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- Two things fill the mind with ever new and increasing 

admiration and awe, the more often and steadily we 

reflect upon them: the starry heavens above me and the 

moral law within me. I do not seek or conjecture either 

of them as if they were veiled obscurities or 

extravagances beyond the horizon of my vision; I see them 

before me and connect them immediately with the 

consciousness of my existence. -  

Immanuel Kant, Phylosopher (1724-1804) 



  



 

 

 

 

 

 

 
- I can live with doubt, and uncertainty, and not knowing. 

I think it's much more interesting to live not knowing than 

to have answers which might be wrong. -  

Richard Feynman, Physicist (1918-1988) 
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List of Abbreviations 
Here a list of the most common abbreviations used in the present work of thesis 

ABBREVIATIONS TERMS 

AC Articular Cartilage 

PDMS Polydimethylsiloxane 

AFM Atomic Force Microscope 

NI Nanoindenter 

DMA Dynamic Mechanical Analysis 

COL Collagen 

PGs Proteoglycans 

GAGs Glycosaminoglycans 

MAT Matrix 

ECM Extracellular Matrix 

OA Osteoarthritis 

SLS Standard Linear Solid 

 

NB: The nomenclature used in a Chapter is independent from the one used in 

the others, except when explicit calls to Equations or quantities previously 

defined are done.   
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This introductory Chapter explains the purposes behind this work of thesis. Section I 

lists the motivations and the approaches chosen to answer the addressed questions. 

The global structure and the outline of the thesis is shown in detail. 
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Introductory Chapter 

Motivations and Aims of the Thesis 

The interest on discovering, describing and explaining the properties of materials, 

any kind of material, is a field of research that played a very important role in the 

story of science: the understanding of how it works and how it is made tempts the 

scientists from ancient time. Looking at the purposes of this research, the 

applications of the knowledge extracted from these studies span over a wide range: 

civil, environmental, military and biomedical are just few examples that can be 

suggested. 

The properties of a material can be investigated by studying its response to an 

applied external stimulus; it is easy to realize how vast is the range of possible 

stimuli to apply, allowing different physics to investigate different aspects of the 

same phenomenon such as, for examples, fluidics, electromagnetism or solid 

mechanics. 

Theories and experiments are two faces of the same medal: first, one has to set up a 

test with which some quantities (averaged on the volume under consideration) can 

be extracted and, second, a theoretical framework has to be proposed in order to 

explain how (and why) these quantities result from the structure of the material; of 

course, the vice versa holds, since a theory can be suggested and a test is 

consequently set up to verify it. In between this two aspects, in my opinion, is the 

numerical approach; in fact, a theory can be translated into the numerical alphabet 

and a virtual experiment can be run. The use of numerical testing signs an important 

improvement towards the understanding of material properties since some hidden 

quantities in real world can be easily manipulated in the numerical one: inverse 

analysis is a very powerful tool. 

Among all the materials, biological tissues are certainly one of the most interesting: 

the possibility to apply the knowledge on them to cure or prevent pathologies and to 

assure better conditions of life can be considered as the main aim of scientific 

research; the possibility to use something that reproduces their specific features to 

build artificial devices is, also, a big motivation toward this kind of investigation. 

Difficulties in this field span from experimental issues -how to collect samples, how 

to preserve them, how to test them under the correct environment and proper 

boundary conditions- to theoretical one -which aspects have to be considered and 

which one can be neglected, what assumptions are the correct, how that 

phenomenon can be described-. Nowadays, a further interest that, in some sense, 

introduces complications, is raising: the more precise understanding on the 

hierarchical structure of this tissues makes the analysis at lower and lower scales 

essential to proceed towards a bottom up explanation of their overall properties. The 

analysis of the properties at small scales and the explanations about why and how 

they are linked each other through these characteristic lengths define fields full of 

open questions.  
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Motivations and Aims of the Thesis 

Indeed, it often happens that the measure of a particular parameter for a tissue can 

result in different numerical values depending on the characteristic length of the 

observation tool (experiment). To establish a unique structure - property relationship 

holding at all length scale is a big challenge. This is the reason why the explanation 

of the structure at microscale and nanoscale is so important: from the microstructure, 

indeed, the macrostructure is built. 

 

 

I. OUTILINE OF THE THESIS 

This work is centered on the study of articular cartilage making use of 

nanoindentation tests in both time and frequency domain, through experimental, 

numerical and analytical methods. Articular cartilage is a paradigmatic tissues with 

respect to the above mentioned considerations. Its principal functions of transferring 

loads between joints surfaces is performed by its specific microscopic structure. 

Even if articular cartilage has been studied from the sixties (the studies on the 

consolidation in geotechnics has been used as starting point to explain poroelasticity 

in cartilage), its characterization at nanoscale and microscale is, instead, something 

still not well understood and the actual works suggest interesting complexities that 

need deeper studies. 

 

The motivations, from which the aims of this work arise, are listed below.  

1. The superficial layers of articular cartilage play an important role in both the 

biomechanics of the whole tissue and the maintenance of its integrity.  

Averaged properties can describe the overall mechanical behavior of the tissue but 

they cannot catch the specific aspects of the local organization. Since the overall 

behavior comes from the local mechanics and keeping the outstanding importance of 

the superficial layers, this study in focused on the upper       of the whole 

thickness of the tissue, investigated through contact lengths from tens of nanometers 

to hundreds of micrometers. Nanoindentation test is chosen as suitable experimental 

methodology capable to help in this kind of investigation; the introduction of 

concepts as characteristic lengths and equivalent deformations allow to a better 

explanation of the results. 

2. The approach described by the dynamic mechanical analysis is extensively used 

at macroscale, showing its advantage in investigating material properties with 

respect to time domain. Its application at microscale is, instead, an open field of 

research. 

This approach is applied in conjunction to the nanoindentation technique with the 

purpose to highlight the behavior of the articular cartilage at different characteristic 

lengths as well as at different frequency (i.e. different strain rates). The different and 
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Motivations and Aims of the Thesis 

peculiar aspects of articular cartilage can, potentially, be discriminated each other, 

giving the possibility to suggest their relation with the specific microstructure 

solicited: the dichotomy between poroelasticity (extrinsic time dependency) and 

viscoelasticity (intrinsic time dependency) is investigated up to the role of the single 

bundle of fibers. The interest in investigating high frequency range is related to the 

importance of instantaneous response (limit to the undrained condition) of the tissue. 

3. The first organization of articular cartilage, over the single constituents, is at 

micrometric scale: at this length, the knowledge is still not complete and further 

investigations are required. Nanoindentation tests in time domain appear suitable to 

extract constitutive parameters characteristic of this microstructure.  

Indentation tests have shown its capability to probe mechanical properties of a 

material; nanoindentation tests is an already well - established technique in the field 

of hard biological tissue. In the present work, multiload nanoindentation creep tests 

are considered and they are used to investigate the poroelastic properties of articular 

cartilage, varying contact lengths and equivalent strains. By adapting the 

consolidation theory of a poroelastic material under confined compression test, a fast 

analytical tool for structural parameters identification is obtained. 

4. Even if the dynamic mechanical analysis appears a promising methodology to 

investigate material properties, no optimized and dedicated numerical tools capable 

to simulate a dynamic problem directly in frequency domain are present 

commercially. 

An homemade code, written within a Matlab environment, is developed to simulate 

the dynamic tests. Once this code is validated, it can be used in an inverse process 

for parameters identification. 

5. A wide range of constitutive models are described in literature, investigating 

single aspects of this biological tissue. Its physical complexity requires numerical 

models capable to take into account for all the single components and their mutual 

interactions, especially if a micrometrical characterization is the objective. 

A numerical model based on the three classes of constituents (matrix, collagen and 

proteoglycans) is developed; collagen fibrils distribution plays a key role in this 

model. The particular situation of nanoindentation test is considered; with respect to 

simulate macroscale tests, this testing procedure introduces further numerical 

complexities due to the strong geometrical nonlinearities that characterize this 

problem. 

6. In order to achieve a complete understanding of the tissue, the different 

experimental methodologies have to be compared and coupled each other. Besides, 

the proposed numerical tools have to show their capabilities to explain experimental 

results, toward an insight understanding of the tissue. 

