to converge with a lower number of
evaluations, except for Scenarios 3 and 4, where the algorithm presented in [32] often
falls in local minima (as shown by the quite high ADRS of the solutions found by the
algorithm).

A critical aspect of the standard MDP algorithm is its scalability. In order to ana-
lyze this factor, uncertainties of the first kind should be simulated only if the number
of states (|NS|) is larger than a given threshold K. To evaluate the effect of K on the
exploration speed, several experiments with different values of K have been performed;
Scenario 2 has been chosen as reference example for this analysis. Values of λ have
been varied such as the average number of generated states for each action is between
3 (higher λ) and 30 (lower λ). Figure 4.29 illustrates the average number of parallel ex-
plorations for different values of K with respect to the average number of states for each
step. The bigger is K, the higher is the amount of parallel (independent) explorations.
However, the effective exploration time is not directly correlated with the amount of
parallel explorations. Figure 4.30 illustrates the average amount of time (in minutes)
required for the exploration with different values of K. Although the number of parallel
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Table 4.4: Comparison between original and proposed implementation of the MDP

Scenario 1 [32] [proposed work]
ADRS[%] init 45.5 21.7
ADRS[%] final 3.9 2.34

Eval. for Convergence 110 70
Scenario 2 [32] [proposed work]

ADRS[%] init 44.7 21.47
ADRS[%] final 5.73 2.70

Eval. for Convergence 170 120
Scenario 3 [32] [proposed work]

ADRS[%] init 35.93 24.3
ADRS[%] final 11.35 3.52

Eval. for Convergence 70 80
Scenario 4 [32] [proposed work]

ADRS[%] init 38.93 27.3
ADRS[%] final 14.18 5.16

Eval. for Convergence 110 70

evaluations increases with both K and the number of generated states, the overall time
behaves differently. In fact, for small values of generated states, K=5 performs better
then K=2 even if the amount of parallel exploration is bigger. However, for high values
of generated states (i.e. 30), K=2 performs better. K=inf have no better performances
in all the situations; it confirms that a bound on the generated states increase the explo-
ration’s speed. Moreover, exploration efficacy (ADRS and convergence speed) is not
affected by K since it strictly depends on λ, thus it is suggested to tune K such that the
exploration time is minimized.

The proposed algorithm is able to reduce/control the exponential growth of the num-
ber of parallel executions with respect to the original approach presented in [32] (where
the threshold K is not used). Then, in addition to improving the quality of the final so-
lution, the proposed approach is also able to reduce the number of explorations to be
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Figure 4.29: Number of parallel explorations with different values of K (K=inf. refers to the original
algorithm). The average number of generated states depends on the chosen λ and movement vectors’
accuracy
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performed, thus reducing the computational costs and time required by the algorithm
itself.

ADRS and Number of Evaluations The second set of experiments compares the pro-
posed MDP with three state-of-the-art multi-objective optimization algorithms: con-
trolled non-dominated sorting genetic algorithm (NSGA-II), Pareto memetic algorithm
(PMA) and multiple objective simulated annealing (MOSA). The MOMHLib++ [6] li-
brary was used as a reference implementation of these algorithms. In order to ensure
a fair comparison, all the algorithms exploits the same technique to generate the initial
points.

Each configuration of all the optimization algorithms has been executed for 20 times
in the four scenarios and the average ADRS [124] has been evaluated. The ADRS is
computed every 5 evaluations in order to understand its trend with respect to the number
of evaluations. The results of these experiments are presented in Figure 4.31(a) (Sce-
nario 1), Figure 4.31(b) (Scenario 2), Figure 4.31(c) (Scenario 3) and Figure 4.31(d)
(Scenario 4), which show that MDP is able to reach a low ADRS (below 5%) using
less than 40 evaluations, while the other algorithms require from 100 to almost 300
evaluations to reach the same objective. This is a reduction of 60-87% in the number
of required simulations.

As design space cardinality increases, the identification of the Pareto curve is more
difficult, thus exploration efficiency decreases. It is interesting to notice that the reduc-
tion of effectiveness of MDP is considerably lower than the other algorithms (See Table
4.5). These results encourage the use of such algorithm on large design spaces.

During the Design Space Exploration, optimization algorithms should be run several
times in order to guarantee the quality of the identified Pareto curve. By analyzing the
standard deviation of the ADRS on the independent runs, it has been observed that
standard deviation on MDP is the lowest. Table 4.6 summarized the computed standard
deviations. A low standard deviation implies that the optimization algorithm requires
few repeats to guarantee the quality; it further reduces the overall time required for
Design Space Exploration.
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Figure 4.30: Amount of time (in minutes) required for the exploration with different values of K (K=inf.
refers to the original algorithm). The average number of generated states depends on the chosen λ
and movement vectors’ accuracy
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(a) ADRS per Number of Evaluations in Scenario 1
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(b) ADRS per Number of Evaluations in Scenario 2

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200  250  300  350  400

A
D

R
S

 [%
]

Number of Evaluations

mdp
nsgaii

pma
mosa

(c) ADRS per Number of Evaluations in Scenario 3
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(d) ADRS per Number of Evaluations in Scenario 4

Figure 4.31: ADRS per Number of Evaluations
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Table 4.5: Final ADRS of search Algorithms

MDP NSGA-II PMA MOSA
Scenario 1 2.34 1.42 0.83 1.43
Scenario 2 2.70 2.88 0.78 2.20
Scenario 3 3.52 6.52 4.76 5.36
Scenario 4 5.16 9.55 8.78 7.32

Table 4.6: Standard Deviation of ADRS

MDP NSGA-II PMA MOSA
Scenario 1 0.34 1.20 1.01 1.34
Scenario 2 0.55 2.56 1.94 1.91
Scenario 3 0.64 2.44 2.38 2.81
Scenario 4 0.77 2.59 2.96 2.92

Summary A technique to reduce the amount of simulations necessary to obtain the
Pareto set of the design space exploration of Wireless Sensor Networks has been pre-
sented in this Section. The proposed technique uses models as soon as they provide
an acceptable accuracy and simulates only when it is needed. The knowledge domain
about slotted IEEE 802.15.4 has been extracted from the models of the state of the art.
Experimental results have shown that proposed algorithm significantly improves the
efficiency and scalability with respect to the classical algorithm. To confirm the effec-
tiveness of the technique, the proposed approach has been compared with semi-random
algorithms such as NSGA-II, PMA and MOSA. Experimental results have shown that
MDP reduces the number of simulations required to converge (ADRS lower than 5%)
from 60 to 87%. This reduction is more relevant as the cardinality of the design space
increases, making it an effective approach for the design space exploration of WSNs.

4.5 Software Definition

A detailed discussion on the best technique to manage and develop software in WSNs is
outside the purpose of this thesis, and a good survey on the topic can be found in [115].
This Section discusses the details of the SW Partition and Mapping process, introduced
at the beginning of this Chapter.

4.5.1 Partition and Mapping
One of the main problems during the development of complex distributed software
applications in WSNs is the partition and mapping. Partitioning is the action of di-
viding a whole piece of software into smaller tasks, entirely executable on single nodes.
Mapping is the process of assigning these tasks to specific nodes of the network. The
granularity of the partitions can vary according to application needs; the smaller are
the tasks, the higher will be the communication overhead. On the other hand, big tasks
make the mapping less effective since the mapping possibilities are lower, but it is faster
to do.

This Section presents an evaluation of various meta-heuristics applied to the problem
of partition and mapping of software in WSN.
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4.5. Software Definition

Figure 4.32: An example of Data Flow Graph

PROBLEM DEFINITION

A software application can be described using a DFG (Data Flow Graph) [77]. A DFG
represents true data relationships (Read After Write) among different tasks, and give
an application-independent representation of the software. This generality is helpful to
develop application-independent algorithms for software optimization; in other terms,
the algorithm does not care why a specific data are required by another task, it just
knows that these data are required.

A DFG is an acyclic graph representation of software, where nodes are tasks and
arcs indicate dependencies. Nodes without incoming arcs are called initiator nodes
and nodes with no output arcs are called terminating nodes. In a WSN, initiator
nodes are always a read-from-sensor operation since it usually does not require any
information from other nodes, while terminating nodes are typically store tasks (like
store to database) or send-to-actuator operations.

An short example of DFG is shown in Figure 4.32. Tasks 1, 2, 3 and 4 are read-from-
sensor tasks, 5, 6, 7 and 8 are operational tasks and 9 is a store task. In this example,
operational tasks are very simple and perform a binary operation only but, generally,
multi-instruction tasks can be used instead. For the sake of simplicity, this work does
not consider conditional or iteration statements.

TASK ALLOCATION PROBLEM

The task allocation is the problem of assigning tasks to a specific node of the network.
The problem takes the network topology (N) and the DFG (D), and gives the task
allocation (T ) as output, that is a set of tuples describing the allocation of tasks on the
nodes.

(n, d) ∈ T
where n ∈ N is a node of the network and d ∈ D is a task of the DFG. The purpose of
this section is to present an automatic technique to identify T such that the execution
time is minimized.

