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Abstract

THE thesis debates the problem of the external polarimetric calibration and system
monitoring of Synthetic Aperture Radar (SAR) devices. More specifically, the ef-
forts has been aimed at assessing the capabilities of natural in-scene scatterers and

at proposing novel methodologies for the exploitation of such potential.
The first part surveys the calibration feasibility and the distortion estimation perfor-

mance of the approaches based on distributed targets (DTs). It will be shown that, by
introducing convenient assumptions on the distortion model and on the target properties,
effective information on the system cross-talks and on the channel imbalance ratio can
be extracted from the scene. However, clear evidence that a point calibrator is needed to
accomplish a full polarimetric monitoring is also provided. The partial polarimetric cali-
bration achieved by DTs is then investigated with concern to the achievable performance
on the well-determinable parameters. A numerical optimization algorithm is proposed to
improve the accuracy in case of low channel isolation.

The second part is dedicated to an innovative calibration approach based on the stable
point targets, namely Permanent Scatterers (PS). The method, hereby called PolPSCal,
allows for relative calibration of the full polarimetric distortion matrices (PDMs) affect-
ing the stack images. The algorithm is neither constrained to a particular PDM model
nor to any external information, though this latter is needed afterwards to normalize the
calculated PDMs. The exploitation of the DT information for the relative calibration of
the PolPSCal information is then investigated. The mathematical framework of such over-
arching natural target-based approach is reported, and a performance analysis is carried
out on a 26 images RADARSAT-2 dataset registering promising results.
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Summary

SAR polarimetry offers significant benefits in target characterization and contrast en-
hancement over traditional single-polarization acquisitions. Polarimetric applica-
tions obviously demand the preservation of amplitude and phase relationships bet-

ween the different polarization channels. The accuracy requirements depend on the spe-
cific application and can be honoured through proper monitoring procedures aimed to
remove distortion introduced by the system Transmit/Receive modules (TRMs) and/or by
the propagation medium. This process is referred to as external calibration, and can be
performed on the natural scene features, on deployed calibrators or on the combination
of both. The main research question addressed in this thesis is how the scene informa-
tion must be collected and processed in order to produce an effective contribution to the
polarimetric system monitoring and data calibration activities.

In first part of the work an overview on the traditional POLSAR approaches based on
the distributed targets (DTs) is introduced. The feasibility related to the estimation of
the most acknowledged distortion model, comprising channel imbalances, cross-talks and
Faraday rotations in the L/P-Band frequencies, is explored. The choice of a convenient set
of case studies allowed to provide indication on the effectivness of DT-alone approaches
and on the necessity of a calibrated point target (PT). Though it is demonstrated that a
full polarimetric calibraton can be achieved only by using a PT, the analysis stresses the
fact that significant information on the channel cross-talks and on the imbalance ratio
can be nevertheless attained from DTs. The uncertainty on the parameter estimates due
to data and model noise sources is assessed both at a theoretical level and on practical
techniques. The reader is shown in the end that the poor performance attained by reference
algorithms in case of high cross-talk levels or large Faraday rotations can be improved
through numerical optimization.
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An alternative calibration approach which exploits the temporal information provided
by multi-image stacks rather than the traditional spatial statistics is then debated. It cer-
tainly represents the most innovative contribution of the thesis. The novel methodolo-
gy is based on the stable natural targets, the so-called Permanent Scatterer (PS). When
a sufficient density of PSs can be found within the selected image frame, the PS based
technique, namely PolPSCal, offers a reliable relative calibration solution. More specifi-
cally, it returns the differential distortion information with respect to a master image of
the stack. The work proceeds then by proposing an encompassing framework for polari-
metric system monitoring based on both the spatial and the temporal exploitation of the
natural targets. The solution relies exclusively on the in-scene information, and thus it
is independent from calibrated reflectors and from other a-priori external information. A
generic distortion model has been conceived, so that the approach can be readily tailored
to different sensor scenarios, ranging from higher-frequency SARs to lower-frequency ac-
quisitions affected by Faraday rotations. The DT estimates are indeed integrated with the
PS differential distortion in order to achieve (up to an absolute radiometric scale factor)
an unambiguous temporal monitoring of the system distortion, and therefore a consistent
data calibration within the image stack. The performance has been in the assessed throu-
gh synthetic simulations and validated on a Fine Quad-Pol Radarsat-2 dataset reporting
promising stability results.
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CHAPTER1
Introduction

1.1 Background and motivation

The interest in Synthetic Aperture Radar (SAR) data has considerably grown in the last
decades due to their unveiled potential in land, ocean and also atmospheric feature ob-
servation and characterization. The interpretation of SAR backscatter with respect to the
physical cell content is however far from straightforward, since its properties must always
be related to the specific acquisition configuration in terms of resolution, frequency, time
(with changing target and atmospheric conditions), look angle and polarization. The wave
polarization plays in many cases [3, 47, 55] an essential role in uncovering the geophysi-
cal information of targets from their digitalized backscattering values. With fixed single-
polarized antennas for transmission as well as for reception, however, some information
of the backscattered field is lost, and the target features which can be provided by the mea-
surement process are generally dependent on the target orientation angle around the line
of sight [22]. A comprehensive definition of the backscattering phenomenon would be
instead attained by retaining the complete set of polarized scattering combinations, repre-
sented by the scattering, or Sinclair, matrix [54]. This requires a radar equipment capable
of decomposing the received wave into two orthogonally polarized components, which in-
dependently feed two identical and coherent reception channels. In a full-polarimetric
system the reception polarization-diversity must then be accompanied by transmission

1
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Chapter 1. Introduction

polarization-diversity, which is generated by alternate radiation of orthogonally polar-
ized pulse waves (horizontal and vertical are the ones far implemented in space-borne
systems). The first successful experiments with SAR polarimetric systems date to 1985,
when NASA/JPL efforts led to the sensor known as the CV-990 L-band radar. A few years
later NASA/JPL was able to produce an operational, three-frequency polarimetric SAR
(AIRSAR) flying on the DC-8 aircraft, which has taken part in many science data acquisi-
tion campaigns since 1988 [6]. In 1994 the SIR-C/X-Band SAR [24], the first polarimetric
space-borne sensor, was lanched onboard a NASA shuttle, within a joint NASA/German
Space Agency/Italian Space Agency mission. Such increased attention to the polarimet-
ric context combined with a shifted interest towards the quantitative use of SAR data led
consequently to a prolific debate on a wide gamma of polarimetric calibration/validation
aspects.

Whereas absolute radiometric calibration refers to the process of estimation and re-
moval from the data of the overall system gain, the polarimetric calibration aims to com-
pensate polarimetric channel distortions. Both operations are needed in order to estabilish
a correct relationships between radar backscatter and geophysical parameters. The object
of this thesis is indeed the second calibration typology: the polarimetric calibration. As it
is widely aknowledged, the distortions can be attributed to coupling and impurities in the
TRMs (Transmit/Receive Modules) and in the radiating elements, to atmospheric pertur-
bations and artifacts due to the software processing (e.g. quantization, focusing) [15, 19].
Internal in-flight calibration is the common approach to deal with the distortions intro-
duced by the internal components and processing inaccuracies, whereas external cali-
bration covers the whole distortion chain and thus represents an inescapable feedback
throughout the mission life. With concern to this latter, techniques based solely on cali-
brated targets [21, 51], as well as techniques recommending the use of in-scene scattering
information [38, 41, 49, 55] were proposed and verified on the DC-8 datasets and on the
SIR-C acquisitions available a few years later [11, 17].

The scientific debate concerning the optimal distortion compensation strategies was
then tailored throughout the years to the new polarimetric SAR missions, though pro-
gressing at a slower pace. The Japanese ALOS/PALSAR [43] sensor in particular raised
most of the recent concerns due to the explicit necessity to account for both the system
distortion and the Faraday rotations affecting its L-Band data-takes [42, 45]. On a general
standpoint, the common trend that characterizes the SAR evolution over these last years
is that of seeking an ever increasing system accuracy (meaning an higher calibration per-
formance costraints) equipping at the same time the system with a higher range of beam
modes. The following issues with respect to the calibration/validation routines must be
therefore considered:

• An absolute polarimetric verification must be applied with a certain rivisit frequency
to all the acquisition modes. When the sensor configurations is much larger then the

2
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1.2. Research objectives and thesis outline

number of sites qualified for the verification the scheduling of the system monitoring
becomes challenging.

• The targets deployed in order to allow an absolute radiometric and polarimetric cal-
ibration must be maintained stable all along the mission operational life, i.e. their
RCS should be constrained to a few fractions of dB accuracy. The more stringent is
the accuracy requirement the more efforts/costs must be accounted in the project.

• Few natural calibration sites all over the globe are stable enough to provide the nec-
essary accuracy without calibrated point targets (maybe only the rain forests at high
frequencies can get close to the specifics [28, 43]).

Such forthcoming scenario would certainly benefit from additional unexpensive calibra-
tion sites. The belief supporting this work is that the natural scattering diversity, offered by
the data available inside the SAR frame, still has to be fully exploited. So far, the reference
techniques in literature [16, 38, 49] have made use of distributed target areas. The distor-
tion is extracted from the pixel-wise second order moments of the target, which apparently
make their use convenient. However, all these approaches rely on major assumptions ei-
ther on the target statistics or on the number of the distortion parameters in order to keep
the estimation problem well-posed. This necessarily leads to only partial distortion as-
sessments or alternatively impairs significantly the calibration accuracy. Differently, the
system monitoring problem can be tackled from a temporal monitoring perspective when
a selected group of stable features can be used to create a coherent polarimetric connection
between two images in the same dataset. In this case, the polarimetric and even the radio-
metric changes along the acquisition timeline can be detected, at the expense obviously of
additional memory and computational resource allocation. This approach wuold be sim-
ilar to the one proposed by D’Aria et al. in [9] for single-polarization systems, though
applied to the polarimetric context and thus requiring a novel mathematical framework.

1.2 Research objectives and thesis outline

On a more encompassing perspective, the aim of this thesis is to provide practical and the-
oretical insights into the limits and the capabilities of traditional and novel multi-temporal
methods for the calibration of polarimetric SAR imagery by means of in-scene natural
targets. More specifically the work answers to the following research questions:

• Which is the theoretical capability of distributed target areas in assessing the image
miscalibration in different distortion scenarios? Which are then the benefits in terms
of assessment feasibility brought by the introduction of calibrated point targets?

• How do traditional algorithms based on distributed targets handle the estimation of
the distortion at different frequency bands and how they can be possibly improved

3
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Chapter 1. Introduction

without sacrificing the robustness that characterizes their analytic retrieval proce-
dures?

• Is the intrinsic potential of in-scene natural mechanisms fully exploited yet? Can
stable targets as opposed to the ramdomly distributed targets represent a valuable
calibration alternative to the traditional techniques? What additional benefits and
unavoidable limits should be then considered?

• Is the distortion information extracted from the stable scatterers a superset/subset of
that returned by distributed target analysis, or the two sets of estimates bear comple-
mentary information? How can this information be integrated within an overarching
natural target-based approach?

The first two questions are dealt in chapter 2, which is indeed devoted to the discussion of
the non-linear inversion problem associated to the retrieval of the SAR distortion param-
eters (Channel imbalances, channel cross-talks and Faraday rotation) from the data mea-
surements over the distributed target areas and from the observation of calibrated point
targets. The structure of the chapter is two-fold: in the first part the problem equations
delivered by the available calibrators are introduced and their effectiveness in terms of
problem well-posedness and data sensitivity is assessed. A methodology based on local
model linearization was used to provide a schematic overview of the distributed scatterers
capabilities and to assess the estimation performance on two realistic distortion scenarios:
1. A symmetric system distortion model (cross-talks in Tx and Rx are reciprocal) with
the presence of Faraday rotations handled by a distributed target alone; 2. a full distor-
tion scenario (with all the cross-talks and imbalances to be estimated) where the aid of a
corner reflector is employed. The second part of the chapter is then dedicated to practical
estimation algorithms. The analysis focuses in particular on the assessment of the unam-
biguous parameter subset whose retrieval is advised, amongst many others, by the Quegan
technique [38], still one of the most credited ones. A numeric optimization strategy is then
proposed to overcome some of the accuracy limitations evidenced by analytic techniques.

An alternative calibration approach is then discussed in chapter 3. It basically answers
to the research question n.3 and consists in taking advantage of multiple images collected
over the same area. Whereas the DT-based approach made assumptions on the ensemble
spatial statistics of the target (orientation symmetry), this latter makes explicit exploitation
of the Permanent Scatterer (PS) temporal stability, in both its radiometric and polarimetric
behavior. When a sufficient density of PSs can be found within the selected image frame
(urban scenarios are in particular suited), the PS based technique, namely PolPSCal, of-
fers a reliable relative calibration solution. More specifically it returns the differential
distortion information with respect to a master image of the stack. The chapter presents
the mathematical formalization (PS model and stable target characterization and identifi-
cation), describes the steps of the algorithm implementation and provides the theoretical

4
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1.2. Research objectives and thesis outline

assessment of the approach performance on synthetic datasets.
Chapter 4 debates then an encompassing framework for polarimetric system monitor-

ing based on both the spatial and the temporal exploitation of the natural targets, answering
therefore to the last research question. The solution relies exclusively on the in-scene in-
formation, and thus it is independent from calibrated reflectors. A generic distortion model
has been conceived, so that the approach can be readily tailored to different sensor sce-
narios, ranging from higher-frequency SARs to lower-frequency acquisitions affected by
Faraday rotations. The DT estimates are indeed integrated with the PS differential dis-
tortion in order to achieve (up to an absolute radiometric scale factor) an unambiguous
temporal monitoring of the system distortion, and therefore a consistent data calibration
within the image stack. The performance has been assessed through synthetic simulations
and validated on a Fine Quad-Pol Radarsat-2 dataset which comprises 26 images over the
Barcelona area, returning an accuracy on the channel imbalance stability below 0.2 dB and
on the cross-talk level <-35 dB.

Finally chapter 5 summerizes the theoretical and concrete contribution to the SAR po-
larimetric calibration research field that the work so far conducted was able to achieve. The
challenges ensuing from the techniques here proposed are remarked and some suggestion
on future research work is offered.

5
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CHAPTER2
Assessment of the Polarimetric Distortion by Means

of Distributed Targets: Theoretical Analysis and
Estimation Strategies

In the last years, much effort has been spent by the SAR community investigating the ben-
efits of SAR polarimetry (POLSAR) over traditional single-pol acquisitions. Much has
been accomplished in a variety of applications ranging from classification, image correc-
tion, to biomass evaluation and other environmental studies. The understanding of the
physical scattering phenomena is enhanced from the analysis of more polarization chan-
nels representing different antennas-target field interaction modes. The preservation of
amplitude and phase relationships between the registered channels is fundamental, though
it is hindered by the distortion introduced by the system TRMs and/or by the propagation
medium. In the present chapter we will conduct an analysis on the model disturbances
and on their compensation strategies by means of distributed targets (DTs) with reference
to linearly polarized fully-polarimetric (FP) systems, actually the only operative mode for
FP spaceborne SARs.

The accurate calibration of Polarimetric SAR data is not a trivial task, since it usually
corresponds to an ill-posed problem. The large number of parameters which has to be esti-
mated and the non-linearity of the solving equations makes the correct estimation of such

7
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Chapter 2. Assessment of the Polarimetric Distortion by Means of Distributed Targets:
Theoretical Analysis and Estimation Strategies

unknowns difficult without the use of suitable assumptions. A number of approaches have
been proposed in the last two decades in order to cope with a variety of POLSAR system
acquisitions, based either on the use of DT alone and on the use of DT jointly with a target
with known radar cross section, such as a trihedral corner reflector. A proper formalization
of the intrinsic conditioning issues that affect the non-linear estimation problem is nonethe-
less still missing. To this end, the first part of the chapter has been spent in studying the
theoretical feasibility of the distortion estimation problem by investigating a representa-
tive set of target/distortion model scenarios. The analysis was able to provide indicative
information on the model uncertainty and to assess the impact of model disturbances on
this latter. In the second part of the chapter the performance and the limitations associated
to the most acknowledged calibration techniques are explored. A numeric optimization
scheme which allows to exploit to a wider extent the available covariance information is
in the end proposed.

2.1 The polarimetric distortion model

2.1.1 Sensor distortions

Full-polarization acquisitions in spaceborne systems are operationally attained by alternat-
ing in transmission (Tx) the horizontal (H) and vertical (V) polarizations and by recording
them simultaneously at reception (Rx). The capability of steering the beam in order to
fit a wide range of elevation and squint illumination angles, is accomplished in modern
systems by using phased-array antennas composed of lots of radiating elements each with
a phase shifter. The beam can then be modulated electronically by switching the elements
or by changing the relative phases of the RF signals driving the elements. Each radiating
element is controlled by the a Transmit/Receive Module (TRM) which includes Power and
Low Noise amplification as well as phase and amplitude control and polarization switch-
ing. In such architecture, the signal can be affected by amplitude and phase perturbations
and by channel cross-talks (CTs). The former lead to fluctuations in

• A, the overall radiometric gain of the system, referred to the HH channel

• f1, the complex imbalance ratio between the vertical and the horizontal polarizations
in the Rx phase(ideally 1)

• f2, the complex imbalance in the Tx phase (ideally 1)

whereas the latter contribute to

• δ1, the fraction of H signal leaking into the V receiver

• δ2, the fraction of V signal leaking into the H receiver

• δ3, the fraction of H field transmitted alongside the V pulses

8
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�
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�f2

TH: V → δ4

TH: V → δ4

TV: H → δ3

TV: H → δ3

�
�

�

�
�

�

�f1

H → δ1

H → δ1

V → δ2

V → δ2

Figure 2.1: Schematic representation of the cross-talk paths in the block comprising the TRM and the
radiating elements (H and V polarizations) during the receive (left) and transmit (right) phases.

• δ4, the fraction of V field transmitted alongside the H pulses.

as schematically illustrated in Fig. 2.1. The overall system distortion is mathematically
accounted into the observation M of the target backscatter matrix S through the model:

[
MHH MV H

MHV MV V

]
= A · ejφ

[
1 δ2

δ1 f1

] [
SHH SV H

SHV SV V

] [
1 δ3

δ4 f2

]
+

[
NHH NV H

NHV NV V

]
(2.1)

or, with a compact nomenclature:

M = A · ejφ ·RT · S ·T + N. (2.2)

where the HH,HV, V H, V V subscripts refer to the 4 different polarization modes, φ
is the overall target phase, N is the signal noise (both thermal noise and deviations from
the linear distortion model).

The disturbances are either produced by the RF electronics (TRM) or by non-idealities
in the radiating elements. When the CTs are mostly determined by the antenna, the reci-
procity property of this latter should lead to the model simplification [19]:

δ1 = δ3, δ2 = δ4 (2.3)

that has been so far employed by a few well-acknowledged calibration approaches [45,
49]. Differently, when the CTs are dominated by the TRM leakages, the full CT model
should be accounted. This is likely the case of modern polarimetric systems [42,46] which
present a moltitude of TRMs (from 80 forming the PALSAR to 512 onboard the Radarsat-
2) and very low antenna isolation. It was for instance assessed in [46] that the Radarsat-2
antenna cross-talk level is below -40 dB, much lower than that of the T/R modules that
was estimated at -35 dB on average. Consider also that the behaviour of the TRM-driven

9



i
i

“thesis” — 2013/2/9 — 15:33 — page 10 — #24 i
i

i
i

i
i

Chapter 2. Assessment of the Polarimetric Distortion by Means of Distributed Targets:
Theoretical Analysis and Estimation Strategies

distortion is uniform throughout the beams, and thus easier to handle than that induced by
the antennas, which is usually range-dependent.

2.1.2 Faraday rotations

Several studies were able to shed light on the effects of the ionosphere on the SAR acqui-
sitions [32,40]. The most significant disturbance on the polarimetric quality is represented
by rotations of the wave polarization. The signal is degraded in its polarimetric purity
since the channels are mixed according to the Faraday rotation model:[

S ′HH S ′V H
S ′HV S ′V V

]
=

[
cos Ω sin Ω

− sin Ω cos Ω

] [
SHH SV H

SHV SV V

] [
cos Ω sin Ω

− sin Ω cos Ω

]
(2.4)

S′ = RFSRF

with Ω being the rotation angle, or, identically, by expanding (2.4) in its vector repre-
sentation:

s′ =
(
RT

F ⊗RF

)
· s = HF · s, (2.5)

s′ =


S ′HH
S ′HV
S ′V H
S ′V V

 , s =


SHH

SHV

SV H

SV V


S ′HH = SHH cos2 Ω− SV V sin2 Ω (2.6a)
S ′HV = SHV + (SHH + SV V ) sin Ω cos Ω (2.6b)
S ′V H = SHV − (SHH + SV V ) sin Ω cos Ω (2.6c)

S ′V V = SV V cos2 Ω− SHH sin2 Ω (2.6d)

where it must be remembered that backscatter reciprocity property holds (SHV =
SV H). The Faraday angle Ω is given by:

Ω[rad] = k
B

f 2
TEC (2.7)

where k is a constant, B is the geomagnetic field and TEC is the Total electron content
relative to the travelled path. The expression is again dependent on the satellite spatio-
temporal coordinates as well as on the beam parameters such as the frequency and the look
angle. Whereas at C-Band wavelength the rotation hardly exceeds 1◦, at P-band frequen-
cies, high latitudes and high solar activity the angle can exceed a full 2π cycle. Among

10
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2.1. The polarimetric distortion model

the consequences of the rotation, the most evident is the loss of the backscatter reciprocity.
Only a few scattering mechanisms are not sensitive to the distortion, maintaining their
original polarimetric signature. These are the eigentargets vk of the transformation (2.5),
in formulas:

HFvk = λkvk , k = 1, 2, 3, 4

v1 =
1√
2


1

0

0

−1

 , v2 =
1√
2


0

1

1

0

 , v3 =
1

2


−j
1

−1

−j

 , v4 =
1

2


j

1

−1

j

 (2.8)

λ1 = 1, λ2 = 1, λ3 = ejΩ, λ4 = e−jΩ (2.9)

where λk are the associated eigenvalues with unitary amplitude, thus in agreement with
the pure rotative nature of the distortion. Notice that v3 and v4 cannot be associated to
physically consistent scatterers (the reciprocity condition is not satisfied), whereas the first
two eigentargets refer to the class of the rotated dihedrals, or, more generally, to the ideal
even-bounce scattering mechanisms. With reference to the Pauli coherent decomposition
[7], it is then easily inferred that the estimation of the Faraday rotation relies on the odd-
bounce component of the scene.

A more physical insight on the phenomenon is achieved by considering that the eigen-
modes of the ionospheric distortion are the left and right circular polarizations. This means
that the circular components of a polarized wave suffer from different delays, and there-
fore their downstream recomposition generates corruption in both the amplitude and phase
of the original modes. It is easily demonstrated that with the circular bases the backscatter
matrix takes the expression:

[
S ′RR S ′LR
S ′RL S ′LL

]
=

[
e−jΩ 0

0 ejΩ

]
·
[
SRR SLR

SRL SLL

]
·
[
ejΩ 0

0 e−jΩ

]
=

[
SRR e−j2ΩSLR

ej2ΩSRL SLL

]
(2.10)

where R and L refer to the right and left-handed circular polarizations respectively. One
of the most effective methods for evaluating Ω, originally proposed by Bickel and Bates
in [2], consists then in recording the phase difference between the cross-pol channels:

Ω =
1

4
[argS ′RL − argS ′LR] . (2.11)

11
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Table 2.1: Faraday rotation effects: equivalent cross-talk level for small Ω residuals

Ω Residual [deg] Equiv. CT [dB]

0.5 -41
1 -35
2 -29
5 -21

10 -15
20 -10

Table 2.2: Distortion requirements for a polarimetric SAR system.

Parameter Max tolerated

Polarimetric amplitude imbalance |f | ±0.2 [dB]
Polarimetric relative phase calibration ∠f ±5◦

Polarimetric cross-talk error |δ| -30 [dB]

by exploiting the reciprocity SLR = SRL. Though the procedure is indeed trivial and is
hindered by a π/2 ambiguity it still represents one of the most solid estimators. Faraday
rotation residuals after mitigation by means of (2.11) or by any other estimator introduce
channel cross-coupling and radiometric fluctuations. For small residuals the most signif-
icant effect is indeed the first one. The amount of distortion is expressed in Table 2.1 in
terms of equivalent cross-talk level. A cross-talk constraint of -20 dB demands a Faraday
estimation accuracy of 5◦, whereas a stricter -30 dB requirements would bring the accept-
able error down to 2◦. Notice also that the Faraday model in (2.4) carries a π intrinsic
ambiguity, that do not depend on the specific algorithm adopted.