All the investigation proposed in this work are carried out on native articular 
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cartilage. A long term objective that can start from the present work of thesis is the 

possibility to apply robust and reliable experimental and numerical tools to the 

investigation of engineered tissues or pathological conditions. Then, attempts to 

perform a comparison among experimental results or to couple the different 

numerical methodologies have to be suggested. 

According to the stated objectives, Figure I explains a scheme of the thesis. 
 

 
Figure I: Flow diagram describing thesis contents. 

 

Two instrumentations are considered, an Atomic Force Microscope and a 

Nanoindenter: for the purpose of this thesis, the instruments differ each other for the 

characteristic lengths analyzable and for the domain in which the experiments are 

carried out. Atomic Force Microscope allows an investigation in frequency domain 

at lower scales (up to few micrometers) and Nanoindenter permits an investigation 

in time domain at higher ones (up to hundreds of micrometers). Two numerical 

methods are proposed: a novel tool for the simulation of harmonic tests and a 

poroviscoelastic constitutive relation that account for a continuous fiber distribution. 

At the first stage, the model for dynamic tests is used to a parameter identification 

process based on the relative experimental data. Then, the constitutive relation is 

used to suggest explanations for time domain experimental evidences and to 

improve the dynamic model. 
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Motivations and Aims of the Thesis 

Chapter 1 provides a general description of the structure of articular cartilage, 

showing its characteristic components and highlighting the length and time scales 

investigated in this work; pathological conditions and engineered tissues are also 

briefly described. Chapter 2 contains a general presentation on both theoretical and 

experimental approaches that can be found in literature with their application is 

characterizing articular cartilage; results from these references will be used as a 

starting point to explain the ones obtained in this work. A precise description of the 

experimental setups is shown in Chapter 3: both the two instrumentations are 

presented as well as the consolidated theoretical approaches to analyze a 

nanoindentation test. The specific theoretical background, related to the particular 

application investigated, is presented in each specific Chapter. All the experiments 

are presented in Chapter 4, devoting a single Section for each of the three different 

situations: dynamic tests on bovine native cartilage, multiload nanoindentation creep 

tests on bovine native cartilage and multiload nanoindentation creep tests on 

engineered porcine cartilage. Chapter 5 is focused on the presentation of the 

homemade code that simulate the harmonic test: all the details relative to the 

theoretical background, its numerical implementation with a sensitivity analysis and 

the application on nanoindentation test are shown. In Chapter 6 the poroviscoelastic 

model with continuous fiber distribution is described and preliminary applications to 

time domain nanoindentation test are shown. For each subject, detailed discussions 

are provided singularly: in Chapter 7, moreover, a global discussion that try to 

connect the results described separately is performed; furthermore, both the 

conclusions and the suggested improvements of the present work are proposed in 

this last Chapter. 

 

This work is inserted in a project founded by the Italian Ministry of University and 

Research, through the PRoject of National Interests program (PRIN2008), 

developed in collaboration with the Electronic and Biophysical Department of 

University of Genova. In particular, dynamic experiments are carried out in this 

department and I thank for the possibility to analyze those data and for the 

continuous feedbacks to improve experimental setup and to explain results. It is also 

my will to thank Istituto Ortopedico Galeazzi for the possibility to apply the 

developed methodology based on creep test on engineered articular cartilage tissue, 

providing a promising applicative example coming from the presented thesis. The 

novel constitutive relationship has been developed in collaboration with Professor 

Stephen Klisch at Mechanical Department of California Polytechnic State 

University: I thank him for his fundamental role and the whole scientific support of 

his laboratory.   
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Introduction: 

Articular Cartilage 
 

 

 

 

 

 

 
 

 

 

 

 

 

In this Chapter, an overview on the structure, from micro to macro, of articular 

cartilage is provided in detail. Section 1.1 shows an anatomical description of the 

tissue. Section 1.2 highlights the importance of both dimensional aspects and 

interconnections among the components and justifies the importance of the 

superficial layers on the overall function of articular cartilage. In Section 1.3, the  

pathological condition and engineered constructs are briefly presented. Section 1.4 

introduces a material used in the present work as a viscoelastic reference, the  

polydimethylsiloxane.  
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Introduction: Articular Cartilage 

Biological materials are the main constituents in plant and animal bodies and cover a 

diversity of functions. They can offer mechanical functions, providing protection 

and support for the body, serving as ion reservoirs (bone is typical example), 

chemical barriers (like cell membranes), transfer for chemicals into kinetic energy 

(as in muscles) or have catalytic functions (such as the enzymes) (Fratzl & 

Weinkamer, 2007). 

Materiomics is defined as the study of the properties of natural and synthetic 

materials by examining fundamental links between processes, structures and 

properties at multiple scales, from nano to macro, by the use of  experimental, 

theoretical or computational methods (Espinosa, Rim, Barthelat, & Buehler, 2009). 

From the idea suggested by the universality - diversity paradigm, the analysis of 

biological materials has to take into account for the presence of universality and 

diversity in both fundamental structural elements and functional mechanisms 

(Buehler & Ackbarow, 2008). The elementary building blocks are the same in a 

wide variety of biological materials where they create extremely robust and 

multifunctional materials by  self - organized structures over many length scales; 

this means those structures are highly conserved, as alpha-helices or beta-sheets in 

the definition of collagenous structures. In contrast, other features are highly specific 

to the single tissue. This coexistence of universality and diversity is an overarching 

feature in biological materials and a crucial aspect in materomics.  

A systematic analysis of biological materials in the context of linking chemical and 

physical aspects with structural and mechanical properties is of primary importance. 

A rigorous understanding about how the matter that makes life works is needed in 

order to explain the fundamental principles of these structures like, for example, the 

assembly procedures or the deformation processes (Buehler & Ackbarow, 2008). 

Biological structured tissues, as well as any artificial device, is based on 

optimization processes among function, form and material; these three aspects are 

strictly related and overlap each other (see Table 1.1). In natural materials, shape 

and microstructure are intimately related due to their common origin, which is the 

growth of the organ (Jeronimidis, 2000). Growth implies that form and 

microstructure are created in the same process: self - assembly allows biological 

structure to remodel and to adapt to the changing environmental conditions during 

their whole lifetime (Thompson, 1992). Hence, the final result derives from a 

dynamic evolution and it is not a priori design: the microstructure at each position 

of the tissue is adapted to the local needs, leading to high flexibility at all the levels. 

The basic organization is at nanometer length scale. Built blocks at higher levels are 

obtained through a self-assembly process: the simple rules of mixing the bulk 

properties of the single constituents do not work since the properties themself do not 

scale linearly (Siegel, 1993). 
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Table 1.1: Biological and engineered materials are governed by a wide choice of base elements and by 

different modes of fabrication. [Adapted from (Fratzl & Weinkamer, 2007)]. 

BIOLOGICAL MATERIAL ENGINEERED MATERIAL 

LIGHT ELEMENT dominate: C, N, O, 

H, Ca, P, S, Si 

LARGE VARIETY of element: Fe, Cr, 

Ni, Al, Si, C, N, O 

GROWTH 

by biological controlled self-assembly 

(approximate design) 

FABRICATION 

(exact design) 

HIERARCHICAL STRUCTURING at 

all size levels 

FORMING of the part and MICRO-

STRUCTURING of the material 

ADAPTATION of form and structure to 

the function 

SELECTION of material according to 

function 

MODELING and REMODELING: 

capability of adaptation to changing 

environmental condition SECURE DESIGN 

HEALING: 

capability of self-repair 

 

Mechanical properties of biological materials insert in the following ranges: i) the 

density is low and rarely exceeds  
  

  
; ii) Young’s moduli vary from       to 

       ; (iii) strength is almost as broad as the Young moduli, varying over four 

orders of magnitude (            ). 

According to these properties, biological materials can be classified as follow (Fratzl 

& Weinkamer, 2007): i) ceramic and ceramic composites (teeth or bones, where the 

mineral component is high); ii) polymer and polymer composites (ligaments and 

tendons); iii) elastomers (skin, muscles or blood vessels that undergo large 

deformation); iv) cellular material. 

