
Politecnico di Milano
Dipartimento di Elettronica e Informazione

DOTTORATO DI RICERCA IN INGEGNERIA
DELL’INFORMAZIONE

Model-Based Verification and Adaptation of
Software Systems @Runtime

Doctoral Dissertation of:
Antonio Filieri

Advisor:
Prof. Carlo Ghezzi

Tutor:
Prof. Gianpaolo Cugola

Supervisor of the Doctoral Program:
Prof. Barbara Pernici

2012 - XXV

i

Abstract

e pervasiveness and flexibility of modern software systems and the
uncertainty, unpredictability, and variability of their execution envi-
ronments are strengthening the quest for systems that can self-adapt
to their surrounding context.

At run time, systems are required to monitor the environment,
identify possible violations of the requirements, and plan a suitable
reaction.

Traditional techniques for automatic requirements verification are
conceived for design time use and can hardly satisfy the time con-
straints imposed by run time analysis. Planning as well suffers from
similar limitations, being most of the known approaches static and
only effective in specific domains.

In this thesis several results from stochastic processes analysis,
semantic interpretation of formal languages, and control theory are
used to ground the definition of novel verification and adaptation
methodologies devised for run time use, with a particular focus on
non functional requirements such as reliability, performance, or cost.
Particular attention has been paid to the generality and the formal
assessment of the effectiveness of these methodologies, which have
proved to be efficient and dependable in a wide application scope.

e contributions of this research can be summarized in the fol-
lowing list:

• a methodology for run time efficient probabilistic model-checking,
that define a design time partial evaluation procedure that sig-
nificantly simplifies and speeds up the verification at run time.

• an approach to bring sensitivity analysis at run time to estimate
the impact of each monitored environmental condition online.

• a methodology for syntactic-semantic incremental analysis, that
can be used to define incremental verification procedures of
both functional and non-functional requirements.

• a methodology for software control throughMarkov models, pro-
viding for the automatic generation of broad-scope controllers
able to adapt tunable software at run time in order to make it
continuously satisfy its non functional requirements.

ii

• a reliability driven dynamic-binding strategy grounded on con-
trol theory that provides formal assurance of scalability, robust-
ness, and efficiency.

iv

Sommario

Pervasività e flessibilità dei moderni sistemi software-intensive, as-
sieme ad incertezza, non predicibilità e variabilità delle infrastrutture
di calcolo, pongono l’accento sulla necessità di sistemi in grado di
adattarsi autonomamente all’ambiente che li circonda.

Durante la loro esecuzione, tali sistemi devono essere in gra-
do di monitorare l’ambiente, identificare possibili violazioni dei loro
requisiti e pianificare reazioni opportune.

Le tecniche tradizionali per verificare il soddisfacimento dei re-
quisiti sono tipicamente concepite per l’utilizzo in fase di progetta-
zione e sviluppo e difficilmente riescono a soddisfare i vincoli tem-
porali imposti dall’analisi a runtime. Gli algoritmi di planning sof-
frono spesso di limitazioni analoghe, essendo la maggior parte di essi
pensati per contesti statici o per domini specifici.

In questa tesi, concetti propri dell’analisi dei processi stocastici,
dell’interpretazione semantica dei linguaggi formali e della teoria del
controllo costituiscono il fondamento di alcune metodologie innova-
tive per la verifica e l’adattamento di sistemi software a runtime. La
ricerca si focalizza prevalentemente sui requisiti non funzionali quali,
ad esempio, affidabilità, performance o costo. Un’attenzione parti-
colare è stata rivolta alla generalità delle procedure proposte e alla
valutazione formale della loro efficacia, dimostrandone anche speri-
mentalmente efficienza e affidabilità in un ampio spettro applicativo.

I principali contributi di questa ricerca sono sintetizzabili nei se-
guenti punti:

• una metodologia per model-checking probabilistico a runtime
che, basata su una valutazione parziale del problema durante
la fase di design, è in grado di semplificare drasticamente la
verifica dei requisiti a seguito di cambiamenti nell’ambiente o
nel sistema.

• un approccio per effettuare un’analisi di sensitività a runtime
allo scopo di stimare in tempo reale l’impatto di ciascuna delle
condizioni ambientali monitorate durante l’esecuzione.

• una metodologia per l’analisi sintattico-semantica incrementa-
le di artefatti software utile a definire procedure di verifica sia
di requisiti funzionali che non funzionali.

v

• una metodologia per il controllo di sistemi software il cui con-
trol flow sia astraibile tramite processi Markoviani e che inclu-
de la generazione automatica di controllori in grado di adattare
il comportamento del sistema durante la sua esecuzione perché
continui a soddisfare i suoi requisiti.

• un meccanismo di dynamic-binding adattativo mirato a ga-
rantire la convergenza dell’affidabilità del sistema al suo valo-
re obiettivo. Tale meccanismo è fondato su risultati di teo-
ria del controllo che ne garantiscono formalmente scalabilità,
robustezza ed efficienza.

Contents

I Overture 1

1 Introduction 3
1.1 Contributions . 7
1.2 Publications . 9
1.3 esis Structure . 12

II Modeling 13

2 ProbabilisticModels 15
2.1 Discrete-Time Markov Chains 18

2.1.1 Modeling with DTMCs 21
2.1.2 Validity of the Markov Assumption 23

2.2 Discrete-Time Markov Reward Models 26
2.2.1 Modeling with D-MRMs 27

3 Probabilistic Specification Logics 31
3.1 Probabilistic Computation Tree Logic (PCTL) . . . 33

3.1.1 Specification Example 34
3.2 Extending PCTL With Rewards (R-PCTL) 35

3.2.1 Specification Example 36

IIIVerification 37

4 eWorkingMomParadigm 39
4.1 e Working Mom Paradigm 42
4.2 PCTL Verification 44

4.2.1 Reaching an Absorbing State 44

vi

CONTENTS vii

4.2.2 Extending to the Entire PCTL 51
4.3 R-PCTL Verification 59

4.3.1 Unbounded Formulae 59
4.3.2 Bounded Formulae 61
4.3.3 Special Applications of Reward Analysis . . . 62

4.4 Sensitivity Analysis 64
4.5 Related Work . 68

4.5.1 Incremental Verification 68
4.5.2 Parameter Space Exploration 70
4.5.3 Parametric Model Checking 71

4.6 Empirical Evaluation 78
4.6.1 Matrix Based Algorithms 79
4.6.2 Equation Based Algorithms 84
4.6.3 Empirical Complexity of the WM 88

5 Syntax-Diven Analysis 91
5.1 Background . 93

5.1.1 Floyd Grammars 93
5.1.2 Attribute Grammars 95

5.2 Syntactic-Semantic Incrementality 97
5.2.1 e Locality Property and Syntactic Incre-

mentality 97
5.2.2 Semantic Incrementality 98

5.3 Incremental Quantitative Analysis 100
5.3.1 Applying SiDECAR 101

5.4 Discussion and Related Work 108
5.4.1 Related Work 109
5.4.2 SiDECAR and the WorkingMom 109

IV Control 111

6 Software Control throughMarkovModels 117
6.1 Control-Oriented Modeling 119

6.1.1 A Representative Example 121
6.2 Software Models as Dynamic Systems 124
6.3 Controlling the System’s Dynamics by Feedback . . . 127

6.3.1 Formal Assessment 129
6.4 Experimental Evaluation 131
6.5 Extension to R-PCTL and Limitations 137

viii CONTENTS

6.6 Related Work . 139

7 Reliability-DrivenDynamic Binding 141
7.1 Two-Alternatives Online Dynamic Binding 143

7.1.1 e Modeling Paradigm 143
7.1.2 Control Synthesis 151
7.1.3 Auto-Tuning 152
7.1.4 Control Validation 154

7.2 Extending to n Alternatives 157
7.3 Implementation . 161
7.4 Related Work . 162

V Finale 165

8 Conclusions and FutureWork 167

Bibliography 173

List of Figures 196

List of Tables 200

Part I

Overture

1

Introduction 1

Perfection (in design) is achieved not
when there is nothing more to add, but
rather when there is nothing more to
take away.

Antoine de Saint-Exupery

Self-Adaptive Software

Software is the backbone of modern society. Its structure, its
development process, and the expectation people place on it have
quickly changed since the dawn of Software Engineering [155], claim-
ing for new directions and new perspectives.

Traditional software engineering processes, starting from the pop-
ular waterfall model, introduced in the 70s by Winston W. Royce,
weremostly focused on how to discipline software development. eir
inventors argued that careful requirements analysis could improve
quality and avoid costly changes [20]. Avoiding changes was one
of the central goals during early years of software engineering, in
a time when organizations were monolithic, development central-
ized, deployment infrastructure well-known and mostly unchange-
able, and application domains limited to critical systems, military,
and big companies.

3

. I

Taking a peek at the landscape of software in the past decade,
almost none of these assumptions is still in place. Software devel-
opment, provisioning, and maintenance is decentralized; systems are
designed by assembling components developed and operated by third
parties; binding between interfaces and implementations is delayed
at run time; infrastructure is often in the cloud and may change as
quickly as a minute; mobile devices are ubiquitous in everyday life,
providing continuous interaction with billions of different users; net-
works are pervasive and heavily shape software execution.

Today software must change. If it could still be enough in many
cases to design applications for change [162], in the near future soft-
ware will bemore andmore required to continuously and autonomously
adapt in response to unpredictable changes in its environment and
goals.

In particular, self-adaptation is a key driver to deal with three
challenges of modern software development [36]:

• Volatility of requirements, as consequence of the fast transfor-
mations of companies and customers

• Uncertainty about the effective operative conditions, hard to
guess with accuracy at design time

• Variability in the behavior of the interacting environment: in-
frastructure, third party components, and customers.

A second difference between traditional software engineering and
its current evolution concerns the role of non-functional requirements,
such as reliability, performance, energy consumption, and cost. Cus-
tomers require the continuous assurance of the agreed quality levels,
despite the unpredictable changes the software undergoes. Most of
non-functional requirements impose the satisfaction of specific quan-
titative properties [131], that have to be continuously verified in order
to trigger a convenient adaptation process whenever a requirement is
violated.

Verification@Runtime. Continuous verification of quantitative
non-functional properties for self-adaptive systems is the first main
focus of this thesis. Many current researches deal with the identi-
fication of “unhealthy” conditions that make the software violate its

4

requirements. However, most of them are based on traditional ver-
ification techniques, that are conceived for design time use and can
hardly meet the strict execution time constraints imposed by run time
application.

e first verification methodology proposed in this thesis stands
upon two complementary concepts: modeling and monitoring. e
former aims at providing a semantic lens to interpret the data gath-
ered from the running instances of the adaptive system. e latter
is in charge of observing and measuring the relevant aspects of both
the software and the execution environment and feed the information
into the models, keeping them alive at run time

emodels considered here describe the behavior of the software,
as well as the relevant aspects of the environment, as a stochastic pro-
cess. Such probabilistic models allow the formalization of a certain
degree of uncertainty in the temporal progress of software execution,
thus supporting both unsharp assumptions at design time and the
intrinsic randomness of physical phenomena.

Models are assumed to capture an updated and consistent ab-
straction of the running software. ey are not considered here as
just a many-to-one relation between the real-world phenomena and
a set of model elements, but as first class entities that can be used
not only to verify the satisfaction of specific requirements, but also
as a base for more complex reasoning to support adaptation. Indeed,
when the running software no longer satisfies a requirement, a con-
venient adaptation has to be carried out.

e second methodology is instead based on a syntactic-semantic
framework for the definition of incremental verification procedures.
ese procedures are driven by the syntactic structure of the artifact
under analysis (described by a convenient formal grammar) and are
encoded as semantic attributes associated with the production rules
of the grammar itself. Incrementality is achieved by coupling the
evaluation of semantic attributes with an incremental parsing tech-
nique.

is framework is general enough to effectively support the incre-
mental verification of a large number of properties, including quan-
titative ones.

Model-Based Adaptation. Software adaptation is the second
main focus of this thesis. Most of the adaptation approaches pro-
posed in the past years are either thought for static environments,

5

. I

when time is not an issue, or only effective in specific domains. Self-
adaptive software requires to deal with uncertainty and incomplete
information from the system’s self and its environment, to correlate
local and global decision-making, and to provide scalability as well as
formal assurance of the dependability of the adaptation mechanism.

Control theory has established effectivemechanisms tomake con-
trolled plants behave as expected. Although the similarity with soft-
ware adaptation is self-evident, most of the attempts to apply control
theory to software applications failed because the intrinsic non lin-
earity, the variety of usage profiles, and the interconnection of het-
erogeneous components make software systems hard to be modeled
as a dynamic system, i.e. by means of differential equations. As result,
the current use of control theory is limited to specific applications
and hard to generalize to large classes of software.

is thesis tries to change such route. If modeling software as a
dynamic system is in general an obstacle, a way to go around it is to
derive the differential equations from the abstract behavioral model
of the software. is two-step escape has been proved to be effective
for all the software whose behavior can be described by a discrete
time stochastic Markov model [175], with rewards, and for most of
the goals expressible as the satisfaction of a probabilistic control tree
logic assertion [97]. e obtained controllers can also provide formal
assurance of their capabilities and notify the unfeasibility of the goal
to higher level decision makers.

A specific control strategy has also been devised for the case of
dynamic-binding, which is the main enabling technology for self-
adaptation of service oriented applications. e specific issue of dy-
namic discovering and addition of new services at run time has been
considered in proposing a control strategy that joins together the flex-
ibility of the architecture and the formal assurances of its control the-
ory foundation.

6

1.1. Contributions

1.1 Contributions

e main contributions of this thesis are summarized in the follow-
ing.

RunTime Efficient ProbabilisticModel-Checking.
e model-checking task has been split in two phases to be carried
out at design time and at run time, respectively. e role of the design
time phase is to partially evaluate the problem, leaving at run time an
effort as small as evaluating a closed-form expression. e procedure
has been implemented and empirically compared with other existing
approaches, showing a significant improvement in run time efficiency
and a reasonable cost at design time. is contribution will the object
of Chapter 4.

Sensitivity Analysis at Run Time.
egeneration of closed-form expressions corresponding to the prob-
ability of satisfying a quantitative property allows for efficient sensi-
tivity analysis with respect to the model parameters. e results of
the analysis can support both the improvement of the system and
the diagnosis of failures, and can be brought at run time. Sensitivity
analysis is described in Chapter 4.4.

Syntax-Driven Incremental Quantitative Analysis.
A framework for the definition of incremental analysis procedures
has been introduced for software artifacts. e analysis is driven by
the syntactic structure of the software and encoded as the synthesis
of semantic attributes. Incrementality is then automatically achieved
by coupling the evaluation of semantic attributes with an incremental
parsing technique. Syntax-driven incremental analysis is investigated
in Section 5.

Software Control throughMarkovModels.
A general methodology has been defined for the control of tunable
software [149] whose behavior can be described by a discrete time
Markov model. e controller, automatically generated, has been
proved to be robust to sudden changes in the environment and to
monitoring inaccuracy, allowing for the continuous assurance of a
wide family of quantitative requirements. is control methodology
is presented in Chapter 6.

7

. I

Reliability DrivenDynamic-Binding.
Dynamic-binding has been considered as a mean for a service to
satisfy reliability requirements by continuously adjusting the choice
among the available concrete implementations. Control-theoretical
analysis and synthesis have been applied to prove effectiveness, sta-
bility, and scalability of the controller, and an auto-tuning procedure
has been defined to set its configuration, even at run time. is topic
is dealt with in Chapter 7.

8

1.2. Publications

1.2 Publications

Publications fundamental for the thesis contributions:
RunTimeEfficient ProbabilisticModel-Checking andSensi-

tivity Analysis.

3. A. Filieri, and G. Tamburrelli. Probabilistic Verification at
Runtime for Self-Adaptive Systems. In Assurances for Self-
Adaptive Systems book (Springer) – to be published.

2. A. Filieri, C. Ghezzi. Further Steps Towards Efficient Run-
time Verification: Handling Probabilistic Cost Models. In For-
mal Methods in Software Engineering: Rigorous and Agile
Approaches, FormSERA 2012. (Acceptance rate 50%)

1. A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient
probabilistic model checking. In International Conference on
Software Engineering, ICSE 2011. (Acceptance rate 62/441,
14.1%) - ACMDistinguished Paper Award

Syntax-Driven Incremental Quantitative Analysis.

2. D. Bianculli, A. Filieri, C.Ghezzi, andD.Mandrioli. A syntactic-
semantic approach to incremental verification. Internal Report,
2012.

1. S. Distefano, A. Filieri, C. Ghezzi, and R. Mirandola. A com-
positional method for reliability analysis of workflows affected by
multiple failure modes. In Component Based Software Engi-
neering, CBSE 2011. (Acceptance rate 29%)

Software Control throughMarkovModels.

2. A. Filieri, C. Ghezzi, A. Leva, M. Maggio. Discrete-time dy-
namic modeling for software and services composition as an
extension of the Markov chain approach. In IEEE Multi-
conference on Systems and Control, MSC 2012. (Acceptance
rate N/A) – to appear

1. A. Filieri, C. Ghezzi, A. Leva, M. Maggio. Self-Adaptive Soft-
ware Meets Control eory: A Preliminary Approach Supporting
Reliability Requirements. In Automated Software Engineer-
ing, ASE 2011. (Acceptance rate 37/252, 14.7%)

9

. I

Reliability DrivenDynamic-Binding.

2. A. Filieri, C. Ghezzi, A. Leva, M. Maggio. Autotuning con-
trol structures for reliability-driven dynamic binding. In IEEE
Conference on Decision and Control, CDC 2012. (Accep-
tance rate 50%) – to appear

1. A. Filieri, C. Ghezzi, A. Leva, M. Maggio. Reliability-driven
dynamic binding via feedback control. In International Sympo-
sium on Software Engineering forAdaptive and Self-Managing
Systems, SEAMS 2012. (Acceptance rate 15/50, 30%)

Other publications related to this research:

7. A. Ciancone, A. Filieri, and R. Mirandola. Testing Operational
Transformations in Model-Driven Engineering. In Innovations
in Systems and Software Engineering, 2012 - to appear

6. A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal approach
to adaptive software: Continuous assurance of non-functional re-
quirements. In Formal Aspects of Computing Journal, 2011.

5. A. Ciancone, A. Filieri, M. L. Drago, R. Mirandola, and V.
Grassi. Klapersuite: an integrated model-driven environment for
non-functional requirements analysis of component-based systems.
In TOOLS, 2011. (Acceptance rate 19/66, 28.8%)

4. A. Ciancone, A. Filieri, and R. Mirandola. Mantra: Towards
model transformation testing. In International Conference on
the Quality of Information and Communications Technology,
QUATIC 2010. (Acceptance rate 16/140, 11.4%) - Best Pa-
per Award of Verification and Validation Track

3. A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola. Relia-
bility analysis of component-based systems with multiple failure
modes. In Component Based Software Engineering, CBSE
2010. (Acceptance rate 14/48, 29.2%) - Best Paper Award

2. A. Filieri. QoS verification and model tuning @ runtime. In Eu-
ropean Software EngineeringConference/Foundation of Soft-
ware Engineering - Doctoral Symposium, ESEC/FSE 2011.

10

1.2. Publications

1. A. Filieri, C.Ghezzi, R.Mirandola, andG.Tamburrelli. Con-
quering complexity via seamless integration of design-time and
run-time verification. InConqueringComplexity book (Springer),
2011.

11

. I

1.3 esis Structure

e rest of this thesis is structured as follows.
Part II introduces the probabilistic models (Chapter 2) and the

specification languages (Chapter 3) that will be used to abstract the
behavior of a software system and to specify its quantitative non-
functional requirements.

Part III describes the methodology for run time efficient proba-
bilisticmodel-checking and the sensitivity analysis approach, inChap-
ter 4, and the syntactic-semantic incremental analysis framework in
Chapter 5.

Part IV deals with the adaptation strategies. In particular, Chap-
ter 6 is concernedwith the control of tunable software systems through
a Markov process abstraction of their behavior, while Chapter 7 faces
the specific problem of reliability-driven dynamic-binding.

Finally, Part V reports conclusions and final remarks.
Each chapter includes a related work section tailored to its contents.

12

Part II

Modeling

13

Probabilistic Models 2

It is the mark of an instructed mind to
rest satisfied with the degree of precision
which the nature of the subject admits,
and not to seek exactness when only an
approximation of the truth is possible.

Aristotle

Modeling the run time of a system means capturing and describ-
ing its behavior, including the interaction with users and external
environment. Indeed, physical execution resources, interdependence
with third-party components, variability of usage profiles, and undis-
covered defects produce a usually non negligible effect on the per-
ceived behavior of the system. Requirements may change as well. All
these changes are not controllable by the application and may occur
autonomously and unpredictably [21, 73]. For example, the arrival
rate of control data in an embedded system may change due to an
unanticipated physical phenomena; the error rate of sensing device
may change during time because of battery consumption; the work-
load of an e-commerce system my suddenly increase during Christ-
mas or the Black Friday; technical issues on the software governing
a stock market may mar the exchange of a company shares.

15

. P M

e focus of this research is on non-functional requirements [188],
in particular reliability, cost, and performance, that are significantly af-
fected by environmental factors. Such factors may be hard to predict
when the application is designed. Moreover, even if the predictions
were initially accurate, theymay be likely to change while the applica-
tion is running. Finally, predictions are usually based on (expensive)
human experience, or historical data or the observation of similar
systems; even when such data is available and supports design-time
assumptions on the environment, sudden changes in the usage profile
may invalidate them.

Capturing quantitative non-functional information requires to
deal with the unavoidable uncertainty. Abstracting the software pro-
cess to a finite and countable set of relevant states allows to formal-
ize it via a finite-state stochastic process. A stochastic process is a
family of random variables that is intended to model a time depen-
dent stochastically evolving dynamical system. Each of those ran-
dom variables represent the state of the system at a given time point.
More precisely, given a sample space Ω, a stochastic process is a map-
ping X : T ×Ω → S, where T is the set of time points (in this work
N1 or R) and S is the state space of X . To simplify the notation, the
ω-dependence can be avoided, identifying the state of the process at
time t ∈ T by just X(t).

e temporal evolution of stochastic processes representing a soft-
ware system is dictated by its previous history and both known facts
(or assumptions) and random variables capturing the uncertainty about
users and environment. Markov processes are a special class of stochas-
tic systems satisfying the Markov property (here stated for T ⊆ N):

Definition 2.0.1 (Markov Property.) A stochastic process X = {X(n) :
n ≥ 0} is said to have the Markov property if for each n ≥ 0 and a
subset A ⊆ S:

Pr(X(n+1) ∈ A | X(0) = x0, . . . ,X(n−1) = xn−1,X(n) = xn)
= Pr(X(n+1) ∈ A | X(n) = xn)

for all (x0,x1, . . . ,xn−1,xn) ∈ Sn+1.

e Markov property states the conditional independence be-
tween future and past, given the present. Informally, the current state

1In this dissertation 0 ∈ N, unless otherwise specified.

16

determines the future evolution completely, that is with no influence
from the past history.

e value Pr(X(n+1) | X(n)) is called one-step transition prob-
ability. Under the assumption of finiteness and countability of S,
the one-step transition structure of X can be summarized through a
square transition matrix P, whose entry pi j if the value Pr(X(n+1) =
s j | X(n) = si) with si,s j ∈ S.

A stochastic process satisfying the Markov property is named
Markov process [175]. ere are many variants of Markov processes,
suitable for representing several aspects of the modeled systems such
as reliability, cost, execution time, or energy consumption.

In sections 2.1 and 2.2 two classes of Markov processes are in-
troduced, namely the Discrete Time Markov Chains (DTMCs) and
the Discrete-TimeMarkov RewardModels (D-MRM). For each class
a formal definition is provided, as well as a brief review of its main
mathematical properties.

17

. P M

2.1 Discrete-TimeMarkov Chains

Discrete Time Markov Chains [175] are widely established models
of software reliability [67, 165, 192]. ey are mostly used for de-
sign time reliability assessment of systems composed by interacting
parts (e.g. component-based software, or service oriented architec-
tures) [107], though different applications can be found in literature
(e.g. [87, 121]). e adoption of DTMCs implies that the system’s
behaviormeets, with some tolerable approximation, theMarkov prop-
erty. is issue will be discussed after the mathematical definition in
Section 2.1.2.

DTMCs are stochastic processes satisfying the Markov property
and having time domain T ⊆ N. ey are defined as Kripke struc-
tures [86] with probabilistic transitions among states. e state space
S is here assumed finite and countable.

Formally, a (labeled) DTMC is a tuple (S,s0,P,L) where

• S is a finite set of states

• s0 ∈ S is the initial state

• P : S×S → [0,1] is a stochastic matrix

• L : S → 2AP is a labeling function. AP is a set of atomic propo-
sitions. e labeling function associates to each state the set of
atomic propositions that are true in that state.

e notations P(i, j), P(si,s j), and pi j are interchangeably used
to identify entries of P. An element pi j represents the probability that
the next state of the process will be s j given that the current state is
si. e set {pi j} for a state si is called the next-state distribution and is
formally a categorical distribution [163], implying that ∑s j∈S pi j = 1.
Unless otherwise specified, atomic propositions s = si and s = i are
defined for each state si and univocally identify state si.

e probability of moving from si to s j in exactly 2 steps can be
computed as ∑sx∈S pix · px j, that is the sum of the probabilities of
all the paths originating in si, ending in s j, and having exactly one
intermediate step. e previous sum is, by definition, the entry (i, j)
of P2. Analogously, the probability of reaching s j from si in exactly
k steps is the entry (i, j) of matrix Pk. As a natural generalization,
matrix P0 ≡ I represents the probability of moving from state si to
state s j in zero steps, i.e. 1 if si = s j, 0 otherwise.

18

2.1. Discrete-Time Markov Chains

Execution paths. A sequence of states π = s0,s1,s2, . . . is an exe-
cution path through the DTMC if for any pair si,si+1 pi i+1 > 0. e
notation π[i] with i ≥ 0 is used to refer to the i-th state in the path π .
A path is said finite if the number of states in the sequence is finite
and its length is denoted as |π|. e probability for a finite path to
be observed is 1 if |π|= 1, otherwise ∏|π|−2

k=0 P(sk,sk+1)
2. A state s j

is reachable from state si if there exists a finite (sub-)path starting in
si and terminating in s j.

States classification. A state si is said to be transient if:
∞

∑
n=1

pn
ii < ∞

in other words, the number of transitions into state si is finite. Non
transient states are said recurrent. Formally, a state si is recurrent if:

∞

∑
n=1

pn
ii = ∞

A recurrent states will be visited infinitely often by the Markov pro-
cess, while the number of visits to a transient state is finite and dis-
tributed as a geometric random variable [186]. A recurrent state si
with pii = 1 is called absorbing. If a DTMC contains at least one
absorbing state, the DTMC itself is said to be absorbing.

For simplicity, all the Markov models considered in this disser-
tation are assumed to satisfy the following property, unless otherwise
specified:

Definition 2.1.1 (Well-formedDTMCs.) ADTMCmodel iswell
formed if:

• every recurrent state is an absorbing state

• all the states are reachable by the initial state

• from every transient state it is possible to reach at least one
absorbing state.

2A detailed definition of the probability measures of DTMC path can be found
in [15].

19

. P M

In an absorbing DTMC with r absorbing states and t transient
states, rows and columns of the transition matrix P can be reordered
such that P is in the following canonical form:

P =

(
Q R
0 I

)
(2.1)

where I is an r by r identity matrix, 0 is an r by t zero matrix, R is a
nonzero t by r matrix and Q is a t by t matrix.

Note that since Q specifies only the transitions between transient
states, some of its row sums are strictly less than 1. is is immediate
for every well-formed DTMC. For the same argument it comes the
following theorem:

eorem 2.1.1 (Probability of Absorption) In an absorbingMarkov
chain, the probability of the process to be eventually absorbed is 1 (i.e.
Qn → 0 as n → ∞.)3

enumber ni j of visits to a transient state s j, for a process started
in si, can be computed as the probability of visiting it at the first step,
or at the second, or at the third, and so on. In matrix form:

N = I +Q1 +Q2 +Q3 + · · ·=
∞

∑
k=0

Qk

e last sum is a geometric series whose convergence is ensured
by the result of eorem 2.1.1, that is Qn → 0 [80]. e limit of the
sum is indeed (I −Q)−1. e matrix N is called fundamental matrix
of the DTMC.

e fundamental matrix will be the core of a set of verification
algorithms introduced in Part III.

3From each transient state si it is possible to reach (at least) an absorbing state;
let mi be the minimum number of steps needed to reach an absorbing state from si
and pi the probability of not reaching an absorbing state in mi steps; then pi < 0. Let
m be the largest of the mi, that is the number of steps to reach the farthest absorbing
state, and p the largest pi. e probability of not being absorbed in m steps is less
or equal than p; in 2m is less or equal than p2; in 3m is less or equal than p3, and so
on. Since 0 ≤ p < 1, the probability of not being absorbed is monotone decreasing
with respect to the number of steps. is argument can be applied to every transient
state, hence, since Qn represents the probabilities of visiting a transient state at step n,
limn→∞ Qn = 0.

20

2.1. Discrete-Time Markov Chains

2.1.1 Modeling with DTMCs

In this section a few hints concerning the modeling process are pro-
vided. A survey of methodologies and good practices is out of the
scope of this work (the interested reader may refer, for example, to
[42, 157, 175]), but it is worthy to briefly discuss a few relevant as-
pects.

Modeling Software. DTMCs have been used to model a variety
of phenomena, e.g. chemical reactions, DNA sequences, financial
trading, demographic evolution, human behaviors, or business pro-
cesses. eir use for modeling software behavior should not be sur-
prising since their notation is quite familiar to practitioners. Roughly
speaking, DTMCs can be seen as conventional state-transition sys-
tems with annotations on transitions through which additional non-
functional aspects can be specified. State-transition systems are com-
monly used in practice by software designers and can be used at dif-
ferent levels of abstraction to model software systems [81, 164].

Several widely accepted standards for software modeling can also
be automatically translated into DTMC models by means of auto-
mated model transformations (e.g. [79] proposes an approach start-
ing from activity diagrams, and [82] from sequence diagrams). Many
integrated design frameworks can automatically translate their de-
sign models into corresponding Markov chains in order to provide
quality assessment (e.g. [23, 44, 169, 194]). Reverse engineering ap-
proaches have also been proposed to extract Markov models from
implemented software (e.g. [22, 26]).

Due to their characteristics, DTMCs have been widely used to
model systems reliability [67, 88, 107]. e common idea behind
the various approaches is that one or more special states represent
failure condition. e occurrence of a failure is then represented by
a transition toward one of them. In Section 2.1.2.1 an example of
reliability oriented modeling is provided.

eMeaningof aState. A state of aDTMC represents, in general,
an observable condition of the running system that is relevant from
the modeling perspective at the chosen abstraction level. In this the-
sis it is further assumed that it is possible to classify the execution of
the system into one and only one state of the DTMC.

21

. P M

ere is not a general receipt for mapping the execution state into
a DTMC one. In [41] a DTMC state corresponds to a “functional
module”, that is a part of the program flow graph that can be identi-
fied analyzing the code and whose reliability is reasonably indepen-
dent from each other module. Analogous definition of module have
been proposed by Littlewood [143,144] again for reliability analysis.
In [37] or [73] a DTMC state usually represent the invocation of a
remote service; a special state, usually the initial one, represents the
user and its outgoing transitions embed the usage profile4. In [71], a
state represents not only the execution of a service, but also embeds
information about possible types errors in the data-flow propagated
up to that point. In [122], a state represents a large components im-
plementing several services. In [87] a state represents an aggregation
of several source files and functions of theGCC compiler implement-
ing a delimited functionality, based on human expertise.

ough there is not a general way to model a software, the state
classification proposed in the previous section leads to a basic guid-
ance on the use of absorbing states. An absorbing state, when reached,
is not going to be left. is property make absorbing states suitable
for describing permanent conditions of software executions such as
the occurrence of an unrecoverable failure or the completion of the
process. In this thesis, unless differently specified, it is assumed that
every model has at least an absorbing state representing the termina-
tion of the execution.

Uncertainty and Variability. e temporal evolution of a DTMC
is completely defined by its transition matrix [175]. e probabilis-
tic nature of transitions is suitable for capturing the randomness of
modeled phenomena, being the labels of transitions originating from
the same state parameters of a categorical distribution. Variations to
a model are defined as changes in the values of its parameters, i.e.
to the entries of P. In this thesis two types of values are allowed for
elements pi j: numeric and symbolic. e former are used to describe
phenomena assumed as known and stable (e.g. the failure probabil-
ity of a cloud-based storage is usually assumed as constant during
the execution of a process). e latter are instead used to formalize
phenomena that are either unknown at design time and/or subject to

4In general the usage profile does not account only for human users, but for every
external interaction of the software [114].

22

2.1. Discrete-Time Markov Chains

change during the execution (e.g. the usage profile of a news service
may change during the day) [37, 73]. e actual values assigned to
symbolic entries of P define the operative conditions of the system.
Such conditions may be discovered only at run time and may change
along the run5.

In the following of this thesis, symbolic entries of P are referred
to as parameters of the DTMC model, and a model having at least a
parameter is said parametric.

2.1.2 Validity of theMarkov Assumption

From Definition 2.0.1, in a Markov process the next state to be ex-
ecuted depends, probabilistically, on the current state only and is
independent from the previous history. ough it not always easy
to establish the satisfaction of the Markov property by looking at
the source code of a software, several experiments showed that the
Markov assumption often holds at an higher level, such as the archi-
tectural one [41, 167, 173].

When the next action depends on the previous history, there are
still several cases that can be conveniently approximated by a Markov
process.

e first is the case where the next step is affected by a limited
number of previous moves, let say k of them. is situation can be
modeled by a k-th order Markov process, that is one where the next
action depends only on the previous k. It can be proved that, if the
state space is finite, the expressiveness of k-th orderMarkov processes
is the same as for the Markov processes introduced in this chapter
(which are formally 1-st order) [175]. Hence, an equivalent formu-
lation can be defined.

If a the system behavior cannot be described by a k-th order
Markov process, augmented Markov models have been proposed to
deal with specific problems, e.g. [191].

Nonetheless, a software systemsmight expose an intrinsically non
Markov behavior [85,193], thus theMarkov assumptionmust be ver-
ified before proceeding with the analysis [29].

5Discovering of changes at run time requires the continuous observation of the
running system and suitable learning strategies. Monitoring and learning strategies
for Markov models are discussed in [73]

23

. P M

2.1.2.1 Modeling Example

In this section an example of software behavior modeled through a
DTMC is described.

Figure 2.1 represents the model of a typical web architecture. e
system comprises an HTTP Proxy server, a Web server and an Ap-
plication server. In addition, structured data and static content (e.g.,
files, images, etc.) are stored on a Database and on a File server,
respectively. Both of them are cached by ad-hoc cache servers.

