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Abstract

AGRICULTURAL tyres should satisfy many different requirements,
such as to provide good traction performance, to limit soil sink-
age and compaction, and to guarantee good comfort level, avoiding

high vibrations transmission to the driver seat. The achievement of all these
requirements is strongly dependent on tread design, and of course also on
soil properties.

At present, no numerical approach is available to predict traction prop-
erties as a function of tread design, thus requiring the production of sev-
eral test prototypes. A first attempt to numerically predict tyre-soil con-
tact forces has been done by schematizing the ground as a deformable
springs layer and the tyre as a deformable ring reproducing the tread ge-
ometry. Moreover, only the purely longitudinal behavior has been investi-
gated. Thus, an in-plane tire model has been considered, to study traction
properties, comfort, and soil compaction.

Then, a tridimensional model has been studied, modeling the soil as a
particles cluster, interacting with each other. To state this model a C++
multi-body library, based on differential variational inequalities, has been
accounted. The simulation of a direct shear test has been carried out with
this model, to study the influence of numerical parameters on soil modeling,
and to show the potentials of this model to study subsoil behaviour.
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Summary

TYRES of off-road vehicles, in particular of agricultural tractors, should
satisfy many different requirements; moreover their performance is
significantly affected by soil conditions, which can highly vary as a

function of humidity and temperature [34].
First, the tyres passage should not overly degrade soil conditions, indeed

soil strain and compaction due to tyres passage affect soil by decreasing
water infiltration and water holding capacity, increasing runoff and ero-
sion, leading to a rise in crop production problems, thereby decreasing crop
yields and profitability of farming systems.

Moreover, when plastic flow occurs, although soil is not compacted, the
strain may decrease the connectivity of pores in the soil, thereby decreasing
the water infiltration rate [55].

Also, the tyres should provide a limited level of vibrations, since the
vibrations trasmitted by the tyre impact on ride comfort, and the exposure
to significant levels of acceleration for a long time affects the efficiency and
the alertness of the operators [41] leading also to unsafe situations.

Finally the tyres should guarantee good traction performance, indeed
variations of the normal contact forces due to vertical tyre displacements
result in variations of the traction force provided by the tyres which influ-
ences the quality of tillage and other operations.

Hance the aim of this thesis is to state a model able to predict the impact
of tyre structure and tyre tread pattern, depending on soil characteristics,
on:
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· vibrations transmission,

· tractive performance,

· soil compaction and sinkage.

To this purpose in this thesis two tyre-soil interaction models will be
proposed.

The first model that will be discussed is a plane model, considering the
forces and displacement in vertical and longitudinal directions.

This model can be outlined as composed by two sub-models interacting
with one another: the first one models the tyre structure and tread pattern
geometry whereas the second one represents the soil.

The tyre model allows to take into account the effect of the tread pattern
design, so that the excitation of the vertical dynamics associated with lugs
geometry can be included. Moreover the tyre model considers the tyre
structure through the eigenfrequencies and eigenvalues resulting from the
analysis of an impulsive response of a real agricultural tyre.

The soil model represents the soil as a plane surface, whose nodes can
be displaced vertically under the tyres load, reacting with shear and normal
stresses.

The shear and normal responses of the soil have been characterized by
two tests: respectively the direct shear test, performed to measure the shear
resistance of a soil under pressure, and the cone penetrometer test, allowing
to measure the normal resistance of the soil to the sinkage of a conic pin.

Through those tests it has been possible to set the parameters of the
numerical model of the tyre-soil interaction, based on Matlab language.

Finally, a particles model has been stated to simulate the soil dynamics.
This model is based on a multi-body C++ library, Chrono::Engine, repre-
senting bodies interaction by means of differential variational inequalities
theory.

The main advantages presented by this model are the possibility of con-
sidering the soil displacement and stress distribution in subsoil layers and
the capability to introduce in the formulation the tridimensionality of the
problem, allowing to consider the lateral forces involved in more complex
maneuvers than forward ride, alhtough at the moment the focus is pointed
on the soil dynamics.

The rest of this thesis will be structured as hereby follows:

· in chapter 1 the state of the art of previous models for the tyre-soil
interaction will be presented;
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· in chapter 2 the experimental tests carried out on soil and tyre will be
discussed, in order to introduce the results in the plane model of the
tyre-soil interaction;

· in chapter 3 the plane model for tyre-soil interaction will be stated,
thus simulation results provided by this model will be shown;

· in chapter 4 the particles model staded on the basis of the DVI formu-
lation will be presented.
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CHAPTER1
State of the art

Agricultural tractors should satisfy many different requirements, achieving
a good tractive pull, guaranteeing a safe comfort level for the operator and
avoiding a large soil compaction, which leads to difficulties for plants roots
growth [11] [46].

Moreover, those achievements should be satisfied working over differ-
ent soils whose properties can significantly vary depending on terrain com-
position, air humidity, and temperature conditions. Furthermore, in the
last twenty years the tractors speed has increased, involving an increase in
comfort problems related to dynamic tractor behavior and drivers vibration
exposure [50], which affects the operator health, potentially causing several
damages to low back, neck, shoulders and thoracic regions [38] [43].

The tractor tyres play a decisive role to face those achievements, indeed
tyres size and structure influence the terrain cone index (CI) value and the
topsoil compaction [46] [5], while the tyres stiffness and treads pattern in-
fluence the tractor dynamics behavior [21].

An accurate tyre-soil interaction model can lead to understanding how
tyre types and terrain conditions affect the mobility, the tractive perfor-
mances, and the soil compaction [57], although the large variance in soils
behavior impose several difficulties for predictive studies [35].
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Chapter 1. State of the art

Hence in the last sixty years many research works studied the tyre-soil
contact issue, considering both the numerical and the experimental ap-
proaches.

1.1 Tyre-soil interaction models

Studies of the interaction between the tyre and the deformable soil have
been developed since the sixties.

The first proposed models were mainly based on Bekker and Coulomb
equations to calculate respectively the normal pressure and the shear stress
in the soil beneath the tyres. The Bekker equation [10] allows to com-
pute the normal pressure σ as a function of the soil sinkage z, as shown in
equation 1.1, where the parameters kc, kφ, and n are associated to the soil
properties and can be determined by a dynamice plate loading test, while
B is the tyre width.

σ =

(
kc
B

+ kφ

)
zn (1.1)

The shear stress may be instead computed through the Coulomb equa-
tion, modified according to the Janosi and Hanamoto work [32] to take into
account the influence of the shear displacement j, as shown in equation
1.2, where kcohesion and φ are respectively the cohesion and the free an-
gle of shearing resistance of the soil, and K is the soil shear deformation
paramenter [32].

τ = [kcohesion + sin (φ)σ] ·
(
1− ej/K

)
(1.2)

These equations allowed to compute the stress at the interface between
the tyre and the soil as a function of the soil sinkage caused by the tyre, thus
it is necessary either to state some hypothesis on the shape of the contact
interface or consider the equilibrium of each point of the tyre surface.

The simpliest model considers a slick rigid tyre, taking into account
three different conditions:

· at rest,

· at driving state,

· at braking state.

In the next subsections (1.1.1, 1.1.2, 1.1.3), will be presented the calcu-
lation for the stresses σ and τ in the three just listed conditions, according
to the work of Muro and O’Brien [40].
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1.1. Tyre-soil interaction models

1.1.1 Rigid wheel at rest

Figure 1.1: stress distribution beneath a tyre at rest [40]

In the case of a rigid tyre at rest under an axle load W , the soil develops
a reaction force, which is the product of a symmetrical distribution of the
normal stress σ and of the shear resistance τ , shown in figure 1.1. The sign
of the shear resistance τ should be reversed for the left and right side of
the wheel, such that the torque resulting from the integration of the shear
resistance becomes zero.

The resultant stress p, due to the normal stress σ and to the shear stress
τ , at an arbitrary point X of the contact surfarce, is inclined of an angle δ,
as shown in equation 1.3.

δ = arctan
( τ
σ

)
(1.3)

To account for the modulus of the stress at an arbitrary point X it is
required to know the amount of sinkage and the slippage at that point.

The amount of sinkage z can be calculated as in equation 1.4, where θ0
is an half of the angle subtending the contact surface, θ is the central angle
of the point X , and R is the wheel radius; while the amount of slippage can
be calculated as a function of the center angle, as in equation 1.5.

z = R [cos (θ)− cos (θ0)] (1.4)

j0 = R [θ0 − sin (θ)]
θ0 − θ
θ0

(1.5)

The vertical component q (θ) of the resulting stress, can be computed
from the Bekker equation (see eq. 1.1), thus the resulting stress p (θ) can
be calculated as in 1.6.
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Chapter 1. State of the art

p (θ) =
q (θ)

cos (θ − δ)
=

(
kc
B

+ kφ

)
zn

cos (θ − δ)
(1.6)

The distribution of stresses σ and τ can be iteratively calculated until
the load on the axleW is equilibrated by the vertical reaction of the soil Fz,
resulting from the integration of the vertical component of the stress p (θ)
along the contact surface between −θ0 and +θ0, as in equation 1.7, where
B is the wheel width.

Fz = BR

∫ +θ0

−θ0
p (θ) cos (θ − δ) cos (θ) dθ (1.7)

1.1.2 Rigid wheel at driving state

In the case of a wheel at driving state, the procedure is similar to the one
applied for a wheel at rest, although the non-symmetry of stress distribution
must be accounted.

The amount of slippage jd at an arbitrary point X of the contact surface
results from the integration of the slip velocity vs, that can be expressed
as in equation 1.8, where ω is the angular velocity of the wheel, v is the
forward speed, and θ is the central angle of the point X , as in figure 1.2.

vs = Rω − v cos (θ) (1.8)

As Rω > v for the driving state, it is possible to define the slip ratio
id as shown in equation 1.9, thus by substituting it in eq. 1.8, vs can be
expressed as in equation 1.10.

is = 1− v

Rω
(1.9)

vs = Rω [1− (1− id) cos (θ)] (1.10)

By integration of the slip velocity vs it is possible to calculate the amount
of slippage (see eq. 1.11), whose distribution is represented in figure 1.2.
Thus it is possible to calculate the shear stress distibution from the Mohr-
Coloumb equation modified according to Janosi (eq. 1.2).

Equation 1.11 shows the integration of the slip velocity vs from the be-
ginning of the contact to the instant t, which can be solved as a function of
the central angle, from the instantaneous angle θ to the entering angle θf ,
as shown in figure 1.2.
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1.1. Tyre-soil interaction models

jd = R

∫ t

0

ω [1− (1− id) cos (θ)] dt =

= R

∫ θf

θ

ω [1− (1− id) cos (θ)] dθ = (1.11)

= R {θf − θ − (1− id) (sin (θf )− sin (θ)]}

Figure 1.2: the distribution of the amount of slippage under a rigid wheel at driving
state [40]

The sinkage, required to account for the vertical component of the result-
ing stress p (θ), can be calculated as the length of the vertical component
d (θ) of the trajectory of a point on the peripherical surface of the wheel
during the contact with the soil.

Figure 1.3: the trajectory of a point F on the peripherical surface of the wheel at driving
state [40]

Figure 1.3 shows the rolling locus of a point on the peripherical surface
of the wheel, whose length can be calculated as in equation 1.12, where the
trajectory is integrated from the beginning of the contact at point a to the
point b.
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l (θ) =

∫ b

a

√
1 +

(
dY

dX

)2

dX (1.12)

The coordinates of a point on the peripherical surface of the wheel are
the coordinates of a point on a trochoid curve. Their values can be ex-
pressed as in equations 1.13 and 1.14, thus it is possible to express the
derivative dY

dX
as in equation 1.15.

X =
vα

ω
+R sin (α) = R [α (1− id) + sin (α)] (1.13)

Y = R [1 + cos (α)] (1.14)
dY

dX
= − sin (α)

1− id + cos (α)
(1.15)

Hence the traveled length of the trajectory can be accounted as in equa-
tion 1.16, after changing the integration domain from the abscissa of the
trajectory X to the rotation angle of the wheel α

l (θ) =

∫ α

αf

√
1 +

[
− sin (α)

1− id + cos (α)

]2
·R [1− id + cos (α)] dα (1.16)

The vertical component q (θ) of the stress can be calculated as in equa-
tions 1.17 and 1.18, valable respectively before and after the maximum
sinkage point.

For θmax ≤ θ ≤ θf q (θ) = k1ξ [d (θ)]n1 (1.17)
For − θr ≤ θ ≤ θmax q (θ) = k1ξ [d (θ)]n1 + (1.18)

+ k2ξ [d (θmax)− d (θ)]n2

The coefficients k1 and k2 correspond to the behaviour of the soil re-
spectively before and after reaching the maximum sinkage, and can be cal-
culated from equations 1.19 and 1.20, where kc,1, kφ,1, kc,2, and kφ,2 are
the Bekker equation coefficients and can be inferred from a dynamic plate
loading test, as well as the coefficient ξ in the equation 1.17 and 1.18.

k1 =

(
kc,1
B

+ kφ,1

)
(1.19)
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1.1. Tyre-soil interaction models

k2 =

(
kc,2
B

+ kφ,2

)
(1.20)

The resulting stress p (θ) can now be calculated from the equation 1.21,
where δ, θ, and ζ , are respectively the angle between the shear stress and
the normal stress, the center angle, and the angle between the longitudinal
force and the normal load W (see eq. 1.22)

p (θ) =
q (θ)

cos (ζ + θ − δ)
(1.21)

ζ = arctan

(
Td
W

)
(1.22)

1.1.3 Rigid wheel at braking state

The distribution of the amount of slippage beneath a rigid wheel at braking
state is asymmetrical, as well as under a rigid well at driving state; moreover
the slip velocity presents a change of sign, as shown in figure 1.5.

