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Sommario

Questa tesi affronta un insieme di problematiche attuali nell’ambito di elaborazio-

ne dei segnali audio tramite lo studio, rappresentazione, acquisizione/costruzione e

uso delle informazioni plenacustiche che catturano la scena acustica “vista” da diver-

si puti dello spazio. In particolare, per la modellazione della propagazione acustica,

l’informazione plenacustica prende la forma di informazione di visibilità che cattura

le condizioni di visibilità di oggetti geometrici da diversi punti dello spazio. Questa

informazione viene usata per una efficiente ed accurata simulazione della propaga-

zione di onde sonore in ambienti complessi. Per quanto riguarda invece l’analisi

di scene acustiche, l’informazione plenacoustica acquisita da una o più schiere di

microfoni viene rappresentata in forma di un immagine plenacustica che cattura il

campo sonoro proveniente da diverse direzioni sui diversi punti dello spazio. Questa

immagine contiene un numero significativo di dettagli e informazioni sulla scena acu-

stica. Seguendo le leggi dell’acustica geometrica, l’informazione plenacustica viene

rappresentata in termini di raggi acustici in uno spazio parametrico indicato come lo

spazio dei raggi. La parametrizzazione adottata per descrivere i raggi acustici per-

mette un efficiente costruzione dell’informazione di visibilità ed una facile estrazione

delle caratteristiche d’interesse dalle immagini plenacustiche. Regolarità e generalità

della rappresentazione in termini di raggi acustici rende l’informazione plenacustica

adatta ad una serie di possibili applicazioni.

Le applicazioni esaminate in ambito di questa tesi mostrano la validità dell’ap-

proccio proposto sia per quanto riguarda la modellazione della propagazione sonora,

sia per quanto riguarda l’analisi di scene acustiche. In particolare, le applicazioni

discusse seguono lo scenario applicativo in cui un sistema di riproduzione spaziale

di campi acustici basato su una o più schiere di altoparlanti si trova ad operare
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dentro un ambiente sconosciuto. Una sorgente sonora genera il campo acustico e le

immagini plenacustiche catturate con una schiera di microfoni vengono esaminate

per ricostruire la geometria dell’ambiente. Data l’informazione sulla geometria, i

percorsi acustici che collegano la sorgente con la schiera vengono calcolati tramite

una simulazione della propagazione di onde sonore. Il secondo algoritmo di analisi

confronta i percorsi simulati con le acquisizioni e stima i coefficienti di riflessione

di ogni singola parete riflettente presente nella scena acustica. Il modello geome-

trico del campo sonoro viene ottenuto sfruttando l’informazione sulla geometria e

proprietà riflessive dell’ambiente ottenuti in precedenza. Infine, il sistema di ripro-

duzione usa questo modello per generare il campo acustico desiderato compensando

allo stesso tempo le riverberazioni indesiderate dell’ambiente che ospita il sistema.

Vengono analizzati i aspetti teorici, implementativi e le prestazioni statistiche

dei algoritmi proposti. La validità del approccio proposto va, tuttavia, oltre le

applicazioni discusse in questa tesi. Efficienza, regolarità e generalità della rappre-

sentazione, insieme alla prospettiva di una sempre maggiore disponibilità di sistemi

basati su dei microfoni/altoparlanti integrati a basso costo, rendono le idee svilup-

pate in questa tesi interessanti per una vasta gamma di possibili applicazioni tra cui

caratterizzazione e separazione delle sorgenti, estrapolazione del campo, ecc.
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Abstract

In this thesis we address a fairly broad range of current audio signal processing

problems through the study, representation, acquisition/construction and use of the

plenacoustic data that captures the acoustic scene as “seen” from different points

in space. In particular, for the modeling of acoustic propagation, the plenacoustic

data takes form of the visibility information that specifies the visibility of geometric

objects from generic points in space. This information is used for an efficient and

accurate simulation of acoustic propagation in complex environments. As far as the

analysis of acoustic scenes is concerned, the plenacoustic data acquired by one or

more microphone arrays is represented in form of plenacoustic image that captures

the soundfield coming from a given direction at a given point in space. This image

carries a great deal of information on the acoustic scene.

Following the laws of the geometrical acoustics, the plenacoustic data is repre-

sented in terms of acoustic rays in a space here referred to as the ray space. The

adopted parameterization of the acoustic rays allows both an efficient construction of

visibility information and an easy extraction of acoustic features from the acquired

plenacoustic images. High regularity and generality make the ray space representa-

tion of plenacoustic data suitable for a variety of potential applications.

The applications examined in this dissertation show the validity of the proposed

approach for purposes of both modeling of acoustic propagation and analysis of

acoustic scenes. In particular, the examined applications follow a specific scenario in

which an advanced spatial audio system aimed at reproducing the desired soundfield

within a region of space is placed inside an unknown hosting environment. First, an

acoustic source probes the environment and the plenacoustic images acquired by a

microphone array are examined in order to infer the geometry of the environment.
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The modeling engine computes the reflective paths between the source and the array.

The modeled paths are then used by the second analysis algorithm that compares

them with the acoustic measurements in order to estimate the reflection coefficients

of all reflective surfaces in the environment. Given the information on geometry and

reflection coefficients of the hosting environment, the modeling engine is used, once

again, to model the sound propagation inside such environment. The rendering

system uses this information to reproduce the desired soundfield by means of a

loudspeaker array while compensating at the same time for the natural reverberation

of the hosting environment.

Theoretical aspects, implementation issues and statistical performance of pro-

posed algorithms are analysed. The validity of the proposed approach, however,

is not limited just to the presented applications. Efficiency, regularity and gener-

ality of the representation, as well as the perspective of even further availability

of inexpensive integrated microphone/loudspeaker arrays in near future, make the

proposed tools attractive for a wider range of possible applications including source

characterization and separation, wavefield extrapolation, etc.
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Chapter 1
Introduction

E
nvironment aware (space-time) audio processing is an emerg-

ing field of growing interest in the acoustic research community.

An environment-aware system gathers information on the surround-

ing acoustic enclosure, and uses it to improve the performance of

algorithms in specific applications, or to perform tasks that would

not be possible otherwise. Under the hypotheses of validity of geo-

metrical acoustics, this information gathering process turns out to be

methodologically similar to that of image-based 3D scene reconstruc-

tion. We can therefore expect that further performance improve-

ments in space-time audio processing systems would come from gath-

ering information from a multitude of “acoustic viewpoints". This

can be achieved through the cooperation between multiple spatially-

distributed acquisition systems and/or by employing spatially ex-

tended microphone arrays.

In geometrical acoustics we approximate the soundfield with the

superposition of acoustic beams (“bundles" of acoustic rays). This

perspective needs be accommodated with a suitable mathematical

representation. This is why, in this dissertation, we propose a novel

parametric space (here referred to as “ray space") whose points repre-

sent acoustic rays, and discuss its impact on a variety of applications

in space-time audio processing. In particular, we show how acoustic

measurements are mapped onto the ray space and what consequences

this brings. We show that this representation turns out to be very ef-
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1. Introduction

fective for collecting and organizing information on the acoustic scene

(sources, reflectors, etc.), which simplifies the reconstruction process.

In addition, the ray space turns out to be effective not just for anal-

ysis purposes. In fact, the same domain can be used for representing

the visibility of geometric objects from generic points in space, which

in turn can be exploited for efficiently modeling the acoustic propa-

gation in complex environments, again in a fully geometric fashion.

In this first Chapter we introduce the motivations and the goals of

this dissertation. This Chapter, in fact, represents a roadmap for the

rest of the thesis and points out the connections, application scenarios

and main ideas behind the developed algorithms.

1.1. Motivations

In modern multimedia applications, more and more frequently signal processing

algorithms are required to work together towards an objective. Examples are the

emerging audio signal processing techniques that exploit the knowledge of the world

that surrounds them to boost their performance and pave the way for novel innova-

tive applications. In the past few years a number of these space-time acoustic signal

processing methodologies have appeared in literature [1]. We expect more and more

of these algorithms to emerge in the near future as the knowledge of environment that

hosts the acoustic system represents an important resource for efficiently addressing

the challenging tasks of future multimedia applications. Environment awareness is

a recurring theme of this work, which is addressed from two different points of view.

In fact, environment awareness of acoustic systems means, in practice, two things:

⊲ Ability to observe the environment, i.e. to become aware of the geometric

(e.g. locations of acoustic sources and reflective surfaces) and radiometric (e.g.

radiation patterns and reflection coefficients) properties of the environment

that hosts the acoustic system and its own configuration within it;

⊲ Ability to adapt to the observed environment, i.e. to use the information

on the environment to extract valuable data that can be exploited to improve

the performance of existing algorithms; to gather further insight on the impact

of the system within the hosting environment; and to perform tasks that go

beyond what is currently possible today (e.g. localization and tracking of

sources that are beyond visibility).
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1.1. Motivations

These requirements introduce the two main topics addressed in this dissertation:

analysis of acoustic scenes and modeling of acoustic propagation. While generally

addressed as separate topics in the literature, in advanced applications effective

solutions to such problems can be fruitfully employed in simultaneous, synergistic

and cooperative fashion. Consider, for example, the following application scenario:

The user purchases a new reproduction system based on a loudspeaker array

for high-fidelity (home theater) sound reproduction. The system is installed

in a room along with a number of other devices that incorporate a microphone

array (e.g. TV, PC, game console, etc.). The reproduction system commu-

nicates with the other devices through a standardized interface; probes the

scene with different acoustic stimuli; and collects the data captured by the

sensing devices. The collected data is processed and the environment geome-

try is estimated. An integrated modeling engine uses the gathered geometric

information to predict the reverberations coming from the different walls of the

environment. The simulations of reflective paths are compared to the measure-

ments in order to estimate the radiometric information of reflective surfaces.

Finally, the geometric and radiometric information, along with the simulated

soundfield, are used by the rendering engine to compensate and/or exploit ef-

fects of reverberations in order to generate the desired soundfield within the

prescribed region of space. The result is the acoustic experience of a virtual

environment that is not corrupted by the natural reverberation of the hosting

environment.

In the near future we expect the above scenario and other similar ones to become

possible in everyday environments, thanks to the introduction of low-cost, small-

size sensors, emitters, signal handlers and processing platforms. In fact, the great

challenge that we are called to face is to take space-time processing solutions outside

of “controlled” laboratory environments. Simplicity, flexibility, and interactivity are

becoming increasingly important in modern multimedia applications. This means

that, in order to guarantee the desired level of interaction with the user, new systems

must be designed to be easy to manage; autonomous; robust to noise, interference,

estimation and modeling errors; and computationally efficient.

Traditional systems that employ a single microphone or small integrated arrays

gather information about the environment as “seen” from just a single position in

space that not necessary corresponds to the position (or area) of interest for a specific
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application. This fact limits the reliability of the observation and, as a consequence,

the robustness of such systems. In order to obtain as much information as they can

about the acoustic scene and become truly environment aware, the acoustic systems

should observe the environment from different positions in space, either combining

the data from different, spatially distributed systems as suggested in the previous

example, or employing a single spatially extended sensing system. However, in order

to be useful, all the information gathered by the sensors (without losses) should be

collected, organized and represented in the same space in which it can be displayed

in such a way that all the acoustic objects of interest in the acoustic scene are easy

to detect, recognize, discern and extract. All this needs to be implemented without

giving up a certain flexibility and efficiency. The system should constantly monitor

the environment, localize and track sources, rapidly update information and perform

simulations of acoustic propagation that on their hand allow the system to become

aware of the effects that its actions produce inside the given environment. These

requirements are typical of interactive multimedia applications but tend to severely

limit the range of possible solutions that can be adopted for this goal. Therefore,

the success of future advanced audio signal processing systems will depend not only

on the performance improvements of single algorithms but also on the integration

between analysis and modeling algorithms and the degree of cooperation between

different, spatially distributed systems.

1.2. Geometric representation of wavefields

At a first glance, the analysis of acoustic scenes and the modeling of acoustic

propagation do not seem to share much in terms of scope and requirements. In

real world scenarios, however, they often coexist within the same application and

interact with each other. The representation that we need to adopt, must keep this

need under consideration. We need a representation for the soundfield throughout

space that is suitable for addressing environment-awareness issues and offers efficient

tools for the development of multimedia applications. In other words, we need a

wavefield model that is efficient, flexible, and treats geometric objects not simply as

a boundary condition but more like functional elements. This is why we resort to

geometrical acoustics [2], which (through the eikonal equation1) approximates the

acoustic wavefield with acoustic rays whose direction is normal to the wave front.

1see Appendix A
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1.2. Geometric representation of wavefields

In a homogeneous medium (e.g. in-air propagation), rays propagate as straight

lines; originate from acoustic sources; are reflected by the reflective surfaces; and

are collected by acoustic receivers.

Although not entirely physically accurate, the geometric (ray) representation of

the soundfield is very accurate when the wavelength is much smaller than the size

of geometric objects that interact with the wavefield, which is usually true when we

consider reflections from walls of an environment. This is why geometric represen-

tations of wavefields are widely used in several areas. Typical examples are software

applications for architectural acoustics. However, geometrical acoustics is also used

for the analysis of acoustic scenes based on geometric constraints [3], [4], [5], [6], [7],

in rendering applications [8], [9], [10], etc.

We begin with defining a suitable parameterization for the acoustic rays. The

resulting parametric space of the acoustic rays is here referred to as ray space. The

ray space representation of the acoustic wavefield, underlying both the developed

modeling and the analysis frameworks, tries to link together and get the best of both

worlds. As far as modeling is concerned, ray acoustics is widely used for geometric

modeling [11], [12], [13], [14]. In this work, however, we go further by exploiting the

effectiveness of the employed ray space parameterization to address performance is-

sues of the modeling stage, in terms of both accuracy and computational burden. To

this end we notice that during the propagation the acoustic rays bounce back and

forth from geometric objects in the environment. As a consequence, getting an idea

on how the different objects “see” each other can help predict how different rays will

propagate in the environment. These visibility conditions are easily represented in

the ray space. Therefore we address the modeling problem through the study, con-

struction and use of the visibility data structure that efficiently encodes the visibility

conditions between the geometric objects that compose the acoustic scenes.

The validity of the ray space representation of the acoustic wavefield goes well

beyond the modelling purposes. The high regularity of the ray space representation

of acoustic primitives makes it attractive for analysis purposes as well. Ray space

represents all the acoustic primitives of the environment in terms of acoustic rays.

A single sensing device measures the soundfield relative to just a portion of acoustic

rays that propagate in the environment. Therefore, the different sensing systems

(microphone arrays), placed in a different positions in the environment, capture

different sets of acoustic rays. We could think to map these spatially distributed

(plenacoustic [15]) measurements into the ray space, i.e. fill the corresponding re-

5



1. Introduction

gions of the ray space with data obtained from the measurements, and than devise

tools that exploit the regularity of the ray space to extract missing pieces of infor-

mation. We call the ray space representation of the plenacoustic measurements the

plenacoustic image. Then we formulate and address the analysis problems through

the study, acquisition and use of the plenacoustic images that capture both geometric

and radiometric properties of the acoustic scene.

Although used with different purposes, the visibility information and the plena-

coustic image turn out to be closely related as they share the same domain. In fact,

we will see that the visibility information used for the modeling of acoustic propaga-

tion in enclosures represents a special case of what we define as the ideal plenacoustic

image. This link between the two tools, developed for modeling and analysis pur-

poses respectively, is in accordance with the previously outlined application scenario.

In the next paragraphs we present the main ideas behind the visibility approach to

acoustic modeling and the plenacoustic representation of acoustic measurements;

then we outline the main contributions of the dissertation and its structure.

1.3. Visibility information and its impact on modeling

Geometric methods for modeling of acoustic propagation are the most widespread

in multimedia applications due to: their conceptual simplicity; good accuracy in

predicting the early reverberations; and computational efficiency when compared to

numerical methods [16, 17, 18] based on an approximate solution of the acoustic

wave equation on a finite grid [19]. Geometric methods compute reflective paths as

rays joining the image sources (wall-reflected versions of the acoustic source) and

the receiver. This group of methods is represented mainly by: ray tracing; image

source; beam tracing; and variations thereof. A short description of each method

follows2.

Ray tracing method [11, 20, 21, 22] casts a finite number of acoustic rays

from the source; follows their propagation and interaction (reflections) with

the environment; collects rays passing through/near the receiver.

Image source method [12, 23, 24] iteratively mirrors the acoustic source

with respect to all reflectors that constitute the environment; a visibility test

2see Appendix B for more details
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checks the feasibility of all image sources and the existence of acoustic paths

joining them with the receiver.

Beam tracing method [25, 26, 27, 28, 13, 14, 29, 30, 31] groups rays in

compact bundles (beams) originated from the same image source and falling

to (illuminating) the same reflective surface; beams bounce off the reflective

surfaces and split when the reflected bundle illuminates different reflectors; the

beam tree data structure contains the branching relationship between acoustic

beams; an efficient lookup procedure of the beam tree is used to find the paths

joining the image sources and the receiver.

When compared to other geometric methods, the beam tracing method is the

most general and the most efficient one in terms of accuracy and computational

burden. In fact, the beam tracing technique avoids the spatial aliasing problem

of the ray tracing method caused by the discrete sampling of rays (i.e. some im-

portant propagation paths could be missed by all sample rays). It also avoids the

computationally-demanding visibility check of the image source method (i.e. all the

image sources should be tested for occlusion by all the potential obstacles). In fact,

the beam tracing procedure eliminates automatically, during the construction of the

beam tree, the image sources that are never visible as the iterative mirroring of the

source is done only with respect to reflectors that the beam encounters during the

propagation. In order to better understand the generality of beam tracing with re-

spect to ray tracing and image source, notice that both ray tracing and image source

methods consist of a series of visibility-along-a-line checks (i.e. “what is first reflec-

tor that the ray meets?”; “does the ray reach the receiver?”). On the other hand the

beam tracing method performs a number of visibility-from-a-point (image source)

evaluations and encodes them in form of beams. As a consequence, the beam tree

represents efficiently the visibility of the geometric space from the source position.

While the construction of the beam tree is generally a computationally demanding

task it does not depend on receiver position. Once the receiver position is specified

the acoustic paths between image sources and the receiver (point-to-point visibility)

represent a subset of the previously computed beam tree data structure and can thus

be efficiently computed through a simple lookup procedure [14]. As we can expect,

for static sources there is no need to re-compute the beam tree, therefore, unlike

most other methods, the beam tracing is suitable for real-time operation when only

the receiver is free to move. However, performance issues arise when the source is
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moving as this requires the computation of a new beam tree. In complex environ-

ments there are usually many occlusions; occlusions cause beams to split and the

beam tree to “branch out" numerous times. As a consequence, the computational

effort required for the construction of the beam tree makes the beam tracing pro-

cess suitable for real-time operation only for a limited set of simple geometries. On

the other hand, the interactivity of acoustic systems means mainly the real-time

operation of the modeling engine. At the same time, for the applications of interac-

tive virtual acoustics (e.g. immersive gaming, walk-through architectural acoustics,

etc.), the complexity of environments that we are required to deal with is increasing,

moving further and further away from the classic “shoebox” type of room. In order

to overcome these performance issues a number of optimization techniques were pro-

posed in the literature. However, except for simple geometries, the computational

effort of the beam tracing algorithm in general 3D environments remained unevenly

divided between the computationally demanding construction of the beam tree and

the efficient tracing of the acoustic paths.

One could wonder, therefore, if it is possible to generalize the procedure that

makes the beam tracing more efficient that the ray tracing and the image source

methods, or, more specifically:

Can we build a higher-order visibility data structure (visibility from a region)

that does not depend on source position but only on environment geometry

(can be evaluated in an offline phase) and makes it easy to compute the acoustic

beams in a similar way the beam tree makes it easy to compute acoustics paths?

The above question summarizes the idea behind the visibility-based beam tracing

algorithm first presented in [32]. In [32] this goal was achieved for 2D environments

and later extended to accommodate phenomena of diffraction and diffusion in [10].

However, as it will be clear later on, the generalization of this approach to 3D

geometries was far from trivial, and it represents the first important contribution of

this work.

Also notice that for the visibility-based beam tracing algorithm to work we need

a suitable parametrization that allows:

⊲ an efficient representation and computation of visibility information;

⊲ an easy extraction of beams once the source position is specified.
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1.4. Plenacoustic image – definition, acquisition and analysis

To this end notice that the rays are used to specify the visibility of objects from

different points in space, i.e.

Definition. The object is visible from a given point in space if the ray departing

from that point reaches the object without being occluded.

Furthermore, the main primitive of all the geometric modeling techniques (including

the beam tracing) is the acoustic ray and, thus, describing all the necessary infor-

mation as a function of acoustic rays seems an obvious choice. Therefore, in order

to compute the visibility information and trace acoustic beams as they propagate in

the environment, the definition of the ray space is extremely useful.

1.4. Plenacoustic image – definition, acquisition and

analysis

A number of acoustic measurements are performed in order to extract a great

amount of information about the acoustic scene. For these measurements a number

of sensors (microphones) and emitters (loudspeakers and other acoustic sources) are

used. Acquired data is then processed by a variety of space-time algorithms in or-

der to obtain the desired results. Intuitively, combining the measurements obtained

with different systems in different positions in space can help improve the accuracy

and robustness of the existing algorithms (e.g. choosing the best measurement for

the given application or combining measurements in order to obtain more accurate

information) and even perform task that could not be possible otherwise. In the

near future, with the availability of inexpensive integrated microphone arrays, the

collaboration between different, spatially distributed systems will become even more

compelling and give rise to new interesting possibilities in acoustical signal process-

ing. Sampling the soundfield from different positions in space, however, is just a first

step towards these new opportunities. The acquired information on the viewed scene

has to be collected and displayed in a space that shows a high degree of regularity,

to be exploited by space-time signal processing algorithms.

As we sample the soundfield in different positions in space, the acquired samples

trace the shape of a spatio-temporal function. If we can understand the properties

of this function and its relation to the acoustic primitives that compose the acoustic

scene we could fill the “gaps” and extract a great deal of information about the

acoustic scene. The function that defines the sound pressure field in all positions in
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space is known in literature as the plenacoustic function introduced in [15] as the

acoustic counterpart of the plenoptic function [33]. Although the plenoptic function

describes the optical wave field intensity as a function of position and direction

(plus time and wavelength), in [15] the plenacoustic function was defined as the

instantaneous acoustic pressure at given location without the directional information

as the longer wavelengths of acoustic waves make it difficult to measure. However,

as observed also in [15], this non-directional function can be turned into a directional

one using phase information. We think of the plenacoustic function as a function of

position and direction:

Definition. The plenacoustic function specifies the (complex) amplitude of the acous-

tic wavefield impinging at a given position from a given direction.

As a consequence, we represent the geometric objects of interest and the spatially

distributed (plenacosutic) measurements in the parameter space of oriented lines,

i.e. the ray space.

In this work we are interested in developing a “plenacoustic camera”, which is able

to take “snapshots” of the plenacoustic function and represent it in the ray space

where its regularity can be exploited through signal processing. Unlike plenoptic

(lightfield) cameras, in the acoustic domain we cannot rely on devices for capturing

rays coming from a given direction. We will therefore use space-time processing in-

stead, and cope with the resulting degradation with respect to the ideal plenacoustic

function. In particular, to map the measurements into the ray space we will use the

acoustic signals acquired with a number of small, compact microphone arrays. Us-

ing beamforming techniques, the arrays estimate the distribution of acoustic power

through the computation of a number of pseudospectra (the output power of the

beamformer for each look direction) from positions that are uniformly distributed

over a line segment, which plays the role of “window of observation” of the acous-

tic scene. These pseudospectra are then collectively remapped onto the ray space.

The ray space representation of (plen)acoustic measurements is similar to images

in optics, where each pixel represents a ray passing through the pixel point and

the optical center. However, in our representation the acoustic rays are not bound

to pass through a single acoustic center and, therefore, we will call “plenacoustic

image” the result of this mapping. The gray levels of this plenacoustic image are

the values of the pseudospectra corresponding to the rays that cross the window of

observation.
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1.5. Plenacoustic data

As the microphone arrays sample the window of observation they capture different

portions of the ray space corresponding to different “views” of the acoustic scene.

The high regularity of the ray space can then be used to extract missing pieces

of information. We observe that the problems of environment inference, source

characterization and separation, wavefield extrapolation, etc., could be formulated

and addressed through the study of the plenacoustic images.

1.5. Plenacoustic data

At this point it is interesting to point out the relation between the plenacoustic

image and the visibility information introduced before. The ray space acts as a basis

around which we construct both the analysis and modeling frameworks. Therefore,

the representation of the geometric primitives involved in the analysis and modeling

processes is equivalent. The visibility information, constructed theoretically from

the model of the environment, can be seen as a special case of ideal (theoretical)

plenacoustic image in which the radiometric information has been ignored. In par-

ticular, the visibility information does not carry the information on the amplitude

of acoustic rays, it just specifies the presence or absence of rays that encode the

visibility of geometric objects. The ideal plenacoustic image, on the other hand,

associate to each acoustic ray an amplitude in accordance to the radiometric in-

formation of acoustic primitives involved in the propagation process (e.g. radiation

pattern, reflection coefficient). The real (acquired) pleanacoustic image is a distorted

version of the ideal plenacoustic image due to non-ideal nature of the acquisition

process and equipment. We will see that, as in the optical images, this non-ideality

is given by sampling and “blurring”. From the practical point of view the visibil-

ity information is a plenacoustic image with just two possible values: visible and

not visible; or equivalently, the plenacoustic image is a “grayscale” version of the

visibility information.

1.6. Main contributions

In this work we examine theoretical aspects, implementation issues and statisti-

cal performance of the algorithms for the construction, acquisition and use of the

plenacoustic data intended here as both the visibility information and plenacoustic

image. As the first simplified case of the plenacoustic image, the importance and
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the general validity of the visibility data is here proven by:

1. reformulating the 2D visibility-based beam tracing algorithm in an oriented

projective space;

2. generalizing the approach to general 3D environments.

The new parametrization of the 2D algorithm paves the way to its extension to

general 3D geometries. In fact, the 3D algorithm requires the use of a particular

type of coordinates defined in an oriented projective space [34]. Furthermore, the

homogeneous parametrization of the 2D ray space makes it compatible with the

current environment awareness methods such as [35] and [5]. The new parametriza-

tion brings also a twofold advantage: no normalization and the ability to distinguish

rays with same direction but opposite orientation allow the representation of the vis-

ibility information to be reflector-independent; reflections become linear projective

transformations (homographies). Generalization of the ray space and beam tracing

to 3D represents an important contribution and, although defined mainly for 2D

geometries, the major part of application algorithms presented in this work can be

generalized for 3D environments using the new 3D ray space parametrization.

The use of the environment geometry for the construction of the visibility data

structure can be seen as a model-driven approach to the use of the plenacoustic

images (Figure 1.1 (a)). In particular, the applications we examine in this work are:

1. modeling of acoustic propagation in enclosures (beam tracing);

2. the use of the modeling engine to predict soundfields of both virtual environ-

ment, whose acoustic impression has to be reproduced, and real environment

that host the rendering system, allowing the compensation of undesired re-

flections and the constructive use of reflective boundaries present in the real

environment.

The second step is to reverse the paradigm and use the same domain for analysis

purposes. Turning the problem around and defining the plenacoustic image as a

powerful analysis instrument can be seen as a data-driven approach (Figure 1.1

(b)). Although the real (measured) pleanacoustic image represents a sampled and

distorted version of the ideal (theoretical) plenacoustic image, it can be used for

extracting a significant amount of information on the acoustic scene, as evidenced

by a number of performed simulations and real world experiments. In particular, in

this work we focus on:

12



1.6. Main contributions

Model

Environment 

geometry

Ideal (theoretical) 

plenacoustic image

Beam 

tracing

modeling

rendering

ref. coe!. 

estimation

Data

Acoustic 

acquisitions

Real (measured) 

plenacoustic image

source localization

environment estimation

ref. coe!. estimation

(a)

(b)

2D & 3D

source characterization 

and separation

wave"eld extrapolation

2D

Figure 1.1.: (a) Overview of the model driven approach and its applications; (b) Overview of the data driven
approach and its applications.

1. localization of acoustic sources;

2. environment geometry inference.

It will be shown that the proposed parametrization maps the data acquired with

multiple observations in a space that is effective at collecting and displaying informa-

tion on the acoustic scene as “seen” from different positions in space. Contributions

of different objects can be fairly easily distinguished and extracted. The general-

ity of the representation is evidenced by the fact that both source localization and

geometry inference are performed in the same domain. The algorithms are easily ex-

tended for cases with multiple sources and reflectors. Furthermore, unlike the most

part of inference algorithms, the proposed approach allows the estimation not only

of the surface on which the reflector lies [36], [37], [38], [39], [3], [40]), [4], [41], [5] as

typically addressed in the literature, but also of its extension in the case the edges

are acoustically visible by the microphone array.

We also consider the problem of acoustic reflection coefficient estimation. We

pursue this goal through the use of both analysis and modeling tools. In particular,

the in-situ estimation of the acoustic reflection coefficients of reflective surfaces is

performed through the matching between the measured pseudospectra, acquired by

a microphone array, and the simulated pseudospectra, obtained using the modeling

13



1. Introduction

engine. Although the reflection coefficient estimation is performed using the data

obtained from a single position in space, this “simple” acoustic image can be seen

as a narrow version of the more general plenacoustic image. Therefore, the reflec-

tion coefficient estimation algorithm developed in this thesis shows effectively that

the data captured by the plenacoustic image contains not only geometric but also

important radiometric information about the acoustic scene. Finally, although not

part of this dissertation, we point out that the plenacoustic data can potentially be

used also for source characterization and separation, and wavefield extrapolation.

Currently the first works are carried out in this directions.

1.7. Structure of the thesis

Parametrization

(Chapter 2)

2D Ray Space

3D Ray Space

2D Plenacoustic Images

2D Visibility-based BT

3D Visibility-based BT

Analysis (Chapter 4)

Modeling (Chapter 3)

Applications (2D)

Geometry 

inference

Ref. coe!. 

estimation

Rendering

Chapter 5

Chapter 6

Chapter 7

Figure 1.2.: Outline of the thesis.

An overview of the structure of this dissertation is given in Figure 1.2. This

Figure is to be intended as a roadmap for the reader, showing connections and

relations between the examined applications and developed tools. As an example the

novel approach for the localization of reflecting boundaries and obstacles presented

in Chapter 5 makes use of the concepts and tools presented in Chapters 2 and

4; theoretical aspects and issues encountered when implementing a fast acoustic

propagation simulator are addressed in Chapters 2 and 3; etc. A brief description

of each Chapter follows.

14



1.7. Structure of the thesis

• Chapter 2: introduces both 2D and 3D parametrization of the ray space used

throughout the rest of the work;

• Chapter 3: describes the developed 2D/3D visibility-based beam tracing

algorithm and its performance;

• Chapter 4: examines the theoretical plenacoustic image and introduces its

array-based approximation for the 2D configurations;

• Chapter 5: presents algorithms for localization of acoustic sources and re-

flective surfaces and analyzes their statistical performance (2D);

• Chapter 6: focuses on the estimation of reflective properties of walls (2D);

• Chapter 7: discusses the application of the modeling engine for rendering

purposes (2D);

• Chapter 8: draws the conclusions and outlines possible future research di-

rections.

Each Chapter starts with a short overview, motivations and a brief summary of

the related works. The Chapters describe the representation (Chapter 2), construc-

tion (Chapter 3), acquisition (Chapter 4) and use (Chapters 5, 6, and 7) of the

plenacoustic data. In particular, the applications addressed in Chapters 5, 6, and 7,

represent the single components of the wider application scenario described at the

beginning of this Chapter. All the Chapters are written to present and highlight

the original contributions of the dissertation and contain only essential background

information. For more details on the theoretical background the interested reader

can refer to the following Appendixes:

• Appendix A: derives the wave equation and its hight-frequency approxima-

tion that stands behind all the geometric modeling techniques including the

visibility-based beam tracing algorithm presented in the Chapter 3;

• Appendix B: reviews the most common geometric techniques for the mod-

eling of acoustic propagation in enclosures and highlights their pros and cons;

• Appendix C: briefly describes the beamforming techniques used in Chapters

5 and 6;

15



1. Introduction

• Appendix D: describes a beamshaping technique that can be used in the

rendering application presented in the Chapter 7.

16



Chapter 2
Parameterization of acoustic rays

I
n this Chapter we define a space of oriented lines. As a generic

point in this space corresponds to a ray in the geometric space it is

here referred as the ray space. In particular, for the parametrization

of the acoustic rays we resort to:

◮ 2D: homogeneous coefficients of lines;

◮ 3D: Plucker coordinates of lines.

Then we show how the geometric objects (more precisely their acous-

tical counterparts defined in terms of acoustic rays) “look like" in the

newly defined spaces. In the next Chapters the ray space is used for

the visibility evaluation, tracing of acoustic beams and mapping of

the acoustic measurements.

2.1. Motivations

There are three main reasons for which we decided to represent the geometric

primitives and the acoustic measurements in the parametric space of acoustic rays:

⊲ geometric modeling techniques approximate wavefields with rays;

⊲ rays are used for visibility computations;

⊲ acoustic rays constitute the domain of the plenacosutic function.

17



2. Parameterization of acoustic rays

The eikonal equation1 is a high-frequency approximation that substitutes the

acoustic wavefield with acoustic rays. Therefore, the acoustic rays are used by the

geometric modeling methods for the modeling of acoustic propagation. These rays

interact with other geometric primitives during the propagation in an enclosure:

they are originated from an acoustic source (e.g. a loudspeaker), they encounter

obstacles (e.g. walls), reflect, and finally they are picked up by an acoustic receiver

(e.g. a microphone).

Moreover, the rays are used to specify the visibility of objects from different points

in space. In fact, two objects are visible if the line segment that joins them is not

occluded by any other object in the environment, i.e. if the ray departing from the

first object does not intersect any obstacle during the propagation before reaching

the second object. In [32] a ray parametrization is used for the purpose of defin-

ing visibility diagrams that combine into a data structure that can be iteratively

looked up for readily tracing beams of acoustic rays in enclosures. Visibility dia-

grams describe which reflectors are hit by each one of the rays that bounce off a

prescribed (reference) reflector. As a reflected ray can only originate from an im-

age source behind the reflector and pass through it, the visibility function of that

reflector describes which reflectors can be seen when looking through the “window

of observation" represented by the reflector.