3

Cache Server Http
Response

8 1

1

Web Server

2

Application
Server

6

Database
Server

5

Data Cache
Server

4

File Server
Http 503 Server

Unavailable

7 1

0

Http Proxy
Server

y

(1-y)*0.3

(1-y)*0.7

0.55

0.25

x

(1-x)
(1-w)

z (1-k)

(1-z)0.7

0.3

0.20

Error: too many
connections

9 1

k

w

F .: Example of a parametric DTMC.

States s7, s8 and s9 are absorbing. s7 represents the failure of
serving an incoming request due to an unavailable server (e.g., over-
loaded server or maintenance downtime). s9 represents the failure of
the execution due to an excessive number of requests to the storage
services. s8 is the endpoint of a correct HTTP request.

Transitions among transient states probabilistically describe the
control flow to manage an incoming HTTP request. For example
the transitions (s0,s1) and (s0,s3) corresponds to the probability of
the events “a dynamic content has been requested that require ad hoc
processing” and “a static content has been requested”, respectively.
Transition (s1,s1) corresponds instead the probability of an HTTP
self-redirect. Conversely, transitions to absorbing states indicate the
final outcome in processing a request, or the occurrence of a failiure.

Parametric transitions indicate that the value of the correspond-
ing probability is unknown and/or may change over time. For exam-

24

2.1. Discrete-Time Markov Chains

ple transitions (s3,s4) and (s5,s6) indicate the cache hit probability
that depends on the current distribution of user requests.

In matrix form, the model of Figure 2.1 is characterized by the
following transient-to-transient (Q) and transient-to-absorbing (R)
transition matrices:

Q =

0 (1− y)0.3 0 (1− y)0.7 0 0 0
0 0.2 0.55 0 0 0 0
0 0 0 0 0 0.7 0
0 0 0 0 1− x 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1− z
0 0 0 0 0 0 0

R =

y 0 0
0 0.25 0
0 0.3 0
0 x 0
0 1−w w
0 z 0
0 1− k k

e example in Figure 2.1 is a small instance intended to show

a practical application of the methods presented in the next part of
the thesis. Real software systems are usually larger, though the same
considerations apply regardless the model size.

25

. P M

2.2 Discrete-TimeMarkov RewardModels

A D-MRM [7] is a DTMC augmented with rewards. While the
underlying DTMC captures the systems behavior (cf. Sect 2.1), re-
wards are non-negative real values through which a benefit (or loss)
due to the residence in a specific state or the move along a certain
transition can be quantified. As for DTMCs, the adoption of a
Markov model implies that the modeled aspects of the system meet,
with some tolerable approximation, the Markov property.

DTMCs are valuable formalism to model and reason about a
software execution flow and its deviations (e.g. the occurrence of
a failure) but are not able to directly represent some other common
quantitative properties related, for example, to performance, energy
consumption, or cost. Indeed, average execution time, number of
I/O operations, cost of an outsourced operation, or energy can often
be associated with states or transitions.

A D-MRM is a tuple (S,S0,P,L,ρ, i) where:

• S,S0,P, and L are defined as for DTMCs,

• ρ : S → R≥0 is a state reward function assigning to each state
a non-negative real number,

• ι : S×S →R≥0 is a transition reward function assigning a non-
negative real number to each transition.

To clarify how rewards are gained, it is convenient to precisely
state how the system modeled by the D-MRM evolves over a se-
quence of time steps. At step 0 the system enters the initial state
s0. At step 1, the system gains the reward ρ(s0) associated with the
initial state and moves to a new state (say, s1), gaining also the re-
ward ι(s0,s1). e cumulated reward when the system enters state
s1 is ρ(s0)+ ι(s0,s1). At step 2, it gains the reward ρ(s1) associated
with state s1, and then exits it gaining also the reward associated
with the chosen transition, and so on. In summary, the state reward
is acquired if the D-MRM resides in state si for one time step. e
reward associated with a transition ι(si,s j) is gained as the process
makes a move from state si to state s j. Due to this nature, state re-
wards are sometimes called cumulative while transition rewards are
called instantaneous [132].

As for DTMC, a state si ∈ S is said to be an absorbing state if
P(si,si) = 1. If a D-MRM contains at least one absorbing state, the

26

2.2. Discrete-Time Markov Reward Models

D-MRM itself is said to be an absorbing D-MRM. Notice that if an
absorbing state with reward > 0 can be reached then the cost of the
process is ∞ because of the infinite sum of a positive constant value.

Definition 2.1.1 of well form for DTMCs is adopted as-is for
D-MRM.

e temporal evolution of a D-MRM is dictated by the evolution
of the underlying DTMC, i.e. the one-step transition probability is
defined by matrix P and the entailed considerations apply.

As for DTMCs, assume that variability does not affect the struc-
ture of the models, only parameters. In our case, it only affects the
possible values used to label transition probabilities and rewards. is
is usually expressive enough to accommodate changes in the environ-
ment that affect our system.

2.2.1 Modeling with D-MRMs

Markov reward models extend the expressiveness of DTMCs and
allow to represent a larger number of quantitative qualities. For ex-
ample [38] discusses two case studies concerning the dynamic power
management of disk drives, and the adaptive management of clus-
ter availability within data centers; [150] uses D-MRMs to trade-off
energy and reliability requirements of embedded systems; in [90], D-
MRMs are used tomodelingmobile code in wireless networks and its
cost in terms of generated network traffic and energy consumptions
of mobile nodes.

In [98], several specification techniques are proposed to map es-
tablished performance, dependability, and costmodels such as stochas-
tic petri nets, queuing networks, fault trees, communication processes
intoD-MRMs. anks to their versatility, D-MRMcan also be used
to model domain specific qualities in a quite natural way.

State Rewards andTransitionRewards. ough state and transi-
tion rewards have a natural correspondence to the concepts of resid-
ing into a state and moving from a state to another, any transition
reward can be mapped to an equivalent state reward and vice versa by
automatic transformation of the underlying process.

Figure 2.2 sketches a transformation apt to replace transition re-
wards by state ones. e rational behind this procedure is the aug-
mentation of the D-MRM with states representing to the “firing of

27

. P M

a transition”. e time scale has to be considered accordingly, since
the transformation halve the frequency by two.

r2

r1

r0

p01
i(s0,s1)

p02
i(s0,s2)

r0

p01

p02

r1

r2

i(s0,s1)

i(s0,s2)

1

1

(a) (b)

F .: Translating transition rewards to state rewards.

For the previous consideration, without loss of generality, both
models and verification algorithms presented in this thesis are fo-
cused on state rewards only.

2.2.1.1 Modeling Example

Following from Section 2.1.2.1, consider the following deployment
for the web application. e database and the file server are deployed
on a Cloud infrastructure in which bandwidth and space are billed
(e.g. the Amazon Simple Storage Service6). In this setting, it is
possible to associate to each state a pair of real values representing,
respectively, the average latency in seconds and the average cost in
10−2 dollars. Latency includes the average processing time and the
network latency, while the cost is based on the average CPU utiliza-
tion.

6http://aws.amazon.com/s3

28

2.2. Discrete-Time Markov Reward Models

3
0.05/0

Cache Server Http
Response

8 1

1
0.1/0

Web Server
2

0.12/0

Application
Server

6
0.15/
0.07

Database
Server

5
0.1/0

Data Cache
Server

4
0.12/
0.04

File Server
Http 503 Server

Unavailable

7 1

0
0/0

Http Proxy
Server

y

(1-y)*0.3

(1-y)*0.7

0.55

0.25

x

(1-x)
(1-w)

z (1-k)

(1-z)0.7

0.3

0.20

Error: too many
connections

9 1

k

w

F .: Example of a parametric D-MRM.

e resulting model is shown in Figure 2.3, where, for exam-
ple, the average cost for a each request processed by the database is
0.0007$.

29

Probabilistic Specification Logics 3

Contemplate consistent notions having
more than mere in-ternal consistency;
they have a positive drive to come into
being. e more they have of this, the
more possible they are. ‘e possible
demands existence by its very nature, in
proportion to its possibility, that is to
say, its degree of essence’.

Gottfried Wilhelm von Leibniz

Classical analysis of Markov models usually focuses on transient
or steady-state behavior [129]. ese two probabilistic methods allow
to investigate the probability of the process to be in a certain state at
a certain time or in the long run, respectively. Despite their long tra-
dition in mathematical research, transient and steady-state analysis
are not naturally suited for expressing behavioral properties, such as
the probability of eventually reaching a certain state or never hitting
an error before completion.

Quantitative probabilistic behavioral properties are natural for-
mulations of common software requirements, such as invariance, prece-
dence, response, or constrained or unconstrained reachability that

31

. P S L

can be interpreted on probabilistic models, like Markov processes1.
In general, they can be used to specify constraints on the probabil-
ity that certain (un)desired behaviors may be observed on the running
system. Examples of probabilistic properties considered in this thesis
are (recalling the example in Figure 2.2):

• R1 (Reliability): “e probability of successfully handling a
request must be greater than 0.999”

• R2 (Cache hit probability): “At least 80% of the requests are
correctly handled without accessing the database or the file
server”

• R3 (Complexity bound): “70% of the requests must be success-
fully processed within 5 operations”

• R4 (Early risk fingering): “No more than 10% of the runs can
reach a state from which the risk of eventually raising an ex-
ception is greater than 0.95”

• R5 (Cost): “e average cost for handling a request must be
less .03 ·10−2 dollars”

• R6 (Response time): “e average response time must be less
than 0.022 seconds”

e previous informal requirements must be translated into a
convenient formal language in order to apply automatic verification
techniques. To this purpose, in Chapter 3.1, Probabilistic Compu-
tation Tree Logic (PCTL) will be defined. PCTL is a formalism
suitable for the specification of behavioral properties of DTMCs. In
Chapter 3.2 the logic will be extended to support the specification of
reward-related properties too.

1Most of the readers should be familiar with the formal verification of behavioral
properties of software on deterministic models [63]. ough in that case the goal is
to providing absolute guarantee (true/false) of satisfaction, similar specification pat-
terns [66, 93] are often straightforwardly adapted to probabilistic verification.

32

3.1. Probabilistic Computation Tree Logic (PCTL)

3.1 Probabilistic Computation Tree Logic (PCTL)

Probabilistic ComputationTree Logic (PCTL) [13,97] is a branching-
time temporal logic, based on the logic CTL [15]. A PCTL formula
expresses conditions on a state of a Markov process, and it is evalu-
ated to either true or false on it.

Its syntax is recursively defined by the following rules:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ ϕ | P▷◁p (ψ)

ψ ::= Xϕ | ϕU≤tϕ

where p ∈ [0,1], ▷◁∈ {<,≤,>,≥}, t ∈N∪{∞}, and a represents an
atomic proposition.

e temporal operators X and U are called Next and Until, re-
spectively. Formulae originated by the axiom ϕ are said state formu-
lae; those originated by ψ are instead said path formulae. Notice that
a path formula may only occur as argument of the modal operator
P▷◁p(·).

Unlike CTL, universal and existential path quantification is not
defined for PCTL.

e semantics of a state formula is defined as follows:

s |= true
s |= a iff a ∈ L(s)
s |= ¬ϕ iff s ⊭ ϕ
s |= ϕ1 ∧ϕ2 iff s |= ϕ1 and s |= ϕ2
s |= P▷◁p(ψ) iff Pr(π |= ψ|π[0] = s) ▷◁ p

where Pr(π |= ψ|π[0] = s) is the probability that a path originating
in s satisfies ψ , and can be computed as described in Section 2.1.

A path π originating in s satisfies a path formula ψ according to
the following rules:

π |= Xϕ iff π[1] |= ϕ
π |= ϕ1U≤tϕ2 iff ∃0 ≤ j ≤ t(π[j] |= ϕ2 ∧ (∀0 ≤ k < j π[k] |= ϕ1))

As a short form for trueU≤tϕ , the use of the operator 3 (eventu-
ally) is allowed: 3≤t ϕ . It is customary to abbreviate U≤∞ and 3≤∞

as U and 3, respectively.
PCTL can naturally represent a large number of properties of a

DTMC. For example, it can express constraints on the probability of

33

. P S L

reaching an absorbing failure or success state, given the initial one.
is property is an example of the general class of reachability prop-
erties. Reachability properties are expressed as P▷◁p(3 ϕ), which
states that the probability of reaching a state where ϕ holds matches
the constraint ▷◁ p.

3.1.1 Specification Example
Recalling the example DTMC model of Section 2.1.2.1, and the set
of requirements informally stated at the beginning of this chapter,
a PCTL formalization of requirement R1-R4 is provided in Table
3.1.12.

Table 3.1: PCTL formalization of requirements R1-R4.

ID Informal Definition PCTL

R1 (Reliability): “e probability of
successfully handling a request must
be greater than 0.999”

P≥0.999(3 s = s8)

R2 (Cache hit probability): “At least
80% of the requests are correctly
handled without accessing the
database or the file server”

P≥0.8(¬(s = s4)∧
¬(s= s6)U s= s8)

R3 (Complexity bound): “70% of the
requests must be successfully pro-
cessed within 5 operations”

P≥0.7(3
≤5 s= s8)

R4 (Early risk fingering): “No more
than 10% of the runs can reach a
state from which the risk of even-
tually raising an exception is greater
than 0.95”

P≤0.1(3P≥0.95(3s=
s7 ∨ s = s9))

2Where ϕ1 ∨ϕ2 is a short form for ¬(¬ϕ1 ∧¬ϕ2).

34

3.2. Extending PCTL With Rewards (R-PCTL)

3.2 Extending PCTLWith Rewards (R-PCTL)

R-PCTL is an extension of PCTL where a new modal operator is
added to allow for reward properties [15, 132]:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ ϕ | P▷◁p (ψ) | R▷◁r (Θ)

ψ ::= X ϕ | ϕ U ϕ | ϕ U≤t ϕ

Θ ::= I=k | C≤k | ⋄ϕ

where the symbol ▷◁ stands for a relational operator in the set {≤,<
,≥,>}, p ∈ [0,1] is a probability bound, r ∈ R≥0, and k ∈ Z≥0.

e state properties defined by R▷◁r (Θ) allow for the specifica-
tion of reward properties.

Before introducing a formal definition for the semantics of the
rewards fragment of R-PCTL, an intuitive description follows:

• R▷◁r(I=k) is true in state s if the expected state reward to be
gained in the state entered at step k along the paths originating
in s meets the bound ▷◁ r.

• R▷◁r(C≤k) is true in state s if, from state s, the expected reward
cumulated after k steps meets the bound ▷◁ r.

• R▷◁r(⋄ϕ) is true in state s if, from state s, the expected re-
ward cumulated before reaching a state where ϕ holds meets
the bound ▷◁ r.

e third construct can be used, for example, to state the average cost
of a run of the system, that is, the expected cumulated cost until the
execution reaches a completion state.

A more detailed definition of the reward fragment semantics can
be found in [132]. Intuitively, the expected reward R(Θ) for all pos-
sible paths exiting a given state s and satisfying the pattern Θ can be
computed as the sum of the rewards for each of those paths, weighted
by the probability the path itself (cf. Section 2.1).

e following equations define how the expected reward XΘ over
a path π of the D-MRM is computed for each of the three specifi-
cation patterns:

XI=k(π) = ρ(sk) (3.1)

35

. P S L

XC≤k(π) =
{

0 if k = 0
∑k−1

i=0 ρ(si)+ ι(si,si+1) otherwise (3.2)

XFϕ (π) =

0 if s0 |= ϕ
∞ if ∀i si ⊭ ϕ
∑

min{ j|s j |=ϕ}−1
i=0

ρ(si)+ ι(si,si+1) otherwise

(3.3)

As the reader could have noticed, the previous equations are more
of a definition than an executable procedure (in particular (3.3)). In
Section 4.3 algebraic techniques will be proposed to compute the val-
ues XΘ, tacking into account the presence of both numeric and para-
metric rewards (and transition probabilities).

3.2.1 Specification Example
Recalling the D-MRM example of Section 2.2.1.1 and the quantita-
tive non functional requirements informally stated at the beginning
of this chapter, the introduction of R-PCTL allows a precise formal-
ization of requirements R5-R6 as reported in Table 3.2.1.

Notice that though the R-PCTL formulae of the two require-
ments share a similar structure, the state rewards to be considered for
the first are the average costs, while the ones to be considered for the
second are the average latencies.

Table 3.2: R-PCTL formalization of requirements R5-R6.

ID Informal Definition PCTL

R5 (Cost): “e average cost for han-
dling a request must be less .03 ·
10−2 dollars”

R≤0.03(3 s = s7 ∨
s = s8 ∨ s = s9)

R6 (Response time): “e average re-
sponse time must be less than 0.022
seconds”

R≤0.022(3 s = s7∨
s = s8 ∨ s = s9)

36

Part III

Verification

37

e WorkingMomParadigm 4

It’s not the strongest who survive, nor
the most intelligent, but the ones most
adaptable to change.

Charles Darwin

Efficient Verification @Runtime

e automated verification of quantitative properties of software
systems have made relevant progresses in the past few years, and are
now included into several software engineering processes as part of
the verification and validation tasks [131]. In particular, verifica-
tion of (R-)PCTL properties of Markov models is quickly spread-
ing through industrial applications in critical sectors, such as en-
ergy [156], aerospace [46], biology [133], or automotive [4]. e
vast majority of the methods are based on model-checking tech-
niques [15,47], where a large set of algorithms have been designed to
exhaustively traverse the models and prove or refute the satisfaction
of software requirements. Examples of probabilistic model-checking
procedures can be found in [16, 18, 27, 51, 97, 111,189].

Despite its generality and usability, model checking suffers from
the state-explosion problem, which limits the size of models that can
be verified under limiting time constraints of run time analysis [131].

39

. T WMP

Some approaches have brought state-of-the-art probabilisticmodel-
checkers at run time [37], providing a suitable infrastructure formany
applications. Nonetheless these approaches are not general enough
for two reasons. First, the complexity of verification can be too high
in case of large systems to make the analysis meet its time constraints
[52, 111]. Second, analysis procedures may be unsuitable for low
power devices where the large number of operations required for the
mathematical iterative algorithms commonly used bymodel-checkers,
resulting in excessive time and energy consumption.

Model-checking can be improved inmany situations both in terms
of analysis algorithms, e.g. by applying space-reduction techniques
(e.g. [17, 116]), and via the reuse of previous results, thus opening
the way for incremental analysis [130]. Also GPU implementations
are under investigations for data-parallel implementations [33].

ParametricModel-Checking. Besides improving standardmodel-
checking procedures, a different approach has recently gained rele-
vance for run time analysis. In his seminal work [54], Daws describes
a procedure for parametric probabilistic model-checking a subset of
PCTL over DTMCs. is result trod an effective path for bringing
probabilistic verification at run time, by allowing the separation of
the analysis process in two steps. e first consists in the parametric
analysis of the model with respect to the desired property, whose re-
sult is a closed mathematical expression depending on the symbolic
variables appearing in the model. is step is quite complex in terms
of computational time, but it can be accomplished once for all at de-
sign time, when time is usually not a strong constraint. At run time
all that is needed to obtain the actual analysis response is to replace
the symbolic variables with the actual values provided from model-
ing, as soon as they are discovered. e evaluation of a mathematical
expression is in general a much simpler task than model-checking,
and can be performed in a very short time even on low power de-
vices, as shown in [70,72].

e main contribution of this part of the dissertation is a novel
method for parametric probabilistic verification of (R-)PCTL prop-
erties over discrete-time Markov models. In Section 4.1 the global
picture of the entire analysis process is introduced. In Sections 4.2
and 4.3 specific algorithms for parametric analysis of PCTL and (R-

40

)PCTL properties are discussed. In Section 4.4, the impact of model
parameters on the satisfaction of system’s quantitative requirements
is analyzed through sensitivity analysis. Related work is discussed in
Section 4.5. Finally in Section 4.6 the efficiency of the proposed ap-
proach is empirically evaluated on a large set of randomly generated
input models.

41

. T WMP

4.1 eWorkingMomParadigm

e “WorkingMom” paradigm owes its name to the analogy with a
working parent who prepares the meal in the morning, when time is
available, and then warms it up for lunch, when only a short break is
possible. e application of this paradigm to probabilistic verification
is similarly composed of two stages:

1. At design time, when time is not a critical constraint, a pre-
processing phase leads to the parametric partial evaluation of
the problem. e result of partial evaluation is a closed rational
polynomial expression having as unknowns the parameters of
the models.

2. At run time, when time is short, the verification procedure is
finalized by evaluating the rational expression with the actual
values of the model parameters.

, �
Partial evaluation

f(p0, p1, . . . , pn)

Environment

Learning
pi = p̄i

Evaluation:
true/false

D
es

ig
n

Ti
m

e
Ru

n
Ti

m
e

[Model and Property]

F .: WorkingMom process overview.

Being essentially reduced to the evaluation of a polynomial, the
run time stage is basically more efficient than executing a model-
checking procedure from scratch. Furthermore, it can be executed on
even on low power devices because it does not require any complex
operation.

42

4.1. e Working Mom Paradigm

On the other hand, the length of the mathematical expression
may grow quickly with the number of model parameters. For the ver-
ification of reachability properties, which are the most used in prac-
tice [93], the length of the expression may growth up to O(nlog(n))
for a fully symbolic model, i.e. when all the transitions are paramet-
ric [54]. On this concern, it is here assumed that, through careful
design time analysis, run time variability can be restricted to a sub-
set of environment parameters. Precisely, it is assumed that (1) the
variable transitions in the model can be identified and (2) they are a
small fraction of the total number of transitions. ese assumptions
are valid in many practical cases. If they do not hold, the WM ap-
proach may still be applied, but could yield smaller benefits in terms
of speed-up of run time verification.

Generating the rational expression at design time is the most
complex task and the focus of the following sections. e algorithms
for design time analysis are based on symbolic algebra and are specific
for different classes of models and properties.

Section 4.2 introduces the verification of PCTL, providing dif-
ferent strategies to improve design time efficiency for different prob-
lem settings. Section 4.3 presents instead the set of algorithms for
the verification of R-PCTL properties.

43

. T WMP

4.2 PCTLVerification

is section illustrates the algorithms for partial evaluation of PCTL
properties at design time. Pre-computation produces a rational ex-
pression for each property. PCTL properties can be verified against
both DTMCs and D-MRMs.

To simplify the exposition, PCTL will be partitioned in several
fragments. Section 4.2.1 deals with flat1 formulae for the reachabil-
ity of an absorbing state, showing the set of algorithms available for
the WM. ese formulae have the syntactic form P▷◁p (true U ϕ1)

2

where ϕ1 identifies one or more absorbing states.
In Section 4.2.2 the remaining fragments will be studied, provid-

ing a full set of WM algorithms for the analysis of PCTL.

4.2.1 Reaching an Absorbing State
Let us start by focusing on flat reachability formulae for absorbing
states. Recalling the structure of the transition matrix for an ab-
sorbing DTMC given in Equation (2.1), the matrix I −Q (where
I is the identity matrix of the same size of Q) has an inverse N and
N = I+Q+Q2 +Q3 + · · ·= ∑∞

i=0 Qi [175]. Recall from Section 2.1
that an entry qi j of the matrix Q represents the probability of mov-
ing from the transient state si to the transient state s j in exactly one
time step. e entry ni j of N represents the number of times the
Markov process is expected to visit the transient state s j before be-
ing absorbed, given that it started from state si. A Markov process
is considered absorbed when it reaches any of the absorbing states.
Notice that Qn → 0 when n → ∞ (cfr. eorem 2.1.1), hence, af-
ter enough time, the process will always eventually be absorbed, no
matter which state it started in.

Every time the process accesses a transient state si, it has a prob-
ability of being absorbed in the next time step in the absorbing state
s j given by the entry ri j of the matrix R. Generalizing to all the pairs
(si,s j) where si is transient and s j is absorbing, we can get the ab-
sorbing distribution B of the DTMC as:

B = N ×R

1In general, a formula is said flat if none of its sub-formulae contain the P▷◁p(·)
operator, but the formula itself.

2Or equivalently P▷◁p (⋄ ϕ1) (cfr. Section 3.1).

44

4.2. PCTL Verification

An entry bi j of the matrix B represents the probability for the
process of being eventually absorbed in s j (in any number of states),
given that it started from si. B is by construction a t×r matrix, where
t is the number of transient states and r the number of absorbing ones.

Given a DTMC D and a set T of target absorbing states, the
probability of reaching T from the initial state s0 can be computed
as:

Pr(true U {s ∈ T}) = ∑
s j∈T

b0 j (4.1)

e goal of design-time pre-computation is to compute the value
of Equation (4.1). Depending on the size of the system and the avail-
ability of a parallel or a sequential execution environment the com-
putation of the matrix B can be performed in different ways.

An entry bi j can be computed, by the definition of matrix prod-
uct, as:

bi j = ∑
k=0..t−1

nik · rk j (4.2)

Entries ri j are readily available from matrix R. Entries nik belong
instead to the i-th row of matrix N, that is the inverse of I −Q.

In Sections 4.2.1.1 and 4.2.1.2, two different approaches will be
discussed for the computation of the entries nik.

e first, based on matrix algebra procedures, can be quite ef-
fective in case of a small number of parameters, even in a sequential
execution environment. Furthermore, thanks to its formulation is in-
trinsically parallel and suitable for different kinds of parallelization.

e second reduce the problem to the solution of a system of lin-
ear equations. is approach is quite efficient for sequential execution
environments thanks to the implementation of effective heuristics for
sparse linear systems.

Finally, in Section 4.2.1.3 a different strategy is used to compute
Pr(F{s ∈ T}). In this case locality properties of Markov processes
will be exploited to again transform the problem in the solution of
system of linear equations through the so-called first-step analysis.

4.2.1.1 Matrix-Based Approach

e design-time computation of an entry bi j in general can only be
done symbolically, since parametric transitions may be traversed to

45

. T WMP

reach state s j. e complexity of explicitly inverting matrix I −Q
by means of the Gauss-Jordan elimination algorithm [6] requires
O(t3) operations. e computation of the entry bi j once N has been
computed requires O(t) more products, thus the total complexity is
O(t3 + t)∼ O(t3) algebraic operations on polynomials.

e actual complexity can be significantly reduced if the number
c of states having parametric outgoing transitions is small and the
transition matrix of the DTMC is sparse, as very frequently happens
in practice.

Let W = I −Q. e elements of its inverse N are defined as fol-
lows:

ni j =
1

det(W)
·α ji(W) (4.3)

where α ji(W) is the cofactor of the element w ji. us:

bik = ∑
x∈0..t−1

nix · rx j =
1

det(W) ∑
x∈0..t−1

αxi(W) · rx j (4.4)

Complexity issues. Computing bik requires the computation of t
determinants of square matrices with size t − 1. Let τ be the av-
erage number of outgoing transitions from each state (τ << n by
assumption). Each of the determinants can be computed by means
of Laplace expansion. Precisely, by expanding first the c rows rep-
resenting the variable states (each has τ symbolic terms), at most τc

determinants have to be computed and then linearly combined. Each
sub-matrix of size t−c does not contain any variable symbol, by con-
struction, thus its determinant can be computed with (t − c)3 oper-
ations among numeric values. e latter operation does not involve
symbolic terms, hence it is in general much faster. Its actual complex-
ity depends on the precision of floating-point (or rational numbers)
representation. On the other hand, memory could easily become an
issue for sequential environments because both intermediate results
and a possibly large set of sub-matrices have to be stored for process-
ing; for this reason in a sequential environment only small systems
can be analyzed with this algorithm (cf. Section 4.6).

e final complexity is thus:

O(τc · (t − c)3)∼ O(τc · t3) (4.5)

46

4.2. PCTL Verification

which significantly reduces the original complexity and makes the
design-time pre-computation of reachability properties feasible in a
reasonable time, even for large values of t.

As a point of comparison, the computation of reachability prop-
erties performed by probabilistic model-checkers is based on the so-
lution of a system of n equations in n variables [15], which has, in a
sequential computational model, a complexity equal to n3 [32].

Notice that the procedure described in this section is naturally
parallelizable in several ways. First, the sum in Equation (4.4) is in-
tuitively formalizable in a map-reduce pattern [171], where the map
operation is the computation of each cofactor and the reduce is the
sum of the results. Furthermore, since the cofactor of a matrix con-
taining symbolic entries can again be computed by Laplace expan-
sion, it is possible to design a hierarchical map-reduce configuration.
is approach is valid both for multicore and distributed execution
environments. e main limitation in case of multicore could be the
amount of memory required to store all the intermediate results. Sec-
ond, either limited to the computation of numeric determinants, or
applied to the computation of the cofactors, parallel algorithms for
matrix algebra have been largely applied [78].

4.2.1.2 Equations-Based Approach

ematrix-based approach proposed in the previous section is a pow-
erful tool for partially evaluating reachability formulae at design time
in parallel execution environments. On the other hand, for sequen-
tial environments, the quick growth of complexity with the number
of states having parametric outgoing transitions may be overly time-
consuming (cfr. Equation 4.5).

For a DTMC modeling a software systems, it is usually the case
that the transition matrix is 1) very sparse, since each component
typically interact with a limited number of counterparts, and 2) may
present regular topological patterns, reflecting the design rational.

Formulating the computation of the elements bi j as the solution
of a linear system of equations allows the exploitation of state-of-
the-art heuristics and provide a noteworthy speed-up in the actual
execution time.

Recalling the definition of inverse of a square matrix A, A ·A−1 =
I. Hence, the i-th column of the matrix A−1 corresponds to the so-
lution the following system of linear equations:

47

. T WMP

A · v = ei (4.6)

where ei is the i-th column of the identity matrix, i.e. a column vec-
tor having all zero elements but for the i-th that is 1, and v is the
unknown vector corresponding to the i-th column of A−1. Since
to solve Equation (4.2) it is needed to compute the entries of the
i-th row, not column, of the matrix N = (I − Q)−1, it is possible
to exploit a property of the transpose of invertible matrices, namely
(A−1)T = (AT)−1), to compute those entries.

Indeed, the i-th row of (I−Q)−1, corresponds to the i-th column
of ((I −Q)−1)T), which is in turn equal to the i-th column of ((I −
Q)T)−1, by the just mentioned property.

e problem of calculating the row of the matrix N and, through
(4.2), of B is thus reduced to the solution of a linear system of equa-
tions.

Complexity issues. Solving linear systems of equations is a well-
studied mathematical problem, even though most of the algorithms
concern numerical solutions and cannot deal with symbolic param-
eters [170]. e most popular algorithms to solve linear equation
systems embedded in probabilistic model-checkers are iterative ones
[161,176], which can efficiently solve even large systems with the de-
sired precision in the final result andwithout requiring a large amount
of memory.

In the WM approach it is not possible to adopt the same strategy
because iterative methods do not deal conveniently with symbolic
parameters. Indeed, the presence of unknown parameters makes
hard to assess the convergence of the solution. For this reason di-
rect method have been adopted, optimized for the solution of sparse
linear systems [53].

Since [70], the WM approach is supported by a solver based
on structured Gaussian elimination and Markowitz pivoting [53].
Structured Gaussian elimination is a variation of the widely used
method to triangularize linear systems that allows to reduce the solu-
tion of a large sparse equation system to the solution of a small dense
one. is collapse can significantly reduce the size of the system to be
actually solved. A core element of structured Gaussian elimination is
the strategy used to select the order in which elements of the original
system will be eliminated. In fact, each elimination step may reduce

48

4.2. PCTL Verification

the sparsity of the obtained system, reducing in turn the global ef-
fectiveness of the method. is problem is known as fill-in. In order
to reduce the fill-in during the elimination steps, Markovitz pivoting
has been adopted as the selection strategy of the next element to be
eliminated. Other strategies can be more efficient for specific cases
but their discussion is beyond the scope of this paper. e interested
reader may refer for example to [53].

Finally, in order to avoid any loss of accuracy during intermediate
computation steps, the WM solver uses infinite precision rational
numbers for all the numeric values appearing in the models. All the
mathematical procedures have been implemented in Maple 153.

An empirical evaluation of the design-time phase complexity will
be provided in Section 4.6.

Example 4.2.1 (Reachability Analysis) Following fromSection 3.1.1,
requirementR1 asserts that the probability of reaching the absorbing
state s8 must be greater than 0.999.

Applying the partial evaluation algorithms defined in this sec-
tion, it comes out that the parametric expression corresponding to
the probability of reaching state s8 is:

f (k,w,x,y,z) =−.7 ·w− y− .144375 · k+1
+ .7 · y ·w− .7 · y · x ·w+ .144375 · z · k
+ .144375 · y · k+ .7 · x ·w− .144375 · y · z · k

(4.7)

As soon as the monitors provide the current value of the mode
parameters, the corresponding value of f can be compared with the
threshold 0.999 in order to verify the satisfaction of R1.

4.2.1.3 First-Step Analysis

eprobability of being absorbed into a state s j given that the process
started in state s j can be restated as the probability of hitting state s j
in a finite time, again given that the process started in si. Let C ⊆ S
be the set of absorbing states, t̄ = in f{k ≥ 0 : π[k] = s j} be the first
hitting time of s j.

e function u∗ : S → [0,1] assigning to each state the probability
of being absorbed into s j at the (finite) time t̄ can be defined as:

3http://www.maplesoft.com

49

http://www.maplesoft.com

. T WMP

u∗(si) = Pr(π[t̄] = s j ∧ t̄ < ∞ | π[0] = si) (4.8)

For each transient state si, by conditioning on the first step of the
process, u∗(si) can be obtained by the following system of equations:

u∗(si) = ∑
sk∈S

pik ·u∗(sk) si ̸∈C (4.9)

subject to the boundary conditions on absorbing states:

u∗(sy) =

{
1 if sy = s j

0 if sy ∈C−{s j}

e linear system in (4.9) is obtained by a direct application of the
Markov properties, i.e. the first step of the process does only depend
on the initial state, the second step only on the first state, and so
on. e extension to reachability of a set target absorbing states is
straightforward.

First-step analysis underlies also the core routines of most prob-
abilistic model-checkers, with a slightly different problem formula-
tion [127].

Solving (4.9) in presence of symbolic parameters requires essen-
tially the same process described in Section 4.2.1.2, and thus the same
considerations apply about complexity.

A first matrix formulation of the problem would be u∗ = P ·u∗ on
C, subject to u∗ = 1 on s j and u∗ = 0 on C−{s j}. A mathematically
identical form, free of boundary conditions, is:

u∗ = f + P̂ ·u∗ (4.10)

where P̂(x,y) = (P(x,y) : x,y ̸∈C is the restriction of P to transitions
between transient states, and f [x] = px j.

It is immediate to observe that f in Equation (4.10) is the column
of matrix R (see Equation 2.1) corresponding to state s j and that P̂
is the matrix Q. Hence:

u∗ = f + P̂ ·u∗

(I − P̂) ·u∗ = f

u∗ = (I − P̂)−1 · f

50

4.2. PCTL Verification

proving that u∗[i] is exactly the element bi j computed in Sections
4.2.1.1 and 4.2.1.2.

4.2.2 Extending to the Entire PCTL
Reachability of an absorbing state is the most widely used class of
PCTL properties [93]. Nonetheless there are relevant requirements
that cannot be expressed within this class.

In this section, algorithms will be provided to extend the WM
approach to handling all the remaining fragments of PCTL.

