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Abstract 

Studies in performance evaluation of automated manufacturing systems have focused on 

the development of tools that support performance measurement, efficient design, and 

reconfiguration of manufacturing systems. The use of these tools play a critical role in 

achieving manufacturing target performances such as average throughput, work in progress 

and lead time during the design and operation phases of a system. In response, manufacturing 

systems engineering research in the last decades has developed powerful performance 

evaluation tools and models that are capable of accurately and efficiently modeling various 

systems.  

Traditionally, many of manufacturing system engineering tools assume that machine 

reliability parameters, such as (Mean Time to Failure and Mean Time to Repair) are available 

and precisely known. However, in practical situations these parameters are either estimated 

from real life data or based on experts’ knowledge. In both cases, they are subjected to 

uncertainty. Indeed, the validity of important system design decisions is dependent on the 

ability to carry out a significant analysis of the system performance in presence of 

uncertainty. In addition with digital manufacturing tools becoming increasingly an integral 

part in the design and operation of manufacturing systems, their design and specification 

strongly impacts system understanding. Therefore assisting the integrated analysis and design 

of these tools in relation to manufacturing system configurations is of paramount importance, 

which motivates this research. 

The first part of this work proposes methods for the performance analysis of smaller 

manufacturing systems using exact analytical methods with uncertain parameters estimates. 

The impact of performance analysis using real data in contrast with precisely known 

parameters assumptions is investigated. Performance deviations as high as 15% estimation 

errors are observed by carrying out the analysis ignoring uncertainty in estimations. 

Important findings from this analysis are highlighted and the relationships that explain the 

observed differences are analytically presented. 
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Emphasizing on the proven advantages of performance analysis on smaller systems with 

real data the following parts of the work focus on the development of tools that support 

performance analysis in complex systems. Alternative approximate techniques that are 

accurate and efficient in measuring the performance of multi-stage manufacturing systems 

are proposed. Numerical accuracy and applicability of the proposed methods are presented 

under different conditions. Additionally a new method based on the decomposition of multi-

stage manufacturing lines for the estimation of average throughput is proposed. The method 

is proved to be accurate and computationally efficient to study long lines. It is used to study 

and understand important system behaviors under uncertainty, providing important insights 

in system design under practical scenarios. 

A gradient based algorithm for the optimal supervisory systems reconfiguration and 

manufacturing systems reconfiguration is proposed. The method attempts to improve the 

estimation of the output performance uncertainty by optimally allocating supervisory 

resources. Exploiting the developed techniques in this work it targets to minimize input 

uncertainty on the parameters which highly contribute to the output uncertainty. On the other 

hand it addresses impact of configurations on performance uncertainty by choosing 

alternative buffer configurations so that target performances can be guaranteed. This allows 

system designers to evaluate alternative solutions that satisfy a required level robustness for 

the available resources and knowledge on design parameters.  

Based on existing buffer optimization techniques, a new approach for the optimization of 

manufacturing systems under uncertain parameters is proposed. The approach aims at 

providing the optimal buffer configuration that guarantees the satisfaction of target 

performances with a given confidence level. Analysis with the traditional approach that 

addresses the same problem is observed to provide a guarantee level as low as 43%, which 

compromises system robustness in achieving target performance. The level of additional 

information or the necessary buffer configuration required in order to introduce desired level 

of robustness can be analytically determined using this method. The proposed approach is 

also used for the analysis of an industrial case featuring a buffered multi-stage manufacturing 

system. 
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Finally, based on the result of this study general design and managerial insights are given 

in the design and operation of manufacturing systems under uncertainty, which is the case in 

most practical situations. Future research works that extend the work for improvement of 

analysis techniques and including additional problems in the integrated analysis and design 

of supervisory and manufacturing areas are identified and suggested. 
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Chapter One 

 

1. Introduction 

The need for the design, development and operation of manufacturing systems that highly 

guarantee to achieve target performances is a high priority goal in manufacturing. As 

manufacturing enters a new era in which enterprises must compete in a global market the 

importance and challenge of these activities is ever important. Meeting the demanding and 

dynamic external targets with appropriate design and operation of manufacturing system also 

plays a decisive role in the success or failure of an enterprise. In order to keep competitive 

nowadays companies are increasingly interested in assisting the design and operation of 

advanced manufacturing systems by implementing modern digital manufacturing tools. 

Technological advances in sensor and information technology enables the acquisition and 

storage of huge amount of precise data and information about the behavior of the systems for 

decision making. On the other hand the optimal design, reconfiguration and operation of 

manufacturing systems is supported by the use of modern and suitable analysis tools, 

including simulation and analytical methods. Basically, there is the strong link between the 

technologies which gather system information and the manufacturing systems engineering 

tools that must be fed with this information to carryout the analysis of manufacturing systems 

(Gershwin, 1994, 2000).  However, in spite of the strong relationship between the two fields 

they are normally treated independently by researchers and practitioners. 

In manufacturing systems there are different phases in which the decision making and the 

required system information for the decision should be considered together. During the 

“green field” design phase, the technical efficiencies of the resources/machines that shall 

compose the manufacturing system are considered as nominal values, provided by the 

equipment/sensor producers. In the system operational phase, the technical efficiency of the 

machines can be estimated by using historical data, i.e. the machines’ operational records, 
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typically stored in the company production monitoring system database. The high cost 

associated in changing decisions made during early design phase of manufacturing systems 

emphasize the need to make these decisions right the first time. These decisions range from 

the choice of type of manufacturing systems such as dedicated lines, batch or flexible 

manufacturing systems to specific machine choices and configurations at lower level. In 

practice, designing the details of manufacturing systems (equipment design and specification, 

layout, manual and automatic work content, material and information flow, etc.) in a way that 

is supportive of a firm’s business strategy has proven to be a difficult challenge (Cochran et 

al, 2002). Partly this challenge owes itself to the inherent complexity of manufacturing 

systems involving many interacting elements. Moreover it can be difficult to understand the 

impact of detailed, low-level deficiencies and change the performance of a manufacturing 

system as a whole. Therefore the role of precise information in these activities is immense 

given the need to design of systems which are inherently complex. 

During operational phase of a manufacturing systems traditionally, the reliability of 

machines is modeled through the characterization of the Mean Time to Failure (MTTF) and 

the Mean Time to Repair (MTTR) of each failure mode affecting the machine productivity. 

Normally these parameters are estimated by using historical data on the machines that is 

collected and stored in the manufacturing monitoring system. Although these estimates are 

assumed to be the mean of statistical distributions (typically exponential or geometric 

distributions), their value is considered as known deterministically. However, if they are 

gathered by using a sample size of 5 instead of 1000 failure observations, the resulting level 

of confidence on their mean value is clearly different. Depending on the availability of 

information on the model parameters, the estimates are also subjected to uncertainty. 

Therefore the subsequent analysis and the reliability of analysis output is dependent on these 

uncertain estimates, and this should be measured for a valid decision making. 

Various frameworks and tools with the goal of assisting decision making at different phases 

and levels of manufacturing systems design and development have been developed. The 

fundamental focus of these design and analysis tools is usually targeted at capturing 

characteristic behaviors that defines most modern manufacturing systems. According to 
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scholars in manufacturing systems engineering (Gershwin 2000), some of the defining 

elements that are common to most of the manufacturing systems are the following. 

• Events that are relevant to manufacturing systems, such as breakdowns, arrival of 

parts, repairs can be random; consequently manufacturing systems rarely perform as 

expected.  

• Manufacturing systems are complex which are characterized by high 

interoperability of different resources, functions and objectives, makes the analysis 

of the impact of local reconfiguration decisions on the system performance a 

difficult.  

• Complexity, multiplicity and uncertainty of variables of different natures and the 

information that are used to predict and estimate events, process parameters and 

relationship between interacting subsystems are fundamental. 

Many works in the performance analysis of manufacturing systems have been proposed in 

response to these fundamental requirements. Research in simulation and analytical models 

has targeted the need to model complex and the stochastic nature of manufacturing systems. 

Recent works have perceived the need to address inherently related performance measures of 

manufacturing systems; such as the trade-off between quality and productivity. The 

importance of obtaining clear, sufficient and precise information to carryout valid 

performance analysis is also a recognized challenge in decision making. 

In order to improve productivity of manufacturing systems and minimize errors on final 

products and process, there is a growing interest in a precise and robust performance analysis 

of manufacturing systems. The design and analysis of manufacturing systems in terms of 

choice of machines, decision of how much space to allocate for parts when some of machines 

are down are important focus of recent research (Gershwin 2002). Strategies to respond and 

design for the inherent randomness of events that characterize manufacturing systems, 

failures, repairs, part arrivals, changes to system behavior necessitate the development of 

many stochastic models and analysis tools. The study of performance measurement in the 

presence of random events such as machine and quality failures with regard to the choice of 

processing machines, capacity of material handling equipments and buffers has generated a 
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lot of research interest. Many stochastic analytical and simulation models have been 

developed to understand and respond to the randomness and the subsequent degraded 

performance of a manufacturing system. 

Performance analysis and decision making under this inherent complexity during design 

and operational stages of a manufacturing system is a demanding challenge. More 

importantly, in practice performance analysis has to be carried out with limited information 

gathered from an operating system or a preexisting knowledge which makes modeling for 

performance prediction difficult (Gershwin, 1994, 2000). Due to cost reasons it is important 

to detect incorrect and inefficient behavior in the early stages of the system.  For these and 

additional reasons the design of information systems considering information for the purpose 

of decision making as opposed to the mere sophistication of keeping of data from the actual 

manufacturing system is an important element of manufacturing design (MacGregor Smith J. 

2005). Traditionally the task of obtaining sufficient data for modeling and analysis in most 

cases is an area left for software designers, database designers and practitioners. On the other 

hand most of analytical and simulation models assumed there is enough information to use 

the appropriate models. 

The problem of “sufficient” information is equally relevant even for modern manufacturing 

systems equipped with state of the art information systems. Quite often, in manufacturing 

there are critical decisions that don’t allow waiting until all the necessary amount of 

information is collected and obtained for precise estimation of parameters and the subsequent 

decision making. Real industrial practices require performance analysis and decision to be 

made with the available limited information on hand. In many cases actual situations require 

to make decisions under uncertainty. 

Embedding uncertainty in the system performance evaluation and design process is of 

paramount importance for generating system configurations that are robust to input parameter 

estimation uncertainty. Moreover, it makes it possible to know how the level of uncertainty 

associated to each input parameter impacts the resulting uncertainty in the output 

performance measure, and to refine the level of confidence of the input parameters 

accordingly. For example, if the system is already existing, the sampling plan can be 
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adaptively modified to gather more data about the most critical resources in the system 

(bottlenecks) and to decrease the monitoring effort for less critical resources, thus providing 

data management policies that are functional to the achievement of a desired level of 

confidence in the output system performance estimation.  

In spite of the industrial relevance of this problem, in the literature Manufacturing System 

Engineering approaches, including both simulation and analytical methods never considered 

this problem. Traditionally, the reliability of machines is modeled through the 

characterization of the Mean Time to Failure (MTTF) and the Mean Time to Repair (MTTR) 

of each failure mode affecting the machine production. Although these are assumed to be the 

mean of statistical distributions (typically exponential or geometric distributions), their value 

is considered as known deterministically. However, depending on the resulting level of 

confidence and knowledge on the estimation of these input parameters they are subjected to 

uncertainty. Traditionally, the considered performance measures are the average throughput 

and the average inventory levels of the system. Again, these are considered to be precise 

estimates, although they are strongly affected by the input parameters’ uncertainty. Important 

issues in using estimated reliability parameters for performance evaluation is discussed in 

(Denaro et al, 1998) and (Lin et al, 2008). The growing use of online data collection systems 

for manufacturing systems and the potential of integrating data collection to performance 

evaluation is also pointed out in literature This further motivates the research. 

When performance evaluation has to be carried out using operational data from supervisory 

systems parameters must be estimated from actual data and this introduces inherent 

uncertainty in the estimates. This requires performance evaluation techniques that take into 

consideration this estimation uncertainty introduced in the input parameters.  This uncertainty 

and the complexity of manufacturing systems highly influence the design, management and 

operation process, by posing serious challenges towards the achievement of their target 

performance. As a matter of fact, uncertainty analysis and robust system performance 

measurement are crucial activities for manufacturing competitiveness. Indeed, several 

important system design decisions are dependent on the ability to carry on a significant 

analysis of the system performance in presence of uncertainty. Uncertainty in system 



 

6 

 

design/re-design phases may be either generated internally or externally to the system; 

internal uncertainty is related to imprecise characterization of the events that affect the 

technical efficiency of the resources in the system, i.e. breakdowns and disturbances; external 

uncertainty is related to the difficulty in prediction of the system design requirements, mainly 

due to the market volatility and turbulence. This thesis will focus on the first source of 

uncertainty, i.e. internal uncertainty. 

From a practical point of view, a systematic approach towards uncertainty is an essential 

step to support both the “green field” design and the re-configuration phases. During the 

“green field” design phase, the technical efficiencies of the resources/machines that shall 

compose the manufacturing system are considered as nominal values, provided by the 

equipment/sensor producers. However, when installed and integrated in the system, these 

resources typically prove to perform differently from what expected, due to the specific 

operational conditions and control system settings. Therefore, in order to capture this 

deviation in the “green field” design phase and to generate a robust system configuration, 

uncertainty should be associated to the resource efficiency estimates, used as input 

parameters of the design process. On the contrary, in the system operational phase, the 

technical efficiency of the machines can be estimated by using historical data, i.e. the 

machines’ operational records, typically stored in the company production monitoring system 

database. In this case, estimates are subjected to uncertainty due to the specific sampling plan 

adopted. 

The implementation of supervisory control and monitoring systems has a growing 

importance and role in automated manufacturing systems.  One dominant role of 

implementing these systems is to enable autonomous execution of operations with complex 

logic and sequence that must be satisfied for the manufacturing system to achieve the desired 

processing activity. Equally important is their role for the collection of actual data on states 

and conditions of machines equipments from sensors installed in the manufacturing system. 

Generally supervisory systems report, display and alert, notify status of machines and 

equipments and respond automatically to safeguard conditions before equipments enter 

unsafe states. They record the real time events, states notifications of processing equipments, 
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parts, material handling system from respective sensors installed at different parts of the 

manufacturing system. These fundamental requirements in manufacturing activities and other 

additional advantages of employing supervisory control and monitoring systems are 

increasingly making them an integral part of automated manufacturing systems. Depending 

on the type of the manufacturing system and the main goals of implementing supervisory 

control and monitoring systems the alternative solution in terms of specification, design and 

analysis can be different. Their role as information and data provision for performance 

analysis is a critical objective and needs a due consideration. 

In addition to the choice of manufacturing systems elements, such as processing machines 

and design of space for storage of semi processed, the performance evaluation and validation 

process needs to consider supervisory control and monitoring systems. The motivation of 

involving supervisory and monitoring systems to performance evaluation can be seen from 

two major perspectives. Firstly, performance evaluation with actual data collected by 

supervisory systems is crucial in understanding and studying the actual behavior of the 

manufacturing system (Ioannidis, S. et al, 2004). The collections of signals about events that 

characterize the manufacturing system from performance evaluation perspective have to be 

considered in designing the supervisory system (Lafortune S. et al, 2001), (Cao Y. et al, 

2005). On the other hand the logical sequence of operations and control rules specified in the 

design of the supervisory system impacts the manufacturing system behavior, thereby the 

corresponding performance. The specification of the supervisory systems therefore can 

determine the type of model and approach to be used for the performance evaluation of the 

integrated manufacturing system. This strong relationship between supervisory monitoring 

systems and manufacturing systems on performance analysis requires the system designer to 

consider the impact of one on the other before arriving on the final decisions of design 

parameters. 

The objective of this research can be viewed from two main perspectives in the integrated 

analysis of manufacturing and supervisory monitoring tools. The primary objective is to 

develop performance measurement techniques from operational data for an existing 

manufacturing system that is controlled by a supervisory monitoring system where real time 
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data collection is performed.  This part of the analysis looks how performance evaluation can 

be performed from actual data, especially when the parameters for performance evaluation 

are estimated from data and therefore subjected to uncertainty. The ability to carry out 

performance analysis with uncertainty can be equally applied to the design of manufacturing 

system during green-field design phase when manufacturing systems parameters are not 

precisely known. The link between performance evaluation and actual data is rarely 

considered in manufacturing systems and it is one of the primary goals in this study. 

The second goal is to assist the definition of supervision requirements and data gathering 

needs for improving reliability of the performance measurement and analysis. The proposed 

analysis is required to provide a feedback on possible uncertainty reduction and improvement 

of input parameters. This analysis should assist the optimal reduction of uncertainties by 

adaptively changing resource constrained reconfigurable and adaptive supervisory systems.  

In practice and the research field of supervisory systems methodologies are developed that 

guarantee minimal observations for specified requirements. These requirements might arise 

from different aspects, including observability, controllability and other functional 

requirements of the system. The analytical nature of the analysis methods proposed in this 

study enables the measurement of uncertainty as contributions by different input parameters. 

Unlike statistical methods based on sampling these methods are capable in discriminating 

between parameters that should be estimated more precisely than others. 

 The Supervisory Control Theory (SCT) is developed to provide a formal methodology for 

the automatic synthesis of controllers for Discrete Event Systems (DES). The theory makes a 

clear definition and distinction between the system to be controlled, called plant and the 

entity that controls it, called supervisor. Consideration of supervisory systems during the 

performance evaluation of manufacturing systems is an essential component for various 

reasons. Increasing observability detail on supervisory system has a monotonically increasing 

impact on the quality of knowledge of the system parameters and the subsequent performance 

evaluation. Although it appears that increasing information detail is always desirable for 

improved analysis, the minimal designs of supervisory systems are preferable from the 

economical point of view. This has to be studied taking into consideration the functional 
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requirement of the supevisory system from the controllability and observability of events that 

characterize the given manufacturing system. Significant literature has covered the problem 

of supervisory control theory based on the framework initially developed by (Ramadge and 

Wonham 1987) and extended by much research to date.  In this research many studies 

developed and demonstrated basic and fundamental properties of supervisory design 

solutions. At this link the objective of this research is providing a feedback to supervisory 

design problems from the resulting performance analysis so that reliability and robustness of 

analysis is achieved by improved observability. Allocation of sensors regarding the minimal 

and necessary observability of events can be determined which events should be recorded to 

perform the desired type of performance evaluation and parameter estimations.  

 

Figure1:1 Integrated data collection and performance evaluation 

In this thesis the relationship among manufacturing system performance analysis models 

and the use of operational data for parameter estimation with uncertainty is investigated. The 

study is conducted on different manufacturing systems including single machine systems and 

multi-stage buffered complex manufacturing systems. Different approaches to analyze the 

performance of manufacturing systems composed of unreliable machines when machine 

failure and repair parameters are known with uncertainty are proposed. A new method for the 

analysis of and multi-stage systems with capacitated buffers is developed and used to study 

the behavior of long lines under uncertainty. Implication of performance analysis under 
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uncertainty and the impacts on decision making during system design/re-design are stressed. 

The analytical investigation of performance evaluation from actual data and the resulting 

estimation uncertainty paves the way to the development of a new manufacturing system 

engineering theory for the robust design of manufacturing systems. 

The thesis is organized in the next seven chapters as follows: in chapter 2 literature review 

covering main contributions and developments on the four areas related to this research are 

provided. Contributions on (1) analytical performance evaluation models with precise model 

parameter assumption, developments on analysis tools based on actual data including (2) 

Bayesian models and (3) fuzzy Markov chains are discussed. Moreover (4) methodologies 

and considerations in the design and configuration of supervisory systems are highlighted. 

Chapter 3 introduces important concepts in the classification, taxonomy and briefly discusses 

relevant terminologies on typical characteristics and material flow of manufacturing systems. 

Notations, assumptions and modeling assumptions are discussed that will be used in the 

subsequent parts of the thesis. 

 Chapter 4 begins with the discussion on the estimation of input parameter from actual data 

by using a Bayesian scheme in order to model uncertainty on inputs. Alternative exact and 

approximate techniques are proposed with detailed procedures for performance evaluation of 

manufacturing systems with uncertainty parameters. Fundamental differences in conducting 

performance evaluation with traditional approaches in comparison with proposed techniques 

with estimated uncertain parameters are presented and analytical proofs are provided. A new 

method for the performance evaluation of buffered multi-stage serial lines and complex 

manufacturing systems is presented in detail. 

Chapter 5 presents numerical validation for accuracy testing of the methods presented in 

chapter 4 is provided. Results are reported for each method. Extensive experiments on the 

comparison between the accuracy and computational efficiency of methods are given. 

Comparisons on the methods are performed based on exact analytical methods and Monte 

Carlo simulations on different systems sizes. 
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Chapter 6 Generalized systems behaviors demonstrated by performance analysis under 

uncertainty are discussed. Exhibited behaviors are summarized based on systems 

architectures for two machine single buffer lines and multi-stage lines with accompanying 

analytical explanations for the observed behaviors. Related practical implications on system 

configurations and the link between bottle neck resources and estimation uncertainty is 

explained.  

Chapter 7 a gradient algorithm based on the methods developed in chapter 4 is proposed 

for the reduction input uncertainty and choice of buffer configuration. The first problem deals 

with how to better allocate sampling and data collecting efforts and resources in order to 

optimally reduce input uncertainty. Moreover a method considering buffer allocation 

problem on two machine lines and longer lines based on the original buffer allocation 

problem is proposed. The impact of uncertain estimates on the buffer capacity decision is 

demonstrated in comparison with the original buffer allocation method. 

Chapter 8 A real case study featuring multi-stage production line with supervisory system 

for data acquisition is analyzed using proposed method in this thesis. The importance in the 

application of the proposed framework is highlighted from the analysis results. 

In chapter 9 final conclusions and important possible extensions for future research are 

highlighted.
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Chapter Two 

 

2. Literature review 

Given the complex challenges during the design and operations of manufacturing systems a 

significant amount of research effort has been dedicated in the area of manufacturing systems 

engineering. In the literature, methods that support performance analysis and help to 

understand the dynamics of manufacturing systems have been developed. Vast research work 

on manufacturing system analysis addressed manufacturing issues from perspectives which 

are the most defining characteristics of manufacturing systems.  Gershwin in (Gershwin 

2002) outlined some of the main challenges that have been the drivers of this research 

direction in the study of modern manufacturing systems engineering. Out of many challenges 

he highlighted the most important ones as; complexity, randomness, heterogeneity, 

constraints and trade-offs and Information. 

Many works in the performance analysis of manufacturing systems have been proposed in 

response to the above fundamental requirements. Research in simulation and analytical 

models has targeted the need to model complex and the stochastic nature of manufacturing 

systems. Mainly stochastic models for modeling manufacturing systems and performance 

evaluation aim to capture the behavior of manufacturing systems under unpredictable events 

such as machine failures and repairs. More recently works have perceived the need to jointly 

address complexity, multiplicity and uncertainty of variables of different natures and inherent 

trade-off between these variables such as quality and productivity.  

The importance in obtaining clear, sufficient and precise information to carryout valid 

performance analysis is also a recognized challenge in decision making. In literature, the 

stochastic models for performance analysis and the information required to estimate the 

model parameters are often considered separately. Data driven analysis of complex 
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manufacturing systems is rarely addressed. Model parameter estimation from data such as 

mean time to failure (MTTF) and mean time to repair (MTTR) and the subsequent 

performance analysis are considered two independent activities.  The impact of one analysis 

on the other and their mutual interaction in performance analysis of complex systems is not 

well investigated and understood however important. For instance if the impact of collecting 

various systems information is  a costly  activity then observations and data sampling efforts 

from supervisory systems should be done in an efficient way. Supervisors should be 

reconfigured in order to facilitate a more reliable performance analysis based on what needs 

to be estimated more precisely than others. However; the design and reconfiguration of 

monitoring and supervisory systems in manufacturing systems rarely takes into account the 

needs of performance analysis. 

The main goal of this thesis is to introduce methodologies and techniques that assist an 

integrated data driven parameter estimation and performance analysis of manufacturing 

systems. Therefore this chapter discusses relevant areas in the performance analysis of 

manufacturing systems using information obtained from real manufacturing system. 

Therefore significant contributions in the literature relevant to these challenges will be 

discussed here. The review is structured as follows: Firstly, developments and contributions 

in analytical methods for the performance analysis of manufacturing systems are discussed. 

Then two main schools of literatures that introduce the use of real operational data and 

estimation uncertainty in performance analysis of manufacturing systems are highlighted.  

Developments and issues related to supervisory and data acquisition systems in relation to 

monitoring of workstations, data collection and acquisition for the performance evaluation 

for manufacturing systems are discussed. 

Performance evaluation of manufacturing systems 

In the last few decades research in performance evaluation of manufacturing systems has 

developed various approaches and techniques that enable the modeling of important 

performance measures. Alternative solutions are proposed for variety of analysis problems 

depending on the type and complexity of the manufacturing system. Many modeling tools 

consider problems such as nature of the parameters stochastic versus deterministic and other 
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characteristics that define the system under consideration. Based on the type of modeling and 

solution techniques employed in performance analysis of manufacturing systems 

methodologies can be classified as analytical methods and simulation methods. In this 

section the review of main contributions made on analytical techniques are discussed, which 

is the main focus of this research. The proposed techniques in the thesis are generally 

applicable for performance evaluation by either simulation modeling or analytical models. 

The choice and effectiveness of either model depends on the nature, size of the system to be 

modeled and the complexity of the modeling type chosen.  

Analytical models 

Analytical models in general describe the system using mathematical or symbolic 

relationships. These relationships are then used to derive a formula or to define an algorithm 

by which the performance measures of the system can be evaluated. Under conditions where 

the problem size is complex to be solved by exactly modeled relationship or if the level of 

complexity is higher to handle with a reasonable computation time further modification can 

be performed to these relationship. These set of assumptions and approximations from exact 

analytical models are commonly categorized as approximate analytical techniques. In this 

report we refer to both types of models as analytical models of performance evaluation. 

Although the main target of this thesis is aimed at the analysis of complex manufacturing 

systems a brief review of queuing systems is presented for the following main purposes. 

Most advanced works in stochastic analysis of complex manufacturing systems bypass the 

issue of “adequate knowledge”, such as statistical decision on reliability parameters. In the 

early developments of queuing systems the trend was similar where most of the research 

assumed parameters such as arrival rates and service rates are known ahead and precisely. 

Due to their early continual development and ubiquity of applications in many fields they 

become pioneer to catch the attention of researchers for the statistical treatment of their 

model parameters estimation. Recent works also well exploited their mathematical simplicity 

for Bayesian models for uncertainty in developing exact formulas for the quantitative 

evaluation of performance uncertainty. The same problems in complex manufacturing 

systems derive the need for the type of research proposed in this thesis. The early 
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development with precisely known parameters assumption and the later developments of data 

driven parameter estimation are both presented for a good contrast which motivates this 

research too. 

Simple analytical models for performance evaluation such as queuing theory date back as 

early as in 1909’s work of A. K. Erlang. They were used to solve telephone traffic congestion 

problems.  The first mentions of queuing theory appeared in 1951 with well established 

classifications, notations and theory by D.G. Kendall. (Kendall 1953) published his paper on 

the queuing notation. An extension of queuing models to network of systems with flexible 

layouts is researched as the Jackson network model (Jackson 1957), (Jackson 1963) with 

exponential servers and an exogenous Poisson process. In this work Jackson has shown that 

the steady state distribution has a product form. (F. Haight 1958) also introduced the 

concepts of balking and parallel queues. In this paper he investigated the case in which each 

arrival to a system of two queues joins the shorter queue, or, if they are of equal length, one 

particular queue using differential-difference equations. (H. White and L.S. Christie 1958) 

considered server breakdown. They considered the effect on service-time statistics of 

preempted items re-entering service according to various rules.  

In (J. Little 1961) Little proved a formula with dependency of mean number of jobs in 

systems (and queue) from mean response time (waiting time). (J.F.Ch. Kingman 1962) 

considered heavy traffic queuing systems with traffic intensity very near but less than unity. 

In this study algebra of queues and heavy traffic analysis of queuing systems are considered 

by assuming dependent arrival times and the behavior of related performance measures such 

as waiting times is investigated. (Jackson 1963) presented queuing networks with arrival 

process that depend almost arbitrarily upon the number already present, and the mean service 

rate at each service center depends almost arbitrarily upon the queue length there. He 

demonstrated how the equilibrium joint probability distribution of queue lengths is obtained 

for a broad class of jobshop-like “networks of waiting lines,”. In (Gordon et al, 1967) the 

authors studied cyclic queuing systems with restricted queue length. They employed 

differential-difference equations for the time-dependent stochastic structure to study closed 

cyclic systems that are considered to be stochastically equivalent to open systems. In 
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(Mandelbaum et al, 1968) introduced the queuing systems with split and merge structure later 

referred as “Fork-Join” systems. 

In (Buzen J. P. 1973) the convolution algorithm for the computation of normalization 

constant is proposed. (Basket et al, 1975) introduced a class of interconnected queues named 

BCMP networks which are a significant extension of Jackson networks by allowing an 

arbitrary customer routing and service time distribution.( F.P. Kelly 1975) proposed queue 

networks with multiple type customers and exponential service-time distribution. Each type 

of customer has a Poisson arrival process and a fixed route through the network and both 

close and open networks were considered. (Courtois et al, 1977) introduced decomposition 

for the approximate analysis of queuing networks called a generalized Jackson network. In 

this network job inter arrival and service times are not required to be exponentially 

distributed.  

In (Reiser et al, 1980) have shown that mean queue sizes, mean waiting tunes, and 

throughputs in closed multiple-chain queuing networks which have product-form solution 

can be computed recursively without computing product terms and normalization constants. 

This work is developed an approximate solution of networks with a very large number of 

closed chains, and is shown to be asymptotically valid for large chain populations. In (Fdida 

et al, 1986) queuing systems with a shared common resource where this shared resource is 

modeled by an allocation queue with a limited number of servers are studied. The authors 

introduce an approximate technique to evaluate those systems and found the value of the 

stability condition of those networks.  

(Gelenbe E. 1991) introduced new concept of positive and negative customers which can 

signify work cancellations or customers which don’t need service. (Dai J. G. et al, 1996) 

considered stability of fluid queuing models with variant rules of FCFS and FCLS. More 

elaborated and complete reviews of queuing networks for the evaluation of complex 

manufacturing systems are discussed in (Govil K. et al, 1999), (Papadopoulos and Heavey, 

1996) and (Buzzacott and Shantikumar, 1993). (Buzacott and Shanthikumar 1992, 1993), 

(Hsu et al 1993) and (Bitran et al, 1992) analyzed both performance evaluation models and 

optimization models for queuing networks. More recent contributions can be found on (B. 
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Rabata 2009) queuing networks that are useful for modeling and performance evaluation of 

complex systems such as flow lines and flexible manufacturing systems. 

Queuing based performance models have the power and advantages that comes with exact 

analytical model, such as the shorter evaluation time, and an explicit representation of the 

dynamic relationship between parameters is preserved. Even though this is of great 

importance from the performance evaluation perspective particularly to evaluate alternative 

configuration and reconfigurations they have short comings which initiated the next 

generation of approximate analytical techniques. Unlike the simplified assumptions that these 

models consider for the production system parameters, most of real manufacturing systems 

have specific requirements needed to be modeled. In addition many systems include complex 

configurations and relatively huge size and network of processing machines and storage 

spaces which can’t be easily evaluated in a reasonable amount of computational time.  

The main idea behind the development of approximate analytical methods is to modularly 

and structurally decompose bigger systems in to smaller building block systems with 

effective modeling and assumption on the interconnecting parameters that interface these 

building blocks. Finally the behavior of the whole system is captured by evaluating the 

building blocks with their interfacing parameters until the assumptions that are used to 

perform the decomposition are reached. These approaches have given rise to powerful 

methods that enable to study complex and bigger manufacturing systems and the dynamics of 

system behavior with satisfactorily accurate approximations. Especially these methods 

proved to be very effective in bridging the gap between complex simulations required to 

analyze complex and huge manufacturing systems and the very unrealistic assumptions made 

in exact analytical methods. 

The first results on modern approximate analytical methods appeared in operation research 

literature in the works of (Gershwin, 1994). However, the process of firm automation and the 

advances in Information Communication Technology and computers science continued to 

generate new approaches in this field till now. A first review of early important works done 

in this area are available in (Koenigsberg, 1959), (M. Buxey et al, 1973) and (Buzacott, 
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1978).  More recent contributions on performance evaluation of serial lines are reviewed in 

(Dallery and Gershwin, 1992).  

The earliest work on modeling a transfer line composed by two machines and one buffer 

line in are proposed in (Vladzienskii 1953).In  (Vladzievskii, 1967), introduced the idea of 

decomposition to evaluate the performance of a long transfer lines. Since the number of 

states in which a K stage flow line can explode with the number of machines in the line, he 

proposed to decompose the whole line into subsystems easy to be studied with the technique 

previously proposed. Then, the behavior of each subsystem is transmitted to the other 

subsystems by using opportune decomposition equations. This is the first example of 

decomposition approach applied to the study of production lines and the first approximate 

analytical method. Some works had the goal of demonstrating the properties of a production 

serial line by using the approximate analytical methods. The first numerical analysis of two-

machine line with an intermediate buffer is presented in (Okamura and Yamashima, 1977) 

with important behaviors such as the monotonic function increasing with the buffer capacity. 

Important characteristics of buffered allocation problem including monotonicity, concavity 

are studied in (Shantikumar et al, 1989). In (Gershwin and Shick, 1983) the property of 

conservation of the average throughput in a production line is demonstrated. (Muth, 1979) 

investigated the property of reversibility of a production line, i.e. inverting the order of the 

machines in the line, the average production rate remains constant.  

Gershwin and Berman (Gershwin et al, 1981) proposed the first effective exact solution for 

a two-machine line, in which the Markov chain describing the behavior of the system is 

solved independently on the capacity of the buffer, following a product form solution. Other 

works improve this method by using the properties of matrixes. In (Gershwin et al, 1983) the 

first exact solution of a system composed by three machines and two buffers are presented. 

(Jafari et al, 1987) analyzed flow lines in which, during a stage of production, some 

imperfect parts had the possibility of being scrapped from the system. Moreover, they 

extended the analysis to case of two machine lines with general uptime and downtime 

distributions. (Muth et al, 1987) proposed a method in which repairing personnel was shared 

by different stations and the repair time depended on the availability of the operator. 
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A decomposition approach for evaluating performance measures for multistage systems 

with finite intermediate buffers in which blocking and starvation is considered is presented in 

(Gershwin, 1987). The approximate decomposition approach is based on system 

characteristics such as conservation of flow and integrated the solution of the two-machine 

system already analyzed in (Gershwin et al, 1981). The efficiency, accuracy and flexibility of 

the modeling methodology made it a pivotal work which guided much of the research in 

performance analysis of complex systems. The model considered discrete time assumptions, 

geometrically distributed failure and repair times, unique failure mode and finite buffer 

capacity. Significant improvements were made to the proposed approximate decomposition 

algorithm in later works. (Dallery, David and Xie 1988) improved the algorithm by using an 

iterative technique that with a strong convergence instead of the originally proposed exact 

solutions.  

Additional improvements contributed on the approach’s applicability for a wider range of 

analysis problems with various assumptions. (Gershwin, Matta and Tolio 2002) considered 

multiple failure modes for each machine, i.e. the possibility that one machine can go down 

for different reasons and with different probabilities of failure and repair. Moreover, in (Le 

Bihan and Dallery, 1997) and (Tan and Yeralan, 1997a) new decomposition approaches were 

proposed. Further research improved the applicability of the proposed approach to real 

systems with various system architectures, and focused on reducing the approximation error 

and by generalizing the methodologies assumptions.  

Extending the applicability of the decomposition to complex manufacturing architectures, 

assembly/disassembly systems have been considered (Gershwin and Burman, 2000).  Similar 

architectures are analyzed considering the reconfiguration of resources to increase the 

system's production rate in (Chiang et al., 2000). Later, systems characterized by non-linear 

flow of material were analyzed in (Helber, 1999), (Li and Huang, 2005), (Diamantidis and 

Papadopoulos, 2004) and (Gopalan and Kumar, 1995). Closed loop architectures are studied 

using the decomposition method in (Gershwin and Werner, 2003) and (Commault et al, 

1996). Multiple closed loops are considered in (Levantesi, 2001). Multi-product systems 

have been recently studied with approximate analytical techniques (Colledani et al. 2005), 
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(Colledani et al., and 2005b). Techniques for the evaluation of generally complex system 

layouts have been developed in (Li, 2003), where an approach to approximate the production 

rate for systems with rework loops is considered. 

Production control policies for regulating the throughput rate of the system have been also 

studied with decomposition techniques. Relevant works in this area are the work of Gershwin 

(Gershwin, 2000) (Gershwin and De Vericourt, 2004) for modeling and evaluating the 

performance of systems controlled by the Control Point Policy and the work of Bonvik 

(Bonvik et al. 1997) which review and compare the performance of systems controlled under 

different policies. Matta in (Matta et al., 2005) analyzed the performance of assembly 

systems controlled with kanbans with the use of queuing networks. Studies introducing 

quality control in production systems are developed (Bulgak, 1992), (Cheng et al., 2000) and 

(Li, 2005) address the problem of studying how different system architectures and quality 

control policies (Moinzadeh and Tan 2005) impact. (Kim and Gershwin 2005) have shown 

the importance of integrated analysis of quality and production logistics. In their work they 

show the trade-off between quality and productivity. (Colledani and Tolio 2006, 2009) 

extended the decomposition model to serial production lines where machines may experience 

quality failures. They demonstrated the impact on manufacturing system architecture and 

inspection allocation and buffer capacity determination for an optimal system yield.  