The problem requires that all the tasks are assigned to a single node. It can be
described with a fixed array:

d0 d1 d2 ... dk
n0 n1 n2 ... nk
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Figure 4.33: An example of Network

such that d0, d1, ..., dk ∈ D and n0, n1, ..., nk ∈ N . Given the network in Figure
4.33 and the DFG in Figure 4.32, and assuming the following constraint:

D 1 2 3 4 9
N 2 3 1 2 6

which means that task 1 must be executed on node 2, task 2 on node 3, task 3 on
node 1, etc., a feasible solution to this problem is:

D 1 2 3 4 5 6 7 8 9
N 2 3 1 2 2 4 3 4 6

Next paragraph presents some experimental results conducted on the given problem
by applying four Genetic Algorithm based heuristics. The heuristics differ in only in
the selection of best candidates, not in the crossover and mutation operations.

Crossover consists in a random mix between the two parent configurations. An
example of crossover for the previous example is:

Parent 1:
D 1 2 3 4 5 6 7 8 9
N 2 3 1 2 2 1 5 7 6

Parent 2:
D 1 2 3 4 5 6 7 8 9
N 2 3 1 2 5 2 1 1 6

Child:
D 1 2 3 4 5 6 7 8 9
N 2 3 1 2 2 2 1 7 6

Mutation is a random change of a parameter with a feasible value. And an example
of mutation for the previous example is:

Original Configuration:
D 1 2 3 4 5 6 7 8 9
N 2 3 1 2 5 2 1 1 6

Mutated Configuration:
D 1 2 3 4 5 6 7 8 9
N 2 3 1 2 5 2 1 3 6
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4.5. Software Definition

Network DFG
# Nodes # Tasks # Arcs # Min Sensing Tasks

Scenario 1 25 45 75 6
Scenario 2 35 55 95 6
Scenario 3 55 75 125 6

Table 4.7: Scenario Summary

EXPERIMENTAL RESULTS

These experiments have been conducted in order to understand the effectiveness and
efficiency of the heuristics in solving this problem. The solutions have been validated
with OMNET++ Castalia framework [9], modified to execute custom DFG. The task
engine takes the DFG as input and simulates the time spent in executing the task; no
semantic information has been introduced into the simulator. In these experiments tasks
require from 1 to 4 seconds to be executed; the execution time of each single task is
randomly generated and included into the DFG as information during the initialization
phase. Simulations have been conducted with S-MAC (as MAC layer) and AODV (as
Routing Protocol).

The scenarios differ in the number of nodes deployed in the network and the size
of the generated DFG. Both the network layout and the DFG have been generated
randomly. In these experiments, four seeds have been used for the generation of the
network and the DFG; algorithms random generations have random seeds at each it-
eration. Each configuration (algorithm+scenario+seed) has been executed 20 times in
order to mitigate the randomization effects. Table 4.7 illustrates the parameters used to
generate the network and the DFG. The initialization algorithm creates a network with
exactly “# Nodes” nodes with random positions. The algorithm guarantees that all the
nodes are connected, thus there exists at least one path from one node to all the others.
Then it generates the random DFG. The DFG is composed of “# Tasks” number of
tasks, “# Arcs” number of arcs (representing true dependencies) and at least “# Min
Sensing Tasks” sensing tasks. A sensing task is a task that does not require any data to
operate, so in a DFG a sensing task is a task without incoming arcs.

The problem has been solved with four different heuristics and the random algo-
rithm. All the heuristics used for this problems belong to the Genetic Algorithm (GA)
family: GA+Tournament Selection, SPEA2, NSGA-II and GA+Roulette. The met-
ric to optimize is the DFG Execution Time, defined as the time required to execute
all the tasks in the DFG. As aforementioned, position of sensing tasks is fixed (defined
by the Sensing Coverage process), thus the algorithms aim at identifying the position
of other tasks. Execution Time takes into consideration the execution time of each
task on the node (scheduled with the FCFS [First Come First Served] policy) and the
communication overhead, introduced by S-MAC and AODV.

Figures 4.34, 4.35 and 4.36 show the experimental results obtained in these three
scenarios respectively. In all the experiments, GA+Tournament outperforms all the
other heuristics, by reducing the Execution Time from 20 to 50% with respect to
the other algorithms. Performance of the other heuristics are quite aligned giving
an improvement of about 20% with respect to the initial solutions (Random), except
GA+Roulette whose average performance is the worst.
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Figure 4.34: First Scenario

Figure 4.35: Second Scenario

Figure 4.36: Third Scenario

4.6 Chapter Conclusions

This Chapter presented the proposed design flow, introduced to clearly define the design
steps of WSNs. Complexity of WSNs is growing, due to the complexity of devices
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4.6. Chapter Conclusions

and the increasing number of design alternatives in network protocols. The processes
composing the design flow cover all the aspects of a WSN design and are generic in
order to cover a large number of WSN applications.

The placement problem is a well researched problem in literature and, although
placement is still an open issue in WSN design, no innovative techniques have been
presented here, rather, a selected list of State of the Art algorithm has been overviewed.
Hardware and Network Configuration represents the main topic of this thesis. Three
techniques have been presented: Simulation-based Design Space Exploration, Model-
based Design Space Exploration and Hybrid Design Space Exploration. The last aspect
of the design is the software development. This chapter introduces and defines the Task
Allocation problem. Four heuristics have been tested and results have been presented.
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5
Online Adaptivity in Wireless Sensor Networks

A good design phase is important to have optimized networks whose efficiency is ver-
ified and tested. However, the environment where a Wireless Sensor Networks operate
changes constantly, and these networks may be often affected by many runtime issues
that potentially reduce the effectiveness or the lifetime of the network. Interferences,
nodes failures or node mobility can dramatically affect how the network works. An
interference, for instance, may cause several retransmissions, that have a strong impact
on the power consumption and, subsequently, on the lifetime of the network. The need
to develop online algorithms to adapt the network at runtime is of extreme relevance to
ensure the operational effectiveness and performance of the network over the time.

Adaptivity can be used not only to mitigate the effect of faults or interferences, but to
tune the system to operate at its best under various conditions. Run time dynamics can
be used to optimize the network behavior efficiently. Spatial correlation is a unique and
very interesting characteristics of Wireless Sensor Networks [158]. It can be used to
control the amount of transmissions required to build a sensor map of the environment.

Since adaptivity is a specific-problem, this Chapter will not present general-purpose
adaptive techniques, rather, it will presents two specific approaches that deal with online
adaptivity of Wireless Sensor Networks: a technique to reduce BAN-BAN interferences
in WSNs, and a technique to reduce the amount of required transmissions in a cluster-
based network.

5.1 B2IRS: a Technique to Reduce BAN-BAN Interferences in Wireless
Sensor Networks

When the transmission range is limited to few meters, these systems are known as Body
Area Networks (BANs). BANs can be used to monitor different physiological and bi-
ological parameters like temperature, Electrocardiogram, Electroencephalograph, and
so on. Monitoring important medical information is useful for, i.e., elderly support [44]
or to prevent and treat dangerous diseases like epilepsy [101].

The design of efficient BANs is a complex task, characterized by tradeoffs among
energy, costs, network bandwidth, memory and computational resources [60]. Unfor-
tunately, runtime behaviors, like node failure and network interferences, could dramat-
ically affect efficiency and reliability of BANs, and a good offline design may not be
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sufficient. In particular, BAN-BAN interferences cause dramatic performance and ef-
ficiency degradation in BANs [50]. BAN-BAN interferences occur when two or more
co-located BANs (located in the transmission range of other BANs) operate on similar
frequencies. BAN-BAN interferences are very dangerous since different independent
systems communicate on a shared communication medium.

IEEE 802.15.4 [18] is a standard that has been introduced to satisfy energy re-
quirement of emerging devices, and it is one of the most widely used technologies
for BAN applications [46]. Operational frequencies used in the IEEE 802.15.4 over-
lap frequencies of existing wireless technologies like IEEE 802.11, which overcomes
IEEE 802.15.4 in terms of transmission power, affecting BAN application’s perfor-
mance [143]. When IEEE 802.15.4 devices coexist with WiFi or Bluetooth technolo-
gies, the amount of interference-free channels is highly reduced, and classical BAN-
BAN interference reduction techniques, like channel switching, cannot be applied any-
more. BAN-BAN interferences can be categorized as:

• Cross-Channel Interference: interferences between networks operating on dif-
ferent channels;

• Single-Channel Interference: interferences between networks operating on the
same channel.

This Section shows that, due to single channel interference, packet receive ratio can
be reduced to less than 60% with only 2 BANs and 25% with 4 BANs. In critical ap-
plications (like medical applications), such reduction cannot be tolerated. Considering
the amount of interference-free channels of IEEE 802.15.4 and its wide diffusion for
BANs, an efficient technique to cope with this problem is required. A BAN-BAN Inter-
ference Reduction (B2IR) technique which reschedules beacon packets in order to avoid
the overlapping of active periods among different BANs is presented here. Experimen-
tal results show that the proposed approach considerably improves the performance of
BSNs affected by interference issues.

