
POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

Ph.D. Program in Information Technology - XXV Cycle

DESCRIPTION LOGICS AND

SEMANTIC QUERY LANGUAGES IN

ROBOTIC APPLICATIONS

Doctoral dissertation of:

Nicola Vitucci

Advisor:

Prof. Giuseppina Gini

Tutor:

Prof. Andrea Bonarini

Doctoral program supervisor:

Prof. Carlo Fiorini

XXV cycle

Random actions may inspire
new thinking attitudes

We shall not cease from exploration,
and the end of all our exploring

will be to arrive where we started
and know the place for the first time.

(T. S. Eliot)

Take wrong turns. Talk to strangers.
Open unmarked doors. And if you see

a group of people in a field, go find out
what they’re doing. Do things without
always knowing how they’ll turn out.

(xkcd.com)

Contents

Summary VII

Acknowledgements IX

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 4
1.3 Structure of the thesis . 4

2 Description logics and design of knowledge bases 7
2.1 State of the art . 7

2.1.1 The OWL family . 8
2.1.2 OWL 2 Profiles . 11
2.1.3 Fuzzy and probabilistic extensions 12

2.2 Using knowledge representation technologies 14
2.2.1 Why to use semantic languages? 14
2.2.2 The use of DLs in robotic-related fields 15

2.3 Design issues . 16
2.3.1 Representation . 16
2.3.2 The role of reasoning 24
2.3.3 Expressivity of the logic 28
2.3.4 Knowledge base management 32
2.3.5 Queries . 33

2.4 Summary . 34

3 Description logics for object representation 35
3.1 State of the art . 36

3.1.1 Recognition-by-components 37
3.1.2 Shape description and modelling 37
3.1.3 Use of knowledge . 40

3.2 Issues in part decomposition 42

I

3.2.1 Conceptual issues . 42
3.2.2 Practical issues . 42

3.3 Implementation . 44
3.3.1 Datasets . 46
3.3.2 Knowledge base . 50

3.4 Experiments . 51
3.4.1 Examples of queries 51
3.4.2 Evaluation . 58

3.5 Discussion . 58
3.5.1 Future work . 62

4 Description logics and grasping 63
4.1 State of the art . 63
4.2 Representation issues . 65
4.3 Implementation . 67

4.3.1 Dataset . 67
4.3.2 The grasping ontologies 67
4.3.3 Use grasp features to describe objects 70
4.3.4 Use object features to retrieve grasps 80

4.4 Experiments . 81
4.5 Discussion . 90

4.5.1 Future work . 91

5 Description logics and cognitive architectures 93
5.1 State of the art . 93

5.1.1 The POETICON++ project 96
5.2 Issues in semantic memory design 97
5.3 Implementation . 98

5.3.1 PRAXICON overview 98
5.3.2 Requirements . 100

5.4 Experiments . 102
5.5 Discussion . 109

5.5.1 Future work . 110

6 Conclusions and future work 111
6.1 Comparison with KnowRob 113
6.2 Future work . 114

Bibliography 117

List of Figures

2.1 Examples of membership functions. 13
2.2 Interpretation issues on structural definitions. 19
2.3 Examples of necessary, sufficient and equivalence conditions. . 22
2.4 Example hierarchy. 26
2.5 Seaside image with segmentation. 28
2.6 Example of property chain. 31

3.1 Biederman’s geons. 38
3.2 Marr’s structural representation. 39
3.3 Objects with their topological graphs. 45
3.4 Shapes from the AIM@SHAPE dataset. 47
3.5 Example of an object with all the bounding boxes. 48
3.6 Example of an object with all the bounding ellipsoids. 49
3.7 Query 1: Objects having at least n parts. 53
3.8 Query 2: Oblong parts. 53
3.9 Query 3: Objects having one part connected to a big part. . . 54
3.10 Query 4: Objects with parts connected to at least other 6 parts. 54
3.11 Objects having the same topological graph. 55
3.12 Query 5a: Objects with the same topology. 56
3.13 Query 5b: Objects with the same topology and different ge-

ometric constraints. 57
3.14 Query 6: Class retrieval using number of matching examples. 59

4.1 Untransformed and transformed trajectories of the finger tips. 69
4.2 Example of the two grasping ontologies. 71
4.3 Distances between finger tips for the Large Diameter grasp. . 73
4.4 Representative grasp measures. 77
4.5 Example of generated membership functions. 78
4.6 Membership functions related to the object shape. 79
4.7 Objects used in the experiments. 83

III

5.1 Example of PRAXICON relations and their arrangement. . . 100
5.2 Object models. 107
5.3 Graphical representation of the results of the queries. 108

List of Tables

2.1 Basic logics, their extensions and some common aliases. . . . 9

3.1 Results for objects having n parts with varying n. 60
3.2 Results of the example queries. 60

4.1 Objects used in the grasping experiments with their sizes. . . 68
4.2 Measures for each grasp. 73
4.3 Errors between estimated and real measures. 75
4.4 Chosen representative grasps. 77
4.5 Grasp names abbreviations. 83
4.6 Airplane. 84
4.7 Bearing. 85
4.8 Chair. 86
4.9 Table. 87
4.10 Cup. 88
4.11 Vase. 89

5.1 Objects real sizes. 107

V

Summary

The use of semantic technologies in robotics has seen a growing trend in
the last decade, partly because of the popularity and the support provided
by well-grounded research in this field, partly because of a partial return of
robotics to its AI roots. Each application in the robotic domain requires a
peculiar representation of knowledge, specific reasoning services and suitable
storing and querying facilities depending on the task at hand. In many cases
a logic-based representation can be advantageous and provide more flexibil-
ity, while in other cases it can be either less efficient or less scalable with
respect to other state-of-the-art approaches; therefore, a thorough analysis
of the requirements of a task and of the advantages such representations can
offer has to be performed prior to each application.

The purpose of this thesis is twofold. From a robotics point of view
its aim is to discuss how semantic technologies, especially description logics
and semantic query languages, can be used for robotic-related tasks: we
will discuss applications within different fields such as shape modelling and
retrieval, computer vision, manipulation, linguistic and cognitive modelling
along with some examples in order to highlight the current issues and the
possible challenges. From a knowledge representation point of view, on the
other hand, this thesis provides an analysis of several less common domains,
focusing then on the balance between the expressivity needs of a represen-
tation and its scalability requirements, which all together drive the choice
of the tools to be used.

VII

Acknowledgements

Like every long project, this work would have been hardly possible without
the support of many people I would like to thank here. First of all, of
course, a big “Thank you” goes to my advisor, Prof. Giuseppina Gini, for
she gave me all the freedom and much good advice I needed for my work.
Another “Thank you” goes to Mario, as somehow he always found the time
to think and discuss about my ideas. I also want to thank my reviewers,
Prof. Stefano Caselli and Dr. Moritz Tenorth, for the time they found to
read the thesis and writing their precious comments. As a part of the thesis
focuses on my experience abroad, I want to thank the CAS-CVAP lab in
Stockholm for hosting me (thanks Danica, Jeannette, Marianna, Andrzej,
Lazaros, Magnus, Alessandro and Marin) and the CSRI group in Athens for
the many interesting discussions and the very inspiring atmosphere I could
be a part of (so thanks Katerina, Giorgos, Panagiotis, Eirini, Argyro and
Dimitris).

A PhD cannot be a lonely journey, thus a friend and colleague such as
Flavio is exactly what you need for making it a performance more than a
work: attending conferences could have never been so “interesting” (and
possibly risky for the Ministry of Foreign Affairs) without him. I think I
should thank him a lot and say he is a great researcher, but this would inflate
his ego too much. I also want to spend some words about all my AIRLab
friends for sharing offices, beers, houses and whatever was available at the
moment, so: thanks Martino, Simone, Fabio, Luigi, Davide and Giulio for
the good time and the “light” lunches spent together.

They say there is no place like home (or localhost, for that matters),
thus a mention to Alessandro (the Source of Countless Ideas), Gerardo (the
Guru), Michele (the Master of Being on Time), Ettore (the Wise) and Gi-
ampaolo (the Pragmatist) is absolutely necessary as, when I needed to dis-
cuss something or just to rant about it all, they were all there to listen to
me and to suggest me the dos and don’ts. Thanks guys.

My life in Milan would never have been so interesting without my “good

IX

old friends” Alessandro, Sante, Massimo, Marco, Graziano, Graziella, Anna,
Elena, Clara: the countless dinners and evenings out make me feel indebted
with all these people for the hours of fun had together. Without you, I’d
probably be a sad man right now. Thanks also to my “good old class-
mates” Danilo (and Desirèe), Fabio, Iacopo, Beppe (and Emanuela), Emil-
iano (and Kristina) for the get-togethers to remember the “good old times”,
and thanks to Marta for the “ranting together” evenings.

I have no problems in admitting that I would not have finished my PhD
without the support of people like Marco, Maddalena, Mauro and Maria
Rosa: their bets on my future (either on success or failure) and all the
candies I robbed from them (not to mention the long conversations) made
everything easier and, especially, gave me a lot of good material for when
I’ll be writing my biography. And by the way, talking about concrete help,
Nadia saved so many times my... er... “day” that she deserves a mention on
her own.

A big loving “Thank you” goes obviously to my family, my parents and
my brother, and I guess this does not need any further explanations. As
for Raminta, I guess nothing would say more than Žalioji. And Labai ačiū,
probably.

Last, but not least, thanks to the taxpayers for having supported this
PhD.

My hope is that, in the years to come, I’ll be able to return all the people
I mentioned at least something of what they gave me.

Chapter 1

Introduction

Research in robotics has moved throughout several phases in its history:
the sense-think-act paradigm, where inputs from the sensors are used to
generate a plan which is then transformed into action, has been challenged
by a behaviourist approach, where the control system responds dynamically
to the changes in the environment by means of separate activities arranged
in layers. The main difference between these two points of view is in the
use of representations: while in the latter “the world is its best model”, the
former, being rooted in artificial intelligence, needs symbols, concepts and
reasoning abilities for building rich world models.

The interest in the behaviourist approach has been revived by recent the-
ories on the importance of embodiment and neuropsychological development
in robotics, so that sensing and acting are considered as tightly coupled and
the focus is shifted on the robot body and its perception, introspection and
proprioception; the study of this perspective is supported by the availability
of research platforms such as the iCub, which provide researchers some com-
mon grounds for developing and testing such theories. On the other hand,
approaches based on cognitive modelling focus more on the different aspects
of human intelligence such as the use of language, learning skills, general-
ization abilities and interaction with people; for this reason, the disciplines
involved in research on cognitive robotics are many and diverse.

We are now in a phase where AI-based approaches are being reinte-
grated, albeit with different claims than in the past: rather than relying on
purely symbolic approaches as the only models for intelligence, the current
perspective is now to adopt symbols as a support for integration of different
representations and as a way to code (and make readily available to robots)
what is called high-level knowledge, which is the basis of human communica-
tion and interaction. In order to serve to this purpose a symbolic system has

to interact with different sources of data, from the low level (such as data
coming from sensors) to the high level (such as linguistic representations,
plans, categories and so on); therefore, a symbolic representation should be
able to integrate such different channels of information and possibly act as
an interface among them.

Description logics [Baader et al., 2003] define a logic-based framework
for knowledge representation and reasoning which has received much atten-
tion in the last decade, the reason being their decidability property which
makes them more attractive with respect to traditional AI approaches (i.e.
theorem proving based on first order logic). As description logics provide a
unified formal approach to semantics, they have been used in many fields re-
lated to robotics for different kinds of applications along with semantic query
languages, which constitute the semantic counterpart of query languages for
databases.

1.1 Objectives

In this thesis we will discuss the issues related to the use of description
logics and semantic query languages in the robotic domain, analyzing use
cases from different yet related fields along with possible issues and examples
of solutions. We will focus in particular on the following aspects:

• Representation: as the knowledge base design is the first step to build
a logic-based framework, what do classes, instances and relations rep-
resent in the specific domain and how to structure them accordingly?

• Reasoning tasks: as semantic languages are commonly used because
of the reasoning facilities they offer, what kind of reasoning tasks are
expected to be performed within the specific domain?

• Expressivity: as there exists different reasoning engines and semantic
storage solutions which are optimized on specific logics, is there a min-
imum expressivity needed for the representation and reasoning tasks
to use?

• Knowledge base management: based on the expressivity of logic, the
reasoning tasks and the expected volume of data, what is the best
solution for storing the knowledge base and how new data is added?

• Queries: what is the expected type of query to execute on the knowl-
edge base and what are the languages to be used?

2

• Extensions: are any extensions to the standard description logics
needed for the specific application?

By focusing on such knowledge representation issues we aim to have a better
understanding of what does semantics mean in robotics and of the “level of
semanticity” we can expect to be useful within robotic tasks; additionally,
we analyze how different levels of information can be integrated by means of
semantics. More specifically, the fields we have explored are the following:

• object representation, where the main problem is on whether a repre-
sentation of an object based on part decomposition can be effectively
used and how it should be designed using a logic-based approach to
make it usable and scalable;

• grasping, where the main problem is on how to decide the possible
grasps to be performed on an object, given a geometric representation
of both the shape of a hand and the shape of the object itself in terms
of a fuzzy extension of description logics;

• cognitive architectures, where the main problem is on how to build
an embodied ontology to integrate different representations (from low-
to high-level) for concepts, using language as a guiding criterion to
structure the knowledge.

Our aim is therefore to discuss strengths and weaknesses of a logic-based
representation on different levels: in each chapter it will be shown what is
the amount of information provided respectively by humans (e.g. in defining
names for concepts, grouping criteria for parts and so on) and by raw data.
The long-term goal of this research is to obtain a suitable conceptual model
for integrating all the available sources of information, thus semantics is here
used as a means for achieving interoperability and for making the acquisition
of new information more structured and autonomous.

Language has a great deal of importance for “grounding” knowledge; as
we will see later, grounding perceptions directly to symbols via a “trans-
lation” does not provide a sufficient account of the neural and cognitive
processes underlying the low-level representation of entities, while language
provides some organizational principles to guide the acquisition, organiza-
tion and comparison of symbols. Knowledge representation formalisms such
as DLs are based on language because they are used for providing common
vocabularies in order to describe specific domains; thus, the integration of
human-understandable concepts makes resources for robots accessible by

3

humans; in fact, as a byproduct of our analysis of low-level information, we
built several resources which can be useful for humans as well.

1.2 Contributions

The main contributions of this thesis are:

• a review of the application of semantic technologies to the robotic do-
main (knowledge acquisition, object modelling, grasping, vision, lan-
guage processing and understanding, cognitive modelling);

• the identification and discussion of several aspects in the design of a
knowledge base to use in robotic-related tasks;

• the realization of a knowledge base of objects, where knowledge is not
only related to linguistic metadata but also to lower level character-
istics of the objects themselves (such as geometric features and part
decomposition);

• the definition and evaluation of a scalable logical framework for build-
ing graph queries using objects’ topology and geometry;

• examples of integration of different sources of information, providing
a test bench for state-of-the-art semantic resources (description logics
and their extensions, reasoners, query languages and engines, semantic
storage systems etc.);

• a discussion on the balance between the level of expressivity offered
by description logics and the scalability needed by application making
use of big quantities of data.

This thesis work brought to the publication of some papers [Vitucci et al., 2010a,
Vitucci et al., 2010b, Vitucci, 2011, Vitucci et al., 2012].

1.3 Structure of the thesis

The thesis is organized as follows: Chapter 2 introduces description log-
ics, their state of the art along with some extensions and the issues related
to the design of a knowledge base with a focus on robotic-related domains;
Chapter 3 deals more specifically with the problem of representing objects
using a logical formalism, highlighting conceptual and practical issues which
depend on the specific tasks the representation will be used for and provid-
ing an extended example of formalization and retrieval; in Chapter 4 some

4

extensions to description logics will be presented along with a possible appli-
cation to the manipulation domain, where a logic representation of objects
and grasps might be needed; in Chapter 5 some results of the application
of description logics to cognitive robotics will be shown, implementing a
knowledge base on top of an ongoing research on embodied linguistics and
its applications to robotics; finally, in Chapter 6 the overall results will be
discussed and evaluated and possible future works will be proposed.

5

6

Chapter 2

Description logics and design

of knowledge bases

Description logics (DLs) are a family of formal languages based on logics
used for knowledge representation. As they provide an expressive logical
formalism for structuring knowledge, DLs are mostly used for two tasks: to
achieve interoperability between different representations by providing com-
mon vocabularies and terminologies, as the Semantic Web aims to do, and
to perform inference, the process of extending existing knowledge about the
world by automatic reasoning on formal concepts. Since their introduction
in the 1980s as an alternative to frames and semantic network, DLs have
seen a huge research effort to make them expressive while retaining the prop-
erties which make them computationally viable, with the aim to make them
effectively usable for a variety of tasks.

The purpose of this chapter is to provide an overview of this formalism,
the main issues related to its use in the modelling of a general domain and
the possible applications to real-world domains related to robotics. We will
highlight some aspects which have to be carefully evaluated while building a
knowledge base, discussing each of them with examples from robotic-related
fields and drawing some conclusions and suggestions for modelling similar
tasks.

2.1 State of the art

The term description logics is used to denote a range of different logics, each
of them providing several constructs and a certain level of expressivity for
formalizing knowledge. Description logics are more expressive than proposi-
tional logic but less expressive than first order logic (FOL): this means that

FOL provides more “richness” or “flexibility” in expressing knowledge on
a domain, but this comes to the expense of an important property called
decidability.

A logical expression is said to be satisfiable if there exists an assignment
of truth values to its variables which makes the expression true; for instance,
the expression John is tall and thin is satisfiable because, if John is both
tall and thin, it is true. The problem of deciding whether an expression is
satisfiable is decidable in propositional logics, which means that, given an
expression in a propositional logic, it is always possible to say whether it
is satisfiable or not; this is not the case in FOL, where the problem is not
decidable. DLs make use of subsets of FOL in order to gain expressivity with
respect to propositional logics while retaining the decidability property.

DLs are used for building ontologies and knowledge bases, which can
be described as collections of statements regarding concepts (also called
classes), roles (also known as properties) and individuals (denoted also as
instances or objects) organized in a terminological box (or TBox, containing
axioms describing concepts and their relations such as Man v Person) and
an assertional box (or ABox, containing axioms describing individuals and
their relations with concepts and other individuals such as Man(John)).

One of the most important reasons to use DLs is that they can be used
to infer new knowledge through a process called reasoning by the means of
a semantic reasoner. More expressive DLs require more complex reasoning
algorithms; this is the reason why there exist different DL families, which can
become more or less complex depending on the constructs that are added or
removed. Table 2.1 shows the basic DL families along with their extensions
and some aliases.

2.1.1 The OWL family

Statements expressed in a DL can be represented as triples (data enti-
ties having the format subject-predicate-object) according to the RDF1 data
model and stored in relational databases or triple stores. RDFS2 and the
family of OWL3 languages are built on top of RDF and provide the addi-
tional expressivity needed for building complex ontologies. In particular,
the current standards OWL 2 DL3, OWL 1 DL4 and OWL-Lite4 are aliases
respectively for the logics SROIQ(D), SHOIN (D) and SHIF(D). The
last language has been introduced separately for building simple taxonomies

1http://www.w3.org/TR/rdf-primer/
2http://www.w3.org/TR/rdf-schema/
3http://www.w3.org/TR/owl2-overview/
4http://www.w3.org/TR/owl-features/

8

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl-features/

Logic Characteristics
AL atomic concept negation (¬C, where C is an atomic concept),

concept intersection (C u D), universal restrictions (∀R.C) and
limited existential quantification (∃R.>)

FL concept intersection, universal restrictions, limited existential
quantification and role restriction (R|C, roles having C as a
filler)

EL concept intersection and full existential quantification (∃R.C)

Symbol Meaning
E full existential quantification
U concept union (C t D)
C complex concept negation (¬D, where D is a generic concept);

includes U and E
H role hierarchy (R v S, where R and S are roles)
R inverse roles, intersection and union of roles etc., reflexivity and

irreflexivity, role disjointness; includes H
O restrictions where the restriction class is an individual (such as

RedObject ≡ hasColor.{red}) and nominals (enumerated classes
such as LowNumber ≡ {one, two, three} where one, two and
three are individuals)

I inverse properties (S ≡ R−)
F functional properties (if R is functional, an individual cannot

have more than one relation R with other individuals)
N cardinality restrictions (C ≡ > nR, C ≡ 6 nR, C ≡ = nR with

n > 0); includes F
Q qualified cardinality restrictions (e.g. C ≡ > nR.D,

C ≡ 6 nR.D, C ≡ = nR.D with n > 0); includes N
(D) the use of datatype properties, data values or data types (e.g.

strings, numbers etc.)

Alias Explanation
S alias for ALC+, i.e. an abbreviation for ALC (or equivalently

for ALUE) with transitive roles
FL− sub-language of FL without role restriction, also equivalent to

AL without atomic negation
FLo sub-language of FL− without limited existential quantification
EL++ alias for ELRO

Table 2.1: Basic logics, their extensions and some common aliases
([Baader et al., 2003]).

9

which would not need the complexity of OWL DL, but it has not received
significant attention in that the limited advantage it provides on complexity
does not justify the lack of most of the useful constructs which can be found
in OWL 1. A fourth language called OWL Full has been created to relax
several constraints posed by OWL DL, but differently from the other three
it is not decidable in that it mixes freely OWL and RDF(S) without enforc-
ing any distinction between classes, properties and instances or putting any
constraints on the axioms (e.g. in OWL DL cardinality restrictions cannot
be used on transitive properties, and individual equality can only be stated
between named individuals). OWL 1 has been replaced by OWL 2, which
is now the reference language for building ontologies.

RDF triples can be serialized using XML syntax: for example the axiom
Men are persons, represented as Man v Person in DL and as the triple
〈Man subClassOf Person〉, in RDF/XML becomes:

<owl:Class rdf:ID="Man">

<rdfs:subClassOf rdf:resource="#Person" />

</owl:Class>

while the axiom John is a man becomes:

<owl:NamedIndividual rdf:about="John">

<rdf:type rdf:resource="#Man" />

</owl:NamedIndividual>

Other serialization formats such as Turtle5 (the most common), N36 and
N-triples7 are available.

The use of RDF makes it possible to represent the relations among re-
sources as a graph, so that they can be queried using languages such as
SPARQL8, where the queries are expressed as problems of graph matching.
For instance, a query like Find all the individuals who are men will look like
the following:

SELECT ?i

WHERE {?i rdf:type myont:Man}

5http://www.w3.org/TeamSubmission/turtle/
6http://www.w3.org/TeamSubmission/n3/
7http://www.w3.org/2001/sw/RDFCore/ntriples/
8http://www.w3.org/TR/rdf-sparql-query

10

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/TR/rdf-sparql-query

where rdf and myont are namespaces, the “places” in which the description
of the resources Type and Man can be found.

Although it is possible to use SPARQL with OWL ontologies, a reasoner
has to be used first for the engine to be able to perform queries on the
inferred model. Furthermore, using SPARQL for queries on the TBox is not
trivial.

2.1.2 OWL 2 Profiles

Sometimes it is not necessary to make use of the full OWL 2, either be-
cause only a few constructs in addition to RDF(S) are needed or because
the application needs to be optimized for TBox or ABox reasoning. For
instance, a reason why to use OWL 2 RL instead of RDF(S) is that, in
addition to RDF(S) constructs, several OWL 2 constructs (namely intersec-
tion, union, existential and universal quantification, inverse properties) are
available, albeit with some limitations; if such constructs are necessary for
the application, a system capable not only to store the RDF(S) triples but
also to reason on this logic has to be chosen. This is the reason why, as we
will see later, the level of expressivity of a DL or of any of its fragments is
very important to be assessed having in mind the final application, because
it restricts the choice of reasoning engines (and possibly of storage systems)
that can have good performances or that can be used altogether.

In order to optimize the performances for specific applications, some
fragments of OWL 2 called profiles have been created selecting different
subsets of constructs:

• OWL 2 EL is based on EL++ [Baader et al., 2005, Baader et al., 2008]
and it is mostly used with large TBoxes and small (or empty) ABoxes,
as in the case of biomedical ontologies;

• OWL 2 QL is based on DL-Lite [Calvanese et al., 2007] and it is mostly
used for scalable query answering in large ABoxes with simple TBoxes;

• OWL 2 RL is based on Description Logic Programs (DLP)
[Grosof et al., 2003] and provides a kind of “compromise” be-
tween the expressivity of OWL 2 DL and the scalability required by
query answering tasks in large ABoxes.

The three fragments differ in the constructs that can be used within a sub-
sumption axiom of the kind C v D, where C and D are said to belong
respectively to the left side and to the right side of the subsumption; the
peculiarities can be summarized as follows (see [Krötzsch, 2012] for a more
detailed discussion):

11

• Intersection: always allowed but on the left side in OWL 2 QL;

• Union: never allowed but on the left side in OWL 2 RL;

• Negation: allowed only on the right side in OWL 2 RL/QL;

• Inverses: allowed in OWL 2 RL/QL but not in OWL 2 EL;

• Existential quantifiers: allowed completely in OWL 2 EL, with restric-
tions on the left side in OWL 2 QL, only on the left side in OWL 2
RL;

• Universal quantifiers: allowed in OWL 2 RL (on the right side) but
not in OWL 2 EL/QL.

When a construct is allowed only on one side, no equivalence axioms can be
built using it because an equivalence is a shortcut for a pair of subsumption
axioms, i.e. C ≡ D is a synonym for the couple of axioms 〈C v D, D v C〉;
this means that the equivalence axioms that can be written in OWL 2 QL
can only make use of the limited existential quantification (e.g. C ≡ ∃R.>),
while in OWL 2 RL they can only make use of concept intersection (e.g.
C ≡ D u E). To summarize,

“OWL EL has all features of OWL QL other than inverse
properties. Adding them makes all standard reasoning tasks
ExpTime-Hard.” ([Krötzsch, 2012, p. 64])

and

“All profiles also support datatypes and property hierarchies.
OWL EL and OWL RL further support equality, keys, nominals,
property chains, and Self (EL only).” ([Krötzsch, 2012, p. 67])

2.1.3 Fuzzy and probabilistic extensions

In order to deal with the limitations affecting the use of description logics
in real-world domains, and especially for dealing with vagueness and
uncertainty, several extensions have been proposed and developed such as
probabilistic description logics (see [Klinov, 2008]) and fuzzy description
logics (see [Lukasiewicz and Straccia, 2008, Bobillo and Straccia, 2008,
Stoilos et al., 2008]). While the former are based on the probability theory
the latter are based on fuzzy logics, which are many-valued logics (where
truth values can be more than the usual true and false) that usually make
use of linguistic variables to express assertions and to build rules without

12

(a) Crisp (b) Triangular (c) Trapezoidal

(d) Left shoulder (e) Right shoulder

Figure 2.1: Examples of membership functions used for defining concrete fuzzy
concepts.

using numbers, e.g. If temperature is very cold, then stop fan. Numeric
values are associated to variables such as “very cold” using membership
functions, which describe the degree of membership of a numeric value to
the sets denoted by all the variables (see Fig. 2.1).

It is important to point out that “vague” in this context is used not
in the sense of “unknown”, but rather in the sense of “flexible”: a fuzzy
formalization of knowledge is considered more “human-like” as it can make
use of concepts such as High and Low instead of exact numerical quantities,
very or little as truth-value modifiers and so on; furthermore, an important
characteristic of fuzzy DLs is that an assertion does not need to be “either
true or false”: depending on “how much” its components are true an asser-
tion can be “at least/at most this much true”, where “this much” is a real
value between 0 and 1 (this is the concept of best lower/upper truth-value
bound).

The state-of-the-art fuzzy reasoners available are fuzzyDL9 and FiRE10.
fuzzyDL reasons on f − SHIF , a fuzzy extension of the SHIF logic,
and provides several operators from the fuzzy set theory (such as t−norm,
t−conorm, negation and implication), constructs to define fuzzy sets having
an explicit membership function (called concrete fuzzy concepts, see Fig.