(Colledani et al, 2008) proposed Multi-Product Multi-Stage Lines systems that can model 

flexible manufacturing systems featuring alternative product routes. (Tan and Gershwin 

2009) proposed a general methodology using level crossing analysis for solving continuous 

two machine lines. (Gershwin and Tan 2010) showed that the proposed modeling framework 

enables the analysis of a wide range of system models, including multiple failure mode lines, 

identical parallel machine lines, split/merge systems and lines with generally distributed up 

and down times. (Colledani and Gershwin, 2011) considered multi stage fluid flow systems 

and proposed a decomposition method for general Markovian complex machines. 

In a methodologically different approach to the study of multi-stage lines using 

decomposition approach another stream of research development is the aggregation method. 

(Lim and Meerkov 1990) have proposed aggregation method for the analysis of 
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manufacturing lines. The method works by combining the first two machines of the transfer 

line into a new combined machine and this forward aggregation process is continued until the 

last machine is reached. Moreover the same approach is used to study different problems that 

are studied in decomposition methods. In (Kuo, Lim and Meerkov, 1996) proposed a method 

for the study of bottlenecks and buffer allocation problem. (Li and Meerkov 2009) describe 

several aggregation approximations of analyzing production systems. Additionally 

introducing quality and inspection (Meerkov, and Zhang, 2010) have proposed the analysis 

production systems. However, for the modeling of complex systems such as multiple part-

type systems, promising results had been shown in recent decomposition attempts, and thus 

in this thesis, the Markov modeling approach and decomposition were used as the primary 

analytical tools. 

Analytical models and uncertain parameter estimates 

Although the analytical methods for stochastic modeling of manufacturing lines has a long 

history and has generated of a considerable research, the statistical analysis of model 

parameters has received comparatively limited attention. Much of the effort is devoted to the 

probabilistic development of the models and to study the mathematical behavior of the 

system. The parameters governing the models are for most part assumed to be given. 

Important modeling building blocks, but relatively simplified systems such as single queues 

were the first area of investigation of researchers on how to introduce the estimation of 

parameters required for the evaluation of important performance measures. In the area of 

statistical analysis of stochastic models the most covered problems in literature are queuing 

systems. The popularity of these models for various modeling problems and the applicability 

in many different areas has made them typical target for this analysis. In the coming few 

section we will see main contribution in this area and recent contributions in the analysis of 

multistage lines from operational data. 

Early mentions on statistical inference of parameters for queuing systems mainly addressed 

problem of estimating input parameters using frequentist approach. On (Clarke A.B., 1957), 

Clarke presented a maximum likelihood estimation method for the arrival rates and service 
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rate of M/M/1 queue system. (Basawa et al, 1988) presented in which they demonstrated four 

alternative ways of data collection and experiments on single server systems. In this work 

they assumed the service time and the interarrival time densities to be (positive) exponential 

families. In (L. Schruben, R. Kulkarni 1982) they have shown the estimation of arrival rates 

and service rates and the resulting discrepancy between the state distribution for the model 

(estimated parameters) and the state distribution for the actual system (known parameters). 

They investigated that the mean for the model is infinite even if the estimated traffic intensity 

is restricted to be strictly less than one. (Zheng et al, 2000) addressed the undesirable 

properties related to mean estimators and that the expected value of the estimator does not 

exist and the estimator has infinite mean-squared error and introduced alternative estimators. 

Reviews highlighting the significance of statistical analysis of queuing systems which were 

not covered with in queuing theory or stochastic process models can be found in (N. Bhat 

and S. Rao 1987). This review raised important questions related to the use of queuing 

models and the sampling plans that accompany estimation of arrival rates. How long should 

the system be observed - for a specified length of time or until a specified number of events 

has occurred? In addition works related to test stationarity, periodicity assumption and the 

impact of the sampling plan on the stochastic model are discussed. Bayesian works for the 

inference of parameters for queuing systems presented in (F. McGrath et al, 1987). Their 

work emphasized on the amount of information conveyed using Bayesian approach for the 

statistical inference in queues. (C. Armero and M. J. Bayarri 1994a, b) have shown how 

Bayesian methods are suited to handle the common inferential aims with an emphasis on 

prediction on M/M/1queue system. In (Armero et al, 1994a) the authors analyzed an 

exponential single-processor queue, using Gamma prior distributions for the service and 

arrival rates. They demonstrated the posterior moments of certain performance metrics, such 

as the steady-state number of customers in a system, do not exist. This problematic issue in 

prediction of the long-term behavior of the system is addressed in later works in (Armero et 

al, 1994b). (Insua et al, 1998) have considered statistical analysis of M/G/1 queuing models 

with Erlang service time distribution and demonstrated Monte Carlo method for the 

estimation of interesting performances. A detailed exposition on why Bayesian analysis is 
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good for queues can be found in (Armero e 1999). The popular use of mathematical queuing 

models for the performance evaluation of production systems (Armero et al, 1998) have 

conducted a series works on the Bayesian statistical analyses on Markovian bulk arrival 

queues with a focus on prediction of the usual performance measures of the system in 

equilibrium. In these papers posterior predictive distribution of the number of customers in 

the system is obtained through its probability generating function. In (Armero et al, 2000) 

they have shown the use of Markov Chain Monte Carlo and numerical inversion of these 

transforms to evaluate the distribution of performance parameters. With an extended work in 

particular to a production systems ( Armero et al, 2003) shown important special features of 

Bayesian analysis of queuing production systems in comparison with traditional queuing 

theories. Using conjugate prior they have shown making inference on the posterior density of 

arrival and service rates. (H. Liyanage and G. Shanthikumar 2005) considered inventory 

control problem with an ambiguous demand comparing with traditional approach of 

separating the parameter estimation and the maximization of the expected profit which leads 

to a suboptimal inventory policy. (Chu et al 2008) demonstrated an integrating parameter 

estimation and optimization using operational statistics which leads to better solutions 

compared with the traditional approach. In this paper they also introduced a Bayesian 

approach for the estimation of input parameter. In (A. Jain et al. 2010) proposed a method for 

the optimization of single queuing systems with model uncertainty. In this work they have 

demonstrated the difference of assuming arrival and departure rates as accurate and known 

parameters against with uncertain model assumption from operational data. (Wazed et al 

2009, 2010) identified and provided a review on the different sources of uncertainty in real 

manufacturing environment.  (L. Li et al 2011) proposed an average autoregressive moving 

average model (ARMA) for a data driven bottleneck detection in multi-stage manufacturing 

systems. (A. Azizi et al 2012) proposed a Bayesian inference for throughput modeling under 

uncertainties. They used a Bayesian model utilized prior distributions related to previous 

information about the uncertainties where likelihood distributions are associated to the 

observed data with Monte Carlo Markov chain was employed for sampling unknown 

parameter uncertainties. 
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Performance analysis with Fuzzy Markov models 

An emerging area of research on model parameters uncertainty is Fuzzy Markov models 

which are capable to deal with uncertain transition rates and probabilities. Fuzzy Markov 

models are developed to overcome the deterministic assumption by emphasizing on the 

uncertainty of transition probabilities from real data or insufficient information. Much of the 

contribution that is made under this research is in the area of mathematical studies and 

computing systems. Even though currently the use of these models is not widespread in 

performance analysis of manufacturing systems it is important to briefly discuss their 

potential for analysis under uncertainty. Early works such as (R.E. Belman and L.A. Zadel 

1970) introduced decision making in a fuzzy environment, where constraints and goals can 

be fuzzy whose range and boundary are not sharply defined. In their work they also 

investigated the use of these concepts using examples involving multistage decision 

processes in which the system control is either deterministic or stochastic. They also 

emphasized the importance of differentiating between randomness and fuzziness. Detailed 

review on previous main theoretical contribution of fuzzy systems is available in (J. Klir and 

B. Yuan, 1995). The authors provided summary of works on fuzzy sets, fuzzy logics, fuzzy 

algebra and applications. More recent developments can be found also in (J. Buckley and E. 

Eslami, 2002). These reviews summarize the properties of regular, and absorbing, fuzzy 

Markov chains and show that the basic properties of these classical Markov chains generalize 

to fuzzy Markov chains. (Dubois et al, 2005) proposed a technique to perform fuzzy interval 

computation under a condition of local monotony of considered functions, by considering 

uncertainty as pairs of fuzzy bounds. (D. Kumar et al., 2005) described an application of 

fuzzy Markov model for the determination of fuzzy state probabilities for generating units 

including the effect of maintenance scheduling.  (T. Binh and D. Khoa, 2006) discussed the 

application of fuzzy Markov in calculating reliability of power systems. (G. Chongshan 

2009) calculated fuzzy availability of a reparable geometric process and fuzzy reliability 

theory to study a repairable linear. He considered uncertainties in some of the transitions 

probabilities as modeled by fuzzy numbers.  
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 (D. Kumar et al. 2009) calculated fuzzy reliability and fuzzy availability of the serial 

processing plant. (I. Uprety and Zaheeruddin, 2009) evaluated the fuzzy reliability of 

gracefully degradable computing systems. (D. Kumar and Kumar 2010) computed the fuzzy 

reliability of the stainless steel utensil manufacturing unit for the constant failure and repair 

rates. (Y. Liu and Huang, 2010) introduced a modified fuzzy multi-state system availability 

assessment approach to compute the system availability under the fuzzy user demand. (F. 

Aminifar et al., 2010) proposed reliability modeling of PMU and the Markov process is 

employed to analyze the proposed model. (D. Kumar and Kumar, 2011) used the concept of 

fuzzy approach in the evaluation of the reliability of a manufacturing plant. (A. Kumar and S. 

Lata, 2012) used the fuzzy Kolmogorov’s differential equations evaluate the fuzzy reliability 

of system, the fuzzy Kolmogorov’s differential equations are solved analytically for solving 

n
th

 order fuzzy linear differential equations. 

Supervisory systems and manufacturing systems 

Supervisory systems are increasingly becoming integral features of modern automated 

manufacturing systems. The supervisory control of Discrete Event Systems (DES) in 

accordance with behavioral specification is a new research area which is receiving increasing 

recognition. Even through supervisory systems are have many diversified functions in 

manufacturing systems they also play an important role in performance evaluation and 

analysis.  One objective of these systems is to perform data collection and monitor the 

behavior of individual work stations, work cell behavior and part flow via sensory feedback. 

Research on supervisory system development and implementation is based on information 

feedback on the occurrence of events, formal languages and controlled finite state machine 

concepts and petrinets. 

The first important and comprehensive framework on Supervisory Control Theory was 

developed by (P.J. Ramadge and W. M. Wonham 1987). This work has studied a class of 

discrete event processes and provided a formal methodology for the automatic synthesis of 

controllers for Discrete Event Systems (DES). The theory also made a clear definition and 

distinction between the systems to be controlled, called plant and the entity that controls it, 

called supervisor.The supervisory theory by Ramadge and Wonham is so far the most 
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comprehensive theory for the control of discrete event systems. It is based on the concept of 

a supervisor (Ramadge 1983), (Ramadge 1987), i.e., an agent that is capable of disabling the 

controllable transitions of a DES in response to the traces of events generated. The 

Supervisory Control Problem (SCP) consists in designing a supervisor which restricts the 

traces generated by the system within a legal behavior. If the legal behavior is a controllable 

language (Wonham 1987) a supervisor exists.  

The use of Petri nets with inhibitory arcs (PNIA), which are known to have a modeling 

power equivalent to Turing machines, to describe infinite state systems. Thus, they prove that 

a PNIA supervisor exists if the system’s and specification behaviors are Turing computable 

languages. However, important properties, such as determining if the behavior of a PNIA is 

controllable, are undecidable. In (Ramadge 1986) and (Lin F. et al, 1988a, 1988b) a modular 

approach to the design of supervisors is considered. The case of the infinite state supervisor 

is discussed by (Sreenivas et al, 1992). The specification language is composed of different 

specifications, each enforced by a single supervisor. A global control law can be enforced by 

the conjunction of all the supervisors. In (Ramadge 1989b), (Tadmor 1989) and (Tsitsiklis 

1987) different problems of computation and the related issue of computational complexity 

and modularity are considered. A review of the theory is presented in (Ramadge 1988), 

(Ramadge 1989b), (Wonham 1988a). 

In (Lafortune 1990a) a new control problem is studied: the Supervisory Control Problem 

with Blocking (SCPB). Here it is assumed that in some cases the solution to the SCP 

(supremal controllable sublanguage) may be too conservative. A dual concept is defined—

the infimal controllable superlanguage — and is used to determine a supervisor that may also 

permit blocking in order to achieve a larger behavior. In (Lafortune 1990a) Lafortune and 

Chen introduced two performance measures (in terms of satisficing and blocking), and 

techniques to improve each of these two conflicting measures. An extension of this work is 

(Lafortune 1991) where the Supervisory Control Problem with Tolerance (SCPT) is defined. 

Given a desired and tolerated behavior, the problem is that of designing a controller such that 

the controlled system never goes beyond the tolerated behavior and achieves as much as 

possible of the desired behavior. Under very general hypotheses on desired and tolerated 
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behavior, (Lafortune and Lin, 1991) show that a solution to SCPT exists and is unique, but 

may be blocking. A non blocking solution exists but is not necessarily unique.  

In 1991, (Cieslak et al.1991) discuss and solve the Supervisory Control and Observation 

Problem (SCOP) and the Decentralized Supervisory Control Problem (DSCP). In SCOP the 

assumption is that a mask is present between the controlled system and supervisor, so that the 

supervisor cannot observe all the transitions, or cannot distinguish between some of them. In 

DSCP it is assumed that the control action is enforced by local supervisors that control only 

subsystems. In (Lin 1988) and (Lin 1990) Lin and Wonham discuss the Decentralized SCOP 

(DSCOP) where both partial observations and decentralized control are incorporated into the 

control structure. However, the only mask operator considered in this paper is the language 

projection operator. In (Brave 1993) Brave and Heymann define stabilization as the ability of 

a discrete event process to reach a set of target states from an arbitrary initial state and then 

remain there indefinitely. A slightly different problem that the authors examine is recovery 

under control failure. In both cases they present design algorithms for controllers that 

improve the stabilization of processes. In (Ushio 1990) Ushio discusses the conditions under 

which a finite state supervisor (FSS) may be constructed to solve a SCP. From (Ramadge 

1987) it was known that a FSS exists when both system’s behavior and specification 

language are regular. Here the author derives necessary and sufficient conditions for the 

general case. 

Many of the early important works developed in the supervisory control theory are focused 

on deterministic automata systems, where the transitions between states can be determined or 

controlled by the supervisor. Studies that are based on original Ramadge-Wonham frame 

work but which can handle probabilistic transition and control generated a series of new 

research area. The probabilistic control got more interest from researchers and practitioners 

due to its power in approximating the behavior of most real systems whose state transition 

behavior is more represented by probabilistic assumption rather than deterministic. 

Lawford and Wonham (1993), a plant under probabilistic control can generate a much 

larger class of probabilistic languages than deterministic control. The necessary and 

sufficient conditions for the existence of a supervisor for a class of PDESs are given in 
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(Lawford and Wonham 1993). The control of different models of stochastic discrete event 

systems has been investigated in (V.Grag 1992a, 1992a,) and (V. S. Borkar 1991). V. Grag 

defines probabilistic languages and probabilistic automata over a finite set of events and 

considered operators under which the set of probabilistic languages (p-languages) is closed. 

V. Grag in (V. Grag 1997) has extended the use of recursive equations to solved language 

algebra. He defined the notion of regularity, i.e., finiteness of automata representation of 

probabilistic languages has been defined. (R. Kumar 2001) provided a condition for the 

existence of a supervisor and an algorithm to test this existence condition when the 

probabilistic languages are regular and developed a technique to compute a maximally 

permissive supervisor online.  

Further works on the stochastic systems such as (S. Postma et al, 2004) proved the 

conditions and provides an algorithm that can be used to compute a solution to the model 

matching problem when it exists. (Y. Cao and M. Ying 2006) extended important properties 

such as observability, normality, and co-observability of crisp languages to fuzzy languages. 

In their analysis they provided the necessary and sufficient condition for the existence of a 

partially observable fuzzy supervisor. (Chattopadhyay et al, 2007, 2008) demonstrated 

stochastic discrete-event supervisor is optimal in the sense of element wise maximizing the 

renormalized language measure vector for the controlled plant behavior and is efficiently 

computable. A formal proof of the necessity and sufficiency of the conditions and an 

algorithm for the calculation of the supervisor, if it exists, are presented in (Postma and 

Lawford 2004), and (Pantelic et al, 2009).  

(A. Jayasiri et al, 2010) investigated the decentralized modular supervisory control problem 

of FDES with partial observation for systems which are composed of concurrently operating, 

multiple interacting modules with uncertainties in their events and states. (A. Jayasiri et al, 

2012) studied modular and hierarchical supervisory control theories of Fuzzy Discrete-Event 

Systems (FDES). They addressed the horizontal and vertical complexities present in large-

scale event-driven systems, which are affected by uncertainties in their event and state 

representations. Using Probabilistic discrete event systems as a generator of language (V. 

Pantelic 2012) presented an approximate algorithm to synthesize a probabilistic supervisor 
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that minimizes the distance between generators representing the achievable and required 

plant behavior. 

Role of supervisory systems in performance evaluation of manufacturing systems 

Quantitative methods for the performance evaluation of manufacturing systems and design 

techniques for the supervisory and control systems are traditionally treated as two separate 

fields of research. Despite the close link and the strong interaction between the two areas 

both researchers and practicing engineers and system designers treat the study and 

development of the two aspects independently. The main goal of manufacturing systems 

design and analysis is to measure and guarantee performance measures such as, average 

throughput, i.e. the average number of parts produced in a given time, utilization of 

equipments, lead time, the average duration of time parts spend in the system, the average 

number of work in progress in the manufacturing system. On the other hand the control of 

discrete-event systems (DES) is a research area of current vitality, stimulated by the hope of 

discovering general principles common to a wide range of application domains. Among the 

latter are manufacturing systems, traffic systems, database management systems, 

communication protocols, and logistic (service) systems. The contributing specialties are 

notably control, computer and communication science and engineering, together with 

industrial engineering and operations research. Regardless of the type of application historic 

data that are stored in these systems are potential sources of data for performance evaluation 

of the monitored system. 

The importance of system supervision is even more pronounced for understanding and 

inference of manufacturing systems where the fundamental behavior of these systems is 

rarely predictable and subjected to high randomness.  Some general sources of internal 

unpredictability, such as excess inventories, long lead times and uncertain delivery dates are 

caused by randomness and lack of synchronization. There are only two possible solutions: 

reduce the randomness (due to machine failures, engineering changes, customer orders and 

so on) and reasons for the lack of synchronization (costly set-up changes, large batch 

machines and others) or respond to them in a way that limits their disruptive effects. 

(Gershwin, 1994, 2000). Stochastic performance evaluation models attempt to study and 
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analyze the average and transient behavior of the manufacturing systems caused by this 

randomness. For this reason most performance evaluation models characterize manufacturing 

systems as stochastic rather than deterministic. Commonly studied sources of randomness in 

manufacturing systems are: 

1. Arrival times of entities, i.e., parts or raw materials moving throughout the system 

2. Processing or assembly times at each workstation or machine for different types of 

parts 

3. Operation times for each workstation or machine without failure or breakdown 

4. Time between failures of operational breakdown 

5. Repair times for failures or breakdown 

6. Set-up times for individual machines and systems 

The effectiveness and accuracy of output performance from stochastic models depends on 

the input parameters associated to the stochastic variable. Examples of such input include the 

arrival rate of entities to the system, the processing times required at various machines, 

reliability data (e.g., the pattern of breakdowns of machines). In many practical cases when 

there are supervisory control systems recording stochastic events related to a manufacturing 

system these parameters must be estimated from existing data sets. The input data analysis 

and modeling uncertainty of input parameters of stochastic models and their impact on the 

performance analysis is less studied problem in performance evaluation models. 

More recently there are some literatures available on performance evaluation using 

operational statistic from actual data, especially for analytical models of stochastic systems. 

These preliminary works emphasized on how the use of uncertain parameters that are 

estimated from operational data can greatly impact the performance evaluation output.  In 

some studies they demonstrated how the uncertainty impacts the first moments of evaluated 

performance and help to estimate higher order moments (H. Liwan et. al, 2004), (LeonYang 

Chu et. al, 2007), (A. Jain et. al, 2010). These studies highlight the importance of introducing 

performance evaluation using actual data on smaller systems such as single stage queues, 

optimization problems. But there are no comprehensive approaches on how to extend 

solutions to estimated parameters from actual data for the performance evaluation of complex 
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stochastic systems. General evaluation techniques such as approximate analytical approach 

for the performance evaluation of multistage manufacturing systems are not yet treated from 

this research perspective. 

On the other hand literature and research on supervisory control theory to guarantee the 

information needs of performance analysis is scantily addressed, except rare qualitative 

mentions of the problem. The primary focus of supervisory control theory has been so far on 

insuring safety and other requirements related to the control of operations in the 

manufacturing systems. Since the introduction of this field in 1982 by P.J. Ramadge and 

W.M. Wonham there is a huge amount of literature in the study of the synthesis of controlled 

dynamic invariants by state feedback, and the resolution of such problems in terms of 

naturally definable control-theoretic concepts and properties, like reachability, controllability 

and observability. From this perspective the performance evaluation aspect of the supervisory 

systems get relatively limited attention. Some works that implement stochastic petrinets and 

automata for the performance evaluation of a realized discrete event systems attempted to 

evaluate modeled systems with these frameworks. Additionally there are no formal 

approaches on how to quantify and prioritize observation requirement that come from 

manufacturing system based on performance analysis that considers real data. On this 

direction this research attempts to pave one possible way for addressing this problem in a 

formalized way.  
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Chapter Three 

 

3. Manufacturing system modeling  

This chapter introduces general definitions, attributes and characteristic behaviors in the 

classification and taxonomy of manufacturing systems. The relevance of the classification 

system used in this discussion emphasizes on performance modeling and evaluation 

perspective of manufacturing system. Important terminologies and notations are explained 

and defined that need to be used in the upcoming chapters of the thesis. The classification is 

mainly used to underline the category of manufacturing systems that are interesting for this 

study and gives due consideration on explaining characteristics and parameters that define 

similar systems which are the main focus of this research. 

3.1 Characterization of manufacturing systems 

A manufacturing system can be defined as a set of machines, transportation elements, 

computers, storage buffers, and other items that are used together for manufacturing 

(Gershwin 2004). These systems can be classified based on different criteria depending on 

the objective of the classification framework and the intended kind of study. From 

manufacturing systems engineering point of view the commonly used classification basis are 

mainly the operational characteristics and the operational flow structures. Classifications of 

manufacturing systems are comprehensively discussed in (McCarthy, I., 1995). This chapter 

briefly discusses relevant terminologies and classifications based on typical characteristics 

and material flow of manufacturing systems. Furthermore important building blocks 

elements (machines, buffers, material flow) for the modeling and representation of 

manufacturing systems are introduced.   
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Discrete manufacturing: The production or assembly of parts and/or finished products that 

are recognizable as distinct units capable of being identified by serial numbers or other 

labeling methods-and measurable as numerical quantities rather than by weight or volume. In 

discrete manufacturing, the manufacturing floor works off orders to build something. 

Examples include toys, medical equipment, computers and cars. 

Process manufacturing: A manufacturing environment often characterized by a batch or 

continuous transformation of a gas, liquid or powder, low product complexity and 

manufacturing variations, fixed or dedicated facilities, a flat bill of material and relatively 

few transactions. The processing of products such as chemicals, gasoline, beverages and food 

products are typically produced in "batch" quantities rather than discrete units.  

The models that are this thesis mainly focus on discrete manufacturing. Depending on the 

operational characteristics of manufacturing systems, volume and diversity of discrete 

products in which the manufacturing system is designed for they can be generally be 

categorized into three main classes as: mass production, batch production and Job shop. 

Mass production: Refers to the manufacturing of large quantities of standardized products, 

using dedicated machines and utilizing assembly line technology. Mass production 

is typically characterized by some type of automation, as with an assembly line, to achieve 

high volume, the detailed organization of materials flow, careful control of quality standards. 

In these systems machines perform operations on incoming parts. In this case, the quantity of 

products stored in buffers is a real number. Typical applications of this type of systems can 

be found in food industry, textile production lines, chemical lines and pharmaceutical lines. 

These are commonly analyzed through the use of discrete and continuous models, which treat 

the flow of material as a continuous fluid or discrete units. In many cases continuous models 

can also be used to approximate the behavior of discrete systems. 

Batch manufacturing: Refers to a production control method whereby the ranges of 

products manufactured in a plant are made in batches. Each separate batch consists of a 

number of the same products/components. In the past, large batches of each product were 

made to gain efficiencies by reducing the amount of non value adding time spent changing 
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over from one product type to another. However, this type of production results in high 

inventories and excessive lead times. The Toyota Production System was developed to 

overcome the limitations imposed by changeovers and allows manufacturers to produce in 

synch with customer demands at a high level of quality and low cost. 

Job Shop manufacturing: Manufacturing systems that produce items that are "one of a 

kind", for example, manufacturers of automation systems and tooling fall in the job shop 

category. A distinguishing feature of job shop is that it is capable of processing many 

different types of jobs, each with its own routing and processing characteristics. 

Units and event times in manufacturing systems 

Times related to events and phenomena which are common in manufacturing such as 

sequences in starting and finishing, durations between two events, play important roles for 

the classification, modeling and the performance evaluation of manufacturing systems. Some 

important units such as throughput, lead time in performance measurement are linked to 

statistics of time units. Following are some important units and definitions related to the 

study and analysis of production discrete flow lines.  

Cycle time: the time required for a machine to perform an operation on a product, while 

working in isolation is named cycle time. It can be deterministic, if it is not varying from one 

part to the next, concerning a given process. It is stochastic, if it is randomly varying from 

one part to the next. 

Throughput: denotes the number of lots per time-unit that leaves the manufacturing 

system. At machine level, this denotes the number of lots that leave a machine per time-unit. 

At factory level it denotes the number of lots that leave the factory per time-unit. The unit of 

throughput is typically parts/cycle time. 

Flow time/Lead-time: denotes the time a part spends in the manufacturing system. At 

factory level this is the average time from release of the part in the factory until the finished 

part leaves the factory. At machine level this is the time from entering the machine (or the 

buffer in front of the machine) until leaving the machine. For modeling purposes flow time is 

typically measured also in cycle time. 
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WIP-level: (WIP) work in progress denotes the total number of parts in the manufacturing 

system, i.e. in the buffers or in the machine. WIP or buffer level is measured in integer in 

discrete manufacturing. 

Utilization: denotes the fraction a machine is not idle. A machine is considered idle if it 

could start processing a new part. Thus processing time as well as downtime, setup time and 

preventive maintenance time all contribute to the utilization. Utilization has no dimension. 

Utilization can never exceed 1.0. 

Synchronous manufacturing lines: synchronous systems refer to lines characterized by 

identical deterministic cycle times for the different machines in a system. It doesn’t imply 

synchronous in the strong sense, where all the machines start and stop processing operations 

as in the case where all the movement of jobs and parts is coordinated and internal buffers 

remain constant.  In this case if two machines are operational both machines start and stop 

simultaneously for each machine, while it is possible one machine is operational and the 

other stays down due to failure or other causes. But all the changes that happen to the system 

such as repair, failure, completion of processing happen contemporarily. 

Asynchronous manufacturing lines: In asynchronous manufacturing lines cycle times may 

be different among machines and operations do not necessarily start and stop contemporarily 

for each machine. And on operation completion the part immediately moves to the next work 

station, as long as there is space for it. In both the asynchronous and synchronous lines the 

number of jobs in the system may fluctuate (considerably) and buffers are needed to prevent 

starvation and blocking. 

Discrete and Continuous times: in discrete manufacturing each operation requires a fixed 

time to process a part and the number of products present in buffers, at each time instant, is 

an integer number. Typical applications of discrete systems can be found in automotive lines, 

white goods production lines and mechanical components production lines. In continuous 

production systems machines perform operations on continuously flowing incoming parts. In 

this case, the quantity of products stored in buffers is a real number. Typical applications of 

this type of systems can be found in food industry, textile production lines, chemical lines 

and pharmaceutical lines. This are commonly analyzed through the use of continuous 
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models, which treat the flow of material as a continuous fluid. These continuous models can 

also Introduction of events that characterize an unreliable manufacturing system 

Material flow in manufacturing systems 

Starvation and Blocking: Material flow in a manufacturing line can be interrupted for 

different reasons. One cause can be the failure of the machine itself, but since machines are 

interconnected in the manufacturing line the failure of other machines in the line can cause 

other machines to stop due to the starvation and blocking phenomena. A machine is starved if 

there no part is available for processing from the upstream buffer. A machine is blocked if 

there is no space to place a completely processed part is in the downstream buffer. Blocking 

and starvation phenomena are the main causes of interruptions of material flow which 

propagate through a line. If no buffers are present between machines, a failure of a machine 

immediately propagates to all the other machines composing the line. The goal of introducing 

buffers in real production systems is commonly to decouple the behavior of machines and 

prevent blocking and starvation phenomena from propagating along the line. Once a machine 

fails, starvation propagates to the downstream machines while blocking propagates to the 

upstream machines. Therefore, machine Mi is blocked by the failed downstream machine Mj 

if all the buffers among Mi and Mj are full. On the contrary, machine Mi is starved by the 

upstream failed machine Mk if all the buffers between Mk and Mi are empty. Capturing the 

correct dynamics of propagation of blocking and starvation in the system is fundamental for 

the development of accurate models and methods for the performance analysis of systems.  

Basic Elements in a manufacturing line 

Basic elements in manufacturing systems modeling such as machines, buffers, material 

flows and their representation are defined and introduced. The relative arrangement and 

architecture of these elements defines the layout and configurations of manufacturing 

systems. A widely used and studied building block models for modular decomposition and 

performance analysis of the different complex manufacturing architectures are also 

described. These elements will be used for building and representation of different 

manufacturing systems architectures that will be discussed here. Their representations will be 
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kept the same for modeling the different types of manufacturing systems that will be 

discussed throughout this thesis. 

Machines: are automated or manual work stations that perform operations on parts that are 

processed in the manufacturing line. Depending on modeling conveniences and objectives a 

group of workstations can be considered as single machine. Machines are represented in 

squares, in cases a machine performs operation on different products they are represented 

with squares partitioned with horizontal lines, equal to the number of products. 

Operational Failures: operational failures are those disturbances which cause the 

immediate interruption of the manufacturing flow for a machine. Failures which stop the 

whole production of the system, like energy provision interruptions, are not considered 

among these types of failures, thus the independence of failures among different machines is 

considered. In order to restore the machine to the operative conditions, the intervention of an 

operator is required. Two types of failures are generally observed in real production systems, 

i.e. Operation Dependent Failures (ODF) and Time Dependent Failures (TDF). 

Operation Dependent Failures (ODF): are failures that can happen only if the machine is 

operational, i.e. not starved nor blocked. This are typically mechanical failures, such that the 

tool breakage, the errors of sensors while positioning the work piece in the work zone, the 

lack of material and mechanical jamming. 

Time Dependent Failures (TDF): are those failures that can happen even if the machine is 

starved or blocked, i.e. the failure occurrence do not depend on the machine state. They are 

typically electronic failures, such that light burn-outs, machine screen problems and machine 

communication problems. 

Buffers: are temporary storage spaces for parts flowing between machines in 

manufacturing lines. In real manufacturing systems they can be transporting material from 

one machine to another one, decoupling the behavior of the machines and reducing the effect 

of the propagation of blocking and starvation phenomena in the line. They can be automatic 

conveyors, AS/RSs, floor space, etc. Buffers are represented with circles. 
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Material flow: Material flow represents the direction and routes parts follow in 

manufacturing systems, which might be derived from the sequence of processing 

requirements that must be carried out on a given product until it comes out as a finished 

product from the line. Material flow is represented with arrows connecting machines and 

buffers and their direction represents the direction of material flow. 

 

Fig: 

Figure 3:1 representations in manufacturing line 

3.2 Manufacturing system architectures 

In this section a general classification of different manufacturing systems layout 

configurations is presented. Alternative manufacturing layout choices can be adopted 

depending on the nature of the product and processing requirements involved. Three widely 

considered manufacturing layouts are introduced, namely open line, closed line and assembly 

lines. These lines can be represented and modeled using the basic elements introduced in the 

previous section and their performance can be analyzed using decomposition approach using 

two machine single buffer building blocks. 

Open line layout (serial manufacturing lines) 

These are manufacturing lines composed of workstations and storage areas in which 

material flows in sequential processing by visiting each work station and storage area in a 

fixed sequence. Generally such kinds of systems are composed of K machines and K-1 

buffers. Material enters into the manufacturing line through the first machine usually 

represented M1, crosses a system of K machines and K-1 buffers and finally leaves the system 

through the last machine MK. The following manufacturing system producing D12 engine 

blocks in Scania CV AB is a typical example of open flow line configuration. The line is 

composed of 22 workstations decoupled by 

Buffer Machine 
Material 

flow 
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21 intermediate buffers. 

 

Figure 3:2 Representation of an open flow line with K machines 

 

Figure 3:3 A real open flow line producing D12 engine blocks in Scania 

 

Closed loops 

Closed loops are lines characterized by a constant number of products circulating in the 

system. Indeed, a raw part is processed by the first machine M1 only if a finished product is 

released by the last machine in the system MK. Therefore, in closed loop lines, the number of 

buffer equals the number of machines. A representation of closed loop systems is proposed in 

Figure 3:4. Given the correlation among the arrival of parts in the system and the delivery of 

finished products, these type of systems present a particular dynamic behavior concerning the 

propagation of blocking and starvation phenomena. Indeed, since the number of parts 

circulating in the system (loop population) is fixed, a failure of a generic machine Mj can 

cause the blocking phenomenon propagation to involve only a sub-set of the upstream 

machines which compose the line. The same can be stated for the propagation of the 

1M 1KM −2M
1B KM

2B 1KB −2KB −
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starvation phenomenon. This particular behavior sends this system very complex to analyze, 

since the blocking and starvation propagation is conditioned to the system state. An example 

of real closed loop systems is reported in Figure 3:5. In particular, the layout of the system 

producing printer charger in Olivetti is reported. 

 

Figure 3:4 Model representation of the loop configuration system 

 

 

Figure 3:5 A real closed-loop line producing printer chargers in Olivetti 

Assembly/disassembly Lines: such layouts are configured such that manufacturing 

machines can perform assembly (joining operations) and disassembly operations to realize 

the final product. Machines can take parts from two or more upstream buffers in a join 

structure to assemble parts. Alternatively machines also can disassemble parts and place in 

M1 B1 M2 B2 M3 

B5 M5 B4 M4 

B3 

M6 

B6 
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two or more downstream buffers creating a fork structure. Therefore, a more general notation 

is needed for buffers to indicate which machines are connected through the given buffer. A 

buffer B(i,j) connects the machine Mi to the machine Mj. Unlike the open flow line 

configuration, an assembly line can have multiple entry ports for the entry of input parts and 

multiple output ports for the exit of finished parts. Most of complex manufacturing systems 

can be represented as assembly lines depending on how the join fork structure is. Many real 

automotive assembly lines and household equipment manufacturing systems adopt similar 

layout, since the products involve assembly of many subcomponents. 

 

 

 

Figure 3:6 Model representation of the assembly/disassembly line configuration system 
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Figure 3:7 Real assembly / disassembly system producing commands in Bticino 

3.3  General modeling assumptions 

Here the main characteristics of the systems particularly (machines and buffers) that are 

considered in the coming sections are briefly discussed in the context of the above 

discussion. Frequently used notations are introduced and unless mentioned all the 

assumptions adopted for the systems that are analyzed in this thesis are the following. 

System architecture: 

• In multi-stage cases saturated open layout architectures are assumed 

• Discrete flow of parts (discrete production) are assumed discrete times are 

considered, processing time is scaled to one time unit 

• Quality issues are not considered, all produced parts are assumed good 

• Blocking before service is considered and times for state transition such as failures 

and repairs occur at the beginning of time units, when buffers are updated at end of 

time units. 
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Conventions for updating state transition and buffer levels 

 

Machines: 

• Failures are operational dependent failures (ODF) 

• The probability that machine a machine fails in a time unit in the failure mode with a 

precisely known or unknown failure rate p 

• Time to failures, TTF are assumed to be geometrically distributed with an unknown 

failure rate p. 

• The Time to repair a machine, TTR that is down in a failure mode is assumed to be 

geometrically distributed with a known or unknown repair rate parameter r. 

Buffers:  

•  Buffers have finite capacity N. 

• Transient time is zero. 

•  Buffers are perfectly reliable.  

Time unit 

Failure and repair Buffer level updating 
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Chapter Four 

 

4. Proposed method 

This section demonstrates the proposed techniques for the performance evaluation of 

manufacturing lines with uncertain parameter estimates. It begins with an introductory 

scheme of Bayesian estimation for reliability input parameters, failure and repair 

probabilities. The alternative techniques introduced here are explained starting with isolated 

machines for the analysis of isolated efficiency. Mainly expected value of the isolated 

efficiency E[e] and uncertainty in variance of the isolated efficiency V[e] are evaluated using 

alternative techniques.  

Next the techniques are applied to building block two machine single buffer lines where the 

estimation of distribution average throughput is investigated.  Estimation of the expected 

value E[TH] and uncertainty V[TH] of the average throughput are evaluated. Finally a 

method for the analysis of multi-stage long lines is introduced. Although the techniques 

introduced are generally applicable to continuous time cases, all the analysis in this section is 

carried out on discrete time systems. 