Effects of Conflicting BANs The proposed analysis is tailored to BAN-BAN inter-
ference on slotted, beacon-enabled IEEE 802.15.4/ZigBee networks only. ZigBee is
strongly based on IEEE 802.15.4 standard [18] and extends some features to provide a
better energy efficiency. More details on the IEEE 802.15.4/ZigBee protocol are avail-
able in Section 2.6 of this thesis. A summary picture is depicted in Figure 5.1

Two BANs are conflicting if they are co-located and operate on the same frequency
(single channel interference). In ZigBee networks, synchronism between end devices is
ensured by the coordinator, which does not ensure synchronization with other coordi-
nators, thus CAP/CFP periods can be overlapped: in this case, even though CSMA-CA
is still able to work thanks to carrier sensing, this is not true for GTS transmissions,
which do not sense the wireless channel before transmissions. In this scenario, if GTS
transmissions are overlapped, they can be the cause of interferences. When an interfer-
ence occurs, according to the standard, the packet can be retransmitted a certain amount
of time before being considered lost. Retransmissions increase both the throughput re-
quirement and the energy consumption.

To quantify the effect of single channel interference, extensive simulations varying
the number of conflicting BAN and their throughput have been performed. These simu-

118 Politecnico di Milano Paolo Roberto Grassi



i
i

“main” — 2012/12/12 — 14:41 — page 119 — #66 i
i

i
i

i
i

5.1. B2IRS: a Technique to Reduce BAN-BAN Interferences in Wireless Sensor
Networks

lations have been conducted with OMNET++ Castalia simulator [9]. In this experiment,
each BAN is composed of three devices (one coordinator and two end devices), and the
MAC layer has been set to have SO = 4, BO = 6, GTSnum = 4, TXout = −15dBm,
distance between end devices and coordinator was 1mt, the average distance between
coordinators was about 3mt and Packet size was 115Bytes. The amount of packets
per second sent to the coordinator varies from 5 to 60. As shown in Figure 5.2, higher
packet rates imply more packets lost and more collisions. In a superframe, packets can
be lost in two ways: with buffer overflows and with collisions. The first occurs when
CSMA-CA delay the transmissions due to non-free channel, while the latter when GTS
transmissions collide with other transmissions. It has been noted that CSMA-CA is
responsible of buffer overflow since delaying transmissions fill the buffer, and GTS is
responsible of packet collisions since the transmissions in the GTS slot occur without
carrier sensing. According to this analysis, CSMA-CA helps to keep collisions as low
as possible, but fills the buffer, while, on the other side, GTS does not fill the buffer but
does not avoid collisions.

State of the Art The interference issues for the IEEE 802.15.4 technology have been
widely studied in past years [143] [117] [136] with particular attention to the integration
with existing wireless technologies working on similar frequencies (i.e. IEEE 802.11,
Bluetooth). Pollin et al. [136] propose a distributed adaptation technique based on
scanning and increased cognition to reduce the effect of IEEE 802.11 on IEEE 802.15.4
nodes. Shin et al. [143] evaluate the performance of IEEE 802.15.4 and IEEE 802.11b
operating at 2.4 GHz, showing that the distance and the center frequency offset between
the two technologies affect the Packet Error Rate (PER). An effective technique has
been presented in [117], where the authors show that, by selecting the right channel, it
is possible to reduce the end-to-end loss rate from 22%-58% to less than 1%.

BAN-BAN interferences among different 802.15.4-based systems have been ana-
lyzed and various solutions have been presented. De Silva et alt. [50] conducted a
preliminary investigation of the BAN-BAN interference effect. According to their
measurements, in presence of 5 or more high-rate BSNs in the same environment, the
Packet Data Rate (PDR) can fall as low as 65%. They propose a fixed WSN infrastruc-

Figure 5.1: An example of the superframe structure (from [18])
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Figure 5.2: Amount of packets received varying the throughput of the network with 2,3 and 4 conflicting
BANs compared to the throughput of a single BAN without conflicts. Throughput is expressed in
packets per seconds; each packet is 105 Byte

Figure 5.3: Frequency ranges used by the ZigBee and WiFi Channels (from [117])

ture to identify when BSNs are interfering with each other and act to make the BSNs
communicate on different frequency channels. Unfortunately, a fixed network can be
very expensive and difficult to deploy. To overcome this strong limitation, a decen-
tralized suppression technique have been proposed by Guowei et alt. in [161]. They
use a non-cooperative game based on a no regret learning algorithm to identify free
channels, reducing the interferences between BSNs. Coexistence issues of multiple
co-located networks running on adjacent radio channels has been explored by Lo Bello
and Toscano in [100]. In that paper they present a testbed to evaluate cross-channel in-
terferences and they identify that this phenomenon is negligible thanks to the distance
between channels of 802.15.4 networks (see figure 5.3). A different approach to reduce
BAN-BAN interferences has been proposed by Khan et al. in [78]. They propose an al-
gorithm for the interference rejection of nearby BSNs; it performs better than common
techniques like Optimum Combining (OC) and Weiner-Hopf (WH).

All these approaches try to solve the BAN-BAN interferences issues by switch-

ing to a free channel. Channel switching is an effective solution, when applicable,
to reduce BAN-BAN interferences, since the distance between adjacent channels in
IEEE 802.15.4 does not introduces considerable interferences [100]. However, ignoring
single-channel interferences can drastically decrease the performance of a BAN. Thus,
considering the effect of single-channel interferences on various co-located BANs,
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arises that addressing this problem is extremely important.
The analysis of channel switching techniques shows that, although they are usually

very effective, they require a number of interference-free channels (C) bigger than the
amount of co-located BANs (N ), in order to assign a unique channel to every BAN. At
2.4GHz, IEEE 802.15.4 has sixteen, non-overlapped channels, so switching is partic-
ularly efficient with this technology and can be scaled up to sixteen coexistent BANs
but, unfortunately, other technologies, like IEEE 802.11 (WiFi) or Bluetooth, reduce
the amount of available, interference-free channels. When two BANs operate at the
same frequency, if not correctly synchronized, they will interfere with each other, caus-
ing a strong reduction of performances [50]. Figure 5.3 illustrates how IEEE 802.11
WiFi channels overlaps IEEE 802.15.4 ZigBee channels.

With three active WiFi networks on three distinct channels like in Figure 5.3, only
4 ZigBee channels are interference free (15, 20, 25 and 26). In this situation, using
channel switching, only 4 co-located BANs can work without interfering with each
other. Assuming a transmission range of few meters for BAN’s devices and a small
area like a train coach, a theater or an office, it is realistic to consider a scenario in
which more than 4 co-located BANs have to operate. Thus, in order to cover a variety
of situations, the approach has been validated with 2, 3 and 4 conflicting BANs.

Proposed Methodology The proposed methodology is a BAN-BAN Interference
Reduction System (B2IRS) that provides an effective way to reduce, and possibly
eliminate, single channel BAN-BAN interference issues. B2IRS is compatible with all
the state-of-the-art approaches and is intended to be used on slotted, beacon-enabled,
ZigBee networks when they operate in a context where there are no free channels (thus,
channel switching can not be performed).

Overlapping occurs when a coordinator sends a beacon packet in the active period
of another BAN. According to the standard, end devices initiate the transmission only
after the reception of a beacon packet from their coordinator, following the structure
in Figure 5.1. Usually, a coordinator ignores beacons received from the coordinators
of another network causing CAP/CFP overlapping. To better understand this concept,
an example with three co-located networks operating on the same channel is presented
in Figure 5.4. In this situation, during the active period of N0, both N1 and N2 start
their active periods, causing a CAP/CFP overlapping between the networks. Since the
networks have the same Beacon Order, CAP/CFP overlapping continuously occur.

The Proposed Idea To avoid overlapping, it is important to ensure that a BAN will
never send a beacon in the active portion of another BAN. In order to do that, B2IRS
reschedules the beacon transmissions at the end of the active period of another BAN.
To identify when beacons must be transmitted, it is important to gather all the beacon
transmissions from co-located BANs since, according to the standard [18], a beacon
includes the information about the structure of the superframe. In fact, when a co-
ordinator receives a beacon from another coordinator, it determines if its next beacon
will fall into an active period of that coordinator. To determine if the beacon must be
rescheduled, it compares the time when the next beacon will be sent with the end of the
active period of the other coordinator, given by 2SO:

tB < NSS ∗BSD ∗ 2SO
�
 �	5.1
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Figure 5.4: This picture illustrates three conflicting BANs without B2IRS. Dark areas represent active
period and light areas inactive periods. With no B2IRS, CAP and CFP will overlap continuously

Figure 5.5: This picture illustrates three conflicting BANs with B2IRS. Dark areas represent active
period and light areas inactive periods. B2IRS reschedules the beacon twice: first for network N1

(Step 1) then for N2 (Step 2). At this point, CAP and CFP will not overlap anymore (Step N)

where tB is the time (in symbols) when the next beacon is scheduled, NSS is the
number of superframe slots (16), BSD is the base slot duration (in symbols) and SO
is the superframe order (contained into the beacon packet).

If Equation 5.1 is satisfied, the beacon must be rescheduled at the end of the active
period, given by NSS ∗ BSD ∗ 2SO. To avoid collisions with other BANs, that could
reschedule its beacon at the end of the same active period, CSMA-CA is implemented.
It means that the coordinator does not reschedule the beacons exactly at the end of the
active period, but in a random instant in an interval of seconds (Guard Time) after
the active period. Information about carrier sensing is retrieved from the radio and
only if the channel is free, the beacon is transmitted. Otherwise, if the coordinator
receives a beacon from another coordinator, the beacon’s transmission is rescheduled
again; empirical analysis show that if guard time and carrier sensing is not used, overall
performances of B2IRS can be seriously affected.