The space of oriented lines (rays) represents the domain of the plenacoustic func-

tion as well. In fact, quite symmetrically to its optical counterpart, the plenacoustic

function can be thought of as a parameterization of the sound field, which is a

function that describes the sound pressure in every direction through every point in

space. This means that, in the case of a 2D geometric domain, it can be written as a

function F(θ, x, y, t, f) of direction θ; position (x, y); time t; and frequency f . In this

work the dependency on time and frequency will be kept hidden in order to simplify

the notation. Furthermore, we can safely assume that the acoustic radiance remains

constant from point to point along a ray, which reduces the degrees of freedom of

this function to two. This is, of course, true in the absence of propagation losses

due to absorption, etc. We recall that (in a homogeneous medium) an acoustic ray

is an oriented line that is inherently perpendicular to the acoustic wavefront (i.e.

collinear with the wave vector). A beam of acoustic rays originating from an acoustic

source, therefore, identifies an infinite combination of infinitesimal planar wavefront

contributions. In geometrical acoustics (just like in optical acoustics) we can rely

1see Appendix A
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2.2. Related work

on the principle of conservation of radiance, which states that the acoustic radiance

remains constant along the ray. This means that a suitable parameterization of the

sound field is offered by the acoustic rays. This is a significant advantage, as ray-

based representations have proven successful in various applications of soundfield

analysis [3] and modeling [9], [32], [10].

Consequently, for an efficient representation of plenacoustic measurements, an

efficient encoding of visibility conditions, and an easy and elegant representation of

interactions between geometric primitives, a workable parametrization of acoustic

rays is required.

2.2. Related work

In [32], for purposes of visibility computation and fast tracing of acoustic beams

in 2D environments, a parametrization based on the location and the angular coef-

ficient of the ray at the point of intersection with the reference reflector was used.

Here, in order to define the 2D ray space, we use the projective paramaterization

based on the parameters of the oriented lines that represent the acoustic rays. A

similar parametrization was used for visibility computations in [42, 43]. The transi-

tion to an oriented projective space [34] allows us to simplify the representation of

specular reflections and other transformations that are commonly encountered while

dealing with the propagation modeling and geometry inference. In fact, we will see

that no normalization is needed; the ability to distinguish rays with same direc-

tion but opposite orientations make the representation of the visibility information

reflector-independent; and the reflections become linear projective transformations

(homographies).

Furthermore, the new 2D parametrization paves the way for the extension to

3D geometries because the 3D algorithm requires the use of a particular type of

coordinates defined in an oriented projective space. In fact, for the definition of the

3D ray space we resort to the Plucker coordinates of lines [44], [34], [45]. These

coordinates have first been applied for visibility computations by Teller [46] to find

lines passing through four other lines [47, 48], stab convex polygons [49], compute

the antipenumbra of an light source [50], etc. In this work we use the Plucker

coordinates to define the ray space representations of geometric primitives involved

in the acoustic propagation and interaction with the environment: the acoustic rays;

sources (e.g. loudspeakers); receivers (e.g. microphones); and reflectors (e.g. walls).
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2. Parameterization of acoustic rays

Although more complex than their 2D counterparts, these representations allow the

same ideas of the 2D visibility-based beam tracing to be applied in the case of 3D

geometries.

2.3. 2D Ray space

A ray can be seen as an oriented line in the geometric space. A line in 2D space

is represented by a linear equation

l1x + l2y + l3 = 0, (2.1)

and can be parametrized with the line coefficients [l1, l2, l3]T . This parametrization

defines a class of equivalence. In fact, the coordinates are homogeneous (scalable)

as l = k[l1, l2, l3]T , with k 6= 0, represent the same line. However, rays have a travel

direction. In order to distinguish two rays lying on the same line (2.1) but with

opposite orientations we limit the range of the scalar k to the positive or negative

interval

l1 = k[l1, l2, l3]T , k > 0,

l2 = k[l1, l2, l3]T , k < 0.

Thus we define coordinates in an oriented projective space P
2 [34]. As a generic

point (l1, l2, l3) corresponds to a ray in the geometric space, the Euclidean space

(R3) spanned by such homogeneous coordinates of lines is called the ray space (see

Figure 2.1).

Just for clarity of visualization, from now on, we depict the ray space represen-

tations of geometric objects that constitute the acoustic scene in a reduced 2D ray

space obtained by intersecting the ray space with a prescribed plane, as shown in

Figure 2.1 (b). The parametrization in [32] corresponds to the reduced ray space

obtained intersecting the ray space with a plane that excludes from the representa-

tion the rays parallel to the reflector whose visibility information is currently being

evaluated, and does not discriminate the rays laying on the same lines but with

opposite orientations. The representation in [32] requires the rotation and scaling of

the whole geometric space with respect to each reflector in the environment. Instead,

the new parametrization allows a reflector-independent representation. Despite the

increase in the dimension of the ray space, the degrees-of-freedom, and therefore the
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2.3. 2D Ray space

x

y

Geometric Space Ray Space

l1x l2 y l3+ + =0

(a) (b)

l

l

l3

2

1

Reduced Ray Space

kl ,  k >0 
l=[l   ,l   , l   ]1 2 3

T

Figure 2.1.: (a) A ray in the geometric space; (b) In the ray space a ray corresponds to a projective point,
here visualized as a line passing through the origin; the representation of the ray in the reduced ray space
is obtained by slicing the ray space with the gray plane, yielding a point.

complexity of the problem, remains the same.

Geometric primitives – We are now interested in how the acoustic primitives

involved in the propagation are represented in the ray space. The geometric primi-

tives of interest are acoustic sources, receivers and reflectors. Sources and receivers

are assumed to be point-like while reflectors are assumed to be planar. In order to

represent the relations and interactions between the acoustic wavefield, represented

by acoustic rays, and other geometric primitives, we have to map them into the

ray space. We do this representing all the geometric primitives as sets of rays that

intersect them.

2.3.1. Representation of a ray

As seen above we parametrize acoustic rays with (homogeneous) coefficients of the

oriented lines they lie on. This parametrization defines the ray space. An acoustic

ray in the geometric space corresponds to a half-line passing through the origin in

the ray space, or a point in the reduced ray space, as shown in Figure 2.1.

Properties:

• Using the line equation (2.1), a ray l is passing through a point xA = [xA, yA]T

with homogeneous coordinates xA = k[xA, yA, 1]T , k > 0, if

xT
Al = 0. (2.2)
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2. Parameterization of acoustic rays

• Given two points, xA and xB , the two rays passing through them (going from

xA to xB and from xB to xA) are given by:

lA→B = xA × xB,

lB→A = xB × xA,
(2.3)

where × indicates the vector cross product. In fact, given the propriety of the

cross product, xT
AlA→B = xT

BlA→B = 0 and xT
AlB→A = xT

BlB→A = 0.

2.3.2. Representation of sources and receivers

Acoustic sources and receivers can be seen as points in geometric space. A point

is identified in the ray space by the set of all the rays that pass through it. Using the

condition (2.2), the set of all rays passing through the point xA with homogeneous

coordinates xA is

xA = {l ∈ P
2|xT

Al = 0}. (2.4)

Thus a point (source or receiver) in the geometric space corresponds to a plane

passing through the origin in the ray space, or a line in the reduced ray space (see

Figure 2.2 (a)).

Properties: Being a hyper-plane, xA divides the ray space into two half-spaces.

This allows us to test the orientation of a ray with respect to the point as follows:

all rays that have the point on their left or right, with respect to the travel direction,

are given, respectively, by

x+
A = {l ∈ P

2|xT
Al > 0},

x−
A = {l ∈ P

2|xT
Al < 0},

(2.5)

as depicted in Figure 2.2 (b) and (c).

2.3.3. Representation of a reflector

In the geometric space the reflector xAxB is a line segment completely defined by

the two endpoints xA and xB. In the ray space we represent it with the set of all rays

that intersect this line segment. As each point of the line segment maps to a plane

in the ray space (line in the reduced ray space), the reflector corresponds to the set

of all the planes (lines) representing the infinite intermediate points found between
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2.3. 2D Ray space
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Figure 2.2.: The orientation of rays with respect to a point in the geometric space and their configuration
in the ray space: (a) rays passing through the point xA in the geometric space lie on the hyperplane xA

in the ray space; (b) rays that travel counterclockwise with respect to the point xA in the geometric space
lie in the half-space x+

A
in the ray space; (c) rays that travel clockwise with respect to the point xA in the

geometric space lie in the half-space x
−

A
in the ray space.

the two endpoints. Exploiting the orientation relations (2.5), in a similar way we

defined two rays for the same line, we can distinguish two oriented reflectors R
(1)
AB

and R
(2)
AB, i.e. the two reflectors defined by the same line segment but characterized

by different directions of incident rays

R
(1)
AB = x−

A ∩ x+
B ,

R
(2)
AB = x+

A ∩ x−
B ,

(2.6)

as illustrated in see Figure 2.3. The definition of an oriented reflector will turn useful

during the evaluation of the visibility information. In fact, in accordance with the

image source principle, when we evaluate the visibility of the environment from a

mirrored image source, we do not consider the reflectors in the half-space where
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2. Parameterization of acoustic rays
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Figure 2.3.: (a) A segment in geometric space identifies four classes of rays: those that cross the segment
in one direction (l1), those the cross it in the opposite direction (l4), those that do not cross the segment
and are oriented in accordance to the first endpoint (l2) and those that do not cross the segment and are
oriented in accordance to the second endpoint (l3); (b) The regions of the reduced ray space corresponding
to such classes of rays are four quadrants given by the intersection of four half-spaces defined by the two
endpoints; the quadrants originate from the point (lAB), which identifies the line that the segment lies on.

the mirrored source lies. Therefore, the use of an oriented reflector is necessary for

correct evaluation of visibility conditions from such a mirrored image source.

Finally, the non oriented reflector RAB can be expressed in a closed form as the

union of two oriented reflectors that compose it, i.e.

RAB = R
(1)
AB ∪ R

(2)
AB . (2.7)

Therefore, the segment xAxB is represented in the ray space as the set of rays RAB ,

i.e. the intermediate region between the hyperplanes xA and xB , representations of

xA and xB, respectively.

2.3.4. Representation of a beam

Although not a real geometric primitive but rather a combination of different

primitives, we present here the ray space representation of the acoustic beam. A

beam is a compact bundle of rays that originate from an acoustic source and fall

onto a surface (reflector). It is completely specified by an origin (source) and by

the (connected) illuminated region of the surface. The surface can be completely

illuminated by a beam (Figure 2.4 (a)) or partially, as it is occluded (Figure 2.4
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2.4. 3D Ray space

(b)). In both cases it corresponds in the ray space to a part of a source hyperplane

xS limited by two points as shown in Figure 2.4 (c).

(a) (c)(b)

b
b

Geometric Space Reduced Ray Space

b
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xS xS

x2

x1 _
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_
x2

_
xS

x

y
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Figure 2.4.: (a)(b) Examples of a beam in the geometric space; (c) The beam in the ray space.

2.4. 3D Ray space

Extending the representation of geometric primitives from 2D to 3D space is not a

trivial task. In 2D we used rays to represent all geometric primitives in the ray space.

In 3D we would like to do the same. However, while the increase in dimension of the

geometric space is 1, the degrees-of-freedom in the description of a line (ray) increase

from 2 to 4. Being a flat subset with dimension 1, a line in a three-dimensional space

is not a hyperplane, i.e. it does not separate the geometric space in two half-spaces

as it does in 2D space (the 3D equivalent of a 2D line is a plane). As a consequence

the representation of rays in 3D becomes more difficult. Furthermore, the visual

events are complex in 3D: the discontinuity surfaces in visibility (e.g. boundaries

between total, partial and no visibility) are not necessarily linear nor convex. Similar

considerations are made in [51] and [52].

2.4.1. The ray space revisited

As in the 2D case we represent rays as oriented lines. The orientation of lines

helps us define other geometric primitives involved in the acoustic propagation.

We can represent rays in 3D using the Plucker coordinates of lines [44], [34],

[45]. Given two points with Cartesian coordinates xA = [xA, yA, zA]T and xB =

[xB , yB , zB ]T , the Plucker coordinates of two oriented lines (rays) passing through
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2. Parameterization of acoustic rays

these points are

l1 = k


 xB − xA

xA × xB


 , k > 0,

l2 = k


 xA − xB

xB × xA


 , k > 0.

Thus the rays are defined in a five-dimensional oriented projective space P
5. Fur-

thermore, from the above definition a ray is given by

l =


 ld

lm


 , s.t. (ld)T lm = 0, (2.8)

where ld is the vector given by the difference between point positions xA and xB

(displacement or directional part) and lm is the vector given by their vector product

(moment or locational part). As a consequence not every point in P
5 correspond to

a ray in R
3, only those points that satisfy the constraint (ld)T lm = 0, i.e. only those

points that lie on a four-dimensional ruled quadric surface known as the Plucker

quadric

lT Ql = 0, Q =


 0 I3

I3 0


 , (2.9)

where I3 is 3 × 3 identity matrix.

The Plucker quadric embedded in P
5 represents the ray space for rays in 3D

geometry. Note, however, that it is not possible to graphically visualize the four-

dimensional quadric in a five-dimensional projective space. Therefore, from now

on, to give an idea of configurations in the ray space we make an illustration of

two-dimensional ruled quadric in a three-dimensional Euclidean space as depicted

in Figure 2.5.

2.4.2. Representation of a ray

As described above we parametrize rays with six coordinates as in (2.8). These

are homogeneous coordinates of a point in P
5 lying on the quadric surface (2.9) (see

Figure 2.5).

The second interpretation of Plucker coordinates is also possible. We can represent
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2.4. 3D Ray space
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Figure 2.5.: (a) A ray in the geometric space; (b) A ray in the ray space.

a ray, permuting the order of coordinates, as

l̃ =


 lm

ld


 , (2.10)

and interpret it as a hyperplane in P
5. The use of these two representations, (2.8)

and (2.10), allows us to represent the relative orientations of rays as shown in Figure

2.6. We can test the orientation of rays, represented in P
5 using (2.8), with respect

to a ray l1, represented in P
5 using (2.10), by testing on which side of the hyperplane

l̃1 they are found. Rays that lie on l̃1 in P
5 intersect (or are parallel, i.e. intersect

at infinity) the ray l1 in R
3. With this consideration at hand it is interesting to

observe that the Plucker condition (2.9) states simply that a ray intersects itself, i.e.

lT Ql = l̃T l = 0.

2.4.3. Representation of a reflector

In a similar way we defined an oriented reflector in 2D with constraints on a

correct orientation of rays with respect to reflector’s endpoints, we define a reflector

in 3D with constraints on a correct orientation of rays with respect to reflector’s edge

lines. A comparison between the representations of a reflector in 2D (depicted this

time in the complete ray space) and a reflector in 3D (illustrated in a simplified 3D
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Figure 2.6.: Orientation of rays in the geometric space and their configuration in the ray space.

representation of the ray space) is shown in Figure 2.7. While the reflector in 2D is

always defined by two endpoints, the reflector in 3D can be defined by an arbitrary

number N of edges ei (three for a reflector shown in Figure 2.7 (b)). Furthermore,

in 3D one more constraint has to be added: the Plucker condition. As a consequence

the reflector in 3D space is given in P
5 by the intersection of N half-spaces defined

by hyperplanes ẽi (this ensures that rays that define the reflector have the right

orientation with respect to edge rays ei, i = 1, ...N) with the Plucker quadric (this
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2.4. 3D Ray space

ensures that points in P
5 correspond to real rays in R

3), i.e.

R = {l ∈ P
5|ẽT

i l ⊲i 0, i = 1, ..., N, lT Ql = 0}, (2.11)

where "⊲i" can represent either ">" or "<" depending on the orientation constraint

with respect to the edge ei.
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Figure 2.7.: (a) Reflector in 2D and its representation in the ray space; (b) Reflector in 3D and its repre-
sentation in the ray space.

2.4.4. Representation of sources and receivers

Point-like sources and receivers are identified, once more, by the set of all rays

that pass through them. However, given a point with Cartesian coordinates xP =

[xP , yP , zP ]T , it is not straightforward to constrain a generic line l, represented using

Plucker coordinates, to pas trough xP , as it was in 2D case. The point xP and the
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2. Parameterization of acoustic rays

line l are defined in two different spaces, and therefore they cant “speak" to each

other directly. However, we can constrain a ray l to pass through xP by constraining

it to intersect three non-coplanar lines, l1 l2, l3, all passing through the point xP ,

i.e.

l̃T1 l = 0, l̃T2 l = 0, l̃T3 l = 0.

As a consequence the ray l belongs to the null space of L = [̃l1, l̃2, l̃3]T . Choosing

three perpendicular lines, each parallel to one main axe (x, y and z)

l1 =


 x1 − xP

xP × x1


 l2 =


 x2 − xP

xP × x2


 l3 =


 x3 − xP

xP × x3


 ,

where x1 = [xP + 1, yP , zP ]T , x2 = [xP , yP + 1, zP ]T , and x3 = [xP , yP , zP + 1]T , we

have

L =




0 zP −yP 1 0 0

−zP 0 xP 0 1 0

yP −xP 0 0 0 1


 .

Supposing xP , yP , zP 6= 0, a basis for the null space of L is given by

UP =




0 1/zP xP /zP

1/xP yP /(xP zP ) yP /zP

0 0 1

−zP /xP −yP /xP 0

0 1 0

1 0 0




. (2.12)

Note that an equivalent representation can be found in case above conditions on

xP , yP , zP are not met. The ray l belongs to the vector space spanned by vectors

UP = [u1, u2, u3], i.e. it can be written as a linear combination

l = u1a1 + u2a2 + u3a3 = UP a, (2.13)

where a = [a1, a2, a3]T . Notice that UP (ka) = k(UP a) = kl, i.e. the coefficients a

are three homogeneous coordinates that specify a point on the projective plane P
2.
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2.4. 3D Ray space

Furthermore, from (2.12) it is not difficult to verify that

uT
i Quj = 0, i, j = 1, 2, 3,

=⇒ lT Ql =
∑3

i=1

∑3
j=1 aiajuT

i Quj = 0,

or, equivalently, each ray l given by (2.13) lies on the surface of the Plucker quadric

(2.9).

Finally we can state that the point xP (acoustic source or receiver) is given by

the set of all rays that pass through it, i.e. by the plane (spanned by (2.12)) that

lies completely on the surface of the (ruled) Plucker quadric embedded in P
5, i.e.

xP = {l ∈ P
5|l = UP a, a ∈ P

2}. (2.14)

2.4.5. Representation of a beam

We recall that a beam is a compact bundle of rays that originate from an acoustic

source and fall onto a reflector. In the ray space it is represented by a portion of the

source’s projective plane (2.14) limited by a number of hyperplanes corresponding

to edges ei that limit the beam (reflector edges and/or edges that limit the visibility

of the reflector). When compared to the beam in 2D the increase in dimensionality

is just one despite the ray space is defined in P
5 instead of P2 (recall that in 2D the

beam was a projective line limited by two points).

For purpose of determining the edges that limit the beam we can reduce the

complexity (dimensionality) of the task by projecting the hyperplanes ẽi from P
5

onto the projective plane P
2 defined by coefficients a that specify lines passing

through the source (see (2.12) and (2.13)). The projection is performed as follows

gP : P5 → P
2

ēi = gP (ẽi) = UT
P ẽi,

(2.15)

where UP is the matrix in equation (2.12). Using the coefficients a and projections

ēi we can still test the orientation of the ray l with respect to the edge ei, in fact

ẽT
i l = ẽT

i UP a = (UT
P ẽi)

T a = ēT
i a.

31



2. Parameterization of acoustic rays

2.5. Conclusive remarks

In this Chapter we presented the parameterizations for both 2D and 3D ray spaces.

The ray space is a parametric space of acoustic rays, i.e. each point in the ray space

corresponds to a ray in the geometric space. The geometric primitives that compose

the acoustic scene are represented in the ray space as sets of rays that intersect

them. In the 2D ray space each geometric primitive is represented by a number of

linear constraints. In the 3D ray space the geometric primitives are represented by

a variable number of linear constraints and one quadratic constraint.

In the following Chapters the ray space representation of acoustic primitives will

be used for both modeling and analysis purposes. As far as modeling is concerned,

we will use the ray space representation of acoustic primitives, in particular that

of the oriented reflector, to compute the mutual visibility between all reflectors in

the environment. Successively this visibility information will be used for an efficient

tracing of acoustic beams in the ray space.

For analysis purposes we take the opposite approach, i.e. instead of using the ray

space representation of known acoustic primitives to model an unknown soundfield,

we map the acquired acoustic measurements in the ray space and than we use this

data to extract information about the unknown acoustic primitives. Working in the

ray space, in which we known how the acoustic primitives should be represented,

helps us detect, identify and extract the desired information.
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Chapter 3
Modeling of sound propagation in the

ray space

T
his Chapter describes the construction of the visibility data struc-

ture and a beam tracing method for modeling of acoustic prop-

agation in complex 2D/3D environments, which exploits the infor-

mation on mutual visibility between reflectors to speed up the com-

putation of the acoustic beams. The visibility information depends

on the environment geometry only and is thus evaluated in an off-

line phase. The use of the visibility data structure helps lighten the

computational burden of the beam tracing phase as all occlusion han-

dling is performed in the visibility precomputation stage. In practical

terms this means no occlusion handling is needed during the beam

tracing phase and, similarly to the path tracing phase that consists

of checking if the acoustic path is a part of a given beam, the beam

tracing consists of checking if the current beam is a part of the given

visibility region.

3.1. Motivations

The acoustic room simulation finds applications in different fields. Some classical

examples are: video-games and other virtual reality applications; building acous-

tics software; and music processing. However, the importance of predicting the
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3. Modeling of sound propagation in the ray space

reverberations within an environment is non limited to just these areas. Recently a

number of acoustic signal processing algorithms aimed at exploiting the knowledge

of the environment appeared in literature [1]. Such methods use the propagation

modeling engine to compute the early reflections and devise techniques to: model

the soundfield of a virtual environment that has to be reproduced by a loudspeaker

array [8], [9], [10]; compensate and exploit effects of reverberations in rendering ap-

plications [53]; use the energy of reflective paths to estimate the reflection coefficients

of walls within the environment (see the Chapter 6); etc.

In fact, as the beam tracing method computes acoustic beams it turns out to be

suitable not just for the binaural rendering, where the user experience is designed

to produce the accurate impression of the acoustic scene from a pre-defined location

in space, but also for the rendering of a soundfield in a region of space. The beam

tracing geometrically computes the visibility of image sources from an entire region,

which is the information that can be exploited by a rendering engine to enable

an iterative rendering experience. In fact, interactivity of the rendering experience

heavily relies on the possibility to spatially “explore” the acoustic scene by moving

in it and, in doing so, we experience occlusions of virtual sources as a natural way to

understand and interact with the environment. An extreme example of this is the

ability to navigate in complex environments on the part of vision-impaired people.

3.2. Related work

As pointed out previously, the computational effort of beam tracing algorithm

is unevenly divided between the beam tracing and paths tracing phases. Different

solutions were proposed to address this problem and accelerate the construction of

the beam tree. In [14] the Binary Space Partitioning (BSP) technique was used

to divide the geometric space into convex regions. During the construction of the

beam tree a beam is tested for incidence only on the reflectors of the current region

and successively, if not completely occluded, the beam is propagated into the next

region. This procedure avoids testing all possible reflectors at each iteration. The

BSP technique is very popular for visibility preprocessing [54], [55] and was used not

just for beam tracing but also for visibility tests in image-source methods [56]. How-

ever performance issues are still present for moving sources. In [31] the beam tree

is constructed without accurate visibility calculations. Therefore the path tracing

phase requires occlusion checks similar to those in the image source method, but the

34



3.3. Problem formulation

construction of beams keeps the number of generated image sources under control.

This acceleration technique allows modeling of moving sources in simple environ-

ments. Frustum tracing [57], [58] casts a finite number of small beams (frusta) from

the source and propagates them through the environment similarly to rays in the ray

tracing method. No accurate visibility computations are done - if needed the frusta

are subdivided into smaller ones to minimize the error. This method is a combina-

tion of ray and beam tracing methods: it is generally much faster than beam tracing

method and minimizes the aliasing problem of the ray tracing method. While suit-

able for real-time operation in generic 3D environments the frustum tracing suffers

from inaccuracies in the modeling of acoustic paths.

In this work we are interested in gaining speed in the construction of the beam

tree without sacrificing the accuracy of the beam tracing technique. Unlike [31] that

postpones the visibility computation to the path tracing phase (the point-to-point

visibility is more easily handled than the visibility from point) we anticipate the

visibility computation in a phase that precedes the beam tracing. This obviously

means handling a higher-order information and a more difficult problem to solve,

but at this point it does not depend on source position and can be computed in

advance. The BSP can be seen as a type of visibility precomputation as it determines

the potentially visible set of reflectors for the beam in a given cell. However, this

visibility information is not complete nor exact and visibility computations are still

necessary during the beam tracing phase. In this work we are interested in computing

a visibility information that releases the beam tracing phase from any occlusion

handling and transforms it in just a series of intersection tests with regions of the

new visibility data structure.

3.3. Problem formulation

At each iteration of the beam tracing procedure the beams are reflected with

respect to reflectors they encounter first during their propagation. Therefore, the

reflected bundle of rays has the origin (image source) behind the reflector that caused

the reflection to occur and all its rays intersect the reflector of origin. Furthermore,

the reflected bundle of rays is subdivided into sub-beams, each falling onto a different

reflective surface. Consequently, each beam represents a subset of the reflector-

to-reflector visibility region. Therefore, the visibility information sufficient for an

efficient tracing of acoustic beams is the mutual visibility among all reflectors in the
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3. Modeling of sound propagation in the ray space

environment. A general overview of the visibility-based beam tracing algorithm is

shown in Figure 3.1 with illustrations depicted in a 2D case.

*

R1

R2

Visibility 

evaluation

Beam Tracing

Path Tracing

Environment 

geometry

Source 

position

Receiver 

position

Acoustic paths

(a)

(b)

(c)

Acoustic beams

Visibility information
R3

...

xS’ xS

xS’ xS

xP

Figure 3.1.: The visibility-based beam tracing algorithm: (a) evaluation of mutual visibility between reflec-
tors; (b) tracing of acoustic beams as they bounce and split during the interaction with the environment;
(c) tracing of acoustic paths between source and receiver.

Visibility evaluation – The geometry of the environment is used for the evalua-

tion of the mutual visibility between all reflectors in the environment. In particular,

the visibility information is encoded using a suitable representation, which leads to

the definition of an efficient visibility data structure describing all the rays reflected

from a given wall. With reference to Figure 3.1-(a), the visibility of the reflector R2

from the reflector R1 is defined as the set of rays passing through both R1 and R2.

Beam Tracing – Given the source position xS , the beam reflected by R1 can be

thought as originated from the image source xS′ as shown in Figure 3.1-(b). The

reflected beam is therefore a subset of rays going from R1 to R2 and can be computed

efficiently by a lookup of the visibility data structure. This procedure continues

iteratively as beams continue bouncing off the reflectors in the environment. During

the interaction with the environment, beams split and branch. Some beams fall

onto other reflectors, others continue to infinity as depicted in Figure 3.1-(b). The

beams are organized in a beam tree data structure that contains the branching
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3.4. 2D Algorithm

relationship between acoustic beams and efficiently represents the visibility of the

geometric space from the source position.

Path Tracing – Given the receiver position xP , the acoustic path between source

and receiver can be seen as a ray joining the image source and the receiver (see Figure

3.1-(c)). Therefore, the path tracing is performed efficiently as a lookup of the beam

tree, i.e. testing for the presence of the receiver inside the nodes (beams) of the

beam tree data structure.

All the outputs of three main steps of the visibility-based algorithm are based on

rays as the elementary primitive: mutual visibility between two reflectors is defined

by the set of rays intersecting both reflectors without being occluded; beams are sets

of rays departing from the same real/image source and falling to the same reflector;

acoustic paths are rays joining the sources and the receiver. As a consequence, the

use of the ray space for the representation and computation of visibility information

and extraction of acoustic beams, turns out to be very useful.

We describe now the representation and organization of the visibility information,

then we concentrate on the use of the described visibility data structure for an ef-

ficient tracing of acoustic beams. A detailed description of all the implementation

issues can be found in literature, and it is not discussed here as it goes beyond the

scope of the dissertation. For comprehensive surveys of visibility computation algo-

rithms see [59], [60], [52]. For the 2D algorithm refer to the previous implementation

in [32]. An algorithm for the visibility computation in the projective 2D ray space

can also be found in [43]. Unlike the visibility evaluation for 2D environments, the

visibility evaluation for generic 3D environments is not a linear problem anymore.

Consequently this is a more challenging problem. Note however that the visibility

evaluation is a pre-processing operation and therefore it is not time-critical. For

visibility culling algorithms in Plucker space see the approaches described in [61]

and [42] and further improved in [62], [63], [64], [65] and [66].

3.4. 2D Algorithm

In this section we present the 2D algorithm. While it has a minor impact com-

pared to the 3D algorithm, we present it before as it is a necessary step for correct

understanding of the 3D algorithm. Notice also that the 2D algorithm can easily be

applied to a specific type of 3D environments defined as the Cartesian product of a

2D and a 1D environment (e.g. environments described by vertical walls ending in
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3. Modeling of sound propagation in the ray space

perpendicular floor and ceiling) as described in [32].

3.4.1. Visibility information

The visibility information is used for speeding up the tracing of acoustic beams as

they bounce around in the environment. The reflected beams are originated from an

image (mirrored) source. In accordance with the image source principle, when we

evaluate the visibility of the environment from a mirrored source, we do not consider

the reflectors in the half-space where the mirrored source lies. Here the definition of

oriented reflectors (2.6) turns to be useful.

Visibility region – All rays originated from a reflector RAB (given by the line

segment xAxB) falling onto reflector RCD (given by the line segment xCxD) form

the visibility region of RCD from RAB, indicated as V(RAB, RCD). In the ray space

this visibility region is given by the intersection of corresponding oriented reflectors

(2.6), i.e.

V(RAB , RCD) =
(
x+

A ∩ x−
B

)
∩

(
x+

C ∩ x−
D

)
.

As a consequence the visibility region is formed in the ray space by the intersection

of four half-spaces as shown in Figure 3.2.
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Figure 3.2.: (a) All rays originated from a reflector RAB falling onto reflector RCD form the visibility region
of RCD from RAB ; (b) The intersection of four half-spaces forms a visibility region in the ray space.

Visibility diagram – If the environment is composed by more than two reflectors,

mutual occlusions may arise. This corresponds to an overlapping of visibility regions

in the ray space. The resulting collection of visibility regions (overridden according to

the front-to-back order of reflectors) constitutes the visibility diagram of the reflector
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3.4. 2D Algorithm

RAB, D(RAB) = {V∗(RAB , Ri) 6= ∅}, where Ri are the reflectors visible by the

reflector RAB and ∗ indicates that visibility regions have been overridden according

to the front-to-back order (see Figure 3.3). As an example, given a reflector REF

occluded by the reflector RCD, we have

V∗(RAB, REF ) = V(RAB , REF ) −
(
V(RAB , RCD) ∩ V(RAB, REF )

)
.

Thus, the construction of a visibility diagram requires a subtraction of occluded
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Figure 3.3.: The collection of visibility regions, overridden according to the front-to-back order of reflectors,
constitutes the visibility diagram of the reflector RAB .

portions of visibility regions, i.e. adding of new constraints, removal of redundant

ones and possibly the splitting of a visibility region. An example of construction

of the visibility diagram from individual visibility regions is shown in Figure 3.3

(b). The tree in Figure 3.3 (c) shows the decomposition of the visibility diagram

into overridden visibility regions The construction of a visibility diagram depends

only on environment geometry and thus it can be computed in an off-line phase,

i.e. before the source or receiver positions are specified. Finally, the collection

of visibility diagrams of all the reflectors gives us the information on the mutual
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3. Modeling of sound propagation in the ray space

visibility between all reflectors in the environment.

At this point it is important to stress the fact that all the occlusion handling

is performed at this stage. In the following beam tracing stage, beams are tested

just for the intersection with the leaf nodes of the visibility diagram: interactions

between reflectors do not need to be taken into account; the reflectors that are never

visible from the reflector that originates the beam are not considered at all as they

are already classified as invisible.

3.4.2. Beam tracing

The visibility conditions cause the splitting of rays originating from an image

source into beams. With reference to Figure 3.4, we show how we use visibility

diagrams, which encode the mutual visibility between reflectors, to iteratively trace

beams. For each beam that falls onto a reflector we perform the following steps:
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Figure 3.4.: (a) Reflection of the beam in the geometric space; (b) Beam subdivision in the ray space; (c)
New beams in the geometric space.

Step 1: Compute the reflected bundle of rays – let us consider, for example, the

reflection of a beam bi onto the reflector RAB, shown in Figure 3.4 (a). We first
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3.4. 2D Algorithm

compute the reflected bundle of rays b′
i. This is done mirroring the beam’s source

xS and the two edge rays that limit the beam, l1 and l2, with respect to the reflector

line lAB using the reflection matrix MAB [67]

xS′ = MABxS , l′ = det(MAB)(MAB)−T l

MAB = I3 − 2G
lABlTAB

lTABGlAB
, G =


 I2 0

0 0


 ,

lAB = xA × xB ,

where −T indicates the the transpose of the inverse 1;

Step 2: Split the reflected bundle of rays into sub-beams – after obtaining the

reflected bundle of rays b′
i the splitting process is accomplished in the ray space by

intersecting the reflector’s visibility diagram, D(RAB), with the ray space represen-

tation of b′
i, b

′
i, as shown in Figure 3.4(b). The b

′
i is made of a number of segments,

each lying in a different visibility region. These segments represent the sub-beams

originated from the splitting of b′
i. The corresponding beams in the geometric space

are depicted in Figure 3.4(c). Some of them proceed to infinity, others are blocked

by reflectors and therefore they originate new beams;

Step 3: Add new beams to the beam tree data structure – the beam bi represents

a node of the beam tree; it is reflected from the reflector and the reflected bundle b′
i

is split into sub-beams that represent the new branches of the beam tree departing

from the node bi;

Step 4: Repeat the procedure for each beam that falls onto a reflector – the

recursive procedure stops when the preassigned order of reflection is reached or when

the beams die out (i.e., when they are attenuated below a preassigned threshold of

magnitude).

3.4.3. Path tracing

Beams are organized in a beam tree data structure that contains the branching

relationship between acoustic beams and represent efficiently the visibility from the

geometric space of the source position. Once the receiver location is specified, a

simple iterative procedure looks up the beam tree to find the paths from source to

1The ray l
′ can be seen as passing through two points xP1

and xP2
; using the relation (2.3) and

the propriety of the cross product (MAB
xP1

) × (MAB
xP2

) = det(MAB)(MAB)−T (xP1
× xP2

),
we obtain the given relation between l

′ and l.
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3. Modeling of sound propagation in the ray space

receiver. Each node in the beam tree corresponds to a beam and a simple geometrical

test checks if a receiver is inside the beam. A number of different implementations

of the test can be devised. Two possibilities are shown in Figure 3.5. In Figure 3.5

(a) the beam is parametrized with the four bounding lines oriented so that a point

inside the beam is always on the right of those lines. In order to test if a point is

inside the beam, therefore, we only need to verify that it is on the right side of all

lines that parametrize the beam, i.e. compute four scalar products. In Figure 3.5

(b) the beam is parametrized using two reflector lines and the two points that limit

the beam. The presence of the receiver is tested checking if the receiver is between

the two reflectors (if the receiver is on the correct side of each reflector) and if the

path going from the beam’s source to the receiver is inside the beam (if it has the

correct orientation with respect to the points that limit the beam).

