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Abstract

Studies in performance evaluation of automated manufacturing systems have focused on
the development of tools that support performance measurement, efficient design, and
reconfiguration of manufacturing systems. The use of these tools play a critical role in
achieving manufacturing target performances such as average throughput, work in progress
and lead time during the design and operation phases of a system. In response, manufacturing
systems engineering research in the last decades has developed powerful performance
evaluation tools and models that are capable of accurately and efficiently modeling various

systems.

Traditionally, many of manufacturing system engineering tools assume that machine
reliability parameters, such as (Mean Time to Failure and Mean Time to Repair) are available
and precisely known. However, in practical situations these parameters are either estimated
from real life data or based on experts’ knowledge. In both cases, they are subjected to
uncertainty. Indeed, the validity of important system design decisions is dependent on the
ability to carry out a significant analysis of the system performance in presence of
uncertainty. In addition with digital manufacturing tools becoming increasingly an integral
part in the design and operation of manufacturing systems, their design and specification
strongly impacts system understanding. Therefore assisting the integrated analysis and design
of these tools in relation to manufacturing system configurations is of paramount importance,

which motivates this research.

The first part of this work proposes methods for the performance analysis of smaller
manufacturing systems using exact analytical methods with uncertain parameters estimates.
The impact of performance analysis using real data in contrast with precisely known
parameters assumptions is investigated. Performance deviations as high as 15% estimation
errors are observed by carrying out the analysis ignoring uncertainty in estimations.
Important findings from this analysis are highlighted and the relationships that explain the

observed differences are analytically presented.



Emphasizing on the proven advantages of performance analysis on smaller systems with
real data the following parts of the work focus on the development of tools that support
performance analysis in complex systems. Alternative approximate techniques that are
accurate and efficient in measuring the performance of multi-stage manufacturing systems
are proposed. Numerical accuracy and applicability of the proposed methods are presented
under different conditions. Additionally a new method based on the decomposition of multi-
stage manufacturing lines for the estimation of average throughput is proposed. The method
is proved to be accurate and computationally efficient to study long lines. It is used to study
and understand important system behaviors under uncertainty, providing important insights

in system design under practical scenarios.

A gradient based algorithm for the optimal supervisory systems reconfiguration and
manufacturing systems reconfiguration is proposed. The method attempts to improve the
estimation of the output performance uncertainty by optimally allocating supervisory
resources. Exploiting the developed techniques in this work it targets to minimize input
uncertainty on the parameters which highly contribute to the output uncertainty. On the other
hand it addresses impact of configurations on performance uncertainty by choosing
alternative buffer configurations so that target performances can be guaranteed. This allows
system designers to evaluate alternative solutions that satisfy a required level robustness for

the available resources and knowledge on design parameters.

Based on existing buffer optimization techniques, a new approach for the optimization of
manufacturing systems under uncertain parameters is proposed. The approach aims at
providing the optimal buffer configuration that guarantees the satisfaction of target
performances with a given confidence level. Analysis with the traditional approach that
addresses the same problem is observed to provide a guarantee level as low as 43%, which
compromises system robustness in achieving target performance. The level of additional
information or the necessary buffer configuration required in order to introduce desired level
of robustness can be analytically determined using this method. The proposed approach is
also used for the analysis of an industrial case featuring a buffered multi-stage manufacturing

system.
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Finally, based on the result of this study general design and managerial insights are given
in the design and operation of manufacturing systems under uncertainty, which is the case in
most practical situations. Future research works that extend the work for improvement of
analysis techniques and including additional problems in the integrated analysis and design

of supervisory and manufacturing areas are identified and suggested.
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Chapter One

1. Introduction

The need for the design, development and operation of manufacturing systems that highly
guarantee to achieve target performances is a high priority goal in manufacturing. As
manufacturing enters a new era in which enterprises must compete in a global market the
importance and challenge of these activities is ever important. Meeting the demanding and
dynamic external targets with appropriate design and operation of manufacturing system also
plays a decisive role in the success or failure of an enterprise. In order to keep competitive
nowadays companies are increasingly interested in assisting the design and operation of
advanced manufacturing systems by implementing modern digital manufacturing tools.
Technological advances in sensor and information technology enables the acquisition and
storage of huge amount of precise data and information about the behavior of the systems for
decision making. On the other hand the optimal design, reconfiguration and operation of
manufacturing systems is supported by the use of modern and suitable analysis tools,
including simulation and analytical methods. Basically, there is the strong link between the
technologies which gather system information and the manufacturing systems engineering
tools that must be fed with this information to carryout the analysis of manufacturing systems
(Gershwin, 1994, 2000). However, in spite of the strong relationship between the two fields

they are normally treated independently by researchers and practitioners.

In manufacturing systems there are different phases in which the decision making and the
required system information for the decision should be considered together. During the
“green field” design phase, the technical efficiencies of the resources/machines that shall
compose the manufacturing system are considered as nominal values, provided by the
equipment/sensor producers. In the system operational phase, the technical efficiency of the

machines can be estimated by using historical data, i.e. the machines’ operational records,



typically stored in the company production monitoring system database. The high cost
associated in changing decisions made during early design phase of manufacturing systems
emphasize the need to make these decisions right the first time. These decisions range from
the choice of type of manufacturing systems such as dedicated lines, batch or flexible
manufacturing systems to specific machine choices and configurations at lower level. In
practice, designing the details of manufacturing systems (equipment design and specification,
layout, manual and automatic work content, material and information flow, etc.) in a way that
is supportive of a firm’s business strategy has proven to be a difficult challenge (Cochran et
al, 2002). Partly this challenge owes itself to the inherent complexity of manufacturing
systems involving many interacting elements. Moreover it can be difficult to understand the
impact of detailed, low-level deficiencies and change the performance of a manufacturing
system as a whole. Therefore the role of precise information in these activities is immense

given the need to design of systems which are inherently complex.

During operational phase of a manufacturing systems traditionally, the reliability of
machines is modeled through the characterization of the Mean Time to Failure (MTTF) and
the Mean Time to Repair (MTTR) of each failure mode affecting the machine productivity.
Normally these parameters are estimated by using historical data on the machines that is
collected and stored in the manufacturing monitoring system. Although these estimates are
assumed to be the mean of statistical distributions (typically exponential or geometric
distributions), their value is considered as known deterministically. However, if they are
gathered by using a sample size of 5 instead of 1000 failure observations, the resulting level
of confidence on their mean value is clearly different. Depending on the availability of
information on the model parameters, the estimates are also subjected to uncertainty.
Therefore the subsequent analysis and the reliability of analysis output is dependent on these

uncertain estimates, and this should be measured for a valid decision making.

Various frameworks and tools with the goal of assisting decision making at different phases
and levels of manufacturing systems design and development have been developed. The
fundamental focus of these design and analysis tools is usually targeted at capturing

characteristic behaviors that defines most modern manufacturing systems. According to



scholars in manufacturing systems engineering (Gershwin 2000), some of the defining

elements that are common to most of the manufacturing systems are the following.

e Events that are relevant to manufacturing systems, such as breakdowns, arrival of
parts, repairs can be random; consequently manufacturing systems rarely perform as
expected.

e Manufacturing systems are complex which are characterized by high
interoperability of different resources, functions and objectives, makes the analysis
of the impact of local reconfiguration decisions on the system performance a
difficult.

e Complexity, multiplicity and uncertainty of variables of different natures and the
information that are used to predict and estimate events, process parameters and

relationship between interacting subsystems are fundamental.

Many works in the performance analysis of manufacturing systems have been proposed in
response to these fundamental requirements. Research in simulation and analytical models
has targeted the need to model complex and the stochastic nature of manufacturing systems.
Recent works have perceived the need to address inherently related performance measures of
manufacturing systems; such as the trade-off between quality and productivity. The
importance of obtaining clear, sufficient and precise information to carryout valid

performance analysis is also a recognized challenge in decision making.

In order to improve productivity of manufacturing systems and minimize errors on final
products and process, there is a growing interest in a precise and robust performance analysis
of manufacturing systems. The design and analysis of manufacturing systems in terms of
choice of machines, decision of how much space to allocate for parts when some of machines
are down are important focus of recent research (Gershwin 2002). Strategies to respond and
design for the inherent randomness of events that characterize manufacturing systems,
failures, repairs, part arrivals, changes to system behavior necessitate the development of
many stochastic models and analysis tools. The study of performance measurement in the
presence of random events such as machine and quality failures with regard to the choice of

processing machines, capacity of material handling equipments and buffers has generated a



lot of research interest. Many stochastic analytical and simulation models have been
developed to understand and respond to the randomness and the subsequent degraded

performance of a manufacturing system.

Performance analysis and decision making under this inherent complexity during design
and operational stages of a manufacturing system is a demanding challenge. More
importantly, in practice performance analysis has to be carried out with limited information
gathered from an operating system or a preexisting knowledge which makes modeling for
performance prediction difficult (Gershwin, 1994, 2000). Due to cost reasons it is important
to detect incorrect and inefficient behavior in the early stages of the system. For these and
additional reasons the design of information systems considering information for the purpose
of decision making as opposed to the mere sophistication of keeping of data from the actual
manufacturing system is an important element of manufacturing design (MacGregor Smith J.
2005). Traditionally the task of obtaining sufficient data for modeling and analysis in most
cases is an area left for software designers, database designers and practitioners. On the other
hand most of analytical and simulation models assumed there is enough information to use

the appropriate models.

The problem of “sufficient” information is equally relevant even for modern manufacturing
systems equipped with state of the art information systems. Quite often, in manufacturing
there are critical decisions that don’t allow waiting until all the necessary amount of
information is collected and obtained for precise estimation of parameters and the subsequent
decision making. Real industrial practices require performance analysis and decision to be
made with the available limited information on hand. In many cases actual situations require

to make decisions under uncertainty.

Embedding uncertainty in the system performance evaluation and design process is of
paramount importance for generating system configurations that are robust to input parameter
estimation uncertainty. Moreover, it makes it possible to know how the level of uncertainty
associated to each input parameter impacts the resulting uncertainty in the output
performance measure, and to refine the level of confidence of the input parameters

accordingly. For example, if the system is already existing, the sampling plan can be



adaptively modified to gather more data about the most critical resources in the system
(bottlenecks) and to decrease the monitoring effort for less critical resources, thus providing
data management policies that are functional to the achievement of a desired level of

confidence in the output system performance estimation.