9http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
10http://www.image.ece.ntua.gr/~nsimou/FiRE

13

http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
http://www.image.ece.ntua.gr/~nsimou/FiRE

2.1), features (functional datatype attributes with a concrete range) and
weighted sums such as in the following example:

(implies

(and C

(w-sum (0.3 (some rel A)) (0.7 (some rel2 B))))

D)

which is a sufficient condition axiom (of the form A u B v C) to be inter-
preted as follows: if an object is an instance of a class C and is related to
objects belonging respectively to the classes A and B, giving some preference
to the latter relation, then it is considered to be an instance of class D (with
a certain degree of truth). A concrete example of the usage of weighted sums
can be the axiom A patch is considered a “clouded sky” if it depicts both a
portion of sky and some clouds, giving more importance to its “skyness’ :

CloudedSky ≡ Cloud0.3 u Sky0.7

FiRE, on the other hand, reasons on f−SHIN ; while its underlying logic is
more expressive, it lacks several of the fuzzy constructs provided by fuzzyDL
such as fuzzy assertions in TBox.

There exists also a fuzzy extension for RDF called URDF11 (not to be
confused with the URDF language for robotics mentioned in Sec. 2.2.2).

2.2 Using knowledge representation technologies

2.2.1 Why to use semantic languages?

Generally speaking, the advantages of using semantic languages such as
RDF and OWL, along with powerful query languages such as SPARQL and
SPARQL-DL, are several:

• not only data instances but also the data model can be queried, which
means that the relationships among data can be discovered and ex-
tended by means of suitable queries;

• several knowledge bases can be queried with a single simple query,
which can be seen as a graph instead of a series of joins;

11http://urdf.mpi-inf.mpg.de

14

http://urdf.mpi-inf.mpg.de

• it is possible to make use of structured and semi-structured data;

• it is not necessary to explicitly encode all the domain knowledge, for
a well-structured knowledge base can infer new facts with the use of a
semantic reasoner.

In order to make use of such advantages, a knowledge base has to be “well
built”: if it misses any axioms or some of the axioms are wrong, the inference
process will give useless, unexpected, wrong or no results at all; on the other
hand, if it is well designed, it can produce some interesting facts or be used
to check that all the constraints are met and data are consistent.

The design of a knowledge base using DLs requires a solid understanding
of their roots in logics; in fact, misunderstandings and misconceptions of the
logical foundations can cause errors in the formalization or give false expec-
tations on the results. As the DL paradigm is different from the paradigm
of databases, some attention has to be paid in the use of query languages as
well.

2.2.2 The use of DLs in robotic-related fields

Semantic technologies have seen an uprise in robotic-related fields such as
hardware description, navigation, object description, localization and recog-
nition, manipulation, planning and so on. Some recent efforts include:

• KnowRob [Tenorth and Beetz, 2009, Tenorth and Beetz, 2012], a
framework including common concepts related to robots and knowl-
edge processing facilities, which will be discussed more in detail
later;

• RoboEarth [Waibel et al., 2011], a database where information about
objects, actions and environments are gathered and can be exchanged
among robots with the aim of building a “WWW for robots”;

• the OpenRobot Commonsense Ontology (ORO) [Lemaignan et al., 2010],
which is based on OpenCyc [Lenat, 1995] and aims at formalizing
some common sense knowledge useful for robotic applications;

• SRDL (Semantic Robot Description Language [Kunze et al., 2011]), a
semantic version of URDF (Unified Robot Description Format, used
in ROS12) for describing the structure of a robot;

12http://www.ros.org/wiki/urdf

15

http://www.ros.org/wiki/urdf

• OUR-K [Lim et al., 2011], a unified knowledge base for robotic tasks
with the aim of bridging high-level and low-level data in a unique
framework.

The use of such technologies has spawned several discussion boards and
panels, such as the Autonomous Robots Ontology Subgroup of IEEE RAS13,
in which standards and objectives for semantic languages and knowledge
representation for robotics applications are discussed.

Several works deal with other aspects of robotics, such as ur-
ban search and rescue [Schlenoff and Messina, 2005] and planning
[Hartanto and Hertzberg, 2009]; there exists also a whole body of
work in computer vision and graphics applications, from low-level data
description to high-level scene interpretation and object representation;
such applications will be discussed in the next section and in Chap. 3.

2.3 Design issues

In this section we will discuss the requirements and the problems inherent
to the use of semantic technologies with a focus on robotic-related fields.
We will highlight some criteria which will guide the design process for the
examples discussed in the next chapters.

2.3.1 Representation

The first aspects to evaluate when building a knowledge base are what to
represent and how. As we already mentioned, the core concepts in knowl-
edge representation are classes (or concepts), instances (or individuals) and
properties (or relations); to avoid any misunderstanding, it is useful to re-
member that a class is a set (in mathematical sense) of instances, which
might be related among each other through binary properties; thus, every
operation involving classes is applied to sets of objects, while operations on
instances are applied to single elements.

Classes or instances?

The use of classes and individuals is a common matter of debate while
designing a knowledge base: down to which level of detail should the model
be described by classes? From which level do the instances “begin”? How
should classes and instances be represented?

13http://aro.svn.sourceforge.net

16

http://aro.svn.sourceforge.net

It is of course different to say that All the tables have four legs and The
table in my kitchen has four legs, because the former is a feature of (or
constraint on) all the tables within the domain, while the latter is a feature
of a specific table. Extending this example, we might have two different
representations of a table:

1. Table ≡ =1 hasTop.(RectangularShape t RoundShape) u
=4 hasLeg.(LongObject u SquareBase)

2. hasTop(table, top), SquareShape(top), hasLeg(table, leg1),

hasLeg(table, leg2), hasLeg(table, leg3), hasLeg(table, leg4),

LongObject(leg1), SquareBase(leg1), LongObject(leg2), SquareBase(leg2),

LongObject(leg3), SquareBase(leg3), LongObject(leg4), SquareBase(leg4)

The first form provides a model for an object to be a table, thus saying
that a table has to have a top, which can be either rectangular or round14,
while the second form gives facts that are known about a specific table, thus
stating that a certain object called table is known to have a square top, but
there is nothing to prevent it to have a round or triangular top (or even to
have more than one top), if there are no restrictions on the class to which
it belongs.

The second form can be interpreted not only as a description of a specific
table (e.g. the table with number #1 in a restaurant): the instance table

might also be representing a generic table having such attributes. Although
in this case it would not be possible to perform any inference on unknown
objects to decide whether they are tables or not (as table is not a class),
another instance such as circularTable would represent a different kind of
table with different attributes which do not need to (or cannot) be known
beforehand.

Terminological axioms, when they do not merely define a hierarchy of
concepts, can be used as consistency checks: if tables have to have exactly
four legs and a specific instance of a table is said to have five, the knowledge
base will become inconsistent; this means that, provided that the remaining
knowledge in the model is correct, the information on the affected instance
is not valid and has to be removed. Additionally, TBox axioms can be used
to infer some “general” knowledge related to whole classes of objects: for
instance, if the class of stable objects is described as the class of objects
having at least two legs, tables as described before will be inferred to be

14We can assume that there are no other possibilities and that the two shapes are

different, i.e. the two classes are disjoint.

17

stable objects, and this will hold for all the instances of the class (it will be
intrinsic to the definition of the class).

On the other hand, instances can be used like entries in a database, each
one having its own attributes: ABox queries can be executed to retrieve from
the knowledge base objects having the attributes of interest. For instance,
if we are looking for objects having four long square-based legs and a square
top, the instance table will be retrieved; we will discuss in more detail this
kind of queries in 2.3.2.

A common choice in robotic applications is to use concepts to represent
classes of objects (such as the class Cup as the set of all the cups) and
individuals to model single objects (e.g. cup1 is a specific cup on the desk,
having its own size, weight and so on).

Structural descriptions

Complex concepts like A table has four legs and a surface and A table is
either made of wood or of plastic can be formed using intersection, union
and other available constructs. It is anyway important to note that concepts
can only have a tree-like representation in OWL, which means that axioms
such as A table has four legs parallel to each other cannot be expressed,
because an axiom like Table ≡ =4 hasPart.(Leg u =3 parallelTo.Leg) would
have other models different from the expected one (Fig. 2.2).

More in general, a TBox formalization becomes difficult to be written
correctly if it has to include parts (both direct and indirect), mereotopology
axioms, constraints making use of reflexive and transitive roles and so on
(see [Keet and Artale, 2008, Varzi, 2007]), the main problems being related
to the complexity of reasoning on the needed logic and, mostly, in the logical
correctness; in the robotic domain this can be a concern when attempting
to model places, objects or kinematic chains as classes because, as it is
shown in Fig. 2.2, the results can be different than expected. In these cases
structural information about objects is not only difficult to formalize, but
it also requires a highly expressive logic; thus, different formalisms (such
as SWRL/DL-safe rules15 and description graphs [Motik et al., 2008]) or
different representations (e.g. in terms of instances) are needed. For more
examples and a detailed discussion on the problem of formalizing structures
in OWL, see also [Motik et al., 2008, Hastings et al., 2010].

15http://www.w3.org/Submission/SWRL/

18

http://www.w3.org/Submission/SWRL/

Figure 2.2: Interpretation issues on structural definitions. Two possible models for
Table ≡ =4 hasPart.(Leg u=3 parallelTo.Leg) are represented.

Level of detail

Another problem often arising in the formalization of knowledge is
the level of detail down (or up) to which information can be rep-
resented. As we have mentioned, there are several works in the
computer vision research field in which ontologies and DLs are
used for object recognition, classification, description and so on. In
[Falomir et al., 2011, Straccia, 2009, Hudelot et al., 2008, Bloch, 2006] a
formal approach (possibly extended with the use of fuzzy sets) is used for
building higher level concepts directly from low-level data. Research on
qualitative spatial reasoning has been carried in many works by Bennett
[Bennett, 2011, Mallenby and Bennett, 2007, Bennett, 2002] and Cohn
[Bennett et al., 2000, Cohn et al., 2006, Cohn et al., 1993]. In these fields,
the main problem is to find the maximum level of detail such that knowledge
can be grounded directly and conveniently on input information such as
visual data.

For instance, if a classifier can recognize only edges or surfaces, higher
level knowledge should be built on top of this information; if, on the contrary,
it is able to provide higher level labels, it is important to know down to what
level of detail they can be used to discriminate objects. Another example
comes from object recognition tasks, where an object classifier can provide
different levels of classification for single objects (labels can be like “box”,
“cereal box”, “SpecificBrand

TM
cereal box”, “SpecificBrand

TM
open cereal

box” and so on, from the least to the most specific); depending both on

19

how specific a label can be and on what kind of task has to be performed,
the domain knowledge should be formalized accordingly. In the example, if
the classifier can distinguish cereal boxes having different brands, it might
be useful to have a class for each brand, all of them being subclasses of
a CerealBox class (and, on an upper level, of a Box class); on the other
hand, if the classifier can only discriminate boxes from bottles, it might be
unnecessary to create more subclasses of such classes as they would be built
on an arbitrary basis.

Red, hasColor.Red or hasColor.{red}?

There are several alternatives for expressing that an entity has a certain
property, for example to state that an object is red. The three mentioned
forms are different in terms of modelling and expressivity, so the choice
among them has to be performed at the beginning because of the constraints
they might pose on the reasoner and on the complexity of the representation.

From a modelling perspective, the difference among these formalizations
has been explained in the OntoClean methodology [Guarino and Welty, 2004]:
while a class Red of red objects can be convenient when “there are a large
number of entities that need to be partitioned according to the value
of some attribute” [Guarino and Welty, 2004, p. 18], it might be more
convenient “to model attributions with a simple attribute, like color, and a
value, such as red” [Guarino and Welty, 2004, ibid.].

From an expressivity point of view, the first form requires the use of a
class Red to which red-colored objects belong, making their being red a kind
of “intrinsic” characteristic; the second form requires a property hasColor

having objects as its domain and a color as its range, thus in this case an
object would have a property linking it to another object which is the color
itself (in this case belonging to the subclass Red, possibly including a vari-
ety of different instances of the red color) and requiring the full existential
quantification construct; the third form would link the object to a specific
instance red (possibly belonging to the Color class) entitled to represent the
red color itself, requiring the construct O for enumerated classes. The choice
here is bound to the way a color is assigned by a classifier (e.g. as a discrete
quantity called “red” or as a hexadecimal value).

Necessary and sufficient conditions

An axiom like Tables have four legs can be interpreted in three different
ways:

20

Table v =4 hasPart.Leg

=4 hasPart.Leg v Table

Table ≡ =4 hasPart.Leg

The first form states a necessary condition for an object to be a table, that
is to have four parts each of them being a leg; in other words, a table is
an object with four legs, but not all the objects having four legs have to be
tables. The second type of axiom, less frequently used, treats the presence
of four legs as a sufficient condition for an object to be considered a table,
meaning that all the objects with four legs will be considered tables, but a
table does not have to be described only by the fact that it has four legs
(it might have to have a top part, for example). The third form, instead, is
a necessary and sufficient condition or equivalence, stating that tables and
objects with four legs are the same thing, which means that an object which
is a table will be inferred by the reasoner to have four legs and the other
way round.

When building the terminology of an ontology, it is important to un-
derstand the difference among this three formalizations (see Fig. 2.3) as
it plays a major role when the reasoner has to be used as a classifier, for
example in an object or scene recognition task. The following example is
taken from [Simou et al., 2007], where the fragment of the TBox is used for
scene recognition:

CloudedSky ≡ Cloud u Sky

Sand ≡ ∃below-of.Sea

Sky ≡ ∃above-of.Sea

Leg ≡ Natural-Person u (∃below-of.Body)
Head ≡ Natural-Person u (∃above-of.Body)

Here a leg is defined as something related to a person and located in the
lower part of a body: this means that not only whatever is belonging to a
person and is found in the lower part of a body is a leg, but also that a
leg always belongs to a person and is located in the lower part of a body.
This definition lets the reasoner infer that, in presence of two instances
respectively belonging to the class Natural-Person and Body related through
a below-of property, the first one is also an instance of the class Leg; this
also implies that, if we add a similar definition (e.g. A foot is located in the
lower part of a body) we will obtain that the foot is equivalent to a leg.16

16Obviously a foot can be described as something found in the lower part of a leg instead

of a body, but this is for example purposes.

21

Figure 2.3: Examples of necessary, sufficient and equivalence conditions.

More generally, the use of equivalence axioms describing objects such as
A knife is something which is sharp and made of metal makes the recognition
of an object possible if evidence of its features is collected; on the other side,
such axioms restrict the number of objects which can be described without
obtaining unwanted equivalences. It is possible to loosen the equivalence
axiom by writing it as a sufficient condition:

Natural-Person u (∃below-of.Body) v Leg

The drawback of such approach is that it needs an anonymous class on
the left side, which prevents the possibility to build a taxonomy and is not
always allowed (e.g. it is not supported in OWL 2 QL) because it is a source
of complexity for a reasoner.

Inheritance and typicality

An axiom stating that a class has a certain attribute (e.g. Birds have feath-
ers and fly) will be inherited by all the subclasses of the affected class, and
clearly it will hold for all the instances of that class; this is not always desir-
able, as it may happen that several subclasses are considered as belonging
to their parent class with some exceptions (the classical example is given
by penguins, considered as “birds that do not fly”). This situation may
arise upon the update of a knowledge base, for example when concepts are
created automatically from other sources (e.g. WordNet) by collecting a
number of identifying features, or when the creation of an ontology is driven
by “common sense”: from this point of view, for example, it is “common
sense” to consider a penguin as a bird or a dolphin as a fish. In any case, it
would be desirable to keep the ability to perform concept classification even
in presence of such cases.

From a robotic-related point of view, this can happen when not all the
features identifying a concept (an object, a scene etc.) are known before-
hand, so one assumes that a definition holds as long as counterexamples can

22

be found; for example, if a class Ball has been defined as “the class of ob-
jects having a Spherical shape” along with two subclasses Basketball (objects
having an Orange color) and SoccerBall (objects having a BlackAndWhite

color), then a RugbyBall is added as a subclass of Ball having an Elongated

shape, the knowledge base will become inconsistent17. A similar example
can be made with knives: if they are described as having a sharp blade (i.e.
Knife v ∃hasBlade.Sharp) and all the types of knives are put in a taxonomy
having Knife as the uppest class, a problem might arise when inserting in
the ontology a butter knife, whose blade is not sharp but dull.

Inheritance, in the way it is implemented in description logics, does not
allow exceptions; the standard solution to this problem is to loosen the
definition of problematic classes by hand, creating subclasses respectively
having and not having the conflicting attribute (e.g. dividing the birds
in flying and non-flying birds, and describing birds as just having feath-
ers); other approaches can be the use of a system for adding exceptions
via justification (see [Kolovski et al., 2006]) or the use a different logic (e.g.
[Baader and Hollunder, 1995]), which would require ad-hoc reasoners to be
practically usable.

An alternative can be found in a representation centered on instances
rather than on classes: as instances are related to each other through rela-
tions (e.g. A certain bird (or type of bird) can fly), for every instance it is
possible to state which features are present. In this case the inheritance re-
lation can be used as a “hint” more than a strict hierarchical definition, so it
can be implemented via an object property such as isA or hasFatherConcept;
this representation also has the advantage to allow the use of a minimum,
maximum or exact number of “transitivity steps” by using property paths
as specified in SPARQL 1.118. Anyway, one has always to be aware of the
Open World Assumption (see 2.3.2): if a certain type of bird (represented
as an instance) is not explicitly said to have the capability to fly, it is not
implied that it does not fly; thus, this consequence can only be derived if it is
assumed that the knowledge base already contains all the needed knowledge
(so in a sense it is “closed”).

Use of DL extensions

The main problems affecting DL extensions are related to their being very
recent, so that they have not yet become a standard nor they have been

17To be precise, it becomes inconsistent if the classes Spherical and Elongated are declared

disjoint and the property hasShape is functional.
18http://www.w3.org/TR/sparql11-property-paths

23

http://www.w3.org/TR/sparql11-property-paths

extensively studied from an implementation point of view if not for research
case studies; this makes such technologies difficult to be used in real ap-
plications, for example when massive quantities of data (or TBox axioms)
are used and scalability is needed. On the other hand, “traditional” ap-
proaches to description logics (and to Semantic Web languages in general
such as RDF) have a long implementation history and several user-level and
industrial-strength products are available.

Deriving concepts from real-world data requires anyway a careful evalu-
ation; in fact, a completely fuzzy formulation of an ontology, including the
use of fuzzy quantities for describing quantities, can cause problems when
integrating different sources of information: for example, a degree of truth
0.7 for a concept like “the productivity of a researcher” can have a differ-
ent meaning in two different ontologies depending on how it is calculated
[Schockaert et al., 2011].

In [Vitucci et al., 2010b] we have explored the use of f−SHIN for part
representation of images, but because of some technical limitations in the
reasoner the scalability of such approach is limited. In Chap. 4 we will
be discussing another application of fuzzy description logics to a smaller
domain, where scalability is not a primary concern.

2.3.2 The role of reasoning

The works making use of ontologies usually state that the rationale behind
the choice of a knowledge representation language is in the possibility of
using a semantic reasoner to infer some knowledge; while this is a very broad
claim, it is important to understand what kind of inference one expects it
will be performed:

• is the ontology used as a vocabulary, so that inference is mostly related
to taxonomic information (e.g. All the cups are containers, which in
turn are objects, which . . .)?

• is the ontology used to represent processes, so that inference is mostly
used for dealing with sequences of events (e.g. For grasping an object,
the hand should be open first or To set up a table, plates have to be
put on the table top before cutlery)?

• is the ontology used to represent structures, so that inference is mostly
used to find relations among parts (e.g. A hand has five fingers or If
a finger tip is attached to a finger and the finger is part of a hand, the
finger tip is part of the hand too)?

24

• is the ontology used for classification, so that inference is mostly used
for retrieving an object’s class from its features (e.g. If an object is
spherical and orange, then it is a basketball or If in the scene there is
sea and sand, it is a seaside image)?

• is the ontology used for anything else?

Depending on the application and on the expected kind of results, different
reasoning services might be needed. Furthermore, care should be taken
to the reasoning services offered when selecting a semantic reasoner: for
example, although both RacerPro [Haarslev and Möller, 2003] and FaCT
[Horrocks, 1998] support SHIQ expressivity19, FaCT does not support the
use of datatype properties; this means that, if the application requires to
reason on concrete domains such as floating-point numbers, FaCT cannot
be used. Another example is related to the two fuzzy reasoners mentioned
in 2.1.3: although FiRE supports a more expressive logic than fuzzyDL, the
latter provides more expressivity in the TBox axioms such as fuzzy concept
assertions, fuzzy numbers and weighted sums of concepts.

As we have seen, for recognition purposes usually instances are used to
represent real objects while concepts are used to represent classes of objects;
thus, the most commonly needed services are ABox services. This is also
due to the fact that the classification of concepts per se is not usually needed
in robotics, while in other domains such as in medicine and chemistry this
is actually the purpose of the use of ontologies altogether.

Classification and realization

Two of the main tasks performed by a semantic reasoner are classification, in
which a hierarchy of concepts is built using TBox axioms, and realization,
which consists in finding the most specific class each individual belongs
to. The classification service basically builds a hierarchy of sets, deriving
for every set its including and included sets; the realization service instead
derives all the sets an individual is an element of. The classification task
has to be always performed before a realization task can be completed as
well. As an example of the use of such tasks in the robotic domain, we can
describe several objects from the kitchen domain such as spoons, knives,
forks, cups, mugs, etc. as arranged in the hierarchy shown in Fig 2.4.
Specific objects such as Jack’s cup and spoon with Mickey Mouse decoration
can be added as instances belonging respectively to the classes Cup and

19FaCT++, the new version of FaCT, now supports

SROIQ(D)[Tsarkov and Horrocks, 2006].

25

Utensil

Container

Cup

Mug

PieceOfCutlery

Spoon

Fork

Knife

Figure 2.4: Example hierarchy.

Spoon; the reasoner, after the classification process, will infer that these two
objects belong respectively to the Utensil and Container classes as well. The
taxonomy can be extended with the definition of “exotic cups”, which are
cups having some drawings of animals on them:

ExoticCup ≡ Cup u ∃hasDrawing.AnimalDrawing

Now the reasoner will infer that the class ExoticCup is a subclass of Cup,
because all exotic cups are first of all cups (classification step); also, if there
exists an instance such as lionDrawing of a drawing depicting animals, related
to Jack’s cup through an axiom like hasDrawing(Jack’sCup, lionDrawing), the
reasoner will infer that the most specific class describing Jack’s cup is now
ExoticCup (realization step). For this reason, if classes are described in terms
of the features they have to have, the realization service can be used to find
all the classes an unknown instance belongs to depending on its features.

As it can be seen from the example, in such applications it might not be
very interesting to execute queries on the taxonomy, while it might be more
interesting to ask to which class(es) an instance can be assigned or whether
an instance can be verified to belong to a certain class.

Open World and Unique Name Assumptions

It is common, while using databases, to assume that “any statement that
is not known to be true is false”; in other words a database is considered
complete, meaning that all the relationships between entities are listed in its
tables, therefore information which is not present in the database counts
as false information. As an example, if a table in a database lists the
books bought by a customer, it can be assumed that the customer has not

26

bought any other books. Such assumption is called Closed World Assump-
tion (CWA) and it is the opposite of the Open World Assumption (OWA),
which on the contrary states that the truth value of a statement does not
depend on the currently available knowledge. In other words, according to
the OWA, if a fact is not present in a knowledge base at a given time it
is not implied that it is not true; it might be true or false, but this in-
formation is not known (yet). In the previous example, the list of books
bought by a customer would state some facts about the customer and such
books, but nothing else is implied; in particular, it might be that the cus-
tomer has bought other books but the information has not been added to
the knowledge base yet.

The Unique Name Assumption (UNA) instead states that “different
names always refer to different entities in the world”; in other words, if
we have two individuals called ball1 and sphericalObjectA, as their names
are different they will be referring to different entities as well. These two
assumptions together provide a way to make inferences on an intrinsically
distributed model of knowledge such as the Web, where information is likely
to change, to be underspecified or to be redundant, by not making any
assumption on what is not known.

Description logics usually do not make use of neither the CWA nor of
the UNA, so one has to be careful when formalizing knowledge using this
formalism. Taking the example from [Dasiopoulou and Kompatsiaris, 2010],
we can have a context like the following (see Fig. 2.5): an image depicts a
seaside scene (i.e. the image instance has been declared to belong to the class
SeasideImage) with two regions and an axiom in the knowledge base states
that Seaside images contain at least one region depicting sea. Such axiom
might have different interpretations within the mentioned image, so the sea
can be depicted in region1, in region2, in both the regions or in another region
(not found by the image classifier); this happens because from its definition
it follows that it has to have at least a region depicting sea, but there is no
further information regarding, for example, its position. An interpretation
task has therefore to take into account that a description (of an image, an
object, a scene etc.) may not contain all the needed information so that
interpretation can be performed by logical inference alone: an assumption
similar to CWA is most probably needed. In some cases closure axioms can
be useful for providing some level of closure to the world: for example, an
axiom stating that Seaside images contain a sea region and a sand region
do not say anything about other regions, so that a seaside image might have
other kinds of regions; a closure axiom can add a limitation on the kinds of
region, so the previous axiom would become Seaside images contain a sea

27

Figure 2.5: Seaside image with segmentation.

region and a sand region and only these kinds of region.
Another important issue arising from the use of the OWA comes with

the use of qualified cardinality restrictions: if the image analysis module
has been successful in identifying four table legs which are part of another
object, it is possible to infer that such object is a table if there is an axiom
stating that Tables must have at least four legs; if, on the contrary, the
axioms states that Tables must have at most (i.e. not more than) four legs,
or exactly four legs, the reasoner will not be able to infer the class of the
object. In fact, the reasoner cannot conclude that the considered object
cannot have more than four legs; in other words, the fact that there is
no evidence that the object has more legs does not mean it cannot have
more (so maybe another leg is not visible or has not been recognized as a
leg by the image classifier). We have been dealing with such problem in
[Vitucci et al., 2010b], where we used the f −SHIN logic to represent and
recognize complex object such as forks, which are made of several parts;
besides other technical limitations, the main problem is that, if the reasoner
has to be used for object recognition, objects cannot be described using
strict cardinality restrictions.

2.3.3 Expressivity of the logic

As we have mentioned, an important step in the process of designing a
knowledge base is to evaluate the expressivity requirements; expressivity
is a source of complexity for a reasoner, so several optimizations might
be available and advantageous for the task to be performed at the cost
of sacrificing some expressivity in favor of computational efficiency. As
an example, in biomedical applications the main use of DLs is to infer
terminological information from huge TBoxes where the axioms mostly
make use of full existential quantification and intersection; as these

28

axioms are contained in the OWL 2 EL profile, ad-hoc reasoners such
as Snorocket [Lawley and Bousquet, 2010] can classify such ontologies
in a very little time when compared to other “standard” reasoners
such as Pellet [Sirin et al., 2007] and HermiT [Shearer et al., 2008] (see
[Dentler et al., 2011] for a comparison), because the worst-case compu-
tational complexity is PTime (polynomial time) for EL++ while being
N2ExpTime (nondeterministic double-exponential time) for OWL 2. In
some cases, some inference tasks can be performed by a query engine
instead of a reasoner (e.g. in the case of inverse or transitive relations, as it
will be shown later), thus lifting some constraints on the description logic
family to use.

