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Abstract 
 
Digital image correlation is an increasingly widespread non-contact 
measurement technology for full field motion and strain estimation. 
If, on one hand, the technique is attractive and exploited on and on in a variety 
of mechanical testing procedures, thanks to its characteristics of contact-less, 
handiness, flexibility and density of measurable points, on the other hand the 
approach can not still compete in terms of resulting measurement accuracy with 
standard state of the art pointwise strain measurements (typically performed 
through strain gauges). This generally represents a non negligible issue in case 
of elastic strain evaluation and brittle material testing, where the resulting signal 
to noise ratio may not be sufficient. 
In this work, the problem of uncertainty minimization in digital image 
correlation measurements is faced from two different points of view is order to 
propose solutions able to reduce the expected data dispersion. 
At first, image blurring is proposed as an effective tool to remove the high 
spatial frequency components in the acquired images, proven to be 
misinterpreted by state of the art image correlation algorithms and responsible of 
producing bias and increasing variability in the computed results. 
In particular, the use of a Gaussian low pass filtering is introduced and tuned at 
first on synthetically generated data simulating increasingly complex motion and 
strain fields. The stability of the obtained results is numerically verified with 
respect to the main correlation analysis parameter, the noise level of the 
acquired data and the characteristic appearance of the framed area. Successively, 
the obtained results are experimentally validated in rigid motion, uniform 
deformation and more complex strain fields tests. 
In the second part of the work, an innovative fast, cheap and highly repeatable 
technique for surface texturization, “toner transfer”, is proposed. Highly 
contrasted randomness in the surface intensity colours (generally referred to as 
“speckle pattern”) is required by the digital image correlation approach for the 
displacement and strain fields estimation; this is achieved in the proposed 
methodology transferring a numerically designed and printed speckle pattern on 
the final measurement surface by means of a thermo-mechanical process. The 
capability of the technique to improve the resulting measurement performances 
(in terms of resolution and accuracy) is quantitatively demonstrated. 
Furthermore, its flexibility in terms of tested materials, sizes, geometries as long 
as its suitability in high temperature measurement setup is presented. Thanks to 
the proposed technology, fully controlled speckle pattern can be generated and 
consequently the numerical optimization of the random pattern (in terms of 
minimization of the resulting measurement uncertainty) has been faced. The 
obtained results have been experimentally proven to be able to reduce the data 
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dispersion, in particular in case of low signal to noise ratio in the collected 
images. 
Strain measurement uncertainty quantification is by itself a non trivial issue in 
case of digital image correlation measurements, due to the large number of 
variables, both in the test setup and in the processing software, strongly 
influencing this parameter. 
In the last part of this work, a fast innovative procedure for “on the field” 
uncertainty quantification in case of two dimensional digital image correlation 
setups is presented. The procedure is base on the generation of known fictitious 
strain fields thanks to out of plane camera-specimen displacements and their 
fitting by a proper analytic model in order to readily quantify the resulting data 
dispersion. 
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CHAPTER 1 
 
 
 
 
 

1 Introduction and state of the art 
 
 
 

1.1 Present work: motivations  
After about 30 years since the first works carried out in South Carolina, digital 
image correlation, DIC, is nowadays a widespread vision-based measurement 
technique for two- and three-dimensional motion and strain full field estimation. 
Nevertheless, the techniques can still be considered “young” and some work 
needs to be done in order to make a promising technology a state of the art 
measurement technique. 
In this work, the problem of uncertainty in digital image correlation 
measurements is faced. 
The reason is that data dispersion associated to DIC measurement can not still 
compete with other state of the art measurement techniques and this is generally 
a problem in case of elastic strain evaluation and brittle material testing, where 
the resulting noise level in the collected data is generally too high. 
Two different approaches for uncertainty reduction will be presented, developed 
and validated in this work. 
The first one is a preprocessing operation (image blurring) on the acquire data 
that will be proven to be an effective solution to increase state of the art 
algorithms performances. 
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The second approach is an innovative technique for speckle pattern (i.e. the 
characteristic surface textures of the measurement surface required by digital 
image correlation) realization. The new technique will be proven to lead to high 
quality resulting surface appearance, able to maximise the resulting 
measurement resolution and minimize the associate uncertainty. 
On the other hand, the quantification of strain measurement uncertainty in DIC 
application is by itself a non-trivial, but obviously fundamental, aspect. 
In the last part of this thesis an innovative procedure for 2D DIC uncertainty 
evaluation, based on the so-called fictitious strain method (in plane equivalent 
deformations resulting by rigid out of plane displacements), will be proposed.  
 

1.2 State of the art: full field strain measurements 
Material and structures state of strain quantification due to various static and 
dynamic mechanical and thermal loading is one of the fundamental tasks of 
experimental mechanics. 
Traditional electric strain gauges are by far the most exploited technique in case 
local measurements are required, while recently developed fiber optics based 
transducers on one hand extended the applicability of local measurements in 
harsh environments and on the other hand introduced innovative solutions for 
the continuous evaluation of the strains along a 1-D profile (Brillouin 
technology). 
In case full field strain estimation is required, vision based techniques have been 
developed and applied; these techniques compare a digital image of the 
measurement surface during the load application with a reference one of the 
unloaded surface in order to retrieve the surface state of strain.  
These techniques can be macroscopically classified into two main groups: 
interferometric and correlation-based approaches [1]. 
In the firsts (e.g. holography interferometry, speckle interferometry and moiré 
interferometry, [2]), the measurement surface, usually characterized by uniform 
white texture, is lighted by means of structured light (using lasers or fringe 
projectors). The measure is performed processing the phase difference of the 
scattered light wave from the test object surface before and after the loading be 
means of fringe processing and phase analysis.  
Digital image correlation, “DIC” [3], refers to a class of non-contacting methods 
that acquire images of an object, store images in digital format and perform 
image analysis to extract full-field shape, motion or deformation measurements. 
The technique, originally developed by a group of researches at the University 
of South Carolina in the ‘80s [4-9], is known in literature with different names, 
such as digital speckle correlation [10-11], texture correlation [12], computer-
aided speckle interferometry [13,14] and electronic speckle photography [15-
18]. In contrast to interferometric approaches, correlation based ones rely on the 
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inherent textures (naturally present of artificially realized) of the measurement 
surface and consequently do not require the use of structured light sources. In 
these methods, the surface deformation is analyzed comparing the gray intensity 
changes of the object surface in the acquired images.  
In the last years, digital image correlation has been widely accepted and 
commonly used as a powerful and flexible tool for full field deformation 
measurement in the field of experimental solid mechanics. The technique is 
characterized, on one hand, by the simplicity of the required measurement setup, 
basically composed by only an imaging device, monocular in case of 2D DIC or 
stereo for 3D DIC (versus interferometric approaches, where a structured 
lighting device and vibration isolated optical platforms are required increasing 
the setup cost and complexity and strongly limiting field applications, [1]). On 
the other hand, digital image correlation offers huge flexibility both in terms of 
spatial resolution and dynamical performances: the same DIC code used to 
analyze a large scale specimen [19-21] can be applied to micro and nano scale 
problems, simply substituting the acquisition device (optical microscopes [22-
24], laser scanning confocal microscopes [25-26], scanning electron 
microscopes [27-30], atomic force microscopy [31-33], scanning tunnel 
microscopes [34-36]) and, providing the availability of a sufficiently fast 
hardware, strain induced in dynamic and impact tests [37-40] can be quantified 
by the same algorithm exploited for static analyses. The measurable strain fields 
range from few tenth of µm/m up to deformation of the measurement surface 
much higher than 100% [41-44], far beyond the limit of every strain gauge) and, 
with the right cares, digital image correlation can be easily applied to high 
temperature tests as well [45-48]. Furthermore, with the constant emergence of 
high-spatial-resolution and high-time-resolution image acquisition equipment, 
the DIC method performances increase year by year as a simple consequence of 
the hardware development.  
Nevertheless, digital image correlation still suffers some disadvantages [1]: at 
low strain level (hundreds of µm/m, such as the first part of elastic zone of a 
metal) the associated uncertainty can not be considered negligible and in 
particular can not compete with the one provided on one hand by traditional 
transducer and, on the other hand, by interferometric approaches. In the first part 
of this work, two independent and original approaches for uncertainty reduction 
in digital image correlation measurements will be presented: a theoretical study 
on the use of image blurring as a way to increase DIC accuracy is proposed and 
experimentally validated and a new technology to surface texturization (which 
will lead to the determination of an optimized design for uncertainty reduction) 
is described. 
At the same time, the quantification of the measurement uncertainty itself is a 
non trivial issue: testing setup characteristics strongly influences the resulting 
accuracy (problem deeply faced in chapter 7) and, being the digital image 
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correlation a relative new technique, no standard procedure to quantify this 
parameter has not been yet introduced nor developed (issue widely discussed in 
the recent International Workshop on Strain Measurement in Extreme 
Environments held Glasgow, UK, Aug 2012). An innovative procedure to fast 
and cheap uncertainty estimation will be here proposed.  
In the following of this chapter, the working principle of two-dimensional 
digital image correlation is described in detail and its generalization for 3D 
measurements is presented. 
 

1.3 State of the art: two dimensional digital image 
correlation 

The standard implementation of a two-dimensional digital image correlation 
measurement system is basically composed by three separate steps: 
 

1. Specimen surface and measurement setup preparation 
2. Image acquisition of the specimen before (reference) and after loading 
3. Digital image processing to estimate the load induced strain 

 
In the following, the setup required characteristics will be discussed and state of 
the art digital image correlation algorithms will be presented. 
 

1.3.1 Testing layout 
The standard measurement layout of a 2D DIC application is reported in Fig. 
1-1. 

 

 

90°

White light source

camera

Loading
system

Measuring surface
(speckle pattern)

                   
 

Fig. 1-1 Standard measurement layout for 2D DIC measurements  
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The flat specimen is mounted in a loading structure (e.g. a standard tensile 
machine) and lighted by means of white lights. A digital camera frame the 
specimen, collecting one reference image before the test begins and several 
image during the test, each of which will be independently analyzed in order the 
quantify the step by step the full field strain maps. The optical axis of the 
camera is perpendicular with respect to the measurement surface. This avoids 
issues related to the so called “fictitious strains” that will be deeply discussed in 
chapter 2 where an innovative application of pose estimation to camera 
positioning in digital image correlation tests will be presented. 
 

1.3.2 Surface characteristics 
Two-dimensional digital image correlation technique can be exploited only in 
planar problems: the specimen surface must be flat and no out of plane 
displacements or strains field can arise during the loading in order to have the 
method working properly [1, 3].  
As mentioned in the introduction, digital image correlation relies on the surface 
textures of the measurement specimen: the analysis can retrieve the full field 
displacement map and consequently the surface state of strain comparing the 
gray intensity changes of the surface in the acquired images. A local point-by- 
point correspondence among acquired and reference images is estimated by the 
code in the whole analyzed area in order to compute the motion field. 
It is generally not possible to find the correspondence of a single pixel in one 
image in a second one: the gray value associated to a single pixel can be found 
in thousands of other pixels in the second image with no unique correspondence. 
For this reason the analysis considers the correspondence of small 
neighbourhood around the pixel of interest, the so called “subsets”. In case the 
measurement surface does not presents textures in its appearance, the method 
can still not find a correspondence of the selected subset in the two image (the 
so-called “aperture problem”, [3]): it is the fundamental measurement surface to 
exhibit a textured appearance. At the same time, the correspondence have to be 
unique, i.e. the matching process have to find only one valid matching position 
(“correspondence problem”, [3]). Regular textures (e.g. ordinates grids) have 
consequently to be avoided. 
As a result of the discussed issues, in order to be able to correctly apply digital 
image correlation, a randomly textured (flat) measurement surface is required. 
This characteristic can hardly be found in the tested materials and consequently 
random textures (generally called “speckle pattern”) are artificially applied on 
the specimen before the test is run (Fig. 1-2).  
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Fig. 1-2 Examples of typical speckle patterns 
 
Spray painting is by far the most commonly exploited procedure to speckle 
pattern realization but many different techniques were proposed in the years to 
face particular different scale and material applications [3]. In some cases, the 
natural textures of the tested material are enough themselves to apply digital 
image correlation. 
The characteristics of the realized speckle pattern deeply influence the quality of 
digital image correlation analyses results. This aspect will be analyzed in detail 
in chapter 5, where an innovative technique for speckle pattern realization is 
proposed and in chapter 6, where the numerical optimization of speckle pattern 
is faced. 
 

1.3.3 Subset matching 
In digital image correlation code, the measured surface displacement field 
results from the independent tracking of single discrete points. In this paragraph, 
the single point tracking is described while the full field displacement estimation 
will be faced in the next paragraph. 
In Fig. 1-3 two images of a textured specimen are reported: the first one 
(reference image) is acquired with no loads applied on the specimen, the second 
one (deformed image) after uniaxial horizontal loading.  
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Fig. 1-3 Digital image correlation working principle: point tracking 
 
The point P (centre of the red cross) in the reference is selected and its position 
in the deformed image (centre of the blue cross) has to be estimated. Once this 
operation is carried out, the horizontal u and vertical v displacements of the 
selected point can be easily computed. 
As previously explained, in order to avoid the so-called aperture problem, the 
point P only (with its infinitesimal area) can not be tracked itself but the analysis 
has to be extended considering a small neighbourhood around. This area, 
“subset”, is the reported red square in the reference image. The point tracking is 
therefore an “area matching” problem: to find the new position P’ (after the 
loading is applied) of the original point P means to identify the area of the 
deformed image that most resemble the original subset. This area has to be 
unique, and it is now straightforward to understand the necessity of a random 
pattern on the measurement surface introduced in the previous paragraph. 
 
Correlation criterions 
A quantitative evaluation of the similarity between the original subset and any 
selected area of the deformed image has to be introduced in order to be able to 
identify P’ as the position that best matches P in the whole deformed image. 
This can be done by means of two different (but equivalent) approaches: P’ can 
be defined as the position that maximizes the cross correlation function between 
the original subset and the deformed image (CC - cross correlation criterion) or 
the position able to minimized an bidimensional error function (SSD - sum of 
squared differences criterion) [49-51]. 
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In detail, being f the reference image and g the deformed one and (xi,yi) and 
(x’i,y’i) the coordinate in their reference system, the two criterion are defined as: 
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for a given square subset of size (2M+1) x (2M+1) px.  
The presented parameters are proven [3] to be sensitive linear scale in and offset 
in the environmental light, issues that may easily arise during a standard test,  
and consequently their normalized version (ZNCC – zero normalized cross 
correlation and ZNSSD – zero normalized sum of squared differences) are 
generally preferred: 
 

 
      

  











M

Mi

M

Mj

miimii
ZNCC gf

gyxgfyxf
C

'' ,,
   eq  1-3 

 

 
    

 

















M

Mi

M

Mj

miimii
ZNSSD g

gyxg
f

fyxfC
2'''' ,,

  eq  1-4 

 
proven be able to successfully tackle lighting related issues. 
 
Shape functions 
Serious decorrelation effect may arise in case of high strain fields of specimen 
rotations in case the area matching is performed rigidly moving the original 
subset. For this reason, additional degrees of freedom are associated to a subset 
during the area matching process in addition to the simple in-plane translation.  
In details, the original area can be deformed according to the so called “shape 
functions” [52] or “displacement mapping function” [53].  
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Fig. 1-4 Schematic illustration of a reference square subset before deformation and target 

(or deformed) subset after deformation [1] 
 
In reference to Fig. 1-4, the subset deformation induced by a shape function can 
be defined as: 
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where the ξ and η identify the analytical formulations of the mapping functions. 
Polynomial second order shape functions, proposed in [53], are by far the most 
exploited ones; their equation can be expressed as: 
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being u and v are the x- and y- directional displacement components of the 
reference subset centre, ux, uy, vx, vy the first order displacement gradients and 
uxx, uxy, uyy, vxx, vxy and vyy the second order ones. 
 
Interpolation 
The coordinates of point (x’i, y’i) in the deformed subset may locate at non-
integer pixel positions (i.e. subpixel location). In order to apply a correlation 
criterion, interpolation of the subset intensity is consequently required. In 
literature, many different interpolation algorithms has been use to accomplish 
this task. However, high order interpolation scheme (bicubic or biquintic spline 
interpolation) has to be preferred [54-55] since they provide higher registration 
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accuracy and better convergence character of the algorithm with respect to 
simpler interpolation scheme. 
Anyhow, the image interpolation is still a critical step of digital image 
correlations algorithms: high frequency components of the image intensity (i.e. 
sharp variations from black to white and vice versa in the speckle patter) may be 
misinterpreted during the interpolation and alias the measure: the image blurring 
proposed in chapter 3 and validate in chapter 4 is aimed to deeply investigate 
this problem and to propose an effective method to get rid of these effects. 
 
Subset matching – initial guess 
As mentioned, the goal of digital image correlation algorithm is to provide a 
motion estimation of the central point of the considered subset with subpixel 
accuracy. It is generally difficult that the same algorithm exploited to provide an 
accurate local matching can be able to macroscopically retrieve the position of 
the tracked area in the deformed image: the matching procedure is consequently 
split in two separate steps; at first, the macroscopic position of the subset is 
identified and successively this initial matching is refined in order to achieve 
subpixel accuracy. In other word, a proper initial guess needs to be provided to 
the subpixel registration algorithms. For example, iterative Newton-Raphson 
method (the most commonly used iterative spatial cross-correlation method) is 
proved to properly converge only if it is initialized not farther than 7 pixel from 
the right matching position [55].  
Usually the relative deformation or rotation between the reference subset and 
deformed one is quite small. In this case, the initial guess can be easily estimate 
with 1 pixel accuracy using both spatial domain (e.g. grid methods or 
alternatively coarse to fine strategies or nested schemes [56] to speed up the 
operation) or frequency domain [13, 15, 57]. 
When, at the opposite, the single subset is subjected to large strains or rotations, 
more complex algorithms need to be exploited (modified nested coarse-fine 
searching scheme [58] or genetic algorithm [59]). The high computational cost 
of more complex schemes makes the manual initialization still a considered 
solution in nowadays codes in case of critical situations. 
 
Subset matching – fine matching 
A variety of fine matching algorithms for digital image correlation has been 
presented in the years in scientific literature [1].  
Coarse-to-fine searching strategies, mentioned for the initial guess estimation, 
can be naturally extended to a subpixel accuracy simply changing the searching 
step from integer pixel values to fractional pixel values [4, 38]; nevertheless, 
image interpolation at subpixel values is always required in advance and this 
results in time consuming approaches. 
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To overcome this issue, that strongly limits the practical use of digital image 
correlation, Peak finding algorithms have been applied. In these approaches, the 
selected correlation criterion is computed only at integer pixel value and the 
interpolation is done on the resulting error (in case of SSD approaches) or cross 
correlation (when CC criterions are exploited) function, with different analytical 
fitting functions (biparabolic in [13], quadratic surface in [60], using Fourier 
expansion in [15]). The main issue related to peak-finding strategies is the 
intrinsic lack of deformational degrees of freedom of the subset: shape function 
can not be applied. For this reason they can be exploited only in case of pure 
rigid motion or very low strain magnitude in the analyzed field. 
Iterative spatial domain cross-correlation algorithms are by far the most 
exploited fine-matching strategies exploited. In these algorithms, the previously 
presented shape functions are applied on the reference subset in order to 
iteratively deforming it until the convergence in the identified area of the 
deformed image is reached. Newton-Rapson method ([61] and [35], where a 
simplified version of the Hessian matrix is introduce to increase the computation 
efficiency) is the most used searching strategy, able to correctly tackle the non-
linearities of the cost function resulting by the application of non constant 
mapping function [61].  
  

1.3.4 Displacement field measurement 
Once the single subset tracking can be done, its extension to full filed motion 
estimation is quite trivial. At first, an area to be analyzed (AOI, “area of 
interest” or “ROI”, region of interest) is manually selected on the reference 
image (green area in Fig. 1-5a). Within this area, a regular matrix of points to be 
tracked is identified (red dots of Fig. 1-5a): these points represent the centres of 
as many subsets. The points are equally spaced in both vertical and horizontal 
direction: the grid spacing is generally referred to as “step”. The step among 
subsets is independent from the subsets dimension: the regular grid is commonly 
built partially overlapping adjacent subsets in order to increase the analysis 
spatial resolution. 
In theory, the previously presented subset tracking procedure (initialization + 
fine matching) can be applied on every subset and the motion of every point can 
be estimated (vectors in Fig. 1-5b).  
For clarity purposes only few tracked subsets are represented in Fig. 1-5, but in 
digital image correlation analysis a huge number displacement vectors can be 
easily retrieve and the results are generally presented as the colour map of Fig. 
1-5c where the estimated horizontal displacement is reported. For instance, with 
an 1Mpx camera (sensor of 1000x1000 pixel, a lot smaller than the standard 
scientific camera nowadays produced), subset size of 21x21 pixel and step of 7 
pixel (which are reasonable DIC analysis parameters), a total of 
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(1000/7)x(1000/7) ~ 20000 subset are tracked (it is worth to notice that, as 
explained, this result is independent by the selected subset size). 
 

 
Fig. 1-5 Digital image correlation working principle: full field motion estimation 

 
Due to the high number of subsets to be tracked, the initialization + fine 
matching procedure is in generally to slow to be applied. For this reason, the 
initialization is actually performed only on the first subset and the analysis is 
carried out by rows (or by columns) using a subset fine-matching result as 
initialization for the adjacent ones [1].  
This approach can result critical in case of discontinuities in the displacement 
field (e.g. associated to cracks in the measurement surface) or high uncertainty 
the single subset estimated motion (due for example to local poor textures of the 
speckle pattern). To solve this issue, in [62] a so called “reliability guided” DIC 
is presented, where the calculation path is guided by the ZNCC coefficient itself: 
the subsets used to initialize the neighbourhoods are the ones characterized by 
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the highest matching score in the correlation process (i.e. the most reliable 
ones).  
 