Flat unbounded Until P▷◁p (ϕ1 U ϕ2) formulae will be the first
class of properties discussed. Being flat, neither ϕ1 and ϕ2 nor their
sub-formulae can contain the operator P▷◁p(·). is class is indeed
a superclass of the fragment P▷◁p(⋄ϕ) studied in the previous sec-
tion. Afterward, in Section 4.2.2.2, algorithms to verify the bounded
operators X and U≤t will be presented, concluding the verification of
the flat fragment. Formulae having nested P▷◁p(·) operators will be
treated in Section 4.2.2.3.

4.2.2.1 Flat Until Formulae

e core idea for analyzing generic flat until formulae is to reduce the
problem to the analysis of equivalent reachability formulae, and then
apply the solution procedures already seen. is reduction process
passes through the following transformation of the DTMC model.

Starting from a DTMC D = (S,s0,P,L) and a flat until formula
P▷◁p (ϕ1 U ϕ2), a DTMC D̄ is derived from D through following
procedure:

1. Add two absorbing states sgoal and sstop

2. For all the states where ϕ2 holds, remove all the outgoing tran-
sitions and put a single one (with probability 1) toward sgoal

3. For all the states where ¬(ϕ1 ∨ϕ2) holds, remove all the out-
going transitions and put a single one toward sstop.

hence the state space of D̄ is S∪{sgoal,sstop}; the labeling function
of D̄ is accordingly extended by the two atomic predicates Sgoal and
Sstop holding only in states sgoal and sstop respectively. e transition
matrix of D̄ will be identified by P̄.

51

. T WMP

eorem 4.2.1 (Flat Until Verification) P▷◁p (ϕ1 U ϕ2) holds in state
si of D iff P▷◁p (⋄ sgoal) holds in state si of D̄.

Proof 4.2.1 For a path π of D originating in si and satisfying the path
formula ϕ1Uϕ2 there exists k ≥ 0 such that π[k] |= ϕ2 and for all the
0 ≤ j < k : π[j] |= ϕ1 ∧¬ϕ2. By construction, there will exist one and
only one path π̄ in D̄ such that ∀0 ≤ j ≤ k : π̄[j]≡ π[j] and π̄[k+1] |=
Sgoal. Furthermore, Pr(π) = Pr(π̄) because, by construction, ∀0 ≤ j < k
P(π[j],π[j+1]) = P̄(π̄[j], π̄[j+1]) and P̄(k,sgoal) = 1. 2

By eorem 4.2.1, verifying on D̄ the property P▷◁p (⋄ sgoal)
provides the same result as verifying P▷◁p (ϕ1 U ϕ2). At this point,
it is possible to apply the same mathematical procedures defined in
Section 4.2.1.

Before proceeding with the remaining fragments of PCTL, in
the next two paragraphs two algorithms related to flat until formulae
are introduced. e first one exploits first-step analysis to compute
the probability of a flat until formulae on the DTMC D directly.
e second is matrix-based approach to compute the probability of
reaching a transient state, again directly from D.

First-Step Analysis for Flat Until. First-step analysis for flat un-
til formulae P▷◁p (ϕ1 U ϕ2) is again based on the system of linear
equations (4.9), though they can be extended to all the states of D,
not only the transient ones:

u∗(si) = ∑
sk∈S

pik ·u∗(sk) (4.11)

then, the following boundary conditions are introduced (let C be the
set of absorbing states of D):

u∗(sy) =

1 if sy |= ϕ2

0 if sy |= ¬(ϕ1 ∨ϕ2)

0 if sy ∈C ∧ sy ̸|= ϕ2

(4.12)

e boundary conditions (4.12) essentially describe the elemen-
tary cases of for the computation of u∗. e first and second case
present an immediate correspondence to step 2 and 3 of the con-
struction of D̄ defined previously. e third case accounts for the
possible presence of absorbing states satisfying ϕ1 but not ϕ2, thus

52

4.2. PCTL Verification

not included in the second case; from such states there is clearly no
chance to satisfy ϕ1Uϕ2 because of their absorbing nature.

e solution of the system of linear equation defined by (4.11)
and (4.12) involves symbolic computations in presence of model pa-
rameters. Algorithms defined in Section 4.2.1.2 directly apply also
in this case.

As a final remark, the numerical routines used for probabilistic
model checking in [127] or [15] can be easily matched with equations
(4.11) and (4.12), though the solution strategies in those cases are
quite different.

Example 4.2.2 (Flat Until) Following from Section 3.1.1, require-
ment R2 is an example of flat until formula. e process is indeed
required to reach state s8 without passing through states s4 and s6.

According to the construction procedure of the derived DTMC
D̄ introduce earlier in this section, state s8 will be connected with
probability 1 to sgoal, while states s4 and s6 are connected with prob-
ability 1 to state sstop.

e probability of following a path that satisfied the condition
imposed by R2 can be then computed as the probability of reaching
the absorbing state sgoal and the result is:

f (k,w,x,y,z) = 0.7 · x−0.155625 · y+0.144375 · z
−0.144375 · y · z−0.7 · y · x+0.155625

(4.13)

Notice that the parameters k and w do not appear in the rhs of
Equation (4.13), since they have been actually removed in the con-
struction of D̄ and their value is thus irrelevant for the verification of
R2, as can be intuitively assessed by looking at the DTMC of Figure
2.1.

Reachability of Transient States. An elegant procedure to com-
pute the probability of reaching a transient without any intermedi-
ate construction has been presented in [72], based on the theoretical
background from [175].

First of all, the probability of reaching a transient state from an
absorbing one is trivially 0, while the probability of reaching s j from
itself is trivially 1. For any two distinct transient states si and s j,
let f k

i j be the probability that the first hitting of state s j happens at

53

. T WMP

time k, given that the process started from si (recalling the notation
in Section 2, Xk is the random variable representing the state of the
process at time k):

{
f 0
i j = 0

f k
i j = Pr(Xk = s j ∧∀0 ≤ y < k Xy ̸= s j|X0 = si)

(4.14)

Let
fi j = ∑

k=1
(4.15)

us, fi j represents the probability of ever reaching state s j given
that the process started from si. Notice that, for every well-formed
DTMC (cfr. Section 2.1) f0 j > 0 because every state of the model
has to be reachable from the initial state. Furthermore, since the only
recurrent states allowed in a well-formed DTMC are the absorbing
ones, fii < 1 for every the transient state si.

ough the definition in (4.15) formalizes the probability of reach-
ing a transient state, the computation of its actual value is not straight-
forward from the definition. On the other hand, in Section 2.1 the
fundamental matrix N has been defined, whose entries ni j represent
the expected number of visits to the transient state s j before absorp-
tion, given that the process started in si. Assuming to know the values
of fi j, ni j can be derived by conditioning on whether state s j is ever
visited:

ni j = E(number of visits to state s j | X0 = si)
= n j j · fi j

(4.16)

In other words, the value n j j is the expected number of “returning”
visits to s j given that it is eventually reached from state si (cf. [175],
pg. 190).

From Equation 4.16, it is immediate to derive:

fi j =
ni j

n j j

Summing up, si |= P▷◁p (⋄ s = s j) iff fi j ▷◁ p. is relation-
ship allows for the use of the matrix-based algorithms provided in
Section 4.2.1.1.

54

4.2. PCTL Verification

4.2.2.2 Flat Bounded Formulae

Flat bounded formulae of PCTL are those having as arguments of
theP▷◁p(·) operators path formulae involving theNext and Bounded
Until operators.

Next. e set of paths to be considered in order to estimate the
probability of a path formula X ϕ in a state si is composed by all the 1-
step long paths originating in si. Under the hypothesis that ϕ is flat,
the states that satisfy ϕ can be identified once for all at design time.
e transition matrix P contains the probability of moving from a
state to another in a single step. Hence, computing the probability
of reaching, from a state si, a state where ϕ holds in 1 step, can be
achieved by:

Pr(X ϕ1) = ∑
s j |=ϕ1

pi j (4.17)

Bounded Until. Each path originating in a state si and satisfying
ϕ1U≤tϕ2, at a certain step k ≤ t will reach a state s j where ϕ2 holds,
and for all the previous steps ϕ1 has to hold. Referring to a DTMC
D̄ constructed as in Section 4.2.2.1, each of those paths corresponds
to a path in D̄ that exactly at time step k+ 1 reaches the state sgoal.
Hence, any path of D satisfying ϕ1U≤tϕ2 corresponds to a path in D̄
being at time t +1 in state sgoal.

e probability distribution of the states reached after exactly t+
1 time steps in D̄ can be computed by elevating the transition matrix
P̄ to the (t +1)-th power:

Pr(Xk |= ϕ2 ∧ k ≤ t | X0 = si) = P̄t+1(si,sgoal) (4.18)

Summarizing, si |= P▷◁p (ϕ1U≤tϕ2) on D iff P̄t+1(si,sgoal) ▷◁ p
on D̄.

Example 4.2.3 (Flat Bounded Until) RequirementR3 fromSection
3.1.1 involves the evaluation of a flat bounded until formula.

e parametric expression corresponding to the probability of
reaching state s8 within 5 steps is reported in Equation (4.19).

55

. T WMP

f (k,w,x,y,z) = 0.10548−0.10548 · y+(0.0231−0.0231 · y) · z
+(0.165−0.165 · y) · (0.7−0.7 · z) · (1− k)

+(0.165−0.165 · y) · (0.3+0.7 · z)
+(0.7−0.7 · y) · (1− x) · (1−w)+(0.7−0.7 · y) · x

(4.19)

4.2.2.3 Nested Formulae

e analysis of PCTL has been so far restricted to its flat fragment,
that is, the set of formulae where the arguments of a P▷◁p(·) op-
erator are Boolean combinations of atomic propositions only. e
peculiarity of flat formulae is that it is always possible at design time
to identify the states where a state formula ϕ holds, and thus generate
a parametric expression by means of the procedures defined so far.

In the case of nested formulae, that is formulae P▷◁p (Ψ)where at
least one sub-formula of ψ contains the operator P▷◁p(·), some in-
formation needed to compute the desired parametric expression may
only become available at runtime. For instance, consider requirement
R4 from the example in Chapter 2: the set of states from which an
error will eventually occur with probability greater than .95 will only
be know at run time, because it depends on the actual value of the
model parameters. us, the probability of reaching any of this states
cannot be computed at design time with the procedures already de-
fined, because it would not be possible to identify the target states.
Indeed, to evaluate a formula with nested P▷◁p (·) operators, it is
required to know in which states its sub-formulae are satisfied. e
same consideration can be applied recursively to sub-formulae of a
sub-formula, until a flat one is reached that can be directly analyzed.

To deal with this issue, it is required a way to delay at run time the
evaluation of a nested formula, when all the knowledge concerning
its sub-formulae has been gathered, without loosing the benefits of
parametric verification.

Focusing on until formulae, the solution provided in Section 4.2.2.1
is based on the construction of the modified DTMC D̄. Such a con-
struction requires to disconnect certain states from their successors
and to connect them to either sgoal or sstop. en, for what has been
previously explained, the resulting parametric expression would be
computed as the reachability of the absorbing state sgoal in D̄.

56

4.2. PCTL Verification

In order to delay at runtime the decision about the connection of
a state to sgoal or to sstop, all is needed is the addition of three more
parameters per state. e first will be a coefficient αi that multi-
plies all the elements pi j of D. e second and the third are, respec-
tively, two terms βi goal and βi stop in place of the entries P̄(si,sgoal)
and P̄(si,sstop). e three additional parameters can assume values
0 or 1, and their intuitive purpose is the following: assigning 0 to a
parameter al phai disconnects state si from all its successors; assign-
ing 1 to either βi goal or βi stop connects state si to state sgoal or sstop,
respectively.

Computing the probability of a path ⋄ sgoal at design time leads to
a parametric expression having as variables both the model parame-
ters and the additional parameters αi, βi goal, and βi stop for each state
si. At runtime, when information about the sub-formulae of a nested
formula becomes available, the value of the additional parameters can
be set in order to adapt the expression to reflect the convenient trans-
formation of D̄. Applying this procedure recursively on nested for-
mulae allows to keep the benefits of parametric analysis, though it
would require at most as many evaluations as the nesting depth of
the formulae. Assuming most of the nested formulae to have just a
few nesting levels, the impact on runtime complexity would still be
limited. Another drawback for run-time analysis of nested formulae
is that the resulting mathematical expressions could be longer than
in the case of flat formulae due to the presence of more parameters,
but the evaluation time is still not comparable with the execution of
a model-checking routine for a system large enough.

At design time, the computation of next and bounded until nested
formulae follows the same principle described for until ones, and they
have to be computed on the model instrumented with the additional
parameters αi, βi goal, and βi stop. e adaptation of the mathemat-
ical procedure for the Next operator is straightforward. e main
issue with this approach is the computational complexity at design
time. Indeed, the additional parameters may have a high impact on
the execution time of the algorithms from Section 4.2.1. To leverage
this issue, parallel implementationsmay be used on high performance
distributed environments, or, for not too large systems, the results for
each combination of the α and β parameters can be stored in a di-
rect access table; Notice though that the number of entries of such
table would be O(3|S|) and the size of each of them would be up to
O(|S|log(|S)) because all the transitions in the model would become

57

. T WMP

symbolic.

58

4.3. R-PCTL Verification

4.3 R-PCTLVerification

In this section, the verification of R-PCTL properties on D-MRMs
will be discussed. Equations (3.1), (3.2), and (3.3) of page 35 formal-
ize the semantics of the three specification patterns used to express
reward-related properties.

Some of mathematical procedures presented in this section are
based on the notion of expected reward along a set of paths origi-
nating from a state si. In Section 3.2 this value has been intuitively
defined as the sum of the rewards cumulated along each of the paths,
weighted by the probability for that path to be taken. Since such a
sum may contain infinite terms, it could be unfeasible to compute it
directly from its definition.

Applying a first-step analysis, the computation of the expected
reward for a (non empty) path originating in si can be computed by
the following linear equation:

ri = ρ(si)+ ∑
s j∈S

pi j · (ι(si,s j)+ r j) (4.20)

where ri is the expected reward over all the paths originating in si
As stated in Section 2.2, in this thesis only state rewards are con-

sidered, since they are expressive enough for all the specification pur-
poses. is is equivalent to state that the function ι(·, ·) in Equation
(4.20) is identically 0.

Notice from Equation (4.20) that if a state s j is absorbing and its
state reward ρ(s j) is greater than 0 the equation has no solutions. In-
deed, in such a situation, for all the states from which s j is reachable
the expected reward would be ∞. For this reason, it is here assumed
that ρ(s j) = 0 for all the absorbing states s j.

In the remaining of the section, Section 4.3.1 discusses the ver-
ification of unbounded formulae of the class R▷◁r (⋄ϕ), while Sec-
tion 4.3.2 will deal with the bounded operators I=k and C≤k. In Sec-
tion 4.3.3 a set of special cases of reward analysis will be discussed to
show further added value of parametric formulae.

4.3.1 Unbounded Formulae
A formula R▷◁v (⋄ϕ) is intuitively true in a state si if the expected
cumulated reward before reaching a state satisfying ϕ meets the con-
straint ▷◁ v.

59

. T WMP

In order to simplify the exposition, only flat R-PCTL formulae
will be discussed, meaning that in path formulae ⋄ϕ , ϕ can only be
a Boolean combination of atomic propositions. e extension to the
nested fragment of R-PCTL can be achieved by instrumenting the
D-MRM with additional parameters as it has been done previously
for nested PCTL formulae in Section 4.2.2.3.

e expected cumulated reward over all the paths satisfying ⋄ϕ
and originating in a state si can be computed subjecting the linear
system (4.20) to the following boundary conditions (let C ⊆ S be the
set of absorbing states of the D-MRM):

ri =

{
0 if si |= ϕ
∞ if si ∈C∧ si ̸|= ϕ

(4.21)

e rationale behind (4.21) is intuitive: a state si satisfying ϕ is
the terminal state of a path π that satisfies the path formula ⋄ ϕ and
thus the end of the reward accumulation. On the other hand, an
absorbing state that does not satisfy ϕ marks a path that will never
satisfy ⋄ ϕ and thus contribute to the accumulation of rewards as an
infinite cost, for the definition in (3.3).

e solution of (4.20) subject to (4.21) is a rational polynomial
expression having as unknowns the model parameters, whether they
label transition probabilities or state rewards. For the algorithms to
solve this system and their complexity, refer to Section 4.2.1.2.

Summing up, si |= R▷◁v (⋄ϕ) iff ri ▷◁ v.

Example 4.3.1 (Unbounded Reward) eparametric verification of
requirements R6, as defined in Section 3.2.1, leads to the following
expression:

X3(7≤s≤9) = 0.21734375+0.084 · y · x−0.084 · x
−0.21734375 · y−0.02165625 · z
+0.02165625 · y · z

(4.22)

ExpectedCumulatedRewardBeforeAbsorption. Assuming that
for all the absorbing states sy ρ(sy) = 0, the expected reward be-
fore absorption involves only the visits of transient states. From Sec-
tion 2.1, an entry ni j of the fundamental matrix N represents the

60

4.3. R-PCTL Verification

expected number of visits to the transient state s j before absorp-
tion, given that the process started in si. Since after each visit to
s j the reward ρ(s j) is gained, let ρ be a column vector with elements
[ρ(s0),ρ(s1),ρ(s2), . . .] and C ⊂ S the set of absorbing states, the
expected cumulated reward before absorption can be computed as:

X⋄(sy∈C) = N ·ρ (4.23)
e latter equation is equivalent to (4.20) subject to (4.21) re-

stricted to S−C. Indeed:

r = ρ +Q · r

(I −Q) · r = ρ

r = (I −Q)−1 ·ρ

4.3.2 Bounded Formulae
A formula R▷◁v (I=k) is true in a state si if the expected state reward
at time k meets the bound ▷◁ v. By the definition of expected value, it
can be computed as the sum of the rewards of every state reachable in
exactly k time steps, weighted by the probability of reaching it. Recall
that the probability of reaching a state s j from a state si in exactly k
time steps is the entry (si,s j) of the matrix Pk.

In a more compact way, let ρ be a column vector with elements
[ρ(s0),ρ(s1),ρ(s2), . . .]. e expected reward X=k can be computed
by the following equation:

XI=k = Pk ·ρ (4.24)
where an element XI=k [i] corresponds to the expected reward from
state si. Hence, si |= R▷◁v (I=k) iff XI=k [i] ▷◁ v.

Finally, a formula R▷◁v (C≤k) is true in a state si if the expected
reward cumulated after k time steps satisfies the constraint ▷◁ v. For
the previous considerations, the expected reward gained at the j-th
step is exactly P j ·ρ . us, to compute the cumulated reward up to
the k-th step with k ≥ 1 it is possible to apply the following equation:

XC≤k =
k−1

∑
j=0

P j ·ρ (4.25)

61

. T WMP

When k = 0, XC≤k = 0 by definition (3.2). Hence, for all k > 0,
si |= R▷◁v (C≤k) iff XC≤k [i] ▷◁ v .

4.3.3 Special Applications of Reward Analysis
ExpectedAbsorptionTime. Rewards can be used to encode a num-
ber of properties related to the process. A popular example is the
computation of the expected absorption time, that is, the expected
number of steps before the process is absorbed. is value can be
intuitively computed, for a process started in state si, as ∑ j ni j. A
more elegant formalization assigns to each transient state s j a reward
ρ(s j) = 1 and compute the expected reward before absorption. Be-
sides being more elegant, this solution allows to accomplish the com-
putation through the solution of a linear system of equation, which
is usually much more efficient than computing N on a sequential ex-
ecution environment.

Moment Generating Function of Cumulative Reward to Absorp-
tion. Up to this point, all the requirements have been expressed in
terms of the expected rewards. On the other hand, a designer may
be interested in more information about the entire distribution, not
only its expected value. For example, a high variance in the energy
consumption may increase the risk of overrun of the power system,
though the average consumption is fairly manageable. Fist-step anal-
ysis provides a suitable tool for computing the moment generating
function of the distribution of the cumulative reward to absorption.
LetC ⊂ S be the set of absorbing states, and T be the first hitting time
of an absorbing state, T = in f{n≥ 0 : Xn ∈C} (as in Section 4.2.1.3).
e generating function of the θ-thmoments is defined as (cf. [163]):

u∗(θ ,si) = E
(

eθ ∑T−1
j=0 ρ(X j) | X0 = si

)
(4.26)

e application of first-step analysis to (4.26) yields:

u∗(θ ,si) = ∑
s j

eθρ(s j) ·P(si,s j) ·u∗(θ ,s j) (4.27)

subject to the boundary conditions that u∗(θ ,s j) = 1 for all s j ∈C.
Equation (4.27) can also be easily adapted to a matrix formula-

tion.

62

4.3. R-PCTL Verification

Added-ValueofParametricAnalysis. eonly requirement on the
function ρ(·) is that is range must be a subset of [0,+∞)∩R. is
means that after producing the parametric formulae corresponding
to a requirement, the actual value of the reward parameters can be
evaluate to convenient real functions whose value depends on exoge-
nous measures. For example a function energyCost(t), whose value
depends on the hour of the day, can be assigned to the parametric
state reward for the servers. is way a two levels analysis can be
accomplished to relate the actual cost of energy to the hour of the
day the servers are operating. Furthermore, the same expression can
be assigned to different parameters, implicitly capturing possible de-
pendencies among their values.

As a final remark, parametric formulae can provide a significant
speed-up in applications such as repeated experiments [128], Monte
Carlo analysis [103,152], and search-based engineering [3,148,172,
190].

All of these analysis can be accomplished without re-computing
the parametric formulae, but simply assigning different values to its
parameters.

63

. T WMP

4.4 Sensitivity Analysis

e parametric closed formulae obtained in Setions 4.2 and 4.3 are
not only a suitable tool for run-time efficient quantitative verification,
but also for sensitivity analysis.

Roughly speaking, the purpose of sensitivity analysis is to assess
how the value of a global property of a system is affected by changes
in the quality of its parts. is assessment is valuable in different
scopes, such as:

• Decision making support: If limited resources are available
for system improvement (whether in terms ofmoney or time) it
would be better to focus on improving the parts which heavier
affect the satisfaction of system requirements.

• Robustness assessment: if reasonably wide spreads of the qual-
ity scores of parts of the system do not significantly affect the
global quality provided, then the system operativeness is robust
with respect to variability or uncertainty of those scores.

• Improvementguidance: errors aremore likely to lead to global
failures if they occur in important parts of the system. Sensi-
tivity can assign a degree of importance to each part and drive
V&V phases.

A formal definition of sensitivity follows:

Definition 4.4.1 (Sensitivity.) Let p = {p0, p1, . . . , pn} be the set
of parameters of a Markov model D, f : p→ A⊆ R a function of p
(corresponding to a quantitative property of D).
e sensitivity S of f with respect to p is defined as:

S(f ,p) = (⃗∇ f)p =
[

∂ f
∂ p0

,
∂ f
∂ p1

, . . . ,
∂ f
∂ pn

]
For e given operative point p̄, the entry ∂ f/∂ pi evaluated in p̄

yields an insight about how f changes when pi changes by a small
ε . It is then possible to rank the parameters {pi} according to the

64

4.4. Sensitivity Analysis

impact ∂ f/∂ pi they have on the global quality f , supporting this way
design decisions4.

Sensitivity analysis has been performed according toDefinition 4.4.1
in several papers. In [41], an analytical procedure is provided for
DTMC-based reliability analysis. Reliability has been formalized as
the probability of reaching an absorbing “success” state of theDTMC.
Sensitivity is then computed with respect to the probability of specific
transitions, by algebraic operations on the transition matrix. A sim-
ilar approach is presented in [84], where the sensitivity is computed
not only for reliability but also for a measure of the response time.
In [50] and [68] reliability analysis is extended to describe also er-
ror propagation among components, and the sensitivity of reliability
qualities is computed with respect to the probabilities that a compo-
nent experiences an unrecoverable failure or introduces an error in
the data-flow that will be propagated to other components.

Using the WM approach to generate closed-form expressions for
relevant quality metrics make the computation of sensitivity far more
efficient than applying the aforementioned approaches, allowing its
computation even at run time. e other side of the coin remains the
design-time effort of WM, though it has to be done only once.

Furthermore, sensitivity can be computed in closed-form as well,
paving the way for a global analysis of S. A closed-form of S can
also be used for reverse sensitivity analysis, i.e. the identification of
operative conditions that are particularly sensitive to specific param-
eters. Such information could allow to design mechanisms that keep
the system in a “safe” region, where its properties are less sensitive to
uncertainty or variability of external parameters.

e main limitation of sensitivity analysis concerns the depen-
dency on the actual values of ε . Indeed, sensitivity is the more ac-
curate the more ε gets closer to 0. More precisely, from Taylor’s
theorem [147], the error is in the order of O(|ε|2) (as ε → 0). e
closed-form expressions for both f and S, allows to compute the er-
ror ξ as an analytic function of ε by computing the distance between
f and its first-order Taylor approximation f̃ :

4Notice that sensitivity is just an index. It does not account for feasibility of a
change, nor on dependencies among parameters. For example, if a parameter corre-
sponds to the probability of a transition, a designer must consider that a change in
its value has an impact on the other transitions originating from the same state and
proceed accordingly.

65

. T WMP

{
ξ = f (p̄+ ε)− f̃ (p̄,ε)
f̃ (p̄,ε) = f (p̄)+ (⃗∇ f)p̄(ε)

(4.28)

e error ξ can be expressed in a closed-form and analyzed on
the entire domain of p (with the possible exception of the singular
points of f corresponding to the zeros of its denominator).

Uncertainty and Perturbation analyses. To conclude this section,
two alternative techniques for the impact analysis of uncertainty and
variability are briefly reported [99].

In uncertainty analysis, a probability distribution is associate to
the parameter space to describe the uncertainty about their values:

Fp(x) = Pr(p≤ x) = Pr(p0 ≤ x0 ∩ p1 ≤ x1 ∩ . . .∩ pn ≤ xn)

Now, since p is considered as a random variable, also the algebraic
transformation f (p) will be a random variable. e aim of uncer-
tainty analysis is to derive Ff (x) = Pr(f (p) ≤ x). It is in general
impossible to obtain an analytical expression for Ff (·) [181]. Monte
Carlo simulation has been used to approximate in several researches
to approximate Ff (·) [106].

In [152], uncertainty analysis is applied for DTMC-based soft-
ware reliability analysis. For example, the failure probability of an
embedded component may be a function of the random variable de-
scribing the environment temperature. Monte Carlo simulation is
applied by sampling from the temperature distribution, deriving the
failure probability of the component, and then computing the global
system reliability throughmodel-checking. Considering that the num-
ber of samples needed to even small system is at least in the order of
103, replacing the standard model-checking with the evaluation of
the analytical expression produced by the WM may produce a sig-
nificant saving of time5.

Finally, perturbation analysis tries to analyze the deviation | f (p̄)−
f (p̄+ ε) | given a bound on | ε |. is type of analysis has been per-
formed analytically in Probability theory [59], besides its suitability
for Monte Carlo simulation. If a quantitative property can be ana-
lyzed through the WM approach, the availability of a closed-form

5is idea has been discussed with the authors of the paper and is underway at
the time this thesis is being written.

66

4.4. Sensitivity Analysis

expression for f makes perturbation analysis efficient and quite in-
formative.

67

. T WMP

4.5 RelatedWork

Quantitative verification at run time is necessarily subject to strict
time constraints. ough they could be efficient enough for certain
application domains (e.g. [38]), traditionalmodel-checking techniques
are conceived for design time and are usually time consuming.

Improving the efficiency of the current model-checkers is one of
the goals of the research community. On a different direction some
approaches have been proposed to tackle the specific issues of run
time analysis.

In this section three of them are discussed which are representa-
tive of three different verification paradigms applied to the problem
of probabilistic quantitative verification at run time: incremental anal-
ysis, parameter space exploration, and parametric model-checking. e
last approach will be treated at a higher level of details because of its
closeness to the WM approach proposed in this chapter.

4.5.1 Incremental Verification
Incremental approaches are in general composed of two phase: 1)
the impact of a change in the artifact is localized, and 2) results from
previous analyses are reused as much as possible in order to avoid
unnecessary re-computation.

Incremental analysis approaches for non probabilistic systems have
been proposed that mostly focus on improving the generation or the
exploration of the state space of the model by identifying which pre-
vious results are still valid after a change and which have to be re-
computed [49, 94, 102, 124, 136,179].

Concerning incremental quantitative verification of probabilistic
models, the only two approaches have been published so far.

In [130,135], the probabilistic models under analysis are discrete-
time Markov Decision Processes (MDPs), which are a super set of
the D-MRMs, while the target property is the reachability of a set
of target states6. In the target usage scenario for this technique, the
model has to be analyzed repeatedly, after a few transition probabil-
ities change.

e first step of the proposed analysis procedure is to partition
the Markov model into its maximal strongly connected components

6An MDP can be seen as D-MRM where besides probabilistic transitions, non
deterministic ones are allowed.

68

4.5. Related Work

(SCCs), allowing, on a first hand, a speed up in the first analysis,
as shown in [45]. Indeed, roughly speaking, SCCs can be analyzed
in isolation and then the local results can be combined to obtain the
probability of reaching the target states.

When a change occurs, the set of the SCCs that have been di-
rectly affected is generated. en, a search algorithm is applied to
identify all the SCCs indirectly involved. is search algorithm is
based on the topological order of the SCCs. Indeed, let C be and
SCC and Pre∗(C)⊂ S
C the set of states from which C is reachable; Let also assume that
the any of the target states is reachable from C. A change in the
transition probabilities included in C may affect the probability of
its predecessors to reach the target, but not the one of its successors.
is observation allows to define an efficient search strategy that goes
through the SCCs of a model and re-analyzed only those which may
have been affected by the change.

Furthermore, this analysis procedure is also parallelizable, thanks
to the partial ordering among the SCCs: at any step an SCC can
be processed independently from the others as long as its successors
have been analyzed.

e approach in [151], named ∆ evaluation, is instead concerned
with incremental reliability analysis based on conveniently structured
DTMCs. e structure of those model is the one proposed by [41],
where each software module is represented by a state of the DTMC,
and can fail, making a transition toward an absorbing failure state,
transfer the control to another module, or completing the execution
by moving toward an absorbing success state. Assuming that a single
entry of the transient-to-transient transition sub-matrix Q changes,
there is no need to re-compute the reliability of the entire system
from scratch, but a few simple arithmetic operations can be used to
correct the previous reliability value.

Despite its efficiency, the ∆ evaluation can only deal with a single
change per time in the matrix Q and does not provide support for
generic PCTL properties, but only for the reachability of a specific
absorbing state (notice that at least two absorbing states are required
for the approach to work correctly [151]).

Finally, a novel approach to the definition of incremental verifi-
cation procedures will be proposed in Chapter 5 that is not tailored
to Markov processes but can be used for the incremental quantitative
analysis of software artifacts defined by specific formal languages.

69

. T WMP

4.5.2 Parameter Space Exploration

is approach invert the perspective of verification: instead of ver-
ifying if an parametric MDP satisfies a PCTL property ϕ , tries to
synthesize the set of parameter evaluations that make the mode sat-
isfy ϕ .

ough this technique was not explicitly designed for run time
analysis, its application is straightforward since a design time com-
putation can in principle explore the whole parameter space and store
in a convenient lookup table all the evaluations that make the model
satisfy ϕ . is way, when a change occurs at run time, a quick access
to the lookup table can provide immediate answer to the verification
problem.

However, only two approaches have been proposed so far, each
one with its own limitations.

In [76], given a parametric MDP and an evaluation of the model
parameters, the procedure fixes all the non deterministic choices to
their optimal combination, i.e. the one that maximizes the probabil-
ity of reaching a set of target states for that evaluation. Such com-
bination of the non deterministic choices is called optimal schedule in
the context of MDPs. When the optimal schedule has been found
for a specific evaluation, the parameter space is explored starting from
the given evaluation until the maximum bounded region for which
the scheduler is still optimal is found.

Concerning the analysis of a D-MRM, all the transitions are
probabilistic, thus only one schedule exists. Given a parameter evalu-
ation that satisfies a flat reachability property, the largest region con-
taining that evaluation is found for which the property still holds.
e algorithm does not reveal if any other evaluations outside that
region satisfy the property too.

[96] can instead deal with the entire PCTL, still verified on
MDPs. e idea is to divide the parameter space into hyper-rectangles
such that all the elements of a hyper-rectangle either satisfy the de-
sired property or not. e approach is iterative and keeps partition-
ing the search space until a minimum size for the regions has been
reached.

Since it is in general impossible to cover the parameter space by
hyper-rectangles, a part of it may remain undecided. Hence the ver-
ification procedure is not complete.

70

4.5. Related Work

4.5.3 ParametricModel Checking

Parametric model checking pursues the same goal as the Working-
Mom approach, i.e. to precompute a closed rational expression corre-
sponding to the probability of satisfying a desired quantitative prop-
erty. e first approach for parametric model-checking of DTMCs
has been proposed in [54]. e main contribution of that seminal
work concerned the synthesis of parametric closed formulae through
a state elimination algorithm, analogous to the one used in automata
theory to synthesize regular expressions from finite state automata
[104].

More precisely, Daws’ algorithm allows to compute a closedmath-
ematical expression corresponding to flat reachability property. As
already explained in Section 4.2.1, this corresponds to computing
Pr(true U ϕ), with the further constraint that ϕ cannot contain any
instance of the operator P▷◁p(·).

For it shares an approach similar to theWM,Daw’s algorithm for
parametric model-checking will be deeply presented in this section in
order to allow a fine comparison, both theoretical and empirical. In
particular, the next section describes the Daw’s algorithm for reach-
ability analysis. Afterward, in Section 4.5.3.2, its extension for the
analysis of a subset of rewards formulae will be discussed. A com-
parison with the WM approach is discussed in Section 4.5.3.3 and
performed on a large set of test cases in Section 4.6.

4.5.3.1 Flat Reachability Analysis.

e core idea of Daws’ algorithm is to consider the probability val-
ues labeling DTMC transitions as letters of an alphabet. Under this
interpretation the DTMC can be seen as a finite state automaton for
which it can be synthesized a variant of the regular expressions by
adapting the well-known state elimination algorithm [104]. Such
variants of the regular expressions are named stochastic regular ex-
pressions (SREs) [54] and actually correspond to rational mathemat-
ical expressions. e construction of SREs corresponding to the eval-
uation of flat reachability formulae on a DTMC is addressed by the
first part of this section.

Given a flat reachability formula true U ϕ and a well-formed
DTMC D, it possible to identify the set of states T of D that sat-
isfy ϕ , i.e. the target states.

71

. T WMP

F .: SRE synthesis algorithm.

In order to simplify the exposition, assume for now that all the
target states are absorbing.