4.1 Inference of Input Parameters 

The inference of input parameters begins with the collection of data required for the type of 

parameters to be estimated. The data can be obtained from an online data base system that 

record and monitors machine history or any type of log information about failure records. For 

the purpose of this thesis these parameters are reliability parameters associated to the failure 

probability and repair probability of individual machines. These data could be randomly 

taken data or time series data obtained from an operational machine. In some cases there 

might be prior information from previous estimations or knowledge about specific 
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parameters. On the other hand some parameters have to be estimated for the first time from 

observation of data.  

Essentially, the performance evaluation of manufacturing systems using stochastic models 

requires estimation of input parameters, particularly when the input parameters have to be 

estimated from actual operational data. The problem of using actual data for the performance 

evaluation is rarely addressed and is one of the goals to be discussed in this chapter. 

Although the inference of parameters is one field of study that needs attention the primary 

goal remains performance evaluation with inferred uncertain parameters. 

 

Figure 4:1 Observation of a single machine with time series data 

Bayesian Updating scheme 

Before the start of making inference on required parameters it might be necessary to 

perform preprocessing and data cleaning operations depending on the structure of the 

database, the type of model that is going to be used for analysis and corresponding 

assumptions in the model. At the end of a given observation period required vectors of 

observations are collected to make a new inference or update previously made inference on 

parameters. 

Among many available statistical approaches that are used for the estimation and inference 

of input parameters there are two well known perspectives that commonly used to address 

these kinds of problems, namely the frequentist approach and the Bayesian approach. In the 

first few sections the main differences of using each approach is pointed out giving 

motivations on why the main focus of this work is on the Bayesian approach. Next it will be 

shown how the Bayesian approach, which is widely addressed in this study, is more 

appealing from the performance evaluation of manufacturing systems and practical point of 

view. 

Fi-1 Ri-1 Fi Ri Vi Oi Fi+1 

ttri-1 ttfi ttri ttfi+1 ttfi+1 
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An important argument in favor of Bayesian approach over the classical statistical 

approach is that, Bayesian inference considers all unknowns (both parameters and future 

observations) as random variables, while in the classical statistical inference the population 

parameter is assumed to be fixed. The posterior variance on the estimation of parameters is a 

natural measure of uncertainty on the input parameters. By extension using these inputs in 

the performance measure enables the measurement of the uncertainty on the measured 

performance of interest. 

In making inference on the unknown parameter that is estimated from an observed data 

such as failure probability p and repair probability r, we introduce a general Bayesian 

updating procedure. The objective of the Bayesian approach being to reach a conclusion 

about a generic unknown parameter θ from an observation of a stochastic variable X . The 

distribution of X is not completely known but depends on the value of parameterθ , with a 

parameter space Θ . Therefore it is possible to write the distribution probability of X  as

( | )xπ θ , where the notation π is a generic probability density. The stochastic variable X can 

be assumed as a random sample of 1 2{ , ,.... }nY Y Y . 

( | ) ( | )ix yπ θ π θ= Π          (4.1) 

For instance in the case of collecting failure data from a stochastic time to failure data, TTF , 

with the goal to make inference on unknown failure probability of a machine p the density 

given to a given random vectors of observations 1 2{ , ,..., }sttf ttf ttf the likelihood can be written 

as: 

( | )( | ) ittf pttf p ππ =∏          (4.2) 

Whether the above vectors of observations are obtained sequentially or once inference of 

parameter p can be made by using the Bayesian updating, by Bayes’ theorem. 

( ) ( | )
( | )

( ) ( | )
P

p TTF p
p TTF

p TTF p dp

π π
π

π π
=

∫
    

p P∈       (4.3) 

After the observation of ttf the corresponding marginal likelihood is computed over the 

parameter space P 
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( ) ( ) ( | )
P

ttf p TTF p dpπ π π= ∫         (4.4) 

Substituting the marginal likelihood in (4.4) the posterior predictive distribution of the failure 

probability p after the observation is 

( ) ( | )
( | )

( ) ( | )
P

p TTF p
p TTF

p TTF p dp

π π
π

π π
=

∫
       (4.5)

 

The only remaining information to make the inference on the value of the failure probability 

conditional to the current observation ( | )p ttfπ is the estimation of the prior information about 

the prior distribution ( )pπ . The choice of the prior distribution depends on the objective and 

nature of information at hand. Some of the most commonly used Bayesian priors fall in one 

of the three categories namely: 

1. Conjugate priors 

2. Non-Conjugate priors 

3. Non-Informative Priors 

Theoretically the choice can be any justified practice in Bayesian approach but in our 

analysis we limit ourselves to use the conjugate priors, for some of the reasons explained in 

coming sections. 

One of the main advantages of conjugate priors is that they simplify computations, 

particularly in sequential applications of Bayes’ theorem. With these distributions, the 

integral we need to compute for the posterior has a familiar form. In this particular case of 

inference on the parameter p from a geometrically distributed TTF the conjugate prior for the 

parameter p is the two parameter Beta distribution. List of conjugate priors for different 

continuous and discrete distributions can be chosen accordingly. Table 4:1 shows commonly 

used discrete and continuous distribution parameters frequently used in performance 

evaluation of manufacturing systems and their corresponding conjugate priors. Full statistical 

coverage and list of the conjugate priors are available in statistics books such as (Gelman A. 

2003) 
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Likelihood Model  

Parameters 

Conjugate prior 

distribution 

Prior 

Hyperparameters 

Bernoulli p  Beta ,  α β  

Binomial p  Beta ,  α β  

Exponential λ  Gamma ,  k θ  

Geometric p  Beta ,  α β  

Poisson λ  Gamma ,  k θ  

Weibull with known 

shape 

θ  Inverse Gamma ,  a b  

Table 4:1Conjugate prior of commonly used distributions and hyperparameteres 

If the prior distribution of ( )pπ follows a 
' '~ ( , )p pBeta α β distribution the corresponding 

density of the prior distribution is written as: 

' '
1 1

' '

1
( ) (1 )

( , )

p p

p p

p p p
B

α β
π

α β

− −
= −        (4.6) 

In order to completely demonstrate how the inference can be made for the whole 

expression, we will substitute all the above terms with a sample vector of distribution. 

Suppose the random sample that is collected for the time to failure data composed of s  

number of sample is available. For the randomly sampled TTF 1 2{ , ,..., }nttf ttf ttf with geometric 

distribution the likelihood function given by equation (4.2) can be computed 

1

1
( | ) (1 )

nttfn

i
ttf p p pπ

−

=
= −∏  

( )1(1 )

s

i i
ttf n n

p p
=

−∑
= −          (4.7) 

Substituting the likelihood expression in (4.7) and the prior distribution (4.6) gives: 
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( )

1
11

1

1
(1 )

,

n

ii
ttf nn

n

ii

p p
B n ttf n

βα

α β

=
+ − −+ −

=

∑= × −
+ + −∑

   (4.8)

 

( )1
~ ,

n

ii
B n ttf nα β

=
+ + −∑

 
' '~ ( , )Beta α β

 

Where ' nα α= +  and  
1

'
n

i

i

ttf nβ β
=

= + −∑  

As it can be seen in equation (4.8) the use of the prior conjugate as a prior distribution 

allows to arrive to a numerically simpler solution of the posterior distribution which has the 

same format as the first one. This has additional advantages for the computations that use this 

distribution as input parameter for the performance evaluation. If one chooses to use a non-

conjugate prior instead of a conjugate prior distribution the final solution one has to compute 

will be highly complicated in terms of mathematical effort. Further in most cases it might 

require to use (Markov chain Monte Carlo) MCMC methods as the only approach for 

deriving the solution of problems involving similar distributions. 

As it can be seen from equation (4.8) the estimated failure probability parameter using the 

Bayesian approach p is a stochastic variable itself, and it is also possible to compute 

maximum likelihood to find the equivalent of the point estimate using the same data. 

Additionally in this case we have the information about the natural measure of uncertainty 

related to the estimation of the parameter. 

According to the type of methodology required the above input distribution can be used for 

the evaluation of the performance. In this case we prefer to use the density function of the 

distribution which can be given again as: 

( )

( )

1

1

1 1

1 1 1

0

1
(1 ) (1 )

( , )
( | )

1
(1 ) (1 )

( , )

s

i i

s

i i

ttf n n

ttf n n

p p p p
B

p ttf

p p p p dp
B

α β

α β

α β
π

α β

=

=

−− −

−− −

∑
− × −

=
∑

− −∫
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( )11 1

' '

1
(1 ) (1 )

( , )

s

i i
ttf n n

p p p p
B

α β

α β
=

−− − ∑
− × −       (4.9)

 

Thus, the maximum likelihood for the posterior distribution can be computed as: 

'
ˆ arg max{ ( | )}

' '
p p ttf

α
π

α β
= =

+
  = 

1

1
ˆ

s

ii

s
p

mttfs ttf s
=

= =
+ −∑

   (4.10) 

The point estimate of the failure probability using maximum likelihood is the same as if it 

was calculated by using the mean value from the observations of time to failures ttf . 
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4.2 Analysis of an Isolated Machine  

In the first few sections techniques for the performance analysis of the simplest possible 

systems in production system, i.e., isolate machine are demonstrated. Next fundamental 

differences and the impact of performance evaluation under uncertainty are investigated in 

comparison with evaluation using precisely known parameters. The modeling assumptions 

used for the characterization of machines in the case of individual processing machine are 

described. 

Modeling machine Assumptions 

• Failures are operational dependent failures (ODF) 

• The probability that machine a machine fails in a time unit in the failure mode with a 

precisely known or unknown failure rate p 

• Time to failures, TTF are assumed to be geometrically distributed with an unknown 

failure rate p. 

• The Time to repair a machine, TTR that is down in a failure mode is assumed to be 

geometrically distributed with a known or unknown repair rate parameter r. 

Isolated machine model 

This section presents how the Markovian model of an isolated single machine with 

uncertain probabilities of failure and repair can be analyzed. First a univariate case is 

considered, when there is only one uncertainty parameter. Exact analytical formulas are 

provided for the output performance distribution for the univariate cases. In the case of 

multiple uncertainties numerical techniques are proposed for the evaluation of interesting 

moments and distribution of the output performance. The exact analytical solution and the 

simplicity of the system is chosen to demonstrate the impact of considering uncertainty in the 

performance evaluation when compared to the traditional approaches that assume input 

parameters are precisely known. 
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Figure 4:2 Markovian model of single machine with up and down states 

An isolated machine under the assumption stated above and its unknown probability of 

failure p or probability of repair r is estimated as described in section (4.1). The vector of 

observations of TTF and TTR are assumed to be geometrically distributed. The estimation for 

the probability parameter of a geometrically distributed statistics as provided in Table 4:1 is a 

Beta distribution. Posterior distributions of the unknown failure probability p or the repair 

probability r which are estimated from geometric TTF and TTR follow a Beta distribution

~ ( , )p pBeta α β and ~ ( , )r rBeta α β  respectively. The densities of these posteriors are given as 

(4.11) and (4.12). 

1 11
( ) (1 )

( , )

p p

P

p p

f p p p
B

α β

α β

− −
= −

        (4.11) 

1 11
( ) (1 )

( , )
r r

R

r r

f r r r
B

α β

α β
− −= −         (4.12)

 

4.2.1 Exact Analytical Method 

Exploiting relative simplicity of the Markovian model of the isolated machine here we 

derive the exact analytical solutions of the output distribution density of the isolated machine 

efficiency ( )
E

f e . Using the model presented in Figure 4:2 first the efficiency e for an 

unknown p and a precisely known r is investigated. The next section follows the same 

procedure to demonstrate the solution when converse is the case i.e., p is precisely known 

and r  is an unknown parameter that needs be estimated. In all the cases of the isolated 

efficiency e of a single Markovian machine in Figure 4:2 with a unique failure and precisely 

known p and r is given as (4.13). 

U D 

p

r  

1 r−  1- p
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r
e

r p
=

+             (4.13) 

Case 1: Unknown p 

The exact analytical technique aims to solve the density of the average throughput ( )Ef e

given the posterior density of ( )Pf p  is expressed as in (4.11). With the precisely known r  

and using the functional relationship of random variables the density of the isolated 

efficiency can be expressed as: 

 

( )
2

ˆ

ˆ

( )
( )            Where P

E

r r

r r

f p e r
f e

p p re

p

=

=

∂
= =

∂ +∂

∂

 

( )
2

( )
( ) P

E

f p
f e

r

p r

=

+

         (4.14)

 

Since the expression ( )Ef e  is required to be in terms of e then all the terms given in p should 

be solved in e and substituted giving: 

(1 )−
=

r e
p

e
          (4.15) 

Evaluating this expression provides the density of the isolated efficiency of the machine as a 

function of e. 

 

1 1 2
(1 ) (1 ) (1 )

1

( )
( , )

α β

α β

− −
− − −     

− +     
     =

p p

E

p p

r e r e r e
r

e e e
f e

rB
    (4.16) 

 

Once the posterior parameters of the uncertain p, αp and βp are known the required moments 

of the isolated efficiency can be determined from the output density (4.16). In many cases the 
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commonly required moments are the first two moments.  If the objective is to determine 

these two moments i.e., the expected value and variance of the isolated efficiency they can be 

computed by integrating ( )Ef e within the domain of e . 

[ ] ( )E

E

E e e f e de= ×∫          (4.17) 

2[ ] ( [ ]) ( )E

E

V e e E e f e de= −∫         (4.18) 

Case 2: Unknown r 

The same analysis can be repeated by assuming p as a precisely known parameter and the 

repair probability r can be considered an estimate with uncertainty. Following the same 

approach demonstrated above the corresponding equations in unknown r are evaluated as 

follows. 

( )
2

ˆ

ˆ

( )
( )          Where     R

E

p p

p p

f r e p
f e

r p re

r

=

=

∂
= =

∂ +∂

∂

 

( )
2

( )
( ) R

E

f r
f e

p

p r

=

+

         (4.19)

 

Since in this case also we need the terms in terms of e and the known parameter p 

 

1 1 2

1
1 1 1

( )
( , )

r r

E

r r

ep ep ep
p

e e e
f e

pBeta

α β

α β

− −
     

− +     
− − −     =      (4.20) 

 

Similarly the first two moments of an isolated efficiency of the single machine with uncertain 

repair probability can be computed from the output distribution. 

[ ] ( )E

E

E e e f e de= ×∫  
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2[ ] ( [ ]) ( )E

E

V e e E e f e de= −∫  

Direct evaluation of moments (Expected value and Variance) of isolated efficiency 

Direct evaluation of the output distribution of the performance measure can be interesting 

for completeness of the solution. If the density of the output distribution is evaluated exactly 

then from this distribution the evaluation of higher order moments such as skewness and 

kurtosis of the distribution can be done precisely. Considering the analytical difficulty 

involved when considering multivariate cases and dealing with complex performance 

models, in some cases it can be easier to directly evaluate only the required moments. In 

addition in most practical cases it suffices to analyze the first two moments i.e., to evaluate 

the expected value and the uncertainty in variance of the output performance measure. 

Consequently in many of the future discussions in this thesis the proposed methods focus on 

the evaluation of these two moments. This widens the range of problems that can be 

addressed using the techniques including more complex performance models and alternative 

forms the input uncertain distribution.  

Direct evaluation of moments with single uncertainty  

Next the exact analytical evaluation that provides the computation of the first and second 

moments of the isolated efficiency e is given when only one of the parameters i.e., p or r is 

known with uncertainty.  

Single uncertainty (Univariate case) 

Provided that the posterior density function of the input is expressed as in (4.11), direct 

integration techniques can be applied to evaluate the expected value and the uncertainty of 

the isolated efficiency. Considering the above (case 1) where p is uncertain, the moments of 

the isolated efficiency e can be directly evaluated without evaluating the density of the output 

distribution ( )Ef e .  
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[ ] ( )P

P

E e e f p dp= ×∫  

[ ] ( )
P

P

r
E e f p dp

r p
= ×

+∫  

2

1
[ ] ( ) 1(1, , , )p p p p pE e F

r
α β α α β= Γ + + −       (4.21) 

Γ  is the incomplete Gamma function and 2 1F is a regularized Hypergeometric function. 

Using the expected value obtained above the variance can be evaluated  

2[ ] ( [ ]) ( )P

P

V e e E e f p dp= − ×∫
 

2

[ ] [ ] ( )P

P

r
V e E e f p dp

r p

 
= − × 

+ 
∫        (4.22)

 

 

Similarly when the repair probability is the parameter with estimation uncertainty the 

expected value and uncertainty of the isolated efficiency E[e] is evaluated. 

[ ] ( )
R

R

r
E e f r dr

r p
= ×

+∫  

2

1 1
( ) ([ ] ) 1(1, 1, 1, )r r r r r r rFE

p
e

p
α β α β α α β+ Γ + + += + −     (4.23)

 
2

[ ] [ ] ( )R

R

r
V e E e f r dr

r p

 
= − × 

+ 
∫        (4.24)

 

Multiple uncertainties (Multivariate case) 

Continuing the analysis of isolated machine case where both the failure probability p and 

repair probability r are unknown the direct evaluation of moments can be used to evaluate the 

moments of isolated efficiency e. 

The joint probability density of p and r can be evaluated from the marginal density of their 

individual distributions.  
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, |( , ) ( , ) ( )
P R R P P

f p r f p r f p= ×         (4.25) 

Both failure probability p and repair probability r are assumed independent. Therefore the 

posterior distribution of p and r is computed from the joint density of the two posterior 

distributions.  Following this the expression (4.25) can be simplified to be the product of the 

marginal density function of each uncertain parameter. 

, ( , ) ( ) ( )
P R R P

f p r f r f p= ×         (4.26)

 
Integrating with respect to the two uncertain parameters the expected performance and the 

corresponding uncertainty in variance can be evaluated. 

,[ ] ( , )
P R

P R

r
E e f p r drdp

r p
= ×

+∫ ∫  

2
[ ] [ ] 1[1 , , , 1] [1 ] [{1,2

[

,1 },{2 ,1 }, 1]
[ ] [ ] [ ]( )

[ ] [ ] [ ] ( 1 ) [ 1 ] [1 ]

[ , [
]

] , ]

Csc a a c F b a c a c d c pFq a b c a c d
a b d

a b a c d a a b c d

Beta a b
E e

Beta c d

π π Γ + − + + + − Γ + − − + − + + −
Γ Γ Γ +

Γ Γ Γ + + − + Γ − + + Γ
=

+ +

           (4.27) 

2

,[ ] [ ] ( , )P R

P R

r
V e E e f p r drdp

r p

 
= − × 

+ 
∫ ∫       (4.28)

 

 

In most cases where the posterior densities are not in a simplified form, including the Beta 

distribution the above integrals can be complex to express as a closed analytical expression in 

terms of the input distributions hyperparameters.  Instead numerical integration techniques 

can be applied to evaluate the required moments of the output distribution. 

Analysis of isolated machine with uncertainty 

Using the above expressions for the evaluation of the output distribution and its moments 

we investigate the main differences against using the point estimates by ignoring the 

uncertainty in estimation. The comparison is primarily carried out only for the expected value 

of the isolated efficiency E[e] since the uncertainty can’t be measure by using only the point 

estimates. In order to make an opportune comparison the same data is used for the point 

estimate of parameters and for making the Bayesian inference. Moreover even if prior 
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subjective knowledge can be integrated into the Bayesian approach it is assumed there is no 

information available prior to the data set used for this estimation. Therefore equivalently the 

point estimates can be made from the hyperparameters of the posterior distribution of the 

input parameters. 

Case 1: Unknown p 

Considering the data used for the inference of the posterior distribution of p is used also for 

the point estimate of p̂ . From the posterior hyperparameters of p which is assumed beta 

distributed 

ˆ arg max{ ( | )} [ ( | )]
p

p p

p p TTF E p TTF
α

π π
α β

= = =
+

    (4.29) 

The expected value of the isolated efficiency from the point estimate of the failure 

probability p and repair probability r is given by the: 

ˆ
ˆ

ˆ ˆ

r
e

r p
=

+
 

By numerically evaluating the expression given for the expected value of isolated efficiency 

E[e] in (4.21) in comparison with the point estimate ê using the point estimate of p̂ the 

following inequality is always true. 

2

ˆ1
( ) 1(1, , , )

ˆ ˆ ˆ
p p p p p

r
F

r r p
α β α α βΓ + + − ≥

+
      (4.30) 

Theorem 1: If the only uncertain parameter is p and the isolated efficiency evaluated using 

the expected input E[p], p̂ considering as deterministic parameter for evaluating ê  , then this 

value is always less than [ ]E e  i.e., ( [ ]) [ ( )]e E p E e p≤ . 

The proof of Theorem 1 is given using Jensen inequalities for convex functions in Appendix 

(A.1). Alternatively the second order derivative test for the isolated efficiency with respect to 

p can be performed.  The same conclusion can be reached by using the condition for the 

second order derivative test. 
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Figure 4:3 graphically shows this behavior for the convex isolated efficiency curve as a 

function of p and the corresponding underestimation by using the point estimate p̂ . 

 

 

Figure 4:3 Impact of uncertainty of p on E[e]. 

As it is demonstrated in the figure the second order derivative skews the distribution of the 

average throughput to top of the graph making the expected value to be greater that the value 

that can be achieve if only the expected value of the uncertain input parameter had been used. 

Generally the magnitude of the deviation between ( )[ ] [ ( )]  iE p and E pϕ ϕ can be given as a 
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function of the absolute value of the second derivative and the input uncertainty in variance. 

For demonstrating this behavior the following test data in Table 4:2 is used and the results 

are reported in Figure 4:4. 

p σp r (e-E[e])/ E[e]*100% 

0.05 0.0001-0.002 0.1 -0.5-7.5 

Table 4:2 Data for isolated machine with uncertain p 

 

Figure 4:4 Underestimations on E[e] with increasing uncertainty of p 

Case 2: Unknown r 

Considering the data used for the inference of the posterior distribution of r is used also for 

the point estimate of r̂ . From the posterior hyperparameters of r which follows a beta 

distribution 

ˆ arg max{ ( | )} [ ( | )] r

r r

r r TTR E r TTR
α

π π
α β

= = =
+

     (4.32) 

Point estimate of the isolated efficiency from the point estimate of the failure probability p 

and repair probability r is given as (4.32). 

 Numerically evaluating the expression given for the expected value of the isolated 

efficiency [ ]E e  in (4.23) and comparing the result with the point estimate ê using the point 

estimate of r̂ by the following inequality is always true. 
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Theorem 2: for an isolated machine if the only uncertain parameter is r and the isolated 

efficiency evaluated using the expected input E[r], r̂ considered as deterministic parameter to 

evaluate ê  , this value is always greater than E[e] i.e., ( [ ]) [ ( )]e E r E e r≥ . 

The proof of Theorem 2 is given using Jensen inequalities for concave functions in Appendix 

(A.2). Performing the second order derivative test of the isolated throughput function with 

respect to r also leads to the same conclusion. 
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Figure 4:5 Impact of uncertainty on the E[e]. 
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used. By the converse of the above Jensen theorem that is used for p it is possible to show the 

direction of the inequality changes if the function is concave. It is sufficient to show that the 

function is strictly concave by using the second derivative test.  Therefore it is possible to 

conclude that the error in the case of carrying out performance evaluation by neglecting the 

uncertainty in r is a consistent overestimation of the isolated efficiency. For the input data 

that is given in Table 4:3 the corresponding deviation in the E[e] results are reported in 

Figure 4:6.  

R σr p (e-E[e])/ E[e]*100% 

0.05 0.0001-0.002 0.05 1.18-22 

Table 4:3 Data for isolated machine with uncertain r 

 

Figure 4:6 Overestimation on E[e] with increasing uncertainty of repair probability 

Case 3: uncertain r and uncertain p 

The previous two cases investigated the impact of uncertainty when only one of the 

parameters is uncertain estimation and other parameter is assumed to be a precisely known 

value. In this section the impact of uncertainty on the efficiency of an isolated single machine 

is investigated when both p and r are unknown. To investigate the behavior of the expected 

value of the isolated efficiency with multiple uncertain variables one convenient approach is 
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investigation of the concavity or convexity. The Hessian matrix can be used for the analysis 

of the second order derivative. Considering the Eigen values of the Hessian matrix the 

behavior of the deviation can be determined. 

The Hessian matrix of the isolate efficiency as a function of p and r is: 

 

2 2

2

2 2

2

( , )

TH TH

p p r
H p r

TH TH

r p r

∂ ∂

∂ ∂ ∂
=

∂ ∂

∂ ∂ ∂
 

3 3

3 3
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( ) ( )
( , )

2

( ) ( )

r p r

p r p r
H p r

p r p

p r p r
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+ +
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+ +

       (4.35) 

 

Evaluating the Eigen values of this matrix gives: 

( )

2 2

3

2( )p r p r

p r

− + + +

+
 

( )

2 2

3

2( )p r p r

p r

− + − +

+
         (4.36) 

The Eigen values are always opposite in sign the first one is always positive and the second 

one negative for all sets of the function values. Based on the hessian matrix test this 

condition confirms that the results are not conclusive. Therefore for the given function a local 

minimum or maximum in all the domain of p-r axis doesn’t exist; meaning no local 

convexity or concavity anywhere on the graph. 

Graphically it is also possible to show if the isolated efficiency function is a concave or 

convex with respect over p-r axis.  The conditions for concavity or convexity can be stated as 

follows. If f is a function of many variables, f is concave if the line segment joining any two 
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points on the graph of f is never above the graph; f is convex if the line segment joining any 

two points on the graph is never below the graph.  

This test can be done by looking at the surface of the isolated efficiency on the p-r axis and 

trying to connect any two points on the graph as shown in Figure 4:7. 

 

 

Figure 4:7 Efficiency of an isolated machine as a function of p and r 

If at any point on the surface we try to connect two points by a straight line along the r axis, 

for e.g. (AB) we always fall below the graph and if we try to draw another line along p the 

straight line is always above the graph. Therefore with the above definitions of convexity or 

concavity, then graphically it can be concluded that the surface is neither concave nor 

convex.  

If there is a region where the graph has a saddle point we can get a locally concave or 

convex surface. But from the behavior of the isolated efficiency function we know it is 

strictly concave with r and strictly convex along p. Consequently this function is neither 

concave nor convex for anywhere in the given region across p-r plane.  

Estimation errors that might result by ignoring the uncertainty in the parameter estimation 

can lead to either underestimation or overestimation errors on the expected isolated 

efficiency. The direction of this estimation errors depend on the particular mean values of the 
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input parameter which determines their corresponding second order partial derivatives and 

the input uncertainties of the two parameters in variance. Randomly generated test 

experiments conducted using both uncertain p and r also confirms that the errors in the 

isolated efficiency could be both underestimation and overestimations. A test run to 

demonstrate this behavior with 20 sample experiments are reported in Figure 4:8. 

In many cases the objective of uncertainty analysis in performance evaluation can be seen 

from different perspectives, depending on the particular purpose of the performance 

evaluation. In most of this study we are interested in estimating the expected throughput and 

the uncertainty in variance of the performance measurement are discussed. The first obvious 

importance of these approaches is to measure the uncertainty associated to a given 

performance evaluated with uncertain inputs. Secondly it also assists if there is a deviation in 

the expected value of a performance measure when uncertainty is introduced in the analysis. 

This section shows the implication of these two aspects with examples and general proofs 

how the introduction of uncertainty impacts the performance measurement output compared 

to the analysis with point estimated not including uncertainty. 

 

Figure 4:8 Underestimation and overestimation with uncertain p and r 

  

-15

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rr

o
r 

in
 E

[e
] 

in
 (

%
)

Experiment No



 

56 

 

4.2.2 Approximate Methods 

The techniques that are proposed in the previous section provide an exact relationship 

between the unknown input parameter distribution and the output distribution of a 

performance measure. Generally these methods provide the exact evaluation of the output 

distribution with respect to the input distributions. Although the techniques introduced in the 

previous sections are exact and provide precise results they can be limited in application for 

general performance analysis in practice. Some of the motivations for the need for alternative 

approximate techniques instead of exact analytical approaches are the following.

  

Performance evaluation models: Performance functions of relatively simpler models such 

as an isolated single machine involve simplified function that can be expressed in simple 

functions. The simplicity of these functions makes them easy to perform inversion, 

integration, substitution operation with relative less complexity. In practice most of the 

performance evaluation techniques, including performance models to evaluate simplified 

systems such as two machine single buffer systems are complex rational functions. Usually 

the techniques applied for the performance evaluation of complex systems require the use of 

complex expressions, introduction of multiple uncertain parameters and approximate 

techniques.  

Multiple parameters: Performance analysis of complex manufacturing systems quite often 

involves the estimation of many parameters. When the number of uncertain parameters 

grows the evaluation of solution using exact analytical methods requires the application of 

multiple integrals equal to the number of uncertain parameters. Beyond a limited number of 

uncertain parameters this often leads to a well known mathematical problem “curse of 

dimensionality”. Approximate techniques help to avoid this problem and can carryout 

complex analysis in a reasonable time. 

Uncertainty modeling: In addition to the need to involve complex functions and multiple 

uncertainties into the performance evaluation, the way in which the uncertainty is modeled 
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poses other requirements in the solution technique that can be effectively used for evaluation. 

For instance in instead of an uncertainty modeling in terms of a probability density function, 

the available information could be the mean of a parameter and the associated uncertainty in 

variance.  

Considering the above challenges and other advantages of approximate techniques in the 

coming section alternative approximate techniques for the performance evaluation with 

uncertainties are introduced. In order to overcome some of these limitations and benefit from 

other computational and practical advantages approximate techniques for the performance 

analysis with uncertain parameters are proposed. Alternative approaches are proposed 

depending on the nature of the problem and requirements in accuracy and computational 

efficiency some of the methods can be used for solving similar problems. 

4.2.2.1 Monte Carlo Method (MC) 

Monte Carlo techniques can be used to evaluate the performance distribution of a 

performance once the posterior distribution is determined. The Monte Caro method uses 

random sampling from the posterior input distributions.  Different kinds of random walk 

algorithms can be used to sample from the posterior input distribution. By using random 

points generated from the input posterior then output performance is evaluated at these 

points. Finally the output distribution or interesting statistics of the output performance can 

be evaluated. 

Many reasons might demand solutions to be obtained only by Monte Carlo techniques. One 

of this is the “curse of dimensionality” that comes with increasing number of parameters. The 

curse is that the required computation to solve a problem in many dimensions may grow 

exponentially with the dimension. For instance if one needs to compute an integral over ten 

variables by numerical integration in ten dimensional space using twenty points in each 

coordinate direction, the total number of integration points is 20
10

 ≈ 10
13

, which is on the 

edge of what a computer can do in a day for  basic iterations. A Monte Carlo computation 

might reach the reasonable accuracy with only, say, 10
6
 points. 
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Step 1: For an uncertain parameter p the lower and upper limit pmin and pmax can be used so 

that a uniform random number generator can be used for the generation of random samples in 

the given range. The posterior distribution of the input parameter ( )PF p  can be used for the 

sampling procedure. Considering a particular random number, rnd1 the following figure 

illustrates how rnd1 selects a particular value x1 from the probability density function p(x). If 

a large number of such x1 values were selected using a series of random numbers rnd1, the 

histogram of all the x1 choices, normalized by the integral of the histogram (sum of all 

histogram bin values times the bin widths), will match the original p(x). 

 

Figure 4:9 Sampling from a single uncertain parameter using Monte Carlo 

For density functions there are direct random sample generating functions which can 

directly carry out this procedure. These functions can be directly used when available. For 

determined sample size n of p with a generic parameter θ it provides {
1 2 3
, , ,....

n
p p p p } 

Step 2: After the definition of sufficient sample size for the uncertain parameter and vector 

of random values the output performance is analyzed for each point of these samples. The 

output distribution ( )EF e  of the isolated efficiency can be computed as the corresponding 

weights of these individual output.  
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Step 3: Evaluate the required moments of the output.  

1

1
[ ]

n

t

t

E e e
n =

= ∑           (4.37) 

 ( )
2

1

1
[ ] [ ]

1

n

t

t

V e e E e
n =

= −
−
∑         (4.38) 

 

4.2.2.2 Linearized Probability density function 

Problems involving a general performance function f(x) or as in the specific case of isolated 

machine e(p) or e(r) can be evaluated using this approach. One requirement is that the 

uncertainty of input parameters should be given as a density function with expression that 

can be solved by this method. The linearization is performed by using a piece wise functions 

in different intervals as a linear approximation of the density function. Finally each piece 

wise evaluation can be used to evaluate the expected value and uncertainty of the 

performance measure. This method is based on trapezoidal integration techniques and the 

integral formulas that are used to compute the first two moments of uncertain parameters as 

indicated in exact numerical integration in section 4.2.1. Besides this kind of approximations 

are useful in cases where the input posterior density function cannot be directly expressed 

analytically or the performance function or its inverse might not be continuous. In this 

particular case similar but a modified approach can be used in a piece wise where the 

function is invertible and continuous.  

The proposed technique first divides the density functions into approximated linear lines. 

The linearization of the density function using pieces of linear functions that approximate the 

distribution of the throughput density function and the subsequent integrations required to 

estimate the expected value and the variance of the performance are explained in the 

following steps. The steps are shown for the single machine case, even though similarly they 

can be extended to any performance function with a single uncertainty. 
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Step 1: Define the density function of the probability of failure � that needs to be estimated 

using stochastic approach. Furthermore define the number of intervals that are sufficient to 

achieve the desired accuracy on the throughput function. Specify the maximum and 

minimum interval of p as, minp  and maxp , as well the number of intervals n. Use the interval

max minp p

n

−
to calculate the value of the density function at each ip  in terms of the 

probability density function or the empirical relationship that is defined to approximate the 

distribution: ( ) ( )  | 
ip i p if p f p p p= = . 

Step 2: Calculate the throughput for the maximum and minimum value of the p . This step 

should provide an interval for the range of possible values of each ie  using the corresponding 

values of minp  and maxp  in the isolated efficiency function ( )e p . Determine the domain of the 

density function of ( ) ef e  using the range of the throughput function which generally can be 

written as: 

 ( )min maxe e p=  or  ( )min ne e p=  and 

 ( )max mine e p= or 0  ( )maxe e p=  

The domain of ( ) ef e  is defined in the interval  min maxe e e≤ ≤  

Step 3: For each value of ip  at an interval max minp p

n

−
 calculate the corresponding 

throughput values as: 

( ) ;  0,1 i ie e p i n= ∀ = …         (4.39) 

 

Step 4: Calculate the values of the derivatives of the throughput at each point of the failures 

probabilities that are considered in the above steps. To calculate the derivatives first define 

an appropriate an infinitesimal interval on the p axis p∆ . The calculation of the derivatives at 
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the 1'( ( ))ie e e
−  can be computed as the rate of change of e∆ versus p∆ , we can write this 

relation as: 

( ) ( ) 
 

i

i i

p p

e p p e pe

p p
=

+ ∆ −∂
=

∂ ∆
        (4.40) 

For each ie evaluate the above value and form an array of values ;  0,1 iD i n∀ = …  

Step 5: Using the values calculated in step 4 and the density function value at ( )p if p  

calculate the following value as 

( )
( ) ( )

  i i

i

i

p pp p p p

e e e
i

p p

f p f p
f e

De

p

= =

=

=

= =
∂

∂

      (4.41) 

Step 6: Develop a piece wise linear equation that connects each of the ( )
  

 
i

e e e
f e

=
which in 

intervals define the density function of the efficiency distribution. At this step we have to 

reorder the ( )
  

 
i

e e e
f e

=
 in increasing order and assign from smallest ( ) ( )0   

 
n

e e e e
f e f e

=
= ….
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n

e i e e e
f e f e

−=
= and so on in increasing order till ( ) ( )

0  
  e n e e e
f e f e

=
= . The same should 

be applied for the order of ie  i.e. i n ie e −=  

For interval i  to 1i +  

( ) ( ) ( ) ( )1
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This can be written in the form ( )  e i ii
f e Me e be+×=  

Where 

( ) ( )1

1
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e e
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=
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62 

 

( )
( ) ( )1
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−
       (4.43) 

The integration of the functions of these linear lines in their respective domain and their 

summation yields the expected value and variance of the throughput distribution. 

 

Figure 4:10 Piecewise linear density of an isolated efficiency 
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These integrations can be reduced to the following summation terms: 
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4.2.2.3 Partitioning and discretization 

In this section discretization technique of the posterior density function of an estimated 

uncertain parameter using partition is introduced. The discretized input posterior distribution 

is then used to evaluate interesting performance measures and related uncertainty of the 

output performance measure. Generally this method relies on transforming a given density 

function in to an equivalent probability mass function and use these points as weighted points 

of evaluation. Particularly this method is important under cases where the possible alternative 

outcomes are provided as weighted probabilities of occurrence. Additionally it is an easy to 

use approach to consider multiple uncertain parameters without the need to worry about the 

mathematical complexity of performance evaluation models and functions. 

The discretization technique begins with the definition of a sufficient number of Tu 

partitions for a predetermined level of accuracy for each uncertain parameter u = 1,…,U The 

procedure is shown in the following for the uncertain parameters for instance a failure 

probability p . However, it can be applied in the same way for the repair probabilities r . For 

simplicity of demonstration the procedure is firstly shown on a single uncertainty and can r 

be extended to any u = 1,…,U uncertain parameters.  

For the single uncertain parameter p the lower and upper limit pmin and pmax are determined 

so that the integral area under the density function approximately equals to 1 as that of the 

original pdf ( )Pf p . The p∆ partition width can be determined by using different techniques so 

the transformation of the density function into a probability mass function can be carried out 

by preserving all the moments of the original distribution. In general cases particularly in 

probability density function with low skewness a linear spacing can be used while in the 

other cases the spacing can be varied depending on the accuracy of linearly approximating a 

curvature of the density function. These considerations can be formulated in different ways 

such as a problem of optimizing algorithms to minimize the number of partitions required to 

satisfy predetermined level of target accuracy on the approximation of the density function. 
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Figure 4:11 Spaced trapezoidal approximations of a density function 

For the sake of demonstration in this section we use the equi-spaced intervals for the partition 

and discretization of a density function. In some of the experiments that will be discussed in 

the coming sections modified empirical techniques for the determination of spacing is used to 

achieve a better approximation of the input distribution. 

First pmin and pmax are defined such that  
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( ) ( )
p

P P
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f p f p pδ
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−∞
+ ≤∫ ∫         (4.46)

 
Where pδ is the maximum acceptable error in the approximation of the density function 

If the number of partition between minp and maxp is determined to be t then the step width of 

each partition for p  is 

max minp p
p

T
−∆ =          (4.47) 

Then the uncertain parameter is partitioned at 1T + points so that T number of trapezoids 

can be formed from the density function. Assuming the vector of these values is x and the 

first value 0x corresponds to minp then the remaining points are assigned as: 

min *tx p t p= + ∆     1,...,t T=         (4.48) 

Then in the transformed probability mass function the weight of each partition is the area 

enclosed in that partition which can be evaluated by: 

0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

… 

p
d

f 

p 



 

65 

 

1( ) ( )

2
tP Pt

t
f x f x

w p− +
= ∆         (4.49) 

The value representing the center of each partitioned area is well approximated at the 

centroid of this trapezoidal area and is computed for each partition  
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The above steps transform the density function into probability mass functions with 

equivalent central points where performance measures can be computed, there by finally 

determining the distribution and equivalent moment of the performance with the related 

uncertainty. 

 

Figure 4:12 A probability density function and equivalent probability mass function 

After the discretization of the probability density function interesting performance is 

evaluated at the centroid of each partition. These performance values with the corresponding 

weights can be used to reconstruct the distribution of the uncertain performance. The 

moments of this distribution can be also evaluated from this distribution. For instance in the 

case of isolated machine efficiency similar results of addition can be performed instead of 

integration and the expected value and the uncertainty in variance of the isolated efficiency e

can be computed as: 
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4.2.2.4 Taylor Approximation 

The techniques that are discussed in the previous sections make use of the unknown 

parameters density functions. Instead the Taylor approximation can be used to estimate the 

moments of the output performance measures given the moments of the input parameters. 

This method has some main advantages over approximations using density function or 

distribution functions from computational point of view.  By using this method even bigger 

problems involving complex models can be handled by approximating using their partial 

derivatives with respect to the input parameters. A further advantage of this method is that it 

enables the evaluation of the uncertainty when the only available information is about the 

moments of the input parameter. This allows analysis even with limited information while 

having fewer details about the behavior of the input distribution.   

Moreover it can be also used to analyze output performance moments when the density of 

the input parameters is available as the required moments can be directly derived from the 

density function. Particularly this is beneficial when the main objective is to reduce the 

mathematical complexity of the problem while dealing with complex performance models. It 

is an indispensable technique especially when the number of uncertain parameters involved 

in the analysis is considerably high. 

Here, we demonstrate simple introduction of the Taylor approximation on an isolated 

machine parameters for the estimation of the moments of the isolated efficiency. For a 

reasonable degree of accuracy under many practical cases the second degree approximation 

is a sufficient, while higher order approximations can be used similarly. Assuming the 

unknown parameter is p which is estimated from actual TTF observations the posterior 

density of ( )Pf p  can be estimated as in section 4.1.  

From the density function the first two moments or if necessary higher order moments can 

be estimated. Considering only the first two moments, we denote the input moments, the 

expected value of failure probability (µp) and the second moment the variance as ( 2

pσ ). 

Alternatively the input moments can be directly estimated from observations, or an 

approximate estimate of the moments. 
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The expected value of the isolated efficiency (e), E[e] and its uncertainty i.e., second 

moment V[e] can be approximated by second order Taylor approximation as:  

2
2

2

1
[ ] ( )

2
p

p p

p

e
E e e

p
µ

µ σ
=

∂
≈ +

∂
        (4.52) 

 

2

2[ ]

p

p

p

e
V e

p
µ

σ
=

 ∂
 ≈
 ∂
 

         (4.53) 

The above two approximations can be easily extended to multiple unknown parameters. 

Full discussion on multiple uncertainties is provided in two-machine-single-buffer line 

analysis.  
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4.3 Analysis of a Two-Machine line 

In this section the performance measures of a two-machine line where machines are 

characterized by a unique failure mode are discussed. Similar to the single machine case 

assumptions the two machine lines with single failure mode machines are modeled with 

discrete time. The throughput of the system (TH) can be evaluated in closed form as a 

function of the failure and repair parameters of the upstream machine and downstream 

machines, pu, ru, pd, rd and the buffer capacity N. In the analysis of single machine the 

emphasis was on the introduction of techniques for the performance analysis of simple 

systems with single uncertainty. Proceeding with similar methods and extending these 

methods for multiple uncertainty cases is the main goal here.  Behavior of the system and the 

impact of performance evaluation under uncertainty are also investigated.  

With the main goal of the coming sections being the development of methods that enable 

the evaluation of complex systems with multiple uncertainties, the focus will be on the 

approximate methods that were introduced for the isolated single machine case. 

Modeling assumptions 

Modeling assumptions that characterize the two machines and the intermediate buffer are 

described as follows. Additional assumptions related to multi stage lines which govern the 

relationship between machines and buffers are also mentioned. Some of the approaches in the 

methodologies can be extended for generic systems which are not addressed in this thesis 

such as continuous time cases. But the assumptions are narrowed only for the class of 

systems that are well investigated by the proposed approaches. 

Assumptions: 

- The time parts spend in each machine is deterministic, known and the two 

machines have equal and constant service time, and it is scaled to unity. 

- Buffers have finite capacity, indicated as N. 

- Buffers are perfectly reliable, i.e. they do not fail. 
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- Transportation takes negligible time compared to processing time, therefore these 

times are assumed zero. 

- When operational, machines start to work a part at the same time, so the time is 

considered as discrete. 

- A machine whose upstream buffer is empty said to be starved and a machine 

whose downstream buffer is full is called blocked. 

- Upstream machine is never starved and downstream machine is never blocked. 

- Repairs and failures occur at the beginning of time units, changes in buffer levels 

take place at the end of the time units. 

- Failures are operation dependent (ODF) and the time to failures TTF are assumed 

to be geometrically distributed 

- Time to repair TTR is also assumed to be geometrically distributed. 

- When the parameters are estimated with uncertainty the distribution of failure 

probability ip and repair probability ir  are estimated as explained in section 4.1 

using a Bayesian approach from a vector of observed TTF and TTR  respectively. 

- Time to failures TTF and time to repairs TTR  of each machine are independently 

distributed. 

4.3.1 Two machine line (Gershwin Berman Model) 

In the Gershwin Berman model the states and the Markov models of this single buffer two 

machine system are modeled and introduced. Brief summary of the modeling steps and the 

functions relevant to the study of uncertainty are revisited. Detailed model description and 

analysis of the steps to be followed to derive these formulas are available (Gershwin et al, 

1981). 

 

Figure 4:13 Two machine line with single failure mode 
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Before the demonstration of the method for the analysis of two machine line with 

uncertainty the Markov model for precisely known model parameters and the main 

assumptions behind this model are mentioned as follows.  

The state of the system is described by three state variables 1 2( , , )s n α α= where: 

• n  is the buffer level 

• 1iα =  if machine iM is up  

• 0iα =  if machine iM is down  

This model analyzes the two machine system by dividing the state space of the system into 

three distinct categories depending on the buffer size.  

• Internal states, the states in which 2 n N-2≤ ≤  

• Lower boundary states: states with n 1≤  

• Upper boundary states: states with n N-1≥  

Once the transition probabilities are known, this model which is based on the Markov chain 

of the above states is solved analytically. Then the solution of the steady state probabilities 

that characterize the two machine lines are summarized and aggregated in order to recover 

interesting performance measure of the system. 

A reasonable guess on the vectors of internal equation is made in the form 

2 2

2 2 12 22 1 2π( , , ) n n
n CX Y Y CX Y Y

α α α αα α 1 1

1 = =  

1( 1,0,0) N
N CXπ −− =  

1

1( 1,1,0) N
N CX Yπ −− =  

1

1 2 1 2 1 2

1 1 2 1 2 1 2

( 1,1,1)
N r r r r p rCX

N
p p p p p p r

π
− + − −

− =
+ − −

 

1 1 2 1 2 1 2

1 2

( ,1,0) N r r r r p r
N CX

p r
π − + − −

=        (4.54) 
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Lower boundary equations 

1 2 1 2 1 2

1 2
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1 2 1 2 1 2
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Upper boundary equations 
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      (4.56) 

By solving the above three sets of equations important performance measures of the two 

machine line are derived. These are: 

Average throughput of the two machine line 

2

1 2 2 2

( ), 1 ( 0), 1

( , , ) ( , , )
α α

π α α π α α
1

1 1
< = > =

= = = =∑ ∑
n N n

E E n E n     (4.57) 

Average buffer level 

2

1 1

2

0 0 0

( , , )
N

n

n n n
α α

π α α
1

1
= = =

= ⋅∑∑∑         (4.58) 

Starvation probability 

(0,0,1)
s

p π=           (4.59) 

Blocking Probability 

( ,1,0)
b

p Nπ=           (4.60) 
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Adding up all the probabilities to get normalization constant for the equations 

2

1 1

2

0 0 0

1 ( , , )
N

n

n
α α

π α α
1

1
= = =

=∑∑∑         (4.61) 

Finally, substituting the steady state probabilities into the normalization equations the 

average throughput (TH) of a two machine line is evaluated. This function expresses the 

throughput as a function of failure, repair probabilities and the buffer capacity of the two 

machine single buffer system. 

21
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        (4.62) 
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u
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                                    (4.64) 

Where 

u d u d u d

u d

r + r - r r - r p
l =

r p
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u d
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d d

r
e

p r
=

+
      (4.68) 

The input failure and repair probabilities of, pu, ru, pd and rd are independent as well as the 

corresponding posteriors of these distributions are assumed independent. In addition to the 

discretization techniques with the independency assumption, the output distribution of the 

performance measures can be approximated using the partial derivatives techniques. In order 

to approximate using the partial derivatives the first and second moments of each uncertain 

parameter are used as the input. Then the uncertainties related to each output performance 
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measure can be computed with the expressions given in the above analytical formulas and 

their partial derivatives with respect to the uncertain parameters. The closed analytical 

relationship between the input failure parameters and output performance permits the exact 

evaluation of these partial derivatives in a close form without the need for approximation. 

For single uncertainty cases the steps demonstrated for the single machine case can be simply 

followed. The only difference is the evaluation of performance for each precisely known 

evaluation is carried out using the (Gershwin-Berman) model introduced above. Generally, 

the upcoming techniques focus on multiple uncertainty cases. In the next sections three 

alternative discretization techniques and the Taylor approximation for the evaluation of two 

machine lines are introduced.  

4.3.1.1 Discretization with joint distribution  

When the problem involves multiple uncertainties, each of the unknown parameter is 

modeled as a density function as presented in section 4.1 from observed data. Then the input 

distribution of all the unknown parameters can be considered as the joint distribution of 

individual marginal distributions. This joint probability distribution is used as an input for the 

performance evaluation. The discretization techniques used for single uncertainty can be 

extended for the individual partitioning of the marginal distributions and then the joint 

probability distribution can be approximated from this discretization.  

Considering the distribution of all the U uncertain parameters, both uncertain p and r can 

be included, in a convenient order to up 1,...,u U= , with corresponding densities ( )
u

upPf

1,...,u U= . The lower and upper limit minup and maxup are determined depending on the 

acceptable error for each individual density function and the joint distribution of the 

parameters as indicated in equation 4.46. Once these thresholds for each parameter are 

determined then the corresponding step size for each parameter up  is up∆  defined as: 

max minu u
u

u

p p
p

T
−∆ =          (4.69) 

If 0x corresponds to minup  and 
uTx corresponds to maxup each partition bound 

ut
x is obtained as: 

min *
ut u uux p t p= + ∆     1,...,u ut T=        (4.70) 
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Each partition weight and the centroid value of the random variable in the considered 

partition are then approximately computed as follows, for 1,...,u ut T= : 

1
1( )

1

(2 ( ) ( ))
ˆ

3 ( ( ) ( ))
uu u u

uu

uu u u

u tP P t
tt

tP P t

p f x f x
p x

f x f x

−
−

−

∆ × +
= +

× +
      (4.71) 

1( ) ( )

2
uu uu

u

t

u
P Pt

t

f x f x
w p

− +
= ∆         (4.72) 

Then the joint distribution of the U parameters 1 2, ..., Uu p p p= the joint density function is 

computed 

1 2 1 2 12, ,..., , ,...,1 2 1 1 1 2 1| ,...,( , ,..., ) ( | ,..., ) ( , ,..., )
U UU UP P P U U P P PU UP P Pf p p p f p p p f p p p

−− −=
 

1 2 1 1 1 2 1 11 | 2 1 | |,..., ,...,1 1 2 1 1( ) ( | ) . . . | |( ,..., ) ( ,..., )
UU U UP P P P P P P P P nn U Up p pf f f p p p f p p p

− − −− − −=        (4.73)
 

In the case of discrete random variables with independence assumption this relation can be 

reduced to 

1 2 1 21 2 1 2, ) ),..., )( ,..., ) ( ( ( UU U UP P p P p P p P P p P P p P P p= = = = = ==   

For instance for a two dimensional joint distribution with discretized individual density 

functions, the joint distribution can be shown in a two dimensions with 1p  and 2p axis as 

shown in Figure 4:14. 

1 2 1 2, 1 2 1 2( , ) ( ) ( )P P P Pf p p f p f p=  

1 2 1 21 2 1 2, ) )( ) ( (P P p P p P P p P P p= = = ==      (4.74)
 

 

Figure 4:14 Two dimensional joint density function and equivalent mass function 

p2 p1 
p1 p2 
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Once the approximate joint distribution is constructed for a general case of U dimension, 

then experiments with precisely known input are generated. Then number of experiments 

with precisely known inputs that need to be generated from the combination of all the 

considered central partition values of U random variables is
1

U

u

u

T

=
∏ . The weights that 

correspond to these experiments are computed with 4.72. These experiments are run to 

evaluate the required performance measures and the distribution of the performance on a U 

dimension is reconstructed. For instance the average throughput distribution and the average 

buffer level can be computed as follows. 

21
1 2 1 2 ( )21( ) ( ), ,..., ,( ) | ,...,

UU t Ut tt t t pTH TH p p p p p= = ==  

21
1 2 1 2 ( )21( ) ( ), ,..., ,( ) | ,...,

UU t Ut tt t t pn n p p p p p= = ==
 

21
1 2 1 2 ( )

1

21( ) ( ), ,..., , ),...,( ) ( ( ( )

                   
u

UU t U

U

u

t t

t

t t tw P P p P P p P P p

w
=

= = ==

= ∏
   (4.75) 

By using these weights, the throughput distribution can be easily reconstructed. Moreover, 

interesting statistics can computed from this distribution, such as the mean and the variance 

of the average throughput can be estimated. 

4.3.2 Approximations for reducing number of experiments  

The use of joint distributions for performance evaluation with unknown parameters can be 

advantageous in terms of the numerical accuracy. Especially when the number of partitions 

used increases higher accuracy can be achieved. When the number of unknown parameters 

moderately increases the number of evaluations required to be performed grows 

exponentially. Two main factors that affect the exponential growth of required computations 

are the number of unknown parameters U and the partition numbers for each unknown 

parameter. Therefore the number of precisely known experiments to be evaluated is equal to

1

U

u

u

T

=
∏ . 
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 In addition to the large number of experiments needed to be evaluated in some 

performance models a single point evaluation for the solution of the precisely known 

parameters can take considerable computational time.  Therefore the overall analysis for the 

required numbers of repeated experiments requires longer time, or in some cases can be 

impractical. The techniques that are proposed in the coming sections focus on tackling and 

proposing alternative approach for this problem mathematically known as “curse of 

dimensionality”.   

4.3.2.1 Discretization with one parameter at a time 

The joint distributions in multidimensional cases with higher number of parameters can be 

prohibitive due to the number of experiments that need to be evaluated in order to compute 

the output distribution. The one parameter at a time discretization is aimed at reducing the 

number of experiments required when dealing with high number of uncertain parameters. The 

method relies on the approximate functional relationship between the variance of a function 

of multiple independent random variables. This relationship assumes that the unknown input 

parameters are independent. Moreover it assumes that there is low functional covariance 

between these input variables. Therefore the impact of each unknown parameter can be 

independently measured and the global impact is evaluated as the superimposition of the 

individual contributions.  

In general the relationship follows if Y is the uncertain output performance measure required 

to be evaluated and 

1 2( , ,..., )
U

Y f X X X=  

If each random input variable has a corresponding variance 
2 2 2

1 1, ,...,
x x xU

σ σ σ  

Then the variance of Y can be approximated as 

22 2

2 2 2

1 2

1 2

[ ] ,...,
x x xU

U

Y Y Y
V Y

x x x
σ σ σ

    ∂ ∂ ∂
≈ + + +     

∂ ∂ ∂     
 

From the above relationship when each discretized unknown parameter is used to measure 

the variance on the response Y, effectively we are computing the addend related to that 
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particular variable. As in many statistical methods and partial derivation techniques other 

parameters are held constant on their maximum likelihood value which is the expected value 

of each uncertain parameter. The same evaluation is performed for all parameters and the 

impact of all unknown parameters is approximated as the cumulative effect of all the 

uncertainties involved in the analysis.  

The relation of the approximation on the expected value of Y can be mimicked from second 

order Taylor approximation. From equation (4.52) the second order Taylor approximation of 

the expected value of Y can is written as: 

2 2 2
2 2 2

1 2 1, 1 22 2 2

1 2

1 1 1
[ ] ( , ,..., ) ,...,

2 2 2
x x x x x xU

U

Y Y Y
E Y Y

x x x
µ µ µ σ σ σ

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

Therefore from the above relation the expected value of the variable is the mean 

expectation plus the individual deviations is a function of the second order derivative and the 

input variance of the unknown parameters. The individual deviations can be approximated as 

a function of the variance of the response on Y due to that particular input parameter. So these 

individual deviations can be weighted for the evaluation of the overall deviations. 

Extending the assumptions made above and the relative approximations the particular case 

of two machine line can be analyzed as described in the following steps. The following 

notations are introduced for performance of TH and input unknown parameter pu. The same 

notations can be extended for input parameter failure probabilities pd, ru, pd and other output 

performance measures such as the average buffer level n. 

- Expected value of TH considering only uncertain pu: ( )[ ]
pu

E TH  

- Expected value of TH considering all parameters at their expected value: (0)[ ]E TH  

- Variance of TH considering only uncertain pu: ( )[ ]
up

V TH  

Step 1: Using the same procedures explained in section 4.2.2.3 compute the density of each 

unknown parameter. Considering the distribution of all the U uncertain parameters, both 
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uncertain p and r can be included, in a convenient order to up 1,...,u U= , with corresponding 

densities ( )
u

upPf 1,...,u U= . 

Step 2: Discretize each density ( )
u

upPf 1,...,u U=  and compute the corresponding 

individual ( )ˆ
ut

p and ( )ut
w as shown in 4.2.2.3. 

Step 3: Following the convenient order defined in step 1 evaluate the output performance 

for each point using precisely known inputs. Then from the output distribution compute the 

expected value ( )[ ]
pu

E TH and variance ( )[ ]
up

V TH . 

Step 4: Evaluate the total variance of the performance and the expected value as: 

( )

1

[ ] [ ]
i

U

p

i

V TH V TH
=

=∑          (4.76) 

The expected value of the performance measure is approximated based on the relationship 

of the deviation that results from the use of the expected value of the uncertain parameters 

and the evaluation by introducing the associated uncertainty. In section 4.2.2.4 it is explained 

that this deviation is the function of two factors. By using second order Taylor approximation 

for the difference is a function of second order partial derivative and the input variance of the 

current uncertain parameter. 

Assuming the ( ) ( ) (0)[ ] [ ]
up pu

TH E TH E TH∆ = −  in the discretization case since there is no 

direct measurement of the second order derivative, the deviation is approximated as 

proportional to the function of the variance measured on the performance measure for each 

uncertain parameter
u

p . 

Therefore the weighted deviation by each parameter is considered as a percentage of the 

cumulative uncertainty. 

( )[ ]

[ ]

u

u

p

p

V TH
W

V TH
=          (4.77) 

Then the expected value of the performance is computed as a function of these weights 
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(0) ( )

1

[ ] [ ] [ ]
u u

U

p p

u

E TH E TH W E TH
=

= + ∆∑       (4.78) 

The total number of experiments to be performed in this case is 
1

U

u

u

T

=
∑ which grows linearly 

with the number of uncertain parameter and number of partitions used for discretization. 

Comparison of numerical computations required 

Assuming the use of constant number partition for each parameter to be 1 2 ,...,
U

n T T T= =

then the  number of two machine line evaluations to be performed as a number of uncertain 

parameters can be compare in the following table. 

 No of required evaluations 

No of uncertainty Parameter at a time Joint distribution 

1 n n 

2 2n n
2
 

3 3n n
3
 

… … … 

U U*n n
U
 

Table 4:4 Required No experiments in for parameter at a time and joint distribution 

From Table 4:4 it can be observed that the joint approach is impractical for multiple 

uncertainties even with moderately significant numbers. For instance a few parameters as 5 

uncertainties has to be considered with each parameter to be discretized in 20 partitions in the 

case of the joint distribution this requires 3,200,000 evaluations with precisely known 

parameters, while a one parameter at a time approach needs only 100 evaluations. In the first 

case even for a single buffer two machine lines requires a computational effort high that 

could take a considerable time for the overall performance evaluation of the output 

distribution. 
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Comparison of numerical accuracy Joint distribution vs one parameter at a time 

Two machine lines are used to demonstrate the accuracy difference exhibited by using 

parameter at a time and the joint distribution of parameters. Detailed accuracy tests and 

results are reported in the next chapter. Significant differences might arise particularly when 

the various uncertain parameters strongly interact in a different way in different areas of the 

hyper-plane function. For instance a comparison two cases where the parameter at a time and 

joint distribution approach give similar and different results are shown below in Figure 4:15. 

 

 

Figure 4:15 Comparison of two profiles where parameter at a time performs well and poor 

It can be seen from the above diagrams that in the case of (A) two criss-crossing lines at the 

central positions of the performance function well represent the trend for each parameter at a 

time. In the case of (B) by varying one parameter while holding the other at the expected 

value doesn’t capture the functional interaction between the two parameters, especially on the 

far right of the graph. 

4.3.2.2 Two parameters a time approach 

Although it is tempting to use one factor at a time approach for higher computational 

efficiency, it could give a very low accuracy in the particular cases where multiple 

parameters strongly interact. In order to address these kinds of strong interactions between 

parameters through the performance function while avoiding the combinatorial growth of 

TH TH 

p1 p2 p1 
p2 

(A) 

(B) 
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experiments with number of uncertain parameter an alternative method is proposed here. 

This method assumes, if there is strong significant functional interaction as depicted in 

Figure 4:15 (B), the most significant are the individual variances and the two order 

interactions. This assumption holds in many cases basically for the following two reasons. 

One reason is in a particular region usually the factors that influence the response 

performance are the first or the second order interactions of parameters, as effectively 

assumed in most statistical experiments too. The second strong support behind this 

assumption is, even if far points from the expected values have a high order interaction the 

product of the joint probabilities associated to these extreme points are far small and their 

product also gets extremely  insignificant to influence the overall result of the analysis.  

With the above premises the objective of this method is to measure the uncertainty 

associated to each parameter as in the case of the parameter at a time approach. Then the 

significant second order interactions will be computed using joint distributions involving two 

parameters at a time. The basic steps to be followed are described as follows. 

1. For each uncertain parameter 
u

p evaluate the uncertainty by one parameter at a time 

approach as described in section 4.3.2.1. 

( ) 1 1 2 2
ˆ ˆ ˆ[ ] [ | , ,...., ]  u 1,..., ,

pi U U
V TH V TH P p P p P p U i u≈ = = = ∀ = ≠  

2. Evaluate the joint distribution of each possible pair of uncertain parameters and the 

resulting variance in the performance 

( , ) 1 1 2 2
ˆ ˆ ˆ[ ] [ | , ,...., ]  u 1,..., , ,

jpi p U UV TH V TH P p P p P p U i u j u≈ = = = ∀ = ≠ ≠  

3. Evaluate the variance due to interaction with (4.79) for every pair of two uncertain 

parameters by subtracting the results in (1) from two 

( , ) ( , ) ( ) ( )[ ] [ ] ( [ ] [ ] )
j i j i jpi p p p p pV TH I V TH V TH V TH= − +

     (4.79)
 

These results can be put in a matrix format that summarize the variance due to individual and 

interaction effects 



 

82 

 

1 1 2 1 3 1

2 2 3 2

3

( ) ( , ) ( , ) ( , )

( ) ( , ) ( , )

( 3) ( , )

( )

[ ] [ ] [ ] ... [ ]

[ ] [ ] ... [ ]

[ ] ... [ ]

... ...

[ ]

U

U

U

p p p p p p p

p p p p p

p p p

pU

V TH V TH V TH V TH

V TH V TH V TH

V TH V TH

V TH

 
 
 
 
 
 
 
  

    (4.80)

 

 

This matrix can be presented in an alternative form after it is normalized by the variance of 

the input uncertainties. This format shows the measure of reactivity of the overall system 

uncertainty with respect to the input uncertainties of individual parameter. The normalizing 

factor for two pair of uncertain parameters ,
i j

p p is the product of the standard deviations. 

i jp pσ σ  

Therefore an element 
i j

a in the normalized matrix will be given as 

( )[ ]
  1,... , 1,...

i j

i j

p p

i j

p p

V TH I
a i U j U

σ σ
= ∀ = ∀ =       (4.81) 

The resulting matrix can be considered as an index of sensitivity of the overall uncertainty to 

the input uncertainties and the corresponding interactions. 

1

2

1 2 3 3

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

...

...

[ ] , , ,...., ...

... ... ... ... ... ...

...

U

U

p
U

pU

p p p p U p

U U U UU p

a a a a

a a a a

V TH a a a a

a a a a

σ

σ

σ σ σ σ σ

σ

  
  
  
    = × ×    
  
      

  (4.82)

 

This method gives a compromising solution under conditions where the strong interactions 

of parameters are expected to occur in the function that relates the input parameters. For 

systems where the input parameters don’t interact the joint considerations could be omitted. 

For instance in a two machine line, parameters on individual machines separated by 

significant buffer levels are expected to interact less significantly compared to the parameters 

of the single machine, such as failure probability and repair probability on the same machine. 
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The significance of these results is shown in the two machine line analysis the for accuracy 

test of this method. 

In addition this method limits the combinatorial growth in the number of experiments 

required to be carried out if a pure joint distribution approach were to be used. The number of 

experiments to be carried out in this case is 

1 1

1 2

U U

i jU
i j i

exp i

i

n n

No n
= = +

=

= +
∑∑

∑  

If the number of partitions for each parameter are the same then the number of experiments is 

2( 1)

2
exp

U U
No U n n

−
= × +  

 No of required evaluations 

No of 

uncertain 

Parameter at a 

time 

Two Parameters Joint distribution 

1 n n n 

2 2n n
2
 n

2
 

3 3n 3n+3n
2
 n

3
 

4 4n 4n+6n
2
 n

4
 

 … … … 

U U*n U*n+U(U-1)/2*n
2
 n

U
 

Table 4:5 Comparison of number of evaluations required in the three methods 

As it can be seen the number of experiments and the growth with more parameters is 

considerably lower compared to the joint distribution. The accuracy is also very close to the 

joint distribution method as will be shown in the numerical accuracy section. Considering the 

5 uncertain parameter example mentioned in section 4.3.2.1 the corresponding number of 
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required evaluations in one parameter, two parameters and joint distribution approaches are, 

100, 4,050 and 3,200,000 respectively. The latter two almost give practically the same results 

even in cases where strong interactions are observed emphasizing the advantage of the two 

factors at a time in terms of computation time while also maintaining a good accuracy in 

various cases. 

4.3.2.3 Approximation of moments using Taylor Expansion 

The Second order Taylor approximation can be used for the estimation of the moments in 

the two machine single buffer line. In the Gershwin Berman model the average throughput 

can be expressed in terms of the input failure and repair probabilities. This allows the exact 

analytic evaluation of the partial derivatives with respect to each of these parameters. 

For the average throughput approximating the distribution at the expected value of each 

parameter 
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 ∂
×  ∂ 

           (4.83) 

Similarly for the uncertainty of the probability of starvation 
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           (4.84) 

For the uncertainty in the probability of blocking 
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2 2 2 2 2 2
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           (4.85) 

Approximating the expected values of the performance measures using second order Taylor 

approximation for the same probabilities gives: 

For expected average throughput 

2 2
2 2

2 2
2 2 2

1
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Probability of starvation 
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Probability of blocking  
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The first and second partial derivatives of average performance measures with respect to 

each reliability parameters can be computed in closed form. For instance the first four partial 

derivatives for the average throughput are shown in (4.89-4.92) 
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First order derivative with respect to ur  
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First order derivative with respect to dp
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First order derivative with respect to dr  
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Where 

2N

u

d

e x

e
z

m

l

−

=   2 u d d ud u dY p p p p r p+ − −=  un d u d u dr r rl r r p+ − −=  (4.93) 

Other partial derivatives can be computed in the same way 

4.3.3 Two machine lines with multiple failure modes (TMG model) 

The method demonstrated above for two machine lines has a single failure mode. Since 

the performance has a closed form it is convenient to analytically derive the partial 

derivatives with respect to uncertain parameters. These derivatives are precise and are useful 

to study two machines single buffer line systems. For other system such as machines with 

multiple failure modes performance measures are not evaluated by closed form formulas. 

The two machine line that is considered in this section is an example of performance analysis 

where performance evaluation is performed using an approximate method. Therefore the 

evaluation of the partial derivatives of these systems also requires approximate techniques. 

In addition to the generality of the method for performance evaluations carried out by 

different techniques including approximate methods and results from simulations can be 

analyzed with this approximate approach. The evaluation of the approximate partial 

derivatives is carried out by using finite difference on chosen points close to the region where 

the derivative is required to be estimated. Then delta method is employed for the evaluation 

of expected value and variance of the performance measures. In the upcoming sections this 



 

88 

 

approach is demonstrated on two machine lines with multiple failure modes which are useful 

building blocks for the evaluation of various multistage production systems. 

The analysis is based on the two machine line analysis model proposed by [Tolio-Matta-

Gershwin 2002] (TMG). This model evaluates two machine lines with deterministic 

processing times with multiple failure modes and finite buffer capacity. Unlike the single 

failure mode machines these machines can fail in different modes. Each failure mode is 

characterized by specific time to failure TTF and time to repair TTR. The summary of the 

main model assumptions and steps in the evaluation of performance analysis are review 

below. 

 

Figure 4:16 Two machine line with multiple failure modes 

- The same assumptions for (Gershwin-Berman) model apply for the processing times, 

buffer capacities and occurrence of failures and repairs. 

- In the multiple failure case a machine can be in one failure mode at a time. 

 

Figure 4:17 Markov chain model for the Mu and Md with multiple failures 
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The upstream machine 
u

M characterized by s failure modes, with parameters uip  and
ui

r , 

with 1,...,i s= . Similarly the downstream machine 
d

M has t  failure modes with djp  and dj
r  

with 1,...,j t= . The general system state is represented by the vector ( , , )i ju d n  where 

1,..., 1iu s= +  that represents the state of the first machine (   1iu = then machine is up), 

1,..., 1jd t= + represents the state of the second machine ( 1jd = then machine is up) and n is 

the level of the buffer.  

The number of states becomes too many and when the capacity of the buffer B becomes 

large, and this approach can be very cumbersome. Therefore, in (Gershwin et al, 2002) a 

solution that is independent from the capacity of the buffer is proposed. The aim of the 

analysis is to evaluate the steady state probability of the generic system state ( , , ) i ju d nπ . 

Once these probabilities are evaluated, the performance of the system can be calculated. 

The approach in the techniques used to solve these steady state probabilities assumes that 

the steady state probabilities of the internal states must have a product form solution. The 

guess on the internal state probabilities form is the following. 

, ,

1

π( , , )   
= +

=

= ∑
R s t

n
i j m m i m j m

m

u d n C X U D  For 0,..., ; 1,..., ; 1,....,n N i s j t= = =    (4.94) 

Where n
mX , ,i mU and ,j mD  are calculated as: 
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 
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j m
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p
D

r
K
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− +

         (4.95) 

and mK  derives from the solution of the following polynomial of degree = +R s t  
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( )
1 1
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u
P and

d
P respectively are the sum of all the upstream and downstream failure probabilities. 

Constant mC  can be evaluated by solving a linear system formed by the following equations: 
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1
all states

π =∑           (4.98) 

This is a system of 1+ −s t  equations in 1+ −s t  unknowns, since one mC  variable is 

demonstrated to be always equal to zero. By solving the linear system it is possible to 

calculate mC  unknowns and substituting it and equations all the steady state probabilities can 

be obtained. For more details on the entire procedure see (Gershwin et al. 2002). The 

interesting main performance measures of the system can be calculated with the following 

equations. 

Average throughput: 

( ) ( )

( ) ( )

1

0 1

2

1

1

1

   ,1,1 ,1,

        ,1,1 , ,1   

N t

j

n j

N s

j

n i

TH TH n n d

TH n n u

π π

π π

−

= =

= =

 
= = + = 

  

 
= + 

 

∑ ∑

∑ ∑

     (4.99) 
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Average Buffer Level: 

( ) ( ) ( ) ( )
0 1 1 0 1 0 1 0

* , , * ,1, * , ,1 * ,1,1  
N s t N t N s N

i j j i

n i j n j n i n

n n n u d n n d n n u n nπ π π π
= = = = = = = =

= + + +∑∑∑ ∑∑ ∑∑ ∑ (4.100) 

Probabilities of Blocking, caused by failures of the downstream machine
d

M : 

( ) ( ) 1
, ,       

1 1

1
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           (4.101) 

Total probability of Blocking: 

( )
1

,1,π
=

=∑
t

j

j

pb N d          (4.102) 

Probabilities of Starvation, caused by failures of the upstream machine
u

M : 

( ) ( ) ,,

1 1

1
0, ,1 1    1, .
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u uR R
j mi m D

i m m mu d u
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DUr P
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K Kr P r
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−
= = + − = …∑ ∑  (4.103) 

Total probability of Starvation: 

( )
1

0, ,1
s

s

i

P uπ
=

=∑          (4.104) 

Based on these formulas derived to evaluate the average performance of the systems the 

uncertainty in variance of the steady state distributions can be computed using partial 

derivatives obtained by using finite difference method. For the uncertain transition 

probabilities uip ,
ui

r , dj
p  and dj

r , given the corresponding variances as inputs. 

4.3.4 Taylor Approximation with approximate partial derivatives 

Similar to most of the cases discussed in the previous sections some or all of the input 

parameters considered might be obtained from uncertain estimations. For the other 

parameters whose estimate is assumed to be precisely known, only their precise values or the 

expected values are provided. Instead for the rest of the parameters where their estimation 

uncertainty has to be considered the first two moments of input parameters are required. For 
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the Taylor approximation evaluation technique, even if the density of the uncertain 

parameters is available it is sufficient to have the expected value and the corresponding 

variance from the density function. Alternatively the direct estimation of expected value and 

associated variance suffices.  

Notations for this technique are as follows:  

- Precisely known parameters of the upstream machines are denoted simply
ui

p ,
ui

r  

while uncertain parameters are characterized by their mean (0)
ui

p , (0)
ui

r and their 

variances 2 uipσ ,
2 ui
rσ .  

- Similarly uncertain parameters for the downstream machines with mean (0)
di

p , (0)
di

r

and variances 2 djpσ ,
2 ui
rσ . 

Once the input parameters are available then the calculation of the partial derivatives is 

carried out by using finite difference method. The finite difference computes the first and 

second order approximate partial derivatives using a second order polynomial approximation. 

This approximate evaluation needs a finite small difference to evaluate the function at three 

chosen points close to each other. The choice of the difference size depends on the precision 

needed on the derivative and the width of the region covered by the distribution needed to be 

approximated. 

Generally the difference can defined depending on a particular criterion. In this case the 

approximated first and second order derivatives are required to be a weighted derivative in 

the range of the distribution on parameter axis. An empirical experiment has shown a good 

approximation is obtained when the difference is defined one standard deviation above and 

below the expected value of the uncertain parameter. 

The difference between the upper and lower limits is defined with the following relation 

and represented and the following notations are adopted throughout this analysis involving 

finite difference methods for performance evaluation. 
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- The expected value given as input for upstream machine parameters and downstream 

machines; Upstream (0)
ui

p , (0)
ui

r  and downstream (0)
di

p , (0)
di

r  

- The lower threshold limit for the difference of uncertain parameters of upstream 

machine and downstream machines are defined as; 

o Upstream ( ) (0)
ui ui ui

p p pσ− = − , ( ) (0)
ui ui ui

r r rσ− = −  

o Downstream ( ) (0)
di di di

p p pσ− = − , ( ) (0)
di di di

r r rσ− = −  

- The upper threshold limit for the difference of uncertain parameters of upstream 

machine and downstream machines are defined as; 

o Upstream ( ) (0)
ui ui ui

p p pσ+ = + , ( ) (0)
ui ui ui

r r rσ+ = +  

o Downstream ( ) (0)
di di di

p p pσ+ = + , ( ) (0)
di di di

r r rσ+ = +  

Therefore each of the uncertain parameter is composed of vectors of three values i.e. the 

lower threshold value, the mean value and the upper threshold value. 

Next the first and the second order partial derivatives can be approximated for each of the 

input uncertain parameters using the difference formula as; 

A centered first order approximation of partial derivative for a generic performance measure 

( )f p versus parameter p is 

2( ) ( ) ( )
( )

2

f p f p p f p p
O h

p p

∂ + ∆ − − ∆
= +

∂ ∆
      (4.105)

 

While the second order centered partial derivative is approximated as: 

2
2

2 2

ˆ( ) ( ) 2 ( ) ( )
( )

( )

f p f p p f p f p p
O h

p p

∂ + ∆ − + − ∆
= +

∂ ∆
     (4.106)

 

Proceeding similarly for the interesting performance measures the partial derivatives of the 

important performance measures equation (4.99-4.104) with respect to each uncertain 

parameter can be evaluated. Notations for the evaluated performance measures are also 

similar to the notations given for the input parameters. The following notational conventions 

are adopted. 
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For instance for the probability of blocking: 

(0) (0) (0) (0) (0)| ; i 1,.., ; , j 1,..,ui ui ui ui dj dj
j j

dj dj
p p r r s p pPb r r tPb= = = ∀ = = = ∀ =  

For the upstream failure probabilities 

( ) ( ) (0) (0) (0) (0)| , i 1,.., ; ; i 1,.., ; , j 1,..,uk uk uk ui ui ui ui dj
j j

dj dj dj
p p p p p s i k r r s p p r rb tP Pb− −= = = ∀ = ≠ = ∀ = = = ∀ =

( ) ( ) (0) (0) (0) (0)| , i 1,.., ; ; i 1,.., ; , j 1,..,uk uk uk ui ui ui ui dj
j j

dj dj dj
p p p p p s i k r r s p p r rb tP Pb+ += = = ∀ = ≠ = ∀ = = = ∀ =

For the upstream repair probabilities 
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j j

ui dj dj dj dj
r r r p p s r r s i k p p r rb tP Pb− −= = = ∀ = = ∀ = ≠ = = ∀ =

( ) ( ) (0) (0) (0) (0)| , i 1,.., ; i 1,.., ; ; , j 1,..,uk uk uk ui ui ui
j j

ui dj dj dj dj
r r r p p s r r s i k p p r rb tP Pb+ += = = ∀ = = ∀ = ≠ = = ∀ =

For the downstream failure probabilities 
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For the downstream repair probabilities 
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j j

d
r r r p p r r s p pPb t r r t j kPb+ += = = = ∀ = = ∀ = = ∀ = ≠

 

Similar notations can be followed for the remaining performance measures, therefore the 

following performances are required to be computed. 

For probabilities of starvation: 

 (0)iPs , ( )
uk

iPs p− , ( )
uk

iPs p+ , ( )
uk

iPs r− , ( )
uk

iPs r+ , ( )
dk

iPs p− , ( )
dk

iPs p+ , ( )
dk

iPs r− , ( )
dk

iPs r+  

For the average throughput: 

(0)TH , ( )
uk

TH p− , ( )
uk

TH p+ , ( )
uk

TH r− , ( )
uk

TH r+ , ( )
dk

TH p− , ( )
dk

TH p+ , ( )
dk

TH r− , ( )
dk

TH r+  

Using the partial derivative approximations that are presented in equations (4.105-4.106) and 

the notational conventions adopted above the first and second order derivatives are evaluated 

for each performance measure. 

 

( ) ( ) (0) (0) (0) (0)| , ; i 1,.., ; j 1,.., ; j 1,.., ; ;dk dk dk ui ui ui ui dj dj dj j
j j

dr r r p p r r s p pPb t r r t j kPb− −= = = = ∀ = = ∀ = = ∀ = ≠
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For instance for the probability of blocking: 
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   (4.107) 
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The first and second partial derivatives for the remaining performance measures similarly: 

Probability of starvation 

With respect to upstream machine parameters
u

j

k

Ps

p

∂

∂
,

2

2

j

uk

Ps

p

∂

∂
,

u

j

k

Ps

r

∂

∂
,

2

2

j

uk

Ps

r

∂

∂
 

With respect to downstream machine parameters
u

j

k
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∂
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For the average throughput 

With respect to upstream machine parameters
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E
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,
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With respect to downstream machine parameters
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p

∂
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∂
,

2

2uk

E

r

∂

∂
 

Now all the parameters required for the evaluation of the expected value and the associated 

uncertainty of the performance measures are available. 
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Then the uncertainty of the probability of blocking is approximated as: 

2 22 2

2 2 2 2

1 1 1 1
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(4.111)
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The expected value of the probability of blocking is approximated as: 
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Uncertainty in variance and expected value of the starvation probability is: 
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 (4.117)
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Uncertainty and expected value for the average throughput are approximated as: 
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4.4 Multi-stage lines and uncertainty 

This section introduces a technique on how parameters with uncertain estimates can be 

introduced in the performance evaluation of multistage lines. The previous sections 

demonstrated the evaluation of parameters related to a building block single buffer two 

machine lines. Further this approach is extended for the evaluation of multistage lines 

composed of two machine line building blocks. Previously the performance evaluation with 

uncertainty of two machine line model is demonstrated for single failure machines. Then the 

same approach is extended for the case of multiple failure modes machines in two machine 

building blocks which is introduced in 4.3.4. In the subsequent section these methodologies 

are adapted for the evaluation of longer lines composed of building blocks with multiple 

failure modes. A methodology is proposed and implemented with the decomposition method 

for multistage lines which traditionally are modeled in decomposed to two machine lines. 

In the case of multistage lines where the building blocks and concepts applied for modeling 

an open line manufacturing system are also applied for the proposed method. These 

assumptions are kept the same with previous works of analytical approximate methods. The 

main difference of the proposed approach from previous performance models particularly 

lies on the way the input parameters for these models are considered. 

4.4.1 Uncertainty propagation in multistage lines by Decomposition 

This section introduces a method for the main steps in the evaluation of performance in 

multistage lines using uncertain parameters. The method is based on the two machine line 

decomposition technique proposed by (Tolio-Matta-Gershwin 2002). The multi-stage lines 

composed of K machines and K-1 buffers is decomposed into K two-machine lines. The 

performance of these two machine lines with uncertainty is evaluated using the set of 

decomposition proposed in (TMG) and in combination with the set of equations introduced 

for uncertain inputs in the previous sections for multiple failure mode two machine lines. The 

two moments characterizing the parameters in the remote failures are propagated through 
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each two machine line until convergence is achieved for the expected value and the 

uncertainty in variance of the required performance measures. 

The decomposition method studies the performance of K machines by approximating the 

behavior of the original line to be approximated using K-1 two machine lines.  

 

Figure 4:18 Multistage line with multiple failure mode machines 

This line is decomposed into K-1 two machine lines so that each upstream pseudo machine 

mimics the upstream portion of the line and the downstream pseudo machine mimics the 

failures associate to the downstream machine with reference to the current building block. 

For instance a multistage line as shown in the Figure 4:18 can be decomposed into two 

machine lines as shown in figure 4:19.  

By referring to the Figure shown in 4:19 to model the line of K machines with K-1 two 

machine single buffer building blocks we will see how the uncertainties in the local and 

remote failure probabilities are propagated from one stage into the next one. The failure 

modes in the line are assigned as local and remote failures in a similar way as shown in 

Figure 4:19.  

In general a two machine line i with upstream pseudo machine ( )uM i and downstream 

pseudo machine ( )dM i  the number of remote failures assigned from upstream portion of the 

line for the upstream pseudo machine is 
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Once parameters related to the two machine building block can be evaluated in this way 

these expected values and the uncertainties can be used in the DDX algorithm by propagating 

the parameters from one building block to the next one until convergence in the average 

throughput and the corresponding variance is reached. For a general two machine line the 

states of the upstream pseudo machine and the downstream pseudo machines are modeled as 

shown in the Figure 4:20. 

 

Figure 4:19 Decomposition of multi-stage line into two machine lines 

In a similar manner each two machine line building block will be assigned with local failures 

and remote failures so that they can mimic the average performance of the entire line can be 

evaluated using DDX algorithm. In the same way the uncertainty related to the estimation of 

the input parameters for the local failures and uncertainty induced on remote failures by other 

uncertain parameters are evaluated from one stage to the next one. 
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Using the approach introduced in section 4.3.4 for the evaluation of two machine single 

buffer building blocks with multiple uncertain failures modes the decomposition method can 

be used for the propagation of uncertainty. 

 

Figure 4:20 Upstream and downstream pseudo machine states 

In the decomposition technique evaluating the two machine line model to measure the 

performance of the multistage line the notations in the previous works are adopted to be as 

similar as possible with minor modifications for accommodating the introduction of 
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uncertainty in the evaluation. Extending similar notation that are adopted for the 

demonstration of performance evaluation for two machine line with multiple uncertain 

failure mode the notations that will be followed for the pseudo machines in the 

decomposition are the following. 

Upstream machine ( )
u

iM parameters  1,..., 1;for i K= −  
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Figure 4:21 Markov model for upstream local and remote failures 
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For local failures 
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Figure 4:22 Markov model for downstream local and remote failures 
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,

, ,

( 1)
( 1)    1,...,    1,..., 1;

( 1)

d

j fd

j f j f jd

X i
p i r f F j i

W i

−
− = ⋅ = = −

−
 

, ,

2 2

, ,2 2 2 2

, , , ,

, ,

( 1) ( 1)
( 1) ; ( 1)     1,...,    1,..., 1;

i k i k

u d

j f j fu d

j f p i k j f r i k j

i k i k

p i p i
p i p p i r f F j i

p r
σ σ σ σ

   ∂ − ∂ −
− = − = = = −      ∂ ∂   

           (4.129)

 For both the upstream and downstream pseudo machines the sum of the steady state 

probabilities of the states adds to 1. 

For upstream pseudo machines

  

1

, , ,

1 1 1 1 1

( ) ( ) ( ) ( ) 1
−

= = = = + =

+ + + =∑ ∑∑ ∑ ∑
j ji

F FF i K
u u u

i f j f j f

f j f j i f

W i D i X i Pb i

 and 

( 1)d
W i −

 

1
( 1)d

D i −

...
( 1)d

D i −

( 1)d

Fi
D i −

( 1)d
W i −

 

1,1 ( 1)d
X i −

...
( 1)d

X i −

2, ( 1)d

i FjX i− −
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For downstream pseudo machines

 

1

, ,

1 1 1 1 1

( ) ( ) ( ) ( ) 1
ji

FF FjK i
d d d

f j f j f

f j i f j f

W i D i X i Ps i
−

= = + = = =

+ + + =∑ ∑∑ ∑∑ (4.130) 

 

Given the upstream pseudo machine and downstream pseudo machines of a building block 

and the respective local and remote failure modes the evaluation of the probabilities in Figure 

4:21 are updated. 

For the upstream machine ( )
u

iM the unknown probabilities and their respective uncertainties 

are updated 

,

, ,

( 1)
( )  

( )

−
= ⋅

j fu
j f j f

Ps i
p i r

E i
 

2

,2 2
, ,

,

( )
( ) ( 1)

( 1)
σ σ

 ∂
= − 
 ∂ − 

u
j fu

j f j f

j f

p i
p i Ps i

Ps i
 

2

,2 2
, ,

,

( 1)
( 1) ( 1)

( 1)
σ σ

 ∂ −
− = − 

 ∂ − 

j f u
j f j fu

j f

Ps i
Ps i p i

p i
     (4.131)

 

For the downstream machine ( 1)
d

iM −  

,

, ,

( )
( 1)  

( 1)
− = ⋅

−

j fd
j f j f

Pb i
p i r

E i
 

The same analysis as in the case of upstream updating of the uncertainty and expected value 

gives equation 4.132 for the remote failures of the downstream pseudo machine. 

,

2

,2 2
, ,

,

( 1)
( 1) ( )   1,...,    1,..., 1;

( )
σ σ

 ∂ −
− = = = + − 

 ∂ 
j k

d
j fd d

j f p j f jd
j f

p i
p i p i f F j i K

p i
  (4.132) 
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The performance of the two machine line with multiple failure modes is evaluated using 

the method proposed by [Tolio-Matta-Gershwin 2002]. The uncertainties related to each 

probability are computed at two machine level. In the DDX algorithm for the convergence of 

probabilities the uncertainty variance associated to each parameters is also updated until 

convergence is reached for the expected value of the probabilities and corresponding 

variance. 

The two machine line model in [TMG] model is as shown below. 

4.4.2 Evaluation of partial derivatives of uncertain parameters 

The evaluation of the required partial derivatives is performed using the finite difference 

technique as introduced in the evaluation of the multiple uncertain two machine lines in 

section 4.3.4. For each uncertain failure probability
,j f

p define the difference 
,j fp∆ and for 

uncertain repair probability 
,j f

r define the difference
,j fr∆ . The difference can be determined 

depending on a small finite element within the valid domain of the parameter. For all the 

cases considered in by empirical experiments a better approximation of the first and second 

order partial derivative approximations are found an when the difference is determined to be 

results 
,j f

pσ or 
2

,j fpσ . 

The following notations are introduced and the empirically chosen approximation 

difference of two standard deviations as the difference are used for the evaluation of the 

partial derivatives. 

For the uncertain transition probabilities of the upstream machine the following notations are 

used to refer points used to compute the derivatives. Each uncertain parameter is considered 

as a vector of three elements, for instance for the upstream failure probability u
ip , the 

elements are (0)  =u u
i ip p , the mean point estimate, ( ) (0)

u u u
i i ip p pσ− = − lower threshold of the 

difference, and ( ) (0) σ+ = +u u u
i i ip p p , and upper threshold for the finite difference are defined.  

The same elements will be defined for the rest of the uncertain probabilities to be considered 

in the analysis. 
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(0)
ˆu u

i ip p=   is the expected value point estimator of failure probability u
ip  

( ) (0)
u u u
i i ip p pσ+ = +  

( ) (0)
u u u
i i ip p pσ− = −  

(0 )
ˆu u

i ir r=  is the expected value point estimator of repair probability u
ir  

( ) (0)
u u u

i i ir r rσ+ = +  

( ) (0)
u u u

i i ir r rσ− = −  

Similarly the uncertain transition probabilities for the downstream machine can be computed 

at these three points. 

Using the notation introduced in for upper and lower values of failure and repair probabilities 

the interesting parameters, i.e. Average throughput,    

(0) (0)| u
iTH TH p=  

( ) ( ) (0) (0) (0) (0)| , i 1,.., ; ; i 1,.., ; , j 1,..,u u u u u u u d d d d
k k k i i i i j j j iTH p TH p p p p s i k r r s p p r r t+ += = = ∀ = ≠ = ∀ = = = ∀ =

 

( ) ( ) (0) (0) (0) (0)| , 1, .., ; ; 1, .., ; , 1, ..,u u u u u u d d d d
k k k i i i j j j iTH p TH p p p i s i k r r i s p p r r j t− −= = ∀ = ≠ = ∀ = = = ∀ =

From these values the first order partial derivative of the average throughput with respect to 

each uncertain transition probabilities can be evaluated as: 

Similarly the remaining performance measures corresponding to these points such as the 

probability of blocking jPb , starvation iPs  and the average buffer level n can be evaluated 

as: 

( ) ( ) (0) (0) (0) (0)| ,  i 1,.., ; ;  i 1,.., ; ,  j 1,..,u u u u u u u d d d d
j k j k k i i i i j j j iPb p Pb p p p p s i k r r s p p r r t+ += = = ∀ = ≠ = ∀ = = = ∀ =

( ) ( ) (0) (0) (0) (0)| ,  i 1,.., ; ;  i 1,.., ; ,  j 1,..,u u u u u u d d d d
j k j k k i i i j j j iPb p Pb p p p s i k r r s p p r r t− −= = ∀ = ≠ = ∀ = = = ∀ =

( ) ( ) (0) (0) (0) (0)| , i 1,..., ; ; i 1,.., ; , j 1,..,u u u u u u u d d d d
i k i k k i i i i j j j iPs p Ps p p p p s i k r r s p p r r t+ += = = ∀ = ≠ = ∀ = = = ∀ =

( ) ( ) (0) (0) (0) (0)| , i 1,.., ; ; i 1,.., ; , j 1,..,u u u u u u u d d d d
i k i k k i i i i j j j iPs p Ps p p p p s i k r r s p p r r t− −= = = ∀ = ≠ = ∀ = = = ∀ =
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In the same manner the first order partial derivatives that correspond to these performance 

measures are computed as: 

( ) ( )

( ) ( )

u u
k k

u u u
k k k

TH p TH pTH

p p p

+ −

+ −

−∂
=

∂ −
        (4.133)

 The second order partial derivative is approximated 

( )

2
( ) (0) ( )

2

( ) ( )

2u u u
k k k

u u
u u

k k
k k

E p E p E pE

p p p p

+ −

+ −

− +∂
=

∂ ∂ −
       (4.134)

 Similar expression can be written for the computation of the probability of starvation and 

probability of blocking 

( ) ( )

( ) ( )

u u
i k i ki

u u u
i i i

Ps p Ps pPs

p p p

+ −

+ −

−∂
=

∂ −
        (4.135)

 

( )

2
( ) (0) ( )

2

( ) ( )

2u u u
i k i k i ki

u u
u u

i i
i i

Ps p Ps p Ps pPs

p p p p

+ −

+ −

− +∂
=

∂ ∂ −
      (4.136)

 
( ) ( )

( ) ( )

u u
i k i ki

u u u
i i i

Pb p Pb pPb

p p p

+ −

+ −

−∂
=

∂ −
        (4.137)

 

( )

2
( ) (0) ( )

2

( ) ( )

2u u u
i k i k i ki

u u
u u

i i
i i

Pb p Pb p Pb pPb

p p p p

+ −

+ −

− +∂
=

∂ ∂ −
      (4.138)

 

At a building block level the uncertainty to a given performance measure can be written as: 

The expected value of the performance measures is approximated as: 

2
2

(0)

1
[ ]

2
u

i

u
ip u u

i i

E
E TH E p

p p
σ

∂
= +

∂ ∂
       (4.139)

 2

2[ ] u

i

u
ip u

i

E
V E p

p
σ

 ∂
=  

∂ 
        (4.140)
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2 22 2

2 2 2 2

1 1 1 1

[ ]
s s t t

u u d d
i i j ju u d d

i i i ii i j j

TH TH TH TH
V TH p r p r

p r p r
σ σ σ σ

= = = =

      ∂ ∂ ∂ ∂
= + + +          ∂ ∂ ∂ ∂       
∑ ∑ ∑ ∑ (4.141)

 

Uncertainty in the probability of starvation and blocking can be computed  

2 22 2

2 2 2 2

1 1 1 1

[ ]
s s t t

u u d di i i i
i i i j ju u d d

i i i ii i j j

Ps Ps Ps Ps
V Ps p r p r

p r p r
σ σ σ σ

= = = =

      ∂ ∂ ∂ ∂
= + + +          ∂ ∂ ∂ ∂       
∑ ∑ ∑ ∑ (4.142)

 2 22 2

2 2 2 2

1 1 1 1

[ ]
s s t t

j j j ju u d d
j i i j ju u d d

i i i ii i j j

Pb Pb Pb Pb
V Pb p r p r

p r p r
σ σ σ σ

= = = =

   ∂ ∂ ∂ ∂   
= + + +          ∂ ∂ ∂ ∂       
∑ ∑ ∑ ∑ (4.143)

 

4.4.3 Evaluation of performance measure with uncertainties 

Since remote failures of pseudo-machines mimic starvation or blocking phenomena, due to 

the propagation of a failure of another machine along the line, repair rates of remote failures 

are simply equal to those of the original machine that generated the failure. The only 

unknown parameters in K-1 two-machine lines are remote failure probabilities. To evaluate 

these probabilities a set of equations is required. These equations are called 

DECOMPOSITION EQUATIONS. Solving this set of equations it is possible to evaluate 

unknown failure probabilities in order to mimic with the decomposed line the behavior of the 

original line.  

In the decomposition method the assumption made for the repair probabilities for instance for 

the upstream machine ( )uM i  has a failure (both remote and local) it eventually gets repaired, 

failure frequency must equal repair frequency for every failure mode. Therefore the expected 

value and the uncertainty in variance for the local failure probabilities and remote failures 

can be evaluated as: 

1

, , ,

1 1 1 1 1

( ) ( ) ( ) ( ) 1
−

= = = = + =

+ + + =∑ ∑∑ ∑ ∑
j ji

F FF i K
u u u

i f j f j f

f j f j i f

W i D i X i Pb i  
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Local Failure modes: 

,

,

,

( ) ( )   ,  1,..., ;
i fu u

i f i

i f

p
D i W i f F

r
= ⋅ =  

,

2

, 2
, ,

,

( )
[ ( )]

i k

u
i fu

i f p i k

i k

D i
V D i p

p
σ

 ∂
=  
 ∂ 

       (4.144) 

Remote Failure modes are updated with the expected value and the corresponding 

uncertainty using a similar approach. For instance the remote failures associated to the 

upstream machine ( )uM i are updated with equations (4.145-4.146) 

Therefore substituting the above equations the computation of uncertainty for the updated 

remote failure probability , ( )u
j fp i  can be simplified as: 

2

,2 2
, ,

,

( )
( ) ( 1)

( 1)
σ σ

 ∂
= − 
 ∂ − 

u
j fu u

j f j fu
j f

p i
p i p i

p i
      (4.145) 

The expected value and the uncertainty related to the remote failures of the downstream 

machine ( )dM i  are updated in the same way. 

,

, ,

( )
( 1)  

( 1)

j fd
j f j f

Pb i
p i r

TH i
− = ⋅

−
        (4.146) 

The same analysis as in the case of upstream updating of the uncertainty and expected value 

gives equations (4.147-4.148) for the remote failures of the downstream pseudo machine. 

,

2

,2 2
, ,

,

( 1)
( 1) ( )   1,...,    1,..., 1;

( )
σ σ

 ∂ −
− = = = + − 

 ∂ 
j k

d
j fd d

j f p j f jd
j f

p i
p i p i f F j i K

p i
  (4.147) 

,

2
, 2

, , (0) ,

, ,

( 1)1
[ ( 1)] ( 1) ( )

2 ( ) ( )j k

d
j fd d d

j f p j f j fd d
j f j f

p i
E p i p i p i

p i p i
σ

 ∂ −
− = − +  

 ∂ ∂ 
   (4.148) 
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The DDX Algorithm with uncertainty 

STEP 1: Initialize parameters for the pseudo machines with the local failures and remote 

failures. If the parameters are assumed certain: Local failures 

u 2 2
, , , ,M ( ) : ( ) ; ( )

j j j j

u u
j f j f j f j fi p i p p i pσ σ= =  

2 2
, , , ,( ) ; ( )

j j j j

u u u u
j f j f j f j fr i r r i rσ σ= =  

Remote failures: 

uM ( ) : 1,..., 1;i j i= −  

2 2
, , , ,( ) ; ( )

j j j j

u u u u
j f j f j f j fr i r r i rσ σ= =  

2
, ,( ) ; ( ) 0

j j

u u
j f j fp i p iλ σ= =  

For upstream machines: Local failures 

2 2
, , , ,M ( 1) : ( ) ; ( 1)

j j j j

d u u
j f j f j f j fi p i p p i pσ σ− = − =  

Remote failures: 

M ( 1) : 1,..., ;d i j i K− = +  

2 2
, , , ,( 1) ; ( 1)

j j j j

d d
j f j f j f j fr i r r i rσ σ− = − =  

2
, ,( 1) ; ( 1) 0

j j

d d
j f j fp i p iλ σ− = − =  
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STEP 2: Perform phase A and phase B alternately until the Termination Condition is 

satisfied 

PHASE A: For 2,... 1i K= − calculate , ( )
j

u
j fp i for each uncertain parameter using the 

following equation and replacing ( )E i  with ( 1)E i − . Use the two-machine line analytical 

solution to evaluate the performance of the line.  

,

,

,

2

,2 2
, ,

,

( )
( ) ( 1)

( 1)

j k

j k

j k

u
j f pu u

j f p j fu
j f p

p i
p i p i

p i
σ σ

 ∂
 = −
 ∂ −
 

 

,

, ,

,

2
, 2

, , (0) ,

, ,

( )1
[ ( )] ( ) + ( 1)   1,...,    1,..., 1;

2 ( 1) ( 1)

j k

j k j k

j k

u
j f pu u u

j f p j f j f p ju u
j f j f p

p i
E p i p i p i f F j i

p i p i
σ

 ∂
 = − = = −
 ∂ − ∂ −
 

 

PHASE B: For 2,...,1i K= − calculate , ( 1)
j

d
j fp i − and for each uncertain parameter using the 

following equation and replacing ( 1)E i −  with ( )E i . Use the two-machine line analytical 

solution to evaluate the performance of the line.  

,

2

,2 2
, ,

,

( 1)
( 1) ( )   1,...,    1,..., 1;

( )j k

d
j fd d

j f p j f jd
j f

p i
p i p i f F j i K

p i
σ σ

 ∂ −
− = = = + − 

 ∂ 
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, , (0) ,

, ,

( 1)1
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2 ( ) ( )

j k

j k j k

j k

d
j f pd d d

j f p j f j f p jd d
j f j f p

p i
E p i p i p i f F j i K
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σ
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 
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4.4.4 Approximating a linear uncertain isolated machine  

Analysis of multi-stage lines with multiple failure mode machines by using the Taylor 

approximation approach introduced above is fast and numerical results have proved that the 

accuracy is good. Full numerical results with accuracy and computation times are reported in 

the next chapter. In some cases where the number of machines in a line is high and each 

machine features multiple failure modes this might also require considerable time. So an 

equivalent machine with single failure mode that substitutes the multiple failure mode 

machines can be a good approximation for providing faster solutions. 

The objective of this analysis is to model an isolated machine with multiple failure modes 

with uncertainty into an equivalent isolated machine with single failure mode with 

uncertainty.  This analysis is important for two reasons. The first advantage is when the 

uncertainty measurement is performed directly on the average throughput. In this case the 

equivalent single machine it can be used to an opportune modeling of the uncertainty on the 

input parameters uncertainty, i.e., on the probability of failure and repair.  

The second objective is the analysis of multiple uncertain failure and repair parameters on a 

single machine can be undesirable for performance evaluation on multistage lines. There are 

two main drawbacks particularly on using these multiple uncertain parameters in a multistage 

line evaluation which are on the same machine. The first one is; the interactions of the 

parameters on a single machine are more significant compared to parameters at two different 

machines decoupled by a buffer. This interaction can be measured at an isolated machine 

level and an equivalent linearized uncertainty is computed that can be easily handled with 

first order Taylor approximation. The second one is related to the required computational 

effort compared to the same analysis. For instance, if the joint distribution approach for 

multiple parameters is used so that interaction of parameters through performance function 

can be analyzed this takes longer computational time. Especially when complex functions 

involved this time is really high. Finding a linearized equivalent of an isolated machine 

simplifies the multiple parameters at a single machine level with relative easier to work with 

the multistage system.  
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The uncertainty of an isolated efficiency of a machine can be obtained by the different 

techniques that are discussed in sections 4.2 such as discretization, using multiple integrals or 

direction estimation on the average throughput. The resulting uncertainty in the throughput 

for the isolated throughput is denoted as [ ]V e and can be computed once the equivalent peq 

and req are calculated with isolated machine equivalency formula. The corresponding 

equivalent uncertainties can be computed with the following assumptions. 

Using the first order Taylor approximation the uncertainty in the isolated efficiency of a 

single machine is expressed as: 

2 2

2 2[ ]
eq eq

eq eq

e e
V e p r

p r
σ σ

   ∂ ∂
= +      ∂ ∂   

       (4.149) 

 

This equation equates the overall uncertainty of the isolated machine that is approximated 

by the first order Taylor series should be equivalent to the total isolated throughput 

uncertainty obtained from other techniques. 

Imposing a second condition is since the approximated uncertain machine is linearized with 

the first order approximation the deviations due to the second order and higher order 

derivatives of interacting parameters should add to 0.  

From this assumption it can be written that: 

2 2
2 2

2 2

1 1
0

2 2
eq eq

eq eq

e e
p r

p r
σ σ

∂ ∂
+ =

∂ ∂
       (4.150) 

Solving equation [1] and [2] and substituting the known parameters of the mean p, r and 

the total uncertainty of the isolated machine, with the respective partial derivatives, the 

equivalent uncertainty in p and r can be computed. 

( )

2

32

2
eq

eq
eq eq

re

p p r

∂
=

∂ +
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( ) ( )

2

3 22

2 2eq

eq
eq eq eq eq

re

r p r p r

∂
= −

∂ + +
 

( )

2
2

4

eq

eq
eq eq

re

p p r

 ∂
=  ∂ + 

 

2 2

2

1

( )

eq

eq eq eq eq eq

re

r p r p r

   ∂
= −      ∂ + +   

       (4.151) 

 

Therefore the equivalent uncertainty for peq is 
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( )

( ) ( )

2

2

32
2
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3 2
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2 2

eq

eq eq
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p r p r p rr
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p r p r

σ =
 

− ×  + + + 
−

+ −
+ +

   (4.152) 

Therefore the equivalent uncertainty for req is: 

 

( ) ( ) ( )

( )

2

2

4 3 22

2

3

[ ]

2 2

1

2( )

eq

eq eq

eq eq eq eq eq eqeq

eqeq eq eq eq

eq eq

V e
r

r r

p r p r p rr

rp r p r

p r

σ =
 
 × −
 + + +   − −  + + 

+

 (4.153) 

The new equivalent machine can be substituted with the two new equivalent uncertainties 

2

eqpσ and 
2

eqrσ with the expected value peq and req in the multistage line analysis. Numerical 

tests in the next chapter for the model that uses the multiple failure mode machine against the 

approximated single failure mode machines show a good accuracy on V[TH]. 
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Chapter Five 

 

5. Validation and Accuracy Testing 

The first sections of this chapter will demonstrate a summary of numerical experiments 

conducted to test the numerical accuracy of each technique that is proposed in chapter 4. The 

rest part of the sections report important summarized behaviors of systems including two 

machine lines and long multistage systems which are studied by using the proposed 

techniques. Furthermore qualitative and quantitative explanations on the exhibited behaviors 

with respect to input parameters and system configurations are provided. 

The accuracy of the proposed methods is tested in comparison with exact analytical 

methods on simpler systems including isolated machines and two machine lines with unique 

failure modes using fewer uncertain parameters. After a satisfactory precision on the methods 

that are applicable for simpler systems is achieved some of the techniques are used as a 

reference to measure the accuracy of other techniques. Some of the methods that have very 

close precisions and those having a strong mathematical similarity, such as discretization and 

linearizing are not reported separately considering they provide the same results if applied on 

the same conditions. Therefore the first few experiments are targeted comparing the accuracy 

of discretization with exact analytical methods on single machines and two machine lines. A 

Monte Carlo method with bigger sample sizes to achieve high precision is also used to show 

the performance in accuracy relative to the proposed methods. The three proposed alternative 

discretization methods are compared with each other. In later sections, which show the 

evaluation of longer lines, the Monte Carlo technique and discretization techniques are used 

as a reference to measure the accuracy of the proposed Taylor approximation method. 

Cases for the accuracy testing are generated with an experimental design so that the ranges 

of parameters characteristic to these systems are chosen to in the range where reasonably 
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designed manufacturing systems are expected to operate. Once the boundary for the system 

parameter ranges is defined for failure and repair probabilities and intermediate buffers, cases 

are randomly generated for each experiment with in this boundary. The following are the 

ranges of parameters that are used in the single machine studies which are discussed briefly. 

The next few sections show the accuracy of methods by comparison measured for three 

alternative approaches on isolated machines. 

The input parameters are randomly generated within the chosen bounds of ranges for each 

parameter, while a systematic selection of these values is also done to make the test on a 

wider range of scenarios. Sets of tests are performed each on 50 test cases for each 

experimental set. In some instances up to 200 experiments are conducted where increased 

statistical significance is required. Expected values of operational failure probabilities are 

varied from 0.0001 to 0.2 and corresponding uncertainty in estimation is varied from 
310−
 to

710−
. Expected value for repair probabilities are varied from 0.01 to 0.3 for operational 

failures and the uncertainty in variance is varied from  
310−
 to

610−
. The inputs are simulated 

failure and repair data on the Time to Failure (TTF) and Time to Repair (TTR), such that the 

first two moments of the estimates made from these observations fall in the experimental 

ranges outlined above. 

5.1 Isolated machine Experiments 

Three sets of experiments are conducted in this section. In the first two experiments either 

the failure probability p or the repair probability r is uncertain. The next experiments are 

cases where both the failure probability and repair probabilities are uncertain. Three 

alternative techniques are compared with exact analytical solution using integration. The 

exact integration method is used as a reference for the evaluation of the expected value of the 

isolated efficiency and the uncertainty in variance. These results are compared with results 

obtained from MonteCarlo simulation and a discretization of a density function and 

techniques introduced in section 4.2.2. For the Monte Carlo experiments, data are sampled 

using bootstrapping, with a bootstrap size of 100000 and 10 replicates to achieve a maximum 

half width of 0.0002 on the average throughput and 0.000005 on the variance of the average 
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throughput. Even though the number of partitions can be varied depending on the distribution 

of the uncertain parameters and the desired degree of accuracy in the approximate method, 

the number of partitions in all experiments is fixed to be 30 for the sake of consistency. 

Errors for the Monte Carlo (MC) approach and for the discretization (DT) with single 

uncertainty are evaluated and reported as: Errors in Monte Carlo,  

100%MC Exact

MC

Exact

θ θ
ε

θ

−
= ×          (5.1) 

For discretization, 

100%DT Exact

DT

Exact

θ θ
ε

θ

−
= ×         (5.2) 

are measured for both the average isolated efficiency and uncertainty in variance. 

5.1.1 Uncertain p and precisely known r 

In these experiments the repair probability r is assumed to be precisely known and the 

failure probability p is estimated from randomly generated observations of geometrically 

distributed TTF within as mentioned in section 4.1. 

 

Figure 5:1 Errors on E[e] by Monte Carlo 
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Figure 5:2 Errors on E[e] by discretization 

 

Figure 5:3 Errors on V[e] by Monte Carlo 

 

Figure 5:4 Errors on V[e] by discretization 
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From the above 100 experiments on isolated machines with p estimated from randomly 

generated TTF to evaluate both the expected efficiency and the uncertainty in isolated 

efficiency the summary is as follows. Using the Monte Carlo experiment with 100,000 runs 

and 10 replicated, i.e., 10
6
 experiments the maximum error on the average efficiency (e) is 

0.0092% and 0.70% on the uncertainty in variance. Using the discretization method with 30 

runs for each experiment the maximum error in the expected value of efficiency is 0.0130% 

and 0.81% on the uncertainty in variance of e. 

It can be observed that the Monte Carlo errors are centered while in the case of the 

discretization method the errors are consistent underestimation on the expected value of e. 

The errors on the uncertainty with discretization are consistent overestimations. This is due to 

the fact that the discretization technique uses trapezoidal approximation of the partitioned 

intervals which in most cases lie above the distribution curve, causing the minimal 

overestimation of the variance. But as it can be seen this deviations are minimal even if 

consistent, therefore with 30 partitions the level of accuracy is assumed satisfactory. 

 Monte Carlo Discretization 

 E[e] V[e] E[e] V[e] 

Average Error (%) 0.00032 -0.00654 -0.00462 0.63 

Maximum Error (%) 0.00921 0.70072 0.01299 0.81 

Table 5:1 Summary of errors using Monte Carlo and discretization 

5.1.2 Uncertain r precisely known p 

In these experiments the repair probabilities are estimated from randomly generated 

observations of geometrically distributed TTR while the failure probabilities are assumed to 

be known precisely. Similarly to the above experiments the exact analytical method is used 

as reference in measuring the errors.  
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Figure 5:5 Errors on E[e] using Monte Carlo 

 

Figure 5:6 Errors on E[e] using Monte Carlo 

 

Figure 5:7 Errors on V[e] by Monte Carlo 
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Figure 5:8 Errors on V[e] by Monte Carlo 

Additional 50 experiments on isolated machines with r estimated from randomly generated 

TTR to evaluate both the expected efficiency and the uncertainty in isolated efficiency the 

summary is as follows. The settings for Monte Carlo and discretization technique are kept the 

same as in the previous experiment.  The maximum error on the average efficiency (e) is 

0.02556% and 0.65% on the uncertainty in variance. Using the discretization method the 

maximum error in the expected value of efficiency is 0.0251% and 0.94% on the uncertainty 

in variance of e. 

Similar under estimation and overestimation that are characteristics of the trapezoidal 

approximation can be observed. The slight increase in the errors compared to the precious 

case where p is uncertain is due to the input variance in the case of r is greater than p. For an 

equivalent precision with increasing variance more partitions are required. In general the 

level of accuracy in both cases is accurate and no errors were observed more than 1% even 

for the uncertainty in e.  

 Monte Carlo Discretization 
 E[e] V[e] E[e] V[e] 

Average Error (%) 0.00033 -0.02882 -0.01448 0.33 

Maximum Error (%) 0.02556 0.64502 0.02510 0.94 

Table 5:2 Summary of errors using Monte Carlo and discretization  
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5.1.3 Uncertain p and r 

The next experiments measure the accuracy of the discretization and Monte Carlo method 

under a Bivariate case, when failure probability p and repair probabilities r uncertain 

estimates. The estimation on p and r is done on randomly generated observations of 

geometrically distributed TTF and TTR in the range of the experimental plan explained in 

section 5.1. Monte Carlo sample size and partitions numbers are kept the same as in the 

previous experiments. 

 

Figure 5:9 Errors on E[e] using Monte Carlo 

 

Figure 5:10 Errors on E[e] using discretization 
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Figure 5:11 Errors on V[e] by Monte Carlo 

 

Figure 5:12 Errors on V[e]of by discretization 
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level of accuracy in both cases is accurate and only one case in the Monte Carlo is observed 

with more than 1% for the uncertainty in e.  

 Monte Carlo Discretization 

 E[e] V[e] E[e] V[e] 

Average Error (%) 0.00033 -0.02882 -0.01448 0.33 

Maximum Error (%) 0.02556 0.64502 0.02510 0.94 

Table 5:3 Summary of errors using Monte Carlo and discretization method 

 

5.2 Two machine lines 

Experiments to measure the numerical accuracy of three alternative discretization methods 

and Taylor approximation technique are also performed using two machine lines. The power 

of the Monte Carlo method is increased so that it can be used as a reference for the multiple 

uncertainties, where the application of exact approach is more complex. For the newly 

adjusted Monte Carlo sampling plan the accuracy is measured so that the Monte Carlo 

method can be used to measure the accuracy of the three techniques under multivariate cases.  

Individual machine parameters of the cases generated for the two machine lines are the 

same as the ones used in the case of single machine experiments. Two additional constraints 

besides the individual machine parameters are added for the two machine single buffer line. 

Firstly, the buffer capacity is varied from 3 to 50. The absolute difference between the 

isolated efficiency of the upstream and downstream machine is varied from 0 to 0.5, with 

minimum isolated efficiency of 0.25 and maximum efficiency of 0.99. 

In the next experiments involving two machine lines, the main interest is to evaluate 

multiple uncertainties with two or more uncertain parameters. Only in the case of single 

uncertainty an exact analytical approach is carried out to measure the power of the Monte 

Carlo Method. Then Monte Carlo is used as a reference to compare the accuracy of the joint 

distribution approach which is validated to be sufficiently accurate in the case of isolated 

machine is used. In this case the size of boot straps is increased to 1,000,000 with 10 

replications to increase the power of the Monte Carlo with a certainty of half width 0.000003. 
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To demonstrate the comparative updated power of the Monte Carlo method the same scale is 

used in both of the graphs as shown below.  

5.2.1 Single uncertainty 

5.2.1.1 Uncertain pu 

The Gershwin Berman Model for two machine line single buffer model is used for the 

evaluation of the average throughput using precise parameters. Only pu is assumed to be 

uncertain and the remaining parameters ru, pd and rd are assumed to be precisely known. 

 

Figure 5:13 Errors on E[TH] by Monte Carlo 

 

Figure 5:14 Errors on E[TH] by discretization 
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Figure 5:15 Errors in V[TH] by Monte Carlo 

 

Figure 5:16 Errors in V[TH] by Monte Carlo 

 

The Mote Carlo approach has demonstrated a sufficient power to be used as a reference to 

measure the errors in the approximate discretization technique used in the upcoming 

experiments. The maximum error reported for the expected value of the average TH E[TH] is 

0.00891% and the error for the uncertainty V[TH] is 0.1652%. A repeated experiment for the 

isolated machine case with two uncertain parameters, have shown for two uncertainties the 

maximum E[e] is 0.00942 and maximum error in the uncertainty V[e] is 0.232%. Therefore 

the new experimental errors are computed with relative to the Monte Carlo results as 

 

100%DT MC

MC
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θ θ
ε
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−
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5.2.2 Joint distribution discretization 

In the next experiments involving multiple uncertainties the joint distribution approach 

introduced in section 4.3.1.1 is used to evaluate the average throughput (TH) of the two 

machine lines. The first two experiments show the evaluation errors when there are two 

uncertain parameters. The errors for these experiments are evaluated as in (5.3). The two 

uncertainties are shown when in one case they are located on one of the machines.  On 

another case the uncertainties are made to be one on each of the machines. At last four 

uncertainties are considered when all the two machine line parameters are considered to be 

uncertain.  

5.2.2.1 Uncertain pu and ru 

For these experiments the uncertainties are located on the same machine. The results are 

reported only for the upstream machine. The joint distribution approach is performed with 

the evaluation of 900 individual evaluation with precisely know parameters.  

 

Figure 5:17 Errors on the E[TH] by joint distribution 

 

Figure 5:18 Errors on the V[TH] by joint distribution 
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Summary of the errors for these experiments on the maximum and average errors on the 

average throughput are the following. The maximum error on E [TH] is 0.0921% and 1.10% 

on the uncertainty V[TH]. The average error on E [TH] is 0.024% and 0.554% on the 

uncertainty V[TH]. Errors that are characteristic to the trapezoidal approximation of the 

partitions, i.e., the overestimation of the variance are also observed here. 

5.2.2.2 Uncertain pu and pd 

The two uncertainties are chosen to be on each of the two machines that compose the two 

machine lines. One uncertainty is on the failure probability pu of the upstream machine and 

the other one is on the failure probability pd of the downstream machine. With the same 

experimental settings the following results are reported on the errors of the TH.  

 

Figure 5:19 Errors on the E[TH] by joint distribution 

 

 

Figure 5:20 Errors on V[TH] by joint distribution 
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Other combinations on the choice of uncertain parameters are experimented. Since the 

results are not significantly different from these results only the two cases are reported as a 

general summary of the performance of the accuracy of the joint distribution approach. The 

errors for these experiments on the maximum and average errors on the average throughput 

are the following. The maximum error on E [TH] is 0.02817% and 1.14% on the uncertainty 

V[TH]. The average error on E [TH] is 0.0087% and 0.361% on the uncertainty V[TH].  

5.2.2.3 Uncertain pu, ru, pd and rd 

In these experiments all the four parameters of the two machine line are considered to be 

uncertain. Keeping the same partition number the number of two machine line evaluations 

for the joint distribution approach is 810,000. Similar to the preceding experiments the errors 

for the joint distribution approach are evaluated with results obtained from Monte Carlo 

evaluations. 

 

Figure 5:21 Errors on E[TH] by joint distribution 

 

Figure 5:22 Errors on V[TH] by joint distribution 
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The summary of the errors for all four uncertain parameter experiments on the maximum 

and average errors on the average throughput are the following. The maximum error on E 

[TH] is 0.1479% and 0.8131% on the uncertainty V[TH]. The average error on E [TH] is 

0.0526% and 0.3319% on the uncertainty V[TH]. Interestingly the errors don’t show any 

particular increase in both the expected value and uncertainty of TH, when more uncertain 

parameters are considered. In addition since the errors reported are relatively quite small with 

respect to the objective of evaluating the uncertainty using the methods that will be presented 

in multistage lines, the joint distribution approach will be used as a reference in multistage 

lines. A fundamental motivation for using the joint distribution approach is the comparatively 

lower number of approximation required compared to the Monte Carlo approach, particularly 

in the evaluation of multistage lines where a single precise evaluation takes a considerable 

amount of time. So the total evaluation time for a short line such as three machine line with 

10
7
 evaluations takes an average of 20hrs. 

5.2.3 One factor at a time approach two machine line 

Same experiments are used to measure the accuracy of the one factor at a time approach. 

Investigation of this method is interesting, since the method requires few experiments 

compared to the joint distribution approach. This is particularly important when the number 

of parameters to be considered grows considerably. The same experiments are used to 

measure the accuracy. Similarly to the joint approach experiments, first two uncertainties are 

shown when in one case they are located on one of the machines.  On another case the 

uncertainties are made to be one on each of the machines. Finally four uncertainties are 

considered when all the two machine line parameters are considered to be uncertain. 

5.2.3.1 Uncertain pu and ru 

In these experiments the uncertainties are on the parameters of the upstream machine. The 

results are reported only for the upstream machine. The one factor at a time approach 

requires 60 evaluations with precisely known parameters for an experiment.  The same 

problem using the joint distribution needed 900 individual evaluations with precisely known 

parameters. 
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Figure 5:23 Errors on the E[TH] by one factor at a time 

 

Figure 5:24 Errors on the V[TH] by one factor at a time 

Summary of the maximum and average errors for these experiments are the following. The 

maximum error on E [TH] is 0.1832% and 3.425% on the uncertainty V[TH]. The average 

error on E [TH] is 0.0549% and -0.8614% on the uncertainty V[TH].  

 

5.2.3.2 Uncertain pu and pd 

The uncertainties are on these experiments are located on the failure probability, i.e., (pu 

and pd) of each machine comprising the two machine sing buffer line. The results are 

reported only for the upstream machine. As in case in the above experiment 60 evaluations 

with precisely known parameters are required for the solution.   
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Figure 5:25 Errors on E[TH] by one factor at a time 

 

Figure 5:26 Errors on V[TH] by one factor at a time 

The errors for these experiments on the maximum and average errors on the average 

throughput are the following. The maximum error on E [TH] is 0.05232% and 1.58% on the 

uncertainty V[TH]. The average error on E [TH] is 0.0087% and 0.427% on the uncertainty 

V[TH].  
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when the two parameters are on two machines separated by a buffer this interaction is lower 

providing a better accuracy for the one factor at a time approach.  

5.2.3.3 Uncertain pu, ru, pd and rd 

In these experiments all the parameters of the two machine line are considered to be known 

with uncertainty. Since there are four uncertain parameters in the evaluation the one factor at 

a time with 30 partition for each uncertain parameter requires 120 evaluations of precisely 

known parameters. The same experiments required 810,000 evaluations for the joint 

distribution approach. This emphasizes, even if for a reduced accuracy this approach highly 

reduces the computational resources required compared to the joint distribution, particularly 

when the number of uncertain parameters grow. 

 

Figure 5:27 Errors on the E[TH] by one factor at a time 

 

Figure 5:28 Errors on the V[TH] by one factor at a time 
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Summary of the maximum and average errors for these experiments are the following. The 

maximum error on E [TH] is 0.8927% and 4.423% on the uncertainty V[TH]. The average 

error on E[TH] is 0.4426% and 1.239% on the uncertainty V[TH].  

5.2.4 Two factors at a time approach in a two machine line 

Experiments with three or more uncertain parameters can be solved using this approach. 

Therefore the experiments with four uncertainties are used to measure the accuracy of the 

two factors at a time approach. The method requires few experiments compared to the joint 

distribution approach but more experiments to that of one factor at a time approach. The 

method can be particularly useful when the numbers of parameters are considerable such as 

(4 to 10) and at the same time a high accuracy is also required.  

The same experiments for four uncertainties are used to measure the accuracy. The 

numbers of precisely known evaluations required for four uncertainties are 5520. The same 

problem requires 810000 for joint distribution and 120 for one factor at a time. This method 

can be used as a compromise between the joint approach and one factor approach when the 

time required for evaluation is within a reasonable amount of time. 

The next experiments demonstrate the accuracy of two parameters at a time parameter at a 

time approach when all the reliability parameters of the two machine line are considered 

uncertain. 

All parameters uncertain 

 

 

Figure 5:29 Errors on E[TH] by two factors at a time 
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Figure 5:30 Errors on V[TH] by two factors at a time 

Summary of the maximum and average errors for these experiments are the following. The 

maximum error on E [TH] is 0.1484% and 0.8133% on the uncertainty V[TH]. The average 

error on E [TH] is 0.0573% and 0.3328% on the uncertainty V[TH]. The results and the 

errors reported are very close to the results obtained from the joint distribution approach. 

Therefore it is interesting to compare relative difference between these two methods. 

The percentage difference between the joint distribution (JD) approach and the two factors 

at a time experiments (2F) are reported for the expected average throughput and the 

uncertainty. The differences are computed as: 
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Figure 5:31 Difference on E[TH] by (JD) and (2F) 
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Figure 5:32 Difference on V[TH] by (JD) and (2F) 

As it can be seen from the above two figures, the two factors at a time approach almost 

exactly replicates the results found from the joint distribution approach. The maximum 

percentage difference on the E[TH] is 0.00389% while 0.00281% for the uncertainty V[TH]. 

The average difference is 0.000244% for E[TH] and -0.000161% for V[TH]. Few additional 

experiments conducted with six uncertainties confirm the exact replication behavior of the 

two methods.  

5.2.5 Taylor approximation with approximated derivatives 

The following experimental results are the errors reported for the Taylor approximation 

method for two machine single buffer line with four uncertainties. The number of evaluations 

required for the single solutions are 3 evaluations per uncertainty. Therefore 12 evaluations 

are required for four uncertainties. This is comparatively high efficient technique when 

compared to the number of evaluations required for the other techniques. In the previously 

discussed techniques the number of evaluations required was, 120 for one factor at a time, 

5520 for two factors at a time and 810,000 for the joint distribution. 

The errors for this method are shown only for four parameters; a more extended accuracy 

test of this method will be shown for longer lines. This method is more situated for the 

analysis of longer lines as it requires fewer evaluations, where the remaining techniques can 

be difficult because of the long computational time required. The errors are computed with 

respect to results evaluated from Monte Carlo method. 
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Figure 5:33 Errors on E[TH] by Taylor approximation 

 

 

Figure 5:34 Errors on V[TH] by Taylor approximations 

The maximum errors observed on the E[TH] is 0.352% while -1.816% for the uncertainty 

V[TH]. The average errors are on the E[TH] is 0.8522% while -9.098% for the uncertainty 

V[TH]. The summary for the maximum and average percentage errors on with thresholds TH 

are reported in Table 5:4.  

 Monte Carlo 

 E[e] V[e] 

Average Error (%) 0.352 -1.816 

Maximum Error (%) 0.8522 -9.098 

Thresholds (<0.5%) 66% (<5%) 75% 

Thresholds (<1%) all (<10%) all 

Table 5:4 Summary of errors by Taylor approximation 
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5.3 Long multistage lines 

Accuracy tests are carried out on multi-stage lines from 3 to 10 machine lines. The chosen 

reference method in the case of longer lines is the two factors at a time approach. The method 

is selected because for the evaluation of longer a line until a good convergence is achieved 

requires considerable amount of time making the application of Monte Carlo or joint 

distribution approach difficult. Moreover the two parameters at a time approach is shown to 

approximately replicate the results achieved by joint density, with smaller number of runs. 

For brevity results only for five machine line and ten machine lines with uncertain 

parameters are reported. 

The experimental value ranges are used for generating cases for the accuracy testing of the 

long lines are the same as the ones used in the two machine lines. Buffer capacities are varied 

from 3 to 50. The absolute difference between the isolated efficiency of the upstream and 

downstream machine is varied from 0 to 0.5, with minimum isolated efficiency of 0.25 and 

maximum efficiency of 0.99. 

5.3.1 Five machine line with five uncertainties 

 

 

 

Figure 5:35 Errors on the E[TH] by Taylor approximation 
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Figure 5:36 Errors on V[TH] by Taylor approximation 

5.3.2 Ten machine line with 10 uncertainties 

 

 

 

Figure 5:37 Errors on E[TH] by Taylor approximation 

 

 

Figure 5:38 Errors on V[TH] by Taylor approximation 
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5.4 Comparison for Computational efficiency 

Sets of experiments are conducted to show the relative efficiency of some of proposed 

methods. Summary of the run times measured are in seconds and are reported as in the 

following three tables. The experiments are performed for three machine lines for the 

proposed methods including 1, 2 and 3 uncertainties for the joint approach, one factor at a 

time approach (One P) and the Taylor approximation. For the ten machine lines only the one 

factor at a time and the Taylor approximations are compared as the solutions for the joint 

distribution approach doesn’t yield in a reasonable time. 

5.4.1 Three machine line experiments 

In this section, 50 experiments of three machine lines and with one, two and three uncertain 

parameters are carried out to compare the time required using three methods. The average 

time required for evaluating each problem is reported in seconds. Full results are reported in 

Appendix (A.3). 

 THREE MACHINE LINE 

 1 Uncertain 2 Uncertain 3 Uncertain 

 One P Taylor Joint One P Taylor Joint One P Taylor 

Avg 1.44792 0.10798 17.70454 3.69134 0.14724 1748.193 16.94058 0.42038 

Min 0.738 0.06 13.245 1.18 0.049 659.877 6.627 0.186 

Max 2.989 0.201 24.321 10.079 0.531 2574.753 26.955 0.652 

5:5 Execution time required for evaluation of three machine lines 

The average time required for the evaluation of two parameters using one factor a time, 

joint approach and the Taylor approximation are, 17.7, 3.7 and 0.14seconds respectively 

while for three uncertainties the times required increase to  1748, 16.9 and 0.42 seconds. This 

indicates even the time required including for one factor at a time approach can grow quite 

faster than a linear increase of time. This is attributed to the some farthest points in the 

distribution values needed to be evaluated needs more time for convergence for each 

evaluation unlike the central values in the distribution. For the single uncertainty with one 
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factor at a time needed an average evaluation time of 1.44 seconds. This highlights for the 

analysis of multi-stage systems the Taylor approximation is quite valuable even with lower 

precision compared to the discretization techniques. 

5.4.2 Five machine line experiments 

 

 FIVE MACHINE LINE 

 1 Uncertain 2 Uncertain 3 Uncertain 

 One P Taylor Joint One P Taylor One P Taylor Joint 

Avg 16.08944 0.36522 238.7781 65.4342 0.5231 5094.945 144.2502 1.90828 

Min 4.065 0.178 36.635 15.348 0.129 3899.479 35.397 1.17 

Max 44.236 0.734 396.34 136.988 0.977 6087.427 249.263 3.322 

5:6 Execution times required for evaluation of five machine line 

The same conclusion about the comparative time required by each method can be made in 

the case of three machine experiment. The full result of each experiment is reported in 

Appendix (A.4). 

5.4.3 Ten machine line experiments 

 

TEN MACHINE LINE 

5  Uncertain 10 Uncertain 20 Uncertain 

One P Taylor One P TAYLOR One P Taylor 

518.36 22.557 1945.536 51.962 2591.262 188.7 

787.066 14.395 1462.28 77.67 4397.924 149.185 

512.368 26.732 1584.397 53.143 3789.9 155.905 

735.791 15.203 2006.024 44.769 2600.678 194.575 

410.113 24.709 1998.8 57.577 2658.14 147.7575 
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892.917 21.429 2074.962 47.283 3204.302 137.44 

552.242 15.016 2130.644 37.071 5334.076 154.11 

532.991 23.689 1466.624 64.186 5071.631 101.745 

478.523 18.555 1103.6 47.234 3999.955 164.175 

680.833 21.815 1371.97 39.552 3200.816 133.6025 

 

5:7 Execution times required for evaluation of ten machine line 
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Chapter Six 

 

6. System Behavior 
This section discusses the behavior of systems under uncertainty. Behaviors exhibited 

under single isolated machine cases are already discussed in section 4.2.1 with accompanying 

exact analytical explanations and proofs. The particular aim of this section is to discuss the 

behavior of performance evaluation of multi stage production systems under uncertainty. 

First the behavior of two machine single buffer lines is studied. Generalized behaviors are 

discussed by grouping peculiar behaviors common to the specific class of systems. Taylor 

approximation technique is used on the two machine lines to explain behaviors with the 

objective of relating output distribution to input uncertain parameter distributions. 

Confirmatory experiments are run using discretization techniques for the accuracy of the 

observed behaviors.  

Later the behavior of multi stage long lines is investigated when reliability parameters are 

uncertain estimates. Generalized behaviors are given for distinct configurations with 

additional classifications, such as with respect to the bottle neck resources are provided to 

explain certain important behaviors. 

6.1 Two machine lines 

First the impact of individual input parameter distributions on the output the distribution of 

average throughput TH is discussed. The comparative difference between performance 

evaluation results obtained by ignoring uncertainty and including it with a single uncertainty 

is considered. Cases are defined where conclusive results are obtained on the possible 

overestimation or underestimation of average throughput TH. The next sections investigate 

the relationship between the uncertainty of the average throughput (TH) with respect to the 

uncertainty of the input parameters. These general behaviors are discussed for specific 
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classes of systems based on the distribution of the isolated efficiency of the machines and the 

intermediate buffer. 

6.1.1 Expected value of the average TH, E[TH] 

Considering each of the individual uncertain reliability parameters possible performance 

deviations errors that could be committed by ignoring uncertainty are investigated. At the 

beginning the impact of uncertainty in failure probabilities and the consequence of ignoring 

these uncertainties in pu and pd is discussed. The resulting behaviors are explained using 

exact Taylor approximation technique and corresponding parameters. 

As demonstrated in the cases of isolated machine neglecting input parameter uncertainties 

from performance evaluation can be lead to either underestimation or overestimation of the 

average TH. This behavior is also investigated in the two machine line case for the cases 

where the direction of the performance can be predicted conclusively and also for cases 

where the deviation can’t be generalized.  This property can be well explained using the 

second order partial derivative of the uncertain parameters. The goal of this section is also to 

see whether the possible errors could be over estimation or under estimation that can be made 

if uncertainty is ignored. 

6.1.1.1 Uncertain pu and pd 

In this case the two machine single buffer line with single failure mode as given in the 

(Gershwin-Berman) model is considered. Either the upstream failure probability pu or the 

downstream failure probability pd can be assumed uncertain. Counter examples with second 

order Taylor approximation can be sufficient to show the behavior of the performance 

deviation that can be made. In this particular case a two machine single buffer line with the 

upstream and downstream machine having identical efficiencies are used. In this case the 

repair probabilities for both machines ru and rd are considered to be precisely known values. 

Using second order Taylor approximation for the expected average throughput of the two 

machine line E[TH] can be approximated as: 

For the upstream failure probability this can be approximated as:  
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       (6.1) 

The same expression can be written for the remaining three parameters. We begin with 

plotting the first and second order derivatives against different levels of intermediate buffer 

capacities. Input parameters for the experimental output reported in Figure 6:1 are provided 

in Table 6:1. 

The first derivative 
u

TH

p

∂

∂
 is given in equation (4.89). The detailed expression is not provided 

for the second derivative 
2

2

u

TH

p

∂

∂
 for sake of brevity. 

 

µpu ru µpd rd N 

0.025 0.1 0.025 0.1 3-50 

 

Table 6:1 Input parameter values for two machine line with uncertain pu and pd 

  

 

Figure 6:1 First order and second order partial derivatives of TH for a two machine line 
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In Figure 6:1 the first and second order derivative values for both the pu and pd are 

overlapping since the two machine line is composed of identical isolated machines. As it can 

be seen the axis for the first order derivatives (right hand axis) the values are always 

negative. Even if it is not our prime interest here to discuss the behavior of the first order 

derivative it can be noticed that the values are always negative as the average throughput is a 

negative function of both the failure probability pu and pd.  

The interesting parameter in explaining if the consequence of ignoring uncertainties will be 

underestimation or overestimation is the second order derivative as written in equation 6.1. 

For the parameters combinations where the second order derivative is positive the deviations 

by ignoring uncertainty will be less than that of the analysis introducing uncertainty, i.e., 

underestimation. But observing from the given counter example it can be seen that for the 

given particular parameter combinations the second order derivatives are greater than 0 for 

buffer capacity less than 13. Consequently analysis that ignores uncertainty in this region will 

introduce underestimations. On the other hand for the same case, the second order derivatives 

with buffer greater than 13 are negative. This introduces an overestimation if the uncertainty 

of either the pu or pd is not included in the analysis. 

From the above counter example itself it can be concluded that the possibility of 

underestimation or overestimation depends on the particular parameter values and buffer 

configurations. Unless all the parameters are available a conclusive decision on the direction 

of performance deviation can’t be generalized. To back up this conclusion randomly 

generated experiments are run with uncertain failure probabilities on the upstream and 

downstream machine. The repair probabilities for both machines are considered to be known 

precisely. The resulting comparison between the expected average throughput E[TH] by 

neglecting the uncertainty and the analysis with uncertainty are reported in Figure 6:2. A 

maximum underestimation error of -10.7 % is observed; while in some specific 

configurations more than 15% of performance deviations are found. 
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Figure 6:2 Underestimation and overestimations on E[TH] by neglecting uncertainty in pu and pd 

6.1.1.2 Uncertain ru and rd 

The same analysis is performed as in the previous case while in this case a two machine 

line having both machines having identical efficiencies is considered. The repair probabilities 

for both machines ru and rd are considered uncertain estimates. The second order Taylor 

approximation for the expected average throughput can be written as in the previous case for 

the E[TH] with respect to ru and rd. 

For the upstream repair probability this can be approximated as:  

2
2
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µ σ
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∂
 A similar approximation can be applied for the downstream 

repair probability rd. 

The first derivative 
u

TH

r

∂

∂
 is given in equation (4.90), while the expression for second order 

derivative 
2

2

u

TH

r

∂

∂
 is left to avoid complexity. The same counter example is used as in the 

above case to see the impact of the distribution of average throughput for a two machine line.  

pu µru pd µrd N 

0.025 0.1 0.025 0.1 3-50 

Table 6:2 Reliability input parameters for two machine lines with uncertain ru and rd 
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Figure 6:3 First order and second order partial derivatives of TH 

The same observation can be made as in the case of uncertain pu and pd. From the first 

order derivatives (right hand axis) it can be see that the average throughput is always a 

positive function of ru and rd. In this specific case the second order derivatives are always 

negative with respect to ru and rd. Although not provided here the numerical evaluation of 

second order derivatives for all possible parameter values have shown that this quantity is 

always less than 0 for any given configuration and precisely known pu and pd.  

Consequently an analysis neglecting uncertainty in repair probabilities while pu and pd are 

precisely known introduces a consistent over estimation of the average throughput E[TH]. 

Confirmatory experiments from 50 randomly generated two machine lines with uncertain 

repair probabilities and certain failure probabilities are evaluated. The expected average 

throughput E[TH] is always less than the value obtained ignoring the uncertainty. Figure 6:4 

shows this consistent overestimation in percentage on the E[TH]. 
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Figure 6:4 Overestimation on a two machine line by excluding the uncertainty in ru and rd 

If all the parameters in a two machine single buffer line are considered uncertain depending 

on the specific distributions either underestimation or overestimation can be committed in the 

expected value of the average throughput. 
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6.1.2 Uncertainty in variance for the average TH 

The previous analysis aims to understand the impact of performance analysis with 

uncertain parameter estimates particularly on the expected value of the performance measure 

E[TH]. The objective of the analysis in this section is to investigate the uncertainty of the 

average throughput measure in variance, V[TH] in a two machine line with respect to 

parameter settings and buffer capacity. It is of special interest to understand how uncertainty 

in reliability estimation and the buffer capacity impacts the resulting uncertainty in the 

performance measure. Such type of analysis helps to understand and how to better address 

and reduce uncertainty by focusing on optimal reduction of uncertainty from input 

parameters. On the other hand it also shows the impact of the buffer capacity and how it can 

be used as a means to reduce uncertainty.   

For the sake of making a better summary on the behavior of two machine lines, instead of 

analyzing specific cases with respect to individual parameter three general behaviors that are 

characteristic to the two machine line system are discovered. The three general behaviors are 

based on the distribution of the isolated efficiency of the individual machines that compose 

the two machine line and the corresponding buffer configuration. 

6.1.2.1 Case 1: Highly reliable machine with higher uncertainty 

This case is characterized by two machine single buffer lines having the following 

configurations. The isolated efficiency of the upstream machine and downstream machine are 

significantly different.  The machine with high isolated efficiency has the higher uncertainty 

on the isolated efficiency and the lower isolated efficiency machine has very low uncertainty 

on isolated efficiency. Moreover the difference between these uncertainties in the isolated 

efficiency must be significant. Generally two machine lines that fall in these categories can 

be expressed as follows. 

1. ( [ ] [ ]) ( [ ] [ ])
u d u d

E e E e Var e Var e∧� �  

2. ( [ ] [ ]) ( [ ] [ ])
u d u d

E e E e Var e Var e∧� �  
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In this scenario we are interested in understanding the effect of increasing buffer capacity 

on the expected value E[TH] and the uncertainty V[TH] of the average throughput. The input 

parameters used for the analysis are in Table 6:3 

The following parameters are used for this test case: 

pu ru pd rd N 

Beta(5,45) Beta(14,15) Beta(17800,50000) Beta(8600,18000) 3-100 

Table 6:3 Reliability input parameters for two machine lines with uncertain ru and rd 

The first two moments of the isolated efficiency of the upstream machine and downstream 

machines are reported in Table 6:4. 

E[eu] V[eu] E[ed] V[ed] 

0.8290 0.003794 0.5516 0.0000739 

Table 6:4 Expected value and uncertainty of the isolated efficiencies in the two machine line 

The results are evaluated from buffer capacity of 3 to 100. As shown in Figure 6:5 the 

average throughput obviously increases with increasing buffer capacity, while the uncertainty 

of the average throughput V[TH] goes decreasing close to the value of the uncertainty of the 

isolated efficiency of the less reliable machine. 

 

Figure 6:5 Expected value E[TH] and uncertainty V[TH] of the average throughput 
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It this discussion it is of a particular interest to explain the observed behavior of the 

uncertainty in the average throughput, V[TH]. To accomplish we will make use of the first 

order partial derivatives with respect to the uncertain parameters that can be used to 

approximate V[TH] with a first order Taylor approximation. 

 

Figure 6:6 First order derivative with respect to uncertain parameters 

Following the same example the evaluation of the first derivative provide the specific 

behavior as shown in Figure 6:6. Generally two machine lines with the above condition will 

have this kind of configuration for their first order derivatives when plotted against the 

intermediate buffer capacity. The two lines below the zero line are the derivatives of the 

failure probabilities, as the throughput is a decreasing function of the failure probability. The 

bottle neck machine is the one that is farthest from the central line in this case colored in 

purple. While the failure probability of the higher isolated efficient machine is closer to the 

zero line. The same can be said about the trend of the derivatives with respect to the repair 

probability. The farthest line from the center, in this case the light blue is the derivative with 

respect to the repair probability of the bottleneck machine. 

Since the first order approximation of the uncertainty of the average throughput is given as: 
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The square of the derivatives are approximate coefficients of the input uncertainties. 

Therefore squaring the values in Figure 6:6 gives the results shown in Figure 6:7. The 

coefficients associated to the bottleneck machine in this case 

2

d

TH

p

 ∂
 

∂ 
and 

2

d

TH

r

 ∂
 

∂ 
will have 

higher magnitudes and increase with increasing buffer capacity. On the other hand 

parameters associated with the high isolated efficiency machine Mu are close to zero and 

decrease with decreasing buffer capacity.  

 

Figure 6:7 Coefficients of the variances of the input parameters (square of first derivatives) 
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very small coefficients which makes the overall result to be small. It can be seen the purple 
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Figure 6:8 Uncertainty from each parameter of a two machine line 

 

6.1.2.2 Case 2: Less reliable machine with higher uncertainty 

These cases can be considered as the exact opposite of case 1. They are characterized by 

two machine single buffer lines having the following configurations. The isolated efficiency 

of the upstream machine and downstream machine are significantly different.  The machine 

with high isolated efficiency has lower uncertainty of the isolated efficiency.  The machine 

with lower isolated efficiency machine has higher uncertainty of the isolated efficiency. In 

this case also the difference between these uncertainties in the isolated efficiencies must be 

significant.  

Two machine lines in this category satisfy the following two conditions. 

1. ( [ ] [ ]) ( [ ] [ ])
u d u d

E e E e Var e Var e∧� �  

2. ( [ ] [ ]) ( [ ] [ ])
u d u d

E e E e Var e Var e∧� �  

The same steps as in case 1 are employed for the analysis of this scenario with the objective 

to understand the effect of increasing buffer capacity and the uncertainty in the average 

throughput V[TH]. 
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The following parameters are used for this test case: 

pu ru pd rd N 

Beta(4, 1650) Beta(14,47) Beta(7,90) Beta(4,21) 3-100 

Table 6:5 Reliability input parameters for two machine lines with uncertain ru and rd 

E[eu] V[eu] E[ed] V[ed] 

0.9880 0.0000404 0.6655 0.01726 

Table 6:6 Expected value and uncertainty of the isolated efficiencies in the two machine line 

 

 

Figure 6:9 Uncertainty V[TH] as a function of buffer capacity 
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previous case. Extending the same demonstrations used above with Taylor first order 

approximation, the next two graphs show the derivatives with respect to each parameter of 

the two machine line. 
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Figure 6:10 First order derivative with respect to uncertain parameters 

Using the first order approximation of V[TH] as used in case 1, then the coefficient of each 

parameters uncertainty will be the square of the values given in Figure 6:10 and the 

corresponding results are as shown in Figure 6:11. 

 

Figure 6:11 Square of the first order derivative with respect to uncertain parameters 
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and the squared derivative is reported Figure 6:12, with the sum superimposed on the right 

axis.  

 

Figure 6:12 Weighted derivatives squared 

6.1.2.3 Case 3: intermediate cases with uncertainty 

This case includes conditions that the machine with not having significant difference in 

their isolated efficiency or machines that are not significantly different in the uncertainty of 

the isolated efficiency. All two machine lines that don’t properly fall in the extreme case 1 or 

case 2 categories would generally have this form of curve for the uncertainty in the TH for 

increasing buffer capacities. The shape can take different forms depending on the particular 

values considered for the analysis. But the general configuration is a decreasing uncertainty 

to some level and the uncertainty starts to rise after some level. 
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The following parameters are used for this test case: 

pu ru pd rd N 

Beta(4,45) Beta(28,30) Beta(178,500) Beta(86,180) 3-100 

Table 6:7 Reliability input parameters for two machine lines with uncertain ru and rd 

E[eu] V[eu] E[ed] V[ed] 

0.8290 0.003794 0.5508 0.000746 

Table 6:8Expected value and uncertainty of the isolated efficiencies in the two machine line 

Two machine single buffer lines with comparable expected isolated efficiencies and 

uncertainty show widely varied types of curvatures. These curves have a common trend 

having a decreasing uncertainty and an inflection point and an increase in uncertainty for 

higher buffer capacities. The drop and the rise can be sharp as seen in Figure 6:13 or a slight 

drop and slight increase over a wide range of buffer capacities depending on the particular 

parameters characterizing the two machine line. This unique behavior is also explained with 

the first order partial derivatives for Taylor approximation. 

 

Figure 6:13 Uncertainty V[TH] as a function of buffer capacity 
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Figure 6:14 First order derivative with respect to uncertain parameters 

In this case since the machine with higher efficiency has a moderately higher uncertainty 

and the bottle neck machine has smaller uncertainty in the isolated efficiency. Therefore as it 

is in Figure 6:14 the first order derivatives of the downstream machine Md are the farther 

away from zero and having the bigger magnitude when square as in Figure 6:15. The 

coefficients of the input uncertainties, i.e., the squared derivatives of the downstream 

machine are both increasing while same parameters for the upstream machine Mu they are 

decreasing. There are two factors that contribute for the overall trend of the uncertainty in the 

throughput of the two machine line. The first one is the rate of increase of the coefficients of 

the lower isolated efficiency machine and the decrease of the coefficients of the higher 

efficiency machine. The second factor is the input uncertainties associated to each uncertain 

parameter that multiplied these coefficients. In this specific case the input uncertainties for 

the parameters of the upstream machine are higher. For the first few additional buffer 

capacities there is a drop for these coefficients, but this value drops to zero after some 

threshold. The product of input parameters and the coefficients gives a significant drop at the 

beginning while in the later additional buffers the high efficiency machine doesn’t have 

impact since the coefficients for the input uncertainties goes to zero. In this region the system 

more influenced by the increase of the derivative coefficients that result from the less 

efficient machine. The overall contribution of uncertainty from the individual input 

parameters and the total uncertainty of the two machine line is reported in Figure 6:16, with 

the sum superimposed on the right axis.  
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Figure 6:15 Square of the first order derivative with respect to uncertain parameters 

 

 

Figure 6:16 Weighted derivatives squared 
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6.2 Long Multistage Lines 

Behavior analysis carried out on two machine single buffer lines with uncertain parameter 

estimates highlighted the significant role of the bottleneck machine on the overall uncertainty 

of the system performance measure. Considering the bottleneck machine’s importance in the 

determination of system’s uncertainty, it can be a basis for categorizing systems and 

understand expected the behavior of the systems under alternative buffer configurations. This 

section aims to generalize the uncertainty in performance measure of long multi-stage lines. 

The set of systems are classified into three categories with respect to the low efficiency 

(bottleneck) machine. 

6.2.1 Impact of bottle neck on the propagation of uncertainty 

Although these behaviors are general for any length of multistage line for simplicity a case 

with four machines line is used for demonstration. Each of the three machines has equal 

uncertainty of their isolated efficiencies, with only one of the machine characterized by lower 

efficiency than the rest of the machines in the lines. As in the case of the two-machine single 

buffer case the long lines can be treated in three distinct categories on the basis of the bottle 

neck machine. 

Considering the four machine line system with the following parameters we will see the 

effect of intermediate buffer in three categories of systems. But the behaviors are exhibited 

by general multistage lines systems depending on the relative position of the uncertainty and 

the specific reliability parameters.  

 

Figure 6:17 Four machine line with uncertain parameter estimates 
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6.2.1.1 Case 1: Lower uncertainty on the bottle neck machine 

This case is characterized by multi-stage lines where the machine with significantly lower 

isolated efficiency than the rest of the machines has also a significantly lower uncertainty of 

the isolated efficiency compared to the other machines in the line. The location of the 

machine can impact the uncertainty on the average throughput of the line. Even through the 

location of the machine in the line can have an impact the general trends when the buffer 

capacity increase has the same trend on the uncertainty and expected value of TH. The two 

machine single buffer line that was discussed in the behavior analysis of the two machine 

lines can be considered as a specific case of these lines. For demonstrating this behavior a 

four machine line with the following reliability parameters and buffer capacity range is 

investigated. The line is equally buffered and the buffer capacity is increased equally in all 

the buffers for each experiment. 

Machine  Buffer Failure Repair 

Mi Ni pi ri 

1 5-100 Beta(5,354.85) 0.1 

2 5-100 Beta(5,354.85) 0.1 

3 5-100 Beta(535.4,35485.4) 0.025 

4  Beta(5,354.85) 0.1 

Table 6:9 Input parameters considered for case 1 

From the above data the third machine M3 is the machine with minimum isolated efficiency 

and at the same time the machine with smaller uncertainty. The evaluated expected value and 

uncertainty of the isolated efficiencies are reported in Table 6:10.  

E[e3] V[e3] E[e1,2,4] V[e1,2,4] 

0.6562 0.000010464 0.8796 0.002120 

Table 6:10 Expected value and uncertainty of the isolated efficiencies in the four machine line 
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Figure 6:18 Expected value E[TH] and uncertainty V[TH] as a function of N 

 

A similar analysis using the approximated partial derivatives for the approximation of the 

uncertainty in TH by Taylor expansion can be performed as the two machine lines. As shown 
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capacities. This behavior of the line can be explained as follows. For smaller buffer 

capacities the starvation and blocking with the corresponding uncertainty of even the more 

efficient machines also have a significant impact resulting higher uncertainty for the whole 

line. On the other hand when the buffer capacity is increased the propagation of starvation 

and blocking goes down minimizing the propagation of uncertainty at the same time. The 

whole behavior of the line becomes dependent on the less efficient machine and the 

performance also becomes closer to this machine. The expected value and the uncertainty of 

the throughput become closer to the expected value and uncertainty of the isolated efficiency 

of the bottle neck machine. 
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0

0.0001

0.0002

0.0003

0.0004

0.0005

0.53

0.55

0.57

0.59

0.61

0.63

0.65

4 24 44 64 84

E[TH]

V[TH]

E
x
p
e
c
te

d
 t

h
ro

u
g
p
u
t 

 E
[T

H
] 

U
n
c
e
rt

a
in

ty
 i
n
 T

H
 V

[T
H

] 

Buffer Capacity (N)



 

165 

 

bottleneck machine is the one having the higher uncertainty on the isolated efficiency 

compared to the rest of the machines in the line. The two machine single buffer line that was 

discussed in the behavior analysis of the two machine lines under case 2 can be considered as 

a specific case of these lines. In this experiment we use again a four machine line with the 

following reliability parameters and buffer capacity ranges. The line is equally buffered and 

the buffer capacity is increased equally in all the buffers for each experiment. 

Machine  Buffer Failure Repair 

Mi Ni pi ri 

1 5-100 Beta(500,35485.4) 0.1 

2 5-100 Beta(500,35485.4) 0.1 

3 5-100 Beta(5,354.85) 0.025 

4  Beta(500,35485.4) 0.1 

Table 6:11 Input parameters considered for case 2 

From the above data the third machine M3 is the machine with minimum isolated 

efficiency and at the same time the machine with smaller uncertainty. The evaluated expected 

value and uncertainty of the isolated efficiencies are reported in Table 6:12.  

E[e3] V[e3] E[e1,2,4] V[e1,2,4] 

0.6562 0.009611 0.8774 0.00022696 

Table 6:12 Expected value and uncertainty of the isolated efficiencies in the four machine line 

 

Figure 6:19 Expected value E[TH] and uncertainty V[TH] as a function of N 
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The same explanation made for case 1 suffices for the behavior seen in Figure 6:19. For 

smaller buffer capacities the starvation and blocking with the corresponding uncertainty of 

even the more efficient machines also have a significant impact resulting higher uncertainty 

for the whole line. Even though the bottleneck machine has higher uncertainty the line is 

impeded with the other more precisely known machines which decrease the overall 

uncertainty of the line. When the buffer capacity is increased the propagation of starvation 

and blocking goes down minimizing the propagation of uncertainty at the same time. In this 

case also the whole behavior of the line becomes more dependent on the less efficient 

machine and the performance also becomes closer to this machine. The expected value and 

the uncertainty of the throughput become closer to the expected value and uncertainty of the 

isolated efficiency of the bottle neck machine. Looking on Table 6:12 the expected value of 

the isolated efficiency of the bottleneck machine and the Figure 6:19 for larger buffer 

capacity indicate this behavior.  

6.2.1.3 Case 3: intermediate cases 

Most of relatively balanced lines that don’t have one bottleneck machine which doesn’t 

have a significantly higher or lower uncertainty from the rest of the machines in the line fall 

in this category. Therefore machines that don’t fall under case 1 or two will show such 

behavior. This includes also multistage lines composed of machines with identical isolated 

efficiency with separated by equal buffer capacities. The two machine single buffer line that 

was discussed in the behavior analysis of the two machine lines under case 3 can be 

considered as a specific case of these lines. In this experiment we use again a four machine 

line with the following reliability parameters and buffer capacity ranges. The line is equally 

buffered and the buffer capacity is increased equally in all the buffers for each experiment. 

Machine  Buffer Failure Repair 

Mi Ni pi ri 

1 5-100 Beta(5,354.85) 0.1 

2 5-100 Beta(5,354.85) 0.1 

3 5-100 Beta(5,354.85) 0.025 

4  Beta(5,354.85) 0.1 

Table 6:13 Input parameters considered for case 3 
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From the above data the third machine M3 is the machine with minimum isolated efficiency 

and at the same time the machine with smaller uncertainty. The evaluated expected value and 

uncertainty of the isolated efficiencies are reported in Table 6:14.  

E[e3] V[e3] E[e1,2,4] V[e1,2,4]  

0.6562 0.009611 0.87959 0.002120 

Table 6:14 Expected value and uncertainty of the isolated efficiencies in the four machine line 

 

Figure 6:20 Expected value E[TH] and uncertainty V[TH] as a function of N 

These curves have a common trend having a decreasing uncertainty and an inflection point 

and an increase in uncertainty for higher buffer capacities. The drop and the rise can be sharp 

as seen in Figure 6:20 or a slight drop and slight increase over a wide range of buffer 

capacities depending on the particular parameters characterizing the multi-stage line. 
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6.3 Contribution of uncertainty in long lines 

In complex multi-stage lines there might be many parameters that must be estimated from 

real data and known with uncertainty. For an improved certainty on the performance measure 

it is essential to know where the proportions of the uncertainties arise from. For instance a 

higher uncertainty in a highly efficient machine might not affect the uncertainty as if the 

same level of uncertainty is generated by the bottleneck machine. Therefore in addition to 

evaluating the total uncertainty of a performance measure of the whole system, it is equally 

important to know how much of the total uncertainty is contributed by each uncertain 

parameter. The main focus of this section is investigating such analysis on multistage lines 

particularly equally buffered lines and their behavior under uncertainty.  

Generally higher uncertainties in the input parameter increase the uncertainty in the output 

performance, although the magnitude and the impact of each uncertainty vary depending on 

the system structure. In this case it is particularly interesting to investigate systems with 

identical uncertainties on systems having special configurations, such as equally buffered 

lines. These behaviors in longer lines the following experiments are conducted on longer 

lines constituting identical machines. The percentage contribution of uncertainty on the 

performance measure in this case TH by an uncertain parameter x is evaluated as: 

[ ] |
100%

[ ]
x

V TH x
u

V TH
= ×  

6.3.1 Multi-stage lines with uncertain identical machines 

In order to study longer lines with identical uncertain machines, lines composed of from 3 

-15 identical machines with equal buffers are investigated. The general system behavior 

analysis done is similar even for longer lines. The machines in the line are the same with the 

following parameters and the results are reported for 3, 5, 10 and 15 machine lines.  

 

Figure 6:21 Multistage lines with identical machines 
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 Mi 

pi Beta(5,355) 

ri 0.05 

Ni 5 

Table 6:15 Machine parameters for each machine in the line 

 

Figure 6:22 Uncertainty contribution in three machine and five machine lines 

From Figure 6:22 it can be seen that the contribution o uncertainty from the machine at the 

middle of the line is bigger than the machine at the entrance and end of the line. This can be 

verified by computing the partial derivative of the average throughput TH with respect to the 

individual uncertain parameters. For instance in the case of the three machine line case the 

relationship of these derivatives can be written as follows. Studies for optimal buffer 

allocation problem also back up this behavior. A gradient method for the buffer allocation 

problem shows the highest gradient in a equally buffered identical machines line puts more 

buffers in the middle of the line. 
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Figure 6:23 Uncertainty contribution in 10 machine and 15 machine lines 

Another important observation to make from these graphs is the relative contribution of the 

lines in the middle and the external machines. If the tree machine line and the five machine 

lines are compared, the three machine line has an approximated ratio of (1.16:1), while for 

the five machine line this ratio is (1.5:1). This ratio is even wider for lines with many 

machines; for the 10 and 15 machine lines that ratio is (3:1) and (5.8:1). Even though this 

number is not a particular measure for allocating the necessary amount of improvement on 

the input uncertainties it can be used as a rough approximate of the relative importance of 

monitoring the particular machine.   

6.3.2 Effect of buffering on the contribution of uncertainty 

The aim of this experiment is to investigate the impact of more and uniform buffering on 

the relative contribution of uncertainty. The same machine parameters used in the previous 

experiment are considered here.  Equal buffers with increasing size are used. Each buffer 

capacity is increased from 5, to 10 and 20 and the resulting relative contributions of 

uncertainty are reported in Figure 6:24. Results from multi-stage lines with the number of 

machines 5, 9 and 15 are reported in Figure 6:24-6:26. 
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Figure 6:24 Uncertainty contributions in five machine line with three buffer capacities 

The results in Figure 6:24 show that when the buffer capacity of the increased with more 

equal size capacities then the contribution difference between middle machines and external 

lines even gets more wider. This also how a simple uniform increase of the buffers on the 

line is not only in less appropriate allocation to bring more impact both on the average 

throughput but also neglects the possible improvements that can be brought to decrease the 

corresponding uncertainty in the average throughput.  

 

Figure 6:25 Uncertainty contributions in 9 machine line with different N 
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Figure 6:26 Uncertainty contribution in 15 machine line with different N 

From the above graphs even when the machine line is longer the difference between the 

relative contribution of uncertainty between the most inner machines and the outer machines 

gets bigger as more buffer resources are allocated in a simple uniform manner. For instance 

for a buffer allocation of 5 buffers between each machine the ratio is (5.68:1) between the 

inner machines and the outer ones, but when the intermediate buffer capacity is increased to 

20 this ratio further grows to (25.5:1). This can be an indicator on appropriate decisions from 

different perspectives.  The first one is if the configuration has to remain the same for other 

productivity objectives then the improvement action to ensure more certainty on the output 

performance measure is to reduce input uncertainties on the machines that are located in the 

middle of the line. Alternatively if the decision lets the system to be reconfigured then a 

buffer reconfiguration that reduces the uncertainty in the middle of the lines there by 

decreasing the uncertainty of system performance can be addressed.  
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6.3.3 Uncertainty and line length 

From system design point of view it is also an important aspect to understand how the 

uncertainty of individual machines that compose a multistage system would impact the 

overall uncertainty of the system performance. This problem is a particular interest as most 

production systems are interconnected systems, where simplified statistical assumption, such 

as independence might result bigger deviations from the real behavior of the line. For 

instance if one assumes that the presence of buffers between machines makes the 

uncertainties to be approximately independent, then the expectation of this assumption might 

be when more machines are introduced to make up a line then the uncertainty of the line 

would increase. One objective of this analysis is also providing answers to a general expected 

behavior that result from the combination of uncertain machines. For this goal a sample 

behavior of longer multistage system composed from identical uncertain machines with 

increasing line length is demonstrated below. All the machines in the line are identical and 

reliability parameters of the machines are as provided in Table 6:15. All the intermediate 

buffer capacities used are 5 for the results reported in Figure 6:27.  

 

Figure 6:27 Average TH with increasing machine number in a line 
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On the above Figure 6:27 the analysis is done starting from a three machine line to 15 

machine line. The isolated efficiency of each individual machines are identical and E[e] = 

0.7881 and V[e] = 0.0052295. It is known from average system performance studies that the 

average throughput of the line composed of isolated machines goes decreasing as the number 

of machines increase due to the starvation and blocking phenomena that is introduced with 

each unreliable machine. This impact is shown in Figure 6:28 for three intermediate buffer 

capacities. The decrease in the average throughput is even significant with increasing number 

of machines as smaller buffer capacity means more probability of the line to be blocked and 

starved due to propagation of the two phenomena. 

The uncertainty of the average throughput also decreases with increasing number of 

machines as in the sample case provided in Figure 6:29. It is important to know that even if 

the building blocks have an uncertainty on the isolated efficiency 0.00523, the line that is 

built from these machine has always has smaller uncertainty on the average throughput. For 

instance the 15 machine line that is made of from these uncertain building blocks has an 

uncertainty of 0.000558, which is approximately 1/10
th

 of the isolated machines uncertainty. 

 

 

Figure 6:28 E[TH] with increasing line length 
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Additional experiment investigated the impact of more buffer on the uncertainty of a line is 

reported in Figure 6:29. 

 

Figure 6:29 Uncertainty of average throughput V[TH] with increasing line length 
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of the system particularly indicating which machine should be monitored so that a better 

performance evaluation is achieved. This type of analysis leads to understand and how to 

better address and reduce uncertainty by focusing on optimal reduction of uncertainty from 

input parameters and specific system configuration. Similar analysis can provide an essential 

insight on how to reconfigure systems and how to allocate monitoring effect in a joint 

manner for a reliable operation of systems guaranteeing target performances.   
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Chapter Seven 

 

7. System design under uncertainty 

In the previous chapters it is introduced how performance analysis can be performed with 

uncertain parameters. It is also shown how uncertainty in input parameter estimation impacts 

the output performance measure uncertainty. Furthermore the analysis on multistage lines has 

shown how a system configuration can impact the performance measure uncertainty. 

Analysis on two machine line system is also investigated to demonstrate how a particular 

choice of system configuration also affects the uncertainty in the output performance given 

the same input parameters. The objective of this chapter is also addressing these problems 

from the two perspectives on reducing input uncertainty and choice of system configuration. 

The first section addresses how to better allocate sampling and data collecting efforts and 

resources in order to optimally reduce input uncertainty. The second views the problem on 

how to address the uncertainty reduction and design of robust system with configuration 

decisions. 

7.1 Uncertainty reduction by optimal design of sample collection  

This section introduces a technique for the optimal design of a sampling plan with the aim 

of reducing the uncertainty on the output performance measure. The technique shows how to 

improve the estimation of the output performance by reducing the input uncertainty 

particularly by aiming the reduction of uncertainty on those parameters which highly 

contribute to the output uncertainty. The sampling plan is made so that the allocation of 

resources for the acquisition and storage of new observations is done to bring higher impact 

on the output uncertainty performance measure. Periodic sampling plan is designed ahead for 

a period time T and then after actual observation is made the posterior distribution of 

parameters is updated using the Bayesian approach introduced in previous sections so that 
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higher marginal improvement on the overall uncertainty of the output performance is 

achieved. 

The assumptions made in this case are the behavior of the system parameters remain 

relatively the same and a planning period of time T is determined a priory.  The problem can 

be formulated under constrained resources assumptions, such as the number of sensors to be 

activated at a time or the maximum number of acquisition modules to be activated in a single 

unit time is a capacitated resource. 

The method uses a gradient approach on the output performance uncertainty model as a 

function of the parameter uncertainty. The model uses the sensitivity coefficients matrix and 

the individual marginal reduction of uncertainty in terms of variance for the input uncertain 

parameters.  

[ ]V TH =
1 2 3, , , ....., up p p pσ σ σ σ ×
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σ

   (7.1) 

If the systems uncertainty is well approximated by the main factors of the parameters, which 

are indicated in the diagonal elements of the matrix in equation (7.1) as in the case for most 

of larger systems with many uncertain parameters the above matrix format can be simplified 

into a linear model as: 

2 2 2 2

11 1 22 2 33 3[ ] ......
uu u

V TH a p a p a p a pσ σ σ σ= + + + +     (7.2) 

 Starting with the current uncertainty values of the parameters obtained from the previous 

observations for each uncertain parameter, we can compute the expected difference of the 

updated uncertainty of the new uncertainty with the additional observations planned to be 

made. But the expected number of new observations depends on the mean time to occurrence 

of the particular event for that parameter. 

This mean time to occur (observe) designated MTTO can be approximated as:  
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E[TH]

MTTF)(MTTR +
         (7.3) 

If the sampling plan is to be made for next observation window of T time units then the 

vectors of expected number of observation for each parameter iX  can be computed as:  

i
i

MTTO

T
XoE =][          (7.4) 

For a Beta distributed parameter with the parameter iX  the new uncertainty of iX  following 

a Beta distribution can be computed after the inclusion of the new observations is written as: 

The variance of an uncertain parameter iX , which is Beta distributed with parameters 

),( iiBeta βα  can be expressed in terms of its’ variance as: 

( ) ( )1
2

2

++×+

×
=

iiii

ii
i

βαβα

βα
σ         (7.5) 

If it is assumed that the mean of the uncertain parameters to remain relatively the same in the 

next observation time, with this assumption we can write iβ in terms of the number of events 

observed iα  and the mean of the parameter iµ . 

( )

i

iii
i

µ

αµα
β

−
=          (7.6) 

Substituting this expression in the above equation gives the variance in terms of the new 

observations and the parameter mean. 

The initial current uncertainty of the parameters in terms of variance is computed as: 

( )

( ) ( )
2

2

1

i i i
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i
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i i i i i i

i i

i i

p c

α µ α
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µ
σ

α µ α α µ α
α α

µ µ

−
×

=
− −   

+ × + +   
   

     (7.7) 

Furthermore the expected variance after the next set of observations is done is by substituting 

the current alpha updated with the expected number of observations. 
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           (7.8) 

Once we have written the current variance of the uncertain parameter and the expected 

uncertainty after the new expected observations we can compute the potential reduction of 

uncertainty on the output performance measure by each of the input parameters as: 

( ) ( )2 2 2

i ii i ip a p c p nσ σ σ∆ = −        (7.9) 

The above equation gives the vectors of values that give the expected reduction of 

uncertainty on the performance measure if the next observations are to be made on the 

corresponding parameters. 

If the capacity of the resources available is limited to C then the allocation of these resources 

is committed so as to bring the largest reduction of uncertainty on TH and a gradient 

approach can be used starting from the vector which has the higher impact.  

On the other hand problems formulated as a function of cost can be addressed using a 

similar approach, the main changes that must be applied in this case is the introduction of 

unit cost for acquisition of each parameter in the given period and the associated reward on 

the reduction of uncertainty on the output performance measure. This allows defining 

stopping criteria when a breakeven is achieved. The break even is reached when the costs of 

acquiring and collecting more data exceed than the benefits of reduced uncertainty in the 

performance measure. A simple stopping criterion also can be when an acceptable level of 

uncertainty is achieved. 

Optimal design for uncertain parameters of a manufacturing system  

This section introduces a methodology for an optimal design and control of parameters 

during the design phase of a manufacturing system. The problem of designing manufacturing 

systems involves decisions on how much uncertainty of the output performance can cost on 

the long run for an estimated deviation from the target value. 
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If the unit input costs are quantified for performing additional experiments, cost of 

underestimation and overestimation of performance then the long run costs can be grouped 

into the following categories: 

- Cost of uncertainty on the long run: 

Once the distribution of the performance measure is computed using the methods presented 

in chapter 4 then the corresponding Lower Limit (LL) and Upper Limit (UL) can be defined. 

Assuming additional information about a lost performance can be quantified as CU and an 

idle capacity due to over design defined as Co then the following costs can be determined. 

1. LL and UL for the performance measure with the corresponding level of confidence 

have an expected cost 

( )CU UCL LCL RT Cp= − × × Cost of uncertainty can be computed as the probability of 

over capacity and under capacity. RT is the reconfiguration time to change settings of 

the manufacturing system. 

 

 

Figure 7:1 Costs related to underestimation and overestimation 

If the costs of under capacity and over capacity for a unit time are given as Cu and Co , then the 

cost of uncertainty can be computed as: 

Cost of over capacity Cost of under capacity 

Target Performance 
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2. The expected cost of under capacity and can be thought as the number of product 

units that are not met and lost sales in the case of over  capacity it can be thought of 

as  the wasted capacity or  number of over produces per unit time and the total cost of 

uncertainty is computed: 

� * * *

1

n

TH TH C p RTi u i

i

−

=
∑  Cost of underestimation 

� * * *

1

n

TH TH C p RTi o i

i

−

=
∑  Cost of overestimation 

� �* * * * * *

1 1

n n

C TH TH C p RT TH TH C p RTuncert i u i i o i

i i

= − + −

= =
∑ ∑  

Extra observations and additional experiments reduce the dispersion of the output 

performance distribution and probability of farthest point gets smaller. Overall cost of 

uncertainty is expected to drop with the additional experiments as an exponential 

decay depending on the cost coefficients and the performance function. 

 

Figure 7:2 Cost of uncertainty with additional observations 
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The additional experiments are chosen using a gradient approach on the parameters that 

introduce the higher improvement on the output performance and the lower cost in terms of 

obtaining the respective information. Even though these selections are chosen in an optimal 

way there is additional cost associated to them. The decision of steps is also important to 

update the sensitivity matrix and where to make the next experiment both on better cost and 

improved certainty on performance measure. 

 

Figure 7:3 Total cost of additional experiment 

The number of data collection/experiment can be computed per unit or per batch for all 

available option of uncertain parameter. 

The total cost of the optimal decision is expected to have the following configuration giving 

an optimal stopping criteria for the decision making process. 

 

Figure 7:4 Aggregated cost of uncertainty and experiments 
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The uncertainty in the output performance can be computed as a cost in the long run as a 

function of the width associated to a given level of confidence interval. On the other hand the 

costs related to the data collection and analysis can be considered as incremental with respect 

to the number of data that must be collected in order to achieve the desired level of 

confidence in the performance measure. The evaluation of the design problem can be done 

on stages, each stage evaluating the realized improvements and the updated sensitivity 

matrix. Particularly a starting solution is required to estimate the relationship of parameters 

and the corresponding uncertainty related to the output performance measure. The structure 

of the algorithm looks as follows: 

 

Figure 7:5 Structure of gradient algorithm for reconfiguration decision  
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7.2 Buffer allocation under uncertainty 

In this section, the impact of parameters’ uncertainty on the optimal buffer design is 

investigated. The analysis begins with a two machine line single buffer systems based on the 

original formulation. The original buffer allocation problem searches for the minimal total 

buffer capacity that is required to meet a desired target throughput (TH*). However, it is 

solved in the literature only for precisely known input parameters. The objective of this 

analysis is to extend this original formulation and study the impact of uncertainty in input 

parameters on the decision on the subsequent decision on buffer capacity.  

7.2.1 Analysis of buffer allocation in a two machine line 

Traditionally this problem is formulated to determine an optimal buffer capacity when the 

parameters are deterministic. It searches the minimal buffer capacity that satisfies a target 

TH*.  This problem can be analytically solved for two machine lines with single failures, as 

the formula for the average throughput can be determined in a closed form as a function of 

precisely known pu, ru, pd and rd. 

Using the relation between TH and N in (4.62) for the two machine line the Nmin, the 

minimum buffer capacity which satisfies the target average throughput TH* can be 

determined with (7.10). 

min

( )*
*

*2 ( )
*

( )

ed eu ed l
ed l

TH edln Ln x
eu m

N
ln x

− 
− −+ 

  
 =        (7.10) 

Where ln is the natural logarithm function 

When there is uncertainty is introduced in the analysis, the traditional buffer allocation 

problem can be extended to find the minimal total buffer capacity that is required to meet a 

desired throughput level TH*, with a specified probability level,(1-α). Analysis including 

uncertainty in input parameters is important since it introduces a link on how the uncertainty 

in the input parameter impacts the probability in achieving the target throughput TH*. This 

would provide robustness to the system design. In this section, we investigate the relation 
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between the solutions to the original formulation and the new formulation with the 

introduction of uncertainty in a two-machine system with uncertain parameters. 

Applying the methods for the performance evaluation under uncertainty in section 4 such 

as the discretization technique this problem can be solved and the distribution of N* can be 

reconstructed. This distribution then can be used to determine the level of N that satisfies 

TH* with a probability of (1-α), i.e., Nmin = MIN (N | (P (TH ≥ TH*)). 

Therefore when p and/or r are uncertain the problem can be formulated to determine the 

minimum buffer capacity (Nmin) such that N at least guarantees the target throughput TH* 

with a specified probability (1-α). Nmin = MIN(N | (P(TH ≥ TH*)).  

Alternatively the problem can be determining the probability (1-α) that can satisfy a target 

throughput TH* given a buffer capacity N. (1-α) = P(TH ≥ TH*) | N 

To demonstrate the impact of uncertainty in this problem a two machine single buffer line 

with parameters reported in Table 7:1 is analyzed. The problem is to determine a buffer 

capacity that will guarantee a target TH* of 0.8 with a probability of (0.95). This problem is 

solved using both the original formulation and the proposed formulation that includes the 

uncertainty for the upstream failure probability pu. The difference between the two analyses 

is also demonstrated using a graphical interpretation in Figure 7:6. 

pu ru pd rd TH* 

~Beta(5,245) 0.4 0.04 0.4 0.8 

Table 7:1 Parameters for buffer allocation in a two machine line 

N* with respect to the distribution of pu is as shown in the Figure 7:6. 
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Figure 7:6 Buffer capacity determination with uncertain failure probability 

With the original formulation the data necessary for the analysis will be the same as in 

Table7.1, except pu in this case is the expected value, i.e., pu = 0.05. Evaluating the minimum 

buffer capacity Nmin with results; 

Nmin = 1.3 

The results in the above analysis shows that if only the expected value of the failure 

probability without the uncertainty is considered then the optimal buffer capacity that 

satisfies a target TH* of 0.8 is 1.3.  

Under the second formulation if the uncertainty in pu is included and the problem is to 

achieve the same target TH* of 0.8 with a confidence level of  = 0.95, then the choice 

of the buffer capacity that satisfies this criteria is; 

Nmin = 6.2 

The buffer capacity decision that ignores the uncertainty in the estimation of pu i.e., 1.3 can 

only provide a guarantee of 0.57 that the target TH* can be met. Considering there is a high 

probability that this decision fails to attain the target TH* of 0.8 it could lead to a highly 

compromised performance reliability. 
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buffer capacity choice will be. If this is the case then the Nmin for this region with pu > 0.1,  

can be assumed Nmax a defined level of allowed maximum buffer capacity. For this reason 

deriving the decision based on the distribution of N* can be less informative when much of 

the region falls under the infeasible area, where any buffer size can’t satisfy the target TH*. 

This problem instead can be addressed by using the distribution of TH and searching for the 

Nmin that satisfies TH* with a probability of (1-α). 

Evaluation of (1-α) = P(TH ≥ TH*)| Nmin 

Two cases are provided in the alternative problem formulation to compute the P(TH ≥ 

TH*) | Nmin, given pu is uncertain while all the other parameters are considered precisely 

known. The results provide additional view on how the probability of satisfying a TH* varies 

with Nmin. Particularly in the 2
nd

 case, that last row (inf) shows how for the TH* even infinite 

buffer capacity can’t guarantee us beyond a certain probability threshold i.e. P(TH ≥ TH*) | 

Ninf. 

Case 1 

P1 r1 p2 r2 

~Beta(5,245) 0.4 0.04 0.4 
 

N P(TH ≥ 0.8*) |N P(TH ≥ 0.82*) |N P(TH ≥ 0.85*) |N P(TH ≥ 0.9*) |N 

0 0.741 0.513 0.138 0.000 

1 0.992 0.942 0.640 0.001 

3 1 1 0.970 0.031 

5 1 1 1 0.222 

20 1 1 1 0.951 

Inf 1 1 1 0.988 

Table 7:2 Probability of satisfying TH* in a two machine line case 1 

Case 2 

P1 r1 p2 r2 

~Beta(5,245) 0.15 0.04 0.25 
 

N P(TH ≥ 0.8*) |N P(TH ≥ 0.83*) |N P(TH ≥ 0.85*) |N P(TH ≥ 0.86*) |N 

0 0.074 0.004 0.000 0 

5 0.520 0.121 0.003 0 

10 0.780 0.339 0.047 0 

20 0.910 0.660 0.266 0.010 

40 0.953 0.828 0.551 0.182 

inf 0.957 0.872 0.778 0.671 

Table 7:3 Probability of satisfying TH* in a two machine line case 1 
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Determination of buffer capacity from the TH distribution 

In many practical cases observations are obtained from online data collection system with 

each estimated parameter subjected to some level of uncertainty. When decisions have to be 

made based on estimations with limited a high probability of achieving the target TH* can be 

guaranteed with more buffer capacity. As more observations become available the buffer 

capacity can be reconfigured depending on the updated new data coming from the new 

observations. An approximate iterative approach is proposed to solve these problems.  

In this formulation a feasible starting value for Nmin can be obtained such that * | [ ]N N E p<  

by using the expected values of the uncertain parameters. The throughput distribution TH of 

the two machine line the probability *( )P TH TH≥ can be evaluated using one of the 

convenient approaches proposed in chapter 4. Then the process continued by incrementing N 

until the condition *( ) (1 )P TH TH α≥ ≥ − is satisfied and Nmin is determined.  

Generally the first two moments of TH E[TH] and V[TH] are evaluated directly as in the 

Taylor approximation method or the distribution of TH can be available if the analysis is 

done as in the discretization method. In both cases the distribution of TH can be 

reconstructed from the first two moments. Experiments are conducted on the cumulative 

distribution using a Beta approximation against the cumulative joint distribution from direct 

evaluations. The approximations obtained from the two moments have shown the 

approximation errors are less than 3%. The parameters for the approximated beta distribution 

can be evaluated by; 

2 3[ ] [ ] [ ] [ ]

[ ]
TH

E TH E TH E TH V TH

V TH
α

− −
=        (7.11) 

2 3[ ] 2 [ ] [ ] [ ] [ ] [ ]

[ ]
TH

E TH E TH E TH V TH E TH V TH

V TH
β

− + − +
=       (7.12) 

Given the distribution of TH as ( ),TH THBeta α β and its density ( )THf TH , can be used to 

evaluate the probability ( *)P TH TH≥ =1 ( *)
TH

F TH− . 
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 Equivalently ( *)P TH TH≥ =

*

0

1 ( )

TH

THf TH dTH− ∫ . 

An iterative incremental algorithm is proposed to find the minimum Nmin following the 

structure shown in Figure 7:8. If a probability level (1-α) is defined and starting feasible the 

buffer capacity N is increased with a chosen step size the iteration is continued until 

*( ) (1 )P TH TH α≥ ≥ −  is satisfied. A general the impact of increasing N is shown to push the 

distribution of *( )P TH TH≥ curve further to the right thereby increasing *( )P TH TH≥ for a 

specified TH* as shown in Figure 7:7.  

To illustrate how the proposed algorithm works with increasing buffer capacity is applied 

on a two machine line single buffer line with parameters provided in Table 7:4 are used. The 

results are reported on Figure 7:7 at four selected points of buffer capacities 3,5,10 and 20. 

P1 r1 p2 r2 

~Beta(5,245) 0.15 0.01 0.25 

Table 7:4Parameters for buffer allocation in a two machine line 

This problem is evaluated for a target TH* = 0.73 and (1-α) = 0.9 and the P(TH≥TH*) for 

the four buffer capacities shown in Figure 7:7 are; 

N 3 5 10 20 

P(TH≥TH*) 0.621 0.768 0.875 0.901 

Table 7:5 P(TH≥TH*) at four algorithm stages  
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Figure 7:7 Increasing N to achieve TH* in a two machine with (1-α) 

 

Figure 7:8 Iterative algorithm to evaluate Nmin with uncertain input parameters 
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In a scenario where is assumed to remain the same between successive observations 

and decreasing , the relationship between and is shown in Figure 7:9 

for a fixed N. 

E[ p1] r1 p2 r2 N 

0.025 0.21 0.0234 0.23 10 

 

Table 7:6 Input data for the sample buffered two-machine line. 

 

 

 

Figure 7:9 P(TH≥ TH*) for different input uncertainties with the same expected value 
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Figure 7:10  (a), (b), (c) results with sequential updating of observation in two machine line 
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experiments are conducted using an uncertain estimate of up . In both cases the problem is to 

determine the minimum level of *
N that is required to achieve the target throughput  

up

TTF

*TH

P
(T

H
≥

T
H

*
) 

TH* 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.84 0.85 0.86 0.87 0.88 0.89

T = 1600

T = 3200

T = 4800

T = 6400

T = 8000

(c) 

P
(T

H
≥

T
H

*
) 

TH* 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.835 0.845 0.855 0.865 0.875 0.885

T = 1600
T = 3200
T = 4800
T = 6400
T = 8000

(b) 

P
(T

H
≥

T
H

*
) 

TH* 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.845 0.855 0.865 0.875 0.885 0.895

T = 1600

T = 3200

T = 4800

T = 6400

T = 8000

(a) 



 

194 

 

(0.84). A probability level  = 0.90 is chosen in order to guarantee for the second set 

of experiments. Summary of the input parameters for the experiments and results reported in 

the Table 2 and 3 respectively. 

 

 

Table 7:7 Input data for the sample buffered two-machine line. 

Exp 

No 

(α+β) [ ]uE p  N*|

[ ]uE p  

N*|~ 

up  

1 834 0.0239 4 9 

2 899 0.0222 3 7 

3 837 0.0239 4 9 

4 803 0.0249 5 10 

5 708 0.0284 7 17 

6 901 0.0222 3 7 

7 704 0.0284 7 17 

8 693 0.0289 7 19 

9 1069 0.0187 2 5 

10 752 0.0266 6 13 

11 916 0.0218 3 7 

12 999 0.0200 2 6 

13 662 0.0302 8 26 

14 676 0.0296 8 22 

15 761 0.0263 5 12 

16 834 0.0240 4 9 

17 1003 0.0199 2 5 

(1 )α− *TH

[ ]E pu  ~p ru pd rd 

0.025 Beta(20,β) 0.21 0.0234 0.23 
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18 767 0.0261 5 12 

19 793 0.0252 5 11 

20 896 0.0223 3 7 

Table 7:8 Decisions based on the traditional and proposed method 

The buffer capacity *
N  that guarantees the target  = 0.84 on the long run is 5. From 

the experimental results the decisions based on the first problem 10 of the decision on the 

buffer capacity N  don’t guarantee the desired .Theoretically if the number of 

experiments is statistically significant increased there is 43% of achieving the target . In 

the problem that considers the uncertainty all decisions on *
N guarantee . Theoretically 

since = 0.90 is chosen there is 90% of probability that  falls inside decisions 

constructed in this way. In general the effect of increasing N  is shown to push the curve 

further to the right thereby guaranteeing a higher for the same level of probability  

as shown in Figure 7:11. 

 

Figure 7:11Probabilities of achieving TH* for different buffer capacities N 

7.2.2 Buffer space allocation in long lines 

This section demonstrates the buffer allocation problem in long lines considering uncertain 

parameter estimates. The original buffer allocation problem using the gradient method is 

used in combination with the performance evaluation using uncertain parameters. In 

literature the buffer allocation problem is formulated as Primal and Dual problems. In the 

primal problem the aim is to find the buffer space configuration (N1,..., NK-1) in a linear 
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multistage line, that minimizes the total buffer space in order to achieve a target production 

rate requirement, THobj. The formalization of this problem, by using the formalism of linear 

programming, is reported in the following equations: 

Minimize 
1

1

K
Total

i

i

N N
−

=

=∑  

Subjected to: 

1 1( ( ,... ) *) (1 )
K

P TH N N TH α− ≥ ≥ −  

3, 1,..., 1       
MIN

i
N N i K≥ = = −        (7.13) 

 

The Dual problem has the goal of finding the maximal production rate of the line subject to a 

total buffer space constraint. Its formalization is given in the following equation: 

Maximize 1 1( ,... )
K

TH N N −  

Subjected to: 
1

1

K
Total

i

i

N N
−

=

=∑  

3, 1,..., 1       
MIN

i
N N i K≥ = = −       (7.14) 

 

The following experiments demonstrate the proposed technique on the buffer space 

allocation problem in long lines. The results are given in comparison with traditional 

approach that doesn’t consider uncertainty in the parameter estimates. The results from the 

method with the proposed algorithms are compared with those provided by other methods, 

following the same assumption, such as Gershwin-Goldies method. Four of the six cases of 

ten machine lines originally studied by Gershwin and Goldies have been analyzed. These ten-

machine lines are investigated to show the impact of introducing robustness in the analysis of 

buffer allocation. The objective is to decide the buffer space allocation that can achieve an 

objective average throughput, TH* of 0.75. In the analysis considering the uncertainty of 

input parameters a probability ( *)P TH TH≥  = 0.95 is desired. The analysis for line A and B 
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are conducted using 10,000 cycles of observation time while line C and D are observed for 

5,000 cycle time. The failure probabilities of the machines are assumed to be estimated from 

the corresponding observation times. The resulting mean and the uncertainty in variance for p 

used in the analysis are reported in Table 7:9.  Finally results obtained by the proposed 

method (P) in comparison with the analysis from the buffer allocation using the traditional 

method (T) are reported in Table 7:10. 

Line  A B C D 

E[p1] 0.007 0.007 0.007 0.007 

Var[p1] 6.93ä10
-7

 6.93ä10
-7

 1.39ä10
-6

 1.39ä10
-6

 

r1 0.095 0.095 0.094 0.095 

E[p2] 0.007 0.008 0.008 0.01 

Var[p2] 6.93ä10
-7

 7.9ä10
-7

 1.59ä10
-6

 1.98ä10
-6

 

r2 0.095 0.094 0.095 0.09001 

E[p3] 0.007 0.006 0.003 0.003 

Var[p3] 6.93ä10
-7

 5.93ä10
-7

 5.93ä10
-7

 5.99ä10
-7

 

r3 0.095 0.093 0.045 0.09102 

E[p4] 0.007 0.007 0.004 0.005 

Var[p4] 6.93ä10
-7

 6.93ä10
-7

 7.93ä10
-7

 1.00ä10
-6

 

r4 0.095 0.094 0.078 0.09903 

E[p5] 0.007 0.005 0.006 0.001 

Var[p5] 6.93ä10
-7

 4.95ä10
-7

 1.19ä10
-6

 1.96ä10
-7

 

r5 0.095 0.095 0.069 0.09504 

E[p6] 0.007 0.006 0.007 0.009 

Var[p6] 6.93ä10
-7

 5.94ä10
-7

 1.38ä10
-6

 1.77ä10
-6

 

r6 0.095 0.093 0.094 0.09205 

E[p7] 0.007 0.009 0.008 0.009 

Var[p7] 6.93ä10
-7

 8.9ä10
-7

 1.59ä10
-6

 1.77ä10
-6

 

r7 0.095 0.095 0.095 0.09706 

E[p8] 0.007 0.008 0.003 0.003 

Var[p8] 6.93ä10
-7

 7.93ä10
-7

 6.00ä10
-7

 5.98ä10
-7

 

r8 0.095 0.094 0.045 0.09607 

E[p9] 0.007 0.007 0.004 0.008 

Var[p9] 6.93ä10
-7

 6.93ä10
-7

 7.93ä10
-7

 1.59ä10
-6

 

r9 0.095 0.096 0.078 0.09208 
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E[p10] 0.007 0.008 0.006 0.007 

Var[p10] 6.93ä10
-7

 7.93ä10
-7

 1.19ä10
-6

 1.38ä10
-6

 

r10 0.095 0.095 0.069 0.09409 

 

Table 7:9 Failure and repair parameters for long line experimental case studies 

 

 

 
L Met 

hod 

Buffer i Tot 

1 2 3 4 5 6 7 8 9  

A T 5 5 9 10 10 10 9 5 5 68 

P 5 6 10 11 11 11 10 6 5 75 

B T 5 6 8 9 10 11 10 6 5 70 

P 5 7 9 10 11 11 11 8 5 77 

C T 5 7 9 12 13 14 11 5 5 81 

P 5 9 11 14 16 16 14 7 5 97 

D T 5 5 6 7 8 10 7 5 5 58 

P 5 7 7 8 8 12 9 6 5 67 

Table 7:10 Failure and repair parameters for long line experimental cases studies 

Comparing the results obtained with the proposed approach it can be seen from the results 

in Table 7:10 that account for the estimation uncertainty increases the solution of the total 

buffer capacity. And this difference is bigger for higher uncertainties emphasizing the 

importance of robustness in design when less information is available. 

Line  A B C D 

E[TH]  0.7614 0.7610  0.7687 0.7662 

Var[TH] 3.97ä10
-5

 3.93ä10
-5

 1.14ä10
-4

 8.38ä10
-5

 

Table 7:11 Final statistics of TH that satisfies target TH. 

 
Line  A B C D 

TH 0.7500 0.7501  0.7500 0.7501 

P(TH≥TH*) 0.503 0.505 0.500 0.501 

Table 7:12 Final TH and level of probability using the traditional approach 
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The comparative expected values of the using the traditional approach that doesn’t consider 

the uncertainty in estimation and the proposed approach provide different expected average 

TH. This can be seen from the above results reported in Table 7:11 and 7:12. 

Analysis performed in this chapter demonstrated the problem of introducing real data 

estimated parameter or incomplete knowledge on the evaluation of optimal designs. It 

emphasizes the importance of introducing level of knowledge about parameters leads to 

robust designs. In contrast optimal decisions without including this aspect might lead to less 

reliable and compromised performance of the final system.  

The focus on the design phase also takes into account that the decisions that highly impact 

the operation of a system are done at this phase and costly to change. Therefore the proposed 

framework that considers the formulation of the problem considering the overestimation and 

underestimation of performance shows the impact of alternative decisions on the total cost of 

the system. Taking into individual impact of parameters on the global performance of a 

system in complex manufacturing system is essential aspect of designing a robust and 

optimal system. 
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Chapter Eight 

 

8. Case study: Scania D12 engine production line 
The proposed method for the evaluation of multi-stage line chapter 4 is used to assist the 

performance analysis of a real manufacturing line in Scania Group, producing D12 engines. 

The problem of performance analysis on this real system is interesting for two main reasons. 

The manufacturing system implemented a process monitoring and data acquisition system 

that uses a database system for recording data automatically and semi-automatically from 

shop floor machines via network.  The records from the data collection system can be used 

for inference making on input parameters and study can be carried out on output uncertainty 

related to estimations.  Besides the line is studied using performance analysis methods that 

didn’t consider the uncertainties in the estimation of reliability parameters of machines. 

Introducing the estimation uncertainty and studying the systems from this new dimension is 

the objective of this analysis. Inputs used in this analysis are obtained from authors of a 

previous study (M. Colledani, 2005), who conducted previous analysis on the manufacturing 

line. The analyses that are summarized in this study give primary focus on the results 

obtained with the proposed method in this thesis. 

8.1 Company profile 

Scania Group is a leading European manufacturer of heavy trucks and buses, as well as 

industrial and marine diesel engines, with headquarter located in Södertälje, Sweden. It is the 

world’s third largest producer for heavy trucks and the world’s third largest producer in the 

heavy bus segment. Scania is a global company with a sales and service organization in more 

than 100 countries. Aside from sales and services, Scania offers financial services in many 

markets. Scania’s production units are located in Europe and Latin America. 
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Currently Scania has approximately 37,500 employees. 16,000 employees work with sales 

and services in Scania’s own subsidiaries worldwide. About 12,400 people work at 

production units in seven countries and regional product centers in six emerging markets. 

8.2 The Processing Line 

D12 is a transfer line that produces the 6-cylinder engine-block and belongs to unit Engine 

Melt and Machining, placed in Södertälje. The line that produces engine block is composed 

by 23 stations which can be NC machines, light assembly machines, washing machines and 

quality control stations and 22 inter-operational storage buffers. In total 23 main groups of 

operations are performed. At the beginning of the line raw parts are automatically unloaded 

from the pallets and lifted up on the conveyor. A cast block is supplied at beginning of the 

line and, after all operations take place, the engine block is ready for the assembly line. The 

cast block enters the line upstream the first station which performs OP 020 and, after all the 

operations have been visited in sequence, the engine block leaves the system and it is ready 

for the assembly line. The layout of the system is shown in Figure 3:2. 

Therefore, the system can be modeled as a transfer line. Given the fact that the last station 

has no failures and do not affect the performance of the rest of the line, 22 stations are 

considered in the analysis. As it can be noticed by the complete layout that was reported in 

Section 3, three sections can be identified in the line, composing an S-shaped system. In 

section 1 the work pieces are lifted up on the conveyor and sides, planes and gables are 

milled. Rough drilling and long-hole drilling are also performed. In section 2 sides, planes 

and gables are then drilled and threaded. After washing takes place, the automatic assembly 

of the crankshaft bearing caps is performed. In the last portion of line finishing milling, 

drilling and facing are performed and camshaft bearings are automatically pressed. After the 

final washing and drying the cup plugs are assembled. The last two operations are a tightness 

testing and a final manual control. 

From its original design, the line was thought with the current S-shaped layout. The reason 

for that is the will of highly decoupling the behavior of the three portions of line, in order to 

allow one section to continue the operation, while another line section is under maintenance, 
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thus preventing stopping the whole line. This concept has been implemented by adding two 

long buffer conveyors where the two curves take place. Therefore, the need for guarantee the 

quality of produced products has impacted on the system design, from its conception. One of 

the objectives of the carried out analysis is to quantify the impact of this choice. Finally, the 

system does not need major set-up because other types of engine block, with a different 

number of cylinders are machined by other manufacturing lines. 

The 22 machine line is affected by a total of 144 failure modes in total. The number of 

failure and disruption type for each machine, the intermediate buffer between machines and 

the processing times in minutes for each coded machine are reported in Table 8:1. 

s 

Types of 

disruptions 

Downstream 

Buffer 

capacity 

Cycle times 

 (min) 

OP20 6 7 6.40 

OP30 6 9 5.85 

OP40 6 4 5.62 

OP50 6 4 6.08 

OP60 6 3 6.08 

OP70 6 3 4.58 

OP80 5 18 6.27 

OP90 6 5 6.40 

OP100 6 4 6.08 

OP110 6 5 5.77 

OP120 6 5 6.20 

OP130 5 4 5.35 

OP140 8 34 10.00 

OP150 5 6 5.32 

OP160 6 4 6.22 

OP170 5 3 5.25 

OP180 7 5 5.85 

OP190 7 3 6.20 

OP200 6 3 5.42 

OP210 5 3 5.80 

OP220 5 4 4.13 

OP230 6 5.50 

Table 8:1 Machines in the processing line and parameters 
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8.3 Line monitoring and supervisory system 

The system is endowed with a production monitoring system. In particular, according with 

ISO standards each station is equipped with alarm lights representing the machine states. 

Four different colors can be emitted: white, yellow, green and red. When a machine is 

processing a part the light is white, when it is blocked or starved the corresponding light is 

the green and when a failure occurred, red light is used to signal the disruption. Warning state 

(yellow light) is used for predictive maintenance or before a green state. Also two big 

electronic tables are hung on the ceiling of the factory shed. One is connected to the machine 

state lights and represents a scheme of the 23 operations along with the actual state. It is 

visible to all the operators attending the line. The other shows the produced parts from the 

beginning of the shift, the respective goal and an estimation of the number of blocks that will 

be produced up to the end of the shift. 

 

 

Figure 8:1 Schematic diagram of the data acquisition system 

The manufacturing system is also equipped with an automatic data collection system. Data, 

such as the time between failures and between repairs are logged accurately by the PLC 

Automatic data 

collection from 

machines 

Data server Web server 

Database 

Users 

Manual 

data entry 
Internet 
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(Programmable Logic Controller) of each station. The process monitoring system, named 

PUS (Process Uppföljnings System), is a web-based tool for production monitoring 

developed by B4Industry Company. A schematic representation of the entire system is given 

in Figure 8:1. 

It contains a database that is used to store production data, collected automatically or semi 

automatically from the shop floor, and to generate reports via the web system. Data 

acquisition in PUS can be performed at three different levels of sophistication:  

• Manual data acquisition from operators: only disruptions are reported but operation 

states are not logged. 

• Semi-automatic data acquisition: states data are reported (no classification of 

failures) 

• Automatic data acquisition: in addition to state changes, also alarm codes and other 

parameters are reported. 

Since the D12 line is semi-automatically monitored, all stops due to failures are reported 

automatically as unclassified (disruption ID 973). The operator fills in the type of 

disturbances (for those lasting more than 3 minutes) while short stops (under 3 minutes) 

generally remain unclassified.  

 

Figure 8:2 Machine parameter derivation procedures 

By elaborating the information collected by the production monitoring system, the data 

concerning the failure and repair probabilities for each machine and concerning each failure 
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mode have been derived, see Figure 8:2. In particular, a set of queries and filters to clean the 

production data have been designed, in order to obtain reliable information from the 

semiautomatic monitoring system. This allows eliminating outlier which can be recognized 

as operator errors. Examples of the introduced filters are the elimination of states lasting 0 

seconds or the elimination of the states twice reported. This activity has been carried out in 

strict collaboration with the production managers and the operators 

In order to check the possibility of adopting the geometric distribution to model time to 

failure and time to repair, the Anderson Darling test have been performed, with positive 

feedback as regarding time to failures and negative regarding time to repairs. By a further 

statistical analysis, the fact that the practice adopted while managing semi-automatic data 

collection is to avoid the registration of short failures (less than 3 minutes) was individuated 

as the cause for this behavior. Indeed, in case of missing data the distribution is truncated. 

Following the theory of truncated distribution, time to repair parameters has been 

recalculated, by assuming geometrical distribution for each type of failure modes. 

The first needed activity in order to carry out a performance analysis of the system is to 

correctly model the production system. According to the system behavior and considering 

that cycle times of machine could be considered as equal, except for some stations for which 

a “slow down failure” has been introduced, the production model which matches with the 

system characteristics has been identified. In particular, a discrete flow line model, with 

machines characterized by multiple failure modes and deterministic processing times equal to 

the time unit has been considered.  

Therefore, the problems addressed in the next sections deal with:  

• The analysis of the production system performance through the proposed approximate 

analytical method 

• Analysis of the methodology in estimating the through comparison with real life 

production data 

• The analysis of the uncertainty contributed by each machine  
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8.4 Analysis of the system and Results 

The reliability data that is collected by the monitoring system is used for the estimation of 

reliability parameters distribution. Using the Bayesian framework introduced in section 4.1 

each of the failure probability and repair probability are estimated. An example of estimated 

values of the beta distributions hyper parameters are reported in Table 8:2 for the failure 

probabilities. The same inference is done for each repair probabilities and the inference of 

parameters and the corresponding uncertainty is carried out for each machine.  

  

Disruption  

No 1 

Disruption  

No 2 

Disruption 

 No 3 

Disruption  

No 4 

Disruption  

No 5 

Disruption  

No 6 

Machine 

ID parameters parameters parameters parameters parameters parameters 

α β α β α β α β α β α β 

OP20 63 151401 295 178500 126 172105 52.00 170385 17 119137 11 167876 

OP30 94 127782 195 152730 615 138379 56.00 166431 32 162271 18 64942 

 …  …  …  …  …  …  …  …  …  …  …  …  … 

 …  …  …  …  …  …  …  …  …  …  …  …  … 

OP230 85 174858 79.00 121569 9 67406 56.00 166555 13 110678 121 131917 

Table 8:2 Hyperparameters for input parameters distribution 

Using the method introduced in section 4.1 an equivalent approximation for the mean 

failures using a single failure is performed. The corresponding uncertainty for the isolated 

machines is also approximated using the equivalent approximation technique that is proposed 

in section 4.4.4. The joint distribution approach is used for the evaluation of the expected 

value E[e] and uncertainty in the isolated efficiency V[e] of each machine. The evaluation 

results from these primary analyses are reported in Figure 8:3. 

 

Machine E[e] V[e] 

OP20 0.612413 5.63E-06 

OP30 0.642701 1.06E-05 

OP40 0.712869 3.28E-06 

OP50 0.649828 3.11E-06 
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OP60 0.641053 6.47E-06 

OP70 0.804106 2.12E-05 

OP80 0.624626 4.3E-06 

OP90 0.589251 4.83E-06 

OP100 0.62206 9.55E-06 

OP110 0.671575 2.91E-05 

OP120 0.593876 6.18E-05 

OP130 0.669718 0.000263 

OP140 0.723564 1.18E-05 

OP150 0.739649 1.38E-05 

OP160 0.618966 5.65E-06 

OP170 0.758323 5.38E-05 

OP180 0.688666 2.51E-06 

OP190 0.603778 6.33E-06 

OP200 0.676284 0.000159 

OP210 0.704462 1.93E-06 

OP220 0.962625 1.76E-05 

OP230 0.720621 5.39E-06 

Table 8:3 Equivalent machine with isolated efficiency and uncertainty 

 

The isolated efficiency of each machine is then used for the determination of approximated 

expected failure probabilities and repair probabilities of each machine. The uncertainty of 

each parameter is also determined from the evaluated results in Table 8:3. Hyper parameters 

of the distribution can be constructed from these moments of the uncertain reliability 

parameters as reported in Table 8:4. 
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Figure 8:3 Isolated efficiency of machines and the uncertainty of isolated efficiency 

Machine 

ID peq req σ
2
peq σ

2
req αp βp αr βr 

OP20 0.112988 0.167103 7.41E-07 1.1E-06 15287.29 120012.7 21229.64 105816 

OP30 0.09031 0.169379 1.09E-06 2.05E-06 6790.768 68403.22 11629.26 57028.87 

OP40 0.074324 0.18846 3.16E-07 8.01E-07 16184.52 201571.2 35978.15 154928.2 

OP50 0.097888 0.185544 3.82E-07 7.24E-07 22644.06 208682 38750.53 170098.2 

OP60 0.097751 0.17811 7.62E-07 1.39E-06 11313.91 104427.7 18778.67 86654.32 

OP70 0.028707 0.129348 6.47E-07 2.92E-06 1236.751 41845.85 4995.205 33623.27 

OP80 0.106795 0.181161 5.67E-07 9.62E-07 17972.56 150318.1 27949.34 126329.7 

OP90 0.118209 0.174346 6.94E-07 1.02E-06 17753.28 132432.3 24517.32 116107 

OP100 0.100306 0.170331 1.11E-06 1.89E-06 8145.712 73062.85 12755.71 62132.17 

OP110 0.081171 0.168886 2.7E-06 5.61E-06 2245.395 25417.2 4225.81 20795.92 

OP120 0.103106 0.153393 6.8E-06 1.01E-05 1402.422 12199.27 1969.414 10869.61 

OP130 0.06036 0.124429 1.33E-05 2.75E-05 256.5653 3994.022 492.8266 3467.866 

OP140 0.048339 0.143047 5.81E-07 1.72E-06 3829.89 75399.19 10205.56 61138.72 

OP150 0.060688 0.178338 1.06E-06 3.11E-06 3272.105 50644.46 8411.008 38752.34 

OP160 0.106694 0.17879 7.35E-07 1.23E-06 13830.08 115793.7 21305.01 97857.15 

OP170 0.0547 0.17479 3.72E-06 1.19E-05 760.1764 13136.91 2120.465 10011.03 

OP180 0.085314 0.19191 2.79E-07 6.27E-07 23882.58 256054.5 47461.95 199851.6 

OP190 0.109818 0.175633 8.39E-07 1.34E-06 12799.15 103749.3 18956.31 88975.23 

OP200 0.06357 0.134664 9.18E-06 1.95E-05 412.0522 6069.85 806.6013 5183.112 
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OP210 0.0613 0.14724 1.19E-07 2.85E-07 29693.58 454705.2 64793.14 375257.6 

OP220 0.001253 0.0367 2.63E-08 7.7E-07 59.66628 47549.86 1685.242 44234.54 

OP230 0.068768 0.181464 4.65E-07 1.23E-06 9462.797 128142.3 21948.5 99003.71 

Table 8:4 Approximated hyper parameters of the 22 machine line 

Application of the posterior parameters that are reported in Table 8:4 and using the 

proposed method is used to evaluate the multi-stage line. Both the expected throughput and 

the uncertainty are evaluated with final results as reported in Table 8:5. Based on the 

estimated uncertainty a 95% confidence interval is constructed and the analysis that is 

performed using real data estimation is found in this interval.  

Data estimation  Expected average 

throughput E[TH] 

Uncertainty of  

throughput V[TH] 

95% 

 confidence interval 

0.37535 0.36962 1.265ä10
-5

 0.38029-0.36251 

Table 8:5 Evaluation results of the 22 machine line 

The following analysis is performed to determine the percentage contribution of 

uncertainty contributed by each individual machine in order to analyze and discriminate the 

proportion of uncertainty of each factor.  The contribution of uncertainty from each 

parameter is evaluated and the results are reported in Figure 8:4.  

It can be seen from this Figure 8:6 only four of the machines i.e., (OP120, OP130, OP160 

and OP200) highly contributed to the uncertainty compared to the other machines in the line. 

Performing a Pareto analysis on the overall contributions of the machines is shown in Figure 

8:5. The four machines in the order of their contribution (OP200, OP130, OP160 and OP 

120) have contributed for the 90% of total uncertainty.  

One obvious advantage of the analysis with the introduction of uncertainty is demonstrated 

on the possibility of quantifying the resulting uncertainty. Besides it is an informative method 

on how to improve the reliability of the analysis result since the contribution of each 

uncertainty can be quantified. The second analysis on the contribution of uncertainty can lead 

to a targeted effort on data collection and supervision design in order to achieve a more 

precise estimation. Particularly out of the 22 machines the supervision and estimation effort 

should be focused on the 4 which contributed for the 90 percent of uncertainty. 
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Such application even could be more advantageous when applied online. The evaluation 

here is conducted on a 9 months data, so if the estimation and sampling plan has to be 

adjusted with a periodic inference much better estimates could be achieve even at earlier 

observation periods. 

 

Figure 8:4 Percentage uncertainty contribution by each machine 

 

Figure 8:5 Cumulated uncertainties generated by individual machines 
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Further analysis can be done by analyzing the input uncertainty and the contribution of 

each parameter at the end of the analysis. For instance keeping the focusing still on the four 

major contributors of uncertainty, from Figure 8:3 and Figure 8:5 it can be noted that the 

high input uncertainty of machine OP130, OP200 even though the level of magnification is 

different for both it is also reflected on the output uncertainty of the V[TH]. For some of the 

other configurations the relation can also depend on the particular configuration of the 

machines. For instance an observation on the input parameter for machine no OP160 reveals 

small input parameters also can be amplified because of the specific buffer configuration and 

the adjacent machines they are located in. 

The analysis of this real case signifies even the important of integrating performance 

evaluation with parameter estimation. Impact of the joint consideration can be highlighted by 

the fact that even after 9 months of the effectiveness of system supervision can be determined 

by few of the machines in the line. Moreover apart from the analysis in this line the online 

application of this framework can lead to real time intervention on the systems so that the 

configuration and supervision efforts can be allocated in an effective mode. Additionally, the 

possibility of introducing integrated analysis of multi-stage systems and their supervisors at 

early phase could have bigger impact on the understanding of the system with time. The early 

integration of this framework determines the success of decisions by optimally considering 

the inherent tradeoff between the time lag required for additional and precise information 

against making an early and less precise decision.  
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Conclusions and Future Work 

The research reported in this thesis has proposed quantitative methods for the integrated 

analysis of manufacturing and supervisory systems. The proposed methods in the thesis have 

the goal of investigating manufacturing performance analysis from real data acquired through 

supervisory systems. Moreover the quantitative methods that can assist the robust design and 

reconfiguration of manufacturing and supervisory systems that highly guarantee target 

performance are provided.  

Main results achieved through this work can provide important contributions in 

performance analysis and design of manufacturing systems that are equally relevant for both 

practitioners and researchers. The main steps taken, findings of the research and promising 

future recommendation to better exploit the research direction are briefly discussed as 

follows. 

Primarily, the importance of conducting performance analysis from actual data as opposed 

to given precisely known model parameters is investigated. The introductory part of the 

thesis is focused on an in depth analysis of investigating these important differences and 

providing explanations using quantitative proofs. The next step is dedicated to the 

development of alternative techniques that can accurately and efficiently analyze the 

performance of multi-stage manufacturing systems from uncertain data. A new method based 

on the decomposition of multi-stage manufacturing lines for the estimation of average 

throughput is also proposed. The method is can be used for the accurate and efficient analysis 

of complex manufacturing systems from real data obtained through supervisors. 

Based on the methods developed in this thesis and existing optimization methods for buffer 

allocation in multistage manufacturing systems a new method for optimal buffer allocation 

under uncertain parameters is proposed. The approach aims at providing the optimal buffer 

configuration that guarantees the satisfaction of target performances with a given confidence 

level. The level of additional information or the necessary buffer configuration required in 

order to introduce desired level of robustness can be determined analytically using this 
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method. The proposed approach is also used for the analysis of an industrial case featuring a 

buffered multi-stage manufacturing system. 

Key contributions of the research and their importance of applicability in performance 

analysis are summarized in the following points: 

Model parameter estimation uncertainties and the impact on performance analysis:- 

Fundamental differences are discovered on performance analysis results when the estimation 

uncertainties from actual data are ignored.  Overestimation and underestimation of 

performance outputs can be one of the key analysis deviations that can be consistently 

committed. The level of information on model parameters and amount of data used to make 

the estimation should be considered in the performance analysis to make valid decisions. 

Impact of buffer configuration on output performance uncertainty:- The thesis also 

investigated the impact of buffer capacity decision on the output performance uncertainty in 

various system configurations including two machine lines and long lines.  The analysis 

assists on the decision of configurations on performance uncertainty by choosing alternative 

buffer configurations so that target performances can be guaranteed.  

Optimal reconfiguration of supervision and monitoring of parameters:- Based on the 

developed methods in this thesis,  techniques that target to minimize input uncertainty on the 

parameters which highly contribute to the output uncertainty are applied. The gradient 

algorithm approach proposed assists the decision on how to better allocate sampling and data 

collecting efforts and resources in order to optimally reduce input uncertainty. This allows 

system designers to improve supervision efficiency instead of allocating importance 

resources equally including parameters that are not critical for the performance. 

Optimal buffer allocation under limited knowledge of system parameters:- Existing 

buffer optimization techniques consider precisely known reliability parameters; in this case a 

new approach for the optimization of manufacturing systems under uncertain parameters is 

proposed. The approach enables determining buffer levels that guarantee the achievement of 

target performances within a specified confidence level. The level of additional information 



 

214 

 

or the necessary buffer configuration required in order to introduce desired level of 

robustness can be analytically determined using this method.  

Future Works: 

Provided that this field of integrated analysis is yet unexplored there is a potential 

development that can benefit the research community and practitioners of manufacturing 

systems engineering. The main direction of extensions on this research can be outlined as 

follows: 

- Study and analysis of different manufacturing systems architectures 

The analysis that is carried out in this thesis is conducted on two machine lines and open 

layout systems. The investigation of alternative configurations and the analysis of 

architectures such as closed loop lines, assembly/disassembly lines are important to 

understand how the analyses of these systems behave under uncertainty.  

- Analysis of manufacturing systems with complex and interacting behaviors that 

exhibit inherent trade-offs 

Previous works have investigated the importance of integrated analysis of interacting 

manufacturing aspects jointly. One important example is the integrate analysis of 

productivity and quality performance of a system. Given quality control systems heavily rely 

on statistical inferences the introduction of uncertainty is an important field of area to study.  

- Resource constrained dynamic optimization problems with robustness for target 

performance 

Important problem to address with the extension of this research is the study of systems 

when resources are limited for the design and missing target performance have penalty costs. 

Unlike the precise assumption formalization for these problems the introduction of 

uncertainty helps decision making based on level of knowledge on input parameters and 

uncertain performances. The dynamic nature of the problem assists for online 

implementation of the techniques for a continuous optimal reconfiguration of resources based 

on real time feedback from monitoring. 
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- Integrated designing supervisory control systems and manufacturing systems with 

performance validation.  

Although the work that is investigated in this thesis highlights the importance of supervision 

on the accompanying performance and vice versa, the integration of design methodologies is 

fundamental. The research filed that is developed formal methods in designing supervisory 

systems should be taken into account for the sufficiency of enabling desired performance 

analysis and achieving target performances. Addressing this problem with the feedback 

adjustment capability of supervisory systems for improved and reconfigurability should be 

taken in to consideration during the formal specification of both areas. 
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Appendix 

(A:1) 

Proof (Theorem 1) 

Theorem (Jensen Inequality): let ( )pϕ be a convex function defined on an internal region I. 

Then ( [ ]) [ ( )]E p E pϕ ϕ≤  

Proof: 

Definition: a Let a real function ϕ is defined on a real interval I, then ϕ is strictly convex on 

I iff 
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Equivalently ( )[ ] [ ( )]iE p E pϕ ϕ<  

By using the second derivative test for ( )
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Therefore ( )[ ] [ ( )]iE p E pϕ ϕ<  always holds true.  

(A:2) 

Proof (Theorem 2) 

Theorem (Jensen Inequality): let ( )rϕ be a concave function defined on an internal region I. 

Then ( [ ]) [ ( )]E r E rϕ ϕ≥  

Proof: 

Definition: a Let a real function ϕ is defined on a real interval I, then ϕ is strictly concave on 
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{ :1,.. }ir r N∈  is a random parameter with probabilities 1 2, ,..., 0Nλ λ λ > with 
1
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Equivalently ( )[ ] [ ( )]iE r E rϕ ϕ>  
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+
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p
r r p

p r
ϕ = − < > >

+
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Therefore ( )[ ] [ ( )]iE r E rϕ ϕ>  always holds true.  

(A:3) 

THREE MACHINE LINE 

ONE UNCERTAIN TWO UNCERTAIN THREE UNCERTAIN 

ONEFACT TAYLOR JOINT ONEFACT TAYLOR JOINT ONEFACT TAYLOR 

2.989 0.171 20.7 6.811 0.352 2389.735 17.013 0.413 

1.258 0.163 15.172 3.799 0.531 1931.153 15.006 0.578 

2.298 0.201 14.771 3.074 0.123 1189.713 25.536 0.63 

0.768 0.143 15.18 3.296 0.247 1277.343 20.922 0.231 

2.167 0.142 19.535 2.026 0.126 2012.715 19.428 0.573 

2.31 0.142 16.904 4.34 0.248 868.912 16.287 0.648 

0.738 0.111 20.213 1.18 0.143 1457.334 23.778 0.292 

1.194 0.166 21.187 8.126 0.286 2574.013 7.836 0.24 

0.775 0.094 13.449 4.298 0.129 2179.935 14.556 0.387 

1.394 0.088 17.255 1.882 0.253 1554.171 17.88 0.532 

1.842 0.162 16.716 2.899 0.124 987.049 11.829 0.245 

1.619 0.151 19.797 3.527 0.242 2371.729 16.707 0.432 

1.656 0.131 16.372 1.748 0.084 659.877 17.547 0.485 

1.289 0.119 18.645 2.22 0.167 1484.959 12.399 0.231 

1.206 0.108 15.064 1.905 0.088 1370.564 11.409 0.639 

1.065 0.145 24.321 1.496 0.187 752.551 15.618 0.652 

1.313 0.147 13.633 2.552 0.119 1524.812 25.443 0.471 

1.424 0.079 23.64 1.992 0.231 841.552 23.4 0.538 

1.377 0.104 15.198 1.928 0.107 2333.487 6.627 0.416 

2.075 0.077 14.443 1.795 0.219 1069.891 16.416 0.281 
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2.397 0.08 20.968 2.133 0.101 1218.363 26.271 0.595 

1.396 0.105 15.386 1.939 0.195 2255.729 17.268 0.544 

1.461 0.077 14.149 2.12 0.07 1198.468 23.151 0.339 

1.769 0.11 15.012 10.079 0.143 1733.67 9.18 0.421 

1.495 0.101 17.377 3.104 0.096 743.913 10.884 0.31 

2.1 0.081 23.522 2.600 0.197 2460.998 13.008 0.48 

1.262 0.117 14.099 3.665 0.08 2495.219 17.385 0.352 

1.361 0.109 19.541 5.806 0.156 2414.856 14.574 0.238 

1.094 0.073 21.974 4.031 0.102 2472.02 18.216 0.357 

1.355 0.072 13.832 4.527 0.195 1322.376 23.22 0.595 

0.965 0.093 13.245 6.751 0.084 2373.082 12.285 0.2 

1.333 0.121 18.374 1.795 0.168 847.805 12.129 0.186 

1.455 0.103 18.901 2.697 0.087 2458.521 6.795 0.279 

1.556 0.075 15.268 1.944 0.176 1581.517 13.2 0.438 

1.467 0.112 14.081 5.454 0.051 1535.655 13.398 0.646 

1.767 0.065 21.551 5.824 0.102 1729.065 26.496 0.231 

0.755 0.168 22.398 4.419 0.07 2226.153 17.883 0.304 

1.004 0.086 18.908 4.892 0.136 891.244 22.278 0.454 

1.291 0.188 14.306 5.526 0.07 1540.42 7.188 0.403 

0.936 0.07 22.954 3.625 0.135 686.855 19.692 0.577 

1.471 0.098 18.721 3.584 0.049 2572.525 15.39 0.432 

1.283 0.091 23.385 1.422 0.1 2321.048 18.276 0.372 

1.489 0.081 21.746 5.482 0.059 2344.712 18.921 0.338 

1.322 0.061 17.087 3.828 0.119 2303.174 18.468 0.488 

2.442 0.064 13.334 3.306 0.06 2574.753 26.295 0.647 

0.94 0.06 15.997 4.617 0.123 1912.529 21.468 0.507 

0.861 0.077 17.138 6.079 0.065 1900.841 26.955 0.247 

0.988 0.073 17.03 1.202 0.132 2506.559 11.145 0.246 

1.009 0.077 14.56 5.987 0.075 1675.859 12.636 0.402 

1.615 0.067 18.188 5.235 0.16 2280.233 17.337 0.477 

 

Table A:3 Computation times required for experiments of three machine lines 
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(A:4) 

FIVE MACHINE LINE 

ONE UNCERTAIN TWO UNCERTAIN THREE UNCERTAIN 

ONEFACT TAYLOR JOINT ONEFACT TAYLOR JOINT ONEFACT TAYLOR 

13.778 0.511 104.031 35.524 0.941 5040.147 239.583 3.306 

20.166 0.5 295.64 120.046 0.474 4114.663 41.767 2.92 

7.853 0.599 396.34 90.94 0.191 5252.185 35.397 2.457 

6.692 0.734 288.763 133.172 0.47 3899.479 198.297 3.322 

4.065 0.404 184.602 55.526 0.897 5236.353 230.95 2.075 

19.453 0.395 386.166 67.482 0.272 5339.336 186.627 1.608 

7.193 0.378 366.351 45.784 0.834 5279.134 81.017 1.633 

11.578 0.348 36.635 15.878 0.686 5125.182 168.914 1.499 

8.684 0.402 277.435 18.196 0.499 5344.084 220.3 1.414 

6.071 0.325 287.917 43.148 0.378 5284.643 131.892 1.474 

6.345 0.366 268.036 136.988 0.232 5282.54 126.402 2.509 

7.164 0.443 158.499 135.862 0.552 4875.835 150.76 2.447 

12.111 0.207 392.685 98.834 0.634 5068.518 204.157 1.571 

9.464 0.299 357.338 15.348 0.828 5101.368 181.277 1.899 

18.617 0.248 85.983 112.444 0.289 5043.343 78.008 2.011 

9.039 0.257 396.094 97.1 0.719 5074.351 205.287 1.726 

33.374 0.273 44.895 71.058 0.725 4998.148 135.983 1.508 

7.62 0.344 316.106 112.37 0.69 4927.531 46.926 2.004 

9.904 0.309 106.414 65.758 0.48 5234.823 199.051 1.625 

5.817 0.324 85.078 38.864 0.593 6087.427 224.286 1.903 

9.294 0.391 160.09 29.584 0.246 5293.854 156.94 1.665 

5.486 0.478 356.378 38.216 0.765 5290.47 143.955 1.745 

9.407 0.414 369.542 61.016 0.894 4849.312 118.97 2.026 

39.76 0.286 272.817 58.288 0.452 5078.683 78.868 1.17 

16.443 0.393 258.973 55.192 0.812 5134.139 37.983 2.079 

7.916 0.404 146.589 34.856 0.479 4943.892 189.803 1.7 

8.482 0.445 201.318 28.772 0.977 5398.981 185.937 2.794 

6.634 0.352 335.249 77.192 0.259 5257.267 178.505 2.006 

44.236 0.286 84.962 116.104 0.545 4805.48 49.052 1.513 

9.814 0.347 225.923 30.144 0.546 4895.503 223.953 1.47 
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28.496 0.317 309.443 18.512 0.681 5055.759 53.407 1.88 

14.424 0.409 370.127 73.59 0.221 5096.749 192.389 2.064 

7.558 0.243 305.398 42.674 0.129 5135.098 148.422 1.833 

6.943 0.292 378.905 52.076 0.516 4957.757 51.23 1.381 

7.819 0.275 299.335 90.482 0.163 5201.651 237.858 2.11 

6.786 0.253 338.591 24.978 0.505 5000.836 188.544 1.39 

20.936 0.417 360.541 87.282 0.38 5303.8 153.23 1.489 

29.152 0.178 150.207 41.384 0.791 5042.664 180.92 1.477 

43.266 0.304 114.361 29.16 0.451 4824.611 172.806 1.385 

24.373 0.438 307.292 118.204 0.218 4850.1 82.28 2.837 

33.199 0.431 137.325 63.122 0.552 5251.371 142.759 2.656 

6.126 0.294 213.322 103.484 0.777 4990.612 135.747 1.883 

9.513 0.311 194.294 47.042 0.462 5260.581 232.819 1.887 

37.434 0.322 217.31 61.092 0.193 5011.304 187.269 1.469 

29.5 0.322 178.614 126.488 0.152 5128.745 249.263 1.671 

31.945 0.303 388.265 48.212 0.412 5256.619 49.928 1.805 

9.782 0.249 89.387 65.852 0.426 5398.183 95.866 1.919 

27.46 0.317 77.601 57.412 0.51 5259.437 63.518 1.545 

43.135 0.433 150.102 25.084 0.901 5099.747 79.132 1.657 

4.165 0.691 111.638 55.894 0.356 5064.943 64.278 1.997 

 

Table A:4 Computation times required for experiments of Five machine lines 
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