1.3.5 Strain field estimation 
With the described approach, the full field displacement of the measurement 
surface can be estimated with sub-pixel accuracy. However, in many testing 
applications, full filed strain distributions are more important and desirable. 
Theoretically, strains can be estimated simply computing the partial derivatives 
of the displacements fields. The main issue of such an approach is related the 
resulting measurement uncertainty: the numerical differentiation process is 
considered as an unstable and risky operation [63-64], that amplifies the noise of 
the reference data, leading to measurements characterized by low accuracy (with 
such an approach DIC could be exploited starting from magnitude of the strain 
field grater than 1%, far beyond for instance the linear elastic limit of most of 
the metals [61]). 
Smoothing of the computed displacement fields is consequently required before 
the differentiation process.  
In [65] a technique that involves smoothing of the computed displacement fields 
with the penalty finite element method is proposed, successively improved in 
[66], while [67] introduced the use of the thin plate smoothing technique to. The 
noise level of the displacement field is significantly reduced by smoothing 
operations and consequently the accuracy of the computed strain fields 
increases. However, these approaches generally result in cumbersome 
procedures. 
The more practical technique for strain estimation is the point-wise local least 
square fitting advocated in [68] and [69]. The estimated displacement fields are 
locally fitted by polynomial functions and the strains are estimated starting from 
the computed regression coefficients. 
In a real application, the implementation of similar procedures, and in particular 
the selection of the width of the smoothing window, has to be carefully 
considered: from one hand, small windows are unable to properly suppress the 
noise of the displacement; on the other hand, large strain calculation windows 
may lead to unreasonable approximation of deformation within the strain 
calculation window. 
 

1.4 State of the art: three-dimensional digital 
image correlation 

Since two-dimensional digital image correlation requires predominantly in-plane 
displacements and strains, relatively small out-of-plane motion will change the 
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magnification and introduce errors in the measured in-plane displacement [70, 
71, 85]. For the same reason, non planar geometries are difficult to be analyzed 
using a 2D approach. To solve this limitation of the measurement technique, 
three-dimensional digital image correlation has been developed, merging the 
studies carried on in planar digital image correlation with the results of 
stereoscopy. 
As early as the 1960s photogrammetry principles developed for shape and 
motion measurements were used to estimate plate deflections [72]. From 1970-
1990, the concept of digital image correlation for use in photogrammetry was 
presented [73-76]; in [77] the use of multiple cameras with images of a 
deforming rectangular grid for surface motion estimation is discussed and in 
[78-79] a stereo vision system for the measurement of three-dimensional crack 
tip deformation is developed. Stereo vision methods were successively 
improved [80] to include the effects of perspective on subset shape and 
introducing appropriate constrains on the analysis to include the presence of 
epipolar lines. In parallel, many researches have been carried out in order to 
optimize the developed stereo system calibrating procedures for digital image 
correlation tests [81-83]. 
As a result of the development which have been occurred in recent years, three-
dimensional digital image correlation now is being used for a wide range of 
applications on both large scale and small structures, wide temperature ranges 
and  both static and dynamic tests in all the cases where 3D geometries or out of 
plane displacements have to be investigate. On the contrary, 2D DIC is 
nowadays the most widespread approach in all the situations where a plane 
approximation can be considered acceptable thanks to simplicity of the required 
measurement setup and the relatively low computational cost of the codes.  
 

             
                                  (a)      (b) 

 Fig. 1-6 3D digital image correlation: measurement setup (a) and example of the 
results for a cylindrical specimen 
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The core of the algorithm, described in the previous paragraph, is shared by the 
two approaches and the main differences in case 3D systems are exploited are 
related to the introduction of stereoscopy in the measurement setup and data 
processing (Fig. 1-6). 
 

1.5 Work layout 
In the second chapter, two preliminary activities to the experimental tests of the 
following chapters will be presented: pose estimation algorithms are studied and 
qualified and their use in the setup preparation for digital image correlation 
measurements is proposed in order to assure the orthogonality between the 
optical axis of the camera and the specimen surface and avoid the rising of 
fictitious strains in the measurement process; the use of focus algorithms to 
optimally focus the acquisition hardware is suggested as well. 
In chapter three an innovative theoretical study on the use of image blurring as a 
preprocessing operation to uncertainty reduction in digital image correlation is 
presented and tested simulating displacement and strain fields of increasing 
complexity. Furthermore, the stability of the obtained results with respect to data 
noise, speckle pattern characteristics and DIC analysis parameters is presented. 
Chapter four provide the experimental verification of the image blurring 
preprocessing in two different experiments: rigid in plane motion and standard 
tensile tests, where the image averaging as an efficient noise reduction technique 
is also introduced. 
In the fifth chapter, an innovative technique, “toner transfer”, for speckle pattern 
realization is presented: the technique is cheap, fast and flexible in terms of 
specimen dimensions and geometry, materials and testing temperature. The high 
quality of the obtained patterns is proven, thus the application of toner transfer is 
suggested as a way to increasing the signal to noise ratio of the acquired data. 
In chapter six, the problem of numerical optimization of the speckle pattern 
(whose design is proven to be strictly limit measurement uncertainty and 
resolution in DIC measurements) is faced. Starting from a synthetic index of the 
quality of the measurement surface, an optimization of the pattern is 
theoretically carried out and the validity of the study is experimentally proven. 
Finally, the last chapter introduces an innovative procedure for uncertainty 
quantification in two-dimensional digital image correlation setups. The 
uncertainty of DIC measures is strongly influenced by the testing condition and 
consequently the use of a fast and easy to apply procedure to quantify this 
metrological parameter before the execution of the test is suggested. 
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2 Preliminary activities: pose 
estimation and camera focus 

 
 
 

2.1 Introduction 
Two different studies, preliminary to the experimental activities presented in the 
following chapters, are here introduced. 
In paragraph 2.2 the problem related to the so-called “fictitious strains”, 
resulting by out of plane displacements in two-dimensional analyses, is 
described and it is shown how, even with purely planar geometries, it can rises 
as a result of misalignment of the setup. A procedure, able to assist the 
experimenter in the setup preparation and thus minimize the errors associated to 
this issue, is proposed and experimentally validated starting form state of the art 
pose estimation algorithms. 
In paragraph 2.3 the camera focus, aspect that will be fundamental in the 
research activities describe in chapters 3 and 4, is faced. Starting from state of 
the art approaches, a software able to provide in real time a feedback on 
focusing to the experimenter is developed. 
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2.2 Pose estimation 

2.2.1 Fictitious strains related to out-of-plane displacements 
As explain in chapter 1, two-dimensional digital image correlation is by far the 
most widespread image correlation technique for motion and strain 
measurements. Furthermore, the 3D DIC derives directly from the 2D one and 
share with it most of its working principles. For this reason, many important 
studies can be carried out with a two-dimensional analysis, neglecting the 
complexities related to stereoscopy, and on one hand provide important 
information about a state of the art technique and, on the other hand, be easily 
generalized in case of three-dimensional analyses. 
The main issue related to two-dimensional techniques is that only planar 
problems can be studied: the measurement surface has to be planar and, at the 
same time, motion and strain have to act in the same plane. 
If this hypothesis is not verified, issues related to the so called “fictitious 
strains” arise: out-of-plane displacements are misinterpreted by the algorithm as 
in-plane strains. This issue can be easily understood by looking at the three 
images of Fig. 2-1. 
 

 
 

Fig. 2-1 Fictitious strains form out of plane rigid motion 
 
The same object of size equal to AxA mm is placed in front of a camera with 
a given sensor size and focal length f at three different distances (f+d1, 
f+d2, f+d3). The object is consequently projected on the sensor with three 
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different scaling factors, resulting in three images where the size of the object 
framed by the camera decreases by increasing the working distance. The three 
acquire images are reported on the left of the figure: a 2D technique interprets 
the out-of-plain rigid motion between one image and the next as an in-plane 
deformation of the measurement surface. 
 

 
 

Fig. 2-2 Fictitious uniform strain field form out of plane rigid motion 
 
In Fig. 2-2 the results of the comparison of the first image of Fig. 2-1 with 
respect to the last one by means of a two-dimensional DIC algorithm are 
reported: the vectors display an estimated radial motion field as a consequence 
of the out-of-plane translation and the colour map represents the associated 
uniform strain field along the horizontal direction. This represents just a simple 
example of a more complex problem that could arise not only in cases of rigid 
out-of-plane translation but also as a consequence of out-of-plain rotation and 
strains of the measurement surface. 
This problem, intrinsically associated with two dimensional analyses, is well 
known in literature [84-88] and its order of magnitude can be easily computed, 
in case of rigid motion, as: 
 

     
Dfictitious
      eq. 2-1 

 
where  represents the local out-of-plane displacement between two images, D 
the working distance and ε fictitious the resulting fictitious strain computed by the 
DIC algorithm. 
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Different approaches have been proposed to partially compensate it for: 
 

 direct measure of the out of plane displacement and analytical 
compensation of the DIC results [85]; 

 use of high focal optics in order to increase the working distance [3]; 
 specific knowledge of the tested material [87]; 
 use of a reference surfaces [87-88]; 
 use of multiple 2D hardware  [87]; 

 
but the intrinsic bidimensionality of the investigated problem remains a 
hypothesis to fulfil in case of 2D measurements. 
A less intuitive issue associated to this aspect and not specifically investigated in 
literature is the alignment between camera and measurement surface; even in an 
ideal case, where the problem is purely two-dimensional, the same 
considerations related to out-of-plane motion may arise if, in the setup 
preparation, the parallelism between the sensor of the camera and the 
measurement surface is not guarantee. 
 

 
 

Fig. 2-3 In-plane motion: camera parallel and non-parallel to the measurement surface 
 
The problem can be easily understood by looking the 1-D representation of Fig. 
2-3; the measurement surface is planar and subjected to a rigid in plane motion 
along the vertical direction: all its points are subjected to the same amount of 
translation D. Two points are highlighted: point P that moves in P’ and point Q 
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that moves in Q’. The first camera is placed with the optical axis perfectly 
orthogonal to the measurement surface: the measured displacement is correctly 
equal to d for both the points. The second camera is titled with respect to the 
scene: in this case, the measured displacement of the point P (nearer to the 
camera) is greater than the one of point Q. Different points of the same rigid 
surface are subjected to different displacement, so a fictitious strain in seen by 
Camera 2.  
In a real application, an a posteriori correction of this phenomenon is non trivial, 
considering also that the same problem can arise also on the other out-of-plane 
rotational axis and the resulting fictitious strains are merged together with the 
real ones. 
At the same time, during the preparation of the measurement setup, it is hard to 
guarantee the planarity between the inspected surface and the sensor of the 
camera: for this reason, a tool is needed to be provided to the experimenter in 
order to ensure the sensor-surface parallelism. 
 

2.2.2 Pose estimation  
Pose estimation algorithms are a group of methods able to estimate the three-
dimensional position and orientation of a rigid body of know geometry, “target”, 
with respect to the reference system of a camera framing the object itself [89]. A 
pose estimation algorithm is the core of the proposed vision based camera 
placing method: the code is used to instantaneously compute the 3D position of 
the camera with respect to a target planar with the measurement surface. The 
camera orientation is iteratively modified in order to minimize the out of plane 
rotational degrees of freedom and set the sensor parallel to the target, i.e. the 
measurement surface. To apply the code, coordinates of significant points of the 
target have to be defined with respect to the rigid body reference system and, at 
the same time, their positions have to be located on the image. Once the camera 
is calibrated [90], the characteristics of the vision system (sensor dimension, 
resolution and focal length of the optic) are known and the pose estimation code 
computes the 6 degrees of freedom (3 rotations and 3 translations) of the target 
reference system with respect to the camera one. 
The application of the method is consequently composed by two separate steps: 
 

 localization in the acquired images of the coordinates of the points of the 
target; 

 evaluation of the target position and orientation. 
 

In the following, first of all the chosen target will be presented (par. 2.2.3). Then 
the image processing algorithm, implemented to extract from the acquired 
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images the significant target features, will be described (par. 2.2.4) and optical 
distortions due to non linearity in the camera lens will be corrected (par. 2.2.5). 
Three different pose estimation algorithms present in scientific literature will be 
tested, comparing measured and imposed target movements (par. 2.2.6). Finally, 
the results obtain by the most suitable code will be compared with the ones of a 
self developed algorithm as a final validation of the proposed measurement 
system (par. 2.2.7). 
 

2.2.3 Chosen target 
A planar target has been chosen to better fit the requirements associated to two-
dimensional setups, even if 3D targets allow reducing measurement uncertainty 
and, furthermore, overcoming pose ambiguities problems (successively 
discussed).  
The target consists in a rigid plate with four white blobs on a black background 
(Fig. 2-4); the blobs centroids are the significant points of the geometry. In a 
planar configuration, four points are the minimum amount information required 
to apply a pose estimation algorithm: the choice to use only four blobs is linked 
the will to maintain the target as simple as possible in order to be able to 
correctly identify its interesting features even in an application subjected to non 
ideal lighting conditions and, at the same time, allow a fast computation of the 
camera placement in order to be able to run on real time the code. The target 
will be fixed on the planar measurement surface in order to correctly orientate 
the camera.  
 

   
                             (a)          (b) 

Fig. 2-4 Target design with its reference system (a) and during algorithms testing (b) 
 

2.2.4 Image processing 
In order to extract coordinates of the blobs centroids, a blob analysis is 
performed on the acquired images. Blob analysis is a robust and relative simple 
image processing technique: once again, the measurement system development 
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choice has been primary driven by the robustness of the approach and the speed 
of execution. 
The acquired image (Fig. 2-5a) is first binarized (Fig. 2-5b). Then a series of 
filters are applied in order to extract the significant particles: the first one 
removes all the particles in touch with the image borders (Fig. 2-5c), in the 
hypothesis that the target is fully framed by the camera. The second filter 
preserves only those blobs whose area is inside a given range (Fig. 2-5d). The 
last one selects only ellipse-shaped blobs, thresholding the Heywood circularity 
factor of the particles (i.e. the ration between the contour perimeter of the blob 
to the circumference of a circle with identical area, Fig. 2-5e). The coordinates 
of the four significant points are computed as the geometric centre of gravities 
of the four blobs in Fig. 2-5e. 
 

      
                     (a)                                                    (b)                                             (c) 

   
                                                   (d)                                                (e) 

Fig. 2-5 Blob analysis steps 
 
With the described approach, it is easily possible to tackle changes of the 
lighting in different setups simply tuning the threshold of the binarization 
process. 
 

2.2.5 Distortions correction 
Pose estimation algorithms are developed considering an ideal pinhole camera 
model [91]. Nevertheless, in a real application, the optic introduces non-linearity 
in the image projection. Zhang technique [90] is a state of the art camera 
calibration procedure, that allows the computation of the parameters to 
compensate for image distortions and thus it has been applied in order to correct 
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the previously computed points coordinates (Fig. 2-6). Furthermore, optics focal 
length, a key parameter for the application of pose estimation algorithms, is 
estimated by Zhang calibration.  
 

   
                                       (a)                (b) 

Fig. 2-6 Calibration grid before (a) and after (b) optical distortion compensation 
 

2.2.6 Pose estimation algorithms comparison 
Many pose estimation algorithms are reported in literature; among those, three 
codes of different level of complexity have been chosen and tested in order to 
find the most suitable for the specific application. The results of the best one 
will be successively verified with a self-developed code. 
The first algorithm is an iterative general-porpoise approach (i.e. suitable for 
both three-dimensional and planar targets) developed by Lu and Hager [92]. The 
algorithm initialization is given by a weak-perspective model as suggested in the 
work itself. The second tested code is a direct and fast method recently proposed 
by Pisinger and Mayer [93]. The third code uses the Pising-Mayer direct 
solution as initialization of the Lu-Hager code, as suggested in [93]. 
All algorithms were tested moving the chosen target through a 6 d.o.f. robot arm 
(Fig. 2-4b). In addition to some simply 1 d.o.f. tests, the motion of the robot has 
been programmed so that its end-effector, that is the target, would follow a 
motion law spanning through the all degrees of freedom. Fig. 2-7 shows the 
imposed time history for every degree of freedom of the robot arm (black dotted 
line) and the trajectory estimated by the Lu-Hager approach (green solid one). 
Considering the translation, the algorithm seems to be able to return a reliable 
estimation of the tracker position: the curves are nearly overlapped; the 
maximum discrepancy is about 1mm in case of in plane coordinates (y and z)  
and  4mm along the out of plane motion (x). Also in the case of in plane 
rotation, i.e. roll angle, the pose estimation code returns a meaningful trend: the 
difference between imposed and measure roll is less that 4°. Out of plane 
rotations are instead the degrees of freedom where this pose estimation code, not 
specifically developed for planar targets, shows its limitations and unsuitability: 
in approximately one half of the sampled points, the algorithm returns a 
completely wrong orientation of the target, although the estimated position is 
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right. This is behaviour is associated to what is known in literature as “pose 
ambiguities” [94]: the cost function to be minimized by the algorithm presents 
local minima in its fitness landscape, where the code gets stuck, mainly 
associated to specular rotations of the target. In other words, the weak 
perspective approximation exploited by the code is not able, in this application, 
to provide an initialization sufficiently near to the global minimum.  
 

 
 

Fig. 2-7 Robot arm test: imposed and estimated (Lu-Hager method) target degrees of 
freedom 

 
The pose ambiguities problems, just highlighted in the case of Lu-Hager 
method, are not detected in the remaining tested approaches. For this reason, in 
order to better characterize the algorithms behaviour, testing results are 
presented in terms of difference between estimated and imposed time histories 
(Fig. 2-8).  
 



CHAPTER 2 

 34 

 
 

Fig. 2-8 Robot arm test: discrepancy between estimated (Pisinger-Mayer and Pisinger-
Mayer+Lu-Hager) and imposed target degrees of freedom 

 
Concerning the three translational degrees of freedom, the two approaches 
exhibit very similar performances. In case of in plane coordinates and the 
accuracy of the estimation can be evaluated in about 1 mm, while the maximum 
discrepancy for the x coordinate is equal to 3 mm. The two approaches manifest 
more significant differences in relation to the rotation estimation: globally the 
discrepancies in the roll angle, i.e. the in plane rotation, are limited in less that 
1° while rises at 2° in the pitch and 3° in the yaw. Furthermore, the non iterative 
approach (Pisinger-Mayer, green solid curve in Fig. 2-8) seem to be 
characterized by higher discrepancies. 
Table 1 shows the root mean squared discrepancy for each degree of freedom in 
case of both Pisinger-Mayer and Pisinger-Mayer + Lu-Hager approaches. Such a 
parameter can be considered an estimation of the measurement uncertainty. 
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Table 2-1 Root Mean Squared Discrepancies between measured and references d.o.f. in 
case of Pisinger-Mayer and Pisinger-Mayer+Lu-Hager approaches 

 
The higher measurement uncertainty of the simply Pisinger-Mayer approach is 
here confirmed, in particular concerning the out of plane target movements. 
 

2.2.7 Comparison of the results with a self developed code 
Even in an ideal condition where the coordinates of the points in the image is 
estimated with null uncertainty, the Pisinger-Mayer initialization is not able to 
guarantee the convergence to the global minimum of the cost function in 100% 
of the tests [93]. For this reason an alternative approach has been developed in 
order to understand if the previously presented discrepancies, or at least part of 
them, can be linked to pose ambiguities problems. 
Starting from a random set of the six variables, the code rotates and translates 
the target in the space and successively projects it in the image plane. A general 
purpose non-linear constrained minimization algorithm (S.Q.P, sequential 
quadratic programming method, [95]) is exploited in order to find the optimal 
set of variables able to minimize the difference between projected and measured 
points coordinates, [x, y, z, roll, pitch, yaw]. Such a solution can still be affected 
by previously discussed pose ambiguities. In order to overcome this issue, the 
procedure is repeated three times initializing the minimization code with the 
three specular sets: 
 
[x, y, z, roll, -pitch, yaw]  [x, y, z, roll, pitch,-yaw]  [x, y, z, roll, -pitch, -yaw] 

 
Finally, the selected solution is the one among the results of the four 
minimizations that leads to the minimum residual error.  
This approach is obviously time consuming (the minimization algorithm is not 
optimized for the problem and furthermore it is repeated four times), but it 
intrinsically solves pose ambiguities issues testing all the possible scenarios. 
The maximum discrepancies between the results of the Lu-Hager+Pisinger-
Mayer code and the self developed one are about 10-3 mm and 10-3 deg, so 
basically three orders of magnitude smaller that the ones presented in Fig. 2-8. 
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This proves that the Lu-Hager approach, initialized by the Pisinger-Mayer 
solution, is actually able to successfully tackle pose ambiguities in the present 
application. Furthermore, this result gives important information about where 
the main source of uncertainty is located in the whole measurement system: two 
completely different algorithms result in basically the same solutions, so it is not 
the pose estimation itself but the target design and the image processing part that 
need to be improved in an application where higher accuracy has to be achieved. 
 

2.2.8 Pose estimation for camera placement: implemented 
algorithm 

The self developed code, able, as explained, to provide the same accuracy of 
state of the art algorithms and correctly solve pose ambiguities, has been 
implemented in a real time software. Through this software, the experimenter is 
able to assess the orthogonality between the optical axis of the camera and the 
measurement surface.  
The reference target is printed and fixed on the specimen (in Fig. 2-9 an 
application of the procedure on concrete beam testing) and the camera is 
approximately positioned freehand. 
 