(a) (b)

l1

l2

l4

l3

l1

l2

xS xS

xR xR
xP2

xP1

x

y

x

y

Figure 3.5.: Two possible parametrizations of the beam: (a) the beam is parametrized with the four bounding
lines oriented so that a point inside the beam is always on the right of those lines; (b)the beam is parametrized
using two reflector lines and the two points that limit the beam.

3.5. 3D Algorithm

3.5.1. Visibility information

The definition of visibility information in 3D environments follows the ideas ex-

plained for 2D geometry. However, the higher dimensional space and a necessary

intersection with a non-convex quadric surface makes the implementation more com-

plex.

We define visibility region between two reflectors V(Ri, Rj) (intersection of all

rays that go from one reflector and fall onto the other one) and visibility diagram

of a reflector D(Ri) (the collection of visibility regions from that reflector) as in the
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Figure 3.6.: (a) Visibility region in 3D geometric and ray spaces; (b) Visibility region constraints for 2D and
3D geometries.

2D case. Similarly to the 2D case the visibility region is given by the intersection

of corresponding oriented reflectors (2.11) as shown in Figure 3.6 (a). The visibility

diagram is the collection of overlapped visibility regions. As in 2D, after overlapping

the visibility regions are given by the intersection of a number of half-spaces (this

ensures that rays have the correct orientation). However there is also the intersection

with the Plucker quadric (this ensures that the rays that define the region are real

lines in 3D). A comparison between the visibility regions in 2D and 3D is shown in

Figure 3.6 (b).

While evaluating the mutual visibility between reflectors in the environment only

events (intersections) on the surface of Plucker quadric have to be taken into ac-

count, i.e. only events that correspond to different visibility changes in 3D. As a

consequence, the removal of occluded portions of visibility regions is no more a linear

program, and a new, dedicated, algorithm for detecting occlusions, adding/removing

constraints and splitting regions has to be developed. However, as already stated,

presenting this algorithm goes beyond the scope of this work. A simple pseudocode
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3. Modeling of sound propagation in the ray space

for the visibility evaluation algorithms should look like:

function Visibility evaluation (Ri, ∀i)

begin

for all reflectors Ri do

initialize the visibility diagram D(Ri) = ∅
for all reflectors Rj, j 6= i do

initialize V∗(Ri, Rj) = ∅
compute the visibility region V(Ri, Rj)

add V(Ri, Rj) to V∗(Ri, Rj)

for all possible occludersa Rk do

compute the visibility region V(Ri, Rk)

for all V∗
r (Ri, Rj) ∈ V∗(Ri, Rj) do

test for intersection V∗
r (Ri, Rj) ∩ V(Ri, Rk)

if intersection = true then

subdivide V∗
r (Ri, Rj) into V∗

o (Ri, Rj)b

remove V∗
r (Ri, Rj) from V∗(Ri, Rj)

add V∗
o (Ri, Rj) to V∗(Ri, Rj)

end

end

end

add the overridden regions V∗(Ri, Rj) to D(Ri)

end

end

return D(Ri), ∀i

end

athe occluders can be sorted by importance by shooting test rays and measuring,
for each occluder, the number of rays intersecting it, as suggested in [62] and [63];

bempty set in case of the complete occlusion.

The reader should consult the listed references for more details.

3.5.2. Beam tracing

The procedure is similar to the 2D case. With reference to Figure 3.7 (a) consider

the reflection of the beam bi, with source xS and edge constraints ẽi, i = 1, ..., n,

from the reflector R1.
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Figure 3.7.: (a) Reflection of a beam from the reflector; (b) The reflected beam in the ray space; (c) Subspace
of rays originated by the image source xS′ ; (d) Subdivision into sub-beams.

Step 1: First the source xS and edges ẽi are reflected with respect to the plane

on which the reflector lies, π = [A, B, C, D]T . The result is the reflected bundle

of rays b′
i with image source xS′ and constraints ẽ′

i, i = 1, ..., n. The reflection is

performed using the reflection matrix

Mπ = I4 − 2G
ππT

πT Gπ
=


 N n

0 1


 , G =


 I3 0

0 0


 .

Using the homogeneous coordinates we have xS′ = MπxS and therefore the Carte-

sian coordinates of the image source xS′ are obtained as xS′ = NxS + n. Given a

generic edge passing through two points xP1 and xP2

ẽ =


 xP1 × xP2

xP2 − xP1


 =


 em

ed


 ,
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3. Modeling of sound propagation in the ray space

it is reflected with respect to π as follows

ẽ′ =


 (NxP1 + n) × (NxP2 + n)

(NxP2 + n) − (NxP1 + n)




=


 NxP1 × NxP2 + n × N(xP2 − xP1) + n × n

N(xP2 − xP1)




=


 det(N)(N−1)T em + n × (Ned) + n × n

Ned


 .

In the ray space the reflected bundle of rays b′
i, b

′
i, lies completely on the surface of

Plucker quadric and is limited by the hyperplanes ẽ′
i, i = 1, ..., n, as illustrated in

Figure 3.7 (b).

Step 2: The visibility conditions, encoded as constraints on edges ẽj, i = 1, ..., m,

cause the subdivision of b′
i into sub-beams. At this point, to perform this subdivision

there is no need to remain in a six-dimensional space and deal with a non-convex

quadric surface. In fact, the reflected bundle of rays b′
i has the origin in the image

source xS′ . The ray space representation of xS′ , xS′ , is the projective plane (2.14)

spanned by (2.12) that lies completely on the surface of the Plucker quadric. As a

consequence b
′
i lies on the surface of the Plucker quadric as well, and it is represented

by the portion of the linear subspace xS′ . Using (2.15) we can project both the beam

constraints ẽ′
i and the visibility constraints ẽj to the subspace xS′ that defines only

the rays passing through the image source xS′ . The result is a collection of linear

constraints, ē′
i and ēj , within a two-dimensional projective space P

2 as depicted in

Figure 3.7 (c).

Step 3: The reflected bundle of rays b′
i is then subdivided into new beams inter-

secting the reflector’s visibility diagram D(R1), i.e. b
′
i ∩ D(R1). This procedure is

performed in the space spanned by the homogeneous coordinates a. As done previ-

ously for the 2D reduced ray space, for clarity of visualization we depict the splitting

process in a two-dimensional Euclidean space obtained intersecting P
2 with a pre-

scribed plane. A simple example of the visibility diagram D(R1) with two computed

visibility regions, V∗(R1, R2) and V∗(R1, R3), is shown in Figure 3.7 (d). The over-

lapping between the regions has been managed during the visibility precomputation

stage and the visibility diagram shows not occluded convex portions defined by a

number of linear constraints ēj . Finally, the new beams are computed intersecting

the reflected bundle of rays b′
i, specified with the constraints ē′

i, with the regions
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3.5. 3D Algorithm

of the visibility diagram D(R1) as shown in Figure 3.7 (d). Some beams encounter

reflectors along their path (bi1 and bi2) and originate new reflections, others proceed

to infinity (bi3).

3.5.3. Path tracing

In order to test the presence of the receiver inside the beam a parametrization

similar to the parametrization used for 2D and shown in Figure 3.5 (b) is used. The

beams are parametrized using two planes that contain the reflectors and a number

of edges that limit the beam. The presence of the receiver is tested checking if the

receiver is between the two planes and if the path going from the beam’s source

to the receiver is inside the beam. Examples of path tracing in environments with

different complexity are shown in Figure 3.8.

Environment 1

Environment 2

Environment 3

Impulse response

Impulse responseImpulse response

Figure 3.8.: Examples of path tracing in environments with different complexity.
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3. Modeling of sound propagation in the ray space

3.5.4. Considerations

As seen, the increase in complexity of problems encountered while generalizing

the 2D visibility approach to the 3D case is not proportional to the increase in the

dimension of the geometric space. The visual events become, in general, non-linear

and non-convex. This is reflected on the definition of the ray space represented, in

3D case, to be a four-dimensional non-convex quadric surface embedded in P
5. It

is important, however, to note that the increase in dimension of the beam tracing

phase is exactly one. Observing Figures 3.4 and 3.7 we note that: all rays passing

through a point in 2D have 1 degree-of-freedom, i.e. in the ray space they belong to a

projective line P
1; in 3D the rays passing through a point have 2 degrees-of-freedom,

i.e. in the ray space they belong to a projective plane P
2. Furthermore, in 3D the

subspace of all rays passing through the point lies completely on the surface of the

ruled quadric, thus no intersection is needed. Indeed, the visibility events from a

point are, once again, linear as observed in [50], [46], [68], [69], [59], [42]. The beam

tracing is thus a linear program that consist of the intersection of the reflected beam

with the precomputed visibility regions of the source reflector. As a consequence,

even in 3D, the beam tracing procedure has a reasonable computational burden that

allows efficient tracing of acoustic beams.

The visibility evaluation requires only the information on environment geometry

and is computed off-line. The resulting visibility diagrams do not require much

memory space, as they are represented just by a list of active constraints (borders)

of each visibility region. Therefore the visibility information is easily stored and

loaded together with the environment. In general, the dynamic environments are

not easily handled as they require recomputing the visibility information. However,

some simple dynamic scenes that require just a removal and/or re-introduction of

some reflectors (e.g. opening and closing of doors and windows) can be handled by

simply combining the visibility regions of the removed reflector with the visibility

regions of reflectors that observe it.

3.6. Conclusive remarks

In this Chapter we presented the 2D and 3D visibility based beam tracing algo-

rithms. Both 2D and 3D algorithms make use of the visibility information computed

in the 2D and 3D ray spaces, respectively. Visibility information specifies the mutual
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visibility between all the reflectors in the environment. It is made by a collection

of visibility regions that describe the visibility conditions between two reflectors us-

ing the ray space representation of corresponding oriented reflectors. In 2D, the

visibility region is defined by a number of linear constraints. In 3D, the visibility re-

gion is defined by a number of linear constraints and one quadratic constraint. The

beam tracing is performed subdividing the reflected bundle of rays into sub-beams

by intersecting the ray space representation of the reflected beam with the visibility

region of the reflector that causes the reflection to occur. In both 2D and 3D the

beam tracing is a linear procedure.

The modeling engine is used in Chapter 6 for the computation of reflective paths.

The modeled paths are then matched with the measurements in order to estimate the

reflection coefficients of all reflective surfaces in the environment. For the rendering

application in Chapter 7 the modeling engine is used to simulate the soundfield of

both real (host) and virtual (to be reproduced) environments. This models are then

used by the rendering engine to reproduce the acoustics of the virtual environment

while compensating for the undesired reverberation of the real environment.
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Chapter 4
Analysis of wavefields through

plenacoustic imaging

A
coustic scene analysis is generally performed by gathering mea-

surements and combining the related constraints. This is done

through a process that must be specifically developed for the prob-

lem at hand. In this Chapter we propose a methodology that allows

us to follow a different route, which consists of collecting at once all

the information that is available on the acoustic scene; organizing it

into a data structure that displays it in a ready-to-interpret fashion;

and performing the analysis of the collected data afterwards, using

various methodologies, typically from pattern analysis.

The novel approach to acoustic scene analysis is based on near field

acoustic measurements acquired with a microphone array and, in par-

ticular, on the concept of the plenacoustic function. We start from

a general definition of the plenacoustic function, which includes di-

rectional information. We then show how to map this function onto

the 2D ray space. By representing the plenacoustic (spatially dis-

tributed) measurements in the ray space, i.e. associating magnitudes

to acoustic rays, we obtain snapshots (for a given time and frequency)

of the plenacoustic function. This parameterization of the plenacous-

tic function is here referred to as a plenacoustic image. This image

will turn out to carry a great deal of information on the acoustic
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4. Analysis of wavefields through plenacoustic imaging

scene. We then show how to acquire an approximation of the above

ideal plenacoustic image using a microphone array and describe how

real and ideal images are related to each other. In particular, we

discuss the impact of spatial sampling onto the resolution of the ple-

nacoustic image (aperture problem), and the issue of scene visibility

and its relation with the extension of the imaging array.

4.1. Motivations

Acoustic systems could greatly benefit from spatially distributed observations of

the acoustic scene. In the near future we can expect to have a number of small

microphone arrays distributed inside the environment (e.g. think about the ar-

ray integrated in the Microsoft Kinect R© device). Having at the disposal different

“views” of the scene can help improve the performance and robustness of acoustic

signal processing algorithms, for example merging different estimates to improve

estimation accuracy or selecting the best view for the particular application; and

accomplish tasks that would not be possible otherwise, such as taking into account

or estimating visibility discontinuities of the environment. To address the problem

of the representation and use of such a spatial data, we consider different views as

snapshots of the plenacoustic function.

4.2. Related work

The plenacoustic function was introduced in [15] as the acoustic counterpart of

the plenoptic function [33], which describes the intensity of the light flow at every

position for every direction at all frequencies and, for dynamic scenes, time. In

defining a plenoptic function, several assumptions are often made (e.g. static scenes,

grayscale images, reduction of degrees of freedom on camera locations) in order to

reduce the dimensionality of the representation [70]. Popular parametrizations are

the lumigraph [71] and the lightfield [72], whose domain is the space of oriented lines.

The plenoptic data is used in computer vision for localization, mapping, synthetic

view generation (image based rendering), etc. An example of a commercial plenoptic

camera is based on work in [73].

The plenacoustic function was originally proposed in [15] as the acoustic pres-

sure as a function of space, time and frequency. In this definition the directional
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4.3. The plenacoustic camera

information was dropped by the authors because of the lack of devices that could

measure sound pressure and components of its gradient. The method was proposed

and developed for reconstructing the sound pressure distribution anywhere from a

measurements on a finite number of points. In this thesis, we revise this definition by

re-introducing direction, thus making it completely symmetrical to its optical coun-

terpart, as the directional information can be recovered with a microphone array

through space-time processing. Redefining the plenacoustic function this way also

induces a re-interpretation of the term “soundfield” as a vector field, which matches

the concept of “lightfield” discussed in [72].

4.3. The plenacoustic camera

In this section we revise the definition of plenacoustic function by introducing

the directional information, knowing that this information can be recovered through

space-time processing. In fact, one way to measure the soundfield coming from a

given direction in a given point in space is to use a beamforming algorithm with a

compact microphone array. This way we can measure the magnitude (or power) of

the acoustic pressure along rays that pass through its center. In other words, the

compact array is used as an “acoustic camera”, and the center of the array plays the

same role as the optical center in a photo camera (center of collection of all rays).

In a 2D (planar) geometry, such measurements are represented as a function of just

one parameter, which is the direction if arrival of the acoustic ray. In this thesis

we introduce a direct generalization of this idea by defining the “plenacoustic (or

soundfield) camera”, similarly to its optical counterpart, the plenoptic (lightfield)

camera [74].

We define the soundfield camera as a device that acquires the plenacoustic function

over a spatially extended “observation window” facing the acoustic scene. In the 3D

case the observation window is a compact region of a planar surface, while in the 2D

case it becomes a simple segment. If the observation window were infinitely extended

(a plane or a line), then knowing the plenacoustic function on it would allow us to to

infer it everywhere in space. This is indeed true because of Huygens Principle, but

it is also true because of the principle of invariance of the radiance along acoustic

rays. By limiting our knowledge of the plenacoustic function to a window of finite

extension, we approximate this idea. The information that we gather through a finite

window, in fact, only allows us to reconstruct the wave field in a region surrounding
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4. Analysis of wavefields through plenacoustic imaging

the it, whose size depends on visibility and occlusion conditions.

In this work we define the soundfield camera in planar geometry and, therefore,

we capture the plenacoustic function along a segment of a line, which represents the

window of observation of the acoustic scene. This means that the soundfield camera

captures the acoustic field along all possible rays that cross that segment from one

given side. The plenacoustic function, measured along the considered segment and

mapped onto the ray space will be referred to as plenacoustic image or soundfield

image. Using the ray space representation of geometric primitives described in the

Chapter 2 we can understand how an acoustic scene will appear in a plenacoustic

image. The ray space is the projective space whose (homogeneous) coordinates are

the parameters l1, l2 and l3 of the line. We have seen that defining the ray space

on the projective domain P
2 (which uses three homogeneous coordinates) instead

of the Euclidian domain R
2 (which uses two coordinates) has several advantages.

First of all, this choice is of general validity, as it accommodates rays coming from

all possible directions (e.g. not necessarily just those coming from the front side).

This means that this representation is independent of how we plan to implement

the plenacoustic camera. In addition, in this space we can work with near-field

sources or with sources at infinity (planar wavefronts) without having to change

the notation; projective transformation such as specular reflections (wall-reflected

rays or beams) are readily described with linear transformations (homographies).

However, in order to simplify the visualization of plenacoustic images, we will often

resort to showing a “reduced” ray space, whose domain in R
2 is obtained by slicing

the ray space (l1, l2, l3) with a plane. In particular, unless otherwise stated, the

cutting plane will be chosen as l1 = 1, as often done in the area of computer vision.

This particular choice of reduced ray space is fully equivalent to the projective ray

space except for the rays that are parallel to the x-axis, which we cannot represent

because they have l1 = 0.

4.3.1. The ideal plenacoustic camera

An ideal plenacoustic camera is a device that is able to capture the (complex)

amplitudes of all acoustic rays that fall onto it. The term “plenacoustic” comes

from the fact that there is no single point (camera center) that rays are bound

to pass through. A camera of this sort can be thought of as a line segment in

the geometric space or, conversely, as the set of all rays that cross such segment.
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4.3. The plenacoustic camera

Its representation in the ray space is therefore given by the parameters of all such

rays. As a consequence its representation in the ray space is equivalent to that of a

co-located reflector (2.7).

Plenacoustic camera
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Figure 4.1.: (a) The ideal plenacoustic camera in the geometric space; (b) The ray space representation of
the plenacoustic image.

So far we have discussed the representation of geometric primitives as a function

of the acoustic rays that are generated (source), collected (receiver) or reflected (re-

flector) by them. Each ray that parameterizes the geometric primitive is associated

to a magnitude. As soon as the acoustic source “lights up”, a proliferation of acous-

tic rays populates the environment due to the presence of reflectors. Consider the

simple scenario in Figure 4.1. The acoustic source xS is visible from the plenacoustic

camera xCxD. The reflector xAxB causes the mirror source xS′ to appear. Notice,

however, that reflective rays starting from xS′ are bound to pass through xAxB ,

thus limiting the portion of space where xS′ is visible. The bundle of reflective rays

partially illuminates the acoustic camera xCxD. The corresponding situation in the

ray space is depicted in Figure 4.1(b). In particular, the portion of ray space visible

by the camera xCxD is depicted in light gray, while the red area is the intersection

between the regions of visibility of the reflector xAxB and of the camera xCxD.

Finally, when the source xS is active, two segments in the visible region of xCxD

will “light up”. The first is the intersection between xS (representation of xS in
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the ray space (2.4)) and the visible region, while the second one is the intersection

among xS′ (xS′); the visibility region of xAxB; and the region visible by xCxD.

Let F(θ, x, y, t, f) be the plenacoustic function that specifies the acoustic wavefield

coming from a given direction θ at a given position x, y at a given time t and

frequency f . The ideal plenacoustic camera captures all the acoustic rays l(θ, x, y)

that impinge from all directions θ on the points x, y of the corresponding observation

window xCxD, i.e. l(θ, x, y) ∈ RCD, where RCD is the set of rays that form the ray

space representation of the given line segment (2.7). Therefore the ideal plenacoustic

image I∗(l) represents a snapshot of the plenacoustic function at time t0, frequency

f0 and for directions and positions such that l(θ, x, y) ∈ RCD. The resulting image

carries information on both magnitude and phase of the acoustic radiance, therefore

it is generally complex-valued. If the application does not require phase information

(as in the case of this dissertation), the image formation process simplifies. In this

case it is convenient to construct the power plenacoustic image, i.e.

I∗(l) = {|F(θ, x, y, t, f)|2 | l = l(θ, x, y) ∈ RCD, t = t0, f = f0}. (4.1)

Note however that depending on the application the phase information can be used

as well.

The soundfield produced by the acoustic source xS is mapped over the line xS in

the ray space. Therefore the ray space image of xS is

I∗
S(l) = aS(l)δS(l), (4.2)

where aS(l) is a function that depends on radiometric properties of the source, i.e.

the signal amplitude and the radiation pattern for the direction l (at time t0 and

frequency f0), and

δS(l) =





1 if l ∈ xS ,

0 if l /∈ xS .

On the other hand, the reflections produced by the image source xS′ are bound

to pass through xAxB . Therefore the ray space image of xS′ is

I∗
S′(l) = aS′(l)δS′(l)rAB(l)ΠAB(l),

where aS′ and δS′(l) are defined similarly to (4.2); rAB(l) is a function that depends
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the reflective properties of the reflector, i.e. the reflection coefficient for the direction

l (at frequency f0), and

ΠAB(l) =





1 if l ∈ RAB ,

0 if l /∈ RAB .

Finally, the plenacoustic image (4.1) contains the rays produced by both direct

and image sources, xS and xS′ , that intersect the plenacoustic camera xCxD (see

the Figure 4.1). Therefore we have

I∗(l) = (I∗
S(l) + I∗

S′(l))ΠCD(l)

= aS(l)δS(l)ΠCD(l) + aS′(l)δS′(l)rAB(l)ΠAB(l)ΠCD(l).
(4.3)

It is interesting to notice how the presence of reflected rays contribute to enriching

the plenacoustic view of the scene. For example, if the room includes scattering

walls, the reflections are scattered in all directions, i.e. they are not originated from a

single image source. Therefore the plenacoustic camera “sees” the diffuse reflections,

originated from the reflector, coming from all directions. As a consequence the whole

reflector’s visibility region, representing all the rays originated from the reflector, will

“brighten up”. In this case the acquired ideal pleanacoustic image should be

I∗(l) = aS(l)δS(l)ΠCD(l) + rAB(l)ΠAB(l)ΠCD(l).

The case of Lambertian (equip-diffusive) surfaces, however, is far more common in

the optical case than it is in the acoustic one. However, we can always acousti-

cally “illuminate” the environment from different locations in space to extract more

information from the acoustic scene.

4.4. Array-based approximation of the plenacoustic camera

We now discuss how to acquire a plenacoustic image using a microphone array.

In principle, just like in the optical domain, the plenacoustic camera can be thought

of as an array of acoustic cameras, placed on a grid that samples the window of

observation. Different setups are possible for this measurement procedure. If the

acoustic scene is static and the signal emitted by the sources is stationary, the sound-

field could be measured by simply moving an acoustic camera along the observation

57



4. Analysis of wavefields through plenacoustic imaging

window. If the acoustic scene is not static, then we need to resort to a one-shot

acquisition procedure based on a spatially extended microphone array.

Implementing a plenacoustic camera with a microphone array means inferring the

acoustic rays that intersect the array through space-time processing. Here we show

how to build a soundfield camera that captures the plenacoustic function along a

given segment, by using a microphone array that samples that segment. In order

to do so, for each microphone position we will define a “local” acoustic camera. We

then remap the collection of spatially distributed acoustic images onto the ray space

to form the plenacoustic image. In the following paragraph we discuss in detail each

step leading to the measurement of the plenacoustic image.

4.4.1. Single spatially extended array

The purpose of this paragraph is to illustrate a methodology for the acquisition

of a plenacoustic image by means of a single microphone array. With reference to

Figure 4.2 (a), we have a linear microphone array, whose sensors are at locations

xi, i = 1, ..., M . Summarizing the overall procedure, we perform beamforming on

compact sub-arrays within the microphone array and we measure the pseudospec-

trum (defined as the output power of the beamformer for different look directions)

on each sub-array, which provides information about the distribution and intensity

of acoustic rays passing through the acoustic center of the considered sub-array, i.e.

its reference microphone. By performing beamforming on different sub-arrays we

measure distribution and intensity of acoustic rays passing through a plurality of

acoustic centers. Finally, the pseudospectra are visualized in the ray space, to obtain

the plenacoustic image. A schematic overview of the plenacoustic image acquisition

process is shown in Figure 4.2 (b).

Let us consider a sub-array centered at xi, i.e. the sensor located at xi is the

reference sensor of the considered sub-array. The sensors in the sub-array are located

at xj , j = i − W −1
2 , . . . , i + W −1

2 , where W is the number of microphones in the sub-

array. The signals acquired by the sensors are xj(t), j = i − W −1
2 , . . . , i + W −1

2 . We

apply a beamformer on these signals to obtain the spatial pseudospectrum

Pi(θ) = hH(θ)R̂ih(θ), (4.4)

where θ is the look direction, h(θ) denotes the array weight vector, and R̂i denotes
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the estimate of the autocorrelation matrix of the microphone signals

Ri = E[Xi(t)Xi(t)
H ],

where

Xi(t) = [xi− W −1
2

(t), ..., xi+ W −1
2

(t)]T ,

and

R̂i =
1

T

T∑

t=1

Xi(t)Xi(t)
H .

In general, the pseudospectrum Pi(θ) can be measured using any beamforming

technique. However, discussion about beamforming methods is outside the scope of

this thesis. For more details see the Appendix C. The derivation of the pseudospec-

trum is repeated for all the possible sub-arrays, i.e. for i = (W + 1)/2, . . . , M −
(W + 1)/2.

In order to map Pi(θ) onto the ray space, notice that an acoustic ray with travel

direction θ and captured by the sub-array whose reference microphone is at xi =

[xi, yi]
T has line parameters

l(θ, xi, yi) = k [− cos(β), sin(β), cos(β)xi − sin(β)yi]
T ,

k > 0, β = θ − α + π/2 ,
(4.5)

where α is the orientation of the array, as shown in Figure 4.2 (a). Equation(4.5)

is the conversion rule in order to go from Pi(θ) to Pi(l). Notice that as θ varies

l(θ, xi, yi) describes a line in the ray space, i.e. the line xi corresponding to xi.

Furthermore, due to the fact that xi lies on the line of the array, the line xi belongs

to the visibility region of the plenacoustic camera and passes through the intersection

point between x1 and xM as shown in Figure 4.2 (c). Finally, the plenacoustic image

acquired by the microphone array is the collection of the sub-array pseudospectra

represented in the ray space, i.e.

I(l) = {Pi(l)|l = l(θ, xi, yi),

i = W +1
2 , . . . , M − W +1

2 , 0 < θ < π} .
(4.6)

The use of the spatial windowing W allows us to trade between conflicting needs:

⊲ the use of extended arrays enables a wider region in the ray space to be visible;
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Figure 4.2.: (a) The microphone array; (b) Schematic overview of the plenacoustic image acquisition process;
(c) The ray space representation of the plenacoustic measurements – the plenacoustic image.

⊲ in order to estimate rays that pass through a point xi of the array, the array

must be sufficiently compact in space.

In other words, the complete array has to be “big” with respect to the scene of inter-

est (near-field) in order to get a “panoramic view” of the acoustic scene; whereas the

sub-arrays have to be “small” with respect to the scene of interest (far-field) in order

to approximate point-like directional receivers. Spatial windowing overcomes this

problem but introduces an aperture phenomenon and other distortions. For example,

a smaller spatial window reduces the angular resolution (it “blurs” the plenacoustic

image) but increases the spatial resolution (information about rays passing through

a single point xi). On the other hand, a larger spatial window improves the angular
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4.4. Array-based approximation of the plenacoustic camera

resolution (assuming the far-field assumption made by most beamforming techniques

is still valid) but decreases the spatial resolution. On the positive side, windowing

suggests that an array of many microphones could be replaced with a smaller array

that slides along its axis (under the hypothesis of stationary soundfield).

The resulting plenacoustic image I(l) is a sampled and blurred version of the ideal

pleanacoustic image I∗(l) (4.1) as illustrated in Figure 4.2 (c). More specifically, the

fact that the image is sampled means that I(l) samples I∗(l) over the rays l that are

bound to pass through microphone positions xi, i = (W + 1)/2, . . . , M − (W + 1)/2,

i.e. over the lines xi in the ray space. Conversely, the blurring comes from the fact

that the image I(l) represents the ideal image I∗(l) convolved with the aperture

function of the given beamforming technique. We can thus write

I(l) =

{∫

l′∈RCD

I∗(l′)pl′(l − l′)dl′ | l = l(θ, xi, yi),

i = W +1
2 , . . . , M − W +1

2 , 0 < θ < π
}

,
(4.7)

where pl′(l−l′) is the aperture function and the subscript l′ indicates that, in general,

it is not constant for all directions l′.

The image configuration depends on the geometry (reflector and source positions)

while the amplitudes vary in time and frequency according to the source signal,

radiation pattern of the source, the polar pattern of the microphones, the reflection

coefficients and traveling path distance. In case of wideband sources we can obtain

a number of images for different frequency bands of interest or (being interested in

extracting only geometric information) a single image combining images at different

frequencies. In particular, in Chapter 5 we use the wideband Minimum Variance

Distortionless Response (MVDR) beamformer [75] for the localization of acoustic

sources and reflectors. On the other hand, in Chapter 6, where we are interested

in extracting the frequency dependent reflection coefficient, we apply the delay-and-

sum (DAS) beamformer [76], [77]. A detailed discussion about the beamforming

techniques is outside the scope of this dissertation. A short description of both

DAS and MVDR techniques can be found in the Appendix C. However, various

alternatives could be employed. In order to improve accuracy and resolution, other

robust and superdirective methods can be used, as suggested in [78].

Although the acquisition process could be easily performed with an arbitrarily

shaped array, the linear array has the advantage of maximal extension and, con-

sequently, best field of view. It also has the advantage of being easily manageable
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4. Analysis of wavefields through plenacoustic imaging

in the ray space. We should bear in mind, however, that the field of view of this

camera is limited to half of the geometric space (in front of it).
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Figure 4.3.: (a) An acoustic scene with a ULA plenacoustic camera and a source xS = [1, 1]T in the
geometric space; (b) The corresponding plenacoustic image I(l)[dB], whose amplitude has been normalized
and expressed on a dB scale, shown in the reduced ray space with l1 = 1.

Figure 4.3(a) shows an acoustic scene that includes a Uniform Linear Array (ULA)

of 15 microphones spaced of 0.11 m. An acoustic source placed in xS = [1, 1]T pro-

duces a pass-band signal whose spectrum lies between 300 Hz and 10 kHz. The cor-

responding simulated plenacoustic image obtained using wideband MVDR is shown

in Figure 4.3(b). For clarity of visualization, the resulting image is displayed af-

ter order-zero interpolation (piecewise constant), in order for I(l) to be continuous

with respect to microphone sampling. The line of Figure 4.3(b) is the dual xS of

the source, i.e. the representation of the source in the ray space. As we can see,

the plenacoustic image I(l) exhibits a ridge in the same location as xS. This ridge

is, in fact, a blurred version of the visible portion of the dual of the source and the

magnitude of the blurring varies with both l2 and l3. This is due to the fact that

a ULA does not exhibit a uniform resolution over θ [79]. As we can see in Figure

4.3(b), in particular, the farther the point from the source, the larger the incidence

angle, the greater the blurring. This blurring in the plenacoustic image causes a

loss of resolution, which prevents us from being able to tell multiple acoustic objects

apart when they lie too close to each other.

In the lower left area of the plenacoustic image in Figure 4.3(b) we also notice a

rather large bright area, caused by aliasing. The signal emitted by the source, in

fact, has frequency content that goes beyond the spatial Nyquist frequency. This
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4.4. Array-based approximation of the plenacoustic camera

phenomenon will be better characterized later on in the next section. We will also

show that plenacoustic imaging is, in fact, robust with respect to aliasing.

4.4.1.1. Angular Aliasing

Aliasing is a well known phenomenon in space-time processing, which causes an

error in the localization of the acoustic source. An aliased pseudospectrum exhibits

multiple lobes of comparable magnitude, known as grating lobes [79], which are

replicas of the main lobe. In order to prevent aliasing, the distance d between

adjacent sensors needs be kept sufficiently small.

As far as ULAs are concerned, the no-alias condition is d < λ/2, where λ is

the wavelength corresponding to the maximum frequency contained in the signal

and d is the distance between adjacent sensors. We focus here on the impact of

spatial aliasing on plenacoustic images. The presence of aliasing depends only on

the deployment of sensors. As an exact characterization of aliasing for MVDR is

not possible in a theoretical fashion, we present analytical results for the case of

delay-and-sum beamformer [79], which can be generalized with some approximation

to the MVDR.

Let us consider the ith subarray, whose central microphone is in xi = [xi, yi]
T .

The angle under which this sub-array sees the acoustic source in xS = [xS , yS]T is

θi = arctan

(
yi − yS

xi − xS

)
.

The acoustic source produces a “monochromatic” signal (a single tone) of wavelength

λ. For the delay-and-sum beamformer, the contribution of the sub-array to the

plenacoustic image is

Pi(θ) = C
sin

[
πW d

λ (sin θ − sin θi)
]2

sin
[

πd
λ (sin θ − sin θi)

]2 , (4.8)

where C is a positive constant. Spatial aliasing occurs when the denominator is zero,

i.e. when
πd

λ
(sin θ − sin θi) = mπ, m ∈ Z ,

which gives

θ = arcsin

(
nλ

d
+ sin θi

)
, −π/2 ≤ θ < pi/2 , n ∈ Z (4.9)
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4. Analysis of wavefields through plenacoustic imaging

Although eq. (4.9) is derived for the case of the delay-and-sum beamformer, the same

equation can be used, with some degree of approximation, also for other beamform-

ing techniques.

Figure (4.4) shows the same plenacoustic image of Figure 4.3(b), where a continu-

ous line marks the location of the grating lobes as predicted with equation (4.9), with

n = −1. As we can see, although derived for the delay-and-sum beamformer, the

curve well approximates the location of the grating lobes also in the case of MVDR

beamforming. Small crosses denote the location of aliasing peaks, as detected with

a peak-picking algorithm. Notice that such peaks are not collinear. This means

that any line detection tool such as the Hough transform would allow us to easily

discriminate between peaks related to real sources and peaks due to grating lobes.

l

l

3

2

l   = 11

Figure 4.4.: Example of plenacoustic image with aliasing. The geometric setup is the same as in Fig. 4.3.
The dashed line is the dual of the source; crosses mark the detected aliasing peaks; the continuous line,
computed from (4.9) approximately predicts the location of aliasing peaks.

4.4.1.2. Resolution

The resolution is defined as the minimum angular distance between two sources

that makes the related pseudospectrum peaks discernible. For notation simplicity

we consider the configuration in Figure 4.3 in which the l3 axis corresponds to

the spatial variation (position of the reference microphone xi) whereas the l2 axis
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4.4. Array-based approximation of the plenacoustic camera

corresponds to the angular variation (direction of arrival θ). As far as the spatial

resolution is concerned, the resolution is limited by the number of pseudospectra

Pi(θ) contributing to the plenacoustic image. An increase of the resolution on the

l3 axis can be obtained decreasing the number W of microphones in each sub-array.