An example of the proposed idea is presented in Figure 5.5. When B2IRS is not used,
CAP/CFP overlap is not eliminated. On the other hand, B2IRS reschedules beacon
packets to avoid CAP/CFP overlapping. In the example, both N1 and N2 reschedule
their beacons because both fall into the active period of N0. Rescheduling occurs in
the interval defined by the Guard Time. After the active period of N0, N1 transmits
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Figure 5.6: This picture illustrates three conflicting BANs with B2IRS when Equation 5.2 is satisfied.
Dark grey areas represent active period and light gray areas inactive periods, BR indicates that the
current beacon is rescheduled and the arrow shows when it is rescheduled

its beacon and, since N2 beacon falls into the active period of N1 it re-reschedules its
beacon. After active period of N1, N2 can finally send a beacon and start its active
period. From now on, CAP/CFP overlap does not occur anymore.

IEEE 802.15.4 defines the beacon interval as function of 2BO and active periods as
a function of 2FO. Thanks to this definition, superframe duration and beacon interval
cannot be prime to each other and, after few beacon rescheduling operations, CAP/CFP
will not overlap anymore, ensuring maximum performances and reliability for the in-
volved BANs. The only limitation of this approach is when an inactive period is not
long enough to ensure beacon rescheduling. It happens when the sum of active peri-
ods of all the conflicting BANs is greater than the minimum inactive periods of all the
BANs:

N−1∑
i=0

(SDi +GT ) > min
i∈N

(BIi − SDi)
�
 �	5.2

where SDi and BIi represent the superframe duration and the beacon interval of node
i respectively and GT is the Guard Time. Refer to [18] for details on how SD and
BI are computed. According to Equation 5.2, the amount of BANs that do not cause
overlapping depends on the structure of the superframe. Generally, the bigger the active
periods are, the easier will be the rescheduling. In case Equation 5.2 is satisfied, B2IRS
continually reschedules beacons. An example of how B2IRS works when Equation 5.2
is satisfied, is presented in Figure 5.6.

The Proposed Algorithm Algorithm 1 presents how B2IRS works. It must be in-
cluded into the routine that handles incoming packets.

Algorithm 6:
1 ]Pseudo-code of B2IRS algorithm. [Coordinator]

1: P ← packet_received()
2: if P is BEACON then
3: SO ← getSO(P )
4: tB ← getTimer(NEXT_BEACON)
5: if tB < NSS ∗BSD ∗ 2SO then
6: tB ← NSS ∗BSD ∗ 2SO + rand[0, GT ]
7: setTimer(tB ,NEXT_BEACON)
8: end if
9: end if

When a beacon is received, SO is extracted from it. Then, Equation 5.1 is evaluated.
If it is satisfied,the beacon is rescheduled according to the policies presented above,
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otherwise the beacon is ignored.

Experimental Results To prove the effectiveness of the proposed approach, two dif-
ferent experiments has been conducted: the first where Equation 5.2 is not satisfied
and the second where it is satisfied. These experiments show that, even if overlapping
cannot be avoided, B2IRS is able to substantially keep the amount of received packets
close to the one of an ideal situation. In all these experiments, a BAN is composed of
one coordinator and two end devices, with average distance of 1 mt (the distance be-
tween coordinators is 3 mt). The ideal solution has been calculated with a single, non-
conflicting BAN. The simulation time for each test has been set to 300s and each value
has been computed averaging 50 simulations. All the experiments were conducted us-
ing the OMNET++ Castalia simulator [9], that provides accurate wireless channel and
radio models, with a realistic node behavior [38]. The IEEE 802.15.4 MAC layer im-
plemented in Castalia has been extended to effectively support the proposed approach.

The first experiment has been performed on 2, 3 and 4 conflicting BANs, with and
without B2IRS, and varying the amount of packets per seconds. In this experiment,
Equation 5.2 is not satisfied, and each BAN is equally configured: SO = 4, BO = 6,
GTS_num = 4, TXout = −15dBm, NSS = 16, BSD = 60, GuardT ime = 7ms
and packet size is 115 Bytes; to keep Equation 5.2 not satisfied, with 4 BANs, one
network is configured with SO = 3. Figure 5.7 presents the results of the first set
of experiments. Both the percentage of packets received (top plot) and the number of
buffer overflows (middle plot) are very close to the ideal, while the number of interfer-
ences is slightly higher, but this is negligible because it does not affect the performance
of the network. Energy consumption increases from 7% (2 BANs, 5 pkt/s) to 32% (4
BANs, 60 pkt/s) if B2IRS is not used, and only 1.6% in the worst case (4 BANs, 60
pkt/s) when B2IRS is employed. Thus, when Equation 5.2 is not satisfied, B2IRS is
able to eliminate BAN-BAN interference issues keeping the energy consumption very
close to the ideal situation.

The second experiment has been performed on 3 and 4 conflicting BANs. BANs
are configured as in the previous experiment, except for SO that is equal to 5 in two
BANs and 4 in the other BANs; with this configuration, Equation 5.2 is satisfied. As
previously explained, in this case it is not possible to ensure a perfect overlapping
avoidance, and beacons are continuously rescheduled. The results of these experiments
are depicted in Figure 5.8. Differently from the previous experiment, the number of
buffer overflows is bigger, since it is not possible to avoid overlapping, which causes
a reduction in the percentage of received packets. However, the percentage of pack-
ets received is significantly higher when B2IRS is employed. Energy consumption is
increased, with respect to the previous case, from 1.6% to 5.3% in the worst case (4
BANs, 60 pkt/s). An increase of 5.3% in energy consumption can be accepted, consid-
ering the noticeable improvement in terms of received packets, which directly affects
the performance and the reliability of the system.

Summary This Section analyzes the effect of interferences of co-located BANs run-
ning on the same channel. Considering the amount of channels available after WiFi/Blue-
tooth interference reduction, channel switching can be difficult or even impossible to
perform. To solve this issue, B2IRS has been presented, which aims at reducing single-
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channel interferences of multiple co-located networks, rescheduling beacon transmis-
sion. Experimental results show that B2IRS effectively reduces the packet losses due
to BAN-BAN interferences with a negligible increment in energy consumption in pres-
ence of conflicting BANs (lower than 5.3%), while classical ZigBee shows an energy
consumption increment from 7 to 32%. Concluding, B2IRS always improves the per-
formance of conflicting BANs and, if no conflicts are present, it performs exactly like
the IEEE 802.15.4 with a negligible overhead.
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Figure 5.7: Amount of packets received (top plot), buffer overflows (middle plot) and interferences (bot-
tom plot) when Equation 5.2 is not satisfied. Experiments were conducted on 2, 3 and 4 conflicting
BANs
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Figure 5.8: Amount of packets received (top plot), buffer overflows (middle plot) and interferences
(bottom plot) when Equation 5.2 is satisfied. Experiments were conducted on 3 and 4 conflicting
BANs

5.2 Tacit Consent: A Technique to Reduce Redundant Transmissions
from Spatially Correlated Nodes in Wireless Sensor Networks

The nodes of a WSN can be densely deployed to satisfy fault-tolerance and coverage
requirements. One of the most common techniques to organize these complex WSNs is
clustering, where nodes are grouped into clusters that are managed by an elected node
called Cluster Head (CH), which collects and aggregates data coming from the other
cluster nodes. This technique is known for reducing both collisions and contention
over the wireless channel, as transmissions from sensing nodes to the CHs, and from
the CHs to the sink, can be locally scheduled to avoid packet collisions, hence sleeping
periods are controlled to reduce energy consumption. The majority of cluster protocols
is composed of two phases [19]: intra-cluster collection, inter-cluster routing. In the
first phase, each member node sends its measurements to the CH, which collects and
aggregates them. In the second phase, CHs route data through the network toward the
sink.

Although clustering can improve the lifetime and the capacity of dense networks,
performance are still constrained by the massive transmission of redundant data, which
often appear in spatially-proximal observations [158]. However, it is well known that
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highly-correlated streams of data [48] can be efficiently compressed according to the
Slepian-Wolf theorem [49], thus improving the overall performance of the system. This
redundancy can be effectively exploited especially in MAC and routing protocols to
either reduce energy consumption [158] or improve network reliability [85]. In par-
ticular, the main objective of spatial-correlation-aware algorithms is to reduce energy
consumption while maintaining a very good accuracy of the measurements [157].

This Section introduces a technique to exploit spatial correlation in an energy-efficient
way. In particular, the clustered nodes are divided into two distinct groups: representa-
tive and member nodes. Representative nodes send data directly to the CH, while mem-
ber nodes overhear the transmitted data and understand whether additional information
is required, e.g., because the measure that was transmitted to the CH by a representative
node is too different from the one that is sensed by the member node. Otherwise, the
member node tacitly consents the data transmitted by the representative, and does not
transmit any data.

In order to reconstruct the missing information, the sink uses a custom estimation
function to determine the value coming from the member nodes by means of the values
of the neighboring representatives. The precision of the reconstruction clearly increases
with the number of representative nodes, which however leads to a reduction of the net-
work lifetime [132] and of the capacity of the wireless channel [95]. Therefore, a trade-
off between energy consumption and estimation error arises: more transmissions (i.e.,
more measurements) lead to a reduction of the estimation error and an increment of
the energy consumption and, vice versa, few transmissions reduce energy consumption
while decreasing the accuracy of the estimation.