In spite of the industrial relevance of this problem, in the literature Manufacturing System
Engineering approaches, including both simulation and analytical methods never considered
this problem. Traditionally, the reliability of machines is modeled through the
characterization of the Mean Time to Failure (MTTF) and the Mean Time to Repair (MTTR)
of each failure mode affecting the machine production. Although these are assumed to be the
mean of statistical distributions (typically exponential or geometric distributions), their value
is considered as known deterministically. However, depending on the resulting level of
confidence and knowledge on the estimation of these input parameters they are subjected to
uncertainty. Traditionally, the considered performance measures are the average throughput
and the average inventory levels of the system. Again, these are considered to be precise
estimates, although they are strongly affected by the input parameters’ uncertainty. Important
issues in using estimated reliability parameters for performance evaluation is discussed in
(Denaro et al, 1998) and (Lin et al, 2008). The growing use of online data collection systems
for manufacturing systems and the potential of integrating data collection to performance

evaluation is also pointed out in literature This further motivates the research.

When performance evaluation has to be carried out using operational data from supervisory
systems parameters must be estimated from actual data and this introduces inherent
uncertainty in the estimates. This requires performance evaluation techniques that take into
consideration this estimation uncertainty introduced in the input parameters. This uncertainty
and the complexity of manufacturing systems highly influence the design, management and
operation process, by posing serious challenges towards the achievement of their target
performance. As a matter of fact, uncertainty analysis and robust system performance
measurement are crucial activities for manufacturing competitiveness. Indeed, several
important system design decisions are dependent on the ability to carry on a significant

analysis of the system performance in presence of uncertainty. Uncertainty in system



design/re-design phases may be either generated internally or externally to the system;
internal uncertainty is related to imprecise characterization of the events that affect the
technical efficiency of the resources in the system, i.e. breakdowns and disturbances; external
uncertainty is related to the difficulty in prediction of the system design requirements, mainly
due to the market volatility and turbulence. This thesis will focus on the first source of

uncertainty, i.e. internal uncertainty.

From a practical point of view, a systematic approach towards uncertainty is an essential
step to support both the “green field” design and the re-configuration phases. During the
“green field” design phase, the technical efficiencies of the resources/machines that shall
compose the manufacturing system are considered as nominal values, provided by the
equipment/sensor producers. However, when installed and integrated in the system, these
resources typically prove to perform differently from what expected, due to the specific
operational conditions and control system settings. Therefore, in order to capture this
deviation in the “green field” design phase and to generate a robust system configuration,
uncertainty should be associated to the resource efficiency estimates, used as input
parameters of the design process. On the contrary, in the system operational phase, the
technical efficiency of the machines can be estimated by using historical data, i.e. the
machines’ operational records, typically stored in the company production monitoring system
database. In this case, estimates are subjected to uncertainty due to the specific sampling plan

adopted.

The implementation of supervisory control and monitoring systems has a growing
importance and role in automated manufacturing systems. One dominant role of
implementing these systems is to enable autonomous execution of operations with complex
logic and sequence that must be satisfied for the manufacturing system to achieve the desired
processing activity. Equally important is their role for the collection of actual data on states
and conditions of machines equipments from sensors installed in the manufacturing system.
Generally supervisory systems report, display and alert, notify status of machines and
equipments and respond automatically to safeguard conditions before equipments enter

unsafe states. They record the real time events, states notifications of processing equipments,



parts, material handling system from respective sensors installed at different parts of the
manufacturing system. These fundamental requirements in manufacturing activities and other
additional advantages of employing supervisory control and monitoring systems are
increasingly making them an integral part of automated manufacturing systems. Depending
on the type of the manufacturing system and the main goals of implementing supervisory
control and monitoring systems the alternative solution in terms of specification, design and
analysis can be different. Their role as information and data provision for performance

analysis is a critical objective and needs a due consideration.

In addition to the choice of manufacturing systems elements, such as processing machines
and design of space for storage of semi processed, the performance evaluation and validation
process needs to consider supervisory control and monitoring systems. The motivation of
involving supervisory and monitoring systems to performance evaluation can be seen from
two major perspectives. Firstly, performance evaluation with actual data collected by
supervisory systems is crucial in understanding and studying the actual behavior of the
manufacturing system (Ioannidis, S. et al, 2004). The collections of signals about events that
characterize the manufacturing system from performance evaluation perspective have to be
considered in designing the supervisory system (Lafortune S. et al, 2001), (Cao Y. et al,
2005). On the other hand the logical sequence of operations and control rules specified in the
design of the supervisory system impacts the manufacturing system behavior, thereby the
corresponding performance. The specification of the supervisory systems therefore can
determine the type of model and approach to be used for the performance evaluation of the
integrated manufacturing system. This strong relationship between supervisory monitoring
systems and manufacturing systems on performance analysis requires the system designer to
consider the impact of one on the other before arriving on the final decisions of design

parameters.

The objective of this research can be viewed from two main perspectives in the integrated
analysis of manufacturing and supervisory monitoring tools. The primary objective is to
develop performance measurement techniques from operational data for an existing

manufacturing system that is controlled by a supervisory monitoring system where real time



data collection is performed. This part of the analysis looks how performance evaluation can
be performed from actual data, especially when the parameters for performance evaluation
are estimated from data and therefore subjected to uncertainty. The ability to carry out
performance analysis with uncertainty can be equally applied to the design of manufacturing
system during green-field design phase when manufacturing systems parameters are not
precisely known. The link between performance evaluation and actual data is rarely

considered in manufacturing systems and it is one of the primary goals in this study.

The second goal is to assist the definition of supervision requirements and data gathering
needs for improving reliability of the performance measurement and analysis. The proposed
analysis is required to provide a feedback on possible uncertainty reduction and improvement
of input parameters. This analysis should assist the optimal reduction of uncertainties by
adaptively changing resource constrained reconfigurable and adaptive supervisory systems.
In practice and the research field of supervisory systems methodologies are developed that
guarantee minimal observations for specified requirements. These requirements might arise
from different aspects, including observability, controllability and other functional
requirements of the system. The analytical nature of the analysis methods proposed in this
study enables the measurement of uncertainty as contributions by different input parameters.
Unlike statistical methods based on sampling these methods are capable in discriminating

between parameters that should be estimated more precisely than others.

The Supervisory Control Theory (SCT) is developed to provide a formal methodology for
the automatic synthesis of controllers for Discrete Event Systems (DES). The theory makes a
clear definition and distinction between the system to be controlled, called plant and the
entity that controls it, called supervisor. Consideration of supervisory systems during the
performance evaluation of manufacturing systems is an essential component for various
reasons. Increasing observability detail on supervisory system has a monotonically increasing
impact on the quality of knowledge of the system parameters and the subsequent performance
evaluation. Although it appears that increasing information detail is always desirable for
improved analysis, the minimal designs of supervisory systems are preferable from the

economical point of view. This has to be studied taking into consideration the functional



requirement of the supevisory system from the controllability and observability of events that
characterize the given manufacturing system. Significant literature has covered the problem
of supervisory control theory based on the framework initially developed by (Ramadge and
Wonham 1987) and extended by much research to date. In this research many studies
developed and demonstrated basic and fundamental properties of supervisory design
solutions. At this link the objective of this research is providing a feedback to supervisory
design problems from the resulting performance analysis so that reliability and robustness of
analysis is achieved by improved observability. Allocation of sensors regarding the minimal
and necessary observability of events can be determined which events should be recorded to

perform the desired type of performance evaluation and parameter estimations.
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Figurel:1 Integrated data collection and performance evaluation

In this thesis the relationship among manufacturing system performance analysis models
and the use of operational data for parameter estimation with uncertainty is investigated. The
study is conducted on different manufacturing systems including single machine systems and
multi-stage buffered complex manufacturing systems. Different approaches to analyze the
performance of manufacturing systems composed of unreliable machines when machine
failure and repair parameters are known with uncertainty are proposed. A new method for the
analysis of and multi-stage systems with capacitated buffers is developed and used to study

the behavior of long lines under uncertainty. Implication of performance analysis under



uncertainty and the impacts on decision making during system design/re-design are stressed.
The analytical investigation of performance evaluation from actual data and the resulting
estimation uncertainty paves the way to the development of a new manufacturing system

engineering theory for the robust design of manufacturing systems.

The thesis is organized in the next seven chapters as follows: in chapter 2 literature review
covering main contributions and developments on the four areas related to this research are
provided. Contributions on (1) analytical performance evaluation models with precise model
parameter assumption, developments on analysis tools based on actual data including (2)
Bayesian models and (3) fuzzy Markov chains are discussed. Moreover (4) methodologies

and considerations in the design and configuration of supervisory systems are highlighted.

Chapter 3 introduces important concepts in the classification, taxonomy and briefly discusses
relevant terminologies on typical characteristics and material flow of manufacturing systems.
Notations, assumptions and modeling assumptions are discussed that will be used in the

subsequent parts of the thesis.

Chapter 4 begins with the discussion on the estimation of input parameter from actual data
by using a Bayesian scheme in order to model uncertainty on inputs. Alternative exact and
approximate techniques are proposed with detailed procedures for performance evaluation of
manufacturing systems with uncertainty parameters. Fundamental differences in conducting
performance evaluation with traditional approaches in comparison with proposed techniques
with estimated uncertain parameters are presented and analytical proofs are provided. A new
method for the performance evaluation of buffered multi-stage serial lines and complex

manufacturing systems is presented in detail.

Chapter 5 presents numerical validation for accuracy testing of the methods presented in
chapter 4 is provided. Results are reported for each method. Extensive experiments on the
comparison between the accuracy and computational efficiency of methods are given.
Comparisons on the methods are performed based on exact analytical methods and Monte

Carlo simulations on different systems sizes.

10



Chapter 6 Generalized systems behaviors demonstrated by performance analysis under
uncertainty are discussed. Exhibited behaviors are summarized based on systems
architectures for two machine single buffer lines and multi-stage lines with accompanying
analytical explanations for the observed behaviors. Related practical implications on system
configurations and the link between bottle neck resources and estimation uncertainty is

explained.

Chapter 7 a gradient algorithm based on the methods developed in chapter 4 is proposed
for the reduction input uncertainty and choice of buffer configuration. The first problem deals
with how to better allocate sampling and data collecting efforts and resources in order to
optimally reduce input uncertainty. Moreover a method considering buffer allocation
problem on two machine lines and longer lines based on the original buffer allocation
problem is proposed. The impact of uncertain estimates on the buffer capacity decision is

demonstrated in comparison with the original buffer allocation method.