 
 

Fig. 2-9 Camera positioning during the setup preparation of DIC applied to concrete 
beams testing 

 
The user is now requested to tune the image processing parameters in order to 
obtain a correct recognition of the geometry of the target (Fig. 2-10a). 
After that, the target geometry and the calibration parameters (radial and 
tangential distortion coefficients, sensor-optical axis intersection coordinates 
and focal lengths) have to be loaded and the boundaries on the 6 degrees of 
freedom in the minimization set (Fig. 2-10b). 
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      (a)       (b) 

Fig. 2-10 Camera positioning: image processing parameters (a) and software inputs (b) 
 
The software is now able to estimate the position and orientation of the target 
with respect to the camera reference frame (Fig. 2-11). 
 

 
 

Fig. 2-11 Camera positioning: real time pose estimation 
 
The user can now modify the camera placement (typically acting on the three 
degree of freedom of the head of the tripod) in order to bring to zero the out of 
plane angles (yaw and pitch). 
The presented code has been exploited in all the experimental activities 
presented in the following chapters 
 

2.2.9 Pose estimation: an application 
As explained, pose estimation algorithms are able to quantify the relative 
position and orientation of a camera with respect to a target of known geometry. 
The presented system has been developed in order to correctly orientate the 
sensor with respect to a target planar with the measurement surface, but could be 
conversely exploited to estimate the motion of the target with respect to the 
camera reference system, i.e. as a 6 d.o.f. displacement and rotation transducer. 
An application of this is the one reported in Fig. 2-12. 
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                              (a)                                                                                      (b) 

Fig. 2-12 Pose estimation as displacement and rotation transducer: instrumented vehicle 
(a) and driver during a test (b) 

 
A digital camera is mounted on an instrumented motorbike, fixed on its main 
frame, behind the driver’s bust (Fig. 2-12a) and a target is fixed on the driver’s 
back in correspondence of his trunk centre of gravity (Fig. 2-12b). The 
presented pose estimation system is exploited in order to estimate the relative 
motion of the driver’s trunk with respect to the vehicle. Such information is 
fundamental to investigate the system dynamics, where the mass associated to 
the upper part of the body of the tester can not be considered negligible if 
compared to the vehicle one and its motion deeply influences the inertial and 
dynamic properties of the system. 
The camera based transducer has been exploited in order to quantify the trunk 
displacement and rotation during several standard riding tests (steering pad, 
double line change, slalom), providing important information related to the 
human-vehicle interaction. 
 

 
 
Fig. 2-13 Pose estimation as displacement and rotation transducer: driver’s trunk roll and 

lateral displacement during a double line change manoeuvre  
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For instance, in Fig. 2-13, data related to a double line change manoeuvre are 
reported: the out-tracking phase, where the driver begins the curve, is clearly 
recognizable at 40 m. The steering torque is opposite to the motorbike roll angle 
in the whole manoeuvre: the pilot contrast and control the rotation of the 
steering. The steering angle is contrary to the steering torque and in agreement 
with the motorbike rolling, but shows a delay in the beginning (points A-A’) and 
an advance (points B-B’)in the last part of the double line change of about 5 m. 
This can be explained by thinking that during the out-tracking the driver needs 
to roll the bike, initially vertical, to start the curve, while in the second part the 
vehicle is already partially rolled and the driver’s action is limited to the tuning 
of the roll angle through the steering angle. By looking at the motorbike roll 
angle, it can be notice that, with respect to the limits of the imposed trajectory, 
the driver advances the corner entry of about 5m and the exit of about 8m. The 
maximum values of the roll angle are reached before the beginning of the curve. 
This behaviour is present in both the line changes. The study of the driver’s 
position is carried out considering the lateral displacement and the roll angle of 
the driver with respect to the vehicle; neglecting longitudinal dynamics (braking 
or speedup), the behaviour of the remaining four degrees of freedom is 
negligible. Driver’s roll angle and lateral displacement are partially independent. 
Before the beginning of the first curve, the driver moves his body toward the 
centre of the curve to roll the bike, without rolling his trunk. When the bike 
rolling speed reaches its maximum, the driver moves his trunk in the opposite 
direction and counter-rotates it with respect to the vehicle’s roll angle. At the of 
the change of direction, i.e. where the bike roll angle is equal to 0°, driver’s 
rotation and translation reach their maxima to help the change of direction and 
so the roll variation. 
In the last meters of the first line change, the driver’s trunk translate but towards 
the outside of the curve to partially straighten up the vehicle. The driver’s roll 
angle does not change.  
In the second line change, the whole dynamic is repeated. 
It can be stated concluded that the driver favours the variation in the bike roll 
angle by moving his trunk in the transversal opposite direction. In the 
considered test, the driver anticipates the trunk movement of about 7-8 m with 
respect to variation of the bike roll angle, i.e. of the trajectory. The associated 
body rotation is opposite to the bike one and in general slower and less 
pronounced. It is about 8-10m ahead of the curve. 
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2.3 Camera focus 
In chapters 3 and 4, an extensive study on the effects of digital blurring applied 
to the acquired images before the digital image correlation analysis will be 
carried out. For this reason, it will be fundamental to start from images acquired 
with the highest achievable focus.  
A focus estimation algorithm has been selected among the different codes 
present in literature and implemented to work in real time with a scientific 
digital camera. 
 

2.3.1 Camera focus algorithms 
Camera focusing is a deeply studied issue in scientific literature: nowadays, 
every commercial digital camera implements an autofocus algorithm able to 
assist the user in this operation. Regardless the details of the exploited 
methodology, all the focus procedures can be decomposed in three different 
steps: 
 

 Definition of the region of interest, inside of the framed area, where the 
code has to work, i.e. which part of the image has to be focussed; this 
aspect is particularly relevant in case of high perspective scenes. 

 
 Quantitative measure of the focus inside the region of interest at the 

given hardware configuration (i.e. lens-to-sensor distance). 
 

 Iterative procedure to vary the lens-to-sensor distance, i.e. act on the 
focus control, in order to reach the highest achievable focus in the lowest 
number of steps. 

 
Only the second aspect will be considered in this work: on one hand, the 
definition of the region of interest can easily be done manually selecting in the 
area framed by the camera the portion where the measurement surface is 
actually present (and no perspective has to be present in that area, as previously 
discussed), once and for all after the camera is placed. On the other hand, 
scientific cameras are not usually equipped with motorized control of the focus. 
The tuning has consequently to be done manually and the time required to 
perform the operation can not be considered an issue in the applications 
presented in this work, considering that it is a procedure done only once before 
the execution of the test. At the opposite, it is important to provide the operator a 
way to maximize the camera focus while tuning the lens-to-sensor distance, 
based on a quantitative real time evaluation of the focus level. 
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Regardless the details of the different algorithms, the focus is always measured 
evaluating in the acquired image the importance of the high frequency 
components, generally measured directly from spatial domain through 
convolution and averaged on the whole region of interest. All the performable 
measures are relative: it does not exist a way to quantify the absolute focus level 
of a hardware configuration without external references or exact knowledge of 
the frequency content of the scene (as in [96] to measure camera spatial 
frequency response, SFR), but it is always possible to compare two different 
images framing the same object acquired with different lens-to-sensor distances 
and state which is the one with a better focus.  
One of the oldest, and most popular, ways to measure the camera focus is the so-
called “Tenenbaum gradient” proposed in [97]. The method convolves the 
image region of interest with two (x and y) standard Sobel operators (3 by 3 
kernel matrices that act basically as two orthogonal high pass filters) and then 
sums the square of the gradient vector components to calculate the focus 
measure. 
In order to make this measure insensitive the noise level in the acquire image, in 
[98] the two Sobel filters are replaced by the Laplacian operators and the sums 
the square of the gradient is substitute by the square of the sum of the Laplacian 
absolute values (or , alternatively, by its energy in [99]). Alternative approaches 
can be found in [100], where the computation of the focus measure relies on the 
application of a non linear edge filter, or in [101] where a wavelet-based 
approach is proposed. 
In [102] a new operator is introduced (mid frequency discrete cosine transform, 
MF-DCT). Its convolution matrix is a 4x4 symmetric kernel defined as: 
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DCTMF    eq  2-2 

 
and the respective focus measure can be computed as: 
 
   2),(   

ROIx ROIyDCTMF DCTMFyxIntfocus  eq  2-3 

 
where Int(x,y) represents the intensity value of the image at the generic 
coordinate and ● the convolution operator. 
With respect to the previously introduce focus estimators, the MF-DCT is 
proven by authors to be able to estimate the optimal focus at the same lens-to-
sensor distance but with increased sensitivity to slightly out of focus images: in 
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other words, varying the lens-to-sensor distance the focus measure describes a 
curve and the position of its maximum represent the optimal distance. That 
position is basically the same regardless the implemented algorithm but the MF-
DCT reaches this value with higher gradients, so the optimal tuning is easier to 
be identified. 
 

2.3.2 Implemented code 
For the explained reason, the MF-DCT algorithm has been selected and 
implemented on a real time application, in order to be able to assist the operator 
in the camera focusing.  
 

 
 

Fig. 2-14 Implemented MF-DCT algorithm 
 
In Fig. 1-9 a screenshot of the implemented code is reported. On the left, the 
image currently framed by the camera is shown and the user is allowed to select 
the region of interest where the code computes the focus measure. The focus 
MF-DCT instantaneous value is graphed on the diagram on the right. The optics 
is, at the beginning, in a under focused position. Rotating the focus control, the 
operators can see how the resulting focus measure varies and tune the control to 
reach a maximum. 
The presented code has been exploited in all the experimental activities 
presented in the following chapters 
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3 Image filter pre-processing for 
uncertainty minimization in 

two-dimensional digital image 
correlation 

 
 
 

3.1 Introduction 
The design and implementation of effective speckle patterns on two-dimensional 
measurement surfaces are key to enhance the accuracy of digital image 
correlation (DIC), along with suitable displacement and strain field estimation 
algorithms [1, 61]. While mathematical formulations for tailored speckle 
patterns have not been formalized, relevant parameters are discussed in the 
literature, including mean speckle size and spacing. The accuracy of DIC 
measurements was studied as a function of mean speckle size and subset size, 
for which desirable ranges were reported [104, 105, 108, 112]. A range of 
techniques has been used to create speckle patterns, depending on the specimen 
dimensions and materials: spray paint or toner powders are typically used for 
larger specimens, whereas lithography is preferred for smaller patterns [3]. 
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Irrespective of the technique, the resulting speckle patterns are characterized by 
non repetitiveness and high contrast between light and dark areas. As shown in 
[113], for translation in two directions, the form of the covariance matrix for the 
displacement vector, d, is written: 
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d: displacement vector, (u,v), in x - direction and y - direction respectively 
σI: standard deviation in intensity pattern noise (gray levels) 
I(x,y,z): reconstructed deformed intensity pattern (gray levels)  
 
If the gradients in both directions are independent, then the off-diagonal term 
tends to zero and the matrix is approximately diagonal. In this case, the standard 
deviation in each displacement component can be written: 
 

 
   

   



























subset

I
v

subset

I

subset

I
u

subset

I

yIyI
vVar

xIxI
uVar

22

2

22

2

//
)(

//
)(








   eq  3-2 

 
As shown in eq 3-2, “high contrast” corresponds to the summation of high 
gradients in intensity within a subset, increasing the denominator and reducing 
variability in the measured displacement. With maximum range between 
brightest and darkest regions, smooth transitions in intensity across the camera’s 
dynamic range can be accurately reconstructed by interpolation algorithms, 
offering the potential for high accuracy when performing subset matching with 
DIC algorithms. Thus, the gray level distribution within the speckle pattern may 
be used as a measure of the effectiveness of a speckle pattern [105]. Schreier et 
al. [55] proposed the implementation of low-pass image filters in the pre-
processing stage to produce blurring, either by defocusing the camera’s optics 
prior to image acquisition or by applying digital filters on the acquired image 
data. The latter option is more attractive as it allows for better control of the 
parameters selected to produce blurring. In fact, digital filters are commonly 
used in image processing. For example, Berg et al. [114] and Cantatore et al. 
[115] implemented digital filters to produce image blurring, thereby improving 
the accuracy of algorithms for edge detection.  
This chapter presents a study aimed at elucidating the effect of using digital 
filters to pre-process images, with emphasis on the uncertainty in two-



Image filter pre-processing for uncertainty minimization in 
two-dimensional digital image correlation 

 45 

dimensional DIC displacement and deformation measurements. The 
methodology is based on numerical simulations where pre-processing using 
Gaussian low-pass (blurring) filters [116] is implemented. First, the effect of 
blurring filters on a numerically built speckle pattern is examined at varying 
values of the standard deviation of the Gaussian kernel (i.e., the filter cut-off 
frequency). The resulting patterns are used to quantify the resulting DIC 
measurement uncertainty for the case of constant, linear, quadratic and cubic 
displacement fields and the associated strain fields. The stability of the relation 
between Gaussian standard deviation and measurement uncertainty for the case 
of linear displacement (constant strain) fields is obtained via numerical 
simulations through use of various levels of image noise, subset size, and 
frequency content in the speckle pattern. 
 

3.2 Implemented simulation strategy 
The effect of pre-processing image blurring on the DIC measurement 
uncertainty is investigated by means of numerical simulations on a predefined 
speckle pattern. The methodology is summarized in Fig. 3-2. The simulations 
are implemented using the Matlab Image Processing Toolbox (The MathWorks, 
Inc., Natick, MA). 
 

          
                       (a)                                                (b)                                                 (c) 
Fig. 3-1 Numerical simulation of speckle pattern: high-resolution ordinate grid, 1000×1000 

pixel subset (a); high-resolution speckle pattern, 1000×1000 pixel subset (b); and low-
resolution speckle pattern, 100×100 pixel subset (c) 

 
A 4000×4000 pixel array with eight-bit quantization is numerically built and an 
ordinate grid of black circular speckles is superimposed (Fig. 3-1a). The 
speckles have a diameter of 45 pixels and an on-center spacing of 60 pixels 
along the horizontal, x, and vertical, y, directions in the coordinate grid. Then, 
each of the two-dimensional orthogonal coordinates, x and y, of the centroid of 
each speckle are perturbed by adding an integer (in order to avoid image re-
sampling) displacement whose value is randomly extracted from a uniform 
distribution in the ±25 pixel range to render the high-resolution speckle pattern 



CHAPTER 3 

 46 

in Fig. 3-1b. The intensity pixel range in the resulting image is then narrowed 
from 0-255 (which identify the speckle and the background, respectively) to 30-
225, thus following a routine practice to prevent pixel saturation in real-case 
scenarios. Fig. 3-1c shows the resulting 400×400 pixel low-resolution speckle 
pattern, which is produced by low-pass, anti-aliasing filtering and down-
sampling by ten times the original high-resolution speckle pattern in Fig. 3-1b. 
The only noise contribution is introduced by the eight-bit image representation 
(quantization noise). In the low-resolution speckle pattern, the speckles have a 
diameter of 4.5 pixels and an average on-center spacing of 6 pixels. The 
resulting coverage factor, i.e., the percentage of dark pixels in the image, is 
42%, which lies within the desirable 40-70% range to minimize measurement 
uncertainty [107]. 
The derivation of low-resolution images by down-sampling their high-resolution 
counterparts is pursuant to mimic a real-case scenario.  This approach was 
carefully qualified by P. Reu in [117] with the aim of quantifying the errors in 
DIC using both experimental and numerical approaches but only for the case of 
rigid target shift simulation (i.e. no strain) and without focusing on image 
filtering for accuracy assessments, while these two aspects are analysed here. 
With the image down-sampling approach, any displacement and deformation of 
the speckle pattern may be imposed on the high-resolution image, which 
simulates an actual two-dimensional area where DIC measurements are 
performed, while the associated low-resolution image simulates the image 
acquired using a digital camera. It is noted that this procedure does not require 
the application of arbitrary interpolation of the final image, which would be 
necessary when simulating sub-pixel displacements and deformations directly in 
the final image. The implemented simulation strategy is summarized in Fig. 3-2. 
 

HIGH
RESOLUTION

PATTERN DISPLACEMEN/
STRAIN

SIMULATED FIELD

REFERENCE
HIGH RESOLUTION

IMAGE

DEFORMED
HIGH RESOLUTION

IMAGE

ANTI-ALIASING 
FILTERING

AND
DOWNSAMPLING

REFERENCE
IMAGE

DEFORMED 
IMAGE

REFERENCE IMAGE σ=0.00 REFERENCE IMAGE σ=0.50 … REFERENCE IMAGE σ=2.00

DEFORMED IMAGE σ=0.00 DEFORMED IMAGE σ=0.50 … DEFORMED IMAGE σ=2.00

REFERENCE
IMAGE

DEFORMED 
IMAGE

DIC
ANALYSIS

DIC
ANALYSIS

a)

b)

ANTI-ALIASING 
FILTERING

AND
DOWNSAMPLING

DIC
ANALYSIS

DIC
ANALYSIS

DIC
ANALYSIS

DIC
ANALYSIS

GAUSSIAN 
BLURRING 

σ=0.00
σ=0.50
…
σ=2.00

GAUSSIAN 
BLURRING 

σ=0.00
σ=0.50
…
σ=2.00

GAUSSIAN 
BLURRING 

σ=0.00
σ=0.50
…
σ=2.00

GAUSSIAN 
BLURRING 

σ=0.00
σ=0.50
…
σ=2.00

 
 

Fig. 3-2 Implemented simulation strategy 
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In this study, the selected displacement and strain fields are imposed on the 
high-resolution speckle pattern (Fig. 3-2a), and the associated low-resolution 
images are derived. For the case of simulated rigid motion, the imposed 
displacements are integer in the high resolution images and consequently result 
in a subpixel motion in the low resolutions ones. Conversely, when a non 
constant displacement field is imposed in order to simulate strains, bicubic 
image re-sampling of the high-resolution images is implemented [117]. The 
effect of pre-processing Gaussian filtering of the low-resolution images that 
simulate the acquired data is studied through a parametric analysis of the 
standard deviation of the Gaussian kernel vis-à-vis the DIC measurement 
uncertainty. Gaussian filters are two-dimensional filters [116] that have been 
previously used for image processing purposes. The impulse response of 
Gaussian filters is the well-known bell-shaped function whose smoothness 
enables the minimization of ringing, while binomial filtering enables to define 
computationally efficient Gaussian filters for Weierstrass transform [118]. In the 
space domain, the convolution matrix of Gaussian filters is rendered as a zero-
mean Gaussian surface. In the frequency domain, different standard deviations 
of the Gaussian kernel describe a family of filters with different cut-off 
frequencies. 
The values of standard deviation, σ, used in the parametric study range from 0 to 
2 pixels, where the former indicates the absence of filters and increasing values 
are associated with filters that produce more blurring. For a given value of 
standard deviation, the filter is applied to all the low-resolution image matrices 
through their convolution with the Gaussian kernel (Fig. 3-2). This is illustrated 
in Fig. 3-3 for 30×30 pixel portions of the reference 400×400 pixel images, 
where the image spectra (FFT) amplitudes are also shown together with the 
superimposed FFT amplitude profile along the x direction; the mean value of the 
spectra is set to zero to facilitate graphical representation. The peak amplitude is 
associated with a frequency that corresponds to the average spacing of the 
speckles. It is noted that the main frequency content of the speckle pattern is in 
the fx range below the main peak; by filtering with a lower blurring effect (say σ 
≤ 1), higher frequencies are reduced without noticeable perturbations in the 
main range, whereas increasing blurring results in the progressive attenuation of 
the main frequency content of the speckle pattern.  
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Fig. 3-3 Blurring effect of Gaussian filter on low-resolution speckle pattern (30×30 pixel 

subset) for different standard deviations, σ, and associated image spectra 
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The magnitudes of the frequency response functions of the tested filters are 
reported in Fig. 3-4. Image blurring is applied both on reference and deformed 
image before the DIC analysis (Fig. 3-2). 
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Fig. 3-4 Magnitude of the frequency response function of the tested Gaussian filters 
 
The DIC analysis of the pre-processed (filtered) images is performed using the 
software Vic-2D 2009 (Correlated Solutions, Inc., Columbia, SC). A 15×15 
pixel subset size and a step of 5 pixel (i.e., with a 10 pixel overlap) are 
considered. An eight-tap optimized interpolation method is implemented, a zero-
normalized sum of squared difference correlation criterion is selected to 
compensate for the scaling and offset in the intensity pattern, thus mimicking 
real-case applications, and a 5×5 subset decay kernel matrix is enlisted to 
compute the strain values [3]. 
 

3.3 Effect of image filtering preprocessing 
The results for the case of constant horizontal (along x) displacement and zero 
strain, and for the case of higher-order (linear, quadratic and cubic) 
displacement and non-zero strain fields are presented and discussed separately. 
In particular, the simulation of cubic displacement fields aims at testing the pre-
processing filters when the subset matching cannot be exact, since the DIC 
software used implements a second-order matching shape function [3]. 
 