With respect to the state-of-the-art approaches, the proposed technique achieves
a considerable reduction of the energy consumption with high estimation accuracy.
Moreover, differently from the existing works, the proposed approach employs custom
estimation functions and is able to work even without absolute spatial information, i.e.,
the physical node position. Finally, the proposed technique is not limited to a specific
network protocol and can be adapted to many kinds of wireless sensor networks.

State of the Art Clustering has been extensively studied in the literature, and dif-
ferent approaches have been proposed. CLUBS [120] is a clustering technique where
every node belongs to a cluster, whose diameter is the same for all the clusters. Other
approaches aim at defining a multi-tier hierarchical clustering strategy [30]. Sizes and
degrees of overlap of the clusters are taken into account while grouping nodes and
managing the hierarchy. To tackle energy efficiency of WSNs, several approaches have
been presented. The Energy Efficient Hierarchical Clustering, proposed in [87], is a dis-
tributed and randomized clustering algorithm designed with the objective of optimizing
the network lifetime. Similarly behaves the Low Energy Adaptive Clustering Hierarchy
(LEACH) [69] approach, which is one of the most referenced and popular clustering al-
gorithms for WSNs. The protocol creates clusters based on the strength of the received
signal and uses the CH nodes - elected with probabilistic function - as routers to the
BS for the communications coming from their cluster members. Several modifications
of the LEACH strategy have been proposed, such as TEEN [106], APTEEN [107] and
PEGASIS [97]. For further information about clustering algorithms, the reader may
refer to the survey in [19].
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Spatial Correlation is a unique characteristic of WSNs since it generates highly-
correlated information, whose size can be reduced by following well-known results in
the field of lossless transmission [48]. Differently from the above clustering/routing
protocols, spatial-correlation-aware algorithms exploit this characteristic and the con-
sequent data redundancy to improve the efficiency of the network. As redundancy is
reduced, these algorithms aim at finding a good tradeoff between energy saving and
loss of accuracy due to data aggregation policies.

Yoon et al. [165] proposed CAG, an aggregation technique that provides approx-
imate results by exploiting spatial correlation in aggregate queries. CAG aggregates
data at CHs according to the specific query and routes aggregated data to the sink. Liu
et al. [98] presented a data collection method based on a careful analysis of surveillance
data reported by sensors. By analyzing the spatial correlation of the sensed data, they
dynamically partition the sensor network into cluster with similar time series.

The most recent and efficient algorithm for spatial-correlation-aware data collection
is YEAST [157]. In fact, this algorithm has been shown to outperform many other
state-of-the-art algorithms in terms of scalability, flexibility, accuracy, aggregation rate,
overhead and energy consumption. In particular, YEAST reduces data redundancy by
defining adaptive correlation regions, where sensed data is supposed to be uniform.
Each correlation region elects a set of representative nodes that detect an event and
report the gathered data to a coordinator. Routing toward the sink is performed using
geographical information and in-network collection is performed. To estimate mea-
surement’s values of member nodes, an estimation function based on node’s position
is used. Nevertheless, YEAST is strongly limited by two assumptions: nodes need to
know their (absolute) position in the network, and the sensed physical variable has to
be uniform within the correlation region. Moreover, YEAST only works with event-
based networks. On the other hand, this approach does not rely on the aforementioned
assumptions, and it also supports periodic monitoring. In addition to this, while all the
presented approaches work with specific, ad-hoc network protocols, this approach is
not bound to a specific routing protocol, hence it can be adapted to a wide range of
network architectures.

The Proposed Methodology The main issue of spatial-correlation-aware data trans-
mission is the definition of the correct reporting rate, i.e., the percentage of transmitting
nodes over the total number of nodes in the WSN. One the one hand, a low reporting
rate leads to a limited energy consumption, but the accuracy may fall below an accept-
able distortion bound [158]. On the other hand, a high reporting rate increases both the
accuracy and the throughput of the network, thus leading to a higher energy consump-
tion.

To reduce the network throughput, YEAST uses the so-called correlation regions
to estimate measurements and keep the number of transmissions as low as possible.
In a correlation region, only the representative nodes send their measurements, thus
the sink receives only one measurement from each correlation region. This approach
works well in scenarios where the physical variable does not significantly vary within
the correlation region. However, this approach does not scale well with the size of the
correlation region, as spatial correlation decreases when the distance among the nodes
increases [158].
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Before introducing the proposed approach, let us define the relation graph as a
directed graph G 〈N,A,Mn(t), φn,m(Mn, t, Pn,m), t〉 where N represents the nodes of
the network, A the connections between nodes, Mn(t) the measurements at time t of
node n, φ the relationship between two nodes (n and m) at time t, and Pnm a set of
numerical parameters required by the estimation function. The estimation function (φ)
depends on n and m (thus φn,m) and is able to estimate Mn from Mm and Pn,m. An
example of Pn,m is the distance between measurements (offset) or a scaling factor.

This approach is more general than correlation regions, since a correlation region is
an area where φ(Mm, t, Pn,m) = Mm for all t and Pn,m. Moreover, correlation regions
have a predefined shape and position. A comparison between correlation regions and
correlation graphs is illustrated in Figure 5.9. In YEAST, the topology is constrained
by the size and the position of the correlation regions while, in the relation graph, the
relationships between nodes are expressed according to the knowledge of the physical
phenomenon.

Figure 5.9: Comparison between Correlation Regions (top) and Relation Graph (bottom). In a correla-
tion region, the measurement of a node is assumed to be equal to the measurement of their represen-
tative node. In a relation graph, a relation between member and representative nodes is specified by
the φ function

The relations of a relation graphs have to be defined at design-time, since it is usu-
ally very complex to extract this information at runtime. On the other hand, the re-
maining parameters can be tuned at runtime in order to perform accurate estimations.
For example, if the measurements are temperatures, it is well known that the difference
between the temperatures of two nodes in the network is equal to the temperature gra-
dient, but the specific gradient in each part of the network has to be estimated. In this
example, φ(Mm, t, Pn,m) = Mm(t)+∆n,m(t), where ∆n,m(t) is a scalar that represents
the temperature gradient between nodes n and m at time t.
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The TaCo Algorithm The proposed algorithm is called Tacit Consent (TaCo), and
it groups the nodes of the WSN into two classes:

• representative Nodes, which represent a specific area of the network. They act as
normal nodes: when a new measure is available, they will transmit it immediately.
They can be defined at design time or at runtime;

• member Nodes, which are represented by other nodes. A member node is repre-
sented by a single representative node. Member nodes communicate with the sink
if and only if it is strictly required.

Two types of data messages can be sent by the nodes:

• MEASURE_PKT: used to communicate the current measurement (Mn) to the sink.
It is composed of three fields: (n, sensorID, M). This packet is sent by repre-
sentative nodes;

• PHI_PKT: used to communicate the parameters (Pn,m) of the estimation function
to the sink. It is composed of five fields: (n, m, sensorID, P). This packet is
sent by member nodes.

TaCo can be configured with the following set of parameters, which appear in Equation
5.3:

• RSSI_threshold: minimum amount of RSSI (Received Signal Strength Indication)
to consider two nodes as neighbor. It affects the number of representative nodes;

• E: maximum estimation error φ tolerated by the application. Higher is E, less
frequently will be the PHI_PKTs;

• δ: desired degree of member nodes for the representative nodes. It is used when
representative nodes have not been defined at design time;

• w1, w2, w3: positive numbers that are used to dynamically determine the represen-
tative.

TaCo consists of two phases: setup phase and execution phase. The setup phase is
required only when the role of the nodes (representative or member) has not been spec-
ified at design time. This phase consists of three steps: in the first step, each node
identifies its neighbors by broadcasting HELLO messages at a low transmission power
and receiving sensitivity (in order to reach only spatially co-located nodes); only nodes
with a RSSI greater than RSSI_threshold are chosen as neighbors. In the second phase,
each node computes a weight, that depends on the desired degree of neighbors (δ),
the average quality of signal (RSSI) of the neighbors set (N(n)) and the consumed
energy:

Wn = w1|dn − δ| − w2

∑
v∈N(n)

RSSIv
|N(n)|

+ w3En
�
 �	5.3

where dn is the number of neighbors of n, δ is the desired amount of neighbors and
En is the consumed energy (w1, w2, w3 are non-negative weights). Both the function
and the weights are inspired to DWCA [47]. It has been observed that this function
provides good clusters and fairness between nodes, but a different clustering technique
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can be used as well. When weights are computed, they are broadcasted to the other
nodes. Representative nodes are the ones with the lower weights among the neighbors.
Thus, once the weights of all the neighbors have been received, a node becomes rep-
resentative if no neighbor with a higher weight exists. As a third step, representative
nodes communicate the role to the neighbors member nodes, and each member node
selects the node with the highest RSSI as its representative.