Figure 1.4: the distribution of the amount of slippage under a rigid wheel at braking
state [40]

Since Rω < V , the slip ratio ib can be accounted as in equation 1.23,
thus the slip velocity vs, defined in equation 1.8, can be expressed as in
1.24.

ib =
Rω

v
− 1 (1.23)

vs = Rω

[
1− 1

1 + ib
cos (θ)

]
(1.24)
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Chapter 1. State of the art

By zeroing the slip velocity, it is possible to point out the value θ0 of the
center angle corresponding to the point on the contact surface where the
velocity sign change is located (see eq. 1.25).

θ = arccos

(
Rω

v

)
= arccos (1− ib) (1.25)

The amount of slippage results from the slip velocity integration from
the center angle θ to the entering angle θf , as in equation 1.26.

jb = R

∫ t

0

ω

[
1− 1

1 + ib
cos (θ)

]
dt =

= R

∫ θf

θ

ω

[
1− 1

1 + ib cos (θ)

]
dθ = (1.26)

= R

{
(θf − θ)−

1

1 + ib
[sin (θf )− sin (θ)]

}
The length of the trajectory projected in vertical direction is accounted

for the sinkage calculation. The trajectory of a peripherical point of the
wheel is a trochoidal curve, as well as in subsection 1.1.2, although slight
differences due to the different slip ration ib, as it can be observed in figure
1.5.

Figure 1.5: the trajectory of a point F on the peripherical surface of the wheel at braking
state [40]

The coordinates of the trochoidal trajectory are shown in equations 1.27
and 1.28, as well as their derivative dY

dX
in equation 1.29, which is used to

determinate the length of the traveled trajectory l (θ) in equation 1.30.

X =
vα

ω
+R sin (α) = R [α (1 + ib) + sin (α)] (1.27)

Y = R [1 + cos (α)] (1.28)

8



1.1. Tyre-soil interaction models

dY

dX
= − sin (α)

1
1+ib

+ cos (α)
(1.29)

l (θ) =

∫ θf

θ

√[
1

1 + ib

]2
− 2 cos (θ)

1 + ib
+ 1 dθ (1.30)

The vertical component of the stress q (θ) can be calculated from the
projection of l (θ) in vertical direction as explained in equations 1.17 and
1.18 for a wheel at driving condition. Thus the resulting stress q (θ) can be
accounted as shown in equations 1.31, 1.32 and 1.33.

p (θ) =
q (θ)

cos (ς − θ + δ)
(1.31)

ς = δ + η − π/2 (1.32)

η = arctan

(
v sin (θ)

Rω − v cos (θ)

)
= (1.33)

= arctan

(
sin (θ)

1 + ib − cos (θ)

)
1.1.4 Deformable tyre

The model presented in the previous section (sec. 1.1) works with a fixed
geometry of the contact surface, thus it applies also to the case of de-
formable tyre, provided to state some hypothesis about shape of the in-
teraction surface.

Schmid in a review paper [49] presented three possible simplified shapes
of the tyre, shown in figure 1.6.

· Model a of figure 1.6 proposes to model the contact surface as a plane.

· Model b, considers the contact surface as the peripherical surface of
a rigid wheel, whose radius is larger than the one of the tyre under
examination.

· Finally model c depicts the contact surface as a parabolic curve.

These models are simple and perform good results, however they ap-
ply only to the case of slick wheel, since the presence of the lugs is not
accounted for the integration of the slip velocity.

To overcome this limit, El-gawwad et al. [25] [26] [27] proposed a multi-
spoke model able to predict the steady state performance of the tyre, con-
sidering also the lugs inclination.
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Chapter 1. State of the art

Figure 1.6: three different models of the contact surface shape between tyre and soil [49]

As remarked by Schmid [49], these analytical models presume an a pri-
ori knowledge of the contact contour geometry, and do not address the fact
that the geometry of the contact area results from deformation of the tyre
and deformation of the soil due to the interactio of both.

To solve this issues a different approach is required to model the soil and
the tyre; the first one considered is the finite elements method.

In the nineties Aubel [7] [8] [9] developed a finite elements model,
called VENUS (VEhicle NatUre Simulation), able to calculate the soil and
tyre deformations in vertical and horizontal directions, taking into account
also the bulldozing effect.

Mohsenimanesh et al. [39] in 2009 developed a finite element model
able to predict the pressure on the soil surface, which have a strong influ-
ence on soil compaction, also considering many soil layers with different
properties.

Xia [57] in 2010 modelled both the tyre and the soil by finite elements,
considering a mesh more refined for the topsoil than for the undersoil, to
decrease the computational cost of the model.

To reduce the simulation computational effort, the soil can also be mod-
eled as a plane mesh, whose nodes are able to move in vertical direction;
this kind of model, called digital elevation model, was proposed by Jain
and al. [31,53] for the wheel-soil interaction in the case of planetary rovers
and implemented in the ROAMS planetary rover simulation environment.

Recently also the discrete elements method has been proposed to model

10
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the soil [33]. This technique differs from finite elements because it consid-
ers many discontinuos bodies interacting with one another and was firstly
porposed by Cundall et al. [22] in 1971.

The main critical issue of finite and discrete elements models is the
ground discretisation [49], because a high number of elements is required
to perform a good approximation of the soil behaviour, involving high com-
putational effort.

1.2 Experimental tests

Beside the numerical and analytical models, during the last 60 years many
different experimental tests have been carried out in order to study the tyre-
soil interaction, in particular focusing on the stress and strain distribution
beneath the tyre, having a strong impact on soil compaction, traction, and
vibrations transmission.

Botta et al. [12] [13] studied the influence of soil state on tyre-soil inter-
action, testing three different soil conditions:

· direct sowing condition,

· seedbed condition,

· ploughed soil.

The comparison among these soil conditions prooved that residual top-
soil bulk density and tire sinkage affect largely loose soils, leading to a
greater rise of soil compaction and motion resistance.

Many experimental tests focused on the residual compression of the soil,
measured by the bulk density and the cone index, after tyre passage, since
it has a very defavorable effect in the roots growth.

The subsoil and the topsoil compactions are related to different factors:
the topsoil compaction increases when the ground pressure rises, whereas
the subsoil compaction is more affected by the dynamics load on the tyre,
as shown by Way et al. [56]. Although this result was partially disproved
by Arvidsson and Keller [3], who stated that neither topsoil stress is simply
a function of inflation pressure, nor subsoil stress is simply a function of
wheel load.

The ground pressure is quite affected by the inflation pressure [4]: hence
decreasing the inflation pressure reduces the effect on soil physical prop-
erties, although a low inflation pressure decreases the tyre life expectancy
[20].
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Chapter 1. State of the art

Moreover, it has been possible to state that the subsoil compaction does
not depend on vehicle ground pressure, which instead influences the topsoil
compaction, and to prove that the magnitude of change in bulk density and
cone index values are reduced by lowering inflation pressure and increasing
tyre size.

Smerda and Cupera agreeded with this conclusion in their study of the
influence of tyre inflation pressure on drawpull bar [52], proving that the
enlargement of the contact area between the tyre and the soil reduces the
rolling resistance on loose soil and restricts physical degradation of soil
characteristics.

Among the consequeces of tyre passage on loose soil, also the soil dis-
placement plays an important role.

Way et al. [55] observed that the initial and final soil bulk density infor-
mation alone may not reflect the strain beneath the tyre, indeed the loose
soil is compressed in the vertical and longitudinal directions and elongated
in the lateral direction.

The distribution shape of normal and shear stresses around the circum-
ference of soil-tyre contact patch depends on tyre configurations (size, load
stiffness, and slip), soil conditions, and operational driving conditions of
vehicles. For tyre with high inflation pressure the maximum soil stress oc-
curs in front contact region near the center line of wheels, whereas the stress
distribution under tyre with low inflation pressure appears to be uniform in
the main region of contact surface.

On soft clay soil both normal and shear stresses increase very fast and
decrease immediately after reaching the maximum value implying that the
plastic flow occured under tractor tyres, whereas on hard clay soil the form
of soil stress distribution is more uniform, as in the case in firm sandy loam
[42].

Another interesting aspect of this problem is the vibrations transmission
from the soil to the driver, since the discomfort can have severe conse-
quences on driver health.

Nguyen and Inaba [41] carried out a series of experiments with differ-
ent inflation pressure on road and on sandy loam, proving that the main
excitations are due to lugs and tyre eccentricity, if present.

The main frequency exciting the system are shown in equations 1.34
1.35 and 1.36: the first one is the frequency of wheel-tyre assembly and
depends on the angular velocity of the tyre ω, whereas the second and the
third ones are respectively the first and second order excitation frequencies
of tyre lugs, whose number is n.
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1.3. Tread pattern optimization

fw =
ω

2π
(1.34)

fL1 =
nω

2π
(1.35)

fL2 =
nω

π
(1.36)

Nguyen ad Inaba evaluated the influence of lugs and tyre eccentricity
on the root mean square values of the acceleration, considering separately
different dynamics behaviours:

· the root mean square of the dynamic wheel load is proportional to
forward speed in the case of high tyre inflation pressure.

· the root mean square of the bounce acceleration is proportional to for-
ward speed and inversely proportional to tyre inflation pressure.

· the root mean square of the roll and pitch accelerations is proportional
to forward speed in the case of low inflation pressure, other wise the
root mean square of accelerations is not strictly proportional to for-
ward speed.

The eventual non-uniformity of the tyre strongly affects the wheel-load
variations at the first order frequency and harmonics, furthermore this ef-
fect increases as the tyre inflation pressure decreases or the forward speed
increases; besides this effect becomes critical as the tractor moves on soft
sandy loam.

The experimental tests presented in this section allowed to enlarge the
knowledge and comprehension of this complex phenomenon, providing
usefull tools to state more accurate models.

1.3 Tread pattern optimization

Soil-tyre contact area and pressure are important factors in the compaction
induced by the traffic of agricoltural machinery and both depend in tyre
type and size, static load, inflation pressure, and soil condition, as shown
by Rodriguez et al. [47].

In their study Rodriguez and his collegues reviewed the main mathe-
matical models used to determine the size of the soil-tyre contact surface
(AT ).

The first model has been proposed by Mckyes [37], and was based on
the section width (B) and on the diameter (dE) of the tyre, as shown is

13



Chapter 1. State of the art

equation 1.37, where the factor k is a constant equal to 4 for movement on
a rigid surface and 2 for movement on loose soil.

AT =
BdE
k

(1.37)

The second model has been proposed by Palancar [44] and considers
the main dimensions of the footprint, as in equation 1.38, where B and l
are respectively the width and length of the footprint, and k is the same
constant than in equation 1.37.

AT = kBl (1.38)

These equations were developed by interpoolating experimental results
for traction tyre; hence these models are inadequate to determine the size of
the contact surface of different kind of tyres, such as trailer tyres [23], be-
cause traction and transport tyres differ in size structure, working pressure,
stiffness and loading capacity.

Rodriguez et al. [47] tested four different tread patterns, shown in figure
1.7, to state regression equations relating contact area, contact pressure and
footprint dimension with tyre type, inflation pressure pi, static load W and
section width B.

The four tyres tested in the research are trailer tyres used in for sugarcane
harvest and transportation, and have been classified as:

· tyre A: 560/80D26 tyre with block-shape tread pattern.

· tyre B: 23.1-26 tyre with rib shape tread pattern.

· tyre C: 600/50-22.5 tyre with low lug.

· tyre D: 23.1-26 tyre with high lug.

Rodriguez and his collegues prooved that among the four tyre types
tested, the block-shape tread pattern and rib-shape tread pattern tyres (A
and B tyres) are the best options for sugarcane transport trailers because
they cause lower contact pressure, transmit less stress to the soil and hence
cause less soil compaction.

The influence of tread pattern on tyre performance was studied also by
El-Gawwad et al., who presented a multi-spoke tyre model and studied the
influence of angled lugs on performances, focusing on traction tyres [27].

The El-Gawwad work showed that angled lugs are less effective in pro-
viding high tractive force than straight lugs, but allow larger lateral forces,
which are necessary to keep the tractor on its contour line on a slope.

14



1.3. Tread pattern optimization

Figure 1.7: the four tread pattern tested by Rodriguez and alt [47]

This research has been considered for the tread pattern optimization in
this thesis. Since the interest will be focused on traction tyre, the shape of
tyre C in figure 1.7 will be considered, and the effect of the lugs length and
inclination will be studied.
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CHAPTER2
Experimental tests

Experimental tests are currently used to gather information on the tyre and
soil behaviour, as shown in section 1.2.

To state the numerical models that will be presented in chapters 3 and 4,
four different tests have been carried out.

1. Cone penetrometer test.

2. Shear test.

3. Impulsive test.

4. Traction test.

The cone penetrometer and shear tests are designed to define the soil
properties, the impulsive test allows to characterize the structural properties
of a tyre, whereas the traction test measures the traction force exerted by
a tractor as a function of tyre and soil properties for different values of the
slippages.

The results of those tests allowed to validate the planar model of tyre-
soil interaction that will be discussed in chapter 3.

17



Chapter 2. Experimental tests

The traction test was simulated with this model, whose parameters were
set according to the results of the tests carried out on the tyre mounted on
the tractor and on the soil where the traction test was performed.

The next sections (section 2.1 and section 2.2) will be spent to explain
these experiments, pointing out the results obtained.

2.1 Soil tests

The main features involved by the soil model are the calculation of the
normal stress and the determination of the shear resistance, hence to set the
model parameters two tests have been carried out.

The cone penetration test allows to find out the soil resistence to the
penetration of a conic tip, thus it is possible to use the results of this test to
set the stiffness of the soil, whereas the direct shear test is a useful tool to
state the relationship between shear displacement and shear stress.

2.1.1 Cone penetration test

The cone penetrometer test is designed to infer the penetration resistance
of the soil [40].

Figure 2.1 depicts a portable cone penetrometer apparatus, whose end is
a cone of base area A and apex angle α: the standard dimensions of the end
are 6.45cm2 of area and 30◦of apex angle.