Chapter 8 A real case study featuring multi-stage production line with supervisory system
for data acquisition is analyzed using proposed method in this thesis. The importance in the

application of the proposed framework is highlighted from the analysis results.

In chapter 9 final conclusions and important possible extensions for future research are

highlighted.
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Chapter Two

2. Literature review

Given the complex challenges during the design and operations of manufacturing systems a
significant amount of research effort has been dedicated in the area of manufacturing systems
engineering. In the literature, methods that support performance analysis and help to
understand the dynamics of manufacturing systems have been developed. Vast research work
on manufacturing system analysis addressed manufacturing issues from perspectives which
are the most defining characteristics of manufacturing systems. Gershwin in (Gershwin
2002) outlined some of the main challenges that have been the drivers of this research
direction in the study of modern manufacturing systems engineering. Out of many challenges
he highlighted the most important ones as; complexity, randomness, heterogeneity,

constraints and trade-offs and Information.

Many works in the performance analysis of manufacturing systems have been proposed in
response to the above fundamental requirements. Research in simulation and analytical
models has targeted the need to model complex and the stochastic nature of manufacturing
systems. Mainly stochastic models for modeling manufacturing systems and performance
evaluation aim to capture the behavior of manufacturing systems under unpredictable events
such as machine failures and repairs. More recently works have perceived the need to jointly
address complexity, multiplicity and uncertainty of variables of different natures and inherent

trade-off between these variables such as quality and productivity.

The importance in obtaining clear, sufficient and precise information to carryout valid
performance analysis is also a recognized challenge in decision making. In literature, the
stochastic models for performance analysis and the information required to estimate the

model parameters are often considered separately. Data driven analysis of complex



manufacturing systems is rarely addressed. Model parameter estimation from data such as
mean time to failure (MTTF) and mean time to repair (MTTR) and the subsequent
performance analysis are considered two independent activities. The impact of one analysis
on the other and their mutual interaction in performance analysis of complex systems is not
well investigated and understood however important. For instance if the impact of collecting
various systems information is a costly activity then observations and data sampling efforts
from supervisory systems should be done in an efficient way. Supervisors should be
reconfigured in order to facilitate a more reliable performance analysis based on what needs
to be estimated more precisely than others. However; the design and reconfiguration of
monitoring and supervisory systems in manufacturing systems rarely takes into account the

needs of performance analysis.

The main goal of this thesis is to introduce methodologies and techniques that assist an
integrated data driven parameter estimation and performance analysis of manufacturing
systems. Therefore this chapter discusses relevant areas in the performance analysis of
manufacturing systems using information obtained from real manufacturing system.
Therefore significant contributions in the literature relevant to these challenges will be
discussed here. The review is structured as follows: Firstly, developments and contributions
in analytical methods for the performance analysis of manufacturing systems are discussed.
Then two main schools of literatures that introduce the use of real operational data and
estimation uncertainty in performance analysis of manufacturing systems are highlighted.
Developments and issues related to supervisory and data acquisition systems in relation to
monitoring of workstations, data collection and acquisition for the performance evaluation

for manufacturing systems are discussed.
Performance evaluation of manufacturing systems

In the last few decades research in performance evaluation of manufacturing systems has
developed various approaches and techniques that enable the modeling of important
performance measures. Alternative solutions are proposed for variety of analysis problems
depending on the type and complexity of the manufacturing system. Many modeling tools

consider problems such as nature of the parameters stochastic versus deterministic and other



characteristics that define the system under consideration. Based on the type of modeling and
solution techniques employed in performance analysis of manufacturing systems
methodologies can be classified as analytical methods and simulation methods. In this
section the review of main contributions made on analytical techniques are discussed, which
is the main focus of this research. The proposed techniques in the thesis are generally
applicable for performance evaluation by either simulation modeling or analytical models.
The choice and effectiveness of either model depends on the nature, size of the system to be

modeled and the complexity of the modeling type chosen.
Analytical models

Analytical models in general describe the system using mathematical or symbolic
relationships. These relationships are then used to derive a formula or to define an algorithm
by which the performance measures of the system can be evaluated. Under conditions where
the problem size is complex to be solved by exactly modeled relationship or if the level of
complexity is higher to handle with a reasonable computation time further modification can
be performed to these relationship. These set of assumptions and approximations from exact
analytical models are commonly categorized as approximate analytical techniques. In this

report we refer to both types of models as analytical models of performance evaluation.

Although the main target of this thesis is aimed at the analysis of complex manufacturing
systems a brief review of queuing systems is presented for the following main purposes.
Most advanced works in stochastic analysis of complex manufacturing systems bypass the
issue of “adequate knowledge”, such as statistical decision on reliability parameters. In the
early developments of queuing systems the trend was similar where most of the research
assumed parameters such as arrival rates and service rates are known ahead and precisely.
Due to their early continual development and ubiquity of applications in many fields they
become pioneer to catch the attention of researchers for the statistical treatment of their
model parameters estimation. Recent works also well exploited their mathematical simplicity
for Bayesian models for uncertainty in developing exact formulas for the quantitative
evaluation of performance uncertainty. The same problems in complex manufacturing

systems derive the need for the type of research proposed in this thesis. The early



development with precisely known parameters assumption and the later developments of data
driven parameter estimation are both presented for a good contrast which motivates this

research too.

Simple analytical models for performance evaluation such as queuing theory date back as
early as in 1909’s work of A. K. Erlang. They were used to solve telephone traffic congestion
problems. The first mentions of queuing theory appeared in 1951 with well established
classifications, notations and theory by D.G. Kendall. (Kendall 1953) published his paper on
the queuing notation. An extension of queuing models to network of systems with flexible
layouts is researched as the Jackson network model (Jackson 1957), (Jackson 1963) with
exponential servers and an exogenous Poisson process. In this work Jackson has shown that
the steady state distribution has a product form. (F. Haight 1958) also introduced the
concepts of balking and parallel queues. In this paper he investigated the case in which each
arrival to a system of two queues joins the shorter queue, or, if they are of equal length, one
particular queue using differential-difference equations. (H. White and L.S. Christie 1958)
considered server breakdown. They considered the effect on service-time statistics of

preempted items re-entering service according to various rules.

In (J. Little 1961) Little proved a formula with dependency of mean number of jobs in
systems (and queue) from mean response time (waiting time). (J.F.Ch. Kingman 1962)
considered heavy traffic queuing systems with traffic intensity very near but less than unity.
In this study algebra of queues and heavy traffic analysis of queuing systems are considered
by assuming dependent arrival times and the behavior of related performance measures such
as waiting times is investigated. (Jackson 1963) presented queuing networks with arrival
process that depend almost arbitrarily upon the number already present, and the mean service
rate at each service center depends almost arbitrarily upon the queue length there. He
demonstrated how the equilibrium joint probability distribution of queue lengths is obtained
for a broad class of jobshop-like “networks of waiting lines,”. In (Gordon et al, 1967) the
authors studied cyclic queuing systems with restricted queue length. They employed
differential-difference equations for the time-dependent stochastic structure to study closed

cyclic systems that are considered to be stochastically equivalent to open systems. In



(Mandelbaum et al, 1968) introduced the queuing systems with split and merge structure later

referred as “Fork-Join” systems.

In (Buzen J. P. 1973) the convolution algorithm for the computation of normalization
constant is proposed. (Basket et al, 1975) introduced a class of interconnected queues named
BCMP networks which are a significant extension of Jackson networks by allowing an
arbitrary customer routing and service time distribution.( F.P. Kelly 1975) proposed queue
networks with multiple type customers and exponential service-time distribution. Each type
of customer has a Poisson arrival process and a fixed route through the network and both
close and open networks were considered. (Courtois et al, 1977) introduced decomposition
for the approximate analysis of queuing networks called a generalized Jackson network. In
this network job inter arrival and service times are not required to be exponentially

distributed.

In (Reiser et al, 1980) have shown that mean queue sizes, mean waiting tunes, and
throughputs in closed multiple-chain queuing networks which have product-form solution
can be computed recursively without computing product terms and normalization constants.
This work is developed an approximate solution of networks with a very large number of
closed chains, and is shown to be asymptotically valid for large chain populations. In (Fdida
et al, 1986) queuing systems with a shared common resource where this shared resource is
modeled by an allocation queue with a limited number of servers are studied. The authors
introduce an approximate technique to evaluate those systems and found the value of the

stability condition of those networks.

(Gelenbe E. 1991) introduced new concept of positive and negative customers which can
signify work cancellations or customers which don’t need service. (Dai J. G. et al, 1996)
considered stability of fluid queuing models with variant rules of FCFS and FCLS. More
elaborated and complete reviews of queuing networks for the evaluation of complex
manufacturing systems are discussed in (Govil K. et al, 1999), (Papadopoulos and Heavey,
1996) and (Buzzacott and Shantikumar, 1993). (Buzacott and Shanthikumar 1992, 1993),
(Hsu et al 1993) and (Bitran et al, 1992) analyzed both performance evaluation models and

optimization models for queuing networks. More recent contributions can be found on (B.



Rabata 2009) queuing networks that are useful for modeling and performance evaluation of

complex systems such as flow lines and flexible manufacturing systems.

Queuing based performance models have the power and advantages that comes with exact
analytical model, such as the shorter evaluation time, and an explicit representation of the
dynamic relationship between parameters is preserved. Even though this is of great
importance from the performance evaluation perspective particularly to evaluate alternative
configuration and reconfigurations they have short comings which initiated the next
generation of approximate analytical techniques. Unlike the simplified assumptions that these
models consider for the production system parameters, most of real manufacturing systems
have specific requirements needed to be modeled. In addition many systems include complex
configurations and relatively huge size and network of processing machines and storage

spaces which can’t be easily evaluated in a reasonable amount of computational time.

The main idea behind the development of approximate analytical methods is to modularly
and structurally decompose bigger systems in to smaller building block systems with
effective modeling and assumption on the interconnecting parameters that interface these
building blocks. Finally the behavior of the whole system is captured by evaluating the
building blocks with their interfacing parameters until the assumptions that are used to
perform the decomposition are reached. These approaches have given rise to powerful
methods that enable to study complex and bigger manufacturing systems and the dynamics of
system behavior with satisfactorily accurate approximations. Especially these methods
proved to be very effective in bridging the gap between complex simulations required to
analyze complex and huge manufacturing systems and the very unrealistic assumptions made

in exact analytical methods.