The cost is, however, the decrease of the resolution on the l2 axis.

We now consider the angular resolution. The discriminating ability depends on

the adopted peak-picking algorithm, therefore it is more of an operative definition.

In this work the resolution is evaluated by sizing the width of the lobe of the pseu-

dospectrum corresponding to the Direction Of Arrival (DOA) of a point-like source,

i.e. we characterize it as a point-spread function. Let lmax
2 be the value of l2 corre-

sponding to the DOA of the source and δl+2 > 0 be the interval on the l2 axis such

that

I(1, lmax
2 + δl+2 , l3)|dB = I(1, lmax

2 , l3)|dB − ∆ ,

∆ being a given threshold. Similarly we define δl−2 < 0 as the value of l2 such that

I(1, lmax
2 + δl−2 , l3)|dB = I(1, lmax

2 , l3)|dB − ∆ .

Finally, we define the width of the lobe as

δl2 = δl+2 − δl−2 , (4.10)

which clearly depends on ∆. For the applications presented in this dissertation we

preliminarily verified that the peak picking algorithm adopted in this manuscript

requires ∆ ≥ 4 dB in order to discriminate between peaks in the pseudospectra

associated to multiple sources.

A closed-form expression of δl2 can only be found for the delay-and-sum beam-

former, and not for MVDR beamformer. This is why we performed simulations.

Figure 4.5 plots δl2 for W = 3 and W = 5 for various source positions. More specif-

ically, the source is placed at a distance of 1.5 m, and the angle θ formed by the

source and the y axis varies between 0◦ and 45◦. The microphone array has the

same configuration of Figure 4.3. For visualization convenience, the value of δl2 has

been converted in angles, as the range of variability of l2 is too large for a clear

representation. Notice that for ∆ = 8 dB there are angles for which δl2|deg = π. In

this situation δl+2 is not defined, as the lobe of I(1, l2, l3)|dB does not decrease to

I(1, lmax
2 , l3)|dB − ∆ for m > mmax. Notice that there is no significant improvement
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on the resolution for W = 3 and W = 5 when ∆ = 4 dB.
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Figure 4.5.: Resolution on the l2 axis as the angle of the source varies: (a) W = 3; (b) W = 5.

4.4.1.3. Spatial Sampling

Real plenacoustic images differ from the ideal ones not only for their limited

resolution, but also because they are obtained by sampling the observation window

on a finite number of points corresponding to the acoustic centers of the sub-arrays.

As suggested above, increasing W , and therefore the resolution on the l2 axis has the

negative consequence of decreasing the number of samples that form the plenacoustic

image on the l3 axis. The optimal tradeoff between resolution and spatial sampling

issues depends on the specific application.

4.4.2. Spatial distribution of small compact arrays

An acoustic camera (in a more traditional sense) could be seen as a compact ar-

ray of microphones (whose size is negligible compared with the size of the imaged

scene). This camera would be able to estimate the magnitudes of all rays that pass

through a single point in space xi (the location of the array), therefore its field

of view in the ray space corresponds to a single line xi. Along this line we find

the values of the pseudospectrum Pi(l) corresponding to the directions of arrival of

the rays. Examples of acoustic cameras are the cylindrical arrays (2D case) and

spherical arrays (3D case). An alternative and more expensive implementation of

a plenacoustic camera could be a spatial distribution of small acoustic cameras of
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this sort (e.g. Eigenmikes), each taking care of estimating sound field magnitudes

along all directions. This would have the effect of reducing the aperture problem;

increasing the field of view (to a full angle); distributing the processing (over the

small acoustic cameras) and compacting the information (each small acoustic cam-

era would transmit a set of vectors and the related amplitudes). The expensive

hardware requirements of this scenario could be overcome in the near future thanks

to the availability of inexpensive integrated microphone arrays. This approach re-

sembles the construction of some plenoptic cameras, which can be built as arrays

of mini-cameras. With this perspective in mind, the use of the proposed method

combined with robust superdirective beamforming techniques (such as [78]) becomes

particularly interesting.

4.5. Perspective work: extension to 3D

In this Chapter we considered acoustic images for 2D geometries. Notice however

that the approach can be extended to 3D environments using a planar array and

the 3D parametrization described in Chapter 2. We have seen in Chapter 3 that the

generalization of the modeling procedure to the 3D case is not a trivial task. Given

the 3D parametrization described in Chapter 2, however, the generalization of the

analysis steps should be simpler. In order to construct theoretically the visibility

regions we have to take into account the intersection with the non-convex Plucker

quadric in order to guarantee that points in P
5 correspond to real rays in R

3. On the

other hand, if we map the real acoustic measurements into the ray space, they will lie

automatically on the surface of the Plucker quadric and, therefore, no intersection is

needed. Furthermore, although the data lies on the quadric surface, the boundaries

between different primitives are still represented by linear constraints in P
5 (see

(2.11) and (2.14)). The planar array is subdivided in sub-arrays. For each sub-array

the angular distribution of acoustic power is estimated through the computation of

a pseudospectrum and the collection of pseudospectra represented in the ray space

forms the plenacoustic image similarly as done in (4.6). To conclude, we can say

that it is possible to generalize the proposed approach to 3D geometries and the

considerations we made have general validity.
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4. Analysis of wavefields through plenacoustic imaging

4.6. Conclusive remarks

In this Chapter we proposed a novel approach to acoustic scene analysis based

on the concept of plenacoustic imaging. We first defined the plenacoustic camera as

a device that captures the acoustic radiance along all the acoustic rays that cross

an observation window. After discussing the process of ideal plenacoustic image

formation we introduced a possible implementation based on microphone array, and

discussed its behavior in terms of resolution and aliasing. The larger the number

of microphones of the array, the greater the detail in the acquired images. Recent

progress in MEMS and integrated electronics technology suggests that the number

of microphones that can be managed in integrated arrays is on a growing trend.

Plenacoustic imaging can therefore become particularly useful for managing and

organizing the massive data that such devices will be able to collect.

One key aspect of this approach is that we are defining a single layer of space-time

processing (required for generating the plenacoustic images), which can be shared “as

is” by a wide variety of applications. With the ray space parametrization described

in the Chapter 2, acoustic primitives such as sources and reflectors, are mapped onto

linear features/regions of the plenacoustic image, which greatly simplifies acoustic

scene analysis algorithms. In fact, the plenacoustic imaging is a powerful analysis

paradigm for multiple reasons:

• it turns problems of acoustic analysis in space and time into problems of pat-

tern analysis on images, which can be approached with methods found in the

rich literature of pattern analysis, computer vision and multidimensional signal

processing;

• image generation becomes a pre-processing step that remains the same through-

out a wide range of applications and is highly parallelizable, thus paving the

way to the production of a shared hardware framework;

• objects in the acoustic scene correspond to the image patterns that are easily

discerned and modeled, which simplifies pattern analysis/detection/extraction,

and enables super-resolution methods. Our definition of the ray space, in par-

ticular, makes such patterns linear, with clear advantages in terms of detection

performance.

The applications addressed in the following Chapters have the purpose of offering

an initial proof of concept of these points and will be further explored and expanded
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in future works. In particular the Chapter 5 will focus on two specific applications:

multiple near-field source localization and reflector localization. These problems

have been addressed numerous times in the literature. For example a near-field

bemaforming method for the localization of acoustic sources is proposed in [80].

Reflector localization methods were proposed in [81] and [5]. These, however, were

ad-hoc solutions devised for the specific problem at hand. Plenacoustic imaging, on

the other hand, gives us the possibility to adopt a common framework that can be

reused throughout an even wider range of problems.

We believe that this approach to the analysis could enable the development of

novel solutions for a wide class of applications such as wave field analysis/extrapolation;

image fusion; image-based self-calibration; source separation; environment inference,

etc.
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Chapter 5
Application to environment awareness:

geometry inference

I
n this Chapter we use the plenacoustic images for geometry infer-

ence. In particular we “look” at the acoustic scene, i.e. obtain an

overview of the sound field distribution in different positions in space,

by taking a number of plenacoustic images. The resulting plenacous-

tic images are then analyzed in order to reconstruct the geometry

of the environment. Therefore we are imitating, to a certain extent,

the procedures used in computer vision where a number of images,

taken from different positions in space, are used for the geometry re-

construction. In particular, knowing how the acoustic counterparts

of geometric objects should occur in the ray space, we can search the

pleanacoustic images for the corresponding patterns. Whereas the

presence of multiple acoustic sources can be difficult to deal with in

traditional systems, using the plenacoustic images the contributions

of individual sources are easily separated and all the sources (up to

the resolution limit determined by the non ideal acquisition process)

are localized simply by finding lines on the image. Once the positions

of direct and the image sources are estimated, the positions and the

orientations of acoustic reflectors are determined by finding “mirrors”

that, given the direct source position, produce the corresponding im-

ages sources. Furthermore, while the traditional systems, based on
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small compact microphone arrays, estimate just the surface on which

the reflector lies, the spatially distributed observations capture also

the visibility discontinuities that can be used to estimate the reflector

extension. In particular, in the ray space the image source lines are

“windowed” by the visibility region of the reflector that generates

the reflection. If the edges of this visibility region are acoustically

visible by the plenacoustic camera the extension of the corresponding

reflector can be estimated. Summarizing: line detection corresponds

to source localization while the edge detection corresponds to the re-

flector endpoint estimation. We finally show a set of simulations and

acoustic experiments that validate the feasibility and effectiveness of

the proposed method.

5.1. Motivations

Motivated by the recent progress in environment-aware audio processing, the in-

terest in the estimation of the acoustic properties of the environment is steadily

growing [1]. Information on the environment, in fact, can be used for boosting the

performance of space-time audio processing algorithms promising to significantly

push the boundaries of audio signal processing. For example, it can be successfully

exploited in the localization and characterization of sources in reverberant environ-

ments [82]; or for the compensation of undesired reflections in wavefield rendering

applications [83]. However, environment-aware sound processing relies on knowledge

of the geometry and the acoustic proprieties of the environment, which need to be

measured or estimated in advance. Although the reconstruction of the environment

geometry from a series of images is a well known problem in computer vision, what is

visible in optics is not necessary visible acoustically and vice versa (think about small

objects, transparent surfaces or low reverberant walls). This motivates the acoustic

probing and sensing in order to estimate the position of reflectors. However, the

computer vision procedure in not easily extended to acoustics.

In order to address this need, a number of techniques for the localization of reflec-

tive surfaces based on acoustic measurements have begun to appear in the literature.

These solutions, usually use the acoustic measurements (possibly along with prior in-

formation) to define nonlinear constraints on the location of the reflectors. Multiple

constraints (each associated to a different position of the source or the microphone)
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are combined in a single cost function, whose minimization yields the estimated line

(2D case) or plane (3D case) where the reflector lies. The methods proposed in

the literature are generally very accurate but tend to differ from each other in as-

sumptions made and hardware used making some of them more suitable for certain

scenarios than others.

One problem that often arises with the above iterative minimization process is

associated to the inherent nonlinearity of the cost function, which causes the opti-

mization to get easily trapped into local minima. In addition, when multiple reflec-

tors are in place, a preliminary clustering process is needed in order to understand

which reflector has generated which acoustic event, which tends to make the method

more complex to implement and more prone to errors. In this Chapter we propose a

method that aims at overcoming these limitations and extracting richer information

on the environment. In particular, we want to turn the reflector estimation process

into a linear one. In order to do so, acoustic measurements have to be represented in

a space in which the reflector is described by linear constraints. We also want to be

able to manage multiple reflectors at once, therefore we need acoustic measurements

to be organized and represented in a space that exhibits a high degree of regularity.

This means that acoustic events coming from different reflectors need to be easily

discernible. With the method that we propose we also address two other important

needs: robustness against incomplete measurements; and level of detail in the ex-

tracted information. Incomplete measurements are frequently due to the fact that a

reflector might turn out to be “visible" from only some of the microphones. As for

the richness of the extracted information, we would like to be able to estimate not

just the location of each reflector but also its spatial extension.

In order to address all of the above requirements, we propose a space-time process-

ing algorithm conceived for microphone arrays whose spatial extension is comparable

with the operating distance (near-field operation). This algorithm is based on the

concept of the plenacoustic image introduced in the Chapter 4. In fact, the ray space

parametrization, used for the representation of the plenacoustic measurements (i.e.

the spatially distributed measurements of the soundfield), turns out to be quite

effective as the geometric primitives of interest (acoustic sources, microphones, re-

flectors) are all represented in this ray space by regions that can be clearly identified

and easily described by one or more linear constraints. As a consequence, localiz-

ing sources and reflectors becomes a linear procedure. Furthermore, the increase of

dimensionality in the representation of the measurements from acoustic images to
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plenacoustic images paves the way to the estimation of the extension of the reflector,

as it allows us to observe the transition point between the absence and the presence

of the reflective path coming from the reflector under study, which is necessary, in

turn, for the estimation of the extension of the reflector. In fact, most of the tech-

niques in the literature for geometry environment estimation use compact arrays,

which present, however, the disadvantage of sampling the soundfield in a limited

portion of space, thus enabling the estimation of the only portion of the environ-

ment that is visible from the array location. The compact arrays either observe the

acoustic event generated by the reflector or do not observe it at all while, in order to

estimate the reflector extension, the measurement system should be able to observe

the discontinuity in the presence of an acoustic event generated by the reflector.

5.2. Related work

The problem of finding reflective surfaces in the environment has recently been

addressed by a number of authors. The proposed methods were developed mostly

for 2D geometries with possible extensions to 3D. All the methods assume valid

the hypothesis of optical acoustics, i.e. reflections undergo the Snell’s law. Usually

only the first most significant reflections are considered. However, they differ in

equipment used and assumptions.

Most techniques estimate the reflector positions matching the estimated Room

Impulse Responses (RIRs) with template reflections or building constraints from

estimated Times Of Arrival (TOAs) or Directions Of Arrival (DOAs). However, all

the methods suppose walls to be infinite and as a consequence the reflections to be

always visible by the acoustic system.

In [36] a loudspeaker moves on a circular trajectory within a 2D space and emits

the controlled noise acquired by a single microphone. A likelihood map is built as a

correlation between acquired signal and a template signal obtained by simulating the

propagation of the signal with respect to all the potential obstacle locations. The

reflector position is found in correspondence of the maximum of the likelihood map.

In [37] the necessity for a priori knowledge of the source signal is removed developing

a method based on inverse mapping of the multi path propagation model. The

reflective surface is localized as the maximum of the pseudo likelihood map defined

as a spatial combination of generalized crosscorrelation functions between signals

received by a microphone pair.
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Authors in [35] propose a method based on a minimization of a cost function

obtained as a combination of a number of quadratic constraints. A single micro-

phone and a synchronized moving loudspeaker are used in a 2D space to obtain

constraints based on TOAs. A knowledge of a probing signal allows extraction of

a RIR from the acquired signal applying a crosscorrelation operation. Maxima of

the impulse response give TOA measurements that define the locus of candidate

reflection points as an ellipse. Different source positions define different elliptic

constraints and the reflector is found as a line of tangency to all the ellipses. In

case of multiple reflectors the TOAs are labeled by means of a generalized Hough

transform. This approach is modified in [4] to account for uncontrolled emissions

and unknown source location. A blind system identification technique is applied in

order to extract time differences of arrival (TDOAs) associated with direct paths.

Successively TDOAs are used to estimate the source-microphone distance and as a

consequence the TOAs. In case of multiple reflectors the related ellipses are grouped

iteratively. The approach is further extended in [84] with an analytic (closed form)

estimator and a second stage correction based on a Hough transform for a more

robust solution. Another improvement is provided in [85], where the optimization

problem is turned into a linear least-squares problem. Finally, the localization of

planar reflectors is approached in [40], [41], [86]. All the above techniques use TOAs

as acoustic measurements. In [5] a different type of quadratic constraint is obtained

using DOAs related to reflective paths. DOA estimates are obtained using a circular

microphone array and applying a wideband Minimum Variance Distortionless Re-

sponse (MVDR) algorithm [75]. With DOAs the reflector is bound to be tangential

to a parabola having the focus in the source location and the measured DOA as

directrix. Once again, multiple constraints are obtained for multiple positions of the

source. Notice that, in order to set up the parabolic constraint, the source location

needs to be known in advance.

In order to make reflector localization more robust to interfering sources present

in the room and avoid measurement of RIRs (in case of the unknown source signal)

the authors in [78] propose the use of a robust MVDR beamformer [87], focusing

matrices and frequency smoothing [75], [88] for DOA estimation and the successive

extraction of signals originating from estimated DOAs by means of a superdirective

RLS-FIB beamformer [89]. Using the crosscorrelation analysis on extracted signals

the TDOA estimates are obtained. Finally, in combination with the information

about the position of the direct source, the reflector location is estimated. A sim-
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ilar procedure is accomplished in three-dimensional environments in [81], using a

spherical microphone array and the EB-MVDR beamformer [90].

It is also worth mentioning the work in [38] where authors analyze the (invertible)

mapping between geometry of a convex polygonal 2D room and a single RIR and

develop an algorithm that retrieves the room geometry from the measured RIR.

Finally in [39] authors propose the method for reflector localization in simple 3D

environments by means of a compact microphone array and an integrated and syn-

chronized loudspeaker that probes the environment with a known test signal. The

estimated RIRs are fitted by a non-parametric method with synthetically gener-

ated reflections. Reflections are validated and classified as 1st, 2nd and 3rd order

reflections and used for reflector localization.

5.3. Problem formulation

Consider the scenario in Figure 5.1, where a linear microphone array is installed in

an environment. The acoustic scene is composed by the source xS and the reflector

xAxB. We consider reflectors in the environment to be linear. Along with the direct

signal coming from the source xS, sensors in the array capture also a delayed and

attenuated replica of it, coming from the specular reflection from xAxB. According

to the Snell’s law reflections can be thought as originated from image sources ob-

tained by mirroring the source with respect to reflectors (image source xS′ shown in

Figure 5.1 (a)). Our objectives are: estimate the location of the reflective surface;

and estimate the location of its endpoints xA and xB, under the assumption that

they are acoustically “visible” from the microphone array. Due to the specular re-

flection law, in fact, only a portion of space is relevant to the reflective path. More

specifically, the visibility of the image source xS′ is limited in space by the extension

of the reflective surface. In fact the rays originated from the image source are bound

to intersect the reflector, as illustrated in Figure 5.1(a). In order to estimate the

endpoints xA and xB of the reflector we observe the discontinuity of the presence

of the reflective path when xS is moved at different positions in space.

A schematic overview of the algorithm is shown in Figure 5.1 (b). The signals

coming from the array are processed and the plenacoustic image in the ray space is

obtained. From the plenacoustic image we are then able to estimate direct and image

source locations, which are then used to estimate the reflector location. When the

environment is probed from multiple source locations we are also able to estimate
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5.4. Source localization

the reflector endpoints. To this purpose the algorithm uses both plenacoustic images

and source locations.
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Figure 5.1.: (a) Problem setup: a microphone array captures the soundfield produced by an acoustic source
within an environment with a single reflective surface; (b) Steps of the reflector estimation procedure.

In the next sections we describe the algorithms for geometry reconstruction using

plenacoustic images. We start from the case of a single reflective surface. As de-

scribed in the block diagram in Figure 5.1, in order to localize the reflector we need

beforehand to localize the acoustic source. At this regard, we initially devise an

algorithm for the localization of a single source through plenacoustic images, either

the direct or the reflected one. In order to localize the reflector, we then extend the

methodology to the case of multiple sources. Finally, we propose the technique for

the localization of multiple reflectors along with their extensions.

5.4. Source localization

In this paragraph we discuss the localization of acoustic sources from plenacoustic

images I(l) (4.6). We will proceed with the example of localizing the image source

xS′ in Figure 5.2 (a). Notice, however, that the same algorithm could be used

for localizing the direct source. In Figure 5.2 (a) only NS′ microphones sense the

reflective path from xS′ . The set VS′ of microphones xi that sense the reflective paths

originated from the image source xS′ is found by considering only the pseudospectra
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5. Application to environment awareness: geometry inference

that exceed a predetermined threshold β, i.e.

VS′ = {i | max(Pi(l)) > β max(I(l))}. (5.1)

We then localize the maxima of the pseudospectra Pi(l), i ∈ VS′, i.e.

l̂
(i)
S′ = arg max

l
(Pi(l)), i ∈ VS′ . (5.2)
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Figure 5.2.: (a) Configuration in the geometric space; (b) Configuration in the reduced ray space: linear
regression is used to estimate the image source position xS′ ; the edge ray lA is found at the intersection
between the image source line xS′ and the edge of the reflector’s visibility region xA.

The rays l̂
(i)
S′ , i ∈ VS′ , are originated from the image source xS′ and, therefore,

they should all stay on the line xS′ in the reduced ray space, as depicted in Figure

5.2 (b). Thus, using (2.2), we can write

l̂
(i)T
S′ xS′ = 0, i ∈ VS′ , (5.3)

where xS′ are the homogeneous coordinates of xS′ . We write the set of NS′ equations

(5.3) in a matrix form as

M̂S′xS′ = 0, (5.4)
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5.5. Reflector line estimation

where the matrix M̂S′ = [̂l
(i1)
S′ , l̂

(i2)
S′ , ..., l̂

(iN
S′

)

S′ ]T , i1, i2, ..., iNS′
∈ VS′ has dimensions

NS′ × 3. If we write M̂S′ = [ĤS′ , −d̂S′ ] we can reformulate equation (5.4) as

ĤS′xS′ = d̂S′ , (5.5)

where ĤS′ and d̂S′ have dimension NS′ × 2 and NS′ × 1, respectively. Finally, we

estimate the Cartesian coordinates of the image source position xS′ as the least-

squares (LS) solution of (5.5),

x̂S′ = (ĤT
S′ĤS′)−1ĤT

S′d̂S′ . (5.6)

The source localization turns out to be a linear problem in the ray space as it

consists in fitting a strait line to a set of points representing rays originated from

the acoustic source. This procedure corresponds in the geometric space to finding the

intersection between all the lines going from microphones xi with the corresponding

DOAs θ̂i = arg max
θ

(Pi(θ)), i ∈ VS′ , as illustrated in Figure 5.2 (a).

5.5. Reflector line estimation

The line containing the reflector, lAB, can be estimated using the estimated image

source position x̂S′ and the source position x̂S. In fact, the line on which the reflector

xAxB lies lAB is the axis of the segment xSxS′ . Therefore lAB is found by imposing

that xS′ is a mirrored version of xS across the reflector line lAB as illustrated in

Figure 5.3.

Given x̂S′ and x̂S (homogeneous coordinates of the image source and source,

respectively) and using (2.3), the line joining the source and the image source is given

by lSS′ = [l1SS′ , l2SS′ , l3SS′ ]T = x̂S × x̂S′ , while the line l′ = [l′1, l′2, l′3]T = x̂S − x̂S′

is the line passing through the origin (l′3 = 0) perpendicular to lSS′ as it has the

negative reciprocal of the slope of lSS′ , i.e. l′1/l′2 = −l2SS′/l1SS′ . The reflector line

lAB = [l1AB , l2AB , l3AB ]T has the same direction as l′ but it passes through the middle

point xm = 1
2(x̂S + x̂S′), i.e. xT

mlAB = 0. Given [l1AB , l2AB ]T = x̂S − x̂S′ we have to

find the third coordinate l3AB such that xT
mlAB = 1

2(x̂S +x̂S′)T (x̂S −x̂S′)+l3AB = 0.

Finally we get

l̂AB =




x̂S − x̂S′

1
2(x̂T

S′x̂S′ − x̂
T
S x̂S)


 . (5.7)
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Figure 5.3.: Reflector line estimation.

5.6. Reflector endpoints estimation

Consider now the plenacoustic image I(l) that captures the reflection originated

from the image source xS′ generated by the reflector xAxB. For the sake of clarity

in the illustration, we assume in this example that only the image source is visible in

I(l). As observed before, not always all the microphones sense the image source xS′ .

It may happen that the image source is visible only from a limited set of microphones

in the array, due to the fact that reflective acoustic paths are bound to pass through

the segment xAxB , as depicted in Figure 5.2 (a). In the ray space the visibility of

xS′ is limited by the dimensions of the reflector, as depicted in Figure 5.2 (b). The

edges of the reflector visibility region, xA and xB, are related to the endpoints xA

and xB . As a consequence, observing the edges of the visibility region in the ray

space allows the estimation of the reflector’s endpoints in the geometric space.

5.6.1. Edge rays

To be observable the edges xA and xB should be “illuminated” by the image source

xS′ . By knowing the image source position and the last microphone(s) that sense

the reflective paths originating from the image source we can estimate the edge

ray(s) that lie on the edge of the reflector’s visibility region, lA = [l1A, l2A, l3A]T

and/or lB = [l1B , l2B , l3B ]T . In the following analysis we consider specular reflection

only, for the discussion of a case in which diffraction becomes significant see the

considerations 5.10 at the end of the section.
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5.6. Reflector endpoints estimation

We start finding the point of intersection between the edge ray lA and the mi-

crophone array. Using (5.1) we find the last microphone(s) that sense the reflective

paths originating from the image source. Let us suppose that xe is the last micro-

phone that does not sense the image source, and xe+1 the first one that does (see

Figure 5.2 (a)). Due to the finite number of microphones, we cannot estimate the

exact point where the edge ray lA intersects the array. However we know that this

intersection point is between xe and xe+1. We expect that in average it intersects

the array in the middle point xt = (xe + xe+1)/2 and, therefore, we use xt as the

best estimate of the intersection point between the edge ray lA and the microphone

array.

Given the intersection point estimate xt and the image source position estimate

x̂S′ , we estimate the edge ray lA as the line joining xt and x̂S′ in the geometric

space (see Figure 5.2 (a)) or, equivalently, as the intersection of lines xt and xS′ in

the reduced ray space (Figure 5.2 (b)). Therefore, we can write

x̂T
S′lA = 0,

xT
t lA = 0.

(5.8)

Notice from (5.8) that lA is a vector spanning the null space of [x̂S′ , xt]
T . Under

the assumption that l3A 6= 0, we can normalize it to 1 (recall that line parameters

are scalable). Indicating Ĝ = [x̂S′ , xt]
T and 1 = [1, 1]T , we can write

Ĝl∗A = −1

and therefore l∗A = [l∗1A, l∗2A]T = [l1A/l3A, l2A/l3A]T is given by

l̂∗A = −Ĝ−11. (5.9)

The edge ray estimate is finally given by l̂A = [̂l∗T
A , 1]T .

5.6.2. Endpoints

A single edge ray is not sufficient for the estimation of the reflector endpoints.

We can easily visualize this fact in the ray space. In fact, the reflector endpoint

corresponds to a line in the reduced ray space and the found edge ray lies on this

line, as it originates from the endpoint (see Figure 5.2). Therefore, in order to
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Figure 5.4.: (a) Configuration in the geometric space; (b) Configuration in the reduced ray space: linear
regression is used to estimate the reflector endpoints xA and xB; intersection between xA and xB represents
the reflector line lAB, i.e. the line joining the endpoints xA and xB .

infer a line from points lying on it we need at least two points, i.e. two edge rays.

In the geometric space this means that different endpoint positions can cause the

same visibility discontinuity (edge ray) to be observable by the microphone array as

evidenced by the black dots in Figure 5.4 (a). For this reason, the estimation of the

endpoints of the reflector is possible when at least a couple of plenacoustic images,

acquired for different source locations, are available, as shown in Figure 5.4 (b).

Moving xS at different locations we acquire a number of different plenacoustic

images and as a consequence a number of edge rays l̂
(i)
A , i = 1, ..., NA and l̂

(j)
B ,

j = 1, ..., NB (see Figure 5.4 (b)), which lie on the edges of the visibility region, i.e.

on the lines xA and xB . By fitting lines to edge rays we estimate reflector endpoints

xA and xB . In a similar way as done for the source position in (5.3), (5.4), (5.5)

and (5.6), we estimate the reflector endpoint positions using the LS method

x̂A = (ĤT
AĤA)−1ĤT

Ad̂A,

x̂B = (ĤT
BĤB)−1ĤT

Bd̂B ,
(5.10)

where the matrices ĤA, ĤB and the vectors d̂A, d̂B are formed analogously to ĤS′

and d̂S′ , respectively.

As a consequence, the endpoint estimation is, once more, a linear problem in the
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ray space. Fitting lines to edge rays in the reduced ray space corresponds in the

geometric space to finding the intersection of the given edge rays, i.e. finding the

endpoint position as shown in Figure 5.4 (a).

5.7. Performance analysis

In order to analyze the accuracy of source and reflector endpoint estimators we

derive expressions of second order statistics of estimates in (5.2), (5.6), (5.9) and

(5.10). We start considering the accuracy of (5.2). The points l̂
(i)
S′ correspond to

maxima of Pi(l), i.e. to the maximum of Pi(θ). The maximum of Pi(θ) is the es-

timated direction of arrival θ̂i = θi + ǫi, where ǫi is the estimation error. Given

the DOA estimation technique we suppose that we know the NS′ × NS′ covariance

matrix of the NS′ estimates θ̂i, Cθ, which depends on the the beamforming method;

the number of microphones; their spacing; the signal frequency; direction of arrival;

and the signal-to-noise ratio (SNR). The statistical performance for the most used

bemforming techniques can be found in [91] or alternatively estimated from exper-

iments/simulations. We suppose DOA estimates to be unbiased, i.e. ǫi to be zero

averaged.

Supposing small errors on DOA estimates we can expand l̂
(i)
S′ = l

(i)
S′ (θ̂i) in the

first-order Taylor series around the true value l
(i)
S′ = l

(i)
S′ (θi), i.e.

l
(i)
S′ (θ̂i) ≃ l

(i)
S′ (θi) +

∂l
(i)
S′ (θi)

∂θi

T

(θ̂i − θi). (5.11)

Using (5.11) we approximate the covariances of estimated points as

[
ClS′

]
ij

= E
[
(l

(i)
S′ (θ̂i) − E[l

(i)
S′ (θ̂i)])(l

(j)
S′ (θ̂j) − E[l

(j)
S′ (θ̂j)])

T
]

≃ E
[
(l

(i)
S′ (θ̂i) − l

(i)
S′ (θi))(l

(j)
S′ (θ̂j) − l

(j)
S′ (θj))T

]

≃ ∂l
(i)

S′
(θi)

∂θi

T

E
[
(θ̂i − θi)(θ̂j − θj)

]
∂l

(j)

S′
(θj)

∂θj

=
∂l

(i)

S′
(θi)

∂θi

T

[Cθ]ij
∂l

(j)

S′
(θj)

∂θj
,

(5.12)

where E[�] is the expectation operator; [Cθ]ij indicates the covariance between DOA

estimates θ̂i and θ̂j; ClS′
is the 3NS′ ×3NS′ covariance matrix of estimated rays and[

ClS′

]
ij

indicates the 3×3 submatrix containing the covariances between coefficients
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of rays l̂
(i)
S′ and l̂

(j)
S′ . From (4.5) with k = 1 and, for simplicity, α = π/2 we obtain

∂l
(i)
S′ (θi)

∂θi

T

= [sin(θi), cos(θi), − sin(θi)xi − cos(θi)yi]
T . (5.13)

If we replace (5.13) in (5.12) we get the desired covariance matrix.

We now analyze the accuracy of the LS estimation of the image source position

given by (5.6). The estimates l̂
(i)
S′ are affected by estimation error l

(εi)
S′ , whose co-

variance matrix is given by (5.12), i.e. l̂
(i)
S′ = l

(i)
S′ + l

(εi)
S′ , where l

(i)
S′ is the true value

of the given ray. As a consequence, in (5.4) the matrix M̂S′ is affected by error

M
(ε)
S′ = [̂l

(εi1)
S′ , l̂

(εi2)
S′ , ..., l̂

(εiN
S′

)

S′ ]T , i1, i2, ..., iNS′
∈ VS′ , i.e. M̂S′ = MS′ + M

(ε)
S′ , where

MS′ is the matrix that contains the true values l
(i)
S′ , i ∈ VS′ . Therefore, writing

MS′ = [HS′ , −dS′ ] and M
(ε)
S′ = [H

(ε)
S′ , −d

(ε)
S′ ], in (5.5) both ĤS′ and d̂S′ are affected

by estimation error, i.e. ĤS′ = HS′ + H
(ε)
S′ and d̂S′ = dS′ + d

(ε)
S′ .

Notice that, given the presence of noise in the data matrix ĤS′ and not just in

the observations d̂S′ , the ordinary least-squares (5.6) is in general biased. For the

derivation of the variance of estimates we assume this bias to be negligible. We

model both errors as additive noises

ĤS′xS′ = d̂S′

(HS′ + H
(ε)
S′ )xS′ = dS′ + d

(ε)
S′

HS′xS′ = dS′ − H
(ε)
S′ xS′ + d

(ε)
S′ ,

and write

HS′xS′ = dS′ + nS′ ,

where the noise term nS′ is given by

nS′ = −H
(ε)
S′ xS′ + d

(ε)
S′ = −M

(ε)
S′ xS′ .

Given the covariance matrix in (5.12), we compute the covariance matrix of nS′ as

[
CnS′

]
ij

≃ E
[
nS′nT

S′

]
ij

= E
[
(−xT

S′l
(εi)
A )(−l

(εj)T
A xS′)

]
= xT

S′

[
ClS′

]
ij

xS′

= [sin(θi), cos(θi)](xS′ − xi) [Cθ]ij [sin(θj), cos(θj)](xS′ − xj).
(5.14)
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The covariance matrix of LS estimate x̂S′ in (5.6) is then approximated by

CxS′
= E

[
(x̂S′ − E[x̂S′ ])(x̂S′ − E[x̂S′ ])T

]
≃ E

[
(x̂S′ − xS′)(x̂S′ − xS′)T

]

≃ (HT
S′HS′)−1HT

S′E
[
nS′nT

S′

]
HS′(HT

S′HS′)−1

= (HT
S′HS′)−1HT

S′CnS′
HS′(HT

S′HS′)−1.

(5.15)

The estimate in (5.9) is affected by two independent kinds of error:

1. Error x
(ε)
t on the intersection point estimate xt = xint + x

(ε)
t (xint being

the true intersection point) caused by the sampling of the array. This error

depends on geometry and is constant for given source and array positions. As

a consequence it adds a bias to the estimation of l∗A that can be controlled

decreasing the spacing between microphones;

2. Error x
(ε)
S′ on the image source position estimate x̂S′ = xS′ + x

(ε)
S′ with covari-

ance given by (5.15). This error is caused by the discrete nature of the array,

which causes blurring to appear in the plenacoustic image.