3.3.1 Constant displacement fields 
The reference high-resolution (4000×4000 pixel) image is subjected to a 
constant horizontal displacement from 0 to 10 pixel in 1 pixel steps, thereby 
obtaining 11 images. The derived low-resolution (400×400 pixel) images having 
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a displacement range from 0 to 1 pixel in 0.1 pixel steps are then pre-processed 
by applying the family of Gaussian filters introduced earlier. 
The effect of image filtering on the bias of DIC measurements is illustrated in 
Fig. 3-5a, where the mean difference (error) between the displacement measured 
using Vic-2D 2009, uDIC,ij, and the numerically imposed displacement, uIMP,ij, is 
presented as a function of the imposed displacement for representative values of 
the Gaussian standard deviation, σ, and is computed per eq 3-3: 
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   eq  3-3 

 
where NR and NC indicate the number of rows and columns of the displacement 
matrix, respectively, and uIMP,ij is constant for any i and j since a constant 
displacement is imposed to the entire image.  
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Fig. 3-5 Effect of image filtering on measurement bias and uncertainty for constant 

displacement: Eu (a), STDE u (b) and RMSEu (c) as function of imposed 
displacement 
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When the images are unfiltered (σ = 0 pixel), the typical trend of the 
interpolation bias is noted, where the error function Eu has a sinusoidal shape in 
the sub-pixel displacement range, and reduces to zero for integer pixel values 
[113]. The maximum error is reduced by more than half when a filter with a 
standard deviation σ of 0.5 pixel is applied. The increase in σ results in the 
progressive reduction of the bias to near-zero values throughout the entire sub-
pixel displacement range, thus indicating that filtering enables to minimize the 
average sub-pixel interpolation bias for pure translation cases.  
It is noted that a zero Eu indicates only that the measured displacement values 
are distributed around those of the imposed displacements without a systematic 
bias on measurements mean. On the other hand, data dispersion can be easily 
quantified computing the standard deviation of the measured displacement fields 
(Fig. 3-5b): 
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where DICu  represents the average measurement displacement. 
With reference to the only bias contribution, it is worth noticing that the trend is 
deterministic as a consequence of the digital image correlation algorithm but, at 
the same time, its amplitude is non trivially predictable since it is strongly 
related to test conditions (in particular image noise and speckle pattern 
characteristics [117]). At the same time, in real tests the data variability is 
generally much larger than this effect: its trend becomes evident only as an 
average phenomenon. 
As a consequence of these two aspects, the bias on the single subset estimated 
displacement can not be generally quantified and consequently it is not 
compensated for, giving therefore its contribution to the overall measurement 
uncertainty. For this reason it appears fundamental to include its contribution in 
the uncertainty estimation and therefore considering the root mean squared 
discrepancy as an index of the measurement uncertainty. 
The effect of image filtering on the DIC measurement uncertainty, i.e., the 
dispersion of the measured displacements with respect to the imposed ones, is 
therefore assessed based on the root mean square error, RMSEu, which is 
computed per eq 3-5: 
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where the two uncertainty contribution (bias and variability) are merged in a 
single parameter. 
The measurement uncertainty of a calibrated (i.e., with no bias) transducer is 
defined as the standard deviation of repeated measurement data [119]. Here the 
effect of bias is integrated according to eq 3-5, where the square difference 
between measured and imposed values is used in lieu of that between mean and 
measured values. 
The effect of image filtering on the uncertainty of DIC measurements is 
illustrated in Fig. 3-5c, where RMSEu is presented as a function of the 
numerically imposed displacement for representative values of σ. The zero 
RMSEu value in correspondence with integer pixel values (0, 1) of the imposed 
displacement reflects the fact that no noise is introduced in the simulated 
images. A similar trend is noted for σ = 0, 0.5 and 1 pixel, where the uncertainty 
is symmetrically distributed in a quasi-parabolic fashion with respect to its 
maximum value at a displacement of 0.5 pixel, and decreases at increasing 
levels of blurring. For larger values of σ (up to 2 pixel), the maximum 
uncertainty increases and remains nearly constant in the entire sub-pixel range. 
Therefore, for the case of constant displacements, the DIC measurement 
uncertainty is minimized when applying a Gaussian pre-processing image filter 
with a standard deviation (and associated cut-off frequency) near 1 pixel, 
whereas a higher uncertainty is attained with less or more blurring filters.  
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Fig. 3-6 Relation between measurement uncertainty and Gaussian standard deviation for 

constant displacement: mean RMSEu (a) and mean RMSEε (b) as function of σ 
 
This finding is illustrated in Fig. 3-6a, where the mean RMSEu for each RMSEu 
curve for a given value of the Gaussian standard deviation σ (such as those in 
Fig. 3-5b) is plotted as a function of the associated σ to conveniently show the 
relation between measurement uncertainty and image blurring. Through the 
application of a blurring filter with σ = 1 pixel , the mean RMSEu is reduced by 
77% with respect to that of the unfiltered set of images (σ = 0 pixel). Similar 
results are obtained for standard deviations in the indicative range 0.75-1.25 
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pixel, with a higher rate of increase in uncertainty for values below 0.75 pixel 
and above 1.25 pixel. 
The observed relation between DIC measurement uncertainty and standard 
deviation of the Gaussian filter is also exhibited when simulating strain 
measurements. This is illustrated in Fig. 3-6b, where the condition of rigid target 
displacement is still considered (i.e. horizontal translation, no strain) and the 
horizontal strain estimated by the DIC algorithm is considered. The mean 
RMSEε for each curve of horizontal strain measured for a given σ is plotted as a 
function of the associated σ, with RMSEε for a given displacement being 
computed per eq : 
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   eq  3-6 

 
where the notation is similar to that of eq 3-5 and εIMP,ij = 0 for any i and j when 
a zero strain is imposed to the entire image. Again, image blurring with 
Gaussian filters having σ in the range 0.75-1.25 pixel enables to minimize the 
measurement uncertainty. As can be seen in Fig. 3-6 , the trend of RMSEε is 
very similar to the trend of RMSEu; this is reasonable because the ε values are 
obtained as partial derivatives of the u ones. 
 

3.3.2 Linear, quadratic and cubic displacement fields 
The functions of the horizontal displacement and strain fields imposed are 
expressed via eq 3-7 through eq 3-9: 
 
   max max( ) ,  ( )u x x x         eq  3-7 
 
respectively, for the case of linear displacement and constant strain, 
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       eq  3-8 

 
respectively, for the case of quadratic displacement and linear strain, and 
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respectively, for the case of cubic displacement and quadratic strain, where L is 
the length of the low-resolution image in the horizontal (x) direction (400 pixel), 
and εmax is the maximum horizontal strain imposed by means of numerical 
simulation. The results from simulations with maximum horizontal tensile 
strains between 250 and 20000 µε are presented herein; however, it is noted that 
similar results were attained when simulating compression strain fields with 
minimum horizontal strain between −250 and −20000 µε. These values of |εmax| 
cover a relevant range for representative structural materials subjected to service 
and ultimate stress levels, such as concrete and masonry (ultimate tensile strain 
~102 µε, ultimate compression strain ~103 µε), steel and aluminium (tensile 
yield strain ~103 µε), and fiber reinforced polymer composites (ultimate tensile 
strain ~104 µε). 
 
Linear displacement fields 
For the case of linear displacement, the horizontal strain imposed is constant 
(i.e, εmax = ε) and the DIC strain measurement uncertainty is uniformly 
distributed in the horizontal direction. For strains ε between 250 and 20000 µε,  
Fig. 3-7 shows the (mean) RMSEε per eq 3-6 for all 15×15 pixel subsets for 
each constant strain profile measured for a given σ, plotted as a function of the 
associated σ.  
 

0

40

80

120

160

0 0.5 1 1.5 2
  [px]

R
M

SE
  

  [



 = 250 
500 

1000 
2000 

4000 

 

150

200

250

300

350

0 0.5 1 1.5 2
  [px]

R
M

SE
  

  [



 = 20000 

 
                                          (a)                                                                          (b) 
Fig. 3-7 Relation between measurement uncertainty and Gaussian standard deviation for 
linear displacement and constant strain, ε: RMSEε as function of σ for 250 ≤ ε ≤ 4000 με 

(a) and for ε = 20000 με (b) 
 
Similar to the case of constant displacement (Fig. 3-6), the uncertainty for 
unfiltered images rapidly decreases as more blurring filters are applied until it is 
minimized for filters with a standard deviation in the indicative range 0.75-1.25 
pixel. The lower bound (σ = 0.75 pixel) is more effective at relatively smaller 
strains (ε < 1000 µε). For linear displacement fields with strain ~102 and 103 με 
(up to ε = 4000 µε for the data presented), past the upper bound (σ = 1.25 pixel) 
the uncertainty increases and tends to converge to similar values irrespective of 
the deformation imposed and level of image blurring, as illustrated in Fig. 3-7a. 
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Fig. 3-7b shows that for relatively larger strains (ε = 20000 µε for the data 
presented), the application of a blurring filter with σ in the range 0.75-1.25 pixel 
results in a significant drop in the uncertainty value, albeit not as large as for ε 
~103 µε, whereas a higher level of blurring marginally increases the uncertainty. 
This result is attributed to the fact that the contribution of filtering to reduce the 
uncertainty in the sub-pixel range is predominant compared to that in larger 
ranges that are associated with larger deformations, i.e., the reduction of the 
uncertainty in the sub-pixel range has a smaller impact on the RMSEε values in 
Fig. 3-7b compared with those in Fig. 3-7a. 
 
Quadratic and cubic displacement fields 
For the case of quadratic, cubic and higher-order displacement fields, the 
uncertainty of DIC horizontal strain measurements using unfiltered images is a 
function of the strain imposed, and thus varies along the x direction. To facilitate 
the graphical representation of the uncertainty as a function of the horizontal 
coordinate in the domain 0 ≤ x ≤ 400 pixel, and for displacement fields with 
different maximum strain, the parameter RMSEε (x) is introduced in eq 3-10: 
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   eq  3-10 

 
where, compared with eq 3-6, the averaging operation is performed only along 
the vertical (y) direction for 1 ≤ j ≤ NC (i.e., considering the columns of the 
displacement matrix), thus rendering RMSEε as a function of x, which is instead 
associated with the index i in eq 3-6. 
For the case of quadratic displacement and linear strain with different εmax, the 
function RMSEε (x) is presented for a representative unfiltered (σ = 0 pixel) and 
filtered (σ = 1 pixel) set of images in Fig. 3-8.  
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Fig. 3-8 Relation between measurement uncertainty and Gaussian standard deviation for 

quadratic displacement and linear strain: RMSEε (x) for 250 ≤ εmax ≤ 4000 µε from 
unfiltered (a) and filtered (b) images; and RMSEε (x) for εmax = 20000 µε from unfiltered 

and filtered images (c). Image filtering based on σ = 1 
 
The outermost 34 pixel portions of the x domain having a length L = 400 pixel 
are neglected to eliminate boundary effects that may arise from the numerical 
computation of strain from displacement fields. The uncertainty of DIC 
measurements using unfiltered images varies with the strain imposed and 
exhibits an increasing trend as x increases towards more deformed areas, as 
shown for 250 ≤ εmax ≤ 4000 με and εmax = 20000 με in Fig. 3-8a and Fig. 3-8c, 
respectively. For linear strain fields with εmax ~102 and 103 µε (up to 4000 µε for 
the data presented), Fig. 3-8b shows that image filtering enables to significantly 
reduce the uncertainty especially in more deformed areas; for example, for εmax 
= 4000 με, the peak uncertainty is reduced from 228 με at x = 319 pixel to 51 με 
at x = 364 pixel. For linear strain fields with εmax ~104 με (20000 µε for the data 
presented), Fig. 3-8c shows that image filtering becomes less effective in more 
deformed areas (x > 150 pixel). However, filtering enables to essentially 
eliminate the noticeable negative influence of the sub-pixel interpolation bias by 
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reducing the RMSEε (x) function from a sinusoidal shape (σ = 0 pixel) to a more 
regular and desirable shape (σ = 1 pixel).  
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Fig. 3-9 Relation between measurement uncertainty and Gaussian standard deviation for 

cubic displacement and quadratic strain: RMSEε (x) for 250 ≤ εmax ≤ 4000 µε from 
unfiltered (a) and filtered (b) images; and RMSEε (x) for εmax = 20000 µε from unfiltered 

and filtered images (c). Image filtering based on σ = 1 
 
These findings are consistent with those for the case of cubic displacement and 
quadratic strain fields, as illustrated for 250 ≤ εmax ≤ 4000 με using an unfiltered 
and a filtered (σ = 1 pixel) set of images in Fig. 3-9a and Fig. 3-9b, respectively, 
and for εmax = 20000 με in Fig. 3-9c to facilitate a direct comparison of the 
RMSEε (x) functions generated with and without image filtering.  
 

3.3.3 Interpretation of the results 
The parametric study discussed herein shows that pre-processing image blurring 
by means of Gaussian filters with a well defined range of standard deviations 
(approximately 0.75-1.25 pixel) results in the overall reduction of the DIC 
measurement uncertainty irrespective of the degree of the polynomial 
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displacement and strain functions. For strain fields with εmax ~103 µε, a 
significant decrease in uncertainty is attained as deformations increase; this 
finding is of practical significance since such level of εmax is associated with 
critical deformations under service or ultimate stresses for most structural 
materials. For larger maximum strains (εmax ~104 με), the reduction in 
uncertainty is essentially limited to that attributed to the sub-pixel interpolation 
bias, which notably affects DIC measurements; this finding is of practical 
significance since at such level of εmax accurate local measurements can hardly 
be obtained with more conventional means such as strain gauges and 
extensometers.  
The fact that the range of standard deviations where Gaussian filtering is most 
effective is largely independent of the displacement and strain functions 
suggests that it is primarily dependent on the DIC algorithm. In fact, unfiltered 
images are characterized by steep transients between the dark speckles and the 
light background with associated high frequency content in the image spectra 
(Fig. 3-5), which cannot be closely represented by the polynomial interpolation 
of the intensity pattern that follows the subset deformation according to a given 
shape function. When these contributions are not filtered, they produce an 
aliasing effect on the subset interpolation. Filtering becomes effective when the 
spectral portion having a higher frequency content than that of the interpolation 
function is minimized, whereas more blurring may result in the loss of 
frequency content that can be effectively described by the interpolation function, 
thereby increasing the measurement uncertainty. 
 

3.4 Stability of effect of image filter pre-processing 
Following a similar methodology to that of the numerical study presented 
earlier, numerical simulations are performed for the representative case of linear 
displacement and constant strain (1000, 4000 and 20000 µε) to test the stability 
of the effect of Gaussian blurring on the uncertainty of DIC measurements by 
assessing the influence of subset size, image noise, and frequency content of the 
speckle pattern. The strain measurement uncertainty is quantified by means of 
RMSEε, which is computed per eq 3-6 accounting for all 15×15 pixel subsets for 
each constant strain profile measured for a given σ, similar to Fig. 3-7. 
 

3.4.1 Influence of image noise 
A random amount of uncorrelated noise is present in the camera output analog 
signal for a given pixel. The influence of noise can be minimized by averaging 
the displacement matrices of multiple images, which must be taken while no 
additional deformations are imposed; this method is thus not applicable when 
performing dynamic measurements.  
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Random noise is simulated by means of the percent additive noise [113], Γ, in 
eq 3-11: 

    100%s
I

 


    eq  3-11 

 
For a predefined value of Γ, s is the standard deviation of a normal distribution 
from which a random amount is extracted and added to each pixel, and ΔI is the 
image intensity pixel range (equal to 225 – 30 for this study). The simulated Γ 
ranges from 0% (no noise) to 5%, where 0.5% is a reasonable value for a typical 
camera.  
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Fig. 3-10 Influence of image noise for constant strain: RMSEε as function of σ for ε = 1000 

με (a), 4000 με (b) and 20000 με (c) for 0 ≤ Γ ≤ 5% 
 
Representative RMSEε values are plotted for different levels of noise as a 
function of the associated σ, for a constant strain ε of 1000 µε, 4000 µε and 
20000 µε in Fig. 3-10a, Fig. 3-10b and Fig. 3-10c, respectively. At relatively 
low levels of noise (Γ = 0.5-1 %), the range of standard deviations at which the 
uncertainty is minimized is not affected. At relatively high levels of noise (Γ = 
5%), the influence of noise is predominant and blurring filters are no longer 
effective. 
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3.4.2 Influence of subset size 
The low-resolution images from the constant strain simulation are analyzed with 
different subset sizes: 9×9, 15×15, 33×33 and 63×63 pixel, which is reasonably 
considered a large subset [110].  
 

0

100

200

300

400

0 0.5 1 1.5 2
  [px]

R
M

SE
  

  [


]

63×63 px
Step 21

33×33 px
Step 11

15×15 px
Step 5

9×9 px
Step 3

 = 1000 

0

100

200

300

400

0 0.5 1 1.5 2
  [px]

R
M

SE
  

  [


]

 = 4000 

63×63 px
Step 21

33×33 px
Step 11

15×15 px
Step 5

9×9 px
Step 3

 
                                          (a)                                                                          (b) 

0

100

200

300

400

500

600

0 0.5 1 1.5 2
  [px]

R
M

SE
  

  [


]

 = 20000 

15×15 px
Step 5 9×9 px

Step 3

 
(c) 

 
Fig. 3-11 Influence of subset size for constant strain: RMSEε as function of σ for ε = 1000 

µε (a), 4000 µε (b) and 20000 µε (c) for 9×9, 15×15, 33×33 and 63×63 pixel subset size  
 
Representative RMSEε values are plotted for different subset sizes as a function 
of the associated σ, for a constant strain ε of 1000 µε, 4000 µε and 20000 µε in 
Fig. 3-11a, Fig. 3-11b and Fig. 3-11c, respectively. The subset size does not 
affect the range of standard deviations at which the uncertainty is minimized. 
The sensitivity to relatively large levels of blurring decreases at increasing 
subset size. However, it should be noted that an increase in subset size 
negatively affects the spatial resolution, which prompts to the need to 
compromise between uncertainty and resolution when designing a DIC setup. 
 

3.4.3 Influence of frequency content of speckle pattern 
Constant strain fields and DIC measurements are simulated on low-resolution 
images for each of the four different speckle patterns in Fig. 3-12.  
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D = 2 pixel 
d = 3 pixel 

D = 4.5 pixel 
d = 6 pixel 

D = 6 pixel 
d = 9 pixel 

D = 8 pixel 
d = 12 pixel 

Fig. 3-12 Numerically simulated speckle patterns: 50×50 pixel samples with D = speckle 
diameter, and d = average speckle on-center spacing 

 
Different frequency contents are rendered by varying the speckle diameter, D 
(between 2 and 8 pixel), and the average distance between adjacent speckles, d 
(between 3 and 12 pixel). Representative RMSEε values are plotted for different 
subset sizes as a function of the associated σ, for a constant strain ε of 1000 µε, 
4000 µε and 20000 µε in Fig. 3-13a, Fig. 3-13b and Fig. 3-13c, respectively. 
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Fig. 3-13 Influence of frequency content of speckle pattern for constant strain: RMSEε as 
function of σ for ε = 1000 με (a), 4000 με (b) and 20000 με (c) for simulated speckle 

patterns 
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When using unfiltered images (σ = 0), smaller speckles and distances (D = 2 
pixel, d = 3 pixel) enable to better reduce the uncertainty. However, filtering 
results in an improved reduction of the uncertainty for larger speckles and 
distances, with no significant increase for relatively strong Gaussian blurs. The 
range of standard deviations at which the uncertainty is minimized does not 
change irrespective of the frequency content; in fact, effective blurring affects 
the areas of steep transition between speckles (of any size and spacing) and 
background, which are associated with relatively high frequency components 
and provide a negligible contribution to the frequency content of speckle 
patterns.  
 

3.5 Concluding remarks 
The first part of this paper presents a parametric study where the effect of pre-
processing image blurring on the uncertainty of DIC measurements is 
investigated by means of numerical simulations using Gaussian filters with 
varying standard deviation. Based on the evidence presented, the following 
conclusions are drawn: 
 

 Pre-processing image blurring by means of Gaussian filters with a well 
defined range of standard deviations (indicatively 0.75-1.00 pixel) 
results in the minimization of the DIC measurement uncertainty 
irrespective of the degree of the polynomial functions that describe the 
horizontal displacement and strain fields imposed. 

 
 The effectiveness of a given standard deviation depends primarily on the 

DIC algorithm. The measurement uncertainty is minimized by using 
blurred images resulting from the filtering of high-frequency 
components that cannot be effectively interpolated.  

 
 For constant displacement (zero strain) fields, a major reduction of the 

uncertainty is attained in the sub-pixel range, where it is more of 
concern. 

 
 For strain fields with maximum strain ~102 and 103 µε, either in tension 

or compression, a significant decrease in uncertainty is attained as 
deformations increase; this finding is of practical significance since the 
maximum strain is associated with critical deformations under service or 
ultimate stresses for most structural materials. 
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 For strain fields with maximum strain ~104 µε, either in tension or 
compression, the reduction in uncertainty is essentially limited to that 
attributed to the sub-pixel interpolation bias, which notably affects DIC 
measurements; this finding is of practical significance since at such level 
of maximum strain accurate local measurements can hardly be obtained 
with more conventional means such as strain gauges and extensometers. 

 
In the second part of the chapter, the stability of the effect of Gaussian blurring 
is tested at varying εmax vis-à-vis image noise, subset size used in the DIC 
analysis, and frequency content of the speckle pattern. It is concluded that the 
identified range of Gaussian standard deviations at which the uncertainty is 
minimized does not change except for extreme levels of noise. 
 