First of all, all the states (and the corresponding transitions) from
which it is not possible to reach any of the target states are pruned
out. e resulting model may no longer be a DTMC, since the elim-
ination of a subset of the transitions may lead to sub-stochastic states
(for which the sum of the outgoing probabilities is lower than 1).
Nonetheless the reduced model preserves all the information needed
for the computation of the reachability formulae (a proof of correct-
ness can be found in [95]).

e algorithm proceeds by eliminating all the states of the re-
duced model but the targets and the initial state. A state elimination
step is described in Figure 4.2. When eliminating state s, the algo-
rithm considers all the pairs (si,s j) where si is a direct predecessor of
s and s j is a direct successor of s. When eliminating s, the transition
probability from si to s j is increased by a term representing the prob-
ability of reaching s j from si through s. Such a term is essentially the
sum of the probabilities of all the possible paths and can be computed
by iterating on the length k of a path:

∞

∑
k=0

pa pk
c pb =

pa pb

1− pc
(4.29)

e state elimination terminates when the model is composed of

72

4.5. Related Work

the initial state s0 directly connected to each of the target states. Each
of these transitions will be labeled by an SRE representing the prob-
ability of reaching the specific target state. e value of Pr(trueU ϕ)
is just the sum of all those SRE.

As it can be guessed fromFigure 4.2, an SRE is essentially a ratio-
nal expression, whose numerator and denominator are polynomials
having as unknowns the labels of DTMC transitions.

In order to generalize the approach to deal with transient target
states too, it suffices to pre-process the DTMC by making all the
target states absorbing. Indeed, a formula (true U ϕ) is satisfied by
a path as soon as it firstly reaches any of the states in which ϕ holds,
hence its satisfiability is not affected if the states in which ϕ holds
are made absorbing. Turning a transient state into absorbing could
make other states unreachable from s0; such unreachable states have
to be pruned out in order to regain a well-formed model.

In [95], Daws’ algorithmhas been implemented in the tool PARAM.
An effective improvement provided by PARAM to the original algo-
rithm of [54] consists in replacing the transition labels corresponding
to numeric transitions by their actual value after each state elimina-
tion step. is allows to exploit arithmetic simplification of the in-
termediate SREs that can significantly speed-up both memory con-
sumption and subsequent mathematical operations due to state elim-
inations, as shown in [95].

e result of executing PARAM is a closed rational expression
having as variable only the symbolic parameters of the model, since
numeric ones have been already evaluated by the tool. Such an ex-
pression can then evaluated at runtime, as for the WM approach.

4.5.3.2 Cumulative Rewards Analysis

A second major contribution of PARAM with respect to Daws’ al-
gorithm is its extension to deal with D-MRMs. Given as input a
D-MRM D and a set of target states T , PARAM is able to compute
the expected cumulative reward until a state in T is reached. is type
of properties is formalized by formulae like R▷◁v (⋄ϕ), as discussed
in Section 4.3.1.

e algorithm is again based on the state elimination procedure.
Considering the pairs (si,s j) of direct predecessors and direct suc-
cessors of a state s, respectively, the goal is to obtain the transition
reward ι(si,s j) for the new transition from si to s j after eliminating

73

. T WMP

F .: State elimination for D-MRM.

s. A step of this state elimination procedure is described in Figure
4.3, where a label p/r represents either the transition probability and
the transition reward ι or the state name and its state reward ρ , re-
spectively.

e value of pe is computed as for reachability analysis as pa pb
1−pc

,
while the value of re can be computed as the sum of the reward ac-
cumulated over all the possible paths from si to s j through s as (with
respect to the path length k):

re =
∞

∑
k=0

(pa pk
c pb) · (ι(si,s)+ρ(s)+(ρ(s)+ ι(s,s)) · k+ ι(s,s j))

= ι(si,s)+ρ(s)+ ι(s,s j)+
pc

1− pc
(ρ(s)+ ι(s,s)) (4.30)

e proof of correctness of the algorithms reported in this section
can be found in [95].

74

4.5. Related Work

As for reachability analysis, the resulting expected accumulated
reward is again a rational expression with numerator and denomina-
tor being polynomials having as unknowns the symbolic parameters
of the D-MRM, whether transition probabilities or rewards. e
evaluation of such an expression at runtime requires to replace the
parameters with the numeric values coming from monitors, as for
the WM.

4.5.3.3 Comparing with theWorkingMom.

e comparison between the WM and the Daw’s algorithm, en-
hanced by PARAM, is discussed from two perspective: the expres-
siveness of the properties analyzable by the two approaches and their
design time complexity. An empirical comparison of the derived
tools is instead proposed in Section 4.6.

Concerning the expressiveness of the supported logic fragments,
PARAM has been designed to deal only with flat reachability prop-
erties and unbounded rewards. e WM approach can instead cover
the entire R-PCTL, providing mathematical procedures for each of
its fragments.

Concerning the design time complexity an assessment of theDaw’s
algorithm is required first. Analogously to regular expressions on fi-
nite state automata, the size of a SRE can grow as O(nlog(n)), where n
is the number of states of the Markov model [91]. Such long expres-
sions may take time to be manipulated at each state elimination step
and may require a high memory consumption when the size of the
model growths. e number of state elimination steps are in the or-
der of O(n3), as it can be easily proved [95], but the actual time each
of them takes heavily depends on the size of the operands involved
in the mathematical operations.

ough in the worst case O(nlog(n)) constitutes a complexity lower
bound for computing SREs, in realistic software models most of
the transitions can be assumed to be labeled by numeric values [72].
Hence, by this assumption, instead of computing the full SRE taking
transition labels as literals, PARAM intertwines the state elimination
algorithm and the partial evaluation of numerical terms appearing in
SREs. In other words, at each step of the state elimination algo-
rithm, the numeric labels are treated as numbers, thus allowing for
the arithmetic simplification of intermediate results.

75

. T WMP

is induces a significant saving in the size of intermediate ratio-
nal function representations, and hence an improvement in the actual
computation time, as empirically shown in [95].

On the other hand, if a state having symbolic outgoing or in-
coming transitions is eliminated in one of the first steps, all the sub-
sequent operations will involve polynomial operands. us the im-
provement of PARAM could be more significative in terms of mem-
ory saving than in execution time, that grows quickly with the num-
ber of model parameters, as will be shown in Section 4.6.

Concerning the algorithms used by the WM approach, they be-
long to two different families (cf Section 4.2): based on matrix alge-
bra or on the solution of a linear system.

Concerning matrix-based algorithms, their complexity, as de-
fined in Equation (4.5), is O(τc · t3), where τ is the average number
of outgoing transitions from a state, c is the number of states hav-
ing at least a parametric outgoing transition and t is the number of
transient states. Assuming t ≈ n, the complexity of these algorithms
may on a first hand seem higher than the one provided by PARAM.
On the other hand, the t3 operations are in this case numeric oper-
ations. Hence their actual execution time is much slower then the
one required to operate with polynomials. However, if the number
c of states having parametric outgoing transitions growths, the com-
plexity of the matrix based algorithms growths exponentially with
it, making the approach unfeasible. Another problem of the matrix
based approach concerns the memory required to store intermediate
results. Indeed the algorithm is based on c successive Laplace ex-
pansions, and each of them requires the computation and storage of
approximately τ sub matrices.

Concerning equation-based algorithms, their complexity is theo-
retically the same as the one of PARAM (O(n3)). However, in most
practical cases the equation systems obtained from the analysis of
software models are 1) very sparse, and 2) usually present some ratio-
nale in the connections among the states. e first observation justify
the adoption of the fill-in reduction techniques sketched in Section
4.2.1.2. ese techniques significantly reduce the actual computation
time as well as the demand of memory, though in terms of memory
consumption PARAM is in general more efficient than the WM be-
cause it has to store less intermediate result. e empirical compari-
son of the two tools provided in Section 4.6 will give a glimpse of the
actual speed-up achievable by means of the WM solution strategy.

76

4.5. Related Work

e second observation can be exploited too in order to speed up the
execution time. Indeed, regular topologies, such as banded systems,
support the application of faster solution algorithms [170].

77

. T WMP

4.6 Empirical Evaluation

is section discusses a set of experiments conducted to empirically
assess the design time effort required by the WorkingMom approach.
In order to provide a basis for comparison, the same test cases have
been analyzed through the PARAM model-checker too.

All the test cases have been generated randomly and are well-
formed models. e algorithm used for the generation is available
online7, as well as the full data set for the experiments. Each test case
in the data set is identified by the seed used to initialize the random
generator, to make all the experiments replicable.

Each test case has exactly two absorbing states and five outgoing
transitions from each state. e properties analyzed in this chap-
ter are only of the forms P=?(⋄ϕ) and R=?(⋄ϕ), where ϕ uniquely
identify one of the absorbing states. ese types of properties have
been chosen for two reasons: first, they stress the core routines for
all the unbounded properties (cf. Sections 4.2 and 4.3); second, they
can be analyzed also by PARAM, which does not support the full
R-PCTL, thus a comparison is possible.

e version of PARAM used for the tests is the 1.8 for 64 bit
processors. e binary distribution has been downloaded from the
official website8. PARAM uses by default a bisimulation preprocess-
ing in order to reduce the size of the input model [116]. Since the
focus of the comparison is on the verification algorithms only, and
considering that the same preprocessing can be applied before the
WM too, bisimulation has been disabled by using the “–no-lump”
flag for command line invocation of PARAM.

e execution time for PARAM is reported as measured by the
tool itself, launched with the statistics flag enabled. e execution
time of the Maple implementations of the WM algorithms has been
measured using the time[real]() built-in function to record the start
and the end of the execution, according to the official directives of the
tool. e execution time reported here does not include the warm up
of the tools, that is anyway independent from the specific instances
and negligible with respect to the analysis time.

e execution environment for all the experiments is a Dual In-
tel(R) Xeon(R) CPU E5530 @ 2.40GHz with 8 Gb of ram, running

7http://filieri.dei.polimi.it
8http://depend.cs.uni-saarland.de/tools/param

78

http://filieri.dei.polimi.it
http://depend.cs.uni-saarland.de/tools/param

4.6. Empirical Evaluation

GNU Linux Ubuntu Server 11.04 64bit. All the tests reported in
this section did not overrun the available memory.

e first set of experiments analyzes the matrix based algorithms
and their dependence on the number of states and the number of
model parameters. e results are reported in Section 4.6.1 and com-
pared with PARAM. e second set of experiments analyzes the de-
sign time efficiency of the equation based algorithms with respect to
the same dimensions of the problem, by comparing the WM imple-
mentation both with PARAM and the built-in solver of Maple 15;
the results are discussed in Section 4.6.2. Finally, in Section 4.6.3, a
set of experiments has been conducted to stress current implementa-
tion of the WM and to provide a realistic assessment of its execution
time.

4.6.1 Matrix Based Algorithms

e execution of the matrix based algorithms is highly memory con-
suming. Despite the temporal efficiency, the size of the test models
has been limited to 30 states in order to make the experiments feasi-
ble within the memory bound of the execution environment.

For every pair (number of states, number of parameters), 50 random
cases have been analyzed.

Figure 4.4 reports the average execution time for the test suite,
while Figure 4.5 reports the maximum execution time measured.

79

. T WMP

0.029 0.11132 3.48256

0.06124 0.36712 8.45046

0.13848

0.34348

0.5675

1.00912

1.14128

3.45066

9.94576

23.39112

10.27724

28.76134

55.94504

135.7234

N
um

be
r o

f P
ar

am
et

er
s

10

20

30

Number of States
10 15 20 25 30

F .: Matrix based approach: average execution time (s) vs
number of states / number of parameters.

0.0402 0.2402 70.4608

0.0902 0.6906 78.961

0.2602

0.6702

1.1302

2.1702

2.2202

6.8502

19.9602

48.5002

38.5902

83.9302

128.6702

330.9592

N
um

be
r o

f P
ar

am
et

er
s

10

20

30

Number of States
10 15 20 25 30

F .: Matrix based approach: maximum execution time (s) vs
number of states / number of parameters.

e choice of reporting both the average and the maximum ex-
ecution time is due to the high variance of the results population.

80

4.6. Empirical Evaluation

Indeed, the topology of each single model affects the actual execu-
tion time in way hard to predict. Recalling the algorithm of Section
4.2.1.1, specific topologies may reduce the number of non zero co-
factors, speeding up the actual execution time. is phenomenon
is intuitively more relevant in presence of a large number of model
parameters because in such case the Laplace expansion of the para-
metric rows leads to smaller numerical cofactors; due to the sparsity
of the matrix, such small cofactors are more likely to be trivially sin-
gular, and this condition is efficiently identified by Maple.

On the other hand, the relation between the average execution
time and the maximum one, seems in this case to be essentially lin-
ear. In particular the worst cases took at most twice the time of the
average cases. All the samples have been analyzed in reasonable time
(< 6 minutes), though the largest ones almost saturate the available
memory < 8Gb.

e growth of the execution time is quite regular, with respect to
both the number of states and the number of parameters.

e theoretical complexity described in Equation (4.5) is empir-
ically verified in Figure 4.6. On the x-axis is reported the complexity
index O1 = τc · (n− c)3) computed for each sample set (where τ is
the average number of transitions originating in a state, in this section
constantly 5; n is the number of state in the model; c is the number
of states having at least one parametric outgoing transition).

e polynomial fitting of the empirical data with respect to the
complexity index O1 reported the following relation:

17.686+1.4706e−6 ·O1

with a correlation between the estimated mode and the data set of
0.93103 and the determination index R29 equals to 0.86681.

9In statistics, R2 is a quality index formodels whosemain purpose is the prediction
of future outcomes on the basis, in this case, of the measured execution times. For its
use in this section, R2 ∈ [0,1] and a perfect fitting between them model and the data
would correspond to R2 = 1.

81

. T WMP

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

100

200

300

Complexity Index O1
0 50 100 150 200×106

F .: Matrix based approach: empirical validation of the com-
plexity assessment in (4.5).

e verification of the same sample cases with PARAM was not
always possible because the execution time of themodel checker when
the models contain more than 10 parameters drastically increases.
Considering the execution time of the matrix based algorithms above
reported, all the runs of PARAM taking more than 5 hours have been
interrupted. For this reason Figures 4.7 and 4.8 have the y-axis trun-
cated at 10.

By looking at Figures 4.7 and 4.8, three observations can be pro-
posed. First, the execution time of the matrix based approach is sig-
nificantly smaller than the execution time of PARAM, both in the
average and in the worst case. Second, there is a higher variability
in the execution times of PARAM verifications, as can be verified by
the ratio between the maximum and average value for each sample
set (up to 360). ird, there is a monotonic trend of the execution
time of PARAM with respect to the number of parameters, but this
is not the case for the number of states, at least in the average case
(cf. Figure 4.7).

82

4.6. Empirical Evaluation

0.016994156 0.62594953 0.47290981

22.16354392 134.6924059 52.09596082

N
U

m
be

r o
f P

ar
am

et
er

s

4

6

8

10

12

Number of States
10 15 20 25 30

F .: PARAM: average execution time (s) vs number of states
/ number of parameters.

0.108871 5.18147 6.65075

645.869 1519.36 1863.43

N
U

m
be

r o
f P

ar
am

et
er

s

4

6

8

10

12

Number of States
10 15 20 25 30

F .: PARAM: maximum execution time (s) vs number of
states / number of parameters.

83

. T WMP

4.6.2 Equation Based Algorithms

In this section, equation based algorithms defined for the WM ap-
proach are compared with both PARAM and the solution of the
linear equation systems by means of the built-in solver provided by
Maple 15.

Due to the high variability noticed in the result sets of the three
analyzers, the plots in this section reports both the average execution
time, as a thick black line, and the maximum measured execution
time, as a dashed thin line.

In Figure 4.9 the reachability of an absorbing state has been an-
alyzed. All the input models have exactly 5 parametric transitions.
25 samples have been analyzed for each point in the graphs. e
three tools provide reasonable performances, though the WM and
the Maple built-in solver are quite faster. ere is also a regular
monotonic trend in the performance of the equation based proce-
dures, while PARAM presents a higher variability.

In Figure 4.10, the same reachability property has been analyzed,
this time for random input models having exactly 10 parametric tran-
sitions. 25 samples per point have been analyzed, as before. In
this test suite the performance of the three tools is no longer com-
parable, with the equation based solvers running in seconds, while
PARAM took up to 5 hours. Furthermore, for models as large as
100 states, PARAM always took more than 5 hours and the corre-
sponding records have been discarded; this is the reason for the 0
execution time reported on the graphs.

Figure 4.11 shows instead the execution time of the three solvers
analyzing the property R=?(3ϕ), again with respect to the number
of states of the input models. Each input model has exactly 7 pa-
rameters, 2 of which are parametric rewards; 1 absorbing states; 5
outgoing transitions for each transient state. For each input size, 50
samples have been taken.

Observing Figures 4.9, 4.10, and 4.11 the gap in the performance
of the three solvers is evident as soon as the complexity of the model
grows, either in the number of states or in the number of parame-
ters. With 100 states and 10 parameters PARAM took almost always
more than 5 hours to verify the reachability property. e equation
based solvers are can perform the same tasks in tens of seconds.

On the other hand, no significant difference can be noted be-
tween the Maple built-in solver and the WM implementation at this

84

4.6. Empirical Evaluation

Ti
m

e
(s

)

0.01

0.02

0.03

0.04

0.05

0.06

Number of States
20 30 40 50 60 70 80 90 100

(a) Equation based algorithms of WM.

Ti
m

e
(s

)

0

0.1

0.2

0.3

Number of states
20 30 40 50 60 70 80 90 100

(b) Maple built-in solver.

Ti
m

e
(s

)

0

20

40

60

Number of states
20 30 40 50 60 70 80 90 100

(c) PARAM.

F .: Execution time vs number of states: flat reachability, 5
parametric transitions.

level of complexity of the input models. In the next section the two

85

. T WMP

Ti
m

e
(s

)

0.02

0.04

0.06

0.08

Number of States
20 30 40 50 60 70 80 90 100

(a) Equation based algorithms of WM.

Ti
m

e
(s

)

0

0.5

1.0

Number of states
20 30 40 50 60 70 80 90 100

(b) Maple built-in solver.

Ti
m

e
(s

)

0

5000

10000

15000

Number of states
20 30 40 50 60 70 80 90 100

(c) PARAM.

F .: Execution time vs number of states: flat reachability,
10 parametric transitions.

equation based procedure will be stressed with more complex models

86

4.6. Empirical Evaluation

Ti
m

e
(s

)

0.02

0.04

0.06

Number of states
10 20 30 40 50 60 70 80 90 100

(a) Equation based algorithms of WM.

Ti
m

e
(s

)

0

0.005

0.010

0.015

0.020

Number of States
10 20 30 40 50 60 70 80 90 100

(b) Maple built-in solver.

Ti
m

e
(s

)

0

200

400

600

800

Number of states
10 20 30 40 50 60 70 80 90 100

(c) PARAM.

F .: Execution time vs number of states: cumulative reward,
5 parametric transitions, 2 parametric rewards.

in order to show the benefits of the WM implementation.

87

. T WMP

4.6.3 Empirical Complexity of theWM
In this section a set of complex input models are analyzed to com-
pare the performance of the Maple 15 built-in solver and the WM
implementation.

In Figures 4.12 and 4.13 a set of input models composed by 100
states and 5 outgoing transitions per state are analyzed with the two
equation based solvers. e property under analysis is a flat reacha-
bility formula. For each point of the graph about 100 samples have
been taken.

e execution time of theWMimplementation significantly over-
comes the performance of the built-in solver of Maple. Indeed, the
former never took more than 5 minutes, while the latter ran for more
than 4 hours in the worst case. Hence, the fill-in reduction strate-
gies adopted for the WM implementation proved to be effective in
speeding up the design time partial evaluation.

Another observation can be done on the two figures. ough the
average execution time is still monotonically growing, the maximum
execution time does not have a regular trend. is issue appears for
the larger models, where the impact of topology is not negligible.

Ti
m

e
(s

)

0

5000

10000

15000

Number of parameters
15 20 25 30 35 40 45

F .: Stress test of the Maple built-in solver: 100 states, up
to 45 transition parameters.

To further stress theWM implementation and to try an empirical
assessment of the actual performance of the tool (which is notably
less than the one expected from the worst case analysis of Section

88

4.6. Empirical Evaluation

Ti
m

e
(s

)

0

100

200

300

Number of parameters
15 20 25 30 35 40 45

F .: Stress test of the WM implementation: 100 states, up
to 45 transition parameters.

4.2.1.2), in Figure 4.14 a set of input models composed by 200 states
and 5 outgoing transitions per state have been analyzed. e property
under analysis is still a flat reachability formula. For each point of the
graph 25 samples have been collected.

An empirical fitting of the two curves on the graph is reported.
e empirical complexity nicely fits a 3rd order polynomial function
of the number of parameters, with high values of the determination
index R2 confirming the goodness of the fit. is is however an em-
pirical measure based on 150 random cases and can only be consid-
ered as an indicative estimation of the actual temporal complexity of
the WM implementation. It is anyway notable that the execution
time even with so large models never took more than half an hour,
proving the feasibility of the WM approach. Models with more pa-
rameters have been analyzed too, but very often they exhausted the
available memory (8Gb) and the analyses have been interrupted

89

. T WMP

avg(x) = (-12.201) + 1.8561*x + (-0.070435)*x2 + 0.0007652*x3 [R2 = 0.9636]
max(x) = (-127.57) + 15.105*x + (-0.47006)*x2 + 0.0046551*x3 [R2 = 0.9951]

Ti
m

e
(s

)

0

500

1000

1500

Number of Parameters
0 10 20 30 40 50 60 70 80 90 100 110

F .: Stress test of the WM implementation with 200 states
and up to 100 parameters.

As a final observation, the red error bars on the graph of Figure
4.14 represent the standard deviation of the sample set for the cor-
responding number of parameters. As already noted for Figure 4.13,
the variability of the execution times grows for more complex mod-
els. is issue seems to be related to topological factors and further
investigation are being conducted in order to formally characterize
them.

90

Syntax-Diven Analysis 5

e program and the correctness proof
grow hand in hand.

Edsger Dijkstra

eapproaches proposed in the previous chapters dealt withmodel-
based quantitative verification. In particular, the behavior of the run-
ning software has been formalized through a Markov process that
captures its temporal evolutions and provides room to model uncer-
tainty and variability. Such models pave the way to the application
of efficient model-checking techniques, as well as the applicability of
the WorkingMom analysis.

A closer look at the verification techniques discussed in Part I
reveals a latent modus operandi concerning the run time verification
of adaptive software: the actual purpose of keeping models “alive” at
runtime is to provide a semantic lens through which the data fed by
monitors can be interpreted. Generalizing this observation, quantita-
tive analysis can be considered as a special semantic evaluation of the
software that is continuously updated whenever new information is
gathered from the running instances. is insight has a natural par-
allelism with the classic semantic interpretation of programs [119].

is chapter investigates concepts typical of the semantic inter-
pretation of formal languages and extends their application to the

91

. S-D A

problem of efficient quantitative analysis at run time. e enabling
driver of efficiency will be in this case incrementality (cf. Chapter
4.5).

e result of this investigation is SiDECAR (Syntax-DrivEn in-
CrementAl veRification), a general framework to define verification
procedures, which are automatically enhanced with incrementality
by the framework itself. e framework follows a syntactic-semantic
approach, since it assumes that the artifacts to be verified have a syn-
tactic structure described by a formal grammar, and that the verifica-
tion procedure is encoded as synthesis of semantic attributes [119],
associated with the grammar and evaluated by traversing the syntax
tree of the artifact.

Among the various classes of formal languages, SiDECAR is
based on Floyd grammars [74], which allow for re-parsing, and hence
semantic re-analysis, to be confined within an inner portion of the
input that encloses the changed part. is property is the key for
an efficient incremental verification procedure: since the verification
procedure is encoded within attributes, their evaluation proceeds in-
crementally, hand-in-hand with parsing.

SiDECAR is a general framework for the definition of incre-
mental syntactic-semantic verification procedures. To show it effec-
tiveness for quantitative verification, it is used in this chapter for reli-
ability and cost analysis, but the methodology can be applied to more
different types of analysis, including functional verification.

e rest of the chapter is structured as follows. Section 5.1 intro-
duces some background concepts on Floyd grammars and attribute
grammars. Section 5.2 shows how SiDECAR exploits Floyd gram-
mars to support syntactic-semantic incremental verification. In sec-
tion 5.3, an incremental quantitative analysis procedure is defined for
structured programs within SiDECAR. Finally, Section 5.4 discusses
the ins and outs of the framework and compares with related work.

92

5.1. Background

5.1 Background

Before explaining how SiDECAR works, in this section the basic
definitions of Floyd grammars and attribute grammars are reported.
For more information on formal languages and grammars, the inter-
ested reader could refer to [92] and [174].

5.1.1 FloydGrammars
A context-free (CF) grammar G as a tuple G = ⟨VN ,VT ,P,S⟩, where
VN is a finite set of non-terminal symbols; VT is a finite set of terminal
symbols, disjoint from VN ; P ⊆ VN × (VN ∪VT)

∗ is a relation whose
elements represent the rules of the grammar; S ∈VN is the axiom or
start symbol.

e following naming convention is adopted in the rest of this
chapter, unless otherwise specified: non-terminal symbols are in cap-
ital letters, such as ⟨A⟩; terminal ones are enclosed within single
quotes, such as ‘+’ or are denoted by lowercase letters at the beginning
of the alphabet (a,b,c, . . .); lowercase letters at the end of the alpha-
bet (u,v,x, . . .) denote terminal strings; ε denotes the empty string.
For the notions of immediate derivation (⇒), derivation (∗⇒), and the
language L(G) generated by a grammar G please refer to the standard
literature, e.g., [92].

A rule is in operator form if its right hand side (rhs) has no adja-
cent non-terminals; an operator grammar (OG) contains only rules in
operator form.

⟨S⟩ ::= ⟨A⟩ | ⟨B⟩
⟨A⟩ ::= ⟨A⟩ ‘+’ ⟨B⟩ | ⟨B⟩ ‘+’ ⟨B⟩
⟨B⟩ ::= ⟨B⟩ ‘*’ ‘n’ | ‘n’

(a) Arithmetic expressions grammar

‘n’ ‘*’ ‘+’
‘n’ ⋗ ⋗
‘*’ .

=
‘+’ ⋖ ⋖ ⋗
(b) Precedence matrix

F .: Example of an operator grammar (‘n’ stands for any nat-
ural number) and its operator precedence matrix

Floyd grammars (FGs) [74], also called operator precedence gram-
mars, are defined starting from operator grammars by means of bi-
nary relations on VT named precedence. Given two terminals, the

93

. S-D A

precedence relations between them can be of three types: equal-precedence
(.=), takes-precedence (⋗), and yields-precedence (⋖). e meaning of
precedence relations is analogous to the one between arithmetic op-
erators and is the basic driver of deterministic parsing for these gram-
mars. Precedence relations can be computed in an automatic way for
any operator grammar.

e precedence relations can be represented by a VT ×VT matrix,
named operator precedence matrix (OPM). An entry ma,b of an OPM
represents the set of operator precedence relations holding between
terminals a and b. For example, Fig. 5.1(b) shows the OPM for the
grammar of arithmetic expressions in Fig. 5.1(a). Precedence rela-
tions have to be neither reflexive, nor symmetric, nor transitive, nor
total. If an entry ma,b of an OPM M is empty, the occurrence of the
terminal a followed by the terminal b represents a malformed input,
which cannot be generated by the grammar. Notice however that
this is not the only class of possible malformed input.

Definition 5.1.1 (FloydGrammars) An OG G is a Floyd grammar
if and only if its OPM is a conflict-free matrix, i.e., for each a,b ∈
VT , |ma,b|≤ 1.

Definition 5.1.2 (Fisher Normal Form) A FG is in Fischer Nor-
mal Form (FNF) if, for any two rules ⟨A⟩ ⇒ α , ⟨B⟩ ⇒ β , α = β
implies ⟨A⟩= ⟨B⟩; α ∈VN (renaming rule) iff ⟨A⟩= ⟨S⟩; α = ε im-
plies ⟨A⟩= ⟨S⟩; ⟨S⟩ occurs in no rhs.

e grammar of Fig. 5.1(a) is in FNF. In the rest of this chapter,
it is assumed, without loss of generality, that all the FGs are in FNF.
Also, the input strings are assumed to be implicitly enclosed between
two ‘#’ special characters, corresponding to the begin and end of the
input, such that ‘#’ yields precedence to any other character and any
character takes precedence over ‘#’.

e key feature of FG parsing is that a sequence of terminal char-
acters enclosed within a pair⋖⋗ and separated by .

= uniquely deter-
mines a rhs to be replaced, by a shift-reduce algorithm, by the cor-
responding left-hand side (lhs). Notice that in the parsing of these
grammars non-terminals are “transparent”, i.e., they are not consid-
ered for the computation of the precedence relations.

Example 5.1.1 (Parsing FGs.) Consider the syntax tree of Fig. 5.2
generated by the grammar of Fig. 5.1(a): the leaf ‘6’ is preceded by

94

5.1. Background

‘+’ and followed by ‘*’. Because ‘+’ ⋖ ‘6’ ⋗ ‘*’, ‘6’ is reduced to ⟨B⟩.
Similarly, in a further step ‘+’ ⋖ ⟨B⟩ ‘*’ .= ‘7’ ⋗ ‘*’ and the reduction
⟨B⟩ ⇒ ⟨B⟩ ‘*’ ‘7’ is applied (notice that non-terminal ⟨B⟩ is “trans-
parent”), and so on.

....⟨S⟩...

..⟨B⟩.....

..⟨B⟩.....

..8

.

....

..*

.

..

..⟨B⟩.....

..7

.

....

..*

.

..

..⟨B⟩...

..6.

....

..+

.

..

..⟨B⟩.....

..⟨B⟩...

..2

.

....

..+

.

..

..⟨B⟩.....

..4

.

....

..*

.

..

..⟨B⟩...

..5

F .: Abstract syntax tree of the expression ‘5*4+2+6*7*8’

5.1.2 Attribute Grammars
Attribute Grammars (AGs) have been proposed by Knuth as a way to
express the semantics of programming languages [119]. AGs extend
CF grammars by associating attributes and semantic functions to the
rules of a CF grammar; attributes define the “meaning” of the corre-
sponding nodes in the syntax tree.

In this chapter only synthesized attributes are considered, which
characterize an information flow from the children nodes (of a syntax
tree) to their parents. Notice however that more general attribute
schemas do not add semantic power but have been introduced just to
simplify the specification [119] .

An AG is obtained from a CF grammar G by adding a finite set
of attributes SYN and a set SF of semantic functions. Each symbol
X ∈VN has a (possibly empty) set of (synthesized) attributes SYN(X);
SYN =

∪
X∈VN

SYN(X).
In the following, the symbol α denotes a generic element of SYN;

each α takes values in a corresponding domain Tα . e set SF con-
sists of functions, each of them associated with a rule p in P. For

95

. S-D A

each attribute α of the lhs of p, a function fpα ∈ SF synthesizes the
value of α based on the attributes of the non-terminals in the rhs of
p.

Example 5.1.2 (Attribute schema for arithmetic expressions.) For
example, the grammar in Fig. 5.1(a) can be extended to an attribute
grammar that computes the value of an expression. All nodes have
only one attribute called value, with Tvalue = N. e set of semantic
functions SF is defined as in Fig. 5.3, where semantic functions are
enclosed in braces next to each rule:

⟨S⟩ ::= ⟨A⟩ {value(⟨S⟩) = value(⟨A⟩)}
⟨S⟩ ::= ⟨B⟩ {value(⟨S⟩) = value(⟨B⟩)}
⟨A0⟩::= ⟨A1⟩ ‘+’ ⟨B⟩ {value(⟨A0⟩) = value(⟨A1⟩)+ value(⟨B⟩)}
⟨A⟩ ::= ⟨B1⟩ ‘+’ ⟨B2⟩ {value(⟨A⟩) = value(⟨B1⟩)+ value(⟨B2⟩)}
⟨B0⟩::= ⟨B1⟩ ‘*’ ‘n’ {value(⟨B0⟩) = value(⟨B1⟩)∗ eval(‘n’)}
⟨B⟩ ::= ‘n’ {value(⟨B⟩) = eval(‘n’)}

F .: Example of attribute grammar

e + and ∗ operators appearing within braces correspond, re-
spectively, to the standard operations of arithmetic addition and mul-
tiplication, and eval(·) evaluates its input as a number. Notice also
that, within a rule, different occurrences of the same grammar sym-
bol are denoted by distinct subscripts.

96

5.2. Syntactic-Semantic Incrementality

5.2 Syntactic-Semantic Incrementality

SiDECAR exploits a syntactic-semantic approach to define verifi-
cation procedures that are encoded as semantic functions associated
with an attribute grammar. In this section, FGs, equipped with a
suitable attribute schema, are exploited to define verification proce-
dures that automatically provide incrementality in a natural and effi-
cient way.

5.2.1 e Locality Property and Syntactic Incrementality

e main reason for the choice of FGs is that, unlike more com-
monly used grammars that support deterministic parsing, they enjoy
the locality property, i.e., the possibility of starting the parsing from
any arbitrary point of the sentence to be analyzed, independent of
the context within which the sentence is located.

In fact for FGs the following proposition holds.

Proposition 5.2.1 (Locality property.) If a⟨A⟩b ∗⇒ asb, then, for ev-
ery t,u, ⟨S⟩ ∗⇒ tasbu iff ⟨S⟩ ∗⇒ ta⟨A⟩bu ∗⇒ tasbu. As a consequence, if
s is replaced by v in the context ⟨ta,bu⟩, and a⟨A⟩b ∗⇒ avb, then ⟨S⟩ ∗⇒
ta⟨A⟩bu ∗⇒ tavbu, and (re)parsing of tavbu can be stopped at a⟨A⟩b ∗⇒
avb.

Hence, if the derivation can be obtained—bymeans of a bottom-
up parser— a⟨A⟩b ∗⇒ avb, a matching condition with the previous
derivation a⟨A⟩b ∗⇒ asb is satisfied and the old subtree rooted in ⟨A⟩
can be safely replaced with the new one, independently on the global
context ⟨ta,bu⟩ (only the local context ⟨a,b⟩ matters for the incre-
mental parsing).

Example 5.2.1 (Incremental parsing of FGs.) Consider the string
and syntax tree of Fig. 5.2. Assume that the expression is modified by
replacing the term ‘6*7*8’ with ‘7*8’. e corresponding new sub-
tree can clearly be built independently within the context ⟨‘+’, ‘#’⟩.
e matching condition is satisfied by ‘+’⟨B⟩‘#’ ∗⇒ ‘+’‘6’‘*’‘7’‘*’‘8’‘#’
and ‘+’⟨B⟩‘#’ ∗⇒ ‘+’‘7’‘*’‘8’‘#’; thus the new subtree can replace the
original one without affecting the remaining part of the global tree.

97

. S-D A

If, instead, the second ‘+’ is replaced by a ‘*’, the affected portion of
syntax tree would be larger and more re-parsing would be necessary1.

In general, the incremental parsing algorithm, for any replace-
ment of a string w by a string w′ in the context ⟨t,u⟩, automati-
cally builds theminimal “sub-context” ⟨t1,u1⟩ such that for some ⟨A⟩,
a⟨A⟩b ∗⇒ at1wu1b and a⟨A⟩b ∗⇒ at1w′u1b.

e locality property has also been shown to support an efficient
parallel parsing technique [19], which is not yet exploited here.