Notice that Ĝ = G+[x
(ε)
S′ , x

(ε)
t ]T ; equation (5.9) becomes Gl∗A = −1− [x

(ε)
S′ , x

(ε)
t ]T l∗A

and, supposing the bias to be negligible, the variance of the estimate l∗A is approxi-

mated as

var(l∗A) ≃ E
[
(̂l∗A − l∗A)(̂l∗A − l∗A)T

]

≃ E





G−1(−1 −


 x

(ε)T
S′

x
(ε)T
t


 l∗A) + G−11





G−1(−1 −


 x

(ε)T
S′

x
(ε)T
t


 l∗A) + G−11




T



= G−1E





 x

(ε)T
S′ l∗A

x
(ε)T
t l∗A




[
l∗T
A x

(ε)
S′ , l∗T

A x
(ε)
t

]

 G−T = G−1


 cS′ 0

0 ct


 G−T ,

(5.16)

where E[(l∗T
A x

(ε)
S′ )(x

(ε)T
t l∗A)] = 0; given the covariance matrix (5.15),

cS′ ≃ E
[
(l∗T

A x
(ε)
S′ )(x

(ε)T
S′ l∗A)

]
= l∗T

A E
[
x

(ε)
S′ x

(ε)T
S′

]
l∗A = l∗T

A CxS′
l∗A,

and ct ≃ E[(l∗T
A x

(ε)
t )(x

(ε)T
t l∗A)] = 0. For the multiple edge ray estimates l̂

∗(i)
A ,

i = 1, ..., NA we have the covariance matrix Cl∗

A
with

[
Cl∗

A

]
ii

= var(l
∗(i)
A ) and

[
Cl∗

A

]
ij

= 0 for i 6= j as different edge rays, l
∗(i)
A and l

∗(j)
A , are obtained with differ-
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ent observations, i.e. moving the source, and are therefore uncorrelated.

Finally the covariances of estimates in (5.10) are obtained similarly to (5.15)

CxA
= (HT

AHA)−1HT
ACnA

HA(HT
AHA)−1,

CxB
= (HT

BHB)−1HT
BCnB

HB(HT
BHB)−1,

(5.17)

where, given (5.16),

[CnA
]ii = x

T
A

[
Cl∗

A

]
ii

xA,

[CnB
]ii = x

T
B

[
Cl∗

B

]
ii

xB.
(5.18)

The given analysis can be used to assess the performance of the system without

the need of running a set of time-consuming Monte Carlo simulations. Furthermore

the theoretical covariance matrices can be used to improve the estimation accuracy

as detailed in the nex section.

5.8. Iterative WLS estimation

The previous performance analysis is useful not only for system design but can

also be used to improve the estimation accuracy. In fact, if we apply the weighted

least-squares (WLS) estimators in (5.6) and (5.10) become, respectively

x̂S′ = (ĤT
S′WS′ĤS′)−1ĤT

S′WS′d̂A,

x̂A = (ĤT
AWAĤA)−1ĤT

AWAd̂A,

x̂B = (ĤT
BWBĤB)−1ĤT

BWBd̂B ,

(5.19)

and, as a consequence, the covariance matrices in (5.15) and (5.17) are, respectively

CxS′
= (HT

S′WS′HS′)−1HT
S′WS′CnS′

WT
S′HS′(HT

S′WS′HS′)−1,

CxA
= (HT

AWAHA)−1HT
AWACnA

WT
AHA(HT

AWAHA)−1,

CxB
= (HT

BWBHB)−1HT
BWBCnB

WT
BHB(HT

BWBHB)−1.

If WS′ = C−1
nS′

, WA = C−1
nA

and WB = C−1
nB

we obtain the maximum likelihood

(ML) [92] estimates of x̂S′ , x̂A and x̂B, with

CxS′
= (HT

S′C−1
nS′

HS′)−1, CxA
= (HT

AC−1
nA

HA)−1, CxB
= (HT

BC−1
nB

HB)−1.
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However covariance matrices CnS′
, CnA

and CnB
depend on source and reflec-

tor positions (see (5.14) and (5.18)) and therefore they cannot be known a priori.

Nonetheless we propose an iterative algorithm that approaches the ML estimator.

The algorithm works as follows:

1. obtain initial estimates x̂S′ , x̂A and x̂B with WS′ = I, WA = I and WB = I;

2. compute ĈnS′
, ĈnA

and ĈnB
for the estimated positions;

3. obtain new estimates x̂S′ , x̂A and x̂B with WS′ = Ĉ−1
nS′

, WA = Ĉ−1
nA

and

WB = Ĉ−1
nB

;

4. repeat from step 2.

The iterative procedure stops when a prescribed number of iterations is reached. The

simulations presented at the end of this Chapter, and in particular the simulation 3

for reflector localization, show that the algorithm gets close to the ML performance

in just one iteration, with a significant gain with respect to the LS estimates.

5.9. Multiple sources and reflectors

In this paragraph we extend the detection method to the case of multiple sources

and multiple reflectors. Some modifications are necessary in order to account for

the presence of multiple “objects” in the acoustic scene. For this extension the use

of the ray space becomes very useful.

On the plenacoustic image the contributions of different objects can be fairly

easily distinguished and extracted. Consider the case when multiple sources (direct

and image, for example) are present. The pseudospectra acquired by each sub-

array presents a number of peaks corresponding to Directions Of Arrival of different

acoustic sources. Therefore, a labeling problem arises, as we need to keep track

across all the pseudospectra of which DOA corresponds to which source. On the

other hand, if measurements are represented as plenacoustic images in the reduced

ray space, they naturally cluster around the searched source positions. In fact, points

corresponding to rays coming from the same source should all stay on the same line,

i.e. on the ray space representation of the given source. This is true also for the

clustering of edge rays corresponding to different endpoints as they are represented

as lines on the image as well. Without the ray space representation keeping track of

which edge ray corresponds to which endpoint would be a more difficult problem.

87



5. Application to environment awareness: geometry inference

The estimation procedure in the case of multiple sources and reflectors is sum-

marized in Figure 5.5. First, when multiple image sources are present, we need to

distinguish among different sources. We do this through the Hough transform. We

then check the presence of edge rays for all the estimated sources. The estimated

edge rays are then clustered in turn, each one related to the different endpoint. By

fitting lines to the points of each cluster we estimate the (visible) endpoints of all

reflectors in the environment. Details of each step follow.

W

Hough transform

Geometric Space

Image (Reduced Ray Space)

Image (Reduced Ray Space)

1
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4
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xS’

1
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Figure 5.5.: Estimation steps: 1) acoustic image is obtained from acoustic measurements; 2) Hough transform
is used in order to find lines in the image; 3) positions of the image sources are estimated; 4) for each position
the beamforming techniques are used in order to test the visibility of the image sources; 5) if observable
the edge rays are found and mapped to the ray space; 6) a number of edge rays are obtained moving the
acoustic source; 7) clusters of edge rays are used to estimate reflector endpoints.

5.9.1. Localization of multiple sources

Let us consider the problem of localizing multiple acoustic sources. The first

step is the disambiguation of measurements (DOAs, TOAs, TDOAs) obtained from

the arrays and their matching to the corresponding sources. Disambiguation of

88



5.9. Multiple sources and reflectors

TDOAs, for example, can be performed as in [93]. A method for matching mea-

surements and sources is proposed in [94], based on a Guassian likelihood function.

When using plenacoustic imaging, the disambiguation and pairing of information is

greatly simplified because sources are imaged as well-distinguished linear features.

Disambiguation can be readily accomplished using a Hough transform ( [95], [96])

on the plenacoustic image. A detailed description follows.

In presence of multiple sources Pi(l) exhibits multiple peaks, one for each visible

source. We select these peaks by finding local maxima in Pi(l) that overcome the

threshold β max(I(l)):

Li = {l |Pi(l − ∆l) < Pi(l) > Pi(l + ∆l),

Pi(l) > β max(I(l))}.

where ∆l defines a neighborhood in which local maxima are found. By finding the

local maxima of all Pi(l) we obtain the set of peaks on the image P = {Li | i =

(W +1)/2, . . . , M −(W +1)/2}. This set contains rays (peaks) generated by different

acoustic sources xSj
, j = 1, ..., Nr , where Nr is the number of sources. Each acoustic

source xSj
corresponds in the reduced ray space to the line xSj

. As a consequence

the rays in P generated by different sources should stay on different lines. Starting

from the set P, these lines can be found using the Hough transform [96], [97], [98].

The Hough transform parametrizes a straight line in two dimensions as

̺ = x cos(θ) + y sin(θ), (5.20)

where θ is the angle of the line’s normal; ̺ is the distance between the line and

the origin and x and y are the coordinates of the point on the image that, in our

case, correspond to the coefficients of the reduced ray space used to represent the

plenacoustic image. In particular, in simulations and experiments we obtain the

reduced ray space using the cutting plane l1 = 11 and, as a consequence, we have

x = l2, y = l3. The Hough transform (5.20) becomes

̺ = l2 cos(θ) + l3 sin(θ). (5.21)

1Recall that this particular choice of reduced ray space is fully equivalent to the projective ray
space except for the rays that are parallel to the x-axis, which we cannot represent because they
have l1 = 0.
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5. Application to environment awareness: geometry inference

A point (ray) in the plenacoustic image maps to a sinusoidal curve in the Hough

space. This sinusoid corresponds to all the lines passing through the given point

on the plenacoustic image, which in turn correspond to all the points that the ray

encounters in the geometric space. Points in the Hough space correspond to the

lines on the plenacoustic image, i.e. to the points in the geometric space. The rays

P that lie on the same line xSj
(source xSj

) in the plenacoustic image map in the

Hough space to sinusoids that intersect in the same point (̺j , θj). The point (̺j , θj)

(Hough space) parametrizes the line xSj
(plenacoustic image) and, consequently, the

source position xSj
(geometric space).

In order to estimate the positions of different sources the peaks P are clustered

using the Hough transform as follows. First the accumulator A(̺, θ) is initialized

as A(̺, θ) = 0, ̺ = 0, ∆̺, 2∆̺, ..., θ = 0, ∆θ, 2∆θ, ..., where ∆̺ and ∆θ are

the sampling steps used for the quantization of the Hough space. For each lk ∈ P
the values (̺k, θk) of (5.21) are calculated and stored in the accumulator A(̺, θ).

In particular, for each value (̺k, θk), the corresponding bin of the accumulator is

incremented

A(̺k, θk) = A(̺k, θk) + 1.

The Nr accumulator bins with the highest count represent the parameters (̺j , θj)

of the Nr lines xSj
, j = 1, ..., Nr , on the plenacoustic image. From (5.21) we have

the lines
−̺j + cos(θj)l2 + sin(θj)l3 = 0,

−̺j l1 + cos(θj)l2 + sin(θj)l3 = 0,

−̺j

sin(θj) l1 +
cos(θj)
sin(θj) l2 + l3 = 0,

xT
Sj

l = 0,

and the estimates of the source positions are, therefore,

x̂Sj
=

[
−̺j

sin(θj)
,

cos(θj)

sin(θj)

]T

, j = 1, ..., Nr . (5.22)

As we can see, source localization and, in particular, the problem of disambiguat-

ing measurements and matching them with sources is here turned into a pattern

analysis problem performed on an image. The fact that the patterns are linear,

turns the localization algorithm into a linear procedure, which is quite a desirable

feature.
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5.9.2. Identification of edge rays

As in the case of a single reflector, the visibility of image sources is limited by

the dimensions of the corresponding reflector. We determine the set of microphones

that sense the reflective path from the image source x̂S′

j
, j = 1, ..., Nr (Nr being the

number of image sources) by testing if the microphone xi receives energy from the

direction of a given image source, i.e. we find

VS′

j
= {i | Pi(lj) > β max(I(l)), x̂T

S′

j
lj = 0}.

Given the visibility information VS′

j
and the estimated image source position x̂S′

j

the edge ray(s) are estimated as described in equations (5.8) and (5.9).

5.9.3. Estimation of visibility region edges

Given the set of edge rays E estimated from a number of plenacoustic images we

want to estimate the visible endpoints of all reflectors in the environment. As the

endpoints represent lines in the plenacoustic images, the edge rays cluster along lines

in the reduced ray space as depicted in Figure 5.5. Each line represents the edge of

the corresponding visibility region, i.e. the endpoint of the corresponding reflector in

the geometric space. Therefore, we adopt, once again, the Hough transform in order

to cluster the estimated edge rays and locate lines on the image. The procedure

for the estimation of endpoint positions from the set of edge rays E is completely

equivalent to the procedure described for the estimation of source positions (5.22)

from the set of rays P.

5.10. Considerations

In this Chapter we considered only specular reflections in order to estimate the

reflector position and extension. However this does not mean that the estimation

could not be performed in the presence of diffusion and diffraction. In presence of

diffusive paths the microphone array receives rays originated from all points on the

reflector. As a consequence, the presence of diffusive paths should “brighten up”

the whole reflector’s visibility region and reflector position and extension could be

estimated from a single plenacoustic image without the need of a moving source.

However, as already observed, the ideally diffusive surfaces are rare in acoustics
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and, due to the limited resolution of the real plenacoustic camera, diffusive paths

are hardly observable in presence of the much stronger specular reflections.

On the other hand, if present, diffraction could be used to extract the reflector’s

edge point directly from a single plenacoustic image. In fact, due to diffraction the

edge acts as a secondary source, in the ray space the line corresponding to its position

should “brightens up” and, therefore, the position of the diffraction edge could be

estimated using the source localization procedure. However, in this dissertation no

experiments were conducted to verify if the diffraction paths could be distinguished

from the specular ones on the plenacoustic image, and it remains a topic for further

research.

5.11. Results

In this section we show the results of some simulations and experiments to validate

the applicability of the proposed approach and its performance.

As the geometric information does not depend on frequency, we use the wideband

Minimum Variance Distortionless Response (MVDR) beamformer [75] to obtain the

plenacoustic images (see also the Appendix C). In particular, the pseudospectra ac-

quired in different frequency bands are used to compute the wideband pseudospec-

trum

Pi(θ) =
K∏

k=1

Pi,k(θ),

where k is the index of the sub-band centered at frequency fk and Pi,k(θ) is the

corresponding pseudospectrum. Furthermore, given the results of the resolution

analysis performed in the section 4.4.1.2, in all simulations and experiments we

subdivide the microphone array into sub-arrays with 3 microphones (i.e. W = 3).

In some of the tests plenacoustic images are shown. As described in Chapter 4

they are composed by a finite number of lines in the ray space. For clarity of visu-

alization, however, images are shown over all the visible region of the plenacoustic

camera by means of an interpolation procedure. Nonetheless, all the estimations are

accomplished on non interpolated plenacoustic images. All simulations and experi-

ments (except simulation 3 for reflector localization) use the LS estimator outlined

in paragraph 5.6.
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5.11.1. Multiple source localization

In order to numerically assess the accuracy of the above source localization algo-

rithm we performed two simulations and three experiments:

• Simulation 1 examines the performance of the localization of two sources for

different values of the angular separation;

• Simulation 2 examines the performance of the localization of two aligned

sources;

• Experiment 1 presents experimental results for localization of aligned sources;

• Experiment 2 presents experimental results for localization of two sources

at different distances;

• Experiment 3 shows the experimental result of the challenging scenario with

four acoustic sources.

x

y

x1

x2

∆α

1.25m

(a)

x

y

x1

x2

∆d

(b)

Figure 5.6.: Setup for the simulations to assess the accuracy of multiple source localization: (a) setup of the
first simulation; (b) setup of the second simulation.

Simulation 1

The setup of the first simulation is shown in Figure 5.6 (a). The two sources,

the first in x1 = [0, 1.25 m]T and the second in x2 = [1.25 sin(∆α), 1.25 cos(∆α)]T ,

produce independent noises in the vocal bandwidth (300 ÷ 4000Hz). The signal

acquired by the sensors is affected by an additive gaussian error with a SNR of
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20 dB. Simulations have been performed with the ULA camera of 15 microphones

spaced by 0.11 m.

An example of the acquired plenacoustic image is shown in Figure 5.7. The dashed

lines represent the duals x1 and x2 of the sources. Circles mark the peaks of the pseu-

dospectra corresponding to the two sources. Crosses are located in correspondence

of secondary peaks. In order to localize the multiple sources we need to distinguish

between primary and secondary peaks and, at the same time, assign peaks to the

corresponding sources. This can be readily accomplished using a Hough transform

as described in section 5.9.1. The Hough transform, in fact, detects collinear local

maxima and finds the parameters of the related lines, which become an estimate of

the sources. In order to achieve sufficient accuracy in source localization, however,

we need the grid density of the Hough map to be prohibitively large. This is why

the Hough transform is here used only to find a first approximation of the source

locations, which allow us to assign the peaks to the corresponding sources. A better

estimate of the source locations can then be obtained through linear regression over

measurements of the same source as described in section 5.4.

l

l

3

2

Figure 5.7.: Plenacoustic image with two sources.

The localization experiment is repeated for each location of x2 forty times, each

with a different noise realization. Figure 5.8(a) and (b) show the localization error

of x1 and x2, respectively, as ∆α varies from 10◦ to 80◦. The error on x1 is nearly

constant. On the other hand, the localization of x2 is possible only for ∆α ≤ 60◦.
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Beyond that angle the resolution loss becomes too relevant to guarantee a correct

localization of peaks in I(l).
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Figure 5.8.: (a) Localization error of x1 as a function of the angular difference ∆α depicted in Fig.5.6(a);
(b) Localization error of x2 as a function of the angular difference ∆α depicted in Fig.5.6(a).

Simulation 2

Figure 5.6 (b) shows the setup of the second simulation. The sources are aligned on

the line x = 0. The first source is in x1 = [0, 1.25m]T , and the second one is in x2 =

[0, ∆d]T . ∆d ranges between 0.2m and 2.2 m. We use the same array configurations

and source signals adopted for the previous simulation. Notice that in this setup the

ray space representations x1 and x2 of the two sources meet in (l1, l2, l3) = (1, 0, 0)

(i.e. the ray corresponding to y axis), which makes the localization more challenging.

An example of a plenacoustic image for sources aligned along the y axis is shown in

the Figure 5.9. Localization techniques based on the traditional concept of acoustic

camera would fail in this scenario due to mutual occlusion between sources. We

show that plenacoustic imaging makes localization still possible for a wide range of

distances ∆d. Localization results are shown in Figure 5.10. The method guarantees

a good localization accuracy when x1 and x2 are not too close to each other. The

error on x2 increases as it moves far away from the array, as the limited dimension

of the observation window, compared to ∆d, reduces the localization performance.
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Figure 5.9.: For the sources aligned along the y axis the ray space representations x1 and x2 of the two
sources intersect in (l1, l2, l3) = (1, 0, 0).
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Figure 5.10.: (a) Localization error of x1 as a function of the distance ∆d depicted in Fig.5.6(b); (b)
Localization error of x2 as a function of the distance ∆d depicted in Fig.5.6(b).

Experiment 1

We also conducted experiments to verify the accuracy of the algorithm on real-

world data. All the experiments are conducted in a low-reverberation room with a

ULA of 16 microphones spaced by 0.06 m. The first experiment follows the setup

of Figure 5.6 (b), except for the fact that the first source is in x1 = [0, 1 m]T ,

and the second one is in x2 = [0, ∆d]T , while ∆d ranges between 1.4 m and 2.6 m.

Localization results are shown in Figure 5.11. As seen in the above simulations, also

in this case the localization improves as the distance between x1 and x2 increases.
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Figure 5.11.: Experimental results for the setup shown in Fig. 5.6(b).

Experiment 2

Figure 5.12 (a) shows the setup of the second experiment. Two acoustic sources

are placed in x1 = [∆x/2, 1.5 m]T and x1 = [−∆x/2, 1.5 m]T , respectively. The

distance ∆x between sources ranges from 0.2 m to 1.8 m. Results in Figure 5.12

(b) show that an accurate estimate is obtained even for ∆x = 0.2 m, i.e. when

the sources are very close to each other. As ∆x increases the estimation error first

diminishes and then increases again due to resolution loss.

x

y

x1 x2

∆x

1.5m

(a)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

∆x[m]

|x̂
−

x
|[
m
]

 

 

Source 1
Source 2

(b)

Figure 5.12.: (a) Experimental setup: two sources lie on a line that is parallel to the x axis at a varying
distance ∆x; (b) Results of the second experiment.
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Experiment 3

In the third experiment we tested the system in a more challenging scenario of

four acoustic sources. The setup and the estimated source positions are shown in

Figure 5.13 (a)(b). Crosses and circles mark the estimated and actual locations of

the sources, respectively. Figure 5.13 (d) shows the acquired plenacoustic image. In

order to assess how well real data match simulative data, Figure 5.13(c) shows the

simulated plenacoustic image. Notice that the modeled and acquired plenacoustic

images are, in fact, very similar, thus confirming the validity of the model. The

algorithm is able to correctly discriminate between contributions of different sources

and estimate their positions due to the fact that the corresponding peaks naturally

cluster on lines on the plenacoustic image, as shown in Figure 5.13(d). As expected,

the estimation accuracy is better when the sources lie closer to the center of the

array.

5.11.2. Reflector localization

Tests are organized in seven different sessions:

• Simulation 1 shows the performance of reflector line estimation as a function

of the distance between camera and reflector;

• Simulation 2 is aimed at verifying the accuracy of the reflector endpoint

estimator as a function of the number of microphones;

• Simulation 3 compares analytical and simulated performances of the algo-

rithm at different values of the signal-to-noise ratio (SNR) and the gain ob-

tained using the iterative algorithm described in paragraph 5.8;

• Simulation 4 compares the performance of the proposed algorithm with a

state-of-the-art technique;

• Simulation 5 is an example of localization of multiple reflectors;

• Experiment 1 consists in reflector line and reflector endpoint estimation in

a real world scenario;

• Experiment 2 shows the applicability of the method in more complex envi-

ronments.
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Figure 5.13.: (a)(b) Experimental setup with four sources present in the acoustic scene; (c) Modeled plena-
coustic image; (d) Acquired plenacoustic image.

Simulation 1

We tested the accuracy of the reflector localization algorithm through simulations

based on the setup of Figure 5.14. The source is in xS = [0, 0.5m]T , and the reflector

is at a distance D from the x axis, which ranges from 0.6 m to 1.5 m, and it is parallel

to it. The source produces a white noise with the bandwidth (300 ÷ 4000Hz) with

a SNR of 20 dB. We conducted the test using the ULA camera of 15 microphones

spaced by 0.11 m. For the computation of the plenacoustic image we use W = 3.
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Figure 5.14.: Simulation 1 – setup.

Figures 5.15 (a) and 5.15 (b) plot the localization error of xS and xS′ , respectively.

Figures 5.15 (c) and 5.15 (d) plot the error on the distance and the angle of the

estimated reflector with respect to the actual one, respectively. The error on xS is

nearly constant for all the distances. A different situation arises for xS′ . In fact,

when D is below 0.7 m, xS and xS′ are close each other, and the algorithm exhibits

a poor accuracy on localizing xS′ . For intermediate distances the localization error

decreases. If D is above 1.2 m the error on xS′ becomes larger, due to the limited

extension of the array with respect to D.

Simulation 2

In the second test we test the accuracy of the reflector endpoints localization as a

function of the number of microphones in the array. Sensors are spaced by d = 10 cm.

At disposal we have two speaker arrays, each one composed of 5 loudspeakers spaced

by 20 cm, placed behind the microphone array at distance 2 m, as in Figure 5.16. The

environment is probed with a white noise signal in the bandwidth [1 kHz − 10 kHz]

with a SNR of 20 dB.

Using analytical expressions for LS estimate (5.17) (Cθ is estimated from simu-

lations) we obtain the expected variances in function of variable M . Results are

shown in Figure 5.17 for both x and y coordinates. As expected, the accuracy in-

creases with the number of sensors, showing also that the accuracy is higher for the

x coordinate rather than for the y one. This is due to the fact that for the geom-

etry adopted the x coordinate is related to the direction of arrival of the source,
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Figure 5.15.: Simulation 1 – localization error of image sources and of the reflector for the setup in Figure
5.14: (a) direct source xS ; (b) image source xS′ ; (c) distance error; (d) angle error.
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Figure 5.16.: Simulation 2 – system configuration

101



5. Application to environment awareness: geometry inference

20 30 40

10
−5.5

10
−5.4

10
−5.3

M

v
a
r
(x
)

20 30 40

10
−3

M

v
a
r
(y
)

Figure 5.17.: Simulation 2 – endpoint estimation variance (log scale) in function of the number of micro-
phones; being the system completely symmetric only the data for a single endpoint is visualized.

while the y coordinate coincides with its range. It is known that linear arrays better

discriminate the DOA rather than the range.

We have also conducted 1000 independent simulations in order to validate the

analytical results. In simulations microphones and loudspeakers are modelled with

cardioid patterns directed towards the reflector. Data for 26 microphones are re-

ported in the Table 5.1.

Table 5.1.: Simulation 2 – theoretical and simulated variance.

Variance x [m] y [m]

Theoretical (26 Mics) 3.582 · 10−6 3.933 · 10−4

Simulated (26 Mics) 3.357 · 10−6 3.643 · 10−4

Simulation 3

In the third test we analyze the reflector endpoint estimation for different values of

SNR. Moreover, we compare the accuracy of the LS technique in paragraph 5.6 with

that of the iterative WLS methodology outlined in paragraph 5.8. The configuration

is shown in Figure 5.18 (a). The array is composed of 25 sensors. Figure 5.18(b)

shows an example of the obtained plenacoustic images (in the reduced ray space

with l1 = 1) for a single source position and SNR = 20 dB. The reflector estimate

is obtained moving the source at 21 different positions in space is shown in Figure

5.18 (a).

In Figure 5.19 the theoretical variance of endpoint estimates obtained using an-

alytical expressions for the LS technique; the simulation variance estimated from

102



5.11. Results

−8 −6 −4 −2 0

−2

0

2

4

6

8

10

CD

x[m]

y
[m

]

 

 MICs Array
Reflector
Direct Sources
Image Sources
Estim EndPoints
Estim Reflector

(a) (b)

Figure 5.18.: Simulation 3: (a) the configuration in the geometric space with estimation example (black
dotted line); (b) example of the measured acoustic image shown in the reduced ray space.

1000 independent realizations for the LS technique; the simulation variance for one

iteration of the WLS algorithm; and the theoretical variance for the ML technique

are shown for different values of SNR. The figure sheds light on the following facts:

• the theoretical variance well approximates the variance obtained using simu-

lations;

• the iterative WLS algorithm achieves a significant gain with respect to LS

technique;

• one cycle of the iterative algorithm approaches the performance of the ML

technique and as a consequence the gain obtained by successive iterations is

reduced.

We recall, however, that the iterative algorithm, in order to achieve significant gain,

requires the knowledge of Cθ which is here estimated from the simulations.

Simulation 4

The comparison with other methods is not easy because of different assumptions

and hardware used. Furthermore no other method, to our knowledge, enables the

estimation of reflectors endpoints. A numerical comparison is therefore out of the

scope.
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Figure 5.19.: Simulation 3 – the theoretical variance obtained using analytical expressions for the LS tech-
nique; the simulation variance estimated from 1000 independent realizations for the LS technique; the
simulation variance for one cycle of the iterative WLS algorithm; and the theoretical variance for the ML
technique.

Among all the techniques in the literature, the most similar is [5], in fact in both

methods similar hardware (a microphone array and a moving acoustic source) and

same information extracted from the acquisitions (both use beamforming techniques

to identify DOAs) are used. However, in order to work, the technique in [5] requires

a compact array. Therefore different configurations are used, which makes a direct

comparison not possible. The simulation configurations are shown in Figure 5.20.

In Figure 5.20 (a) a circular array with radius 0.08 m is used to extract constraints

on reflectors position using multiple source locations. In Figure 5.20 (b) a 1.6 m

long linear array is used in order to extract plenacoustic images for different source

positions using the method discussed in this Chapter. The number of sensors is 15
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Figure 5.20.: Simulation 4: (a) a circular array and a moving source is used to estimate the position of the
reflective surface; (b) a linear array and a moving source is used to estimate the position of the reflective
surface.

for both arrays, sources emit a white noise in band 1 kHz − 10 kHz and SNR is

20 dB. The wideband MVDR method is used for computing pseudospectra in both

cases.

We perform the estimation process using a different number (5 − 20) of source

positions randomly chosen among the 20 source positions shown in Figure 5.20 (a)

and (b). As the method proposed in [5] assumes that the array reflective paths

are present for all the sensors, the source positions in Figure 5.20 (a) are chosen

so that the visibility is always guaranteed. On the other hand, the sources used in

Figure 5.20 (b) occupy a wider area as there is no constraint on complete visibility.

Furthermore, method based on DOA constraints assumes that the source position

is known.

Figure 5.21 shows the estimation bias and variance for: the distance of the reflector

from the origin of the reference frame (center of the array); the angle of view under

which the reflector line is seen form the origin of the reference frame. Bias and

variance are estimated from 100 independent simulations for all the possible values of

source locations. Using multiple source positions we combine multiple independent

observations and therefore, as expected, the estimation variance decreases linearly

with the number of positions (e.g. angle variance is 16·10−4 deg for 5 source positions

and 4 · 10−4 deg for 20 source positions). The method based on DOA constraints
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Figure 5.21.: Simulation 4 – estimated distance/angle bias and variance shown for circular and linear array
obtained using 100 independent simulations.

converges rapidly and the performance of two methods is comparable for higher

number of source positions.

Table 5.2.: Simulation 4 – comparisons of two estimation methods.

DOA [5] Plenacoustic

Distance (bias) [m] 0.0283 0.0482

Distance (variance) [m] 1.7662 · 10−4 1.9411 · 10−4

Angle (bias) [deg] 0.0650 0.0342

Angle (variance) [deg] 5.9414 · 10−4 4.1490 · 10−4

xC (bias) [m] − 0.0291

yC (bias) [m] − 0.0395

xC (variance) [m] − 0.0368 · 10−3

yC (variance) [m] − 0.1609 · 10−3

xD (bias) [m] − 0.0157

yD (bias) [m] − 0.0455

xD (variance) [m] − 0.0252 · 10−3

yD (variance) [m] − 0.1684 · 10−3

While the performance of the two approaches is generally similar notice that the

method based on DOA constraints requires full visibility and the knowledge of the
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source location, whereas the method presented in this Chapter can work with limited

visibility and unknown source positions. Furthermore, the reflector endpoints can

be estimated as well. Table 5.2 summarizes the results obtained using 20 source

positions and 100 realizations.

Simulation 5

We now show some results obtained using a configuration with multiple reflectors.

The simulation examples for cases with two and three reflectors are shown in Figures

5.22 (a)(b) and (c)(d) respectively. Figure 5.23 shows the Hough transforms for

images in Figures 5.22 (b) and (d) used to cluster rays coming from the same image

sources.
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Figure 5.22.: Simulation 5: (a)(c) the configuration in the geometric space with estimation examples (black
dotted lines); (b)(c) example of the measured acoustic image shown in the reduced ray space; for environ-
ments with two (a)(b) and three (c)(d) reflective surfaces.
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Figure 5.23.: Simulation 5: (a) Hough transform of the image in Figure 5.20 (b); (b) Hough transform of
the image in Figure 5.20 (d).

Notice that when three reflectors are present the accuracy degrades significantly

with respect to the case of two reflectors. The reason can be found in the fact that

plenacoustic images become densely populated of image sources, which partially

overlap, thus leading to a wrong localization.

(a) (b)

Figure 5.24.: Experimental setup for: (a) experiment 1; (b) experiment 2.

Experiment 1

In this experiment we use a logarithmically spaced linear array composed of 13

microphones. The experiment has been conducted in a low-reverberation room and
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the signals acquired by the sensors were sampled at Fs = 44.1 kHz. The environment

was “illuminated” by a small loudspeaker emitting a white noise in the frequency

band 1 kHz − 10 kHz. We used a W = 3 spatial rectangular window to perform

beamforming.
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Figure 5.25.: Experiment 1: (a) configuration and simulations estimates in the geometric space; (b) con-
figuration and simulations estimates in the ray space; (c) configuration and experiment estimates in the
geometric space;(d) configuration and experiment estimates in the ray space; circles and stars are the di-
rect/image sources and their estimates, respectively; continuous and dashed lines are the reflector and the
estimated lying line of the reflector, respectively.

A 60 cm long reflective surface is placed in front of the array as shown in Figure

5.24 (a). The presence of the reflector causes reflections to appear. The array is then

used to estimate the position of both real and image loudspeakers. This estimates

can then be used to estimate the line on which the reflector lies. The results of the

experiment are shown in Figure 5.25 (c) and (d) and are compared with simula-
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5. Application to environment awareness: geometry inference

tion results shown in Figure 5.25 (a) and (b). As expected, the aperture problem

and the relatively small total number of microphones causes the plenacoustic image

to be blurred (aperture). Yet, the image clearly exhibits the lines that represent

the loudspeaker and its (wall-reflected) image. In addition, the plenacoustic image

clearly shows the visibility of the image loudspeaker (which is to be confined within

the boundaries of the reflector). The estimation results are summarized in the Ta-

ble 5.3. Even in the presence of noise; measurement errors on reference positions;

finite aperture of the array; and discrete sampling of the ray space, Table 5.3 shows

a good estimation accuracy and a good match between simulations and real world

experiments.

Table 5.3.: Experiment 1 – source and reflector estimates.

Source [x, y] [m] ImageS [x, y] [m] Reflector [l1, l2, l3]

Real [0.68, 1.8] [1.811, 2.366] [0.3925, 0.1966, −0.8985]

Sim. [0.7141, 1.759] [1.796, 2.364] [0.3751, 0.2097, −0.9030]

Exp. [0.7159, 1.825] [1.794, 2.359] [0.3925, 0.1943, −0.8990]
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Figure 5.26.: Experiment 1: (a) Geometric space – source positions, marked with gray circles, and the esti-
mated endpoint, marked with black star; (b) Ray space – source positions, represented as gray dotted lines,
and corresponding edge ray estimates, marked with black circles, used for endpoint estimation; endpoints
are represented with black lines and their estimates with black dotted lines.

Finally the reflector endpoints can be estimated if a number of edge rays are

observed (theoretically ≥ 1 if the reflector line estimate is used as an edge ray

and ≥ 2 if not as in this case). This can be achieved moving the acoustic source.

The example for the estimation of a reflector endpoint obtained using images of 10

different positions is shown in Figure 5.26. Figure 5.26 (b) shows source position
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estimates and corresponding edge ray estimates used for endpoint estimation.

Experiment 2

The last experiment was performed using using a 0.9 m long uniform linear array

composed by 16 microphones as shown in Figure 5.24 (b). The geometry of the

setup, along with the estimated geometry, are shown in Figure 5.27 and results are

summarized in the Table 5.4.
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Figure 5.27.: Experiment 2: source positions (dots); reflectors (continuous lines); reflector line estimates
(dotted lines) and reflector endpoint estimates (circles).

Table 5.4.: Experiment 2 – endpoint and reflector estimates.

Real Estimate

Point [m] [−0.4, 1.5] [−0.4037, 1.491]

Reflector 1 [0.7071, 0, 0.7071] [0.7323, −0.0073, 0.6810]

Reflector 2 [0, 0.5547, −0.8321] [−0.0196, 0.5533, −0.8327]

Reflector 3 [0, 0.4299, −0.9029] [0.0041, 0.4333, −0.9012]

Notice that the estimation of a fourth reflector was not possible as it does not gen-

erate first-order reflections visible from the microphone array. It could be estimated

using second order reflections but, due to resolution limits, higher order reflections

are not considered in this work.