 
 
 

CHAPTER 4 
 
 
 
 
 

4 Gaussian blurring: experimental 
validation 

 
 
 

4.1 Introduction 
In the previous chapter, image blurring performed through low-pass Gaussian 
filtering has been introduced and presented as an effective preprocessing 
operation to remove the highest spatial frequency components in the acquired 
images responsible of digital image correlation performances worsening. 
In this chapter, the experimental validation of the suggested procedure will be 
provided; the aim of the this chapter is not so much the verification of all the 
results obtained in the previous chapter as the validation of the implemented 
simulation strategy presented in paragraph 3.2. 
In particular, the uncertainty reduction associated to image blurring is verified at 
first through rigid motion tests of a physical two-dimensional speckle pattern 
(paragraph 4.2) subjected to known rigid in plane displacements applied by 
mean of a Cartesian robot. 
Successively (paragraph 4.3), tensile tests on aluminium specimens are carried 
out and the DIC results compared with finite element models, locally validated 
by means of strain gauges, in order to confirm the capability of the proposed 
image blurring procedure to decrease the measurement uncertainty both in case 
of constant and more complex strain fields. Furthermore, image averaging has 
been exploited in order to test two different noise levels in the acquired data. 
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4.2 Rigid motion test 
Experiments for the case of constant displacement fields are performed to verify 
the simulation strategy presented in the previous chapter. The speckle pattern of 
Fig. 3-1b is printed and affixed onto the smooth surface of a rigid plate, which is 
mounted on a coordinate measuring machine (CMM, Fig. 4-1).  
 

   
 

Fig. 4-1 Image blurring experimental validation: rigid motion tests 
 
The pattern is framed by the 400×400 pixel sub-area of a digital camera with 
resolution of 640×480 pixel (Prosilica GE680, Allied Vision Technologies 
GmbH, Stadtroda, Germany) and equipped with a lens having 8 mm of nominal 
focal length. Each side of the square pattern is 160 mm long. The distance 
between the image plane and the speckle pattern has been tuned to reach a 
conversion factor of approximately 2.5 pixel/mm, where the actual value is 
estimated via a two-dimension camera calibration. The position of the camera is 
assessed using the pose estimation code introduced in paragraph 2.2 and the 
MF-DCT algorithm of paragraph 2.3 is exploited in order to maximize the 
camera focus. Constant horizontal displacements from 0 to 1 pixel are imposed 
with 0.1 pixel steps using the CMM. The uncertainty of the CMM displacement 
is 2 µm (i.e., 0.005 pixel). 
The acquired images have been pre-processed by applying the Gaussian filters 
similar to the simulations shown in Fig. 3-5, and then analyzed using Vic-2D 
2009 and considering a 15×15 pixel subset size and a step of 5 pixel.  
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Fig. 4-2 Relation between measurement uncertainty and Gaussian standard deviation for 

constant displacement: mean RMSEu (a) and mean RMSEε (b) as function of σ 
 
The effect of image filtering on the discrepancy between of DIC measurements 
is illustrated in Fig. 4-2a, where the mean discrepancy, Du, between the 
measured displacement and that imposed by the CMM is presented as a function 
of the latter for representative values of the standard deviation, σ. The mean 
discrepancy values are computed similar to Eu per eq 3-3, where the values of 
the CMM displacements are used in lieu of those of the numerically imposed 
displacements. The results show a reasonable agreement with those from the 
numerical simulations in Fig. 3-5 both in terms of sub-pixel (sinusoidal) trend 
and decrease in bias at increasing σ. The inevitably larger absolute values, in 
particular for CMM displacements ranging between 0.7 and 1.0 pixel, are 
reasonably attributed to vibrations of the camera and its non isolated support, 
along with the uncertainty of the movements imposed via the CMM.  
The effect of image filtering on the uncertainty of DIC measurements is 
illustrated in Fig. 4-2b, where the root mean square displacement discrepancy, 
RMSDu, is presented as a function of the CMM displacement for representative 
values of σ. The RMSDu values are computed similar to RMSEu per eq 3-4, 
where the value of the CMM displacements are used in lieu of those of the 
imposed displacements. The uncertainty is zero at a zero CMM displacement 
since the reference image is compared with itself. For non-zero CMM 
displacements, the uncertainty is minimized by applying a filter with a standard 
deviation in the vicinity of 1 pixel, thus validating the results from the numerical 
simulations in Fig. 3-5b. 
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                                         (a)                                                                          (b) 
Fig. 4-3 Relation between measurement uncertainty and Gaussian standard deviation for 

constant CMM displacement: Mean RMSDu (a) and Mean RMSDε (b) as function of σ 
 
The experimental verification is concluded by assessing the experimental mean 
RMSDu and the mean root mean square strain discrepancy, RMSDε, vis-à-vis 
the Gaussian standard deviation, as illustrated in Fig. 4-3a and Fig. 4-3b, 
respectively. The RMSDε values are computed similar to RMSEε per eq 3-6, 
where the value of the CMM strains are used in lieu of those of the imposed 
strains. The measurement uncertainty is minimized when applying filters having 
σ in the range 0.75-1.25 pixel, whereas lower or higher levels of blurring result 
in an increase in uncertainty. These findings corroborate those from the 
numerical simulations presented in Fig. 3-6a and Fig. 3-6b even if the effect of 
filtering is stronger in case of numerically generated images that in the case of 
real ones. The differences in the case of low σ values are likely due to the fact 
that the real images are actually affected by a moderate blurring, due to the real 
optics effect. 
 

4.3 Constant and complex strain fields tests 
In this paragraph, the final validation of the use of Gaussian blurring as a way to 
increase the measurement accuracy in digital image correlation analyses is 
presented.  Uniaxial tensile tests on four different plate specimens, i.e. a 
situation where digital image correlation is commonly exploited, are designed 
and carried out. Two of them are standard dog bone specimens, characterize by 
a nominally constant strain field in the central area; the other two are designed 
in order to provide more complex strain fields. The elastic loading range of 
every plate is divided in ten different steps, and ten images are acquired at each 
loading step. In this way, not only the effect of the image filtering can be 
validated but also the image averaging as a way to decrease noise in acquired 
data is presented. The results of the digital image correlation analyses on the 
acquired data are compared with finite element models of the plates, locally 
validated during the experiments by means of strain gauges measurements. In 
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this way, accuracy related to singly acquired images, singly acquired filtered 
images, averaged images and averaged filtered images is quantified. The 
comparisons among these results validate the use of image blurring both in case 
of singly acquired images and averaged images, with a decrease of the 
measurement uncertainty associated to noise reduction in the second case. 
 

4.3.1 Specimens  
Four different specimens are designed for the tests (Fig. 4-4), each with a 
characteristic geometry. The specimens are plate, in order to respect the 
planarity required by a 2D analysis (see paragraph 2.2.1).  
In the first one, the width (and consequently the area of the resistant section) 
hyperbolically varies along the longitudinal abscissa: this design, combined with 
the symmetry of the geometry, creates theoretically (far from the border effects) 
a linear monoaxial variation of the strain field along the vertical axis of 
symmetry during the tension test. The remaining parts of the surface are 
characterized by a more complex, bidimensional, state of strain. The second 
specimen is design with the same approach but different gradient in the 
reduction of the section, in order to test two different situations of the same 
phenomenon.  
The third and the fourth specimens are classical dog-bone specimens for tensile 
test, characterized by a filleted constant area which is able to provide constant 
strain fields. In particular, the number 4 has been design according the U.S. 
standards [120].  
All the specimens have been cut from the same direction of the same plate, in 
order to guarantee uniformity in the material properties. The selected metal is a 
6061-T6 (solutionized and artificially aged) aluminium alloy: this material 
present higher elastic range with respect to traditional aluminium and thus easily 
allows the study of relatively high strain (up to about 4000 µm/m) preserving the 
hypotheses of a linear problem. The nominal mechanical properties of the 
selected alloy are summarized in Table 4-1. 
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Specimen 1 Specimen 2

Specimen 3 Specimen 4

Specimen 1 Specimen 2

Specimen 3 Specimen 4

 
 

Fig. 4-4 Tested specimens 
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4.3.2 Speckle pattern realization 
In order to perform digital image correlation measurements, a speckle pattern 
has to be created on the surfaces of the specimens. At first, the surface of all the 
plates has been spray painted with a light film of white opaque enamel to 
increase the resulting pattern contrast and avoid specular reflection on the 
measurement surface.  
 

=0.6mm=0.6mm

450mm

110m
m

 
 

Fig. 4-5 Stencil for speckle pattern realization 
 
To realize the speckles, a stencil has been prepared (Fig. 4-5). A 0.2 mm thick 
stainless steel sheet is micro-drilled by mean of chemical machining starting 
from the same pattern design exploited in paragraph 3.2. One hole is realized in 
the metal sheet in correspondence of every speckle, with a 0.75 px/mm scaling 
factor (speckles of 0.6 mm diameter each from a 4.5 px diameter design). 
Leaning the stencil on the measurement surface of the plates and spraying it 
with an airbrush it is easily possible to create the speckle pattern. Black opaque 
enamel has been used. 
 

Young modulus E 68.9 GPa 
Poisson’s ratio  0.33 
Yield stress Ry 276 Mpa 

Ultimate tensile strength UTS 310 Mpa 

Table 4-1 Al 6061-T6: nominal mechanical properties 



CHAPTER 4 
 

 72 

 
 

Fig. 4-6 Specimen 1 after speckle pattern realization 
 
In Fig. 4-6 the resulting speckle pattern, as actually framed by the camera during 
the test, is reported in case of Specimen 1. 
 

4.3.3 Reference: finite element model and strain gauges 
A linear elastic finite element model of every specimen has been created starting 
from the nominal mechanical properties of the alloy of Table 4-1. The analyses 
are carried out in Abaqus, using a 3D model of every plate meshed with 
C3D20D elements (general purpose quadratic brick elements). These models 
will provide the reference strain field to be compared with digital image 
correlation results in order to quantify the measurement uncertainty in the four 
different tested conditions (single image, single filtered image, average image, 
and average filtered image).  
The simulated plates aimed to model a very simple problem (linear elastic 
loading of an isotropic homogeneous material) and are consequently expected to 
provide an accurate reference. 
Nevertheless, strain gauges are applied on the surface of the specimens opposite 
with respect to the one framed by the camera to measure the local strain during 
the tests: the acquired data will be used to locally validate the f.e. models. The 
selected electric strain gauges are compensated in temperature for aluminium 
materials and present a monoaxial 3 mm sensible grid length. The acquisition is 
done in half bridge configuration with a temperature compensator for every 
sensor. All the gauges are applied on the longitudinal axes of symmetry of the 
specimens (y=0 in the sketch of Fig. 4-7), where a monoaxial state of strain is 
expected as a consequence of the specimens symmetry.  
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Fig. 4-7 Expected strain profile along the y=0 axis and strain gauges selected positions 
 
The position of the gauges on every plate has been chosen starting from the 
finite element analysis of the specimens on the y=0 axis and is reported in Fig. 
4-7 (strain curve referred to maximum elastic load discussed in the following 
paragraph).  
 

 
 

Fig. 4-8 Strain gauges applied on Specimen 1 
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Fig. 4-8 the Specimen 1 surface with the gauges applied is reported. 
 

4.3.4 Testing procedure and setup 
Starting from a finite element analysis, the loads able to induce in the central 
section of every plate a strain field of about 400 µm/m (i.e. a sufficient 
magnitude of the strain filed for digital image correlation measurements) are 
quantified: these loads represents the forces apply to the specimens at the first 
step of the tensile tests. Successively, f.e. models are exploited in order to 
estimate the maximum elastic loads, i.e. the forces that induced in 
correspondence of geometry discontinuities  strains close to the linear elastic 
limit of the Al 6061-T6 alloy: these loads are the last steps of the tensile tests 
and are reported in the text boxes of Fig. 4-7. The curves of Fig. 4-7 actually 
represent the strain profile in the y=0 axis when these limit loads are applied to 
the specimens according to the f.e. model. Among these two boundaries, ten 
equally spaced loads are selected and each of them is a step of the tensile tests. 

 

 
 

Fig. 4-9 Tensile test setup 
 
In Fig. 4-9 the testing layout is reported. The specimen is fixed on the tensile 
machine and lighted by means of led lights (i.e. cold lights, in order to avoid 
distortions in the acquired image related to hot air waves). The camera, after the 
calibration, is placed in front of the specimen: the position is assessed using the 
pose estimation code introduced in paragraph 2.2 and the MF-DCT algorithm of 
paragraph 2.3 is exploited in order to maximize the camera focus. The strain 
gauges on the specimens and the load cell of the tensile machine are acquired 
synchronously with the images framed by the camera. 
The tensile machine is force-controlled. At first, with no loads applied to the 
specimens, ten images of the tested-plate are acquired. These data represents the 
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reference images of the digital image correlation analysis. Successively, the load 
increases to the first step, the machine stops and a new set of 10 images is 
acquired. The procedure is repeated for the remaining 9 steps, crossing the 
whole elastic range of every specimen. In order to avoid a significant relaxation 
of the material during the stops, the target loads are approached with a 
decreasing loading rate. 
Using the load cell and the strain gauges data acquired during the loading test, 
the actual elastic characteristic of the tested alloy has been retrieved and the 
finite element model updated. 
 

4.3.5 Tensile tests results 
The acquired images of every plate are pre-processed in four different ways:  
 

 at every load step, the first image of the acquired set is extracted, 
resulting in 10 singly acquired images; 

 
 at every load step, the first image of the acquired set is extracted and 

filtered with a gaussian low pass filter, σ=0.75 px, resulting in 10 singly 
acquired filtered images; 

 
 
 at every load step, the 10 images of the acquired set are pixel by pixel 

averaged, resulting in 10 averaged images; 
 
  at every load step, the 10 images of the acquired set are pixel by pixel 

averaged and filtered with a Gaussian low pass filter, σ=0.75 px, 
resulting in 10 averaged filtered images; 

 
and consequently four different digital image correlation analyses are carried out 
for every specimen. In the following, for every specimen the DIC results will be 
presented and compared with data from the finite element models. Starting from 
these comparison, the measurement uncertainty will be quantify in order to 
validate the use of the Gaussian blurring as a method to decrease the 
measurement uncertainty and quantify the accuracy enhancement associated to 
image averaging. 
 
Tensile test results: Specimen 1 
The first analyzed specimen is the hourglass-shape one characterized by the 
narrowest minimum resisting section (Fig. 4-4).  
In Fig. 4-10 compares the strain profile along the y=0 axis measured by the four 
different DIC analyses with the reference finite element data. Local strains 
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measured by the strain gauges are also reported. Data relative to two different 
loading levels (at the beginning (a) and at the end (b) of the test) are shown. The 
four different experimental curves represent the four different DIC analyses 
previously discussed.  
Starting from the comparison among measured and reference data of Fig. 4-10, 
it is possible to have a rough idea of the measurement uncertainty associated to 
DIC measurements. The average global matching of the nominal value of the 
strains can be clearly recognized, along with non negligible data dispersion, 
particularly in the lowest load curve. It is instead more difficult to appreciate 
and quantify the differences in terms of measurement uncertainty related to the 
four different DIC analyses.  
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                                          (a)                                        (b) 

Fig. 4-10 Specimen 1: axial strain profile along the y=0 axis; low loading level (a, 24 kN) 
and high loading level (b, 63 kN) 

 
In order to better study the influence of the pre-processing on the final accuracy, 
the root mean squared discrepancy among measured (in the four cases) and 
reference strain field is computed, extending the analysis to the whole 
measurement surface: 
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The results are reported, for all the tested loading conditions, in Fig. 4-11. 
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Fig. 4-11 Specimen 1, RMSD εxx for all the tested loading levels 
 
From the curves of figure Fig. 4-11 it can be clearly noticed how the image 
averaging is able to reduce, in basically the whole tested range, the measurement 
uncertainty by increasing the signal to noise ratio of the acquired data and, at the 
same time, how the image filtering on the averaged images can further 
increment the DIC performances. The effect of the Gaussian blurring on the 
singly acquired image is less important: no sensible improvement can be noticed 
but, at the same time, the pre-processing does not reduce the quality of the 
computer results. Furthermore, average data are characterized by a smoother 
trend: the averaging process reduces the influence of external factors in the 
acquisition process (noise, as explained, but also camera vibration, light 
fluctuation etc).  
The root men squared discrepancies shows a global increase in the measurement 
uncertainty as the strain become bigger. To better understand this phenomenon, 
the RMSD has been normalized with respect to the loading level (Fig. 4-12).  
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Fig. 4-12 Specimen 1, normalized RMSD εxx for all the tested loading levels 
 
For low strain levels, the relative contribution of the “ground noise” of the DIC 
technique is predominant; at the opposite, once a sufficiently high strain level is 
reached, the uncertainty increases proportionally to the applied load (i.e. to the 
magnitude of the strain field). 
 
Tensile test results: Specimen 2 
Specimen 2 is characterized by geometry similar to the one of Specimen 1, with 
a less pronounced section reduction in the central area (Fig. 4-4).  
 

-200 -100 0 100 200
500

1000

1500

x [mm]

 x
x a

t y
=0

 [ 
m

/m
]

 

 

Strain gauges
FEM
Single
Average
Average filt
Single filt

-200 -100 0 100 200
1000

1500

2000

2500

3000

3500

x [mm]

 x
x a

t y
=0

 [ 
m

/m
]

 

 

Strain gauges
FEM
Single
Average
Average filt
Single filt

 
          (a)                                                                           (b) 

Fig. 4-13 Specimen 2: axial strain profile along the y=0 axis; low loading level (a, 42 kN) 
and high loading level (b, 109 kN) 
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In Fig. 4-13 the measured and reference strain profiles in correspondence to the 
y=0 axis is presented, as in the previous chapter, at two different loading levels 
of the test. It is worth to notice the high correspondence between finite element 
results and local strain measured by the strain gauges, as confirm of the fidelity 
of the f.e. predictions and their use as reference. 
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Fig. 4-14 Specimen 2, RMSD εxx for all the tested loading levels 
 
From the RMSDεxx analysis of figure Fig. 4-14 it is clearly noticeable how the 
Gaussian blurring in the image preprocessing is actually able to reduce data 
dispersion in both the singly acquired analysis (traditional digital image 
correlation) and in case of image averaging (noise reduction). 
In order to better describe the phenomenon, the percentage RMSDεxx reduction 
in case of filtering, average, and filtered average with respect to the singly 
acquired image with no preprocessing has been computed: 
 

100[%]reduction IMAGES ACQ. SINGLY

IMAGES ACQ. SINGLY





XX

XXXX

XX RMSD
RMSDRMSD

RMSD



  eq. 4-2 

 
The data are summarized in Fig. 2-12. 
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Fig. 4-15 Specimen 2, RMSD εxx reduction for all the tested loading levels 
 
A decrease in the measurement uncertainty of nearly 10% can be observed as a 
consequence of the only image blurring preprocessing. The combination of 
filtering and image averaging can lead to reduction of the strain root mean 
squared discrepancy up to the 50% in case of low strain levels. 
 
Tensile test results: Specimen 3 
The third specimen is characterized by traditional dog-bone geometry (Fig. 4-4); 
Thanks to this characteristic, important considerations about measurement 
uncertainty will be derived.  
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                                          (a)                                                                        (b) 

Fig. 4-16 Specimen 3: axial strain profile along the y=0 axis; low loading level (a, 45 kN) 
and high loading level (b, 102 kN) 

 
Once again, the predicted versus measured strain profile in the y=0 axis is 
reported (Fig. 4-16), where it is possible to notice the less variability of the data 
obtained by the average filtered analysis with respect to the others procedure. 
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Fig. 4-17 Specimen 3, RMSD εxx for all the tested loading levels 
 
The root mean squared strain discrepancy reported in Fig. 4-17 assumes, in this 
case, a more important significance with respect to the previous tests: being, in 
the analyzed area, the strain filed almost uniform, the RMSDεxx is able, in this 
test, not only to provide a quantitative comparison of the average matching 
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between measured and reference strain field but also to directly quantify the 
measurement uncertainty.  
Once again, the singly acquired non filtered image results in the worst 
performances, while image filtering is able to increase accuracy both with 
averaged and non averaged data. 
Being the strain field almost uniform in the analyzed area, the strain standard 
deviation itself can be an important index for the evaluation of the measurement 
uncertainty associated to the different analyses (Fig. 4-18). 
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Fig. 4-18 Specimen 3, STD εxx for all the tested loading levels 
 
The lower average values of the data standard deviation in the curves of Fig. 
4-18 with respect to the RMSD of Fig. 4-17 indicates that the discrepancy of the 
measurement results with respect to the reference ones are not only due to data 
variability, but an average mismatch between the two estimations is preset 
(mismatch that gets higher increasing the loading level): it is not trivial to 
attribute this issue to either a bias in the DIC measurements or in error of the f.e. 
models. Nevertheless, also Fig. 4-18 confirms the capability of image averaging 
to reduce the measurement uncertainty with respect to singly acquired images; it 
is worth to notice what happens in the points at 87.7 kN of Fig. 4-18: in the 
singly acquired images a sudden increase in the data dispersion is present, 
reasonably associated to issue in the acquired image (vibration of the camera or 
sudden change in the environmental light) while image averaging does not see 
this problem. As already noticed, in both the situations image filtering is proven 
to be effective in reducing the data dispersion.  
 