Expressivity needs

Is it reasonable to try and find a minimum expressivity for a logic to be used
in the robotic domain? Although it is not possible to answer to this question
in general as it depends largely on the target application, it is possible to
make several considerations on the use of each construct:

• the minimum logic should provide at least concept intersection (for
building new concepts combining preexisting concepts) and full
existential quantification (for describing concepts using restriction on
features and properties and for assigning domain and range to the
properties), so that axioms such as A basketball is a ball and has an
orange color can be expressed as:

Basketball ≡ Ball u ∃hasColor.Orange

• universal restrictions are useful for providing closure axioms on the
properties of an object (see 2.3.2) such as A basketball is a ball, has
an orange color and cannot have any other color than orange can be
expressed as:

Basketball ≡ Ball u ∃hasColor.Orange u ∀hasColor.Orange

• union (and, more generally, complex concept negation and concept
disjointness) can be useful for expressing alternatives like A basketball
has either an orange or a red color as:

Basketball ≡ Ball u ∃hasColor.(Orange t Red)

but it adds some complexity to the reasoning, thus some OWL profiles
such as OWL 2 EL disallow its use;

• a role hierarchy (i.e. a hierarchy of property with more specific
properties being “children” of more general properties) is generally

29

useful for creating more specific roles while retaining information on
more general relations; for example, it lets it possible to formalize the
concepts of parts and wholes it is useful to distinguish a “generic”
part of an object from a proper part, being the latter a subrole of the
former with different properties20, as:

partOf directly v partOf

• inverse properties can be useful to make the model clearer and intuitive
by explicitly stating the “backward” relations (e.g. it can be useful
to know that the inverse relation of hasSuccessor is hasPredecessor,
while it might be less useful to know that the inverse of hasColor is
isColorOf);

• more generally, complex role inclusion axioms (making use of role
hierarchy, role chains, role intersection and so on) can be useful when
n-ary relations are to be used, as the common practice is to reify such
relations and then adding property chains; an example can be the
axiom A basketball has a color with a percentage of surface covered,
in which the relation among the ball, the color and the percentage
of the surface covered has to be expressed as an individual (e.g.
coverage1 belonging to the class Coverage) related to the color and
the percentage through the properties color and percentage, then the
relation between the ball and these two features has to be expressed
by the property chains:

hasCoverage ◦ color v hasColor

hasCoverage ◦ percentage v hasPercentage

where hasCoverage relates the ball to the reified relation and the
properties hasColor and hasPercentage relate the ball directly with the
color and its percentage (see Fig. 2.6); furthermore, role disjointness
can help in distinguishing features of an object (e.g. the color of
an object is different from its shape) and other cases (asymmetric,
reflexive and irreflexive properties) are less common but might be
useful or even necessary to draw more inferences;

• functional properties are useful for describing unique properties for an
object (e.g. its shape and its length, as an object cannot have two
different shapes or lengths at the same time);

20This issue is considered so important that the W3C has published some best prac-

tices on the topic (see for example http://www.w3.org/2001/sw/BestPractices/OEP/

SimplePartWhole/simple-part-whole-relations-v1.3.html).

30

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-relations-v1.3.html
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-relations-v1.3.html

Figure 2.6: Example of property chain. The properties hasColor and hasPer-

centage are obtained through the chains hasCoverage ◦ color v hasColor and
hasCoverage ◦ percentage v hasPercentage.

• cardinality restrictions are mostly useful when are qualified: in the
case of robot parts, for example, it can be known that a robot has to
have n links (this would be enough to distinguish robots having just a
different number of links), but it would be more useful to know what
kind each of such links has to be, so that for example in axioms such
as A hand has exactly five links which are fingers can be formalized as:

Hand v= 5 hasLink.Finger

• concrete datatypes are important when using real numeric data on
which to base the reasoning, for example size, weight, date and so on,
but they are not always supported by reasoners; they can be used for
axioms such as A basketball has a circumference between 75 and 76
cm, which can be formalized as:

Basketball v Ball u ∃hasCirc. >75.0, 676.0

We can therefore conclude that the whole OWL 2 is not (always) needed,
but rather the minimum suitable logic can be the ALH(D) logic; a good
compromise between expressivity and suitability for big quantities of data
would be the ALCHI(D) logic.

Domain constraints

Besides the possibilities offered by expressive logics, constraints and peculiar
characteristics of the domain to model have to be taken into account:

• as robotic tasks make intensive use of data, in a realistic and scalable

31

application more importance should be given to operations on data
rather than to reasoning on the model, which is not supposed to change
frequently;

• besides building of “simple” taxonomies, almost no deductions are
needed on TBox as the aim of the formalization is not to discover new
concepts but rather to infer new relations among existing instances;

• logical inference alone is not enough for recognition, so either exten-
sions using fuzzy logic or probability are to be used or additional steps
have to be performed;

• building complex concepts with many constraints is either expensive
(if it has to be done by hand) or less reliable (if it is performed auto-
matically using other sources of information, especially just raw data
– see for example [Vitucci et al., 2010b]).

Thus, for tasks within the robotic domain there is not a clear advantage
in using highly expressive logics to model information related to changing
entities such as (classes of) objects. For some applications RDF(S) can
be sufficient, as it provides the basic expressivity for building taxonomies
of concepts and relations and efficient storage solutions; if a fragment of
OWL 2 is needed, however, solutions providing both storage and efficient
reasoning can be adopted. In fact, although it is a “low-level” language,
SPARQL provides several facilities (e.g. the mentioned property paths) to
“move” some reasoning tasks to the query engine: for instance, it is not
necessary to explicitly model a property as transitive to derive transitively
related elements via query; the other advantage of using such a technique
is that the number of “hops” between two entities can be decided a priori,
so the inference can be limited. The same holds for inverse properties and
property chains, as the same results can be obtained by modelling them in
a suitable way within a SPARQL query.

2.3.4 Knowledge base management

The size of the ontology, depending on the task to perform, may play a
role in the design decisions. Big ontologies with “simple” axioms, such as
big taxonomies, can be reasoned upon with an in-memory reasoner such as
HermiT or Pellet, while smaller ontologies making use of very expressive
axioms may require hours for classification on a standard computer.

Generally speaking, anyway, ontologies making use of an expressive logic
(and mostly reasoning on the TBox) need a reasoner tailored on their ex-

32

pressivity needs; in fact, as discussed in Sec. 2.3.3, different reasoners can
give very different performances depending on the structure of an ontology.
In the case of intensive ABox reasoning, as in the case in which an ontology
is to be used as a knowledge base with a big amount of factual knowledge
and a relatively simple schema, it is generally better to make use of a seman-
tic repository or a database interface, thus sacrificing some of the potential
expressivity. Some repositories such as OWLIM21 have been developed to-
gether with rule-based semantic reasoners to bridge the expressivity of a
description logic with the flexibility and scalability of a triple store; for a
comparison of state-of-the-art RDF stores see [Haslhofer et al., 2011].

Another key aspect to consider is the way instances are used: if the
ontology is used to store information about a high number of objects for later
retrieval, it can be preferable to use a persistent storage such as a database
or a triple store; on the contrary, if the ontology is used for realization and
instance checking so that instances are mostly created only temporarily, the
schema can be stored as a single file in a suitable format such as RDF/XML.

2.3.5 Queries

The choice of a reasoner, a family of logics and a storage system influences
the type of queries which can be executed on a knowledge base: the types of
TBox queries which is possible to perform depend on the reasoner, while the
availability of ABox queries depends on the query engine implementation.
SPARQL-DL [Sirin and Parsia, 2007] aims to provide a unified framework
for both the kinds of queries, but its future is still uncertain as it has not
become a standard (yet).

Obviously queries depend on the type of information one needs to re-
trieve: finding the super- or subclasses of a certain class has a different
meaning from finding the most specific concepts for an instance, finding the
relations among several instances and so on. In the cases where a reasoner
is geared towards TBox reasoning, ABox reasoning might lack efficiency;
furthermore, not all the types of TBox queries can be performed with ev-
ery reasoner. What is important to note is that query languages such as
SPARQL, after the reasoning phase (which has to be performed by an ex-
ternal reasoner), can be used to match currently known data and even to
“close the world”, for example by implementing negation by failure. From
this point of view, assuming that a knowledge base contains all the relevant
knowledge, it is possible to ask whether an object has exactly four legs as this
would imply “as far as it is known now” (see Chap. 3 for such applications

21http://owlim.ontotext.com

33

http://owlim.ontotext.com

of semantic query languages).

2.4 Summary

In this chapter we have reviewed the issues characterizing the design of
a knowledge base, focusing our attention to robotic applications. We have
discussed the choice between classes and individuals to describe the different
aspects of a domain, the importance of the reasoning tasks one expects to
be able to perform on the knowledge base, the expressivity of the logic
one might need to use, the types of query which might be needed and some
assumptions (such as the OWA and the UNA) which characterize description
logics, along with some extension (such as fuzzy DLs) proposed to overcome
some challenges introduced by the use of knowledge representation in real
domains such as multimedia information, image understanding and scene
description.

Our purpose in the following chapters is to describe some guidelines
to choose a suitable knowledge representation strategy, then to show some
examples of application where the aspects which have been highlighted in
this chapter will be discussed.

34

Chapter 3

Description logics for object

representation

Dealing with objects is one of the most important robotic applications;
hence, the study of object detection, localization and recognition has a long
tradition in the history of robotics. Several approaches have been proposed
to make these tasks as robust and autonomous as possible, each of them
proposing a peculiar representation of objects depending on the needed fea-
tures.

Although the vast majority of the techniques are based on low-level in-
formation and make use of statistical descriptors, the part decomposition
of an object for recognition and modelling purposes has regained some at-
tention in the last decades, the reasons lying mostly in the advances in the
fields of computer graphics, graph theory and artificial intelligence, and in
the availability of cheaper scanners and devices for acquisition of 3D infor-
mation. This “new wave” has brought to the cross-fertilization of different
research fields including description logics.

The model of part decomposition has also been (and is still) considered a
viable theory of human vision and object recognition, so it has been studied
by the cognitive science and psychology community as well; as it will be
discussed, anyway, this approach has several engineering issues which make
it difficult to be used for this purpose. Nevertheless, the description of
an object in terms of its composing parts has other advantages when such
representation is used by humans.

Our focus in this chapter is to show the main issues related to a part-
based object representation and to discuss the cases in which this approach
might offer some advantages, along with some qualitative and quantitative
evaluations.

3.1 State of the art

An early work on shape decomposition is presented in [Rom and Medioni, 1994],
where Straight Homogeneous Generalized Cylinders (SHGCs) and Planar
Right Constant Generalized Cylinders (PRCGCs) are used for describing
3D shapes; in [Svensson and di Baja, 2002] the distance transform is used
for decomposition while in [Lien et al., 2006] the shape is decomposed
during the process of skeletonization. In [Sukumar et al., 2006] significant
parts are found through the use of a 3D feature called curvature variation
measure (CVM), while in [Marras et al., 2012] and [Anguelov et al., 2004]
particular attention is paid to the joints which characterize articulated
objects (often more difficult to describe because of the high variability in
the shape and position of their parts).

In [Horikoshi and Suzuki, 1993] and [Zhang et al., 2003] sparse range
data are fitted to shapes with the use of superquadrics, while in
[Ning et al., 2010] a part decomposition algorithm is applied directly
on point clouds rather than on meshes. The algorithm presented in
[Mozos et al., 2011] works on point clouds as well by using a different
decomposition algorithm, but point clouds are actually obtained by 3D
models downloaded from the Web.

To the best of our knowledge, the most comprehensive work comparing
quantitatively the performance of shape decomposition algorithms is pre-
sented in [Chen et al., 2009]; the dataset is publicly available1 and has been
used in this work. Another benchmark on mesh segmentation algorithms
can be found in [Shamir, 2008].

Part decomposition of images has recently regained some attention as
well due to some shifts in the image description paradigm (see for ex-
ample [Farhadi et al., 2009] and the works presented in the Workshop on
Parts and Attributes at ECCV 20102), where the question on whether a
part-decomposition-centered representation of 2D images is actually needed
(and, in case, up to which level of “semanticity”). Furthermore, works such
as [Falomir et al., 2011] and [Bilodeau and Bergevin, 2003], focused respec-
tively on qualitative and fuzzy reasoning, exploit the availability of expres-
sive logical formalisms to provide a fine-grained part-based representation
of 2D images.

Finally, several works in robotics make use of 3D part decomposition for
detection [Gächter et al., 2008], recognition [Mozos et al., 2011] or manipu-
lation purposes [Aleotti and Caselli, 2012].

1http://segeval.cs.princeton.edu
2http://rogerioferis.com/PartsAndAttributes

36

http://segeval.cs.princeton.edu
http://rogerioferis.com/PartsAndAttributes

3.1.1 Recognition-by-components

One of the most important tasks for an autonomous robot is object recog-
nition whose aim is, given an object, to assign it to a known category;
the problem of how humans recognize objects, anyway, is still largely un-
solved. Part decomposition has played an important role in the theories of
human vision: the seminal works by Biederman [Biederman, 1987] and Marr
[Marr and Nishihara, 1978], for example, provide a theory which makes re-
spectively use of the so-called geons, tridimensional shapes which are consid-
ered the units of vision (see Fig. 3.1), and of a structural representation of
a shape (see Fig. 3.2). This theory has been thoroughly analyzed in works
such as [Dickinson et al., 1997] and for a long time it has been considered
useful and computationally viable; in [Edelman, 1997] and [Hummel, 2000],
however, a critical analysis of the main models of recognition highlighted
some problems in the RBC theory such as:

• the lack of metric information, in that geons can provide shapes but
not measures;

• the computational difficulty in the process of recovering parts from a
real scene, in that complex fitting models should be applied to all the
perceived objects;

• the instability of a description in terms of parts, in that several rep-
resentations of the same object are possible: for instance, the level of
detail up to which an object like a car should be decomposed – and
the composing parts – are difficult to define unambiguously.

3.1.2 Shape description and modelling

Besides the limitations on the definition of “parts” highlighted in the previ-
ous section, the part decomposition approach found several applications in
shape description and modelling. An example of such applications is given
by the ShapeAnnotator software3 presented in [Attene et al., 2007], where
the parts characterizing an object can be found semi-automatically (i.e. the
user has to choose a mesh segmentation algorithm and provide it some pa-
rameters such as the expected number of parts to find) and then annotated
using a suitable ontology (e.g. the ontology of human bodies, in which spe-
cific concepts such as Torso, Hand, Leg and relations such as attached-to or
length are provided). In this case, as it will be discussed later, a semantic
description of such parts seems appropriate.

3http://shapeannotator.sourceforge.net

37

http://shapeannotator.sourceforge.net

Figure 3.1: Biederman’s geons [Biederman, 1987].

38

Figure 3.2: Marr’s structural representation [Marr and Nishihara, 1978].

39

Several projects such as AIM@SHAPE4, FocusK3D5 and the Princeton
3D Model Search Engine6 have been dealing with the problem of 3D models
description; the first two are more concerned with the shape decomposition
and the semantic description of the parts, while the aim of the third one is
to evaluate the performance of different approaches to shape description for
retrieval purposes. The AIM@SHAPE project released a dataset containing
watertight meshes (this is often a strict requirement for shape decomposition
algorithms) which has been used in [Chen et al., 2009] for comparing mesh
segmentation algorithms; other datasets such as Semantic3D7 have been
obtained from real-world measurements via scanners or 3D cameras.

Graph-based representations have gained some popularity as they
are invariant to scale and pose (so do not require any normalization),
can be queried for partial matches and are suitable for semantic de-
scriptions; the nodes of a graph can represent functional parts, shape
primitives or faces, while the edges can represent adjacency relations
(among functional parts or shapes) or boundary lines. Graphs can also
be obtained directly from shape skeletons or via a quotient function
(Reeb graphs), so they represent the parts of an object and their connec-
tions. Several works using graph-based representations can be found in
[Natali et al., 2011], [Aleotti and Caselli, 2012], [Tung and Schmitt, 2004]
and [Attene and Biasotti, 2011], and more in general in [Marini et al., 2007]
structural descriptors and their performances are discussed.

An important application of shape description can be found in
content-based retrieval, that is the retrieval of 3D models based on
their shape features rather than on tags and external descriptions. A
survey of content-based 3D shape retrieval models, has been conducted
in [Tangelder and Veltkamp, 2007], and in [Wagan et al., 2009] part
decomposition is used for shape retrieval based on decomposition similarity.

3.1.3 Use of knowledge

The use of knowledge together with 3D objects has been reintroduced re-
cently. With the improvements in knowledge management systems and the
availability of more powerful and expressive tools driven by the research
on knowledge representation, the inclusion of semantic technologies as an
integration framework is gaining more and more attention.

4http://www.aimatshape.net
5http://www.focusk3d.eu
6http://shape.cs.princeton.edu
7http://ias.in.tum.de/software/semantic-3d

40

http://www.aimatshape.net
http://www.focusk3d.eu
http://shape.cs.princeton.edu
http://ias.in.tum.de/software/semantic-3d

Several works such as [Attene et al., 2007, Catalano et al., 2011,
Vasilakis et al., 2010, Attene et al., 2009] and the cited ShapeAnnotator
software, for example, explore the use of ontologies and description logics in
the domain of 3D object modelling and description for a variety of purposes:
specific domain ontologies are linked to the semi-automatic segmentation
of 3D shapes, integrating information related to the object characteristics
with (meta)information related to the acquisition devices used, the target
application and so on; the specific segmentation algorithms to use is not
a crucial choice, because such tools have been built for human users and
the automatic segmentation of a shape is meant only as a guidance. The
applications for this approach are mostly in the fields of 3D models lifecycle
description and maintenance and virtual molecule modelling.

Other works such as [Horrocks and Graves, 2008] and [Graves, 2008]
provide some insights on the use of OWL for engineering and design
purposes, while [Dartigues et al., 2007] explores the use of feature ontolo-
gies related to computer-aided design (CAD) and computer-aided process
planning (CAPP), where semantic knowledge is used for checking the
constraints on the product design. A description of object affordances
along with component parts for robotic applications is mentioned in
[Varadarajan and Vincze, 2011], although the formalization does not stricly
use semantic technologies but rather attempts to give some semantics to a
database representation.

In the field of shape retrieval external knowledge is used to support
“high level” queries, namely on attributes and parts: such knowledge
bases should be able to answer to queries like Find the objects having a
big head and two legs and so on. Studies like [Zhang et al., 2012] and
[Kalogerakis et al., 2010] aim to efficiently produce and transfer semantic
labels on parts from one model to another, thus making it possible to
obtain a large database of tagged models not having to resort to manual
segmentation; the specific segmentation method is not important as well.
In [Kassimi and beqqali, 2012] several semantic descriptors are identified to
be used within an ontology and for SPARQL queries, although no examples
of queries are shown; in [van Kaick et al., 2011] the focus is on the problem
of part correspondence, using knowledge to help the matching process.

41

3.2 Issues in part decomposition

3.2.1 Conceptual issues

As we have seen in the previous sections, the problems that have to be dealt
with when formalizing an object in terms of its composing parts are:

• What is a part?

• Does it make sense to define “semantic” or “functional” parts?

• Are they useful?

• How are they linked to the “low level”?

Some of these questions have been addressed for 2D images by Bernt Schiele
in an ECCV Workshop8. More in general, some critiques have been brought
on the use of “semantic features” in general, especially on whether they can
actually be learned by classical algorithms in an unambiguous way (see for
example [Farhadi et al., 2009]). As we discuss in Chap. 5, the identification
of concepts and discriminative yet expressive semantic features is still an
active research topic in the fields of cognitive science, computer vision and
pattern recognition; in fact, it is difficult to predict what kind of features
humans would consider more important: if language is to be used as a refer-
ence, features need to be linguistically expressive in order for communication
to happen. In this case, vagueness (related to the given description) and un-
certainty (related to the experienced perception) play an important role: a
human would describe an object as “red”, “round” or “big”, or would say
that a table has two, three or four legs depending on how many of them he
is able to see.

3.2.2 Practical issues

Besides conceptual issues, we can divide the practical issues regarding a
part decomposition framework in two categories, namely problems related
to the mesh decomposition process itself and problems related to the use of
knowledge representation formalisms in real-world domains.

Some of the issues related to description logics and image interpretation
have been discussed in [Dasiopoulou and Kompatsiaris, 2010]; although the
domain is different, the remarks hold also for 3D object representation:

8http://rogerioferis.com/PartsAndAttributes/pages/material/

SchielePnA2010.pdf

42

http://rogerioferis.com/PartsAndAttributes/pages/material/SchielePnA2010.pdf
http://rogerioferis.com/PartsAndAttributes/pages/material/SchielePnA2010.pdf

• ambiguity due to incomplete and/or conflicting assertions: if classifiers
give as a result that an object belongs to two different classes and
such classes are disjoint, the KB will become inconsistent – thus this
information cannot be used;

• imprecision due to degrees of uncertainty or truth: when dealing with
real-world data it is quite unlikely for a classifier to state that an
object definitely belongs to a certain class, while on the contrary this
information has to be interpreted both as a probabilistic information
(it is not sure whether the object belongs to the class or not) and as a
fuzzy information (the object cannot be considered as a “full” instance
of a class, but rather it has a degree of membership to such class);

• semantics of computational perception “per se”: as we have already
discussed there are several ways in which concepts can be built from
numerical data, depending on the modelling choices and the features
to consider (there are many possibilities to link low and high levels,
and different agents have different perceptions);

• the use of an open/closed domain model (or OWA/CWA in the DL
domain): as we have seen in Chapter 2, the use of OWA or CWA
makes reasoning different and makes certain queries impossible to be
expressed or to give the expected results.

These considerations, together with results from the use of description logics
for scene interpretation [Neumann and Möller, 2008], bring to the light the
intrinsic difficulty of an interpretation task (solely) as a logical inference:

“Unless all regions correspond to distinct objects (or parts) and
all classifications are accurate, the explicitly asserted data com-
prise an incomplete, partial only view of the actual image con-
tent” [Dasiopoulou and Kompatsiaris, 2010, p. 3].

Even in this case, we would still have some degree of ambiguity due
to incomplete or contradictory information provided by different persons,
exactly as in the case of part decomposition. It is then clear that purely
deductive reasoning is not enough, and some advantage might be taken by
using rules and by handling vagueness by means of fuzzy and probabilis-
tic extensions; in this case, other problems related to the availability of a
suitable framework and its scalability might rise.

Within data-intensive scenarios, scalability has to be taken into account
as a serious issue:

43

“A second issue, which has been raised in the past few years and
is relevant in the context of 3D semantic media, is the impos-
sibility of description logics to find partial solutions to a query
since description-logic-based inference tries to find all the solu-
tions of a search. Going to the Web scale where the amount of
data is now massive, this approach does not work anymore: it is
preferable to retrieve partial data in a few seconds instead of all
data (or even failure) in days” [Catalano et al., 2010, p. 79].

Several works focus on such aspects, in particular on the need of
partial and approximate queries for increasing responsiveness sacrificing
some exactness [Tran et al., 2011] and on the possibility to formulate
preference queries making use of similarity and concepts such as “usually”
[Wang and Pan, 2007].

3.3 Implementation

Although the part decomposition strategy seems neither scalable nor reli-
able to be used in a completely automatic fashion, it is anyway possible to
evaluate its performances within several domains. The work presented in
this chapter focuses on the following aspects:

• semantic description of objects obtained from decomposed models (see
Fig. 3.3);

• full and partial instance retrieval, query optimization;

• approximate classification.

The aim of our work is to find out whether and how it is possible to rep-
resent a 3D object in terms of its parts by using description logics and to
evaluate this approach within retrieval and classification tasks. The choice
of semantic languages should thus look quite clear as they offer a natural
way to express structural knowledge; taking into account the limitations in
the structural description of object with class restrictions, we propose here
a representation and retrieval framework based on instances and structural
queries. The byproduct of this analysis is the realization of a knowledge
base containing information on shape decomposition and geometry that is
easily extendable with other sources of information (e.g. semantic labelling
of parts with labels such as Leg, Head and so on, inclusion of information
on the real scale of objects and their typical usage etc.).

The aspects we evaluate are:

44

Figure 3.3: Objects with their topological graphs.

45

• the level of expressivity it is possible to achieve while describing an
object by its composing parts and their characteristics;

• the scalability of the approach, i.e. the performances that can be
achieved when the knowledge base grows;

• the possibility of writing “simple” yet useful queries;

• the discriminativity of the representation, related for example to the
possible ambiguity of an only-topological representation.

3.3.1 Datasets

For our experiments we used the dataset presented in [Chen et al., 2009]
and shown in Fig. 3.4. The dataset contains 380 objects arranged in 19
categories, so for example in the category Human there are shapes repre-
senting a human figure in different positions, while in the category Vase
several kinds of vases (even very different from each other geometrically and
topologically) are grouped together. Each object has been segmented both
by humans and by the shape decomposition algorithms.

The result of the comparison among part decomposition algorithms
which has been conducted in [Chen et al., 2009] is that none of the
algorithms offers a generally better performance with respect to the others;
although it would be possible to select the “right” segmentation method for
each class using such results, we consider this to be irrelevant as it would be
anyway limited to the objects present in the database; furthermore, manual
segmentation provides the ground truth for part decomposition tasks,
therefore we decided to build our ontology from human segmentations.
This is not a restricting assumption, anyway, as crowdsourced labelling has
already been used (see e.g. the LabelMe project9) and the lack of labelled
datasets in this domain is one of the reasons why such methods have not
been studied extensively yet.
As several human segmentations are available for each object, as a criterion
for the choice of the number of parts to represent a single instance we take
the mode of the number of segmentations (i.e. the most often performed
segmentation). For each part composing the object we calculate:

• the volume of the convex hull for the whole object;

• the volume and size of the axis-aligned minimum bounding box
(AABB) for the whole object and each of its parts (see Fig. 3.5);

9http://labelme.csail.mit.edu

46

http://labelme.csail.mit.edu

Figure 3.4: Shapes from the AIM@SHAPE dataset (see [Giorgi et al., 2007] for
more information).

47

Figure 3.5: Example of an object with all the bounding boxes.

• the volume and size of the minimum volume enclosing ellipsoid
(MVEE) for the whole object and for each of its parts (see Fig. 3.6);

• the eccentricities for each ellipsoid;

• the distance between each pair of bounding boxes and ellipsoids;

• the angle between each pair of ellipsoids as the angle between their
main axes;

• the relative volume, length, width and height for each of the parts
with respect to the whole object, using both the bounding boxes and
the enclosing ellipsoids.

The advantage in using MVEEs is that they usually fit objects better than
bounding boxes (especially in the case of curved objects) and do not need
to be aligned to the axes, as they provide directions for their axis which can
be compared to calculate their degree of parallelness; the drawback of this
approach is that ellipsoids require computationally intensive calculations
and tend to overestimate the dimensions. Anyway, the ontology can easily
be extended to include other criteria and measures.

48

Figure 3.6: Example of an object with all the bounding ellipsoids.

Similarly to [Goldfeder et al., 2009], we added information about the
real scale to several objects; such information was retrieved via the use of
e-commerce websites where the characteristics of different kinds of the same
object were specified (for example, different sizes of tools such as wrenches
and knives have been obtained by general10 or specialized11 websites). All
the calculations are performed in Matlab, using the Ellipsoidal Toolbox
[Kurzhanskiy and Varaiya, 2006] for ellipsoid-related operations such as the
computation of MVEEs.

In our ontologies we described ten objects per class in order to have a
representative sample of each class without having too many instances per
class. Each object class is represented as a concept in the DL notation
(e.g. Human), while each segmentation is represented as an instance such as
human1 belonging to this class; the parts related to the selected segmentation
are represented as instances such as p1-1 belonging to the class Part and
related to the segmentation through a isPartOf relation. As it can be noted,
there are no “high level” labels for the parts such as Leg, Finger and so
on: the reason is that for obtaining such knowledge a step of annotation

10www.snapon.com
11www.knifecenter.com

49

www.snapon.com
www.knifecenter.com

has to be performed before, while geometric and structural knowledge can
be derived automatically from the shape analysis step. By representing the
part segmentation of an object as a set of ABox axioms, the ontology does
not suffer of the limitations mentioned in Chap. 2; on the other hand,
recognition via instance check and realization cannot be performed, so we
perform recognition on a similarity basis via SPARQL queries.

In addition to the models taken from the dataset, we include also the
models taken from the Princeton Shape Benchmark12. The dataset con-
tains 1,814 models taken from various sources along with some metadata
(e.g. their format, bounding box, principle axes etc.) and different levels of
classification to describe the classes and their members. Although there is
no information on part decomposition, we added more objects not only for
they contribute to the size of the ontology but also because some informa-
tion (e.g. on bounding boxes) can be used anyway. For each of these objects
we calculated the MVEE as well.