111



5. Application to environment awareness: geometry inference

5.12. Conclusive remarks

In this Chapter we presented a novel method for geometry inference based on the

plenacoustic images introduced in the Chapter 4. The proposed framework made

use of a long (or moving) microphone array but it can be easily applied to a spatial

distribution of microphone arrays with a consequent gain in accuracy as the “po-

sitions of observation” of the acoustic scene increase. Although plenacoustic image

analysis may seem quite demanding compared to other geometric inference algo-

rithms, the advantages in using this method for environment estimation are quite

relevant. The nonlinear transformation that maps acoustic measurements onto the

ray space renders the estimation constraints linear, which means that there is no

need of iterative minimization procedures, and the solutions can be found using a

least-squares method. Furthermore, the high regularity of the ray space allows an

easy distinction of different acoustic events. So the multiple acoustic sources are

separated and localized by simply finding lines on the plenacoustic image. Further-

more, through this method it is generally possible to detect reflectors of smaller size,

and in positions that would make it hard for other methods to succeed. Visibility

discontinuities do not represent a problem and, when observed, they can actually

help estimate not just the line where the reflector lies upon, but also the spatial ex-

tension of the reflector. In particular, the extension of the reflector can be estimated

if the endpoints of the reflector are visible from the spatial window occupied by the

microphone array. This property, in fact, becomes useful in estimating irregular

environments that are characterized by occlusions and limited visibility of acoustic

reflections.
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Chapter 6
Application to environment awareness:

reflection coefficient estimation

T
his Chapter presents a novel model-based method for in-situ es-

timation of sound reflection coefficients in acoustic enclosures.

The method uses the modeling engine presented in the Chapter 3

for simulation of acoustic propagation and generation of the spa-

tial pseudospectrum using a beamforming technique. The simulated

pseudospectrum is matched with the measured pseudospectrum ac-

quired by a real microphone array in order to estimate reflection

coefficients of the walls of the acoustic enclosure. In particular, the

reflection coefficients and the source signal amplitude are estimated

by finding optimum model parameters, such that both the simulated

and real pseudospectra are closely matched. Experimental results

confirm that the proposed method allows for an accurate estimation

of the reflection coefficients, especially for reflective walls, typical of

everyday environments.

In this Chapter we use a compact circular array, which is a tradi-

tional acoustic camera, as rays are bound to pass through the center

of the array. Nonetheless, the information captured by this array, i.e.

the spatial pseudospectrum (called also angular pseudospectrum), is

the same used to acquire plenacoustic images in Chapter 4. There-

fore, although acquired with an extremely narrow (plen)acoustic cam-
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era, the use of the pseudospectra for reflection coefficient estimation

shows effectively that the plenacoustic images capture not only the

geometric information (extracted in Chapter 5) but also the radio-

metric information about the environment.

6.1. Motivations

As already stated, many audio signal processing algorithms, such as signal en-

hancement [99] and multichannel upmixing [100], can benefit from the knowledge

of parameters characterizing the acoustic environment. Recent research efforts fo-

cused primarily on estimating the Directions Of Arrival (DOAs) of early room reflec-

tions [101, 81, 102], room volume estimation [103], and the inference of the geometry

of an acoustic enclosure [35]. In Chapter 5 we presented a novel approach for geom-

etry inference. In this Chapter we focus on the problem of estimation of reflective

properties of walls in an environment. The knowledge of the acoustic properties

of walls in an environment is crucial for many applications in the realm of space-

time audio processing. Consider, for example, the problem of rendering a virtual

acoustic source by means of a loudspeaker array. When the system is operating

in a reverberant environment reflections from obstacles could severely corrupt the

spatial impression, if they are not properly accounted for. If, on the other hand,

the location of walls and their reflective properties are known, reverberation can be

cancelled out up to a certain degree [83]. Early reflections can even be exploited to

enhance the spatial impression [53], [104].

When a sound wave propagating through an acoustic space is reflected from a wall,

a part of the impinging energy is reflected and another part is absorbed. Such reflec-

tive properties of room boundaries are captured by reflection coefficients, which are

typically measured using a boundary sample positioned in the so-called impedance

tube [105]. However, direct estimation of the reflection coefficient values in a room

is highly challenging due to the high sensitivity to noise and the dependency of the

reflection coefficient on both frequency and the angle of incidence.

6.2. Related work

In this Chapter, we propose a methodology for a sub-band in-situ estimation of

the reflection coefficient of planar obstacles. This is a challenging task, as the re-
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flection coefficient depends on the frequency and angle of incidence and, moreover,

the estimate is highly sensitive to background noise and the presence of interfering

sources during the measurement procedure. For this reason, accurate reflection coef-

ficient estimations are typically conducted in acoustically conditioned environments.

In particular, several techniques that can be found in the literature are based on

the use of impedance tubes [105]. A sample of the investigated material is placed

at one end of the tube, and the other end is equipped with a loudspeaker. The

loudspeaker emits a narrowband signal, which is tuned to produce standing waves

in the tube. The ratio of the sound pressure at peaks and troughs is measured,

which enables the computation of the reflection coefficient. This technique has been

standardized by standard methods ISO 10534-1 (for narrowband estimation) and

ISO 10534-2 (for wideband estimation). Despite high accuracy, the impedance tube

measurements are costly and complex to be carried out, as a portion of material

needs to be removed. Its application for multimedia installations is therefore not

always possible.

Alternatively to the impedance tube methods, reflective properties can be mea-

sured in a reverberant chamber. The simplest method of this kind is based on the

Sabine’s equation [105], which relates the reverberation time of the environment, its

volume and the average absorption coefficient of the walls. The estimation of the

reverberation time when the material under test is present and when it is absent in

the reverberation chamber, enables the estimation of its reflection coefficient. It is

worth noticing that this technique requires that the whole measurement procedure

is accomplished in controlled conditions, and therefore it can be costly for many

applications.

A different route is pursued for in-situ measurements. Relevant examples are [106]

and [107]. In [106] the author measures the Acoustic Impulse Response (AIR) of

the environment. The AIR consists of the direct path between the source and the

microphone, the echo related to the reflection coming from the material under test

and all other reflections. Under the assumption of being temporally distinct from

the echo related to the material under test, the direct signal and reverberation are

canceled out from the AIR through a temporal windowing. The reflection coeffi-

cient is then estimated by comparing the amplitude of direct and reflected echoes.

This measurement procedure has been standardized in ISO 13472-1. Although this

technique is attractive due to simplicity, it can fail when the echo related to the

material under test overlaps with other echoes (e.g. think about a measuring sys-
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tem placed in the center of a square room). Furthermore, an efficient cancelation of

the direct echo requires an accurate modeling of the measurement device. In [107]

the measurement microphone is replaced by a microphone array, placed between the

probing loudspeaker and the material under test. The spatial response of the array

is parameterized so that the maximum directivity can be focused towards the loud-

speaker (and minimum towards the material under test) or conversely, the spatial

response can exhibit a maximum towards the material and a minimum towards the

sound source. This way the array allows to separate the direct path signal from the

reflected one, while limiting the influence of reverberation. The reflection coefficient

is then estimated by comparing the amplitudes of direct and reflection paths, sim-

ilarly to [106]. When the environment is composed of walls of different materials,

both [106] and [107] require multiple measurements, one for each wall, which makes

these procedures time consuming.

The technique proposed in this Chapter, on the other hand, aims at estimating, in

a sub-band fashion, the reflection coefficients of the walls through a single measure-

ment. The proposed method makes use of a microphone array and of an acoustic

source signal. A beamforming technique allows to estimate the angular distribution

of the energy incoming at the microphone array. Under the assumption that the

geometry of the environment, the position of the source, its spatial response, the

position of the microphone array and its spatial response are known, the angular

pseudospectrum can also be modeled. In particular, it results in a linear combina-

tion of individual contributions, which are known up to a scale factor, which depends

non-linearly on the reflection coefficients. The estimation is performed in two steps.

The first aims at estimating the individual scaling factors of the contributions of

the pseudospectrum, whereas the latter infers the reflection coefficients from such

scaling factors. The proposed technique turns out to be robust against noise and

interference, thus paving the way for applications in multimedia and all the scenarios

where cost is an issue.

6.3. Problem formulation

Reflection coefficient of the material is defined as the amplitude of a reflected wave

relative to an incident wave [105]. In general, the reflection coefficient value βk(f, θk)

for reflector k depends on frequency f and angle of incidence θk. We assume here

that all surfaces are planar and incident waves are reflected from walls in a specular
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fashion, i.e., the angle of incidence is equal to the reflection angle. As illustrated in

Figure 6.1, upon specular wave reflection, the reflected signal amplitude is attenuated

by the value of the travelled distance d and the reflection coefficient value βk(f, θk).

Let us now separate the reflection coefficient into two components charaterizing

its dependency on f and θk by rewriting

βk(f, θk) = αk(f)gk(θk), (6.1)

where αk(f) denotes the reflection coefficient of the reflector k at frequency f and

gk(θk) models the variation of the reflection coefficient with the angle θk. In partic-

ular we are interested at estimating αk(f), whereas gk(θk) is assumed to be known.

Even if gk(θk) is unknown we will suppose it constant and estimate only the fre-

quency dependent factor αk(f).

Note that the amplitude of the signal acquired by a microphone depends also on

the amplitude A of the emitted signal s(t), the loudspeaker radiation pattern l(f, θ)

for θl direction, the directivity pattern of the microphone m(f, θ) for θm, and the

travelled distance d.
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Figure 6.1.: Acoustic wave reflection from a wall.

Since the reflection coefficient values are generally frequency dependent, we esti-

mate their values in different frequency bands. However, in order to simplify the

notation, we omit in the following the subband index f . In addition, 2D wave prop-

agation is assumed in this Chapter for clarity; an extension to 3D is straightforward

and some considerations are made at the end of the Chapter.

We further assume that the source signal s(t), environment geometry, gk(θ),l(θ)

and m(θ) are known a priori, and can be used as input to the estimation procedure.
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In particular, the latter two can also be estimated or approximated using methods

presented in [108], [109]. Based on this information, the parameters: θk, θl, θm, d,

and τ (i.e., delay corresponding to the travelled distance) can be obtained from the

acoustic propagation modeling engine described in Chapter 3. Thus the remaining

unknowns are the signal amplitude A and the reflection coefficients of all reflective

surfaces in the environment αk.

In the following, we denote the signal acquired by microphone j as x̂j(t) and the

M signals acquired by the microphone array as X̂ = [x̂1(t), ..., x̂M (t)]T . On the other

hand, using the a priori information, the signal xj(t) acquired by microphone j can

be modeled. The signals xj, for j = 1, 2, ..., M at time t are organized in the vector

X = [x1(t), ..., xM (t)]T . The pseudospectrum acquired by the microphone array is

denoted as P̂ (θ). With the above a priori information at hand it is possible to model

the propagation in the environment and therefore to emulate the measurement of

the pseudospectrum. In particular, the model pseudospectrum is denoted by P (θ).

The aim of the estimation procedure is to match the pseudospectra P̂ (θ) and P (θ)

for all look directions θ in order to estimate the reflection coefficients of all the walls

in the acoustic enclosure.

6.4. Measurement of the pseudospectrum

When a microphone array is applied to sample the soundfield, the angular dis-

tribution of the impinging energy can be estimated using beamforming techniques

and measured microphone signals. For this purpose, the room is scanned using a

beamformer and the output power for each look direction forms the so-called angular

pseudospectrum [76]. Such a spatial power pseudospectrum P̂ = [P̂ (θ1), P̂ (θ2), ...]T

for sample look directions θ1, θ2, ... can generally be expressed as

P̂ (θ) = hH(θ)R̂h(θ), (6.2)

where θ is the look direction, h(θ) denotes the array weight vector, and R̂ denotes

the estimate of the autocorrelation matrix of the microphone signals

R = E[X̂X̂T ], (6.3)

118



6.5. Pseudospectrum Modeling

the signals of an M -element microphone array are given by

X̂ = [x̂1(t), ..., x̂M (t)]T ,

where x̂j(t) is the signal acquired by the jth microphone.

In general, the pseudospectrum P̂ can be measured using (6.2) and any beamform-

ing technique. In particular, in the experiments we will consider the delay-and-sum

(DAS) beamformer [76], [77] (see also the Appendix C).

6.5. Pseudospectrum Modeling

In order to model the pseudospectrum for a given acoustic scenario, the follow-

ing acoustic propagation model is assumed. As illustrated in Figure 6.2, when a

source signal s(t) with amplitude A, emitted through a loudspeaker, reflects from

a boundary in an acoustic enclosure, the incident wave is specularly reflected. The

amplitude sensed by a microphone upon one reflection can then be written as [105]

Aαkgk(θk)l(θl)m(θm)

d
s(t − τ),

where αk denotes the reflection coefficient of the reflector k, gk(θk) models the vari-

ation of the reflection coefficient with the angle θk, l(θl) is the loudspeaker radiation

pattern, m(θm) is the directivity pattern of the microphone, d and τ denote the

travelled distance and the corresponding delay, respectively. As stated previously,

the signal s(t), environment geometry, gk(θk), l(θl) and m(θm) are assumed to be

known, and the acoustic propagation modeling engine presented in Chapter 3 is used

to obtain θk, θl, θm, d, and τ . Thus we can denote the known part of the signal as

y(t) = gk(θk)l(θl)m(θm)s(t − τ)/d. (6.4)

On the other hand, the unknowns are the reflection coefficients and the signal

amplitude, which can be jointly denoted as Λ = Aαk.

Upon several reflections from the walls, such as those depicted in Figure 6.3, the

signal that is acquired by microphone j can be written as

xj(t) =
R∑

r=0

Nr∑

i=1

Λriyj,ri(t) + wj(t), (6.5)
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Figure 6.2.: Acoustic propagation and reflection model.

where wj(t) is the additive noise related to the self-noise of the microphone and

on the AD circuitry, yj,ri(t) is the signal of the acoustic path with indices r and

i acquired by the microphone j and r denotes the reflection order. In particular,

r = 0 denotes the direct path, r = 1 the first reflection, etc.; and Nr is the number

of paths for reflection order r. As an example, for a two-dimensional model of a

rectangular room, Nr = 1 for r = 0 and Nr = 4 for r = 1. Λri is the unknown

amplitude of the reflected signal. As an example, Λ01 = A for the direct path,

Λ1k = Aαk, k = 1, ..., N1 for the first-order reflection, and Λ2i = Aαkαn, k 6= n for

the second-order reflections, as shown Figure 6.3. We assume the additive noise

wj(t) to be Gaussian, statistically independent from the signal s(t) and spatially

white. Early room reflections up to the order R are modeled as distinct reflections,

whereas the reflection paths with r > R are assumed to have very low energy and to

impinge on the array uniformly from all directions, and therefore can be considered

as part of the noise.

The modeled microphone signals of the M -element microphone array are written

in matrix form as

X = [x1(t), ..., xM (t)]T =
R∑

r=0

Nr∑

i=1

ΛriYri + W, (6.6)

where
Yri = [y1,ri(t), ..., yM,ri(t)]

T ,

W = [w1(t), ..., wM (t)]T .

120



6.5. Pseudospectrum Modeling
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Figure 6.3.: Reflection model for an acoustic environment with two reflectors.

In the following paragraphs we put the model in (6.6) at use in modeling the pseu-

dospectrum. Notice that the acoustic echoes coming from different paths consist of

delayed and attenuated replicas of the signal s(t), and are thus mutually correlated.

This fact is relevant when the correlation matrix in (6.3) is modeled. In particular

we indicate with R̂r1i1r2i2 the estimate of the correlation matrix between the generic

echoes Yr1i1 and Yr2i2

Rr1i1r2i2 = E[Yr1i1YT
r2i2

]. (6.7)

If we use (6.7) in (6.2)and write explicitly the unknown amplitudes of different paths,

we obtain

P (θ) = hH(
R∑

r1=0

Nr1∑

i1=1

R∑

r2=0

Nr2∑

i2=1

Λr1i1Λr2i2R̂r1i1r2i2)h + σ2
whHh, (6.8)

where hH denotes the array weight vector of the respective beamformer and the

noise W is assumed statistically independent from Yri and spatially white with

unknown variance σ2
w, i.e.

E[WWH ] = σ2
wIM . (6.9)

When the DAS beamformer is in use h(θ) = a(θ) and therefore we easily conclude

that σ2
wh(θ)Hh(θ) = σ2

w.

In the following, we denote with Pr1i1r2i2 = [Pr1i1r2i2(θ1), ..., Pr1i1r2i2(θN )]T the
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6. Application to environment awareness: reflection coefficient estimation

contribution to the pseudospectrum coming from the acoustic paths with indexes

r1 i1 and r2 i2, where the component Pr1i1r2i2(θ) is

Pr1i1r2i2(θ) = h(θ)HR̂r1i1r2i2h(θ). (6.10)

The model of the pseudospectrum P = [P (θ1), . . . , P (θN )]T is obtained using (6.10)

in (6.8) to give

P =
R∑

r1=0

Nr1∑

i1=1

R∑

r2=0

Nr2∑

i2=1

Λr1i1Λr2i2Pr1i1r2i2 + σ2
wv, (6.11)

where v =
[
h(θ1)Hh(θ1), ..., h(θN )Hh(θN )

]T
.

In order to derive a simplified expression of P, we note that (6.11) there are

contributions Pr1i1r2i2 whose unknown scaling factors Λr1i1Λr2i2 correspond to the

same combination of reflection coefficients αk and signal amplitude A. To clarify

this fact, Figure 6.4 shows two exemplary second-order reflective paths that undergo

reflections from the same walls but in different order. The angular variation of

reflection coefficients is included in the model Yri, and therefore these two paths

have the same unknown amplitudes Λ21 = Λ22 = Aαkαn. As a consequence, the

autocorrelation of the first path P2121, the autocorrelation of the second path P2222,

and the crosscorrelations between these two paths (namely, P2122 and P2221), all

have the same unknown scaling factor A2α2
kα2

n in (6.11). We therefore group together

all pseudospectrum components that have the same scaling factors. Considering

the example shown in Figure 6.4, we can group these second-order reflections to

obtain their weights and pseudospectrum components as qi = A2α2
kα2

n and Pi =

P2121 +P2222 +P2122 +P2221. After this grouping, the pseudospectrum finally takes

the expression

P =
N∑

i=1

Piqi + vσ2
w = Mq, (6.12)

where N is the number of pseudospectrum components after grouping, qi denotes the

scale factor of the corresponding pseudospectrum component Pi, the model matrix

M = [P1, ..., Pi, ..., PN , v], and the vector of unknowns q = [q1, ..., qi, ..., qN , σ2
w]T .

As an example, qi = A2 for the autocorrelation of the direct path, qi = A2α2
k for

the autocorrelation of the first-order reflection, qi = A2αk for the crosscorrelation

between the direct path and the first-order reflection, and qi = A2αkαn for the
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crosscorrelation between two first-order reflections.

Microphone 

array

Re�ector k

Re�ector n

= A α  k α  nΛ 21

= A α  k α  nΛ 22

Figure 6.4.: Illustration of the amplitudes of two second-order reflections impinging on a small circular array.

Note that the scaling factors qi are a product of a variable number of reflection

coefficients αk, of the signal amplitude A, and of the noise variance (qN+1 = σ2
w).

In order to simplify the derivation of the reflection coefficients from the estimates of

qi, notice that the dependency is linear if we apply a logarithmic transformation to

qi. As an example, if qi = A2αkαn, we obtain log(qi) = 2 log(A) + log αk + log αn.

Let m = [log A, log α1, ..., log αk, ..., log αn, ..., log σ2
w]T be a vector that contains log-

arithms of unknown parameters and let H be the matrix that counts the number of

occurrences of these variables for each of the components of q. As an example, the

ith row of H corresponding to log qi = log (A2α1α2) is [2, 1, 1, 0, ..., 0]. We can then

write the relation between the component scale factors q and unknown parameters

m as

d = Hm, (6.13)

where d = log(q).

6.6. Estimation

An overview of the estimation algorithm is shown in Figure 6.5. The estimation

procedure is based on the matching between the measured (6.2) and simulated (6.12)

pseudospectra

P̂ ≈ Mq. (6.14)
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Figure 6.5.: Algorithm overview.

In (6.14), the vector P̂ represents the measurements acquired by the microphone

array and M contains the modeled components of the pseudospectrum. The estima-

tion is performed in two separate steps. The first step estimates the scaling factors

q. The second step estimates the reflection coefficients αk and the signal amplitude

A using the estimates q̂.

Step 1: Estimate q from P̂ by minimizing the sum of squared differences between

the observations and the model in (6.14) (Figure 6.6). In particular the solution is

obtained by adopting the constrained minimization

q̂ = arg min
q

{(P̂ − Mq)T (P̂ − Mq)}
s.t. q ≥ 0, qj = qiαk ≤ qi,

(6.15)

where the constraints are used to ensure that the solutions q̂ are feasible. In par-
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ticular, the constraint q ≥ 0 ensures that the scaling factors are positive, and the

constraint qj = qiαk ≤ qi ensures that the scaling factors are decreasing with the

reflection order.
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Figure 6.6.: Pseudospectrum generation model and matching with measurements.

Step 2: Obtain a least-squares (LS) solution m̂ from q̂ imposing the relation

(6.13) (Figure 6.7)

m̂ = (HT H)−1HT log(q̂). (6.16)

Finally the estimates [Â, α̂1, α̂2, ...]T are obtained as exp(m̂).
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Figure 6.7.: Relation between the estimated scaling factors and unknown reflection coefficients.

Note that the number of variables q is much higher than the number of indepen-

dent parameters to be estimated, which are signal amplitude A, reflection coefficients

αk of each reflective surface and noise variance σ2
w. However, the two steps are per-

formed separately and the solution m̂ is not necessary the globally best solution to
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6. Application to environment awareness: reflection coefficient estimation

the problem. The scaling factors qi are treated as independent in the first step (6.15)

and their relationship is considered only successively in the second step (6.16). As a

consequence the best solution q̂ to the first step is not necessary the one that gives

the best solution m̂ to the second step. In fact, the system (6.14) is generally un-

derdetermined or ill-conditioned which means that there could be infinite solutions

q̂ that give the same pseudospectrum matching. Oversampling the pseudospectrum

P̂ (i.e. increasing the sampling step ∆θ between the pseudospectrum samples P̂ (θi)

and P̂ (θi+1)) at certain point does not produce new information. This problem pre-

vents the modeling of higher order reflections for a better matching as the number

of scaling factors q increases considerably with the reflection order. This problem is

more pronounced at lower frequencies and for absorptive materials as in such cases

the pseudospectrum components Pi become quite smooth making M ill-conditioned.

Different approaches can be used in order to address this issue:

• Here we first resort to a technique that keeps the same number of variables,

but adds more data by combining information from different observations, i.e.

building

M̃T = [MT
o1

, MT
o2

, ...], P̃T = [P̂T
o1

, P̂T
o2

, ...], (6.17)

where Moi
and P̂o1 are, respectively, the model matrix and the measurement

vector for the ith observation, and M̃ and P̃ the global model matrix and the

global measurement vector. In experiments, multiple observations are collected

by rotating the loudspeaker while keeping it fixed in the same position. This

way, we probe the environment “illuminating” from different look directions,

each yielding new information;

• Successively we develop an Expectation-Maximization (EM) algorithm that

cycles between two estimation steps in order to improve the estimation accu-

racy and robustness.

6.7. Experimental evaluation

6.7.1. Setup

To verify the performance of the presented estimation algorithm, measurements

were conducted in the semi-anechoic room depicted in Figure 6.8 at the Chair of

Multimedia Communications and Signal Processing at Erlangen University. Two
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large wooden panels are placed in front of two walls, denoted with symbols R1 and

R3. The soundfield is captured with a circular microphone array that consists of ten

omnidirectional microphones mounted into a rigid cylindrical baffle with a radius of

0.04 m.
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Figure 6.8.: Experimental setup.

In order to test the robustness of the solution the estimation is performed for

three different loudspeaker positions (denoted as A, B, and C). For each position a

different and independent estimate is obtained. By comparing the estimates we test

the accuracy. A frequency constant cardioid radiation model was used to account

for the the loudspeaker directivity l(θ). For each position of the loudspeaker, three

different orientations have been used in order to gather multiple observations from

the same source position, as required for the minimization in (6.17).

Reflections up to the second order are simulated by the modeling engine, i.e. R =

2. The reflection coefficients are estimated over 15 frequency bands, in particular

the frequency axis is organized in fifteen frequency bands ranging from 2750 to 9750

Hz. All estimations are performed at frequencies sufficiently high so that a minimum

directivity of the DAS beamformer is guaranteed. In order to obtain the estimates

at lower frequencies a more robust method and a beamformer with higher directivity

should be used. For the EM implementation and results see the following section.
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6. Application to environment awareness: reflection coefficient estimation

6.7.2. Pseudospectrum matching

We first focus on the matching of the pseudospectra. Figure 6.9 shows modeled

and measured pseudospectra for position B (with three different orientations) at

3.75kHz and 7.25kHz.

The continuous line represents the measured pseudospectrum at the given fre-

quency band. It is obtained as described in (6.2) using the delay-and-sum (DAS)

beamforming technique (see the Appendix C) applied to the signals acquired by a

circular microphone array, which represents an acoustic camera that captures rays

(reflections) coming from different directions.

The dashed line is obtained matching the modeled components of the pseudospec-

trum in (6.12), determined using the modeling engine, with the measured pseu-

dospectrum (6.2). The matching is performed as described in (6.14) and illustrated

in Figure 6.6. Therefore the dashed line corresponds to the sum of modeled com-

ponents, combined using the estimated scaling factors, i.e. it corresponds to Mq̂,

where q̂ are given by (6.15).

Notice that a good match is obtained between the modeled and measured pseu-

dospectra, especially in proximity of the largest peaks.

6.7.3. Reflection coefficient estimates

The reflection coefficients are obtained as described in (6.16) using the scaling

factors estimated from the pseudospectrum matching. The estimated reflection co-

efficients for each frequency band and for each wall are shown in Figure 6.10. The

mean values across the frequency bands are given in Table 6.1.

Table 6.1.: Mean values of estimated reflection coefficients for different loudspeaker positions.

R1 R2 R3 R4

Position A 0.9664 0.0795 0.9512 0.0491

Position B 0.9410 0.1351 0.9606 0.0672

Position C 0.9529 0.3641 0.9655 0.0010

The algorithm is able to estimate four reflections coefficients, all assumed to be

distinct, using even a single loudspeaker position. As it can be observed, the es-

timates obtained for different positions are reasonably similar. Furthermore, the

presence of both highly reflective and absorptive surfaces (wooden panels and the

walls of the semi-anechoic room, respectively) is clearly evident. The estimated val-
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Figure 6.9.: Matching of the pseudospectra for position B (with three different orientations) at 3.75kHz and
7.25kHz.

ues for two wooden panels can be considered equal, and they are close to the typical

values that can be found in the literature [105]; these reference values are given in

Table 6.2.

Table 6.2.: Typical reflection coefficients for wooden panels.

Freq. [Hz] 125 250 500 1000 2000 4000

α 0.77 0.89 0.94 0.96 0.97 0.97

The higher variation of estimates of the reflectivity of R2 and R4 can be justified

by the fact that the pseudospectra at secondary peaks do not match as in proximity

of large ones, thus introducing a bias in the estimate. The higher variance is also

explained by the logarithmic transform between estimation steps 1 and 2, which

amplifies the noise/error for lower values of qi. Furthermore, the room door is

not modeled, assuming only the presence of the flat wall R2, and such a model

deviation strongly influences the estimates (most clearly pronounced for position
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Figure 6.10.: Reflection coefficient estimates.

C). Nonetheless the lower values are in accordance with the semi-anechoic nature

of the room. Finally, it is worth noting that in many typical application scenarios

walls exhibit a reflection coefficient that is close to that of wood panels and will less

often be close to zero.

6.8. EM algorithm

In order to improve the accuracy of the algorithm it is possible to conceive the

whole estimation process as an iterative cycle between two estimation steps. To do

so we treat q as the unobserved latent variables linked to the observations P̂ through

the non-invertible transformation M and apply the Expectation-Maximization (EM)

[110] algorithm. The EM algorithm cycles between:
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6.8. EM algorithm

1. E-step: the computation of the expected value of log-likelihood function log p(q|m)

given the observations P̂ and the solution m̂(n) at current iteration. This step

performs the minimum mean square error (MMSE) [92] estimation of q;

2. M-step: find the new solution m̂(n+1) that maximizes the estimate of log-

likelihood function log p(q|m) obtained in the previous step.

Assuming the pseudospectrum noise n and component scale factors q normally

distributed with covariances Cnn and Cqq respectively, we have

P̂ = Mq + n,

n ∼ N(0, Cnn), q ∼ N(eHm, Cqq).

The E-step calculates the expected value of log-likelihood function given the cur-

rent estimate m̂(n)

Q(m|m̂(n)) = E[log p(q|m)|P̂, m̂(n)]. (6.18)

For the Gaussian distribution the log-likelihood log p(q|m) is given by

log p(q|m) = c − 1
2(q − eHm)T C−1

qq (q − eHm)

= 1
2eHmT

C−1
qq q + 1

2qT C−1
qq eHm − 1

2eHmT

C−1
qq eHm + d,

where c and d = c − 1
2qT C−1

qq q indicate the terms that do not depend on m. The

expected value (6.18) is then given by

Q(m|m̂(n)) = 1
2eHmT

C−1
qq q̂(m(n))+

1
2 q̂(m(n))T C−1

qq eHm − 1
2eHmT

C−1
qq eHm + d

= −1
2(q̂(m(n)) − eHm)T C−1

qq (q̂(m(n)) − eHm) + e,

(6.19)

where e = d + 1
2 q̂(m(n))T C−1

qq q̂(m(n)) and q̂(m(n)) = E[q|P̂, m(n)] is the MMSE

estimate of q. For P̂ and q jointly Gaussian we have the conditional probability

distribution of q given P̂

q|P̂ ∼ N (µq + CqP C−1
P P (P̂ − µP ), Cqq − CqP C−1

P P CP q),
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and thus the MMSE estimate q̂(m(n)) is the mean value of a posteriori probability

p(q|P̂, m(n)), i.e.

q̂(m(n)) = E[q|P̂, m(n)] = µq + CqP C−1
P P (P̂ − µP )

where

µq = E[q] = eHm(n)
,

µP = E[P̂] = Mµq,

CP P = E[(P̂ − µP )(P̂ − µP )T ] = MCqqMT + Cnn,

CqP = E[(q − µq)(P̂ − µP )T ] = CqqMT .

The M-step finds the new estimate m̂(n+1) maximizing the expected value of log-

likelihood function Q(m|m̂(n)) computed using (6.19)

m̂(n+1) = arg max
m

Q(m|m̂(n))

= arg min
m

{(q̂(m(n)) − eHm)T C−1
qq (q̂(m(n)) − eHm)}.

6.9. Experimental evaluation (EM)

The performance of the EM algorithm is tested in the same semi-anechoic room

and with the same equipment as done in the previous experiment (see Figure 6.11).

According to the specific experiment, walls R1 and R3 can be covered with reflec-

tive or semi-reflective materials, whereas walls R2 and R4 are absorptive. Notice

that this is a challenging scenario. In fact peaks related to reflective paths bouncing

off absoprptive walls are dimmed, thus making the estimation of reflection coeffi-

cients of absorptive walls sensitive to even small measurement and modeling errors.

Therefore, the frequency-dependent radiation pattern of GENELEC 1029A loud-

speaker that probes the environment has been provided by the manufacturer. The

loudspeaker, especially at high frequencies, is strongly directional and presents the

maximum directivity in the frontal part. Reflectors that are located on the rear of

the speaker, therefore, would not be adequately probed. In order to overcome this

issue, four different orientations (0◦, 90◦, 180◦ and 270◦) for each position of the

speaker are adopted similarly as done in the previous experiment. Reflections up

to the third order are simulated by the modeling engine, i.e. R = 3, and the room
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door is taken into account by the modeling engine.
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Figure 6.11.: Experimental setup for EM algorithm.

In order to test the robustness of the solution the estimation is performed at

four different loudspeaker positions, which are denoted in Figure 6.11 by symbols

A, B, C and D. Again, we expect estimates to be as much as possible position

independent.

In the first scenario walls R1 and R3 are covered with two distinct reflective

materials. More specifically, R1 is covered with aixFOAM R© semi-reflective material

(thickness 30mm 1) and R3 is covered with Sonatech R© reflective material (thickness

10 mm 2). Datasheets present reflective properties in terms of absorption coefficient

a, which is related to the reflection coefficient α by

α =
√

1 − a.

The covariance matrices Cnn and Cqq are assumed to be diagonal and their values

are chosen empirically as a trade-off between a good matching of Mq̂ to P̂ (smaller

variance of n) and a good matching of eHm̂ to q̂ (smaller variance of q).

Estimations have been performed with both DAS and MVDR beamformers. As

1datasheet at http://www.aixfoam.com/absorption-foam-sh0061-felt-lamination
2
http://www.sonatech.de/konfiguration/dateienpdf/SONATECH_PUR_SKIN_ProspektSeite6.pdf

133



6. Application to environment awareness: reflection coefficient estimation

0  180 0  180 0  180 0  180 360
0

0.01

0.02

3250 Hz

 

 

Measured

Modeled

0  180 0  180 0  180 0  180 360
0

0.02

0.04

5750 Hz

 

 

Measured

Modeled

0  180 0  180 0  180 0  180 360
0

0.02

0.04

7250 Hz

 

 

Measured

Modeled

0  180 0  180 0  180 0  180 360
0

0.01

0.02

9250 Hz

 

 

Measured

Modeled

Figure 6.12.: Examples of matching between modeled and measured pseudospectra for different frequencies;
Delay and Sum Beamformer is in use; position of the loudspeaker is A with orientations 0◦, 90◦, 180◦ and
270◦.

for the DAS beamformer, it provides estimates over 20 sub-bands, whose central

frequencies range from 250 to 9750 Hz. The algorithm first estimates the reflection

coefficient at 9750 Hz and then recursively initializes the estimate at the lower

subband with the estimate at the upper subband. The choice of starting with the

highest subband is dictated by the higher resolution of the pseudospectrum at high

frequencies, which enables a more accurate matching between P̂ and P.

The pseudospectrum P̂ measured at the position A and the estimated pseudospec-
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trum MeHm̂ at different frequencies are shown in Figure 6.12. Notice that a good

match exists, especially at high frequencies and for relevant peaks.
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Figure 6.13.: Estimates using the DAS beamformer in the first scenario. Walls R1 and R3 are covered with
reflective materials. Wall R2 and R4 are absorptive.

The estimations of the frequency-dependent reflection coefficients for R1, . . . , R4

along with reference values for walls R1 and R3 are shown in Figure 6.13. The

estimated values are consistent for all the loudspeaker positions. Furthermore, the

estimates for walls R1 and R3 are close to the values specified in the data-sheets,

while the values for walls R2 and R4 are in accordance with the semi-anechoic nature

of the room.