On the other hand, the locality property has a price in terms of
generative power. For example, the LR grammars traditionally used
to describe and parse programming languages in general do not sat-
isfy it. Indeed, FGs cannot generate all the deterministic languages,
as LRs do. is limitation, however, is more of theoretical interest
than of real practical impact. Most real-life programming languages
in fact can be generated by a suitable FG [92].

At the current advancement state of SiDECAR, it includes an
incremental parser for FGs that exhibits the following features:

• linear complexity in the length of the string, in case of parsing
from scratch

• linear complexity in the size of the modified subtree(s), in case
of incremental parsing

• O(1) complexity of the matching condition test, thanks to an
hash based data structure that stores the previous matches.

5.2.2 Semantic Incrementality
In a bottom-up parser, semantic actions are performed during a re-
duction. is allows the re-computation of semantic attributes after a
change to proceed hand-in-hand with the re-parsing of the modified
substring.

Suppose that, after replacing a substring w with w′, incremen-
tal re-parsing builds a derivation ⟨N ⟩ ∗⇒ xw′z, with the same non-
terminal ⟨N ⟩ as in ⟨N ⟩ ∗⇒ xwz, so that the matching condition is
verified. Assume also that ⟨N ⟩ has an attribute αN .

Two situations may occur related to the computation of αN :
1Some further optimization could be applied by integrating the matching condi-

tion with techniques adopted in [83].

98

5.2. Syntactic-Semantic Incrementality

αN

x w' z

αs

αM

αP αQ

αK

F .: Incremental evaluation of semantic attributes

1. e αN attribute associated with the new subtree rooted in ⟨N ⟩
has the same value as before the change. In this case, all the
remaining attributes in the rest of the tree will not be affected,
and no further analysis is needed.

2. e new value of αN is different from the one it had before the
change. In this case (see Fig. 5.4) only the attributes on the
path from ⟨N ⟩ to the root ⟨S⟩ (e.g., αM,αK ,αS) can change
and thus need to be re-computed. e values of the other at-
tributes not on the path from ⟨N ⟩ to the root (e.g., αP and αQ)
do not change: there is no need to re-compute them.

99

. S-D A

5.3 Incremental Quantitative Analysis

In this section the SiDECAR is used to define an incremental proce-
dure for the quantitative analysis of a structured program. e types
of properties under analysis are reliability and cost.

e programs appearing in this section are written in the Mini
language, whose grammar is shown in Fig. 5.5. It is a minimalistic
language that includes the major constructs of structured program-
ming.

For the sake of readability and to reduce the complexity of at-
tribute schemas, the constructs concerning variables has been omit-
ted in the Mini language, focusing only on function calls and control
constructs. Adding the management of variables is a simple exercise.

⟨⟨S⟩⟩ ::= 'begin'⟨stmtlist⟩ 'end'

⟨stmtlist⟩ ::= ⟨stmt⟩ ';'⟨stmtlist⟩
| ⟨stmt⟩ ';'

⟨stmt⟩ ::= ⟨function-id⟩ '('')'
| 'if'⟨cond⟩ 'then'⟨stmtlist⟩ 'else'⟨stmtlist⟩ 'endif'
| 'while'⟨cond⟩ 'do'⟨stmtlist⟩ 'endwhile'

⟨function-id⟩ ::= …

⟨cond⟩ ::= …

F .: e grammar of the Mini language

Mini language resembles the simplified workflow language pro-
posed in [60] for the analysis of reliability and failure propagation in
workflow models2 Indeed, the verification problem presented here
for Mini can be viewed as a high-level abstraction of a similar ver-
ification problem for service compositions in the context of service-
oriented architectures, where the call to possibly faulty functionsmim-
ics the call to third-party services.

2e attribute schema of [60] can be used as-is in SiDECAR, enhancing that
analysis procedure with incrementality in a seamless way.

100

5.3. Incremental Quantitative Analysis

To show the benefits of incrementality, intrinsically supported by
SiDECAR, for the verification procedure defined in the next subsec-
tions, two versions of the example program (shown in Fig. 5.6) will
be analyzed. A third analysis will involve the change in the moni-
tored value of the reliability of one of functions and will be described
later, after introducing the attribute schema.

e invocation of function opC() at line 3 of version 1 is replaced
by the execution of a while loop in version 2 (lines 3 to 5). Notice
that this is a structural change in the control flow of the program.
Figure 5.7 depicts the syntax tree of version 1 of the program, as well
as the subtree that is different in version 2; nodes of the tree have
been numbered for quick reference.

1 begin
2 opA();
3 opC();
4 if (e1)
5 then opB();
6 else opA();
7 endif;
8 end

(a) Version 1

1 begin
2 opA();
3 while (e2) do
4 opD();
5 endwhile;
6 if (e1)
7 then opB();
8 else opA();
9 endif;

10 end

(b) Version 2

F .: e two versions of the example program

Before proceeding to the details of the analysis procedure, and the
corresponding attribute schema, a few notational conventions are in-
troduced. Given a Mini program P, FP is the set of functions and EP
is the set of conditions of if andwhile statements in P. e subscript
P in FP and EP is omitted whenever the program is clear from the
context.

5.3.1 Applying SiDECAR

To provide a simplified quantitative analysis procedure based on SiDE-
CAR the first step is to describe the semantics of the involved qual-
ities, in this case reliability and cost.

101

. S-D A

....⟨S⟩ 0...

..⟨stmlist⟩ 1.....

..⟨stmlist⟩ 5.....

..⟨stmlist⟩ 9...

..⟨stmt⟩ 10.....

..⟨stmlist⟩ 17...

..⟨stmt⟩ 18...

..⟨function-id⟩ 19...

..opA() 20.

....

..⟨stmlist⟩ 13...

..⟨stmt⟩ 14...

..⟨function-id⟩ 15...

..opB() 16

.

..

..⟨cond⟩ 11...

..e1 12

.

..

..⟨stmt⟩ 6...

..⟨function-id⟩ 7...

..opC() 8

.

..

..⟨stmt⟩ 2...

..⟨function-id⟩ 3...

..opA() 4

.

..⟨stmt⟩ 6.....

..⟨stmtlist⟩ 23...

..⟨stmt⟩ 24...

..opD() 25

.

..

..⟨cond⟩ 21...

..e2 22

F .: e syntax tree of version 1 of the example program; the
subtree in the box shows the difference (node 9) in the syntax tree of
version 2

Let assume that each function f ∈ F has a probability PrS(f) ∈
[0,1] of successfully completing its execution and a cost C(f) ∈ R.
To simplify the later formalization, let assume that the cost is paid
at the moment of invocation, regardless the correct execution of the
function. Assume also that for each expression e ∈ E there is a prob-
ability PrT (e) of the condition to be satisfied.

e values PrS(f), PrT (e), and C(f) are analogous to the con-
cepts of reliability, probability of moving toward a certain state, and
state reward stated in Chapter 4. ey depend on the usage profile
and environmental conditions, and can be guessed at design time on
the basis of the designer’s experience, the knowledge of the appli-
cation domain, or from previous executions; at run time, they can
instead be gathered from the running instances by combining mon-
itoring and statistical inference techniques [73].

e reliability of a program is computed as the expected prob-
ability value of its successful completion. Analogously, concerning
cost analysis, the expected cumulative cost of a run is computed. Ev-

102

5.3. Incremental Quantitative Analysis

ery failure is assumed to be unrecoverable and independent from the
others.

e reliability of a sequence of statements is the probability that
all of them are executed successfully. Given the independence of the
failure events, the probability of their conjunction can be computed
as the product of the reliability value of each statement. e cost of
a sequence of statements is the sum of the costs of each of them.

For an if statement with condition e, its reliability is the relia-
bility of the then branch weighted by the probability of e to be true,
plus the reliability of the else branch weighted by the probability of e
to be false. e cost of an if statement can be computed analogously.
ese intuitive definitions are formally grounded on the law of total
probability and the assumption of independence.

For a while statement with condition e and body b, the expected
reliability and the expected cost can be computed by reasoning in a
first-step way (cf. Section 4.2.1.3) as in the following equations:

PrS(⟨while⟩) = PrF(⟨e⟩) ·1+PrT (⟨e⟩) ·PrS(body) ·PrS(⟨while⟩)
C(⟨while⟩) = PrT (⟨e⟩) · (C(body)+PrS(body) ·C(⟨while⟩))

(5.1)

whose solutions are:

PrS(⟨while⟩) =
1−PrT (⟨e⟩)

1−PrT (⟨e⟩) ·PrS(body)

C(⟨while⟩) = PrT (⟨e⟩) ·C(body)
1−PrT (⟨e⟩) ·PrS(body)

(5.2)

It is now possible to encode this analysis through the following
attributes:
- SYN(⟨S⟩) = SYN(⟨stmlist⟩) = SYN(⟨stmt⟩) = {γ ,ϑ};
- SYN(⟨cond⟩) = {δ};
- SYN(⟨function-id⟩) = {η};
where:

• γ represents the reliability of the execution of the subtree rooted
in the node the attribute corresponds to.

• ϑ represents the cumulative cost of the subtree rooted in the
node the attribute corresponds to.

103

. S-D A

• δ represents PrT (e), with e being the expression associated
with the corresponding node.

• η is a string corresponding to the literal value of an identifier.

e attribute schema is defined as follows:
1. ⟨⟨S⟩⟩ ::= 'begin'⟨stmtlist⟩ 'end'

γ(⟨S⟩) := γ(⟨stmtlist⟩)
ϑ(⟨S⟩) := ϑ(⟨stmtlist⟩)

2. a) ⟨stmtlist0⟩ ::= ⟨stmt⟩ ';'⟨stmtlist1⟩
γ(⟨stmtlist0⟩) := γ(⟨stmt⟩) · γ(⟨stmtlist1⟩)
ϑ(⟨stmtlist0⟩) := ϑ(⟨stmt⟩)+ϑ(⟨stmtlist1⟩)

b) ⟨⟨stmtlist⟩⟩ ::= ⟨stmt⟩ ';'
γ(⟨stmtlist⟩) := γ(⟨stmt⟩)
ϑ(⟨stmtlist⟩) := ϑ(⟨stmt⟩)

3. a) ⟨⟨stmt⟩⟩ ::= ⟨function-id⟩ '('')'
γ(⟨stmt⟩) := PrS(f)
ϑ(⟨stmt⟩) := C(f)
with f ∈ F and η(⟨function-id⟩) = f

b) ⟨stmt⟩ ::= ‘if’ ⟨cond⟩ ‘then’ ⟨stmlist0⟩ ‘else’ ⟨stmlist1⟩
‘endif’

γ(⟨stmt⟩) := δ (⟨cond⟩) · γ(⟨stmtlist0⟩)
+(1−δ (⟨cond⟩)) · γ(⟨stmtlist1⟩)

ϑ(⟨stmt⟩) := δ (⟨cond⟩) ·ϑ(⟨stmtlist0⟩)
+(1−δ (⟨cond⟩)) ·ϑ(⟨stmtlist1⟩)

c) ⟨⟨stmt⟩⟩ ::= 'while'⟨cond⟩ 'do'⟨stmtlist⟩ 'endwhile'

γ(⟨stmt⟩) :=
1−δ (⟨cond⟩)

1−δ (⟨cond⟩) · γ(⟨stmtlist⟩)

ϑ(⟨stmt⟩) :=
δ (⟨cond⟩) ·ϑ(⟨stmtlist⟩)

1−δ (⟨cond⟩) · γ(⟨stmtlist⟩)
4. ⟨cond⟩ ::= …

δ (⟨cond⟩) := PrT (e)
with η(⟨cond⟩) = e

It is now possible to use SiDECAR to analyze the two versions of

104

5.3. Incremental Quantitative Analysis

the example program of Figure 5.6. In the steps of attribute synthesis
numbers are used to refer to corresponding nodes in the syntax tree
of Figure 5.7.

For the following analyses, let assume the reliability of the four
functions are: PrS(opA) = .97, PrS(opB) = .99, PrS(opC) = .95,
and PrS(opD)= .975; the costs are C(opA)= 2, C(opB)= 5, C(opC)=
7, and C(opD) = 3; the probability of satisfying the two conditions
are PrT (e1) = .3, and PrT (e2) = .6.

Example Program - Version 1

Given the abstract syntax tree in Fig. 5.7, evaluation of attributes
leads to the following values (η attributes omitted):

105

. S-D A

γ(2) := .97
ϑ(2) := 2
γ(6) := .95

ϑ(6) := 7
δ (11) := .3
γ(14) := .99

ϑ(14) := 5
γ(13) := .99

ϑ(13) := 5
γ(18) := .97

ϑ(18) := 2
γ(17) := .97

ϑ(17) := 2
γ(10) := .3 · .99+ .7 · .97 = .976

ϑ(10) := .3 ·5+ .7 ·2 = 2.9
γ(9) := .976

ϑ(9) := 2.9
γ(5) := .95 · .976 = .9272

ϑ(5) := 7+2.9 = 9.9
γ(1) := .97 · .9272 = .899384

ϑ(1) := 2+9.9 = 11.9
γ(0) := .899384

ϑ(0) := 11.9

e resulting values for γ(0) and ϑ(0) represent the expected re-
liability and the expected cost of a run of the program.

Example Program - Version 2

Version 2 of the example program differs from version 1 because the
invocation to function opC() at line 3 is replaced by the execution of
a while loop (lines 3 to 5 of version 2).

106

5.3. Incremental Quantitative Analysis

e incremental parsing is able to identify the minimum context
thanks to the precedence relation. e subtree corresponding to the
modified part of the input is shown in the dashed box of Figure 5.7.

Since the matching condition is satisfied, this subtree is hooked
into node 6 of the original tree. Re-computation of the attributes
proceeds upward to the root, leading to the following final values
(only those who changed from the previous evaluation are reported):

δ (21) := .6
γ(24) := .975

ϑ(24) := 3
γ(23) := .975

ϑ(23) := 3

γ(6) :=
1− .6

1− .6 · .975
= .9638554217

ϑ(6) :=
.6 ·3

1− .6 · .975
= 4.3373493976

γ(5) := .9638554217 · .976 = .9407228916
ϑ(5) := 4.3373493976+2.9 = 7.2373493976
γ(1) := .97 · .9407228916 = .9125012049

ϑ(1) := 2+7.2373493976 = 9.2373493976
γ(0) := .9125012049

ϑ(0) := 9.2373493976

Example Program - Changing an Attribute

Let assume a new value for the reliability of opD() is provided by
monitors. e same incremental analysis of the previous sectionwould
be applied in this case too. e number of operations required to
propagate the change from a leaf of the three to its root is still O(log(n)),
where n is the number of nodes.

Concluding, these examples show how SiDECAR re-analyzes
only a limited part of the program and re-computes only a small sub-
set of the attributes, reusing as much as possible from the previous
analyses.

107

. S-D A

5.4 Discussion and RelatedWork

SiDECAR introduces a general methodology for the definition of
incremental verification procedures, which has been applied in the
previous section to deal with quantitative analysis.

Indeed, SiDECAR has only two usage requirements:

• the artifact to be verified should have a syntactic structure deriv-
able from a FG;

• the verification procedure has to be formalized as synthesis of
semantic attributes.

e expressiveness of FGs, discussed in section 5.2, and the well-
known versatility of AGs guarantee that there is no practical limita-
tion in using SiDECAR. Moreover, incrementality is automatically
provided by the framework without any further effort for the devel-
oper.

e parsing algorithm used within SiDECAR has a temporal
complexity linear in the length of the changes to be analyzed. Hence
any change in the program has a minimal impact on the adaptation of
the abstract syntax tree, without any further constraint on the gram-
mar. Semantic incrementality allows for low-impact (re)evaluation
of the attributes, by proceeding along the path from the node corre-
sponding to the change to the root, whose length is normally loga-
rithmic with respect to the length of the program. e use of SiDE-
CAR may result in a significant reduction of the re-analysis and se-
mantic re-evaluation steps. e saving can be very relevant in the
case of large programs and rich and complex attributes schema.

e generality and flexibility of FGs allow for using SiDECAR in
a natural way much richer languages than theMini example shown in
this Chapter; on the other hand, having attribute grammars the same
computational power as Turing machines, they enable formalizing
in this framework any algorithmic schema at any sophistication and
complexity level.

e generality of themethodology advocated by SiDECARwidens
the scope of application to a number of scenarios. For example, at de-
sign time, SiDECAR can effectively support designers in evaluating
the impact of changes in their products, in activities such as what-if
analysis and regression verification, possibly integrated within IDE
tools. Existing techniques for automated verification based either on

108

5.4. Discussion and Related Work

model-checking or on deductive approaches, as well as their opti-
mizations, could be adapted to use SiDECAR, exploiting the bene-
fits of incrementality.

At run time, the incrementality provided by SiDECAR could be
the key factor for efficient online verification of continuously chang-
ing situations, which could then trigger and drive the adaptation of
self-adaptive systems. Furthermore, SiDECAR could also bring at
run time the same analyses so far limited to design time because of
efficiency reasons.

5.4.1 RelatedWork
In this section only related work concerning frameworks to define in-
cremental verification procedures is briefly considered. Incremental
approaches to quantitative verification have been already discussed in
Section 4.5.

Several methodologies have been proposed in the literature as
the basis for incremental verification techniques3. Most of them are
grounded in the assume-guarantee [113] paradigm. is paradigm
views a system as a collection of cooperating modules, each of which
has to guarantee certain properties. e verification methods based
on this paradigm are said to be compositional, since they allow rea-
soning about each module separately and deducing properties about
their integration. If the effect of a change can be localized inside the
boundary of a module, the other modules are not affected, and their
verification does not need to be redone.

is feature is for example exploited in [48], which proposes a
framework for performing assume-guarantee reasoning in an incre-
mental and fully automatic fashion. Assume-guarantee based veri-
fication has been exploited also for probabilistic reasoning (e.g., in
[134]), even though the author is not aware of approaches using it in
an incremental fashion.

5.4.2 SiDECAR and theWorkingMom
emain limitation of theWorkingMomapproach is that the closed-
form parametric expression is tightly related to the structure of the

3Notice that the use of the term incrementalmodel checking in the specific context of
bounded model checking [28] has a different meaning, since it refers to the possibility
of changing the bound of the checking.

109

. S-D A

model. Indeed, it is not possible, in general, to modify the struc-
ture of the Markov model and avoid to re-run the design time partial
evaluation.

SiDECAR may instead allow the application of the Working-
Mom paradigm to the analysis of artifacts described by instances of
a FG; in such case the main limitation WM has for the analysis of
Markov models could be overcome.

Consider the example of Section 5.3. e attribute schema can be
trivially adapted to deal not only with numeric attributes but also with
parametric expressions. is way, the design time partial evaluation
would 1) be far more efficient because the complexity of parsing is
linear in the number of statements (the cost of a single operation
has essentially the same complexity as the WM), and 2) be able to
incrementally re-evaluate the parametric formula in case of structural
changes.

e first benefit has been already proved in [60], and an imple-
mentation in ANTLR is available (not incremental). e second
benefit is being investigated in order to bring the incremental re-
computation of the parametric expressions at run time too, possibly
after an initial parsing conducted once for all at design time.

110

Part IV

Control

111

Model-Based Software Adaptation

Model-Based Software Adaptation

Despite the large number of works applying some notions from
control theory, the control of software systems can still be consid-
ered in its very preliminary stage. Developing accurate models for
software is in fact hard. e presence of intrinsic non linearities, the
variety of usage profiles, maintenance changes, and the interconnec-
tion of heterogeneous components are some of the reasons why it is
so hard to directly provide a comprehensive behavioral model suitable
for control [58, 61, 199].

is difficulty usually lead to the design of controllers focused on
particular operating regions or conditions, or ad hoc solutions which
address specific computing problems using control theory, but do not
generalize [145, 183, 185]. Just to mention an example, [101] de-
fined a controller for .NET thread pools that is not straightforwardly
adapted to other architectures, though the high level task is quite
similar.

At the same time, the quest for continuous verification of quality
properties often leads to the definition of formal models able to cap-
ture a number of aspects of the running software that significantly
characterize its behavior and support the assessment of some of its
properties. ese models are sometimes simple enough to allow the
systematic synthesis of controllers capable of driving the modeled dy-
namics towards the required quality goal.

By controller is here intended, in a broad sense, any system that,
properly coupled to the software system, makes it fulfill its require-
ments whenever they are feasible. Requirements can be strict con-
straints on the behavior (e.g. reliability equal to a certain value) or
formulated as the optimization of certain metrics on the observed
software executions (e.g. minimization of outsourcing costs or max-
imization of throughput).

In particular, any controller system should be able to deal with:

113

C

1. (partial) changes of the requirements. For example, if for some
reason the required target value for the overall reliability changes,
the controller should be able to drive the system toward a new
operative state satisfying the requirement.

2. sudden changes or fluctuations around the nominal operative point.
Interdependence among software parts and components in-
volves the use of third-party services, remote storage, comput-
ing resources out of the control of a company, and so on. All
these parts are characterized by the values of certain QoS met-
rics, usually stated within convenient service level agreements.
During normal execution those values may deviate from nomi-
nal values because of external factors hardly predictable a priori
(e.g. load conditions or hardware failures).

3. accuracy errors in measurement and monitoring. Quantitative as-
sessment of the running system usually relies on monitoring
and/or other measurement procedures. Each of these might
get stuck into temporary biases, be affected by noise, or might
require a certain time to produce an appropriate accuracy. A
controller should provide a reasonable behavior even in pres-
ence of transitory errors on measured values. is capability,
besides reducing the sensitivity to measurement errors, allows
for the use of less invasive monitoring instruments, sometimes
required for high accuracy but expensive in terms of perfor-
mance overhead.

is research is aimed at supporting the claim that control the-
ory provides a number of instruments that software engineers can
exploit to ensure the achievement of non-functional goals in pres-
ence of changes in the environment. In particular this part of the
thesis underlines the role that intermediate behavioral models can
play in filling the gap between the domains of Software Engineer-
ing and Control theory, and provides a concrete instantiation of this
paradigm for the continuous assurance of several quantitative prop-
erties.

e rest of this part is organized as follows. Chapter 6 describes
a general methodology to synthesize controllers for software whose
behavior is described through a DTMC or a D-MRM. ese con-
trollers can pursue the continuous assurance of any quantitative prop-
erty expressible in the flat fragments of PCTL and R-PCTL, respec-

114

Model-Based Software Adaptation

tively. Finally, in Chapter 7, the special case of reliability-driven dy-
namic binding will be further investigated, showing how a different
model can improve both efficiency and scalability.

115

Software Control through Markov Models 6

e purpose of software engineering is to
control complexity, not to create it.

Pamela Zave

is chapter investigates a generalmethodology for the automatic
synthesis of controllers for software systems whose behavior can be
formalized through a Markov process (cf. Section 2.1.2). Markov
models can abstract the control flow the software similarly to a finite
state automaton, adding further information about the probability of
certain transitions to be taken and rewards to be gained after visiting
a certain state. e goal of the controllers targeted by this research
is to keep a quantitative property expressible through (R-)PCTL as
close as possible to its satisfaction. e proposed methodology can in
principle be applied for all the properties that can be partially eval-
uated by the WM, though outside from the flat fragment its use is
in general limited and computationally expensive. is issue will be
briefly discussed in Section 6.5, while the rest of this chapter will be
focused on the flat fragments of the two logics.

To simplify the presentation, the approach will be presented for
the specific case of reliability assurance. Its generalization to all the
other requirements will be straightforward (cf Section 6.5).

117

. S C M M

In the following, Section 6.1 will formally state the problem and
introduce a running example for reliability assurance. Section 6.2 will
discuss how a software model expressed as a Markov process can be
translated into a dynamic system of equations. Section 6.3 present
the control strategy and discusses a set of relevant formal qualities
provided by the controller, that will be empirically assessed in Section
6.4. Finally, Section 6.5 will discuss the extension of the approach to
R-PCTL and the limitations of the proposed controllers, and Section
6.6 discuss some related work.

118

6.1. Control-Oriented Modeling

6.1 Control-OrientedModeling

Reliability can be generically defined as the probability of success-
fully accomplishing the assigned task [41]. Assume that each run of
the system can be either successful or failed. e goal of the con-
troller is to make the system continuously provide a target value for
its reliability (or, conversely, for its failure probability).

e overall abstract picture of the controlled system is provided
in Figure 6.1, where blocks System and Controller represent the mod-
eled system and the controller, respectively. e raw output of the
system is a sequence of events that represent the success or failure of
a run. e Learning Block estimates the actual failure probability of
the system from the output sequences (usually by statistical inference
as in [31, 73]). e goal of the controller is to provide input values
to the system so that the resulting output gets as close as possible the
required target (and reach it if feasible), despite the possible distur-
bances affecting the system.

Controller System

Learning
Block

Target

Actual

Input Output

Disturbances

F .: Block diagram of feedback control.

To understand what are inputs and disturbances in this picture, it
necessary to look back at the underlying behavioral model. DTMCs
are a suitable abstraction for reliability analysis (cf. Chapter 4.2). In-
deed, the occurrence of a failure in a state of the process can be conve-
niently represented by a transition toward a “failure” state. Further-
more, it is here assumed for simplicity that a failure is a permanent
condition, thus represented by an absorbing state. Analogously, the

119

. S C M M

success of the execution can be formalized as the reaching of an ab-
sorbing “success” state after the last operation of the software work-
flow.

e temporal evolution of the process is univocally dictated by
the transition matrix of the process. According to Chapter 2, some
of the transitions are labeled with constant probabilities, representing
immutable internal phenomena, while others are labeled by parame-
ters, accounting for variabilities in the process dynamics. Changing
the value of a parameter corresponds to a change in the distribution of
the next event. At the software level this could for example increase
or decrease the chances that a certain functionality is selected. In the
extreme cases, by setting a probability to 0 (or 1) a certain function-
ality could be actually excluded (or included). A subset of the model
parameters is the input of the system. By imposing their values, the
controller tries to ensure continuous satisfaction of the target reliabil-
ity. Disturbances are in turn represented by the remaining parameters
that represent environmental phenomena, whose variations can only
by measured but not directly influenced. Examples of disturbances
are changes in the failure probability of outsourced operations or in
the usage profile.

Formally, the set of the model parameters can be partitioned in
the two subsets {c0,c1, . . . ,ck} and {r0,r1, . . . ,rm} representing the
control and disturbance parameters, respectively. In the remaining of
the chapter, the vectors c and r will contains the elements of the two
sets in an arbitrary order.

e reliability of the system is formalized by the PCTL property
P=?(⋄ success)1 evaluated in the initial state. By means of the WM
approach, this value can be evaluated to an analytical formula of the
model parameters: s = f (r,c) .

e goals of the controller are thus: 1) find an assignment c̄ of the
control parameters such that s meets its target value s̄, compensating
the current disturbances, and 2) drive the system toward the new
setting in a reasonable time and avoiding spikes and overshooting.

Further requirements will be imposed to the controller later, after
the translation of the problem in terms of control theoretic concepts.
But before proceeding, a small example is introduced in the next sec-
tion to practically illustrate the approach.

1e notation P=? is a short form for the value Pr(ψ), corresponding to the
probability of satisfying the path formula ψ .

120

6.1. Control-Oriented Modeling

6.1.1 A Representative Example

e simple case study of this chapter consists of a model for an image
processing application. A high level software model is shown in Fig-
ure 6.2. e purpose of the system is to apply a filter to incoming im-
ages, followed by a beautifying post-processing phase. It is equipped
with three different implementations of the filter: 1) direct filtering
via internal software, 2) iterative filtering via internal software, and
3) direct filtering via outsourcing to an external service. e DTMC
model for the image processing application is provided in Figure 6.3.
e figure shows that all the operations have a certain probability
of failure (represented by transitions entering state SF , short nota-
tion for the failure state). State S11 represents the action of choosing
among the different filtering options. e probabilities that govern
this choice and the probability of applying one more iteration after
the execution of the iterative filter (represented by state S2) are the
control variables. Control variables are indicated by parameters ci
in Figure 6.3 (referring to Figures 6.2 and 6.3, c1a is the probabil-
ity of choosing the iterative filter, c1b is the probability of choosing
the internal direct filter and thus 1− c1a − c1b the probability of out-
sourcing; c5 is the probability of requesting another iteration of the
iterative filter). ese values can be changed online by the controller
while the software is executing. e controller in fact observes the
overall behavior (i.e., the overall probability of success or failure) and
the disturbances (i.e. the failure probability of each operation), and
tries to guarantee the target global reliability by tuning the control
parameters.

All the alternatives are implemented by black-box services that
can be invoked and observed from outside only. For each of these
services, a run-time monitor collects failure (or success) rates and
estimates its reliability as the probability that an invocation to the
service will not fail2. Notice that, the reliability of each operation is
time-varying and the overall reliability depends on these values. Even
if their nominal values are known at design time, unpredictable events
could alter them. is scenario is fairly realistic, for example, in case
of services shared with other customers. In such case, at different

2Estimates are here assumed to be statistically correct [163] and representative
of the average or worst case, depending on the desired analysis scenario. Interested
readers can refer to [73] for a deeper discussion about DTMC parameters estimation
at runtime.

121

. S C M M

Image
Filtering
Service

Iterative
Filter

Internal
Direct Filter

External
Filter

Post-
processing

F .: Schema of the software system.

times, their availability depends on load conditions of computational
resources. Service reliabilities for each service are thus just observable
values subject to variations during time (disturbances).

s0 s1

s2

s3

s4

s6 sR

sF

r0

1-r0

c1a

c1b

1-c1a-c1b

r2

1-c5

r6

1-r2

1-r3

1-r4
1-r6

s5

c5

r4

r3

F .: DTMC mode for the example system.

By applying the WM partial evaluation on the DTMC of Figure

122

6.1. Control-Oriented Modeling

6.3, it is possible to obtain a closed formula that makes the depen-
dency of reliability (s) on control variables (c) and measured reliabil-
ities (r) explicit:

s = r0 · r6 ·
(

c1a · (−1+ c5) · r2

−1+ c5 · r2
+ c1br3 +(1− c1a − c1b) · r4

)
(6.1)

Equation (6.1) will be later used in Section 6.2 to build a dynamic
control-theoretical model of the software behavior, and in Section 6.3
for the actual design of the controller.

123

. S C M M

6.2 SoftwareModels as Dynamic Systems

In this section the dynamic evolution of the running software, as ob-
served via the corresponding DTMC model, is cast in the control-
theoretical framework of discrete-time dynamic systems [140], through
which achieve self-adaptation3.

A discrete-time dynamic system is described by the equations{
x(k+1) = f (x(k),u(k),dx(k))
y(k) = g(x(k),u(k),dy(k))

(6.2)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are called respectively the state,
input and output vectors, dx ∈ Rnx and dy ∈ Rny the state and out-
put disturbance vectors (being those zeros if there are no variations
with respect to the nominal conditions), f (·, ·, ·) and g(·, ·, ·) are real-
valued vector functions of convenient dimensions, and k is an integer
index counting the instants – not necessarily evenly spaced in time
– when the system undergoes an evolution step. In a more general
form, f (·, ·, ·) and g(·, ·, ·) could depend on an arbitrary number of
real-valued parameters, possibly time-varying. e term “step k” de-
notes the time span between the k-th and the (k+1)-th instant.

Vector dx represents disturbances corresponding to observable
values in the environment that affect the system’s state. Vector dy
accounts for measurement errors of the controlled variables.

e first equation in (6.2) is called the state equation, and dictates
what the system state will be at the end of step k given what it was
at the beginning, and given also the actions exerted on the system in
that step, that are assumed to be correctly summarized by the val-
ues of u and dx at its beginning. e state equation represents the
dynamic system’s character as difference equations, i.e., owing to the
contextual presence of two subsequent index values. In other words,
the state equation gives the system “memory of the past”, and explains
why the same action generally yields different effects depending on
the system condition when it is applied. e input vector u repre-
sentsmanipulated variables, that can be used to influence the system’s
behavior, while the state disturbance dx accounts for any action other
than u, i.e., for any external entity that actually influences the system

3e reader interested in a general background on control theory may refer, for
example, to [75].

124

6.2. Software Models as Dynamic Systems

state, and that in some cases can possibly be measured, but never
manipulated.

e second equation in (6.2) is instead called the output equation.
It is not dynamic, as shown by the presence of a single temporal in-
dex, and in most problems of interest it describes what one measures
(vector y) to appreciate the system’s behavior. e disturbance vec-
tor dy represents possible alterations of said measurements, due e.g.
to measurement noise, but not of the actual evolution of the system
state.

A key concept of control theory is that modeling an object in the
form (6.2) improves per se insights into that object by providing a for-
mal model for its dynamic evolution. In fact, it naturally leads to dis-
tinguishing whether the same action yielded a different outcome than
the previous time it was applied because the modeled object was in a
different state, or something other than that affected it, or some of
its parameters changed, or any combination thereof [62,140]. Such a
distinction is of critical importance when controlling the system, be-
cause trying to “counteract the wrong cause” for an undesired effect
can be disruptive. Also, models like (6.2) inherently give a quanti-
tative and generally tractable meaning to the idea that “the system’s
reaction to a stimulus is related to its previous conditions”, thanks to
the explicit reference to the time.

On a similar front, observe that a model like (6.2) is concerned
not only with the condition that the system can possibly reach under
constant inputs as k → ∞, but also with the way the system evolves
in time. More generally, in the absence of disturbances and assum-
ing complete knowledge of the system (i.e., of f (·, ·, ·) and g(·, ·, ·)),
the initial state x(k0) and the input trajectory u(k), k ≥ k0, uniquely
determine the state trajectory x(k) and the output trajectory y(k) for
k ≥ k0. Disturbances and/or time-variances may alter that nominal
behavior, and ultimately motivate the use of feedback, as explained
in the next section.

ModelingSoftwareReliability. egeneral framework briefly dis-
cussed so far, has to be specialized to the case of control-oriented
softwaremodeling. Suppose that the adaptationmechanism, nomat-
ter how designed, acts at time points identified by an index k, as in
(6.2). Also, let the average duration of a step be significantly longer
than the time scale of the controlled system’s dynamics. Translating

125

. S C M M

from the control jargon to the case of interest, this means for example
that if at the beginning of a step a controller changes the value of a
control parameter, then at the end of the same step the effects of its
action can be measured.

Assuming that the values of control parameters are perfectly known
(because set by the controller), (6.2) reduces to

s(k+1) = f̃ (r(k)+∆r(k),c(k)) (6.3)

where s(k+1) is the reliability in step k (the state x, as defined in
the general model of Equation 6.2), c(k) are the control variables set
for step k (i.e., decided at its beginning and kept constant through
the step), r(k) the expected service reliabilities for step k (which in
this example are estimated via monitoring, but in other case may also
be nominal and possibly constant values), and ∆r(k) accounts for any
discrepancy between the real and expected service reliabilities in step
k, produced for example by the convergence time of the monitors or
measurement noise.

e form of function f̃ stems directly from Equation (6.1) and
describes the relation between s and the model parameters (notice
that s : Rn → R, where n is the total number of parameters).

e output value y corresponds to s itself, that is, the observed
measure of the system is exactly its reliability.