At the upper end of the penetrometer a proving ring is mounted: a gauge
measures the deformation of a spring, to account for the resistence P pro-
vided by the soil to the tip forced in the ground at a constant speed of
1.0cm/s.

Figure 2.1: Conic penetrometer.

From this test the penetration pressure acting under the base of the cone
is inferred from the ratio between the penetration force P and the area of
the cone base A, usually called cone index CI (equation 2.1).

CI =
P

A
(2.1)
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2.1. Soil tests

Moreover the cone penetrometer test can evaluate the runability of a soil,
for instance table 2.1 shows the cone index required to allow the trafficabil-
ity of different vehicles.

Table 2.1: cone index required for construction machine trafficability [40]

Construction machine and situation Cone Index CI [kN/m2]
Bulldozer running on very weak terrain ≥196
Bulldozer running on weak terrain ≥294
Middle size bulldozer ≥490
Large size bulldozer ≥686
Scrape dozer running on weak terrain ≥392
Scrape dozer ≥588
Towed scraper ≥686
Motor scraper ≥906
Dump truck ≥1170

To set the soil parameters in the planar model, the penetrometer test was
carried out on the soil where the traction test was performed. The results of
that test are shown in figure 2.2, where the trend of the soil pressure is draft
as a function of the sinkage.

It is possible to infer the presence of three different soil layers:

· the first layer is between 0 and 15cm of sinkage and presents a stiffness
of 13.0MPa/m.

· the second layer is between 15 and 24cm and is softer than the first
one; the slope in this layer is negative and its mean value is -9.2MPa/m.

· in the third layer the soil stiffens and presents a stiffness of 19.5MPa/m.
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Figure 2.2: test results: resistence of the soil as a function of the penetrometer sinkage.
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Chapter 2. Experimental tests

The tractor tyres sinkage usually is limited to 12-15cm, hence to set the
model the stiffness of the first soil layer will be considered.

2.1.2 Direct shear test

The direct shear test is designed to study the relationship between shear
stress and shear displacement [40].

The test apparatus is depicted in figure 2.3: it consists of two discon-
nected boxes, which can be filled with a soil sample at a certain density.
If a static normal load P is applied to the specimen through a platen and
the lower box is moved laterally, a shearing action in the horizontal plane
rises. Thus the relationship between the shear force T and the horizontal
displacement of the lower box can be inferred [40].

Figure 2.3: direct shear box apparatus [40].

Generally the force P is exerted through a gravity operated level, and
the force T is tipically measured by use of a proving ring. The horizontal
displacement of the lower box and the vertical displacement of the loading
plate, necessary for the measurement of the volume change of the soil, can
be carried out by the use of two dial gauges.

The experiment is tipically performed with a shearing speed between of
maximum 0.2mm/min, as prescripted by the ASTM standard [6].

Figure 2.4 shows the general pattern of results achieved using this ap-
paratus. In the diagram the relationship between shear resistance τ = T/A
(whereA is the shearing area) and horizontal displacement, at constant nor-
mal stress (σ = P/A), is shown.

Typically two different responses are obtained. Referring to figure 2.4
in type A soils, the shear resistance τ tends towards an asymptote. This be-
haviour is typical of normally consolidated clays and loosely accumulated
sandy soils.

On the contrary, the shear resistance τ of type B soils typically shows
a marked peak at certain horizontal displacement. These hump type be-
haviours can be usually observed in overconsolidated clays and compacted
sandy soils.
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From these curves, the cohesion kc and the angle of internal friction φ
can be identified through the use of Coulomb’s failure criterion (see equa-
tion 3.26).

The shear test is repeated for a number of normal force values P , to
record the peak shear resistance and then to plot the resulting data on a
graph.

Figure 2.5 plots the peak shear resistance τmax for B type soil against
the normal stress σ. The shear resistance value τ is the one measured at
horizontal displacement of 8 mm (or 50% of the initial thickness of the soil
sample) for A type soil.

This test was carried out on a sample of the soil where the traction test
used for the planar model validation was performed. The soil can be defined
as gravel and pebbles in a matrix of silty sand and loose clay, thus is shows
the behaviour of type A soils.

After removing the pebbles of dimension larger than 2.00 mm, three
prismatic specimens were prepared of quadratic base: 60.00 mm of large
and 25.00 mm of height.

The shear speed selected was 4.00 µ/min and the test ended when a shear
displacement of 4.00 mm was reached.

Figure 2.6 shows the results of the direct shear test, carried out for three
different values of the normal pressure, so that the relationship between the
shear stress and the shear displacement can be carried out as a function of
the normal pressure. This results will be included in the model in chapter
3.
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Figure 2.6: direct shear test results.

2.2 Tyre test

To include the tyre flexibility in the model, a modal analysis of the impul-
sive response of a real tyre has been carried out. The size of the considered
tyre is 460/85R34, correspondng to 0.46 m of width and 0.8228 m of ra-
dius.

To infer the modal parameters from the impulsive response, the least
square complex exponential method was used; this method works in time
domain, presenting the advantage of not requiring an initial parameters es-
timate.

2.2.1 Impulsive test

The aim of the impulsive test was to identify the radial modes of the tyre,
hence to measure the radial acceleration of the carcass 8 accelerometers
were disposed regularly spaced around the carcass of the tyre, as shown in
figure 2.7.

From literature results the modes shapes are expected to present an in-
creasing number of lobes, as it is possible to infer from figure 2.8; since 8
measuring points do not allow to identify more than 4 nodes, only modes
up to the fifth one will be recostructed.

Two different inflation pressures have been considered during the im-
pulsive test, since tractor tyres usually work at about 1.6bar when driving
on road and at about 1.0bar during machinery operations; indeed lower in-
flation pressure allows to obtain less sinkage, but increases the wear [20],
hence on road a larger inflation pressure is preferable.

The impulsive force has been supplied through a dynamometric ham-
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Figure 2.7: Placement of the accelerometer sensors during the impulsive test of the tyre.

Figure 2.8: expected modes shapes for cross-ply tyre [29]
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Chapter 2. Experimental tests

mer, whose cut-off frequency grows with the hammer load and the contact
stiffness, as shown in figure 2.9.

Since it is possible to identify only up to the fifth mode with 8 ac-
celerometers, the tyre can be hammered with a soft tip, corresponding to
a cut out frequency of 100Hz. Furthermore the tyre was hammered near to
a sensor, in order to measure the displacement of the forcing point.

Figure 2.9: filtering function of the hammer used to excite the tyre.

In order to avoid the interferences in the measurement of the link system,
the tyre was suspended at the center by a rigid link system, whose frequen-
cies are higher than the range of interest. Moreover multiple test repetitions
were carried out, so that the results could been filtered and averaged.

Thus the modal parameters were evaluated through the least square com-
plex exponential method, as mentioned at the beginning of this section.

2.2.2 Least square exponential method

The least square exponential method allows to identify the parameters of
the modes of a multi degrees of freedom system, without any initial exti-
mation [24].

The starting point of this method is the receptance of frequency response
function of the node j to an excitation in the node k, shown in equation 2.2.
The parameters ωr and ω′r are respectively the undamped and damped an-
gular frequency of the rth mode, ζr is the damping factor, which expresses
the ratio between the damping of the rth mode and the critical damping
2
√
krmr, and rAjk is the amplitude of the rth mode in the node j.

αjk (ω) =
2N∑
r=1

rAjk

ωrζr + i (ω − ω′r)
(2.2)
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2.2. Tyre test

ω
′

r = ωr
√

1− ζ2r (2.3)

ω
′

r+N = −ω′r (2.4)

(r +N)Ajk = rA
∗
jk (2.5)

By the inverse Fourier transform it is possible to obtain the impulse re-
sponse function 2.6.

hjk (t) =
2N∑
r=1

rAjkωre
srt (2.6)

sr = −ωrζr + iω
′

r (2.7)

Since the original frequency response function has been obtained in a
discrete form, the resulting impulse response function will similarly be de-
scribed at a corresponding number of equally-spaced time intervals (∆t =
1/∆f ), as in equation 2.8, where the subscripts jk have been omitted and
Ar and esrt have been defined as in equation 2.9 and in equation 2.10 for
the sake of simplicity.

h (t) =
2N∑
r=1

ArV
l
r (2.8)

Ar=̇r
Ajk (2.9)

esrt=̇Vr (2.10)

By replicating the same procedure for the full data set of q sample, it is
possible to obtain the equations systems 2.11.

h0 = A1 + A2 + . . . + A2N

h1 = V1A1 + V2A2 + . . . + V2NA2N

h2 = V 2
1 A1 + V 2

2 A2 + . . . + V 2
2NA2N

... =
...

...
...

...
hq = V q

1 A1 + V q
2 A2 + . . . + V q

2NA2N

(2.11)

Provided that the number of sample q exceeds 4N , where N is 5, the
number of modes to reconstruct, this equation can be used to set up an
eigenvalue problem, which solution supply the complex natural frequencies
contained in the parameters Vl (for l = 1 : 2N ) via a solution using the
Prony method.
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By multiplying each equation of the set 2.11 by a coefficient βi, the
equations systems 2.12 can be obtained.

β0h0 = β0A1 + β0A2 + . . . + β0A2N

β1h1 = β1V1A1 + β1V2A2 + . . . + β1V2NA2N

β2h2 = β2V
2
1 A1 + β2V

2
2 A2 + . . . + β2V

2
2NA2N

... =
...

...
...

...
βqhq = βqV

q
1 A1 + βqV

q
2 A2 + . . . + βqV

q
2NA2N

(2.12)

Adding all the equations of set 2.12 gives equation 2.13, where βi are
the coefficients of equations 2.14, whose roots are the parameters Vl.

q∑
i=0

βihi =
2N∑
i=0

Aj
(
βiV

i
j

)
(2.13)

β0 + β1V + β2V
2 + . . .+ βqV

q = 0 (2.14)

Hence the system natural frequencies can be indentified solving the
equation 2.14, once determined the coefficients β.

Considering 2N samples, from equation 2.14 it is possible to infer 2.15,
thus every term on the right hand side of equation 2.13 is zeroed and it is
possible to write equation 2.16.

2N∑
i=0

βiV
i
r = 0 for r = 1, 2 (2.15)

2N∑
i=0

βihi = 0 (2.16)

By setting β2N = 1, it is possible to rearrange equation 2.16 as in 2.17.

{
h0 h1 . . . h2N−1

}


β0

β1
...

β2N−1

 = −h2N (2.17)

The entire process from equation 2.11 to equation 2.17 may be reapeated
for another set of data points, further the new data set may overlap consid-
erably the first set, as in equation 2.18.
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{
h0 h1 . . . h2N

}


β0

β1
...

β2N−1

 = −h2N+1 (2.18)

Iteratively applying this procedure it is possible to obtain the equations
set 2.19, whose solutions are the unknown coefficients βi.


h0 h1 . . . h2N−1

h0 h1 . . . h2N
...

... . . . ...
h2N−1 h2N . . . h4N−2




β0

β1
...

β2N−1

 = −


h2N

h2N+1

...
h4N−1

 (2.19)

Thus solving equation 2.14 it is possible to determine the values of V1,
V2, . . . , V2N , which let to identify the natural frequencies of the system by
equation 2.10.

To complete the identification, the modal constants A1, A2, . . . , A2N ,
can be obtained by equation 2.11.

This method allowed to identify the modal shapes reported in figure
2.10, where it is possible to observe that the first mode corresponds to the
expansion and contraction of the tyre carcass, the second mode is the dis-
placement of the carcass with respect to the tyre center, whereas the third,
fourth, and fifth mode correspond to carcass shape deformation, presenting
respectively two, three and four lobes.

The inflation pressure exerts a high influence on the tyre dynamical re-
sponse, determining the tyre stiffness, whereas poorly influences the modes
shapes.

Table 2.2 shows the frequencies and damping factors of the modes previ-
ously described, as a function of the inflation pressure. When the tyre infla-
tion is higher, the modes frequencies increase, on the contrary the damping
factors decrease.

2.3 Traction test

To evaluate the traction performances of the tyre, whose mode had been
identified, a traction test has been performed. This test allows to evaluate
the traction force supplied by a tractor, where the testing tyres are mounted,
as a function of the slippage.
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Figure 2.10: shape of the modal deformates indentified

Table 2.2: parameters of the tyre structure

1.0 bar 1.6 bar
Lobes number Frequency [Hz] Damp. factor [%] Frequency [Hz] Damp. factor [%]

0 11.2 5.8 11.8 5.8
1 26.5 4.4 27.1 4.6
2 39.3 3.1 42.4 3.6
3 46.3 1.3 51.9 2.8
4 56.3 6.0 62.2 5.8

To carry out this test two tractors were linked by a dynamometric bar, in
order to measure the traction force provided by the front one as a function
of the slip.

The testing tyres were mounted on the front tractor, and the rotational
speed is measured by an encoder; whereas a free rolling wheel allows to
measure the forward speed of the tractor, thus it is possible to infer the slip
value, imposed by the rear tractor.

Figure 2.11 shows the traction force sustained by the driving tyres as
a function of the slip, which varies in the range between 5 and 30%; it is
possible to observe the traction force rises increasing the slip value.

The test was carried out with an inflation pressure of 1.0 bar, because
it took place on a loose agricultural soil, where a low inflation pressure is
preferred.

The data provided by this test will be used to validate the planar interac-
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Figure 2.11: Traction force available as a function of the slip on the tractive tyres

tion model that will be presented in the next chapter (chap. 3).
Since the test evaluates the performances of the whole system composed

by the tractor and the tyres, the simulation will be carried out taking into
account the tractor properties, such as tractor load and the load transfer.
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CHAPTER3
Planar model

In this chapter a plane model of tyre-soil interaction will be presented: only
the forces and displacements in vertical and longitudinal directions will be
considered, whereas the lateral forces and diplacements will be neglected.