2.1.3 Polarimetric quality requirements

The accuracy requirements for the each distortion parameter are in general agreed by the
scientific community as a result of several assessment efforts such as [11, 30, 32] to name
a few. Some common requirements for a polarimetrically calibrated system are reported
in Table 2.2. The maximum tolerated Faraday angle is easily attained by Table2.1 for a
finely calibrated system (CTs dominated by Faraday), differently, the reader is referred to
more detailed investigations such as [30].

The calibration accuracy demanded by a specific SAR application is trivially dependent
on the sensitivity of the geophysical information to the distortion residual. Consider to this
regard that eventual biases arising from inaccuracies in the modeling of the geophysical
parameter within the SAR data cannot be detected and avoided. In most cases though, such
issue can be assumed negligible. The most common parameter retrieval scenario involves
monotonic relationships between the amplitude of a particular polarization mode and the
physical quantity. In the most generic polarimetric case, the unperturbed field measure is

12
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2.1. The polarimetric distortion model

obtained from the true backscatter matrix S through polarization synthesis:

V = hH
r Sht, P = V V ∗ (2.12)

where V is the field associated to the desired polarization mode, hr,ht are the po-
larization vectors of the Rx and Tx antennas, and P is the ideal field power. When the
investigation is applied to a distributed scatterer, the field power must be necessarily re-
placed with the ensemble average

P = 〈V V ∗〉 (2.13)

Let now define Pd as the power derived from the distorted observation Vd = hH
r Mht as

a result of (2.1) and (2.4). The normalized radiometric RMS Γ induced by the polarimetric
distortion can then be theoretically assessed through:

Γ =

√
E [(Pd − P )2]

E [P 2]
(2.14)

where the mean operator E [·] accounts for the scatterer irregularities due to the finite
number of looks used in (2.13) and the in-scene scatterer diversity. Expression (2.14) is
indeed similar to the metric formalized by Dubois in [11], the only difference being that
this latter integrates the squared powers and the squared power differences (numerator
and denominator) over the complete sets of possible polarization setups of the system.
The proposed metric has been exploited to assess the maximum tolerable Faraday rotation
over a typical P-Band forest scenario. The error registered by the HH,HV,VV polarizations
has been simulated and shown in 2.2 for a typical P-Band symmetric (like- and cross-pol
components uncorrelated) forest scatterer [12]. As expected, the greatest distortion is
recorded by the HV channel, which, amongst the three, has the weakest backscatter return
but that also registers the highest correlation with the biomass volume [23]. The results
points to the fact that the error on the Faraday angle estimates must be restrained into a
±2◦ interval in order to achieve a biomass accuracy better than -10 dB. By comparing the
commented results with the theoretical isolation in Table 2.1, it can be easily sensed that
when higher biomass accuracy is required the -30 dB constraint on the CT level is not
sufficient for the HV channel.

2.1.4 Polarimetric calibration: a brief overview on the state of the art

The complete distortion model for a polarimetric observation from (2.1) and (2.4) is then
given by:

13
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Figure 2.2: Normalized RMS error for the three different linear polarization modes as a function of the
Faraday angle Ω .

M =

[
MHH MV H

MHV MV V

]
= A · ejφ

[
1 δ2

δ1 f1

] [
cos Ω sin Ω

− sin Ω cos Ω

] [
SHH SV H

SHV SV V

]
·

·
[

cos Ω sin Ω

− sin Ω cos Ω

] [
1 δ3

δ4 f2

]
+

[
NHH NV H

NHV NV V

]
(2.15)

In its compact form:
M = A · ejφ ·RT ·RF · S ·RF ·T + N. (2.16)

Depending on the system design and sensor frequency a few approximations can even-
tually be applied to (2.15). For instance, depending on the frequency and on the acquisi-
tion latitude and time the FRA can be assumed null: this is certainly the case of C-Band
and higher frequencies but also of L-Band systems at near-equatorial latitudes and at low
solar activity periods [42, 43]. A common simplification for spaceborne SAR systems
regards the CT quality. In [16] their contribute is indeed considered negligible in mod-
ern well-isolated systems (with claimed values better than -30 dB) and thus omitted from
(2.15), whereas the Rx-Tx reciprocity explained in (2.3), is hypothesized in the work of
van Zyl [49], and in other following contributes. Among these latter, the insightful as-
sessment in [45], that validates the PALSAR quality by means of the van Zyl algorithm,
and the original solution proposed in [19] to solve the polarimetric problem in presence
of small FRA, are certainly noteworthy. A full system distortion model, with no specific
treatment of FRAs, is instead addressed by the reference work of Quegan [38], where no
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2.2. The calibrator equations

calibrated target is used, and by the recent L-Band calibration approach of Shimada [42],
where the joint exploitation of the spectral structure of a distributed target (the Amazon
forest) and a calibrated target (a trihedral or a reference natural surface) is assessed for the
PALSAR calibration.

Since the polarimetric accuracy of recent L-band and forthcoming P-band systems can
be severely degraded by uncorrected Faraday rotations [52], a significant research activity
has been recently committed to the investigation and the handling of such effects [33]. As
a result, a few notable approaches [5, 16] have been proposed in order to provide valid
alternatives with respect to the reference Bickel and Bates estimator [2]. All these tech-
niques, including [2], can be conveniently performed on a natural distributed scatterer,
though the underlying assumption is that the system distortion has been removed from the
data. The impact of the eventual miscalibration (crosstalk and imbalance residual effects)
on the FRA estimation have been therefore properly evaluated in [5], reporting a varying
robustness of each estimator with regard to the amplitudes and phases of the distortion
residuals.

2.2 The calibrator equations

Identically to the scattering vector s in (2.5), let here define the observation and noise
vectors as

m = vec(M) =


MHH

MHV

MV H

MV V

 , n = vec(N) =


NHH

NHV

NV H

NV V

 . (2.17)

The model in (2.15) can then be conveniently rephrased into the equation system:

m = A · ejφ ·H · s + n (2.18)

where H, hereby referred to as polarimetric distortion matrix (PDM), is the 4 by 4:

H =
(
TT ⊗RT

)
·HF (2.19)

with:

TT ⊗RT =


1 δ2 δ4 δ2δ4

δ1 f1 δ1δ4 δ4f1

δ3 δ2δ3 f2 δ2f2

δ1δ3 δ3f1 δ1f2 f1f2

 (2.20)
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With regard to the problem cardinality, the overall number of real unknowns in the most
generic PDM calibration problem amounts to 13, more specifically:

• 4 for the complex f1 and f2

• 8 for the complex δ1, δ2, δ3, δ4

• 1 for the real Ω

whereas the number of equations depends on the specific site used for the calibration.

2.2.1 Distributed targets

When a DT is used, the distortion information is extracted from the second order statistic
of the observation, i.e. the covariance matrix. Depending on the a-priori information on
the target, a few assumptions can eventually be done on its covariances. The most common
ones [16, 38, 49], that will be identically adopted in our analysis, are:

1. Reciprocity, SHV = SV H , which is indeed a basic physical property for a monostatic
system

2. Azimuthal symmetry, leading to 〈SHV S∗HH〉 = 〈SHV S∗V V 〉 = 0.

This latter condition represents a solid assumption when the number of samples used for
the ensemble average is large enough and when the target, in the case of low frequency
systems, is distributed on flat or zero-mean sloped areas [26]. Such behavior is explained
through the application of the second-order Born approximation to a layer of randomly po-
sitioned particles. The result is that the like- and cross-polarized elements of the scattering
matrix are completely uncorrelated [4]. This is because the cross-polarized terms come en-
tirely from higher-order scattering (two-bounce or greater), while the like-polarized terms
usually come predominately from first-order scattering (single-bounce). For randomly
positioned scatterers the higher-order scattering paths are independent of the first-order
scattering paths and thus, the cross- and like-polarized terms of the scattering matrix are
uncorrelated.

The covariance of the distorted observation, neglecting in this first theoretical analysis
the noise, becomes:

C = [Cmn,pq] = A2HCSHH (2.21)

where m,n, p, q = h, v stand for the polarization indexes and CS is the target covari-
ance. As a result of assumptions 1 and 2 this latter is described by
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2.2. The calibrator equations

CS =


σhh 0 0 ρ∗

0 σhv σhv 0

0 σhv σhv 0

ρ 0 0 σvv

 (2.22)

with σhh,σhv ,σvv being the power in each channel and ρ being the co-pol covariance.
Note that there is a coefficient ambiguity between σpq, ρ and the data Cmn,pq, making the
gain A impossible to discriminate from σpq, ρ.

The number of real equations provided by (2.21) is 16 (4 real diagonal elements and 6
complex out-of-diagonal covariances), though it must be considered that the 5 parameters
(3 real and 1 complex value) in (2.22) must be accounted for as unknowns of the inversion
problem as well. By using the DT alone we would therefore have 16 equations for the
retrieval of 18 total parameters, yielding an ill-posed problem.

2.2.2 Calibrated point targets

By adding to the calibration scene one or more point targets (PTs) with known polarimet-
ric signatures we obtain 8 more equations for each target. The targets can be either corner
reflectors (CR), with trihedrals being the most convenient choice with regard to the orien-
tation accuracy, or the more expensive polarimetric active radar calibrators (PARC). The
ideal scattering matrix of a trihedral with a σCR RCS is:

SCR =
√
σCR

[
1 0

0 1

]
(2.23)

and provides the additional set of complex equations:

M
(CR)
HH =A ·

√
σCR · ejφ [(1− δ2δ4) · cos 2Ω + (δ4 − δ2) · sin 2Ω]

M
(CR)
HV =A ·

√
σCR · ejφ [(δ1 − δ4f1) · cos 2Ω + (δ1δ4 − f1) · sin 2Ω]

M
(CR)
V H =A ·

√
σCR · ejφ [(δ3 − δ2f2) · cos 2Ω + (f2 − δ2δ3) · sin 2Ω]

M
(CR)
V V =A ·

√
σCR · ejφ [(δ1δ3 − f1f2) · cos 2Ω + (δ1f2 − δ3f1) · sin 2Ω]

(2.24)

where the noise has been again omitted. Typical transponder signatures [15] for an
effective CT quality assessment are for instance:

SPARCHV =
√
σPARC

[
0 0

1 0

]
SPARCVH =

√
σPARC

[
0 1

0 0

]
(2.25)
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though other PARC solutions can be employed as well. It is straightforward noticing
that active calibrators do not respect the scattering reciprocity that applies to the passive
reflectors. It must be then remarked that the phase φ must be added to the parameters list
when the calibration relies on the first order information, whereas its estimation can be
avoided when, identically to (2.21), the second order information is used instead. In this
latter case the nature of the information can either be punctual, i.e. the peak value of the
IRF after a proper pixel interpolation (the same referred to in (2.24)):

C(PT ) = A2HSPTSHPTHH . (2.26)

or evaluated from the integration [15] of a convenient area IPT around the target peak,
which leads to:

C(PT ) =
∑∑
(r,x)∈IPT

mPT (r, x)mH
PT (r, x). (2.27)

where r, x are the range and azimuth coordinates. Note that IPT must be chosen so
that the system IRF integral is almost 1 (all the side lobes giving a significant contribute
must be included), and that the noise produced by the ground clutter (here not explicitly
addressed) requires some treatment since the summation degrades the SCR quality of the
target. Assuming that the ground reflectivity is homogenous around the PT, an effective
method would be that of subtracting to (2.27) the covariance estimated over a neighboring
area.

2.3 Assessment of the model sensitivity

2.3.1 Methodology

The estimation of the distortion parameters is often a complicated task since the equation
sets (2.21),(2.24) are non-linear and the retrieval of closed-form expressions is in general
not feasible. Our analysis aims to provide a useful insight on a restricted number of cal-
ibration scenarios, focusing on determining the solvability of the problem around some
realistic work points, not being able to explore by sampling the whole parameters domain.
In other words the methodology proposes to verify the existence of the solution though it
cannot guarantee for its uniqueness.

The feasibility of PDM retrieval, given a specific calibration site and distortion model,
is investigated through linearization of the system equations in some convenient distortion
configurations. Let Y = [y1 · · · yNeq ]T be the vector with the Neq real distorted data, and
X = [x1 · · · xNpar ]T the vector with the Npar real unknowns. This latter are represented
by the distortion parameters in (2.15) and by the unknown covariance elements of the DT
in (2.22). On the other side, the data Y comprise the measured (distorted) DT covariance
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2.3. Assessment of the model sensitivity

elements and the PT first or second order information, when the point target is included in
the calibration scenario. They are related through the generic non-linear functionals g:

Y = g(X) =

 g1(X)
...

gNeq(X)

 . (2.28)

For a specific X0, the solution ambiguities in its proximity can be investigated through
the function Jacobian J:

dY = Y −Y0 =


dg1(X)
dx1

∣∣∣
X0

· · · dg1(X)
dxNpar

∣∣∣
X0... . . .

dgNeq (X)

dx1

∣∣∣
X0

dgNeq (X)

dxNpar

∣∣∣
X0

 · (X−X0) = J · dX. (2.29)

In particular, it is trivial demonstrating that when J has a nullspace, the parameters
associated to this latter are not determinable. This kind of analysis is readily performed
through the Singular Value Decomposition:

J = UΛVT =
[

u1 · · · uNeq
]

Λ
[

v1 · · · vNpar
]T (2.30)

where the components vi in the space of the model associated to the null singular
values of Λ cannot be resolved. Notice that the transpose operator has been used on
V instead of the Hermitian operator since all of the quantities have been decomposed
into their real valued contributes (real and imaginary parts in the data and amplitude and
phase components for the model). An example of the SVD qualitative effectiveness in
the interpretation of the model sensitivity is provided by the panels in Fig. 2.3 and Fig.
2.4. The most trivial model scenario (CT and FRA null) is approached by a DT-alone
calibration and by a DT+CR calibration. It is clear that in the first case the problem is
ill-posed because of the two null singular values associated to the sum of the imbalance
phases and the sum of their moduli. The differences in the phase and modulus are instead
well resolved, as conveyed by the 5° and 7° singular vectors. In Fig. 2.3 the same analysis
applied to a scenario where a corner shows that all components can be determined as
expected.

It is evident that such methodology cannot ensure the uniqueness of the solution in
the whole X domain. Instead, it brings evidence of its existence, meaning that the cor-
rect PDM represents a local optimum in the parameters domain. It can be inferred that
when some consistent a-priori information on the PDM is available (e.g. assuming slow
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Figure 2.3: SVD analysis in a DT calibration site with null CTs and FRA. The system, that has been
linearized around the ideal PDM (no distortion), shows in particular two null singular values and the
associated model nullspace both marked with red dotted squares.

miscalibration with respect to the previously estimated PDMs and estimating the FRA a-
priori from TEC maps), a numerical solver (see section 2.5) can be employed in order to
converge to the correct solution.

Besides, when the problem is well-posed (in its local linearized form (2.29)) a the
model uncertainty can be conveniently assessed. Its derivation is readily provided by the
parameter MSE matrix CX that is attainable by means of the simple passage:

E
[
dYdTY

]
= J · E

[
dXdTX

]
· JT =⇒ CY = J ·CX · JT (2.31)

CX = J† ·CY · J†T (2.32)

where J† is the Jacobian pseudo-inverse and dY must be referred to as dY = Ŷ −Y0,
i.e. the deviation of the measured values Ŷ with respect to the expected distorted ones Y0,
with CY thus representing the data MSE matrix.

2.3.1.1 DT model uncertainty

With concern to the DT, CY is a quantity which depends on the number of averaged
targets Np and on the model deviation from (2.21) and (2.22), which comprise the NESZ
disturbance and the lack of orientation symmetry. Its retrieval is readily shown. With
reference to DT calibration let define then the observed scattering vectors as

mi ∼ CN(0,CM = C+Cn) (2.33)

and the real Neq = 16 equations data as:
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Figure 2.4: SVD analysis in a DT+CR calibration site with null CTs and FRA. The system, linearized
around the ideal PDM (no distortion), is well-posed since no null singular values has been attained.

Ȳ = P · vec
([
R (C)

I (C)

])
︸ ︷︷ ︸

Y0

+ P · vec
([
R(Cn)

I(Cn)

])
︸ ︷︷ ︸

Yn

(2.34)

Ŷ = P · vec

 R(Ĉ
)

I
(
Ĉ
)  (2.35)

where Cn is the covariance deviation from the model C, P is the 16×32 binary matrix
in (2.38) that limits the number of real elements (32 overall) to the 16 informative ones1,

1

R (C) =


c1 c5 c9 c13

c2 c6 c10 c14

c3 c7 c11 c15

c4 c8 c12 c16

 , I (C) =


c17 c21 c25 c29

c18 c22 c26 c30

c19 c23 c27 c31

c20 c24 c28 c32

⇒ vec

([
R (C)

I (C)

])
=


c1

...

c32

 (2.36)

(2.37)

1 2 3 4 5 6 · · · 29 30 31 32

P =



1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 · · · 0 0 0 0

0 0 0 0 0 1 0 0 0 0

...
. . .

...

0 0 0 0 0 0 · · · 0 1 0 0

0 0 0 0 0 0 0 0 1 0



1

2

3

...

15

16

(2.38)
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and

Ĉ =
1

Np

∑
i

mim
H
i (2.39)

is the estimated covariance matrix with Wishart distribution. The expression of CY is
then:

C
(DT )
Y = E

[(
Ŷ −Y0

)(
Ŷ −Y0

)T]
= E

[
ŶŶT

]
−E

[
Ŷ
]

YT
0 −Y0E

[
Ŷ
]T

+Y0Y
T
0

(2.40)
that, by exploiting the unbiasedness E

[
Ŷ
]

= Ȳ, becomes:

C
(DT )
Y = E

[
ŶŶT

]
−Y0Y

T
0 −YnY

T
0 −Y0Y

T
n

= E
[
ŶŶT

]
− ȲȲT + YnY

T
n

= Γ + YnY
T
n

(2.41)

where the elements of Γ can be evaluated through the closed-form expressions in ap-
pendix A.1. Notice that the uncertainty in the measurement depending on the number of
looks is represented by Γ whereas the model deviations are accounted for within YnY

T
n .

2.3.1.2 PT model uncertainty

In the PT case the error on the measured data m̂ is determined by inaccuracies in the tar-
get deployment and manufacturing (i.e. errors in the orientation and in the polarimetric
signature), hereby referred to as average polarimetric noise (APN), and by the clutter and
thermal noises superimposed to the target signal. All these error sources have been mod-
eled into a single noise process, with zero-mean and gaussian distribution. In formulas:

m̂(PT ) = m(PT ) + n(PT ), n(PT ) ∼ CN
(

0,C
(PT )
N

)
(2.42)

C
(PT )
Y =

1

2

 R(C
(PT )
N

)
−I
(
C

(PT )
N

)
I
(
C

(PT )
N

)
R
(
C

(PT )
N

)  (2.43)

Since the errors on the DT measures and those on a calibrated targets are uncorrelated,
the full CY of a hybrid DT+PT scenario is:
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CY =

[
C

(DT )
Y 0

0 C
(PT )
Y

]
(2.44)

which will be employed in the sensitivity analysis presented in section 2.3.2. It should
be noted that the cross-correlation terms in CY are not null when the noise in (2.42) has a
non-zero mean N. In such case (2.44) would take the form:

CY =

[
C

(DT )
Y Y

(DT )
n Y

(PT )T
n

Y
(PT )
n Y

(DT )T
n C

(PT )
Y

]
(2.45)

with

Y(PT )
n =

 R(N
(PT )

)
I
(
N

(PT )
) 

C
(PT )
Y =

1

2

[
R (CN) −I (CN)

I (CN) R (CN)

]
+ Y(PT )

n Y(PT )T
n .

It is important to remark that the uncertainty on the model computed with (2.32) does
not represent a lower bound on the achievable accuracy, especially in the case of joint cali-
bration (DT+PT). The uncertainty, ∆i, associated to the real parameter xi ∈ {|f | ,∠f, |δ| ,∠δ,Ω, A...}
is retrieved from the diagonal elements of (2.32) through:

∆i =
√
E
[
(xi − xi0)2] =

√
CX(i, i) (2.46)

where it is worth stressing the fact that ∆ is an approximate measure (i.e. for small data
perturbation) of the absolute model deviation. Its conversion into a multiplicative error
measurement (thus on a dB scale) is then approximately obtained by means of ∆[dB] =

20
ln 10
· ∆
x

.

2.3.2 Overview on the estimation feasibility

A representative set of calibration scenarios have been explored by means of the analysis
discussed above. The addressed distortion work points (DWP) are shown in Table 2.3: the
set comprise the ideal PDM (DWP1), a symmetric Rx/Tx system configuration (DWP2),
a reciprocal CT configuration with opposite imbalances (DWP3) and an asymmetric con-
figuration (DWP4). With concern to the estimation models investigated, no hypothesis has
been done on the imbalances, i.e. both f1 and f2 are always separately estimated, whereas
a few different configurations (assumptions) have been tested for the cross-talks (CT) and
the Faraday rotation angle (FRA). The first being modeled according to one the the three
options:
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Table 2.3: Distortion work points adopted for analysis
DWP1 DWP2 DWP3 DWP4

f1
dB (Linear) 0 (1) 0 (1) 0 (1) 0 (1)
Phase [deg] 0 0 0 0

f2
dB (Linear) 0 (1) 0 (1) 0 (1) 0 (1)
Phase [deg] 0 0 180 0

δ1
dB (Linear) −∞ (0) -30 (0.03) -30 (0.03) -30 (0.03)
Phase [deg] - 0 -90 0

δ2
dB (Linear) −∞ (0) -30 (0.03) -30 (0.03) -30 (0.03)
Phase [deg] - 0 90 0

δ3
dB (Linear) −∞ (0) -30 (0.03) -30 (0.03) -26 (0.05)
Phase [deg] - 0 -90 90

δ4
dB (Linear) −∞ (0) -30 (0.03) -30 (0.03) -26 (0.05)
Phase [deg] - 0 90 90

1. CT null: δ1 = δ2 = δ3 = δ4 = 0

2. CT reciprocal: δ1 = δ3, δ2 = δ4

3. CT unknown: δ1, δ2, δ3, δ4 to be estimated

and the FRA assuming the configurations:

1. FRA null: Ω = 0

2. FRA unknown: Ω to be estimated.

where it can be observed that the criterion adopted does not discriminate between a
generic “FRA known” and “FRA unknown” since it is implied that the only case where
Faraday is known with the required accuracy is its total absence. The feasibility of the
adopted models is investigated on three different sets of equations, i.e. for the calibration
sites:

• DT alone: only a homogeneous distributed target is available. It provides the 16
real equations in (2.21) but also introduces 5 more parameters, see (2.22), when the
undistorted covariance is unknown.

• DT+PT: a distributed target and a point target are exploited. With regard to the latter
one, the analysis will be applied to the trihedral CR since it represents, for its costs
and flexibility, one of the most employed solutions. The PT offers 8 additional real
equations, see (2.24), and requires the estimation of one/two , {A}/{A, φ}, additional
parameters, depending on whether the first or second order information is used.

A schematic overview on the degrees of freedom that must be issued in each scenario is
provided by Table 2.4. For each DWP, only the consistent models have been examined.
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Table 2.4: Schematic characterization of the model scenarios tested in 2.5
DT (Neq = 16) DT + PT (Neq = 24)

Number of parameters Npar +σhh, σhv , σvv ,ρ + σhh, σhv , σvv ,ρ
+ A, (+φPT )

CT null
FRA null

- f1, f2 9 10 (11)

CT reciprocal
FRA null

- f1, f2
- δ1, δ2

13 14 (15)

CT unknown
FRA null

- f1, f2
- δ1,δ2,δ3,δ4

17 18 (19)

CT null
FRA unknown

- f1, f2
- Ω

10 11 (12)

CT reciprocal
FRA unknown

- f1, f2
- δ1,δ2
- Ω

14 15 (16)

CT unknown
FRA unknown

- f1, f2
- δ1,δ2,δ3,δ4
- Ω

18 19 (20)

It can be observed, for instance, that every model can fit DWP1, though the only “CT
unknown” configurations are suited for DWP3. Notice, then, that the employment of a
calibrated target indirectly leads to the estimation of the system gain A, thus forcing the
radiometric calibration problem into the polarimetric calibration one. A further comment
must be spent on the system noise that would ideally contribute with a σnI term to the
right-hand side of (2.21). The reason behind its exclusion from the list of system unknowns
is that it can be estimated independently from all the other parameters, meaning that its
impact on the problem feasibility is null. The eigenvalue analysis of the DT covariance
matrix leads indeed to the simple relationship:

σn = min(λi), C(DT ) =
4∑
i=1

λiuiu
H
i

with λi and ui being respectively the eigenvalues and eigenvectors of DT data covari-
ance C(DT ).