Although model (6.3) is nonlinear and time-varying, it has the
very interesting property of being a “pure delay” system, i.e., the state
vector does not appear on the right hand side of the state equation. In
system-theoretical terms, what is here done is taking the steady-state
model coming from DTMCs and using it in a dynamic framework
under the assumption that any action at the beginning of a step has
exhausted its effect at the end of that step.

126

6.3. Controlling the System’s Dynamics by Feedback

6.3 Controlling the System’s Dynamics by Feedback

In a nutshell, the idea of feedback can be summarized as plugging
the controlled system into a larger one whose role is to set and man-
age the system’s input dependently on its output, the control goal,
and, possibly, on its state or an estimation of it when it is not directly
measurable. Additionally, disturbance measurements can be consid-
ered, if available. Recalling the model of Equation (6.2), this means
in general setting up a control law in the form:

xc(k+1) = fc(xc(k),w(k+1), ŷ(k),
x̂(k), d̂x(k), d̂y(k))

u(k+1) = gc (xc(k),w(k+1), ŷ(k))
(6.4)

where the hat symbol recalls that in the real world onlymeasurements
(or estimates) of some quantities are available (i.e., from now on, q̂
means a measured or estimated value of q, for any variable q). In
(6.4) xc is the controller’s state vector (x in Equation 6.2 that refers
to a general system), w the set point – i.e., the desired behavior for
(part of) the controlled system’s state and output, e.g. the desired
reliability. Notice that the controller state and the desired behavior
are assumed to be known exactly. e control law can be defined
explicitly or, as it will be the case in this section, implicitly, stating
the controller’s state and output as the solution of an optimization
problem. Notice also that the effect of the control applied at the k-th
step is measurable and visible in the feedback value at time k+1.

By joining (6.2) and (6.4), a closed-loop system is obtained as
feedback connection of the controlled system with its controller. e
input of the closed-loop systems are the values of the set point w and
of the disturbances dx and dy; its state is the union of x and xc; and its
output can be taken as (a function of) the set of variables for which
a desired behavior is specified.

For a properly designed controller, formal guarantees can be pro-
vided on the behavior of the closed loop, also in presence of time vari-
ances and/or disturbances, as explained, for example, in [12,141,159]

Referring to theDTMCmodel as the software applicationmodel,
there are transition probabilities that can be controlled (the control
parameters), identified by c(k), and others that are not dependent
on any action but are observable and measurable during software ex-
ecution (disturbance parameters), identified by r(k), e.g. software

127

. S C M M

failures. e corresponding dynamic model for the DTMC process
has been introduced in Equation (6.3) and the value of w is set to s̄,
the target value for s.

Based on the current value s(k), an estimation of the future value
ŝ(k+1) is available. Such estimation is obtained by substituting the
estimated or measured disturbances in the function f and using the
control variables computed for step k (notice that any measurement
of s includes also the effect of dy):

ŝ(k) = f (r̂(k),c(k)). (6.5)

Now let J(k) = f j(c) be a cost function on the control variables
c(k). For example, consider the two control variables c1a(k),c1b(k)
corresponding to the probabilities of sending an incoming request to
three different services (the third one is constrained to be 1−c1a(k)−
c2b(k)); the cost of those values could be the cost of sending the re-
quest to each of the available services.

When no significant cost functions J(k) can be naturally derived
from the application domain4, the designer can introduce a non in-
formative cost function (such as a constant value) to indicate no pref-
erences among all the feasible solutions.

e control law is implicitly specified as the solution of the fol-
lowing optimization problem:

minJ(c) (6.6)

subject to the constraints

||w− ŝ(k)||≤ α||w− s(k−1)||
∀ci(k),0 ≤ ci(k)≤ 1 (6.7)

where α is a real value in the range (0,1) that affects the convergence
rate of the solution: intuitively it imposes the error to be reduced in
the next step by a factor α .

To preserve the semantic of the model, the set of constraints has
to be extended with the implicit probabilistic constraints (i.e. the
sum of outgoing transitions from each state has to be 1), as done for
the control variables ci.

4Cost estimation methodologies in the context of software reliability are an open
research field. e interested reader could refer, for example, to [166].

128

6.3. Controlling the System’s Dynamics by Feedback

6.3.1 Formal Assessment
As first consideration, notice that for each step k where a solution
of the optimization problem (6.6) exists, the error w− s(k) has an
exponential decay. is is obtained by construction, based on how
the controller was designed (first constraint in (6.7)). Moreover, un-
der the same assumption, the time to converge to the desired solu-
tion is known. Indeed, let e(0) be the initial error w− s(0), then
e(k) = αke(0), according to the exponential decay. If one assumes
the system converged when the error e(k)≤ ε , then in nominal con-
ditions this happens when:

k ≥ logα
ε

e(0)
. (6.8)

If the system is no more in nominal conditions, i.e., if r̂(k) de-
viates from its nominal value r(k), the proposed solution is robust
whenever a solution is found for the optimization problem. In fact,
in such a case, the first constraint of (6.7) holds.

To prove this assertion, let first of all consider the ideal case s(k)=
ŝ(k), that is no noise is affecting the measurement of s(k). Suppose
now that there is an additive term, due to a difference in the estima-
tion of r(k) = r̂(k)+∆r(k), and therefore s(k) = ŝ(k)+∆s(k). e
error norm becomes ||w− ŝ(k)−∆s(k)|| and the following equations
hold

||w− ŝ(k)−∆s(k)||≤ ||w− ŝ(k)||+||∆s(k)||
||w− ŝ(k)||≤ α ||w− s(k−1)|| . (6.9)

Notice that the second equation of (6.9) comes from the existence
of a solution for the optimization problem. As a consequence, in the
presence of a solution the stability still holds, while the convergence
time equation does not hold anymore. However, if

||∆s(k)||< (1−α)||w− s(k−1)|| (6.10)

the error norm is guaranteed to diminish, although not at the (un-
feasible) desired rate, determined in Equation 6.8.

Some words deserve to be spent on the role of α . e closer α is
to 0, the faster is the system convergence. However, when the error
is closer to zero there could be oscillations when changes occur, as

129

. S C M M

testified by the inequality (6.10). On the other hand, when α ap-
proximates 1 the system convergence is slow, and though oscillations
could potentially still occur before the error approaches zero, they are
less intense.

Notice however, that in the previous analysis the triangle inequal-
ity has been used to quantify the upper bound of the norm of the dif-
ference as the sum of the norms (Equation (6.9)). is is definitely a
coarse over-bounding, andmakes the proposed assessment quite con-
servative. is approach is however shared by numerous robustness-
related control-theoretical methodologies, and historically accepted
in place of easier but less robust criteria. e interested reader can
find a discussion in [153].

e situation in which the optimization problem has no feasi-
ble solutions can be easily identified [43]5 and used to trigger the
intervention of a higher level controller (or even a human operator)
because there is no control assignment that can further reduce the
error. For the experiments presented in Section 6.1.1, the employed
solver has the further feature of going as close as possible to the unfeasi-
ble constraint, therefore reaching the optimum value that is reachable
in the system conditions.

Although a complete treatment of the matter is deferred to future
work, an first way to automatically deal with unfeasibility can employ
reliability estimates to recompute the set point as the feasible value
nearest to the desired one. Indeed, this would intuitively correspond
to the solution of the following optimization problem:{

w∗(k) = min{s̄(k)− f (r,c(k))}
subject to: r = r̂

(6.11)

e solution of (6.11) could identify the best feasible solution and
actuate a graceful degradation of system’s reliability, while waiting for
higher level intervention.

5Mathematical solvers available off the shelf such as Maple, Mathematica, Mat-
lab, or Cplex automatically detect the unfeasibility of the optimization problem.

130

6.4. Experimental Evaluation

6.4 Experimental Evaluation

e controller for the example system of Section 6.1.1 has been im-
plemented accordingly to Equations (6.6) and (6.6), where the an-
alytic expression for s(k) has been derived from Equation (6.1) and
the following cost function is minimized:

J(c) = (J1ac1a + J1bc1b + J5c5)
2 (6.12)

where J1a,J1b and J5 are equal to one, therefore assuming all costs
are equals. In the case study, the first constraint of Equation (6.7)
is considered with an equal sign, supposing the requirement for the
system to expose exactly the desired reliability.

For all the experiments, α has been set to .5 after manual inspec-
tion of the controller performance.

Changing Set Point and Service Reliabilities. In the first experi-
ment, the reliability required over time is changed to show how the
controller reacts to changes in the desired value. e simulation is
divided into four different slots, each having 25 time units. During
the first slot, the reliability requirement is set to 0.7, while in the fol-
lowing one it is 0.8. In the third slot, the desired reliability is 0.5
and it increases to 0.6 in the last slot. All these numbers are feasible,
considering the reliabilities of the involved services.

Figure 6.4 depicts the overall system reliability (s) over time. A
detail showing the exponential error decay has been magnified to
simplify its observation. Figure 6.5 shows the corresponding con-
trol signals, c1a is represented with a dashed line, while c1b is the
continuous curve; the dashed dotted line shows how c5 changes over
time.

Perturbations to the nominal model were added in the form of
disturbances to the services reliabilities ri, in order to show the con-
troller convergence previously formally proved. e expressions of
the services reliabilities are shown in Equation (6.13):

131

. S C M M

Exponential error decay

Re
lia

bi
lit

y

0.3

0.4

0.5

0.6

0.7

0.8

Time units
10 20 30 40 50 60 70 80 90 100

0.65

0.70

2 4 6 8 10

F .: Reliability of the system: set point (dashed red) and
achieved value (solid).

r0(k) = 0.95+0.02st p(k−25)−
0.20st p(k−50)+0.10st p(k−75)

r2(k) = 0.95+0.02st p(k−20)−
0.20st p(k−70)+0.15st p(k−85)

r3(k) = 0.95+0.02st p(k−15)−
0.97st p(k−55)+0.50st p(k−65)

r5(k) = 0.95
r8(k) = 0.95+0.05st p(k−95)

(6.13)

where stp(·) represents the step function6 and k counts the time units
since start. e changes in the reliabilities are introduced to test the
control system ability to respond to external variations. Notice that
r3 goes to zero in the time interval 55 ≤ k ≤ 65 therefore accounting
for the complete failure of the internal non-iterative filter. e con-
trol system sharply counteracts the failure of the internal direct filter,
changing the control variables as can be noted in Figure 6.5 at time
k = 55.

is experiment allows us to test the response to both transient
behaviors, e.g., small variations of the operating conditions, and to

6st p(x) = 1 if x ≥ 0 and 0 otherwise.

132

6.4. Experimental Evaluation

Co
nt

ro
ls

0

0.2

0.4

0.6

0.8

1.0

Time units
10 20 30 40 50 60 70 80 90 100

F .: Control variables of the system: c1a solid, c1b dotted
and c5 dashed dotted.

changes of the operative scenario, e.g., the complete failure of a ser-
vice.

Noisy Service Reliabilities. Adding a significant white noise in
the range ±5% to all the service reliabilities ri, the output of the
process is essentially unchanged (Figure 6.6) though the controller
has to carry the burden of promptly counteract the noisy measures r̂,
as shown in Figure 6.7.

Notice, in general that convenient estimators for r̂ have also the
effect of a low-pass filter (since they usually focus on the average of
a set of samples [73]), thus they can compensate to some extent the
presence of fast dynamics, such as white noise [184], reducing the
effort of the controller.

Nosy Estimation ofGlobal Reliability. For the sake of complete-
ness, this paragraph shows the case where s cannot be perfectly mea-
sured. is situation may be either a collateral effect of noisy service
reliability estimations or a side effect of numerical approximation in
the analytical form of f (r̂,c).

To empirically show the robustness of the controller to the pres-
ence of noise in ŝ, an artificial white noise bounded in ±1% has been
added to the estimation ŝ of Figure 6.4. e resulting global relia-

133

. S C M M

Re
lia

bi
lit

y

0.3

0.4

0.5

0.6

0.7

Time units
10 20 30 40 50 60 70 80 90 100

F .: Reliability of the system with±5% white noise on r̂: set
point (dashed red) and achieved value (solid).

C
on

tro
ls

0

0.2

0.4

0.6

0.8

1.0

Time units
10 20 30 40 50 60 70 80 90 100

F .: Control variables of the system with ±5% white noise
on r̂: c1a solid, c1b dotted and c5 dashed dotted.

bility is shown in Figure 6.8 and the corresponding control signals in
Figure 6.9.

As shown in the figures, basing its actions on inaccurate infor-
mation, the controller cannot perfectly follow the desired set point.
On the other hand, the resulting global reliability is remarkably con-
tained around its target value.

134

6.4. Experimental Evaluation

Re
lia

bi
lit

y

0.3

0.4

0.5

0.6

0.7

Time units
10 20 30 40 50 60 70 80 90 100

F .: Reliability of the system with±1% white noise on ŝ: set
point (dashed red) and achieved value (solid).

Co
nt

ro
ls

0

0.2

0.4

0.6

0.8

1.0

Time units
10 20 30 40 50 60 70 80 90 100

F .: Control variables of the system with ±1% white noise
on ŝ: c1a solid, c1b dotted and c5 dashed dotted.

ChangingCostFunction. One may also consider the cost of a ser-
vice as a time varying parameter of the control system. For example,
an experiment can be conducted with a different cost function for the
iterative filter: J1b, becomes 100 in the interval 70 ≤ k ≤ 90. Figure
6.10 shows the control variables in this case. Notice that the reliabil-
ity set point is attained, obtaining the same results shown in Figure

135

. S C M M

6.4. is test shows that the system is able to attain the set point
specification and to minimize the cost of the overall solution, also in
the presence of different operating conditions; for example changes
of service costs.

Co
nt

ro
ls

0

0.2

0.4

0.6

0.8

1.0

Time units
10 20 30 40 50 60 70 80 90 100

F .: Control variables of the system: c1a dashed, c1b solid
and c5 dashed dotted.

Notice that, intuitively, Figures 6.5 and 6.10 are equal except for
the mentioned interval where costs are modified. In Figure 6.10 the
control system changes the transition probabilities (to make the soft-
ware system perform as in Figure 6.4) according to the differences in
the cost function for the diverse software stages. e overall cost is
therefore minimized.

136

6.5. Extension to R-PCTL and Limitations

6.5 Extension to R-PCTL and Limitations

egeneralization of the controlmethodology presented in this chap-
ter to the entire flat fragments of PCTL and R-PCTL is straight-
forward. For example, the expected cumulated cost function before
absorption can be controlled by computing the closed-form expres-
sion f (·) corresponding to the property R=?(⋄ ϕ) through WM and
using it in place of s in Equations (6.6) and (6.7). e boundary con-
ditions have to be adjusted accordingly, by adding the constraints on
the values of reward parameters, if any. e set of control parame-
ters can then involve both transition probabilities and state rewards,
providing a significantly more general application scope.

For example, in [70] the cost of a state describes the deployment
cost for the corresponding service. In the assumption of a cloud com-
puting environment, such a cost may assume only a finite set of val-
ues, corresponding to the available alternative configurations. Each
choice has also a cost decided by the platform provider that can be
used to define the cost function J(·).

Nested formulae. On the other hand, this methodology shows se-
vere limitations due to the irregularity of the expression produced by
the WM. Indeed, it is no longer a rational polynomial formula but
it comes with a set of if-then rules for the run-time update of the
parameters α and β (cf. Section 4.2.2.3). is complex shape is in
general not suitable for numerical evaluation because an assignment
of the control parameters decided on the current operative point may
change the values of the α and β invalidating its preliminary assump-
tions. Hence, despite the validity of its abstract construction, the
controller may be practically unsuitable for self-adaptive software.

Limitations. ere are two main limitations for the control strat-
egy proposed in this chapter:

• Structural changes. e synthesis of the control law is grounded
on the WM approach. For this reason, if the structure of the
Markov process changes, a new closed-form expression must
be computed. is limitation can be mitigated by adding, at
design-time, extra parameters accounting for the disconnec-
tion of a certain state (i.e. making it unreachable from the
initial one) or for creating or deleting certain extra transitions.

137

. S C M M

Furthermore, a finite number of “spare” states may be intro-
duced in the Markov model to be connected at run time to
support a structural change. e price of such a patch is an
increased complexity of both the design-time partial evalua-
tion and the runtime control. Leaving these special cases aside,
adding an arbitrary number of states remains unfeasible.

• Optimization time. Despite its robustness and generality, the
implicit control law defined in this chapter involves the solu-
tion of an optimization problem. e time required for each
step depends mostly on the form of the cost function J(·).
ough efficient routines are available for numerical optimiza-
tion, and considering also that in usual operating conditions
only slight variations on the control parameters are expected,
the optimization phase may be too slow for quickly adapting
systems. is issue is in general domain-specific and there is
not a general way out.

• Contrasting goals. If a single controller has to ensure multiple
properties, the boundary conditions of the optimization prob-
lem in Equation (6.7) should be adapted by imposing the expo-
nential decreasing of the error for each of the properties. is
operation is trivial in case of non contrasting properties, while
could make the optimization unfeasible if two ore more prop-
erties are dependent such that decreasing the error of the first
leads to an increase on the error of the second. is issue is
matter of future work, but a first intuition is that a single com-
prehensive error function might be studied, whose reduction
leads to the satisfaction of multiple goals.

e main strength of this control approach is its generality for
all the control problems where 1) the software behavior can be rep-
resented by a discrete time Markov process, and 2) the controlled
quantitative property can be expressed as a flat (R-)PCTL formula.

In the next chapter, the special case of reliability-driven dynamic
binding will be discussed. ough it can be on a first hand handled
via the control strategy of this chapter, it will be shown how its char-
acteristics can be exploited to overcome the limitations concerning
structural changes and optimization time.

138

6.6. Related Work

6.6 RelatedWork

As introduced in Chapter 1, software systems are increasingly re-
quired to be self-adaptive. If certain requirements change, they must
be able to adapt their behavior accordingly. Moreover, they should
be able to detect changes in the surrounding environment they inter-
act with and automatically adapt to prevent or manage violations of
their requirements, both functional and nonfunctional.

Looking at the literature on self-adaptive software systems, two
observations emerge. First, in the past decades, several areas of Soft-
ware Engineering have been designing self-adaptive systems. Sec-
ond, the research community has recently become aware that self-
adaptation must become a first-class concern of software engineering
methodologies.

Dynamically adjusting strategies for database buffering [89], load-
balancing algorithms [195], caching strategies for operating systems
[2], graphical user interfaces that adapt to different devices or us-
ages [77], or network routing algorithms [56, 64] are all examples
of (self-)adaptive systems. In more recent years, compiler-level ad-
vancements have been developed to support adaptive implementa-
tions for performance [8, 187] or power [14, 180], and low level ar-
chitectures are dynamically adjusted and targeted [30,109,125,182].

e main step toward maturation of broad-scope methodologies
for self-adaptive software likely came from the effort to reconcile its
different enabling disciplines [177]. Besides Software Engineering,
Artificial Intelligence andControleory are currently playing a cru-
cial role for self-* systems, paving the way for new integrated research
fields.

In spite of the analogies between the control systems and self-
adaptation, the basic paradigms of control have rarely a straightfor-
ward application in software engineering practice [120]. Nonethe-
less, control theory is capturing an increasing interest from the soft-
ware engineering community that looks at self-management as ameans
to meet QoS requirements despite environmental changes and fluc-
tuations of external phenomena [58, 100]. Examples of this trend
can be seen in research on control of web servers [117, 145], data
centers and clusters management [65, 126], and operating systems
[40,115,123,146,158].

Self-management techniques are also prominent in industry; e.g.,
companies like IBM [105] (see projects like the IBM Touchpoint

139

. S C M M

Simulator, the K42 Operating System [123]), Oracle (Oracle Auto-
matic Workload Repository [160]), and Intel (Intel RAS Technolo-
gies for Enterprise [108]).

Several approaches in literature try to generalize the use of feed-
back loops in software engineering [35,154,177]. To the best of the
author’s knowledge, control of software through a (Markov) model
capturing behavioral aspects related to non-functional properties was
not explored previously. Moreover, the approach described in this
chapter is general for any flat R-PCTL property and can be applied
to any system whose behavior can be abstracted by a discrete time
Markov process.

Concerning the control of Markov processes, from a control the-
oretical perspective, most of the approaches in literature cover only
special cases. A general control approach forContinuousTimeMarkov
Chains (CTMCs) has been proposed by Brockett [34]. e goal
of the controller is to set the value of controllable transition rates
of CTMC in order to control the value of selected transition rates,
through minimizing a quadratic cost function over the controls.

140

Reliability-Driven Dynamic Binding 7

ere are many different styles of
composition. I characterize them always
as Mozart versus Beethoven. When
Mozart began to write at that time he
had the composition ready in his mind.
He wrote the manuscript and it was ‘aus
einem Guss’ (casted as one). And it was
also written very beautiful. Beethoven
was an indecisive and a tinkerer and
wrote down before he had the
composition ready and plastered parts
over to change them. ere was a certain
place where he plastered over nine times
and one did remove that carefully to see
what happened and it turned out the
last version was the same as the first one.

Edsger Dijkstra

Polymorphism and dynamic binding are fundamentalmechanisms
to support self-adaptation in Service Oriented Architectures (SOA)
[21]. e first allows for the same interface to be provided by differ-
ent, interchangeable implementations. e second removes the quest
for design-time decisions on the binding between abstract operations
of a workflow and the concrete implementations that will carry out
the execution.

Designing an adaptive SOA application requires a way to (re-
)define the bindings at runtime. Indeed, the most convenient bind-
ings usually depend on: 1) software requirements, 2) environmental
conditions, and 3) the actual quality of the suitable alternative im-
plementations. All of these factors may change at run time, with all
the concerns about uncertainty and unpredictability already stated in

141

. R-D D B

previous chapters1.
In this chapter the focus is posed on the definition of a per-request

dynamic binding strategy, based on control theory and driven by the
satisfaction of a reliability requirement. is strategy is envisioned
to overcome the main limitation of Markov models, that is, to allow
the dynamic addition of an arbitrarily large number of new imple-
mentations at runtime, still keeping a low overhead for the selection
process.

In Section 7.1 the problem is formalized for a two-alternatives
scenario, defining a convenient modeling strategy for control purpose
in Sections 7.1.1 and 7.1.1.1, then a procedure to automatically syn-
thesize the controller in Section 7.1.2, and an auto-tuning strategy
to configure it in Section 7.1.3. e core procedure will be validated
experimentally in Section 7.1.4. In Section 7.2 the approach is ex-
tended to the case of n alternatives. Finally, Section 7.3 presents a
few prototype implementations and Section 7.4 concludes the chap-
ter discussing some related researches.

1State of the art technologies supporting dynamic binding at runtime are thor-
oughly discussed in [21, 57].

142

7.1. Two-Alternatives Online Dynamic Binding

7.1 Two-Alternatives Online Dynamic Binding

is section explains how dynamic binding can be translated into a
discrete-time feedback control problem, by going through the typical
control synthesis approach. e problem is first of all formalized as
the dynamic decision of directing requests to one out of two possible
alternatives (two-alternatives dynamic binding), with the goal of fol-
lowing a reliability set-point r(k) = r̄(k)2, where r(k) represents the
reliability provided the abstract operation at time k3.

To achieve this goal, first, a dynamic model of the uncontrolled
system is written and described in Section 7.1.1. Subsequently, a
regulator is designed to fulfill the required goals, as shown in Section
7.1.2. e analytical formulation of the controller allows rigorous
convergence analysis to be performed on the closed-loop system. A
further result of this modeling and synthesis process is the formal
proof that the controller can avoid oscillations, biases and unneces-
sary supply of extra quality – that would be costly – by convenient
tuning of its control parameters that will be discussed along the chap-
ter.

7.1.1 eModeling Paradigm

e two alternatives dynamic binding problem can be formalized, on
a first order approximation, by the DTMC in Figure 7.1, where re-
quests enter the system through the initial node ni, at rate wi, and
are then re-routed to different nodes to be served, s1 and s2 respec-
tively. Each service node s j has a success probability ps j , thus a failure
one p f j = 1− ps j . e control objective is to continuously adapt the
probability p1 of routing to s1 (thus also the probability p2 = 1− p1
of routing to s2) to match overall reliability goal. Nodes n f and ns
respectively represent the failure and the success state. Notice that in
the notation of Figure 7.1, actual implementations are identified by
labels s, while abstract states are represented by labels n.

2A controller designed to follow a set point is also called regulator.
3Notice that a controller able to get as close as possible to a set point r̄ can also

be used to satisfy requirements of the type max{r(k)} and r(k) ≥ r̄(k) by imposing
the set points r(k) = 1 and r(k) = r̄(k)+ ε , respectively (where ε is an arbitrary small
positive number).

143

. R-D D B

..ni..

s1

.

s2

.

n f

.

ns

.

p1

.

p2

.

p f 1

.
ps1

.
p f 2

.

ps2

.

1

.

1

F .: DTMC formalization of the basic dynamic binding
problem.

e controller is supposed to act periodically, at a fixed time step
(or sampling period) whose length is Ts time units4. e choice of
Ts allows to properly formalize the problem in the discrete-time do-
main, that is, introducing a time index k that counts the controller
interventions, and interpreting any quantity x(k) “at (discrete) time
k”, for every quantity x, as the value of x in the (continuous) time span
from k ·Ts to (k+1) ·Ts, when a new value will become available.

Dealing with Service Time. Extending the modeling formalism
of Figure 7.1, to each node j, whether abstract or concrete, is asso-
ciated a request queue. Indeed, in many real-life dynamic-binding
applications the processing time of a node may be non negligible in
presence of high loads. e assumption made in this chapter is that
each node has a maximum throughput per time step and a request
queue to store the requests not yet served.

In system-theoretical terms each queue is called a storage, and the
values of all storages at time k (i.e., the number ν j of requests in each
queue j) form the controlled system’s state vector n(k)5. As for Chap-
ter 6, any quantity that is variable and exogenous for the controlled

4e duration of Ts depends on each specific system; if a change in the reliability
of the implementations is expected to change (or to be monitored) no faster than each
second, Ts should be of about the same order of magnitude. e lower bound value
for Ts is the time required to enforce the control decision, that is, after Ts the effect of
the control action must be measurable.

5Notice that in this approximation, only the length of the queue is considered.
Possible priority strategies are not encompassed at this stage.

144

7.1. Two-Alternatives Online Dynamic Binding

system is either a control variable, if the controller can prescribe its
value (e.g. p1(k) in Figure 7.1), or a disturbance if the controller can
measure or estimate it, but not prescribe its value (e.g. the input rate
wi(k) and the reliabilities of the two alternatives ps1(k) and ps2(k)).
Control variables and disturbances constitute the input of the con-
trolled system.

On a first hand, suppose that ps1 and ps2 are “moderately varying
with sporadic steps”, i.e., that their value undergoes, in each control
step of duration Ts, only small variations around a nominal value,
while from time to time – but sporadically with respect to the con-
trol steps – there may be a large and abrupt variation. e former
assumption is quite natural in reliability assessment. Indeed, during
its regular operation a service may be subject to slow variations due,
for example, to fluctuation in the incoming workload. An abrupt
change is instead related to the exceptional situations such as a crash
in the software or the failure of hardware or network resources.

If the values ps1 and ps2 do not depend on the time, the con-
trolled system is classified in control theory terms as time-invariant.
If they can vary during time, as will be the case for dynamic bind-
ing, the system is said time-varying. In particular, in this chapter it
is assumed that ps1 and ps2 are estimated by the services’ success and
failure rates. Finally, each node j is supposed to have a maximum
throughput of tm j requests per control period of length Ts, as already
informally anticipated.

Under these assumptions, the dynamic model of the system is
defined in the next section.

7.1.1.1 DynamicModel

In this section a dynamic model of the controlled system is defined.
e first step on the path is to write its state equations, i.e., to

express the state at time k as a function of the state and the input
at time k− 1. In Chapter 6 it was done starting from the DTMC.
Here the dynamic model is extended to consider also the queuing
mechanism induced by the throughput saturation.

Denoting by m the number of nodes in the chain – in Figure 7.1
m = 5 – the state equations are:

n(k) = n(k−1)− r(k−1)
+P(k−1) · r(k−1)+w(k−1)

r(k) = min{tm,n(k)}
(7.1)

145

. R-D D B

where bold symbols denote vectors. Each element of w represents the
number of requests entering the corresponding node in the control
step: for simplicity assume there is only one entry point at node ni,
i.e. w = [wi 0000]′, but the model already takes into account the
possibility of having more than one (by setting the corresponding
input rates in w). Vector n = [νi ν1 ν2 νs ν f]

′ is the state, while r
represents the number of requests actually served by each node at
time k, that is the minimum between those pending in the queue
and tm – the vector of maximum node throughputs. Each node is
supposed to have a possibly different maximum throughput, taking
into account the differences in the implementations and capacity of
each component of the chain. Finally, P is the transition matrix of
the chain. For the DTMC of Figure 7.1:

P(k) =

0 0 0 0 0

p1(k) 0 0 0 0
1− p1(k) 0 0 0 0

0 1− ps1 1− ps2 1 0
0 ps1 ps2 0 1

 (7.2)

where ps1 and ps2 are reported as constant. In other words, nominal
values are assumed for the probability of success and failure of the
service nodes, for example based on service level agreements. is
assumption will be relaxed later in this section.

e second step toward the dynamic model is to write the output
equation. As in Chapter 6, this equality relates, instantaneously, the
quantities needed to produce the metric(s) of interest – here, relia-
bility – to the system state (and, in general, its input).

e raw output quantities are the number of failures and suc-
cesses, respectively ν f and νs, measured up to the k-th time step.
us defining y = [ν f νs]

′, the output equation is:

y(k) = Cn(k) =
[

0 0 0 1 0
0 0 0 0 1

]
n(k) (7.3)

Equations (7.1) and (7.3) defines now a time-invariant nonlinear
model that will be identified by M from now on. M is not linear
in both the state and the input vectors because of the saturation of
the throughputs and to an input-by-state product – the term P ·r in
(7.1).

146

7.1. Two-Alternatives Online Dynamic Binding

Finally it comes the measurement dynamics, i.e., the output-to-
metric relation cascaded to the system model. e purpose of such
measurement system (Mm) is to estimate system’s reliability (in this
chapter identified by the symbol q) from the output y of the con-
trolled system:

q(k) =
νs(k)−νs(k−1)

νs(k)+n f (k)−νs(k−1)−ν f (k−1)
, (7.4)

Intuitively, Equation (7.4) measures system’s reliability as the ratio of
the number of successful requests to the total requests served, in the
last time step.

e requirement investigated in this chapter is the continuous
assurance of the desired reliability. If, for example, the goal was to
assure the average reliability in a longer time window, the measure in
Equation (7.4) can be adapted by shifting the temporal index k− 1
further in the past.

e state equation of Mm is:

xm(k) = um(k−1), (7.5)

where the input um and the state xm are both given by the output
y = [ν f νs]

′ of the controlled system. e output of the measurement
system is defined by Equation (7.4). Notice that Mm is nonlinear
because of the output relation only.

7.1.1.2 Linearization

In Section 7.1.1 it has been assumed that system’s reliability may be
subject to significant variations only sporadically, while most of the
time it fluctuates or varies slowly around an equilibrium. In control
theory terms, this problem can be cast into the framework of control
in the proximity of an equilibrium, indicating that the system needs to
be brought to the equilibrium when an abrupt change occurs, and
subsequently kept in its proximity.

Within such framework, it is possible to analyze the equilibria of
the system for constant inputs and construct a linearized model valid
in the proximity of a generic equilibrium. en, a controller suitable
for any equilibrium is devised. More precisely, a strategy is devised to
obtained a different controller parameterization for any equilibrium .

147

. R-D D B

Observing that M and Mm are cascaded, it is convenient to treat
them separately, and then join the results. Starting with M , Equa-
tion (7.1) can be written in the form:

n(k) = Φ(n(k−1),u(k−1),d(k−1)) (7.6)
where u= p1 is the control input and d=wi the disturbance. Assum-
ing to receive constant inputs u and d, the corresponding equilibrium
states n are the solutions n of the following equation:

n = Φ
(
n,u,d

)
(7.7)

that, specialized in the case of M , becomes:

(P(u)− I)min{tm,n}+[wi 0 · · ·0]′ = 0 (7.8)

where I represents the identity matrix.
Matrix P(u)− I is structurally singular, and it can be verified

that no equilibrium exists. is is correct, as the absorbing nodes in
Figure 7.1 apparently accumulate (served) requests indefinitely.

If however the accumulation is neglected, by removing the self-
loops on success and failure states, the matrix P in Equation (7.8)
can be replaced by the following reduced transition matrix Pr:

Pr =

0 0 0 0 0
p1 0 0 0 0

1− p1 0 0 0 0
0 1− ps1 1− ps2 0 0
0 ps1 ps2 0 0

 , (7.9)

en an equilibrium can always be obtained from (7.8)6:

n = [ν i ν1 ν2 νs ν f]
′ = (I −Pr(u))−1 d

=

1
p1

1− p1
p1(1− ps1)+(1− p1)(1− ps2)

p1 ps1 +(1− p1)ps2

wi
(7.10)

6e reader might have noticed the similarity between matrix Pr and the matrix
Q describing the transition probabilities among transient states of a DTMC. e un-
derlying purpose of the two approaches is indeed the same, that is, intuitively, manage
separately the transient and the absorbing states.

148

7.1. Two-Alternatives Online Dynamic Binding

Notice that Equation (7.10) represents a valid equilibrium under
the assumption that r = n (or, equivalently, tm ≥ n). is means that
the system is actually able to satisfy all the incoming requests. e
latter assumption can be violated only for a limited time, otherwise
there cannot be any equilibrium, because one or more queues will
grow indefinitely. Notice that the equilibrium (7.10) computed on
Pr is valid also for the original system, under the same assumptions,
by just interpreting νs and ν f as the successful and failed requests in
the last period, thus (re-)defining the reliability measure in the same
period as:

q(k) =
νs(k)

νs(k)+ν f (k)
(7.11)

Defining δn = n−n, δu = u−u, δd = d−d and δy = y− y,
the linearized model of the system based on Pr is:

 δn(k) = Aδn(k−1)+
Buδu(k−1)+Bdδd(k−1)

δy(k) = Cδn(k)
(7.12)

where:

A = ∂Φr
∂n

∣∣∣
n,u,d

, Bu =
∂Φr
∂u

∣∣∣
n,u,d

,

Bd = ∂Φr
∂d

∣∣∣
n,u,d

(7.13)

are respectively the Jacobian matrices of Φr (defined Φ in Equation
(7.6) but wherePr replacesP) with respect to n, u, and d, computed
at the equilibrium, and C has been defined in (7.3).

Matrix A, as it would be expected, equals Pr, while:

Bu =
[

0 ν1 −ν1 0 0
]′

Bd =
[

1 0 0 0 0
]′ (7.14)

Concerning Mm, the re-definition of q provided in Equation
(7.11) makes the measurement system simply algebraic. In other
words there is no longer the need to keep an internal state, as re-
quired to compute q according to Equation (7.4), since the output is
instantaneously and algebraically related to the input.