This planar model is specially designed to perform simulations of a tyre
moving in longitudinal direction, paying particular attention to stationary
conditions.

The model may be considered as consisting of two submodels interact-
ing with each other: the tyre model and the soil model.

The soil is modeled by a layer of springs, which pressure on the tyre is
proportional to the compression caused by the sinkage due to the tyre.

The tyre is modeled considering both the tread pattern geometry and
the carcass flexibility. In first approximation the tyre deformation was ne-
glected, since the soil one is markedly larger [28]. However the flexibility
have been added, because of its influence on vibrations transmission and on
interaction surface deformation.

Finally the results of some simulations carried out with the model will
be discussed: firstly the validation of the model will be considered, thus
a sensitivity analysis on the tread pattern geometry will be presented, and
finally the results of simulations carried out with a whole tractor model will
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Chapter 3. Planar model

be shown, although these results were obtained with an earlier version of
the model.

3.1 Tyre model

The tyre characteristics have a strong impact on the achievement of tractor
requirements pointed out in the summary, hence the tyre model developed
considers geometrical features of the tread pattern such as lugs heigh, orien-
tation, and number, and dimension of the tyre such as width and radius, as
well that structural properties, such as modes shape, frequency, and damp-
ing.

Indeed the geometry of the tread pattern determines the shape of the
interaction surface between tyre and soil, whereas the tyre structural prop-
erties allow to consider the deformation of this interaction surface under the
load and impact on the trasmission of force and acceleration to the hub.

The geometrical and structural properties of the tyre have been modeled
by different features, that will be analysed in the next subsessions (3.1.1
and 3.1.2).

3.1.1 Tread pattern

For the sake of taking into account the influence of shape, number and
height of the lugs, the geometry of the tread pattern has been modeled.
The tread pattern is represented through four different surfaces, classified
according to their position and orientation:

· BASE: the surface of the tip of the lugs.

· CEIL: the carcass surface among the lugs.

· FRONT: the surface of the side of the lugs, in particular the part of
the lugs first entering in contact with the soil, according to the motion
direction.

· REAR: the surface of the rear side of the lug, according to the motion
direction.

Each of these surfaces interacts with the soil in a particular manner.
Figure 3.1 shows a section of the tyre, where are marked the four surfaces
and the normal and shear stresses references.

The normal stress σ is accounted to be positive when directed from the
outer to the inner of the tyre, while the shear stress τ is accounted to be
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Figure 3.1: the different orientation of the four surfaces modelling the tread pattern along
a section of the tyre, and the references of normal and shear stresses.

positive when oriented 90◦ clockwise with respect to the reference of the
normal stress σ.

The base and ceil surfaces are normal to the radial direction, and their
distances from the center of the tyre, where the hub is linked to the wheel,
are respectively equal to the maximum and the minimum values of the tyre
radius, whereas the front and rear surfaces are considered to lay on radial
planes, thus their distance from the center is accounted for R + hlug/2.

ceil

base

rear

speed

Figure 3.2: the tread pattern has been divided by a grid, and each element of the grid has
been associated with the areas covered by the four surfaces as shown for the element
pointed out by way of example.

If the tread pattern of figure 3.2 should be modeled, it would be grid-
ded as shown in the same figure, and each element would be associate with
the areas covered by the different surfaces. As an example an element is
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pointed out in figure 3.2. This element covers a part of the lug tip, cor-
responding to the base surface, a part of the lug rear side, corresponding
to the rear surface, and a part of the carcass among the lugs, correspond-
ing to the ceil surface; these three surfaces are marked in red, whereas the
front surface is null because the front side of the lug is not included in the
considered element.

Figure 3.3: The image of the tread pattern after preprocessing

The surface identification allowing to build up the tread model is carried
out by a code implemented in MATLAB language. The code works on an
image of the tread pattern, where a lug is selected and the left part of the
tread is masked as shown in figure 3.3; the code can recognize the shape of
the lug and can infer its size with respect to the width of the tyre. Thus the
whole tread can be built by mirroring and replicating the lug.

This procedure allows to build tread models with different numbers of
lugs without modify the shape of the lug, indeed a different number of
lugs can be placed on a tread of constant dimensions just by reducing or
increasing the base surfaces among the lugs.

The forces experienced by each element of the carcass result from the
stresses on each surfaces of the element and can be accounted as in equa-
tions 3.1 and 3.2, where the index k refers to the surface condidered (base,
ceil, front or rear), and Ak is the area of that surface.

Fσ,k = σkAk (3.1)
Fτ,k = τkAk (3.2)

Hence at the center of the carcass the stress distribution on the carcass
results in the forces Fx and Fz, respectively in longitudinal and vertical
direction, and in the moment My around the lateral axis ~y.
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3.1. Tyre model

The forces Fx and Fz are accounted as in equations 3.3 and 3.4, where
the index k and i refer respectively to the different surfaces and to the ele-
ments of the carcass, φi,k is the angle with the orizontal axis of the normal
stress σi,k, and Ai,k is the area covered by the surface k on the element i.

Instead the moment My depends on the distance from the center di,k and
on the stress in tangential direction si,k, which is the shear stress for base
and ceil surfaces, and the normal stress for front and rear surfaces, as shown
in equation 3.5.

Fx =
4∑

k=1

N∑
i=1

[
σi,k cos (φi,k) + τi,k cos

(
φi,k −

π

2

)]
Ai,k (3.3)

Fz =
4∑

k=1

N∑
i=1

[
σi,k sin (φi,k) + τi,k sin

(
φi,k −

π

2

)]
Ai,k (3.4)

My =
4∑

k=1

N∑
i=1

si,k di,k Ai,k (3.5)

These equations can be rewritten pointing out the contribution of each
surface to the resulting force, as in 3.6, 3.7 and 3.8, indeed each surface is
associated to different values of the variables φi,k, si,k and di,k.

Fx = Fx,base + Fx,ceil + Fx,front + Fx,rear (3.6)
Fz = Fz,base + Fz,ceil + Fz,front + Fz,rear (3.7)
My = My,base +My,ceil +My,front +My,rear (3.8)

According to figure 3.1 the contribution of the different surfaces to the
force Fx can be accounted as in equations 3.9, 3.10, 3.11 and 3.12, where
θi is the central angle, accounted on counterclockwise direction, subtended
by the element i.

Fx,base =
N∑
i=1

[
σbase cos (θi + π) + τbase cos

(
θi +

π

2

)]
Ai,base =

=
N∑
i=1

[−σbase cos (θi)− τbase sin (θi)]Ai,base (3.9)

Fx,ceil =
N∑
i=1

[
σceil cos (θi + π) + τceil cos

(
θi +

π

2

)]
Ai,ceil =
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=
N∑
i=1

[−σceil cos (θi)− τceil sin (θi)]Ai,ceil (3.10)

Fx,front =
N∑
i=1

hlug

[
σfront cos

(
θi +

π

2

)
+ τfront cos (θi)

]
=

=
N∑
i=1

hlug [−σfront sin (θi) + τfront cos (θi)] (3.11)

Fx,rear =
N∑
i=1

hlug

[
σrear cos

(
θi −

π

2

)
+ τrear cos (θi − π)

]
=

=
N∑
i=1

hlug [σrear sin (θi)− τrear cos (θi)] (3.12)

Similarly the contribution of the stresses on the carcass to the force Fz
can be calculated as in equations 3.13, 3.14, 3.15 and 3.16.

Fz,base =
N∑
i=1

[
σbase sin (θi + π) + τbase sin

(
θi +

π

2

)]
Ai,base =

=
N∑
i=1

[−σbase sin (θi) + τbase cos (θi)]Ai,base (3.13)

Fz,ceil =
N∑
i=1

[
σceil sin (θi + π) + τceil sin

(
θi +

π

2

)]
Ai,ceil =

=
N∑
i=1

[−σceil sin (θi) + τceil cos (θi)]Ai,ceil (3.14)

Fz,front =
N∑
i=1

hlug

[
σfront sin

(
θi −

π

2

)
+ τfront sin (θi)

]
=

=
N∑
i=1

hlug [σfront cos (θi) + τfront sin (θi)] (3.15)

Fz,rear =
N∑
i=1

hlug

[
σrear sin

(
θi −

π

2

)
+ τrear sin (θi − π)

]
=
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=
N∑
i=1

hlug [−σrear cos (θi)− τrear sin (θi)] (3.16)

The contribution of the stress on each surface to the moment My can be
accounted as in equations 3.17, 3.18, 3.19 and 3.20, where R and hlug are
respectively the tyre radius and the heigh of the lugs, and are accounted for
the distance of the application point of the resulting forces on the element.

My,base =
N∑
i=1

τbaseAi,base (R + hlug) (3.17)

My,ceil =
N∑
i=1

τceilAi,ceilR (3.18)

My,front =
N∑
i=1

σfrontAi,front

(
R +

hlug
2

)
(3.19)

My,rear = −
N∑
i=1

σrearAi,rear

(
R +

hlug
2

)
(3.20)

Moreover this model can take into account the partial sinkage of the lug,
since the forces result from the calculation of the stress distributed only
over the sinked part.

3.1.2 Tyre structure

Although the tyre flexibility is quite smaller than the soil one [28], the dy-
namic behaviour of the tyre plays an important role determining the shape
of the interaction surface between the tyre and the soil and the vibration
transmission from the interaction surface itself to the hub, hence it has been
considered in the tyre model.

The model focuses on stationary conditions, hence the forward speed ẋ
and the slip ε (defined as in equation 3.21) are constant and set in simulation
data; thus the tyre structure model describes the dynamics of the tyre in the
vertical plane.

ε =
ωR− ẋ
ωR

(3.21)

The tyre is assumed to be put on a tractor and, according to the weight
distribution, part of the total mass of the tractor is assigned to the tyre hub,
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Chapter 3. Planar model

as shown in figure 3.4. Longitudinal speed of the hub and tyre slip are im-
posed, i.e. longitudinal displacement and rotation of the hub are regarded as
constrained variables and the tyre hub presents 1 single degree of freedom
(d.o.f.) represented by its vertical displacement.

unsprung 

mass and 

tractor load

carcass 

modal

behaviour

HUB

rjkj

CARCASS

Figure 3.4: scheme of the tyre structure model

The flexibility of the tyre carcass is reproduced by means of a modal
superposition approach. The motion equation for the tyre structure thus
can be written as in eq. 3.22.

The first line of the system corresponds to the vertical displacement of
the hub, whereas the next lines correpond to the model coordinates of the
radial deformation. The mass mhub collects the unsprung mass and the
load of the tractor according to the weight distribution, whereas mj , rj , kj
represent respectively the modal mass, the equivalent damping and stiffness
of the modal coordinate qj .

The variables Qhub and Qj represent the modal forces acting on the cen-
ter of the hub and on the modal coordinate qj .

The hub is considered rigidly linked to the center of the tread carcass,
hence the forces at the hub are directly inferred from the forces at the center
of the tread carcass.
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+


0

k1
. . .

kn




zhub

q1
...
qn

 =


Qhub

Q1

...
Qn

 (3.22)

The modal forces are accounted from the external forces {F} applied
on the carcass nodes, as in equation 3.23; the jacobian matrix [Λ] results
from the modal identification and transforms the forces from the physical
coordinates to the modal coordinates reference.

{Q} = [Λ] {F (zhub, q1 . . . qn)} (3.23)

The coupling among the different degrees of freedom of the system is
performed by the external forces, since the modal coordinates determine
the radius variation along the circumference, affecting both the sinkage of
the carcass nodes, related to the normal stress, and the slippage, related to
the shear stress, as it will be explained in section 3.3.

Indeed the variation of the radius along the circumference of the tyre
can be determined from the modal coordinates, as shown in equation 3.24,
where {r} represents the vector of the distances from the center of the car-
cass nodes whereas R0 the initial value of the radius.

{r} = [Λ]T {q}+R0 (3.24)

The jacobian matrix of the eigenvectors [Λ] has been derived through
modal analysis of impulsive test, as explained in chapter 2; with the exper-
imental test the modes in the range 10 and 60 Hz have been identified.

3.2 Soil model

The soil is modeled as a plane surface, whose nodes can move in vertical
direction.

The soil reacts to the sinkage and to the slippage of the tyre with a nor-
mal and a shear stress on the carcass of the tyre. For the normal stress the
Bekker theory have been accounted, although is has been linearized and
modified to take into account the soil recovery, instead the calculation of
the shear stress is based on the results on the experimental direct shear test
presented in chapter 2.
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3.2.1 Normal stress

The soil model is made up of a layer of springs whose compression, caused
by the sinkage of the tyre, gives rise to a normal contact stress: the stress
is assumed to be hydrostatic, i.e. even though sinkage is computed along a
vertical axis, the resulting pressure acts along three directions [10] [28].

The relation between sinkage and normal stress depends on the time
history of the deformation of the terrain. Indeed if the soil have already
been compressed, its stiffness increases due to the compaction of the soil
particles, hence the tyre experiences different conditions in the front and
rear part of the contact track. Moreover the model can take into account
the multipass effect, i.e. a tyre passing over a soil where previously another
one rided works in different conditions than the first tyre.

z’z’’ sinkage

σ

unload

load

load

Figure 3.5: normal stress as a function of the sinkage: assuming that a soil has been
compressed at z

′
, the unload phase from z

′
to z

′′
and further load phases back to z

′

are described through a different linear relation whose slope KII is higher than KI

This feature is explained in figure 3.5, where the relationship between
the normal stress and the sinkage is drafted.

In initial conditions the soil sinkage and the normal stress are null and,
when the load is applied the normal stress increases linearly with the sink-
age, until sinkage z

′ is reached, when the load starts to decrease or is
removed, thus the sinkage and the normal pressure decrease, but the soil
stiffned, hence when the pressure is zeroed there is a residual sinkage z′′ .

Then if the soil is newly compressed and pressure and sinkage rise, when
the sinkage z′ is reached, the soil stiffness decreases back to the initial
value.

The results of the penetrometer test presented in chapter 2 have been
accounted for the calculation of the initial stiffness KI , which is the inverse
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3.2. Soil model

of slope of the curve in figure 2.2 between 0 and 0.15 m, the sinkage range
of interest for this application.

The stiffnes KII has been calculated from maximum and residual sink-
age z′ and z′′ , measured during experimental test, according to equation
3.25, which can been inferred from figure 3.5.

KIz
′
= KII

(
z
′ − z′′

)
→ KII = KI

z
′

z′ − z′′
(3.25)

3.2.2 Shear stress

The shear stress is mainly affected by the shear displacement and the nor-
mal pressure, as seen in chapter 2.

Increasing the normal pressure, the maximum value of shear stress sus-
tainable by the soil rises, as defined by the well known Mohr-Coulomb
equation (eq. 3.26), where kc and φ are respectively the cohesion and the
free angle of shearing resistance of the soil, as mentioned in section 1.1.2.

τmax = [kc + sin (φ)σ] (3.26)

Furthermore the shear stress is proportional to the shear displacement
between the surface of the soil, which is supposed adhere to the tyre, and
the deeper layers of the soil. That displacement at the instant ti can be cal-
culated as in equation 3.27, where vslip,k is the slip velocity on the surface
k (base, ceil, front or rear) of the element i.

xtislip,i,k = vtislip,i,k∆t+ x
ti−1

slip,i,k (3.27)

The slip velocity vslip,k depends on the vertical and longitudinal speeds
of the center of the tyre, ż and ẋ, on the tangential speed of the tyre ωR, on
the velocity of tyre deformation ṙ, and on the surface orientation, as shown
in figure 3.6.

Figure 3.6 shows the reference of the slip velocity according to the sur-
face orientation: the slip velocity is positive when rotate of 90◦ in coun-
terclockwise direction with respect to the normal direction entering in the
surface, hence when the slip velocity is positive, also the shear stress is
positive, according with its reference which is in the opposite direction.

To calculate the slip velocity, the equations 3.28, 3.29, 3.30 and 3.31
have been inferred from figure 3.6 and implemented in the model.

vslip,i,base = ω (R + hlug) + ẋ cos
(
θi +

π

2

)
+ ż cos (π − θi)
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= ω (R + hlug) + ẋ sin (θi)− ż cos (θi) (3.28)

vslip,i,ceil = ωR + ẋ cos
(
θi +

π

2

)
+ ż cos (π − θi)

= ωR + ẋ sin (θi)− ż cos (θi) (3.29)

vslip,i,front = ẋ cos (π − θi) + ż cos

(
3π

2
− θi

)
− ṙ

= −ẋ cos (θi)− ż sin (θi)− ṙ (3.30)

vslip,i,rear = ẋ cos (2π − θi) + ż cos
(π

2
− θi

)
+ ṙ

= ẋ cos (θi) + ż sin (θi) + ṙ (3.31)

To infer the relationship between the shear displacement and the shear
stress on the carcass, a direct shear test has been carried out on a soil sam-
ple [6]; thus the analytical relationship of equation 3.32 has been stated to
fit the experimental data.

τi,k = (c1σi,k + c2)
√
xslip + (c3σi,k + c4) 3

√
xslip + c5σ

2
i,k + c6σ (3.32)

This equation allows to determine the shear stress as a function of both
the shear displacement and the normal stress, unlike the Mohr-Coulomb
equation 3.26, which point out only the value of the maximum shear stress
sustainable by the soil τmax.

Figure 3.7 shows the fitting of the experimental results provided by the
equation 3.32, whose parameter are shown in table 3.1: the test has been
carried out for three different values of the normal pressure: respectively
100 kPa, 150 kPa and 300 kPa.

θ

base
front

rear

ceil
vslip

τ

ż

ẋ

ωR
ż

ẋ

vslip

ż

ẋ
vslip

ωR

ż

ẋ
vslip

ṙ

ṙ

Figure 3.6: the slip velocity reference and component depending on the surface orienta-
tion.
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Table 3.1: parameters of the equation 3.32 interpolating the direct shear test results

Parameter Value
c1 [m− 1

2 ] 6.412
c2 [kPa·m− 1

2 ] -262.816
c3 [m− 1

3 ] 1.698
c4 [kPa·m− 1

3 ] 137.486
c5 [kPa−1] 5.646 ·10−6

c6 [] -6.457·10−3

From the experimental results it is possible to verify that a rise of normal
pressure increases the shear stress, because the larger compaction of soil
particles has a favorable effect on soil shear resistance.

The results have been extrapoled in order to be used in all the interest
domain, as shown in figure 3.8.

Moreover the maximum allowed shear displacement depends on the slip
value, since an increase in slip involves a rise of slip velocity reducing the
maximum shear displacement susteinable by the soil.
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Figure 3.7: the shear stress is a function
of the shear stress and of the pres-
sure: the experimental results have
been interpooled with analytical ex-
pression.
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Figure 3.8: the shear stress is a function
of the shear stress and of the pres-
sure: increasing pressure and dis-
plcement, the shear stress increases.

3.3 Tyre-soil interaction

The interaction between the tyre and the soil provides the forces on the
tread, which determine the generalized forces Qhub and Qj acting on the
system d.o.f., as in equation 3.22.

The calculation has been performed according to the scheme of figure
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3.9, where it is depicted the absolute position of point Ci,k, the geometrical
center of the k-th area (Ai,k) of the i-th element of the grid (see figure 3.1);
since each element is characterized by four surfaces (ceil, base, front, rear),
k varies between 1 and 4.

Futhermore figure 3.9 reports also the position of the tyre hub (point O)
and the distance between Ci,k and O, named ri,k. If point Ci,k finds below
the undeformed soil level, it will be characterized by a sinkage si,k.
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Figure 3.9: position of the center of the kth area of the ith element of the grid

The absolute position of Ci,k can be computed as follows in equation
3.33, where θi is the certral angle subtended by the ith element.{

xCi,k
= xhub + ri,k cos (θi)

zCi,k
= zhub − ri,k sin (θi)

(3.33)

Considering the flexibility of the tyre structure, the radius Rik will be
function of the modal coordinates, according to the expression 3.34.

{
xCi,k

= xhub +
[
R0 + ΣN

j=1 (Λi,k,j · qj)
]

cos (θi)

zCi,k
= zhub −

[
R0 + ΣN

j=1 (Λi,k,j · qj)
]

sin (θi)
(3.34)

Indeed the coordinates of the point Ci,k can be calculated by adding the
projection of the radius to the coordinates of the hub.

Since the radial flexibility has been considered, the modal coordinates qj
are accounted for the radius variation, hence, in equation 3.34 of the term
Λik,j is the element of jth eigenvector corresponding to the location of Ci,k.

Considering the vertical position of Ci,k, it is possible to compute the
sinkage si,k and the value of the contact pressure σi,k acting on the kth area
of the ith element. According to the procedure described in the previous
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paragraph, the value of the tangential stress τi,k can also be found. The
virtual work of the external forces acting on the kth area of the ith element
is given by equation 3.35, where mi,k is the mass associated with the kth

area of the ith element.

δLi,k = {−mi,kg + [σi,k sin (θi)− τi,k cos (θi)]Ai,k} δzCi,k
−

− [σi,k cos (θi) + τi,k sin (θi)]Ai,kδxCi,k

(3.35)

Substituting equation 3.34 in equation 3.35, the virtual work can be ex-
pressed as in equation 3.36.

δLik = {−mikg + [σik sin (θik)− τik cos (θik)]Aik}{
δzhub + ΣN

j=1 [Λik,j · qj sin (θik)]
}
−

− [σik cos (θik) + τik sin (θik)]Aik{
δxhub + ΣN

j=1 [Λik,j · qj cos (θik)]
} (3.36)

Considering also the mass of the hub itself, the value of the forces re-
duced at vertical displacement of the tyre hub is represented by equation
3.37.

Qhub =−mhubg − ΣNel
i=1

{
Σ4
k=1 (mi,kg)

}
−

− ΣNel
i=1

{
Σ4
k=1 [σi,k sin (θi)− τi,k cos (θi)]

} (3.37)

Also the value of Qj can be derived as in equation 3.38.

Qhub =ΣNel
i=1

{
Σ4
k=1 (Λi,k,j sin (θi,k)mi,kg)

}
−

−ΣNel
i=1

{
Σ4
k=1 [σi,k sin (θi)− τi,k cos (θi)]AikΛi,k,j sin (θi)

}
+

+ΣNel
i=1

{
Σ4
k=1 [σi,k cos (θi)− τi,k sin (θi)]Ai,kΛi,k,j sin (θi)

}
(3.38)

Since σi,k, and thus τi,k, are function of the sinkage, which is itself func-
tion of both the vertical displacement of the hub and of the modal coordi-
nates, the motion equation are coupled by the contact forces.

3.4 Model validation

The model has been validated by comparison with the results of an experi-
mental traction test, which has been presented in section 2.3.
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The traction force supplied by the tractor was halved, since during the
experimental test the traction were provided by two tyres, whereas in the
simulations only one tyre is modeled.

Futhermore during the experimental test the rolling resistance on the
front tyres contributes to the traction force, whereas during the simulations
this contribution can not be accounted since the front tyre has not been
modeled. However the front tyres contribution to the total forces is lower
than the one of the rear tyres, due to the load distribution, which is pre-
ponderant on the rear axle sustaining almost the 65% of the total tractor
load. Moreover, the rolling resistance is much lower than the traction force
sustained by the driving tyres.

Hence neglecting the rolling resistance on the front tyre should introduce
an overestimation of the traction supplied by the rear tyre, which can be
estimated to be lower than 10% of the total force.

Figure 3.10 shows the traction force available at a driving tyre as a func-
tion of the slip, which varies in the range 5-30%.
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Figure 3.10: traction force available as a function of slip and of inflation pressure

The traction force rises increasing the slip value, and it is possible to
observe that the results of the model are in good agreement with the exper-
imental results, guaranteeing an error less than 3% between 10% and 25%
of slip as shown in table 3.2.

The test was carried out with an inflation pressure of 1.0 bar, because
it was performed on an agricultural soil, where a low inflation pressure is
preferred.

Whereas the simulations where carried out considering both low infla-
tion pressure (1.0 bar) and high inflation pressure (1.6 bar): the inflation
pressure has not great impact on the traction force, affecting instead the in-
teraction surface shape, thus the maximum sinkage (see figure 3.11) and the
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Table 3.2: comparison between numerical and experimental results of a traction test

Slip value Experimental results Numerical results Error
[%] Force [N] Force [N] [%]
5 6273 6730 7.3
10 7892 7730 2.1
15 8152 8190 0.5
20 8922 8651 3.0
25 8996 9243 2.8
30 9226 10099 9.5

standard deviation of the vertical acceleration of the hub (see figure 3.12).
As it can be inferred from figure 3.11, the soil sinkage rises increasing

the slip value, since to perform a larger traction force the lugs grab and dig
the soil.
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Figure 3.11: soil sinkage as a function
of slip and of inflation pressure.
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Figure 3.12: standard deviation of the
hub vertical acceleration as a func-
tion of slip and of inflation pressure.

The comfort can be inferred from the vertical acceleration of the hub
(figure 3.12); thus it is possible to state that the low inflated tyre can guar-
antee higher comfort level.

Moreover it is possible to observe a peak at the 25% of the slip, indeed
at this slip value the impact frequency of the lugs excite one of the tyre
modes.

3.5 Pattern sensitivity analysis

The presented model can take into account different tread patterns, hence it
can be an useful tool to perform a sensitivity analysis.

In this section a sensitivity analysis on the paramenter of a tread pattern
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will be performed. In particular the tread pattern of figure 3.13 will be
considered, which is a tipical tread for traction tyres [47].

Lug width h

Lug angle δ

Figure 3.13: tread pattern modulus

The length h and the angle δ of the lugs were varied on order to find
the optimus configuration: the reference length and angle are respectively
80 mm and 45◦and the effect of a variation of ±10% and ±20% will be
accounted, as shown table 3.3.

Table 3.3: variation of the tread pattern parameters

Parameter -20% -10% 0% +10% +20%
h [mm] 64 72 80 88 96
δ [◦] 25 35 45 55 65

The aim of this sensitivity analysis was to point out the better configura-
tion for a driving tyre working on a loose soil, thus the simulations param-
eters correspond to this situation.

A slow forward speed and two different slip values have been consid-
ered: the forward speed is 7 km/h, which is a typical speed over field, and
the selected slip values are 5%, corresponding to riding without machinery,
and 25%, typical of machinery operations, such as tillage.

The inflation pressure of the tyres is 1.0 bar, preferred on loose soils in
order to reduce sinkage and soil compaction.

The tyre is supposted to be mounted on a tractor of mean size. The load
on the tyre is 1390 kg and the wheelbase is 2770 mm.

3.5.1 Traction force

Figures from 3.14 to 3.23 show the influence of lugs length and inclination
on tyre traction force: the lugs inclination is marked on the x-axis, while
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3.5. Pattern sensitivity analysis

the bars refer to different lugs number.
Figures 3.14, 3.16, 3.18, 3.20, and 3.22 refer to simulations with 5%,

whereas figures 3.15, 3.17, 3.19, 3.21, and 3.23 refer to simulations with
25% of slip.

Each pair of figures pertains to a different length of the central part of
the lugs, from shorter (64 mm) in figure 3.14 and 3.15 to longer (96 mm)
in figure 3.22 and 3.23.
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Figure 3.14: traction force as a function
of lugs number and angle, for center
length of 64 mm and 5% of slip
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Figure 3.15: traction force as a function
of lugs number and angle, for center
length of 64 mm and 25% of slip
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Figure 3.16: traction force as a function
of lugs number and angle, for center
length of 72 mm and 5% of slip
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Figure 3.17: traction force as a function
of lugs number and angle, for center
length of 72 mm and 25% of slip

With regard to the lugs number, it is possible to observe that the maxi-
mum traction force is found for 15 lugs at 5% slip, whereas at 25% slip the
maximum corresponds to 10 lugs.

The front side of the lugs supplies an important fraction of the traction
force, hence a low lugs number can not guarantee an elevate traction force,
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Figure 3.18: traction force as a function
of lugs number and angle, for center
length of 80 mm and 5% of slip
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Figure 3.19: traction force as a function
of lugs number and angle, for center
length of 80 mm and 25% of slip
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Figure 3.20: traction force as a function
of lugs number and angle, for center
length of 88 mm and 5% of slip
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Figure 3.21: traction force as a function
of lugs number and angle, for center
length of 88 mm and 25% of slip
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Figure 3.22: traction force as a function
of lugs number and angle, for center
length of 96 mm and 5% of slip
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Figure 3.23: traction force as a function
of lugs number and angle, for center
length of 96 mm and 25% of slip
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3.5. Pattern sensitivity analysis

whereas a high lugs number tends to uniform the tread surface and the lugs
can not perform a high traction force.

Increasing the slip value, the first lugs dig out the soil and the next lugs
have not soil to grab, hence at a slip value of 25% the number of lugs
corresponding to the maximum value of the traction force is lower than at
a slip value of 5%.

The lugs angle and length have no significant effect on the traction force,
although it is possible to observe a little increase in traction force for high
inclination angle.

However the configuration with 45◦of inclination is usually preferred,
because it guarantee a better stability against the lateral forces [47], which
are not accounted in this model, since it considers only forces and acceler-
ation in the vertical plane.

3.5.2 Standard deviation of the hub acceleration

Figures from 3.24 to 3.33 show the influence of lugs length and inclination
on the standard deviation of the vertical acceleration of the hub.

As in subsection 3.5.1 the lugs inclination is marked on the x-axis, while
the bars refer to different lugs number and each pair of figures pertains to
a different length of the central part of the lugs, from shorter (64 mm) in
figure 3.24 and 3.25 to longer (96 mm) in figure 3.32 and 3.33.

Figures 3.24, 3.26, 3.28, 3.30, and 3.32 refer to simulations with 5%,
whereas figures 3.25, 3.27, 3.29, 3.31, and 3.33 refer to simulations with
25% of slip.

The vertical acceleration of the hub is an important variable, moreover
since the driver seat is not model, can be accounted fot the comfort estimate.

From these figures it is possible to observe that the three parameters
considered have a strong impact on vertical acceleration.

As regard the lugs number, it is possible to notice a minimum in the
standard deviation of the vertical acceleration at 15 lugs. Indeed a low lugs
number can not supply a continuous sustain to traction and vertical forces,
whereas a high lugs number involves a large number of lug impacts with
the soil, thus affecting negatively the vibrations level.

Instead as regard the lugs length h it is possible to observe a signifi-
cant rise of the vibrations level when the length of the central part of the
lug increases. Indeed the central part of the lugs comes into contact with
the soil contemporary, causing an increase of the vibrations, whereas the
angled part of the lugs supply a more gradual contact with the soil. Thus
increasing the size of the straight part of the lugs with respect to the angled
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Figure 3.24: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 64 mm and 5%
of slip
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Figure 3.25: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 64 mm and 25%
of slip
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Figure 3.26: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 72 mm and 5%
of slip
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Figure 3.27: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 72 mm and 25%
of slip
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Figure 3.28: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 80 mm and 5%
of slip
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Figure 3.29: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 80 mm and 25%
of slip
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Figure 3.30: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 88 mm and 5%
of slip
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Figure 3.31: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 88 mm and 25%
of slip
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Figure 3.32: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 96 mm and 5%
of slip
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Figure 3.33: standard deviation of the
hub vertical acceleration σz as a
function of lugs number and angle,
for center length of 96 mm and 25%
of slip

one involves a rise of acceleration standard deviation.
For the same reason a higher lugs angle δ corresponds to lower vibra-

tions level.
It is also possible to notice a relevant impact of the slip value on the

standard deviation of the hub vertical acceleration: increasing the slip value
the standard deviation rises, since it is excited by the lugs impact on the soil.

3.5.3 Sinkage

Figures from 3.34 to 3.43 show the influence of lugs length and inclina-
tion on the maximum sinkage of the soil after the tyre pass, which can be
accounted for an index of the soil compaction level.

As previously in subsections 3.5.1 and 3.5.2, the lugs inclination is
marked on the x-axis, while the bars refer to different lugs number and
each pair of figures pertains to a different length of the central part of the
lugs, from shorter (64 mm) in figure 3.34 and 3.35 to longer (96 mm) in
figure 3.42 and 3.43.

In figures 3.34-3.43 it is noticeable the influence of the lugs number,
whereas the lugs length h, the lugs angle δ and the slip value do not affect
markedly the maximum sinkage of the soil.

The maximum sinkage is due to the lugs tips, since for a lager lugs
number there is a larger surface suppling the vertical load, thus a lower
sinkage is required.
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Figure 3.34: maximum sinkage as a
function of lugs number and angle,
for center length of 64 mm and 5%
of slip
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Figure 3.35: maximum sinkage as a
function of lugs number and angle,
for center length of 64 mm and 25%
of slip
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Figure 3.36: maximum sinkage as a
function of lugs number and angle,
for center length of 72 mm and 5%
of slip
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Figure 3.37: maximum sinkage as a
function of lugs number and angle,
for center length of 72 mm and 25%
of slip
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Figure 3.38: maximum sinkage as a
function of lugs number and angle,
for center length of 80 mm and 5%
of slip
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Figure 3.39: maximum sinkage as a
function of lugs number and angle,
for center length of 80 mm and 25%
of slip
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Figure 3.40: maximum sinkage as a
function of lugs number and angle,
for center length of 88 mm and 5%
of slip
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Figure 3.41: maximum sinkage as a
function of lugs number and angle,
for center length of 88 mm and 25%
of slip
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Figure 3.42: maximum sinkage as a
function of lugs number and angle,
for center length of 96 mm and 5%
of slip
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Figure 3.43: maximum sinkage as a
function of lugs number and angle,
for center length of 96 mm and 25%
of slip

3.5.4 Sensitivity analysis conclusions

These simulations showed the capability of the developed code to carry
out a sensitivity analysis taking into account the main features of the tread
pattern geometry.

In particular, for this tread shape, it has been possible to observe that
the number of lugs corresponding to the maximum value of the traction
force is affected by the slip value, however a low lugs number can be rec-
ommended. A low standard deviation of vertical acceleration is achieved
with 15 lugs, whereas to avoid a deep sinkage a high lugs number is recom-
mended. Hence to satisfy all the requirements in tyre performances, i.e. to
perform high traction force at low vibrations level and minimal sinkage, 20
lugs can be recommended, to mix the best performances of high and low
lugs number.

As regards the lugs length h and angle δ a short lug and a high inclination
can be recommended to reduce the vibrations, despite these results were
obtained neglecting the lateral forces, whose vibrations can be reduced at
45◦lugs angle [47].

3.6 Whole tractor model

The model stated in the previous sections (3.1.1-3.3) may simply interact
with a multi-body model of a tractor.

The position, velocity and acceleration of the center of the carcass are
imposed to the hub, which is linked rigidly or by means of suspensions to
the tractor frame. Similarly the forces are transmitted from the frame to the
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tyre and vice versa.
The model of the whole tractor dynamics allowed to study the driver

comfort as a function of suspensions damping, as shown in [15] and in [48].
The results provided in this section were performed with an early model

of the tyre, that considered only the vertical displacement of the carcass
with respect to the center of the tyre, corresponding to the second mode of
the five identificated in section 2.2.

3.6.1 Tractor multi-body model

The modeled agricultural vehicle is the high-range tractor shown in figure
3.44.

The vehicle can be considered as composed by three rigid bodies, con-
nected each other by means of suspensions.

· The frame, where are placed the engine and the cabin.

· The cabin.

· The seat.

A pneumatic spring and a damper connect the seat with the cabin, which
is itself connected to the frame by means of three passive pneumatic sus-
pensions (air springs).

The front tyres are joint to the frame by means of actively controllable
double wishbone suspensions, that can support two working conditions:
during field operations (tilling, ground compaction, etc.), the actuators can
be locked up (the suspension is thus rigid), whereas, when the vehicle is
running on ordinary roads, the actuators can be unlocked in order to damp
the vehicle pitch. The suspension can be manually switched on or off by
the operator. On the contrary, no suspensions are present between the rear
axle and the frame.

Figure 3.45 shows a sketch of the multi-body model of the tractor:

· One rigid body represents the vehicle frame having three d.o.f. (heave,
pitch and roll); besides this body includes all the elements rigidly
linked to the frame, such as the engine and the rear axle.

· One rigid body represents the cabin, having three d.o.f. (heave, pitch
and roll);

· Two rigid bodies representing the front unsprung masses, each one
having one d.o.f. (heave). If the front suspensions are locked up,
these bodies are gathered in the frame body.
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3.6. Whole tractor model

· Two rigid bodies having each one vertical d.o.f, represent the seat and
the load mounted on it which simulates the equivalent mass of the
operator.

The model’s parameters, shown in table 3.4, were identified by a com-
parison with the results of a four-poster test bench previously carried out
on a four-post test rig, as it will be explain in the next section (sec. 3.6.2).

Table 3.4: stiffness and damping of the tractor model

Visco-elastic element Stiffness [N/m] Damping [N/m·s]
Frame Suspensions Front 320000 40000

Rear - -
Cabin Suspensions Front 73724 6000

Rear 73724 6000
Seat Suspensions - 5840 624

Tyre Front 628470 4902.1
Rear 874390 5602.4

3.6.2 Tractor multi-body model validation

The implemented vehicle model shown in the previous section (sec. 3.6.1)
has been validated by means of the comparison with a experimental tests,
which were previously carried out on the vehicle shown in figure 3.44 on a
four-post test rig.

The vehicle was instrumented to measure the accelerations of its differ-
ent components.

The three accelerations of the cabin and its pitch, roll and yaw angular

Figure 3.44: tested vehicle on the four-
post test rig.

Figure 3.45: multi-body vehicle model
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rates were measured by an inertial gyroscopic platform. The accelerations
on the back and on the plane of the driver seat were measured through two
tri-axial piezoelectric accelerometers. Whereas the frames accelerations
were measured by mean of four piezo-accelerometers at the corners of the
vehicle frame.

Tests have been performed measuring the vehicle response to the exci-
tation of pads chirp signals (sweep sine tests), transmitted by the four-post
test rig [14, 17].

Sweep sine tests have been carried out in order to excite the vehicle
eigenmodes of heave, roll and pitch separately: to excite the vertical motion
of the vehicle, the four actuators of the test-rig have been moved in phase,
to evaluate the pitch motion the rear actuators were moved in counter phase
with respect of the front ones, and finally to excite the roll motion the right
actuators were moved in counter phase with respect of the left ones.
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Figure 3.46: cabin heave accelerations
during a sweep sine test with all the
actuators moved in phase. Front sus-
pension switched off.
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Figure 3.47: cabin heave accelerations
during a sweep sine test with all the
actuators moved in phase. Front sus-
pension switched on.

Tests have been repeated considering different excitation amplitudes,
and with the front suspension switched off and on.

As an example of the obtained results, the transfert functions of the ac-
celeration response of the cabin to the excitation of the heave and pitch
motion will be presented.

Figures 3.46 and 3.47 refer to a sweep sine test with all the actuators
moved in phase, thus exciting the heave mode, respectively with the front
suspensions locked and unlocked. The cabin vertical acceleration shows a
main peak at a frequency of 3Hz, which reduces its amplitude unlocking
the front suspesions.

Figures 3.48 and 3.49 refer to a sweep sine test with all the front actua-

60



3.6. Whole tractor model

2 4 6 8 10 12 14
0

2

4

6

 

 
A

m
pl

itu
de

 [(
m

/s
2 )/

(m
/s

2 )]

2 4 6 8 10 12 14
-200

0

200

P
ha

se
 [°

]

Frequency [Hz]

experimental OFF
model OFF

Figure 3.48: cabin pitch accelerations
during a sweep sine test with front
and rear actuators moved in counter
phase. Front suspension switched
off.
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Figure 3.49: cabin pitch accelerations
during a sweep sine test with front
and rear actuators moved in counter
phase. Front suspension switched
on.

tors moved in counter phase with respect to the rear ones, thus exciting the
pitch mode, respectively with the front suspensions locked and unlocked.
The cabin pitch acceleration shows a main peak at a frequency of 4Hz and
a lower peak at a frequency of 2Hz. Unlock the front suspensions reduces
the amplitude of peak at 4Hz.

From the observation of these figures, a good agreement can be noticed
between the experimental and the numerical results, for both amplitude and
phase of the transfer functions.

3.6.3 Tractor multi-body model simulation

In this sections some of the results obtained with the soil-tyre interaction
model linked to the multi-body model of the tractor will be discussed.

The simulations were performed with a tyre of size 540/65R28, with 20
lugs per side, whose shape can be observed in the image of the tread pattern
of figure 3.50.

As previously observed (see 3.6), these simulation were carried out with
an early model of the tyre structure, that considered only the mode cor-
responding to the vertical displacement of the center of the carcass with
respect of the hub. Table 3.5 shows the structural properties of the tyres, as
they were identified from the test presented in section 3.6.2; front and rear
tyres present different properties, associated to different dimensions of the
tested tyres, although in the presented simulations the front and rear tyres
have the same size.

The simulations were performed over a North Gower Sandy loam soil,
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Table 3.5: stiffness and damping of the tyres

Tyre Mass [kg] Stiffness [N/m] Damping [N/m·s]
Front 67 628470 4902.1
Rear 67 874390 5602.4

whose properties are shown in table 3.6.
These properties refers to Bekker and Mohr Coulomb equations (see

section 1.1 ), whose parameters as a function of the soil type are available
in litterature.

These parameters were used to state the relationship between the soil
stresses and displacements in an early version of the model, when the ex-
perimental results presented in section 2.1 were not available, as explained
in [18] and [19].

Table 3.6: North Gower sandy loam soil properties

Bekker parameters Mohr-Coulomb parameters
kc [kPa·m1−n] kφ [kPa·m−n] n [-] kcohesion [kPa] φ [%]

41.6 24.71 0.73 6.1 26.6

Figures 3.51 and 3.52 show some of the results that have been obtained
with this model.

In figure 3.51 the soil deformation after the tractor passage is depicted.
It is possible to discern the tracks of the front tyres from the track of the rear
ones, since the sinkage due to the front tyres is lower than the one related
to the rear tyres, because of the weight distribution. Moreover it is possible

Figure 3.50: tread pattern of the tyre modeled for the simulations performed considering
the interaction with a multi-body model of the whole tractor
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3.6. Whole tractor model

to notice where the tractor stopped when the simulation ended, indeed in
correspondence of the tyres there is no elastic recovery of the soil and the
sinkage is deeper.

Figure 3.51: soil deformation after the
tractor passage

0 2 4 6 8 10
0

2

4x 10
4

F
z [N

]

 

 

0 2 4 6 8 10
0

1

2x 10
4

F
x [N

]

 

 

0 2 4 6 8 10
0

1

2x 10
4

t [s]

M
y [N

m
]

 

 

Front Tyre
Rear Tyre

Figure 3.52: interaction forces between
the soil and the tyre

Figure 3.52 shows the forces due to the interaction with the soil expe-
rienced at the hubs of the tractor. The figure refers to the left tyres, since
the forces are equally distributed on the left and right side of the tractor,
because of the symmetry of the model and of the initial smoothness of the
soil.

In this simulations all the wheels were driving, hence also the front tyres
contribute to the traction force, that can be computed as in equation 3.39,
where the pairs of subscripted indexes refer to the tyre position (e.g. FR
means front right tyre).

Ftraction = Fx,FR + Fx,FL + Fx,RR + Fx,RL+

= 2Fx,FL + 2Fx,RL (3.39)

The presented model were stated to perform an evaluation of the driver
comfort, since it considers the vertical dynamics of the whole vehicle. Thus
some results on the standard deviation of the vertical acceleration at the
driver seat will be presented.

Figure 3.53 shows the standard deviation of the vertical acceleration of
the driver seat as a function of cabin damping Rc; the different lines refer
to different values of the seat damping.

Is is possible to observe that the optimal parameters values, that can be
inferred from the figure, perform a comfort level pretty similar to the one
guaranteed by the nominal values of the these parameters, which are 624
N/m·s for the seat damping and 6000 N/m·s for the cabin one.
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Figure 3.53: standard deviation of the vertical acceleration of the driver seat as a function
of cabin and seat damping

3.7 Conclusions

In this chapter a planar model for the tyre-soil interaction has been pre-
sented.

This model takes into account the effect of tread pattern geometry and
tyre structure, hence it can perform simulations aimed to study the influ-
ence of soil and tyre parameters on traction force, driver comfort, and soil
sinkage and compaction.

Moreover this model may interact with the multi-body model of a whole
tractor, providing a tool for the study of the tyre influence on tractor dynam-
ics.

However this model can not take into account build up or cleaning effect,
which impact on traction efficiency and soil compaction, thus in the next
chapter a particles model will be presented, that is intended to provide more
accurate soil model.
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The plane model that has been presented in the previous chapter (see chap-
ter 3) considers the soil as a plane surface, whose nodes can move vertically
under the tyre yield.

That plane model allows to study the interaction between the soil and
the tyre, pointing out the effects of that interaction on forces, vibrations
and topsoil deformation; nevertheless that model cannot provide results on
compaction and deformation of the subsoil, moreover by modelling the soil
as a continuous surface it is no possible to take into account effects affecting
the tyre performances, like buildup and cleaning, consisting respectively in
the buildup of matter in front of the tyre and in soil particles adhering to the
tread pattern.

To face these issues a multi-body approach was introduced: the soil is
modeled through a particles set, presenting different dimensions and prop-
erties, and moving relative to one another.

This chapter will be devoted to describe the tridimensional particle model
proposed with the purpose of study the tyre soil interaction. This model
is based on the Chrono::Engine multi-body library, developed by Univer-
sitÃ di Parma and Wisconsin University.

To face the large amount of bodies needed to represent the soil, the code
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run on graphic processing unit (GPU) [36].
The approach of this multi-body library is based on differential varia-

tional intequalities (DVI) [2], as it will be discussed in the next section .

4.1 Differential Variational Inequalities

4.1.1 Problem formulation

The formulation of the equations of motion, that are the equations govern-
ing the time evolution of a multi-body system, is based on the Cartesian
representation of the attitude of each rigid body of the system [36].

Suppose the system composed by nb bodies, thus the attitude of the jth

body can be denoted by its rotation εj and the center of gravity position rj .
Hence the state of the system can be denoted by the generalized positions
q and their derivative q̇ as expressed in equations 4.1 and 4.2.

q =
{
rT1 , ε

T
1 , . . . , r

T
nb, ε

T
nb

}
∈ R7nb (4.1)

q̇ =
{
ṙT1 , ε̇

T
1 , . . . , ṙ

T
nb, ε̇

T
nb

}
∈ R7nb (4.2)

To avoid singularities, the bodies rotations are expressed by quaternions,
however it is more advantageous to use the angular velocities than the
quaternion derivatives equation, so the system generalized velocities can
be expressed as shown in equation 4.3.

v =
{
ṙT1 ,ω

T
1 , . . . , ṙ

T
nb,ω

T
nb

}
∈ R6nb (4.3)

Anyway the generalized velocity can be easily obtained by a linear map-
ping transforming each ωi into the corresponding quaternion derivative ε̇i,
as show in equation 4.4, obtained by means of the linear algebra formula
4.5, defined according to Shabana [51].

q̇ = L (q) v (4.4)

ε̇i =
1

2
GT (q)ωi (4.5)

The evolution of the multi-body system is governed by the second or-
der differential equation 4.6, where M is the mass matrix, which remains
constant and diagonal, since the system is composed by rigid bodies, and
fA (t,q,v) is the set of generalized external forces applied on the bodies.

Mv = fA (t,q,v) (4.6)
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That notation does not take into account the presence of constrains, nei-
ther unilateral nor bilateral, which will be considered in the next section.

4.1.2 Constraints formulation

To accomplish the formulation of the problem, the constraints have to be
accounted. In this section both bilateral and unilateral constrains will be
discussed.

· Bilateral constrains represent kinematic pairs, such as spherical, pris-
matic and revolute joints, and constrain the relative position of two
bodies. These constraints can be expressed by means of holonomic
algebraic equations.

· Unilateral constrains gathering the contacts between two bodies, ac-
counting for the presence of contact and friction forces.

Bilateral constraints

A set B of bilateral constrains generates a collection of scalar equations (eq.
4.7)

Ψi (q, t) = 0 i ∈ B (4.7)

Assuming smoothness of the constraint manifold, the equations collec-
tion Ψi can be differentiated to obtain the Jacobian matrix, as in equation
4.8.

∇qΨi =

[
∂Ψi

∂q

]T
(4.8)

The bilateral constraints must be satisfaited also at the velocity level,
hence the total time derivative of Ψi is null (eq. 4.9).

dΨi (q, t)

dt
= 0 (4.9)

⇒ ∂Ψi

∂q
q̇ +

∂Ψi

∂t
= ∇qΨ

T
i q̇ +

∂Ψi

∂t
= ∇qΨ

T
i L (q) v +

∂Ψi

∂t
= 0

Thus defining

∇ΨT
i = ∇qΨ

T
i L (4.10)
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the constraints are consistent at velocity-level, provided the equation
4.11 is satisfied. Note that the partial derivative of Ψi is non-zero only for
rheonomic constrains, such as motors, actuators or imposed trajectory.

∇ΨT
i v +

∂Ψi

∂t
= 0 (4.11)

Unilateral constrains

A set of contact points among a large number of bodies can be defined
efficiently by modern detection algorithms.

For each pair of contacts points a gap function Φ (q) can be defined,
expressing the distance between two bodies near enough.

Where defined, this gap function must satisfied the non-penetration con-
dition 4.12, i.e. it must not be negative.

Φ (q) ≥ 0 (4.12)
The gap function is simple to define for smooth and convex bodies, such

as spheres, parallelepipeds and cylinders. Hence the complex geometry
profile of some bodies will be produced by decomposition in simple sub-
shapes. With this assumption, any contact can be described by a contact
function that is twice continuosly differentiable.

When the gap function is zeroed, the contact is active and a normal
and a tangential force act on each of the two bodies in the contact point.
For the calculation of these forces, the classical Coulomb friction model is
accounted [1]. Whereas if the gap function is strictly positive, the bodies
are not in contact and exchange no forces.

This condition leads to a complementarity problem [54].
Given two bodiesA andB in contact, the normal direction at the contact

point ni is accounted toward the exterior of the body of lower index, let be
body A.

The friction force is impressed by means of multipliers γ̂i,n,γ̂i,u and γ̂i,w,
leading to formulations 4.13 and 4.14 for normal and tangential force re-
spectively.

fi,N = γ̂i,nni (4.13)
fi,T = γ̂i,uui + γ̂i,wwi (4.14)

Thus the Coulomb model for the friction forces lead to the non-linear
constrains expressed in equation 4.15, where vi,T represents the relative
tangential velocity at the contact i.
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4.1. Differential Variational Inequalities

γ̂i,n ≥ 0, Φi (q) ≥ 0, Φi (q) γ̂i,n = 0,

µiγ̂i,n ≥
√
γ̂2i,u + γ̂2i,w, ‖v‖

(
µiγ̂i,n −

√
γ̂2i,u + γ̂2i,w

)
= 0, (4.15)

〈fi,T ,vi,T 〉 = −‖fi,T‖‖vi,T‖

The operator 〈 , 〉 defines the inner product of two vectors, hence the
constrain 〈fi,T ,vi,T 〉 = −‖fi,T‖‖vi,T‖ requires that the tangential force
must be opposite to the tangential velocity. The friction coefficient is µi ∈
R+; note that this model does not distinguish between static and kinetic
coefficients, although it can be easily considered if necessary.

The first part of the constrain can be restated as in equation 4.16, where
Y is a cone in three dimensions, whose slope is arctan (µi).

fi = fi,N + fi,T = γ̂i,nni + γ̂i,uui + γ̂i,wwi ∈ Y (4.16)

Furthermore this constrain can be also reformulated considering the max-
imum dissipation principle, as in equation 4.17.

(γ̂i,u, γ̂i,w) = argmin vTi,N (γ̂i,uui + γ̂i,wwi) (4.17)
√
γ̂2i,u+γ̂

2
i,w≤µiγ̂i,n

4.1.3 The overall model

Considering the constrain formulation in the dynamics equation 4.6 leads
to the overall model.

At time t a set A of relevant contact constrains is active (eq. 4.18):
in order to avoid wasting of computation effort in this set are considered
only the pairs of bodies whose shapes are at a distance smaller than δ > 0,
touching, interpenetrating or separated.

A (q, δ) = {i|i ∈ {1, 2, . . . , p} ,Φ (q) ≤ δ} (4.18)

Moreover it is active a set B of bilateral contact; each one of these con-
straints transmits forces to the paired bodies by means of a multiplier γ̂i,b.

Considering these constraints, the overall model is denoted as in equa-
tion 4.19; the problem so defined is a differential problem with set-valued
functions and complementarity constrains, which is equivalent to a differ-
ential variational inequality [45].
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q̇ = L (q) v

Mv = f (t,q,v) +

+
∑

i∈A(q,t)

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w) +
∑
i∈B

γ̂i,b∇Ψi

i ∈ B : Ψ (q, t) = 0, (4.19)
i ∈ A (q, δ) : γ̂i,n ≤ 0⊥Φ (q) ≥ 0,

(γ̂i,u, γ̂i,w) = argmin vTi,N (γ̂i,uui + γ̂i,wwi)
√
γ̂2i,u+γ̂

2
i,w≤µiγ̂i,n

(4.20)

In the system 4.19, Di represents a tangent space generators Di =
[Di,n,Di,u,Di,w] defined as in equation 4.21, where Ai,p is the R3 matrix
of local coordinates of the ith contact, and ˜̄si,A ˜̄si,B represents the contact
point positions in body relative coordinates.

DT
i =

[
0 . . .−AT

i,pA
T
i,pAA ˜̄si,A0 . . .0AT

i,p −AT
i,pAB ˜̄si,B . . .0

]
(4.21)

4.1.4 Time-stepping scheme

To integrate numerically this problem, the time-stepping formulation must
be considered.

Given the generalize position q(l) and velocity v(l) at the time step t(l),
the numerical solution at the new time-step t(l+1) = t(l) + h can be found
solving equation 4.22.

M
(
v(l+1) − v(l)

)
= hf

(
t(l),q(l),v(l)

)
+∑

i∈A(q(l),δ)

(γi,nDi,n + γi,uDi,u + γi,wDi,w) +
∑
i∈B

γi,b∇Ψi

i ∈ B :
1

h
Ψ
(
q(l), t

)
+∇ΨT

i v(l+1) +
∂Ψi

∂t
= 0, (4.22)

i ∈ A
(
q(l), δ

)
: 0 ≤ 1

h
Φi

(
q(l)
)

+ Di,nv
(l+1)⊥γin ≥ 0

(γi,u, γi,w) = argmin vT (γi,uui + γi,wwi)√
γ̂2i,u+γ̂

2
i,w≤µiγ̂i,n
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q(l+1) = q(l) + hL
(
q(l)
)
v(l+1)

The problem above defined is a non-linear complementarity problem,
where γs = hγ̂s is the constraint impulse and 1

h
Φi

(
q(l)
)

represents a con-
straint stabilization.