Tensile test results: Specimen 4 
At last, results related to Specimen 4, designed according to U.S. standards for 
tensile tests, are reported. 
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                (a)                                                                         (b) 

Fig. 4-19 Specimen 4: axial strain profile along the y=0 axis; low loading level (a, 33 kN) 
and high loading level (b, 98 kN) 

 
A slight mismatch between average estimated and predicted strain is present in 
this test as well (Fig. 4-19).  
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Fig. 4-20 Specimen 4, STD εxx for all the tested loading levels 
 
By looking at the data standard deviation reported in Fig. 4-20, the same 
consideration reported for the Specimen 3 test can be derived.  
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4.4 Gaussian blurring in DIC: an application to the 
study of size effect in GFRP reinforced 
concrete beams without longitudinal stirrups 

The use of corrosion resistant glass fiber reinforced polymer (GFRP) 
reinforcement in lieu of steel bars is an attractive option for non-prestressed 
concrete structures that operate in aggressive environments, such as bridges, 
parking garages, seawalls and docks [121]. Design principles that reflect the 
peculiar properties of GFRP reinforcement, including its relatively low stiffness 
and linear elastic behaviour in uniaxial tension up to failure, are fairly well 
established. Guideline documents [122] followed by codes of practice [123-124] 
and materials and construction specifications [125-126] have been published in 
the last decade and are available to practitioners. 
The lower axial stiffness of GFRP bars, as compared to steel, results in wider 
cracks reducing the depth of the uncracked concrete in compression and 
hindering aggregate interlock along the inclined (shear) cracks, thereby reducing 
shear strength [127-128]. In addition, size effect, which is defined as the 
decrease in shear stress at failure at increasing effective depths of the cross 
section, becomes more of concern [129-131]. Size effect is a widely 
experimentally studied issue related to reinforced concrete beam without 
longitudinal stirrups; many empirical laws have been proposed in order to 
compensate it for from both American and European research groups [132-133] 
but the reason (i.e. the crack mechanism) of the phenomenon is not yet fully 
understood.   
Two main different theories has been developed in the years by two different 
research groups to explain this phenomenon and, until now, no final 
experimental evidences has been reported able to confirm one theory of the 
other (or both or none of them). 
The first is the one proposed in [134-137], where the decrement of the shear 
resistance in larger beams is explained (both theoretically and by mean of finite 
element simulations) as a consequence of a modification of the shape of the 
stress profile in the uncracked part of the structure. In particular, the shear 
failure mode of a “small beam” most resembles the traditional flexural failure, 
with an almost uniform stress distribution in the uncracked area while the stress 
distribution gets steeper and steeper as a consequence of the increment of the 
size of the beam, leading the structure to a premature failure. 
The second theory [138-139] focuses the explanation of the size effect along the 
crack itself: the interlocking is an important phenomenon in case of small 
beams, where the aggregate size is comparable with the crack opening while it 
gets almost negligible for very big beams, where the resulting distance between 
two faces of the specimen, separated by the cracks, is larger than the aggregates 
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themselves and the component of the shear load transmitted by interlocking gets 
null. 
In order to deeper investigate the size effect problem in GFRP concrete beams, a 
joint research between Politecnico di Milano and University of South Carolina 
has been carried on. 
The goal of the research is to tests in 4 point bending beams of different sizes 
(of the specimen itself and of the aggregate) ad measure on the specimens 
surfaces the resulting state of strain by means of DIC at various loads in order 
to: 
 

 qualitatively investigate if there is an actual change in the strain field 
distribution as a consequence of the change in the specimen dimensions 

 
 quantatively estimate the part of the shear load carried by the  uncracked 

region (numerical integration of the stress profiles obtained coupling the 
strain profiles measured by DIC and the constitutive law of the material) 
and, consequently, indirectly evaluate the percentage of the total load 
transmitted thanks to interlocking 

 
Image blurring as a way to decrease the measurement uncertainty, a critical 
parameter in an application of DIC on brittle materials (i.e. low strain fields) has 
been proposed and adopted in these tests. 
The whole analysis of the collected data is still a “work in progress” and only 
preliminary results will be presented here. 
 

       
        (a)                (b) 
Fig. 4-21 Two tested GFRP reinforced concrete beams at failure: (a) “big beam” (height = 

330mm), (b) “small beam” (height = 178mm); in red the position of the extracted strain 
field profiles 
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In Fig. 4-21 two tested beams (a “big” and a “small” one) at failure are reported 
along with the position of the horizontal strain profiles extracted and graphed in 
Fig. 4-22 where the rainbow colour palette describes the increasing load. 
 

  
        (a)                (b) 

Fig. 4-22 Horizontal strain profiles of two tested GFRP reinforced concrete beams at 
various loads: (a) “big beam” (height = 330mm), (b) “small beam” (height = 178mm) 

 
It can be macroscopically appreciate the steeper, almost linear, strain profile 
characterizing the bigger specimen at high loads with respect to the one relative 
to the smaller beam, where a wider area with a nearly constant state of strain can 
be easily recognize. 
Similar results, obtained from different specimens, seem to confirm the Bazant’s 
theory but the verification of the percentage of the whole shear load transmitted 
through the cracks has not be performed yet and will probably return important 
information in relation to the size effect problem. 
 
 

4.5 Concluding remarks 
In this chapter the use of Gaussian image blurring for uncertainty reduction in 
digital image correlation, proposed and numerically studied in the previous 
chapter, has been validate by means of two different experimental tests: rigid 
motion and controlled strains. 
Globally, the reduction in the measurement uncertainty is less pronounced with 
respect to the results of the simulations. This can be due to both partial blurring 
in the acquired image (introduced by the optics or inherent in the speckle pattern 
itself) and external uncontrolled uncertainty sources (camera vibration, out of 
plane motion, etc. 
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Nevertheless, a Gaussian low pass filtering of standard deviation equal to 0.75 
px has been doubtless identified as an effectively image preprocessing operation 
able to minimize the resulting measurement uncertainty. 
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5 Toner Transfer Technique Applied 
To Speckle Pattern Realization  

 
 
 

5.1 Introduction 
As explained in chapter 1, in digital image correlation measurements the 
measurement surface has to be characterized by a sufficient amount of 
information, i.e. variation in its colour intensity, in order to allow the algorithm 
to correctly retrieve its deformation ([1, 3]). This is usually guaranteed by 
applying, on the measurement surface, an artificial random pattern, “speckle 
pattern”, generally realized applying small speckles on a uniform background. 
Speckle pattern characteristics deeply influence digital image correlation 
accuracy [103-109] and achievable spatial resolution [110, 111] for a given 
hardware configuration. It does not exist a mathematical formulation of an ideal 
speckle pattern, that is a “target patter” to be tried to replicate in practice, but 
many studies suggest important characteristics for a good pattern. For instance, 
an average diameter of the speckles of few pixels (5-7 px according to [112], 2-5 
px in [106], 3 px used in [105]) is known to be sufficient to avoid major aliasing 
effects in the correlation analysis and still allows to achieve a good spatial 
resolution. The average percentage of speckles with respect to the background is 
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studied in [107], while in [105] considerations about the grey level distribution 
of the acquired pattern and its link to measurement accuracy can be found. An 
alternative approach is proposed in [103], where the average pattern gradient is 
computed and proved to be directly related to the correlation bias [113] and data 
dispersion. Different sizes and material of the specimens result in different 
technological approaches for the realization of the pattern itself, but regardless 
the techniques, it is non trivial to match in practice the guidelines provided by 
literature. Spray painting ([3]) is by far the most common technique to speckle 
pattern realization on medium size specimens (few to some tenth of 
millimetres): a white paint is applied as background, if necessary, on the 
specimen and dark speckles are realized by mean of an airbrush (Fig. 5-1). 
Tuning the viscosity of the ink, the opening of the nozzle and the spraying 
distance it is possible to vary the resulting speckle size. The density of the 
speckles is controlled adjusting the spraying time. It is straightforward that such 
a technique can not allow a real control in the pattern realization. Furthermore, a 
global match of the specifications in the resulting surface could still imply local 
areas characterize by low speckles density or, at the opposite, with too clustered 
blobs (Fig. 5-1). At the same time, skilled users are required to perform the 
procedure and still the repeatability from one specimen to the other and the 
quality of the result are difficult to guarantee. 
 

     
                  (a)                                                                           (b) 

Fig. 5-1 Spray painted speckle pattern (500x500 px) with low contrast areas, samples of 
30x30 px; (a) from Pan et al, [103]; (b) from previous work at Politecnico di Milano 

 
In this chapter, an innovative technique to pattern realization for digital image 
correlation is presented. The technique is based on the transfer of melted toner 
from a printed paper to the measurement surface by means of a thermo-
mechanical process. The technique is cheap, easy and fast to be applied. The 
quality of the result is guarantee by a numerical design of the speckle pattern, 
both in terms of speckle size and density. Furthermore, the procedure ensures a 
high repeatability of the result. At first, the procedure is fully presented, 
describing in details all the required steps; then quantitative  considerations 
about the quality of the obtained results are provided; at last, considerations 
about the applicability of the techniques with respect to specimen dimensions 
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and materials, surface geometry and roughness and testing temperature are 
provided. 
 

5.2 Toner transfer technique 
Toner transfer is a widely diffuse technique in the field of home-making 
electronic printed circuits boards (pcbs). In this work, the technique is exploited 
for the first time, as far as the authors known, to provide an efficient method to 
realize speckle patters on the measurement surface for digital image correlation. 
At first, the speckle pattern is numerically designed on a calculator. Then the 
drawing is printed using a common laser printer. Finally the pattern is 
transferred from the paper to the specimen by mean of a thermo-mechanical 
process. In the following, all the steps of the procedure will be detailed. 

5.2.1 Speckle pattern design 
The first step of the procedure implies the speckle pattern design. The speckle 
shape has been selected to be circular in order to avoid preferential direction of 
local features. Furthermore, avoiding sharp edges means reducing the high 
frequency components of the speckle pattern that may alias the measure (during 
the interpolation of the pattern implied by the correlation algorithm) and, at the 
same time, it will make easier the pattern realization. An ordinate grid of blobs 
with a given diameter Db and center-to-center distance step, is numerically 
generated (Fig. 5-2a). The ordinate grid is then perturbed adding to the 
horizontal and vertical coordinates of every blob a random amount of noise R 
extracted by uniform distribution in order to produce an isotropic random 
pattern (Fig. 5-2b). The approach of perturbing an ordinate grid with respect to 
randomly placing the speckles in the whole area guarantees a more 
homogeneous speckle distribution. In the following examples, the diameter Db is 
chosen to be equal to 4.5 pixel, as an average of the different recommended 
values illustrated in literature and previously presented [105, 106, 112]. The grid 
spacing and the amount of noise are selected in order to match the optimal range 
of for the covering factor recommended in [107] (40-70%). In particular, a step 
in the ordinate grid equal to 6 pixel and a +/- 2.5 pixel uniform random 
distribution R result in a covering factor of 42%. 
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step

Db

       
                              (a)                                              (b)                                          (c) 
Fig. 5-2 Speckle pattern design: original ordinate grid (a) and random pattern (b); speckle 

pattern as it is expected to be framed by the camera (c). 
 
Black speckles on a white background with no intermediate gray levels are 
designed in order to maximize the pattern contrast, i.e. the signal to noise ration 
of the measure, and, at the same time, simplify the following steps. It is worth to 
notice that, even if the pattern is design as binary, this does not imply a binary 
colours distribution in the final image seen by the camera: the filtering of the 
optics of the camera combined with a sampling resolution comparable to the 
blob diameter will smooth the dark to light transition blurring the contours of the 
speckles. In Fig. 5-2c the generated speckle pattern, as it is expected to be seen 
by the camera, is reported.  
Vectorial image representation has to be preferred to raster during the pattern 
design in case, in the printing phase, the resulting speckle dimension approaches 
the limits of the used printer in order to avoid loss of information. 
 

5.2.2 Speckle pattern printing 
The second step of the procedure implies the printing of the previously designed 
pattern. The ratio between camera resolution (pixel) and measurement area 
(mm) sets the mm to pixel scaling factor.  
Any standard laser printer can be exploited; high quality printers (usually 
characterized by higher dpi resolution) have to be chosen only in case the 
resulting scaling factor exceeds the resolution limit of standard machine. In the 
present work, a Lexmark T 653 dn is used. It is suggested to set the highest 
quality during the printing and to print a test page just before the pattern in order 
to warm up the printer. If no laser printers are available, the same results can be 
achieved printing the pattern on an inkjet printer and photocopying it with a 
laser copier. The printing support has to be carefully selected: the toner has to 
melt during the printing without straining the sheet and stick on the paper but 
not penetrate, so that it will be possible to transfer it on the measurement surface 
in the following step. Typically, glossy photographic papers designed to work 
with inkjet printers allow to obtain better results. 
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5.2.3 Toner transfer 
The last step is the transfer of the toner from the paper to the measurement 
surface. The measurement surface has to be smooth and clean (the use of 
acetone is suggested). In case the material of the specimen is characterized by 
dark or reflecting texture, it is suggested to spray a thin layer of white opaque 
enamel to increase the pattern contrast and avoid reflections (the toner itself will 
be opaque). This operation can be avoided if the base surface is sufficiently light 
and free form specular reflection. The toner transfer can be done laying down 
the printed sheet on the specimen and warming it up applying a uniform 
pressure: the heat will re-melt the toner on the paper and the pressure will force 
it to adhere on the specimen. Toner powders melt at about 70-90 °C; a 
temperature slightly over 100°C is sufficient. From a practical point of view, a 
common iron with the operator pushing on it and a cloth between the hot surface 
and the specimen is found to be the best solution to carry out the operation. The 
time required is strongly influenced by the thickness of the specimen and the 
thermal conductivity of the material: about three minute on a 5mm aluminium 
plate is found to be a reasonable time interval. At the end of the operation, the 
specimen can be cooled in cold water: this operation make easier the removal of 
the original paper. 
 

5.2.4 Procedure calibration 
Through the whole process, a slight variation from the design speckle diameter 
to resulting one may occur. For this reason, it is suggested to perform a 
calibration of the procedure in order to be able to modify the original design 
taking into account this bias induce by the procedure. For this porpoise, ordinate 
grids of blobs with decreasing nominal diameter (from 1.00 to 0.05mm, which 
was found to be the lower limit with the available hardware) are designed, 
printed and transferred on the final surface. Successively, the surfaces are 
scanned with a high resolution scanner and a particle analysis is performed on 
the blobs. The average equivalent diameter of every blob in a grid and its range 
of variability are computed for every nominal diameter.   
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Fig. 5-3 Toner transfer calibration 
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The results are graphed in Fig. 5-3, where the error bars represent the data 
standard deviation. An average increase with respect to the nominal diameter 
can be noticed, and its magnitude increases as the speckle dimension decreases. 
A least squared regression curve is computed: the inverse of the curve is used to 
compensate the speckle pattern design. 
 

5.3 Toner transfer: quality assessment 
The previously designed speckle patter, correcting the diameters according to 
the procedure calibration, is printed at the four different scale levels, 
summarized in Table 5-1 (setting a speckle diameter of 4.5 px, as previously 
discussed): 
 

0.315.0Pattern 4

0.67.50Pattern 3

0.95.00Pattern 2

1.23.75Pattern 1

Blob diameter
[mm]

Scale factor
[px/mm]

0.315.0Pattern 4

0.67.50Pattern 3

0.95.00Pattern 2

1.23.75Pattern 1

Blob diameter
[mm]

Scale factor
[px/mm]

 
 

Table 5-1 Scale factor of the tested specimens 
 
Successively, the patterns are reported on four aluminium specimens. The base 
surface has been previously spray painted with a light film of white opaque 
enamel to increase the resulting pattern contrast. The specimens are framed with 
a digital gray-scale 8-bit camera preserving the px/mm scale factor reported in 
Table 5-1. Particular attention has been paid during the image acquisition not to 
locally saturate the sensor. A sample of 100x100 px for every realized pattern is 
reported in Fig. 5-4. 
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                              Pattern 1: MIG = 46.9                   Pattern 2: MIG = 41.8       

   
                           Pattern 3: MIG = 46.6                   Pattern 4: MIG = 40.4 px 

   
 

Fig. 5-4 Speckle patters realized at four different scale levels; samples of 100x100 px 
 
The high quality of the obtained speckle patterns is clearly visible, in terms of 
image contrast, pattern details and uniformity. In order to provide a quantitative 
evaluation of their quality, the mean intensity gradient coefficient [103] is 
computed. 
The modulus of the local gradient intensity vector of a gray-scale image can be 
defined as: 
 

        22
ijyijxij xfxfxf      eq. 5-1 

 
where fx(xij) and  fy(xij) are the x- and y-directional intensity derivates at pixel xij, 
computed using central difference approach. The mean intensity gradient is 
consequently defined as: 
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where W and H are image width and height (in px). This parameter has been 
introduced for the first time in [103] and was proved to be an effective global 
parameter to asses the quality of the speckle pattern for digital image 
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correlation. In particular, higher values of the MIG coefficient imply lower bias 
and less dispersion in the DIC measurements. 
The MIG coefficient is computed for the four realized specimens and is reported 
in Fig. 5-4. Pattern 1 and Pattern 2 show very similar values of MIG, about 47. 
The other two patterns result in slightly lower values (about 41), probably 
related to the soft blurring present in the acquired image due to a non perfect 
focus of the optics. In any case, in all the specimens, the resulting MIG 
coefficient is higher than 40 pixels: this value is above the best pattern tested in 
[103], realized with standard technology (spray painting). 
As explained, the MIG coefficient is a parameter able to characterize the pattern 
quality of the whole framed image. Further investigations of the pattern quality 
are required with standard techniques ([110, 111]), where a high value of the 
MIG coefficient could still hide small local areas characterized by very low 
contrast (e.g. areas with not enough or too close speckles, that may result by the 
random process of a spray painting technique). With the pattern realization 
technique proposed in this work, the uniformity of the obtained speckles in the 
whole working area is instead guaranteed by the numerical design of the pattern, 
that is once the required characteristics are matched locally, it is easy to extend 
them to the whole area. 
It is worth noticing that the designed pattern is, in this example, numerically 
built according to the guidelines articulated at the beginning of the previous 
paragraph, and recommended in literature; being able, by means of toner 
transfer, to realize every designed patter, it could be possible to optimize the 
pattern design, for instance maximizing the MIG coefficient or with similar 
approaches. It is not the aim of this paper to face pattern optimization but to 
provide a technique able to generate a high quality fully controlled patter. 
 

5.4 Toner transfer limits: material, surface 
characteristics, speckle size and temperature 

 
To create the speckle pattern with the technique proposed in this work, the 
surface of the specimen has to be heated at about 100°C for few minutes, so 
toner transfer can be obviously exploited only if this operation does not modify 
the material properties. The technique has been successfully applied to various 
metals (iron, aluminium, manganese and copper alloys) and to concrete (Fig. 
5-5a in a high resolution picture) and mortar specimens. 
In order to apply the procedure, small surface roughness is required by the 
transfer phase. In the examples showed in the previous paragraph, plate 
specimens were considered. The technique can be easily applied on cylindrical 
specimens as well, simply rotating the heating source along the measurement 
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surface (Fig. 5-5b, on a 16 mm diameter beam), where traditional spray painting 
is generally non trivial. 
 

  
                      (a)                                                                             (b) 

Fig. 5-5 Toner transfer apply on a concrete surface (a) and on a aluminium cilinder (b) 
 
In theory, there are no limitations to the maximum size of the speckle pattern 
that can be obtained with the proposed procedure. Nevertheless, for very large 
specimens (order of magnitude of 1 m and more) the toner transfer may required 
a lot of time to be applied with no sensible expected improvements with respect 
to traditional techniques: for a given hardware, and increase of the measurement 
area results in lower pixel/mm scaling, i.e. bigger speckle that can be effectively 
realized using spray painting with stencils. At the opposite, a lower boundary of 
the proposed technique is drawn by the minimum speckle diameter that can be 
effectively printed by the printer. As shown during the procedure calibration, for 
the tested hardware the minimum speckle size is found to be about 0.15 mm; 
associating to it an equivalent diameter of 4.5 pixel, this lead to a scale factor of 
30 pixel / mm, i.e. a framed area of about 7 x 3.5 cm for a 2Mpixel camera; this 
result is obviously function of the dpi resolution of the printer, but its order of 
magnitude can be an useful information for standard machines. The whole range 
of applicability (from few tens to some hundreds of mm) is particularly 
attractive for full filed strain measurements because it matches the most 
common dimension of samples tested in a tensile machine as well as standard 
concrete cylinders used for compression tests. 
Speckle pattern realized by means of toner transfer has been successfully 
exploited for high temperature application: the experimental evaluation of heat 
induced strains in an aluminium plate in the temperature range between 22 and 
450 °C (70% of its nominal melting temperature). The plate specimen is placed 
in an oven, which is opened at given temperature steps during the test to allow 
image acquisition (13 steps in total). In order to avoid drops in the temperature 
of the plate, the specimen is protected by a glass-ceramic box and its actual 
temperature is monitored using thermocouple inside a hole in the plate itself. 
The used camera is able to acquire images at 200 Hz at VGA resolution 
(640x480 pixel); a blue band pass (450-490 nm) optical filter is mounted in front 
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of the optics in order to avoid issues related to specimen emission in the near 
infrared during the test as suggested in [140] and lighted by means of led white 
light (presenting a peak in the emission spectrum in correspondence of the 
bandwidth of the filter, [141]). 
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Fig. 5-6 Temperature induced strains in a aluminium plate 
 
Before the test, 400 frames (2 s of acquisition) of the surface are acquired and 
their average is used as the reference image for the following steps; this 
procedure is implemented in order to reduce the noise in the reference image 
[142]. At every temperature step, 400 images are acquired and the digital image 
correlation resulting strain matrixes are averaged element by element in order to 
suppress the fictitious strain contribution associated to image distortions induce 
by the hot air flows [143]. The selected subset size is equal to 21x21 pixel, step 
of 5 pixel (i.e. overlap of 75%). In Fig. 5-6 the results of the test are reported for 
both horizontal and vertical strains. The error bars are computed, at every step, 
as standard deviation of the resulting average strain matrices. Thanks to the high 
quality and stability of the pattern, the DIC analysis has been carried out in the 
whole range (strains up to 1.2%) without the need to perform incremental 
correlation. 
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                        (a)                                                                                                (b) 
Fig. 5-7 Speckle pattern realized by toner transfer during a high temperature test: 300x200 

px samples of the reference image at room temperature (a) and of the frame acquired at 
the highest tested temperature (b); zoomed area of 50x50 px 

 
The test lasted about 3 hours; in Fig. 5-7 two images acquired by the camera, 
one at the beginning and one at the end of the test, are reported. Comparing the 
two images, no degradation of the pattern due to the exposure to high 
temperature can be observed. At the same time, a global offset in the image 
intensity can be appreciated: this is a consequence of the change of the 
environmental light during the three hours. This problem, common in DIC 
measurements, is well known in literature and can be easily handled during the 
correlation process using the zero-normalized cross-correlation (ZNCC) [1, 3, 
144]. Since that the MIG index is sensitive to the modifications in lighting 
conditions, it was not used in this situation.  
In order to assess the stability of the speckle pattern characteristics during the 
test, an approach derived by the zero-normalization of the DIC correlation 
criterion was used: considering one acquired image, every subset is extracted 
and zero-normalized subtracting the average intensity value and dividing the 
result by the intensity standard deviation: 
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),(),(      eq. 5-3 

 
where ),( jiS  represent the intensity value of a pixel of a (2M+1)x(2M+1) 
squared subset,  ),( jiSZN  its normalized version, S the average subset intensity 
and S  its intensity standard deviation: 
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Successively, the MIG parameter is computed separately for every normalized 
subset. In this way, on one hand it is possible to quantitatively estimate the 
quality of the speckle pattern getting rid of the lighting problems thanks to the 
zero-normalization and, on the other hand, for every frame the average value of 
the mean intensity gradients of the about 5000 normalized subsets can be 
computed along with the associated variability range. If the variability within 
the single frame exceeds the differences of the average values between one 
frame and the others, it can reasonably be stated that no significant variation 
occurred. 
 