149

. R-D D B

Furthermore, any constant input um yields an equilibrium output
q = νs/(νs +ν f). en, following the same procedure used for the
output equation of M , the linearized (algebraic) model of Mm is
defined as:

δq(k) = Dmδum(k) (7.15)

where δum = um −um, δq = q−q, and:

Dm =
[ν f

(νs+ν f)2 − νs
(νs+ν f)2

]
. (7.16)

Putting all the pieces of the cascade system together, a complete lin-
earized dynamic model can be defined as:

 δn(k) = Aδn(k−1)
+Buδu(k−1)+Bdδd(k−1)

δq(k) = Cmδn(k)
(7.17)

where:

Cm = DmC
=

[
0 0 0 ν f

(νs+ν f)2 − νs
(νs+ν f)2

]
.

(7.18)

Applying the Z-transform to converts the discrete-time domain
of (7.17) into a frequency domain, the transfer function from δ p1 to
δq is readily computed as:

P(z) = Cm (zI−A)−1 Bu

= ν1
νs(ps2 − ps1)−ν f (p f 2 − p f 1)

(νs +ν f)2

1
z2

(7.19)

Considering the dependencies among probability values, Equa-
tion (7.19) can be simplified to:

P(z) =
ps2 − ps1

z2 (7.20)

Equation (7.20) reveals some information relevant to control. First,
the gain of the system is the difference of the service nodes’ success

150

7.1. Two-Alternatives Online Dynamic Binding

probabilities, thus (correctly) zero if they are equal, since in that case
no routing action can alter the overall reliability. Second, and most
important, the structure of the controlled dynamics is invariantly that
of a two-steps delay, allowing for a simple control law as the one that
will be introduced in the following sections. On the other hand, since
the sign of the controlled system’s gain can change, most likely no sin-
gle controller parameterization will be suitable for all situations, and
an on-line estimation of service nodes success probabilities will be
exploited to adapt the controller when needed. Notice however that,
in general, the only estimation needed to make the controlled system
eventually meet its goal concerns the sign of the transfer function; of
course “eventually” is not enough and the efficiency of the controller
will be taken into account while designing it in the next section.

7.1.2 Control Synthesis

Concerning the system in Figure 7.1, the goal of the controller is to
set the value of p1(k) in order to obtain q(k) = q̄(k).

Based on equation (7.20), established control theory results al-
low to state that zero steady-state error and a high degree of stability
can be achieved by a PI (Proportional plus Integral) controller [61],
whose dynamic model is:

ui(k) = ui(k−1)+a(1−b) · e(k−1)
p1(k) = ui(k)+a · e(k) (7.21)

where e(k) = q̄(k)−q(k) is the error7.
In Equation (7.21), two parameters govern the behavior of the

controller, namely the coefficients a and b. e value of these two
controller parameters defines the performance of the controller in
terms of effectiveness, time to converge, robustness, stability, and
overshooting avoidance.

e Jury criterion [25] reveals that after a convenient assignment
of a and b, asymptotic stability of the closed-loop system composed
of (7.20) and (7.21) holds for any value d of the difference ps2 − ps1,
of course d ∈ (−1,1), such that:

7e reader interested in an extensive introduction on PI(D) control can refer e.g.
to [12] and the vast bibliography provided therein.

151

. R-D D B

1−abd
1+abd

> 0

(a2b2d2 −abd +ad −1)(a2b2d2 +abd −ad −1)
(1−abd1)(1+abd)

> 0

ad(1−b)(abd +ad +2)(a2b2d2 −abd +ad −1)
a2b2d2 +abd −ad −1

> 0

(7.22)

Studying (7.22) it can be noticed that for a wide range of values
for a and b, stability is preserved under the sole condition ad > 0, thus
that even relevant estimation errors for d do not produce disrupting
effects if at least the sign is caught. Of course, this is not true for
control performance: for example, the time required to recover from
a disturbance can degrade significantly if the estimation of d is not
good enough.

e values of a and b are specific for each equilibrium and allow
the controller to keep system reliability in the proximity of the goal.
If the equilibriium changes, because for example of abrupt changes
in the reliability of one or both alternatives, a new value for the con-
troller parameter must be set.

In common practice of control application, setting the values of
a and b is referred to as the tuning of the controller. Tuning can be
done manually, deciding the value of parameters on the base of their
role in the PI. A first approach to define the values of the controller
parameters a and b could be the identification of their relation to d
and some performance specifications. However this requires a deeper
knowledge of this family of controller, ad usually some experience.
ese skills maybe limiting in most software development contexts,
therefore in the next section a procedure to automatically determine
the most appropriate values of a and b is discussed.

7.1.3 Auto-Tuning

In this section an auto-tuning mechanism is introduced, whose high-
level block diagram appears in Figure 7.2. e purpose of the auto-
tuning mechanism is to automatically update the controller param-
eters to the current conditions. is means that if the reliabilities
of the different services radically change, the parameters of the con-
troller need to be tuned accordingly.

152

7.1. Two-Alternatives Online Dynamic Binding

...

.

.

1
s

.

Rc(s)

.... Pc(s).̄q. +.

Normal (control) mode

.

Autotuning mode

. p1. q.
−

F .: Block diagram for relay-based (PI) auto-tuning.

To define the auto-tuning procedure, the discrete-time transfer
function (7.20) is first re-interpreted as continuous-time and sampled
at period Ts, yielding:

Pc(z) = d e−2Ts s, Rc(s) = K

(
1+

1
sTi

)
(7.23)

where s is the Laplace transform complex variable, d is the difference
defined above, and:

a = K
(

1+
Ts

Ti

)
, b =

Ti

Ti +Ts
. (7.24)

e appliedmethodology is based on relay feedback, see e.g. [138]
for background material. More in detail, by replacing the feedback
controller with a relay cascaded to an integrator, the point of the fre-
quency response Pc(jω) – where j is the imaginary unit and ω the
frequency – with phase −90◦ is easily found from the characteris-
tics (frequency and amplitude) of the sustained oscillation induced
on the controlled variable. is technique, commonly referred to as
relay feedback identification, is known to provide useful auto-tuning
information rapidly and with a very modest system upset.

Once the mentioned frequency response point is determined, as-
suming from control specifications a desired phase margin φm (in
degrees), the parameters of Rc in (7.23) are obtained by solving the
complex equation:

Rc(jω) ·Pω e− j90◦ = e j(180◦−φm) (7.25)
where ω is the oscillation frequency, and Pω the correspondingly
measured frequency response magnitude, see e.g. [139].

153

. R-D D B

In general, the desired phase margin for the controller, φm, is in
the interval (0,90]◦. Lower values privilege response speed versus
absence of oscillations and degree of stability, while higher values do
the reverse. By experience, 60◦ has proved to be a reasonable default
value in the conducted experiments.

When parameters of the continuous-time controller Rc(s) are
identified, the values of a and b can be derived by Equation (7.24).

In order to simplify the specification of a phase margin for non-
specialist users, it could be simpler to define a “desire knob” whose
value is between 0 and 1. 0 corresponds to the request of minimum
time for both the response to desired reliability variations and the
rejection of disturbances at the possible cost of oscillatory transients
and diminished stability degree; 1 calls for maximum stability and
transients’ smoothness, at the potential cost of response time. e
value of the knob can then be used to select the actual phase margin
in a reasonable range, such as 40◦ to 80◦, by linear interpolation (40 ·
x+40 for all the knob values x ∈ [0,1]).

7.1.4 Control Validation
Before the implementation of the controller in a real software system,
a simulation campaign was conducted to provide empirical support
of its effectiveness in a controlled environment.

e results of one of the simulations from the campaign are re-
ported in Figures 7.3 to 7.6. e MATLAB simulator is started ask-
ing for 10000 simulation steps, each node can serve maximum 100
requests per step and the system is required to continuously provide
a reliability of 0.9. e initial failure probability of the first service is
0.4 while the one for the second service is 0.1.

A few variations and disturbances are injected into the system:

• to see how the controller reacts to changes in the set point, the
simulation time has been divided into three intervals, and dur-
ing the second interval the requested reliability has been di-
minished to 0.8.

• the reliability of the two services have been changed four times,
at regular intervals, to simulate different variability scenarios;
for example, the complete failure of the first service has been
simulated between time units 2000 and 4000. e complete
pattern of changes is shown in Figure 7.5.

154

7.1. Two-Alternatives Online Dynamic Binding

Setpoint
Actual value

Re
lia

bi
lit

y

0

0.2

0.4

0.6

0.8

1.0

Time step
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F .: Simulation: overall reliability.

In
co

m
in

g
re

qu
es

ts

0

100

200

300

Time step
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F .: Simulation: incoming requests.

• the number of requests entering the system is changed according
to a predefined pattern, to see the reaction of the system to
different loads.

In most of the cases the controller has been able to compensate
disturbances in a completely transparent way. e largest divergence
between the required behavior and the one obtained can be seen in
Figure 7.3 at time unit 4000: when the first service node is back to its
normal operations, there is a spike in reliability that is immediately
compensated by the control action shown in Figure 7.6.

e MATLAB implementation that has been used to perform

155

. R-D D B

S1
S2

Re
lia

bi
lit

y

0

0.2

0.4

0.6

0.8

1.0

Time step
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F .: Simulation: services reliabilities.
Co

nt
ro

l

0

0.2

0.4

0.6

0.8

1.0

Time step
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F .: Simulation: control.

the experiments will be discussed later in Section 7.3.

156

7.2. Extending to n Alternatives

7.2 Extending to n Alternatives

anks to its inherent modularity, the control approach presented in
the previous section for the two-alternatives case can be extended to
the n-alternatives case in a natural manner. In 1976 D. Knuth proved
that every multinomial distribution can be equivalently reproduced
by conveniently combining binary probabilistic choices [118]. In a
similar fashion, to build a n-alternatives selector, it suffices to apply
the scheme of Section 7.1.2 hierarchically in order to build a binary
selection tree whose leaves are the n implementations that can be tar-
gets of the binding and internal nodes are two-alternatives selectors.
is leads to a structure like the one shown in Figure 7.7, composed
of controllers like the one devised for the two-alternatives case, where
all the controllers try to follow the same set point corresponding to
the global target reliability.

Notice that the “intermediate” nodes can be considered as ficti-
tious, since they are only used to compute the probabilities of routing
from the input node to the possible targets.

p 1-p

p 1-p p 1-p

Level: 0

Level: 1

C0

C1 C2

F .: n-alternatives binding structure.

e composition of PI controllers to create a hierarchical control
structure requires careful setting of the parameters for the different
control elements. To understand the issue, assume the structure of

157

. R-D D B

Figure 7.7 is implemented and both arrows exiting from C1 are con-
nected to concrete executors, S1 and S2. ese executors have their
own reliabilities, respectively r1 and r2. e reliability rC1 provided
by C1 can be computed as p1 · r1 +(1− p1) · r2, where p1 is the value
produced by the controller. When rC1 does not meet the reliability
requirement, the controller C1 can only adjust the value of p1 in or-
der to get as close as possible to the target. is adjustment typically
takes a few time steps to be completed, depending on the configura-
tion of the controller (i.e., the values of K and Ti).

Suppose now that the system is running and satisfies the overall
reliability target. Consider a scenario where r1 decreases sharply, for
example due to a complete failure of the service S1. Assuming that all
two-alternatives controllers adopt the same time-step to query their
siblings, the violation of the requirement due to S1’s failure is almost
immediately propagated upwards from C1 and therefore it is per-
ceived by both C1 and C0, instantaneously triggering their reactions.
Simultaneous changes in the decision of C0 and C1 could interfere
with one another, delaying the solution and possibly introducing os-
cillations in the global reliability of the system.

A better solution for the problem is to allow the controller that
is closer to the source of the violation to react first. In this case, if
possible, C1 would compensate the failure of S1 by redirecting the
load to S2. If the compensation is not possible, it would still provide
the reliability value closest to the set point that can be obtained at that
level in the tree. Only at this point, if still needed, the intervention
of the higher level controller C0 should be triggered.

is scenario naturally generalizes tomore complex selection trees
and can be solved applying a multirate control strategy. e term
means that for each level in the hierarchy, the corresponding con-
trollers act with different time periods, i.e., at different rates. Pre-
cisely, higher-level nodes in the routing tree would intervene slower
with respect to lower ones, and their control period would just need
to be changed accordingly. To simplify the design of n-alternatives
selectors, the PI controllers can still share the parameters, introduc-
ing a further “scaling” factor, identified with the integer parameter
τTs . is means that each tree level exerts its control action every
τTs steps with respect to the lower one. τTs can be interpreted as
the number of time steps required by a controller node to stabilize
the control signal and therefore the reliability of the correspondent
part of the tree. Multirate systems are an established research field

158

7.2. Extending to n Alternatives

in control theory, and powerful analysis and synthesis techniques are
available [9]. In this case, the use of such a strategy allows to avoid
the issues generated by mutual interference of the controllers.

e response to a step variation of a five alternatives binder is
shown in Figure 7.8, where the short convergence time required to
meet the goals can be visually appreciated.

SetPoint
ActualReliability

Re
lia

bi
lit

y

0.4

0.5

0.6

0.7

Time step
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F .: Step response of a 5-alternatives binder.

Concluding, the selection problem among n different alternatives
scales easily even for a large number of alternatives. e selection al-
gorithm just requires to assign to each request a token in [0,1] an then
traverse the selection tree by comparing the token with the control
variable of each controller. e temporal complexity of binding a re-
quest is thus O(log(n)). Furthermore, the control decision for each
controller has to be updated at most every time step (for the con-
trollers closest to the leaves) and is accomplished in constant time by
simply 6 floating point operations (cf. Equation (7.21)).

e main drawback for the n-alternatives case concerns the ap-
plicability of an auto-tuning strategy, since it involves in this case
to manage a multivariable system, whose components interact one
another. Experiments have shown that the auto-tuning procedure
devised for the two-alternatives case is not replicable as is in the n-
alternatives context, and more advanced synthesis techniques need
to be devised. e presented preliminary solution based on mul-
tirate control already shows that the system can work satisfactorily

159

. R-D D B

also with “hand made” tuning, thereby proving that the extension
is practically feasible, and the tuning problem is well posed from
the system-theoretical standpoint. As for now, the problem stands
however open, and is being addressed with methodologies specifi-
cally aimed at multivariable control. Also, more advanced adaptation
mechanisms are being studied, grounded on well established control-
theoretical methods such as that proposed in [137].

160

7.3. Implementation

7.3 Implementation

To validate the dynamic-binding approach described in this chapter,
the proposed algorithms have been implemented in three different
platforms. e produced artifacts can be downloaded from [69].

A Matlab implementation is available for simulation purposes8.
Numerical mathematic programming is an established instrument
for control experts to study controller’s performance by simulating
disturbances and process dynamics.

e second implementation is based on the Spring Framework
[112]. Spring is considered one of the most complete lightweight
container for J2EE applications. Its Aspect Oriented Programming
(AOP) functionalities have been exploited to showhow a this dynamic-
binding methodology can be integrated in real life applications with
a low impact on development organization. Monitoring and control
can be defined as a specific aspect of the application, requiring no
changes on the existing code. Indeed, an around advice of AOP al-
lows for performing custom behavior before and after the invocation
of an existing method, resulting in a natural environment to engraft
monitoring and control mechanisms. e impact on performance is
definitely low thanks to the complete integration of the framework
in Spring (further details in [112] or on the Spring Framework web-
site [1]). A running instance of the Spring implementation is also
accessible from [69], with a web-interface to ease the demonstration.

Finally, to show how to build an n-alternatives selector in Java,
a simple prototype has been implemented which automatically ar-
ranges the available executors in a balanced binary tree and applies
the control laws presented in Section 7.2.

Notice that, though it is theoretically possible to obtain effec-
tive control with any binary tree, the choice of a balanced (or almost
balanced) tree proved in the conducted experiments to be easier to
configure and more efficient. Indeed the tree is set up by applying to
each control node a sampling time of τd

Ts
, where d ≥ 0 is the distance

from the leaves.
e Matlab and the Spring implementations support the auto-

tuning procedure described in Section 7.1.

8An equivalent implementation is also available for Scilab, which is a widely used
open-source Matlab counterpart [178].

161

. R-D D B

7.4 RelatedWork

Dynamic binding for Web services is emblematic of many situations
in which multiple implementations for the same abstract operation
are available and the actual execution of incoming requests has to be
delegated to one of them. e selection criteria are usually based on
cost, QoS, or both.

Most of the current approaches address this problem through
mathematical optimization, where different qualities are traded-off,
looking for an optimal, or at least satisfactory, solution [11,24].

Some approaches allow the formulation of an optimization prob-
lem for each operation in order to select the best candidate with re-
spect to a local objective function [10, 197]. Local approaches are
usually efficient because in most of the practical cases the candidates
for each single operation are not in a large number. On the other
hand, most of the QoS requirements are expressed at application
level, thus shrinking the scope down to single operations my pro-
duce sub-optimal solutions with respect to the global system, or, con-
versely, they may overshoot producing (possibly costly) better-than-
required solutions. Other approaches allow for managing the opti-
mization of a global objective, considering the entire control space at
once [110, 198]. e immediate negative effect is in terms of com-
plexity: considering in a single optimization all the possible alterna-
tive bindings of each operation leads to a combinatorial explosion. In
practice, these approaches are either unfeasible for even small cases
or too complex to support binding control. Besides the growth in
the exploration space, the non linearities of the global problem may
be untreatable with standard mathematical procedures and may re-
quire the adoption of soft computing techniques, such as genetic al-
gorithms [39], which are not always suitable for run time use and
rarely provide formal guarantees of their effectiveness.

Some recent approaches combine both local and global techniques
to so to improve the performance of global search by feeding in lo-
cally optimal bindings of all or part of the operation level selections
(e.g. [5, 142]).

Most of the optimization-based approaches considermultipleQoS
metrics simultaneously. e control theoretical dynamic-binding strat-
egy presented in this chapter has been design for reliability require-
ments (with the generality provided by the domain-specific notions

162

7.4. Related Work

of success and failure). Nonetheless it is successfully being extended to
other properties and experimental evaluation is already in progress.

Comparing withChapter 6, that controller was capable of trading
off reliability and costs by solving an optimization problem. Further
properties can also be embedded in the control problem, allowing to
manage different quantitative properties at the same time. e com-
plexity of the adaptation mechanism did not depend on the number
of states of the Markov process but only on the type of objective func-
tion and on the number model parameters. Such an optimization
problem could be complex enough to make certain systems loose the
ability to timely adapt when their requirements are violated. Another
limitation of the controller of Chapter 6, inherited by the WM ap-
proach, consists in the inability of adding an arbitrary number of new
states to the Markov model without re-computing the closed form
expression for the optimization. e adoption of a simpler controller
proposed in this chapter overcomes these two limitations and allows
for timely adaptations even on low-end or mobile devices. For the
proposed controller is also possible a formal assessment of its effec-
tiveness (cfr. Section 7.1).

Finally, concerning the application of control theory to achieve
continuous QoS assurance, in the close field of load-balancing, a
comparison between optimization based and control-theory based
techniques has been performed in [196]. ough the MIMO con-
trollers used to balance the load among DB2 instances in [196] was
more complex than a PI, the effectiveness of the feedback loop over-
whelmed the optimization-based techniques, particularly in the situ-
ation of highly variable loads, where efficient continuous adjustments
leaded to a smother performance curve, with reduced outliers and
faster convergence time.

163

Part V

Finale

165

Conclusions and Future Work 8

Clarity, above all, has been my aim. I
prefer a clear statement subsequently
disproved to a misty dictum capable of
some profound interpretation which can
be welcomed as a ’great thought.’ It is
not by ’great thoughts,’ but by careful
and detailed analysis, that the kind of
technical philosophy which I value can be
advanced.

Bertrand Russell

In this chapter conclusive remarks and future research directions
are summarized for each of the main contributions.

RunTime Efficient ProbabilisticModel-Checking.
e problem of efficient run time model-checking of quantitative
properties on D-MRMs system abstractions has been discussed in
Chapter 4.

According to the WorkingMom paradigm, the verification prob-
lem has been split in two phases to be carried out at design time and at
run time, respectively. e role of the design time phase is to partially
evaluate the problem, leaving at run time a residual task as simple as
evaluating a closed form expression.

Besides a theoretical complexity assessment of the design time
partial evaluation algorithms, an implementation has been empiri-
cally compared with other related approaches, showing a significant
improvement with respect to known results, and a reasonable execu-
tion time, even on general purpose hardware.

e resulting closed form polynomial expression can be efficiently
evaluated by replacing the model parameters with their actual values,

167

. C F W

with no need to execute complex mathematical routines at run time.
is enables the run time phase to be performed even on low power
mobile devices.

Several improvement directions are currently under investigation:

• e experimental assessment presented in Section 4.6 shows
that the number of states and number of parameters do not sat-
isfactorily characterize the actual performance of the equation-
based partial evaluation algorithms. is is clear by looking at
the difference between maximum and average execution time,
which is an evidence of the large variance of the experimental
outcomes. is suggests that the dependency of design-time
performance on the topology of the D-MRM should be fur-
ther investigated.

• Matrix-based approaches are naturally parallelizable for high
performance processing environments. An experimental cam-
paign would be needed to assess the actual application scope
of similar implementation.

• e current implementation is being enhanced by a set of pre-
processing techniques aiming at state space reduction for the
input models [15,17,116]. Other divide-et-imperat heuristics
are also being adapted from [45] in order to split the partial
evaluation problem in smaller, possibly parallelizable, subprob-
lems.

• e application of the WM paradigm is currently under inves-
tigation for the analysis of Continuous Time Markov Models,
which support a more expressive analysis of the execution time
of system.

• e WM is also supporting other related researches such as
[82] in the field of Software Product Lines, and [152] to speed
up the Monte Carlo analysis of parametric DTMC models.

Sensitivity Analysis at Run Time.
egeneration of closed-form expressions corresponding to the prob-
ability of satisfying a quantitative property has been exploited in Sec-
tion 4.4 for the efficient sensitivity analysis with respect to the model

168

parameters. e results of the analysis can support both the improve-
ment of the system and the diagnosis of failures, and can be brought
at run time.

Some applications of this research are currently under investiga-
tion:

• e use of sensitivity results to support adaptation planning.
Sensitivity is currently used at design time to rank the condi-
tions that make a system violate its quantitative requirements.
On the other hand, in a number of practical situations sensitiv-
ity is by itself a key driver to decide basic counter actions [55].
is suggests the possibility to define sensitivity-based adap-
tation strategies to be carried out at run time.

• Since the sensitivity corresponds to the gradient of the sys-
tem quality with respect to model parameters, it can in princi-
ple be used to design optimal controllers based on a gradient-
descent approach [168]. ese controller are usually more effi-
cient than the one proposed in Chapter 6, though the gradient
descent strategy is used to get stuck into local optima.

Syntax-Driven Incremental Quantitative Analysis.
A framework for the definition of incremental analysis procedures
has been introduced for software artifacts. e analysis is driven by
the syntactic structure of the software and encoded as the synthesis
of semantic attributes. Incrementality is then automatically achieved
by coupling the evaluation of semantic attributes with an incremental
parsing technique. Syntax-driven incremental analysis is investigated
in Chapter 5.

Chapter 5 introduced SiDECAR, a framework for the definition
of verification procedures, which are automatically enhanced with in-
crementality by the framework itself.

SiDECAR supports verification procedures encoded as synthesis
of semantic attributes associated with a formal language. e at-
tributes are evaluated by traversing the syntax tree that reflects the
structure of the software system. By exploiting incremental parsing
and attributes evaluation techniques, SiDECAR reduces the com-
plexity of the verification procedure in presence of changes, thus pro-
viding a speed-up in performance.

169

. C F W

A procedure for quantitative analysis of structured programs has
been defined, to show the effectiveness of SiDECAR for this task.

Future work will address the following main directions:

• Definition of verification procedures for more functional and
quantitative properties. Safety and reachability analysis are al-
ready at a prototypal stage, while other properties are under
investigation.

• Support for run-time changes of the language (and thus its
grammar) in which the artifact to be verified is described. is
capability would support the application of SiDECAR tomore
advanced adaptiveness scenarios.

• Support for changes in the properties to be verified, and still
exploit the benefits of incremental verification. As in the case
described in this thesis, only the model is allowed to change,
not the property under analysis, though in adaptive systems
also requirements may change.

• An efficient implementation is under development, which in-
corporates also the parallel parsing techniques of [19]. e
implementation will also allow an empirical comparison with
other verification techniques.

Software Control throughMarkovModels.
In Chapter 6, a general methodology has been defined for the control
of tunable software whose behavior can be described by a discrete
time Markov model.

e controller is systematically defined starting from the para-
metric D-MRM and a flat R-PCTL property defining the quality
goal. e control strategy has been proved to be robust to sudden
changes in the environment and to monitoring inaccuracy. Another
significative strength of this approach lies in its application scope.
Indeed, it is not tailored to the solution of a specific problem, but
can handle a wide set of situations that can be represented by the
probabilistic models of Chapter 2.

e main limitations of this approach are: 1) the support for
changes in the model structure is limited because the generation of

170

the dynamic model is built upon the WM approach, and 2) the com-
plexity at run time depends on the cost function used to select the
optimal control settings.

Future research directions include:

• Multi-objective control and unfeasibility: with the current con-
troller it is naturally possible to consider multiple objectives in
the control strategy by conveniently adjusting the optimization
problem. e main issue appears when contrasting goals make
the problem unfeasible. A constraint relaxation strategy is un-
der validation that provides support for graceful degradation of
the system quality when the required goals are unfeasible.

• Some local optimization strategies, as well as some special fam-
ilies of cost functions, are being investigated to improve the run
time efficiency of the controller.

Reliability DrivenDynamic-Binding.
Dynamic-binding has been considered as a mean for a service to
satisfy reliability requirements by continuously adjusting the choice
among the available concrete implementations. Control-theoretical
analysis and synthesis have been applied to prove effectiveness, sta-
bility, and scalability of the controller, and an auto-tuning procedure
has been defined to set its configuration, even at run time. is topic
is dealt with in Chapter 7.

e dynamic selection of the most suitable alternative in dynamic
binding problems has been addressed in Chapter 7, with the goal of
continuously providing a given target reliability.

First, the choice of dynamically binding a service request to one
of two available alternatives has been addressed by means of control-
theoretical analysis and synthesis. An auto-tuning procedure has
been devised to automatically select the most suitable controller con-
figuration even at run-time. Subsequently, the solution has been gen-
eralized to the selection among n alternatives.

ree different implementations have been used to validate the
approach, as well as a simulation campaign, showing that the pro-
posed control-theoretical approach is a feasible decision mechanism
for the problem at hand.

171

. C F W

Future research directions are:

• e current auto-tuning system is not effective when the goal is
not feasible. A more robust strategy is under investigation that
provides a reasonable behavior even when a sudden change in
the environment shift the system in a situation where the re-
tuning of the controller is required but the goal is not feasible.

• More quality properties can be accommodatedwithin this frame-
work by providing convenient measures of their current satis-
faction. Amore general framework for quality-driven dynamic-
binding is being defined to allow for a broader applicability of
this contribution.

172

Bibliography

[1] “Spring: e open source application framework for java.”
[Online]. Available: http://www.springsource.org

[2] A. Agarwal, Analysis of cache performance for operating systems
and multiprogramming, ser. Kluwer international series in en-
gineering and computer science. Kluwer Academic Publish-
ers, 1989.

[3] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya,
“Archeopterix: An extendable tool for architecture optimiza-
tion of aadl models,” in Model-Based Methodologies for Perva-
sive and Embedded Software, 2009.MOMPES ’09. ICSEWork-
shop on, may 2009, pp. 61—71.

[4] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-
Fischer, and S. Leue, “Safety analysis of an airbag system us-
ing probabilistic fmea and probabilistic counterexamples,” in
Quantitative Evaluation of Systems, 2009. QEST ’09. Sixth In-
ternational Conference on the, sept 2009, pp. 299—308.

[5] M. Alrifai and T. Risse, “Combining global optimization with
local selection for efficient qos-aware service composition,” in
Proceedings of the 18th international conference on World wide
web. New York, NY, USA: ACM, 2009, pp. 881—890.

[6] S. C. Althoen and R. McLaughlin, “Gauss-Jordan reduction:
A brief history,” e American Mathematical Monthly, vol. 94,
no. 2, pp. 130—142, 1987.

[7] S. Andova, H. Hermanns, and J. Katoen, “Discrete-time re-
wards model-checked,” FormalModeling and Analysis of Timed
Systems, pp. 88—104, 2004.

173

http://www.springsource.org

B

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe, “Petabricks: a language
and compiler for algorithmic choice,” in Proceedings of the 2009
ACM SIGPLAN conference on Programming language design
and implementation, ser. PLDI ’09. New York, NY, USA:
ACM, 2009, pp. 38—49.

[9] M. Araki and K. Yamamoto, “Multivariable multirate
sampled-data systems: State-space description, transfer char-
acteristics, and nyquist criterion,” IEEE Transactions on Auto-
matic Control, vol. 31, no. 2, pp. 145—154, feb 1986.

[10] D. Ardagna and B. Pernici, “Adaptive service composition in
flexible processes,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 6, pp. 369—384, June 2007.

[11] D. Ardagna and R. Mirandola, “Per-flow optimal service se-
lection for web services based processes,” Journal of Systems and
Software, vol. 83, no. 8, pp. 1512—1523, 2010.

[12] K. Åström and T. Hägglund, Advanced PID Control. Re-
search Triangle Park, NC: ISA - e Instrumentation, Sys-
tems, and Automation Society, 2005.

[13] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and
A. Sangiovanni-Vincentelli, “It usually works: e temporal
logic of stochastic systems,” in Computer Aided Verification.
Springer, 1995, pp. 155—165.

[14] W. Baek and T. M. Chilimbi, “Green: a framework for sup-
porting energy-conscious programming using controlled ap-
proximation,” in Proceedings of the 2010 ACM SIGPLAN con-
ference on Programming language design and implementation,
ser. PLDI ’10. New York, NY, USA: ACM, 2010, pp. 198—
209.

[15] C. Baier and J. Katoen, Principles of model checking. e MIT
Press, 2008.

[16] C. Baier, E. Clarke, V. Hartonas-Garmhausen,
M. Kwiatkowska, and M. Ryan, “Symbolic model checking
for probabilistic processes,” in Automata, Languages and

174

Bibliography

Programming, ser. Lecture Notes in Computer Science,
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, Eds.
Springer, 1997, vol. 1256, pp. 430—440.

[17] C. Baier, P. D’Argenio, and M. Groesser, “Partial order re-
duction for probabilistic branching time,” Electronic Notes in
eoretical Computer Science, vol. 153, no. 2, pp. 97–116, 2006.

[18] C. Baier and M. Kwiatkowska, “Model checking for a proba-
bilistic branching time logic with fairness,” Distributed Com-
puting, vol. 11, pp. 125—155, 1998.

[19] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, V. Ponte,
M. Pradella, and E. Viviani, “Practical parallel parsing for
large texts,” in Proceedings of SLE 2012, accepted for publi-
cation.

[20] L. Baresi, E. Di Nitto, and C. Ghezzi, “Toward open-world
software: Issue and challenges,” Computer, vol. 39, no. 10, pp.
36—43, Oct. 2006.

[21] ——, “Toward open-world software: Issue and challenges,”
Computer, vol. 39, no. 10, pp. 36—43, Oct 2006.

[22] S. Becker, “Model transformations in non-functional anal-
ysis,” in Formal Methods for Model-Driven Engineering, ser.
Lecture Notes in Computer Science, M. Bernardo, V. Cortel-
lessa, and A. Pierantonio, Eds. Springer, 2012, vol. 7320,
pp. 263—289.

[23] S. Becker, H. Koziolek, and R. Reussner, “Model-based per-
formance prediction with the palladio component model,” in
Proceedings of the 6th international workshop on Software and
performance, ser. WOSP ’07. New York, NY, USA: ACM,
2007, pp. 54—65.

[24] N. Ben Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas,
and V. Issarny, “Qos-aware service composition in dynamic
service oriented environments,” in Middleware, ser. Lecture
Notes in Computer Science. Springer, 2009, vol. 5896, pp.
123—142.

175

B

[25] M. Benidir, “On the root distribution of general polynomials
with respect to the unit circle,” Signal Processing, vol. 53, no. 1,
pp. 75—82, 1996.

[26] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst,
“Synoptic: studying logged behavior with inferred models,” in
Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp.
448—451.

[27] A. Bianco and L. de Alfaro, “Model checking of probabilis-
tic and nondeterministic systems,” in Foundations of Software
Technology andeoretical Computer Science, ser. Lecture Notes
in Computer Science, P. iagarajan, Ed. Springer, 1995,
vol. 1026, pp. 499—513.

[28] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu, “Bounded model checking,” Advances in Computers,
vol. 58, pp. 118—149, 2003.

[29] P. Billingsley, “Statistical methods in markov chains,” e An-
nals ofMathematical Statistics, vol. 32, no. 1, pp. 12—40, 1961.

[30] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated man-
agement of multiple interacting resources in chip multiproces-
sors: A machine learning approach,” in MICRO 41: Proceed-
ings of the 41st annual IEEE/ACM International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 318—329.

[31] G. Blair, N. Bencomo, and R. France, “Models@ run.time,”
Computer, vol. 42, no. 10, pp. 22—27, oct 2009.

[32] A. Bojanczyk, “Complexity of solving linear systems in differ-
ent models of computation,” SIAM Journal onNumerical Anal-
ysis, vol. 21, no. 3, pp. 591—603, 1984.

[33] D. Bosnacki, S. Edelkamp, and D. Sulewski, “Efficient prob-
abilistic model checking on general purpose graphics proces-
sors,” in Model Checking Software, ser. Lecture Notes in Com-
puter Science, C. Pasareanu, Ed. Springer, 2009, vol. 5578,
pp. 32—49.

176

Bibliography

[34] R. Brockett, “Optimal control of observable continuous time
markov chains,” in Decision and Control, 2008. CDC 2008.
47th IEEE Conference on. IEEE, 2008, pp. 4269—4274.

[35] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and M. Shaw,
“Engineering self-adaptive systems through feedback loops,”
in Software Engineering for Self-Adaptive Systems, ser. Lecture
Notes in Computer Science. Springer, 2009, vol. 5525, pp.
48—70.

[36] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Miran-
dola, “Self-adaptive software needs quantitative verification at
runtime,” Commun. ACM, vol. 55, no. 9, pp. 69—77, Sep.
2012.

[37] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola,
and G. Tamburrelli, “Dynamic qos management and op-
timization in service-based systems,” IEEE Transactions on
Software Engineering, vol. 37, pp. 387—409, 2011.

[38] R. Calinescu and M. Kwiatkowska, “Using quantitative anal-
ysis to implement autonomic it systems,” in Proceedings of
the 31st International Conference on Software Engineering, ser.
ICSE ’09. IEEE Computer Society, 2009, pp. 100—110.

[39] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An
approach for qos-aware service composition based on genetic
algorithms,” in Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, ser. GECCO ’05. New York,
NY, USA: ACM, 2005, pp. 1069—1075.

[40] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wis-
niewski, “Performance and environment monitoring for con-
tinuous program optimization,” IBM Journal of Research and
Development, vol. 50, no. 2.3, pp. 239—248, march 2006.