Introducing a relaxation over the complementarity constrain as shown
in equation 4.23, the problem can be denoted as a cone complementarity
problem (CCP), which can be efficiently solved by a family of iterative
numerical methods, as shown by Anitescu and Tasora in [2].

i ∈ A
(
q(l), δ

)
(4.23)

0 ≤ 1

h
Φi

(
q(l)
)

+ DT
i,nv

(l+1) − µi
√(

vTD2
i,u + vTD2

i,w

)
⊥γin ≥ 0

4.2 Simulations

The first issue to face is to correctly represent the soil behaviour. Thus a
direct shear test has been simulated to set the soil parameters.

This test consists in measuring the shear resistance of a soil sample, as
discussed in more detail in chapter 2 at section 2.1.2.

The soil is placed in a box divided at middle height in two part, sliding
one respect the other at constant speed. The shear resistance of the soil is
inferred from the force opposed to the displacement.

This test is repeated for different values of the normal pressure imposed
to the soil sample, and the relationship between the pressure σ and the soil
shear resistance τmax is determined.

When the simulations presented in this section were carried out, the
experimental tests, whose results are discussed in section 2.1.2, were not
avalaible, thus the simulations refer to experimental data available in liter-
ature [30].

4.2.1 Simulation data

The experimental data, drawn from literature [30], are shown in figures 4.1
and 4.2.

In figure 4.1 is depicted the soil sample granulometry, which has been
measured by three different methods as explained in [30]. The tested soil
sample had been sieved with a No 10 sieve, hence the granulometry of peb-
bles for the simulations has been stated according with the corresponding
curve of figure 4.1.
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Figure 4.1: soil sample granulometry [30].

In the simulations data three different classes of pebbles had been de-
fined according to figure 4.1, as shown in table 4.1. The density is the same
for all the three classes and corresponds to the mean density of the sample,
while the diameter sizes are selected to limit the total number of pebbles,
thus the computational effort.

Table 4.1: soil granulometry

Number Mass Percentage Density Diameter
[-] [%] [kg/m3] [m]
78 70 1700 0.020

630 15 1700 0.010
5042 15 1700 0.005

In figure 4.2 are draft the results of a series of direct shear tests, carried
out for different pressure values, in order to state the relationship between
the soil shear resistance, i.e. the maximun shear stress susteinable by the
soil τmax, and the pressure σ.

The simulations that are presented in this section are intended to repro-
duce the point at σ 100 kPa of the figure 4.2.

The pressure σ is imposed by putting over the pebbles a cover of 100 kg
of mass, that put over a section of 0.1×0.1 m correspond to about 100 kPa
of pressure.
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Figure 4.2: shear resistance vs normal pressure [30].

4.2.2 Simulation results

Three different simulations and their results will be discussed, in order to
show the influence of simulation parameters on simulation results.

The simulation parameters are shown in table 4.2:

· The time step and the iterations number affect the simulation conver-
gence: increasing the iterations number and decreasing the time step
allow to improve the convergence, however it rises the computational
effort, extending the execution time of the simulation.

· The recovery speed is the limit speed for two bodies that compenetrate
to move away from each other.

· The warm start is a flag, that when activated imposes that the iteration
at the next time step will start from the end of the previous step.

· Finally the friction coefficient is the coefficient µi ∈ R+ of Coulomb
theory.

Table 4.2: simulations parameters

Simulation A Simulation B Simulation C
time step [s] 0.0001 0.0005 0.0005
recovery speed [m/s] 0.2 0.1 0.1
iterations number [] 250 80 400
warm start [] false true false
friction coefficient [] 0.7 0.8 0.8

73



Chapter 4. Particle Model

The shear speed of the test has been set to 0.01 m/s; this value had
been chosen to mediate between the need of limit the execution time and to
choose a low speed, as prescripted by the norm [6].

Simulation A

The first simulation has been carried out for a mean iterations number and
a small time step.

The simulation results will show that the simulation converged, although
the shear resistance was lower than expected.

Figure 4.3: pebbles in the shear box during the simulation A.

Figure 4.3 shows the pebbles in the shear box after 5 s of simulations. It
is possible to observe the presence of pebbles of three different dimensions
and that among them three are locked over the cover, which is not depicted,
and do not partecipate actively to the test.
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Figure 4.4: cover vertical z and horizontal x position as a function of the simulation time,
simulation A

Figure 4.4 shows the cover vertical and longitudinal position during the
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test. It is possible to notice that the cover is not created at the beginning of
the simulation, but after 0.9 s, to allow to the pebbles bulk to stabilize.

After that the cover is created and released over the pebbles, the vertical
position z decreases rapidly, while the cover compress the pebbles sam-
ple, until the shear test begins after 1.0 s of simulation, when the upper
box starts to slide, followed by the cover, as it is possible to notice from
longitudinal position x.
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Figure 4.5: pebbles speed vectors in
the middle section of the soil sample,
simulation A.

Figure 4.6: pebbles speed modulus in
the middle section of the soil sample,
simulation A.

As previously observed, that problem formulation allows to study the
behaviour of the pebbles in the soil bulk; for istance in figures 4.5 and 4.6
the pebbles speed in the central section of the sample after 5s of simulation
is shown.

Figure 4.5 shows the speed direction, while figure 4.6 shows the speed
modulus. It is possible to notice that the pebbles in the upper part of the
box are moving longitunally with the box, whereas the pebbles in the lower
part of the shear box are spinning around the center of the soil bulk.

Figures 4.7 and 4.8 refer to the forces developed by the soil pebbles.
The peaks are related to locking effects in the pebbles bulk, which happens
when a pebble gets stuck among a wall and the other pebbles.

Figure 4.8 shown the load measured at the box floor. The total mass of
the pebbles is 1.6772 kg, thus the initial value of the load is around 16.45
N and it is not noticeable in the draft scale. After 0.7 s the cover impacts on
the pebbles bulk and at load measured at the box floor increases until 981
N, after that value the measured load decreases, because with the sliding
movement of the upper part of the box, the cover load begins to drain on
the lateral wall of the box instead that on the box floor. Finally after 11.0 s
the lower and the upper part of the box are no longer in contact.
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Figure 4.7: shear resistance of the soil,
simulation A.
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Figure 4.8: load on the box floor, simu-
lationi A.

Figure 4.7 shows the force opposed by the soil pebbles to the sliding
displacement of the upper part of the box. The shear resistance is negative
because it is opposed to the motion direction, which is accounted to be
positive. The maximum value of that force is around 800 N, corresponding
to 80 kPa of a shear section of 0.1×0.1 m, which is lower that the expeted
result of 100 kPa.

Hence the next simulation had been set considering a higher value of the
friction parameter.

Simulation B

To decrease the computational effort of the simulation, simulation B has
been carried out decreasing the number of iteration and increasing the time
step. The warm start has been set on, in order to study its influence on the
simulation convergence. The simulation time has been reduced, since from
simulation A it has been possible to notice that the maximum shear force is
reached at about 7.0 s.

Figures 4.9 and 4.10 show the pebbles speed in the middle section of the
pebbles bulk. The figures refer to the beginning of the simulation, when
the cover impacts on the pebbles, compressing them. Thus the pebbles are
moving toward the bottom of the box: the speed decreases from the top to
the bottom, where the pebbles are stopped by the box floor.

Figures 4.11 and 4.12 refer respectively to the shear resistance and to
the load measured at box floor.

Similarly to figure 4.8, figure 4.12 shows the load measured at the box
floor; it is possible to notice two main peaks at the begininning and at the
end of the simulation. The first peak is due to the impact of the cover on
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Figure 4.9: pebbles speed vectors in
the middle section of the soil sample,
simulation B.

Figure 4.10: pebbles speed modulus in
the middle section of the soil sample,
simulation B.

0 1 2 3 4 5 6 7
-600

-500

-400

-300

-200

-100

0

100

200

300

time [s]

fo
rc

e 
[N

]

 

 

force
mean -86.68 N

Figure 4.11: shear resistance of the soil,
simulation B.
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Figure 4.12: load on the box floor, sim-
ulationi B.
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the pebbles bulk, whereas the last one is likely to be caused by the locking
effect of a pebble stucks between the upper and the lower parts of the box,
indeed it is possible to see a peak a the same time also in figure 4.11.

Figure 4.11 shows the shear resistance of the soil. Besides the reduction
of mean value, it is possible to observe a marked discontinuity in the force.

Since the warm start has been actived, if two pebbles enter in contact
at time step ti, at the next time steps the speed computed starting from the
results of the previous step is not zeroed, and the pebbles keep to approach
each other, until the compenetration imposes to the pebbles is enough big
to make the pebbles run away from each other at recovery speed. When the
pebbles are strayed the gravity or the impact with other pebbles make them
coming back, and the phenomenon repeats.

Because of the instability it introduces in the convergence, the warm
start had been turn off in the next simulation.

Simulation C

Simulation C had been carried out increasing the number of iterations and
turning off the warm start. However the results present a problem of con-
vergence, indeed the recovery speed is too low in these conditions and the
pebbles compenetrate, as it is possible to observe in figure 4.13.

Figure 4.13: pebbles in the shear box during the simulation C.

Figure 4.14 shows the cover position during the simulation. As in figure
4.4 it is possible to observe that the cover is not created at the beginning of
the simulation, but after 0.9 s, to allow to the pebbles bulk to stabilize.

Figures 4.15 and 4.16 shows the pebbles speed in the middle section of
the bulk after 0.95 s, when the cover already compresses the pebbles, but
the shear movement of the upper part of the box is not begun.

It is possible to observe that the speed is higher at the top of the bulk.
This effect is due to the impact of the cover, that compenetrate the pebbles,
which start to move away at recovery speed. Hovever the pebbles start
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Figure 4.14: cover vertical z and horizontal x position as a function of the simulation
time, simulation A
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Figure 4.15: pebbles speed vectors in
the middle section of the soil sample,
simulation C.

Figure 4.16: pebbles speed modulus in
the middle section of the soil sample,
simulation C.
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to move away after an excessive level of compenetration, how it can be
noticed from figure 4.13, where is is possible to observe that the pebbles
are compenetrating and the total volume of the bulk is innaturally reduced.
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Figure 4.17: shear resistance of the soil,
simulation C.
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Figure 4.18: load on the box floor, sim-
ulationi C.

As a consequence of these issues, the shear resistance of the soil is low
than the expected value of about 100 kPa, as it can be noticed from the force
opposed to the shear displacement drawed in figure 4.17, whereas the load
at the box floor is correctly measured, as it is possible to infer from figure
4.18.

4.2.3 Conclusions

The simulation results shown in the previous section (sec. 4.2.2) allow to
point out the possibilities offered by this model; indeed it allows to visualize
the displacements and reaction forces in the middle of the soil bulk, thus the
analysis if not limited to the topsoil surface.

To improve this model, a new iterative method should be accounted to
integrate the solution, since the mass differece between the pebbles and the
upper load stiffen the problem rising the computation effort.

Moreover to investigate the influence of the pebbles size over the shear
resistance, the number of particles should be increased and thus their di-
mensions reduced, leading to a higher computational effort.

A further advantage of the dvi formulation provided by the Chrono::Engine
library is that it can be applied to a large amount of problem.

For instance, this Chrono::Engine library has been used to simulate the
separation of electronic waste by an eddy current separator [16]. This ma-
chinery is composed by a conveyor belt, at the end of which is placed a rotor
with a number of alternating N/S magnetic poles. The waste is distributed

80



4.2. Simulations

on the conveyor belt and when the metallic particles approach the magnetic
field, eddy currents are induced, thus the metallic particles are accelerated
whereas the nonconductive particles are not affected by the magnetic field
and fall close to the drum under the gravitational force. The dvi formula-
tion allows to simply consider the effect of the impact on the particles fall
and separation.

The developement of a model base on the Chrono::Engine library can
lead to an improvement in subsoil simulation, although a more efficient
solver is required to simulate a large amount of pebbles organized in su-
perposed layers under an elevate load, despite the use of GPU units for the
calculation.
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CHAPTER5
Conclusions

The aim of this thesis were to supply a tool able to model the interaction be-
tween tyre and soil, considering tyre geometrical and structural properties
and soil characteristics.

In particular experimental tests has been carried out to infer soil and tyre
characteristics.

The tyre structure has been modeled by means of a modal model, whose
parameters have been identify through an impulsive test, allowing to infer
the eigenvalues and eigenfrequencies of the tyre.

The soil has been characterized in shear and normal responses by two
tests: the direct shear test, performed to measure the shear resistance of a
soil under pressure, and the cone penetrometer test, allowing to measure
the normal resistance of the soil to the sinkage of a conic pin.

Through those tests it has been possible to set the parameters of a nu-
merical model of the tyre-soil interaction, based on matlab language.

The forces exchanged between tyre an soil had been calculated con-
sidering the sinkage and the shear displacement due to the tyre forward
displacement.

This plane model allowed to simulate the ride of a tyre over a loose soil,
with a satisfying level of confidence. Furthermore it has been used to carry
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out a sensitivity analysis of a tread greometry, showing the influence of lugs
shape and dimension on tractive performance, comfort, and soil sinkage.

Moreover, a multi-body particles model has been stated to represent the
soil dynamics. This model is based on a multi-body C++ library, called
Chrono::Engine, using the differential variational inequalities theory to in-
tegrate the particles interaction forces and displacements.

This model allows to consider the soil displacement and stress distribu-
tion in subsoil layers, and the tridimensionality of the problem.

This particles model can allow to point out how the topsoil strain and
stress affect the subsoil layers.

In this thesis this model has been used to simulate the direct shear test
carried out on a soil sample, in order to correctly set the parameters to
simulate the soil dynamics.
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