3.3.2 Knowledge base

We decided to implement two different ontologies, derived from the same
data but using two different representations. As the data related to the fea-
tures obtained from the images are numerical, there are several possibilities
for representing them in an ontology:

1. creating numeric datatypes and associating them to the instances the
measures are related to (e.g. to say that the object ball1 has a vol-
ume of 3.5, the datatype hasVolumeMeasure with range double can be
created and associated to ball1);

2. creating annotations associated to the instances: in the example be-
fore, hasVolume would be an annotation associated to the instance of
ball1 rather than a datatype;

3. discretizing the measures using instances such as smallVolume or
bigVolume and associating them to an individual via an object
property such as hasVolume.

The first solution, which is the more natural, has been used for the first
ontology; the problem affecting such solution is that relations such as the
angle between two objects cannot have an associated value: in this case it
is necessary to reify such relations, that is to convert them into instances

12The dataset can be downloaded from http://shape.cs.princeton.edu/benchmark

50

http://shape.cs.princeton.edu/benchmark

associated to their elements (via object properties) and to their degree (as a
datatype property). In the example above, the axiom Objects 1 and 2 form
an angle of 75◦ would be expressed as an instance angle1 of class Relation

(and possibly of its subclass Angle) related to obj1 and obj2 via an object
property hasElem and having a datatype property hasValue whose value is
75.

The second solution, which is adopted by extensions of description logics
for “custom” reasoning (e.g. for using fuzzy operators), can be used to
assign a value to properties too; the problem is that reasoners do not reason
over annotations, and SPARQL queries over annotations are anyway more
complex.

The third solution has been used for the second ontology; although it
simplifies the ontology in that numeric values and relation reification are no
longer needed, the main problem is the method used for discretization in that
it can be defined in different ways; furthermore, the discretization is “crisp”,
so values differing by a relatively small amount can be assigned to two
different classes. In this case a fuzzy implementation would be useful, but
as our aim is to obtain scalable solution we will adopt a standard language.

In the discretized version these numerical quantities are converted to
labels using these criteria:

• the volume, length, width and height percentages are given a label:
VeryLow (0%-20%), Low (20%-40%), Medium (40%-60%), High (60%-
80%), VeryHigh (80%-100%);

• the distances are assigned the property connectedTo if their bounding
boxes intersect;

• the distances are assigned the property intersecting if their ellipsoids
intersect (e.g. their distance is 0);

• the angles are given a label depending on the scalar product between
the main axes of their enclosing ellipsoids: notParallel (0-0.2), slight-

lyParallel (0.2-0.4), fairlyParallel (0.4-0.6), highlyParallel (0.6-0.8), defi-

nitelyParallel (0.8-1.0).

3.4 Experiments

3.4.1 Examples of queries

In the definition of the queries we have adopted a “weak” form of CWA,
in that we assume that the knowledge for each segmentation example is

51

complete; thus, if an example of segmentation of an airplane has six parts, it
is assumed that it cannot have more. This lets us use cardinality restrictions
as SPARQL filters as in Fig. 3.7.

Another advantage of using SPARQL is that it makes it easy to formulate
queries to support some kind of inexact graph matching by increasing or
decreasing the level of detail of the queries themselves; for example it is
easy to create a query making use only of the topology of an object, then
extend it with further constraints on the geometry of the parts or on their
relative position (see query example n. 5). In the following we will show
some use cases along with examples of queries on both the ontologies; in the
queries, the PREFIX part is always the following:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

For the first ontology the additional prefix is:

PREFIX : <http://www.semanticweb.org/.../ObjectOntology2#>

while for the second one it is:

PREFIX : <http://www.semanticweb.org/.../ObjectOntology_discr#>

An example of SPARQL query will be shown for each kind of query, showing
also the difference between the numerical and discretized formulation (not
in all the cases for space reasons).

Query 1: Objects having at least n parts This is a generic query
(Fig. 3.7) which is to be mostly used as a subquery to limit the results
of a generic structural query. In fact, when formulating a query to find
objects with a matching topological structure, it is more convenient to look
first among objects having the same number of parts: in this way the query
becomes a problem of graph isomorphism matching, a subclass of the more
complex subgraph isomorphism problem. The performance of the execution
of this query as n grows is reported in Tab. 3.1.

52

PREFIX [...]

SELECT DISTINCT ?q (COUNT(DISTINCT ?r) AS ?count)

WHERE {?q :hasPart ?r}
GROUP BY ?q

HAVING (?count >= n)

Figure 3.7: Query 1: Objects having at least n parts.

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

?q rdf:type :MSB_Part .

?q :hasRelativeBE_Length ?l .

?q :hasRelativeBE_Width ?w .

?q :hasRelativeBE_Height ?w .

FILTER (?l >= 0.6 && ?l < 0.8 &&

?w >= 0.2 && ?w < 0.4 &&

?h >= 0.2 && ?h < 0.4)

}

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

?q rdf:type :HighLength

?q rdf:type :LowWidth .

?q rdf:type :LowHeight .

}

Figure 3.8: Query 2: Oblong parts.

Query 2: Oblong parts This query can be formulated in different ways
depending on one’s concept of “oblong” (an example is shown in Fig. 3.8,
where an object is considered oblong if it has a high relative length and
low relative width and height). Queries on the geometric aspect of objects
or, more specifically, of their composing parts are useful in contexts like
manipulation, in which objects to be grasped with the available hand might
need a specific shape.

Query 3: Objects having one part connected to a big part This
kind of query (Fig. 3.9), where topological constraints are used together with
geometric constraints, is useful not only for discriminating similar objects
but also for manipulation tasks in which an object is made of a part which
cannot be grasped, so that the robot has to find an alternative graspable
part. A “big part” here means a part having a high relative volume with
respect to the volume of the whole object.

53

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

?q :hasPart ?p1 .

?q :hasPart ?p2 .

?p1 :isElemOf ?r .

?p2 :isElemOf ?r .

?r rdf:type :MSB_Rel .

?r :hasEllDist ?c .

?p2 :hasRelativeBE_Volume ?v .

FILTER (?p1 != ?p2 &&

?c = 0 && ?v >= 0.8)

}

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

?q :hasPart ?p1 .

?p1 :connectedTo ?p2 .

?p2 rdf:type :VeryHighVolume

}

Figure 3.9: Query 3: Objects having one part connected to a big part.

PREFIX [...]

SELECT DISTINCT ?obj ?q (COUNT(DISTINCT ?r) AS ?count)

WHERE {

?obj :hasPart ?q .

?q :connectedTo ?r

}

GROUP BY ?obj ?q

HAVING (?count >= 6)

Figure 3.10: Query 4: Objects with parts connected to at least other 6 parts.

Query 4: Objects with parts connected to at least other n parts
This kind of query (Fig. 3.10), where only topological constraints appear,
can be used for retrieving objects having a specific structure.

Query 5: Objects with the same topology In this example, the first
query (Fig. 3.12 is used for retrieving objects having a specific topological
structure; as several objects of different classes are found (an example of
two objects having the same specified topology is shown in Fig. 3.11), the
query is extended (Fig. 3.13) to include geometric constraints and limit the
search further.

54

Figure 3.11: Objects having the same topological graph.

55

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

{

SELECT DISTINCT ?q (COUNT(DISTINCT ?r) AS ?count)

WHERE {?q :hasPart ?r}

GROUP BY ?q

HAVING (?count = 4)

}

?q :hasPart ?p1 .

?q :hasPart ?p2 .

?q :hasPart ?p3 .

?q :hasPart ?p4 .

?p1 :isElemOf ?r1 .

?p2 :isElemOf ?r1 .

?p1 :isElemOf ?r2 .

?p3 :isElemOf ?r2 .

?p1 :isElemOf ?r3 .

?p4 :isElemOf ?r3 .

?r1 rdf:type :MSB_Rel .

?r2 rdf:type :MSB_Rel .

?r3 rdf:type :MSB_Rel .

?r1 :hasEllDist ?c1 .

?r2 :hasEllDist ?c2 .

?r3 :hasEllDist ?c3 .

FILTER (?p1 != ?p2 && ?p1 != ?p3 && ?p1 != ?p4 &&

?p2 != ?p3 && ?p2 != ?p4 &&

?p3 != ?p4 &&

?c1 = 0 && ?c2 = 0 && ?c3 = 0)

}

Figure 3.12: Query 5a: Objects with the same topology.

56

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

{

SELECT DISTINCT ?q (COUNT(DISTINCT ?r) AS ?count)

WHERE {?q :hasPart ?r}

GROUP BY ?q

HAVING (?count = 4)

}

?q :hasPart ?p1 .

?q :hasPart ?p2 .

?q :hasPart ?p3 .

?q :hasPart ?p4 .

?p1 :isElemOf ?r1 .

?p2 :isElemOf ?r1 .

?p1 :isElemOf ?r2 .

?p3 :isElemOf ?r2 .

?p1 :isElemOf ?r3 .

?p4 :isElemOf ?r3 .

?r1 rdf:type :MSB_Rel .

?r2 rdf:type :MSB_Rel .

?r3 rdf:type :MSB_Rel .

?r1 :hasEllDist ?c1 .

?r2 :hasEllDist ?c2 .

?r3 :hasEllDist ?c3 .

?r1 :hasPar ?a1 .

?r2 :hasPar ?a2 .

?r3 :hasPar ?a3 .

FILTER (?p1 != ?p2 && ?p1 != ?p3 && ?p1 != ?p4 &&

?p2 != ?p3 && ?p2 != ?p4 &&

?p3 != ?p4 &&

?c1 = 0 && ?c2 = 0 && ?c3 = 0 &&

?a1 <= 0.1 && ?a2 <= 0.1 && ?a3 <= 0.1)

}

Figure 3.13: Query 5b: Objects with the same topology and different geometric
constraints.

57

Query 6: Categorization. In this example, a query (Fig. 3.14) is used to
categorize an object by searching for the class containing the highest number
of examples having the same characteristics (or a superset of them); in this
sense a recognition by similarity (similar in principle to a k-nearest neighbor
classification method) is performed. The obtained results are:

• MSB Plier: 10 instances;

• MSB Table: 8 instances;

• MSB Bird: 7 instances;

• MSB Bust: 1 instance;

• MSB Octopus: 1 instance;

• MSB Vase: 1 instance.

Thus, the object is recognized as belonging to the MSB Plier class.

3.4.2 Evaluation

The experiments were performed on an Intel R© CoreTMi7 2.00 GHz with 8
GB of RAM running the GNU/Linux operating system.

In the Table 3.1 the results for query #1 are reported; as they are almost
identical across the two versions of the ontology, the reasons being that
numerical or discretized quantities are not involved and that the hasPart

relation is the same, they are shown only once. In the Table 3.2, the results
of the execution of the queries described in the previous section are reported.

As it can be noted from the table, the first ontology needs a much longer
time for queries (up to a factor of 500 more) with respect to the second
ontology. Such behaviour shows that the use of datatypes and queries on
numerical values does not scale well; this is due to the fact that filtering on
numerical values is computationally expensive, thus numerical values should
be partitioned for performance reasons whenever possible.

3.5 Discussion

The advantages in the use of a semantic approach for representing objects
by part decomposition are mainly the ability to perform selective queries
at the desired level of granularity, giving the possibility to query for partial
matches, and to retrieve the most likely class of an object by counting the
similar examples for each class, while retaining the ability to overcome the

58

PREFIX [...]

SELECT DISTINCT ?q

WHERE {

{

SELECT DISTINCT ?q (COUNT(DISTINCT ?r) AS ?count)

WHERE {?q :hasPart ?r}

GROUP BY ?q

HAVING (?count = 5)

}

?q rdf:type ?t .

?t rdfs:subClassOf :MSB_Object .

?q :hasPart ?p1 .

?q :hasPart ?p2 .

?q :hasPart ?p3 .

?q :hasPart ?p4 .

?q :hasPart ?p5 .

?p1 :isElemOf ?r1 .

?p1 :isElemOf ?r2 .

?p1 :isElemOf ?r3 .

?p1 :isElemOf ?r4 .

?p2 :isElemOf ?r1 .

?p3 :isElemOf ?r2 .

?p4 :isElemOf ?r3 .

?p5 :isElemOf ?r4 .

?r1 :hasBBconn ?c1 .

?r2 :hasBBconn ?c2 .

?r3 :hasBBconn ?c3 .

?r4 :hasBBconn ?c4 .

FILTER (?p1 != ?p2 && ?p1 != ?p3 && ?p1 != ?p4 && ?p1 != ?p5 &&

?p2 != ?p3 && ?p2 != ?p4 && ?p2 != ?p5 &&

?p3 != ?p4 && ?p3 != ?p5 &&

?p4 != ?p5 &&

?c1 = 1 && ?c2 = 1 && ?c3 = 1 && ?c4 = 1)

}

Figure 3.14: Query 6: Class retrieval using number of matching examples.

59

n Exec. time (ms) # results
2 104 20
3 60 16
4 46 13
5 34 30
6 21 30
7 12 7
8 10 20
9 8 17
10 7 10
11 8 13
12 5 1
13 4 0
14 4 0
15 4 2
16 4 2
17 4 2
18 4 6
19 4 1

Table 3.1: Results for objects having n parts with varying n.

Exec. time numerical (ms) Exec. time discretized (ms) # results
1 100 72 54
2 257 32 12
3 2070 137 18
4 2597 111 70
5 75381 2297 17
6 197244 412 7

Table 3.2: Results of the example queries.

60

ambiguity caused by a topology-only graph representation. The semantic
representation provides an explicit formalization of the used concepts and
makes it extendable with other features and descriptors; although it would
be possible to use standard subgraph matching algorithms directly on the
model parts, this advantage would be lost. We have not used any semantic
labels on parts such as Leg or Wing, the reason being that we were interested
in a perception-like task which can be possibly supported by fully automated
algorithms, while semantic labelling instead involves a further (and higher
level) step to be performed by humans; such labels can anyway be added
later on by human annotators or annotating algorithm which exploit part
decomposition similarity.

The main drawback of this approach is that, although it is possible to
obtain an automatic part decomposition, it is rarely possible to consider it
reliable; this becomes even more evident when using real data such as noisy
point clouds rather than precise 3D models. While the retrieval system is
efficient, the overall performance of the system depends on the performance
of the acquisition and shape decomposition stage. Furthermore, especially
in the case of articulated objects, it is difficult to generalize some of the
properties due to the high variability of the examples; for dealing with these
cases, it would be useful to add the concept of joint between two different
parts as in SRDL.

Following the criteria highlighted in the first chapter, this implementa-
tion can be analyzed as follows:

• Representation: concepts are used for representing the object classes as
they are defined in the two datasets (the first one having no taxonomic
structure, the second one offering different levels of hierarchy) and
geometric characteristics of parts in the second ontology; individuals
are used for representing single instances of such classes, single parts
composing each instance from the first dataset and reified relations
in the first version of the ontology; object properties relate objects
having a part decomposition with their parts in both the ontologies,
then reified relations with their elements in the first ontology and parts
among them in the second ontology; datatype properties relate objects
with their numerical quantities.

• Reasoning tasks: complete materialization (involving classification and
realization) offered by a rule reasoner associated to the triple store.

• Expressivity: ALI(D) for the first ontology, ALHI(D) for the second
one (I is used because of inverse properties and symmetric properties

61

such as connectedTo and intersecting, H because some object proper-
ties, e.g. related to parallelness, are arranged as subproperty of a more
general property, e.g. hasParallelRelationWith);

• Storage: OWLIM-Lite13, a semantic repository including a rule-based
reasoner supporting RDFS, OWL-Lite and OWL 2 QL/RL and a set
of query languages including SPARQL 1.1; it has being chosen because
the instances have to be stored efficiently for retrieval.

• Queries: performed in SPARQL 1.1 on the inferred ontology, in order
to support exact qualified cardinality queries, transitive properties (via
property paths) etc.

• Extensions: no extensions have been used, but it is possible to aug-
ment the ontology with annotations (for example using tools such as
Fuzzy2OWL14).

3.5.1 Future work

An extension of this work, which is subject of current research, is the inte-
gration within a broader knowledge base such as the PRAXICON (see Chap.
5). As the PRAXICON knowledge base has been derived by cognitive exper-
iments involving humans, the description of objects and their characteristics
makes use of semantic features; as the segmentations we have used have been
created by humans, it would be possible to map them to the mereological
information stored within the PRAXICON. In order to produce significant
results and to be able to generalize, this integration process has anyway to
deal with the availability of a rich description of objects on the PRAXI-
CON side and of a variety of decomposed objects with a high inter-class
and intra-class variability; thus, the most limiting issue at the moment is
given by coverage on both sides.

The integration with the PRAXICON offers another challenge, namely
the integration of purely geometric information about objects with quali-
tative labels such as long or small assigned by humans. In order to use a
knowledge base containing metric information such as the one presented in
this chapter, labels have to be grounded to numerical quantities in some
way. In Chap. 4 we will discuss how this problem can be faced with the
use of a fuzzy extension of description logics, while in Chap. 5 we will see
how to use and compare metric information at a lower level (using numerical
quantities rather than labels).

13http://owlim.ontotext.com/display/OWLIMv52/OWLIM-Lite
14http://gaia.isti.cnr.it/straccia/software/FuzzyOWL

62

http://owlim.ontotext.com/display/OWLIMv52/OWLIM-Lite
http://gaia.isti.cnr.it/straccia/software/FuzzyOWL

Chapter 4

Description logics and

grasping

Although a rich literature already exists dealing with the problem of grasp-
ing known and unknown objects based on their geometry and on grasp
suitability measures, representation of human (and humanoid) grasp types
is still an open research problem. The aim of this chapter is to provide a
way to find a suitable qualitative grasp for an object using geometric and
metric information as described in the previous chapters. We will discuss
the possibility to use expressive description logics to deal with the problem
of grasping, thus extending the way grasping and manipulation can be rep-
resented and used in knowledge representation frameworks; in particular, we
will discuss the use of a fuzzy extension of description logics to qualitatively
describe a taxonomy of human grasp types.

As the focus of this thesis on logical formalisms, this work provides
not only an evaluation of the suitability of a semantic representation for a
robotic-specific application, but also a test bench for the usage of fuzzy de-
scription logics out of their usual domain of application, using data to derive
fuzzy membership function to provide additional generalization capabilities.

4.1 State of the art

The study of grasping and manipulation has a long tradition in robotics:
as it is a very complex human activity, involving many aspects of cognition
from perception to action, it is still a hot research topic whose aim is to
mimic such human ability on robots and to make it as much autonomous as
possible.

The analysis of human grasps brought to the development of several

grasping taxonomies, whose purpose is to group grasps according to different
aspects such as the opposition types (the directions in which forces can be
applied by the hand on the object, usually measured with respect to the
palm), the power/precision requirements (for distinguishing the possible uses
of a certain grasp) and the virtual fingers (groups of fingers working together
as functional units). In [Feix et al.,] a taxonomy along with a dataset built
from grasping experiments is presented; another dataset showing results of
grasping simulations using objects from the Princeton dataset is presented
in [Goldfeder et al., 2009].

The eigengrasp approach has been introduced in [Ciocarlie et al., 2007,
Ciocarlie and Allen, 2009] to reduce the dimensionality of grasp configura-
tions by using “grasping units” which can be combined together to repre-
sent more complex grasps; the main idea is that, as a grasp is a vector
in the space of the degrees of freedom of a hand (position and rotation
of its links and joints), its principal components obtained through princi-
pal component analysis (PCA, see [Jolliffe, 2002]) can be combined linearly
to approximate all the grasp postures, thus reducing the dimension of the
space to search. Another approach whose popularity has been increasing
in the last decades is the use of affordances [Gibson, 1975], which can be
seen as “possibilities” offered by the environment and the objects to execute
a grasp (see for example [Ek et al., 2010, Barck-Holst et al., 2009]). Other
approaches for grasp learning include data-driven generalizations (match-
ing hand shape to object shape) [Li et al., 2007], shape analysis and hand
preshaping [Bard et al., 1991] and grasp understanding [Palm et al., 2009].
The selection of a preshape is important because, as it is possible to perform
similar actions on objects within the same category, only a subset of grasps
is needed; preshape selection avoids a full-space search in the space of possi-
ble grasps by providing information on mechanical and physical constraints
of the hand.

Teaching a robot how to grasp objects can be done in different
ways, depending on how much a human teacher is involved in the
process; Programming-by-Demonstration (see e.g. [Zollner et al., 2002,
Cypher and Halbert, 1993, Ekvall and Kragic, 2005, Kang and Ikeuchi, 1994]),
for instance, is an approach where the teacher executes a movement which
is tracked and then replicated on a robot. Several works include not only
real settings for manipulation but also simulated environments (see e.g.
[Aleotti and Caselli, 2010a, Ogata and Takahashi, 1994]).

On the symbolic and semantic side, several approaches have been tried
including knowledge bases and rules [Iberall et al., 1988] and primitive-grasp
tables [Bekey et al., 1993]. Symbol extraction from manipulation process

64

has been experimented as well, for example in [Chinellato et al., 2007].
Other approaches to semantic grasping and manipulation can be found
in [Aleotti and Caselli, 2012, Aleotti and Caselli, 2010b], where part de-
composition and object representation using graphs are used to generalize
grasps; a similar approach using superquadric fitting has been presented in
[Varadarajan and Vincze, 2011]. None of these works anyway makes use of
description logics or semantic query languages.

KnowRob, on the other hand, represents information on grasp capabili-
ties with taxonomies such as the following:

GraspingSomething

PowerGrasp

ExtensionType

LargeDiameter

PrecisionGrasp

PalmarPinch

PrecisionSphere

IntermediateGrasp

IntermediateExtension

while information about robot hands is expressed via SRDL as a
series of ABox individuals denoting the URDF links and joints such as
pr2 l gripper l finger joint, pr2 l gripper l finger link, pr2 l gripper l finger tip joint,

pr2 l gripper l finger tip link etc., related through object properties such as
precedingLink, succeedingLink, precedingJoint, succeedingJoint and so on, for
example:

succeedingLink(pr2 l gripper l finger tip joint, pr2 l gripper l finger tip link)

preceedingLink(pr2 l gripper l finger tip joint, pr2 l gripper l finger link)

Also, the joints have an orientation matrix represented by 36 datatype prop-
erties having floating-point numbers as range and matrixElement as super-
property.

4.2 Representation issues

When attempting to provide a semantic representation of a grasp type,
several problems have to be taken into account:

65

• Can a grasp type be represented only in terms of its shape? Does it
have sense?

• What attributes are necessary and interesting for the “representation”
of a grasp? Are such attributes “ambiguous”?

• Which is the level of detail needed for describing the object to be
grasped?

• Is this representation scalable and efficient?

• How can it be related to other features of an object, a hand or a robot?

• How can it be used to take into account physical constraints (e.g. the
weight of an object, the torque, etc.)?

In our previous works [Vitucci et al., 2010b, Vitucci, 2011] we faced some
of these issues, focusing on the level of expressivity needed for a flexible rep-
resentation of both the grasp types and of some classes of objects, the latter
derived directly from an image processing step; in particular, we explored
fuzzy DLs for representing objects by image part decomposition in order
to exploit such representation for manipulation tasks. In this chapter we
analyze the problem of grasp representation, trying to provide an answer to
the remaining issues and some ideas on possible extensions.

Although a semantic representation is not sufficient alone for reliable
grasp planning, it is useful for adding a level of detail to grasp representations
when they are integrated in a semantic framework. Some of the attributes
which can be efficiently represented using a semantic formalism include the
approximate shape and size of a specific grasp: this information is enough to
reduce the number of possible grasps to simulate during the planning phase,
as it rules out the highly unlikely ones and gives some degree of preference
on the others. As this representation is obtained directly from the data,
it can be easily adapted to a different formalism; the main advantage is in
that it makes the inclusion of other sources information (such as topological
information for objects or their physical properties) easy, provided that such
sources are defined conveniently as discussed in Chap. 3.

66

4.3 Implementation

4.3.1 Dataset

For our experiments we used the taxonomy and the dataset1 presented in
[Feix et al.,], because it is the most up-to-date and freely available dataset
along with a grasp taxonomy and it simple to be used with Matlab or Oc-
tave. More specifically, the dataset contains information about a series of
grasping experiments performed by five subjects in two different trials (un-
der the same conditions and used respectively for training and testing in the
related works) on a series of specific objects such as a CD, a tennis ball or
a cylindrical object; Table 4.1 lists all the objects used in the experiments
along with their geometry and size.

Each experiment includes the whole trajectory of the hand, from a rest-
ing position (where the hand lies on a table) to the holding position (after
performing the grasp and holding the object over the support) and then
back to the resting position; six magnetic sensors located on the five fin-
gers and on the dorsum of the hand are used for tracking. The information
registered include the position of each finger and its rotation matrix, either
raw or transformed with respect to the dorsum. Examples of the trajec-
tories recorded from the sensors are shown in Fig. 4.1, showing both raw
trajectories of all the fingers plus the dorsum and trajectories of the fingers
with respect to the dorsum. We used the untransformed dataset containing
100 samples; furthermore, differently from [Palm et al., 2009] we are only
interested in the position the fingers assume when the grasp is completed,
thus we only consider the positions in the highest point of the trajectory.

4.3.2 The grasping ontologies

We created two different ontologies: the first one is a “standard” ontol-
ogy derived from [Feix et al., 2009]; each of the 31 grasp types has been
represented as a class, and the grasping category (power, precision or in-
termediate), the opposition type (palm, pad or side) and the virtual fingers
involved (including the palm, as a “special” finger) are all represented as
classes.

The fuzzy ontology, instead, is automatically built from the data (see Sec.
4.3.3) and includes the qualitative size and shape of the objects that can be
grasped by each grasp; it can include the standard ontology as well, but for
the sake of simplicity (and for performance issues on the current version of

1Several versions of the dataset are available on http://grasp.xief.net/dataset.htm

67

http://grasp.xief.net/dataset.htm

Grasp n. Grasp name Object Size
1 Large Diameter Cylinder 11cm dia
2 Small Diameter Cylinder 3cm dia
3 Medium Wrap Cylinder 3cm dia
4 Adducted Thumb Cylinder 3cm dia
5 Light Tool Cylinder 1cm dia
6 Prismatic 4 Finger Cylinder 1cm dia
7 Prismatic 3 Finger Cylinder 1cm dia
8 Prismatic 2 Finger Cylinder 1cm dia
9 Palmar Pinch Coin
10 Power Disk Mini CD 8cm dia, 2mm high
11 Power Sphere Tennis Ball 67mm dia
12 Precision Disk CD 12cm dia, 2mm high
13 Precision Sphere Tennis Ball 67mm dia
14 Tripod Golf Ball 43mm dia
15 Fixed Hook Cylinder 3cm dia
16 Lateral Credit Card
17 Index Finger Extension Cylinder 3cm dia
18 Extension Type Plate
19 Writing Tripod Cylinder 1cm dia
20 Parallel Extension Box 4 cm thick
21 Adduction Grip Cylinder 1cm dia
22 Tip Pinch Cube 5mm dia
23 Lateral Tripod Bottle Cap
24 Sphere 4 Finger Tennis Ball 67mm dia
25 Quadpod Golf Ball 43mm dia
26 Sphere 3 Finger Tennis Ball 67mm dia
27 Stick Cylinder 1cm dia
28 Palmar Plate
29 Ring Cylinder 64mm dia
30 Ventral Cylinder 1cm dia
31 Inferior Pincer Golf ball 43mm dia

Table 4.1: Objects used in the grasping experiments with their sizes.

68

Figure 4.1: Untransformed and transformed trajectories of the finger tips.

69

the reasoner) we omit such information. Fig. 4.2 shows an excerpt from
both the ontologies.

4.3.3 Use grasp features to describe objects

Our aim is to deal with variation in an object size and shape in a smooth
way. We do not want to impose explicit (“crisp”) boundary values to every
grasp but rather express it with a suitability value for the object to grasp;
for this reason, we use a fuzzy formulation both of the objects properties
and of the grasp types.