To further test the ability of the proposed approach to correctly estimate the

reflection coefficients of different reflectors in the environment in presence of both

highly reflective and absorptive surfaces we repeated the experiment in other two

scenarios. In the second scenario the wall R1 is covered with a wooden panel and
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Figure 6.14.: Estimates using the DAS beamformer for position A in the second scenario. Wall R1 is covered
with a wooden panel and R3 covered with a reflective material. Wall R2 and R4 are absorptive.

the wall R2 is covered with aixFOAM R©. The estimates at position A are shown

in Figure 6.14. As expected, the estimate of R2 is reasonably similar to the one

obtained in the first scenario while the estimate of R1 has values that are close to

the typical values for wooden panels found in the literature [105].

In the third scenario only the wall R1 is covered with aixFOAM R©, whilst all the

other walls are absorptive. The estimates at the position A are shown in Figure

6.15. The estimate of R1 is similar to the estimate obtained in the first scenario,

whereas the estimate of R2 has a low value similar to the values estimated for the

other absorptive walls of room.

MVDR beamforming is used to improve the estimation at lower frequencies and

for absoptive walls. Estimates are obtained over 20 frequency bands, ranging from

250 to 5000Hz. Figure 6.16 shows the reflection coefficient estimates in the first
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Figure 6.15.: Estimates using the DAS beamformer for position A in the third scenario. Wall R1 is covered
with a reflective panel and R3. Walls R2, . . . , R4 are absorptive.

scenario obtained using the MVDR beamformer. The results are obtained over 20

frequency bands ranging from 250 to 5000 Hz. For each band the pseudospectrum

is computed using frequency smoothing on 5 frequency bins.

Notice that for all the positions and for all the walls the reflection coefficients

estimated with MVDR is much closer to the reference value with respect to the

estimate obtained with DAS in the same scenario, and reported in Figure 6.13. This

is true especially for the absorptive walls. Notice, in fact, that reflection coefficient

of walls R2 and R4 in Figure 6.16 exhibits a trend that is consistent for all the

tested positions of the speaker, whereas the estimates with DAS are characterized

by a greater variance among different positions.
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Figure 6.16.: Estimates using the MVDR beamformer in the first scenario. Walls R1 and R3 are covered
with reflective materials. Wall R2 and R4 are absorptive.

6.10. Perspective work: extension to 3D

Given the 3D modeling engine presented in the Chapter 3 the extension of the

presented reflection coefficient estimation technique to 3D environments is straight-

forward using a spherical microphone array. In a 3D geometry, the loudspeaker

radiation pattern l(θ, φ); the directivity pattern of the microphone m(θ, φ); and the

angular variation of the reflection coefficient gk(θ, φ), are all a function of two angles

θ and φ that specify a direction in a 3D space. The measured pseudospectra in (6.2),

obtained applying a beamforming technique to the signals acquired by the spherical

microphone array, is a function of θ and φ as well. Therefore the pseudospectrum

data P̂ has a matrix form, with rows and columns corresponding to samples of θ and

φ respectively. The same applies to the modeled components of the pseudospectra

Pi in (6.12) obtained using the 3D modeling engine and following the same steps
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described for the 2D algorithm. The unknown scale factors q are still a product

of a variable number of reflection coefficients αk and the signal amplitude A (the

terms gk(θ, φ) that specify the angular variation of the reflection coefficients are

included in the model). Reordering the matrices P̂ and Pi into vectors (i.e. using

each column as a new observation and combining them as done in (6.17)) we obtain

the same formulation as in (6.14). Consequently we can apply the same estimation

procedures described previously for the estimation of the reflection coefficients.

6.11. Conclusive remarks

In this Chapter a novel model-based method for the estimation of reflection co-

efficients has been proposed. This method matches the pseudospectrum obtained

using the acoustic propagation modeling engine described in Chapter 3 with the

pseudospectrum obtained using the acoustic measurements acquired by a compact

microphone array, which represents a narrow version of the plenacoustic image intro-

duced in Chapter 4. Experiments with real data show promising results and confirm

the applicability of the presented method for the reflection coefficient estimation in

real acoustic environments. In fact, the experimental results proved that the method

is both accurate and robust: the estimated values are close to the reference values,

specified either by datasheets or found in literature; and the algorithm performs

consistently well for different loudspeaker positions and in different scenarios.
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Chapter 7
Application to rendering – discussion

T
his Chapter brings together different aspects examined in this

dissertation and shows how the outputs of different algorithms

can be used together in a single application. We discuss how the beam

tracing modeling engine and the knowledge about geometric and ra-

diometric properties of the environment can be used in rendering ap-

plications. In particular, we discuss a method for rendering virtual

acoustic scenes in reverberant environments. This method is based

on [111], [8] and [9], but it extends its validity to the case of rever-

berant environment through a novel approach to room compensation.

Previous solutions started from the assumption that the acoustics of

the environment in which the rendering takes place (“hosting” en-

vironment) has a negligible impact on the rendering quality. This,

in fact, is only reasonable if heavy acoustic conditioning is in place.

Therefore, the reverberations of the hosting environment have to be

taken into account. However, in order to take into account the re-

verberations of the hosting environment, its geometry and reflection

coefficients have to be known or estimated. The beam tracing is

then used for the simulation of both the virtual scene to be rendered

and reverberations of the real environment to be compensated. This

information is then used by the rendering engine to reproduce the de-

sired soundfield while compensating for undesired reflections caused

by the environment that hosts the system. In this Chapter we focus
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7. Application to rendering – discussion

on describing how the output of the beam tracing can be incorporated

in the rendering system, for a detailed description of the rendering

problem, theoretical background and proposed solutions see [112].

7.1. Motivations

Acoustic wavefield rendering is aimed at producing a desired soundfield in a pre-

scribed region of space (rendering space) using a spatial distribution of loudspeakers.

This is a problem of growing interest in the research community for its many ap-

plications to telecommunications (e.g. immersive telepresence), multimedia (e.g.

immersive gaming, automotive, and entertainment in general), and professional au-

dio. Some of the solutions offered in the literature are aimed at reproducing an

acquired/estimated wavefield (data-driven methods). Others specify the acoustic

scene as a spatial distribution of sources and acoustic reflectors (model-driven meth-

ods [113]). An approach of this sort has the advantage of flexibility, and paves the

way to applications of interactive virtual acoustics (e.g. immersive gaming, walk-

through architectural acoustics, etc.).

7.2. Related work

Rendering – The literature is rich with solutions for soundfield reconstruction,

the most widespread of which are based on WaveField Synthesis (WFS) [114, 115];

on spherical harmonics (e.g. Higher Order Ambisonics (HOA) [116, 117]); and on the

least-squares (LS) minimization of the rendering equation [118, 119]. In WFS the

loudspeakers of an array act as secondary sources, in compliance with the Huygens

principle, for the reconstruction of planar or spherical wavefronts and combinations

thereof. HOA exploits a decomposition of the soundfield in spherical harmonic

functions and performs soundfield reconstruction with a spatial distribution of loud-

speakers around the listener. LS techniques are aimed at determining the filters that

best reconstruct the wavefield in a number of spatially distributed control points, in

compliance with a rendering equation, which is defined according to the soundfield

representation. An example of rendering equation based on a spherical/circular har-

monics wavefield decomposition is proposed in [120]; and one based on geometric

wavefield decomposition, is discussed in [8].

Compensation – Room compensation is a well-established research topic, an
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early overview of which can be found in [121]. In [122] multichannel filtering is pro-

posed for correcting room effects in selected points within the listening area. In [123]

an adaptive compensation method based on modal wavefield analysis was proposed,

which extends the validity of room compensation on a wider region surrounding the

control points. This method was further refined in [124], and later enriched with

a concentric microphone array in [125]. A different approach is proposed in [83],

where an accurate estimation of room responses over the whole rendering area is

used for improving room compensation.

7.3. Problem formulation

One crucial aspect of model-driven rendering is that the image sources produced

by the walls of the virtual environment “illuminate” the rendering space with an

acoustic beam that is reflected and subdivided during the propagation (see Chapter

3). As a consequence of the splitting process, the beam narrows as the order of re-

flection grows. Therefore, the image source needs to be angularly windowed in order

to account for the visibility through the chain of virtual “mirrors” that generated it.

In [126, 127, 128] the image source method is used for computing the position of the

image sources. A visibility test is then performed to assess the visibility between

each virtual image source (an image source generated by reflecting a source to be

rendered about one or more virtual walls) and each point in the listening area, which

is quite a demanding task even for simple geometries [24, 14]. On the other hand,

instead of being assessed in a point-to-point fashion, the visibility can be computed

very efficiently and all at once through a beam tracing algorithm presented in the

Chapter 3.

Beam tracing is an important tool not only for the computation of the position and

visibility conditions of the image sources, but also because it offers a powerful tool for

modeling the propagation of sound in enclosures. In fact, instead of directly solving

the wave equation for the points of interest, beam tracing encodes the visibility of

image sources with acoustic beams and models the interaction of the wavefield with

the environment as the propagation, branching and reflection of beams. Therefore,

the beam tracing approximates the wavefield as the superposition of the wavefields

produced by image sources, each visible in a prescribed region (i.e. the area covered

by the beam). Each beam is characterized by its orientation, aperture and position

of the image source. This provides the specifications of the acoustic beams that
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must be reconstructed and overlaid in order to form the desired wavefield. As an

example, Figure 7.1 shows the superposition of beams predicted by beam tracing

in a densely occluded enclosure. For clarity of visualization the figure shows only

beams up to the second order of reflection.

Source

Figure 7.1.: The superposition of beams predicted by beam tracing in a densely occluded environment;
beams up to the second order of reflection are shown; the figure shows the superposition of geometric areas
interested by single beams – the radiometric information of a beam can be assessed by examining the beam
tree, i.e. the reflection history and propagation distance.

In this work we are interested not only in reproducing the acoustics of a virtual

environment using a loudspeaker array, but also in reducing the natural reverbera-

tion generated by the real environment that hosts the rendering system. In order to

be taken into account, the real environment has to be modeled, once again, using

the beam tracing method. This, however, means that the geometry and reflective

properties of the hosting environment have to be known a priori. Alternatively,

the geometry of the environment can be estimated using the algorithm described

in Chapter 5, and the reflection coefficients using the algorithm described in Chap-

ter 6. In the simulations we examine the robustness of the proposed approach to

soundfield rendering with respect to modeling errors in both geometry and reflection

coefficient.

7.3.1. Application scenario

The goal of a rendering system is to accurately reproduce a desired wavefield

within a prescribed listening area, using a spatial distribution of loudspeakers. The
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7.3. Problem formulation

listening area is defined by a set of control points.

A simple 2D example of rendering scenario is shown in Figure 7.2, where the

loudspeakers (indicated with black crosses) are placed on a circle around the listening

area (gray region), which is sampled by a regular distribution of control points

(black dots). In the simplest case the goal of this rendering system is to generate

the wavefield corresponding to an omnidirectional virtual source (red circle) within

the rendering area, under the assumption that the rendering environment (host) be

anechoic.

loudspeakers
control points
virtual source
virtual environment
virtual image sources
real environment
image loudspeakers

Figure 7.2.: Geometry of a rendering system operating in a real environment, aimed at reconstructing a
virtual acoustic scene.

More challenging is the problem of rendering an acoustic scene in which the vir-

tual source is surrounded by a virtual environment. Because of the virtual walls, in

fact, we need to account for a multitude of reflective acoustic paths that form a vir-

tual Room Impulse Response (RIR). A typical RIR exhibits two fairly distinguished

portions: early reflections and late reverberations. The former is characterized by

isolated distinguishable peaks, while the latter looks more like an exponential decay

of densely packed reflective paths. Early reflections are known to convey informa-

tion about the source position and radiance as well as the location of the reflectors,

while late reverberations carry information on the size of the environment and its

acoustic quality. We focus on the rendering of early reflections caused by a virtual
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environment. In order to render such reflections we need to render the virtual image

sources obtained by mirroring the virtual source on the virtual reflectors. With ref-

erence to Figure 7.2, the red dotted line denotes the contour of a rectangular virtual

room (each segment of the room represents a planar reflector). The corresponding

virtual image sources are denoted by red circles.

So far we have neglected the impact of the host environment on wavefield render-

ing, as we have assumed the propagation from each loudspeaker to each control point

to take place in free-field conditions. Our goal, however, is to devise a methodology

for compensating, at least partially, the reflections caused by the host environment

on the rendered wavefield. We focus on the compensation of early reflections only.

There are several reasons behind this choice. On one hand, the spatial impression

induced in the listener can be mostly attributed to early reflections [129, 113]; we can

also reasonably assume that the hosting environment has a high clarity index (i.e.

early reflections dominate over late reverberations); finally, this choice allows us to

use the same geometric tools for both room compensation and wavefield rendering

in a computationally efficient fashion. If the real environment is made of planar re-

flectors the early reflections can be accounted for by introducing image loudspeakers.

In Figure 7.2 the continuous blue line represents the real environment and the blue

crosses denote the image loudspeakers.

It is important to notice, however, that image sources cannot be rendered with

their original beam pattern, as we need to account for their visibility “through"

the walls that generated such images through reflections. Therefore, computing the

visibility of an image source is a necessary step for correctly accounting for wall

reflections. This is true for both real sources (loudspeakers) and virtual sources,

and for both real and virtual walls. The visibility is here represented by a beam,

which can be interpreted as an angular windowing function acting on the original

beam pattern of the source.

In this work we address the rendering problem in 2D geometries. Notice, however,

that the considerations made in this paragraph have general validity.

7.3.2. Requirements

In the light of the issues introduced in the previous paragraph, we now identify

the requirements of a rendering system that reproduces the acoustics of a virtual

environment when it is operating in a reverberant room. We can distinguish the
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following components:

1. A propagation modeling technique that traces beams as they propagate in the

virtual environment. This operation can be efficiently performed by employing

the beam tracing method presented in Chapter 3;

2. A detailed information on the hosting environment geometry and corresponding

reflection coefficients. If this information is not known a priori the algorithms

described in Chapters 5 and 6 can be employed;

3. A propagation modeling technique that traces image loudspeakers along with

their visibility conditions in the environment hosting the array. This operation

is, again, efficiently performed by the beam tracing engine using the geometric

and radiometric information about the hosting environment;

4. A beam-shaping engine that allows us to render a beam in the listening area

by means of a loudspeaker array. For more details see the Appendix D;

5. A methodology that exploits the knowledge of the image speakers and of their

visibility conditions for the compensation of the early reflections produced by

the environment hosting the rendering system. This technique is referred to as

room compensation.

Let us consider the simple scenario in which a virtual source is rendered in an ane-

choic host environment. In this situation all we need is a beam-shaping component

that approximates the source’s beam pattern. If we introduce a virtual environ-

ment, the associated early reflections can be accounted for through a process of

beam tracing that computes the locations of the virtual image sources along with

the corresponding visibility functions (beams). Finally, if the rendering system is

placed in a reverberant host environment, we need to introduce a room compensa-

tion technique for removing the unwanted early reverberations caused by the real

walls. In this case, all the above components are jointly used to achieve the desired

rendering result and the corresponding global operating scheme is shown in Figure

7.3.

7.4. Room compensation

When the sound reproduction system is operating in a non-anechoic host environ-

ment, reverberations can drastically affect the quality of the rendered wave field [83].
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Figure 7.3.: Functional block diagram of the proposed rendering problem.

This degradation is predominantly caused by the early reflections, which affect the

desired spatial impression [130]. For this reason, we aim at devising a methodology

that focuses on the compensation of the early reflections. Assuming that the two-

dimensional map of the real environment is known or estimated using the algorithm

presented in Chapter 5, as well as the position of the M loudspeakers p1, . . . pM

and N control points a1, . . . aN , it is possible to predict the impact of the early

reflections at the control points. In order to do that we employ the beam tracing

engine presented in Chapter 3. More specifically, beam tracing allows us to:

1. determine the set {p′
m,i}Qm

i=1 of the Qm image loudspeakers associated with the

mth loudspeaker, up to an arbitrary reflection order;

2. evaluate the visibility of the control point an from the image loudspeaker

p′
m,i; this operation is performed using the path-tracing technique (see Section

3.4.3).

The contribution of the mth loudspeaker to the soundfield at the nth control point

can be modeled as

γω(an, pm) = gω(an|pm) +
Qm∑

i=1

βm,iV (an, p′
m,i)gω(an|p′

m,i) , (7.1)

where gω(an|pm) is the Green’s function [131] from pm to an, V (an, p′
m,i) is a binary

function that maps the visibility of an from p′
m,i. In particular V (an, p′

m,i) = 1 if
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the image loudspeaker p′
m,i is visible from an and 0 otherwise. The computation

of the visibility is swiftly accomplished with beam tracing. The term βm,i is the

attenuation coefficient associated with the image loudspeaker at p′
m,i. The value

of βm,i depends on the reflective properties of the walls and on the reflection order

of the image loudspeaker, and it can be obtained using the algorithm presented in

Chapter 6. In equation (7.1) we recognize a first term which corresponds to the

free-field propagation (i.e., the Green’s function), and a second term including the

effect of all the visible reflective paths generated by the mth loudspeaker at the

control point an.

While rendering a desired beam the room compensation is performed consider-

ing, for each loudspeaker and each control point, the propagation (7.1) computed

using the beam tracing engine instead of considering just the free-field propaga-

tion gω(an|pm). The problem of rendering an acoustic beam using a loudspeaker

array has been widely investigated in the literature during the past twenty years

[132, 133, 134]. The Appendix D summarize the main results from [111]. We remark

however that the presented techniques for the room compensation and the render-

ing of virtual environments are general enough to be employed also with other beam

rendering techniques.

7.5. Rendering of the acoustics of virtual environments

Here we formulate the problem of rendering the early reflections coming from

walls of a virtual environment. We are interested in rendering early reflections,

as they boost the impression of presence to a listener, and therefore are useful for

immersive applications. On the other hand late and diffuse reflections provide some

acoustic cues related to the dimension of the environment. As shown in [135], late

reverberations can be modeled as a common pole, i.e. they are not influenced by the

position of the listener. As a consequence, one could enrich the rendering adopting

a pre-filter to the dry sound. Nonetheless, this goes beyond the scope of this work.

The output of beam tracing consists of the acoustic beams bv, v = 1, . . . , V to

be rendered along with the virtual source. The vth beam is characterized by the

position of the virtual image source sv , the orientation θv and the aperture φv.

For each beam, we obtain M filters ĥm(t), m = 1, . . . , M , to be applied to the M

loudspeakers in order to render the desired beam. The filters can be computed

using the beamshaping algorithm described in Appendix D. In order to render the
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soundfield coming from the superposition of all the acoustic beams we apply the

superposition principle. More specifically

ĥm(t) =
V∑

v=1

ĥ(v)
m (t − Dv) , (7.2)

is the filter applied to the mth loudspeaker for the rendering of the V acoustic beams.

Notice that the contribution to the soundfield from the beam bv must exhibit a

delay that is different from that of the beam bv′ , v′ 6= v, due to the different distance

of the respective virtual image sources sv and sv′ . As a result, before applying the

superposition principle in (7.2), we need to delay the individual impulse responses

ĥv
m(t) by Dv samples in order to account for the different distances of the virtual

image source positions. One could also argue that the superposition principle could

be applied on the desired response used for the beamshaping, by summing the desired

responses of all the beams. This way, the rendering of the whole soundfield would

be simplified. However, a phase alignment of the desired responses of the individual

acoustic beams needs to be applied in order to account for the different delays of

the virtual image sources, resulting in an improved difficulty with respect to the

solution proposed in this section.

Finally, we notice that for common environments, the locations of the virtual

image sources surround the listening area. A linear array that covers only one side

of the listening room would be able to accurately render only the virtual image

sources that are located behind it, resulting in a partial immersivity impression. For

this scenario, therefore, circular arrays are required.

7.6. Simulation results

The evaluation of the rendering system and of the room compensation methodol-

ogy is accomplished through a set of simulation experiments, as commonly adopted

in the literature [83, 136, 120, 119, 125]. This is motivated by the fact that a real-

world implementation of rendering and/or room compensation techniques would

introduce non-idealities (e.g. non linearities and non-omnidirectional loudspeakers),

which are hardly measurable and whose effect is not easily distinguishable from

the artifacts introduced by the rendering methodology itself. Moreover, as already

adopted in [83, 125], acoustic propagation in the real environment is modeled by
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an image-source like technique, which in this case is beam tracing. In particular,

the room impulse responses of the environment have been simulated up to the 15th

order of reflection. The attenuation due to propagation and successive reflections

causes higher order beams to be sufficiently attenuated in the listening area, so that

their impact can be neglected. On the other hand, in the room compensation stage,

we concentrate on compensating reflections up to the 3rd order, as they have the

highest impact on the perceived spatial impression [129, 113] and, therefore, would

corrupt significantly the desired soundfield if not taken into account.

7.6.1. Evaluation metric

In order to assess the quality of the beam reproduction, we propose to evaluate

the mean square error between the desired and rendered wave fields. We define

a grid of Q >> N evaluation points that uniformly sample the listening area at

positions qi, i = 1, . . . Q, where N is the number of control points used in setting

up the beam-shaping algorithm. The metric we consider is the Normalized Mean

Square Error (NMSE), defined as [136]

E(ω) =

∑Q
i=1 |S(ω, qi) − Ŝ(ω, qi)|2∑Q

i=1 |S(ω, qi)|2
. (7.3)

In the following tests, the NMSE associated to the room compensation (Erc) is

compared with the NMSE of the beam shaping performed without compensating for

the real environment (Enc). Moreover, these results are compared with the NMSE

of the beam shaping in the free-field (Eff), i.e. when the real environment is anechoic

and no compensation is required.

7.6.2. Rendering of a virtual environment with room compensation

We consider the rendering of a virtual source along with the effect of a virtual

environment surrounding it. The simulations are conducted in an L-shaped rever-

berating real environment. We consider a circular distribution of the loudspeakers,

which allows us to render beams originating at any position around the listener. As

in Figure 7.4, M = 32 loudspeakers are disposed on a circumference with radius

ra = 1.4 m. The listening area covers a circle with radius rl = 1.1 m inside the

array, and it is regularly sampled with N = 1000 control points. For the evaluation,

a denser sampling (Q = 10000 evaluation points) is considered. We notice that
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ra
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Figure 7.4.: Setup for the evaluation of the rendering engine. The loudspeakers are disposed on a circle with
radius ra and the listening area covers a circle with radius rl inside the array. The real environment models
an L-shaped room.

the circular geometry of the loudspeaker array and of the listening area allow us to

assess the maximum alias-free frequency ωA. In fact, as noticed in [83], an alias-

free reproduction at the frequency ω is achieved if M ≥ 2krl + 1, where k = ω/c.

For the rendering system used in simulations (M = 32 and rl = 1.1 m) we obtain

fA = ωA/2π ≈ 850 Hz.

The virtual source and the virtual environment considered for the experiment are

shown in Figure 7.5, which depicts also their mutual position with respect to the

real environment. It is important to notice that inside the L-shaped real room and

especially inside the virtual room that represents a small church, occlusions occur

and the visibility of image sources have to be taken into account using the beam

tracing method. The reflection coefficient is set to 0.7 which corresponds to the

typical value of plaster [105].

The Figure 7.6 shows the NMSE results in the frequency range [100 Hz, 2 kHz].

We focus on this frequency range as in this range the human auditory system is more

sensitive to the spatial cues, exhibiting an improved accuracy in sound localization

[137]. As expected, looking at the NMSE of the free-field and room-compensated

responses, we observe that the wave field is rendered with good accuracy up to

the maximum alias-free frequency fA. Above this frequency value, the quality of

rendering decreases because of the spatial aliasing artifacts. On the other hand, the

quality of the rendered wave field is poor when no compensation is performed. In

fact, the NMSE of the non-compensated response highlights, as usual, the effect of

the real environment on the listening area.
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10 m 4 m 3 m

3
m

5
m

3
m

Figure 7.5.: The rendering system operates in an L-shaped real environment and renders a virtual source
(depicted as a black circle) along with its effect on a virtual environment that models a small church.
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Figure 7.6.: NMSE values of the free-field (Eff), non-compensated (Enc) and room-compensated (Erc)
responses of rendering the virtual source and the virtual environment in Figure 7.5.

An example of desired and rendered wave fields is shown in Figure 7.7. More

specifically, Figure 7.7 (a) depicts the intensity of the desired wave field, at 850 Hz,

relative to the rendering of a virtual source inside the small church (Figure 7.5);

Figures 7.7 (b), 7.7 (c) and 7.7 (d) show the free-field, non-compensated and com-

pensated reproduced wave fields, respectively. In order to emphasize the effect of the

virtual environment, the direct contribution of the virtual source has been removed

from the wave fields. It is worth noticing that free-field and room-compensated
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Figure 7.7.: (a) The intensity of the desired wavefield at 850 Hz produced considering the virtual source and
the virtual environment in Figure 7.5 is compared with: (b) the intensity of the free-field wave field; (c) the
intensity of the non-compensated wave field; (d) the intensity of the room-compensated wave field.

wave fields mostly reproduce the details contained in the desired one. In particular,

Figures 7.7 (b) and 7.7 (d) both contain the left-right discontinuity present in 7.7

(a). This discontinuity is due to the two aisles of the virtual church, which partially

occlude the reflections coming from the lateral virtual walls (see Figure 7.5). In the

non-compensated wave field (Figure 7.7 (c)), such discontinuity is still present, but

it is less pronounced. More specifically, most of the details present in the desired

wave field (e.g., the “silent” dark spots in the top-right and bottom-right part of the

listening area) are lost. This degradation is caused by the strong reflections coming

from the left and right walls of the real environment, which, on the other side, are

effectively dampened by the room compensation (Figure 7.7 (d)). This behaviour is

also confirmed by the NMSE performance, whose values are 0.18, 0.46 and 0.19 for

the free-field, non-compensated and compensated wave fields, respectively.
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7.6.3. Robustness to geometry and reflection coefficient errors

Now, in order to test the robustness of the system to geometry and reflection

coefficient modeling errors, we considered a scenario of a linear array hosted in a

5 m × 5 m room, as shown in Figure 7.8. The array has an aperture l = 2 m

and it is composed of M = 32 loudspeakers. In the first test the location of the

2 m

2
.5

m

4 m

5 m

5 m

Figure 7.8.: Setup for testing the robustness of the room compensation against variations of the reflection
coefficient of the walls and variations of the room size.

walls is assumed to be known. The reflection coefficient is equal for all the walls,

but it is known up to a certain precision. More specifically, the actual value of the

reflection coefficient is 0.7, but for testing the robustness of the room compensation

values from 0.5 to 0.9 have been used in equation(7.1). For the sake of compactly

presenting the results, we adopt as metric the average value of E(ω) over the whole

frequency axis. The resulting metric is therefore

E =

∫ 2πfmax

0
E(ω) dω ,

where fmax is the maximum frequency at which the rendering is performed. In this

simulation fmax has been set to 4 kHz. In the following we will refer to Ēff, Ēnc,

and Ērc for indicating the average NMSE Ē for the free-field, non-compensated,

and room-compensated cases, respectively. For the simulation we considered the

reproduction of a beam directed as θ = 0◦ (towards the listening area) and aperture

φ = 10◦, originated from a virtual source located at a distance d = 5 m behind the

array, positioned such that the center of the beam passes through the array center.
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The results are shown in Figure 7.9.
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Figure 7.9.: Average NMSE (E) for values of the reflection coefficient in the range 0.5 ∼ 0.9 when the
actual reflection coefficient is 0.7.

We conducted a further simulation in which the reflection coefficient used in equa-

tion (7.1) has been kept fixed to its nominal value, but the size of the room is known

up to a certain precision. More specifically, the length L and the width W spanned

in the range 4.8 m ∼ 5.2 m. The Figure 7.10 illustrates the variation of E as a

function of width and length of the room.
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Figure 7.10.: Average NMSE (E) as a function of the width and length of the room.

From Figure 7.9 we notice that the room compensation exhibits a smooth behavior
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over a wide range of reflection coefficients. On the other hand, from Figure 7.10 we

notice that even an error of 2 cm in measuring the width and length of the room

introduces relevant differences in E. A similar behavior was outlined in [138]. The

reason of this behavior can be found in the fact that when a wrong geometry of the

room is in use, the position of the image speakers is wrongly assessed, and this causes

a phase shift of the relative contribution in (7.1). Therefore, instead of compensating

the reflective path, a constructive interference appears for some frequencies in the

listening area. On the other hand, when a wrong value of the reflection coefficient

is used, only the amplitude of the reflective paths is wrongly estimated, their delay

being correct. This configuration only causes a partial cancelation of the reflective

path.

We can conclude that the compensation technique is much more sensible to ge-

ometric errors than to the errors in reflection coefficient estimates. This motivates

improvements and further research on geometry inference algorithms as a crucial

part for advanced audio signal processing algorithms. However, for the geometry

inference, other methods, based, for example, on computer vision and telemetry

could be used to obtain accuracy well below 1 cm of error at an affordable cost.

On the other hand, the reflective properties of walls can be assessed using only the

acoustic measurements. In this case, however, the accuracy of the method proposed

in the Chapter 6 is suitable for the rendering applications and represents a good

alternative to the use of acoustically certified (known reflection coefficient) or acous-

tically absorbing (working in an low reverberant room) materials, which are often

too costly.

7.7. Conclusive remarks

In this Chapter we discussed the problems encountered in applications aimed at

rendering the virtual acoustic scenes in reverberant environments. Rendering the

acoustics of an virtual environment implies rendering a number of virtual image

sources together with their visibility pattern. Working in an reverberant environ-

ments means that reverberations will affect the rendered soundfield if not taken into

account. In order to compute both the virtual image sources (with their visibility

patterns - beams) and the reverberation paths of the hosting environment, we resort

to the 2D visibility-based beam tracing algorithm presented in the Chapter 3. The

real environment geometry is known or estimated using, for example, the algorithm
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presented in the Chapter 5. For the compensation step to work the knowledge of

the reflection coefficient is also required. The reflection coefficient of all reflectors

in the environment can be estimated using the algorithm described in Chapter 6.

For a detailed description, theoretical analysis and exhaustive performance evalua-

tion of beamchaping, compensation and virtual environment rendering techniques

see [112]. For a technique that compensate undesired wall reflections while exploiting

other early reflections to create a virtual surround system see [53]. For a evaluation

metrics that incorporates psychoacoustic-based criteria to analyze the impact of pre-

echoes and post-echoes on the perceived quality in soundfield rendering applications

see [139].
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Chapter 8
Conclusions and future perspectives

I
n this thesis we proposed a novel representation of plenacoustic

information in the parametric domain of the acoustic rays, and

we showed that this representation is suitable for approaching chal-

lenging problems related to acoustic scene analysis and modeling. In

particular, we introduced the ray space representation of plenacous-

tic data; algorithms for its construction (visibility information) and

acquisition (plenacoustic image); as well as a number of applications

that make use of plenacoustic data for both modeling and analysis

purposes. This last Chapter summarizes the main results of this dis-

sertation and discusses perspectives and future directions of research

that can be foreseen to arise from these results. We also discuss

possible research problems that need be addressed when using ple-

nacoustic data, the main ideas and challenges that are to be faced in

developing solutions for specific tasks.

This thesis addressed a number of topics, from the modeling of acoustic propa-

gation; to the estimation of radiometric and geometric properties of reflective bound-

aries; to the rendering of virtual soundfields within a reverberant environment; to

the construction/acquisition and use of plenacoustic data. All these topics are be-

coming more and more relevant in modern acoustic systems, as the complexity of

the tasks that such systems are facing increase (systems are expected to work in and

adapt to acoustically “hostile” environments). In fact, in order to address current

and future challenges, the new systems need to employ sophisticated audio signal
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processing algorithms and, at the same time, to interact, exchange information and

collaborate with each other, by taking advantage of the presence of devices with inte-

grated loudspeaker and microphone arrays in everyday environments (e.g. surround

sound systems, “smart TVs”, computers, game consoles, smartphones, etc.). The

acoustic measurements that are acquired by different systems in different positions

in space need to be collected and organized in a parameter space that exhibits a

high degree of regularity and can be accessed and used by different signal processing

algorithms. Furthermore, in order to guarantee the necessary operational reliability

and robustness, and offer a high-quality user experience, the new acoustic systems

need to constantly monitor the hosting environment, adapt to it and predict the

effects of their actions within it. In other words, the analysis of acoustic scenes and

the modeling of acoustic propagation should be carried out in a synergistic fashion,

i.e. cooperating between the analysis step, which uses the simulation of the sound-

field to improve the results of the analysis, and the modeling step, which uses the

extracted information about the environment to simulate the soundfield.

In this thesis the first steps towards a closer integration of spatially distributed

systems and of modeling and analysis stages have been performed by defining a

suitable parametric space that enables an efficient and accurate modeling of acoustic

propagation; efficiently encodes visibility conditions from different points in space;

and represents the spatially distributed measurements of the acoustic scene with

a high degree of regularity. In particular, this space was found to be the space

of oriented lines we called the ray space. On top of this layer we developed both

modeling and analysis frameworks, both of which benefit form the high regularity

of the ray space representation of the geometric primitives.

The examined applications demonstrated the validity of the proposed approach.

First the plenacoustic images were used for geometry inference that, thanks to the

fact that the geometric primitives are represented by linear constraints in the ray

space, turned out to be a linear problem and the contributions of multiple objects

could easily be distinguished (clustered). The plenacosutic images, however, collect

and organize all the information gathered from the sensors and not just the geometric

ones. This was shown in the second application examined in this dissertation, where

an acquired acoustic image was used in combination with the model of acoustic

propagation in order to estimate reflection coefficients of all reflective surfaces found

within the environment. Finally, the third application acted as a framework for

previous ones; it used the geometric information and the reflection coefficients as
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inputs of the modeling engine in an advanced rendering scenario.

The generality and the potential of the main ideas behind tools developed in this

dissertation go far beyond the examined applications. In this preliminary stage the

obtained plenacoustic images have limited resolution given by the limited number

of sensors and a considerable distortion generated by the measurement method (i.e.

the beamforming filter does not completely suppress the signals coming from di-

rections different from the desired one resulting in an error in the estimation of

the sound field carried by the given acoustic ray). Nonetheless, the plenacoustic

images they capture both geometric and radiometric properties of the environment

and exhibit a number of interesting features and, therefore, have numerous potential

applications. The appeal of the plenacoustic representation grows even further if we

consider how rapidly new devices with integrated microphone arrays are evolving

and how quickly they are penetrating the consumer market. At the same time the

literature is introducing relevant algorithmic improvements for audio data processing

(e.g. superdirective beamforming techniques), which could be fruitfully integrated

in the vision proposed in this thesis and could serve as technological basis for their

implementation. However, as we explore new applications, new challenges arise.

In what follows, we briefly discuss some of these new ideas and challenges that lie

ahead.