0.60
0.62

0.64
0.66
0.68

0.70
0.72
0.74

0 100 200 300 400 500
T [°C]

M
IG

 o
f t

he
 

ze
ro

-n
or

m
al

iz
ed

 s
ub

se
ts_

 
 

Fig. 5-8 High temperature test: Mean Intensity Gradient of the zero-normalized subsets 
 
By looking at the results of this approach graphed in Fig. 5-8 (where the subset 
dimension and step have be naturally selected equal to the ones of the DIC 
analysis), it can be noticed at first the different order of magnitude with respect 
to the value of the MIG coefficient presented in the previous paragraph: this is a 
natural consequence of the normalization process, the values computed with the 
presented procedure are not directly comparable with the ones obtained by the 
standard MIG computation. By comparing the average computed values at 
different temperature in Fig. 5-8, it can be clearly observed that the differences 
among different frames are negligible with respect to the variability inside a 
given image: it is consequently possible to state that no sensible pattern 
worsening occur as a result of the heating process. 
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5.5 Concluding remarks 
Speckle pattern characteristics are proven to deeply influence digital image 
correlation measurement accuracy. Commonly exploited technologies for its 
realization are hardly able to guarantee a high quality results. In this work toner 
transfer, an innovative technique for DIC speckle pattern realization, is 
presented together with some application in different experimental conditions. 
The technique implies a first step where the pattern is numerically designed; in 
this phase, the desired characteristics of the resulting pattern can be tuned both 
in terms of speckle size and dispersion. After that, the designed pattern is printed 
and transferred on the measurement surface. The proposed technique has been 
proven to be able to guarantee high quality results and their repeatability. The 
main limitations of the technique are linked to the necessity to heat the 
measurement surface to apply the patter at about 100°C for a few minutes. 
When this aspect does not represent an issue, toner transfer has been proved to 
be a fast and easy method to realize the high quality speckle patterns. The 
technique is flexible in specimen dimension, material and surface shape. 
Furthermore, its exploitability in high temperature tests (up 450°C in the 
application described in this chapter) has been presented; a very good stability 
of the MIG of the normalized subsets demonstrate that the pattern did not 
undergo to appreciable degradation when exposed to high-temperature, as it was 
reasonable to hypothesize by looking at the images of Fig. 5-8.





 

 
 
 
 
 
 

CHAPTER 6 
 
 
 
 
 

6 Speckle Pattern Optimization 
 
 
 

6.1 Introduction 
In the introduction to the previous chapter, paragraph 5.1, it has been 
extensively explained how, according to the recent literature, the quality of the 
speckle patter deeply influences the final accuracy and the achievable spatial 
resolution of measurements made by means of digital image correlation. 
An innovative technique for the realization of speckle patterns, “toner transfer”, 
has been proposed in paragraph 5.2. The technique has been proven to be 
simple, cheap, fast and flexible in terms of testing temperature range and 
materials, dimensions and geometrical characteristics of the tested surface. It 
was also proved that toner transfer allows the realization of high quality speckle 
patterns. An important characteristic of the proposed technique is that the final 
pattern is numerically designed and it can be consequently optimized, further 
increasing the measurement accuracy. 
In this chapter, the optimization of the speckle pattern, aimed to the reduction of 
the measurement uncertainty, is addressed. In paragraph 6.2 a theoretical study 
is presented, where the optimized geometrical characteristics (speckle size and 
density) are derived on the basis of detailed assumptions, maximizing the mean 
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intensity gradient, M.I.G., of the speckle pattern. This coefficient has been 
introduced in [103], where it is proved to be an effective global parameter to 
asses the quality of the speckle pattern for digital image correlation, and has 
already been mentioned in paragraph 5.3. In the optimization process, the results 
related to image filtering presented in chapters 3 and 4 are fundamental. 
These results of the optimization are experimentally verified in chapter 6.3 by 
means of in plane translation tests similar to the ones presented in paragraph 4.2. 
In particular, the robustness of the theoretically obtained characteristics with 
respect to the signal to noise ratio in the collected data is proven to be an 
important parameter for speckle pattern quality assessment. 
 

6.2 Speckle pattern optimization: theoretical study 
In this paragraph, the speckle pattern design is optimized. The pattern 
performances are evaluated, varying speckle diameter and density, on synthetic 
images and the optimization is carried out maximizing the resulting mean 
intensity gradient [103].  

6.2.1 Model hypotheses 
The optimization is performed starting from the following hypotheses: 
 

a) The pattern is random; this consideration is obvious, considering the 
working principle of digital image correlation (paragraph 1.3), but state 
of the art parameters for speckle pattern quality assessment consider the 
pattern randomness an hypothesis itself and do not verify it.  

 

 
 

Fig. 6-1 Example of non random pattern: a two-px ordinate grid  
 

For instance, the M.I.G. coefficient of the two-px width ordinate grid of 
Fig. 6-1 is about 180 px, i.e. more than three times the best pattern tested 
in paragraph 5.3, but it is obviously unsuitable for a DIC application. 
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b) The pattern is binary, i.e., ideally, with pure black speckles on a pure 
white background with no intermediate grey levels in the design. This 
hypothesis is link to the will to maximise the MIG coefficient and, at the 
same time, maintain as easy as possible the speckle pattern realization. 
As explained in paragraph 5.2.1 a binary design does not imply a binary 
colours distribution in the final image seen by the camera: the filtering of 
the optics combined with a sampling resolution comparable to the blob 
diameters smoothes the dark to light transition and blurs the contours of 
the speckles. Furthermore, the image blurring proposed in chapter 3 and 
here implemented increases this effect. 

 
c) The speckles are circular; this hypothesis is made, as in paragraph 

5.2.1, in order to avoid directionality of the local features and high 
frequency components in the resulting pattern that may alias the DIC 
analysis and, at the same time, simplify the pattern realization. 

  
d) All the speckles have the same diameter; in order to simplify the 

analysis the randomness of the pattern is guarantee randomly distributing 
the speckles, not changing their shape or dimension. Furthermore, only 
fixing a diameter for a given a pattern it is possible to study which is the 
optimal one. 

 
e) The speckles are not in contact with each other; this assumption 

obviously increases the resulting mean intensity gradient by assuring the 
maximum number of dark to light transition. It is worth noticing that this 
is the main difference between the patterns analyzed in this chapter and 
the ones presented in paragraph 5.2.1. 

 

6.2.2 Pattern design and rendering 
Starting from the mentioned hypotheses, a family of synthetic speckle pattern is 
created, varying the nominal diameter and the average distance among speckles, 
and the mean intensity gradient of every pattern is computed.  
 



CHAPTER 6 

 106 

istepistep

jD jD

  2ji Dstep   2ji Dstep 

),( ,, kijijkijk yxP  ),( ,, kijijkijk yxP  ),( ,, kijijkijk yxP  ),( ,, kijijkijk yxP  ),( '''
, , kijijk

yxP ijk  ),( '''
, , kijijk

yxP ijk  ),( '''
, , kijijk

yxP ijk  ),( '''
, , kijijk

yxP ijk 








Ryy
Rxx

i

i
'

'








Ryy
Rxx

i

i
'

'

R R
2

DS 
2

DS 
2

DS 
2

DS  0

... fdp ... fdp

R R
2

DS 
2

DS 
2

DS 
2

DS  0

... fdp ... fdp

 
 

Fig. 6-2 Pattern design: initial ordinate grid (a) and perturbed grid (b), with maximum 
allowable amount of perturbation 

 
The implemented simulation strategy is described in Fig. 6-2. At first, for a 
given speckle diameter Dj and grid step stepi, an ordinate grid of blobs is created 
(Fig. 6-2a). In order to satisfy the first hypothesis (random pattern) preserving 
the last one (the speckles are not in contact with each other), the position Pk,ij = 
(xk,ij,yk,ij) of every k-th speckle is perturbed by adding to every blob coordinate a 
random amount extracted from an uniform distribution R of amplitude stepi-Dj 
(Fig. 6-2b). In this way, stepi and Dj are the only degrees of freedom of the 
model. 
 

 
                     (a)                                                   (b)                                                (c) 

Fig. 6-3 Rendered high resolution image (a), actual resolution image (b), and blurred 
image (c) 

 
The images are rendered at 10 times their target resolution (Fig. 6-3a), following 
the same approach presented in chapter 3.2, in 10000x10000 px raster images. 
These high resolution patterns are then anti-aliasing filtered and down-sampled 
to their actual resolution (Fig. 6-3b, resulting in a 1000x1000 px image), and 
eventually blurred by means of a Gaussian filter, σ = 0.75 px. The last operation 
is fundamental for the correct estimation of the pattern quality: high frequency 
components may increase the average image gradient but were proven to be 
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misinterpreted by digital image correlation algorithms. For this reason, the 
analyzed patterns are blurred according to the optimal filter level obtained in 
chapter 3. 
Diameters Dj from 2 to 20 px, increment 0.5 px, are tested. For every diameter, a 
stepi ranging from Dj + 0.2 px to Dj+2.2 px is investigated. Smaller steps imply 
nearly regular grids that result in a wrong estimation of the initial guess by the 
DIC algorithm. Bigger steps decrease the density of the speckles, i.e. the 
resulting pattern gradient. 
 

6.2.3 Optimization results 
1147 high resolution patterns are rendered, down-sampled and blurred and for 
every resulting 1000x1000 px image the mean intensity gradient is computed. 
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Fig. 6-4 Pattern optimization:  MIG coefficient varying speckle diameter and pattern step 
 
The results are graphed in Fig. 6-4. Different curves (different colours) are 
related to different speckle diameter, as explained in the graph legend. For every 
diameter, the respective curve describes the variation of the mean intensity 
gradient of the synthetic pattern with respect to the grid step. The highest MIG 
coefficient is obtained for a speckle diameter equal to 4.5 px and a grid step 
equal to 6 px. These characteristics represent the best speckle pattern under the 
previously explained hypotheses according to the presented analysis. It is 
possible to notice that the MIG coefficient decreases steeply for steps and 
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diameters lower that the optimal ones, while the decrement is less important for 
bigger and more separated speckles. 
 

6.3 Experimental validation 
 
In order to validate simulation strategy presented in paragraph 6.2 and confirm 
the obtained results, experimental tests has been designed and carried out. Seven 
patterns among the ones numerically generated in the previous paragraph are 
printed on a rigid surface and framed by a digital camera. By moving the camera 
parallel to the surface, it is possible to replicate a rigid in-plane movement of the 
patterns. In this way, all the points of the surface are subjected to the same 
amount of translation. Analyzing, for every printed pattern, the dispersion of the 
digital image correlation displacement data resulting by the analysis of the 
acquired images, an uncertainty of the measurements associated to every pattern 
can be computed. In this way, it is possible to verify if the MIG is actually able 
to provide correct information about the way to minimize the measurement 
uncertainty and validate the results of the theoretical analysis. 

6.3.1 Tests design and realization 
Seven points, i.e. seven differently designed patters, are selected (Fig. 6-5) from 
the data presented in Fig. 6-4. 
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Fig. 6-5 Experimental tests: selected patterns 
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The first selected pattern (number 4, 4.5 px diameter and 6 px step point) is the 
one characterized by the highest value of the MIG coefficient, so theoretically 
the best one for a DIC application, able to minimize the measurement 
uncertainty. Other two patterns are extracted from the 4.5 px curve: number 3 
and number 5, respectively at a lower (5.3 px) and higher (7.0 px) steps with 
respect to the maximum of the 4.5 px diameter curve. Patterns number 2 (D=3 
px, step=5.1 px) and number 7 (D=9.5 px, step=8.6 px) are extracted from lower 
values of the MIG curves and number 1 (D=3 px, step=4.3 px) and number 7 
(D=9.5 px, step=11.1 px) represent the solutions farthest from the optimal area 
that will be here considered. An additional pattern is included in the following 
tests (“old patter”): it is designed according to the guidelines provided in 
paragraph 5.2.1 of the previous chapter, i.e. without respecting the last 
hypothesis (“the speckles are not in contact with each other”) of paragraph 6.2.1. 
The rendered high resolution images of the selected patterns are printed on an 
A3 (297 x 420 mm) sheet (Fig. 6-6) and fixed on a rigid surface. 
 

 
 

Fig. 6-6 Printed A3 sheet with the 8 selecetd patterns for a rigid motion test 
 
A 3296 x 2472 px greyscale digital camera frames the printed sheet (the figure 
Fig. 6-6 is actually a frame grabbed by the camera). The four white big blobs of 
Fig. 6-6 are used to place the sensor of the camera parallel to the printed surface 
using the pose estimation algorithm presented in chapter 2. The distance 
between the camera and the target (about 1.5m with a 55mm optics) is tuned in 
order to match the nominal diameter of the speckles in the patterns. Every patter 
is contained in an area of about 600 x 800 px. The optimal focus is estimated by 
means of the MF-DCT algorithm of paragraph 2.3. The resulting scaling factor 
is about 10 px/mm. 
The camera is mounted on a micrometric slide (Fig. 6-7). 
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Fig. 6-7 Rigid motion test 
 
By rotating the micrometric screw, it is possible to translate the camera on a 
plane parallel to the one of the patterns. This motion of the camera can be used 
to simulate a rigid in-plane translation of the target.  
51 different displacements, from 0 to 0.25mm, 0.005 mm step (i.e. from 0 to 2.5 
px, step 0.1px) are imposed to the camera and for every position one image is 
acquired. All the collected images are then filtered with a σ=0.75 px Gaussian 
filter, according to the results of chapter 3, in order to reduce the measurement 
uncertainty and eliminate the subpixel bias of the following DIC analysis.  
 

6.3.2 Tests results 
The filtered images are processed by a digital image correlation algorithm in 
order to estimate, at every step, the apparent motion of the target. The analysis is 
carried out with a 21 x 21 px subset size, overlap 66.7% (i.e. a 7 px step between 
subsets) [3]. An eight-tap optimized interpolation method is implemented and a 
zero-normalized sum of squared difference correlation criterion is selected to 
compensate for the scaling and offset in the intensity pattern [3]. The results are 
51 displacements matrices, one for every displacement imposed to the camera, 
and the analysis is repeated 8 times, one for every pattern. Every displacement 
matrix includes about 10000 measurement points (resulting by a 600x800 px 
area analyzed with a step of 7 px). 
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Fig. 6-8 Pattern optimization, rigid motion tests: average measured displacements along 
the x direction for every pattern 

 
The average value of every displacement matrix is computed for every pattern. 
The results are graph in Fig. 6-8 with respect to the nominally imposed 
translation. It possible to see how the exploited hardware is not able to guarantee 
a real low uncertainty reference: relatively high discrepancies can be notice 
between imposed and measured displacements. These can be reasonably 
attributed to plays in the micrometric screw and vibrations of the support of 
camera. Anyhow, the reason to use a micrometric slide was to be able to test the 
whole subpixel region, not really to impose exact displacements as in chapter 4, 
and this result is undoubtedly achieved: 51 samples, nearly uniformly spread in 
a 2.5 px range, are collected.  
The really important information of Fig. 6-8 is that the displacement data of all 
the patterns results in the same average value for every position: all the curves 
are perfectly overlying. This means that the fundamental hypothesis of the test 
(the camera is moving parallel the measurement surface, so every point is 
subjected to the same apparent displacement) has been respected. In this way, 
being the motion field uniform, it is possible to compute, for every pattern, the 
dispersion of the associated data and provide information related to how the 
measurement uncertainty varies changing the pattern design. 
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Fig. 6-9 Pattern optimization, rigid motion tests: standard deviation of every measured 
displacement matrix  

 
The standard deviation of every x displacement matrix is computed for every 
pattern. The results are graphed in Fig. 6-9. The resulting uncertainty can be 
quantified in the order of 0.01 px, regardless the analyzed pattern. This means 
that, in the performed test, no differences can be really appreciated varying the 
pattern design: the measurement uncertainty seems not to be related to the mean 
intensity gradient of the pattern and, regardless the characteristics of the framed 
area, the dispersion around the average value appears constant. 
To deeply investigate the obtained results, a percent additive Gaussian noise 
Γ=5% (previously introduced in chapter 3) is added to the sampled images, in 
order to test if the presented behaviour is confirmed also in a noisier situation. 
Γ=5% is, in absolute, a high amount of noise considering the whole range of a 
digital camera but it ca be easily reached in digital image correlation measures 
in case of low contrasted pattern where the real exploited dynamic range is 
strongly reduced. 
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Fig. 6-10 Pattern optimization, rigid motion tests: standard deviation of every measured 
displacement matrix in case of Γ=5% noise  
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The same analysis previously presented has been performed on the noisy 
images; the data are presented in Fig. 6-10. An overall increment of the 
measurement uncertainty can be noticed. Furthermore, in this case, different 
values for the data standard deviations are associated to different patters. In 
order to summarize the results, the average measured uncertainty is computed 
for every pattern as the root mean squared of the collected data (i.e. averaging 
the variances of the date and computing the resulting mean standard deviation). 
The results are presented in Fig. 6-11. 
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Fig. 6-11 Pattern optimization, rigid motion tests: average measurement uncertainty for 
every tested pattern 

 
The pattern number 4, i.e. the one with associated the highest value of the mean 
intensity gradient from the theoretical analysis, is actually the pattern with 
associated the lowest measurement uncertainty, about 0.022 px. Furthermore, 
comparing the results in Fig. 6-11 with the respective MIG coefficients of Fig. 
6-5 it can be noticed that not only the best pattern is confirmed, but the whole 
trend is respected. Globally, the data dispersion spans from 0.022 px of pattern 4 
(the best one) to 0.037 px of pattern 7 (the worst tested one), i.e. a variation of 
about 70% in the measurement uncertainty simply related to different designs of 
the speckle pattern. Also considering the so called “old pattern”, a reduction in 
the data dispersion has been obtained after the design optimization. 
The only discrepancy with respect to the theoretical model is the first point of 
the curve of Fig. 6-11 (pattern number 1, D=3 px, step=4.3 px). In this case, the 
performances of the design result better that expected looking at its MIG 
coefficient. This can be reasonably explained by looking to its position in the 
MIG graph: the pattern is in the highest gradient area of the curves and a slight 
variation of the scaling factor during the experimental tests could result in a 
sensible change in the pattern performances. 
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6.4 Optimized speckle pattern realized by toner 
transfer: an application 

A small scale application of optimized speckle pattern realized by means of 
toner transfer to 3D DIC measurements is here reported.  
 

 
 

Fig. 6-12 Toner transfer: application to the study of elasto-plastic behaviour of Q&P 
martensite welded plates; acquired images (a) and analyzed data (b) 

 
In Fig. 6-12a two acquired image, at the beginning and at the end of the tensile 
test of a Q&P (quenched and partitioned) martensite welded plate are shown. 
The specimen surface has been sandblasted: with this operation a sufficiently 
bright background has been obtained, avoiding the use of white enamel to 
increase the contrast of the pattern. The sample is about 9 mm wide, with a 
welded area of few millimetres to be inspected. In order to maximize the spatial 
resolution in the analysis, the smallest blob dimension achievable with the 
available hardware (about 150 µm) has been designed. It is possible to notice the 
high quality of the initial pattern in the first image and how it is able to correctly 
strain accordingly to the specimen with very low degradation, making possible 
to perform the measure until the end of the plastic test, when local strain exceed 
100%.  Digital image correlation analysis on the strained speckle pattern 
allowed the estimation of the elastic stiffness (Young’s modulus and Poisson’s 
ratio) of the welded area and the heat affected zones with respect to the base 
material and the study of the plastic behaviour of the alloy. Fig. 6-12b shows the 
principal measured strain during the test: the three different areas can be easily 
identified, together with the nucleation of the final failure, and the non perfect 
surface planarity arisen form the welding process can be recognized. 
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6.5 Concluding remarks 
In the previous chapter, an innovative technique for speckle pattern realization 
for digital image correlation measurements has been proposed. The technique, 
“toner transfer”, was proven to be fast and cheap and, at the same time, capable 
to guarantee high quality and repeatability in the results. An important 
advantage of toner transfer is the possibility to numerically design the resulting 
speckle pattern on a computer. 
In this chapter, the problem of the pattern design optimization is faced, in order 
to reduce the resulting measurement uncertainty and increase the stability of the 
results. 
At first, a theoretical study is carried out: the design is optimized under detailed 
hypotheses, maximizing the mean intensity gradient of the resulting pattern 
varying speckle size and average distance. A pattern with speckle diameter of 
4.5 px and average distance among blobs of 6 px resulted the one characterized 
by the highest value of the MIG coefficient. 
In order to confirm the theoretical study, a rigid motion test has been performed: 
7 patterns are selected among the ones tested in the MIG analysis, printed on a 
rigid surface and framed by a digital camera. By moving the camera on a plane 
parallel to the patterns one, it is possible to simulate rigid in-plane translation. In 
this way, a uniform motion field is imposed to the measurement surface and the 
dispersion of the data resulting by a DIC analysis is purely associated to 
measurement uncertainty. 
No remarkable differences in the performances of the different patterns can be 
notice at this stage. 
In order to investigate the robustness of the obtained results, Gaussian noise is 
added to the images acquired by the digital camera and the DIC analysis is 
repeated. 
In this case, sensible differences in the dispersion of data related to different 
patterns can be appreciated: in particular, not only the 4.5 px diameter - 6 px 
step pattern is confirmed to be the one able to minimize the measurement 
uncertainty, in agreement with the theoretical study, but the whole trend 
confirms the simulations. 
 





 

 
 
 
 
 
 

CHAPTER 7 
 
 
 
 
 

7 On the field uncertainty estimation 
in 2D digital image correlation using 

fictitious strains 
 
 
 

7.1 Introduction 
As already discussed in the first chapter of this work, uncertainty estimation in 
digital image correlation measurements is a non-trivial and still partially 
unsolved issue. A theory has been developed in order to quantify the uncertainty 
in the computed displacement field ([113], already recalled in the introduction 
of chapter 3), but the derivation of the data variability associated to strains is not 
straightforward, due to the least squared fitting of the displacement field applied 
before the gradient computation (see paragraph 1.3.5).  
In DIC applications, measurement uncertainty is related to a number of variables 
that can be grouped in four different categories:  
 
   Speckle pattern characteristic, in terms of speckle size and distribution, 
contrast, gradient and gray intensity distribution; all these issue have been 
deeply investigated in the first part of this work. 



CHAPTER 7 

 118 

 
   Analysis parameters, i.e. selected correlation criterion, implemented shape 
functions and intensity interpolation algorithm, subset size and overlap and 
strain kernel size; in other words, all the parameters that characterize the digital 
image correlation procedure described in paragraph 1.3.  
 
   Acquisition hardware, that defines the resulting noise level in the acquired 
images, the measurement resolution, the optical distortions and, in case the 
acquisition rate is sufficiently higher than the analyzed phenomenon, the 
possibility to apply image averaging to noise reduction. 
 
   Environmental conditions, such as temperature (hot waves problem, 
increase in the camera noise), lighting conditions, camera tripod vibration etc. 
 
just to name the main influential parameters. 
If, on one hand, the experimenter can not manage to fully control some of these 
variables (noise, temperature, vibrations …), on the other hand the selection and 
the tuning of others (as the analysis parameters) is not unique and strongly 
related to the given application. It is consequently difficult to develop a theory 
able to take in account such a large amount of variables and return a resulting 
data dispersion parameter. For this reason a different path has been followed, 
developing a new approach base on simple tests. 
In this chapter, an innovative “on the filed” technique for strain uncertainty 
estimation in 2D digital image correlation will be presented and developed. The 
intention is to provide a method able to easily estimate the measurement 
uncertainty of a given setup (i.e. given textured specimen, hardware, 
environment and correlation algorithm) once the test has been prepared. The 
method will rely on the so called “fictitious strains” already introduced in 
chapter 2. 

7.2 Uncertainty estimation using fictitious strains: 
ideal situation 

As already deeply discussed in paragraph 2.2.1, in two dimensional digital 
image correlation applications the investigated problem is needed to be planar 
(in terms of both measurement surface and induced displacements / strains) in 
order to allow the algorithm to correctly compute the resulting displacement 
field. Out of plane movements are misinterpreted by the algorithm as in plane 
deformations. The idea proposed in this chapter is to exploit out of plane motion 
to easily generate controlled and known strain field and use them to evaluate the 
digital image correlation uncertainty. 
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Fig. 7-1 Fictitious strains for uncertainty estimation: ideal situation 
 
In Fig. 7-1a a traditional DIC measurement setup is sketched: a digital camera 
frames a flat textured surface. The sensor of the camera is parallel to the 
specimen and the resulting framed image is reported in the blue box. In order to 
estimate the measurement uncertainty of this given setup, an easy operation can 
be done: before running the actual test, the camera is moved, along its optical 
axis, towards the specimen and a new image is acquired (Fig. 7-1b). This 
corresponds to a simulated uniform two dimensional tension strain field. 
Running a digital image correlation analysis between the two images, the 
resulting strain map (either horizontal or vertical) will be characterize by a 
uniform strain level  randomly perturbed by the data variability associated to the 
measurement uncertainty of the technique. 
The uncertainty can consequently be easily computed as the standard deviation 
of the measured strain map. Compression strain fields can be simulated as well, 
turning away the camera from the specimen and the level of the fictitious 
deformation can be easily tuned, being it a linear function of the imposed 
displacement according to eq. 2.1 of paragraph 2.2.1.  
This approach allows computing the measurement uncertainty on one hand 
taking in account basically all the uncertainty contributions described in the 
previous paragraph and, on the other hand, the actual realization of controlled 
strain fields (which is a non-trivial and a time consuming operation) is not 
required. Furthermore the technique does not require destroying the specimen to 
simulated high strain fields. 
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Unfortunately, the technique can not be easily implemented as presented due to 
the hypotheses implied by the method itself:  
 

 the camera has to be initially perfectly parallel to the measurement 
surface  

 the motion of the camera has to be perfectly parallel to the optical axis  
 
A real time pose estimation algorithm, as the one presented in paragraph 2.2, 
could be exploited in order to meet the first requirement and assist the user 
during the camera movement but this would strongly complicate the practical 
application of the described procedure.  
On the other hand, if the presented hypotheses are not fully satisfied, the 
resulting strain field will be characterized by non-linear strain trends along the 
whole map merged together with the data variability itself (Fig. 7-2) and the 
standard deviation of the computed deformation could no longer be considered 
an effective estimation of the measurement uncertainty.  
 

  
 

Fig. 7-2 Resulting fictitious strains in case of non ideal camera movement 
 
In the following paragraph, a modified version of the presented procedure will 
be suggested in order to tackle the mentioned issues. 
 

7.3 Uncertainty estimation using fictitious strains: 
real situation 

The previously presented procedure can still be applied also in cases where the 
highlighted hypotheses can not be satisfied, providing that the theoretical 
fictitious strain fields are known. If this is true, it is consequently possible to 
compare theoretical and measured strain maps and evaluate an average 
measurement uncertainty as the root mean squared of the discrepancy map. 
In order to be able and compute the theoretical fictitious strain fields, two 
hypotheses need to be fulfilled: 
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 the initial (3D) positions of the specimen surface with respect to the 
camera has to be known. 

 
 the final (3D) positions of the specimen surface with respect to the 

camera has to be known. 
 

In the following, it will be proven that these data, along with the results of a 
digital image correlation analysis between the two acquired images, are enough 
to estimate the fictitious strain fields. Two different methods will be introduced 
to accomplish the two tasks, in order to be able to propose a method as easy and 
fast as possible for the final user, and a procedure to extract the theoretical 
fictitious strain fields will be presented. 
 

7.3.1 Estimation of the 3D initial position of the measurement 
surface with respect to the camera 

Two-dimensional camera calibration is a standard procedure that needs to be 
carried out before a DIC analysis in order to: 
 

 estimate the px to mm scaling factor in case the interest is focussed in the 
displacement fields (no calibration is needed for the strains computation: 
being the variable non-dimensional, µpx / px = µm / m) 

 
 estimate the optical distortions introduced by the optics to compensate 

them for 
 

The procedure consists in the acquisition of a flat regular grid, as the one of Fig. 
7-3, placed on the measurement surface before the test is run. 
 

 
 

Fig. 7-3 Calibration grid of a 2D DIC analysis 
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The physical grid spacing is known and the coordinates of the centroid of every 
white circle is computed with a standard blob analysis image processing 
technique. It is consequently possible to estimate an average mm to px scaling 
factor and polynomial function that describes the variation of this scaling factor 
along the x and y axis of the image, i.e. evaluate the optical distortions. 
The same data (blobs centroids coordinates) exploited for the camera calibration 
can be used in order to retrieve the initial position of the measurement surface 
with respect to the camera. The camera is framing an object of known 
geometries: exploiting the same pose estimation code presented in paragraph 2.2 
the 3D position and orientation of the measurement surface with respect to the 
camera reference system can be readily obtained. 
 

7.3.2 Estimation of the 3D initial position of the subset centroids 
As already recalled in paragraph 1.3.4, in the first step of a digital image 
correlation algorithm an ordinate grid is of subsets is generated on the reference 
image (see Fig. 1-5): these points are the ones whose displacement will be 
tracked. 
 

 
 

Fig. 7-4 Subsets centroids back-projection 
 
Starting from the coordinates of the centre of every subset, it is straightforward 
to compute their physical position on the sensor of the camera knowing the 
physical dimension of every pixel (either from the manufacturer or thanks to a 
Zang calibration of the camera [90]). It is consequently possible to back-project 
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them in the real world intersecting the lines passing trough the points on the 
sensor and the focus of the optics with the plane representing the position of the 
measurement surface identified in the previous paragraph (Fig. 7-4). 
With this operation, the initial position of the points, tracked by the DIC 
algorithm, in a camera based 3D reference system is known. 
 

7.3.3 Estimation of the 3D final position of the subset centroids 
An approach similar to the one proposed for the computation of the 3D position 
of the subsets of the first image could be exploited for the second one, but this 
would required an additional calibration image to be acquired, slowing down the 
procedure.  
In order to avoid this, a different approach will be followed for the evaluation of 
the 3D final position of the subsets centroids. 
Providing that: 
 

 the initial position of the subset centroids is known in a 3D camera-based 
reference system (as explained in the last two paragraph) 

 
 the horizontal and vertical displacement maps of the subsets centres are 

known in the 2D reference system of the camera sensor (from a 2D DIC 
analysis) 

 
it will be demonstrated that is possible to estimate the theoretically imposed 
fictitious displacement field, considering that: 
  

1) even in case when the motion imposed to the camera does not act 
perfectly along the optical axis, the resulting fictitious displacement field 
can not be totally arbitrary but it is always a consequence of a plane 
surface that that does not undergoes to shape and size changes, rigidly 
moved in a 3D volume and re-projected on a 2D sensor (the motion is 
actually imposed to the camera but, being the position estimation 
relative, there is no difference at all) 

 
and 
 

2) at the same time, the in plane displacements computed by the DIC code 
can be considered globally bias-less: if, on one hand, the single subset 
correlation is subjected to the characteristic subpixel bias describe in 
chapters 3, on the other hand different subsets sample the deterministic 
zero-mean bias curve of Fig. 3-5 in different points and consequently the 
deterministic subpixel effect becomes a globally random contribution in 
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case the displacement field is not constant. Furthermore, the image 
blurring presented in chapter 3 was proven to be able to delete the bias 
effect. 

 
Thus, for a given set of the 3 translation (x,y and z) and 3 rotations (roll, yaw 
and pitch) of the object in the space, it is possible to rigidly move the original 
subsets in a 3D reference system and, after that, reproject them on the sensor of 
the camera. The motion of a rigid object in a 3D space is a well studied problem, 
usually implemented using homogeneous coordinates [91], while the 
reprojection can be easily simulated using an ideal pinhole camera model [3, 91] 
once the camera is calibrated (i.e. the optical distortion are considered and 
compensated for). 
The mean squared discrepancy, between the subsets 2D coordinates resulted by 
rototranslation and reprojection and the subsets 2D coordinates estimated by the 
digital image correlation analysis performed from the first acquired image to the 
second one, can be readily computed. This parameter can be considered an 
index of the agreement between the 3D motion of the measurement surface with 
respect to the camera simulated with the rototranslation and the actual relative 
motion imposed physically moving the camera.  
A non linear optimization algorithm can consequently be exploited in order to 
iteratively rototranslate the initial set of subsets coordinates in order to minimize 
the mean squared reprojection error, following an approach very similar to the 
one presented in paragraph 2.2.7 for the self developed pose estimation code. 
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                                      (a)                                                                       (b) 

Fig. 7-5 Horizontal displacement map u resulting by an out of plane motion of the 
measurement surface: estimated by a DIC algorithm (a) and resulting by rigid 

rototranslation and reprojection of a given set of subsets (b) 
 
In this way two displacement fields are available: 
 

 the first is the one computed by the DIC algorithm 
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 the second is the one associated to the rototranslation and reprojection of 
the original set of coordinates able the minimize the root mean squared 
reprojection error  

 
where the second one is computed under the hypothesis that the fictitious 
motion field is a consequence of a rigid plane surface that rototranslate in the 
space. An example of the results obtained by this approach is reported in Fig. 
7-5, where it is possible to notice the shape agreement between computed and 
fitted surfaces, with the absence of noise induced data variability in the latter. 
Once the vertical and horizontal fitted motion fields are known, it is possible to 
numerically differentiate them in order to compute the theoretically imposed 
fictitious strain fields and compare them with the ones computed by the digital 
image correlation algorithm in order to evaluate the strain measurement 
uncertainty of the given setup. 
 

7.3.4 Uncertainty estimation using fictitious strains: results 
A series of image of a speckle pattern macroscopically translating along the 
optical axis of a camera has been acquired and the proposed method has been 
applied in order to estimate the strain uncertainty of the given DIC setup. 
In order to apply fictitious strains, the speckle pattern is mounted on a slide (Fig. 
7-6a), one initial calibration image is acquired (Fig. 7-6b) and several image of 
the pattern at different distance from the camera are collected (Fig. 7-6c). 
The camera is initially at about 2 m from the target and displacements from few 
micrometers to some centimetres are imposed to the pattern. 
 

   
                        (a)                                             (b)                                                  (c) 

Fig. 7-6 Uncertainty estimation by means of fictitious strains: setup (a), acquired 
calibrating image (b) and acquired speckle pattern (c) 

 
The procedure presented in the previous paragraphs is applied to every acquired 
image and the horizontal and vertical strains fields, both evaluated by the DIC 
code and estimated using the rigid plane motion fitting, are computed. 
Successively, the discrepancy strain maps, i.e. the point by point differences of 
the theoretic and measured strain fields are evaluated (Fig. 7-7). 
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Fig. 7-7 Point by point discrepancy between theoretical and estimated strain maps 

 
As can be noticed by the results of Fig. 7-7, the discrepancy maps are globally 
trendless: the developed model is actually able to globally fit the fictitious strain 
field and the resulting variability is only due to DIC measurement uncertainty. 
The average strain maps discrepancy for every acquired image is graphed in Fig. 
7-8 along with the root mean squared strain discrepancy. 
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Fig. 7-8 Uncertainty estimation using fictitious strains: results 

 
It can be noticed that the average discrepancy values DISCRεxx are about 1 order 
of magnitude smaller than RMS ones: this means the accuracy of the fitting 
procedure that allows to estimate the target motion is a lot higher than the 
inherent data variability due to the DIC algorithm and the residual mismatching 
can be considered negligible. 
The blue curve of in Fig. 7-8 can be consequently trusted as an effective 
estimation of the strain measurement uncertainty; being the imposed motion 
macroscopically acting along with the optical axis, the simulated strain fields are 
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characterized by low gradients (only due to the non-ideal motion) and 
consequently the computed root mean squared discrepancy value can be 
considered an effected estimation of the measurement uncertainty in case of 
uniform strain field, about 200 µm/m in the tested setup. 
 

7.3.5 Uncertainty estimation using fictitious strains: fast approach 
The procedure, as presented in the previous paragraphs, implies at first the 
acquisition of a calibration grid and then the camera movement. However, in 
this way the camera is moved after the calibration is performed and 
consequently a new calibration image is needed to be acquired before the test is 
run as a reference for the DIC analysis. 
For this reason, it is suggested to apply the proposed procedure in reverse: place 
at first the camera farther (or closer) to the measurement surface with respect to 
the ideal position, acquire several images moving the camera toward the final 
position and at the end acquire the calibration grid. 
Simply analyzing the last acquired image as first it is possible to directly apply 
the proposed method without performing the calibration twice. 
 

7.4 Concluding remarks 
Strain uncertainty estimation in digital image correlation measurements is a non-
trivial issue, due to its strong relation the characteristics of the given 
measurement setup. In this chapter, an innovative procedure for “on the field” 
uncertainty evaluation in case of 2D measurements has been presented.  
The procedure requires to the final user only simply out of plane camera 
movements and image acquisition that can be performed by the experimenter 
before the actual test is done. 
On one hand, camera movements imply the simulation of fictitious strain fields 
on the given specimen in the given hardware measurement condition and, on the 
other hand, the theoretical induced strain maps can be retrieved starting from the 
DIC analysis itself. 
The comparison between theoretical and measured strain maps has been proven 
to be an effective approach to quantify the measurement uncertainty including 
all the major influence parameters. 
 
 
 
 





 

 
 
 
 
 
 

CHAPTER 8 
 
 
 
 
 

8 Conclusions 
 
 
 
Digital Image Correlation is increasingly widespread vision based measurement 
technique for full field motion and strain estimation. 
Firstly proposed in the early ‘80s, it has undergone a great development in the 
last decade, pushed by the synergic improve of vision hardware and computing 
power performances, both in terms of analysis algorithms and fields of 
application. Nowadays DIC-based testing activities spans from micro-electro-
mechanical-systems to full-scale civil structures testing, in a variety of 
temperature ranges (that can easily overcome the melting limit of many metal 
alloys), materials (from nano-reinforced mortars through composite multilayer 
material to organic tissues) and dynamic capabilities (static to blasting tests). 
Out of the main critical issues still associated to digital image correlation 
applications highlighted in the most recent scientific literature, this worked has 
tried to face the problems linked to the probably most important metrological 
parameter for a measurement system: the associated uncertainty, i.e. a synthetic 
index of the attended dispersion of the probability function describing the 
measured quantity. 
On one hand, the full field measurement capabilities of the most modern DIC 
systems  has to face a resulting measurement uncertainty that can not yet 
compete with the ones of traditional pointwise state of the art approaches (e.g. 
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strain gauges based measurements), and this is generally a problem in case 
brittle material testing and elastic strain evaluation, where the resulting signal to 
noise ratio may not be sufficient. On the other hand, the quantification of the 
uncertainty associated to DIC strain measurements is by itself a non-trivial 
aspect: no theories exist able to quantify the main uncertainty contribution and 
return an estimation of resulting strain data dispersion. 
The first aspect, i.e. the necessary reduction of the measurement uncertainty, has 
been faced in this work from two independent points of view. 
In the first part, image blurring has been proposed, studied, tuned and 
successively validated as an effective procedure to reduce the measurement 
uncertainty: high spatial frequency components in the acquired images are 
proven to be misinterpreted by state of the art DIC analysis algorithm and 
consequently low pass filtering has been implemented and studied as a method 
to remove these components and improve the codes performances. The 
theoretical study of the problem has been carried out on synthetic (i.e. 
numerically generated) images, where the effects of image blurring on the 
resulting measurement uncertainty has been tested on more and more complex 
simulated displacement and strain fields. The stability of the obtained results has 
consequently been proven at first adding noise to the acquired data, varying the 
main DIC analysis parameters and the characteristic of the numerically built 
speckle patterns (i.e. the characteristic textured surfaces required for DIC 
analyses). Successively, experimental tests have been carried out in order to 
verify the validity of the implemented simulation strategy and confirm the 
obtained results. A Gaussian low pass filtering of standard deviation equal to 
0.75 px has been doubtless identified as an effectively image preprocessing 
operation able to minimize the resulting measurement uncertainty. 
In the second part of the work the speckle pattern creation and optimization has 
been faced. An innovative technique, “toner transfer”, has been proposed for the 
proper texturization of the measurement surface. Toner transfer has been proven 
to be cheap, fast and repetitive technology, able to generate, with respect to the 
traditionally exploited techniques, higher quality textures (i.e. speckle patterns 
able to increase the resulting measurement resolution and decrease the 
associated uncertainty). Furthermore, its flexibility in terms of material, 
geometry and size of the measurement surface and its suitability in case of high 
temperature tests has been presented and verified. With toner transfer, the 
resulting speckle pattern is numerically generated thus allowing the optimization 
of its design in terms of reduction of the resulting measurement uncertainty. A 
“quality parameter” of the resulting pattern, largely accepted in the scientific 
literature, has been numerically maximized varying the main characteristics of 
the speckle pattern design. The capability of the optimized speckle pattern to 
reduce the resulting measurement uncertainty, in particular in case of high noise 
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level or low intensity gradients in the acquired images, has been experimentally 
validated.  
The last part of the work dealt with the second of the previously named 
problems associated to uncertainty in digital image correlation: its quantification 
in relation to strain measurements. An innovative fast procedure to estimate “on 
the field” this metrological parameter in case of 2D analyses, taking into account 
all the major uncertainty sources, is proposed. The technique relies on the 
generation of known controlled fictitious strain field by means of out of plane 
camera-specimen motion. The theoretically imposed fictitious strain fields are 
retrieved using two different version of a pose estimation algorithm (previously 
developed for simple camera placement) and compared with the ones measured 
by the DIC code in order to quantify the expected data variability for the given 
measurement setup. 
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