Once the setup has been completed, TaCo enters in the execution phase, whose
pseudo-code is presented in Algorithm 7. In this phase, each representative node op-
erates as a normal node by transmitting a new measure toward the sink as soon as
the new measure is available, thus, when a new measurement is sampled (SAMPLE),
representative nodes transmit it immediately and member nodes store it. The member
nodes silently listen to the transmission (overhearing) and compare the estimation of
the measurement (φ(L, P )) with the actual value (M ). If the estimation error is greater
than E, the specific member node transmits a PHI_PKT to update Pn,m in order to
keep the estimation error within the tolerance. Otherwise, if the estimation is correct,
the member node tacitly consents the estimation and does not send any packet. To
perform overhearing, member nodes must be awake when their representative node
transmits. Since the underlying routing/MAC protocol may manage representative and
member nodes in a different way, TaCo schedules its own wake-up’s regardless of the
MAC protocol.

The estimation accuracy (e) is computed as the ratio between estimated value (α)
and accurate measurement (β):

e(α, β) = 100−
(
| α− β |

β
× 100

) �
 �	5.4

The same function has been used in [157] to validate YEAST.

Algorithm 7: Execution Phase of TaCo algorithm
input : Packet or sample (I)

1 if I is SAMPLE then
2 if node is REPRESENTATIVE then
3 M = readSample(I);
4 sendMeasure(M);
5 else if node is MEMBER then
6 M = readSample(I);
7 end
8 else if I is MEASURE_PACKET then
9 if node is REPRESENTATIVE then

// discard packet
10 else if node is MEMBER then
11 L = getMeasure(I);
12 if e(M,φ(L,P )) > E then
13 P = updateParams(L,M,E);
14 sendParams(P);
15 end
16 end
17 end
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Figure 5.10: An example of the proposed algorithm. N2 is a representative node while N1 and N3 are
non-representative nodes. The red node, represented with S is the sink. The φ function used here is
Mn = Mm + ∆

To better understand the idea of TaCo, an example is illustrated in Figure 5.10. In
this example, the estimation function φ corresponds toMn = Mm+∆. At the beginning
(A), N2 reads and sends its measure (15) to the sink (the red node, represented with
S). At the same time, N1 and N3 listen (overhear) the measure and store it. Then N1
reads 12 (B), computes ∆ (offset), which is -3 to N2, and transmit ∆ to the sink (C). It
transmits ∆ because it is the first data sent to the sink. Similarly, N3 reads data from
its sensors and compares it to the value sent by N2 (D). Once ∆ is determined, N3
transmits it to the sink (E). After a certain period of time that depends on the sampling
period, N2 samples a new measure (13) and transmits it to the sink (F). Both N1 and
N3 silently listenN2 measure and store it. Later,N1 reads the measure from its sensors
and compare it to N2 measure (G). Since the measure is 10, ∆ still remains the same,
so no update is required and no transmission is required; N1 tacitly consents sink’s
estimation. Differently, N3 reads 12 from its sensors which means that ∆ is different
from the previous one (H). Finally, N3 retransmits an updated value of ∆ (I).
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Integration of TaCo with Existing MAC/Routing Algorithms TaCo can be easily
integrated with existing MAC/Routing protocols, making it possible for the designers
to identify the correct MAC/Routing layer according to system constraints and require-
ments (cost, availability, performances, etc.). This is possible since TaCo requires only
single-hop broadcast communications (supported by many MAC layers) and the cre-
ation of the relation graph is not bound to the network architecture. As a matter of fact,
the packets of a member node can follow a different path with respect to the one its rep-
resentative, since the final estimation is performed directly by the sink. The example
in Figure 5.10 presents a direct communication with the sink, but, since no feedback
from the sink is required, the communication can exploit any kind of routing algorithm
(single/multi-tier, opportunistic, probabilistic, multi-hop, etc.). In the experimental re-
sults, two different routing protocols has been used: Directed Diffusion [74] and a
simple version of the Synopsis Diffusion [122]. Moreover, both have been tested with
S-MAC [162] and B-MAC [135].

Figure 5.11 illustrates how to integrate TaCo with existing MAC/Routing layers.
TaCo has been designed to interact with routing and MAC layers directly, and its execu-
tion can be controlled by the application to determine which measurements are handled
by TaCo and which ones by the application.

Experimental Results The proposed approach has been validated by comparing it to
YEAST in terms of both energy and accuracy. Experimental results have been con-
ducted using Castalia [9], a popular simulator for Wireless Sensor Networks and Body
Area Networks, based on the OMNeT++ framework [155]. Both TaCo and YEAST
have been implemented in the same simulator in order to ensure a fair comparison.
We use the Customizable Physical Process provided by Castalia to analyze the behav-
ior of the two algorithms in different environmental conditions. This physical model
is composed by a set of sources whose influence is diffused over the bi-dimensional
space [39]. The effect of multiple points is additive, as shown by the following equa-
tion:

V (p, t) =
∑
∀i

Vi(t)

(Kdi(p, t) + 1)a
+N(0, σ)

�
 �	5.5

Figure 5.11: Integration of TaCo with existing MAC/Routing layers. TaCo has been designed to interact
with routing and MAC layer directly, with or without the application
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Figure 5.12: Values of the four sources used in the Castalia’s Customizable Physical Process in the
experiments. Sources are located in (30,30),(70,30),(30,70),(70,70) [m,m]
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Figure 5.13: Energy-Error tradeoffs obtained by TaCo and YEAST with a = 0.5, a = 1.5 and a = 2.5

where V (p, t) denotes the value of the physical process at point p at time t, di(p, t)
the value of the source i at time t, while K and a determine how the values are
diffused, and N(0, σ) is a zero-mean Gaussian random variable. In these experi-
ments, we vary the value of a in order to determine if the proposed approach cor-
rectly works in different situations: higher values of a imply stronger gradients be-
tween points in the space. In these experiments, four sources, respectively located in
(30, 30), (70, 30), (30, 70), (70, 70), were used. The parameters used in the experiments
are listed in Figure 5.12. Values in the other position in the network are computed with
Equation 5.5. In all the experimental results, k = 0.25, σ = 0 and a varies from 0 to 2
according to the specific experiment.

The main parameters used in the simulation are presented in Table 5.1. Nodes are
uniformly distributed according to

√
nπr2

c/d [157] where n is the number of nodes, rc
the communication radius and d the average degree of neighbors.

The first experiment highlights the different energy-accuracy tradeoffs that can be
obtained using TaCo and YEAST, with different values of a. Figure 5.13 shows the
different solutions, which correspond to different numbers of representative nodes: a
higher number of representatives lead to a solution in the bottom-right corner of the
energy/error graph (high energy consumption and low estimation error), whereas a low
number of representatives lead to a solution characterized by low energy consumption
and high estimation errors. The results show that in general TaCo outperforms YEAST
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Table 5.1: Simulation parameters with range of values

Parameters Values
Number of Nodes (50,100,225,400)

Area [m×m] 100× 100
Sample Rate [sample/min] 1
Transmission power [mW] 57.42

Receiving power (Low Sensitivity) [mW] 32
Receiving power (High Sensitivity) [mW] 62

Length of the Simulation [min] 3200
Radio Module CC2420

MAC Layer Module (S-MAC, B-MAC)

Routing Layer Module (Directed Diffusion,
Synopsis Diffusion)

Simulation Run (for each configuration) 50
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Figure 5.14: Average estimation error of YEAST and TaCo for 50, 100, 225 and 400 nodes with S-MAC.
YEAST was tested with c = {5, 10, 15, 20, 25} and TaCo with E = {2, 4, 6, 8}. Error is computed
with Equation 5.4 and Y axes are logarithmic

both in terms of energy consumption and estimation accuracy, especially in the scenar-
ios when the maximum acceptable error is below 5%.

The second experiment was conducted to determine the effectiveness of the pro-
posed approach with respect to the estimation error. It has been conducted on both
YEAST and TaCo equipped with S-MAC. In this case, routing is not considered since it
is not relevant for estimation accuracy. YEAST has been tested withC = {5, 10, 15, 20, 25}
and TaCo with E = {2, 4, 6, 8}. Experimental results are presented in Figure 5.14.
TaCo is able to keep the error below the desired error while YEAST has no control
about the current estimation error. Please note that actual average error in TaCo is al-
ways lower than E, which represents the maximum tolerated error. In YEAST, data
from member nodes are completely ignored and thus no control on the current error is
performed. Even if correlation regions can be reconfigured at runtime, estimation error
strongly depends on the correlation region width (C) and increases to more than 20%.
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Figure 5.15: Average Energy Consumption of TaCo for 50, 100, 225 and 400 nodes. RSSI threshold is
equal to −95dBm and a = 1.5 with B-MAC and Synopsis Diffusion

The third experiment was conducted on TaCo and YEAST with B-MAC and Syn-
opsis Diffusion in order to determine the relationship between parameters and energy
consumption. Two distinct tests the following values have been varied: in the first ex-
periment the TaCo’s error tolerance (E) and, in the second, the width of correlation
regions (C) in YEAST. Figure 5.15 illustrates the energy consumption of TaCo and
YEAST. In TaCo, increasing E reduces energy consumption. This result was expected
since a greater tolerance reduces the amount of PHI_PKT that must be transmitted.
On the other hand, correlation region width (C) strongly affects energy consumption
such as higher values of C decreases the amount of representative nodes, reducing the
energy consumption. This phenomenon confirm the experimental results in [157].

Summary This Section presented TaCo, a new technique to exploit spatial correlation
and provide accurate measurements in dense wireless sensor networks with a limited
energy consumption. Thanks to the high correlation between co-located nodes, it is
possible to correctly predict the measurements from the values sensed by the neigh-
boring nodes. This allows to drastically reduce the number of transmitted packets and
hence the energy consumption of the whole network. Experimental results prove that
TaCo is able to find better energy/accuracy tradeoffs with respect to YEAST, the most
efficient spatial-correlation-aware algorithm that can be found in the literature. In par-
ticular, TaCo greatly reduces the energy consumption of all the solutions that guarantee
a high accuracy (i.e., a low estimation error). Finally, TaCo allows the designer to freely
select the MAC/Routing protocol, thus making it applicable to a broad class of WSNs.

5.3 Concluding Remarks

Design-time analysis and algorithms aim at identify the optimal network configuration
for the given metrics, but runtime issues like interferences, node failures or node mo-
bility can dramatically affect the performance of the network. The need to adapt the
network at runtime is of extreme relevance to ensure the operational effectiveness and
performance of the network as expected.

This Chapter presented two specific approaches that deal with online adaptivity of
Wireless Sensor Networks: a technique to reduce BAN-BAN interferences in WSNs,
and a technique to reduce the amount of transmissions in a cluster-based network. The
first technique provided an effective way to reduce, or even eliminate, BAN-BAN inter-
ferences in IEEE 802.15.4-based networks. The second technique exploited the concept
of spatial correlation to control and reduce the amount of required transmissions in a
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cluster-based network.
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6
Application Case Study

This Chapter details a complete application case study that aims at presenting how the
proposed design flow can be applied to a real case study. The complexity and variety of
Wireless Sensor Networks’s applications make it impossible to create a comprehensive
case study; as a consequence, certain processes can be trivial, while others require
several hours or days to perform. However, the purpose of this chapter is not to present
the effectiveness of specific techniques, rather an high-level view of how the proposed
design flow can be used on a real-world case study.

The case study presented in this chapter has been inspired to the work contained
in [63] and conducted in collaboration with the Hydrology Department of Politecnico
di Milano. The network has not been deployed, thus all the measured data are col-
lected with the OMNET++ Castalia simulator [9], enriched with realistic data from the
datasheets of the platforms presented in Chapter 3.

6.1 Description of the Case Study

Consider an area of 5km per 3km as shown in Figure 6.1. This area is divided in three
distinct zones by a lake and a river, that crosses the area from north to south. the first
zone, located at west of the river, has a small hill covered by trees, the second zone, at
the east of the river, is a plain and the third zone, located at the south between the rivers,
is covered by a dense forest. The objective of the design phase is to place and configure
a wireless sensor network in order to retrieve needed data from the environment.

There are four groups of variables to gather from the environment:

• Water Level: the actual water level of the lake;

• Water Flow: the actual water flow of the river;

• Temperature, Humidity and Rainfall: actual temperature, humidity and rainfall
data gathered from the environment;

• GAS: actual value of gases like CO, CO2, O3, etc...
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Figure 6.1: Main Field of the Application Case Study

METRICS REQUIREMENTS

The network must be able to collect the required data from the environment with a
Packet Receive Ratio (number of packets received on the number of packets sent)
higher than 95% and with the maximum achievable lifetime.

6.2 Design Phase

6.2.1 Sensing Coverage
According to the proposed design flow, the first step of the design is the definition of
the position of the sensors (Sensing Coverage). In the specific case study, this position
is defined manually by specialists, that identify the correct number, their type and
position. The result of this first step is shown in Figure 6.2.

6.2.2 SW Development
The network of this case study acts as a push network, meaning that all the nodes
periodically sends their data to the Base Station for further analysis. This type of
application is extremely popular in WSN field, and it can be easily implemented on any
platform and operating system. An example of a task in push networks is illustrated
in Algorithm 8. This task, takes the sensor ID (sid) as input parameter in order to
identify which sensor is controlled by the actual task among the available sensors on
the platform. It first reads a new sample from the assigned sensor and store it in memory
(x(sid, t)). Then, the function reportRequired is evaluated; this function evaluates if the
actual value must be transmitted to the Base Station or not. Although in push networks
data are always transmitted to the Base Station, energy saving policies could delay or
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6.2. Design Phase

Figure 6.2: Result of the Sensing Coverage Process as Specified by the Specialists (Manual Operation)

block the transmission, similarly to what Tacit Consent algorithm does (see Section
5.2). In case reportRequired function returns true, the actual value is transmitted to the
Base Station, otherwise sample is ignored.. At the end, the task set an interval for its
re-activation; this specific function can differ according to the chosen operating system.

SW Development is typically performed manually, since the application hardly de-
pends on the problem to solve.

Algorithm 8: Example of Sensing Task in Push Networks
input: sid

1 x(sid, t) = getSample(sid)
2 if reportReqired(x(sid,t)) then
3 send(x(sid,t), BASE_STATION)
4 end
5 setInterval(T, SampleVariable(sid))

6.2.3 Network Connectivity
Third step of the design flow is the Network Connectivity process, that inserts additional
nodes, called relay nodes in order to create a connected network. Assuming an effec-
tive transmission range of 800 meters, the network connectivity of the actual network
(before Network Connectivity process) is illustrated in Figure 6.3; all the nodes in the
network cannot communicate with the Base Station, and most of them are isolated. To
perform this process, the algorithm described in [150] has been used; the algorithm has
been introduced in Section 4.3. The output of this algorithm has been automatically
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Figure 6.3: Situation of the Network Before Network Connectivity Process

computed and it is illustrated in Figure 6.4. At that point, all the nodes are able to
communicate with the Base Station.

6.2.4 Hardware Design
The actual application case study does not require custom hardware platforms, and
device size and costs are not constraints. For this purpose, according to the required
sensors, Wasp Mote from Libelium (see Section 3.1) best fits the desired requirements.
The company provides ready-to-use sensor boards as well as batteries and solar panels.
Moreover, Over the Air Programming (OTA) is a desired feature in such applications,
since direct programming could be difficult and complex. This process is perfomed
manually.

6.2.5 OS Definition
Once hardware has been defined, the Operating System must be chosen. According to
the analysis in Section 3.1.1, Libelium supports only FreeRTOS, thus the definition
of the OS is very simple. However, FreeRTOS is a good operating system for this
particular application; it supports multi-threading, mutexes and semaphores. Moreover,
overhead of FreeRTOS is very limited. This process is perfomed manually.

6.2.6 Network Protocol Definition and Configuration
Except for Network Connectivity process, the other processes have been executed man-
ually, performing only qualitative analysis. The remaining processes will be executed
automatically, in order to optimize the lifetime of the network, keeping them fully
functional. These two processes have the objective to identify which are the network
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6.2. Design Phase

Figure 6.4: Situation of the Network After Network Connectivity Process (Automatic Operation)

protocols (MAC and Routing) and how they must be configured in order to maximize
the lifetime of the network, keeping the packet-receive-ratio at the Base Station higher
than 95%, as specified in the requirements. In this study lifetime is considered as the
time until ONE node stop working. This analysis does not keep into consideration
energy harvesing, so worst case scenario is always assumed.

Analyzing the topology of the network in Figure 6.4, it is possible to notice that the
network is a single-tier network, then no cluster methods are suggested. It includes the
use of the popular IEEE 802.15.4 protocol, that works in two-tier networks. Candidate
MAC protocols (supported by the simulator) are:

• T-MAC: a popular MAC for WSN, it adapts the duty cycle according to the traffic
needs and uses SYNC, ACK, RTS and CTS packets for synchronization and to
maintain low values of packet-error-rate;

• S-MAC: the predecessor of T-MAC, it uses a more rigid duty cycle;

• Tunable MAC: a complex and highly-customizable MAC layer with variable
duty-cycle and no RTS/CTS packets. It only supports broadcast communications.

To define which protocol best fit the desired needs, three distinct Design Space Ex-
plorations have been conducted on the protocols. The objective is to detect an optimal
configuration of the network, defined as the configuration with at least 95% of Packet
Receive Ratio and the maximum Lifetime. To perform a realistic simulation of the
applicaiton, a fixed routing has been used. For the explorations, NSGA-II, PMA and
MOSA have been used; the results show the points identified by all the algorithms.

Figure 6.5 illustrates the points and the Pareto curves extracted by the three explo-
rations. The metrics of interests are lifetime (in months) and packet-receive-ratio (in
percentage) at the Base Station. The algorithms aim at maximizes both metrics. Pareto
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(c) Tunable MAC

Figure 6.5: Design Space Exploration of SMAC, TMAC and Tunable MAC (Automatic Operation)
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Figure 6.6: Comparison of the Pareto Frontier of SMAC, TMAC and Tunable MAC (Automatic Opera-
tion)

frontiers of SMAC, TMAC and Tunable MAC are illustrated in Figure 6.6 for compar-
ison. According to the initial requirements, a Packet Receive Ratio of 95% is needed,
thus all the solutions below this threshold are excluded. Experimental Results show that
Tunable MAC is dominated by both SMAC and TMAC, thus it is not the right choice
for this application. On the other hand, TMAC dominates SMAC and has a better life-
time for solutions with Packet Receive Ratio higher than 95%, thus TMAC is chosen as
MAC layer in this application.

At this point, routing protocol must be defined. According to topology, similarly to
what has been done for MAC layer, the protocols available are:

• Ad Hoc On-Demand Distance Vector (AODV): a reactive routing protocol that
creates custom paths from source to destination on-demand. It is capable to deal
with topology changes and faults in the network;

• Destination-Sequenced Distance Vector (DSDV): table-driven routing protocol,
derived from the Bellmann-Ford algorithm. Differently from AODV, it is more
efficient but requires constant update in the routing tables;

• Directed Diffusion: scalable and robust routing protocol for WNS, it routes data
from source to Base Station by computing the gradient descend.

These routing protocols have few parameters to set, thus an exhaustive search is
preferred. The results, given in Table 6.1 have been automatically computed using the
MAC layer defined in the previous step and configured to give a Packet Receive Ratio
of 95% and the maximum achievable lifetime (that is about 5.2 months). According to
the results, Directed Diffusion dominates both AODV and DSDV and improves both

AODV DSDV Directed Diffusion
Lifetime [months] 5 5.2 5.8

Packet Receive Ratio [%] 95 92 97

Table 6.1: Results of Routing Protocols’ Definition Process (Automatic Operation)
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Figure 6.7: Definition of the Data Flow Graph (Manual Operation)

Figure 6.8: Partitioned and Mapped Data Flow Graph (Automatic Operation)

the lifetime and the packet receive ratio with respect to the configuration with fixed
routing, thus it has been identified as candidate routing protocol for this application.

6.2.7 SW Partition and Mapping
A very popular technique to reduce the number of transmission in the network is to
aggregate the data during the routing. Many routing protocols already implement this
functionality, but for this application it is preferred to specify the aggregation policies
manually, while Partiion and Mapping will be executed automatically. The resulting
Data Flow Graphs (DFGs) are illustrated in Figure 6.7 for Zone 1 (top) and 3 (bottom).
In all the DFGs, gray nodes are sampling tasks from the corresponding nodes, thus they
are contrained to that node, while white tasks perform aggregating operations, thus can
be executed on every node in the network, relay nodes included.

According to the results presented in Section 4.5.1, GA+Tournament algorithm has
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Figure 6.9: Aggregation Routes After Partition and Mapping Process (Automatic Operation)

been used. The best solution identified by the algorithm is illustrated in Figure 6.8. To
better appreciate and understand the effectiveness of the algorithm, aggregating routes
are plotted in Figure 6.9.

6.3 Concluding Remarks

This Chapter illustrated a complete design problem from the high-level specification
given by the customer to the final deployment, through all the processes of the proposed
Design Flow. The objective of this Chapter was to show the reader an example of how
to apply the proposed design flow to a real-world case study. In this chapter became
clear that all the processes are important in the identification of the deployed solution,
and some of them could be easier and faster than others, depending on the case study. In
the example presented in this Chapter, hardware design process and OS definition were
extremely fast, since there are different platforms that are able to support the desired
application; in Wireless Body Sensor Networks application, on the other case, hardware
design is extremely important to guarantee low-energy, high-reliable systems.
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7
Concluding Remarks

The optimal design of a Wireless Sensor Network (WSN) is extremely complex to ob-
tain, since it involves the identification and configuration of several aspects regarding
hardware platforms, network protocols and software development. All these aspects
are inter-dependent, thus their definition cannot be performed without considering the
design process as a whole thing. Unfortunately, Design Space of WSNs is extremely
complex and huge, thus an exhaustive Design Space Exploration cannot be employed.
Moreover, considering that its size increases exponentially as the number of nodes in-
volved increases, efficient DSE techniques are required as well as effective CAD tools.

Wireless Sensor Networks are becoming a mature field for research, with dozens
of platforms, network protocols and interfaces, several routing techniques and energy
saving policies, operating systems, and so on. At that moment, WSN design is mainly
performed manually, leaving the user to decide which protocol best fit its needs, which
hardware platform should be used, how nodes should be programmed, including the
definition and configuration of the operating system. The identification of the right
combination of these things is extremely hard and could lead to non-optimal or non-
working devices if performed manually. Considering that a good design of a WSN
require knowledge in the field of telecommunication, computer science and electronic
as well as problem-specific notions (i.e. in medics, geophysics, natural sciences, etc..),
multi-disciplinary teams must be created, since a single person does not own all the re-
quired skills. Moreover, manual WSN design could leave the designer to use a technol-
ogy since he knows how to use it, that is not acceptable for strong constrained networks.

This thesis presented a comprehensive study about methodologies and techniques
for Wireless Sensor Network design. This thesis introduced a complete and generic
design flow for Wireless Sensor Networks as well as innovative methodologies and
techniques to perform specific design processes. The thesis started by introducing
some basic concept about WSNs and Design Space Exploration (DSE) such as models
or exploration techniques. Then it presented a review and comparison of commer-
cial microcontroller-based platforms and a novel FPGA-based platform. The fourth
Chapter is the core of the work, and introduced a general-purpose design flow as well
as innovative model-based and hybrid exploration techniques such as the promising
Markov Decision Process (MDP). The fifth Chapter presented two online techniques
to: reduce single-channel interferences in IEEE 802.15.4 based networks and increase
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energy efficiency in spatially-correlated cluster networks. Lastly, Chapter six presented
a complete design example to show how to effectively use the proposed design flow in
a real-world example.

This thesis introduced several innovations:

• A general-purpose design flow for Wireless Sensor Networks. To the best of my
knowledge, this is the first design flow specifically designed for Wireless Sensor
Networks;

• A comparative study between Flash and SRAM FPGAs and the design of a novel
FPGA-based WSN node for high throughput networks with strong energy re-
quirements;

• Two models for model-based DSE created for Wireless Body Sensor Network
field;

• An innovative hybrid DSE algorithm based on the Markov Decision Process
(MDP) and effectively applied to IEEE 802.15.4 networks;

• An innovative technique to reduce BAN-BAN interference in IEEE 802.15.4
based Body Area Networks;

• An innovative technique to reduce transmissions in cluster-based networks us-
ing spatial correlation information.

Future Works and Promising Trends

Optimal design of Wireless Sensor Networks is complex, due to the singularity of their
applications and the large number of available hardware, network and software archi-
tectures. In a very near future, more and more applications and devices will come into
the market, thus quick and effective CAD tools will be required. However, these tools
should not deploy the design into the target network, rather they must support the user
in all the aspects related to the design of WSNs. At the same time, they must drive the
design process by evaluating and comparing alternative implementations.

Future works include:

• Development of design frameworks: the framework developed in this thesis was
designed only to verify and test the proposed methodologies and techniques but
it is not able to deploy the final implementation. Future developers should create
platform-independent CAD tools able to target specific platforms; they should in-
clude: accurate models of target platforms, compilers, custom configuration tools,
etc...;

• Development of accurate and efficient simulators: simulators provide a good
compromise between accuracy and evaluation speed. To design efficient and reli-
able sensor networks, better simulators must be developed. They should include:
realistic models of real commercial hardware platforms, routing protocols, MAC
protocols, OS emulation, obstacle and environment simulation, etc...;
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• Development of both general-purpose and problem-specific DSE tools: DSE
tools are extremely important to support the designer during the identification of
the optimal solutions, thus both general-purpose (less effective but reusable) and
problem-specific (more effective but less reusable) must be developed.

WSNs have been widely studied in the last decade, and several innovative applications
are being envisioned and implemented. This thesis could affect and influence several
application fields including (but not limited to):

• Smart Building and Smart Cities: this is an extremely hot topic today: “How
to make our buildings and cities smarter? How to improve energy efficiency of
our cities without reducing their comfort? etc...”. Despite application specific
algorithm and techniques to solve these problems, it is evident that, once effective
solutions will be identified, their implementation could not be trivial. Imagine
a building with hundreds of sensor/actuator wireless devices interconnected to
monitor and control energy, light and security, or offering various media services.
Design techniques and tools will decrease the time-to-market, increase the quality
and reliability of the system, and help the designer to test and compare various
design alternatives before the final deployment;

• Wireless Body Sensor Networks: these systems do not have a large number of
devices, but energy and performance constraints make their design extremely dif-
ficult. For that reason, very often, the hardware is designed ad-hoc for the specific
application, and that design must be verified with network protocols and operat-
ing system. Wireless Body Sensor Networks are usually employed in the medical
field, thus reliability must be guaranteed over any reasonable optimization. Sim-
ilarly to Smart Buildings, efficient CAD tools will decrease the time-to-market,
increase the performance and lifetime of the system, and help the designer to ver-
ify and test its algorithms and hardware platforms;

• Environmental Monitoring: this was one of the first application of WSNs. It
includes the deployment of a WSN in hostile places to gather environmental data
periodically in order to monitor and control the area of interest. These type of
WSNs can be used to monitor an inhabitated area to check if catastrofic events
are occurring (fire), or just to gather information about the habits of the local
fauna. An example of design of these networks has been given in the previous
chapter. Although these types of networks do not have strong reliability and safety
constraints, their management is extremely difficult, thus an optimal design is
required to reduce maintainance costs. In this application field, lifetime of the
network should be typically be higher than three months;

• Multimedia Sensor Networks: multimedia sensor networks are characterized by
extremely high throughputs and high computation requirements. They are used for
security or entertainment applications with strong performance and cost require-
ments. An effective definition of hardware plaforms as well as network protocols
is required to guarantee throughtput requirements. Similarly to the other fields,
verification and testing of these systems extremely important and could make the
difference between a winning or a failure product.
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