 

 

1.1  ARTICULAR CARTILAGE 

Articular cartilage (AC) is a specialized connective tissue that covers the surfaces of 

diarthrodial joints, such as the knee and the hip. Its principal function is to provide a 

lubricated surface for articulation and to facilitate the transmission of loads between 

joints with low friction coefficient (Pearle, Warren, & Rodeo, 2005) (Raviv, et al., 

2003). Structurally, AC is a porous solid matrix saturated by physiological fluid. 

The single components that build the structure, and the ways with which they are 

mutually arranged, give the AC peculiar properties. 
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Figure 1.1: Articular cartilage at different length scale. (A) Human knee joints are covered with (B and 

C) articular cartilage containing (D) chondrocytes sparsely embedded in extracellular matrix, largely 

consisting of (E) proteoglycans, collagen and hydrated in synovial fluid (Bae & Sah, 2008). 

 

From the point of view of materomics, AC is an awesome tissue. As suggested in 

Figure 1.1, AC is a complex material since its macroscopic  role in the biomechanics 

of joints can be analyzed by subsequent steps starting from the constitutive blocks at 

nanometric length. AC is an inhomogeneous, anisotropic, non-linear, depth and time 

dependent tissue. Inhomogeneity means that its properties vary with the position and 

the location under analysis; the properties of an anisotropic material change looking 

at different tissue orientation; a non-linear behavior is typical of materials that 

undergo to large deformations; time and depth dependent aspects can not be 

neglected when this tissue is evaluated, since the optimized way with which AC 

responds to the stimuli arises from them. 

Therefore, AC is a paradigm of complex tissue with mechanical function and a great 

example to motivate the use of the concepts of dependencies, in length and time, and 

of assembly of constitutive blocks. Recent works (Chandran & Barocas, 2006) 

(Tang, Buehler, & Moran, 2009) (Maceri, Marino, & Vairo, 2010), in fact, has 

shown that the macro-scale mechanics of cartilage does not follow directly from the 

particular mechanics of the individual fibrils at microscale, but that the tissue 

strength strongly depends on their arrangement at higher levels: as a consequence, 

the macroscopic behavior of AC is correlated with the microscopic structure, from 

which its investigation must begin. 

Actual studies on AC highlight the importance of considering the interactions across 

the scales; but challenges in developing theories and models that predict and explain 

the three dimensional macroscale mechanical performance from microscale structure 

define a wide, and still opened, field of research.  
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1.2 STRUCTURE, ORGANIZATION AND CONSTITUENTS OF 

ARTICULAR CARTILAGE: EFFECTS ON TIME AND LENGTH 

SCALES 

AC is a connective tissue that covers the surface of articular joints in a range of 

thickness varying from        to     : for example, larger thickness is typical of 

joints in the lower limbs in human (Ateshian, Soslowsky, & Mow, 1991). Its 

macroscopic properties, just outlined in the previous Section, come from the  

hierarchy of its elaborated and highly ordered organization (Mow, Ratcliffe, & 

Poole, 1992). 

At microscale level (           ), the biochemistry and the organization of 

cartilage are maintained by the chondrocytes, the sole type of cell existent in AC 

tissue; the chondrocytes and the surrounding pericellullar matrix define a single unit 

called chondron (Figure 1.2). 
 

 
Figure 1.2: Chondron structure throughout cartilage thickness. Reprinted from Osteoarthritis and 

Cartilage, 14, Youn, Choi, Cao, Setton, Guilak, Zonal variation in the three-dimensional morphology of 

the chondron measured in situ using confocal microscopy, Pages 889-897, Copyright (2006), with 

permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. 

 

The whole mass of chondrocytes define only the 1% of the overall volume: they do 

not play a direct role in the mechanical properties of AC but they are biologically 

active, providing the organization of the structure as a response to the external 

stimuli (Silver, Bradica, & Tria Jr., 2003). Chondrocytes are present throughout the 

thickness of the tissue, differentiating from zone to zone in terms of size and shape, 

but maintaining the ability of producing, degrading and remodeling the extracellular 

matrix (ECM): they are responsible for the creation of the nanoscale networks. 

The extracellular matrix is composed by a network of macromolecules (it can be 

referred to a lengths scale of            ), that defines the porous skeleton of 
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the tissue. At this scale, the significant mechano-electro-chemical transductions, that 

modulate cellular anabolic and catabolic activities, occur. Basically, the structural 

macromolecules of the matrix are collagen (COL) and proteoglycans (PGs). 
 

 
Figure 1.3: Scheme of collagen structure from atoms (a) to fiber (e) (from 

http://www2.mcdaniel.edu/Chemistry/CH3321JPGs/Proteins). 

 

Collagen (Figure 1.3) contributes up to 80% of dry weight (10 - 20% of the wet 

weight) and it is almost uniformly distributed throughout the tissue, except for the 

superficial layers in which it is highly packed. Different types of collagen are 

present in AC: type II, type VI, type IX, type X and type XI. Type II is the most 

abundant (95%). The basic structure of collagen is the triple helix of three 1D 

proteic chains, each of which is 300 nm in length; a single monomer of triple helix 

connects to the others giving the molecule of tropocollagen. Tropocollagen can self-

aggregate in a quarter stagger manner through covalent crosslinks of characteristic 

banding of          . (Abbot, Levine, & Mow, 2003). The 3D assembly gives 

the fibril of collagen that, in the case of type II collagen, has a diameter ranging 

from       to          , depending on the position, and it is arranged with an 

interfibrillar spacing of         (Han, Grodzinsky, & Ortiz, 2011). The large 

slenderness ratio (ratio between the length and the diameter) explains how collagen 

has no resistance in compression but it is very strong in tension; this function is 

magnified by the  fact that this molecule is highly packed with chondrocytes and the 

other ECM macromolecules (Mow, Zhu, & Ratcliffe, 1991). 

PGs are produced by the chondrocytes in the pericellular matrix, but they are built in 

their final form only in the interritorial space. Proteoglycans consist of a protein core 

and one or more glycosaminoglycans (GAGs) chains. GAGs are long unbranched 

polysaccharide chains consisting of repeating disaccharides that contain an amino 

sugar: they are negatively charged with an interspace of        ̇. Typical GAGs 

in AC are the hyaluronic acid (HA), the chondroitin sulfate and the keratin sulfate. 
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Figure 1.4: PGs aggregates of a calf (A) and steer (B) from electron micrograph. The bar indicates 

      . [Adapted from (Buckwalter, Mankin, & Grodzinsky, 2005)]. 

 

The most important class of PGs is constituted by large aggregates called aggrecans 

(90% of all PGs) that fill the interspaces in between the collagen network; moreover, 

aggrecans can covalently bind each other through the long HA molecules (     ) 

to create larger macromolecules that keep anchored the smaller PGs in their 

positions (Figure 1.4): the consequent effects are the stabilization of the structure 

and the possibility to absorb impulsive solicitations, by storing energy (Mow, 

Ratcliffe, & Poole, 1992). HA has also a major role in lubrication and frictional 

interactions. Aggrecans have a core protein backbone of about        in length 

whereas the connected GAGs have a length of      ; the interspace defined by HA 

molecules is about         .   

Thus, ECM (Figure 1.5) can be considered a porous and permeable fiber reinforced 

matrix, resulting of a mechanical interaction of two macromolecular networks: a 

permanent network of insoluble collagen fibers, characterized by a low turnover rate 

(Eyre, 1980), and a soluble one of large proteoglycans, characterized by an high 

turnover rate (Hardingham, Muir, Kwan, Lai, & Mow, 1987). 

Water contributes up to     of the wet weight of AC, with its percentage varying 

with the depth (Marondas, Wachtel, Grushko, Katz, & Weimberg, 1991). It contains 

gasses, small proteins, metabolites and, important, positive charged ions as    ,    

and     (Wilson, van Donkelaar, & Huyghe, 2005). It is free to move through the 

solid network; its movement is regulated by the physical porosity and, more 

important, by the hydrophilic attraction of the negatively charged PGs that rises the 

interstitial pressure. This phenomenon is called swelling effect and has the 

consequence to generate a non-zero strain in the cartilage solid matrix in absence of 

externally applied load (Narmoneva, Wang, & Setton, 1990); this phenomenon 

maximizes the volume occupied by the tissue.  
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Figure 1.5: Cartoon of the network that defines the extracellular matrix; the net of collagen fibers and 

PGs is highlighted [Adapted from (Mow, Zhu, & Ratcliffe, 1991)]. 