[41] R. C. Cheung, “A user-oriented software reliability model,”
IEEE Trans. Softw. Eng., vol. 6, no. 2, pp. 118—125, 1980.

[42] W. Ching and M. Ng,Markov Chains: Models, Algorithms and
Applications, ser. International Series in Operations Research
& Management Science. Springer, 2005.

177

B

[43] J. Chinneck, Feasibility and Infeasibility in Optimization: Al-
gorithms and Computational Methods, ser. International Series
in Operations Research and Management Science. Springer,
2008.

[44] A. Ciancone, A. Filieri, M. Drago, R. Mirandola, and
V. Grassi, “Klapersuite: An integrated model-driven environ-
ment for reliability and performance analysis of component-
based systems,” in Objects, Models, Components, Patterns, ser.
Lecture Notes in Computer Science. Springer, 2011, vol.
6705, pp. 99—114.

[45] F. Ciesinski, C. Baier, M. Grosser, and J. Klein, “Reduction
techniques for model checking markov decision processes,” in
Quantitative Evaluation of Systems, 2008. QEST ’08. Fifth In-
ternational Conference on, Sept 2008, pp. 45—54.

[46] E. Clarke, D. Garlan, B. Krogh, R. Simmons, and J. Wing,
“Formal verification of autonomous systems nasa intelligent
systems program,” 2001.

[47] E. Clarke, “Model checking,” in Foundations of Software Tech-
nology and eoretical Computer Science, ser. Lecture Notes
in Computer Science, S. Ramesh and G. Sivakumar, Eds.
Springer, 1997, vol. 1346, pp. 54—56.

[48] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăre-
anu, “Learning assumptions for compositional verification,” in
Proceedings of TACAS 2003, ser. LNCS, vol. 2619. Springer,
2003, pp. 331—346.

[49] C. Conway, K. Namjoshi, D. Dams, and S. Edwards, “Incre-
mental algorithms for inter-procedural analysis of safety prop-
erties,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science. Springer, 2005, vol. 3576, pp. 387—
400.

[50] V. Cortellessa and V. Grassi, “A modeling approach to analyze
the impact of error propagation on reliability of component-
based systems,” Component-Based Software Engineering, pp.
140—156, 2007.

178

Bibliography

[51] C. Courcoubetis and M. Yannakakis, “Verifying temporal
properties of finite-state probabilistic programs,” in Founda-
tions of Computer Science, 1988., 29th Annual Symposium on,
oct 1988, pp. 338—345.

[52] ——, “e complexity of probabilistic verification,” J. ACM,
vol. 42, no. 4, pp. 857—907, Jul. 1995.

[53] T. Davis, Direct methods for sparse linear systems. Society for
Industrial Mathematics, 2006, vol. 2.

[54] C. Daws, “Symbolic and parametric model checking of
discrete-time markov chains,” ineoretical Aspects of Comput-
ing - ICTAC 2004, ser. Lecture Notes in Computer Science,
Z. Liu and K. Araki, Eds. Springer, 2005, vol. 3407, pp.
280—294.

[55] E. De Rocquigny, N. Devictor, and S. Tarantola, Uncer-
tainty in Industrial Practice: A Guide to Quantitative Uncer-
tainty Management. Wiley, 2008.

[56] G. Di Caro and M. Dorigo, “Mobile agents for adaptive rout-
ing,” in System Sciences, 1998., Proceedings of the irty-First
Hawaii International Conference on, vol. 7, jan 1998, pp. 74—
83.

[57] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl, “A journey to highly dynamic, self-adaptive service-
based applications,” Automated Software Engineering, vol. 15,
pp. 313—341, 2008.

[58] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and
D. Phung, “Self-managing systems: a control theory founda-
tion,” in Engineering of Computer-Based Systems, 2005. ECBS
’05. 12th IEEE International Conference and Workshops on the,
april 2005, pp. 441—448.

[59] N. M. V. Dijk and M. L. Puterman, “Perturbation theory for
markov reward processes with applications to queueing sys-
tems,” Advances in Applied Probability, vol. 20, no. 1, pp. 79—
98, 1988.

179

B

[60] S. Distefano, A. Filieri, C. Ghezzi, and R. Mirandola, “A
compositional method for reliability analysis of workflows af-
fected by multiple failure modes,” in Proceedings of the 14th
international ACM Sigsoft symposium on Component based soft-
ware engineering. ACM, 2011, pp. 149—158.

[61] R. Dorf and R. Bishop,Modern control systems. Prentice Hall,
2008.

[62] J. Doyle, B. Francis, and A. Tannenbaum, Feedback control the-
ory. Basingstoke, UK: MacMillan, 1992.

[63] V. D’Silva, D. Kroening, and G. Weissenbacher, “A sur-
vey of automated techniques for formal software verifica-
tion,” Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, vol. 27, no. 7, pp. 1165—1178,
july 2008.

[64] J. Duato, “On the design of deadlock-free adaptive routing
algorithms for multicomputers: Design methodologies,” in
PARLE ’91 Parallel Architectures and Languages Europe, ser.
Lecture Notes in Computer Science. Springer, 1991, vol.
505, pp. 390—405.

[65] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and
I. Truck, “From data center resource allocation to control the-
ory and back,” in Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, july 2010, pp. 410—417.

[66] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property
specification patterns for finite-state verification,” in Proceed-
ings of the second workshop on Formal methods in software prac-
tice, ser. FMSP ’98. New York, NY, USA: ACM, 1998, pp.
7—15.

[67] W. Farr, “Software reliability modeling survey,” Handbook of
software reliability engineering, pp. 71—117, 1996.

[68] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Relia-
bility analysis of component-based systems with multiple fail-
ure modes,” Component-Based Software Engineering, pp. 1—
20, 2010.

180

Bibliography

[69] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, Reliability-
Driven Dynamic Binding Implementation, Dipartimento di
Elettronica e Informazione - Politecnico di Milano, 2011.
[Online]. Available: http://filieri.dei.polimi.it/publications/
2012-seams

[70] A. Filieri and C. Ghezzi, “Further steps towards efficient run-
time verification: Handling probabilistic costmodels,” in Soft-
ware Engineering: Rigorous and Agile Approaches (FormSERA),
2012 Formal Methods in, june 2012, pp. 2—8.

[71] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Reliabil-
ity analysis of component-based systems with multiple failure
modes,” in Component-Based Software Engineering, ser. Lec-
ture Notes in Computer Science. Springer, 2010, vol. 6092,
pp. 1–20.

[72] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” in Proceedings of the 33rd In-
ternational Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 341—350.

[73] ——, “A formal approach to adaptive software: continuous
assurance of non-functional requirements,” Formal Aspects of
Computing, vol. 24, pp. 163–186, 2012.

[74] R. W. Floyd, “Syntactic analysis and operator precedence,” J.
ACM, vol. 10, no. 3, pp. 316—333, Jul 1963.

[75] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback
Control of Dynamic Systems, 6th Edition. Pearson, 2009.

[76] L. Fribourg and A. Étienne, “An inverse method for policy-
iteration based algorithms,” in Proceedings International Work-
shop on Verification of Infinite-State Systems INFINITY, 2009,
pp. 44—61.

[77] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld, “Ex-
ploring the design space for adaptive graphical user interfaces,”
in Proceedings of the working conference on Advanced visual in-
terfaces, ser. AVI ’06. New York, NY, USA: ACM, 2006, pp.
201—208.

181

http://filieri.dei.polimi.it/publications/2012-seams
http://filieri.dei.polimi.it/publications/2012-seams

B

[78] K. Gallivan, M. Heath, E. Ng, J. Ortega, B. Peyton, R. Plem-
mons, C. Romine, A. Sameh, andR. Voigt, Parallel Algorithms
for Matrix Computations, ser. Miscellaneous Bks. Society for
Industrial and Applied Mathematics, 1987.

[79] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli,
“Quality prediction of service compositions through prob-
abilistic model checking,” Quality of Software Architectures.
Models and Architectures, pp. 119–134, 2008.

[80] F. Gantmakher,eeory ofMatrices, ser. Chelsea Publishing
Series. AMS Chelsea, 2000.

[81] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of
software engineering. Prentice Hall, 2003.

[82] C. Ghezzi and A. Sharifloo, “Verifying non-functional prop-
erties of software product lines: Towards an efficient approach
using parametric model checking,” in Software Product Line
Conference (SPLC), 2011 15th International, Aug 2011, pp.
170—174.

[83] C. Ghezzi and D. Mandrioli, “Incremental parsing,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 1, no. 1, pp. 58–70, Jan. 1979.

[84] S. Gokhale and K. Trivedi, “Reliability prediction and sen-
sitivity analysis based on software architecture,” in Software
Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th
International Symposium on, 2002, pp. 64—75.

[85] S. S. Gokhale, “Architecture-based software reliability anal-
ysis: Overview and limitations,” Dependable and Secure Com-
puting, IEEE Transactions on, vol. 4, no. 1, pp. 32—40, march
2007.

[86] R. Goldblatt, Logics of time and computation. Center for the
Study of Language and Information, 1995, vol. 60, no. 1.

[87] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli,
“Large empirical case study of architecture-based software
reliability,” in Software Reliability Engineering, 2005. ISSRE
2005. 16th IEEE International Symposium on, nov. 2005, pp.
43—52.

182

Bibliography

[88] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-
based approach to reliability assessment of software systems,”
Performance Evaluation, vol. 45, no. 2–3, pp. 179—204, 2001.

[89] A. Gounaris, N. Paton, A. Fernandes, and R. Sakellar-
iou, “Adaptive query processing: A survey,” in Advances
in Databases, ser. Lecture Notes in Computer Science.
Springer, 2002, vol. 2405, pp. 882—940.

[90] V. Grassi and R. Mirandola, “Derivation of markov models
for effectiveness analysis of adaptable software architectures
for mobile computing,” Mobile Computing, IEEE Transactions
on, vol. 2, no. 2, pp. 114—131, april-june 2003.

[91] H. Gruber and J. Johannsen, “Optimal lower bounds on
regular expression size using communication complexity,” in
Foundations of Software Science and Computational Structures,
ser. Lecture Notes in Computer Science, R. Amadio, Ed.
Springer, 2008, vol. 4962, pp. 273—286.

[92] D. Grune and C. J. H. Jacobs, Parsing Techniques - a practical
guide, 2nd ed. Springer, 2008.

[93] L. Grunske, “Specification patterns for probabilistic qual-
ity properties,” in Software Engineering, 2008. ICSE ’08.
ACM/IEEE 30th International Conference on, may 2008, pp.
31—40.

[94] Y. Guowei, M. Dwyer, and G. Rothermel, “Regression model
checking,” in Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, Sept 2009, pp. 115—124.

[95] E. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reach-
ability for parametric markov models,” Model Checking Soft-
ware, pp. 88—106, 2009.

[96] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for pctl in
parametricmarkov decision processes,” inProceedings of the 3rd
International Symposium - NASA Formal Methods, 2011, pp.
146—161.

[97] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal aspects of computing, vol. 6, no. 5, pp.
512—535, 1994.

183

B

[98] B. Haverkort and K. Trivedi, “Specification techniques for
markov reward models,” Discrete Event Dynamic Systems,
vol. 3, pp. 219—247, 1993.

[99] B.Haverkort andA.Meeuwissen, “Sensitivity and uncertainty
analysis of markov-reward models,” Reliability, IEEE Trans-
actions on, vol. 44, no. 1, pp. 147—154, mar 1995.

[100] J. Hellerstein, S. Parekh, Y. Diao, and D. Tilbury, Feedback
control of computing systems, ser. Wiley interscience publica-
tion. John Wiley & Sons, 2004.

[101] J. L. Hellerstein, V. Morrison, and E. Eilebrecht, “Applying
control theory in the real world: experience with building a
controller for the .net thread pool,” SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 3, pp. 38—42, jan 2010.

[102] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido,
“Extreme model checking,” in Verification: eory and Practice,
ser. Lecture Notes in Computer Science. Springer, 2004, vol.
2772, pp. 180—181.

[103] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet,
“Approximate probabilistic model checking,” in Verification,
Model Checking, and Abstract Interpretation. Springer, 2004,
pp. 307—329.

[104] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to au-
tomata theory, languages, and computation. Addison-wesley,
2007.

[105] IBM Inc., “IBM autonomic computing website,” http://www.
research.ibm.com/autonomic, 2009.

[106] R. Iman and J. Helton, “An investigation of uncertainty and
sensitivity analysis techniques for computer models,” Risk
Analysis, vol. 8, no. 1, pp. 71–90, 2006.

[107] A. Immonen and E. Niemel, “Survey of reliability and avail-
ability prediction methods from the viewpoint of software ar-
chitecture,” Software and Systems Modeling, vol. 7, no. 1, pp.
49—65, 2008.

184

http://www.research.ibm.com/autonomic
http://www.research.ibm.com/autonomic

Bibliography

[108] Intel Inc., “Reliability, availability, and serviceability for
the always-on enterprise,” www.intel.com/assets/pdf/
whitepaper/ras.pdf, 2005.

[109] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core
fusion: accommodating software diversity in chip multipro-
cessors,” SIGARCH Comput. Archit. News, vol. 35, no. 2, pp.
186—197, 2007.

[110] M. Jaeger, G.Mühl, and S.Golze, “Qos-aware composition of
web services: An evaluation of selection algorithms,” inOn the
Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, ser. LectureNotes inComputer Science. Springer,
2005, vol. 3760, pp. 646—661.

[111] D. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga, and
I. Zapreev, “How fast and fat is your probabilistic model
checker? an experimental performance comparison,” inHard-
ware and Software: Verification and Testing, ser. Lecture Notes
in Computer Science, K. Yorav, Ed. Springer, 2008, vol.
4899, pp. 69—85.

[112] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, and
D. Kopylenko, Professional Java Development with the Spring
Framework. Birmingham, UK, UK: Wrox Press Ltd., 2005.

[113] C. B. Jones, “Tentative steps toward a development method
for interfering programs,” ACM Trans. Program. Lang. Syst.,
vol. 5, no. 4, pp. 596—619, Oct 1983.

[114] W. Jones, J. Hudepohl, T. Khoshgoftaar, and E. Allen, “Ap-
plication of a usage profile in software quality models,” in Soft-
ware Maintenance and Reengineering, 1999. Proceedings of the
ird European Conference on, 1999, pp. 148 –157.

[115] C. Karamanolis, M. Karlsson, and X. Zhu, “Designing con-
trollable computer systems,” in Proceedings of the 10th confer-
ence on Hot Topics in Operating Systems. Berkeley, CA, USA:
USENIX Association, 2005, pp. 9—15.

[116] J.-P. Katoen, T. Kemna, I. Zapreev, and D. Jansen, “Bisim-
ulation minimisation mostly speeds up probabilistic model
checking,” in Tools and Algorithms for the Construction and

185

www.intel.com/assets/pdf/whitepaper/ras.pdf
www.intel.com/assets/pdf/whitepaper/ras.pdf

B

Analysis of Systems, ser. Lecture Notes in Computer Science.
Springer, 2007, vol. 4424, pp. 87—101.

[117] M. Kihl, A. Robertsson, M. Andersson, and B. Wittenmark,
“Control-theoretic analysis of admission control mechanisms
for web server systems,”WorldWideWeb, vol. 11, pp. 93—116,
2008.

[118] D. Knuth and A. Yao, Algorithms and Complexity: New Di-
rections and Recent Results. Academic Press, 1976, ch. e
complexity of nonuniform random number generation.

[119] D. E. Knuth, “Semantics of context-free languages,” eory of
Computing Systems, vol. 2, pp. 127—145, 1968.

[120] M. M. Kokar, K. Baclawski, and Y. A. Eracar, “Control
theory-based foundations of self-controlling software,” IEEE
Intelligent Systems, vol. 14, no. 3, pp. 37—45, May 1999.

[121] H. Koziolek, B. Schlich, and C. Bilich, “A large-scale indus-
trial case study on architecture-based software reliability anal-
ysis,” in Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on, nov. 2010, pp. 279—288.

[122] H. Koziolek, B. Schlich, C. Bilich, R. Weiss, S. Becker,
K. Krogmann, M. Trifu, R. Mirandola, and A. Koziolek, “An
industrial case study on quality impact prediction for evolving
service-oriented software,” in Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 776—785.

[123] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig, “K42:
building a complete operating system,” SIGOPS Oper. Syst.
Rev., vol. 40, no. 4, pp. 133—145, apr 2006.

[124] S. Krishnamurthi and K. Fisler, “Foundations of incremental
aspect model-checking,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 2, Apr. 2007.

186

Bibliography

[125] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen, “Processor power reduction via single-isa hetero-
geneous multi-core architectures,” Computer Architecture Let-
ters, vol. 2, no. 1, 2003.

[126] D. Kusic and N. Kandasamy, “Risk-aware limited lookahead
control for dynamic resource provisioning in enterprise com-
puting systems,” Cluster Computing, vol. 10, pp. 395—408,
2007.

[127] M. Kwiatkowska, “Model checking for probability and time:
from theory to practice,” in Logic in Computer Science, 2003.
Proceedings. 18th Annual IEEE Symposium on, june 2003, pp.
351—360.

[128] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 2.0: a
tool for probabilistic model checking,” inQuantitative Evalu-
ation of Systems, 2004. QEST 2004. Proceedings. First Interna-
tional Conference on the, sept 2004, pp. 322—323.

[129] ——, “Advances and challenges of probabilistic model check-
ing,” in Communication, Control, and Computing (Allerton),
2010 48th Annual Allerton Conference on, oct 2010, pp. 1691—
1698.

[130] M. Kwiatkowska, D. Parker, and H. Qu, “Incremental quan-
titative verification for markov decision processes,” inDepend-
able Systems Networks (DSN), 2011 IEEE/IFIP 41st Interna-
tional Conference on, june 2011, pp. 359—370.

[131] M. Kwiatkowska, “Quantitative verification: models tech-
niques and tools,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIG-
SOFT symposium one foundations of software engineering, ser.
ESEC-FSE ’07. ACM, 2007, pp. 449—458.

[132] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic
model checking,” in Formal Methods for Performance Evalu-
ation, ser. Lecture Notes in Computer Science, M. Bernardo
and J. Hillston, Eds. Springer, 2007, vol. 4486, pp. 220—
270.

187

B

[133] ——, “Using probabilistic model checking in systems biol-
ogy,” SIGMETRICS Perform. Eval. Rev., vol. 35, no. 4, pp.
14—21, Mar. 2008.

[134] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu,
“Assume-guarantee verification for probabilistic systems,” in
Proc. of TACAS 2010, ser. LNCS, vol. 6015. Springer, 2010,
pp. 23–37.

[135] M. Kwiatkowska, D. Parker, H. Qu, and M. Ujma, “On in-
cremental quantitative verification for probabilistic systems,”
in Proceedings of the High-order workshop on automated runtime
verification and debugging, Manchester, Royaume-Uni, 2012.

[136] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan,
“Incremental state-space exploration for programs with dy-
namically allocated data,” in Proceedings of the 30th interna-
tional conference on Software engineering. New York, NY,
USA: ACM, 2008, pp. 291—300.

[137] A. Leva, C. Maffezzoni, and R. Scattolini, “Self-tuning PI-
PID regulators for stable systems with varying delay,” Auto-
matica, vol. 30, no. 7, pp. 1171—1183, 1994.

[138] A. Leva, “Pid autotuning algorithm based on relay feedback,”
Control eory and Applications, IEE Proceedings D, vol. 140,
no. 5, pp. 328—338, Sept 1993.

[139] A. Leva, S. Negro, and A. V. Papadopoulos, “PI/PID auto-
tuning with contextual model parametrisation,” Journal of Pro-
cess Control, vol. 20, no. 4, pp. 452—463, 2010.

[140] W. Levine, e control handbook. CRC Press, 2005.

[141] F. Lewis andV. Syrmos,OptimalControl, 2nd ed. JohnWiley
& Sons, 2004.

[142] Q. Liang, X. Wu, and H. Chuin Lau, “Optimizing service
systems based on application-level qos,” IEEETransactions on
Services Computing, vol. 2, no. 2, pp. 108—121, Apr 2009.

[143] B. Littlewood, “A reliability model for markov structured soft-
ware,” SIGPLAN Not., vol. 10, no. 6, pp. 204—207, Apr.
1975.

188

Bibliography

[144] ——, “A reliability model for systems with markov structure,”
Applied Statistics, pp. 172–177, 1975.

[145] C. Lu, Y. Lu, T. Abdelzaher, J. Stankovic, and S. Son, “Feed-
back control architecture and design methodology for service
delay guarantees in web servers,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 17, no. 9, pp. 1014—1027,
sept 2006.

[146] M. Maggio, H. Hoffmann, M. Santambrogio, A. Agarwal,
and A. Leva, “Controlling software applications via resource
allocation within the heartbeats framework,” in Decision and
Control (CDC), 2010 49th IEEE Conference on, dec 2010, pp.
3736—3741.

[147] S. Malik and S. Arora, Mathematical Analysis. Wiley, 1992.

[148] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and
R. Reussner, “A hybrid approach for multi-attribute qos opti-
misation in component based software systems,” Research into
Practice–Reality and Gaps, pp. 84—101, 2010.

[149] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Compos-
ing adaptive software,” Computer, vol. 37, no. 7, pp. 56—64,
July 2004.

[150] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske,
“Architecture-driven reliability and energy optimization for
complex embedded systems,” inResearch into Practice – Reality
and Gaps, ser. Lecture Notes in Computer Science, G. Heine-
man, J. Kofron, and F. Plasil, Eds. Springer, 2010, vol. 6093,
pp. 52—67.

[151] I. Meedeniya and L. Grunske, “An efficient method for
architecture-based reliability evaluation for evolving systems
with changing parameters,” in Proceedings of the 21st IEEE
International Symposium on Software Reliability Engineering,
2010, pp. 229—238.

[152] I. Meedeniya, I. Moser, A. Aleti, and L. Grunske,
“Architecture-based reliability evaluation under uncertainty,”
in Proceedings of the joint ACM SIGSOFT conference – QoSA

189

B

and ACM SIGSOFT symposium, ser. QoSA-ISARCS ’11.
New York, NY, USA: ACM, 2011, pp. 85—94.

[153] M. Morari and E. Zafiriou, Robust process control. Upper
Saddle River, NJ: Prentice Hall, 1989.

[154] H. Muller, H. Kienle, and U. Stege, “Autonomic computing
now you see it, now you don’t,” in Software Engineering, ser.
Lecture Notes in Computer Science. Springer, 2009, vol.
5413, pp. 32—54.

[155] P. Naur and B. Randell, “Software engineering report of a
conference sponsored by the nato science committee garmisch
germany 7th-11th october 1968,” 1969.

[156] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and
R. Gupta, “Using probabilistic model checking for dynamic
power management,” Formal Aspects of Computing, vol. 17, pp.
160–176, 2005.

[157] J. Norris, Markov Chains, ser. Cambridge Series on Statistical
and Probabilistic Mathematics. Cambridge University Press,
1998, no. no. 2008.

[158] S. Oberthür, C. Böke, and B. Griese, “Dynamic online re-
configuration for customizable and self-optimizing operating
systems,” in Proceedings of the 5th ACM international conference
on Embedded software, ser. EMSOFT ’05. New York, NY,
USA: ACM, 2005, pp. 335—338.

[159] A. O’Dwyer,Handbook of PI And PIDController Tuning Rules,
2nd ed. Imperial College Press, 2006.

[160] Oracle Corp., “Automatic Workload Repository (AWR) in
Oracle Database 10g,” http://www.oracle-base.com/articles/
10g/AutomaticWorkloadRepository10g.php.

[161] D. Parker, “Implementation of symbolic model checking for
probabilistic systems,” Ph.D. dissertation, University of Birm-
ingham, aug 2002.

[162] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Commun. ACM, vol. 15, no. 12, pp.
1053—1058, Dec. 1972.

190

http://www.oracle-base.com/articles/10g/AutomaticWorkloadRepository10g.php
http://www.oracle-base.com/articles/10g/AutomaticWorkloadRepository10g.php

Bibliography

[163] W. Pestman, Mathematical Statistics, ser. De Gruyter Text-
book. De Gruyter, 2009.

[164] M. Pezzè and M. Young, Software testing and analysis: process,
principles, and techniques. Wiley, 2008.

[165] H. Pham, Software reliability. Wiley Online Library, 1999.

[166] ——, “Software reliability and cost models: Perspectives,
comparison, and practice,”European Journal of Operational Re-
search, vol. 149, no. 3, pp. 475 – 489, 2003.

[167] T. B. Pinkerton, “Program behavior and control in virtual stor-
age computer systems,” Ph.D. dissertation, Ann Arbor, MI,
USA, 1968, aAI6813378.

[168] E. Polak, “An historical survey of computational methods in
optimal control,” SIAM review, vol. 15, no. 2, pp. 553—584,
1973.

[169] Q-ImPrESS Consortium. (2011) Q-impress research project
(eu fp7-215013). [Online]. Available: http://http://www.
q-impress.eu

[170] A. Quarteroni, R. Sacco, and F. Saleri,Numerical mathematics.
Springer Verlag, 2007, vol. 37.

[171] F. Rabhi and S. Gorlatch, Patterns and Skeletons for Parallel and
Distributed Computing. Springer, 2003.

[172] O. Raiha, “A survey on search-based software design,” Com-
puter Science Review, vol. 4, no. 4, pp. 203—249, 2010.

[173] C. V. Ramamoorthy, “e analytic design of a dynamic look
ahead and program segmenting system for multiprogrammed
computers,” in Proceedings of the 1966 21st national conference.
New York, NY, USA: ACM, 1966, pp. 229—239.

[174] S. C. Reghizzi and D. Mandrioli, “Operator precedence and
the visibly pushdown property,” Journal of Computer and System
Sciences, vol. 78, no. 6, pp. 1837—1867, 2012.

[175] S. Ross, Stochastic Processes. Wiley New York, 1996.

191

http://http://www.q-impress.eu
http://http://www.q-impress.eu

B

[176] Y. Saad, Iterative methods for sparse linear systems. Society for
Industrial Mathematics, 2003.

[177] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Trans. Auton. Adapt.
Syst., vol. 4, no. 2, pp. 1—42, may 2009.

[178] Scilab Consortium, Scilab: e free software for numerical
computation, Scilab Consortium, Digiteo, Paris, France, 2011.
[Online]. Available: http://www.scilab.org

[179] O. Sokolsky and S. Smolka, “Incremental model checking in
the modal mu-calculus,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science. Springer, 1994, vol.
818, pp. 351—363.

[180] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D.
Corner, and E. D. Berger, “Eon: a language and runtime
system for perpetual systems,” in Proceedings of the 5th inter-
national conference on Embedded networked sensor systems, ser.
SenSys ’07. New York, NY, USA: ACM, 2007, pp. 161—
174.

[181] M. Springer, e algebra of random variables, ser. Probability
and Statistics Series. Wiley, 1979.

[182] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt, “Accelerating critical section execution with asymmetric
multi-core architectures,” in ASPLOS, 2009, pp. 253—264.

[183] Q. Sun, G. Dai, and W. Pan, “LPV model and its application
in web server performance control,” in CSSE, vol. 3. Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 486–
489.

[184] J. Tan, Fundamentals of Analog and Digital Signal Processing.
AuthorHouse, 2008.

[185] M. Tanelli, D. Ardagna, and M. Lovera, “LPV model iden-
tification for power management of web service systems,” in
IEE MSC. Boston, MA: IEEE Control Systems Society,
2008, pp. 1171–1176.

192

http://www.scilab.org

Bibliography

[186] H. Taylor and S. Karlin, An introduction to stochastic modeling.
Academic Press (Boston), 1994.

[187] N.omas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Am-
ato, and L. Rauchwerger, “A framework for adaptive algo-
rithm selection in STAPL,” in ACMPPoPP. New York, NY,
USA: ACM, 2005, pp. 277—288.

[188] A. van Lamsweerde, Requirements Engineering: From System
Goals to UMLModels to Software Specifications. J. Wiley and
Sons, 2009.

[189] M. Y. Vardi, “Automatic verification of probabilistic concur-
rent finite state programs,” in Foundations of Computer Science,
1985., 26th Annual Symposium on, oct. 1985, pp. 327—338.

[190] S. Wadekar and S. Gokhale, “Exploring cost and reliabil-
ity tradeoffs in architectural alternatives using a genetic algo-
rithm,” in Software Reliability Engineering, 1999. Proceedings.
10th International Symposium on, 1999, pp. 104—113.

[191] W.-L. Wang and M.-H. Chen, “Heterogeneous software re-
liability modeling,” in Software Reliability Engineering, 2002.
ISSRE 2003. Proceedings. 13th International Symposium on,
2002, pp. 41—52.

[192] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based
software reliability modeling,” Journal of Systems and Software,
vol. 79, no. 1, pp. 132—146, 2006.

[193] D. Woit, “Specifying component interactions for modular re-
liability estimation,” in Proc. 1st International Software Quality
Week Europe (QWE’97), 1997.

[194] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr,
and J. Merseguer, “Performance by unified model analysis
(puma),” in Proceedings of the 5th international workshop on
Software and performance. ACM, 2005, pp. 1—12.

[195] C. Xu and F. Lau, Load Balancing in Parallel Computers: e-
ory and Practice, ser. Kluwer international series in engineering
and computer science. Springer, 1996.

193

B

[196] D. Yixin, W. W. Chai, J. Hellerstein, A. Storm, M. Surenda,
S. Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll,
C. Lee, and J. Colaco, “Comparative studies of load balanc-
ing with control and optimization techniques,” in Proceedings
of the American Control Conference, Jun 2005, pp. 1484—1490.

[197] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for
web services selection with end-to-end qos constraints,” ACM
Transactions on the Web, vol. 1, May 2007.

[198] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services com-
position,” IEEE Transactions on Software Engineering, vol. 30,
no. 5, pp. 311—327, May 2004.

[199] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
P. Padala, and K. Shin, “What does control theory bring to
systems research?” SIGOPS Oper. Syst. Rev., vol. 43, pp. 62—
69, 2009.

194

List of Figures

2.1 Example of a parametric DTMC. 24
2.2 Translating transition rewards to state rewards. 28
2.3 Example of a parametric D-MRM. 29

4.1 WorkingMom process overview. 42
4.2 SRE synthesis algorithm. 72
4.3 State elimination for D-MRM. 74
4.4 Matrix based approach: average execution time (s) vs

number of states / number of parameters. 80
4.5 Matrix based approach: maximum execution time (s) vs

number of states / number of parameters. 80
4.6 Matrix based approach: empirical validation of the com-

plexity assessment in (4.5). 82
4.7 PARAM: average execution time (s) vs number of states

/ number of parameters. 83
4.8 PARAM:maximum execution time (s) vs number of states

/ number of parameters. 83
4.9 Execution time vs number of states: flat reachability, 5

parametric transitions. 85
4.10 Execution time vs number of states: flat reachability, 10

parametric transitions. 86
4.11 Execution time vs number of states: cumulative reward,

5 parametric transitions, 2 parametric rewards. 87
4.12 Stress test of the Maple built-in solver: 100 states, up to

45 transition parameters. 88
4.13 Stress test of the WM implementation: 100 states, up to

45 transition parameters. 89

196

List of Figures

4.14 Stress test of the WM implementation with 200 states
and up to 100 parameters. 90

5.1 Example of an operator grammar (‘n’ stands for any nat-
ural number) and its operator precedence matrix 93

5.2 Abstract syntax tree of the expression ‘5*4+2+6*7*8’ . . 95
5.3 Example of attribute grammar 96
5.4 Incremental evaluation of semantic attributes 99
5.5 e grammar of the Mini language 100
5.6 e two versions of the example program 101
5.7 e syntax tree of version 1 of the example program; the

subtree in the box shows the difference (node 9) in the
syntax tree of version 2 102

6.1 Block diagram of feedback control. 119
6.2 Schema of the software system. 122
6.3 DTMC mode for the example system. 122
6.4 Reliability of the system: set point (dashed red) and achieved

value (solid). 132
6.5 Control variables of the system: c1a solid, c1b dotted and

c5 dashed dotted. 133
6.6 Reliability of the system with ±5% white noise on r̂: set

point (dashed red) and achieved value (solid). 134
6.7 Control variables of the system with ±5% white noise

on r̂: c1a solid, c1b dotted and c5 dashed dotted. 134
6.8 Reliability of the system with ±1% white noise on ŝ: set

point (dashed red) and achieved value (solid). 135
6.9 Control variables of the system with ±1% white noise

on ŝ: c1a solid, c1b dotted and c5 dashed dotted. 135
6.10 Control variables of the system: c1a dashed, c1b solid and

c5 dashed dotted. 136

7.1 DTMC formalization of the basic dynamic binding prob-
lem. 144

7.2 Block diagram for relay-based (PI) auto-tuning. 153
7.3 Simulation: overall reliability. 155
7.4 Simulation: incoming requests. 155
7.5 Simulation: services reliabilities. 156
7.6 Simulation: control. 156
7.7 n-alternatives binding structure. 157

197

L F

7.8 Step response of a 5-alternatives binder. 159

198

List of Tables

3.1 PCTL formalization of requirements R1-R4. 34
3.2 R-PCTL formalization of requirements R5-R6. 36

200

	Overture
	Introduction
	Contributions
	Publications
	Thesis Structure

	Modeling
	Probabilistic Models
	Discrete-Time Markov Chains
	Modeling with DTMCs
	Validity of the Markov Assumption

	Discrete-Time Markov Reward Models
	Modeling with D-MRMs

	Probabilistic Specification Logics
	Probabilistic Computation Tree Logic (PCTL)
	Specification Example

	Extending PCTL With Rewards (R-PCTL)
	Specification Example

	Verification
	The WorkingMomParadigm
	The Working Mom Paradigm
	PCTL Verification
	Reaching an Absorbing State
	Extending to the Entire PCTL

	R-PCTL Verification
	Unbounded Formulae
	Bounded Formulae
	Special Applications of Reward Analysis

	Sensitivity Analysis
	Related Work
	Incremental Verification
	Parameter Space Exploration
	Parametric Model Checking

	Empirical Evaluation
	Matrix Based Algorithms
	Equation Based Algorithms
	Empirical Complexity of the WM

	Syntax-Diven Analysis
	Background
	Floyd Grammars
	Attribute Grammars

	Syntactic-Semantic Incrementality
	The Locality Property and Syntactic Incrementality
	Semantic Incrementality

	Incremental Quantitative Analysis
	Applying SiDECAR

	Discussion and Related Work
	Related Work
	SiDECAR and the WorkingMom

	Control
	Software Control through Markov Models
	Control-Oriented Modeling
	A Representative Example

	Software Models as Dynamic Systems
	Controlling the System's Dynamics by Feedback
	Formal Assessment

	Experimental Evaluation
	Extension to R-PCTL and Limitations
	Related Work

	Reliability-Driven Dynamic Binding
	Two-Alternatives Online Dynamic Binding
	The Modeling Paradigm
	Control Synthesis
	Auto-Tuning
	Control Validation

	Extending to n Alternatives
	Implementation
	Related Work

	Finale
	Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables

