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Abstract	
This work presents an experimental approach to investigate the material behavior at 

the micro-scale of two important alloys (FeCr and γ-TiAl) for structural applications. 

Local strain fields at multiple length scales are measured using an advanced optical 

technique. Local strain heterogeneities arises as a consequence of the local 

microstructure and deformation mechanisms. This work aims to gain further insights 

into the relation between the mechanical behavior of metals at the micro-scale with 

the observed mechanical behavior on the meso and macro scales. The main findings 

presented here provide valuable information into the deformation mechanisms 

activated in bcc metals (slip and twinning), which can be utilized by researchers as 

the basis of analytical models to be developed in the next future.  

The work is divided into three main parts. In the first part, tension and compression 

experiments were conducted on multiple single crystal orientations of body-centered 

cubic Fe-47.8Cr single crystals. The critical resolved shear stress magnitudes for slip, 

twin nucleation and twin migration were established. The results show that the 

nucleation of slip always precedes twinning which nucleates with an associated load 

drop at an higher critical resolved shear stress. Following twin nucleation, twin 

migration proceeds at a critical resolved shear stress that is lower than the initiation 

stress. The experimental results of the nucleation stresses indicate that the Schmid 

law holds to a first approximation for the slip and twin nucleation cases, but to a 

lesser extent for twin migration particularly when considerable slip strains preceded 

twinning. The critical resolved shear stresses were determined experimentally using 

digital image correlation in conjunction with electron back scattering diffraction. The 

digital image correlation enabled pinpointing the precise stress on the stress-strain 

curves where twins or slip were activated. The crystal orientations were obtained 

using electron back scattering diffraction and used to determine the activated twin 

and slip systems through trace analysis. The results presented in Chapter 2 provide a 

considerable contribution in understanding the micro-mechanical behavior of bcc 

alloys. 
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In the second part of the present work slip transmission through grain boundaries is 

investigated. The full slip dislocation blockage, or the partial slip dislocation 

transmission processes at grain interfaces provide a significant contribution at the 

material strengthening. The study focuses on the link from the deformation 

mechanisms at the micro-scale to the global mechanical behavior (macro-scale). 

Strain fields across grain boundaries were measured using advanced digital image 

correlation techniques. In conjunction with strain measurements, grain orientations 

from electron back-scattered diffraction were used to establish the dislocation 

reactions at each boundary, providing the corresponding residual Burgers vectors due 

to slip transmission across the interfaces. A close correlation was found between the 

magnitude of the residual Burgers vector and the local strain change across the 

boundary. When the residual Burgers vector magnitude (with respect to the lattice 

spacing) exceeds 1.0, the high strains on one side of the boundary are paired with 

low strains across the boundary. When the residual Burgers vector approaches zero, 

the strain fields vary smoothly across the boundary. The FeCr bcc alloy exhibits 

single slip per grain making the measurements and dislocation reactions rather 

straightforward. The work points to the need to incorporate details of slip dislocation-

grain boundary interaction (slip transmission) in modeling research. 

In the last part of the work, a γ-TiAl alloy manufactured with electron beam melting 

technology is examined. The electron beam melting technology enables to avoid 

typical manufacturing defects. It follows that experiments carried out on this material 

provide several insights into the microstructural damage mechanisms leading to crack 

initiation. Classical experimental methodologies for the fatigue characterization were 

conducted adopting plain fatigue specimens, fatigue specimens with an initial artificial 

defect, and crack propagation specimens. Preliminary considerations from these 

experiments indicate that the interfaces between lamellar-lamellar grains, and 

lamellar-equiaxed grains act as potential crack initiation sites. Taking into account the 

typical lamellar grain size, the fatigue resistance of the duplex γ-TiAl alloy can be 

predicted. Further investigations on the influence of the microstructure were obtained 

using residual strain fields via high resolution digital image correlation in combination 

with high resolution images of the local microstructure after etching.  
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Introduction	

	
The characterization of the material behavior under the effect of static or repeated loads is one of the 

largest and most studied research field for mechanical and material science engineers. Nevertheless 

the abilities to predict mechanical behaviors of materials increased in the last decades, new and 

more reliable models are necessary in order to improve the quality and the safety of the component 

design. The increased ability to predict material behavior resides in the ability of the scientists to 

decrease the length-scales of the observations of the deformation mechanisms (micro and nano 

scales), and use this knowledge for predicting the global mechanical behavior (macroscopic scale). 

From the experimental point of view the investigation at the micro and nano scales involve different 

difficulties which are not encountered using the classical approaches on the continuous medium 

scale. First of all the active deformation mechanisms (slip and twin) depend on the atomistic structure 

of the analyzed material. In addition, the active deformation mechanisms are typically strongly 

dependent on the testing and environmental conditions: temperature, strain rate, etc., so the 

analyses need to be implemented at specific and defined conditions. Another important aspect to 

consider for these approaches is the limited area which can be studied. Since the phenomena 

involving dislocation motions are observed at nano-scales, the target area is small, and a general 

picture of the phenomena at meso-scale is difficult to draw. The main idea pursued in this work is to 

link the phenomena which occur at micro-level (slip and twin) with the resolved strains on the meso-

scale. Experimentally, Digital Image Correlation (DIC) was used to investigate the local strain 

heterogeneities on the sample surface and correlate them with the microscopically activated 

deformation mechanisms.  

In the following sections the main research areas covered in this work are introduced, along with an 

introduction to the materials under investigation. Section I.1 gives an overview of the experimental 

methodology adopted. Section I.2 introduces the study on FeCr single crystals, focusing on the 

experimental determination of the critical resolved shear stresses for slip onset, twin nucleation and 

migration. Section I.3 presents the fundamentals of the work on the FeCr polycrystal samples, DIC is 

used to measure strain changes across the grain boundaries in order to correlate the microstructural 

grain boundary behavior with the strains measured on the macro-scale. Finally, Section I.4 

introduces the study on one γ-TiAl alloy in order to work out the effect of the microstructure on the 

fatigue behavior for these alloys. 



 

I.1. Ex

Along this 

FeCr alloy

experimen

capture loc

deformatio

Scattered 

indexing o

boundaries

microstruc

Microscop

Figure
Correl
Scatte
Micros

One of the

who firstly

positions o

a great su

applying l

developed

the 2D-DIC

subset of 

surface is 

specified. 

imaging a

alternative

microscop

xperime

work, Digita

y, and to st

ntal approach

cal strain he

on mechanis

Diffraction 

of the slip/twi

s. Further a

cture charac

pe (SEM) or o

e I.1.  Adop
ation are 

ered Diffrac
scope (SEM

e first pionee

y tried to co

of different fe

uccess in dif

aser techno

d and refined

C were prop

pixels betw

specifically t

In this work

cquisition pr

ely, ex-situ D

pe. 

ntal	appr

al Image Cor

tudy the cra

h is the sam

eterogeneities

ms (slip/twin

(EBSD) for 

n systems, a

analysis of 

cterization fo

other optical 

ted experim
used in co
ction techn
), or commo

ring work em

orrelate high 

eatures on th

fferent resea

ology [3-8]. 

d by different

posed and va

ween two im

treated in or

k DIC is use

rocess, the s

IC which refe

roach	

relation (DIC

ack initiation 

me, and it is

s which deve

n). The deter

the same 

and in case o

the sample

ollowing etch

devices. 

mental appr
onjunction w
nique and 
on optical m

mploying DIC

resolution p

he images [1

arch fields, in

Starting with

t authors [9-

alidated. DIC

mages and t

rder to produ

ed in two diff

strain fields 

ers to the im

6 

C) is used to 

sites for a 

 schematica

elop on the s

rmination of 

area covere

of a polycrys

e surface (f

hing, etc.) is

roach. Strai
with crystal

images o
icroscopes.

C was propos

photos in o

, 2]. In the 1

n particular 

h the work 

13], the num

C is based o

thus reconst

uce a random

fferent ways:

are then ca

aging acquis

characterize

γ-TiAl alloy

ally depicted 

sample surfa

crystal orien

ed with stra

stal material, 

for example 

s achieved 

n measurem
 orientation

obtained fr
 

sed in the ea

rder to extra

960s and 19

in the exper

of Peters a

merical algori

on algorithm

truct the dis

m speckle pa

: in-situ DIC

aptured durin

sition out of t

e the mechan

y. For both 

in Figure I.

ace as a con

ntation throug

in measurem

also the def

detections 

using the S

ments via D
ns from Ele
om Scann

rly 1950s by

act the infor

970s DIC me

rimental solid

and Ranson 

thms which 

s able to tra

splacement f

attern adapte

which refer

ng the loadin

he load fram

nical behavio

the materia

1. DIC is us

nsequence o

gh Electron 

ments allow

finition of the

of small c

Scanning Ele

Digital Imag
ectron Bac
ing Electro

y Gilbert Hob

rmation abo

ethodologies 

d mechanics

[9], succes

form the bas

ack the posit

filed. The sa

ed for the pu

rs to the rea

ng of the sa

me using an o

or of a 

ls the 

sed to 

f local 

Back-

ws the 

e grain 

racks, 

ectron 

 

ge 
k-
on 

brough 

ut the 

found 

s field 

ssively 

sis for 

tion of 

ample 

urpose 

al-time 

ample; 

optical 



7 
 

Generally speaking, deformation mechanisms (slip and twinning) produce local strain heterogeneities 

on the sample surface. Adopting an in-situ DIC set-up is possible to capture the onset of slip and 

twinning measuring the localized strains on the sample area detected with the camera. This 

experimental set-up is particularly suited for the experiments on the FeCr single crystal samples, 

since the analyzed sample areas are characterized by the same crystal orientation, thus displaying 

an homogeneous mechanical behavior in terms of active twin and slip systems. Moving the attention 

to the polycrystal cases (FeCr and γ-TiAl alloy), the adoption of the DIC in-situ set-up is not adapted 

for capturing local strain heterogeneities and correlate them with the local microstructure. In fact, for 

these cases, the microstructure is small compared with the strain resolution typically used for in-situ 

applications. Higher image resolutions are required, and they can be obtained only using ex-situ DIC. 

The characteristics of the implementation of in-situ and ex-situ DIC are described in Chapter 1. In 

particular, the chapter explains the different DIC applications for the specific cases addressed along 

the work. 

I.2. Twin	nucleation	and	migration,	slip	onset	in	FeCr	single	crystals	

Chapter 1 presents the experimental results obtained from experiments on iron-chromium (FeCr) 

single crystal samples loaded along selected crystal orientations. Understanding the deformation 

response of iron based body-centered cubic (bcc) alloys has significant merit, as these alloys form 

the basis of materials that are widely utilized in structures. In particular, the Fe-Cr alloys are widely 

used in chemical and nuclear applications. For common structural applications, the percentage of 

chromium content doesn’t exceed 30 at. pct. since higher chromium contents favor cleavage 

fractures, as a consequence of the high stresses present at twin-twin intersections [14-16]. However, 

adopting heat treatments that remove interstitial impurities drastically improve the brittleness of these 

alloys, and good mechanical properties (in particular ductility) are obtained. It is of great importance 

to provide a complete material characterization for these alloys, which can be also useful in order to 

gain further insides into the mechanical behavior of bcc materials. The majority of the previous 

investigations on FeCr alloys were carried out on polycrystals [17-22], whereas in the first part of this 

study single crystals have been employed to activate specific twin and slip systems. 

Macroscopically, deformation by slip is accommodated by the sliding of planes of atoms one over the 

other as schematically reported in Figure I.2a. From the atomistic point of view, slip is originated by 

dislocation motion. Depending on the crystal structure (fcc, bcc, hcp) different crystallographic planes 

and different shear directions can be activated. For bcc materials, the typical slip planes are 

contained on the well-known 011{ } , 112{ } , 123{ }  families of planes, while the directions are 

contained on the 111   family. 



 

Twinning i

oriented a

orientation

nucleation

Figure

For many 

growth (als

theories ex

materials s

microscop

classical s

methodolo

mechanism

understand

are related

strain mea

information

otherwise 

advantage

particular 

experimen

s still origina

according to

n), this regio

, in particula

e I.2. Schem

years resea

so referred a

xplaining the

see [24-27]).

pe (TEM) allo

studies adopt

ogy. Despite

ms of twin nu

d better wha

d with the ac

asurements v

n on the twin

obtained ad

e is that with

adopting re

ntal technique

ated by an a

o a crystal 

on is named 

ar twin can al

matic of a) s

archers stud

as twin migra

e dislocation 

. From the ex

owed resear

ting the optic

e all these e

ucleation and

at is the effec

ctive twin sys

via digital ima

n and slip fo

dopting class

h the adopte

al time data

es. 

applied shear

symmetry (

twin. For b

so nucleate 

l ip and b) tw

died dislocat

ation), from th

mechanism 

xperimental p

rches to clea

cal microsco

experimenta

d eventual tw

ct in terms of

stems. It wil

age correlati

ormation (an

sical experim

ed image res

a acquisition

8 

r stress (Fig

a mirror of 

cc materials

in the elastic

winning view

tion mechan

he atomistic 

which origin

point of view

arly observe

ope and the e

al approache

win interactio

f local strains

l be shown i

ion on single

d eventually

mental, appr

solution it is 

n, which is 

ure I.2b). A 

the origina

s a load dro

c region of th

wed on a sin

nisms for tw

point of view

nate the twin 

w, the adoptio

 twinning (s

electron bac

es can prov

on with slip d

s on the mes

in the follow

e crystal sam

y successive 

roaches suc

possible to 

a difficult o

region inside

al crystal in 

p typically o

he stress-stra

ngle crystal.

in nucleation

w. From thes

nuclei were 

on of the tran

ee i.e. [28-3

ck-scattered d

vide several 

dislocations, 

so-scale and 

ing that the 

mples allows 

interaction),

ch as TEM. 

cover large 

peration to 

e the crystal

terms of c

occurs during

ain curve [23

 

n and succe

se studies dif

proposed (fo

nsmission ele

30]), in addit

diffraction (E

insights int

there is a ne

how these s

implementat

to capture s

, which cann

In fact, the

 sample are

obtain with 

 is re-

crystal 

g twin 

3]. 	

 

essive 

fferent 

or bcc 

ectron 

tion to 

EBSD) 

to the 

eed to 

strains 

tion of 

everal 

not be 

main 

eas, in 

other 



9 
 

Another important aspect of this approach is that the use of specimens manufactured as single 

crystals with a specific crystal orientation in the load direction enables to study separately crystal 

orientations which display predominantly slip and crystal orientations that display also twinning. The 

complexity of using a polycrystal material relates to the difficulties of neglecting the effects of the 

grain boundaries, and more important, the random choice of the grain orientation. The idea pursued 

here is to load statically (in compression and tension) and study each selected crystal orientation 

using a defined experimental approach (crystal orientation from EBSD and strain measurements 

from DIC), and provide for each orientation the evolution of the local strain fields associated with slip 

and twinning. Since by using DIC methodology it is also possible to capture the real-time evolution of 

the strains during loading, the first point of the analysis is the measure of the exact point of twin and 

slip nucleation along the stress-strain curve. Different works dealt already the existence of a critical 

resolved shear stress for both slip and twinning. In particular, it is well established that the resolved 

shear stress for twinning is constant when different factors are fixed: alloy composition, temperature, 

strain rate, etc. For an exhaustive review on this topic and references see [23]. Many studies have 

been carried out on the dependence of these factors on the occurrence of twinning, but less interest 

has been devoted in understanding what is the effect of twinning on the local strain field, and more 

important what is the effect on the crystal behavior based on the point of twin nucleation on the 

stress-strain curve. In this sense, the use of EBSD and DIC can shed light into the study of twin 

nucleation and subsequent twin growth, in particular in terms of associated strain fields. Moreover, 

this work can provide a solid basis of experimental results which can be useful for understanding the 

subsequent slip and twin evolution (for example twin migration) and the interactions (slip/twin, 

slip/slip and twin/twin). In fact, since all the observed slip and twin systems have been indexed, the 

results can also be useful for testing plasticity framework based on active slip and twin systems. 

These concepts can be better understood analyzing the schematic proposed in Figure I.3 (obtained 

from the experiments proposed in Chapter 2) which represents a conceptual summary of the different 

stress-strain curves based on the load direction and the crystal orientation for bcc alloys. The stress-

strain curves reported in Figure I.3 schematize the different possible mechanical behaviors of the 

FeCr single crystals depending on the active deformation mechanism (slip and/or twinning). It is 

evident that, based on the active slip/twin systems, a different level of crystal hardening is observed, 

along with a completely different mechanical behavior. Case (a) a load drop occurring in the 

nominally elastic part of the stress-strain curve characterizes the deformation behavior for the 

analyzed crystal orientation. The open questions are: what is the mechanism which leads to the 

observed load drop (slip or twinning)? The deformation mechanisms preceding and following the load 

drop are the same? What is the influence of the deformation mechanism activated during the load 

drop on the subsequent crystal deformation? Case (b) describes a slightly different crystal behavior, 

in fact along the stress-strain curve the load drop is preceded by a flat region which is characterized 

by an active deformation mechanism which doesn’t provide hardening till the load drop. Also in this 
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barrier in order to react with the twin boundary [31], thus leading to an increment of the material 

strength. Twin-twin and twin-slip interactions can be beneficial for the strengthening of the material, 

but on the other side, the intersection regions can promote high strain and stress localizations. For 

example, twin-twin interactions are well-known for generating high localized stresses in the region of 

interaction, in particular when one twin is blocked in front of another twin [32-34]. Moreover, when 

loaded in tension, the reaction between some of the possible active twin systems for a particular 

crystal orientation can lead to the formation of the Cottrell dislocation which leads to cleavage 

fractures [32]. In general, in order to study the effect of the twin-twin interaction observed, it is useful 

to study the possible outcome in terms of dislocation reaction. For bcc materials different authors 

provided experimental studies showing the possible twin-twin and twin-slip reactions and the 

consequences on the mechanical behavior, see for example [35-38]. It is not the objective of the 

present work to focus on each twin-twin and twin-slip interaction observed and study the possible 

dislocation reactions. On the other side, giving the local strain measurements in correspondence of 

the twin-twin and twin-slip interactions can help in understanding the role of the interactions on the 

observed crystal hardening. 

I.3. Slip	transmission	through	Grain	Boundaries	in	FeCr	

Considerable research efforts have been devoted to incorporate dislocation slip at the crystal level to 

predict the overall response of metals. Substantial progress has been gained in predicting crystal 

orientation effects, strain hardening [39], slip-twin interactions [40], and change in crystallographic 

texture [41, 42]. Grain boundaries have been treated as a contributor to geometric hardening and the 

obstacle length has been incorporated in the models [40]. These models typically allow for predicting 

the overall macroscopic stress-strain response upon use of various homogenization schemes. 

Further advances in these models should encompass developments on grain boundary specifics. In 

fact, one of the strengthening mechanism at grain level is provided by the presence of grain 

boundaries which influence the slip dislocation transmission process. Grain boundaries act as a 

barrier to dislocation motion, thus inducing a contribution to the hardening of the alloy. The level of 

strengthening of the grain boundaries depends on the incoming and outgoing slip because of the 

different residual Burgers vectors that remain at the boundary. The level of strengthening associated 

with the grain boundaries can be quantified measuring the energetics of the slip transfer process. 

Using molecular dynamics simulations, Abuzaid at all established the energy barrier levels for 

different grain boundaries [43]. In particular, they analyzed different grain boundary specifics, 

showing that high energy barriers result in case of high residual Burgers vector magnitudes. The 

influence of the grain boundary specifics on the slip dislocation-GB interactions can also be 

experimentally studied on the meso-scales, since the slip transmission process influences the local 

deformation behavior at the grain boundaries. Over the years, studies examining dislocation-grain 

boundary interactions have been undertaken [44-47]. Historically, experiments on slip transmission 
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the meso-scale. To this aim, Chapter 3 analyzes and correlates the potential outcome of the 

dislocation reactions (local parameter) with the measured strain changes across grain boundaries 

(meso-scale behavior). The open question is: is there any possible parameter which is able to 

describe an average grain boundary behavior? Chapter 3 aims to answer this question, and shed 

further light into the localization of plastic strains due to dislocation-GB interactions. 

I.4. Strain	localizations	in	a	γ‐TiAl	alloy	

Gamma titanium aluminide based alloys (γ-TiAl) have become an important alternative for high 

temperature structural applications in the aircraft industry to supplant current nickel-based 

superalloys as the material of choice for low-pressure turbine blades [59, 60]. The advantages 

achieved by the use of γ-TiAl intermetallics are principally their low density (3.9-4.2 g/cm3 as a 

function of their composition [61]), high specific yield strength, high specific stiffness, substantial 

resistance to oxidation and good creep properties up to high temperatures. Although the application 

of such materials appears very encouraging for the turbine engine industry, optimizing the 

performance improvements requires more advanced approaches to accurately predict fatigue 

strength and to demonstrate the damage tolerance of TiAl materials with respect to intrinsic or 

service-generated defects. Therefore, there is a need to understand and address the specific fatigue 

properties of these materials to assure adequate reliability of these alloys in structural applications 

[62]. The peculiarity of the alloy analyzed here is that components (and thus the samples) are 

manufactured using Electron Beam melting (EBM) technology. EBM is a technology based on a 

manufacturing process “layer by layer”, which allows a drastic reduction of the presence of defects 

such as inclusions, pores etc. In this scenario the influence of the material microstructure on the 

fatigue resistance becomes more important since the possible crack initiation sites are found in 

correspondence of defined microstructural features. 

Figure I.5 shows the typical microstructures generally present on γ-TiAl alloys (this alloy is also 

indicated as a duplex microstructure alloy): the equiaxed grains and the lamellar colonies. The 

regions marked in red represent the critical regions for these alloys in terms of potential crack 

nucleation sites. Strains can accumulate at the grain boundaries as other polycrystalline materials 

(line marked (a) in Figure I.5a), or localized strains are detected in grain boundary regions where 

twins are blocked [63], or in triple points where strain incompatibilities are large [64]. The presence of 

the lamellar colonies create other potential sites where cracks can nucleate, for example as a 

consequence of the interfacial delamination and decohesion of the lamellar colonies [65].  



 

F
in
la
s

Anoth

and 

incom

(c) in

with 

phase

48Al-

quant

exper

smoo

gene

initiat

ex-sit

discu

 

 

igure I.5.  P
nterface bet
amellar colo
l ip blockage

her importan

α2-Ti3Al) in 

mpatibility ins

n Figure I.5c)

the presenc

es. Chapter 

-2Cr-2Nb allo

tify the mai

rimental resu

oth samples,

ral characte

tion sites are

tu DIC strai

ussed in the f

Potential cra
tween two e
ony; c) deco
e at lamellae

nt factor whic

the same 

side the lam

). It is eviden

ce of the tw

4 investigate

oy with the 

in detriment

ults are pres

, fatigue of 

rization of th

e discovered

n measurem

first part of th

ck init iation
equiaxed gra
ohesion bet
e interfaces

ch influences

microstructu

mellar packag

nt that each 

wo microstru

es the mecha

aim to prop

al damage 

sented. In the

samples wit

he alloy. Fro

. In the seco

ments which 

he chapter. 

 

15 

n sites due t
ains; b) inte
tween lamel
. 

s the fatigue 

ure (i.e. the

ge, thus favo

of these po

uctures, their

anical behav

pose an expe

mechanism

e first part c

th artificial d

om these ex

ond part more

confirm the

to the micro
erface betw
lla phases o

behavior is

e lamellar c

oring the dec

tential dama

r geometries

vior of the ga

erimental me

s at micros

lassical expe

defects, crac

xperiments p

e information

e main crac

structure fo
een an equ
or micro-cra

the presence

colony) whic

cohesion ph

age mechani

s, and the v

amma titanium

ethodology a

tructural lev

erimental me

ck propagati

preliminary in

n are obtaine

k nucleation

r a γ-TiAl a
iaxed grain

acking indu

e of two pha

ch creates 

henomena (li

isms are stri

volume frac

m aluminide 

able to inves

vel. Two ma

ethodologies

ion) are ado

nformation a

ed using high

n sites disco

lloy: a) 
 and a 
ced by 

ases (γ-TiAl 

an elastic 

ine marked 

ctly related 

tion of the 

(γ-TiAl) Ti-

stigate and 

ain sets of 

s (fatigue of 

opted for a 

about crack 

h resolution 

overed and 



16 
 

 	



17 
 

Chapter	1	

Experimental	methodology	
 

The present work is characterized by an extensive usage of experimental strain measurements 

obtained via digital image correlation (DIC) methodology. An exhaustive reference on this technique 

is contained in [2]. In this chapter are briefly introduced the basic concepts and the details of the 

experimental techniques adopted along the work. Strain measurements from DIC and crystal 

orientations from electron back scattered diffraction methodologies (EBSD) were mainly used for 

studying the local strain fields associated with the different deformation mechanisms (slip, twinning, 

slip transmission across grain boundaries, twin-twin and twin-slip interactions). Each application 

requires a specific experimental set-up which will be analyzed in this chapter. 

Section 1.1 contains general details on the DIC methodology. The first application of DIC is 

introduced in Section 1.2 with the measurements of the twin nucleation and migration stresses. The 

measurement of the stress required to initiate slip is analyzed separately in Section 1.3. High 

resolution strain measurements were also used to capture the strain changes across grain 

boundaries (GBs) on FeCr polycrystal (Section 1.4), the same section also provides the details of the 

strain averaging process. Finally, section 1.5 describes the slip and twin indexing calculations using 

grain orientations from EBSD and slip/twin traces on the sample surface. 

1.1. Digital	Image	Correlation	

DIC is a non-contact methodology for measuring local displacements on a flat area of the sample 

surface. The extension of the analyzed area depends on the research purposes that indicate the 

image resolution required (macro-scale, meso-scale, micro-scale, nano-scale), on the type of strain 

measurements (real time or out of the load frame), on the available experimental set-up (lens, 

camera), and on the preparation of the surface. The technique is based on reproducing on the target 

surface a random speckle pattern which results in a groups of pixels on the grey scale (from 0 to 

255) in the images captured with a monochrome digital camera. This speckle pattern can be 

produced using different methodologies, in particular its preparation depends on the resolution 

adopted for the images. For example, it is possible to obtain the speckle pattern painting the sample 

using a commercial airbrush and a black paint. In other cases for which higher image resolutions are 

required (i.e. for measuring the strain localization produced by slip) a different procedure for 
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used 5 pixels). Repeating the process for different points inside the reference image determines the 

displacement field of the deformed image. 

Along this work DIC is used in two different modalities: 

 In situ DIC; the deformed images are captured during the experiment, the strain fields 

obtained represent a real-time strain measurement. 

 Ex situ DIC; both the reference and deformed images are captured out of the load frame (at 

zero load), the strain fields obtained represent the residual strains that remain on the sample 

surface. 

Digital image correlation is used to measure the evolution of local strains, in situ, on a full field basis 

[11, 12, 67, 68]. In addition to in situ DIC (sample under stress in the load frame), was also used 

higher resolution DIC strain measurements obtained ex situ (out of the load frame) for analyzing the 

local effect of slip and twinning. In the following sections are described the methodologies along with 

examples of the adopted speckles for both in situ and ex situ DIC. 

1.1.1. In	situ	DIC	

The typical experimental set-up for the implementation of in situ DIC is shown in Figure 1.2, in the 

schematic is described a tension experiment. The nominal strain is measured using an 

extensometer, and the strain signal is used to control the load during the experiment. An IMI model 

IMB-202 FT CCD camera (1600 x 1200 pixels) with a Navitar optical lens (the resolved resolution is 

about 3.0 μm/px) was used to capture the reference and deformed images. Using a dedicated 

software was possible to capture the images during the loading and un-loading steps at an arbitrary 

time interval. This DIC set-up is adapted for measuring increments of deformation, in situ DIC is also 

referred to be a real time strain acquisition technique. The speckle pattern for DIC was obtained 

using black paint and an Iwata Micron B airbrush. An example of the speckle pattern used for in situ 

DIC is shown in Figure 1.3, in this case is shown a compression sample. This speckle pattern allows 

to use a subset size of 51 px (4 μm/px). 
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1.2. DIC	 application	 for	measuring	Twin	Nucleation	 and	Migration	

stresses	in	FeCr	single	crystals	

As introduced in Chapter I, adopting in situ DIC in conjunction with EBSD, the mechanical behavior in 

terms of active slip and twin systems for different FeCr single crystal orientations was studied (see 

Chapter 2). Real time strain fields enable to capture the strain heterogeneities associated with slip, or 

twinning, during loading. In particular the application of this methodology for the selected single 

crystals allow to establish the points on the stress-strain curve where slip and twin nucleate, and 

follow the associated local strain evolution. The main advantage of using DIC relates to the possibility 

to quantify the local strain values associated with the deformation mechanisms. Typically, for bcc 

materials twin nucleation can also be identified on the stress-strain curve when a load drop occurs. In 

some cases the load drop can occur even in the 'elastic' region of the stress-strain curve [23, 71]. It is 

always better to verify the presence of twinned regions on the sample using for example EBSD, since 

for some bcc materials, under particular conditions, also slip nucleation can produce noticeable load 

drops [23]. In the following, all the crystal orientations displaying twinning have been successively 

analyzed using EBSD and, in some cases, also Transmission Electron Microscope (TEM). Moreover, 

as already described in the previous section, the local strains associated with slip and twinning are 

different. It follows that twinning can also be detected when a high local strain increment is measured 

following the load drop.  

In general, depending on the alloy composition and in particular grain orientations, twinning can 

occur in conjunction with slip resulting in complex mechanical behavior which is difficult to detect and 

track with classical experimental approaches. For example, following twin nucleation at a critical 

resolved shear stress level (CRSS) τT, usually twin migration proceeds at a stress level τM which is 

lower [23]. Twin migration is also the result of twin-twin and twin-slip dislocation reactions occurring 

at twin boundaries. Experimental evidence of twin migration, supported by local strain 

measurements, can provide further insight for developments of bcc plasticity models, in particular on 

the hardening effect related to twin growth induced by twin/slip interactions. From the experimental 

point of view, measuring τT and τM requires local strain measurements and knowledge of the 

activated twin systems. The idea is to establish the twin nucleation and migration stresses using real 

time in situ strain measurements. In the following section are described the experimental details 

adopting incremental in situ DIC for correctly detect the τT and τM stresses. 

1.2.1. Incremental	Digital	Image	Correlation	

The complexity of the strain fields when both slip and twin activate and provide strain localizations 

can be overcome using in situ incremental DIC. The idea is described schematically in Figure 1.8. In 

the schematic is represented a general stress-strain curve for a crystal orientation that displays both 
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Chapter	2	

Twin	nucleation	and	migration	in	FeCr	

Single	Crystals	
Part of this work is published in [55]. 

 

In this Chapter are presented the results of the experiments on the FeCr single crystals implemented 

for understanding the mechanical behavior of bcc materials, focusing on the evolution of the 

deformation mechanisms (slip/twinning) during loading. The usage of single crystals allows to focus 

on specific grain orientations, and it avoids the complexity introduced by grain boundaries in 

polycrystals. In particular, the careful selection of the crystal orientations allowed to activate specific 

twin and slip systems. Different crystal orientations and loading directions have been tested, leading 

to a precise characterization of the strain fields due to the activation and interaction of twin and slip. 

Based on the type and number of active systems, different stress-strain curves are then expected 

(see schematic in Figure I.3). 

In earlier works on Fe-47.8Cr alloy, Marcinkowski conducted indentation experiments and observed 

the presence of twinning and slip predominantly on <111>{112} systems [22]. Since it is not easy to 

identify the slip and twin systems coinciding with {112} planes by simple optical observations, DIC 

and Electron Back Scattering Diffraction are then used, as the combination of these tools facilitates 

this distinction. Indexing the twin systems with EBSD and measuring local strain fields allow to 

monitor the nucleation and evolution of both slip and twinning during deformation. In the following, 

particular emphasis is placed on the analysis of the deformation mechanism at the early stages of 

plasticity (either corresponding to first yielding or twin migration subsequent to the load drop). DIC 

was utilized at higher resolutions compared to conventional studies and provides micro scale 

resolution measurements and allows pinpointing strain localizations due to slip and twin activation. 

The characterization of the strain fields related to the active deformation mechanisms provides 

further insight onto the evolution of the deformation for bcc materials.  

In this chapter are addressed the following main issues: (i) Depending on the crystal orientation, the 

precise determination of the critical resolved shear stresses (CRSSs) for twin (τT) and slip nucleation 

(τS), by pinpointing local strain disturbances using DIC. Therefore, are discussed the implications of 

these experimentally determined stresses with respect to the Schmid Law. (ii) Making a distinction 
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Cases (schematic in Figure 2.5). For Cases I and II deformation via twinning is expected given the 

high mT of the twin systems listed in Table 2.2. Crystal orientations belonging Case III display a 

limited number of slip systems with high mS ( 10 1[ ]  orientation in tension and 314[ ] orientation in 

compression). Finally, we classify the 010[ ]  orientation in compression in Case IV as there are 

multiple slip systems with high mS. 

Table 2.2. Theoretical slip and twin systems for the crystal orientations analyzed in this work. 
For each crystal orientation are reported the slip/twin systems displaying the largest mS/T. 

1 2 3 4 5 6 7 8 9 10 11 12 

111
112
[ ]

( )  
1 11
12 1
[ ]

( )  
1 11
21 1
[ ]

( )  
111
112
[ ]

( )  
111
121
[ ]

( )

111
2 1 1
[ ]

( )

111
112
[ ]

( )

111
121
[ ]

( )

111
211
[ ]

( )
111
112
[ ]
( )  

111
121
[ ]

( )  
1 11
21 1
[ ]

( )
 

 Axis Case 
Slip Twin 

System mS System mT 

Tensile 
10 1[ ]  III 2, 8 0.47 1, 3, 7, 9 0.24 

010[ ] I 2, 5, 8, 11 0.47 2, 5, 8, 11 0.47 

Compressive 

10 1[ ]  II 2, 8 
0.47 
0.47 

2, 8 0.47 

010[ ] IV 2, 5, 8, 11 0.47 
1, 3, 4, 6, 

7, 9, 10, 12 
0.24 

11 1[ ]  II 4, 8, 12 0.31 4, 8, 12 0.31 

314[ ] III 
2 

1 11 132[ ]( )  
0.49 

0.50 
2 0.49 

2.4. Crystal	orientation	[010]	

The crystal orientation 0 10[ ]  represents the classical cleavage orientation for the bcc lattice when 

the load is applied In tension [32]. The reason for this mechanical behavior along this crystal 

orientation is that there are four possible twin systems activated with a tensile load (see Table 2.2). 

Twin-twin interactions are geometrically studied based on the direction of the line which results from 

the interaction between the two twin planes. Along all the possible interactions between the four twin 

systems that can be activated for the 0 10[ ]  orientation, there are couples of interacting twins which 

have the direction of the intersecting line in the <011> family. The dislocation reaction between the 

twin partials for these family of interactions leads to the formation of a Cottrel dislocation [35, 80], 

which is the atomistic configuration leading to cleavage fractures. 
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twin-twin and twin-slip cases presented before much higher differences between local strains and 

average strains were measured. 

2.8. Further	analysis	of	the	results	

The usage of local deformation measurements from DIC allow for the precise determination of the 

critical stresses associated with the activation of slip τS, twin τT, and twin migration τM which are 

otherwise not accessible utilizing nominal sample response measurements. For example, slip can 

occur locally despite the overall elastic response in a number of cases. Twin nucleation is associated 

with a sudden load drop and can be measured by various experimental techniques, but the 

subsequent migration can occur immediately after the load drop or after further deformation. In situ 

local strain measurements via DIC permitted measurement of corresponding stress level at which 

twin migration initiates. The results from all the crystal orientations tested are summarized in Table 

2.3.  

The crystal orientations analyzed are classified in four different cases (see schematic in Figure 2.5). 

These four cases represent the possible crystal deformation behaviors based on the type of 

deformation mechanism involved (slip/twin). Each case displays a crystal hardening that is function 

of the main mechanism involved (twin-twin, twin/slip or slip/slip interactions). The real-time acquisition 

of the strain fields using DIC in conjunction with crystal orientations from EBSD determined the 

systems (planes and directions) and the CRSSs for slip onset τS, twin nucleation τT and migration τM 

for each crystal orientation analyzed (Table 2.3). While for slip and twin nucleation the CRSSs are 

constant, the twin migration stresses display deviations which are discussed in the following section. 

Table 2.3. CRRSs for onset of slip τS, twin nucleation τT, twin migration τM as a function of the 
crystal orientation and load direction. The sequences S-T, S-S refer to slip-twin and slip-slip 
cases. 

Mechanism    Twinning (T) Slip (S) 

 Axis Case Sequence 
τT 

(MPa) 
τM 

(MPa) 
τS 

(MPa)

Compressive 

10 1[ ]  II S-T 194±8 149±19 87±16 

0 10[ ]  IV S-S Not observed 85 

11 1[ ]  II S-T 203±3 157±3 88 

314[ ]  III S-S Not observed 91 

Tensile 
10 1[ ]  III S-S Not observed 93±1 

0 10[ ]  I S-T 173±13 114±3 85 
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2.8.1. Twin	Migration	Stress	

In the experimental results reported in this chapter, the twin migration stress σM (τM) represents the 

point of macroscopic yielding on the stress-strain curves subsequent to twin nucleation. In fact, as 

evident from DIC strain measurements (Figure 2.7, 2.8 and 2.17), strains localize starting from τM in 

the same region formed after the load drop. In Table 2.3, the reported values for the CRSS for twin 

migration show variation depending on crystal orientation. The CRSS magnitudes for the 0 10[ ]  

orientation in tension was 114 MPa while for 11 1[ ]  and 10 1[ ]  orientations in compression 153 

MPa was measured. The first  case is classified as Case I, and the second one as Case II. Two 

possible explanations are introduced to explain the difference in the CRSS values for twin migration 

for Case I and Case II. First of all, for the 11 1[ ]  and 10 1[ ]  crystal orientations in compression 

(Case II) twin nucleation is preceded by appreciable deformation (1.5% slip strain) developing in one 

primary slip system (Figure 2.12 and 2.17). It is conceivable to argue that this large slip activity 

preceding twin nucleation influences the subsequent twin growth process. A growing twin can 

encounter slip bands [23] thus having difficulties in penetrating them. Secondly, twin growth is 

influenced by the dominant intersection mechanism involved, i. e. twin-twin (Case I) or twin-slip 

(Case II), hence the product of the dislocation reactions occurring in the intersection region. The high 

stresses in the intersecting regions can promote the dislocation reactions that facilitate twin growth. 

Therefore for Case I, where twin activity is not preceded by prior large slip activity, and twin-twin 

interaction (high local stress) is the primary intersection mechanism, we measured lower τM. 

2.8.2. Strain	Hardening	

It is also well-known that twin-twin, twin-slip and slip-slip intersections have an important effect on the 

crystal hardening. As shown in an analogous work on fcc steel by Efstathiou at al. [81], the visualized 

accumulation of plastic deformation in the twin-twin and twin-slip intersection regions can be 

correlated with the observed crystal hardening. In our experiments, at the point where twin migration 

is observed (at twin migration stress σM (τM)) on the stress-strain curves, all the crystal orientations 

displaying twinning (leading to twin-twin and twin-slip interactions) show high values of the hardening 

parameter h=dσ/dεpl=0.2E, and high localized strains (up to 10% for the 0 10[ ]  orientation in tension, 

and up to 8% for the 11 1[ ]  orientation in compression). For the same level of deformation, the 

double-slip case doesn’t show hardening ( 1 0 1[ ]  in tension, Case III, Figure 9), while the multi-slip 

case analyzed ( 0 10[ ]  in compression, Case IV, Figure 11) displays a constant hardening 

parameter from the onset of macroscopic plasticity (h=dσ/dεpl=0.01E) that is lower compared to the 

twin-twin and twin-slip cases. For both the cases displaying slip, the localized strains (up to 3%) are 

much lower than the localized strains measured for Case I and II indicating that the level of strain 
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accumulation in the region of twin/twin, twin/slip and slip/slip intersection can be correlated with the 

observed level of hardening. 

2.8.3. Twin	Nucleation	Stress	

For each of the crystal orientations displaying twinning ( 0 10[ ]  in tension, 11 1[ ]  and 10 1[ ]  in 

compression, Table 2.2), a CRSS of 191 MPa was measured for twin nucleation (see Table 2.3). 

Moreover, all the twin systems having the highest magnitudes of the Schmid factors mT activate 

simultaneously. These observations support the prediction of the activated twin systems using 

Schmid factor analysis along with the knowledge of the twinning direction for each crystal orientation 

and load direction (see Section 3). The existence of a constant CRSS is noteworthy because if the 

measurement techniques is not precise, it is possible to report a deviation contrary to the current 

findings. For the crystal orientations 0 10[ ]  and 314[ ]  in compression, and 10 1[ ]  in tension only 

slip is observed since the resolved shear stress for twinning is rather low mT=0.24 (Table 2.2). The 

choice of single crystals in this study is rather unique to isolate specific mechanisms.  

2.8.4. Slip	Nucleation	Stress	

For all the crystal orientations tested in our study (Table 2.2), slip develops on planes and directions 

having the highest SFs, <111>{112} in most cases and <111>{123} in others. Using high resolution 

images (3.0 - 0.44 μm/pixel) we pinpoint strain localization due to the slip onset appearing for each 

crystal orientation and load direction at a constant CRSS of 88 MPa. This type of resolution during 

deformation is rather unique. The results conform to the Schmid law for slip (Table 2.3) and slip 

precedes twin nucleation. Precise measurements are needed because slip nucleation in the elastic 

region of the stress-strain curve (see inset image marked A in Figure 2.7, image resolution used for 

DIC is 0.9 μm/pixel) was detected which cannot be gleaned clearly from macroscopic observations.   

Overall, the experimental results point to the utility of DIC to analyze the response of metals 

undergoing complex slip-twin evolution. The progression of these mechanisms are not readily 

explainable by macroscopic stress-strain measurements alone, and localized strain measurements 

shed light to the activation of slip and twinning during deformation and their interactions. Hence, the 

present approach provides insight for bridging the scales ranging from macroscopic response to 

localized behavior at micro-scales. 
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Chapter	3	

Slip	Transmission	through	Grain	

Boundaries	in	FeCr	polycrystal	
 

Understanding the interaction between slip dislocations and grain boundaries (GBs) has a paramount 

importance on the mechanical response of metals [82, 83]. In fact, extensive research has been 

reported during the last decades on the strengthening effect introduced by partial or full blockage of 

slip dislocations at GBs. In particular, much interest has been devoted on the results of the slip 

dislocation-GB reactions which provide deep insight into the slip transmission process across the 

GB. In this regard, early research focused on the details of these reactions at GBs utilized 

transmission electron microscopy (TEM) [48, 56]. Several insights into the transmission of the 

incoming dislocation, and incorporation into the GB with extrinsic (residual) dislocations have been 

gained as a result of these studies. Further experimental efforts are required to overcome the 

difficulties in correlating the results of these dislocation reactions with the associated strain fields 

across the GBs (on the meso-scale). A measure of the strengthening associated with a GB is 

decided based on whether dislocation strain fields undergo a continuous variation (full dislocation 

transmission), or whether large strains accumulate on one side of the GB (dislocation blockage). 

Therefore, a focused study on the experimental determination of the localized strains across GBs is 

important and will provide considerable insight into dislocation transmission and GB contribution to 

hardening. In this chapter are studied local strain fields at the meso-length scales covering multiple 

grains in Fe-Cr alloy. The strain measurements are used to establish the possible outcome of slip-GB 

interaction and provide further insight into the importance of the residual dislocation due to slip 

transmission. 

3.1. Schematic	of	Slip	Dislocation–Grain	Boundary	interaction	

A schematic of a GB is shown in Figure 3.1. Grain 1 contains the incoming slip system, while Grain 2 

contains the outgoing slip system. In this schematic, the dislocations leave the GB in the second 

crystal (outgoing slip plane) as a result of the dislocation-GB interaction. Of particular importance is 

the residual Burgers vector of the dislocation left at the GB [84-86]. 
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A total of nine grains are visualized in the selected area, with an approximately mean grain size of 

about 1 mm. In Figure 3.2, the stereographic triangle along with the crystal orientations of each grain 

in the load direction is also reported. The stereographic triangle is subdivided into five regions ([88]) 

that indicate the slip systems with the largest Schmidt Factors (SFs) for bcc materials. SF analysis 

was used in combination with slip trace analysis (from strain fields) for indexing the observed slip 

systems (see Section 1.5). 

Table 3.1. Euler angles obtained from EBSD for each grain in the selected area of the 
sample surface. 

Grain 1 2 3 4 5 6 7 8 9 

φ1 [°] 205.8 314.95 260.11 286.41 300.41 220.23 236.51 242.12 231.9 

Φ [°] 41.56 49.86 19.92 32.46 34.42 46.03 45.97 43.49 37.21 

φ2 [°] 46.47 52.21 359.49 2.24 52.63 34.38 28.82 19.69 19.42 

 

3.2.2. Experimental	set‐up	and	strain	measurements	

The experiments were conducted at room temperature using a servo hydraulic load frame. The 

sample was deformed in displacement control at a mean strain rate of 5x10-5 s-1. In situ DIC [2, 11, 

12, 89] was used for measuring the real-time evolution of the strain fields during loading (see also 

Chapter 1). The images were captured using an IMI model IMB-202 FT CCD camera (1600 x 1200 

pixels) with a Navitar optical lens, providing for a resolution of 3.0 μm/pixel. The speckle pattern for 

DIC was obtained using black paint and an Iwata Micron B airbrush. A reference image of the sample 

surface was captured at zero load, and the deformed images of the same area every 2 seconds 

during the loading. The strain data obtained from in situ DIC were used to construct the stress-strain 

curve using the average axial strain for the selected in situ DIC region. 

The main results were obtained using ex situ high resolution DIC. Adopting special fine speckles, the 

strain resolution obtained reveals the local strain intensities at grain level, in particular strain 

heterogeneities across grain boundaries were clearly established. As already explained in Chapter 1, 

the usage of ex situ DIC requires that the reference and deformed images are acquired out of the 

load frame using an optical microscope which enables capturing higher magnification images. The 

strain fields obtained refer to the un-loaded condition (residual strains). A speckle pattern suitable for 

high resolution DIC was applied on the surface sample after the initial EBSD scan (Figure 3.2). A set 

of 140 images covering the analyzed region was captured before the experiment (reference 

condition) and after loading the sample (deformed condition). The correlation was implemented for 

each pair of images (reference and deformed) and the results were successively stitched together. 

The grain map was overlaid with the strain fields using the Vickers indentation marks which are 

visible in the EBSD grain orientation map and the optical microscope images. The observed slip 
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transmission of slip dislocations and that induce hardening due to the presence of the grain 

boundaries. 

In Figure 3.4a, the strain fields shown in the inset images marked Ai and Bi represent the residual 

axial strain fields for the 2 mm x 2 mm region obtained via ex-situ DIC. Each strain field is a 

composition of 9 images (resolution 0.87 μm/pixel) captured outside the load frame and after 

unloading from points A and B on the stress-strain curve. Strain heterogeneities develop as a 

consequence of the local material microstructure (see also the EBSD map in Figure 3.2). 

Two regions are selected from the global strain fields: 1A and 2A after load step Ai, and 1B and 2B 

after load step Bi (Figure 3.4a). In Figure 3.4b the same regions are paired with the schematic of the 

slip plane geometries. The GB plane is drawn using the GB trace from the EBSD map assuming that 

the normal lies on the plane of the sample surface. For the region marked 1, the observed incoming 

slip system is 11 1 231[ ]( ) , while the outgoing slip system is 11 1 321[ ]( ) . In that case, the residual 

Burgers vector magnitude is low: 

2 4111 111 0 38
2 2
[ ] [ ] | | .

Grain Grain r r

a a
b b a   
 

    (3.2) 

The strain fields 1A and 1B clearly show an accumulation of strains for both sides of the GB. In 

particular, this condition of strain transmission is held for both the loading steps. For the second case 

shown, a GB for which the reaction occurring between the incoming and the outgoing slip systems 

leads to a high residual Burgers vector magnitude was selected: 

2 7111 111 1 28
2 2
[ ] [ ] | | .

Grain Grain r r

a a
b b a   
 

    (3.3) 

The incoming slip system is 11 1 231[ ]( ) , while the outgoing slip system is 11 1 2 11[ ]( ) . 
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are visualized. In the schematic on the bottom of Figure 3.5 the | |
r
b


 values for each GB are also 

reported. GBs on the DIC strain field with T indicate case of strain transmission visualized as a strain 

continuity along the slip traces, while B indicates the GBs for which no strain continuity is observed. 

For GBs 1-2, 2-4, 2-6, 7-8, 7-6 it is evident how the strains induced by slip continued almost 

unaltered through the interfaces, while for GBs 2-3, 3-4, 4-5, 5-6, 2-7, 2-8, 6-4 the strains accumulate 

on one side of the GB. Strain accumulation is particularly evident for GBs 4-5 and 2-7. Each GB can 

be also characterized by the estimation of the | |
r
b


 magnitude (see schematic in Figure 3.5). In 

Table 3.3 a summary of the observed slip mechanism (T: slip transmission, B: slip blockage) and the 

correlation with the | |
r
b


 magnitudes is given. It is clear that slip transmission corresponds to low 

| |
r
b


, while for high | |
r
b


 magnitudes the slip mechanism observed is blockage. 

Table 3.2. Activated slip systems and SFs. 

Grain 1 2 3 4 5 6 7 8 

Slip 

System 

(SF) 

111
011
[ ]

( )

0.46 

111
123
[ ]

( )
 

0.45 

111
231
[ ]

( )
 

0.48 

111
110
[ ]

( )

0.49 

111
321
[ ]

( )

0.47 

111
121
[ ]

( )

0.45 

111
211
[ ]

( )

0.42 

111
123
[ ]

( )
 

0.37 

111
211
[ ]

( )
 

0.49 

111
211
[ ]

( )
 

0.49 
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3.3.3. Strain	measurements	across	grain	boundaries	

In order to quantify the magnitude of the strain change across the GB sides, we provide two sets of 

strain measurements for low and high | |
r
b


 magnitudes. The inset image marked A in Figure 3.6 

shows the strain field across grains 1 and 2 (see also Figure 3.5). In this case a clear strain continuity 

associated with the incoming slip system 111 123[ ]( )  and outgoing slip system 11 1 231[ ]( )  is 

observed through the GB, and the residual Burgers vector magnitude is low: 

1 2111 111 0 16
2 2
[ ] [ ] | | .

Grain Grain r r

a a
b b a   
 

    (3.4) 

Each point on the strain plots reported (Figures 3.6 and 3.7) refers to the average axial strain of a 

rectangular selection of strain values oriented along the GB side with an approximate size of 40 μm x 

400 μm. For the case A (GB 1-2, Figure 3.6) the difference of the strain magnitudes approaching the 

GB is equal to 1 2 0 09| | . %
GB
   . 

Table 3.3. Comparison between the observations on the DIC strain field on the slip 

mechanism (T: strain transmission, B: strain blockage) with the residual Burgers vector | |
r
b


. 

GB 1-2 2-3 3-4 2-4 4-5 5-6 2-6 2-7 2-8 7-8 7-6 6-4 

Slip 
mechanism 

T B B T B B T B B T T B 

| |rb


 0.16 1.07 1.14 0.38 1.14 0.64 0.28 1.28 1.31 0.07 0.18 0.94 

 

The second case (inset marked B, Figure 3.6) represents the strain measurements through grains 2 

and 6 (see also Figure 3.5). Strain bands associated with the incoming slip system 11 1 231[ ]( )  and 

the outgoing slip system 111 123[ ]( )  are still observed to propagate continuously across the GB. The 

DIC strain field displays also intermediate values of strain bands (green color) between the incoming 

slip bands on the left side of the GB. These additional strain bands developing in proximity of the GB 

can be associated with the partial dislocations left in the GB having a residual Burgers vector 

magnitude equal to: 

2 6111 111 0 28
2 2
[ ] [ ] | | .

Grain Grain r r

a a
b b a   
 

    (3.5) 
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strain gradient equal to 4 5 0 47| | . %
GB
   . The last case analyzed (inset image marked B, Figure 3.7) 

has been already introduced in Figure 3.4b (strain field 2A) using lower image resolution (0.87 versus 

0.18 μm/pixel). For the dislocation reaction between the incoming 11 1 231[ ]( )  and the outgoing 

11 1 2 11[ ]( )  slip systems see Eq. (3.2). From the strain measurements obtained, the strain change 

across the GB is particularly high 2 7 1 29| | . %
GB
   . 

3.4. Discussion		

The concept of residual Burgers vector has been established in earlier works and its importance is 

well known in the materials science community [83, 90]. What has been lacking is a quantitative 

illustration of the link between the residual Burgers vector and the local strain fields. This became 

possible with the development of digital image correlation techniques, and special codes in this 

study, written for the purpose of analyzing the strains as the slip approaches the boundary, and 

emanates or gets blocked at the boundary. Using this methodology, in Section 3.3 are provided 

different types of strain fields across selected GBs which display different residual Burgers vector 

magnitudes. The strain fields are directly correlated with the mechanism of interaction: 

 Low 0| |
r
b 


, the dislocations are transmitted through the grain boundary and the strains 

are continuous across the interface (Figure 5, inset marked A, 0 16| | .
r
b a


). 

 Intermediate 0 2 1| | ( . )rb a  to 


, a residual dislocation is left on the grain boundary, this 

represents the most common case, the strains accumulate on one side of the grain boundary 

depending on the | |
r
b


 magnitude (Figure 5, inset marked B, 0 28| | .
r
b a


). 

 High 1| |
r
b 


, dislocations are blocked at the grain boundary, high strain accumulation is 

measured on one side of the grain boundary (Figure 6, insets marked A and B, 1 14| | .
r
b a


 

and 1 28| | .
r
b a


). 

These results can be utilized to illustrate the significant role that grain boundaries play in the slip 

transfer process, in particular they can be useful in further modeling efforts, which include the 

strengthening associated with slip dislocation-GB interactions. The accumulation of residual 

dislocations at the grain boundary induces a strain discontinuity across the interface that is 

proportional to the | |
r
b


 magnitude. It follows that | |
r
b


 can be used as a parameter to quantify (i) the 

strain accumulation at the grain boundaries, and (ii) the strengthening effect due to the single grain 

boundary. We note the judicial choice of FeCr polycrystals with relatively large grain sizes, and most 
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importantly the activation of a single slip system in each grain. In the presence of two or more 

activated slip systems and also twinning, the interpretation of DIC strain fields become more complex 

and additional strengthening effects are introduced. Our experiments on single crystals of the same 

material and conditions (sample geometry, heat treatment and strain rate) indicate that no hardening 

is observed (for low deformations 3%  ) when only one or two slip systems are activated [91]. It 

follows that the contribution to the hardening observed in the present case ( 0 014.h E ) is provided 

by partial or full blockage of the dislocations at the grain boundaries. Therefore, the isolated single 

slip system results for the present polycrystal sample shed light into the mechanism very clearly, 

hence present unique findings in this work. In summary, in this chapter are illustrated the 

considerable promise of the digital image correlation method when utilized in conjunction with EBSD 

in gaining insight on the strain fields at the grain boundaries. Other techniques such as TEM can be 

used in conjunction with these results presented here as well. These results can be utilized to check 

the confidence of crystal plasticity calculations as well as the simulations conducted with molecular 

dynamics methods which provide a better description of grain boundaries.  
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4.7 Final	considerations	

A potential disadvantage of cast and PM γ-TiAl alloys, in terms of component design, is their limited 

fatigue crack growth resistance and damage tolerance. Additionally, in the case of cast and 

conventional PM TiAl alloys, due to the unfavourable combination of fatigue crack growth threshold, 

propagation behaviour and bigger inherent defects-porosity, non-metallic inclusions and metallurgical 

defects, like dendrites, the usable fatigue endurance strength may be quite limited. In general, there 

is a small difference between the fatigue threshold stress-intensity-range of long cracks and the 

apparent fracture toughness, leading to shortened lifetimes for small changes in applied stress. For 

the analysed Ti-48Al-2Cr-2Nb alloy, the manufacturing process adopted (EBM) allows to avoid the 

typical defects of cast or PM materials, providing higher fatigue threshold and fatigue strength. 

In this chapter were firstly depicted the results adopting the classical fatigue experiments. Fatigue 

experiments were implemented on fatigue specimens with an artificial defect, in this case the fatigue 

threshold were estimated for two different initial defect depths. The experimental results can be 

accurately described by a modified El-Haddad model, see equation (4.1). In Figure 4.9 is reported 

the equation representing the adopted model, along with the experimental fatigue limits for the 

samples with the artificial defects. In addition, the results obtained for plain samples are also reported 

in the same diagrams (see Figure 4.9). HCF limits for plain specimens are required to be translated 

at an initial defect size of √areai of 150 µm for both for loading ratio R=0 and R=0.6 in order to match 

the prevision made with equation (4.1). This fundamental consideration points to the fact that 

nevertheless the material is free from initial manufacturing defects, the fatigue limits for smooth 

samples display values which can be explained only assuming the presence of initial defects with an 

average size of √areai=150 µm. Analyses of the fracture surfaces show the presence of flat areas 

corresponding to the lamellar colonies which are considered to be potential crack initiation sites 

(Figure 4.7). In particular these regions display an average area √areaLamellarColonies=150 µm which 

corresponds to the observed initial crack length defect √areai. Not only fatigue limits are affected by 

the microstructure, but also the small crack propagation, and thus stress intensity threshold ranges 

(section 4.4). The lamellar colonies are observed to provide an initial tortuous crack path which 

provides barriers to crack advancement when the crack front encounters unfavourable lamellar 

packages (see micrographs in Figure 4.15). Moreover, roughness induced crack closure also 

develops as a consequence of the non-linear crack path (Section 4.5.2). This observation suggests 

that the reduction of the grain size is potentially detrimental for the capability to develop roughness-

induced crack closure, thus reducing the crack propagation resistance of the alloy. 

Along the classical experimental approaches just discussed, in this chapter is also introduced the 

implementation of high resolution DIC for determining the local effect of the material microstructure 

on the strain fields. The results presented using DIC strain fields clearly confirm the critical role on 
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crack initiation played by the lamellar grains previously argued. The high local strains reported in 

Figure 4.21 and 4.23 are discovered to originate along the lamellar colonies, and along the interfaces 

between the lamellar colonies and the equiaxed grains. Similar results were introduced to explain the 

fracture surfaces discovered after the experiments on the smooth samples (Figure 4.17). Of course, 

from this analysis is not possible to detect the exact point where, successively, cracks originate. 

More analyses are required, in particular adopting post-analyses via SEM. A combination between 

crack locations using SEM images and the present strain maps (Figures 4.21 and 4.23) can be 

useful for assessing a potential correlation between the regions displaying the highest strain 

localizations with the regions which, successively, favor crack initiation. Again, the present results 

suggest that the advantage of using DIC strain maps provides simultaneous analysis of several 

microstructural locations on significant sample’s areas (damage-map of the potential and more 

detrimental microstructural features). In this way, the choice of the best compromise for the 

microstructure composition (volume fraction of equiaxed/lamellar grains and average grain size) 

based on the design requirements can be operated.  
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Chapter	5	

Concluding	Remarks	and	Future	

Developments	
 

5.5 Concluding	Remarks	

In order to continuously improve the knowledge of the material behavior and provide more reliable 

models able to correctly predict the stresses and deformations inside components, newel 

experimental approaches are required to follow the natural evolution of the research. This work 

presented the usage of a promising experimental approach which is able to link the material behavior 

on the microscopic scales with the material behavior on the meso and macro scales through local 

strain measurements. High resolution strain fields have been obtained from Digital Image Correlation 

(DIC), and the combination of these results with the microstructural information of the alloy provided 

important conclusions on bcc crystal plasticity, and on damage accumulation on γ-TiAl alloys. The 

main results obtained are summarized in the following paragraphs.  

5.1.1. Results	of	Chapter	2	

In Chapter 2, the results provide the basis for discussion of pertinent issues regarding deformation in 

bcc materials when both slip and twinning occurs, and support the following conclusions: (i) the 

observed stress-strain behaviors are classified in four different Cases (schematic in Figure 2.5) 

based on the activated mechanisms (twin/slip) that lead to a different crystal hardening (twin-twin and 

twin-slip interactions display higher hardening than slip-slip interactions). (ii) For Case I (twinning 

dominated) is observed a lower critical resolved shear stress for twin migration (124 MPa) compared 

to the Case II (153 MPa) where twin nucleation is preceded by significant slip activity. (iii) Twin 

nucleation occurs at an average critical resolved shear stress of 190 MPa. For the cases analyzed in 

this study this observation suggests that a critical shear stress for twin nucleation holds to a first 

approximation. (iv) The nucleation of slip occurs at an average critical resolved shear stress of 90 

MPa and always precedes twin nucleation. (v) Local strain measurements are provided on twin-twin 

and twin-slip intersection regions for two specific crystal orientations. Twin-twin intersections lead to 

higher strain localizations (up to 10%) compared to the twin-slip case (up to 6%). 
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These conclusions provide deep insight into deformation behavior of bcc alloys, in particular on the 

active deformation mechanisms based on the crystal orientation. Moreover, strain fields can be used 

as a check of crystal plasticity calculations. 

5.1.2. Results	of	Chapter	3	

In Chapter 3 were investigated dislocation-grain boundary interactions for a FeCr alloy using strain 

fields determined by digital image correlation. Strain fields across GBs provide a direct quantification 

of the GB capability to transmit or block slip dislocations. The study elucidates the role of the residual 

Burgers vector magnitude in predicting full/partial slip transmission, or slip blockage. Along the 

Chapter are provided the strain fields across four GBs displaying different residual Burgers vector 

magnitudes. In particular, for low 0| |
r

b 


 no residual dislocation is left on the grain boundary. In this 

case slip is observed to transmit unaltered across the interface and the resulting strain field is 

continuous. For intermediate 0 2 1| | ( . )
r
b a  to 


, depending on the | |
r

b


 magnitude a step on the strain 

field is observed on the interface that represents the strain accumulation on the GB side of the 

incoming slip system. Finally, for high 1| |
r

b a


, dislocations are blocked at the grain boundary, and 

high strain accumulation is measured on one side of the grain. The results clearly show a direct 

correlation of the strain change across the interfaces with the | |
r

b


 magnitude thus indicating the 

possibility to use the | |
r

b


 as a parameter for predicting the slip transmission capability of the grain 

boundaries in a polycrystal material. 

5.1.3. Results	of	Chapter	4	

In the case of the Ti-48Al-2Cr-2Nb alloy examined in Chapter 4, the advantage of the γ-TiAl 

produced by the EBM process is that typical defects of cast or PM materials can be avoided and 

higher fatigue threshold and fatigue strength with respect to competing technologies can be obtained. 

Thus, the experiments carried out on this duplex γ-TiAl alloy allow to focus on the influence of the 

microstructure (lamellar and equiaxed grains) on the fatigue properties. From the observation of the 

experimental results the following conclusions may be drawn. (i) The fatigue experiments with 

artificial defects show that ∆Kth for defects larger than 100-150 µm can be described very accurately 

by a modified El-Haddad relationship, taking into account the inherent microstructural features of the 

material; the values of the threshold stress intensity factor range depend on the loading ratio R, so 

that the mechanism does not seem to be governed by Kmax. only, as it might be assumed from the 

fatigue experiments with un-notched specimens at different R ratios. This apparently simple material 

model, illustrated in the diagrams of Figure 4.17 gives to the designers useful indications about the 

influence of defects size on the fatigue endurance strength that may employed for the safe design of 

gas turbine components. (ii) High resolution DIC strain fields were also measured in conjunction with 
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microstructural maps for determining the local effect of the material microstructure and locate 

potential micro-crack sites. From the static uniaxial tension/compression experiments were observed 

high localized strains accumulated along lamellar colonies and in the interfaces regions between 

lamellar and equiaxed grains. (iii) Further experiments adopting high resolution DIC will be carried 

out under cyclic loads in order to obtain more detailed damage maps of the microstructure. As shown 

in this work, these tools provide valuable information on the microstructure design (volume fraction 

and average size of the lamellar and equiaxed grains) in order to reach the required mechanical 

properties. 	

5.2. Future	developments	

Following the experiments depicted in the preceding chapters, some possible developments on the 

DIC technique, and some different applications are here presented. Some of these results refer to 

experiments obtained by the author and aim to provide further insight for future research works. The 

aim of this chapter is to show potential advanced applications of the experimental methodology 

adopted. In section 5.1 is presented an application of the in situ DIC methodology at high 

temperature (400°C) for a FeCr single crystal with 10 1[ ]  crystal orientation. A comparison between 

the strain fields obtained at room temperature (chapter 2) and at high temperature is shown. In 

section 5.2 a promising application of ex situ DIC via SEM is investigated for studying twin-twin 

interactions. The strain field in correspondence of a twin-twin intersection is analyzed and the 

improvements obtained using these high resolution images are compared with the previous strain 

field resolutions available. 

5.2.1. High	Temperature	experiments	on	FeCr	

One of the main issues in the usage of DIC at high temperature arises with the choice of the correct 

speckle. In fact, the increment of the temperature introduces difficulties in generating a speckle patter 

that doesn’t change during the experiment. Paint burning and oxidation are the main sources of 

modification of the speckle pattern during the experiment. If the experiment is particularly long (e. g. 

fatigue, creep, etc.) these problems can void the strain measurements. Different solutions for 

producing the speckle are available depending on the type of the experiment. The experiments 

carried out in this study are all static experiments, in this case the duration of the experiment is 

limited. Moreover also the temperature is limited (400°C). This allows to use the same type of 

speckle patter (black pain applied with an Iwata airbrush) providing that the speckle is pre-heated 

before the experiment.  
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blocked in front of the obstacle 11 1 121[ ]( )  twin system. In particular on the twin boundary where the 

incoming 111 121[ ]( )  is blocked high strains are measured in the surrounding matrix. This is true for 

the intersection region (zoomed region on Figure 5.4b), and also along the blocked twin, on the side 

of the incoming twin. These results can be analyzed and interpreted with Molecular Dynamics. The 

dislocation mechanisms can be derived and used to interpret the measured strain fields shown.  

 	



104 
 

 	



105 
 

References	
1. Hobrough, A.G.L., The Photogrammetric Record. 2003. 18(104): p. 337-340. 

2. Sutton, M.A., J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and 

Deformation Measurements: Basic Concepts, Theory and Applications. 2009. 

3. Dainty, J.C., Laser Speckle and Related Phenomena. Laser Speckle and Related 

Phenomena, 1984. XVII. 

4. Archbold, E., J.M. Burch, and A.E. Ennos, Recording of In-plane Surface Displacement by 

Double-exposure Speckle Photography. Optica Acta: International Journal of Optics, 1970. 17(12): p. 

883-898. 

5. Archbold, E. and A.E. Ennos, Displacement Measurement from Double-exposure Laser 

Photographs. Optica Acta: International Journal of Optics, 1972. 19(4): p. 253-271. 

6. Forno, C., White-light speckle photography for measuring deformation, strain, and shape. 

Optics & Laser Technology, 1975. 7(5): p. 217-221. 

7. Luxmoore, A.R., F.A.A. Amin, and W.T. Evans, In-plane strain measurement by speckle 

photography: A practical assessment of the use of Young's fringes. The Journal of Strain Analysis for 

Engineering Design, 1974. 9(1): p. 26-35. 

8. Stetson, K.A., New design for laser image—speckle interferometer. Optics Technology, 

1970. 2(4): p. 179-181. 

9. Peters, W.H. and W.F. Ranson, Digital Imaging Techniques In Experimental Stress Analysis. 

Optical Engineering, 1982. 21(3): p. 213427-213427. 

10. Peters, W.H., et al., Application Of Digital Correlation Methods To Rigid Body Mechanics. 

Optical Engineering, 1983. 22(6): p. 226738-226738. 

11. Sutton, M.A., et al., Determination of displacements using an improved digital correlation 

method. Image and Vision Computing, 1983. 1(3): p. 133. 

12. Sutton, M.A., et al., Application of an optimized digital correlation method to planar 

deformation analysis. Image and Vision Computing, 1986. 4(3): p. 143. 

13. Tian, Q. and M.N. Huhns, Algorithms for subpixel registration. Computer Vision, Graphics, 

and Image Processing, 1986. 35(2): p. 220-233. 



106 
 

14. Reid, C., The association of twinning and fracture in bcc metals. Metallurgical and Materials 

Transactions A, 1981. 12(3): p. 371. 

15. Ha, K.F., H.M. Zhang, and K.L. Jing, An investigation on the mechanism of 475°C 

embrittlement in High-Cr ferritic stainless steel. Metallurgical Transactions A, 1989. 20(11): p. 2563-

2567. 

16. Hull, D., Effect of grain size and temperature on slip, twinning and fracture in 3% silicon iron. 

Acta Metallurgica, 1961. 9(3): p. 191. 

17. Isozaki, S., S. Takaki, and K. Abiko, High Temperature Deformation Mechanism of a High-

Purity Fe–50 mass% Cr Alloy. physica status solidi (a), 1998. 167(2): p. 471. 

18. Kako, et al., Effect of grain size on the deformation properties of a high-purity Fe-50Cr alloy 

at 293 and 773 K. 2000, Sendai, JAPON: Japan Institute of Metals. 251. 

19. Kako, K., et al., Deformation Mechanisms in High-Purity Fe–50Cr(–5W) Alloys at Elevated 

Temperatures. physica status solidi (a), 1998. 167(2): p. 481. 

20. Lagneborg, R., Deformation in an iron-30% chromium alloy aged at 475°c. Acta Metallurgica, 

1967. 15(11): p. 1737. 

21. Mahajan, S., S. Jin, and D. Brasen, Micro-twinning in a spinodally decomposed Fe-Cr-Co 

alloy. Acta Metallurgica, 1980. 28(7): p. 971. 

22. Marcinkowski, M.J.F., R. M.; Sziemae, A., Effect of 500°C aging on the deformation behavior 

of an iron-chromium alloy. Transaction of the American Institute of Mining, Metallurgical and 

Petroleum Engineers, 1964. 230: p. 676-89. 

23. Christian, J.W. and S. Mahajan, Deformation twinning. Progress in Materials Science, 1995. 

39(1-2): p. 1. 

24. A.W, S., Twinning and the origin of cleavage nuclei in α-iron. Acta Metallurgica, 1962. 10(9): 

p. 803. 

25. Sleeswyk, A.W., ½<111> screw dislocations and the nucleation of {112}<111> twins in the 

b.c.c. lattice. Philosophical Magazine, 1963. 8(93): p. 1467. 

26. Cottrell, A.H. and B.A. Bilby, LX. A mechanism for the growth of deformation twins in 

crystals. Philosophical Magazine Series 7, 1951. 42(329): p. 573-581. 

27. Mahajan, S., Nucleation and growth of deformation twins in Mo-35 at. % Re alloy. 

Philosophical Magazine, 1972. 26(1): p. 161. 



107 
 

28. Cahn, R.W., Plastic deformation of alpha-uranium; twinning and slip. Acta Metallurgica, 

1953. 1(1): p. 49. 

29. Karaman, I., et al., Deformation of single crystal Hadfield steel by twinning and slip. Acta 

Materialia, 2000. 48(6): p. 1345. 

30. Venables, J.A., The electron microscopy of deformation twinning. Journal of Physics and 

Chemistry of Solids, 1964. 25(7): p. 685. 

31. Ezaz, T., M.D. Sangid, and H. Sehitoglu, Energy barriers associated with slip-twin 

interactions. Philosophical Magazine, 2011. 91(10): p. 1464. 

32. Honda, R., Cleavage Fracture in Single Crystals of Silicon Iron. Journal of the Physical 

Society of Japan, 1961. 16(7): p. 1309. 

33. Kirillov, V.A., et al., The relation between twinning and brittle failure in single crystals of Fe-

Cr-Co-Mo. Phys. Met. Metall., 1989. 68: p. 133-138. 

34. Priestner, R. and N. Louat, Twinning and fracture in grain-oriented silicon steel. Acta 

Metallurgica, 1963. 11(3): p. 195. 

35. Levasseur, J., Étude géometrique de l'intersection des macles et de l'interaction macle-

glissement dans le fer [alpha]. Materials Science and Engineering, 1969. 4(6): p. 343. 

36. Magnin, T., L. Coudreuse, and A. Fourdeux, Consequences of slip-twinning interactions on 

the monotonic and cyclic deformation of b.c.c. stainless steels. Materials Science and Engineering, 

1984. 63(1): p. L5. 

37. Mahajan, S. and G.Y. Chin, Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe 

alloy single crystals. Acta Metallurgica, 1973. 21(2): p. 173. 

38. Mahajan, S., Twin-Slip And Twin-Twin Interactions In Mo-35 At Per Cent Re Alloy. 

Philosophical Magazine, 1971. 23(184): p. 781-&. 

39. Mathur, K.K. and P.R. Dawson, On modeling the development of crystallographic texture in 

bulk forming processes. International Journal of Plasticity, 1989. 5(1): p. 67. 

40. Karaman, I., et al., Modeling the deformation behavior of Hadfield steel single and 

polycrystals due to twinning and slip. Acta Materialia, 2000. 48(9): p. 2031. 

41. Kalidindi, S.R., C.A. Bronkhorst, and L. Anand, Crystallographic texture evolution in bulk 

deformation processing of FCC metals. Journal of the Mechanics and Physics of Solids, 1992. 40(3): 

p. 537. 



108 
 

42. Lebensohn, R.A. and C.N. Tomé, A self-consistent anisotropic approach for the simulation of 

plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta 

Metallurgica et Materialia, 1993. 41(9): p. 2611-2624. 

43. Abuzaid, W., et al., Slip transfer and plastic accumulation across grain boundaries in 

hastelloy X. J. Mech. Phys. Solids, 2012. 

44. Hook, R.E. and J.P. Hirth, The deformation behavior of isoaxial bicrystals of Fe-3%Si. Acta 

Metallurgica, 1967. 15(3): p. 535. 

45. Hook, R.E. and J.P. Hirth, The deformation behavior of non-isoaxial bicrystals of Fe-3% Si. 

Acta Metallurgica, 1967. 15(7): p. 1099. 

46. Šittner, P., V. Novák, and J. Brádler, Persistent slip band - Grain boundary interactions in low 

strain fatigue of isoaxial Fe-14wt. %Cr bicrystals. Scripta Metallurgica et Materialia, 1992. 27(6): p. 

705. 

47. Šittner, P. and V. Paidar, Observation and interpretation of grain boundary compatibility 

effects in Fe-3.3wt%Si bicrystals. Acta Metallurgica, 1989. 37(7): p. 1717. 

48. Lee, T., I. Robertson, and H. Birnbaum, An In Situ transmission electron microscope 

deformation study of the slip transfer mechanisms in metals. Metallurgical and Materials 

Transactions A, 1990. 21(9): p. 2437. 

49. Aifantis, K.E., et al., Interfaces within strain gradient plasticity: Theory and experiments. Acta 

Materialia, 2006. 54(19): p. 5077. 

50. Soifer, Y.M., et al., Nanohardness of copper in the vicinity of grain boundaries. Scripta 

Materialia, 2002. 47(12): p. 799. 

51. Wang, M.G. and A.H.W. Ngan, Indentation strain burst phenomenon induced by grain 

boundaries in niobium. Jouenal of Materials Research, 2004. 19: p. 2478-2486. 

52. Britton, T.B., D. Randman, and A.J. Wilkinson, Nanoindentation study of slip transfer 

phenomenon at grain boundaries. Journal of Materials Research, 2009. 24(03): p. 607-615. 

53. Wo, P.C. and A.H.W. Ngan, Investigation of slip transmission behavior across grain 

boundaries in polycrystalline Ni3Al using nanoindentation. Journal of Materials Research, 2004. 

19(01): p. 189-201. 

54. Hosford, W.F., Mechanical Behavior of Materials. 2005: Cambridge University Press. 



109 
 

55. Patriarca, L., et al., Twin nucleation and migration in FeCr single crystals. Materials 

Characterization, 2013. 75(0): p. 165-175. 

56. Clark, W.A.T., et al., The use of the transmission electron microscope in analyzing slip 

propagation across interfaces. Ultramicroscopy, 1989. 30(1â€“2): p. 76. 

57. Sangid, M.D., et al., Energy of slip transmission and nucleation at grain boundaries. Acta 

Materialia. 59(1): p. 283. 

58. de Koning, M., et al., Modeling of dislocationâ€“grain boundary interactions in FCC metals. 

Journal of Nuclear Materials, 2003. 323(2â€“3): p. 281. 

59. Dimiduk, D.M., Gamma titanium aluminide alloysâ€”an assessment within the competition of 

aerospace structural materials. Materials Science and Engineering: A, 1999. 263(2): p. 281. 

60. Winstone, M.R., A. Partridge, and J.W. Brooks, The contribution of advanced high-

temperature materials to future aero-engines. Proceedings of the Institution of Mechanical Engineers, 

Part L: Journal of Materials Design and Applications, 2001. 215(2): p. 63-73. 

61. Bartolotta, P., et al., The use of cast Ti−48Al−2Cr−2Nb in jet engines. JOM Journal of the 

Minerals, Metals and Materials Society, 1997. 49(5): p. 48. 

62. Hénaff, G. and A.-L. Gloanec, Fatigue properties of TiAl alloys. Intermetallics, 2005. 13(5): p. 

543. 

63. Ng, B.C., et al., The role of mechanical twinning on microcrack nucleation and crack 

propagation in a near-γ TiAl alloy. Intermetallics, 2004. 12(12): p. 1317-1323. 

64. Kad, B.K., M. Dao, and R.J. Asaro, Numerical simulations of plastic deformation and fracture 

effects in two phase γ-TiAl + α2-Ti3Al lamellar microstructures. Philosophical Magazine A, 1995. 

71(3): p. 567-604. 

65. Leyens, C. and M. Peters, Titanium and Titanium Alloys. 2003: WILEY-VCH. 

66. Carroll, J., et al., An experimental methodology to relate local strain to microstructural 

texture. Review of Scientific Instruments, 2010. 81(8). 

67. Bruck, H., et al., Digital image correlation using Newton-Raphson method of partial 

differential correction. Experimental Mechanics, 1989. 29(3): p. 261. 

68. Chu, T., W. Ranson, and M. Sutton, Applications of digital-image-correlation techniques to 

experimental mechanics. Experimental Mechanics, 1985. 25(3): p. 232. 



110 
 

69. Carroll, J., et al., Investigation of fatigue crack closure using multiscale image correlation 

experiments. Engineering Fracture Mechanics, 2009. 76(15): p. 2384-2398. 

70. Efstathiou, C., H. Sehitoglu, and J. Lambros, Multiscale strain measurements of plastically 

deforming polycrystalline titanium: Role of deformation heterogeneities. International Journal of 

Plasticity. 26(1): p. 93. 

71. Deformation Twinning. 1963. Gainesville, Florida: Gordon and Breach Science Publishers / 

New York - London - Paris. 

72. Baeslack Iii, W.A., et al., Metallography of gamma titanium aluminides. Materials 

Characterization, 1993. 31(4): p. 197-207. 

73. Engler, O. and V. Randle, Introduction to Texture Analysis. 2010: CRC Press. 

74. Christian, J., Some surprising features of the plastic deformation of body-centered cubic 

metals and alloys. Metallurgical and Materials Transactions A, 1983. 14(7): p. 1237. 

75. Schmid, E., Proc. Internat. Cong. Appl. Mech., 1924. 

76. Nabarro, F.R.N., Extended dislocations and the schmid law of resolved shear stress. 

Philosophical Magazine, 1966. 14(130): p. 861. 

77. Vitek, V., M. Mrovec, and J.L. Bassani, Influence of non-glide stresses on plastic flow: from 

atomistic to continuum modeling. Materials Science and Engineering: A, 2004. 365(1-2): p. 31. 

78. Duesbery, M.S. and V. Vitek, Plastic anisotropy in b.c.c. transition metals. Acta Materialia, 

1998. 46(5): p. 1481. 

79. Sleeswyk, A.W. and J.N. Helle, Zigzag configurations of twins in α-iron. Acta Metallurgica, 

1961. 9(4): p. 344. 

80. Weertman, J. and J.R. Weertman, Elementary Dislocation Theory. 1992: Oxford University 

Press. 

81. Efstathiou, C. and H. Sehitoglu, Strain hardening and heterogeneous deformation during 

twinning in Hadfield steel. Acta Materialia, 2009. 58(5): p. 1479. 

82. Hirth, J., The influence of grain boundaries on mechanical properties. Metallurgical and 

Materials Transactions B, 1972. 3(12): p. 3047. 

83. Sutton, A.P. and R.W. Balluffi, Interfaces in crystalline materials. 1995: Clarendon Press. 



111 
 

84. Lim, L.C., Slip-twin interactions in nickel at 573K at large strains. Scripta Metallurgica, 1984. 

18(10): p. 1139. 

85. Lim, L.C. and R. Raj, Continuity of slip screw and mixed crystal dislocations across bicrystals 

of nickel at 573 K. Acta Metallurgica, 1985. 33(8): p. 1577. 

86. Lim, L.C. and R. Raj, The role of residual dislocation arrays in slip induced cavitation, 

migration and dynamic recrystallization at grain boundaries. Acta Metallurgica, 1985. 33(12): p. 2205. 

87. Abuzaid, W., et al., The Role of Slip Transmission on Plastic Strain accumulationacross 

Grain Boundaries. Procedia IUTAM. 4(0): p. 169. 

88. Seeger, A., Experimental evidence for the {110} ↔ {112} transformation of the screw-

dislocation cores in body-centred cubic metals. physica status solidi (a), 2004. 201(4): p. R21. 

89. Sutton, M., et al., Full-field representation of discretely sampled surface deformation for 

displacement and strain analysis. Experimental Mechanics, 1991. 31(2): p. 168. 

90. Hirth, J. and J. Lothe, Theory of Dislocations. Second ed. 1982: John Wiley and Sons, Inc. 

91. Filippini, M., et al., Defect tolerance of a gamma titanium aluminide alloy. Procedia 

Engineering, 2011. 10(0): p. 3677-3682. 

92. Biamino, S., et al., Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and 

mechanical properties investigation. Intermetallics. 19(6): p. 776. 

93. Murr, L.E., et al., Characterization of titanium aluminide alloy components fabricated by 

additive manufacturing using electron beam melting. Acta Materialia. 58(5): p. 1887. 

94. Andersson, L.E. and M. Larsson, Device and Arrangement for producing a Three-

Dimensional Object, 2001. 

95. Sauthoff, G., Intermetallics. 1995: VCH. 

96. McCullough, C., et al., Phase equilibria and solidification in Ti-Al alloys. Acta Metallurgica, 

1989. 37(5): p. 1321-1336. 

97. Gloanec, A.L., et al., Cyclic deformation mechanisms in a gamma titanium aluminide alloy at 

room temperature. Scripta Materialia, 2005. 52(2): p. 107-111. 

98. Appel, F., J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys. 2011: Wiley. 

99. Yoo, M.H., J. Zou, and C.L. Fu, Mechanistic modeling of deformation and fracture behavior in 

TiAl and Ti3Al. Materials Science and Engineering: A, 1995. 192-193, Part 1(0): p. 14. 



112 
 

100. Tanaka, K., Y. Nakai, and M. Yamashita, Fatigue growth threshold of small cracks. 

International Journal of Fracture, 1981. 17(5): p. 519. 

101. Voice, W.E., et al., Gamma titanium aluminide, TNB. Intermetallics, 2005. 13(9): p. 959. 

102. Pippan, R., et al., Fatigue threshold and crack propagation in Î³-TiAl sheets. Intermetallics, 

2001. 9(1): p. 89. 

103. García, A. and H. Sehitoglu, Contact of crack surfaces during fatigue: Part 1. formulation of 

the model. Metallurgical and Materials Transactions A, 1997. 28(11): p. 2263-2275. 

104. Sehitoglu, H. and A. García, Contact of crack surfaces during fatigue: Part 2. Simulations. 

Metallurgical and Materials Transactions A, 1997. 28(11): p. 2277-2289. 

105. Gloanec, A.L., et al., Fatigue crack growth behaviour of a gamma-titanium-aluminide alloy 

prepared by casting and powder metallurgy. Scripta Materialia, 2003. 49(9): p. 825. 

 

 