 

The interaction between water and solid matrix (manly, PGs) takes place at 

nanoscale levels ([            ]) and, other than swelling, it is responsible  also 

for the hydraulic permeability and the compressive and shear strengths. The 

hydraulic permeability has also a mechanical nature: adult human cartilage has a 

porosity ranging from    and     (Ateshian & Hung, 2006) and a typical pore size 

estimated between      and        (Mow, Holmes, & Lai, 1984). Water has also 

the functions to lubricate the joint and to transport nutrients and catabolites, passing 

from the ECM to the synovial cavity, the space in between the two cartilagineous 

surfaces that compose an articulation. 

The study of  how the macroscopic behavior follows from such a complex 

microscopic structure is an interesting task: a couple of examples can help to better 

sense this statement. i) AC tissue shows hysteresis at the macroscale whereas this 

behavior is not evident in isolated fibril mechanics: this is indicative of the presence 

of a friction-like sliding motion among the tissue components. ii) AC has structures 

intrinsically designed to sustain tension (COL) and compression (PGs and water): in 

terms of response, instead, the differences between tension and compression (the so 

called tension - compression bimodularity) reduce to the conclusion that AC is 

optimized to sustain basically compressive loads; nevertheless, it is worth to be 

noted that any kind of solicitation is converted in a complex field of tensile, 

compressive and shear stresses, due to microstructure and anatomy of the tissues. 

Looking at how the components are spatially distributed, a classification can be 

made based on morphologic aspects, as proposed by Buckwalter (Buckwalter, 

Mankin, & Grodzinsky, 2005). Four zones can be identified: the superficial zone, 

the transitional zone, the middle zone and the calcified zone as shown in Figure 1.6. 
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The superficial zone is the thinnest AC zone and it is composed by two layers. A 

sheet of fine fibrils with little polysaccharide and no cell covers the layers composed 

by flattened ellipsoid-shaped chondrocytes arranged parallel to the surface. 

Chondrocytes density is very high as well as collagen; PGs has a low concentration, 

instead. Collagen fibrils are preferably aligned parallel to the surface, defining an 

interwoven network that determines AC peculiar mechanical properties and limits 

the movements of the macromolecules. This zone is also characterized by the 

highest water content, almost the 80% of the wet weight. 

In the transitional zone the cells assume an ovoidal shape and produce collagen with 

larger diameter; the PGs concentration is increasing, the water concentration remains 

constant and the collagen concentration is decreasing. 

In the middle zone, the collagen fibers have the largest diameters, the PGs 

concentration is the highest, gaining its maximum at almost the     of the whole 

thickness whereas the concentration of water starts to decrease (from almost the 

25  of the whole thickness to the bottom). Chondrocytes arrange themselves in 

columns perpendicular to the joint surface; collagen fibers are randomly distributed. 

The calcified zone defines the transition to the cancellous bone; cells are small and 

spherical; their metabolic activity is low. Collagen fibers are preferably arranged 

perpendicularly to the bone surface.  
 

 
Figure 1.6: Full thickness scheme of AC; the different layers are separated and the distribution of the 

single components is presented 

(http://www.cvmbs.colostate.edu/ns/departments/clinsci/equineortho/orthopaedic_topics/equine_joints.as

as). 

 

The division proposed above makes clear the variability of the tissue along the 

thickness. Works as the one presented by Appleyard (Appleyard, et al., 2003), 
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moreover, shows that noticeable differences in constituents concentration and, as a 

consequence, in mechanical response, can be found among different sites across the 

surface of the AC.  

Mechanical properties of cartilage are also time and history dependent, that is, the 

observed strain will be different when the rate at which stress is applied changes and 

when different stress paths are followed to arrive at the same final load. Both 

viscoelastic and poroelastic properties, the mechanical aspects and modeling of 

which will be described later on, can be explainable looking at the microstructure of 

AC. Viscoelasticity is an intrinsic property that depends on the structure of the 

macromolecules and their evolution under stress; a secondary reason is the so called 

flow-induced viscoelasticity that is due to the diffusive drag resulting from the flow 

of fluid within the ECM matrix (Ateshian & Hung, 2006). Poroelasticity, instead, is 

an extrinsic property depending on the dynamic with which the fluid flows through 

the solid matrix. According to the dimensional description, then, it can be interesting 

to understand how these two properties take part in the tissue mechanics: indeed, 

they mix themselves through different time and lengths scales without a completely 

understood balance, especially at micrometric lengths. In the following Chapters 

more considerations can be done and explanations suggested, analyzing the results 

of this thesis. 

 

1.2.1 The superficial layers 

Since superficial layers of the articular cartilage are crucial for both mechanical 

functions of healthy tissue and for damage initiation in pathological one, there is a 

major interest in investigating the properties of the top 20% of the overall surface. 

Superficial layers interface AC with the surface of the opposite joint: it has 

lubrication and wear functions. During joint movements, it supports any kind of 

stress. In fact, it acts as a drumhead: any compressive solicitation, localized in a 

precise zone, is immediately redistributed all over the whole surface, preventing 

dangerous peak of stress (Silver, Bradica, & Tria Jr., 2003). The work of Setton 

(Setton, Zhu, & Mow, 1993) evaluates the importance of this layer on the 

compressive behavior of all the AC: its removal increases the permeability and the 

amount of load directly sustained by the network of macromolecules. Early effects 

of osteoarthritic degeneration can be referred to the damage of the cartilagineous 

network in the superficial layer; then, the pathological condition extends towards the 

whole AC thickness. The densely packed framework of the surface limits the ingress 

of the large macromolecules of synovial fluid and the egress of the large cartilage 

molecules, acting as a barrier to protect the whole AC. 

Thereafter, for its large and important role on the mechanical properties and the 

biochemical maintenance of AC, this work is basically focused on the superficial 
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layers investigation. 

 

 

1.3 OSTHEOARTHRITIC (DIGESTED) CARTILAGE AND 

ENGINEERED TISSUES 

Ostheoarthritis (OA) is a joint disease characterized by cartilage degeneration, a 

thickening of the subchondral bone and formation of marginal osthophytes. As well 

as the structural modifications of the structure of the tissue, pain and limitation of 

the movements are the macroscopic effects of this pathology. 
 

 
Figure 1.7 Full thickness comparison of healthy human cartilage (A) and OA cartilage (B); the effect on 

PGs is highlighted. Reprinted from Clinics in Sports Medicine, 24, Pearle, Warren, Rodeo, Basic science 

of articular cartilage and osteoarthritis, Pages 1-12, Copyright (2005), with permission from Elsevier [OR 

APPLICABLE SOCIETY COPYRIGHT OWNER]. 

 

The OA process is directly linked to the loss of PGs content and composition 

(Pearle, Warren, & Rodeo, 2005): in particular, at the earliest stage, PGs appear 

shorter and unbound to hyaluronate, resulting to a coarser extracellular network. The 

content in collagen remains initially constant and, in a second stage, it starts to 

decrease itself. Qualitatively speaking, the permeability increases, decreasing the 

pressurization of the tissue, whereas the stiffness decreases as a consequence of the 

previously described change in microstructure. Phenomena of delamination of the 

superficial membrane can be seen at the early stage, driving towards the exposition 

of chondrocyte directly the synovial cavity (Wu, Kirk, & Zheng, 2008). The key 

point is that AC has a very limited capability of self-healing (Poole, et al., 2001). 

Aging effects follow the same path just hint above in the case of OA.  

Ostheartritic samples can be produced in vitro by the use of enzymatic treatments 

that want to simulate the conditions at different grade of pathology.  
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The unique mechanical properties of AC do not derive only from the concentrations 

of the single components; more important is how they interact and they are 

organized. The growth itself governs the properties of the final tissue that, however, 

continuously renews its structure as an answer to the external stimuli. The 

developing of engineered AC is a difficult task for the proposed reason: mixing 

together the right components in the right proportions does not mean to obtain AC 

tissue (Buckwalter, Mankin, & Grodzinsky, 2005). In this sense, the ideal scaffold 

should mimic the architectural and structural properties in order to permit the correct 

differentiation and metabolism of the cells; it has also to be biocompatible and 

mechanically stable. There are several types of scaffold and several techniques to 

use them, adding or deleting (with different timing) specific cell sources and active 

biomolecules (Lopa, Colombini, de Girolamo, Sansone, & Moretti, 2011). This wide 

range of possibilities, merged to the promising results obtained in the field of 

repairing damage tissues, shows the importance of suitable mechanical tests and 

proper models to evaluate the properties of engineered tissues with relation to the 

native ones. The scaffold in which the engineered tissues analyzed in this work is 

cultivated is here presented, as example: according to the work of Dadsetan 

(Dadsetan, Szatkowski, Yaszemski, & Lu, 2007), this scaffold provides a tuning 

compressive stiffness regulated by the polymer concentration and, in general, the 

mechanical properties can be varied changing the ratio among the components; it is 

degradable and the degradation rate depends on its composition, giving the 

possibility to adjust it to the particular situation with the objective to provide an 

initial support that decreases with the growth of the tissue; this material allows the 

cells to be attached and to growth. 

 

 

1.4 POLYDIMETHYLSILOXANE 

Polydimethylsiloxane (PDMS) is a silicone elastomer. The chemical formula of a 

single chain is    [  (   )  ]   (   )  where   is the number of the repeating 

monomers [  (   ) ]. Network of PDMS polymer is composed by crosslinking the 

chains. PDMS is very attractive in the field of biological application as testing 

material and component for devices. It is chemically inert, thermally stable, 

permeable to gases, simple to handle and it has a low cost production (Mata, 

Fleischman, & Roy, 2005).  

For its preparation, two agents are required: a base agent and a curing agent. The 

ratio with which they are mixed can be varied according to the particular needs to 

obtain tunable properties: the number   of monomers and the crosslinks depend on 

this ratio (McDonald & Whitesides, 2002). The higher is the ratio between base 

agent and curing agent, the softer is the material; the higher is this ratio, the lower is 
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the number of crosslinks and the material is less viscous. 

The characteristic structure of this polymer allows to use it as reference material in a 

wide range of applications: in this sense, its big advantage is to be isotropic and 

homogeneous. If the sample is tested in dry conditions (or submerged in a non-

organic solvent), its structure is impermeable: this means that it acts as a viscoelastic 

material; this aspect avoids any size dependencies of its properties, reducing its 

behavior to be only time dependent. If the sample is submerged in non-polar organic 

solvents, instead, it shows a poroelastic or poroviscoelastic behavior, depending on 

the grade of diffusivity of the chosen solvent (Hu, Chen, Whitesides, Vlassak, & 

Suo, 2011). 
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In this Chapter, relevant literature results on modeling aspects and experimental 

procedures for analyzing tissue mechanics are presented. In Section 2.1,  general 

ideas on constitutive modeling are shown whereas in Section 2.2 common and 

innovative experimental approaches are described. Section 2.3 presents their 

application in  analyzing articular cartilage and the state of art in this particular 

field, providing quantitative values for the mechanical properties at the available 

different length scales.    
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The macroscopic properties of AC likely depend on various microscopic histological 

and cellular features (Bao & Suresh, 2003) that cover a wide range of spatial scales, 

from nanoscopic over microscopic to macroscopic. This means that the material 

properties computed at macroscale are parameters that contain not only the physics 

of the phenomenon under investigation but also the effect of microstructure. Hence, 

finding the relationship between the macroscopic properties and the microscopic 

features is one of the most important challenge in the field of constitutive modeling 

and experimental testing.  

There exists a large number of different methods for modeling materials, each 

optimal for addressing a different length or time scale. A main division is between 

phenomenological and microstructural/nanostructural approaches (Wu, 2011): the 

first one means that the constitutive laws are extracted by empirical observations of 

a phenomenon in a way consistent with fundamental theory, but not directly derived 

from theory; a great disadvantage is that the constitutive laws introduce many 

abstract parameters, which are often difficult to interpret and to identify. The other, 

instead, is based on the develop of structural model of single parts of the system 

under investigation to extract the overall behavior through the summation of single 

parts’ behaviors.  

 
 

2.1 GENERAL ASPECTS ON CONSTITUTIVE MODELING 

One dimensional description of material is the simplest way to model it. 

Using the terminology proposed by Fung (Fung, 1965), an elastic solid can be 

modeled using the Hooke law. Consider   the displacement applied; hence, the force 

  registered is      where        defines the elastic properties of the 

material. If        , then the material is elastic linear. 

A viscous material is a material such that the recorded force is     ̇ where  ̇  
  

  
 

is the first time derivative of the displacement and        defines the viscous 

properties of the material. If        , then the material is newtonian. 

In Figure 2.1, the classical representation in the framework of lumped parameters of 

an elastic element and a viscous element is shown. 
 

 
Figure 2.1: (a) Elastic element and (b) viscous element. 

 

Viscoelasticity is the properties of materials that exhibit both viscous and elastic 

(a) (b) 
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behaviors when subject to a deformation; this means that, when a deformation is 

applied, the variation in stress is not instantaneous but the material needs a certain 

amount of time to dissipate the viscous aspect and to reach the elastic response. 

A viscoelastic material can be obtained by combining the two presented behaviors. 

In the Maxwell model, the two elements are in series: 

  ̇  
 

 

  

  
 

 

 
      (2.1) 

whereas in the Voigt model, the two elements are in parallel:  

        ̇       (2.2) 

In the Standard Linear Solid model, the elements are combined in a more complex 

way: details on the configuration used in this work will be provided in Chapter 6. 

Introducing the concept of hereditary law (Vito Volterra, 1860-1940), the general 

relation of a linear viscoelastic material can be derived as 

      ∫            
 

 

  

  
         (2.3) 

      ∫            
 

 

  

  
         (2.4) 

where           is the creep function and           is the relaxation function. The 

above integrals stated that the behavior of the material depends on the present time 

and past history. Comparing Equations (2.3) and (2.4) with (2.1) and (2.2) 

respectively, the extraction of the creep and relaxation function for the specific case 

of one dimensional model is trivial. 

The one dimensional relationship can be generalized by the use of tensors: the stress 

– strain relationship for an elastic material can be written as 

                      (2.5) 

where         and         are two rank two tensors describing, respectively, a 

measure of stress and a measure of strain, and   is a rank four tensor describing the 

elastic properties of the material, the stiffness tensor; inverting Equation (2.5), the 

compliance tensor   can be introduced: 

                      (2.6) 

In finite deformation, the measure of stress and the measure of strain have to be 

conjugate: several pairs can be found within the continuum theory but, for the 

purpose of this work, only two pairs are presented. 

In reference configuration, the pair used is composed by the Euler Lagrange strain 

tensor   and 2
nd

 Piola Kirchhoff stress tensor  ; in spatial configuration, instead, the 

Almansi strain tensor   and the Cauchy stress tensor   are considered. In Voigt 
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notation, and introducing the measures described, Equation (2.5) and (2.6) become 

                   (2.7) 

                   (2.8) 

                   (2.9) 

                   (2.10) 

where capital indices refer to reference configuration and small indices to spatial 

one. Using the push - forward operation, measures in spatial configuration can be 

derived from the measures in reference configuration, according with the following 

relations: 

   
 

 
          (2.11) 

                 (2.12) 

where   is the Jacobian of the transformation and   is the deformation gradient 

tensor. Equivalently, the opposite relation of pull - back operation is valid. From the 

strain measures, the right Cauchy Green deformation tensor   and the left Cauchy 

Green deformation tensor   can be derived 

             (2.13) 

             (2.14) 

where   is the identity tensor. 

Regarding Equations (2.5) and (2.6), symmetries can be found: without describing 

the theoretical bases, an elastic material can be described up to a maximum of 36 

independent constants. However, it is general accepted that the most general form of 

anisotropy can be composed using 21 constants (when the further hypothesis of the 

existence of a strain energy function is considered). An orthotropic material is a 

material with three planes of symmetry and it is described by 9 constants; a 

transversely isotropic material is described using 5 constants and an isotropic 

material by 2. The hypothesis of transversely isotropy assumes a material with an 

axial symmetry: it is isotropic in a plane whereas the behavior is different in the 

perpendicular direction. 