The first results on modern approximate analytical methods appeared in operation research
literature in the works of (Gershwin, 1994). However, the process of firm automation and the
advances in Information Communication Technology and computers science continued to
generate new approaches in this field till now. A first review of early important works done

in this area are available in (Koenigsberg, 1959), (M. Buxey et al, 1973) and (Buzacott,



1978). More recent contributions on performance evaluation of serial lines are reviewed in

(Dallery and Gershwin, 1992).

The earliest work on modeling a transfer line composed by two machines and one buffer
line in are proposed in (Vladzienskii 1953).In (Vladzievskii, 1967), introduced the idea of
decomposition to evaluate the performance of a long transfer lines. Since the number of
states in which a K stage flow line can explode with the number of machines in the line, he
proposed to decompose the whole line into subsystems easy to be studied with the technique
previously proposed. Then, the behavior of each subsystem is transmitted to the other
subsystems by using opportune decomposition equations. This is the first example of
decomposition approach applied to the study of production lines and the first approximate
analytical method. Some works had the goal of demonstrating the properties of a production
serial line by using the approximate analytical methods. The first numerical analysis of two-
machine line with an intermediate buffer is presented in (Okamura and Yamashima, 1977)
with important behaviors such as the monotonic function increasing with the buffer capacity.
Important characteristics of buffered allocation problem including monotonicity, concavity
are studied in (Shantikumar et al, 1989). In (Gershwin and Shick, 1983) the property of
conservation of the average throughput in a production line is demonstrated. (Muth, 1979)
investigated the property of reversibility of a production line, i.e. inverting the order of the

machines in the line, the average production rate remains constant.

Gershwin and Berman (Gershwin et al, 1981) proposed the first effective exact solution for
a two-machine line, in which the Markov chain describing the behavior of the system is
solved independently on the capacity of the buffer, following a product form solution. Other
works improve this method by using the properties of matrixes. In (Gershwin et al, 1983) the
first exact solution of a system composed by three machines and two buffers are presented.
(Jafari et al, 1987) analyzed flow lines in which, during a stage of production, some
imperfect parts had the possibility of being scrapped from the system. Moreover, they
extended the analysis to case of two machine lines with general uptime and downtime
distributions. (Muth et al, 1987) proposed a method in which repairing personnel was shared

by different stations and the repair time depended on the availability of the operator.



A decomposition approach for evaluating performance measures for multistage systems
with finite intermediate buffers in which blocking and starvation is considered is presented in
(Gershwin, 1987). The approximate decomposition approach is based on system
characteristics such as conservation of flow and integrated the solution of the two-machine
system already analyzed in (Gershwin et al, 1981). The efficiency, accuracy and flexibility of
the modeling methodology made it a pivotal work which guided much of the research in
performance analysis of complex systems. The model considered discrete time assumptions,
geometrically distributed failure and repair times, unique failure mode and finite buffer
capacity. Significant improvements were made to the proposed approximate decomposition
algorithm in later works. (Dallery, David and Xie 1988) improved the algorithm by using an
iterative technique that with a strong convergence instead of the originally proposed exact

solutions.

Additional improvements contributed on the approach’s applicability for a wider range of
analysis problems with various assumptions. (Gershwin, Matta and Tolio 2002) considered
multiple failure modes for each machine, i.e. the possibility that one machine can go down
for different reasons and with different probabilities of failure and repair. Moreover, in (Le
Bihan and Dallery, 1997) and (Tan and Yeralan, 1997a) new decomposition approaches were
proposed. Further research improved the applicability of the proposed approach to real
systems with various system architectures, and focused on reducing the approximation error

and by generalizing the methodologies assumptions.

Extending the applicability of the decomposition to complex manufacturing architectures,
assembly/disassembly systems have been considered (Gershwin and Burman, 2000). Similar
architectures are analyzed considering the reconfiguration of resources to increase the
system's production rate in (Chiang et al., 2000). Later, systems characterized by non-linear
flow of material were analyzed in (Helber, 1999), (Li and Huang, 2005), (Diamantidis and
Papadopoulos, 2004) and (Gopalan and Kumar, 1995). Closed loop architectures are studied
using the decomposition method in (Gershwin and Werner, 2003) and (Commault et al,
1996). Multiple closed loops are considered in (Levantesi, 2001). Multi-product systems

have been recently studied with approximate analytical techniques (Colledani et al. 2005),



(Colledani et al., and 2005b). Techniques for the evaluation of generally complex system
layouts have been developed in (Li, 2003), where an approach to approximate the production

rate for systems with rework loops is considered.

Production control policies for regulating the throughput rate of the system have been also
studied with decomposition techniques. Relevant works in this area are the work of Gershwin
(Gershwin, 2000) (Gershwin and De Vericourt, 2004) for modeling and evaluating the
performance of systems controlled by the Control Point Policy and the work of Bonvik
(Bonvik et al. 1997) which review and compare the performance of systems controlled under
different policies. Matta in (Matta et al., 2005) analyzed the performance of assembly
systems controlled with kanbans with the use of queuing networks. Studies introducing
quality control in production systems are developed (Bulgak, 1992), (Cheng et al., 2000) and
(Li, 2005) address the problem of studying how different system architectures and quality
control policies (Moinzadeh and Tan 2005) impact. (Kim and Gershwin 2005) have shown
the importance of integrated analysis of quality and production logistics. In their work they
show the trade-off between quality and productivity. (Colledani and Tolio 2006, 2009)
extended the decomposition model to serial production lines where machines may experience
quality failures. They demonstrated the impact on manufacturing system architecture and
inspection allocation and buffer capacity determination for an optimal system yield.
(Colledani et al, 2008) proposed Multi-Product Multi-Stage Lines systems that can model
flexible manufacturing systems featuring alternative product routes. (Tan and Gershwin
2009) proposed a general methodology using level crossing analysis for solving continuous
two machine lines. (Gershwin and Tan 2010) showed that the proposed modeling framework
enables the analysis of a wide range of system models, including multiple failure mode lines,
identical parallel machine lines, split/merge systems and lines with generally distributed up
and down times. (Colledani and Gershwin, 2011) considered multi stage fluid flow systems

and proposed a decomposition method for general Markovian complex machines.

In a methodologically different approach to the study of multi-stage lines using
decomposition approach another stream of research development is the aggregation method.

(Lim and Meerkov 1990) have proposed aggregation method for the analysis of
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manufacturing lines. The method works by combining the first two machines of the transfer
line into a new combined machine and this forward aggregation process is continued until the
last machine is reached. Moreover the same approach is used to study different problems that
are studied in decomposition methods. In (Kuo, Lim and Meerkov, 1996) proposed a method
for the study of bottlenecks and buffer allocation problem. (Li and Meerkov 2009) describe
several aggregation approximations of analyzing production systems. Additionally
introducing quality and inspection (Meerkov, and Zhang, 2010) have proposed the analysis
production systems. However, for the modeling of complex systems such as multiple part-
type systems, promising results had been shown in recent decomposition attempts, and thus
in this thesis, the Markov modeling approach and decomposition were used as the primary

analytical tools.

Analytical models and uncertain parameter estimates

Although the analytical methods for stochastic modeling of manufacturing lines has a long
history and has generated of a considerable research, the statistical analysis of model
parameters has received comparatively limited attention. Much of the effort is devoted to the
probabilistic development of the models and to study the mathematical behavior of the
system. The parameters governing the models are for most part assumed to be given.
Important modeling building blocks, but relatively simplified systems such as single queues
were the first area of investigation of researchers on how to introduce the estimation of
parameters required for the evaluation of important performance measures. In the area of
statistical analysis of stochastic models the most covered problems in literature are queuing
systems. The popularity of these models for various modeling problems and the applicability
in many different areas has made them typical target for this analysis. In the coming few
section we will see main contribution in this area and recent contributions in the analysis of

multistage lines from operational data.

Early mentions on statistical inference of parameters for queuing systems mainly addressed
problem of estimating input parameters using frequentist approach. On (Clarke A.B., 1957),

Clarke presented a maximum likelihood estimation method for the arrival rates and service
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rate of M/M/1 queue system. (Basawa et al, 1988) presented in which they demonstrated four
alternative ways of data collection and experiments on single server systems. In this work
they assumed the service time and the interarrival time densities to be (positive) exponential
families. In (L. Schruben, R. Kulkarni 1982) they have shown the estimation of arrival rates
and service rates and the resulting discrepancy between the state distribution for the model
(estimated parameters) and the state distribution for the actual system (known parameters).
They investigated that the mean for the model is infinite even if the estimated traffic intensity
is restricted to be strictly less than one. (Zheng et al, 2000) addressed the undesirable
properties related to mean estimators and that the expected value of the estimator does not

exist and the estimator has infinite mean-squared error and introduced alternative estimators.