As it is possible to see from Tab. 4.1 the used objects have different
shapes, some of them being cylindrical, some other spherical and so on;
this means that, for most of the grasps, not all the dimensions of an object
are important: for example, grasps executed on cylindrical objects are not
affected by the length of the grasped cylinders (in the hypothesis that the
object is well balanced and forces do not play a major role), provided that
their length is at least comparable with the distance between the index
finger tip and the little finger tip and that the grasp position is not relevant
(i.e. a power grasp can be executed in the middle or close to any of the
ends of a big cylinder). Grasps belonging to the taxonomy can be described
giving to their “predominant” dimensions a higher weight, meaning that
those dimensions will be preferred over the remaining dimensions to decide
the degree of suitability of the grasp with respect to an object; thus, the
advantage of using a fuzzy reasoner such as fuzzyDL is that weighted axioms
are supported, so it is possible to give a different degree of preference to every
feature.

As we mentioned earlier on, and extending the approach presented in
[Bekey et al., 1993], grasp measures can be used to “ground” the concepts
related to size (i.e. length, width and height); in other words, measures ob-
tained by some selected grasps can be regarded as “representative” for the
linguistic concepts related to size. As an example, a Large Diameter grasp
can be considered representative for the concept of “big size” to which we
refer as VeryHigh. Although it would be possible to use predefined linguistic
labels, saying for example that the membership function VeryHigh is a trian-
gular function defined in the interval [9cm, 11cm] with maximum degree of
truth at 10cm, this would not reflect the shape of a specific hand and would
require a normalization to have the same meaning for every hand; in fact,
not only grasps are performed in a different way depending on the hand, but
different hands pose different mechanical constraints. In addition, deriving
the membership functions from the data makes the process data-driven and

70

(define-fuzzy-concept VeryLow

triangular(0.0000, 30.0000, 0.0000, 0.3620, 1.7114))

(define-fuzzy-concept Low

triangular(0.0000, 30.0000, 0.3620, 1.7114, 3.7643))

(define-fuzzy-concept Medium

triangular(0.0000, 30.0000, 1.7114, 3.7643, 8.3681))

(define-fuzzy-concept High

triangular(0.0000, 30.0000, 3.7643, 8.3681, 12.1212))

(define-fuzzy-concept VeryHigh

triangular(0.0000, 30.0000, 8.3681, 12.1212, 14.1858))

(implies (w-sum

(0.0833 (some hasR1 No))

(0.0833 (some hasR2 Yes))

(0.0833 (some hasR3 No))

(0.1500 (some hasFirstDim VeryLow))

(0.3000 (some hasSecondDim VeryHigh))

(0.3000 (some hasThirdDim VeryHigh)))

LargeDiameterGrasp)

(implies (w-sum

(0.0833 (some hasR1 No))

(0.0833 (some hasR2 Yes))

(0.0833 (some hasR3 No))

(0.1500 (some hasFirstDim High))

(0.3000 (some hasSecondDim Medium))

(0.3000 (some hasThirdDim Medium)))

SmallDiameterGrasp)

Figure 4.2: Example of the two grasping ontologies.

71

automatic.
In order to relate grasp data to the linguistic labels describing size and

shape of objects and grasps, several steps have to be performed:

1. define a “measure” for every grasp, i.e. define how to measure the size
of an object wrapped by every grasp from numeric data: for example,
if the relevant dimension in the Inferior Pincer grasp is the radius of
the sphere it wraps, we need a way to estimate the same dimension
of the wrapped object starting from the data, i.e. to define “how
large” is an Inferior Pincer grasp when performed by this specific hand:
in this case, a good approximation can be achieved considering the
(Euclidean) distance between the thumb tip and the index finger tip;

2. choose a representative grasp for every concept of size: although the
choice can be made on an arbitrary basis, we can use grasp measures
to find clusters and then select any grasp belonging to each of these
groups;

3. build the membership functions from the measures of the selected
grasps, i.e. decide what kind of function and which parameters to
assign to each of them;

4. evaluate the membership functions for every grasp to express each
grasp in terms of the linguistic labels.

Grasp measures and important dimensions As the dataset contains a
whole sequence, we have to select a single sample (or a small set of samples)
which represents the position of the fingers while the hand is grasping the
object; from this sample, which we choose as the time in which most of the
fingers are located at their maximum height with respect to the rest position,
we extract the positions of the finger tips and of the dorsum and calculate
their pairwise distances. We also calculate the distance between each pair
of finger tips at the beginning of the experiment to obtain information such
as the length of the hand etc. As in the dataset the fingers are ordered as
“index, thumb, wrist, middle, ring, little”, to avoid confusion before any
calculation we rearrange them as “thumb, index, middle, ring, little, wrist”.
An example of the evolution of the distance between each pair of finger tips
is shown in Fig. 4.3.

As we have mentioned, the distances between finger tips are used for
calculating the characteristics of each grasp type; the “dimensions” of a
grasp are intended as the dimensions of the object it can be applied to rear-
ranged in descending order, i.e. if the size of an object aligned to the axis is

72

Figure 4.3: Distances between finger tips for the Large Diameter grasp (subject 1,
trial 2).

Grasp Main dimension(s) Measures
Large Diam. 2, 3 (cylinder radius) 〈D1,2, D1,3, D1,4, D1,5〉 − 2fT

Small Diam. 2, 3 (cylinder radius) 〈D6,2, D6,3, D6,4, D6,5〉 − pT − fT

Tripod 1, 2, 3 (sphere radius) D1,3 − 2fT

Parallel Ext. 3 (plane thickness) 〈D1,2, D1,3, D1,4, D1,5〉 − 2fT

Table 4.2: Measures for each grasp. Di,j is the distance between finger tip i and
finger tip j (finger 6 being the palm), 〈Di,j , Dk,l〉 is the average between the
distances Di,j and Dk,l, fT is the finger thickness, pT is the palm thickness.

〈4cm, 7cm, 3cm〉 it will be rearranged as 〈7cm, 4cm, 3cm〉. Furthermore, as
we mentioned each grasp has an associated “vector of importance” to iden-
tify the relevant dimensions of an object it can be applied to; for instance,
a vector such as [0, 1, 1] means that for this grasp the relevant dimensions
of the object to be grasped are the least significant two.

It is important to note that the importance vectors and the measures are
performed in two different phases, although they are related to each other:
the importance vectors define what dimensions are more discriminative for a
grasp, while the grasp measure define how to calculate them and, if possible,
how to approximate the less important dimensions. Examples of importance
vectors and measures are shown in Tab. 4.2.

The grasp measures are calculated qualitatively, and as we will see later it
is not necessary to have a precise measure. For the same reason, as the used
distance is Euclidean, it is not necessary to transform the finger tip position

73

and the dorsum position to obtain respectively the real finger tip and palm
center positions, but it is enough to subtract the finger and palm thicknesses
from the calculated distance. Tab. 4.3 shows the error when comparing the
grasp measures with the real objects used in the experiments; as it can be
seen measures for the same grasp can be very different not only between two
different subjects but even between two different trials by the same subject,
therefore some measures can be less reliable for some specific types of grasp.

74

Grasp Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2

1 0.1146 0.1102 0.1035 0.1019 0.0091 0 0.0349 0.0354 0.0763 0.0639
2 1.1085 0.2431 0.0429 0.0714 1.2284 0.0219 0.2384 0.2508 0.2026 0.2043
3 0.3515 0.3036 0.8774 0.1714 0.1985 0.3246 0.4653 0.4001 0.2099 0.1911
4 0.2573 0.2594 0.1796 0.2021 0.1510 0.1795 0.4170 0.3730 0.2594 0.2362
6 0.6341 1.0234 0.8142 0.9874 1.0353 0.8983 0.2895 0.2851 1.2653 1.1677
7 1.1014 0.9546 1.0934 1.2828 0.8972 0.9796 0.7610 0.7827 0.8723 0.9800
8 0.7151 0.9563 1.4658 0.6622 0.9078 0.9191 1.0577 0.9144 1.0108 0.8947
9 2.1871 3.1813 4.7878 6.6508 3.1994 2.6536 4.1107 35.1508 6.1399 5.0693
11 0.2620 0.1230 0.1723 0.0697 0.0523 0.0897 0.0259 0.0096 0.0665 0.0757
12 0.6788 0.0551 0.0952 0.0578 0.0485 0.0569 0.0340 0.0187 0.0473 0.0437
13 0.6839 0.0414 0.0654 0.0086 0.0856 0.0847 0.0905 0.0708 0.1161 0.0255
14 0.5654 0.0709 0.0940 0.0813 0.1508 0.2047 0.0203 0.0567 0.0445 0.0123
15 1.2292 0.2583 0.0640 0.0758 0.2370 0.1269 0.2843 0.2623 0.2315 0.2210
17 0.3898 0.7826 0.3187 0.8967 0.4063 0.5201 0.4962 0.2773 1.6100 0.4597
18 0.2496 0.6429 0.1829 0.1604 0.0631 0.2097 0.3697 0.6632 0.2528 0.0503
20 0.5739 0.3025 0.0216 0.0335 0.2825 0.2404 1.6179 0.3146 1.4766 1.4658
21 3.2917 0.7111 3.1596 2.7871 1.2061 1.1956 0.6248 0.5087 1.6329 2.0357
22 0.4019 0.2951 13.9136 0.2760 0.3710 0.4411 0.3874 0.5688 0.9189 0.8820
24 0.0959 0.0515 0.2087 0.2317 0.0146 0.0120 0.0177 0.0242 0.0356 0.0082
25 0.1144 0.2178 0.0873 0.1085 0.1423 0.1486 0.1092 0.1524 0.0390 0.0577
26 0.1316 0.0647 0.2006 0.2133 0.0251 0.0170 0.0775 0.0332 0.0349 0.0337
28 0.0400 0.1346 0.0344 0.1165 1.6767 1.6335 1.8939 0.0885 0.1721 0.1505
29 0.0981 0.0607 0.3014 0.3075 0.1074 0.0188 0.0919 0.0060 0.0393 0.0151
31 0.1139 0.2018 0.8116 0.8617 0.2582 0.2251 0.0693 0.1769 0.4509 0.5668

Table 4.3: Errors between estimated and real measures, calculated as e = (m − r)/r, where m is the grasp measure and r is the real
measure of the object on its important dimension. Light cyan is used for highlighting the “small” grasps, while light red for the grasps
showing significant differences among subjects and light yellow for grasps showing significant differences between two trials of the same
subject.

75

For defining the important dimensions, we divide the 31 grasps in 4
categories:

• cylindrical grasps (most important dimensions: the 2 smallest ones,
corresponding to the cylinder radius): Large Diameter, Small Diame-
ter, Medium Wrap, Adducted Thumb, Light Tool, Prismatic 4 Finger,
Prismatic 3 Finger, Prismatic 2 Finger, Fixed Hook, Index Finger Ex-
tension, Writing Tripod, Adduction Grip, Tip Pinch, Lateral Tripod,
Stick, Ring, Ventral;

• spherical grasps (most important dimensions: all the dimensions, cor-
responding to the sphere radius): Power Sphere, Precision Sphere,
Tripod, Sphere 4 Finger, Quadpod, Sphere 3 Finger, Inferior Pincer;

• disk grasps (most important dimensions: the 2 biggest ones): Power
Disk, Precision Disk;

• planar grasps (most important dimension: the smallest one): Palmar
Pinch, Lateral, Extension Type, Parallel Extension, Palmar.

Anyway, we exclude the following grasps from further analysis because it
is not possible to estimate the object dimensions for them: Light Tool, Power
Disk, Lateral, Lateral Tripod, Stick, Ventral. It is important to note here
that the terms “spherical” and “cylindrical” are used in a broad sense, thus
the first one is a synonym for “equidimensional” (so cubes are “spherical” as
well) and the second one is a synonym for “elongated” (so a prolate ellipsoid
or a parallelepiped would be “cylindrical” as well).

Building the membership functions Table 4.4 and Fig. 4.4 show the
grasps selected as representative for each linguistic label related to the size;
Table 4.2 shows the measures for some of the grasps, while Table 4.3 shows
the difference in 5 different experiments (all the people at the second trial)
between the estimated measures and the real measures. As it can be seen,
the chosen measures are better in some trials than in others; this can hap-
pen either because, after the first grasp, a subject performs the second grasp
in a different way (altering the position of the fingers) or because the un-
derstanding of the way to execute a specific grasp is different among the
subjects, so that some descriptors (which are qualitatively obtained from
the shapes suggested in the taxonomy) are better in some cases and worse
in some others. It can be noted that the performances are generally worse
for “small” grasps and better for “big” grasps, suggesting that the approx-
imation of a size is more difficult when the measured dimension is small
because of the sensitivity to the relative position of the sensors.

76

Figure 4.4: Representative grasp measures. The highlighted points represent the
most significative measure for the chosen grasps (on the x axis, having a value
between 1 and 31).

Linguistic label Grasp

VeryLow Tip Pinch

Low Prismatic 2 Fingers

Medium Medium Wrap

High Ring

VeryHigh Large Diameter

Table 4.4: Chosen representative grasps (images taken from [Feix et al., 2009]).

77

Figure 4.5: Example of generated membership functions.

We select five linguistic labels (namely VeryHigh, High, Medium, Low

and VeryLow) and we build the related fuzzy membership functions. All the
functions are triangular except for the VeryHigh function which is trapezoidal
(the VeryLow function is not trapezoidal because there should be a minimum
size for an object to be graspable, thus values very close to 0 are not suitable);
being Mrange the maximum value for any dimension, their parameters are
calculated as follows:

• the parameter b is the measure of the representative grasp;

• the parameter a is calculated as a = bp, where bp is the b parameter
of the previous membership function (0 for VeryLow);

• the parameter c is calculated as c = bn, where bn is the b parameter
of the next membership function (Mrange for VeryHigh);

• the VeryHigh function has an additional parameter d = c = Mrange,
because the maximum value of a VeryHigh dimension cannot exceed
the maximum range.

The choice of such shapes for the membership functions is due to the data:
if we take a single measure for every grasp, it is natural to assign such value
the maximum degree of truth and to assign the minimum degree of truth
in correspondence of the value of the previous and next measure. As an
alternative it is possible to use both the trials by the same subject to define
an interval where the function has the maximum degree of truth, but as it
can be seen from Tab. 4.3 two trials by the same subject can have completely
different measures.

78

Figure 4.6: Membership functions related to the object shape.

From these measures all the grasp data are “converted” to membership
functions; in this way, for example, a grasp on a planar object can be de-
scribed in terms of the dimension of another grasp. As the values for the
fuzzy functions are automatically derived, these concepts can be “personal-
ized” depending on the real hand shape to be used; thus, what is High for
one hand can be High or Medium for another one.

We also need a way to define approximately the shape of an object, i.e.
beside its size we need to know whether the object is cylindrical, spherical
or planar in order to select the correct family of grasps. Such characteristics
are calculated from the bounding box dimensions as follows:

• R1 =
b

a

• R2 =
c

b

• R3 =
c

a

Each of these features is evaluated through the two predefined membership
functions Yes and No (Fig. 4.6), measuring the “similarity” of two dimen-
sions through their ratio as follows:

• Yes: trapezoidal function with parameters [0.2, 0.8, 1, 1]

• No: trapezoidal function with parameters [0, 0, 0.2, 0.8].

Building the axioms These pieces of information have to be combined
to obtain fuzzy axioms giving appropriate weights to each of the features,

79

that is to the three features related to the shape (R1, R2 and R3) and to the
three features related to the size (length, width and height); additionally,
an axiom can include the type of the grasp (namely Power, Precision or
Intermediate). Thus, an axiom has the following form:

Wshape

3∑
i=1

(wratioiMFratioi(x)) + Wsize

3∑
j=1

(wsizejMFsizej (x)) =⇒ Class(x)

with the constraint:

Wshape

3∑
i=1

wratioi + Wsize

3∑
j=1

wsizej = 1

where Wshape and Wsize are the fixed overall weights given respectively to
the shape and to the size membership functions, while wratioi and wsizej are
the three weights for each dimension ratio and each dimension size.

The choice of using weights instead of operators such as AND is due to
the fact that weights offer a way to balance the effect of “false” membership
function, where an AND (translated in a min function according to Zadeh
logic) would make the whole axiom false.

4.3.4 Use object features to retrieve grasps

For retrieving suitable grasps, fuzzy axioms like the following can be used:

(implies (w-sum

(0.0833 (some hasR1 No))

(0.0833 (some hasR2 Yes))

(0.0833 (some hasR3 No))

(0.1500 (some hasFirstDim VeryHigh))

(0.3000 (some hasSecondDim VeryHigh))

(0.3000 (some hasThirdDim VeryHigh)))

LargeDiameterGrasp)

This axiom means that an object, to be grasped by a Large Diameter grasp,
has to have all VeryHigh dimensions and a cylindrical shape (as R2, the ratio
between the second and third dimension, is close to one while the other two
ratios are close to 0). Although it would be more clear to express the fuzzy
axioms as in the formula above (i.e. as the weighted sum of the shape and
size components, which in turn are weighted sums), for performance reasons
it is more convenient to write fuzzyDL axioms in this way (i.e. including

80

the weights of the shape and size components in the weight of every single
membership function).

Some taxonomic (crisp) information can be added to these axioms: for
example a Large Diameter grasp is a Power Type grasp, so this information
can be added using an AND operator (because either a grasp is a Power
Type or it is not, according to the taxonomy) or as an additional weighted
term (if the type of a grasp should not have much importance with respect
to its geometric characteristics).

4.4 Experiments

In the next examples we proceed to a qualitative evaluation of the use of
fuzzy axioms to find suitable grasps for each part of an object. For ev-
ery object part we select the two preferred grasps and discuss the result;
it is important to note that, as we want to exploit the object informa-
tion presented in Chap. 3, we focus on the geometric characteristics rather
than on the mereotopological structure, thus we do not introduce any con-
straints on the position of the parts composing an object: they are con-
sidered free, i.e. not attached to each other. In Fig. 4.7 the objects used
in the experiments, whose results are reported in Tab. 4.6 to 4.11, are
shown. For each table several scales along with the corresponding measures
for the selected object part are reported, then the best two grasps both with
[Wshape = 0.25, Wsize = 0.75] and with [Wshape = 0.5, Wsize = 0.5] are
reported. The tables are limited to five parts per object for space reasons.
The abbreviations for the grasp names are show in Tab. 4.5.

In the first example (the airplane) it is possible to see that for the first
part (the body of the plane) the most suitable grasps are cylindrical and the
degree of suitability of the found grasps is rather high; for the remaining
parts (the wings and the stabilizers) the preferred grasps are planar. It can
be noted that the highest degrees of satisfiability are reached on average
when the model is scaled by a factor of 25, that is when its dimensions are
closer to the dimensions of the hand used for creating the used membership
functions.

In the second example (the bearing) for the first part (the biggest one,
represented in red in the figure) a Power Sphere grasp is considered more
suitable when the scale is 10, while a Precision Disk grasp is considered bet-
ter when the scale is 25 and 50: the reason is that, although the dimensions
of the object are almost equal to each other thus the shape is inferred to be
spherical, the size in the second case is much more similar to the size of the
important dimensions of a Precision Disk grasp, keeping into account that

81

the third dimension in the case of disk grasps is considered less important.
In the third case, instead, the unrealistically high suitability for a Precision
Disk grasp is due to the fact that the maximum for the VeryHigh member-
ship function has been set to a value of 30, thus all the three dimensions are
considered to be VeryHigh.

In the third and forth case (the chair and the table) for the first part
(the seat and the table top respectively) the preferred grasps are planar,
while for the legs the preference is for cylindrical grasps.

In the fifth case (the cup) for the first part (the container) the preferred
grasps are spherical or disk-type depending on the dimensions as in the
case of the bearing; in this case it is possible to see that when the scale is
high, even if the shape of the object is spherical, the grasps have a very low
suitability: this happens because the dimensions exceed the limit for the
VeryHigh membership function so that no membership function becomes
even partially true. For the second part (the handle) the found grasps,
although having rather high suitability degrees, are not much reliable for a
real grasp, the reason being that no grasp on a concave object is defined in
the taxonomy; this is a case which shows that information on the bounding
box and the (convex) shape alone are not sufficient for finding a suitable
grasp.

In the sixth case (the vase) for the first part (the bowl) a spherical grasp
is preferred when the scale is 10, while a cylindrical grasp is preferred when
the scale is 25; again, this depends not only on the shape of the object but
also on its size. For the second part (the neck), instead, cylindrical grasps
are preferred.

82

LargeDiameter LD SmallDiameter SD
MediumWrap MW AdductedThumb AT
LightTool LT Prismatic4Finger P4F
Prismatic3Finger P3F Prismatic2Finger P2F
PalmarPinch PP PowerDisk PD
PowerSphere PS PrecisionDisk PrD
PrecisionSphere PrS Tripod T
FixedHook FH Lateral L
IndexFingerExtension IFE ExtensionType ET
WritingTripod WT ParallelExtension PE
AdductionGrip AG TipPinch TP
LateralTripod LTr Sphere4Finger S4F
Quadpod Q Sphere3Finger S3F
Stick S Palmar P
Ring R Ventral V
InferiorPincer IP

Table 4.5: Grasp names abbreviations.

Figure 4.7: Objects used in the experiments.

83

Scale Dimensions Wshape = 0.25, Wsize = 0.75 Wshape = Wsize = 0.5
1.00 [1.31 0.30 0.27] TP (0.5086) PP (0.4208) TP (0.6663) LD (0.4908)
5.00 [6.56 1.49 1.35] P2F (0.7204) P4F (0.5824) P2F (0.8074) P4F (0.7155)
10.00 [13.12 2.97 2.71] P4F (0.7356) P3F (0.7356) P4F (0.8176) P3F (0.8176)
25.00 [32.79 7.44 6.77] R (0.8074) PS (0.5563) R (0.8655) LD (0.5147)
50.00 [65.58 14.87 13.53] LD (0.8454) PE (0.6862) LD (0.8908) PE (0.5723)
1.00 [0.86 0.44 0.12] PP (0.5081) TP (0.3886) PP (0.6055) TP (0.4367)
5.00 [4.31 2.18 0.58] PP (0.6015) P2F (0.4291) PP (0.6679) P2F (0.4637)
10.00 [8.61 4.36 1.16] SD (0.4862) MW (0.4862) PP (0.5895) ET (0.5446)
25.00 [21.53 10.89 2.89] ET (0.7074) P (0.7074) ET (0.7385) P (0.7385)
50.00 [43.06 21.79 5.78] LD (0.4332) PrD (0.3515) ET (0.5002) PE (0.5002)
1.00 [0.88 0.46 0.12] PP (0.5207) TP (0.4027) PP (0.6172) TP (0.4428)
5.00 [4.40 2.31 0.62] PP (0.6335) TP (0.4181) PP (0.6924) TP (0.4531)
10.00 [8.80 4.63 1.24] PP (0.4587) ET (0.4519) PP (0.5759) ET (0.5714)
25.00 [21.99 11.57 3.10] ET (0.6780) P (0.6780) ET (0.7221) P (0.7221)
50.00 [43.98 23.15 6.20] LD (0.4308) R (0.3696) ET (0.5051) PE (0.5051)
1.00 [0.26 0.16 0.08] PP (0.3287) TP (0.2396) PP (0.4577) ET (0.3580)
5.00 [1.29 0.82 0.38] PP (0.6513) TP (0.5650) PP (0.6728) TP (0.5485)
10.00 [2.57 1.64 0.75] PP (0.6372) TP (0.4900) PP (0.6634) TP (0.4985)
25.00 [6.43 4.10 1.88] ET (0.5807) P (0.5807) ET (0.6258) P (0.6258)
50.00 [12.86 8.20 3.75] AT (0.5535) IFE (0.5535) AT (0.5408) IFE (0.5408)
1.00 [0.28 0.22 0.08] PP (0.3864) TP (0.2346) PP (0.5425) ET (0.4274)
5.00 [1.39 1.11 0.41] PP (0.6656) TP (0.4816) PP (0.7286) TP (0.4461)
10.00 [2.78 2.22 0.82] PP (0.6085) P4F (0.3987) PP (0.6906) ET (0.4642)
25.00 [6.96 5.56 2.04] ET (0.6642) P (0.6642) ET (0.7277) P (0.7277)
50.00 [13.92 11.12 4.08] PrD (0.6589) AT (0.5259) ET (0.6072) PE (0.6072)

Table 4.6: Airplane.

84

Scale Dimensions Wshape = 0.25, Wsize = 0.75 Wshape = Wsize = 0.5
1.00 [0.55 0.55 0.54] PP (0.7114) TP (0.5872) PP (0.5854) PrD (0.5827)
5.00 [2.77 2.76 2.68] T (0.5326) Q (0.5326) T (0.6884) Q (0.6884)
10.00 [5.53 5.52 5.35] PS (0.6561) PrS (0.6561) PS (0.7707) PrS (0.7707)
25.00 [13.83 13.80 13.38] PrD (0.8500) LD (0.8333) PrD (0.9000) LD (0.6667)
50.00 [27.66 27.61 26.77] PrD (0.8500) LD (0.8333) PrD (0.9000) LD (0.6667)
1.00 [0.55 0.26 0.26] PP (0.4523) TP (0.4156) TP (0.5094) PP (0.4126)
5.00 [2.76 1.30 1.30] TP (0.4888) P4F (0.4597) TP (0.5583) P4F (0.5388)
10.00 [5.51 2.60 2.60] P2F (0.6730) P4F (0.5897) P2F (0.6811) P4F (0.6255)
25.00 [13.78 6.51 6.51] R (0.8663) PS (0.6107) R (0.8099) PS (0.6192)
50.00 [27.55 13.02 13.02] LD (0.9243) PE (0.8333) LD (0.8486) PrD (0.7181)
1.00 [0.20 0.20 0.05] PP (0.3603) ET (0.2325) PP (0.5502) ET (0.4649)
5.00 [0.99 0.99 0.26] PP (0.6388) TP (0.4294) PP (0.7358) ET (0.4649)
10.00 [1.98 1.98 0.52] PP (0.6040) P4F (0.3737) PP (0.7126) ET (0.4649)
25.00 [4.95 4.95 1.30] PP (0.4684) ET (0.4465) PP (0.6222) ET (0.6076)
50.00 [9.90 9.90 2.60] ET (0.7158) P (0.7158) ET (0.7872) P (0.7872)
1.00 [0.70 0.39 0.39] PP (0.5895) TP (0.5125) TP (0.5424) PP (0.5041)
5.00 [3.50 1.95 1.95] P4F (0.7199) P3F (0.7199) P4F (0.6806) P3F (0.6806)
10.00 [7.00 3.91 3.91] SD (0.8932) MW (0.8932) SD (0.7962) MW (0.7962)
25.00 [17.50 9.77 9.77] PrD (0.6474) LD (0.6298) PrD (0.6753) LD (0.6206)
50.00 [35.00 19.53 19.53] LD (0.7505) PE (0.6833) LD (0.7011) PE (0.5667)

Table 4.7: Bearing.

85

Scale Dimensions Wshape = 0.25, Wsize = 0.75 Wshape = Wsize = 0.5
1.00 [0.87 0.80 0.20] PP (0.6376) TP (0.4457) PP (0.7430) ET (0.4769)
5.00 [4.33 4.01 1.01] PP (0.5714) T (0.5498) PP (0.6989) ET (0.5550)
10.00 [8.67 8.01 2.01] ET (0.7703) P (0.7703) ET (0.8315) P (0.8315)
25.00 [21.67 20.03 5.03] PrD (0.6949) ET (0.5385) ET (0.6769) PE (0.6769)
50.00 [43.34 40.06 10.06] PE (0.5095) LD (0.2667) PE (0.6576) PP (0.4769)
1.00 [0.47 0.31 0.10] PP (0.4610) TP (0.3089) PP (0.5874) ET (0.4200)
5.00 [2.35 1.54 0.51] PP (0.6155) TP (0.4587) PP (0.6903) TP (0.4641)
10.00 [4.70 3.09 1.02] PP (0.5393) T (0.4067) PP (0.6396) ET (0.5005)
25.00 [11.74 7.72 2.54] ET (0.6993) P (0.6993) ET (0.7462) P (0.7462)
50.00 [23.48 15.44 5.08] PrD (0.6838) LD (0.5687) ET (0.6200) PE (0.6200)
1.00 [0.83 0.15 0.12] TP (0.3724) PP (0.3297) TP (0.5813) LD (0.4995)
5.00 [4.14 0.74 0.59] TP (0.8027) PP (0.6323) TP (0.8681) PP (0.5330)
10.00 [8.28 1.47 1.18] P2F (0.6535) TP (0.5960) P2F (0.7687) TP (0.7303)
25.00 [20.70 3.68 2.94] AT (0.8087) IFE (0.8087) AT (0.8722) IFE (0.8722)
50.00 [41.39 7.36 5.88] R (0.7230) PS (0.4774) R (0.8150) SD (0.5629)
1.00 [0.81 0.13 0.11] TP (0.3640) PP (0.3246) TP (0.5760) LD (0.5000)
5.00 [4.05 0.67 0.56] TP (0.8050) PP (0.6206) TP (0.8700) PP (0.5249)
10.00 [8.10 1.34 1.12] TP (0.6321) P2F (0.6179) TP (0.7548) P2F (0.7452)
25.00 [20.25 3.35 2.80] AT (0.7346) IFE (0.7346) AT (0.8230) IFE (0.8230)
50.00 [40.50 6.69 5.61] R (0.7172) PS (0.4727) R (0.8115) SD (0.5885)
1.00 [0.72 0.11 0.11] TP (0.3496) PP (0.3245) TP (0.5664) LD (0.5000)
5.00 [3.58 0.55 0.53] TP (0.7478) PP (0.5770) TP (0.8319) LD (0.5000)
10.00 [7.17 1.09 1.06] TP (0.6743) P2F (0.5757) TP (0.7828) P2F (0.7172)
25.00 [17.92 2.73 2.64] P4F (0.7892) P3F (0.7892) P4F (0.8595) P3F (0.8595)
50.00 [35.84 5.46 5.28] R (0.5548) SD (0.5452) R (0.7032) SD (0.6968)

Table 4.8: Chair.

86

Scale Dimensions Wshape = 0.25, Wsize = 0.75 Wshape = Wsize = 0.5
1.00 [1.98 1.00 0.10] PP (0.3934) TP (0.3918) PP (0.5413) TP (0.4266)
5.00 [9.91 5.02 0.49] PP (0.5524) TP (0.4392) PP (0.6473) ET (0.4762)
10.00 [19.83 10.05 0.99] PrD (0.6360) ET (0.5607) ET (0.6528) P (0.6528)
25.00 [49.56 25.12 2.47] ET (0.7031) P (0.7031) ET (0.7478) P (0.7478)
50.00 [99.13 50.25 4.94] SD (0.3170) MW (0.3170) PP (0.4186) ET (0.4186)
1.00 [0.23 0.09 0.07] TP (0.2819) PP (0.2199) TP (0.4643) LD (0.4144)
5.00 [1.16 0.45 0.36] TP (0.5808) PP (0.5424) TP (0.6635) PP (0.4897)
10.00 [2.31 0.90 0.71] TP (0.7379) PP (0.6474) TP (0.7683) PP (0.5597)
25.00 [5.78 2.25 1.78] P2F (0.8149) P4F (0.7177) P2F (0.8196) P4F (0.7548)
50.00 [11.55 4.50 3.56] AT (0.8212) IFE (0.8212) AT (0.8237) IFE (0.8237)
1.00 [0.25 0.09 0.08] TP (0.2882) PP (0.2210) TP (0.4706) LD (0.4177)
5.00 [1.23 0.44 0.42] TP (0.6057) PP (0.5644) TP (0.6822) PP (0.4902)
10.00 [2.46 0.88 0.84] TP (0.7177) PP (0.5984) TP (0.7569) PP (0.5129)
25.00 [6.15 2.19 2.09] P2F (0.8880) P4F (0.7713) P2F (0.8705) P4F (0.7926)
50.00 [12.30 4.38 4.19] AT (0.8812) IFE (0.8812) AT (0.8659) IFE (0.8659)
1.00 [0.24 0.09 0.09] TP (0.2835) PP (0.2213) TP (0.4569) LD (0.4020)
5.00 [1.18 0.45 0.44] TP (0.6133) PP (0.5863) TP (0.6769) PP (0.5035)
10.00 [2.36 0.90 0.88] TP (0.6952) PP (0.5808) TP (0.7314) PP (0.4998)
25.00 [5.91 2.25 2.20] P2F (0.8410) P4F (0.7368) P2F (0.8287) P4F (0.7592)
50.00 [11.82 4.50 4.40] AT (0.8276) IFE (0.8276) AT (0.8197) IFE (0.8197)
1.00 [0.23 0.08 0.07] TP (0.2844) PP (0.2140) TP (0.4738) LD (0.4263)
5.00 [1.16 0.42 0.34] TP (0.5694) PP (0.5254) TP (0.6638) PP (0.4741)
10.00 [2.31 0.85 0.69] TP (0.7601) PP (0.6572) TP (0.7909) PP (0.5620)
25.00 [5.78 2.12 1.72] P2F (0.8297) P4F (0.7323) P2F (0.8373) P4F (0.7724)
50.00 [11.56 4.24 3.45] AT (0.8370) IFE (0.8370) AT (0.8422) IFE (0.8422)

Table 4.9: Table.

87

Scale Dimensions Wshape = 0.25, Wsize = 0.75 Wshape = Wsize = 0.5
1.00 [1.39 1.38 1.31] PP (0.4558) P4F (0.3875) PrD (0.5520) PS (0.5000)
5.00 [6.96 6.91 6.54] PS (0.9650) PrS (0.9650) PS (0.9767) PrS (0.9767)
10.00 [13.93 13.82 13.09] PrD (0.8500) LD (0.8333) PrD (0.9000) LD (0.6667)
25.00 [34.82 34.54 32.71] PS (0.2500) PrD (0.2500) PS (0.5000) PrD (0.5000)
50.00 [69.64 69.08 65.42] PS (0.2500) PrD (0.2500) PS (0.5000) PrD (0.5000)
1.00 [1.04 0.45 0.25] PP (0.5311) TP (0.5053) TP (0.5743) PP (0.5454)
5.00 [5.22 2.27 1.27] P2F (0.6425) P4F (0.5742) P2F (0.6658) P4F (0.6202)
10.00 [10.44 4.53 2.53] AT (0.5950) IFE (0.5950) AT (0.6341) IFE (0.6341)
25.00 [26.11 11.33 6.33] PrD (0.6393) R (0.6287) R (0.6565) LD (0.6236)
50.00 [52.22 22.66 12.65] LD (0.7781) PE (0.7435) LD (0.7561) PE (0.6870)

Table 4.10: Cup.

88

Scale Dimensions Wshape = 0.25, Wsize = 0.75 Wshape = Wsize = 0.5
1.00 [0.92 0.61 0.59] PP (0.7591) TP (0.6806) PP (0.6195) TP (0.6194)
5.00 [4.60 3.03 2.97] T (0.6586) Q (0.6586) T (0.7179) Q (0.7179)
10.00 [9.20 6.06 5.95] PS (0.7118) PrS (0.7118) PS (0.7533) PrS (0.7533)
25.00 [23.00 15.15 14.87] LD (0.8742) PE (0.8351) PrD (0.8182) LD (0.7485)
50.00 [45.99 30.31 29.74] PE (0.5351) LD (0.4242) PE (0.4701) LD (0.4485)
1.00 [0.34 0.34 0.11] PP (0.4507) TP (0.2918) PP (0.5899) ET (0.4341)
5.00 [1.71 1.71 0.54] PP (0.6639) TP (0.4043) PP (0.7320) ET (0.4341)
10.00 [3.41 3.41 1.09] PP (0.5232) T (0.4844) PP (0.6382) ET (0.5300)
25.00 [8.53 8.53 2.72] ET (0.5979) P (0.5979) ET (0.6880) P (0.6880)
50.00 [17.07 17.06 5.44] PrD (0.7163) LD (0.5333) ET (0.6341) PE (0.6341)
1.00 [0.70 0.29 0.28] PP (0.4900) TP (0.4557) TP (0.5612) PP (0.4393)
5.00 [3.50 1.43 1.40] P4F (0.5286) P3F (0.5286) P4F (0.6098) P3F (0.6098)
10.00 [7.00 2.86 2.80] P2F (0.6795) SD (0.5950) P2F (0.7105) SD (0.6541)
25.00 [17.50 7.16 7.01] R (0.9103) PS (0.6129) R (0.8643) PS (0.5956)
50.00 [34.99 14.32 14.02] LD (0.7931) PE (0.6845) LD (0.7861) PE (0.5690)

Table 4.11: Vase.

89

4.5 Discussion

Although there exist state-of-the-art grasping algorithms to deal with grasp-
ing tasks, the advantage of a logic formalization is to provide more informa-
tion about specific grasps: this way, grasps can be described qualitatively
and can be grounded to data using the same principles discussed in the pre-
vious chapter. In addition, grasps can be “personalized” easily depending
on the available specific hands and high-level information coming from other
sources (e.g. weight of the objects, characteristics of the material etc. which
we have ignored) can be integrated in the definition of a grasp. An example
of such flexibility can be the case a robot built from separate components,
where knowledge about the world can be “plugged in” separately and then
adapted to the specific embodiment as a top-down process.

The limitations we faced in this approach are related mostly to the in-
trinsically qualitative nature of the represented grasps together with their
measures and the difficulty in finding qualitative measures whose perfor-
mances are stable and reliable; moreover, we also faced some problems re-
lated to the tools we used (for example, fuzzyDL cannot handle too many
axioms, otherwise it crashes).

Taking into account the description logics aspects we have been dis-
cussing in Chap. 2, in this application we obtained the following:

• Representation: classes are used for representing the different kinds of
grasps, thus they are defined in terms of TBox axioms; instances are
used for representing single objects; datatype properties are used for
representing the geometric properties of an object.

• Reasoning tasks: realization, instance checking.

• Expressivity: ALCF(D) (C is used for disjointness of classes such as
PowerType and PrecisionType, while F is used for the datatype prop-
erties describing different features);

• Storage: custom format due to the extension used (translatable in
OWL 2 with annotations with appropriate parsers).

• Queries: custom format due to the extension used, which uses the
concept of minimum degree of satisfiability of an instance, i.e. the
minimum degree of truth it is inferred to belong to a certain class.

• Extensions: fuzzy extension to the SHIN (D) logic with fuzzy opera-
tors and weighted sums.

90

4.5.1 Future work

Several extensions are possible for this approach, the first one being the in-
clusion of more geometric details about objects in order to deal with concave
geometries as well and, especially, the integration of other resources related
to objects and materials; furthermore, calculating the grasp suitability can
be useful to provide an automatic evaluation of the suggested grasps. Fi-
nally, a dataset oriented to these experiments, where the measures can be
calculated at runtime, should be developed.

91

92

Chapter 5

Description logics and

cognitive architectures

The field of cognitive robotics is very broad: as its aim is to design artificial
systems which are able to act out of structured environments by mimicking
human cognitive abilities such as perception, memory and reasoning, many
disciplines such as neuroscience, psychology, cognitive science, linguistics
and computer science are involved together for producing reliable and effi-
cient models of cognition to be used on robots. The stimuli we receive as
human beings are different as they come from different sources, thus, in or-
der to replicate our abilities to make sense of such a wealth of information,
robots should be able to integrate them. From this point of view the study of
multimodal information from a robotic perspective has gained much impor-
tance in the last decades; the field is more general than multisensor fusion
in that the sources of data are not only limited to perception, but rather all
the available information sources such as external databases, dialogues with
humans and higher level knowledge are combined to provide “intelligent”
behaviour.

In this chapter we will explore the use of description logics in a cognitive
architecture along with their advantages and their limitations. We will see
how several assumptions which hold in other domains cannot be made here,
then we will discuss how such limitations can be dealt with and we will show
some examples.

5.1 State of the art

Several cognitive architectures have been proposed so far, the oldest and
most “traditional” being SOAR [Laird et al., 1987] (which has roots in ar-

tificial intelligence and historically has been a symbolic architecture, but it
has been extended to include sub-symbolic processing which are possibly
useful for robot control) and ACT-R [Anderson et al., 2004] (which has its
roots in cognitive psychology and it has been inspired by theories of human
memory).

There are several problems in adopting such architectures in robotics:
first of all a deep understanding of a cognitive architecture for practical appli-
cations is a difficult task, as it is necessary to understand the basics of human
cognition and the theory underlying the adopted models; within the robotic
domain, in particular, it is possible to obtain better performances using ad-
hoc solution which would not make sense for humans. Furthermore, it is not
always easy to generate the “right symbols” or to use low-level information
in such architectures: for these tasks additional modules are required. Al-
though there are several efforts in this direction such as [Laird et al., 2012]
and [Hanford et al., 2009], the main question remains on whether systems
such as SOAR and ACT-R can readily be adapted for robotic applications.

These architectures can be enriched with a semantic memory, which
can be considered as a long-term concept-based memory containing general
knowledge with the aim to provide some capability of reasoning and gener-
alization; most often anyway this module makes only use of lexical informa-
tion, meaning that it does not provide any grounding or reference to the real
objects they refer to but rather to their descriptions. Common knowledge
resources such as Cyc [Lenat, 1995] or ConceptNet [Liu and Singh, 2004] are
respectively too broad (providing much uninteresting information but not
real “common use” knowledge such as Apples are round and green or red)
or lacking of a formal model (thus not easy to use for drawing inferences).

From a cognitive point of view it is not useful to rely only on symbolic
models (using abstract information) on the one hand or statistical models
(using big amounts of data) on the other, because both models offer only
a partial view of cognition and tend to give less importance respectively
to perceptual data and available high-level knowledge; the problem in this
case is on how to provide an integration between the two models to take
the advantages of both. The problem then becomes how to derive knowl-
edge directly, using modality-specific features obtained from perception and
organizing them in a conceptual system.

Perceptual symbol systems [Barsalou, 1999] have been introduced as a
model of integration in this direction: in this model perception through
sensory-motor systems is stored as patterns of activations in the brain, so
that perceptual symbols associated to single perceptual components (such
as the color and the shape) can be later retrieved and organized as concepts

94

in a conceptual system. In this case perceptual information is not just
“attached” to symbols by means of a translation in a different language,
because this would bring back the symbol grounding problem [Harnad, 1990]
where a symbol has to be connected back to its perceptual representation
and real entities in the world; on the contrary, symbols are amodal and
represent subsets of a perceptual state. In order to be effectively usable,
such representation should not only record perceptual information but also
interpret it to distinguish specific instances of entities (like instances in the
DL domain) from general categories (like classes in DLs).

Perceptual symbols are not to be considered immutable and discrete as
they can change over time; as they are componential rather than holistic,
in the sense that they regard “parts” of a perception rather than a whole
indistinguished perception, they are intrinsically qualitative and need not
represent specific entities but can represent classes of such entities. Percep-
tual symbols are multimodal, including not only all the sensory channels but
also introspection and proprioception. The most important characteristic of
perceptual symbols is that they offer a different approach to categorization:
an instance is decided to belong to a category if it can be “simulated” by
the concept related to such category using its own representation: although
in [Barsalou, 1999] there are no details on how simulators can be actually
implemented, this means that the decision on whether a real entity can be
categorized by a certain concept has not to be taken on a logical basis but
rather on a low-level basis (e.g. by comparing low-level representations).
In this sense, frames are considered as “integrated systems of perceptual
symbols to construct specific simulations of a category” [Barsalou, 1999,
p. 14] and linguistic symbols are used to “index and control simulations”
[Barsalou, 1999, p. 16]; this approach has the advantage to be adaptable to
any kind of embodiment.

A consequence of this approach is the need for semantic features, that
is a method to find out what kind of features can actually be derived from
perception and used as symbols; such features should be nameable in order
to be communicated to other people, but they should not be decided “a
priori”. The purpose of works such as [Vinson and Vigliocco, 2008] and
[Vatakis et al., 2012] is to obtain such features from humans when they are
free to decide how to describe words or unknown objects; this way there is no
bias from the designer of the system and it can be evaluated which features
are considered more important and discriminative. In fact, the identification
of useful and discriminative semantic features is an open research issue: as
we mentioned before, this problem has been faced in the computer vision
community as well (see e.g. [Farhadi et al., 2009]). An investigation on

95

the plausibility of semantic features through functional magnetic resonance
imaging (fMRI), a technique for studying the internal behaviour of the brain
and its activity, has been conducted in [Chang et al., 2011].

The problem of obtaining knowledge from perception and experience has
been faced many times: Kuipers’ works such as [Modayil and Kuipers, 2007,
Kuipers, 2008] are focused on how to obtain concepts from a dy-
namical system perspective, while works such as [Schyns et al., 1998]
and [Yee et al., 2011] focus on behavioural models and works such as
[Griffith et al., 2012] and [Coelho et al., 2001] focus on the developmental
perspective.

A different approach for integration is given by neurosymbolic re-
search: in works such as [de Penning et al., 2011, Röhrbein et al., 2007,
Kollia et al., 2010] the learning capabilities given by a connectionist ap-
proach such as neural networks are bridged with a symbolic layer through
knowledge interpration (i.e. representation of formal knowledge statements
as neural networks).

On the other hand, the study of language together with action and
perception has seen a huge research effort in the last decade (see for exam-
ple [Glenberg and Kaschak, 2002, Cangelosi et al., 2010, Salvi et al., 2012,
Stramandinoli et al., 2012, Caligiore and Fischer, , Pastra et al., 2011,
Pastra and Aloimonos, 2012] and Sec. 5.1.1), where the perspective is
focused on the integration of the language with perception and action
within a unified cognitive model.

5.1.1 The POETICON++ project

The POETICON++ project1 has as its main aim to use natural language
as a means for robots to generalize both learned and novel behaviours and
perceptions; its core database called PRAXICON (see [Pastra et al., 2010,
Pastra, 2010, Pastra, 2008]) has the role of bridging a conceptual structure
to low-level sensorimotor representations through the use of embodied con-
cepts.

The PRAXICON is a semantic memory, thus it contains factual infor-
mation and general knowledge; it is neither a procedural nor an episodic
memory. Being an action-centric framework, it is centered on the definition
of actions in terms of other related concepts such as movements and ob-
jects and their linguistic and sensorimotor representations; its main source
of lexical information is WordNet, used together with language-related tools

1http://www.poeticon.eu

96

http://www.poeticon.eu

(such as the ones used within the COSMOROE project2) and other sources
of information including the results of cognitive experiments (such as the
ones described in [Vatakis et al., 2012]).

Our contribution to the project was the development, evaluation and
discussion of a knowledge base built on top of the PRAXICON database.
The advantage in the use of a knowledge representation approach is its
ability to formalize and provide standard reasoning services to a conceptual
system; anyway, as it will be discussed later, a formal approach of this kind
has several conceptual and technical shortcomings and proposes some new
challenges.

5.2 Issues in semantic memory design

One of the problems in designing a semantic memory is related to the as-
pects a concept is supposed to capture: if modal and amodal representations
have to coexist, a way to integrate and organize them should be provided. A
representation making use of perceptual symbols should exhibit both a con-
ceptual structure and a suitable way to represent perceptual (sensorimotor)
information; although a knowledge representation framework can be a nat-
ural choice for representing concepts and their relations and for integrating
other sources of knowledge, several aspects have to be considered:

• How are concepts and relations among them acquired or generated?

• How are concepts organized? Do they create a taxonomy?

• How are concepts related to perceptions? Which representation do
perceptions use?

• What level of information can be represented with such kind of lan-
guage?

As we have seen, when knowledge is derived from “common sense” there
might be a problem related to typicality and exceptions: as we have seen
in Chap. 2 description logics do not allow for “partial inheritance”, hence
classes cannot be used directly for representing concepts. Furthermore, in-
formation expressed in natural language is intrinsically vague: for dealing
with it, language-based representations such as fuzzy logic might help to
build concepts in a more natural way.

2http://www.cosmoroe.eu

97

http://www.cosmoroe.eu

The way concepts are related to perceptions from an engineering point of
view depends on the implementation: neural networks, for example, can pro-
vide different layers of abstraction, but the results at each level are difficult
to understand; neurosymbolic approaches offer a more direct way to encode
symbolic knowledge using a connectionist approach, but they most often do
not make use of “simple” neurons but rather of more complex structures.

Regarding the level of information which can be represented, a possi-
ble problem for example lies in the comparison between features: while a
general solution involving concepts such as “comparison type” and “dimen-
sion of comparison” is more general (and it is under investigation within
the PRAXICON project), a DL-inspired solution (i.e. the use of specific
properties) can be more easily implemented: as an example, when compar-
ing two colors for deciding which one is “more red”, in the first case the
comparison would be of the type “more than” and the dimension would
be the red channel in the RGB representation, while in the second case a
moreRedThan property would be needed. The choice depends on the level
at which the comparison is performed, in this case on whether the equality
check is performed within the ontology (e.g. using SPARQL queries as in
the examples we will discuss later on) or not.

5.3 Implementation

In the following our implementation of the PRAXICON database will be
presented. As the term “concept” constitutes the core of the PRAXICON,
in order to avoid confusion we will be referring to PRAXICON concepts as
“concepts” and to DL concepts as “classes”.

5.3.1 PRAXICON overview

The PRAXICON is essentially a concept-centric database: it represents con-
cepts as entities having relations with other entities, be them relations with
other concepts, with attributes or with different modalities. As it has been
mentioned in the introduction, such relations define both the conceptual
structure of the memory and its embodied perceptual attributes; this inte-
gration aims at including necessary and sufficient information for the recon-
struction of every concept, which means that a concept should be retrieved
by giving its representation in terms of language or of any other modality.
It is important to note that not every concept is (and has to be) grounded:
some concepts may lack of a linguistic, visual or motoric representation, as
it happens in the case of movement-object complexes, which are concepts

98

representing a specific movement performed with a specific tool but lack of
a specific linguistic representation.

The PRAXICON includes a reasoner (not to be confused with a semantic
reasoner) which computes scores on the possible outcomes of the general-
ization process, which is one of the core functions of the PRAXICON: if a
concept is related to another concept via a “container-content” relation (e.g.
the concept of “cup” is related to the concept of “coffee” because a cup can
contain coffee), the former can be substituted to the latter in a search task
(e.g. while a robot is looking for “coffee” the reasoner suggests to look for
a “cup” instead). This process improves the “creativity” of an autonomous
system by providing it an intelligent way of reacting to the failure of a task.
The PRAXICON reasoner computes a score on these alternative solutions
depending on semantic closeness of concepts (the length of the path linking
them), the presence of all the needed relations in an intersection of relations,
the substitution of concepts with other concepts (such as the use of coffee
cup in place of coffee thanks to a relation container-content) and so on. As
such heuristics are still under development, in our experiments we will only
show what the available answers are and discuss about their validity.

Concepts in the PRAXICON can have four types, namely Entity, Move-

ment, Feature and Abstract; also, the idea of basic level as a “low level of
abstractness” is introduced: an abstract concept can be a basic level concept
if it derives (directly or indirectly) from an entity or a movement concept,
otherwise it is a non-basic level concept. The relations among concepts can
be of different types, among which:

• between entities (type-token, part-whole, container-content, . . .);

• between movements (type-token, step-process, . . .);

• between descriptive features (type-token, part-whole, . . .);

• between entities and movements (object-action, artifact-use, . . .);

• between entity or movement and their descriptive features (has shape,

has size, has direction, has velocity, . . .).

The type-token relation is used to define a taxonomy among the concepts, so
an axiom such as A type-token B means that the entity/movement/feature A
is a “father concept” for B. Relations can be arranged in complex ways (see
Fig. 5.1), namely in relation chains (similar to property chains in description
logics), intersections of relations (relations which have to hold at the same
time) and unions of intersections (possible alternatives among intersections

99

Figure 5.1: Example of PRAXICON relations and their arrangement.

of relations). A combination of relations can be inherent if it defines a
necessary and sufficient condition for the entity it refers to (for example,
an intersection of three relations of type artifact-use, action-object, action-

purpose is inherent for movement concepts as they both imply each other).
A movement concept in the PRAXICON is represented as the combina-

tion of three concepts: the purpose of the movement (e.g. cutting), the used
tool (e.g. a knife) and the affected object (e.g. the bread). The movement
concept has an associated label such as Cut with knife the bread referring
to these three concepts, and it is related to them by the three relations
action-purpose, use-artifact and action-object.

For more and updated information on the PRAXICON structure, refer
to the cited publications and to the project Web site.

5.3.2 Requirements

The formalization of the PRAXICON using DLs make use of instances rather
than classes for representing concepts because:

• Many classes (ca. 80,000) make it difficult to use a standard reasoner;
the only reasoner which can handle such number of classes is Snorocket,
but it reasons on the OWL 2 EL profile, thus several constructs such
as union and inverse relations are not available; furthermore, ABox

100

axioms and concrete datatypes are not available.

• Partial queries on the concepts for checking the “degree of satisfaction”
(such as in intersections of relations, when not necessarily all of them
should hold for result scoring purposes) should be possible; although
this is possible with TBox axioms using “incremental intersections” of
concepts, this is less practical.

• It is easier to extend concepts definitions and to create/modify them
automatically using relations with new instances, while restrictions on
classes are more difficult to create and maintain especially when they
are nested.

• It should be possible to “count” things (e.g. the number of relations
which hold etc.), i.e. a (weak) form of CWA should be available for
computing scores.

More in detail, we added these constraints to the original database:

• only AbstractType concepts can be basic or non basic (for concrete
concepts this distinction does not have much sense); also, only non
basic abstract concepts might have no origin;

• a concept is “fully abstract” if it is non basic and it does not have any
origin;

• the type of a template derives from the type of the associated move-
ment concept;

• entities and features cannot be templates, which are reserved for move-
ments;

• concepts having origin in an entity can have the status of a variable or
a constant, while concepts having origin in a movement can be have
the status of a constant or a template and concepts with no origin can
only be constant.

The concepts in the DL implementation have been renamed using a hash
of the compound representation present in the original database as obtained
from WordNet; for example, the concept butter knife%1:06:00:: becomes
butter knife 1477250444 in the ontology.

Object properties are used to represent relations between concepts. As
we discussed in Chap. 2, the token-type relation can be used as a subclass

101

axiom: although it would need to be transitive and to have other character-
istics, this is not necessary to be formalized if SPARQL property paths are
used. We added a role hierarchy with a general top property relatedTo as
an ancestor property of all the PRAXICON relations, a HasFeature super-
property covering concept features (having entities as a domain and features
as a range) and its inverse FeatureOf; by adding domain and range axioms,
subclasses of features are automatically created from the PRAXICON prop-
erties (e.g. the feature class Shape is created as the range of the HasShape

property) so that PRAXICON feature concepts can be classified using more
specific classes.

We used OWLIM 5.23 as our semantic repository because it is suitable for
big ABoxes, provides reasoning within OWL 2 RL and QL (thus supporting
the constructs we need) and supports SPARQL 1.1 queries.

5.4 Experiments

As a visualization and testing bench we used Protégé 4.2 with a small version
of the PRAXICON; the conversion of the database in an ontology has been
performed with the OWLAPI library4.

In order to show the generalization capabilities, we ran several SPARQL
queries against the ontology. Although we worked on the topic of semantic
interpretation of sentences [Vitucci et al., 2012] and one of the PRAXICON
modules is devoted to the understanding of a request expressed in natural

3http://owlim.ontotext.com
4http://owlapi.sourceforge.net

102

http://owlim.ontotext.com
http://owlapi.sourceforge.net

language, for the time being we ignore the syntactic and semantic analysis
of the sentence, thus focusing on the structure of the knowledge base. The
experiments conducted so far are composed of:

• a verbal request for an action, such as Spread the butter with a knife,
expressed as a triplet 〈movement, tool, object〉 where tool and object

can be empty;

• a set of objects in the scene, whose type, depending on the labels
provided by the visual level output, can be specific (e.g. butter knife,
tea spoon) or generic (e.g. knife, spoon), although the different levels
of details should not be mixed;

• an expected decision in the form of a triplet 〈movement, tool, object〉
defining the kind of movement to execute, the tool to use and the
object affected by the action (e.g. 〈spread, butter, butterknife〉).

In our experiments we suppose the vision system can provide any level of
detail to match entries in the PRAXICON knowledge base (e.g. it can
find teaspoons, not only spoons). Furthermore, we do not currently score
solutions as the definition of scoring criteria making use of the distance
between concept, the inherence of a relation and other heuristics is still
under development; instead, we list all the possible solutions.

Spread the butter with a butter knife We search for the three lem-
mas spread, butter and butter knife as string values for the datatype prop-
erty text, obtaining the instances spread 456537824, butter 519714614, but-

ter knife 1477250444; looking for the possible intersections of relations con-
taining the three of them, the concept spread 971071545 related to the move-
ment of “spreading the butter with a butter knife” is retrieved and the
search ends with the result 〈spread, butter, butterknife〉, which is a single
movement already known by the robot; this is anyway a less common (and
interesting) case as all the needed information is already known within the
query, thus no generalization is needed. The corresponding SPARQL query
is:

PREFIX [...]

SELECT DISTINCT ?n0

WHERE {

?n1 :text "spread"^^xsd:string . ?n1 :inChain ?c1 .

?n2 :text "butter"^^xsd:string . ?n2 :inChain ?c2 .

103

?n3 :text "butter knife"^^xsd:string . ?n3 :inChain ?c3 .

?c1 :isChainOf ?ior . ?c2 :isChainOf ?ior . ?c3 :isChainOf ?ior .

?ior :isIntersectionOf ?n0 .

}

The concepts are searched using the three lemmas which are stored in the
variables ?n1, ?n2 and ?n3; these three concepts should belong to three
relation chains ?c1, ?c2 and ?c3 belonging to the same intersection of
relations ?ior. From such intersection the movement concept is found and
stored in the variable ?n0.

Spread the butter with a knife If the previous query is used (after
substituting butter knife with knife), this time no results are obtained:
there is no direct relation between the action of spreading the butter and a
“generic” knife. The search should be extended using a generalization of the
tool knife (looking for both ancestors and successors of the concept), in order
to find out that such a movement exists when it is performed with a butter
knife, making it a possible substitute. In this case the only information
which has been used is related to the taxonomy of the objects (namely,
property paths with zero of more occurrences of the relations TokenType and
TypeToken have been used). The corresponding SPARQL query is similar
to the previous one but, as the previous one does not return any results, it
is automatically extended:

PREFIX[...]

SELECT DISTINCT ?n0

WHERE {

?n1 :text "spread"^^xsd:string . ?n1 :inChain ?c1 .

?n2 :text "butter"^^xsd:string . ?n2 :inChain ?c2 .

?n3 :text "knife"^^xsd:string .

{?n4 :TokenType* ?n3} UNION {?n4 :TypeToken* ?n3} .

?n4 :inChain ?c3 .

?c1 :isChainOf ?ior . ?c2 :isChainOf ?ior . ?c3 :isChainOf ?ior .

?ior :isIntersectionOf ?n0 .

}

Differently from the previous case, the concept found by the lemma knife
is generalized using property paths; in fact, :TokenType* stands for “all
the individuals found in a chain of :TokenType relations” (to find more

104

general concepts, as the token-type relation is a sort of isA relation) and
:TypeToken* stands for “all the individuals found in a chain of :TypeToken
relations” (to find more specific concepts).

Spread the butter with a dull/small object Here dull is not an en-
tity but a feature, thus the search has to find entity having such feature.
The feature concepts having as linguistic representation dull and small are
searched, then concepts related to such features through any subproperty of
the property HasFeature are searched: once again the butter knife is found,
along with the exact relations linking it to its features (in this case HasShape

and HasSize respectively). The corresponding SPARQL query is:

PREFIX [...]

SELECT DISTINCT ?n0

WHERE {

?n1 :text "spread"^^xsd:string . ?n1 :inChain ?c1 .

?n2 :text "butter"^^xsd:string . ?n2 :inChain ?c2 .

?n3 :text "dull"^^xsd:string . ?n4 ?r ?n3 .

?r rdfs:subPropertyOf :HasFeature . ?n4 :inChain ?c3 .

?c1 :isChainOf ?ior . ?c2 :isChainOf ?ior . ?c3 :isChainOf ?ior .

?ior :isIntersectionOfRelationsOf ?n0 .

}

The difference is in that the concept related to the lemma dull is not used
directly, but it is used for finding the concepts which are related to it through
the HasFeature relation (because it is a feature, not an entity).

Cut the turkey wing This is an interesting example because it shows
how to generalize using a relation not with a feature but with another entity
(the turkey wing is a part of a turkey, though the relation HasPart has to
be used). For finding a concept linking cut and turkey, both the possible
objects for cut and turkey itself have to be generalized: the only concept
having both a definite object and a tool is Cut the staff of life with bread
knife, and the only common ancestor for turkey and staff of life is solid food,
which is a non-basic level abstract concept together with its descendants
meat, bird and poultry. In this case the PRAXICON heuristics would not
go up all the chain, because as we have seen it would stop at the first basic
level abstract concept or, if needed, at its father concept. The corresponding
SPARQL query is similar to the previous ones, except for it makes use of
more property paths:

105

PREFIX [...]

SELECT DISTINCT ?n0

WHERE {

?n1 :text "cut"^^xsd:string . ?n1 :inChain ?c1 .

?n3 :text "turkey wing"^^xsd:string . ?n3 :PartOf ?n5 .

{?n6 :TokenType* ?n5} UNION {?n6 :TypeToken* ?n5} .

?n6 :inChain ?c3 .

?n0 :ActionObject ?n10 .

{?n11 :TokenType* ?n10} UNION {?n11 :TypeToken* ?n10} .

{?n11 :TokenType* ?n6} UNION {?n11 :TypeToken* ?n6} .

?c1 :isChainOf ?ior .

?ior :isIntersectionOf ?n0 .

}

Stir the soup with available objects Teaspoon, Screwdriver,

Wrench In this case, for using physical properties of objects, it is
necessary to know the typical measures for every object (it is possible
both to use numerical measures and discretized quantities); we obtain such
features along with numerical measures from the object ontology described
in Chap. 3.

In Fig. 5.2 the 3D models for the three objects are shown, while in Tab.
5.1 their typical real sizes are listed for comparison purposes; the first model
is not present in the Princeton Dataset, so we added it from another source
along with its typical measures. The only movement concept containing
both stir and soup is Stir the soup with a spoon; while the teaspoon is se-
mantically very close to the spoon required for stirring, if the dimensions of
the object are more important, a screwdriver and a wrench will be “closer”
to a (serving) spoon than a teaspoon, provided that the versions available in
the scene have similar dimensions; in this case, the comparison between the
objects is checked on the low-level (metric features) with a level of “close-
ness” c such that two objects are similar if (dim1,i − dim2,i) < c ∀i = 1, 2, 3.

The problem of deciding the weights to give respectively to semantic
closeness and geometric closeness is difficult and it is still under research,
thus for the time being we provide both the solutions without scoring them;
although we think the score depends on the task to execute, we believe
that a further step of knowledge extraction from examples or the inclusion
of common sense knowledge is required: in this example, for instance, it
might help to know that For stirring movements, long objects are needed

106

Figure 5.2: Object models.

object length width height
spoon 20.003 4.309 3.6225

20.161 4.3432 3.6513
21.273 4.5826 3.8525

teaspoon 14.922 3.2147 2.7025
15.558 3.3515 2.8175
15.875 3.4199 2.875

screwdriver 9.525 1.1009 1.0054
22.542 2.6055 2.3794
27.543 3.1835 2.9072

wrench 17.1 4.6077 1.3063
21.9 5.9011 1.673
23.1 6.2245 1.7646
27.9 7.5178 2.1313

Table 5.1: Objects real sizes.

(this information can possibly be extracted analyzing the semantic features
of the objects used for stirring, if they are available for all of them) or that
Tools are dirty and Dirty objects cannot be used with food (common sense
knowledge, more difficult to obtain and formalize). The difficulty here is
on the decision about “how far” the generalization can go: is a wrench an
acceptable solution in this case? What score should be assigned to such
solution?

107

Figure 5.3: Graphical representation of the results of the queries. The squares denote entities and abstract concepts while circles denote
features; the black color denotes the input concepts, while the red color denotes the movement concept to be given as an output, the
green color denotes an intermediary concept that has to be found first and the dotted line denotes an intermediary concept.

108

5.5 Discussion

In this chapter we have presented a possible implementation of a semantic
memory to be used within a cognitive architecture, building on the results
and current efforts of another research project, to discuss about the prob-
lems affecting description logics and the opportunities offered by the use of
powerful semantic query languages and scalable triple stores. Following the
results from Chap. 2, the aspects related to a DL representation have been
evaluated:

• Representation: the use of classes for PRAXICON concepts is
not a suitable alternative for several reasons, namely the typical-
ity/exceptions issues, the difficulty in building, storing and reasoning
on expressive axioms when they are too many. More details later.

• Reasoning tasks: instance checking, instance retrieval.

• Expressivity: ALHI(D) (datatypes properties are currently used for
linguistic representations).

• Storage: OWLIM 5.2, system capable of performing inference on OWL
constructs via a rule-based reasoner while supporting a high number
of instances (tens of millions of statements).

• Queries: using SPARQL 1.1 (taking advantage of property paths for
taxonomic relations).

• Extensions: no extension used.

The main problems we dealt with in this chapter are related to the diffi-
culty of using the description logic formalism “as is” in a cognitive context,
because a conceptual approach making use of language and perceptions is
prone to different interpretations (as we have seen, for example, in the mean-
ing of the isA relation and in the representation and use of the perceptual
features of the objects). While a representation making use of RDF graphs
offers a solution both to representation and to querying problems, and it
lets the knowledge base to be easily extended, some of the advantages of a
“pure DL” solution (working mostly or only with a TBox) such as automatic
classification are lost. The advantage of structuring information as a graph
with respect to a classical database structure is evident: not only the graph
structure of queries is more natural because of the use of multiple relations,
but also the integration of different sources of information (such as in the
case of PRAXICON and the object ontology) is easier; the most important

109

drawback of not using a database representation lies in the lack of attributes
on relations, which make the representation heavier as the relations have to
be reified and new “useless” individuals have to be introduced.

5.5.1 Future work

The realization of the PRAXICON is one of the aims of a current research
project, therefore it is still under development and many extensions of the
database have already been planned or are already under development; nev-
ertheless, on the description logic perspective, several improvements can be
made.

On the representation side, the concepts of intersection, relation chain
and so on can be generalized as different combinations of relations in order
to offer a more flexible way of formalizing such “relations between relations”;
furthermore, a way to include common knowledge statements such as Cups
contain liquids or A spoonful is the volume of a chunk of butter has to be
found as it would greatly improve the PRAXICON reasoner’s generalization
capabilities. The integration of other sources of information carrying differ-
ent levels of representation is under investigation: we provided an example
making use of our object ontology and we are currently studying how to
integrate the grasp ontology as well, in order to realize a logic platform for
dealing with the grasping problem. From the graphical point of view, as a
way to let the PRAXICON be used by humans as well, a knowledge base
graphical explorer can be developed on the model of the existing database
navigator.

110

Chapter 6

Conclusions and future work

In this thesis we have reviewed the use of semantic technologies for appli-
cations and tasks related (and not limited) to the robotic domain; more in
details, we have studied the issues related to the design of a knowledge base
by means of languages based on description logics and its use with semantic
query languages, the challenges this approach poses when used with infor-
mation gathered from different levels of data and several possible solutions
supported by examples. At the same time the “atypical” domain we have
studied provided a testbench for such technologies, highlighting some inter-
esting issues such as the scalability of a knowledge base, the efficiency of
different representations, the power of the new SPARQL specifications and
the performances of different reasoners while using different fragments of
OWL.

From a robotic-related point of view we obtained as a result that seman-
tic technologies can be used for linking different representations, and that it
is possible to give semantics to low-level information albeit with some limi-
tations. We have pointed out that description logics alone are not sufficient
(or not suitable at all) for some tasks, and in some cases we found more
suitable techniques for similar applications. In our work we dealt with three
different levels of data, from the raw data used in grasping experiments to
part decomposition in object modelling, then to high level concepts in the
design of an embodied ontology.

The unifying thread of the thesis is the search for a balance between
the expressivity of a knowledge representation language and the scalability
required by a real world application, depending on the specific task at hand.
More specifically, we have seen that a task such as 3D object modelling and
retrieval, where the advantage of a semantic representation relies mostly
on the graph-like representation of a shape than on the object’s character-

istics, has low expressivity needs and requires quite little reasoning effort,
provided that the used storage is efficient and scalable and that a power-
ful query language is available. In this case the application might use a
traditional database as well, but many facilities offered by a graph-based
representation (such as the use of property paths) would then be lost and
should be implemented in the business logic part.

On the other hand, a task such as grasp type selection has much higher
expressivity needs because the formalized grasp types are “few” and do not
change, thus they can be described in a more detailed way and the matching
task can be reduced to an instance check reasoning service; moreover, as this
task is “more robotic” as it draws its data directly from real-world numeric
data, the higher expressivity given by fuzzy logics helps such representation
to be more flexible and to take account of the vagueness of qualitative data.
In this case there is no need of a complex query language or of a high degree
of scalability, provided that a reasoner which can be used on such expressive
logic is available.

Finally, the complexity of a cognitive architecture requires in a sense a
compromise between expressivity and scalability: if the aim is to obtain a
model of human reasoning capabilities and concept formation, it needs to
be expressive enough to capture the richness of human descriptions (and
as we have seen, up to a certain extent, the nuances of the language), but
on the other hand it has to be scalable in order to deal with the huge
number of concepts and relations among them. In some cases a “standard”
language might not be well suited for expressing some cases (e.g in the case
of exceptions), thus more ad-hoc solutions can be necessary. To summarize,
this is the case in which more attention should be paid in selecting the
tools to use, as they depend on each other and all together determine the
extendability of the chosen approach.

Within the robotic domain scalability might be a concern only up to
a certain extent; a robot typically does not have an unlimited number of
skills, therefore it does not need to store and use huge amounts of different
kinds of information. On the other hand, resources like object databases and
semantic maps tend to grow fast as new dataset become available; further-
more, as the Web opens up the chance of using knowledge on-demand and
semantic technologies make such resources available to and usable by auto-
matic agents as well, scalability should be taken into account as a way to let
robots exploit this wealth of information. In this scenario it might become
more important to use different sources for validating existing knowledge
rather than for adding new data, which is a promising research direction in
all fields making use of huge sets of data.

112

6.1 Comparison with KnowRob

The KnowRob project, to the best of our knowledge, is the project having
the most similar aims to ours. As it is available as an open source resource,
we can make an in-depth comparison of the two approaches.
The KnowRob ontology1 makes use of a SHOIF(D) logic, i.e.:

• S: transitive properties (such as parts), full existential quantification
(such as in the class FoodAndBeverageOrganization, which is a sub-
class of ∃hasDaytimeOpeningHours.DaytimeOpeningHours) and disjunc-
tion (such as the class BlackColor, which is disjoint from the other
subclasses of the class ColoredThing);

• H: there exists a property taxonomy (e.g. the property nextDetec-

tionOfObject is a subproperty of the property nextEvent, which in turn
has the property postEvents as its superproperty);

• O: some classes are defined as collections of instances (e.g. Dirtiness

is an enumerated class containing instances Dirty, ALittleDirty, Clean

and Sterile) and some properties are restricted to a single value (e.g.
the class ClosingSomething has as a restriction class on the property
fromState the instance ObjectStateOpen);

• I: several properties have inverses (e.g. the inverse of the property
nextEvent is previousEvent);

• F : several properties have been declared functional (e.g. the proper-
ties nextPointOnArmTrajectory and nextPointOnBaseTrajectory).

• (D): numbers and strings are used as concrete datatypes (e.g. the
property matrixElement has floating-point numbers as range).

Furthermore, the SRDL2 ontology makes use of the Q construct because
of the axiom ComponentComposition v ∃endLinkOfComposition.UrdfLink

u = 1baseLinkOfComposition.UrdfLink. Although OWL is used to represent
knowledge formally so that classical reasoners such as Pellet and HermiT
are used, the reasoning and storage/retrieval tasks are demanded to Prolog
modules.

The main differences with KnowRob can be summarized as follows:

1. our work is more focused on ways to give semantics to and to execute
queries on lower level information, while KnowRob is less interested

1Downloaded from http://ias.cs.tum.edu/kb/knowrob.owl on July 10, 2012.

113

http://ias.cs.tum.edu/kb/knowrob.owl

in a semantic representation of objects but more in the definition of
processes, events and semantic maps;

2. KnowRob uses Prolog as a framework for dealing with RDF triples,
while we use a triplestore equipped with a rule-based reasoner and a
SPARQL query engine;

3. KnowRob uses SRDL for representing a robot’s model, while we focus
on a more detailed logical representation based on grasp geometry for
manipulation purposes; in fact, while within KnowRob the represen-
tation of objects in terms of geometric properties only is (correctly)
considered not to be sufficient for grasping tasks, we explore a possible
way to make use of such information (i.e. to match grasps and shapes);

while the main similarities are:

1. the general aim to build a modular architecture where different sources
of information can be integrated and used to support each other;

2. the use of the concept of action class (a concept denoting a single
movement);

3. the use of qualitative concepts and relations such as the “dirtiness” of
a place in KnowRob and the “length” of an object in our discretized
ontology;

4. the use of structural information such as the robot structure in
KnowRob and the object structure in our ontology;

5. the use of numerical quantities to describe objects’ properties.

6.2 Future work

Our efforts of integration are directed to the realization of a unified frame-
work to be used as a resource for cognitive robotics applications. Although
building a complete system is a long-term objective of several current re-
search projects and some results look rather promising, the path towards a
complete architecture is still long. In this thesis we evaluated several com-
ponents for such an architecture separately, each one with its peculiarities
and challenges, and we used description logics as an interface. In order to be
able to use the semantic memory provided by the PRAXICON to generalize
over lower level concepts related to grasping abilities and object shapes, a
better coverage is needed and the mapping methods between the different

114

modalities have to be evaluated carefully, both from a cognitive and from a
technical point of view.

Several improvements can be made on each of the topics we discussed:

• automatic shape decomposition algorithms can be evaluated more
deeply to make the acquisition of 3D models and the inclusion of their
shape decomposition representation more scalable and robust;

• the evaluation of grasp suitability for each of the grasps suggested
for an object can provide not only a quantitative way to evaluate
such suggestions, but also additional information to be stored in the
representation of an object (e.g., additional properties for an object
can be related to the best part to be grasped and on the kind of grasp
to use in that case);

• the representation of complex relation structures can be improved and
become more flexible in order to be easily extended; furthermore, in
order to improve the generalization capabilities, the use of external
resources (such as the semantic role labelling module and the ontology
of objects) has to be formalized completely and a suitable scoring
function has to be developed.

Usable versions of the software realized for this thesis, used for building an
ontology from object descriptors, for the guided discretization of datatype
properties, for the automatic writing of structural queries from graphs and
for the production fuzzyDL axioms from raw data are still under develop-
ment and we plan to release them in the future.

115

116

Bibliography

[Aleotti and Caselli, 2010a] Aleotti, J. and Caselli, S. (2010a). Grasp pro-
gramming by demonstration in virtual reality with automatic environment
reconstruction. Virtual Reality, pages 1–18.

[Aleotti and Caselli, 2010b] Aleotti, J. and Caselli, S. (2010b). Grasp syn-
thesis by 3D shape segmentation using Reeb graphs. In IROS 2010 Work-
shop on grasp planning and task learning by imitation.

[Aleotti and Caselli, 2012] Aleotti, J. and Caselli, S. (2012). A 3D shape
segmentation approach for robot grasping by parts. Robotics and Au-
tonomous Systems, 60(3):358–366.

[Anderson et al., 2004] Anderson, J. R., Bothell, D., Byrne, M. D., Dou-
glass, S., Lebiere, C., and Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111:1036–1060.

[Anguelov et al., 2004] Anguelov, D., Koller, D., Pang, H.-C., Srinivasan,
P., and Thrun, S. (2004). Recovering articulated object models from
3D range data. In Proceedings of the 20th conference on Uncertainty in
artificial intelligence, UAI ’04, pages 18–26, Arlington, Virginia, United
States. AUAI Press.

[Attene and Biasotti, 2011] Attene, M. and Biasotti, S. (2011). Geometric
models with weigthed topology. Computers & Graphics, 35(3):542 – 548.

[Attene et al., 2007] Attene, M., Robbiano, F., Spagnuolo, M., and Falci-
dieno, B. (2007). Semantic annotation of 3D surface meshes based on
feature characterization. In Proceedings of the semantic and digital me-
dia technologies 2nd international conference on Semantic Multimedia,
SAMT’07, pages 126–139, Berlin, Heidelberg. Springer-Verlag.

[Attene et al., 2009] Attene, M., Robbiano, F., Spagnuolo, M., and Falci-
dieno, B. (2009). Characterization of 3D shape parts for semantic anno-
tation. Comput. Aided Des., 41(10):756–763.

117

[Baader et al., 2005] Baader, F., Brandt, S., and Lutz, C. (2005). Pushing
the EL envelope. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence IJCAI-05, Edinburgh, UK. Morgan-
Kaufmann Publishers.

[Baader et al., 2008] Baader, F., Brandt, S., and Lutz, C. (2008). Pushing
the el envelope further. In Clark, K. and Patel-Schneider, P. F., editors,
In Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences
and Directions.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi,
D., and Patel-Schneider, P. F., editors (2003). The description logic hand-
book: theory, implementation, and applications. Cambridge University
Press, New York, NY, USA.

[Baader and Hollunder, 1995] Baader, F. and Hollunder, B. (1995). Em-
bedding defaults into terminological knowledge representation formalisms.
Journal of Automated Reasoning, 14(1):149–180.

[Barck-Holst et al., 2009] Barck-Holst, C., Ralph, M., Holmar, F., and
Kragic, D. (2009). Learning affordance relations for robotic grasping us-
ing probabilistic and ontological approaches. In International Conference
on Advanced Robotics, Munich, Germany.

[Bard et al., 1991] Bard, C., Troccaz, J., and Vercelli, G. (1991). Shape
analysis and hand preshaping for grasping. In Intelligent Robots and
Systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS ’91.
IEEE/RSJ International Workshop on, pages 64 –69 vol.1.

[Barsalou, 1999] Barsalou, L. W. (1999). Perceptual symbol systems. The
Behavioral and brain sciences, 22(4):577–609; discussion 610–60.

[Bekey et al., 1993] Bekey, G., Liu, H., Tomovic, R., and Karplus, W.
(1993). Knowledge-based control of grasping in robot hands using heuris-
tics from human motor skills. Robotics and Automation, IEEE Transac-
tions on, 9(6):709 –722.

[Bennett, 2002] Bennett, B. (2002). Physical objects, identity and vague-
ness. In Fensel, D., McGuinness, D., and Williams, M.-A., editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the
Eighth International Conference (KR2002), pages 395–406, San Francisco,
CA. Morgan Kaufmann.

118

[Bennett, 2011] Bennett, B. (2011). Spatial vagueness. In Jeansoulin, R.,
Papini, O., Prade, H., and Schockaert, S., editors, Methods for Handling
Imperfect Spatial Information. Springer-Verlag.

[Bennett et al., 2000] Bennett, B., Cohn, A. G., Torrini, P., and Hazarika,
S. M. (2000). A foundation for region-based qualitative geometry. In
Horn, W., editor, Proceedings of ECAI-2000, pages 204–208.

[Biederman, 1987] Biederman, I. (1987). Recognition-by-components: A
theory of human image understanding. Psychological Review, 94:115–147.

[Bilodeau and Bergevin, 2003] Bilodeau, G.-A. and Bergevin, R. (2003).
Structural indexing extended to fuzzy graphs of 2D parts. In Interna-
tional Conference on Image and Signal Processing (ICISP 2003), pages
61 – 68.

[Bloch, 2006] Bloch, I. (2006). Spatial reasoning under imprecision using
fuzzy set theory, formal logics and mathematical morphology. Interna-
tional Journal of Approximate Reasoning, 41(2):77–95.

[Bobillo and Straccia, 2008] Bobillo, F. and Straccia, U. (2008). fuzzydl: An
expressive fuzzy description logic reasoner. In 2008 International Con-
ference on Fuzzy Systems (FUZZ-08), pages 923–930. IEEE Computer
Society.

[Caligiore and Fischer,] Caligiore, D. and Fischer, M. Vision, action and
language unified through embodiment. Psychological Research, pages 1–6.
10.1007/s00426-012-0417-0.

[Calvanese et al., 2007] Calvanese, D., De Giacomo, G., Lembo, D., Lenz-
erini, M., and Rosati, R. (2007). Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. 39(3):385–429.

[Cangelosi et al., 2010] Cangelosi, A., Metta, G., Sagerer, G., Nolfi, S., Ne-
haniv, C., Fischer, K., Tani, J., Belpaeme, T., Sandini, G., Nori, F.,
Fadiga, L., Wrede, B., Rohlfing, K., Tuci, E., Dautenhahn, K., Saunders,
J., and Zeschel, A. (2010). Integration of action and language knowledge:
A roadmap for developmental robotics. Autonomous Mental Development,
IEEE Transactions on, 2(3):167 –195.

[Catalano et al., 2011] Catalano, C., Mortara, M., Spagnuolo, M., and Fal-
cidieno, B. (2011). Semantics and 3D media: Current issues and perspec-
tives. Computers & Graphics, 35(4):869 – 877.

119

[Catalano et al., 2010] Catalano, C., Spagnuolo, M., Mortara, M., Falci-
dieno, B., Stork, A., Koch, M., Alliez, P., Cazals, F., Yvenec, M., Huerst,
W., Veltkamp, R., Pitikakis, M., Charbonnier, C., Assassi, L., Kim, J.,
Magnenat-Thalmann, N., Salamin, P., Thalmann, D., Dokken, T., and
Quak, E. (2010). Focus K3D: Road map for Future Research.

[Chang et al., 2011] Chang, K.-m. K., Mitchell, T., and Just, M. A. (2011).
Quantitative modeling of the neural representation of objects: How se-
mantic feature norms can account for fMRI activation. NeuroImage,
56(2):716–27.

[Chen et al., 2009] Chen, X., Golovinskiy, A., and Funkhouser, T. (2009).
A benchmark for 3D mesh segmentation. ACM Transactions on Graphics
(Proc. SIGGRAPH), 28(3).

[Chinellato et al., 2007] Chinellato, E., Morales, A., Cervera, E., and del
Pobil, A. P. (2007). Symbol grounding through robotic manipulation in
cognitive systems. Robotics and Autonomous Systems, 55(12):851–859.

[Ciocarlie et al., 2007] Ciocarlie, M., Goldfeder, C., and Allen, P. (2007).
Dimensionality reduction for hand-independent dexterous robotic grasp-
ing. In 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3270–3275. IEEE.

[Ciocarlie and Allen, 2009] Ciocarlie, M. T. and Allen, P. K. (2009). Hand
Posture Subspaces for Dexterous Robotic Grasping. The International
Journal of Robotics Research, 28(7):851–867.

[Coelho et al., 2001] Coelho, J., Piater, J., and Grupen, R. (2001). Develop-
ing haptic and visual perceptual categories for reaching and grasping with
a humanoid robot. Robotics and Autonomous Systems, 37(2-3):195–218.

[Cohn et al., 2006] Cohn, A., Hogg, D., Bennett, B., Devin, V., Galata,
A., Magee, D., Needhap, C., and Santos, P. (2006). Cognitive vision:
integrating symbolic qualitative representations with computer vision. In
Christensen, H. I. and Nagel, H.-H., editors, Cognitive Vision Systems:
sampling the spectrum of approaches, volume 3948 of LNCS, chapter 14,
pages 221–246. Springer.

[Cohn et al., 1993] Cohn, A. G., Randell, D. A., Cui, Z., and Bennett, B.
(1993). Qualitative spatial reasoning and representation. In Carreté, N. P.
and Singh, M. G., editors, Qualitative Reasoning and Decision Technolo-
gies, pages 513–522, Barcelona. CIMNE.

120

[Cypher and Halbert, 1993] Cypher, A. and Halbert, D. C. (1993). Watch
what I do: Programming by demonstration. The MIT Press, London,
England.

[Dartigues et al., 2007] Dartigues, C., Ghodous, P., Gruninger, M., Pallez,
D., and Sriram, R. (2007). CAD/CAPP integration using feature ontol-
ogy. Concurrent Engineering, 15(2):237–249.

[Dasiopoulou and Kompatsiaris, 2010] Dasiopoulou, S. and Kompatsiaris,
I. (2010). Trends and issues in description logics frameworks for image
interpretation. In Konstantopoulos, S., Perantonis, S., Karkaletsis, V.,
Spyropoulos, C., and Vouros, G., editors, Artificial Intelligence: Theo-
ries, Models and Applications, volume 6040 of Lecture Notes in Computer
Science, pages 61–70. Springer Berlin / Heidelberg.

[de Penning et al., 2011] de Penning, L., d’Avila Garcez, A. S., Lamb, L. C.,
and Meyer, J.-J. C. (2011). A neural-symbolic cognitive agent for online
learning and reasoning. In IJCAI, pages 1653–1658.

[Dentler et al., 2011] Dentler, K., Cornet, R., ten Teije, A., and de Keizer,
N. (2011). Comparison of reasoners for large ontologies in the OWL 2 EL
profile. Semant. web, 2(2):71–87.

[Dickinson et al., 1997] Dickinson, S. J., Bergevin, R., Biederman, I., Ek-
lundh, J.-O., Munck-Fairwood, R., Jain, A. K., and Pentland, A. (1997).
The Potential of Geons for Generic 3D Object Recognition. Image and
Vision Computing, 15:277–292.

[Edelman, 1997] Edelman, S. (1997). Computational theories of object
recognition. In Trends in Cognitive Science, pages 296–304.

[Ek et al., 2010] Ek, C. H., Song, D., Huebner, K., and Kragic, D. (2010).
Exploring affordances in robot grasping through latent structure repre-
sentation. In European Conference on Computer Vision, Workshop on
‘Vision for Cognitive Tasks’, Crete,Greece.

[Ekvall and Kragic, 2005] Ekvall, S. and Kragic, D. (2005). Grasp Recog-
nition for Programming by Demonstration. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation, pages 748–
753. IEEE.

[Falomir et al., 2011] Falomir, Z., Jiménez-Ruiz, E., Escrig, M. T., and
Museros, L. (2011). Describing Images Using Qualitative Models and
Description Logics. Spatial Cognition & Computation, 11(1):45–74.

121

[Farhadi et al., 2009] Farhadi, a., Endres, I., Hoiem, D., and Forsyth, D.
(2009). Describing objects by their attributes. 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1778–1785.

[Feix et al., 2009] Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., and
Kragic, D. (2009). A comprehensive grasp taxonomy. In Robotics, Science
and Systems: Workshop on Understanding the Human Hand for Advanc-
ing Robotic Manipulation.

[Feix et al.,] Feix, T., Romero, J., Ek, C.-H., Schmiedmayer, H.-B., and
Kragic, D. A metric for comparing the anthropomorphic motion capability
of artificial hands. Robotics, IEEE Transactions on. to appear.

[Gächter et al., 2008] Gächter, S., Harati, A., and Siegwart, R. (2008). In-
cremental object part detection toward object classification in a sequence
of noisy range images. In ICRA, pages 4037–4042.

[Gibson, 1975] Gibson, J. J. (1975). Affordances and behavior. In Reed, E.
and Jones, R., editors, Reasons for Realism: Selected Essays of James J.
Gibson, pages 410–411. Lawrence Erlbaum, Hillsdale, NJ, 1 edition.

[Giorgi et al., 2007] Giorgi, D., Biasotti, S., and Paraboschi, L. (2007).
Shape retrieval contest 2007: Watertight models track.

[Glenberg and Kaschak, 2002] Glenberg, A. M. and Kaschak, M. P. (2002).
Grounding language in action. Psychonomic Bulletin & Review, pages
558–565.

[Goldfeder et al., 2009] Goldfeder, C., Ciocarlie, M., Dang, H., and Allen,
P. K. (2009). The Columbia grasp database. In IEEE Intl. Conf. on
Robotics and Automation.

[Graves, 2008] Graves, H. (2008). Representing Product Designs Using a
Description Graph Extension to OWL 2. In OWLED.

[Griffith et al., 2012] Griffith, S., Sinapov, J., Sukhoy, V., and Stoytchev,
A. (2012). A behavior-grounded approach to forming object categories:
Separating containers from noncontainers. IEEE T. Autonomous Mental
Development, 4(1):54–69.

[Grosof et al., 2003] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S.
(2003). Description logic programs: combining logic programs with de-
scription logic. In Proceedings of the 12th international conference on
World Wide Web, WWW ’03, pages 48–57, New York, NY, USA. ACM.

122

[Guarino and Welty, 2004] Guarino, N. and Welty, C. A. (2004). An
Overview of OntoClean, chapter 8, pages 151–172. Springer.

[Haarslev and Möller, 2003] Haarslev, V. and Möller, R. (2003). Racer: A
core inference engine for the semantic web. In Proceedings of the 2nd In-
ternational Workshop on Evaluation of Ontology-based Tools (EON2003),
located at the 2nd International Semantic Web Conference ISWC 2003,
Sanibel Island, Florida, USA, October 20, pages 27–36.

[Hanford et al., 2009] Hanford, S., Janrathitikarn, O., and Long, L. (2009).
Control of mobile robots using the SOAR cognitive architecture. Journal
of Aerospace Computing, Information, and Communication, 6(2):69–91.

[Harnad, 1990] Harnad, S. (1990). The symbol grounding problem. In Pro-
ceedings of the ninth annual international conference of the Center for
Nonlinear Studies on Self-organizing, Collective, and Cooperative Phe-
nomena in Natural and Artificial Computing Networks on Emergent com-
putation, CNLS ’89, pages 335–346, Amsterdam, The Netherlands, The
Netherlands. North-Holland Publishing Co.

[Hartanto and Hertzberg, 2009] Hartanto, R. and Hertzberg, J. (2009). On
the benefit of fusing dl-reasoning with htn-planning. In KI, pages 41–48.

[Haslhofer et al., 2011] Haslhofer, B., Momeni Roochi, E., Schandl, B., and
Zander, S. (2011). Europeana RDF store report.

[Hastings et al., 2010] Hastings, J., Dumontier, M., Hull, D., Horridge, M.,
Steinbeck, C., Stevens, R., Sattler, U., Hörne, T., and Britz, K. (2010).
Representing Chemicals Using OWL, Description Graphs and Rules. In
Sirin, E. and Clark, K., editors, OWLED, volume 614 of CEUR Workshop
Proceedings. CEUR-WS.org.

[Horikoshi and Suzuki, 1993] Horikoshi, T. and Suzuki, S. (1993). 3D parts
decomposition from sparse range data using information criterion. In
Computer Vision and Pattern Recognition, 1993. Proceedings CVPR ’93.,
1993 IEEE Computer Society Conference on, pages 168 –173.

[Horrocks, 1998] Horrocks, I. (1998). The FaCT system. In de Swart, H., ed-
itor, Proc. of the 2nd Int. Conf. on Analytic Tableaux and Related Methods
(TABLEAUX’98), volume 1397 of Lecture Notes in Artificial Intelligence,
pages 307–312. Springer.

123

[Horrocks and Graves, 2008] Horrocks, I. and Graves, H. (2008). Applica-
tion of OWL 1.1 to Systems Engineering. In OWL: Experiences and
Directions (OWLED), page online.

[Hudelot et al., 2008] Hudelot, C., Atif, J., and Bloch, I. (2008). Fuzzy
spatial relation ontology for image interpretation. Fuzzy Sets and Systems,
159(15):1929–1951.

[Hummel, 2000] Hummel, J. E. (2000). Where view-based theories break
down: The role of structure in shape perception and object recognition.
In Cognitive Dynamics: Conceptual Change in Humans and Machines.

[Iberall et al., 1988] Iberall, T., Jackson, J., Labbe, L., and Zampano, R.
(1988). Knowledge-based prehension: capturing human dexterity. In
Robotics and Automation, 1988. Proceedings., 1988 IEEE International
Conference on, pages 82–87 vol.1.

[Jolliffe, 2002] Jolliffe, I. T. (2002). Principal Component Analysis.
Springer, second edition.

[Kalogerakis et al., 2010] Kalogerakis, E., Hertzmann, A., and Singh, K.
(2010). Learning 3D mesh segmentation and labeling. Components,
29(July):1–12.

[Kang and Ikeuchi, 1994] Kang, S. B. and Ikeuchi, K. (1994). Robot task
programming by human demonstration: mapping human grasps to ma-
nipulator grasps. In Intelligent Robots and Systems ’94. ’Advanced Robotic
Systems and the Real World’, IROS ’94. Proceedings of the IEEE/RSJ/GI
International Conference on, volume 1, pages 97 –104 vol.1.

[Kassimi and beqqali, 2012] Kassimi, M. A. and beqqali, O. E. (2012). From
3D model data to semantics. International Journal of Computer Science
& Information Technology, 3:1–17.

[Keet and Artale, 2008] Keet, C. M. and Artale, A. (2008). Representing
and reasoning over a taxonomy of part-whole relations. Appl. Ontol.,
3:91–110.

[Klinov, 2008] Klinov, P. (2008). Pronto: A Non-monotonic Probabilistic
Description Logic Reasoner. In Bechhofer, S., Hauswirth, M., Hoffmann,
J., and Koubarakis, M., editors, The Semantic Web: Research and Appli-
cations, volume 5021 of Lecture Notes in Computer Science, chapter 66,
pages 822–826. Springer Berlin Heidelberg, Berlin, Heidelberg.

124

[Kollia et al., 2010] Kollia, I., Simou, N., Stafylopatis, A., and Kollias, S.
(2010). Semantic image analysis using a symbolic neural architecture.

[Kolovski et al., 2006] Kolovski, V., Parsia, B., and Katz, Y. (2006). Imple-
menting OWL defaults. In Grau, B. C., Hitzler, P., Shankey, C., and Wal-
lace, E., editors, Proceedings of the OWLED*06 Workshop on OWL: Ex-
periences and Directions, Athens, Georgia, USA, November 10-11, 2006,
volume 216 of CEUR Workshop Proceedings. CEUR-WS.org.

[Krötzsch, 2012] Krötzsch, M. (2012). OWL 2 Profiles: An introduction to
lightweight ontology languages. In Proceedings of the 8th Reasoning Web
Summer School, Vienna, Austria, September 3–8 2012. Springer.

[Kuipers, 2008] Kuipers, B. (2008). Drinking from the firehose of experience.
Artif. Intell. Med., 44(2):155–170.

[Kunze et al., 2011] Kunze, L., Roehm, T., and Beetz, M. (2011). Towards
semantic robot description languages. In IEEE International Conference
on Robotics and Automation (ICRA), pages 5589–5595, Shanghai, China.

[Kurzhanskiy and Varaiya, 2006] Kurzhanskiy, A. A. and Varaiya, P.
(2006). Ellipsoidal toolbox. Technical report, EECS, UC Berkeley.

[Laird et al., 2012] Laird, J., Kinkade, K., Mohan, S., and Xu, J. (2012).
Cognitive robotics using the SOAR cognitive architecture.

[Laird et al., 1987] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987).
SOAR: an architecture for general intelligence. Artif. Intell., 33(1):1–64.

[Lawley and Bousquet, 2010] Lawley, M. and Bousquet, C. (2010). Fast
classification in Protégé: Snorocket as an OWL 2 EL reasoner. In Meyer,
T., Orgun, M., and Taylor, K., editors, Australasian Ontology Work-
shop 2010 (AOW 2010): Advances in Ontologies, volume 122 of CRPIT,
pages 45–50, Adelaide, Australia. ACS. Winner of Payne-Scott Best Pa-
per Award.

[Lemaignan et al., 2010] Lemaignan, S., Ros, R., Mösenlechner, L., Alami,
R., and Beetz, M. (2010). Oro, a knowledge management platform for
cognitive architectures in robotics. In IROS, pages 3548–3553.

[Lenat, 1995] Lenat, D. (1995). CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM, 38(11):33–38.

125

[Li et al., 2007] Li, Y., Fu, J. L., and Pollard, N. S. (2007). Data-driven
grasp synthesis using shape matching and task-based pruning. IEEE
Transactions on Visualization and Computer Graphics, 13(4):732–747.

[Lien et al., 2006] Lien, J.-M., Keyser, J., and Amato, N. M. (2006). Simul-
taneous shape decomposition and skeletonization. In Symposium on Solid
and Physical Modeling, pages 219–228.

[Lim et al., 2011] Lim, G. H., Suh, I. H., and Suh, H. (2011). Ontology-
based unified robot knowledge for service robots in indoor environments.
Trans. Sys. Man Cyber. Part A, 41(3):492–509.

[Liu and Singh, 2004] Liu, H. and Singh, P. (2004). Conceptnet: A practical
commonsense reasoning toolkit. BT Technology Journal, 22(4):211–226.

[Lukasiewicz and Straccia, 2008] Lukasiewicz, T. and Straccia, U. (2008).
Managing uncertainty and vagueness in description logics for the Semantic
Web. Web Semant., 6(4):291–308.

[Mallenby and Bennett, 2007] Mallenby, D. and Bennett, B. (2007). Ap-
plying spatial reasoning to topographical data with a grounded ontology.
In Fonseca, F., Rodŕıgues, M. A., and Levashkin, S., editors, GeoSpatial
Semantics, proceedings of the second international conference, number
4853 in Lecture Notes in Computer Science, pages 210–227, Mexico City.
Springer.

[Marini et al., 2007] Marini, S., Spagnuolo, M., and Falcidieno, B. (2007).
Structural Shape Prototypes for the Automatic Classification of 3D Ob-
jects. IEEE Comput. Graph. Appl., 27(4):28–37.

[Marr and Nishihara, 1978] Marr, D. and Nishihara, H. (1978). Represen-
tation and recognition of the spatial organization of three-dimensional
shapes. In Philosophical Transactions of the Royal Society of London B.,
volume 200, pages 269–294.

[Marras et al., 2012] Marras, S., Bronstein, M. M., Hormann, K., Scateni,
R., and Scopigno, R. (2012). Motion-based mesh segmentation using
augmented silhouettes. Graphical Models, 74(4):164 – 172.

[Modayil and Kuipers, 2007] Modayil, J. and Kuipers, B. (2007). Au-
tonomous development of a grounded object ontology by a learning robot.
In Proceedings of the Twenty-Second National Conference on Artificial In-
telligence (AAAI-07).

126

[Motik et al., 2008] Motik, B., Grau, B. C., and Sattler, U. (2008). The
Representation of Structured Objects in DLs using Description Graphs.
In Baader, F., Lutz, C., and Motik, B., editors, Proc. of the 21st Int.
Workshop on Description Logics (DL 2008), volume 353 of CEUR Work-
shop Proceedings, Dresden, Germany.

[Mozos et al., 2011] Mozos, O. M., Marton, Z. C., and Beetz, M. (2011).
Furniture Models Learned from the WWW – Using Web Catalogs to
Locate and Categorize Unknown Furniture Pieces in 3D Laser Scans.
Robotics & Automation Magazine, 18(2):22–32.

[Natali et al., 2011] Natali, M., Biasotti, S., Patanè, G., and Falcidieno, B.
(2011). Graph-based representations of point clouds. Graph. Models,
73(5):151–164.

[Neumann and Möller, 2008] Neumann, B. and Möller, R. (2008). On scene
interpretation with description logics. Image and Vision Computing,
26(1):82–101.

[Ning et al., 2010] Ning, X., Li, E., Zhang, X., and Wang, Y. (2010). Shape
decomposition and understanding of point cloud objects based on percep-
tual information. In Proceedings of the 9th ACM SIGGRAPH Conference
on Virtual-Reality Continuum and its Applications in Industry, VRCAI
’10, pages 199–206, New York, NY, USA. ACM.

[Ogata and Takahashi, 1994] Ogata, H. and Takahashi, T. (1994). Robotic
assembly operation teaching in a virtual environment. Robotics and Au-
tomation, IEEE Transactions on, 10(3):391 –399.

[Palm et al., 2009] Palm, R., Iliev, B., and Kadmiry, B. (2009). Recognition
of human grasps by time-clustering and fuzzy modeling. Robot. Auton.
Syst., 57(5):484–495.

[Pastra, 2008] Pastra, K. (2008). PRAXICON: The Development of a
Grounding Resource. In Proceedings of the 4th International Workshop
on Human-Computer Conversation.

[Pastra, 2010] Pastra, K. (2010). From Lexicon to PRAXICON: language-
action-image semantic relations. In Potagas, K., E. I., editor, Conversa-
tions on Language and Action, Aiginiteion Series, pages 143–172. Synap-
seis.

127

[Pastra and Aloimonos, 2012] Pastra, K. and Aloimonos, Y. (2012). The
minimalist grammar of action. In Philosophical Transactions of the Royal
Society B, volume 367, pages 103–117.

[Pastra et al., 2011] Pastra, K., Balta, E., Dimitrakis, P., and Karakatsi-
otis, G. (2011). Embodied language processing: A new generation of
language technology. In Language-Action Tools for Cognitive Artificial
Agents, volume WS-11-14 of AAAI Workshops. AAAI.

[Pastra et al., 2010] Pastra, K., Dimitrakis, P., Balta, E., and Karakatsiotis,
G. (2010). PRAXICON and its language-related modules. In Companion
Volume of the 6th Hellenic Conference on Artificial Intelligence (SETN),
pages 27–32.

[Röhrbein et al., 2007] Röhrbein, F., Eggert, J., and Körner, E. (2007). A
cortex-inspired neural-symbolic network for knowledge representation. In
NeSy.

[Rom and Medioni, 1994] Rom, H. and Medioni, G. (1994). Part decompo-
sition and description of 3D shapes. In Pattern Recognition, 1994. Vol. 1
- Conference A: Computer Vision Image Processing., Proceedings of the
12th IAPR International Conference on, volume 1, pages 629 –632 vol.1.

[Salvi et al., 2012] Salvi, G., Montesano, L., Bernardino, A., and Santos-
Victor, J. (2012). Language bootstrapping: Learning word meanings from
perception-action association. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 42(3):660 –671.

[Schlenoff and Messina, 2005] Schlenoff, C. and Messina, E. (2005). A robot
ontology for urban search and rescue. In Proceedings of the 2005 ACM
workshop on Research in knowledge representation for autonomous sys-
tems, KRAS ’05, pages 27–34, New York, NY, USA. ACM.

[Schockaert et al., 2011] Schockaert, S., Makarytska, N., and De Cock, M.
(2011). Fuzzy Methods on the Web: A Critical Discussion. In Cornelis,
C., Deschrijver, G., Nachtegael, M., Schockaert, S., and Shi, Y., editors,
35 Years of Fuzzy Set Theory, volume 261 of Studies in Fuzziness and
Soft Computing, pages 237–266. Springer Berlin / Heidelberg.

[Schyns et al., 1998] Schyns, P. G., Goldstone, R. L., and Thibaut, J. P.
(1998). The development of features in object concepts. The Behavioral
and brain sciences, 21(1):1–17; discussion 17–54.

128

[Shamir, 2008] Shamir, A. (2008). A survey on Mesh Segmentation Tech-
niques. Computer Graphics Forum, 27(6):1539–1556.

[Shearer et al., 2008] Shearer, R., Motik, B., and Horrocks, I. (2008). Her-
miT: A Highly-Efficient OWL Reasoner. In Ruttenberg, A., Sattler, U.,
and Dolbear, C., editors, Proc. of the 5th Int. Workshop on OWL: Expe-
riences and Directions (OWLED 2008 EU), Karlsruhe, Germany.

[Simou et al., 2007] Simou, N., Athanasiadis, T., Tzouvaras, V., and Kol-
lias, S. (2007). Multimedia reasoning with f − SHIN . In Proceedings of
the Second International Workshop on Semantic Media Adaptation and
Personalization, SMAP ’07, pages 44–49, Washington, DC, USA. IEEE
Computer Society.

[Sirin and Parsia, 2007] Sirin, E. and Parsia, B. (2007). SPARQL-DL:
SPARQL Query for OWL-DL. In In 3rd OWL Experiences and Direc-
tions Workshop (OWLED-2007).

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and
Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Web Semantics:
Science, Services and Agents on the World Wide Web, 5(2):51–53.

[Stoilos et al., 2008] Stoilos, G., Stamou, G., Pan, J. Z., Simou, N., and
Tzouvaras, V. (2008). Uncertainty Reasoning for the Semantic Web I.
chapter Reasoning with the Fuzzy Description Logic f-SHIN : Theory,
Practice and Applications, pages 262–281. Springer-Verlag, Berlin, Hei-
delberg.

[Straccia, 2009] Straccia, U. (2009). Towards spatial reasoning in fuzzy de-
scription logics. In Proc. of the 2009 IEEE International Conference on
Fuzzy Systems.

[Stramandinoli et al., 2012] Stramandinoli, F., Marocco, D., and Cangelosi,
A. (2012). The grounding of higher order concepts in action and language:
A cognitive robotics model. Neural Networks, 32(0):165 – 173.

[Sukumar et al., 2006] Sukumar, S., Page, D., Gribok, A., Koschan, A., and
Abidi, M. (2006). Shape measure for identifying perceptually informative
parts of 3D objects. In 3D Data Processing, Visualization, and Transmis-
sion, Third International Symposium on, pages 679 –686.

[Svensson and di Baja, 2002] Svensson, S. and di Baja, G. S. (2002). Using
distance transforms to decompose 3D discrete objects. Image and Vision
Computing, 20(8):529 – 540.

129

[Tangelder and Veltkamp, 2007] Tangelder, J. W. H. and Veltkamp, R. C.
(2007). A survey of content based 3D shape retrieval methods. Multimedia
Tools and Applications, 39(3):441–471.

[Tenorth and Beetz, 2009] Tenorth, M. and Beetz, M. (2009). KNOWROB
- Knowledge processing for autonomous personal robots. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems,
October 11-15, 2009, St. Louis, MO, USA, pages 4261–4266. IEEE.

[Tenorth and Beetz, 2012] Tenorth, M. and Beetz, M. (2012). A unified rep-
resentation for reasoning about robot actions, processes, and their effects
on objects. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal. Accepted for publica-
tion.

[Tran et al., 2011] Tran, T., Ladwig, G., and Wagner, A. (2011). Approxi-
mate and Incremental Processing of Complex Queries against the Web of
Data. In DEXA (2), pages 171–187.

[Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, I. (2006).
FaCT++ description logic reasoner: System description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of
Lecture Notes in Artificial Intelligence, pages 292–297. Springer.

[Tung and Schmitt, 2004] Tung, T. and Schmitt, F. (2004). Augmented
Reeb graphs for content-based retrieval of 3D mesh models. Proceedings
Shape Modeling Applications, pages 157–389.

[van Kaick et al., 2011] van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H.,
Cohen-Or, D., Wolf, L., and Hamarneh, G. (2011). Prior knowledge for
part correspondence. Computer Graphics Forum, 30(2):553–562.

[Varadarajan and Vincze, 2011] Varadarajan, K. and Vincze, M. (2011).
Ontological knowledge management framework for grasping and manipu-
lation. In Proceedings of the Knowledge Representation for Autonomous
Robots Workshop (ICRA 2011).

[Varzi, 2007] Varzi, A. C. (2007). Spatial reasoning and ontology: Parts,
wholes, and locations. In Aiello, M., Pratt-Hartmann, I. E., and van Ben-
them, J., editors, Handbook of Spatial Logics, pages 945–1038. Springer-
Verlag.

[Vasilakis et al., 2010] Vasilakis, G., GarcÃa-Rojas, A., Papaleo, L., Cata-
lano, C. E., Robbiano, F., Spagnuolo, M., Vavalis, M., and Pitikakis,

130

M. (2010). Knowledge-Based Representation of 3D Media. International
Journal of Software Engineering and Knowledge Engineering, 20(5):739–
760.

[Vatakis et al., 2012] Vatakis, A., Pastra, K., and Dimitrakis, P. (2012).
Acquiring object affordances through touch, vision, and language. In
13th International Multisensory Research Forum.

[Vinson and Vigliocco, 2008] Vinson, D. P. and Vigliocco, G. (2008). Se-
mantic feature production norms for a large set of objects and events.
Behavior Research Methods, 40(1):183–190.

[Vitucci, 2011] Vitucci, N. (2011). Autonomous object manipulation: A
semantic-driven approach. In IJCAI, pages 2858–2859.

[Vitucci et al., 2010a] Vitucci, N., Neri, M. A., and Gini, G. (2010a).
Semantic-aided visual grasping using a fuzzy description logic. In Pro-
ceedings of the CogSys2010 (4th International Conference on Cognitive
Systems), Zurich, Switzerland.

[Vitucci et al., 2010b] Vitucci, N., Neri, M. A., and Gini, G. (2010b). Using
f−SHIN to represent objects: An aid to visual grasping. In UniDL ’10,
pages 80–87.

[Vitucci et al., 2012] Vitucci, N., Neri, M. A., Tedesco, R., and Gini, G.
(2012). Semanticizing Syntactic Patterns in NLP Processing Using
SPARQL-DL Queries. In OWLED.

[Wagan et al., 2009] Wagan, A., Godil, A., and Bres, S. (2009). 3D shape
retrieval by visual parts similarity. In Applied Imagery Pattern Recogni-
tion Workshop (AIPRW), 2009 IEEE, pages 1 –6.

[Waibel et al., 2011] Waibel, M., Beetz, M., Civera, J., D’Andrea, R., El-
fring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J.,
Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., and van de Molen-
graft, R. (2011). RoboEarth. Robotics Automation Magazine, IEEE,
18(2):69–82.

[Wang and Pan, 2007] Wang, S. and Pan, J. Z. (2007). Ontology-based
Integration and Retrieval over Multiple Quantities - What if “Ovate leaves
and often blue to purple flowers”. In Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence, WI ’07, pages 388–394,
Washington, DC, USA. IEEE Computer Society.

131

[Yee et al., 2011] Yee, E., Huffstetler, S., and Thompson-Schill, S. L. (2011).
Function follows form: activation of shape and function features dur-
ing object identification. Journal of experimental psychology. General,
140(3):348–363.

[Zhang et al., 2012] Zhang, X., Tutenel, T., Mo, R., Bidarra, R., and
Bronsvoort, W. F. (2012). A method for specifying semantics of large
sets of 3D models. In Richard, P., Kraus, M., Laramee, R. S., and Braz,
J., editors, GRAPP/IVAPP, pages 97–106. SciTePress.

[Zhang et al., 2003] Zhang, Y., Koschan, A., and Abidi, M. (2003). Su-
perquadrics based 3D object representation of automotive parts utilizing
part decomposition. In Proc. SPIE 6th Int. Conf. on Quality Control by
Artificial Vision, pages 241–251.

[Zollner et al., 2002] Zollner, R., Rogalla, O., Dillmann, R., and Zollner,
M. (2002). Understanding users intention: programming fine manipula-
tion tasks by demonstration. In Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, volume 2, pages 1114–1119.

132

	Summary
	Acknowledgements
	Introduction
	Objectives
	Contributions
	Structure of the thesis

	Description logics and design of knowledge bases
	State of the art
	The OWL family
	OWL 2 Profiles
	Fuzzy and probabilistic extensions

	Using knowledge representation technologies
	Why to use semantic languages?
	The use of DLs in robotic-related fields

	Design issues
	Representation
	The role of reasoning
	Expressivity of the logic
	Knowledge base management
	Queries

	Summary

	Description logics for object representation
	State of the art
	Recognition-by-components
	Shape description and modelling
	Use of knowledge

	Issues in part decomposition
	Conceptual issues
	Practical issues

	Implementation
	Datasets
	Knowledge base

	Experiments
	Examples of queries
	Evaluation

	Discussion
	Future work

	Description logics and grasping
	State of the art
	Representation issues
	Implementation
	Dataset
	The grasping ontologies
	Use grasp features to describe objects
	Use object features to retrieve grasps

	Experiments
	Discussion
	Future work

	Description logics and cognitive architectures
	State of the art
	The POETICON++ project

	Issues in semantic memory design
	Implementation
	PRAXICON overview
	Requirements

	Experiments
	Discussion
	Future work

	Conclusions and future work
	Comparison with KnowRob
	Future work

	Bibliography