Recalling back the one dimensional description of viscoelasticity, instead, the 

generalizations of Equations (2.3) and (2.4) in spatial configuration are derived by 

the use of convolution integrals as follow 

          ∫             
    

  
       

 

  
   (2.15) 

          ∫             
    

  
       

 

  
   (2.16) 
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where the function       is the tensorial relaxation function and       is the tensorial 

creep function. It is worth to be noted that Equations (2.15) and (2.16) are within the 

framework of linear viscoelasticity modeling. 

A further improvements on viscoelasticity is the so - called quasi linear 

viscoelasticity, in which the relaxation (or creep) function is also dependent by the 

loading rate but not by the time constants (Provenzano, Lakes, Keenan, & Vanderby, 

2001). It is worth to be noted that no spatial derivatives are present in the 

viscoelastic theory: thus, no spatial dependences are taken into account. 

Poroelasticity is the properties of a material composed by a porous elastic skeleton 

in which the pores are filled by a viscous fluid that can flow as response of an 

applied pressure gradient. Mathematically, gradient introduces spatial dependence. 

Two different approaches can be used for the analysis of a soft hydrated tissue: the 

mixture model and the poroelastic model. According to the description of Cowin 

(Cowin & Cardoso, 2012) a mixture is a material with two or more ingredients, the 

particles of which are separable, independent and uncompounded  with each other; if 

the distinct phases of a mixture retain their identity, the mixture is immiscible. In a 

poroelastic approach, instead, the tissue is considered as a composite material in 

which the solid and the fluid phases interact to define an homogeneous material with 

properties that are a weight average of the particular properties of the single phases: 

the deformation of the medium influences the flow of the fluid and vice versa. 

Finally, a poroviscoelastic material can be described as a material in which a porous 

viscoelastic matrix is filled by a viscous fluid. 

 

 

2.2 GENERAL ASPECTS ON EXPERIMENTAL TESTING 

For the sake of clarity, the brief description of the possible experimental approaches 

that can fit the needs requested in testing the AC are presented through the suggested 

classification: experiments at macroscale, experiments at microscale, experiments at 

nanoscale, imaging and histology. In particular, the last group identifies all the 

approaches with which the information about the structure and the composition can 

be extracted, whereas the first three groups collect the approaches addressed to the 

extraction of mechanical parameters. 

 

2.2.1 Macroscale 

In a confined compression test, a cylindrical sample is inserted into a rigid confined 

chamber; the load (or, vice versa, the displacement) is applied along the axial 

direction by the movement of the upper surface of the chamber, whereas the radial 

displacement is forbidden. Alternatively, the upper or the lower surfaces are 

permeable: the permeability of the filter is orders of magnitude higher than the 
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tissue’s one to not affect the measure. One of the most critical aspect of a confined 

test is to ensure the proper connection between the piston and the wall: it should be 

enough close to avoid fluid flow but the effect of the friction should be minimal. The 

setup for an unconfined compression test looks similar to the one for confined 

compression test except for the fact that the sample is not constrained in radial 

direction, avoiding the problems related to the proper sizing of the chamber. In 

Figure 2.2 both the presented setups are sketched. The work of Armstrong 

(Armstrong, Lai, & Mow, 1984) first proposes this two types of test for AC. 
 

 
Figure 2.2: Sketches for the experimental setups in (a) unconfined compression test and (b) confined 

compression test. 

 

In the case of indentation test, an indenter of a particular shape (typically a flat 

punch indenter or a spherical indenter at macroscale) is pressed into the sample to 

reach a prescribed indentation depth. The contact area is, in this case, smaller than 

the top surface of the sample: hence, the pattern of the fluid flow can be more 

complex as well as the solicitation is no more uniaxial. The choice of the 

geometrical parameters (shape and dimensions of the tip or indentation depth) 

allows to investigate the tissue under different lengths. In particular, when both the 

dimensions of the tip and the depths investigated decrease up to hundreds of 

micrometer and lower, this technique acquires the name of nanoindentation: since 

this methodology is the core of this work, it will be deeply discussed in the next 

Chapter. 

 
Figure 2.3: Sketch for the experimental setup in a tensile test. 

 

Even if cartilage is optimized to sustain compressive load, tension tests (Figure 2.3) 

are mainly used to investigate the behavior of collagen network; the idea is to extract 

(a) (b) 
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samples with the shape of a strip and to apply a tensile load. Due to the anisotropic 

pattern of AC and its depth dependent organization, the testing direction and the site 

of extraction are important in interpreting the results. 

Shear properties can be investigated through simple shear tests or torsion tests 

(Figure 2.4). In a simple shear test, the sample is confined in between two plates 

whereas the lateral surface is kept free. To ensure the friction between plate and 

surface a certain amount of pre-compression is applied: then, the plates are moved 

along the same direction but in opposite ways. In a torsion test, instead, the same 

configuration is used but a torque (or, vice versa, an angular displacement) is 

applied. 
 

 
Figure 2.4 Sketch for the experimental setup in (a) shear test and (b) torsion test. 

 

The main disadvantage of the tests at macroscale is that the experimental setup can 

significantly affect the results through misalignments, non - ideal contact conditions 

and boundary effects which can result in a underestimation or overestimation of the 

tissue properties (Korhonen, et al., 2002). However, they are capable to describe the 

global behavior of the tissue. 

 

2.2.2 Microscale and Nanoscale 

Tests at microscale or nanoscale, indeed, have two advantages than tests at 

macroscale: first, they are not sensitive to the specimen preparation since the 

conditions far from the site of probing do not affect the measure; second, the 

geometrical dimensions of the experiments can be of the same order of the 

microstructures or the macromolecules themselves, allowing their investigation. 

Low scales refer not only to a spatial condition, i.e. the displacements applied, but 

also to the range of forces applied: Han (Han, Grodzinsky, & Ortiz, 2011) suggests 

[          ] for spatial lengths and [            ] for forces in these kinds 

of tests. Nanoindentation is the preferred technique used at these scales but also 

microtensile tests have now a growing interest. 

One more interesting test is the indentation with the use of a functionalized tip that 

can stress selected single fibrils or macromolecules and their in situ resistance to 

(a) (b) 
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tension or compression can be studied (Han, Grodzinsky, & Ortiz, 2011). 

Creep tests and stress relaxation tests in time domain and dynamic mechanical tests 

in frequency domain are possible upgrades of all the previously described quasi - 

static tests: indeed, they allow to study the time dependent properties. As one of the 

key points of this thesis, they will be discussed in  Chapter 3. 

 

2.2.3 Imaging and Histology  

The techniques present under this Section do not provide the identification of any 

mechanical parameter. Nevertheless, since the increasing interest on the 

characterization of specific areas in AC, they can be used to obtain accurate spatial 

compositional description of the zone under investigation, looking for positive 

correlations among mechanical parameters and structures. 

Imaging processes are used to recreated a bidimensional or tridmensional image of a 

slice or a volume of tissue. Several methods have been already presented and 

applied on articular cartilage, both destructive and non - destructive: quantitative 

polarized light microscopy (Massoumian, Juskaitis, Neil, & Wilson, 2003), 

multiphoton microscopy  (Lilledahl, Pierce, Ricken, Holzapfel, & de Lange Davies, 

2011), magnetic resonance imaging (Jazrawi, Alaia, Chang, Fitzgerald, & Recht, 

2011), X-ray diffraction (Mollenhauer, et al., 2002) and ultrasounds (Nieminen, et 

al., 2002). 

An histology, instead, is the study of microscopic anatomy of the tissue. By the use 

of specific chemical reagents, it is possible to deprive the tissue of particular 

constituents and to infer on the maintained characteristics; the modified Mankin 

score (Bobinac, Spanjol, Zoricic, & Maric, 2003) is one of the preferred methods to 

conduct an histology: a sample is treated in different ways and its consequent aspect 

is judged by a selection of blind observers; the results from each observer is 

averaged to obtain the global response, giving a subjective point of view of the 

situation. Doing this process locally, it is possible to have an accurate tissue 

mapping. 

 

 

2.3 APPLICATIONS ON ARTICULAR CARTILAGE MODELING 

AND EXPERIMENTAL TESTING 

Once the elastic, the viscous and the porous aspects are presented in a very general 

framework as well as the possible experimental approaches for the extraction of 

material properties, a brief explanation on how these general models are applied or, 

at least, are suitable for the description of AC is now presented and the results in 

literature are shown. AC properties have an high variability even when the 

experimental conditions are the same; the specie of animal from which the sample is 
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extracted is an information not to be neglected.  Moreover, independently of the 

length scale under analysis, the parameters looked for are the same: elastic 

properties, viscous properties, permeability and friction properties are the most 

important. One of the most interesting aspect is, indeed, that these parameters have 

to be discussed within the particular scale under investigation: a comparison among 

scales has to be proposed and discussed very carefully because of the complex 

organization described in Chapter 1. 

 

The first attempt to model AC is done assuming a monophasic, linear elastic, 

isotropic and homogeneous material; the work of Elmore (Elmore, Skoloff, Norris, 

& Carmeci, 1963) first suggests the concept of imperfect elasticity in behavior of 

AC when submerged in saline solution: AC can recover its thickness after the 

removal of compressive load. Hayes and Mockros (Hayes & Mockros, 1971) 

introduce the viscoelasticity through a generalized Kelvin model (a series of Kelvin 

models), without accounting for the role of fluid phase: they analyze the shear and 

bulk creep compliances of human articular cartilage under torsion and axial strain. 

From its initial application in the field of geotechnics, the poroelastic behavior has 

been described in different ways, considering the pioneering work of Biot (Biot, 

1941) till more advanced ones as, for example, the use of Green’s function shown by 

Karpfinger (Karpfinger, Muller, & Gurevich, 2009). Terzaghi (Terzaghi, 1943) 

introduces the poroelastic model for soils, assuming that both the solid and fluid 

phases fill homogeneously the volume and Biot (Biot, 1955) extends it to a 

tridimensional anisotropic case; moreover, Rice and Clary (Rice & Cleary, 1976) 

provide analytical solution for linearized homogeneous poroelastic material with 

compressible solid and fluid phases, highlighting two limit conditions. The drained 

condition is the one in which the pressure is uniform throughout the sample and the 

load is completely sustained by the solid matrix. An undrained condition is, in 

general, a condition in which a pressure gradient is present but, the most important 

(the one that this work refers to), is the situation that describes the response to the 

limit of an instantaneous load. Higginson (Higginson, Litchfield, & Snaith, 1976) 

studies the effect of interstitial flow and concludes that instantaneous response in 

creep tests is purely elastic. 

In the study of AC, two main poroelastic approaches can be found. The original 

work of Biot (Biot, 1941) accounts for the solid phase displacement,  , and the 

relative displacement between solid and fluid phases,  , (‘   ’ model) as primary 

variables; improvements are suggested later as, for example, the work of Dazel 

(Dazel, Brouard, Depollier, & Griffiths, 2007) in which generalized coordinate are 

chosen in order to simplifying the derivation of the strain energy function. The 

mixed formulation is the one in which the primary variables are the solid phase 
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displacement,  , and the pore pressure,   (‘   ’ model). Other recent general 

works on poroelasticity, suitable to be adapted in the description of AC, take into 

consideration finite strain and nonlinearity (Simon, 1992) or full dynamic 

formulations (Karpfinger, Muller, & Gurevich, 2009). 

In a mixture model, the number and the type of primary variables are related to the 

real different species that compose the tissue and that one wants to consider. In the 

work of Mow (Mow, Kuei, Lai, & Armstrong, 1980) the biphasic mixture model 

considers the solid phase displacement,  , and the fluid phase displacement,  , 

(‘   ’ model) as variables: the solid matrix is assumed intrinsically 

incompressible, linearly elastic and nondissipative and the fluid phase is intrinsically 

incompressible and nondissipative; viscous aspects are confined to the frictional 

drag between phases. Permeability is assumed constant. In the work of Lu (Lu, Wan, 

Guo, & Mow, 2010) the triphasic mixture model introduces also the effect of 

negative charged proteoglycans on fluid pressure: the governing equations are 

linearized and the proposed numerical implementation is valid for axisymmetric 

problems. Within the biphasic theory, a more realistic model for the solid phase is 

proposed by Almeida (Almeida & Spilker, 1998), where a transversely isotropy 

material is considered in a finite element framework. 

As already stated by Rice (Rice & Cleary, 1976) in 1976, numerical approaches are 

required when inhomogeneities and complex geometries become inavoidable; 

indeed, analytical solutions are limited to few areas. Regarding viscoelasticity, for 

example, Vandamme (Vandamme & Ulm, 2006) proposes the solutions for 

axisymmetric indentations of isotropic, transversely isotropic and orthotropic 

viscoelastic material. Regarding poroelasticity, instead, the solution of confined 

compression test on isotropic poroelastic materials can be found in the work of Biot 

(Biot, 1941) and revisited by Cowin (Cowin & Doty, 2006). The problem of 

compression of disks with anisotropic poroelasticity is solved analytically by Cowin 

(Cowin & Mehrabadi, 2007).  

A wide range of numerical models are present in literature, considering 

poroelasticity, viscoelasticity, anisotropy, non - linearity, fibers distribution and 

biochemical interactions. The emphasis on the constituent - based models is recently 

considered, introducing explicitly the contributions of the collagen network to the 

AC mechanics, through distribution functions for collagen fibrils orientations as in 

Shirazi (Shirazi, Vena, Sah, & Klisch, 2011), or the effect of the large deformations 

on parameters, as proposed by Ateshian (Ateshian & Weiss, 2010) for permeability. 

In his recent work, Seifzadeh (Seifzadeh, Wang, Ouguamanam, & Papini, 2011) 

presents porohyperviscoelastic model for articular cartilage that considers fibers 

reorientation, validated through a comparison with the indentation data presented by 

DiSilvestro (DiSilvestro & Suh, 2001). In this model, the matrix is modeled using 
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three terms in the Prony series, whereas the fibers distribution, in which the collagen 

fibers are able to sustain only tensile load, is borrowed by the works of Holzapfel 

(Holzapfel, Gasser, & Ogden, 2006), the numerical implementation of which is 

already embedded into the commercial finite element code Abaqus (Simulia, 

Providence, RI, USA). The permeability is modeled as strain dependent, but no 

contribution of PGs is considered. In the work of Ateshian (Ateshian, Rajan, 

Chahine, Canal, & Hung, 2009) the focus is on the modeling of a continuous fibers 

distribution: this approach appears more powerful than the use of a discrete fibers 

distribution. Moreover, he introduces the effect due to the swelling of PGs and its 

link with the biochemical composition of the environment in which AC is 

submerged. Nor permeability neither viscous aspects are considered. 

An interesting fibril reinforced model is proposed by Li (Li, Soulhat, Buschmann, & 

Shirazi-Adl, 1999): in this model, an incompressible elastic isotropic porous matrix 

is filled by incompressible fluid; the fibrillar part is distributed along the three 

principal directions of a cylindrical reference system. The stress - strain relation of 

the fibrillar network is modeled linear (and null in compression), whereas the 

permeability is exponentially decreasing with the deformation. No effect of PGs is 

taken into account. A theoretical analysis of a suitable fiber distribution is recently 

proposed by Federico (Federico & Gasser, 2010): the final expression of the 

probability density function is obtained by the superposition of a continuous infinity 

of fibers families; this approach is numerically evaluated looking at the consequent 

stress - deformation behavior. The approach proposed by Wilson (Wilson, van 

Donkelaar, van Rietbergen, & Cohen, 2005) appears more complete: it describes, 

indeed, a biphasic model in which the solid matrix consists of a swelling non-

fibrillar part and a fibrillar part representing the collagen network. A total of 9 

viscoelastic fibrils within each material point is modeled. Pierce (Pierce, Trobin, 

Trattnig, Bischf, & Holzapfel, 2009) adapts the model proposed by Holzapfel 

(Holzapfel, Gasser, & Ogden, 2006) using a discrete real fiber distribution extracted 

from the imaging method proposed by Lilledahl (Lilledahl, Pierce, Ricken, 

Holzapfel, & de Lange Davies, 2011). Details about the proposed discrete fibers 

distribution can also be found in a more recent work by Pierce (Pierce, et al., 2010). 