• Self-calibration – Given a number of spatially distributed microphone ar-

rays, in order for them to work together their mutual positions have to be

known a priori. If not so, the arrays have to estimate their mutual positions

(self-calibrate themselves). This calibration can be achieved by matching of

plenacoustic images acquired by different arrays, i.e. by finding the transla-

tion and rotation in the ray space so that the features that are present in

different images will closely match. This way the calibration can be performed

without the need to estimate the acoustic scene (e.g. localize sources) prior

to the calibration step. Calibration can be achieved independently of acous-

tic primitives that compose the acoustic scene as long as the scene exhibits a

sufficient “plenacoustic texture” to enable the matching of soundfield images

acquired with different arrays. Notice, however, that in this case the plena-

coustic images cannot be represented in a reduced ray space as this requires

the intersection with a prescribed plane that cannot be the same across all

arrays (mutual positions are unknown). The plenacoustic images, therefore,
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need to be represented in the full (projective) ray space.

• Wavefield extrapolation – Given a series of plenacoustic images captured

by a linear microphone array at different time intervals (“plenacoustic video”)

this information can be used for the extrapolation of the wavefield at a generic

position behind the array. In fact the “virtual receiver” is represented as a line

in the image and, therefore, it should capture the acoustic rays distributed

along this line. However, for purposes of room geometry estimation, the phase

information was discarded considering the output power of the beamformer for

the construction of the plenacoustic images. On the other hand, for purposes

of wavefield extrapolation the phase information has to be re-introduced by

considering the phase of output signals of the beamforming technique. Fur-

thermore, the relation between this “phase image” and the position of the

virtual receiver has to be examined.

• “Plenacoustic” reflection coefficient estimation – In this thesis we es-

timated the reflection coefficients using measurements from a single point in

space. Using a number of spatially distributed acoustic images of this sort

(plenacoustic image) we could estimate the reflection coefficients without us-

ing the hypothesis that they remain constant along the same wall. In fact,

the walls of real environments have doors, windows, posters, blackboards, etc.

and therefore they do not exhibit constant reflective properties.

• Source characterization – Observing the radiation emitted by an acoustic

source from different positions in space, i.e. along the corresponding line in

the plenacoustic image, the radiation pattern of the source could be estimated.

• Source separation – Sources are mapped onto lines in the plenacoustic im-

age. By observing the image we can get an idea of which directions certain

sources are most clearly received and which directions they are expected to mix

the most (intersections of lines). With this information at hand (and, possibly,

the estimated radiation patterns) it would be possible to build a “matched fil-

ter” (sort of a plenacoustic mold) for a given source, which extracts the signal

from the directions that offer the most favorable signal-to-interference ratio.

As in the case of wavefield extrapolation, the phase information should be

considered as well.
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• “Plenacoustic” rendering – In this dissertation we considered a model-

based rendering scenario. However, given the plenacoustic image of a certain

environment acquired by a microphone array, the acoustics of this environment

could be reproduced elsewhere using a loudspeaker array, i.e. substituting the

microphone array with a loudspeaker array and reversing the plenacoustic

image acquisition process into a plenacoustic reproduction process.

In conclusion, the applications proposed and examined in this dissertation prove

the potential of using the ray space representation of spatially distributed data for

both modeling of sound propagation in enclosures and analysis of acoustic scenes.

Furthermore, a number of other applications could benefit from the use of the tools

that are developed in this thesis and the first works are currently being carried out

in these directions. The main ideas that inspired this work, namely environment

awareness; collaboration between different spatially distributed systems; and alter-

nating analysis and modeling steps; are becoming increasingly important topics in

the audio signal processing. They represent important assets that could be exploited

in order to deal with the growing complexity of task that acoustic systems are asked

to perform. We believe that the approach presented in this work can give a signif-

icant contribution to research in the above fields and inspire novel and innovative

solutions.
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Appendix A
Wavefield and rays: the eikonal

equation

I
n the first part of this Appendix we derive the wave equation that

governs the propagation of acoustic waves. To do so we use two

fundamental principles of mechanics: the principle of inertia and

Hooke’s law. In the second part of the Appendix we introduce a

particular high-frequency approximation of the wave equation called

eikonal equation on which all geometric methods for the solution of

the wave equation are based.

A.1. Derivation of the acoustic wave equation

The wave equation is a second-order partial differential equation that governs the

propagation of waves through a medium. In its most general form it describes the

propagation of all types of waves (e.g. sound waves, light waves, seismic waves and

water waves). Therefore its study is important in fields such as acoustics; electro-

magnetics; seismic; and fluid dynamics. Historically, the theory behind the acoustic

wave equation [140], [141] was developed first. It was studied, among others, by Sir

Isaac Newton; Pierre-Simon Laplace; Daniel Bernoulli; René Descartes; Christiaan

Huygens; Leonhard Euler; Jean le Rond d’Alembert and Joseph-Louis Lagrange.

The acoustic field is described by acoustic pressure and particle velocity. Pressure

can be thought as sum of two terms, static pressure p0 (usually controlled by gravity)
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and variations due to the presence of the wave p, i.e.

pt = p0 + p,

and the same for density, sum of static term ̺0 and variations caused by the wave

̺, i.e.

̺t = ̺0 + ̺.

We suppose that perturbations are due to acoustic wave only. In this condition the

wave equation is derived from two fundamental principles of mechanics: principle of

inertia (Newton’s first law of motion) and Hooke’s law of elasticity. The principle

of inertia makes particles velocity change with changes of pressure, i.e variations of

pressure in space generate variations of velocity in time. Hooke’s law yields changes

of pressure as a result of changes of velocity. As a consequence these two mechanisms

generate a wave.

A.1.1. Principle of inertia

Let us suppose that a force ∆F is applied to a fluid of volume ∆V and mass ∆m.

We can write the principle of inertia as

∆F = ∆m
∂v

∂t
. (A.1)

A force can be expressed as a pressure

∆Fx =
∂p

∂x
∆x∆Sx = − ∂p

∂x
∆V,

that, extended to all directions, becomes

∆F = −∇p∆V,

where ∇p denotes the gradient of p. Inserting this expression of force in (A.1) we

get

−∇p =
∆m

∆V

∂v

∂t
,

or

−∇p = ̺0
∂v

∂t
. (A.2)
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A.1. Derivation of the acoustic wave equation

The equation (A.2) links, according to the principle of inertia, variation of pressure

in space with variation of velocity in time. The two forces are in equilibrium.

A.1.2. Hooke’s law

First we need to link the density and volume using the principle of mass conser-

vation

∆m = ̺∆V = constant. (A.3)

Perturbing the mass, expressed as product of density and volume, we get

̺∆V = (̺ + d̺)(∆V + dV ).

Expanding and ignoring the infinitesimals of second order we have

d̺

̺
= − dV

∆V
. (A.4)

Next we need to link density variations with pressure variations using adiabatic

transformations. The mathematical equation for an ideal fluid undergoing a re-

versible (i.e. no entropy generation) adiabatic process is

p∆V Cp/CV = constant,

or, using (A.3)

p̺−Cp/CV = constant,

where Cp and CV are specific heat for constant pressure and specific heat for constant

volume, respectively. Their ratio, k, is called adiabatic index. Elevating to −1/k we

get

p−1/k̺ = constant,

perturbing

p−1/k̺ = (p + dp)−1/k(̺ + d̺) = p−1/k(1 +
dp

p
)−1/k̺(1 +

d̺

̺
),

and linearising

p−1/k̺ = p−1/k(1 − 1

k

dp

p
+ ...)̺(1 +

d̺

̺
),
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A. Wavefield and rays: the eikonal equation

we finally obtain
d̺

̺
=

1

k

dp

p
.

Using this expression in (A.4) we have

1

k

dp

p
= − dV

∆V
,

dp = −kp
dV

∆V
.

The term kp is known as bulk modulus K. We obtain

dp = −K
dV

∆V
. (A.5)

From (A.5) we see that as a result of a volume compression −dV we obtain a

increase of pressure dp and vice versa.

The volume perturbation can be expressed as

dV = dx∆y∆z + dy∆x∆z + dz∆x∆y,

and
dV

∆V
=

dx

∆x
+

dy

∆y
+

dz

∆z
.

The stretching dx can be written as

dx = (vxdt)x+∆x − (vxdt)x =
∂vxdt

∂x
,

where vx, vy and vz are components of the velocity v in directions x, y and z. Writing

the same for other directions we obtain

dV

∆V
= (∇ · v)dt,

where ∇ · v is the divergence of v. Using this expression in (A.5) we write

dp = −K(∇ · v)dt,

−∇ · v =
1

K

∂p

∂t
. (A.6)

The equation (A.6) represents the Hooke’s law for waves in fluids. It states that
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A.1. Derivation of the acoustic wave equation

the variation of velocity generate the variation of pressure.

A.1.3. Acoustic wave equation

From (A.2) and (A.6) we can derive the acoustic wave equation [140], [141]. They

are analogous to Maxwell’s equations used to derive the wave equation for electro-

magnetic waves. Applying the divergence operator to both members of (A.2) we

obtain

∇ · (− 1

̺0
∇p) = ∇ · (

∂v

∂t
) =

∂(∇ · v)

∂t
,

that, after using (A.6), becomes

∇ · (− 1

̺0
∇p) =

∂

∂t
(− 1

K

∂p

∂t
),

and, after multiplying by the density, we get

̺0 ∇ · (
1

̺0
∇p) − 1

c2

∂2p

∂2t
= 0, (A.7)

where c is the propagation velocity given by

c =

√
K

̺0
.

Remembering that

∇ · (φA) = A · (∇φ) + φ(∇ · A),

∇ 1

φ
= − 1

φ2
∇φ,

and

∇ ln φ =
1

φ
∇φ,

we can write

∇ 1

φ
= − 1

φ
∇ ln φ.

Equation (A.7) becomes

̺0(−∇p · (∇ ln ̺0)
1

̺0
+

1

̺0
∇ · (∇p)) − 1

c2

∂2p

∂t2
= 0,
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A. Wavefield and rays: the eikonal equation

and simplifying

∇2p − 1

c2

∂2p

∂t2
− (∇ ln ̺0) · ∇p = 0.

The last term represents the variations of static density from point to point. It

causes distortions of spacial variations of pressure. It can be proven that if these

variations of density are much smaller than 2π of wavelength (this assumption is

more likely to be true on high frequencies), i.e. if

|∇ ln ̺0|λ << 2π,

we can ignore this term and, finally, write the acoustic wave equation as

∇2p − 1

c2

∂2p

∂t2
= 0. (A.8)

This equation governs the propagation of acoustic waves through liquid mediums

(air, water , etc.). In uniform and homogeneous environments the solution of this

wave equation is simple. However, in complex environments in which are present

a number of mediums with different acoustic properties the solution of the wave

equation is governed by boundary conditions becoming a boundary value problem

which solution is usually complex. In order to solve such a boundary value problem

a number of approximations are made.

A.2. Eikonal equation

Let us explain more in detail the high frequency approximation of the wave equa-

tion, its advantages and disadvantages. In its most general form the Fourier trans-

form of the solution of acoustic wave equation (A.8) is

P (x, ω) = S(ω)A(x, ω) exp(jωT (x)), (A.9)

where S(ω) is the Fourier transform of the source’s signal. The amplitude A(x, ω)

depends on both position and frequency. The phase T (x) depends only on position.

This is, clearly, an approximation. If we use T (x, ω) there would be no approxima-

tion. However, the use of T (x) independently from frequency is fundamental as this

condition implies the existence of the wave-front. In order to verify this condition

the spectral dispersion of the signal needs to be low. The phase function T (x) is
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called eikonal.

We can approximate A(x, ω), separating the dependency from position and fre-

quency, as

A(x, ω) = A0(x) +
A1(x)

jω
+

A2(x)

(jω)2
+ ...,

and take only the first term A0(x) (this approximation is true only on high fre-

quencies in which other terms, inversely proportional to frequency, can be ignored).

With these approximations the (A.9) becomes

P (x, ω) = S(ω)A0(x) exp(jωT (x)), (A.10)

that, in the space-time (x, t) domain, represents

p(x, t) = A0(x)s(t − T (x)),

i.e. s(t) delayed by the travel time T , propagated without distortions.

The wave equation (A.8) can be written as Helmholtz’s equation [140], [142], [2]

∇2P (x, ω) +
ω2

c2
P (x, ω) = 0. (A.11)

Using (A.10) we can write

∇P = S∇A0ejωT + SAjω∇T ejωT ,

∇2P = S∇2A0ejωT + S∇A0jω∇T ejωT + jωS∇A0∇T ejωT +

+ jωSA0∇2T ejωT − ω2SA0(∇T )2ejωT ,

and thus, after eliminating common terms, we obtain

∇2P +
ω2

c2
P = S∇2A0 + 2jωS∇A0∇T + jωSA0∇2T − ω2SA0(∇T )2 +

ω2

c2
SA0 = 0.

After ordering the terms and eliminating S we obtain three equations

(∇T (x))2 − 1

c2(x)
= 0, (A.12)

2A0(x) · ∇A0(x) · ∇T (x) + A2
0(x) · ∇2T (x) = 0, (A.13)
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A. Wavefield and rays: the eikonal equation

and

∇2A0(x) = 0, (A.14)

where the equation (A.12) depends on ω2, (A.13) depends on ω and (A.14) is

constant with frequency. The linear and constant terms can be ignored for very

high frequencies. As a consequence, only equation (A.12) governs the propagation.

It is called eikonal equation and in this particular approximation represents the

Helmholtz’s equation. However, while in (A.11) the operator [∇2 + ω2

c2 ] operates on

all directions of p(x), ∇T (x) operates only in the direction of maximum variation of

T (x) , i.e. the direction of propagation. Thus the ray, i.e. the solution of the eikonal

equation, is insensitive to eventual medium variations orthogonal to the direction

of propagation, which actually influences the propagation. As a consequence, the

solution derived from (A.12) is more accurate on higher frequencies.

Eikonal equation is the basis of the ray theory [141], [143] widely used in seismic

and geophysics applications [144], [145]. It is also the base of the geometrical (ray)

acoustics [2] employed in the geometric methods for the modeling of the acoustic

propagation in complex environments [11], [12], [13], [14].
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Appendix B
Geometric approaches to the solution of

the wave equation

T
he geometric methods for modeling of propagation in enclosures

were first developed in the geometrical (ray) optics and then

applied in acoustics. Often a variation of the ray tracing technique,

these methods are conceptually simple but not entirely physically

accurate as they ignore some wave properties. Here we review the

most famous ones.

B.1. From computer graphics to acoustic modeling

Geometric methods for the solution of the wave equation follow high frequency

approximations based on Eikonal equation (Appendix A). Initially geometric meth-

ods were developed as global illumination algorithms in computer graphics and only

successively applied for acoustic modeling. However, sound and light have some

important differences. For example, sound has longer wave-lengths than light. As

a consequence, diffraction is significant; specular reflections dominate diffuse reflec-

tions and occlusions by small objects have little effect. Furthermore, sound waves

are coherent and thus modelling phase is important. Sound also travels more slowly

that light and making reverberations perceived over time. Geometric methods con-

sider the propagation of sound through the air in straight lines, rays, avoiding the

wave nature of the sound. The phenomena due to the wave nature (e.g. diffrac-
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B. Geometric approaches to the solution of the wave equation

tion and diffusion) are usually ignored in the ray approach. This approximations

are good enough only on high frequencies and thus, in order to make this methods

valid also on lower frequencies, different modifications need to be made. Nonethe-

less the geometric methods are the most widespread techniques for the modeling

of early acoustic reflections in complex environments. The alternative approach

is based on an approximate solution of the wave equation on a finite grid. Typi-

cal examples of this class of methods are based on the solution of the Green’s or

Helmholtz-Kirchoff’s equation through finite (FEM) and boundary element (BEM)

methods [16], [17], [18]. Though these methods provide an accurate solution, the

storage space and computation time increase dramatically with frequency due to the

sampling step requirements (it has to be much smaller that the size of the wave-

length), making these algorithms unsuitable for real-time operation except for a very

limited range of frequencies.

B.2. Ray tracing

The first geometric methods applied in acoustic rendering have been borrowed

from computer graphics. The first one was based on ray tracing [11], [20], [21], [22].

In Figure B.1 is shown an example of ray tracing. A finite number of rays are

cast from the source in all directions. They interact with the environment, reflect

and attenuate. Rays that, during the propagation, come in the proximity of the

receiver determine the room impulse response in the receiver’s position. This impulse

response can successively be used for auralisation by convolving source’s sound signal

with the impulse response at receiver position.

The main advantage of this method is its simplicity. It is very simple to implement

and can easily model all types of reflections (specular reflections, diffusive reflections

and diffraction) as well as all types of surfaces (including curved ones). On the other

hand it turns to be quite inefficient. Observing the example in Figure B.1 (a) we

notice that rays spread out over distance and only a small number of rays cast

from a source pass in proximity of the receiver. Furthermore, due to the discrete

sampling of rays, under-sampling errors in the estimated room responses are possible.

Observing the example in Figure B.1 (b) we notice that there are no direct paths

between source and receiver and there is only one first order reflective path (dashed

line) missed by all traced rays (solid lines). As a consequence if the number of rays

is not high enough (generating a huge quantity of data for computing and decreasing
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performance), some important propagation paths could be missed by all sample rays.

S

R

S

R

(b)(a)

Figure B.1.: Ray tracing: rays are cast from the source in all directions; (a) only a small number reach the
receiver; (b) some important propagation paths could be missed by all sample rays.

B.3. Radiosity

Radiosity algorithm [146], [147], [148], [149], [150], was first developed in the

field of heat transfer, used as global illumination algorithm for computer graphics

rendering and then applied in acoustics. The key assumption is the ideal diffuse

(Lambertian) reflection. Radiosity computes rays generated by the source that,

after a certain number of diffuse reflections, reach the receiver. It is essentially an

application of the finite element method. The environment surfaces are subdivided

into small surface elements - patches. The radiosity Bi is the energy leaving the

patch surface i. It is a sum of emitted, Ei, and reflected energy. The reflected

energy depends on reflectivity of the patch ρ and the incident energy arriving at

the patch, i.e. the radiosity of all other patches Bj multiplied by a corresponding

form-factor Fij (see Figure B.2)

Bi = Ei + ρ
∑

BjFij . (B.1)

Form-factors Fij depend on the mutual visibility between patches (e.g. patches far

from each other or partially occluded patches have reduced form-factors while the

form-factor of completely occluded patches is zero). Writing (B.1) for all patches

gives a system of linear equations whose solution is the radiosity for all patches.

Though different methods can be used to solve this equations, the solution depends
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B. Geometric approaches to the solution of the wave equation

Figure B.2.: Radiosity: the energy leaving the patch surface is a sum of emitted and reflected energy;
reflected energy depends on reflectivity and incident energy; incident energy is a fraction of the energy
leaving other patches.

on frequency (i.e. the reflectivity terms depend on frequency) and thus must be

solved for different frequencies of interest. This calculations are independent of

the receiver position, and thus the most of the computational effort is done before

the position of the receiver is specified, making radiosity “view-independent” unlike

ray tracing. In this way the effectiveness of the algorithm is improved. Although

radiosity has been successfully applied in computer graphics it is less popular in

acoustics for a number of reasons. Even if some extensions have been made in a

effort to include specular reflections, radiosity is based on the assumption of ideal

diffuse reflection but in acoustics specular reflections are far more common than

diffuse reflections. Furthermore, as sound waves are coherent modelling phase is

important and the time dependence must be introduced. All this makes radiosity

more difficult to implement and computational demanding in acoustics.

B.4. Image tource

The image source method [12], [23], [24], improves the ray tracing method. The

acoustic source is interactively mirrored to the other side of all reflectors that con-

stitute the environment (see Figure B.3 (a)). The mirrored sources are called image

sources. Image source determines acoustic field in an opposite portion of space

(with respect to the reflector used as mirror). Once the position of the receiver is

known, with a test we find acoustic paths linking image sources with the receiver.
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Doing so, unlike ray tracing, all specular paths up to the desired reflection order

are found. It is extremely efficient for simple, rectangular rooms, like the one in

Figure B.3 (a). However, in a densely occluded environments it turns to be quite

demanding from computational point of view. In presence of more complicated ge-

ometries the problem is that the source is interactively mirrored to the other side of

all reflectors generating approximately (n − 1)r image sources (n being the number

of reflectors and r the reflection order) many of which are actually invisible, either

from a reflected source (i.e. do not generate any acoustic field) or receiver (see some

examples in Figure B.3(b), (c) and (d)). As a consequence, time and memory is

consumed in futile calculations (on one hand, the number of image sources grow

exponentially with the increase of the reflection order, but on the other hand, in

complex environments only a small portion of them is actually visible making most

of the effort vain). Furthermore a demanding test is required to assess the visibility

of all traced image sources, i.e. all image sources should be tested for occlusion by

all potential occluders, which combined with high number of reflectors and image

sources makes image source method computationally demanding in complex envi-

ronments. Another drawback of the image source method is that it models only

specular reflections.

B.5. Beam tracing

Among the geometric solutions particularly efficient is that of beam tracing [25],

[26], [27], [28], [13]. This method was originally conceived by Hanrahan and Heckbert

[26] for applications of image rendering, and was later extended by Funkhouser et

al. [14] to the problem of audio rendering. The beam tracing method takes advantage

of spatial coherence, i.e. it groups rays into compact bundles called beams. All

reflectors are assumed to be piecewise planar, and all the rays originated from a

source, which hit the same planar region of the reflector are bundled up into beams

(see Figure B.4 (a)). The interactive mirroring of the source is done only with respect

to the reflectors that a beam encounters during the propagation. In this way the

time for the construction of the beam data structure is reduced (compared to image

source method in which we construct a similar structure mirroring all image sources)

and a minimal number of image sources is computed.

Observing Figure B.4 (a) and (c), we see how every time a beam encounters a

reflector, the portion of beam that illuminates that reflector splits into a set of sub-
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Figure B.3.: Image source method: (a) image sources arranged in grid pattern; (b) not all reflections produce
valid image sources; (c) not all image sources obtained mirroring the source are actually visible from the
receiver; (d) valid/invalid and visible/invisible image sources.

beams, each corresponding to a different planar portion of the encountered reflector.

As they bounce around in the environment, beams keep branching out and attenu-

ating until they die out. The beam-tracing method organizes and encodes this beam

splitting/branching process into a specialized data structure called beam tree, shown

in Figure B.4 (b) and (d). The construction of the beam tree is based on an iterative

visibility evaluation process, usually based on spatial subdivision. It is quite appar-

ent from the above discussion that beams can be cast only with the knowledge of

the source location and the environment’s geometry. When the receiver is specified

as well, the paths linking source and receiver can be determined. Every time a beam

falls onto the receiver, we have a path linking source and receiver. The path can

be readily determined using the sole information stored in the beam tree. In fact,
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given the location of the receiver, we can immediately determine which beams illu-

minate it, just through a look-up of the beam tree data structure. Thus, the beam

tracing approach enables a real-time rendering of sounds in complex environments

even when receivers are moving.

Observe the example of beam tracing shown in Figure B.4(a). We can notice

that the beam b3 illuminates only partially the reflector r3. If we use the image

source method instead of beam tracing, we compute only the image source obtained

mirroring the source with respect to r3, and eliminate the paths going from the non

illuminated region of r3 only during the path tracing phase. Using beam tracing we

eliminate occluded paths during the construction of the beam tree. Image sources

that are never visible are automatically eliminated in this process and thus we avoid

successive tests for evaluation of effective visibility of computed image sources nec-

essary in the image source method. In Figure B.4(b) the corresponding beam tree

is visualized. Figures B.4(c) and (d) show the splitting process of the beam b3.

The main disadvantage of the beam tracing method is the fact that if the source

moves the beam tree has to be recalculated, which is generally a computationally

demanding task. Beam tracing method turns out to be also quite complex to im-

plement. Furthermore, the beam tracing was originally conceived for the modelling

of specular reflections only. Early reflections are known to carry some information

on the geometry of the surrounding space and on the spatial positioning of acoustic

sources. It is in the initial phase of reverberation, in fact, that we receive the echoes

associated to the first wall reflections. Other propagation phenomena, such as dif-

fusion, transmission and diffraction tend to enrich the sense of presence in “virtual

walkthrough” scenarios, especially in densely occluded environments. Therefore,

some extensions of beam tracing method were proposed to account for other prop-

agation phenomena. Funkhouser et al. [29], for example, account for diffusion and

diffraction through a Bidirectional Beam Tracing process. When the two beam

trees that originate from the receiver and the source intersect on specific geometric

primitives such as edges and reflectors, propagation phenomena such as diffusion

and diffraction could take place. A different approach was proposed by Tsingos et

al. [151], who proposed to use the Uniform Theory of Diffraction (UTD) [152], de-

rived from the Geometric Theory of Diffraction (GTD) [153], by building secondary

beam trees originated from the diffractive edges. This approach is quite efficient, as

the tracing of the diffractive beam trees can be based on the sole geometric config-

uration of reflectors. Once source and receiver locations are given, in fact, a simple
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Figure B.4.: Beam tracing: (a) initial splitting of source’s acoustic field into beams; (b) corresponding beam
tree; (c) the splitting process of the beam b3; (d) construction of the beam tree.

test on the diffractive beam trees determines the diffractive paths.
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Appendix C
Beamforming techniques

I
n this Appendix we consider both data-independent and statisti-

cally optimum beamformers, namely the delay-and-sum (DAS)

and the Minimum Variance Distortionless Response (MVDR) beam-

formers [91], [76], [77]. For the case of wideband sources we describe

the wideband MVDR beamformer [75]. Notice that the subspace

methods such as the Multiple Signal Classification (MUSIC) and

Min-Norm methods [154, 155, 156, 157] can not be applied if the

signals are coherent (for more details see [76] 6.4.3 and 6.4.4), which

is the case when we consider acoustic reflections from the boundaries

of the environment.

Given an wideband source and an M -element microphone array, the signals ac-

quired by the sensors are xj(t), j = 1, . . . , M . The first step is to operate a fil-

tering in order to obtain xj(t, fk), k = 1, . . . , K, where fk is the kth central fre-

quency of the kth sub-band. Such signals are stacked into the vector x(t, fk) =

[x1(t, fk), ..., xM (t, fk)]T .

We then compute the autocorrelation matrix

R̂k =
1

T

T∑

t=1

x(t, fk)x(t, fk)H .

The pseudospectrum of the kth sub-band is

Pk(θ) = hH(θ, fk)R̂kh(θ, fk), (C.1)
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where h(θ, fk) is the spatial filter of the given beamforming technique for frequency

fk and direction θ.

C.1. Delay-and-sum beamformer

The pseudospectrum of a delay-and-sum (DAS) beamformer is obtained by sub-

stituting h(θ, fk) = a(θ, fk) into (C.1), which yields

Pk(θ) = aH(θ, fk)R̂ka(θ, fk),

where the array steering (propagation) vector a(θ, fk) is given by

a(θ) = [a1(θ, fk), a2(θ, fk), ..., aM (θ, fk)]T

=
1√
M

[
1, ej2πfs(θ), ..., ej(M−1)2πfs(θ)

]T
, (C.2)

and fs(θ) denotes the spatial frequency that is dependent on the angle of arrival θ,

temporal frequency fk, sound speed c, and array geometry.

The main advantage of the DAS beamformer is that, as a data-independent beam-

former design that maximizes SNR for spatially white noise, it is robust against

microphone self-noise and array mismatches, i.e., the deviations in the positioning

of the microphones. On the other hand, it provides limited spatial selectivity at low

frequencies.

C.2. MVDR beamformer

In order to improve spatial selectivity for low and middle frequency ranges, su-

perdirective beamformers can be used. MVDR (called also Capon method) is such

a statistically optimum design, where the output variance (or power) is minimized

subject to a distortionless constraint on the response of the beamformer in the look

direction [158]. The closed-form solution of the array weight vector is given by

h(θ, fk) =
R̂−1

k a(θ, fk)

aH(θ, fk)R̂−1
k a(θ, fk)

. (C.3)

Substituting (C.3) into (C.1), the measured MVDR pseudospectrum for the kth
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sub-band is

Pk(θ) =
1

aH(θ, fk)R̂−1
k a(θ, fk)

. (C.4)

The wideband MVDR pseudospectrum [75] is given by

P (θ) =
K∏

k=1

Pk(θ).

C.3. Focusing matrices and frequency smoothing

Superdirective beamformers are highly sensitive to the microphone self-noise and

array errors, it is therefore desired to control the robustness of the design, which can

for instance be achieved using the diagonal loading with the frequency-dependent

loading factor obtained from iterative design schemes [159]. In addition, for extrac-

tion of room reflection signals that have low energy and are strongly correlated with

the direct-path signal, focusing matrices and frequency smoothing techniques can be

used to alleviate the problem of ill-conditioning of the microphone autocorrelation

matrix R̂k, thereby increasing the robustness of this data-dependent beamformer

for coherent sources (see [160, 102] for a detailed discussion). The purpose of using

focusing matrices is to map the signal space at all frequency bins fk from the range

[f1, fK ] to a common reference frequency f0 ∈ [f1, fK ], i.e.,

T(θ, fk)a(θ, fk) = a(θ, f0).

If the Directions Of Arrival (DOAs) are known in the given scenario, the unitary

focusing matrices T(θ, fk) [75] can be applied

T(θ, fk) = Diag







a1(θ, f0)

a1(θ, fk)
,

a2(θ, f0)

a2(θ, fk)
, . . . ,

aM (θ, f0)

aM (θ, fk)





, (C.5)

where Diag([·]) denotes the diagonal matrix with the elements of [·] on the main

diagonal and am(θ, fk) denotes the mth element of the steering vector a(θ, fk). Us-

ing (C.5), the focused and frequency smoothed measured autocorrelation matrix is
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C. Beamforming techniques

finally obtained as

R̂ =
K∑

k=1

T(θ, fk)R̂kTH(θ, fk) (C.6)

= a(θ, f0)R̂SaH(θ, f0) + R̂Q, (C.7)

where R̂Q =
∑K

k=1 T(θ, fk)R̂Q(fk)TH(θ, fk) and R̂S =
∑K

k=1 R̂S(fk), where R̂S(fk)

and R̂Q(fk) denote the source and noise power spectral densities, respectively. Sub-

stituting (C.6) into (C.3) and (C.1), the measured MVDR pseudospectrum can be

estimated.

The MVDR design offers high directivity even at low frequencies and automatic

null placement, which is beneficial for automatic suppression of the direct path and

strong reflection signals. However, as a signal-dependent superdirective beamformer,

the robustness issues mentioned above need to be addressed in order to deal with

imperfect real microphone arrays and coherent reflection signals.
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Appendix D
Least-squares beamshaping based on

singular values truncation

I
n this Appendix we review the beamshaping technique presented

in [111]. The acoustic beams (whose specifications are computed

via beam tracing) are rendered by an array of loudspeakers using a

least-squares (LS) approach with reference to a rendering equation

that specifies the wavefield profile over a prescribed listening area.

The spatial filters that produce the loudspeaker signals are obtained

from the rendering equation through SVD.

Φ

a1

a2

an

aNs

p1

p2

pM

α
n

θ

Figure D.1.: Geometry of the proposed rendering system.

According to Figure D.1, a set of ideal omnidirectional loudspeakers (i.e., point

sources) are placed at arbitrary positions p1, . . . pM in an anechoic room. A set
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D. Least-squares beamshaping based on singular values truncation

of control points a1, . . . aN is defined within the listening area that is depicted as

the grey-shaded circle. The goal is to reproduce the acoustic beam generated by

a virtual source located at s emitting towards the direction θ and with angular

aperture φ. The acoustic source is constrained to be outside the listening area (note

that some techniques for the rendering of sources surrounded by loudspeaker arrays

have appeared in the literature [161, 162]). The Fourier transform Pd(ω, an) of the

desired wave field at the nth control point is therefore given by

Pd(ω, an) = gω(an|s)Θ(θ, φ, αn)S(ω) ,

where

gω(an|s) =
e−j ω

c
‖s−an‖

4π‖s − an‖
is the Green’s function [131] from s to an, ω being the frequency expressed in radians;

and Θ(θ, φ, αn) is an angular function describing the directivity pattern of the beam.

With reference to Figure D.1, αn is the angle under which the virtual source is seen

from an; and S(ω) is the Fourier transform of the source signal. The goal of the

beam shaping engine is to reproduce the effect of the virtual source at all the listening

points by means of the loudspeakers. In other words, the aim is to find the vector

of complex coefficients hω applied to the loudspeakers, which satisfies the rendering

equation

rωS(ω) = GωhωS(ω) , (D.1)

where

Gω =




gω(a1|p1) . . . gω(a1|pM )

...
. . .

...

gω(aN |p1) . . . gω(aN |pM )




is the propagation matrix from each loudspeaker to each control point. The vector

rω encodes the desired response at all the control points, and it is therefore defined

as

rω = [gω(a1|s)Θ(θ, φ, α1), . . . gω(aN |s)Θ(θ, φ, αN )]T .

In other words, eq.(D.1) imposes that the spatial response of the loudspeaker array

equals the desired soundfield. However, no exact solution exists in general, and the
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best solution in the least-squares sense is given by

ĥω = G+
ω rω = (GH

ω Gω)−1GH
ω rω .

A smooth beam-pattern can be obtained by choosing N >> M and specifying

Θ(θ, φ, αn) as a Gaussian function [8]. Unfortunately, in some cases the matrix

GH
ω Gω is ill-conditioned, and a reconditioning step is needed in order to provide

feasible values to the coefficients ĥω. As noticed in [111], a SVD-based reconditioning

technique reveals to be suitable for given purposes. More sophisticated techniques

exist, which obtain a better re-conditioning, such as those based on the Tikhonov

regularization [163, 164], or based on the L1-norm minimization of the residuals of

the rendering equation (Lasso technique) [136]. These techniques could guarantee

an improved accuracy over the described one. However such methods are based

on an approximation of the inverse of Gω and the inversion procedure depends on

rω, thus requiring a demanding computation for every position of the virtual image

sources and whenever the virtual source moves.

The spatial filter ĥω is sampled over a prescribed set of frequencies ω1, ..., ωk, ..., ωK

to obtain the matrix

H = [ĥ(ω1), . . . , ĥ(ωK)] ,

whose dimensions are M ×K. The mth row of H corresponds to the transfer function

at frequencies ω1, . . . , ωK to be applied to the mth speaker in the array in order to

render the presence of the desired acoustic beam. On the matrix H an interpolation

is applied on the frequency axis in order to obtain the transfer function over a

new and more densely populated set of frequencies ω1, . . . , ωK ′ , K ′ > K. More

specifically, a parabolic interpolation on the amplitude and a cubic interpolation on

the phase are accomplished. The matrix resulting from this interpolation is HK ′ .

The IFFT is applied on each row of HK ′ to obtain the discrete time impulse responses

ĥm(t), m = 1, . . . , M , which are the filters to be applied to the loudspeakers in order

to render the desired beam.
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