The investigation on the well-posedness of the calibration problem is schematically
synthesized in Table 2.5. Each DWP has been tested in two different FRA conditions:
Ω = 0◦ and Ω 6= 0◦. A few points are clearly evidenced by such analysis:

• When the FRA is null (which is the general case of C and X-Band and some partic-
ular case in L-Band) the estimation problem in the DT calibration is ill-posed. This
behavior holds independently of the distortion workpoint and the model assumptions.
Differently, it can be noticed that with a CR all the parameters can be resolved.

• When the FRA is non-null the calibration problem becomes well conditioned in most
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of the cases, even for the DT-alone scenario. It can be noticed, though, that in this
latter case the feasibility is still affected by the particular DWP, as conveyed by the
DWP3 ill-posedness as opposed to the DWP2 sensitivity. The accuracy of the esti-
mates, which obviously depends on the DWP itself and on the quality of the targets
employed, is evaluated in the analysis that will follow.

• The full model case, where no assumption is made, cannot be resolved by any of the
tested target configurations. This would indeed occur even if additional targets were
added to the scene, since the joint radiometric and polarimetric problem is by its own
nature ambiguous.

This latter point is indeed worth some further discussion.

Table 2.5: Feasibility analysis for the DWP set of 2.3

Well-posedness DWP1 DWP2 DWP3 DWP4
DT DT + CR DT DT + CR DT DT + CR DT DT + CR

CT null
FRA null

NO YES - - - - - -

CT reciprocal
FRA null

NO YES NO YES NO YES - -

FRA:
Ω = 0

CT unknown
FRA null

NO YES NO YES NO YES NO YES

CT null
FRA unknown

NO YES - - - - - -

CT reciprocal
FRA unknown

NO YES NO YES NO YES - -

CT unknown
FRA unknown

NO NO NO NO NO NO NO NO

CT null
FRA unknown

YES YES - - - - - -

FRA:
Ω 6= 0

CT reciprocal
FRA unknown

YES YES YES YES NO YES - -

CT unknown
FRA unknown

NO NO NO NO NO NO NO NO

Note: the table provides information on whether the calibration problem is well-posed (YES), ill-posed (NO) or the
model is not consistent with the DWP (-)

2.3.3 Ambiguity to the radiometric coefficient

The mutual impairment between radiometric and polarimetric assessment is readily demon-
strated. Let define the arbitrary matrices R̃, T̃, and the complex coefficients AR, AT as:
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AR = cos Ω− δ2 sin Ω

AT = cos Ω + δ4 sin Ω

R̃ =

[
0 δ̃1

δ̃2 f̃1

]
=

 0
(

cos Ω−AR
AR

)
δ1 − sin Ω

AR
f1(

cos Ω−AR
AR

)
δ2 + sin Ω

AR

(
cos Ω−AR

AR

)
f1 + δ1 sin Ω


T̃ =

[
0 δ̃3

δ̃4 f̃2

]
=

 0
(

cos Ω−AT
AT

)
δ3 + sin Ω

AT
f2(

cos Ω−AT
AT

)
δ4 − sin Ω

AT

(
cos Ω−AT

AT

)
f1 − δ3 sin Ω

 .
(2.47)

It can be shown then, with reference to (2.15), that:

RT ·RF = AR

(
R + R̃

)T
= AR ·RT

tot

RF ·T = AT

(
T + T̃

)
= AT ·Ttot

(2.48)

yielding:

A ·RT ·RF · S ·RF ·T = Atot ·RT
tot · S ·Ttot (2.49)

with Atot = A · AR · AT being a complex value whose phase is a constant phase
term throughout the image that cannot be estimated. Equation (2.49) reads therefore that
it is not possible performing external radiometric and full polarimetric calibration at the
same time. Such issue would be overcome either by considering the system already radio-
metrically calibrated or by performing the polarimetric calibration in absence of Faraday
rotations [42]. With reference to the the first case a novel feasibility investigation has been
conducted where the gain A has been assumed known. The results have been registered in
Table 2.6. The difference with respect to Table 2.6 is that the CR can now solve the most
complex model (CT unknown, FRA unknown) in DWP4 but not in DWP2 and DWP3,
because the problem becomes undetermined for some δ2, δ4 combinations, e.g. δ2 = δ4.
Note that this asymmetric condition on the CTs is due to the fact that the system has been
supposed radiometrically calibrated with respect to the horizontal polarization (its gain is
incorporated into the gain A). The same condition would be applied to δ1 and δ3 if the
vertical polarization had been taken as reference. It should be considered, however, that
an error in radiometric calibration could have a significant impact on the retrieval of the
other parameters when the full distortion model is adopted.

It is finally important to remark that:
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if we do not aim to monitor the system parameters, but rather we just need to cali-
brated the SAR data, the problem in the physical interpretation ofAtot,Rtot,Ttot

with respect to A,R,T is meaningless. The estimation of the ambiguous set is
enough for data calibration. That is indeed a feasible task when a CR is exploited
(refer for this case to the “CT unknown, FRA null” scenario in 2.5).

Table 2.6: Feasibility analysis for the DWP set of 2.3 in a radiometrically calibrated environment.

Well-posedness DWP1 DWP3 DWP4
Gain A is known DT DT + CR DT DT + CR DT DT + CR

CT null
FRA null

NO YES - - - -

CT reciprocal
FRA null

NO YES NO YES - -

FRA:
Ω = 0

CT unknown
FRA null

NO YES NO YES NO YES

CT null
FRA unknown

NO YES - - - -

CT reciprocal
FRA unknown

NO YES NO YES - -

CT unknown
FRA unknown

NO NO* NO NO* NO YES*

CT null
FRA unknown

YES YES - - - -

FRA:
Ω 6= 0

CT reciprocal
FRA unknown

YES YES NO YES - -

CT unknown
FRA unknown

NO NO* NO NO* NO YES*

Note: the table provides information on whether the calibration problem is well-posed (YES), ill-posed (NO) or the
model is not consistent with the DWP (-). The * refers to the fact that the full model scenario for DWP3 is well-
determined because δ2 6= δ4.

Table 2.7: Target configuration for the sensitivity analysis.
Parameter Value

DT (Forest) σhh / σhv / σvv [dB] 0 / -6.5 / 0
ρ/
√
σhhσvv 0.4∠5◦

Ground Clutter
(CR/PARC)

σ
(cl)
hh /σ(cl)

hv / σ(cl)
vv [dB] -10 / -19 / -10

ρ(cl)/

√
σ
(cl)
hh σ

(cl)
vv [dB] 0.6∠10◦

NESZ σn [dB] -20
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2.3.4 Uncertainty analysis on two case studies

A qualitative and quantitative analysis on the local accuracy is now carried out for two
significant well-posed distortion scenarios. With concern to the calibrators the simula-
tions has been conducted using for the parameters in Table 2.7, where all the values are
expressed with reference to the DT σhh set at 0 dB. A typical ground clutter noise [18]
has been assigned to the calibrated target, and a NESZ disturbance has also been added
to both DT and CR. The first assessment is carried out on the PDM model with recipro-
cal CT and unknown (non-null) FRA (see Table 2.4), i.e. the most complex scenario that
can be resolved by a DT alone, whereas the second analysis will be committed to the full
system calibration case study in a null FRA environment, where the aid of a CR is instead
necessary.

2.3.4.1 CT-reciprocal system in the presence of Faraday rotations

The “CT reciprocal” model represents the most complex system that can be successfully
calibrated when the FRA is not negligible. Interestingly, we read from Table 2.6 that a
“cheap” DT calibration would be indeed an effective option, though it is also emphasized
that there are a few PDMs, such as the one coming from DWP3, that demand the em-
ployment of a CR or a PARC. In order to point the investigation into the most significant
directions, an exhaustive exploration of the uncertainty behavior with respect to the phase
of the PDM parameters is first performed. The amplitudes of the imbalances and of the CT
have been fixed to the DWP2-3 values, the FRA has been set to 10◦ and the uncertainty has
been evaluated on Np = 105 looks over the ideal (i.e. with perfect azimuthal symmetry)
DT in Table 2.7. The results of the exploration, shown in Fig. 2.5 for the |f1| and |δ1| un-
certainties (∆|f1|,∆|δ1|), clearly evidence that the phase difference φf2f1 = ∠f2 − ∠f1 has
the strongest impact on sensitivity. As expected, the worst scenario is φf2f1 = π, where
a few CT configurations (e.g. the DWP3 case) are not solvable. A more synthetic repre-
sentation is then attained in Fig. 2.6 as a function of φf1f2 by averaging the uncertainties
of 1000 random DWP realizations. More specifically, the phases are uniformly generated
between 0 and 2π for all the parameters, whereas the amplitudes are obtained by perturb-
ing the DWP2-3 values with 0.2 dB deviation for the imbalances and 2 dB deviation for
the CTs. The sensitivity problem at ±π is evident in the trend of all the parameters. Cal-
ibration in such conditions can be handled, as advised in the case of DWP3 by Table 2.6,
only through the aid of a calibrated point target. The sensitivity to Faraday rotation is next
evaluated by similarly perturbing amplitudes and phases around DWP2 (the imbalances
phases are not moved though) and averaging the uncertainty realizations: the performance
is reported in Fig. 2.7. A calibration criticality is found at ±kπ/2 and once again, ac-
cording to Table 2.6, the correct calibration strategy should demand the employment of a
CR.
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Figure 2.5: Uncertainty on the f1 (left) and δ1 (right) amplitude as a function of the phase of the other
parameters. DWP settings: |f1| = |f2| = 0 dB, |δ1| = −30 dB, |δ2| = −26 dB. FRA is set to 10°. The
gray areas (e.g. DWP3) point to the ill-posed PDMs, whereas the saturated (red) areas represent the
poor accuracy PDMs.
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Figure 2.6: Uncertainty behavior with respect to the imbalance ratio phase in a CT reciprocal configuration
evaluated on Ω = 10◦ FRA and 105 DT looks.

The impact of the number of looks and of the model non-idealities on the sensitivity is
now assessed by injecting into the model covariance (2.22) the disturbance Cni:

Cni =


0 ε∗hh,hv

√
σhhσhv ε∗hh,hv

√
σhhσhv 0

εhh,hv
√
σhhσhv 0 0 ε∗hv,vv

√
σvvσhv

εhh,hv
√
σhhσhv 0 0 ε∗hv,vv

√
σvvσhv

0 εhv,vv
√
σvvσhv εhv,vv

√
σvvσhv 0

 (2.50)

yielding the perturbed model:

CSp = CS+Cni (2.51)

where Cn = HCniH
H and ε plays the role of a normalized coherence. When εp,q is

varied in amplitude between 0 and 0.1, the uncertainty shown in Fig. 2.8 is registered. It
can be noticed that when the deviation ε is close to 0 the sensitivity behavior is dominated
by the number of looks Np, whereas it becomes the most significant uncertainty source
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Figure 2.7: Uncertainty in a CT reciprocal configuration evaluated on the whole FRA range (Ω behavior
has π periodicity) and for 105 DT looks.

for higher coherence deviation values. Each parameter has a different robustness to ε,
i.e. a different growth slope with respect to the |ε| units (reported in the panels alongside
the curves), with the imbalances phase and the FRA being the most robust parameters,
and the CTs being clearly the most degraded. The dual analysis on the Np impact is then
provided in Fig. 2.9 for the representative ε = {0, 0.01, 0.05} set. The panels confirm
the considerations already expressed about Fig. 2.8, with the ∠f1 and Ω having the lower
plateaus as expected. The log-linear trend was also predictable from the equations derived
in appendix A, where it is evident that in absence of ε all the parameters behave as ∆i ∝
N−0.5
p .

2.3.4.2 Full system calibration aided by a point target

A full polarimetric system calibration cannot be attained when FRA is not negligible and
accurate radiometric information are not available. The outcome is different when Faraday
is not interfering, though the scenario (see Table 2.6) demands the employment of a CR.
The uncertainty is investigated by (2.32) and (2.46), where the joint DT-CR presence is
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Figure 2.8: Uncertainty in a CT reciprocal configuration with respect to the model deviation from the
azimuthal symmetry assumption. The assessment is carried out in the neighborhood of DWP2 and a
Ω = 10◦ FRA for three different Np settings.

dealt through (2.45). As opposed to the calibration scenario in the previous section, the
presence of a CR prevents from the occurrence of critical PDM configurations. Besides
the DT factors already discussed, the calibration performance is obviously determined by
the CR quality. This latter is represented by the clutter strength superimposed to the point
target impulse response and by the APN, i.e. deviations from the ideal signature (2.23),
modeled with:

NAPN =
√
σCR

[
ε11 ε12

ε12 ε22

]
(2.52)

with εij depending on the entity of the manufacturing and orientation inaccuracies. The
clutter has been simulated in accordance with the typical flat ground scatterer whose details
are provided in Table 2.7. The uncertainty is assessed by injecting into the measures APN
disturbances, εij , with the desired amplitude and uniformly distributed random phases.
The CR quality with regard to the SCR is regulated by acting on the target reflectivity
σCR. Assuming that a predetermined number of Np = 106 looks is used for the DT and
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Figure 2.9: Uncertainty in a CT reciprocal configuration with respect to the the number of looks Np.
The assessment is carried out in a neighborhood of DWP2 and on a Ω = 10◦ FRA for three different
coherence deviation, ε, settings.

that this latter is ideal (ε null), a first analysis on the joint impact of the APN and SCR
level on the calibration quality is shown in Fig. 2.10. Though the nature of the SCR and
of the APN is different, their influence on the model model uncertainty is similar, with
just little more sensitivity registered for the APN. On the quantitative standpoint it should
be noticed that when the SCR is higher than 30 dB and the APN stands below -35 dB,
the joint PT+DT uncertainty complies with the performance requirements in Table 2.2.
Fixing then the CR quality to a 35 dB SCR, the two model deviations ε and APN are
explored in Fig. 2.11. The imbalances uncertainty is more sensitive to the APN, whereas
the CT model is more sensitive to the DT deviations. It is worth remarking that when
the point target is employed for imbalance retrieval a PT quality (APN) better than -30
dB is demanded to comply with a 0.15-0.2 dB accuracy. This is indeed the case of a few
well-acknowledged approaches [42,49] that employ a CR for attaining absolute imbalance
information, resorting to the DT for the retrieval of all the other parameters.
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Figure 2.10: Uncertainty behavior with respect to CR quality (APN and SCR parameters) in a CT generic
and FRA null scenario. The DT quality has been set to ε = 0 and Np = 106.
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Figure 2.11: Uncertainty behavior with respect to both the CR and DT quality (APN and DT deviation ε,
this latter represented in linear scale) in a CT generic and FRA null scenario. The corner SCR is set to
35 dB and the DT looks are Np = 106.

2.4 A feasible approach for partial PDM estimation

According to Table 2.5 the use of a CR is required in all the addressed model scenarios
with the exception of those configurations where some assumption on the CT is done (CT
null or reciprocal) and a non-null FRA is affecting the scene. It was also discussed in 2.3.3
how a full model estimation is indeed unfeasible without any a-priori constraint on some
of the involved parameters (e.g. the radiometric gain). However it will be shown that,
through proper model arrangement, some of its parameters can be nonetheless determined
independently from the others. With concern to a null FRA environment, the solution
proposed by Quegan in [38] provides an effective answer to this point, showing that at
least the quantities:

α = f1/f2, δ′1 = δ1, δ′3 = δ3, δ′2 = δ2/f1, δ′4 = δ4/f2 (2.53)

can be unambiguously retrieved. Notice that the set includes all the PDM parameters
with the exception of one imbalance. The Quegan algorithm is based on the same DT
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assumption (reciprocity and azimuthal symmetry) used in our previous analysis and yields
closed-form expressions for the estimators of (2.53). Their derivation is aided by further
approximating the second order CT terms in the distorted covariance to 0, implying that
cross-talk parameters must have much smaller amplitudes than true-like parameters. More
details about the algorithm implementation is provided in appendix B.

The sensitivity with respect to the set (2.53) is then formally investigated through the
approach discussed in 2.3. The model (2.15) is rephrased into:

M = A · ejφ
[

1 δ2/f1

δ1 1

]
·
[
1 0

0 f1/f2

] [
1 0

0 f2

]
· S ·

[
1 0

0 f2

]
·
[

1 δ3

δ4/f2 1

]
+ N (2.54)

or, in its vectorized form:

m = A · ejφ ·Q · F · s + n (2.55)

with:

Q =


1 δ′2 δ′4 δ′2δ

′
4

δ′1 1 δ′1δ
′
4 δ′4

δ′3 δ′2δ
′
3 1 δ′2

δ′1δ
′
3 δ′3 δ′1 1

 ·


1 · · · 0

α
...

... 1

0 · · · α

 (2.56)

F =


1 · · · 0

f2
...

... f2

0 · · · f 2
2

 (2.57)

where Faraday effects are not accounted for. By applying the distortion (2.55) in (2.21),
it is readily verified that:

C = A2Q · F ·CS · FH ·QH = A2Q·CQ ·QH (2.58)

CQ =


σ′hh 0 0 ρ′∗

0 σ′hv σ′hv 0

0 σ′hv σ′hv 0

ρ′ 0 0 σ′vv

 =


σhh 0 0 (f 2

2ρ)∗

0 |f2|2 σhv |f2|2 σhv 0

0 |f2|2 σhv |f2|2 σhv 0

f 2
2ρ 0 0 |f2|4 σvv

 . (2.59)
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As a result in a DT calibration scenario the complexity would be equivalent to that
of estimating the full δ,f model aided by the assumption f2 = 1. It is straightforward
noticing that (2.59) is replacing (2.22) and that the scattering reciprocity is not lost in the
model. The SAR calibrated observables, achieved through the simple inversion:

mcal = Q−1 ·m, (2.60)

are determined up to a f2 and f 2
2 factor respectively in the HV and VV channels .

The approach feasibility analysis, reported in Table 2.8 , confirms that such parameter
simplification is able to deal with all the aforementioned PDM criticalities.

Table 2.8: Feasibility analysis for the shrinked model approach

Model Parameters DT Calibration
DWP1 DWP2 DWP3 DWP4

FRA:
Ω = 0

CT null
FRA null

- f1/f2
- σ′hh, σ

′
hv , σ

′
vv ,ρ′

YES YES YES YES

CT reciprocal
FRA null

- f1/f2, δ′1, δ′2
- σ′hh, σ

′
hv , σ

′
vv ,ρ′

YES YES YES YES

CT unknown
FRA null

- f1/f2, δ′1, δ′2, δ′3, δ′4
- σ′hh, σ

′
hv , σ

′
vv ,ρ′

YES YES YES YES

Note: the table provides information on whether the calibration problem is well-posed (YES), ill-posed (NO) or the
model is not consistent with the DWP (-)

The performance achievable by the Quegan algorithm with respect to the most signif-
icant DT features is investigated through MC simulations. The sensitivity of the corre-
sponding model (2.55), computed through (2.32), is also reported in order to provide a
more insightful analysis. In section 2.3.4 it was remarked how the accuracy is predictably
dependent on the number of averaged DT looks, but also on deviations from the hypoth-
esized model. It was shown in Fig. 2.9 that when the number of looks is high enough,
as a rule of thumb Np ≥ 105, the estimation error in the most sensitive parameters, i.e.
the CTs, is governed by the model non-idealities. The theoretical results achieved by the
technique are illustrated in the panels in Fig. 2.12 where the impact of small covariance
deviations is also addressed. The performance has been studied for a realistic CT set of
values ranging from -45 dB to -25 dB, and for two different natural scatterers: a forest and
a bare soil. The forest has indeed a stronger HV channel and a lower HH,VV correlation
than the bare soil, whose behavior is more similar to an ideal Bragg scatterer (quantita-
tive details of both mechanisms are taken from Table 2.7). Such scattering difference has
indeed an effect on the calibration performance, with the forest being more accurate for
imbalance ratio estimation and the ground having a slight advantage on the CTs due to
the higher σhh/σhv, σvv/σhv ratios. Whereas it is evident that the estimation error on the
imbalance ratio is never a problem, registering RMSE below 0.05 dB and 1° in amplitude
and phase respectively, the CT performance can be critical. The dominant factor in the CT
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behavior are indeed the CT amplitude itself and the model perturbation entity. The phase
accuracy in particular, even without model disturbances, is on average worse than 15°.
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Figure 2.12: Shrinked model approach: calibration performance measured for 3 values of the disturbance ε
in the covariance model as a function of the CT level. The accuracy achieved by the traditional Quegan
technique (red), by the numerical optimizator (cyan) and the uncertainty attained through theoretical
sensitivity analysis (black) are reported for a typical forest and ground DTs with size Np = 106. Note
that the RMSE on the imbalances amplitude refers to the dB (relative amplitude) displacement whereas
in the CT case it refers to the absolute magnitude error (linear scale).
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Figure 2.13: Shrinked model approach: retrieved CT amplitudes compared to the real values for three
different strength of the model perturbation ε. The simulation has been carried out for both the Quegan
algorithm (red) and the numerical optimizator (cyan) on a forest DT model (106 looks).

Another interesting point from Fig. 2.12 is provided by the comparison with the the-
oretical uncertainty. Whereas the quality of Quegan estimates is hindered by CT ampli-
tudes, the theoretical sensitivity analysis shows that the performance is dependent only on
the Cpol-Xpol coherence deviations ε. The results convey that in the presence of strong
CTs the estimates have margin for improvement. Such margins can be indeed filled by
refining the calibration procedure through the numerical optimization discussed in section
2.5. It is straightforward noticing how the accuracy achieved, shown in the same Fig.
2.12 panels, is consistent with the theoretical prediction, meaning that the workpoint ini-
tialization provided by the Quegan estimates represents indeed an effective choice (even
when high CTs are involved) for the algorithm correct convergence. Notice though that
the Quegan technique still represents the best option when the ratio between the CTs and
the model perturbation ε is low. Such trend is further remarked in Fig. 2.13, where the
average bias of both techniques is also represented. In both the DT cases the numerical
optimization is overestimating the CTs (significantly in the case of the forest with strong
residual Cpol-Xpol coherence), whereas the Quegan algorithm is almost unbiased in the
forest case but underestimates (with a bias of−1.5 dB) the CTs with the ground scattering.
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Figure 2.14: (left) Optical reference of the Barcelona area. (right) Pauli color coded representation of the
or the RS2 Fine-Quad Mode SLC used for analysis (slant-range,azimuth coordinates). The land typology
diversity inside the frame clearly emerges from the two views.

2.4.1 Application to RS2 data

The accuracy of the technique has been tested on the C-Band Radarsat-2 dataset collected
over the Barcelona area with the Fine Quad-Pol mode, whose format is described in more
detail in chapter 4 (section 4.3.1). The RS2 imagery is supposed to be accurately cali-
brated, as previous works [28] were able to assess, with CT level below -35 dB. A pre-
liminary analysis has been conducted on spatial blocks of different sizes ranging from
Np = 100 to 105 looks. The aim is to point out how the real data diversity relate to the
consistency of the calibration results. With the support of the Pauli color coded image and
its optical reference in Fig. 2.14 for an intuitive association of each area to its typology,
it is indeed possible to notice in Fig. 2.15 the dependence of the orientation symmetry
on the block dimension Np and on the scatterer characteristics. The degree of coherence
between HH and HV (normalized for the channels power) is used as indicator. The DT-
based techniques require indeed such value to be almost null, though the finite number
of looks and the presence of polarized X-pol backscatter affect its estimate. The size of
the block has a significant impact up to Np = 105, as remarked in the theoretical analysis
of section 2.3, then the model bias becomes dominant. The polarization induced on the
estimated cross-talks is illustrated in histograms of Fig.2.16. An almost linear trend of the
CT error with respect to CHH,HV can be inferred from the plotted distributions, validating
the theoretical analysis in section 2.4 that demanded a maximum of -20 dB for Cpol-Xpol
coherence deviation.
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Figure 2.15: Coherence between HH and HV channels for blocks of different dimension. The analysis
provides quantitative evidence on the dependence of the reflection symmetry on the looks Np used for
ensemble average and on the scatterer characteristics.

Figure 2.16: Correlation in the RS2 data between non-ideal reflection symmetry (non-null HH,HV coher-
ence) and its effects on the cross-talk estimation by means of the Quegan technique.
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Figure 2.17: Details of the scattering areas selected for calibration analysis. The table reports the DT size,
the average channel intensities and the polarimetric coherence measured for the 13-JUN-2011 image
(see 4.2).

A better conceived analysis has been conducted by isolating 5 different DT areas
(through hand-made segmentation), corresponding to representative classes of scatterers,
i.e.:

1. a sloped vegetated terrain behind the Barcellona town

2. a second vegetated area

3. the inhabited Barcellona area itself

4. a flat cultivated area

5. the sea surface

whose backscatter characteristics are reported in Fig. 2.17 for one of the images. The veg-
etated areas are the closest to the reflection symmetry requirements, whereas the inhabited
terrain exhibits cross-polarized backscatter which results in higher HH,HV coherence. The
sea, in the end, has been included in the analysis, though it can be easily predicted that its
very low HV intensity, almost comparable with the system noise, will hinder the resulting
estimates. It must be remembered that the assumption of orientation symmetry for dis-
tributed scatterers should hold robustly for C-Band data [26]. Differently, L- and P-band
signal would undermined by the presence of sloped areas that introduce preferred orienta-
tion directions, and therefore demand large ensemble averaging in order to filter out from
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the covariance the topography effects [20, 26]. The result of the calibration performed on
the 5 areas has been reported in Table 2.9. The inhabited and the sea areas have very poor
performance, the first clearly overestimating the CTs and the latter showing serious prob-
lems with the imbalance ratio. The vegetated areas (fields and forest) are indeed the most
suited one, returning CT levels ranging from -50 to -35 and imbalance stability in the order
of 0.1 dB, thus consistent with the RS2 radiometric stability and channel isolation. It must
be remarked that for finely calibrated systems, the CT estimates are mostly determined by
the model non-idealities. This consideration is indeed supported by the theoretical results
in Fig. 2.12, where it is shown that for CTs as low as -45 dB the error done is almost in the
same magnitude order of the CT. The analysis should be nonetheless deemed meaningful
since it can to provide effective evidence of the system good health.

Table 2.9: Results attained by the Quegan calibration algorithm. For each calibration configuration the
mean value and its standard deviation (into brackets) of the amplitude and phase estimates throughout
the RS2 dataset is reported. The format is indeed: Ampl. Mean [dB] (Ampl. Std [dB]), Phase Mean
[deg] (Phase Std. [deg]).

f1/f2 δ1 δ′2 δ3 δ′4

Mountain 1 -0.086 (-49.6), 0.10
(1.6)

-53.2 (-61.5),
-8.7 (43.8)

-49.1 (-56.7),
162.9 (18.8)

-55.4 (-62.4),
-128.8 (66.6)

-53.6 (-60.5),
-133.8 (67,3)

Mountain 2 -0.078 (-46.9), -0.04
(1.6)

-49.7 (-56.4),
7.62 (26.2)

-43.0 (-55.7),
169.2 (9.1)

-54.6 (-58.3),
-119.9 (90.2)

-45.9 (-55.4),
-175.6 (14.0)

Urban -0.080 (-50.9), 0.15
(1.6)

-31.5 (-51.2),
-4.6 (5.3)

-32.2 (-49.4),
-166.3 (9.4)

-32.2 (-50.2),
-8.2 (6.3)

-32.3 (-49.5),
-163.5 (10.5)

Fields -0.082 (-49.4), 0.02
(1.6)

-40.3 (-53.5),
167.3 (10.4)

-38.1 (-50.7),
27.5 (10.6)

-38.5 (-51.8),
175.5 (11.1)

-37.2 (-50.0),
16.6 (10.6)

Sea -0.354 (-26.2), -1.8
(2.4)

-27.5 (-30.5),
-10.8 (87.4)

-28.2 (-31.6),
166.3 (62.0)

-27.6 (-31.1),
-4.1 (74.7)

-28.5 (-31.3),
149.2 (82.7)

* In the reduced model exploited by the Quegan approach δ2 and δ4 are indeed replaced by δ′2 = δ2/f1 and
δ′4 = δ4/f2.

2.4.2 L-Band calibration with non-null Faraday rotations

It was discussed in 2.3.2 and 2.3.4.1 how the presence of Faraday rotations in a CT re-
ciprocal system makes the calibration optimization problem well-determined, even with
just a DT. The scenario has been cleverly approached by Freeman in [19], where it was
shown that closed-form estimators for f1, f2, δ1, δ2, Ω can be obtained through the Faraday
linearization

sin Ω ' Ω, cos Ω ' 1 (2.61)

valid for small FRA. The system (2.15), under the assumption of reciprocal CTs, be-
comes then:
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M =A · ejφ
[

1 δ2

δ1 f1

] [
1 Ω

−Ω 1

]
· S ·

[
1 Ω

−Ω 1

] [
1 δ1

δ2 f2

]
+ N. (2.62)

By omitting the cross-products δiΩ, it can be further simplified into:

M =A · ejφ
[

1 δ2 + Ω

δ1 − Ωf1 f1

]
· S ·

[
1 δ1 + Ωf2

δ2 − Ω f2

]
+ N. (2.63)

The Quegan method is then exploited to yield:

α = f1/f2

u = δ1 − Ωf1 z = δ1 + Ωf2

w =
δ2 + Ω

f1

v =
δ2 − Ω

f2

(2.64)

that can be solved in closed-form (see section B.2 in appendix) with the exception of
a sign ambiguity, which, however, is easily determined by means of a-priori information
on the imbalances or on some convenient scene features (e.g. the HV/HH phase for some
known natural point target). It must be stressed that such approach benefits from high
channels isolation, and more specifically when both the FRA, see (2.61), and its combi-
nation with the CTs, in favor of higher accuracy in the Quegan estimates (2.64), are low.
The performance is evaluated on synthetic datasets and is shown in Fig. 2.19 to Fig. 2.21,
where its error estimates are also compared with those of other methods. A discussion on
such results is provided at the end of the next section.

2.5 Numerical optimization of the PDM estimates

The closed-form solutions discussed in 2.4 and 2.4.2 for two typical DT calibration sce-
narios are convenient because their implementation is effortless and their behavior is pre-
dictable. It is also straightforward that their performance is limited by the approximations
adopted. The analysis in 2.3 provided useful information on the possibility of carrying
out numerical optimization on the cases examined. When the problem is indeed well-
determined and the a-priori PDM information is close enough to the optimum, a numerical
derivation represents a valid option.

With reference to a DT-only calibration the number of real equations is 16 against 15
unknowns in the case of the shrinked model in 2.4 or 14 in the scenario of Fig. 2.3 and
2.4.2. An additional unknown has to be counted when the NESZ contribute is accounted
for in the optimization: its introduction does not undermine in either case the problem
solvability. The amount of parameters is then far from being prohibitive, and the compu-
tational times are certainly affordable (in the order of a few seconds). A generic solution
scheme is illustrated in Fig. 2.18. The additional aid of point targets is included in the
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Figure 2.18: Scheme of the calibration optimization procedure.

scheme since it can be seamlessly integrated in the procedure through proper equation
weighting, though the present work has been committed to the correct handling of the
DT-only scenario.

The first step is the derivation from the estimated covariance C of the starting DWP
parameters Θ0 through one of the available techniques. The resulting PDM, H0 = H(Θ̂0),
together with the eventual estimate of the sigma nought σn (e.g. the Quegan approach
provides such estimate for the X-pol channels), are then used to determine the model
covariance:

Cinv = H†30 (C− σnI)
(
HH

30

)†
(2.65)

H30 = H0 ·D = H0 ·


1 0 0

0 1 0

0 1 0

0 0 1

 (2.66)
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where † refers to the matrix pseudo-inverse operation and Ĉinv is a 3 by 3 matrix that
do not respect in general the reflection symmetry assumption. This latter condition is
therefore obtained by roughly nulling the Cpol-Xpol covariance elements through:

ĈS = Cinv ◦

 1 0 1

0 1 0

1 0 1

 (2.67)

where ◦ stands for the matrix point-wise (Hadamard) product. As next operation, the
predicted data covariance is calculated by means of the direct model:

Ĉ0 = H30 · ĈS ·HH
30 + σnI (2.68)

and its measurement uncertainty

W = E
[
vec(Ĉmes

0 − Ĉ0) · vec(Ĉmes
0 − Ĉ0)H

]
is attained through expressions in appendix A. The proposed optimization algorithm ac-
counts for the model sensitivity by adopting at each iteration the error metric:

e =
∥∥∥W−1/2 · vec(Ĉ−C)

∥∥∥ (2.69)

i.e. by weighting the displacement between the reconstructed covariance Ĉ and the
measured one C with the data covariance W. The new estimates are then readily obtained
by moving towards the e minimum, i.e. in formula:

Θ̂i, ĈSi ,= argmin
Θ,CS

∥∥∥W−1/2 · vec
(
Ĉ(Θ,CS)−C

)∥∥∥ (2.70)

Ĉ(Θ,CS) = H3(Θ) ·CS ·H3(Θ)H + σnI

until a stable point is reached.
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Figure 2.19: Performance shoot-out on the PDM: f1 = f2 = 1, δ1 = δ2 = δ3 = δ4 = −30dB∠0◦. The
calibration is performed on 105 looks of a forest DT. The techniques compared are: the Quegan tradi-
tional approach (blue), the Quegan technique after Bickel&Bates Faraday removal (red), the Freeman
technique (green) and the proposed optimization (black). Notice that some of the addressed parameters
are not returned by all the approaches, i.e. f1 is only estimated by the Freeman-based techniques and Ω
is not considered in the QT.
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Figure 2.20: Performance shoot-out on the PDM: f1 = 1, f2 = −1, δ1 = δ3 = −30dB∠− 90◦, δ2 = δ4 =
−30dB∠90◦. The calibration is performed on 105 looks of a forest DT.
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Figure 2.21: Performance assessment based on MC simulation, i.e. by averaging 1000 PDM random
realizations. The calibration is performed on 105 looks of a forest DT.

The accuracy of the proposed method is compared, for different amounts of FRA dis-
turbance, with that of other acknowledged techniques. The Quegan method discussed in
2.4 and the Freeman approach of 2.4.2 have been taken as reference. Since the former
approach does cannot cope directly with the Faraday effects, a third approach that car-
ries out a Faraday compensation before the application of the Quegan technique has been
tested: the classic Bickel&Bates estimator [2] is used for the FRA evaluation. Note that
such workflow is indeed inconsistent with the model, being the calibration steps applied
in the inverse order (remember that Faraday is internal in the PDM). Nonetheless, it can
be considered a valuable experiment for assessing the impact of the system miscalibra-
tion on the Faraday estimation and further demonstrating the degradation of the system
parameters estimates due to improper Faraday handling. The techniques behavior is first
tested on two particular distortion scenarios. The first is the same as DWP2 in Table 2.3,
i.e. an easy scenario according to 2.3, whereas DWP3 has been chosen for the second
case, a critical case indeed. The respective results, in Fig. 2.19 and Fig. 2.20, are in
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2.6. Conclusions

agreement with the theoretical expectations of a better performance for the first PDM, the
only curious exception being the imbalance ratio amplitude RMSE. With concern to the
proposed optimization, it can be noticed that the unstable behavior is limited to Ω = 0
in the first scenario, whereas a wrong convergence can extend to other FRA values in the
second scenario.

A more comprehensive assessment, on a quantitative standpoint, is then obtained through
Montecarlo analysis and shown in Fig. 2.21. A total of 1000 PDMs are generated and their
RMSE is hence averaged. The distortion diversity is simulated by perturbing the DWP2
parameters: the noise has been set to a gaussian distribution with 0.2 dB and 5 dB deviation
for the imbalance and CT amplitudes, whereas their phases are uniformly generated into
the [−π/4, π/4] and [−π, π] spans respectively. A few points are remarked with respect
to the performance results:

• The proposed optimization scheme yields the best results, with the exception of the
null FRA configuration, where the techniques based on the shrunk model in 2.4 rep-
resent the only feasible option. The CT estimates are in particular benefiting from
the optimization, with accuracies laying below 1 dB.

• The accuracy achieved by traditional techniques on the imbalance ratio amplitude
is acceptable (< 0.2 dB) up to a ±10◦ FRA, while the CT performance is arguably
poorer, even with null FRA, but probably sufficient to deliver the channel isolation
demanded for the project.

• The FRA estimates attained by the Bickel&Bates technique are to be preferred over
those computed by Freeman for FRA above 5◦, while they are both accurate for small
FRA.

It can be concluded that a CT reciprocal L-band system can be calibrated with fulfilling
accuracy in most of the distortion scenarios even without the employment of calibrated
point targets. These latter would be instead required in order to calibrate a generic model
(non reciprocal CTs) in a null FRA site.

2.6 Conclusions

In this chapter, two main contributions are proposed. Firstly, an accurate study of the prob-
lem is conducted from the theoretical point of view. A feasibility analysis is conducted
over some realistic distortion configuration through the Singular Value Decomposition of
the Jacobian matrix obtained after the linearization of the system (based on the realistic
assumption that for a specific distortion parameters’ configuration, the solution ambigu-
ities in its proximity can be investigated through the Jacobian function). The possibility
to solve the problem in the parameters’ space close to the correct configuration is inves-
tigated, along with the prior conditioning needed to have a well-posed problem. Even if
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this methodology cannot ensure the uniqueness of the solution in the whole parameters
domain, it clearly shows that the solution is a local optimum in the parameters domain.
Therefore, if prior information about the distortion parameters is retrieved, a numerical
solver can be used to obtain a correct estimation of the unknowns. This is the second
contribution proposed in this work. The proposed optimization exploits the relationship
between the distorted data covariance matrix and the covariance matrix of the original
data, weighted by the distortion parameters. Several tests have been conducted consid-
ering both synthetic and real data, giving very encouraging results in comparison to the
traditional approaches, in terms of both accuracy and computational time.
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CHAPTER3
A PS-Based Calibration Approach

External calibration on polarimetric SAR products is usually carried out by means of
specifically deployed targets, passive targets or transponders and by exploiting those few
extended natural areas on the globe made of uniformly distributed targets, such as the rain
forests. As insightfully discussed in chapter 2, man-made targets represent indeed the only
possible option to perform an absolute radiometric and polarimetric verification, whereas
those sites characterized by spatially-invariant statistics provide a convenient solution for
a partial polarimetric calibration and the monitoring of the antenna pattern.

Two issues about such external calibration needs then to be remarked:

• Few natural calibration sites agree to the necessary accuracy all over the globe, thus
the in-orbit performance verification (remember that more than one acquisition mode
needs to be monitored) can interfere with the normal acquisition orders over such
sites.

• The targets deployed in order to allow an absolute radiometric and polarimetric cal-
ibration must be maintained stable all along the satellite’s operational life, i.e. their
RCS should be constrained to a few fractions of dB accuracy. The more stringent is
the accuracy requirement the more efforts/costs must be accounted in the project.

The problem of the external radiometric and polarimetric calibration is again addressed by
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the present chapter, though the aim here is that of providing a mathematical framework
for an innovative calibration approach based on the exploitation of a multi-baseline stack
as opposed to the single-image methods. The key role in such approach is played by the
polarimetric Permanent Scatterer (PS) model. The rationale is that a large cloud of low to
medium quality PSs is equally effective as a small set of high quality calibrated targets.
The natural consequence of such principle would be the possibility to identify a large num-
ber of candidate sites robust enough for the system monitoring and calibration all over the
globe. A PS-based technique would therefore contribute to overcome the aforementioned
limitations at the cost of introducing some memory and computational complexity into the
problem. Herewith the reader will be first introduced to the PS model and its identifica-
tion procedure in the polarimetric context and then he will be given explanation on the
inversion method, herehence abbreviated as as PolPSCal, and analysis on its theoretical
performance.

3.1 The polarimetric PS model

Let consider an uncalibrated stack composed of the observations of NP Permanent Scat-
terers throughout NI acquisitions. Combining the undistorted observations of the sta-
ble PS component sp = [shhp , shvp , svhp , svvp ]

T and unstable cell component (clutter)
wi,p = [whhi,p , whvi,p , wvhi,p , wvvi,p ]

T with the linear distortion model G [16], the mea-
sured signal yi,p of the p-th PS cell into the i-th image of the stack can be rephrased into
the vector model:

yhhi,p
yhvi,p
yvhi,p
yvvi,p

 = Ai,pGi,p

ejφi,p

Shhp
Shvp
Svhp
Svvp

+


whhi,p
whvi,p
wvhi,p
wvvi,p


+


Nhhi,p

Nhvi,p

Nvhi,p

Nvvi,p

 (3.1)

or into a more compact notation, with A ·G being referred to as H:

yi,p = Hi,p

(
ejφi,psp + wi,p

)
+ ni,p (3.2)

where A is the real-valued overall image gain, φ is the target phase, G is the polarimet-
ric distortion matrix (PDM) containing the effects of imbalances, cross-talks and Faraday
rotations, and n accounts for the thermal noise as well as other modelization errors (distor-
tion non-linearities, clutter non-stationary). The dependence of each element on the image
or target number has been explicited in the subscripts.

Notice that in (3.1)-(3.2) a general behavior has been assigned to the distortion, H,
since it can vary with both the PS and image index. Such model would be indeed too much
relaxed, leading any PS-based calibration approach to the solution of an underdetermined
problem where the number of unknown parameters is larger than the data dimension.
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As a matter of fact, in a real acquisition scenario, the distortion parameters can be
safely assumed as slow-varying across the image, usually with a preferred range variation
trend for the antenna distortion [19, 38, 49]. The only exception would be Faraday’s most
severe scintillation phenomenons, which however represent a rather uncommon event and
are most likely to occur at high latitudes. The distortion model and its inversion approach
can then be modified accordingly, as also conveyed by the scheme in Fig. ??. Similarly
to [9] the processing can be performed upon limited portions of the image, that will be
called ’imagettes’, where the parameters are supposed to be uniform. In formulas:

H(i, p)
p∈Rn∼= Hn(i) (3.3)

where Rn refers to the region (group of pixels) assigned to the nth imagette. The cali-
bration procedure is then carried out individually for each imagette, being the eventual
spatial correlations of the distortion not yet exploited. It is therefore possible to address
the Hn(i) generically as Hi. Arguably, the selection of the region width requires some
careful considerations: making imagettes too wide would be indeed critical for the de-
sired homogeneity condition, whereas making them too small would lead to a drop in the
number of the PSs detected and consequently in the calibration’s performance. As rule of
thumb a 4 to 10 km2 region would be a safe choice in a urban area.

The distortion H assumes then the structure of the generic 4 by 4 matrix:

Hi = Ai


g11(i) g12(i) g13(i) g14(i)

g21(i) g22(i) g23(i) g24(i)

g31(i) g32(i) g33(i) g34(i)

g41(i) g42(i) g43(i) g44(i)

 ≡ Ai {g(i)}mn (3.4)

and its elements are handled in the estimation process as if they were independent along
the stack, i.e.:

p(Ai|Aj) = p(Ai)

p(gmn(i)|gmn(j)) = p(gmn(i))
∀ m,n, i 6= j (3.5)

where p defines the probability density function. No temporal behavior constraints has
therefore been forced on the distortion parameters.

Operationally, the data is assembled into a 2D stack by arranging theNI acquisitions of
each target along the rows, and the NP targets measures in each image along the columns,
in order to obtain the 4NI ×NP matrix:

Y =


y1,1 y1,2 · · · y1,NP

y2,1 y2,2

... . . .
yNI ,1 yNI ,NP

 (3.6)
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Figure 3.1: Schematic representation of the PS-based calibration. The distorted stack made by the NI

observations Mi is calibrated by processing smaller portions of the image, the so-called ’imagettes’.
In each imagette the Permanent Scatterers are detected and the distortion (assumed uniform inside the
imagette) is estimated.
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that corresponds to:

Y = Φ ◦


H1

H2

...
HNI

 [ s1 s2 . . . sNP
]

+ N = Φ ◦HtSt + N (3.7)

with the operator ◦ standing for the Hadamard, or entry-wise, matrix product, Φ and N
being respectively the phase and noise matrices defined as:

Φ =


ejφ1,1 ejφ1,2 · · · ejφ1,NP

ejφ2,1 ejφ2,2

... . . .

ejφNI,1 ejφNI,NP

⊗


1

1

1

1

 (3.8)

N = Φ ◦


 H1

. . .
HNI

 ·
 w1,1 · · · w1,NP

... . . .
wNI ,1 wNI ,NP


+

 n1,1 · · · n1,NP

... . . .
nNI ,1 nNI ,NP

 (3.9)

where the ⊗ symbol represents the Kronecker product. A model needs to be assigned at
this point to the noises too. Notice to this regard that the reciprocity property applies to w
as well as s:

Shv = Svh (3.10)
whv = wvh (3.11)

since their nature is that of the physical backscatter of the cell . The clutter noise is then
defined as:

wi,p ∼ CN (0,Cp) (3.12)

Cp =


vhhp χ∗hh,hvp χ∗hh,hvp χ∗hh,vvp
χhh,hvp vhvp vhvp χ∗hv,vvp
χhh,hvp vhvp vhvp χ∗hv,vvp
χhh,vvp χhv,vvp χhv,vvp vvvp

 (3.13)
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i.e., a generic stationary (along acquisition time) circular complex gaussian process where
the only reciprocity condition (that reduced the rank to 3) has been imposed. Each PS
has its own covariance matrix, independent from those of the other targets. Differently,
the residual noise n can be modeled with a vector of uncorrelated elements with common
variance ν:

ni,p ∼ CN (0, νiI4) (3.14)

which is appropriate for uniform thermal noise, though arguably less consistent for channel
imbalances in thermal noise power and for other model-induced errors.

3.1.1 Rank of the stack

The data stack, Y, is now investigated with respect to the rank of its different contributes.
The aim is that of laying the foundation for the development of an efficient system solution.
The rank of each of the matrix elements in (3.7) is readily retrieved:

Phase matrix Φ rank = min(NI , NP )

PS stable contribute HtSt rank ≤ 3

Noise N rank = min(4NI , NP )

The case of the PS component is worth being explored into more depth. Its maximum
rank is indeed limited to 3 because of the constraint on Shv and Svh introduced by the
reciprocity property in (3.11). Let Hhh, Hhv, Hvh, Hvv be the columns (4NI×1 vectors)
of the stacked distortion matrix, so that Ht = [Hhh,Hhv,Hvh,Hvv] and similarly let shh,
shv and svv be the rows of s3t such that

st = P · s3t =


1 0 0

0 1 0

0 1 0

0 0 1


 shh

shv

svv

 (3.15)

which also determines:

s3t = D · st =

 1 0 0 0

0 1/2 1/2 0

0 0 0 1




shh

shv

shv

svv

 (3.16)

with D and P, related by PD = I4 and DP = I3, being respectively the down-scaling
and up-scaling matrices. Revisiting the expression Htst we obtain:

Htst = HtP · s3t = H3ts3t
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with:
H3t = HtP =

[
Hhh, Hhv + Hvh, Hvv

]
(3.17)

Identically, define the individual H3,s3,w3 as:

H3i = Hi ·P =


h11(i) h12(i) h13(i)

h21(i) h22(i) h23(i)

h31(i) h32(i) h33(i)

h41(i) h42(i) h43(i)

 ≡ {h(i)}mn

s3p = D · sp =

 Shhp
Shvp
Svvp

 , w3i,p = D ·wi,p =

 whhi,p
whvi,p
wvvi,p


(3.18)

and consequently the clutter covariance C3 as:

C3p = D ·Cp ·P =

 vhhp χ∗hh,hvp χ∗hh,vvp
χhh,hvp vhvp χ∗hv,vvp
χhh,vvp χhv,vvp vvvp

 (3.19)

that will be often addressed herehence.
It will be now assumed that an estimate of the phases is available (this point will be

better addressed in section 3.4) and that can be therefore removed from the observations,
producing the new normalized data Z:

Z = Φ∗ ◦Y (3.20)

Provided that the noise N affecting the data is low compared to the PS stable compo-
nent, we can reasonably approximate Z with:

Z ' H3ts3t (3.21)

with the number of significant singular components of the stack reducing to a maximum
of 3. This value could further decrease to 2 or even to one single strong singular value when
only a few PS, with no polarimetric diversity, are detected. The rank indeed depends on
the number of independent scattering mechanisms that can be found in the data. Though,
in a real scenario, provided that the width of the imagette and the PS detection threshold
are chosen conveniently, finding such PS diversity is not a problem. In the panels of Fig.
3.2 the rank sensibility to the number of PSs is shown by reporting the first 4 singular
values λi extracted by SVD decomposition of Z. The stack is generated by the best PSs
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Figure 3.2: Spectral behavior of a C-Band PS stack as a function of the number Np of best PSs selected.
The relationships between the first 4 singular values λ computed through the SVD decomposition of
stacks is shown. The targets refer to an urban imagette extracted from a 26 images Radasat-2 dataset
(refer to 4.1). The ratio of each singular value λ with respect to (a) the strongest value λ1, representing
the power of the dominant stable mechanism, and (b) the weaker one λ4, representing the noise/clutter
component, convey that the best mechanism power allocation is attained for higher Np.

identified according to (3.22). It can be noticed that when the stack is built on a very
large number of PSs, including the best ones and inevitably the noisiest ones as well, λ4

becomes stronger relatively to the other λ (Fig. 3.2a), whereas, when the PSs are good
but too few (NP < 10) the weight of λ2,λ3, as well as λ4, tends to decrease (Fig. 3.2b),
meaning that the strongest scatterers are characterized by a similar dominant mechanism.
It must be specified that these results, despite being useful for a qualitative analysis on the
data rank behavior, lack in generality on a quantitative standpoint, since they are specific to
the characteristics of the acquisition system (in this case the C-Band Radarsat-2 satellite).

3.2 The polarimetric PS identification

The concept of Permanent Scatterers and a strategy for their detection within both an
incoherent (amplitude-only) and a coherent framework was introduced by Ferretti et al. in
[14]. Since then, the problem of the PS identification has been mainly addressed on single-
polarization data, though it is evident that polarimetric data can add important details
for the target characterization [10, 27]. A model-based parameter retrieval was proposed
for dual-pol data in [36], and validated through the modest resolution resolution ERS-
ENVISAT datasets. A ground-based high-resolution X-Band SAR was then used in [31,
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37] to investigate the polarimetric and temporal stability of a selected group of urban
features, providing evidence that high resolution combined with high frequencies delivers
better characterization of the mechanisms but introduces more temporal instability as a
result of small scene changes. The concept of stability, as well of that of polarimetric
diversity discussed in the previous section, is indeed important for the PS-based technique
here proposed since it determines its reliability. As a matter of fact, we are not interested
in classifying the mechanisms in each PS cell, but in assessing their overall consistency
with (3.1). Two difference typologies of stability will be defined and their relationships
discussed.

3.2.1 Radiometric stability

This property can be referred either to the amplitude |ych| of a single polarization channel
ch = {hh, hv, vh, vv} or to the norm of the polarimetric observation ya, i.e. the root of the
polarimetric span according to ya =

√
SPANy =

√
yHy, where H stands for the Hermi-

tian operator (complex conjugate). For a chosen polarization indicator σ = {ych, ySPAN},
the stability of a target p throughout the stack can be measured by the dispersion index
(DI):

γp =
〈σi,p〉i√〈

σ2
i,p

〉
i
− 〈σi,p〉2i

(3.22)

where 〈·〉i recalls the ensemble average along the image stack, as suggested in [9, 14]. On
a theoretical standpoint neither ych nor ySPAN can ensure, even in case of low dispersion
values in (3.22), the demanded model stability. Eventual changes in the PS signature
phases indeed cannot be inferred from such metrics.

3.2.2 Polarimetric stability

The phase relationships are instead accounted by the polarimetric stability property, as well
as the amplitude ratios between the channels. An intuitive way to evaluate the polarimetric
stability is to make use of the eigenvalue analysis on the coherency matrix Tp of the p-th
PS, generated as:

ki,p =
1√

2 · yai,p

 yhhi,p + yvvi,p
yhhi,p − yvvi,p
yhvi,p + yvhi,p

 (3.23)

Kp = [ k1,p · · · kNI ,p ] (3.24)

Tp = KpK
H
p (3.25)
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Figure 3.3: Polarimetric (left) and radiometric (right) stability measured respectively through the Entropy
decomposition and the amplitude dispersion index (in this case over the single HH channel). Their
relationship is represented by 2D histogram (center).

i.e. a 3 by 3 matrix conceived from the normalized (by the span) Pauli observations kp,
with the cross-pol component built from the coherent summation of yhv and yvh. The
eigenvalue analysis applied to (3.25) returns the power distribution of the cell mechanisms.
From the 3 eigenvalues, λi, of Tp a measurement of the PS entropy can then be extracted
as

Hp =
3

−
∑
i=1

Pi log3 Pi with Pi =
λi

3∑
k=1

λk

. (3.26)

The approach is indeed analogous to the one proposed by Cloude and Pottier in [8], with
a main conceptual difference represented by the averaging domain, which is space in [8]
opposed to time in (3.24). A low entropy value must then be interpreted with the presence
of a polarimetrically stable reflection, whereas a high entropy implies relevant temporal
variations of the polarimetric mechanism inside the cell. Notice that the entropy has no
sensitivity to radiometric stability, thus allowing incoherent targets which always undergo
the same type of interaction with the incident field (such as the Bragg reflection of the sea
surface) to attain high polarimetric stability.

Theoretically, (3.22) and (3.26) provide complementary target information. However,
from their application to real scenarios a more significant connection is registered. Their
relationship is reported in Fig. 3.3 for a limited frame portion of the Radarsat-2 stack of
26 images described in chapter 5. The analysis clearly conveys that the targets which are
radiometrically stable (the DI on the HH channel has been shown) are also polarimetrically
stable but that the opposite inference is not true. Thus, a DI thresholding would represent
a valid detection criterion whereas the entropy coefficient alone is not a suitable metric.
Further optimization in the development of a polarimetric PS detection algorithm that can
exploit the quad-pol data to a wider extent is though encouraged.
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3.2. The polarimetric PS identification

3.2.3 The pixel-based Generalized Likelihood Ratio Test detector

A polarimetric PS detection criterion based on the Generalized Likelihood Ratio Test
(GLRT) is here discussed. The aim of the detection is to establish for each cell which
one of the following hypotheses:

1. the cell contains unstable mechanisms (clutter)

2. the cell is characterized by a stable backscatter (Permanent Scatterer)

is true. The occurrence of the first hypothesis is referred to as event H0 whereas the pres-
ence of a PS is denoted withH1. The solution borrows the Neyman-Pearson criterion, also
recalled as Lakelihood Ratio Test (LRT), from the classic radar detection theory [25, 48]
and extends it to the polarimetric multi-temporal context. In literature, significant research
efforts can be found on polarimetric detection and contrast enhancement techniques. These
are achieved either by analytic expressions for canonical targets and clutter [29, 35] or by
numerical optimization [53]. Most of them, though, even when dedicated to multi-image
datasets such as [39], propose to extract the clutter information from the cell neighboring
pixels. Only a few attempts have been dedicated so far (see for instance [34] for dual-pol
data) on optimizing a detection procedure based on the single pixel time-series. This latter
is indeed our objective, especially in highly heterogeneous urban scenarios.

The proposed metric is analytically derived by further constraining the full model in
(3.2) to a simplified expression as a result of these two assumptions:

1. the images are calibrated. i.e. Hi = I4.

2. the scattering fluctuations (clutter) is stronger than the thermal noise, i.e. ‖wi,p‖ >
‖ni,p‖

that lead to the approximated model:

y3i,p = D · yi,p ' ejφi,ps3p + w3i,p (3.27)

Notice that the first condition can be attained by proper image pre-processing (see sec-
tion 3.4), whereas the second property is intrinsic to the specific scene and acquisition sys-
tem. Arguably, it represents a reasonable assumption for C-band and X-band but should
be carefully verified on low-frequency systems with weaker backscatter values. The LRT-
based choice between the events

H0 : y3i,p = w3i,p (3.28)

H1 : y3i,p = ejφi,ps3p + w3i,p (3.29)

can be then expressed through

63



i
i

“thesis” — 2013/2/9 — 15:33 — page 64 — #78 i
i

i
i

i
i

Chapter 3. A PS-Based Calibration Approach

LRp =
L
(
Y3p

∣∣∣{{φi,p}NIi=1 , s3p ,C3p

})
L
(
Y3p

∣∣∣{{φi,p}NIi=1 , s3p = 0,C3p

}) H1

≷
H0

Tν (3.30)

where Tν is a threshold that must be tuned with relation to the required probability of
false alarm, Pfa, or missing detection, Pmd and L recalls the likelihood of the p-th target
stack

Y3p =
[

y31,p · · · y3NI ,p

]
,

' s3p ·
[
ejφ1,p · · · ejφNI,p

]︸ ︷︷ ︸
Φp

← Rank 1 →

+
[

w31,p · · · w3NI ,p

]︸ ︷︷ ︸
W3p

← Rank 3 →

(3.31)

where the stable term is rank one whereas the clutter term, W3p, is full rank. The
practical implementation of (3.30) demands however the knowledge of {φi,p}NIi=1 , s3p ,C3p

that are unknowns within the PS problem. The ŝ3p and φ̂i,p estimates can be in a first
moment retrieved through SVD from Y3p, exploiting its model separability according to

Y3p =
3∑
i=k

αkukv
H
k → SVD(Y3p)→ {αk,uk,vk} with α1 > α2 > α3 (3.32)

s3pΦp ' α1u1v
H
1

Φp ' vH1

s3pΦp
v1

NI

' α1u1v
H
1

v1

NI

that readily yield

ŝ3p =
α1u1 ‖v1‖2

NI

(3.33)

[
φ̂1,p · · · φ̂NI ,p

]
= −∠vH1 (3.34)

with αk being the real singular values sorted amplitude-wise and uk,vk the associated
complex singular vectors. The covariance can then be easily retrieved by means of the LS
estimator:
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3.2. The polarimetric PS identification

Figure 3.4: Relationship of the chosen PS quality metric, the Generalized Likelihood Ratio, with the radio-
metric (left) and polarimetric (right) estimates by means of the DI (on span) and Entropy coefficients.

Ĉ3p =
1

NI

NI∑
i=1

(y3i,p − ejφ̂i,p ŝ3p)(y3i,p − ejφ̂i,p ŝ3p)H (3.35)

which also represents the optimum in the ML sense. The replacement of the nominal
values with the parameter estimates leads to the criterion known as Generalized Likelihood
Ratio Test:

LRp =

L
(

Yp

∣∣∣∣{{φ̂i,p}NI
i=1

, s3p = ŝ3p,C3p = Ĉ3p

})
L
(
Yp

∣∣∣{s3p = 0,C3p = 1
NI
·YpYH

p

}) H1

≷
H0

Tγ (3.36)

where the covariance matrix in the case of the clutter hypothesis has been estimated as
the target average power. Through proper handling of the likelihood ratio (the reader is
referred to section in appendix) we yield the simplified expression:

γ̂LR = lnLR = NI · ln
(

1 + ŝH3 Ĉ−1
3 ŝ3

) PS

≷
Noise

Tγ (3.37)

which holds a strong resemblance with the PWF (Polarimetric Whitening Filter) ap-
proach [29]. The difference from this latter, though, is substantial, since (3.37) uses some
estimates ŝ of the target signature instead of the direct data observation y. As shown in
Fig. 3.4, the adopted GLRT-based detection in (3.60) ensures both radiometric and polari-
metric stability: for the 26-image RS2 stack a GLR threshold of 150 detects target with DI
(span) better than 10 and a entropy lower than 0.2. Besides, its theoretical performance,
evaluated by means of the missing detection probability (Pmd) at CFAR (Constant False
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Figure 3.5: Missing detection probability (Pmd) curves corresponding to CFAR conditions set to Pfa =
10−3. The simulations have been conducted on stacks with different baseline configurations, one with
spacing between acquisitions large enough to experience complete decorrelation (left) and one with nar-
rower baseline spread Btot with respect to the critical baseline Bcrit (right), this latter being consistent
to the RS2 used for the validation in chapter 4. Three different methods, the Dispersion Index on the
single channel (dot), on the polarimetric SPAN (dash) and the proposed GLRT method (solid), were
assessed on NI = 10, 26 stack configurations.

Alarm Rate) conditions is better than the traditional DI. The curves in Fig. 3.5 show such
comparison for false alarm probability Pfa = 10−3. The detection quality was assessed as
a function of the target quality, of the number of images and of the geometric decorrela-
tion. The limited baseline spreadBtot has indeed the major impact for distributed targets in
urban scenarios. It can be observed that for highly decorrelated acquisitions (Btot > Bcrit)
the SCR and the number of images demanded is intuitively lower than that required at
narrower baseline acqiositions (Btot = 0.2Bcrit in the right panel) where distributed target
has more stable behaviour. The proposed method registers significant performance im-
provements in every tested configuration, with the exception of the most unfavourable one
characterized by small NI and critical decorrelation, where the Pmd is comparable with
the one returned by the SPAN dispersion index. The difference in the quality returned by
the GLRT criterion with respect to the SPAN dispersion index is qualitatively presented in
Fig. 3.6. The two techniques has been applied to a RS2 imagette (NI = 26) with half of
the area covered by forest and half inhabited. Even on a rough qualitative assessment, the
GLRT clearly has the edge over the DI technique inside the vegetated area, where the both
the geometrical but in a particular way the temporal decorrelation of the scatterers is the
strongest.
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Figure 3.6: Comparison between the GLRT and the SPAN Dispersion criterions for the polarimetric PS
detection. The target selection has been forced to the 10000 strongest ones for both methods. Only 55 %
of the PSs are common to the 2 sets.

3.3 Formalization of the PS-based calibration problem

Calibrating a SAR stack means compensating the distortion that affects the data so that
the polarimetric information within each stack acquisition becomes consistent with the
calibrated information of other datasets. According to the linear distortion model adopted
in (3.1) the calibrated polarimetric observation x = [xhh xhv xvv]

T of a generic scatterer at
range and azimuth coordinates (r, x) in image i would be attained by means of the simple
operation:

x(i, (r, x)) = Ĥ†3iy(i, (r, x)) (3.38)

where Ĥ3 is the estimated 4×3 PDM in (3.18), the superscript † recalls the pseudo-inverse
matrix operator and y is the uncalibrated 4-elements data vector. Notice that if no physical
consistency is required for Ĥ3, with respect to a specific set of parameters Θ(i.e. cross-
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talks, channel imbalances and Faraday rotations), the estimates Ĥ3 are accepted despite:

@ Θ
∣∣∣H3(Θ) = Ĥ3.

Differently, when a robust prediction of Θ can be achieved, these latter can be exploited
in the calibration procedure, leading to

x(i, (r, x)) = H3(Θ̂i)
−1y(i, (r, x)). (3.39)

where the reconstructed matrix H3(Θ̂i) can hopefully benefit from the damping of its
noisiest and inconsistent hmn elements. This is indeed the approach adopted by the ref-
erence contributions in literature, such as [16, 38, 49] to name a few. Furthermore, the
retrieval of Θ represents itself the aim of the polarimetric investigation when the moni-
toring of the system stability or the evaluation of the Faraday rotation angle (L-Band) are
concerned. In this case we should refer to the problem more as a problem of estimation
than as a problem of calibration.

Notice then that when the additive noise is negligible the calibration procedure should
lead ideally to:

x(i, (r, x)) = Ĥ†3iH3i
s3(i, (r, x)) ' s3(i, (r, x)). (3.40)

When the expression of H3 is known, such as in controlled or simulated experiments,
the accuracy of the calibration in (3.38) and (3.39) can be quantitatively assessed by using
the the Wang-Ainsworth-Lee metric [50] here adapted to the 3 × 3 residual distortion
Ĥ†3iH3i

. The quality is measured through the maximum normalized error (MNE):

MNE = max
s3

∥∥∥(I3 − Ĥ†3iH3i

)
s3

∥∥∥
‖s3‖

=
√
λmax[(I3 − Ĥ†3iH3i

)H · (I3 − Ĥ†3iH3i
)].

(3.41)
where λmax is the largest eigenvalue of the enclosed matrix (I3 − Ĥ†3iH3i

)H(I3 −
Ĥ†3iH3i

). However, the estimation of (3.41) in real scenarios, where the target signatures
s3 are all unknown, is not possible, and other criterions must therefore be adopted. A
reasonable criterion for the retrieval of a generic parameter set Θ would then be, with
reference to (3.20) and (3.21):

Θ̂ = argmin
Θ

d
(
Y, Ŷ = Φ(Θ) ◦ [H3t(Θ)s3t(Θ)]

)
(3.42)

which reads as the minimization of a convenient distance d between the data stack Y
and the stack reconstructed from the model estimates, Ŷ. Assuming that no a-priori infor-
mation is available, the set of unknowns, Θ, in the PS problem so far introduced accounts
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for the parameters associated to the targets:

− 3NP complex backscatter coefficients Shh,Shv,Svv
− 3NP real clutter variances vhh,vhv,vvv
− 3NP complex covariances χhh,hv,χhh,vv,χhv,vv

those associated to the images:

− 12NI complex distortion elements hmn (most general linear model)
− NI thermal noise variances ν

and the phase matrix in (3.8), comprising

− NINP phases φ

that add significant complexity to the problem. The overall number isNP (NI+15)+13NI

real unknowns that must be estimated from 8NPNI real equations. The balance is there-
fore positive, meaning that the system is overdetermined, when

8NPNI > NP (NI + 15) + 13NI (3.43)

yielding

NI ≥ 3 when NP � NI (3.44)

which conveys that, when a large number of PSs is detected, the minimum number
of images required for calibration is NI = 3. Since the problem is not separable, the
optimal solution to (3.42) would demand a joint parameter optimization over the whole
set Θ. An exhaustive exploration of the parameter space can be immediately excluded,
due to the very large number of parameters. On the opposite side, the derivation of exact
analytic expressions, considering the problem complexity, appears identically unfeasible.
This necessarily leads to the implementation of suboptimal solutions whose robustness
can be ensured by means of a convenient choice of the metric d and a smart design of each
solution step. Some minor approximation will be also applied to the model.

3.4 The proposed calibration algorithm

The PolPSCal technique, whose workflow is outlined in Fig. 3.7, has been designed with
the aim of providing a comprehensive and, at the same time, efficient solution to the PS
model estimation problem. The technique receives as input a coregistered uncalibrated
dataset and returns a calibrated stack together with the estimates of the distortion and the
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extracted PS information, as illustrated in Fig. 3.7. It is composed of four main operational
blocks:

• The algorithm initialization consisting in an initial coarse estimation of the model
parameters

• A PS selection procedure

• A parameter estimation block, that can be reiterated together with the detection until
convergence of the estimates

• A final normalization of the PS-based estimates and data calibration where integra-
tion with external information is carried out

A mathematical description of the algorithm steps is now provided. The initial estimation
of the distortion parameters (coarse calibration) can be approached by exploiting well-
known techniques such as [19,38] in case of generic distortions or [2,5] for the correction
of Faraday rotations, which provide a good partial polarimetric calibration. Such initial-
ization is in particular recommended in case of strong miscalibration to ensure a robust
convergence of the algorithm. By means of (3.39), it leads to the calibrated data xi,p , that
will be used in the next step for the initialization of the target features, ŝ3p , Ĉ3p and φ̂i,p .
These estimates can be attained through (3.32-3.35), by replacing the data in (3.31) with
xi,p. The first PS detection is then carried out through the criterion already pointed out in
(3.37). A joint estimation of the PDMs and of the PS backscatter is hence conceived.

3.4.1 SVD-based estimation of the polarimetric distortion

The first step consists in building the stack Y in accordance with (3.6). Then the phase
estimates φ̂must be removed from Y as reported in (3.6) to get the stack Z. Since the struc-
ture of Z is that of a separable model, a Singular Value Decomposition (SVD) approach
configures as the most straightforward, but nonetheless efficient (on the computational
times standpoint), inversion solution. With reference to the low-rank approximation the-
ory [13, 44], it can be demonstrated that the SVD approximation represents the optimum
with regard to the Frobenius norm minimization of the residual. In our case this leads to
the estimates:

Ĥ3i, ŝ3p = argmin
H3i,s3p

‖Z− Z(3)‖F (3.45)

where ‖· ‖F identifies the Frobenius norm and Z(3) is the SVD approximation of Z trun-
cated to the third singular component. Remember that (3.45) is satisfied only if at least 3
independent scattering mechanisms are present throughout the stack, as discussed in sec-
tion 3.1.1. Here hence we will always assume to operate on the most desirable condition,
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Figure 3.7: Schematic representation of the iterative PS-based calibration solution, namely the PolPSCal
technique.

which is also the most realistic one, i.e. the case rank(Htst) = 3. The application of
SVD to the stack does not return the exact Ĥ3i, ŝ3p estimates, but the matrices U,Λ,V:

Z(3) = UΛVH (3.46)

U =

 U1

...
UNI

 , VH = [v1 . . .vNP ] (3.47)

where U and V, with dimensions of 4NI×3 andNP ×3 respectively, are sets of orthonor-
mal vectors (namely the left and right singular vectors) and Λ is the 3× 3 diagonal matrix
carrying the singular values. It is readily demonstrated that the solution is determined up
to the 3× 3 arbitrary matrix B:

UΛVH = UB ·B−1ΛVH = Htst (3.48)
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Figure 3.8: SVD analysis on a PS stack (left) extracted from the Barcelona RS2 dataset, NI = 29. The
10 strongest left singular components (the ones associated to the image distortion) have been illustrated
both in their unitary amplitude form (center) and scaled for their energy (right).

thus attaining:

Ht = UB

st = B−1ΛVH .

(3.49)

The ambiguity affects the polarimetric purity generating an additional cross-talk that
cannot be solved without using external data. Nevertheless the PolPSCal procedure will
employ the estimates

H̃3i = Ui ' H3i ·B−1

s̃3p = ΛvHp ' B · s3p
(3.50)

along the refinement steps that will follow. The effects of such induced cross-talk are
shown on real dataset in Fig. 3.8. The most energetic left singular components (first 10
vectors of U) are reported for a Radarsat-2 PS stack (29 images) both with and without
normalization for the singular values. The phases have been estimated and removed from
the data, which have been assumed perfectly calibrated. Notice that the stack has clearly
rank 3 and that the principal components are not exactly matched to the the HH, HV and
VV polarizations of st, for the effect of the ambiguity B.
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3.4. The proposed calibration algorithm

3.4.2 Estimation of the PS parameters and update of the PS stack

When tough distortion scenarios are addressed, only a narrow set of PSs can be identi-
fied in the first detection step. A processing scheme based on the iterative refinement of
both the detection and estimation steps has been then developed, the rationale being that
the enhancement in the estimates yields a more effective detection and the consequent in-
crease in the number of PSs lead to more accurate estimates. The purpose is to entrust
the algorithm with the capability of re-evaluating at each step the quality of all the targets
according to the updated estimates, and thus of inserting new targets that were left out in
the previous iteration. It is evident that such mechanism cannot rely on the SVD-based
estimator that operates only on the PSs already selected. As conveyed by the workflow in
Fig. 3.7, updated estimates should instead be achieved for all the targets in the imagette
before performing a new detection. An analytic procedure based on the sequential Least
Squares assessment of all the target parameters, including the phases, has been developed.

It relies on the noise model assumption:

yi,p ' H̃3i

(
ejφi,p s̃3p + w̃3i ,p

)
(3.51)

which exploits the fact that PSs are usually characterized by backscatter fluctuations that
are stronger than the thermal noise. The data are then calibrated for the ambiguous distor-
tion returned by the SVD1, H̃3, by means of

xi,p = (H̃H
3i H̃3i)

−1H̃H
3i yi,p = H̃†3i yi,p. (3.52)

attaining the 3-component vectors xi,p. Since the H̃3 is full-rank (see section 3.1.1),
the pseudo inverse operator always satisfies H̃†3H̃3 = I and consequently:

H̃†3H3 ' B. (3.53)

By substituting (3.51) into (3.52) and accounting for (3.53) the probability density func-
tion of xi,p takes the expression:

px(xi,p) '
1

π3 · det(BC3pBH)
×

exp
(
−(e−jφi,pxi,p −B s3p)

H(BC3pB
H)−1(e−jφi,pxi,p −B s3p)

)
(3.54)

where the following relationships have been exploited:

H̃†3iHisp ' B · s3p (3.55)

E
[
H̃†3iHiwi,pw

H
i,pH

H
i H̃†H3i

]
' BC3pB

H (3.56)

1The notation H̃ has been used instead of Ĥ because of the uncertainty. The parameters retrieved through SVD cannot in fact be
considered a direct estimate of H3 but of its distorted version H3B−1
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Having removed the timely dependence on the distortion Hi, the complex multivariate
gaussian distribution in (3.54) is stationary with time, the benefit being that its mean and
covariance optimum estimates represent indeed common knowledge. With reference to
the normalized data e−jφi,pxi,p, the mean s̃3p is then retrieved in the LS sense as:

s̃3p =
1

NI

NI∑
i=1

e−jφi,pxi,p ' B s3p (3.57)

whereas the clutter covariance is obtained with:

C̃3p =
1

NI

NI∑
i=1

(e−jφi,pxi,p − s̃3p)(e
−jφi,pxi,p − s̃3p)

H ' BC3pB
H (3.58)

When the phases φ are not provided externally (e.g. by a PS processor) they must be
replaced in (3.57) and (3.58) by their estimates φ̂, which are refined inside the PolPSCal
algorithm as well. With reference to (3.51) their LS estimates are in fact obtained by:

φ̂i,p = ∠
(
xHi,ps̃p

)
(3.59)

In consideration of the estimates (3.57)-(3.59), the metric γ̂LR presented in (3.37) can be
revisited, yielding indeed:

γ̂LR = ln

 L
(
Y
∣∣∣{H̃3, s3 = s̃3, φ̂,C3 = C̃3

})
L
(
Y
∣∣∣{H̃3, s3 = 0, φ̂,C3 = 〈xxH〉

})


'NI · ln
(

1 + s̃H3 C̃−1
3 s̃3

) PS

≷
Noise

Tγ (3.60)

. The uncertainty B has no influence in such PS detection, since it can be easily verified
that s̃H3 C̃−1

3 s̃3 = ŝH3 Ĉ−1
3 ŝ3, with ŝ3 and Ĉ3 standing for the unambiguous estimates. This

very property represents by all means a fundamental asset, since it leads to the considera-
tion that

the PolPSCal technique is autonomous from any external reference information.
As a results its performance is only dependent on the data consistency with the
PS model.

It must be then remarked that the whole estimation chain (3.57)-(3.59) and (3.45) is
coherent with respect to the LS optimization criterion, included the SVD step as previously
commented, whereas the expression in (3.60), at the base of the PS selection, is intended to
operate in a ML framework. Since the target signature and quality (covariance) estimators
coincide with the ML ones and the H̃3 retrieved are supposed to be close enough to the
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3.4. The proposed calibration algorithm

Figure 3.9: Estimated Likelihood Ratio indicators on a pseudo-real stack of NI = 10 images generated
accordingly with the statistics of the detected PSs shown in (a). The deviations from the correct LR
values registered by the estimates derived from the ML phases and the LS phases is shown respectively
in the panel (b) and (c). The two different estimates are then directly compared in (d).

ML optimum, the major issue in (3.60) is indeed the LS phase, and more specifically, its
impact on (3.57)-(3.59). The robustness of γ̂LR with respect to such improper handling
has been evaluated on a representative synthetic dataset made of NI = 10 images. The
analysis, shown in Fig. 3.9, reports only minor deviations of the quality obtained with
(3.59) from the one derived through the ML estimates. It can be therefore supposed that
the adoption of (3.59) is not impairing the selection procedure.

The detection and estimations so far elucidated are repeated until a convergence on the
estimates is reached. Note that because of the SVD step that jointly operates on the image
and target parameters, the procedure is robust and therefore the convergence is fast, taking
at most 3-4 cycles to adjust to the final estimates.

3.4.3 Normalization aided by external reference

With reference to the estimates returned by (3.49), it is evident that the ambiguity B must
be removed from the PDM before calibrating the data or retrieving from the PDM the
distortion parameters. The most obvious method to overcome such issue is that of making
use of any available external information on the calibration parameters. The knowledge of
the distortion matrix of a single image i0 is indeed enough for the purpose. The problem as
a result takes the form of a relative calibration problem, or, in other words, that of assessing
the estimators accuracy not in an absolute sense but with respect to some other reference
estimates.

Assuming that the matrix Href
i0

(and thus Href
3i0

) is known, and that the ambiguous esti-
mate H̃3i0 is related to this latter through
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Href
3i0

= H̃3i0 ·B + nH (3.61)
where nH is a generic noise (model errors and estimation uncertainties), the matrix B

can be retrieved in the optimum LS sense as:

B̂ =
(
H̃H

3i0
H̃3i0

)−1

H̃H
3i0

Href
3i0
. (3.62)

Once B is determined one can easily obtain the other PDM estimates through:

Ĥ3i = H̃3i · B̂. (3.63)

Note that in a real calibration scenario the reference matrix Href
i0

is extracted either from
internal calibration information or from external estimation techniques [15]. Besides, it
should be considered that more normalization possibilities are offered by the multi-image
dataset, such as the exploitation of more PDMs to name one, but also that the external
information can be limited and thus an integration rather than a normalization would be
required. Such scenario complexity will be treated in more detail in chapter 4.

3.5 Theoretical Performance

In appendix C it is shown that the ML refinement outperforms the LS estimates when the
observation is consistent with the model in (3.1). It is also remarked that this is achieved at
the expense of more computation burden for the system and that the stability still requires
some proper assessment. Differently, the SVD solution represents a more effective and
predictable approach even when the data has poor agreement with the model, and thus
represents a preferable choice. Besides, a theoretical analysis on the estimation error at-
tained by (3.45) is indeed feasible. Its approximated closed-form expression will be here
derived as a function of the true distortion and target parameters.

The procedure is based on the LS estimators of the involved parameters. When the
image distortion and the PS backscatter are treated separately, the LS optimum for the first
is yielded through:

Ĥ
(LS)
3i = argmin

H3i

(∑
p

‖zi,p −H3is3p‖

)

= argmin
H3i

(∑
p

Tr
[
(zi,p −H3is3p) (zi,p −H3is3p)

H
])

=
∑
p

zi,ps
H
3p ·

(∑
p

s3ps
H
3p

)−1

(3.64)
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whereas the latter is simply obtained as:

ŝ
(LS)
3p =

(∑
i

HH
3iH3i

)−1∑
i

HH
3izi,p. (3.65)

It can be argued that in a real calibration scenario we do not have information neither
on H3i nor on s3p, but we can only rely on some generic estimates Ĥ3i and ŝ3p. A rigorous
approach would at this point demand the repeated substitution of (3.65) in (3.64) and then
that of (3.64) into (3.65) in order to yield the asymptotic expression of the estimates, i.e.
the LS optimum. A simplified derivation, though, is here proposed. The approximated
approach simply consists in accounting only for a single substitution step, which is the
one carrying the largest error contribute. Equation (3.64) takes then the still comfortable
expression:

Ĥ3n =
∑
p

zn,pŝ
H
3p ·

(∑
p

ŝ3pŝ
H
3p

)−1

=
∑
p

(H3ns3p + ei,p) ŝH3p ·

(∑
p

ŝ3pŝ
H
3p

)−1

∼= H3n

(
1−Hinv

∑
p

∑
i

HH
3iei,ps

H
3psinv

)
+
∑
p

en,ps
H
3psinv (3.66)

where the assumption of high SCR allows to neglect all the second and higher or-
der terms of noise e. Besides, the following approximation and new nomenclature were
adopted:

sinv =

(∑
p

s3ps
H
3p

)−1

, Hinv =

(∑
i

HH
3iH3i

)−1

(∑
p

ŝ3pŝ
H
3p

)−1

∼= sinv − sinv · 2R

{∑
p

s3p
∑
i

eHi,pH3i ·Hinv

}
sinv (3.67)

The PDM expression in (3.66) is indeed unbiased, since the nature of the noise, see
(3.13) and (3.14), is that of a zero-mean process. The expression of their covariance is
attained as:
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Figure 3.10: PolPSCal performance evaluated through Montecarlo runs on synthetic PS datasets with SCR
varied between 5 and 15 dB. The estimation performance is studied for every element of the 4×3 PDM
as a function of the number of PS Np in the stack and is compared with the closed-form approximated
accuracy expression.

C(LS)
n = E

[
vec(Ĥ3n −H3n) · vec(Ĥ3n −H3n)H

]
= κ

[∑
p

∑
i

(
s∗3p ⊗HH

3i

)
Γi,p

(
s∗3p ⊗HH

3i

)H]
κH+∑

p

(
sTinvs∗3p ⊗ I4

)
Γn,p

(
sTinvs∗3p ⊗ I4

)H
+

2R

{
κ
∑
p

(
s∗3p ⊗HH

3n

)
Γn,p

(
sTinvs∗3p ⊗ I4

)H}
(3.68)

with ∗ referring to the complex conjugate, κ = sTinv⊗(H3nHinv) and Γi,p = H3iC3pH
H
3i+
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3.5. Theoretical Performance

νiI4. The interpretation of (3.68) is not straightforward though it can be seen from the
simulation results in Fig. 3.10 that such theoretical formulation is able to provide a close
expectation of the SVD results (with only a little underestimation bias). It is readily in-
ferred that when the the system is ideal, H = I4 ⇒ H3 = P, and the clutter statistics are
the same for all the PSs, the trace of (3.68), which expresses the total PDM uncertainty
(Total Mean Squared Error), can be simplified into:

TMSE = Tr
{
C(LS)
n

}
=

(
1

NI

+ 2

)
· Tr {sinv} (Tr {Γ} − σn) + Tr {sinv}Tr {Γ}

The number of images is only barely influential on the estimation quality (it has an im-
pact only when NI is very low) whereas the disturbance added by thermal noise becomes
significant when its power is close to the one of the target clutter. By coarsely assuming
Tr {sinv}Tr {Γ} ∝ (Np · SCRav)

−1 , with SCRav being the average SCR, the relation-
ship between the accuracies of the two different dataset configurations {SCR1, Np1} →
TMSE1 and {SCR1, Np1} → TMSE2 can be conveniently approximated to:

∆[dB]TMSE ' −∆[dB]SCR− 10log10

(
Np2

Np1

)
. (3.69)

where the notation ∆[dB]x = x2[dB] − x1[dB] is introduced. Though (3.69) refers to
the total error it can be noticed from Fig. 3.10 that the same trend is shared by all the PDM
elements. Indeed, their MSE curves simply differ by a scalar factor, that depends on both
the backscatter characteristics of the PSs and the specific distortion affecting the data.

So far the analysis has been focused on defining the estimation problem and evaluating
the performance of the parameter estimators. The attention will be now shifted to the ver-
ification of the calibration quality, which is in the end the utmost interest for the majority
of the SAR users. The overall quality is evaluated by adopting the MNE metric advised
in (3.41), that is independent from the targets to calibrate. In very simple terms, an MNE
level of -30 dB conveys that the maximum amount of relative distortion that a target can
experience is indeed -30 dB. The curves plotted in Fig. 3.11 represent the MNE of a wide
set of calibration scenarios, with number of PSs ranging from 200 to 1000 and SCR qual-
ity varying from 5 and 20 dB with steps of 5 dB. The interpretation is straightforward: for
instance it can be deduced that in order to maintain a -30 dB MNE purity, the PolPSCal
could identically use 7000 PSs with 5 dB SCR or 200 PSs with a 20 dB SCR quality. Note
that the PDM distortion model has not been so far accounted, meaning that no model con-
sistency was forced on the estimates. In other words, the calibration in (3.38) was chosen
instead of the approach in (3.39), which will be discussed in the next chapter.

A further remark must be spent on the fact that the PolPSCal calibration performance
achieved through (3.63) and (3.38) is invariant with respect to the polarimetric distortion
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Figure 3.11: Overall calibration quality achieved by the PolPSCal. The quality is evaluated through the
MNE metric on synthetic datasets with SCR varied between 5 and 20 dB.

diversity. This behavior is also inferred from Fig. 3.12, where the MNE attained for
different perturbation amplitudes of the Faraday rotation disturbance is shown to have a
constant trend.

3.6 Conclusions

The chapter debated an external calibration approach based on the stable natural targets,
namely Permanent Scatterers (PS), that can be spotted in the illuminated frame. The
method, hereby called PolPSCal, allows for relative calibration of the full 4 by 3 PDMs af-
fecting the stack images. The algorithm is neither constrained to a particular PDM model
(thus its implementation is practically feasible for any SAR sensor) nor to any external
information. These latter are eventually demanded afterwards in order to normalize the re-
turned PDM stack to an absolute reference. The approach is supported by the fundamental
assumption that the distortion fluctuations have a large-scale spatial behavior. This allows
indeed to approximate such parameters with constant values over small portions, called
imagettes, of the total frame area, that are individually processed. A pixel-basel PS detec-
tion metric which allows to exploit to a larger extent the PS polarimetric time-series has
been formulated. When the number of images is large the method significantly improves
the detection performance with respect to the traditional amplitude based approaches even
with unfavorable baseline configurations, i.e. when the clutter experiences only weak geo-
metric decorrelation. A novel procedure was designed in order to handle the processing of
the polarimetric PS data, achieving an LS estimation of the model parameters. The PolP-
SCal output accounts for the target phases, the PS polarimetric signatures and quality, and

80



i
i

“thesis” — 2013/2/9 — 15:33 — page 81 — #95 i
i

i
i

i
i

3.6. Conclusions

0 2 4 6 8 10
-35

-30

-25

-20

-15

-10

-5

0
Calibration Quality

Faraday rotation std. deviation, σ
Ω
  [deg] 

 

 

N
p
 = 100

N
p
 = 1000

Figure 3.12: PolPSCal calibration quality. The MNE dependence on the Faraday perturbation strength is
reported for two different stack configurations with 100 and 1000 PSs respectively and the same SCR =
5 dB quality.

last but not least the PDM information. At the end of the chapter it was shown how the
theoretical calibration performance is in a first approximation related to the number of PS
detected in the imagette and to their polarimetric quality and how it is instead independent
from the distortion characteristics.
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CHAPTER4
Permanent Scatterers and Distributed Targets: an

overarching system monitoring approach

It was discussed in chapter 2 how the estimation of the system distortion is hardly feasi-
ble when carried out solely on distributed targets (DT) without some proper model pre-
conditioning. Chapter 3 addressed then the Permanent Scatterer (PS) based calibration
problem, illustrating the performance but also remarking the need of disambiguating the
estimates at the end of the process. The present chapter aims to provide a more encompass-
ing view of the problem by focusing on the fact that the PS procedure provides different
distortion information from that returned by the DTs and therefore carry the potential to
unveil further distortion details. The perspective, however, can be easily reverted, thus
looking at the estimation problem from the PS standpoint. In such case we should ar-
gue that the PDMs retrieved by the PolPSCal technique already carry the whole distortion
information, though affected by a 3 by 3 matrix multiplication uncertainty, and that the
DT-based estimates can help in removing the whole or just part of this uncertainty. The
aim of this chapter is then two-fold: 1) propose the theoretical formalization of a calibra-
tion framework where the for DT-based techniques and the PolPSCal information are con-
veniently integrated for a joint polarimetric calibration 2) provide an effective validation
through its application on a real case study. This latter has been carried out on a C-Band
RADARSAT-2 dataset acquired over the Barcelona town area in the Fine Quad-Pol mode.
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monitoring approach

Figure 4.1: Intuitive representation of a DT-based (left) and PS-based (right) estimation procedures.
Whereas the DT-based estimates are obtained individually for each image the PS-based are the result of
a joint stack estimation.

4.1 Overview of the two-fold information framework

The DT-based techniques and the PolPSCal algorithm extract the distortion parameters
from different categories of target information, more specifically from second-order statis-
tics (covariance matrix) the first and from first-order information (amplitude and phase)
the latter. Besides, DT estimation usually relies on areas of randomly oriented scatterers
(orientation symmetry), whereas the PS estimates are computed from stable and strong
scatterers. As a result of the independent DT-based and PolPSCal algorithm application
to the data available, as illustrated in the scheme of Fig. 4.1, the two PDM (polarimetric
distortion matrix) sets are attained:

HPS(i), HDT (i) with i = 1, 2 · · · , NI (4.1)

for all the NI images comprising the polarimetric image stack. This first, HPS , is
indeed related to the true 4× 3 PDM H3 by

H3(i) = H(i) ·P = ejψPS(i)HPS(i) ·B + NPS(i) (4.2)

where P =



1 0 0

0 1 0

0 1 0

0 0 1


is a column-shrinking matrix, NPS and B are the 4×3 and 3×3

complex matrices representing respectively the noise and the ambiguity matrix affecting
the PolPSCal estimates, ψPS is a residual phase ambiguity between the PDM and the
optical path of the targets. Notice that, whereas ejψPS is image-dependent, B is constant
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throughout the stack. This is indeed the reason behind the separate modeling of their
phases.

The second PDM estimate, HDT , is a model-based 4 × 4 matrix, HDT ≡ H(Θ̂DT ),
where Θ̂DT is a set of distortion parameters that can be estimated. The case of a generic
polarimetric system, thus with no assumptions on the cross-talks and on Faraday, is hereby
addressed. In this case, H3 would be related to the HDT estimates through:

H3 = AejψDT ·HDT ·P ·K + NDT (4.3)

H3 = AejψDT ·


1 αw v αvw

u α uv αv

z αwz 1 αw

uz αz u α




1 0 0

0 1 0

0 1 0

0 0 1


 1 0 0

0 k 0

0 0 k2

+ NDT (4.4)

with:

AejψDT = r11t11, k =
t22

t11

, (4.5)

α =
r22

r11

t11

t22

, u =
r21

r11

, v =
t21

t22

, w =
r12

r22

, z =
t12

t11

(4.6)

where NDT is the estimates deviation from the true model and rij ,tpq with i, j, p, q =
{1, 2} are respectively the complex elements of the 2 × 2 distortion matrices in recep-
tion and transmission belonging to the model discussed in chapter 3 and also reported
schematically in Fig. 4.2. The set ΘDT = {α, u, v, w, z}, comprising the imbalance ratio
and the 4 cross-talk coefficients, represents the largest unambiguous parameter set attain-
able through DT estimation. The information about the total real gain A and the channel
imbalance k would be still missing.

4.2 Distortion data assimilation: a theoretical strategy

4.2.1 PDM normalization

The idea herehence promoted for the assimilation of the two different information is that of
performing the same procedure presented in 3.4.3, where some PDM information external
to the PolPSCal is used to normalize the estimates of this latter. The external information
is here represented by the DT-based distortion estimates HDT of a chosen image i0. The
criterion adopted for the selection of i0 is an image quality indicator that will be better
discussed with relation to the Barcelona case study in 4.3.3. By merging the estimates
(4.3) and (4.2) of the reference image i0 we obtain the relationship:
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Figure 4.2: Essential representation of the mathematical connection between the general distortion model
of the observations and the information that can be extracted from the DT and PSs.

A(i0) ·HDT (i0) ·P ·K(i0) = ejχ(i0)HPS(i0) ·B + N(i0) (4.7)

where N = NPS − NDT is the overall noise term, χ = ψPS − ψDT and where the
dependence on the image index has been explicited. The unknowns of the non-linear
system are A(i0), k, that in (4.3) must be now referred to as k(i0), χ(i0), and B, therefore
2 real (A and χ) and 10 complex coefficients (f2 and the 9 elements of B), amounting to 22
real unknowns. On the other side, the number of real equations is 24. However, retrieving
at the same time A,χ, k and B is not possible. This is trivially verified by observing that
for arbitrary values of (α,β,γ) the two sets

Ψ = {A,χ, f2,B} , Ψ′ =

αA, βχ, γf2, e
−jβχB ·


1/α

1/(αγ)

1/(αγ2)




are both valid solutions of (4.7). Such ambiguity is practically handled by constraining
the parameters to the arbitrary values:

A(i0) = 1

φ(i0) = 0 (4.8)
f2(i0) = 1

thus yielding:

HDT (i0) ·P = HPS(i0) ·B + n(i0) (4.9)

with K(i0) that becomes the identity matrix I3 as a result.
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By looking further into the algebraic problem of (4.9) it can be observed that the ma-
trices HDT , HPS and B do not suffer from rank deficiencies and thus are all invertible
or pseudo-invertible. It is then possible to proceed to the PDM normalization by first
estimating from (4.9) the ambiguity matrix, B̂, as:

B̂ = HPS(i0)†HDT (i0) ·P (4.10)

and than trivially applying B̂ to the other images i of the stack:

Ĥ3(i) = HPS(i) · B̂ (4.11)

with † standing for the pseudo-inverse operator. Notice that the noise was neglected in
the derivation of (4.11), though its optimal handling could indeed bring marginal improve-
ments in the estimates quality. It was in fact decided to leave such topic open for future
investigation.

4.2.2 System monitoring and Data calibration

As a result of the constraints in (4.8), the relationship between the retrieved ambiguity B̂
and the real one B can be well approximated (under the assumption of small estimation
noise N) by unwinding (4.10) into:

B̂ ' ejχ(i0)

A(i0)
·B−1 ·K(i0)−1. (4.12)

It follows that the normalized PDM of a generic image i computed through (4.11) can
be though of as:

Ĥ3(i) ' 1

A(i0)
· ej(χ(i0)−ψPS(i)) ·H3(i) ·K(i0)−1 (4.13)

or, more explicitly:

Ĥ3(i) ' rA(i)·rχ(i)·


1 αiwi vi αiviwi

ui αi uv αivi

zi αiwizi 1 αiwi

uizi αizi ui αi




1 0 0

0 1 0

0 1 0

0 0 1


 1 0 0

0 rk(i) 0

0 0 rk(i)
2

 .
(4.14)

rA(i) =
A(i)

A(i0)
, rk(i) =

k(i)

k(i0)
, rχ(i) =

ejχ(i0)

ejχ(i)
(4.15)
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The assimilation procedure allows then to yield an unambiguous estimation of the en-
larged set:

ΘPS = {rA, rk, rχ, α, u, v, w, z} (4.16)

that, compared to ΘDT set in (4.6), also accounts for the absolute gain and channel im-
balance ratios (total imbalance indeed, comprising eventual Faraday effects) with respect
to their values at time i0. The determination of ΘPS from the normalized estimates Ĥ3 is
indeed a non linear problem. A convenient solution is that of resorting to the following
optimization criterion:

Θ̂PS = argmin
ΘPS

∥∥∥W−1/2
H · vect

(
Ĥ3 −H3(ΘPS)

)∥∥∥ (4.17)

which reads as the minimization of the `2 norm between the vector assembled from
Ĥ3 and the one reconstructed from the optimum set Θ̂PS = {r̂A, r̂k, r̂χ, α̂, û, v̂, ŵ, ẑ} with
their elements being weighted by the matrix WH. This latter is conveniently determined
as the correlation matrix of the error on the H3 estimates, given the specific PS set under
analysis, and is practically computed through the approximated analytical expressions in
(3.68), which make use of the estimates Ĥ3, ŝ3, Ĉ3 attained after normalization. The
optimum for (4.17) is then found by means of an iterative procedure starting from the
initial set Θ̂

(0)
PS

Θ̂
(0)
PS =

{
rA = 1, rk = 1, rχ = 0, Θ̂DT

}
(4.18)

It’s been stated that the retrieval of WH is stack-adaptive, since different weights are
found for different sets of PSs. The error correlation is indeed dependent on the partic-
ular PS polarimetric diversity, on the PS noise covariances, and on the actual distortion
parameters. Among these latter, the Faraday rotation is the parameter exhibiting the most
influence. In Fig. 4.3 the error variance on the single hmn elements, normalized to the
error power on the whole H3, is shown as a function of Faraday for a representative PS
scenario with SCR = 10 dB on every channel and an overall difference of 5 dB in the PS
backscatter between the co-pol and the cross-pol channels. Though the cross-correlation
terms are not shown, it should be remarked that they often are significant, and therefore
cannot be neglected in the weighting operation.

The calibrated signature of the p-th target in the i-th image

x(p, i) = [ xHH(p, i) xHV (p, i) xV V (p, i) ]T (4.19)

can be obtained from the its distorted vector

M̃(p, i) = [ MHH(p, i) MHV (p, i) MV H(p, i) MV V (p, i) ]T (4.20)
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Figure 4.3: Behavior of the residual errors for each element hmn belonging to reconstructed Ĥ3, with
respect to the Faraday rotation affecting the acquisition.

by means of the least squares solution [38]:

x(p, i) = Ĥ3(i)†M̃(p, i) (4.21)

where a data symmetrization (xHV = xV H) operation has implicitly been carried out.
The calibrated data would be then related to their true value, s(p, i) =

[
SHH(p, i) SHV (p, i) SV V (p, i)

]T ,
by:

xHH(p, i) = A(i0) · ej(χ(i)−χ(i0)) · SHH(p, i)

xHV (p, i) = A(i0) · k(i0) · ej(χ(i)−χ(i0)) · SHV (p, i) (4.22)

xV V (p, i) = A(i0) · k(i0)2 · ej(χ(i)−χ(i0)) · SV V (p, i)

where, apart from the common phase term that is irrelevant for data interpretation, a
complex factor different for each polarization still hinders the absolute data calibration. It
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Figure 4.4: Schematic representation of DT-based monitoring (left) and of the joint DT+PS strategy (right)
that is able to extract from the scene all the information needed for a temporally comprehensive moni-
toring of the system distortion (up to a constant scale factor).

must be positively remarked, though, that such factors are now constant along the stack.
This means that, as a result of (4.8), a relative calibration with respect to the true data
in i0 was independently achieved for each polarization. This entails the possibility of
applying intra-stack operations, such as change detection analysis, but still hampers direct
inter-stack data comparison unless additional external information on the A and k at time
i0 is available. In particular, k(i0) contributes to the correct polarimetric interpretation
of the scene and thus its information is essential for simple polarimetric analysis, such
as the co-pol HH − V V phase analysis, as well as for advanced polarimetric concepts
such as polarimetric decompositions. The gain A(i0) is then required for amplitude-based
parameter estimation, such as accurate soil moisture or biomass retrieval routines. This
information must be necessarily determined by means of calibrated point targets observed
at some time close to the i0 UTC and for the same beam mode and elevation look angle.

4.2.3 Monitoring of Faraday-free systems

The benefits brought by the possibility of enlarging ΘDT to ΘPS become straightforward
when the stack is not affected by Faraday rotations. This is indeed the case of airborne
systems [1,38], of high frequency spaceborne sensors (from C-band upwards) and of lower
frequency spaceborne systems (future L-Band and P-Band missions) operating in mild
ionospheric conditions, i.e. typically at low latitudes during the night and/or in periods
with lower sun activity [42]. We indeed recollect from chapter 2 that in such configurations
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the parameters in (4.16) are directly related to the TRM system distortion, and thus assume
the more familiar expressions:

rk(i)→
f2(i)

f2(i0)

α(i)→ f1(i)

f2(i)

u(i)→ δ1(i)

v(i)→ δ4(i)

f2(i)
(4.23)

w(i)→ δ2(i)

f1(i)

z(i)→ δ3(i)

Notice that by manipulating the v and w cross-talks as:

rk(i)v(i)→ δ4(i)

f2(i0)

rk(i)α(i)w(i)→ δ2(i)

f2(i0)

(4.24)

we can obtain the equivalent set

ΘPS =

{
rA(i), rχ(i),

f2(i)

f2(i0)
,
f1(i)

f2(i)
, δ1(i),

δ2(i)

f2(i0)
, δ3(i),

δ4(i)

f2(i0)

}
(4.25)

that can be unambiguously retrieved from Ĥ3 through (4.17). This implies that the
temporal evolution of every system internal parameter (gain, imbalances and cross-talks)
can be monitored during the whole mission life, and indeed represents the key point of the
whole assimilation procedure, as also conveyed in Fig. 4.4. Such approach is aimed to
bridge the gap between the lack of timely monitoring when using only DT methods and
the expensive deployment and maintenance of calibrated point targets needed to ensure
such information.

4.3 Assessment on the Radarsat-2 Barcelona dataset

4.3.1 Dataset overview

The monitoring capabilities so far discussed have been assessed on a Radarsat-2 dataset
comprising a total of 26 images acquired over the time span of 3 years, with minimum
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revisit time of 24 days (Radarsat-2 revisit interval). More specifically, 9 images were
collected in 2008 and the other 17 in 2010-2011. The beam mode is the Fine Quad mode
with elevation look angle of 25°, which reports an effective ground range resolution of
approximately 11 m. More technical details about the dataset and the sensor configuration
are listed in Table 4.1 and Table 4.2, whereas in Fig. 4.5 it is possible to appreciate in more
detail the differential baselines and the information on the Doppler Centroids. Notice in
particular that the acquisitions span a baseline smaller than 1 km, with a deviation of 180
m, i.e. an orbit tube significantly narrower than the 2.5 km critical baseline of the Radarsat-
2 mode. The SLC images are supposed to be finely coregistered: this is indeed possible
even without polarimetric calibration, unless the distortion is too intense (for instance very
large Faraday rotation residuals, which is not our case though).

The illuminated frame comprises a variety of scattering mechanisms, with the sea on
the near range, a wide and mostly flat inhabited area in the middle range and a forested
sloped area together with a few other inhabited grounds in the far range. For a visual repre-
sentation of the frame area the reader is referred to the optical and Pauli colorcoded image
shown in Fig. 2.14 as well as to the graphical indication of the different area typologies
provided in Fig. 2.17.

Site Barcelona (ES)
Campaign SOAR-EU

System Radarsat-2
# images 26

Mode Fine Quad (FQ9)
Polarizations HH,HV,VH,VV

Frequency Ghz 5.405
Look Angle deg 25

Res: sl.rg. ×az m 5.2×7.6
Time span yr 3

Baseline span m 780
Baseline std m 183

DC span Hz 140
DC std Hz 32

Table 4.1: SAR Sensor and Dataset Parameters
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Image Dates - All collected at 06:00 AM (Descending)

12-Apr-2008 13-Feb-2010
06-May-2008 02-Apr-2010
30-May-2008 26-Apr-2010
23-Jun-2008 20-May-2010
17-Jul-2008 13-Jun-2010

10-Aug-2008 07-Jul-2010
29-Sep-2008 31-Jul-2010
21-Oct-2008 24-Aug-2010
14-Nov-2008 11-Oct-2010
08-Dec-2008 04-Nov-2010

28-Nov-2010
22-Dec-2010
15-Jan-2011
08-Feb-2011
04-Mar-2011
28-Mar-2011

Table 4.2: Acquisition dates of the Barcellona dataset

Figure 4.5: Normal baselines (top) and Doppler rate estimates (bottom) of the 29 images belonging to the
Radarsat-2 dataset used for the analysis.
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4.3.2 Assessment methodology

The effectiveness of the calibration would be exhaustively expressed by its absolute ac-
curacy, i.e. a quantitative evaluation of the errors affecting the distortion estimates with
respect to the true distortion values. Trivially, such assessment is possible when the latter
values are known, which, however, is not our case, since no reference information could
be collected and employed for absolute validation. Thus, instead of accuracy, we initially
focused on assessing a secondary behavior: the stability. The consequence is that eventual
biases in the estimates cannot be verified (herehence the “secondary” attribute), though
very insightful information on the technique’s robustness (fluctuations of the estimates) is
obtained. The stability of the PolPSCal technique will be tested with respect to both dif-
ferent algorithm parameters ξn and independent sets of PSs χi = {PSi}. More formally,
let Θ̂(ξn, χi) or simply Θ̂n,i be the estimate set of distortion parameters as a function of
the algorithm settings and the PS group and define the estimation error as:

εn,i = Θ̂n,i −Θ (4.26)

The accuracy is quantified by its MSE, which contains both the bias ∆ε and the fluctu-
ating part δε:

MSEn,i = E
[
ε2
n,i

]
= E[(

δε︷ ︸︸ ︷
Θ̂n,i − µ+

∆ε︷ ︸︸ ︷
µ−Θ)2] = E

[
δ2
ε

]
+ ∆2

ε = νε + ∆2
ε (4.27)

where µ is indeed µn,i = E
[
Θ̂n,i

]
, the fluctuation δε is zero-mean with variance νε and

the expectation operator is supposed to be evaluated on different distortion realizations.
The latter term in 4.27, ∆ε, is not retrievable unless a-priori information on the image
distortion is available. The term νε, representing the stability, is instead attainable by
averaging on the χi, thusE [.]→ 〈.〉i, rather than averaging different distortion realizations
(a challenging task indeed given the limited 29 images dataset). Such operation relies on
the reasonable hypotheses:

• The Πi overall quality is similar, so that E [νε(i1)2] = E [νε(i2)2]

• The distortion is the same for all Πi

• The stability E [ν2
ε ] is not dependent on the specific distortion, i.e. E [νε(Θ1)2] =

E [νε(Θ2)2]

The procedure leads then to the metric MSEn, that is dependent only on the algorithm
configuration adopted. The metric will be used to assess the performance of our inversion
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technique with respect to the distortion set (4.16) and to compare the results so achieved
with the reference calibration technique proposed in [38] by Quegan. Remember that this
latter can only handle the retrieval of (4.6).

4.3.3 Normalization Strategy

As previously discussed, when no reference data is available the normalization informa-
tion demanded by the PolPSCal is indeed provided by the DT-based estimate ĤDT for a
reference image i0. A wise selection of the DT areas is indeed fundamental in order to
yield consistent calibration results. This is in particular true with respect to the reflection
symmetry property

〈SHH · S∗HV 〉 = 〈SHH · S∗HV 〉 = 0

of the scatterer model. We could immediately identify two sloped vegetated areas be-
hind the town. It is indeed reasonable to assume at C-Band slope effects do not impact
significantly [26] on the reflection symmetry and that their area extension (1.5 ·106 pixels)
is large enough to provide only a bias < 20 dB on the data cross-covariance elements. A
third smaller (3.3 · 105 pixels) and flatter area composed by cultivated fields could also be
located between the inhabited and the mountain strips.

The masks of the 3 areas superposed to the image frame is provided by Fig. 4.6,
alongside of the attained Quegan estimates averaged throughout the dataset. The results
agree to the fact that only a subtle (<0.1 dB) channel imbalance ratio (HV/VH) is measured
and on the cross-talk level that registered surprisingly low values (< -40 dB), apparently
confirming that the area selection was successful and the the RS2 instrument is finely
calibrated [28].
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Figure 4.6: View of the three areas (top) used for the DT-based Quegan calibration algorithm. Schematic
results (bottom) of the average values achieved for all the distortion parameters returned by the algo-
rithm.

For each PolPSCal configuration set ξn, the PDM normalization is performed on the
image i0 registering the best overall quality over all the imagettes (blocks). With “quality”
we refer to the consistency of the PS-model with the SLC data. For the generic image i,
the quality Qi is defined as the total power of the residual between the measured data and
the one reconstructed from the PolPSCal estimates normalized by the total data power. In
formula:
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Figure 4.7: Processing steps aimed to the selection of the PDM candidate for PDM normalization (am-
biguity removal). (left) 2D representation of the block-image quality. (right) The image with minimum
residual model error averaged over all the imagettes (blocks) is the best candidate.
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Figure 4.8: Effects of PolPSCal normalization on the PDM element estimates. (left) PDM elements (ar-
ranged columnwise in the panels) trend along the stack (panel rows) without normalization. (right)
PDM elements trend with normalization.

Qi =

Np∑
p=1

∥∥∥y(i, p)− ejφ̂(i,p)Ĥ3(i)̂s(p)
∥∥∥2

Np∑
p=1

‖y(i, p)‖2

(4.28)

where Ĥ3, φ̂, ŝ are the PDM and target phase and signature estimates respectively and y
are the polarimetric observations. The idea is also illustrated in Fig. 4.7; the residual of
all the imagettes (along the columns) is averaged in order to evaluate the best image to use
for normalization. It can be noticed that for the specific configuration reported the best
quality results are attained for i0 = 12. The effects of the normalization when the imagette
quality is high (the SCR or the number Np of the PSs is high) are evident, as conveyed by
the estimated PDM elements in Fig. 4.8. Its correct application indeed has a great impact
on the sensitivity that can be delivered by PolPSCal on the cross-talk estimates.
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4.3.4 Discussion on the results

In accordance with the methodology discussed in section 4.3.2, only the the PolPSCal
stability could be assessed from real data, i.e. the fluctuating νε component of the MSE in
(4.27). A few PolPSCal settings were tested:

• 2 different PS quality settings, associated to 2 different threshold settings Tγ . Since
the GLR metric is a rather uncommon descriptor of the target quality, in a first ap-
proximation the reader can think that the first configuration accepts PS with SCR > 8
dB, while the second raises the bar to SCR > 12 dB.

• 4 different imagette sizes, regulated by the maximum number of accepted PSsNp per
imagette. The configurations tested vary from 500 PSs to 5000 PSs.

The statistical results are presented in both a compact representation where a single devia-
tion value is given for each configuration and in a more visually-appealing representation
of the image-series dispersion for the two opposite PolPSCal configurations (the best and
the worst). The compact statistics are intuitively computed by averaging stack(image)-
wise and block(imagette)-wise the variances registered by each imagette. Such results
are shown in Fig. 4.9 and Fig. 4.10 for the amplitude and phase of the image gain and
channel imbalances. Note that, whereas with traditional DT-calibration (Quegan) only the
imbalance ratio can be monitored, the contribute of the PS information allows to distin-
guish between the two different imbalance fluctuations. On the quantitative standpoint, the
amplitude stability is better than 0.3 dB (3σ) for the image gain, which is the least stable
parameter. Channel imbalances and especially their ratio are in fact clipped under the 0.1
dB deviation.

Some preliminary δ1, δ2 cross-talk image-series results are then shown in Fig. 4.11,
where it can be noticed that the good quality configuration is capable of delivering am-
plitude estimates below the -40 dB level, thus being on-par with the Quegan estimators.
To this regard, it must be remarked that when a solid external information, such as the
presence of accurate point target calibrators, is missing, the accuracy of the cross-talks es-
timates is necessarily related to that of the Quegan technique and thus to the quality of the
DT in the scene, since a coarse normalization generates some serious PDM inter-element
interference. So far, in fact, we cannot be sure if what we are measuring is true uncompen-
sated cross-talk amplitude, or we are just dealing with a processing artifact. In the latter
case we would however be happy enough to register that such noise floor is below -40
dB, and that as a natural consequence any distortion above such level should be correctly
detected.
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4.3. Assessment on the Radarsat-2 Barcelona dataset
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Figure 4.9: Radiometric monitoring performance. (left) Compact representation (averaged image-wise) of
the amplitude stability (3σ) estimates registered by a wide set of PolPSCal run configurations. (right)
Expanded image-series results (average value and dispersion can be inferred from the colored band
representation) for two specific configurations: a poor quality imagette configuration (blue), and a high
quality one (red). Quegan results are limited to the imbalance ratio and are reported through black
dashed lines for the three different DT areas.
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Chapter 4. Permanent Scatterers and Distributed Targets: an overarching system
monitoring approach
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Figure 4.10: Phase monitoring performance. (right) Compact representation (averaged image-wise) of the
phase stability (3σ) estimates registered by a wide set of PolPSCal run configurations. (left) Expanded
image-series results achieved by poor quality (blue) and high quality (red) imagettes estimates.
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4.3. Assessment on the Radarsat-2 Barcelona dataset
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Figure 4.11: Cross-talk amplitude performance. Expanded image-series of the dispersion results achieved
on the two cross-talks δ1(left) and δ2/f1(right) by processing poor quality (blue) and high quality (red)
imagette sets. This represents indeed a hard test for PolPSCal since the number and quality of PSs should
provide a stability at least comparable to the RS2 CT isolation (< - 40 dB) to be considered effective.
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CHAPTER5
Conclusions

So far, the calibration of full-polarimetric SAR systems mostly relies on ground installa-
tions of calibrated active (transponders) or passive (corner reflectors) targets. It is although
evident that part of the system health information can also be retrieved from other natural
features which are intrinsic to the illuminated scene. The main research question that is
addressed in this thesis is how the scene information must be collected and processed in
order to produce an effective contribution to the polarimetric system monitoring and data
calibration. Two main conceptual categories of in-scene information processing can be
identified:

1. the model extraction from the scatterer spatial statistics

2. retrieval of coherent information from temporal target observation series

The two approaches apply to different target typologies: the first exploits distributed tar-
get (DT) area, the second relies on stable mechanisms, the so-called Permanent Scatterers
(PS). In the first case, not any DT area would suit the calibration needs, but only the ones
providing additional constraints to the model: the most common consisting in DTs with
orientation symmetry. The first part of the thesis was aimed at providing an insight on the
capabilities of DT-based calibration in explaining a variety of system distortions. A lot
of literature has been in fact dedicated throughout the last two decades to the design of
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Chapter 5. Conclusions

ad-hoc solutions by constraining the problem through assumption on the distortion model,
on the calibrator equations or on both. In a few cases the authors attempted to solve
ill-conditioned problem mitigating (voluntarily or accidentally) the intrinsic system insta-
bility by using closed-form analytic estimators. A clear definition of what is feasible and
what is instead unfeasible, given a standard set of target calibrators, has therefore repre-
sented the first step of our investigation. The methodology proposed shed light on the fact
that a DT-based calibration stability can be ensured only in case non-null Faraday rotation
with incomplete system distortion model. In all the other cases a point target calibrator is
needed. A third possibility, however, is that of performing only a partial retrieval of the
distortion, up to a complex scalar coefficient. Analysis of the estimation uncertainty could
be carried out as well. As expected, it was found that the cross-talks are the most sensitive
parameter to the model deviations, though a number of looks Np > 105 and a Cpol-Xpol
coherence (assumed null) < 0.01 (-20 dB) would be sufficient to yield a satisfying perfor-
mance. Such results have been assessed on a theoretical level and then confirmed, in the
second part of the chapter, by analytic and numerical estimation analysis. In the context of
practical algorithm comparison, it was also possible to show that numerical optimization
is able to overcome the traditional closed-form estimators when the data is consistent with
the model, whereas it presents more accuracy issues when the deviations of the data from
the model are large.

The second part of the work focused then on the most innovative contribution of this
thesis: the exploitation of Permanent Scatterers in polarimetric calibration activities. The
novelty in the solution proposed required efforts in the formalization of an appropriate PS
framework. The fundamental steps of such process were the transposition of the traditional
PS model to the polarimetric context and the development of an effective methodology
for robustly tackling the inverse problem. This led to the definition of a polarimetric
PS detection based on the Generalized Likelihood Ratio Test criterion and to an efficient
estimation procedure which exploits the low rank nature of the phase-calibrated PS stack.
The integration of these steps in a joint iterative algorithm was named PolPSCal. It was
shown that the theoretical calibration performance is in a first approximation related to the
number of PSs detected in the imagette and to their polarimetric quality and that it is indeed
independent from the PDM expression. The algorithm is neither constrained to a particular
PDM model nor to any external information, thus its implementation is practically feasible
for any SAR sensor. External calibrators are eventually demanded afterwards in order to
normalize the returned PDM stack to an absolute reference.

A critic review of the two different methods is then demanded. Both the spatial and
temporal target information processing offer valuable information. Only part of this, how-
ever, can be effectively applied to system monitoring and data calibration. In the case of
DT-based estimation both radiometric and phase information on the channel imbalance is
missing, avoiding any direct feature comparison between acquisitions even when belong-
ing to the same image time series. Differently, in the case of the PS-based approach the
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compensation would be consistent within the same dataset, but all the images would result
distorted by a common unknown PDM. In the last chapter it was demonstrated that the
two information are complementary and thus their joint combination can provide an effec-
tive contribution to polarimetric monitoring. Once again, a generic distortion model has
been conceived, so that the approach can be readily tailored to different sensor scenarios,
ranging from higher-frequency SARs to lower-frequency acquisitions affected by Faraday
rotations. In the case of C-Band for instance, the encompassing framework achieves an
unambiguous temporal monitoring of the all the distortion parameters, up to an absolute
radiometric scale factor. The performance has been assessed through synthetic simulations
and validated on a Fine Quad-Pol Radarsat-2 dataset which comprises 26 images over the
Barcelona area, returning an accuracy on the channel imbalance stability below 0.2 dB
and on the cross-talk level <-35 dB, some promising results indeed, that comply with the
acknowledged quality standards of polarimetric SAR systems.

In summary, the polarimetric PS technique provides an effective and cheap alternative
to traditional ground-surveilled strategies for system monitoring and calibration. When a
calibrated image is provided (a single one out of the whole stack) a full data calibration and
absolute distortion estimation can be performed. Otherwise, the technique can be conve-
niently integrated with the DT-based partial estimates in order to unveil the whole temporal
distortion information, while retaining comparable performance on the DT unambiguous
parameter set.

It has to be properly remarked, however, that this work represents only the first step
towards the definition of optimal PS polarimetric calibration strategies. A few questions
indeed were left unresolved, the most crucial being possibly the quantitative relationship
between the number of images available and the PolPSCal performance (due to indirect
influence on the selected target quality) and the technique adaptability to SAR sensors
different from the RS-2, both spaceborne and airborne. The first question certainly rep-
resents a fine theoretical challenge since it envisages the design of a SAR simulator that
must be able to recreate a realistic polarimetric and temporal diversity of the scene. The
second is certainly going to involve a few critical aspects such as the large angular spread
of airborne imagery and the discrimination of Faraday rotations from system distortion
in spaceborne L-Band (ALOS and the announced ALOS-2 and SAOCOM) and P-Band
(the ESA BIOMASS candidate) systems. Hopefully such issues will found their solution
within the framework of other projects and data acquisition campaigns. Further assess-
ments on different airborne and spaceborne SAR sensors is therefore recommended.
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APPENDIXA
Proofs

A.1 Uncertainty of the covariance matrix estimator

Let the k by 1 complex random vector x = [x1 · · · xk]T and the associated 2k by 1 real
vector x̃ behave as:

x ∼ CN (0,C) (A.1)

x̃ =

[
p

q

]
∼ N

(
0,

1

2

[
CR −CI

CI CR

])
(A.2)

p = [p1 . . . pk]
T = R(x), q = [q1 . . . qk]

T = I(x)

CR =
[
CRij

]
k×k

= R(C), CI =
[
CIij

]
k×k

= I(C)

and let their covariance matrix estimates out of N realizations be:

Ĉ =
1

N

N∑
m=1

xmxHm (A.3)

whose real and imaginary components are respectively:
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Appendix A. Proofs

ĈR =
[
ĈRij

]
=

[
1
N

N∑
m=1

p
(m)
i p

(m)
j + q

(m)
i q

(m)
j

]
ĈI =

[
ĈIij

]
=

[
1
N

N∑
m=1

q
(m)
i p

(m)
j − p(m)

i q
(m)
j

]
.

(A.4)

Note that the (A.3) is an unbiased estimator when the mean value is known (0 in this
case), thus yielding:

E
[
Ĉ
]

= C, E
[
ĈR

]
= CR, E

[
ĈI

]
= CI (A.5)

The aim so far is the derivation of analytic expressions for the 4 real covariance sets:

ΓRRij,kl =E
[(
ĈRij − CRij

)(
ĈRkl − CRkl

)]
(A.6a)

ΓIIij,kl =E
[(
ĈIij − CIij

)(
ĈIkl − CIkl

)]
(A.6b)

ΓRIij,kl =E
[(
ĈRij − CRij

)(
ĈIkl − CIkl

)]
(A.6c)

ΓIRij,kl =E
[(
ĈIij − CIij

)(
ĈRkl − CRkl

)]
(A.6d)

that, by exploiting (A.5), lead to:

ΓABij,kl = E
[
ĈAij ĈBkl

]
− CAijCBkl (A.7)

with the apices A,B standing generically for R, I . The first term can be conveniently
derived through some trivial, though heavy on the notation, calculation. With respect to
the RR case we have for instance:

E
[
ĈRij ĈRkl

]
=

1

N2
E

[∑
m

p
(m)
i p

(m)
j + q

(m)
i q

(m)
j ·

∑
n

p
(n)
k p

(n)
l + q

(n)
k q

(n)
l

]
=

1

N2

∑
m

∑
n

E
[
p

(m)
i p

(m)
j p

(n)
k p

(n)
l

]
+ E

[
p

(m)
i p

(m)
j q

(n)
k q

(n)
l

]
+

+ E
[
q

(m)
i q

(m)
j p

(n)
k p

(n)
l

]
+ E

[
q

(m)
i q

(m)
j q

(n)
k q

(n)
l

]
.

(A.8)

Aided by the Isserlis theorem, E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] +
E[x1x4]E[x2x3], and by the intrinsic x property:
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A.1. Uncertainty of the covariance matrix estimator

∀i, j,m 6= n E
[
p

(m)
i p

(n)
j

]
= E

[
q

(m)
i q

(n)
j

]
= E

[
p

(m)
i q

(n)
j

]
= E

[
q

(m)
i p

(n)
j

]
= 0

(A.9)
we can then solve the 4-th order moments for the two different casesm = n andm 6= n,

yielding

m = n

E
[
p

(m)
i p

(m)
j p

(m)
k p

(m)
l

]
= E [pipj]E [pkpl] + E [pipk]E [pjpl] +

+ E [pipl]E [pjpk]

=
1

4
CRijCRkl +

1

4
CRikCRjl +

1

4
CRilCRjk

E
[
p

(m)
i p

(m)
j q

(m)
k q

(m)
l

]
=

1

4
CRijCRkl +

1

4
CIikCIjl +

1

4
CIilCIjk

E
[
q

(m)
i q

(m)
j p

(m)
k p

(m)
l

]
= E

[
p

(m)
i p

(m)
j q

(m)
k q

(m)
l

]
E
[
p

(m)
i p

(m)
j q

(m)
k q

(m)
l

]
= E

[
p

(m)
i p

(m)
j p

(m)
k p

(m)
l

]

(A.10)

m 6= n

E
[
p

(m)
i p

(m)
j p

(n)
k p

(n)
l

]
= E [pipj]E [pkpl] =

1

4
CRijCRkl

E
[
p

(m)
i p

(m)
j q

(n)
k q

(n)
l

]
=

1

4
CRijCRkl

E
[
q

(m)
i q

(m)
j p

(n)
k p

(n)
l

]
= E

[
p

(m)
i p

(m)
j q

(n)
k q

(n)
l

]
E
[
p

(m)
i p

(m)
j q

(n)
k q

(n)
l

]
= E

[
p

(m)
i p

(m)
j p

(n)
k p

(n)
l

]
(A.11)

Equation (A.8) can be therefore simplified into:

E
[
ĈRij ĈRkl

]
= CRijCRkl +

1

2N
CRikCRjl +

1

2N
CRilCRjk+

+
1

2N
CIikCIjl +

1

2N
CIilCIjk

(A.12)

The same calculation applied to all the sets in (A.6) yields:

ΓRRij,kl =
1

2N

(
CRikCRjl + CRilCRjk + CIikCIjl + CIilCIjk

)
(A.13)

ΓRIij,kl =
1

2N

(
CRikCIjl + CIilCRjk − CIikCRjl − CRilCIjk

)
(A.14)
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ΓIRij,kl =
1

2N

(
CIikCRjl + CIilCRjk − CRikCIjl − CRilCIjk

)
(A.15)

ΓIIij,kl =
1

2N

(
CRikCRjl + CIikCIjl − CIilCIjk − CRilCRjk

)
(A.16)

A.2 Generalized Likelihood Ratio in (3.60)

The reader will find here proof of the validity of the GLR approximated expression:

ln
L
({

y3i,p

}NI
i=1
|H1

)
L
({

y3i,p

}NI
i=1
|H0

) =

ln

L
({

y3i,p

}NI
i=1

∣∣∣∣{{φ̂i,p}NI
i=1

, s3p = ŝ3p,C3p = ΣPS
p

})
L
({

y3i,p

}NI
i=1

∣∣{s3p = 0,C3p = ΣCl
p

}) '

NI · ln
(

1 + ŝH3pĈ
−1
3p ŝ3p

)
(A.17)

introduced in (3.60) as the metric aimed to classify the target as PS (hypothesis H1) or
as noise (hypothesis H0). We remind that L stands for the likelihood function referring to
the observation model of the p-th target in the i-th image:

H0 : y3i,p = w3i,p

H1 : y3i,p = ejφi,ps3p + w3i,p

(A.18)

where s3p =
[
Shhp Shvp Svvp

]T is the PS backscattering vector, w3i,p
=
[
whhi,p whvi,p wvvi,p

]T
is the clutter noise behaving according to w3i,p

∼ CN (0,C3p) and φi,p is the target phase.
Two assumptions has been done: 1) the stack is already calibrated, 2) the thermal noise
is negligible compared to the clutter. Since the true parameters in (A.18) are problem
unknowns, their estimates φ̂, ŝ3 and

ΣPS
p =

1

NI

NI∑
i=1

(yi,p − ejφ̂i,p ŝ3p)(yi,p − ejφ̂i,p ŝ3p)H (A.19)

with

ŵ3i,p = yi,p − ejφ̂i,p ŝ3p
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A.2. Generalized Likelihood Ratio in (3.60)

are indeed employed in the in theH1 hypothesis, whereas in theH0 case the backscatter
is assumed null (s3 = 0) and the covariance is computed as:

ΣCl
p =

〈
y3i ,py

H
3i ,p

〉
i

= ΣPS
p + ŝ3pŝ

H
3p.

The two likelihoods become as a result:

L
({

y3i,p

}NI
i=1
|H1

)
=

NI∏
i=1

exp
(
−ŵH

3i,p

(
ΣPS
p

)−1
ŵ3i,p

)
π3 · det

(
ΣPS
p

)
L
({

y3i,p

}NI
i=1
|H0

)
=

NI∏
i=1

exp
(
−yH

3i ,p

(
ΣCl
p

)−1
y3i ,p

)
π3 · det

(
ΣCl
p

)
(A.20)

and the corresponding log-likelihoods:

lnL
({

y3i,p

}NI
i=1
|H1

)
= −

NI∑
i=1

ŵH
3i,p

(
ΣPS
p

)−1
ŵ3i,p

−NI ln π3 −NI ln
[
det
(
ΣPS
p

)]
= −NI

(
1 + ln π3 − ln

[
det
(
ΣPS
p

)])
lnL

({
y3i,p

}NI
i=1
|H0

)
= −NI

(
1 + ln π3 − ln

[
det
(
ΣCl
p

)])
(A.21)

where the property
∑

aHBa = Tr
(∑

aaHB
)

has been adopted to simplify the quadratic
forms. This leads to the difference between their log-likelihoods:

lnL
({

y3i,p

}NI
i=1
|H1

)
− lnL

({
y3i,p

}NI
i=1
|H0

)
= NI ln

[
det
(
ΣPS
p + ŝ3pŝ

H
3p

)]
−NI ln

[
det
(
ΣPS
p

)]
= NI ln

[
det
(
ΣPS
p

) (
1 + ŝH3p

(
ΣPS
p

)−1
ŝ3p

)]
−NI ln

[
det
(
ΣPS
p

)]
= NI ln

(
1 + ŝH3p

(
ΣPS
p

)−1
ŝ3p

)
(A.22)

which concludes the demonstration.
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APPENDIXB
PDM estimation algorithms

B.1 Quegan algorithm

One of the most acknowleged techniques for polarimetric distortion estimation has been
proposed by Quegan in [38]. The algorithm is here reported with its original parameter
nomenclature and faces the generic distortion model:

O = RST + N (B.1)

[
O11 O12

O21 O22

]
=

[
r11 r12

r21 r22

] [
S11 S12

S21 S22

] [
t11 t12

t21 t22

]
+

[
N11 N12

N21 N22

]
(B.2)

where the subscripts 1,2 refer to polarizations H and V (in the linearly polarized sys-
tems), O is the observation matrix, R and T are the matrices with the system parameters
and N is the total system noise. The approach relies on two essential assumptions made on
the target backscatter elements: 1) the validity of the reciprocity principle, i.e. S12 = S21,
2) the uncorrelation between the true-like and cross-polarized channels, which leads to the
target covariance matrix CS:
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Appendix B. PDM estimation algorithms

CS =
〈
S · SH

〉
=

 σ11 0 ρ

0 σ21 0

ρ 0 σ22

 with S =

 S11

S12

S22

 (B.3)

Neglecting the effects of the noise N, the resulting data covariance is:

C = MCSMH (B.4)

where

M =


r11t11 r11t21 + r12t11 r12t21

r21t11 r22t11 r22t21

r11t12 r11t22 r12t22

r21t12 r21t22 + r22t12 r22t22

 (B.5)

and the explicit expression of its elements is:

C11 = |r11t11|2 σ11

C22 = |r21t11|2 σ11 + |r22t21|2 σ22 + |r22t11|2 σ21 + 2R (r21r
∗
22t11t

∗
21ρ)

C33 = |r11t12|2 σ11 + |r12t22|2 σ22 + |r11t22|2 σ21 + 2R (r11r
∗
12t12t

∗
22ρ)

C44 = |r22t22|2 σ22

C21 = r21r
∗
11 |t∗11|

2 σ11 + r22r
∗
11t21t

∗
11ρ
∗ + r22t11 (r∗11t

∗
21 + r∗12t

∗
11)σ21 (B.6)

C31 = |r11|2 t∗11t12σ11 + r12r
∗
11t22t

∗
11ρ
∗ + r11t22 (r∗11t

∗
21 + r∗12t

∗
11)σ21

C41 = r22r
∗
11t22t

∗
11ρ
∗

C24 = |r22|2 t21t
∗
22σ22 + r21r

∗
22t11t

∗
22ρ+ r22t11 (r∗21t

∗
22 + r∗22t

∗
12)σ21

C34 = r∗22r12 |t22|2 σ22 + r11r
∗
22t12t

∗
22ρ+ r11t22 (r∗21t

∗
22 + r∗22t

∗
12)σ21

C32 = r11r
∗
21t
∗
11t12σ11 + r12r

∗
22t22t

∗
21σ22 + r11r

∗
22t
∗
11t22σ21 + r12r

∗
21t11t

∗
22ρ
∗ + r11r

∗
22t12t

∗
21ρ

In this set of equations the second order terms of r12, r21, t12, t21 have been omitted,
basing on the hypothesis that cross-talk terms are much smaller than r11, r22, t11, t22. It
can also be noticed that no specific parametrization is carried out for the Faraday rotation,
which, as a result, becomes incorporated into the rij and tij values. This means that the
approach is still valid in the presence of Faraday rotations, provided that the FRA is small.

The elements Cij are the only data requested by the algorithm. The first step in Que-
gan’s approach is the evaluation of the cross-talk ratios:

u = r21/r11 v = t21/t22 w = r12/r22 z = t12/t11 (B.7)
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B.2. Quegan-based L-Band estimation algorithm

which can be done directly from the Cij through the expressions:

u = (C44C21 − C41C24) /∆ (B.8)
v = (C11C24 − C21C14) /∆ (B.9)
z = (C44C31 − C41C34) /∆ (B.10)
w = (C11C34 − C31C14) /∆ (B.11)

where ∆ = C11C44−|C14|2. Thanks to the presence of noise power in C44 and C11, the
eventuality of ∆ ' 0 becomes remote, though high values of u, v, w, z still can occur, in
which case the algorithm should be rejected. The value of the imbalance ratio α = r22

r11
t11
t22

is then found by means of a critical analysis of the two solutions α1 and α2 achievable
through different equations.

α1 =
C22 − uC12 − vC42

C32 − zC12 − wC42

(B.12)

α2 =
C∗32 − z∗C∗12 − w∗C∗42

C33 − z∗C31 − w∗C34

(B.13)

The two values should be very similar, since both are estimates of α, but never equal.
The gap is readily explained by re-introducing the noise on cross-polarized channels. The
addition of a noise power term Np in C22 and C33, which are the dominating terms of
(B.12) and (B.13) in most acquisitions scenarios, leads to the corrected value of α:

α =
|α1α2| − 1 +

√
(|α1α2| − 1)2 + 4 |α2|2

2 |α2|
(B.14)

which is certainly a better estimate of the ratio, provided that the event |α2| ' 0 is not
met, i.e. σ21 is not null. The method also allows to assess in closed form the noise power
affecting the cross-pol channels through the expression:

Np = (C32 − zC12 − wC42) (α1 − α) (B.15)

B.2 Quegan-based L-Band estimation algorithm

In [19] the authors exploit the Quegan approach generality to yield a more accurate phys-
ical characterization of the distortion by introducing the Faraday rotations. The only con-
dition demanded is indeed a low cross-talk level, which limits the applicability to a narrow
span of rotation angles. Small FR allow though a comfortable linearization of the Faraday
matrix, which changes into:

115



i
i

“thesis” — 2013/2/9 — 15:33 — page 116 — #130 i
i

i
i

i
i

Appendix B. PDM estimation algorithms

[
Mhh Mvh

Mhv Mvv

]
= A

(
ejφ
[

1 δ2

δ1 f1

] [
1 Ω

−Ω 1

] [
Shh Svh

Shv Svv

]
[

1 Ω

−Ω 1

] [
1 δ3

δ4 f2

])
+

[
Nhh Nvh

Nhv Nvv

]
(B.16)

where the parameters matrices can be combined in order to be imagined as equivalent
Rx and Tx matrices and further approximated to get:[

1 δ
′
2

δ
′
1 f1

]
=

[
1 δ2

δ1 f1

] [
1 Ω

−Ω 1

]
∼=
[

1 Ω + δ2

δ1 − Ωf1 f1

]
(B.17)

[
1 δ

′
4

δ
′
3 f2

]
=

[
1 Ω

−Ω 1

] [
1 δ3

δ4 f2

]
∼=
[

1 δ3 + Ωf2

δ4 − Ω f2

]
(B.18)

If the symmetry assumptions is applied to system the cross-talks, i.e. δ1 = δ3 and
δ2 = δ4, the number of unknowns reduces to 4 complex numbers and 1 real parameter
(9 real unknowns overall). They can be retrieved from the 5 complex Quegan parameters
α, u, v, w, z, by solving the following set of non-linear equations:

α = f1/f2

u = δ1 − Ωf1 w =
Ω + δ2

f1

(B.19)

z = δ1 + Ωf2 v =
δ2 − Ω

f2

The δ1 parameter can be immediately computed through u, v and α values as:

δ1 =
u+ αz

1 + α
(B.20)

while the estimation of the other parameters depends on the amplitude of the angle Ω,
which in a first moment can be coarsely estimated as u− δ1 (since f1 is in the same order
as unity). Basically, when Ω << (δ1, δ2), there is an absolute scale factor between δ2, f1

,f2 which cannot be resolved; the information about their ratio alone can be retrieved:

δ2
∼= wf1

∼= vf2 (B.21)
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B.2. Quegan-based L-Band estimation algorithm

When instead Ω is not negligible the absolute value and phase computation of the pa-
rameters is possible up to a π phase ambiguity (sign ambiguity). By substituting (B.20) in
the u expression in (B.19) we get:

u =
u+ αz

1 + α
− Ωf1 ⇒ Ωf1 =

α (z − u)

1 + α
(B.22)

Then, by combining the w and v expressions we obtain

Ω

f1

=
1

2

(
w − v

α

)
(B.23)

which, together with the product in (B.22), allows us to find the estimated Ω, f1 and δ2

estimates as

Ωf1 ·
(
f1

Ω

)∗
= |f1|2 = 2

|α|2 (z − u)

(1 + α) (w∗α∗ − v∗)
(B.24)

∠

(
Ωf1 ·

f1

Ω

)
= 2∠f1 + 2kπ ⇒ ∠f1 =

1

2
∠

(
2α2 (z − u)

(1 + α) (wα− v)

)
+ kπ (B.25)

f̂1 =

√√√√∣∣∣∣∣2 |α|2 (z − u)

(1 + α) (w∗α∗ − v∗)

∣∣∣∣∣× ej 12∠
(

2α2(z−u)
(1+α)(wα−v)

)
(B.26)

Ω = ejkπ · 1

2

(
w − v

α

)
f̂1 → Ω̂ = R

{
1

2

(
w − v

α

)
f̂

}
(B.27)

δ2 = ejkπ · 1

2

(
w +

v

α

)
f̂1 → δ̂2 =

1

2

(
w +

v

α

)
f̂1 (B.28)

where the π ambiguity in the phase is clear. The last parameter, f2, can be easily
found from α as f̂2 = α/f̂1, the result being obviously f̂2 = f2e

jkπ. Therefore as far
as−π < ∠f1 < π the values retrieved are correct, otherwise a π shift has to be added; this
issue can be solved if we have at disposal previous f1 measurements, thus pretending that
the phase changed following the shortest path between acquisitions (note that f2 and δ2

can be used as well for this test). In summary, the approach is supposed to achieve good
results in a significant but limited range of scenarios, since the conditions required are not
always easily met.
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APPENDIXC
A Maximum Likelihood PolPSCal refinement

C.1 SVD vs Maximum Likelihood

The estimators so far addressed do not represent the optimum in the Maximum Likelihood
sense, though the PS quality is high result achieved are nonetheless satisfying. It is in
fact easy to show that the SVD solution represents the Least Squares solution of the joint
H, s determination problem. Given the PS model in (3.1) and its noise characterization
(3.13)-(3.14) the probability density function (pdf) of the the single observation y is:

py(yi,p) =
1

π4 · det(HiCpHH
i )

exp
(
−(yi,p − ejφi,pHisp)

H×

Γ−1
i,p (yi,p − ejφi,pHisp)

)
(C.1)

with

Γi,p = HiCpH
H
i + σnI (C.2)
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Appendix C. A Maximum Likelihood PolPSCal refinement

The pdf of whole stack, taking into account (3.5), can be expressed as:

py(Y) =
1∏

i

∏
p π

4 · det(HiCpHH
i )
×

exp

(
−
∑
i

∑
p

(yi,p − ejφi,pHisp)
HΓ−1

i,p (yi,p − ejφi,pHisp)

)
(C.3)

The ML solution demands the maximization of the log-likelihood:

L(Y) = −
∑
i

∑
p

(yi,p − ejφi,pHisp)
HΓ−1

i,p (yi,p − ejφi,pHisp)−∑
i

∑
p

log |Γi,p| − 4NINP log(π). (C.4)

When an estimate of the phases, φ, is available, the ML approach reduces to the partic-
ular solution:

Ĥi, ŝp = argmin
Hi,sp

(∑
i

∑
p

‖Γ−1/2
i,p · (zi,p −Hisp)‖ − log |Γi,p|

)
(C.5)

with zi,p = e−jφi,pyi,p, where the displacement between the real and the reconstructed
data is weighted by the noise covariance. Such `2 norm indeed allows good quality PSs
to influence the estimates more then the noisy ones. Notice, on the opposite, that the
Frobenius norm criterion in (3.45) corresponds to the Least Squares (LS) optimum:

Ĥ3i, ŝ3p = argmin
H3i,s3p

(∑
i

∑
p

‖zi,p −H3is3p‖

)
(C.6)

where all the error contributes are equally weighted.

C.2 A numerical ML optimization

The opportunity of performing a further ML optimization will be then explored. Since
the analytic treatment of (C.4) seems unfeasible, the ML problem has been approached by
means of iterative numeric techniques. Besides, it must be remembered that the estimates
(??),(3.57)-(3.58), that will be used to determine the starting point of the algorithm, are
affected by uncertainty. Two important characteristics of (C.4) can though be exploited in
order to plan an efficient optimization procedure which takes into account the mentioned
issues:
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C.2. A numerical ML optimization

Figure C.1: Results of the iterative ML refinement procedure on a single simulated case study with param-
eters: Np = 100, NI = 10, average SCR of 5 dB. The normalized RMSE of the estimated PDMs, target
signatures and target covariances are reported with comprehensive metrics for each algorithm iteration.

• Given a predefined set of target parameters ŝ, Ĉ the distortion estimates of each
image is independent from those of the others. In formulas:

Ĥi

∣∣∣({Hj}j 6=i, {ŝ, Ĉ}
)

= Ĥi

∣∣∣{ŝ, Ĉ}
The same behavior also applies to the target estimates, being:

{ŝp, Ĉp}
∣∣∣({Ĥ}, {sk,Ck}k 6=p

)
= {ŝp, Ĉp}

∣∣∣{Ĥ}
• The log-likelihood is invariant to any linear complex uncertainty B. Introducing

indeed the ambiguous parameters Ha = H3B
−1, sa = B · s3, wa = B ·D ·w and

then defining Ca = E[wawa
H ] = BC3B

H , it can be easily demonstrated that the
invariance relationships:

Y(Ha, sa,wa) = Y(H,S,w) (C.7)
L(Y|{Ha,Sa,Ca}) = L(Y|{H,S,C}) (C.8)

are satisfied.

Note that this latter point is verified even when the white noise (3.9) is reintroduced in
the model. As evidenced with concern to the PS selection - SVD estimation algorithm,
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Appendix C. A Maximum Likelihood PolPSCal refinement

such property is essential for the relative PS calibration algorithm since it provides the
possibility of retrieving correctly all the parameters basing on the available data alone,
except for that uncertainty term which can be conveniently removed in a post-processing
phase (discussed in 3.4.3). The implemented algorithm is therefore intended to iteratively
refine the estimates by operating on the image parameters H̃3 at first and on the target
parameters s̃3,C̃3 in a second moment, exploiting therefore the property commented on
the first point. More formally, the first block performs:

H̃3i = argmin
H3i

(
L
(
Y
∣∣∣{S̃3, C̃3}

))
(C.9)

whereas the second one completes the set with:

s̃3p, C̃3p = argmin
S3p,C3p

(
L
(
Y
∣∣∣{H̃3}

))
(C.10)

where it was assumed that the thermal noise power σn is known since it can be accurately
estimated through traditional techniques such as Quegan’s [ref]. The phases φ̂ is identi-
cally updated at each iteration, though, differently from (C.9) and (C.10), the analytic form
of its ML estimator is available:

φ̂i,p = ∠
(
yHi,pΓ̃

−1
i,p H̃3is̃3p

)
(C.11)

with Γ̃i,p = H̃3iC̃3pH̃
H
3i+σnI. A total number of 12 real parameters (6 degrees of freedom

for the covariances and 6 for the backscatter) are jointly optimized in (C.10), whereas 24
real parameters are involved in (C.9). Since the overall number of parameters is high,
the convergence of the numeric solver to the correct estimates is not guaranteed, thought
it can be argued that the algorithm manages to overcome this complexity thanks to the
high quality initialization returned by the SVD-based estimates. In Fig. C.1 the results
of the refinement when applied to a synthetic dataset built on 10 images and 100 PSs
with an average SCR quality of 5 dB is shown. The metrics adopted are the normalized

total RMSE residuals on H̃3, s̃3, C̃3, computed respectively as ∆H =
√∑

i ‖Ĥ3−H3‖2∑
i ‖H3‖2 ,

∆s =

√∑
p ‖ŝ3−s3‖2∑
p ‖s3‖2

, ∆C =

√∑
p ‖Ĉ3−C3‖2∑
p ‖C3‖2 , which have evaluated at each iteration. Notice

that all the errors tend to decrease, confirming that the procedure is indeed effective. The
initial misleading behavior in the target backscatter and covariance error is due to the
fact that (C.9) is performed before (C.10). The iterations can be arrested either at the

k-th step when all the metrics εH =

√∑
i ‖H̃

(k)
3 −H̃

(k−1)
3 ‖2F∑

i ‖H̃
(k−1)
3 ‖2F

, εs =

√∑
p ‖s̃

(k)
3 −s̃

(k−1)
3 ‖2F∑

p ‖s̃
(k−1)
3 ‖2F

, εC =√∑
p ‖C̃

(k)
3 −C̃

(k−1)
3 ‖2F∑

p ‖C̃
(k−1)
3 ‖2F

agree to the condition:

ε < Tε (C.12)
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C.2. A numerical ML optimization

Figure C.2: PolPSCal theoretical performance assessed through Montecarlo simulation of PS datasets with
Np = 100 targets. The RMSE achieved through the first SVD estimation and a further ML refinement are
compared. The quality of the SHV estimates is worst than that of the HH,VV channels since the cross-pol
backscatter power is 5 dB weaker than the co-pol returns, resulting in a lower SNR with respect to the
thermal noise floor, which is the uniform throughout the channels.

with the threshold Tε set to the reasonable value of 0.01, or when the maximum number
of iterations (set to 50) is reached. In the case of Fig. C.1 all 50 iterations are shown.
The average impact on the PolPSCal estimates is then attained on a synthetic dataset of
10 images with average PS quality of 5 dB SCR and shown in Fig. C.2. The most evi-
dent improvements occur in the RMSE of the PDM elements, which is halved by the ML
optimization. The study provided here though is not exhaustive. It must in fact be re-
marked that the computational costs, depending on NI and Np, are very high in terms of
the time demanded. Moreover the robustness of the iterative procedure in the case of more
complex datasets where the clutter disturbance is not perfectly gaussian (as in the case of
real data) still has to be properly assessed. So far, the ML refinement here proposed must
be considered as a noteworthy cue for further performance optimization. However, in the
theoretical and real measured performance that will follow such step has been abandoned.
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