Reviews highlighting the significance of statistical analysis of queuing systems which were
not covered with in queuing theory or stochastic process models can be found in (N. Bhat
and S. Rao 1987). This review raised important questions related to the use of queuing
models and the sampling plans that accompany estimation of arrival rates. How long should
the system be observed - for a specified length of time or until a specified number of events
has occurred? In addition works related to test stationarity, periodicity assumption and the
impact of the sampling plan on the stochastic model are discussed. Bayesian works for the
inference of parameters for queuing systems presented in (F. McGrath et al, 1987). Their
work emphasized on the amount of information conveyed using Bayesian approach for the
statistical inference in queues. (C. Armero and M. J. Bayarri 1994a, b) have shown how
Bayesian methods are suited to handle the common inferential aims with an emphasis on
prediction on M/M/Iqueue system. In (Armero et al, 1994a) the authors analyzed an
exponential single-processor queue, using Gamma prior distributions for the service and
arrival rates. They demonstrated the posterior moments of certain performance metrics, such
as the steady-state number of customers in a system, do not exist. This problematic issue in
prediction of the long-term behavior of the system is addressed in later works in (Armero et
al, 1994b). (Insua et al, 1998) have considered statistical analysis of M/G/1 queuing models
with Erlang service time distribution and demonstrated Monte Carlo method for the

estimation of interesting performances. A detailed exposition on why Bayesian analysis is
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good for queues can be found in (Armero e 1999). The popular use of mathematical queuing
models for the performance evaluation of production systems (Armero et al, 1998) have
conducted a series works on the Bayesian statistical analyses on Markovian bulk arrival
queues with a focus on prediction of the usual performance measures of the system in
equilibrium. In these papers posterior predictive distribution of the number of customers in
the system is obtained through its probability generating function. In (Armero et al, 2000)
they have shown the use of Markov Chain Monte Carlo and numerical inversion of these
transforms to evaluate the distribution of performance parameters. With an extended work in
particular to a production systems ( Armero et al, 2003) shown important special features of
Bayesian analysis of queuing production systems in comparison with traditional queuing
theories. Using conjugate prior they have shown making inference on the posterior density of
arrival and service rates. (H. Liyanage and G. Shanthikumar 2005) considered inventory
control problem with an ambiguous demand comparing with traditional approach of
separating the parameter estimation and the maximization of the expected profit which leads
to a suboptimal inventory policy. (Chu et al 2008) demonstrated an integrating parameter
estimation and optimization using operational statistics which leads to better solutions
compared with the traditional approach. In this paper they also introduced a Bayesian
approach for the estimation of input parameter. In (A. Jain et al. 2010) proposed a method for
the optimization of single queuing systems with model uncertainty. In this work they have
demonstrated the difference of assuming arrival and departure rates as accurate and known
parameters against with uncertain model assumption from operational data. (Wazed et al
2009, 2010) identified and provided a review on the different sources of uncertainty in real
manufacturing environment. (L. Li et al 2011) proposed an average autoregressive moving
average model (ARMA) for a data driven bottleneck detection in multi-stage manufacturing
systems. (A. Azizi et al 2012) proposed a Bayesian inference for throughput modeling under
uncertainties. They used a Bayesian model utilized prior distributions related to previous
information about the uncertainties where likelihood distributions are associated to the
observed data with Monte Carlo Markov chain was employed for sampling unknown

parameter uncertainties.
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Performance analysis with Fuzzy Markov models

An emerging area of research on model parameters uncertainty is Fuzzy Markov models
which are capable to deal with uncertain transition rates and probabilities. Fuzzy Markov
models are developed to overcome the deterministic assumption by emphasizing on the
uncertainty of transition probabilities from real data or insufficient information. Much of the
contribution that is made under this research is in the area of mathematical studies and
computing systems. Even though currently the use of these models is not widespread in
performance analysis of manufacturing systems it is important to briefly discuss their
potential for analysis under uncertainty. Early works such as (R.E. Belman and L.A. Zadel
1970) introduced decision making in a fuzzy environment, where constraints and goals can
be fuzzy whose range and boundary are not sharply defined. In their work they also
investigated the use of these concepts using examples involving multistage decision
processes in which the system control is either deterministic or stochastic. They also
emphasized the importance of differentiating between randomness and fuzziness. Detailed
review on previous main theoretical contribution of fuzzy systems is available in (J. Klir and
B. Yuan, 1995). The authors provided summary of works on fuzzy sets, fuzzy logics, fuzzy
algebra and applications. More recent developments can be found also in (J. Buckley and E.
Eslami, 2002). These reviews summarize the properties of regular, and absorbing, fuzzy
Markov chains and show that the basic properties of these classical Markov chains generalize
to fuzzy Markov chains. (Dubois et al, 2005) proposed a technique to perform fuzzy interval
computation under a condition of local monotony of considered functions, by considering
uncertainty as pairs of fuzzy bounds. (D. Kumar et al., 2005) described an application of
fuzzy Markov model for the determination of fuzzy state probabilities for generating units
including the effect of maintenance scheduling. (T. Binh and D. Khoa, 2006) discussed the
application of fuzzy Markov in calculating reliability of power systems. (G. Chongshan
2009) calculated fuzzy availability of a reparable geometric process and fuzzy reliability
theory to study a repairable linear. He considered uncertainties in some of the transitions

probabilities as modeled by fuzzy numbers.
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(D. Kumar et al. 2009) calculated fuzzy reliability and fuzzy availability of the serial
processing plant. (I. Uprety and Zaheeruddin, 2009) evaluated the fuzzy reliability of
gracefully degradable computing systems. (D. Kumar and Kumar 2010) computed the fuzzy
reliability of the stainless steel utensil manufacturing unit for the constant failure and repair
rates. (Y. Liu and Huang, 2010) introduced a modified fuzzy multi-state system availability
assessment approach to compute the system availability under the fuzzy user demand. (F.
Aminifar et al., 2010) proposed reliability modeling of PMU and the Markov process is
employed to analyze the proposed model. (D. Kumar and Kumar, 2011) used the concept of
fuzzy approach in the evaluation of the reliability of a manufacturing plant. (A. Kumar and S.
Lata, 2012) used the fuzzy Kolmogorov’s differential equations evaluate the fuzzy reliability
of system, the fuzzy Kolmogorov’s differential equations are solved analytically for solving

n" order fuzzy linear differential equations.
Supervisory systems and manufacturing systems

Supervisory systems are increasingly becoming integral features of modern automated
manufacturing systems. The supervisory control of Discrete Event Systems (DES) in
accordance with behavioral specification is a new research area which is receiving increasing
recognition. Even through supervisory systems are have many diversified functions in
manufacturing systems they also play an important role in performance evaluation and
analysis. One objective of these systems is to perform data collection and monitor the
behavior of individual work stations, work cell behavior and part flow via sensory feedback.
Research on supervisory system development and implementation is based on information
feedback on the occurrence of events, formal languages and controlled finite state machine

concepts and petrinets.

The first important and comprehensive framework on Supervisory Control Theory was
developed by (P.J. Ramadge and W. M. Wonham 1987). This work has studied a class of
discrete event processes and provided a formal methodology for the automatic synthesis of
controllers for Discrete Event Systems (DES). The theory also made a clear definition and
distinction between the systems to be controlled, called plant and the entity that controls it,

called supervisor.The supervisory theory by Ramadge and Wonham is so far the most
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comprehensive theory for the control of discrete event systems. It is based on the concept of
a supervisor (Ramadge 1983), (Ramadge 1987), i.e., an agent that is capable of disabling the
controllable transitions of a DES in response to the traces of events generated. The
Supervisory Control Problem (SCP) consists in designing a supervisor which restricts the
traces generated by the system within a legal behavior. If the legal behavior is a controllable

language (Wonham 1987) a supervisor exists.

The use of Petri nets with inhibitory arcs (PNIA), which are known to have a modeling
power equivalent to Turing machines, to describe infinite state systems. Thus, they prove that
a PNIA supervisor exists if the system’s and specification behaviors are Turing computable
languages. However, important properties, such as determining if the behavior of a PNIA is
controllable, are undecidable. In (Ramadge 1986) and (Lin F. et al, 1988a, 1988b) a modular
approach to the design of supervisors is considered. The case of the infinite state supervisor
is discussed by (Sreenivas et al, 1992). The specification language is composed of different
specifications, each enforced by a single supervisor. A global control law can be enforced by
the conjunction of all the supervisors. In (Ramadge 1989b), (Tadmor 1989) and (Tsitsiklis
1987) different problems of computation and the related issue of computational complexity
and modularity are considered. A review of the theory is presented in (Ramadge 1988),

(Ramadge 1989b), (Wonham 1988a).

In (Lafortune 1990a) a new control problem is studied: the Supervisory Control Problem
with Blocking (SCPB). Here it is assumed that in some cases the solution to the SCP
(supremal controllable sublanguage) may be too conservative. A dual concept is defined—
the infimal controllable superlanguage — and is used to determine a supervisor that may also
permit blocking in order to achieve a larger behavior. In (Lafortune 1990a) Lafortune and
Chen introduced two performance measures (in terms of satisficing and blocking), and
techniques to improve each of these two conflicting measures. An extension of this work is
(Lafortune 1991) where the Supervisory Control Problem with Tolerance (SCPT) is defined.
Given a desired and tolerated behavior, the problem is that of designing a controller such that
the controlled system never goes beyond the tolerated behavior and achieves as much as

possible of the desired behavior. Under very general hypotheses on desired and tolerated
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behavior, (Lafortune and Lin, 1991) show that a solution to SCPT exists and is unique, but

may be blocking. A non blocking solution exists but is not necessarily unique.

In 1991, (Cieslak et al.1991) discuss and solve the Supervisory Control and Observation
Problem (SCOP) and the Decentralized Supervisory Control Problem (DSCP). In SCOP the
assumption is that a mask is present between the controlled system and supervisor, so that the
supervisor cannot observe all the transitions, or cannot distinguish between some of them. In
DSCP it is assumed that the control action is enforced by local supervisors that control only
subsystems. In (Lin 1988) and (Lin 1990) Lin and Wonham discuss the Decentralized SCOP
(DSCOP) where both partial observations and decentralized control are incorporated into the
control structure. However, the only mask operator considered in this paper is the language
projection operator. In (Brave 1993) Brave and Heymann define stabilization as the ability of
a discrete event process to reach a set of target states from an arbitrary initial state and then
remain there indefinitely. A slightly different problem that the authors examine is recovery
under control failure. In both cases they present design algorithms for controllers that
improve the stabilization of processes. In (Ushio 1990) Ushio discusses the conditions under
which a finite state supervisor (FSS) may be constructed to solve a SCP. From (Ramadge
1987) it was known that a FSS exists when both system’s behavior and specification
language are regular. Here the author derives necessary and sufficient conditions for the

general case.

Many of the early important works developed in the supervisory control theory are focused
on deterministic automata systems, where the transitions between states can be determined or
controlled by the supervisor. Studies that are based on original Ramadge-Wonham frame
work but which can handle probabilistic transition and control generated a series of new
research area. The probabilistic control got more interest from researchers and practitioners
due to its power in approximating the behavior of most real systems whose state transition

behavior is more represented by probabilistic assumption rather than deterministic.

Lawford and Wonham (1993), a plant under probabilistic control can generate a much
larger class of probabilistic languages than deterministic control. The necessary and

sufficient conditions for the existence of a supervisor for a class of PDESs are given in
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(Lawford and Wonham 1993). The control of different models of stochastic discrete event
systems has been investigated in (V.Grag 1992a, 1992a,) and (V. S. Borkar 1991). V. Grag
defines probabilistic languages and probabilistic automata over a finite set of events and
considered operators under which the set of probabilistic languages (p-languages) is closed.
V. Grag in (V. Grag 1997) has extended the use of recursive equations to solved language
algebra. He defined the notion of regularity, i.e., finiteness of automata representation of
probabilistic languages has been defined. (R. Kumar 2001) provided a condition for the
existence of a supervisor and an algorithm to test this existence condition when the
probabilistic languages are regular and developed a technique to compute a maximally

permissive supervisor online.

Further works on the stochastic systems such as (S. Postma et al, 2004) proved the
conditions and provides an algorithm that can be used to compute a solution to the model
matching problem when it exists. (Y. Cao and M. Ying 2006) extended important properties
such as observability, normality, and co-observability of crisp languages to fuzzy languages.
In their analysis they provided the necessary and sufficient condition for the existence of a
partially observable fuzzy supervisor. (Chattopadhyay et al, 2007, 2008) demonstrated
stochastic discrete-event supervisor is optimal in the sense of element wise maximizing the
renormalized language measure vector for the controlled plant behavior and is efficiently
computable. A formal proof of the necessity and sufficiency of the conditions and an
algorithm for the calculation of the supervisor, if it exists, are presented in (Postma and

Lawford 2004), and (Pantelic et al, 2009).

(A. Jayasiri et al, 2010) investigated the decentralized modular supervisory control problem
of FDES with partial observation for systems which are composed of concurrently operating,
multiple interacting modules with uncertainties in their events and states. (A. Jayasiri et al,
2012) studied modular and hierarchical supervisory control theories of Fuzzy Discrete-Event
Systems (FDES). They addressed the horizontal and vertical complexities present in large-
scale event-driven systems, which are affected by uncertainties in their event and state
representations. Using Probabilistic discrete event systems as a generator of language (V.

Pantelic 2012) presented an approximate algorithm to synthesize a probabilistic supervisor
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that minimizes the distance between generators representing the achievable and required

plant behavior.
Role of supervisory systems in performance evaluation of manufacturing systems

Quantitative methods for the performance evaluation of manufacturing systems and design
techniques for the supervisory and control systems are traditionally treated as two separate
fields of research. Despite the close link and the strong interaction between the two areas
both researchers and practicing engineers and system designers treat the study and
development of the two aspects independently. The main goal of manufacturing systems
design and analysis is to measure and guarantee performance measures such as, average
throughput, i.e. the average number of parts produced in a given time, utilization of
equipments, lead time, the average duration of time parts spend in the system, the average
number of work in progress in the manufacturing system. On the other hand the control of
discrete-event systems (DES) is a research area of current vitality, stimulated by the hope of
discovering general principles common to a wide range of application domains. Among the
latter are manufacturing systems, traffic systems, database management systems,
communication protocols, and logistic (service) systems. The contributing specialties are
notably control, computer and communication science and engineering, together with
industrial engineering and operations research. Regardless of the type of application historic
data that are stored in these systems are potential sources of data for performance evaluation

of the monitored system.

The importance of system supervision is even more pronounced for understanding and
inference of manufacturing systems where the fundamental behavior of these systems is
rarely predictable and subjected to high randomness. Some general sources of internal
unpredictability, such as excess inventories, long lead times and uncertain delivery dates are
caused by randomness and lack of synchronization. There are only two possible solutions:
reduce the randomness (due to machine failures, engineering changes, customer orders and
so on) and reasons for the lack of synchronization (costly set-up changes, large batch
machines and others) or respond to them in a way that limits their disruptive effects.

(Gershwin, 1994, 2000). Stochastic performance evaluation models attempt to study and
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analyze the average and transient behavior of the manufacturing systems caused by this
randomness. For this reason most performance evaluation models characterize manufacturing
systems as stochastic rather than deterministic. Commonly studied sources of randomness in

manufacturing systems are:

1. Arrival times of entities, i.e., parts or raw materials moving throughout the system

2. Processing or assembly times at each workstation or machine for different types of
parts

3. Operation times for each workstation or machine without failure or breakdown

4. Time between failures of operational breakdown

5. Repair times for failures or breakdown

6. Set-up times for individual machines and systems

The effectiveness and accuracy of output performance from stochastic models depends on
the input parameters associated to the stochastic variable. Examples of such input include the
arrival rate of entities to the system, the processing times required at various machines,
reliability data (e.g., the pattern of breakdowns of machines). In many practical cases when
there are supervisory control systems recording stochastic events related to a manufacturing
system these parameters must be estimated from existing data sets. The input data analysis
and modeling uncertainty of input parameters of stochastic models and their impact on the

performance analysis is less studied problem in performance evaluation models.

More recently there are some literatures available on performance evaluation using
operational statistic from actual data, especially for analytical models of stochastic systems.
These preliminary works emphasized on how the use of uncertain parameters that are
estimated from operational data can greatly impact the performance evaluation output. In
some studies they demonstrated how the uncertainty impacts the first moments of evaluated
performance and help to estimate higher order moments (H. Liwan et. al, 2004), (LeonYang
Chu et. al, 2007), (A. Jain et. al, 2010). These studies highlight the importance of introducing
performance evaluation using actual data on smaller systems such as single stage queues,
optimization problems. But there are no comprehensive approaches on how to extend

solutions to estimated parameters from actual data for the performance evaluation of complex
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stochastic systems. General evaluation techniques such as approximate analytical approach
for the performance evaluation of multistage manufacturing systems are not yet treated from

this research perspective.

On the other hand literature and research on supervisory control theory to guarantee the
information needs of performance analysis is scantily addressed, except rare qualitative
mentions of the problem. The primary focus of supervisory control theory has been so far on
insuring safety and other requirements related to the control of operations in the
manufacturing systems. Since the introduction of this field in 1982 by P.J. Ramadge and
W.M. Wonham there is a huge amount of literature in the study of the synthesis of controlled
dynamic invariants by state feedback, and the resolution of such problems in terms of
naturally definable control-theoretic concepts and properties, like reachability, controllability
and observability. From this perspective the performance evaluation aspect of the supervisory
systems get relatively limited attention. Some works that implement stochastic petrinets and
automata for the performance evaluation of a realized discrete event systems attempted to
evaluate modeled systems with these frameworks. Additionally there are no formal
approaches on how to quantify and prioritize observation requirement that come from
manufacturing system based on performance analysis that considers real data. On this
direction this research attempts to pave one possible way for addressing this problem in a

formalized way.
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Chapter Three

3. Manufacturing system modeling

This chapter introduces general definitions, attributes and characteristic behaviors in the
classification and taxonomy of manufacturing systems. The relevance of the classification
system used in this discussion emphasizes on performance modeling and evaluation
perspective of manufacturing system. Important terminologies and notations are explained
and defined that need to be used in the upcoming chapters of the thesis. The classification is
mainly used to underline the category of manufacturing systems that are interesting for this
study and gives due consideration on explaining characteristics and parameters that define

similar systems which are the main focus of this research.

3.1 Characterization of manufacturing systems

A manufacturing system can be defined as a set of machines, transportation elements,
computers, storage buffers, and other items that are used together for manufacturing
(Gershwin 2004). These systems can be classified based on different criteria depending on
the objective of the classification framework and the intended kind of study. From
manufacturing systems engineering point of view the commonly used classification basis are
mainly the operational characteristics and the operational flow structures. Classifications of
manufacturing systems are comprehensively discussed in (McCarthy, 1., 1995). This chapter
briefly discusses relevant terminologies and classifications based on typical characteristics
and material flow of manufacturing systems. Furthermore important building blocks
elements (machines, buffers, material flow) for the modeling and representation of

manufacturing systems are introduced.
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Discrete manufacturing: The production or assembly of parts and/or finished products that
are recognizable as distinct units capable of being identified by serial numbers or other
labeling methods-and measurable as numerical quantities rather than by weight or volume. In
discrete manufacturing, the manufacturing floor works off orders to build something.

Examples include toys, medical equipment, computers and cars.

Process manufacturing: A manufacturing environment often characterized by a batch or
continuous transformation of a gas, liquid or powder, low product complexity and
manufacturing variations, fixed or dedicated facilities, a flat bill of material and relatively
few transactions. The processing of products such as chemicals, gasoline, beverages and food

products are typically produced in "batch" quantities rather than discrete units.

The models that are this thesis mainly focus on discrete manufacturing. Depending on the
operational characteristics of manufacturing systems, volume and diversity of discrete
products in which the manufacturing system is designed for they can be generally be

categorized into three main classes as: mass production, batch production and Job shop.

Mass production: Refers to the manufacturing of large quantities of standardized products,
using dedicated machines and utilizing assembly line technology. Mass production
is typically characterized by some type of automation, as with an assembly line, to achieve
high volume, the detailed organization of materials flow, careful control of quality standards.
In these systems machines perform operations on incoming parts. In this case, the quantity of
products stored in buffers is a real number. Typical applications of this type of systems can
be found in food industry, textile production lines, chemical lines and pharmaceutical lines.
These are commonly analyzed through the use of discrete and continuous models, which treat
the flow of material as a continuous fluid or discrete units. In many cases continuous models

can also be used to approximate the behavior of discrete systems.

Batch manufacturing: Refers to a production control method whereby the ranges of
products manufactured in a plant are made in batches. Each separate batch consists of a

number of the same products/components. In the past, large batches of each product were

made to gain efficiencies by reducing the amount of non value adding time spent changing
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over from one product type to another. However, this type of production results in high
inventories and excessive lead times. The Toyota Production System was developed to
overcome the limitations imposed by changeovers and allows manufacturers to produce in

synch with customer demands at a high level of quality and low cost.

Job Shop manufacturing: Manufacturing systems that produce items that are "one of a
kind", for example, manufacturers of automation systems and tooling fall in the job shop
category. A distinguishing feature of job shop is that it is capable of processing many

different types of jobs, each with its own routing and processing characteristics.
Units and event times in manufacturing systems

Times related to events and phenomena which are common in manufacturing such as
sequences in starting and finishing, durations between two events, play important roles for
the classification, modeling and the performance evaluation of manufacturing systems. Some
important units such as throughput, lead time in performance measurement are linked to
statistics of time units. Following are some important units and definitions related to the

study and analysis of production discrete flow lines.

Cycle time: the time required for a machine to perform an operation on a product, while
working in isolation is named cycle time. It can be deterministic, if it is not varying from one
part to the next, concerning a given process. It is stochastic, if it is randomly varying from

one part to the next.

Throughput: denotes the number of lots per time-unit that leaves the manufacturing
system. At machine level, this denotes the number of lots that leave a machine per time-unit.
At factory level it denotes the number of lots that leave the factory per time-unit. The unit of

throughput is typically parts/cycle time.

Flow time/Lead-time: denotes the time a part spends in the manufacturing system. At
factory level this is the average time from release of the part in the factory until the finished
part leaves the factory. At machine level this is the time from entering the machine (or the
buffer in front of the machine) until leaving the machine. For modeling purposes flow time is

typically measured also in cycle time.
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WIP-level: (WIP) work in progress denotes the total number of parts in the manufacturing
system, i.e. in the buffers or in the machine. WIP or buffer level is measured in integer in

discrete manufacturing.

Utilization: denotes the fraction a machine is not idle. A machine is considered idle if it
could start processing a new part. Thus processing time as well as downtime, setup time and
preventive maintenance time all contribute to the utilization. Utilization has no dimension.

Utilization can never exceed 1.0.

Synchronous manufacturing lines: synchronous systems refer to lines characterized by
identical deterministic cycle times for the different machines in a system. It doesn’t imply
synchronous in the strong sense, where all the machines start and stop processing operations
as in the case where all the movement of jobs and parts is coordinated and internal buffers
remain constant. In this case if two machines are operational both machines start and stop
simultaneously for each machine, while it is possible one machine is operational and the
other stays down due to failure or other causes. But all the changes that happen to the system

such as repair, failure, completion of processing happen contemporarily.

Asynchronous manufacturing lines: In asynchronous manufacturing lines cycle times may
be different among machines and operations do not necessarily start and stop contemporarily
for each machine. And on operation completion the part immediately moves to the next work
station, as long as there is space for it. In both the asynchronous and synchronous lines the
number of jobs in the system may fluctuate (considerably) and buffers are needed to prevent

starvation and blocking.

Discrete and Continuous times: in discrete manufacturing each operation requires a fixed
time to process a part and the number of products present in buffers, at each time instant, is
an integer number. Typical applications of discrete systems can be found in automotive lines,
white goods production lines and mechanical components production lines. In continuous
production systems machines perform operations on continuously flowing incoming parts. In
this case, the quantity of products stored in buffers is a real number. Typical applications of
this type of systems can be found in food industry, textile production lines, chemical lines

and pharmaceutical lines. This are commonly analyzed through the use of continuous

25



models, which treat the flow of material as a continuous fluid. These continuous models can

also Introduction of events that characterize an unreliable manufacturing system
Material flow in manufacturing systems

Starvation and Blocking: Material flow in a manufacturing line can be interrupted for
different reasons. One cause can be the failure of the machine itself, but since machines are
interconnected in the manufacturing line the failure of other machines in the line can cause
other machines to stop due to the starvation and blocking phenomena. A machine is starved if
there no part is available for processing from the upstream buffer. A machine is blocked if
there is no space to place a completely processed part is in the downstream buffer. Blocking
and starvation phenomena are the main causes of interruptions of material flow which
propagate through a line. If no buffers are present between machines, a failure of a machine
immediately propagates to all the other machines composing the line. The goal of introducing
buffers in real production systems is commonly to decouple the behavior of machines and
prevent blocking and starvation phenomena from propagating along the line. Once a machine
fails, starvation propagates to the downstream machines while blocking propagates to the
upstream machines. Therefore, machine M; is blocked by the failed downstream machine M;
if all the buffers among M; and M; are full. On the contrary, machine M; is starved by the
upstream failed machine My if all the buffers between My and M; are empty. Capturing the
correct dynamics of propagation of blocking and starvation in the system is fundamental for

the development of accurate models and methods for the performance analysis of systems.
Basic Elements in a manufacturing line

Basic elements in manufacturing systems modeling such as machines, buffers, material
flows and their representation are defined and introduced. The relative arrangement and
architecture of these elements defines the layout and configurations of manufacturing
systems. A widely used and studied building block models for modular decomposition and
performance analysis of the different complex manufacturing architectures are also
described. These elements will be used for building and representation of different

manufacturing systems architectures that will be discussed here. Their representations will be
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kept the same for modeling the different types of manufacturing systems that will be

discussed throughout this thesis.

Machines: are automated or manual work stations that perform operations on parts that are
processed in the manufacturing line. Depending on modeling conveniences and objectives a
group of workstations can be considered as single machine. Machines are represented in
squares, in cases a machine performs operation on different products they are represented

with squares partitioned with horizontal lines, equal to the number of products.

Operational Failures: operational failures are those disturbances which cause the
immediate interruption of the manufacturing flow for a machine. Failures which stop the
whole production of the system, like energy provision interruptions, are not considered
among these types of failures, thus the independence of failures among different machines is
considered. In order to restore the machine to the operative conditions, the intervention of an
operator is required. Two types of failures are generally observed in real production systems,

i.e. Operation Dependent Failures (ODF) and Time Dependent Failures (TDF).

Operation Dependent Failures (ODF): are failures that can happen only if the machine is
operational, i.e. not starved nor blocked. This are typically mechanical failures, such that the
tool breakage, the errors of sensors while positioning the work piece in the work zone, the

lack of material and mechanical jamming.

Time Dependent Failures (TDF): are those failures that can happen even if the machine is
starved or blocked, i.e. the failure occurrence do not depend on the machine state. They are
typically electronic failures, such that light burn-outs, machine screen problems and machine

communication problems.

Buffers: are temporary storage spaces for parts flowing between machines in
manufacturing lines. In real manufacturing systems they can be transporting material from
one machine to another one, decoupling the behavior of the machines and reducing the effect
of the propagation of blocking and starvation phenomena in the line. They can be automatic

conveyors, AS/RSs, floor space, etc. Buffers are represented with circles.
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Material flow: Material flow represents the direction and routes parts follow in
manufacturing systems, which might be derived from the sequence of processing
requirements that must be carried out on a given product until it comes out as a finished
product from the line. Material flow is represented with arrows connecting machines and

buffers and their direction represents the direction of material flow.

O

Buffer Machine flow

Fig:

Figure 3:1 representations in manufacturing line

3.2Manufacturing system architectures

In this section a general classification of different manufacturing systems layout
configurations is presented. Alternative manufacturing layout choices can be adopted
depending on the nature of the product and processing requirements involved. Three widely
considered manufacturing layouts are introduced, namely open line, closed line and assembly
lines. These lines can be represented and modeled using the basic elements introduced in the
previous section and their performance can be analyzed using decomposition approach using

two machine single buffer building blocks.
Open line layout (serial manufacturing lines)

These are manufacturing lines composed of workstations and storage areas in which
material flows in sequential processing by visiting each work station and storage area in a
fixed sequence. Generally such kinds of systems are composed of K machines and K-/
buffers. Material enters into the manufacturing line through the first machine usually
represented M, crosses a system of K machines and K-/ buffers and finally leaves the system
through the last machine Mg. The following manufacturing system producing D12 engine
blocks in Scania CV AB is a typical example of open flow line configuration. The line is

composed of 22 workstations decoupled by
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21 intermediate buffers.

Figure 3:2 Representation of an open flow line with K machines
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Figure 3:3 A real open flow line producing D12 engine blocks in Scania

Closed loops

Closed loops are lines characterized by a constant number of products circulating in the
system. Indeed, a raw part is processed by the first machine M; only if a finished product is
released by the last machine in the system Mk. Therefore, in closed loop lines, the number of
buffer equals the number of machines. A representation of closed loop systems is proposed in
Figure 3:4. Given the correlation among the arrival of parts in the system and the delivery of
finished products, these type of systems present a particular dynamic behavior concerning the
propagation of blocking and starvation phenomena. Indeed, since the number of parts
circulating in the system (loop population) is fixed, a failure of a generic machine M; can
cause the blocking phenomenon propagation to involve only a sub-set of the upstream

machines which compose the line. The same can be stated for the propagation of the
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starvation phenomenon. This particular behavior sends this system very complex to analyze,
since the blocking and starvation propagation is conditioned to the system state. An example
of real closed loop systems is reported in Figure 3:5. In particular, the layout of the system

producing printer charger in Olivetti is reported.

M1

M2

M6

M3

M4

Figure 3:4 Model representation of the loop configuration system
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Figure 3:5 A real closed-loop line producing printer chargers in Olivetti

Assembly/disassembly Lines: such layouts are configured such that manufacturing
machines can perform assembly (joining operations) and disassembly operations to realize
the final product. Machines can take parts from two or more upstream buffers in a join

structure to assemble parts. Alternatively machines also can disassemble parts and place in
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two or more downstream buffers creating a fork structure. Therefore, a more general notation
is needed for buffers to indicate which machines are connected through the given buffer. A
buffer B(i,j) connects the machine M; to the machine M; Unlike the open flow line
configuration, an assembly line can have multiple entry ports for the entry of input parts and
multiple output ports for the exit of finished parts. Most of complex manufacturing systems
can be represented as assembly lines depending on how the join fork structure is. Many real
automotive assembly lines and household equipment manufacturing systems adopt similar

layout, since the products involve assembly of many subcomponents.

B(1.3)
M,
B(3.4) B(4.6)
M; —»O—» M,
B(2.3)
B(5,6) M,
M,
M
B(2.3) B(@3.5)
M3 —H H MS
B(4,6)
M, —»O—» M, B(2.4) M
6
B(1.2) M, B(4,7)
M;

Figure 3:6 Model representation of the assembly/disassembly line configuration system
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Figure 3:7 Real assembly / disassembly system producing commands in Bticino

3.3 General modeling assumptions

Here the main characteristics of the systems particularly (machines and buffers) that are
considered in the coming sections are briefly discussed in the context of the above
discussion. Frequently used notations are introduced and unless mentioned all the

assumptions adopted for the systems that are analyzed in this thesis are the following.
System architecture:

¢ In multi-stage cases saturated open layout architectures are assumed

e Discrete flow of parts (discrete production) are assumed discrete times are
considered, processing time is scaled to one time unit

e (Quality issues are not considered, all produced parts are assumed good

¢ Blocking before service is considered and times for state transition such as failures
and repairs occur at the beginning of time units, when buffers are updated at end of

time units.
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Time unit

I\ /I

Failure and repair Buffer level updating

Conventions for updating state transition and buffer levels

Machines:

Failures are operational dependent failures (ODF)

The probability that machine a machine fails in a time unit in the failure mode with a
precisely known or unknown failure rate p

Time to failures, TTF are assumed to be geometrically distributed with an unknown
failure rate p.

The Time to repair a machine, 77R that is down in a failure mode is assumed to be

geometrically distributed with a known or unknown repair rate parameter r.

Buffers:

Buffers have finite capacity N.
Transient time is zero.

Buffers are perfectly reliable.
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Chapter Four

4. Proposed method

This section demonstrates the proposed techniques for the performance evaluation of
manufacturing lines with uncertain parameter estimates. It begins with an introductory
scheme of Bayesian estimation for reliability input parameters, failure and repair
probabilities. The alternative techniques introduced here are explained starting with isolated
machines for the analysis of isolated efficiency. Mainly expected value of the isolated
efficiency E[e] and uncertainty in variance of the isolated efficiency V[e] are evaluated using

alternative techniques.

Next the techniques are applied to building block two machine single buffer lines where the
estimation of distribution average throughput is investigated. Estimation of the expected
value E[TH] and uncertainty V[TH] of the average throughput are evaluated. Finally a
method for the analysis of multi-stage long lines is introduced. Although the techniques
introduced are generally applicable to continuous time cases, all the analysis in this section is

carried out on discrete time systems.

4.11Inference of Input Parameters

The inference of input parameters begins with the collection of data required for the type of
parameters to be estimated. The data can be obtained from an online data base system that
record and monitors machine history or any type of log information about failure records. For
the purpose of this thesis these parameters are reliability parameters associated to the failure
probability and repair probability of individual machines. These data could be randomly
taken data or time series data obtained from an operational machine. In some cases there

might be prior information from previous estimations or knowledge about specific
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parameters. On the other hand some parameters have to be estimated for the first time from

observation of data.

Essentially, the performance evaluation of manufacturing systems using stochastic models
requires estimation of input parameters, particularly when the input parameters have to be
estimated from actual operational data. The problem of using actual data for the performance
evaluation is rarely addressed and is one of the goals to be discussed in this chapter.
Although the inference of parameters is one field of study that needs attention the primary

goal remains performance evaluation with inferred uncertain parameters.

Figure 4:1 Observation of a single machine with time series data

Bayesian Updating scheme

Before the start of making inference on required parameters it might be necessary to
perform preprocessing and data cleaning operations depending on the structure of the
database, the type of model that is going to be used for analysis and corresponding
assumptions in the model. At the end of a given observation period required vectors of
observations are collected to make a new inference or update previously made inference on

parameters.

Among many available statistical approaches that are used for the estimation and inference
of input parameters there are two well known perspectives that commonly used to address
these kinds of problems, namely the frequentist approach and the Bayesian approach. In the
first few sections the main differences of using each approach is pointed out giving
motivations on why the main focus of this work is on the Bayesian approach. Next it will be
shown how the Bayesian approach, which is widely addressed in this study, is more
appealing from the performance evaluation of manufacturing systems and practical point of

view.
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An important argument in favor of Bayesian approach over the classical statistical
approach is that, Bayesian inference considers all unknowns (both parameters and future
observations) as random variables, while in the classical statistical inference the population
parameter is assumed to be fixed. The posterior variance on the estimation of parameters is a
natural measure of uncertainty on the input parameters. By extension using these inputs in
the performance measure enables the measurement of the uncertainty on the measured

performance of interest.

In making inference on the unknown parameter that is estimated from an observed data
such as failure probability p and repair probability r, we introduce a general Bayesian
updating procedure. The objective of the Bayesian approach being to reach a conclusion
about a generic unknown parameter @ from an observation of a stochastic variable X . The
distribution of Xis not completely known but depends on the value of parametero , with a
parameter space ® . Therefore it is possible to write the distribution probability of X as

7(x16), where the notation 7 is a generic probability density. The stochastic variable X can

be assumed as a random sample of {1;,Y,,...Y, } .

7(x10)=T1zx(y; | 6) 4.1)
For instance in the case of collecting failure data from a stochastic time to failure data, 77F ,
with the goal to make inference on unknown failure probability of a machine p the density

given to a given random vectors of observations {if},tf,,....1tf, } the likelihood can be written

as:

(af | py=] [=ef; 1 p) (4.2)
Whether the above vectors of observations are obtained sequentially or once inference of

parameter p can be made by using the Bayesian updating, by Bayes’ theorem.

z(p)x(ITF | p)
[ #paTF 1 prap

z(p|TTF) = pe P 4.3)

After the observation of ##f the corresponding marginal likelihood is computed over the

parameter space P
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(f) =jpzz<p>z<m" | p)dp (4.4)

Substituting the marginal likelihood in (4.4) the posterior predictive distribution of the failure

probability p after the observation is

zZ(p)x(ITF 1 p)
[ #)a(TTF 1 p)ap

7(p|TTF) = 4.5)

The only remaining information to make the inference on the value of the failure probability

conditional to the current observation z(p|#f)is the estimation of the prior information about

the prior distribution ZZ(p) . The choice of the prior distribution depends on the objective and

nature of information at hand. Some of the most commonly used Bayesian priors fall in one

of the three categories namely:

1. Conjugate priors
2. Non-Conjugate priors

3. Non-Informative Priors

Theoretically the choice can be any justified practice in Bayesian approach but in our
analysis we limit ourselves to use the conjugate priors, for some of the reasons explained in

coming sections.

One of the main advantages of conjugate priors is that they simplify computations,
particularly in sequential applications of Bayes’ theorem. With these distributions, the
integral we need to compute for the posterior has a familiar form. In this particular case of
inference on the parameter p from a geometrically distributed 77TF the conjugate prior for the
parameter p is the two parameter Beta distribution. List of conjugate priors for different
continuous and discrete distributions can be chosen accordingly. Table 4:1 shows commonly
used discrete and continuous distribution parameters frequently used in performance
evaluation of manufacturing systems and their corresponding conjugate priors. Full statistical
coverage and list of the conjugate priors are available in statistics books such as (Gelman A.

2003)
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Likelihood Model Conjugate prior Prior
Parameters distribution Hyperparameters

Bernoulli p Beta a, p
Binomial p Beta a, p
Exponential A Gamma k, 6
Geometric p Beta a, p
Poisson A Gamma k, @
Weibull with known o Inverse Gamma a, b
shape

Table 4:1Conjugate prior of commonly used distributions and hyperparameteres
If the prior distribution of 7Z(p)follows a ~ Beta(a;, , ,6’;,) distribution the corresponding

density of the prior distribution is written as:

1 a,-1 8,1
————p " (=-p)”
B(a,,p,)

In order to completely demonstrate how the inference can be made for the whole

Z(p) = (4.6)

expression, we will substitute all the above terms with a sample vector of distribution.
Suppose the random sample that is collected for the time to failure data composed of s

number of sample is available. For the randomly sampled TTF ({uf,t1f,,....t1f,,} with geometric

distribution the likelihood function given by equation (4.2) can be computed
n ttf,—1
zwfIp)=[]_a-p  p

(z}‘;l”f,-‘”) n

=(1-p) P 4.7)

Substituting the likelihood expression in (4.7) and the prior distribution (4.6) gives:
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(z};l”ff”) n

11— p)PIx1-
 B@p p- (I-p) (I-p) P
Z(pluf)= : 1 5 (Zx " )
a-1.1_ 11 _ Ll
fo Bap’ (I=p)"(=p) p dp
- ! _ x pol (] = pyPrE (4.8)
B(“+”9ﬁ+z[:1”fi —n)

~ B(a+n,,8+z:’:1ttfi —n)

~ Beta(a, B)

n
Where &'=a+n and ,5'=,6’+Zttfi -n
i=1

As it can be seen in equation (4.8) the use of the prior conjugate as a prior distribution
allows to arrive to a numerically simpler solution of the posterior distribution which has the
same format as the first one. This has additional advantages for the computations that use this
distribution as input parameter for the performance evaluation. If one chooses to use a non-
conjugate prior instead of a conjugate prior distribution the final solution one has to compute
will be highly complicated in terms of mathematical effort. Further in most cases it might
require to use (Markov chain Monte Carlo) MCMC methods as the only approach for

deriving the solution of problems involving similar distributions.

As it can be seen from equation (4.8) the estimated failure probability parameter using the
Bayesian approach p is a stochastic variable itself, and it is also possible to compute
maximum likelihood to find the equivalent of the point estimate using the same data.
Additionally in this case we have the information about the natural measure of uncertainty

related to the estimation of the parameter.

According to the type of methodology required the above input distribution can be used for
the evaluation of the performance. In this case we prefer to use the density function of the

distribution which can be given again as:
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1
B(a,B)

P p = p) 2 (49)

Thus, the maximum likelihood for the posterior distribution can be computed as:

o' = p= s 1
a'+p' s+2f=lttfi—s mitf

(4.10)

p=argmax{z(pluf)}=

The point estimate of the failure probability using maximum likelihood is the same as if it

was calculated by using the mean value from the observations of time to failures ##f .
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4.2 Analysis of an Isolated Machine

In the first few sections techniques for the performance analysis of the simplest possible
systems in production system, i.e., isolate machine are demonstrated. Next fundamental
differences and the impact of performance evaluation under uncertainty are investigated in
comparison with evaluation using precisely known parameters. The modeling assumptions
used for the characterization of machines in the case of individual processing machine are

described.
Modeling machine Assumptions

e Failures are operational dependent failures (ODF)

® The probability that machine a machine fails in a time unit in the failure mode with a
precisely known or unknown failure rate p

e Time to failures, TTF are assumed to be geometrically distributed with an unknown
failure rate p.

e The Time to repair a machine, TTR that is down in a failure mode is assumed to be

geometrically distributed with a known or unknown repair rate parameter 7.
Isolated machine model

This section presents how the Markovian model of an isolated single machine with
uncertain probabilities of failure and repair can be analyzed. First a univariate case is
considered, when there is only one uncertainty parameter. Exact analytical formulas are
provided for the output performance distribution for the univariate cases. In the case of
multiple uncertainties numerical techniques are proposed for the evaluation of interesting
moments and distribution of the output performance. The exact analytical solution and the
simplicity of the system is chosen to demonstrate the impact of considering uncertainty in the
performance evaluation when compared to the traditional approaches that assume input

parameters are precisely known.
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Figure 4:2 Markov