The dichotomy between viscoelasticity and poroelasticity is a more recent topic. In 

1963, Elmore (Elmore, Skoloff, Norris, & Carmeci, 1963) states that the response, in 

case of macroscopic indentation test, is primary due to the fluid exudation. Actually, 

it is accepted that the balance among the constitutive aspects and the geometrical 

parameters of the experiment affects articular cartilage behavior in different ways: in 

case of viscoelasticity, Huang (Huang, Mow, & Ateshian, 2001) shows that the 

response is independent from the characteristic length scale analyzed whereas, in 

case of poroelasticity, Hu (Hu, Zhao, Vlassak, & Suo, 2010) states that it is strictly 
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related to both the scale of the experiments and the properties of the sample and he 

proposes dimensionless relaxation functions for different geometries of indenter tip, 

extracted from experiments on elastomeric gels. Galli (Galli, Comley, Shean, & 

Oyen, 2009) uses the nanoindentation and microindentation techniques to 

characterize hydrogels in time domain as well as in frequency domain. In his paper, 

the time dependence induced by the extrinsic fluid flow mechanisms is discussed in 

view of the length scale effects found in indentation experiments carried out using 

different probe sizes. The effect of geometrical aspect ratios is investigated in the 

work of Lu (Lu, Wan, Guo, & Mow, 2010) using creep tests. 
 

Confined compression stress relaxation tests are performed in the work of Schinagl 

(Schinagl, Gurskis, Chen, & Sah, 1997): 9 layers,        thick each, plus the 

superficial          ) and the deepest          ones, are extracted from a 

cartilage sample and the stress relaxation test is performed over four subsequent 

levels of compression. By the use of a numerical best fit process, the results show 

that the equilibrium compressive modulus increases with the depth from        

          of the superficial to                 of the deepest one, suggesting 

heterogeneous elastic properties. The homogeneous modulus, namely the 

equilibrium modulus computed with a full thickness sample is              : 

hence, the lower modulus found in the superficial layer could be related to its 

peculiar function. An analogous work is proposed by Chen (Chen, Bae, Schinagl, & 

Sah, 2001) that performs oscillatory confined compression tests on both full - 

thickness (         samples and sliced samples (three slices for each full - 

thickness one) of adult bovine AC. An homogeneous and a layered model is used to 

extract the zero strain equilibrium modulus,    , and the strain dependent 

permeability, where     is the zero strain permeability and     is the deformation 

dependence constant. Results show that      increases with the layers from 

         to          whereas the homogenous value is equal to         , in 

between these two limits;     decreases from            

  
 to            

  
, in 

both cases lower than the homogenous value,            

  
;     increases from     

to    , similar to the homogenous parameter,    . The properties of the newborn 

bovine patellofemoral groove AC are studied by Flickling (Ficklin, et al., 2007) 

using confined compression, unconfined compression and torsional shear tests in 

order to evaluate the effect of the in vitro growth. Three groups of samples are 

extracted: medial - lateral, antero - posterior and axial, extracted at mean depth of 

     from the surface and of an averaged thickness of     . Equilibrium 

modulus, both in confined and unconfined conditions, is independent from the 

direction of loading and the strain level with a value         ; it depends on the 
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Poisson’s ratio, as expected due to anisotropy. Moreover, mechanical properties are 

found positively correlated with the GAGs concentration throughout the strain levels 

(           ) and with COL only at the highest one. 

A wide study on AC, from tension to compression, is given in the work of Chahine 

(Chahine, Wang, Hung, & Ateshian, 2004): he analyzes specimens extracted from 

the surface (strips, parallel and perpendicular to the split-line, and cylinders) or the 

deep zone by using unconfined compression tests, up to 20% of strain, and tensile 

tests, up to 7% of strain, in different bath conditions (hypotonic, isotonic, 

hypertonic). The compressive modulus is found nearly constant with the strain, 

independent by the direction in superficial specimens and increasing with the depth: 

               superficially and                 for the deep zone. The 

tensile modulus, instead, is strongly strain dependent: it is found higher superficially 

and in samples extracted parallel to the split lines (      ). Both the parameters 

decrease with increasing ionic bath concentration. The results indicate that there is a 

smooth transition between tension and compression regimes and that AC shows a 

orthotropic symmetry within a tension - compression nonlinear behavior. In all the 

studies presented above, the specimens analyzed have a characteristic size of few 

millimeters (macroscale). 

A comparison between compression tests, confined and unconfined, and indentation 

tests (in which both the pistons and the indenter tip are porous) can be found in the 

work of Korhonen (Korhonen, et al., 2002): the specimens are extracted from bovine 

AC. Spherical indenters tips have diameters of      and     ; in the confined 

compression the piston has a diameter of        whereas the unconfined test are 

conducted with pistons of        and        in diameter. In terms of equilibrium 

modulus, slight differences can be found among the different sites analyzed on the 

same joint surface. The most interesting aspect is, however, that no differences are 

noted between confined and unconfined approaches whereas the modulus measured 

from indentation is higher and independent from tip size: as an example, in the 

humerus,               in unconfined test and using the large piston;      

         in unconfined test and using the small piston;               in 

confined;               in indentation. An averaged Poisson’s ratio, measured 

optically      , is, instead, better approximated using compression tests than 

indentation tests. 

The experimental results extracted by DiSilvestro (DiSilvestro & Suh, 2001) are 

interesting since the experimental protocol is such that the analyzed response falls 

into a linear region of the AC behavior. Therefore, these results can be used to 

validate linear models. From the patella of mature bovine joint he extracts plugs to 

be tested through confined compression, unconfined compression and indentation 

tests. The plugs are about      in diameter; the indentation are performed using 
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flat punch tips of radii      for the porous indenter and        for the non-

porous. In all the cases, the samples are pre-compressed of a     and loaded up to a 

further    at constant strain rate of         ⁄ . A biphasic poroviscoelstic model is 

used to fit the data and the overall elastic response is found in terms of an elastic 

modulus                 , a Poisson’s ratio             and a 

permeability                    

  
. Two main time constants are also 

proposed, describing a short term behavior,        , and a long term one,      . 

The effect of geometrical aspects in material response has been emphasized by 

several authors, especially in time domain. Simha (Simha, Jin, Hall, 

Chiravarambath, & Lewis, 2007) performs indentation tests on bovine patellar 

cartilage using flat - ended conical or cylindrical tips with end diameters ranging 

from      to     . Results show that the elastic modulus remains constant, around 

        if the tip size is greater than      and increases when the tip size is 

smaller and smaller, up to the         in the case of the smallest tip analyzed. A 

similar trend is not found using an elastomer (urethane), justifying that this behavior 

is not an artifact of the instrumented test but a peculiar aspect of AC. Even if Simha 

suggests that the explanation can be found looking at the structure of AC, no precise 

reasons are proposed. Jin (Jin & Lewis, 2004) proposes a methods to extract elastic 

properties of AC by the use of stress relaxation spherical indentation tests with two 

different radii (of the order of   ): then, he suggests averaged values for the 

instantaneous Young’s modulus and Poisson’s ratio,            and          , 

and for the equilibrium condition,              and          . 

Nanoindentation can be used to characterize in situ AC properties at tissues scale; 

this statement is justified, for example, by the work of Li (Li, Pruitt, & King, 2006) 

where the technique is applied to normal rabbit metacharpophalangeal joint: the 

resistance of penetration and the volumetric creep strain are chosen as mechanical 

parameters to be compared with the morphological quantities like thickness and cell 

density. The investigation is performed using a conospherical diamond tip of 

       radius of curvature and up to a load of       . Loparic (Loparic, et al., 

2010) uses microindentation and nanoindentation tests to probe different structures 

on femoral head of porcine hip. Two tips are used: a spherical one with radius 

      and a pyramidal one with nominal tip radius       ; the maximum load is, 

respectively,       and          Results show how the averaged stiffness 

measured with the larger tip is almost constant through the surface and equal to 

           , whereas two different values can be found with the smaller, 

          related to PGs and          related to COL. In the work of Stolz 

(Stolz, et al., 2009), the procedure presented above is used to investigate the effect 

of the aging process in mice articular cartilage. 
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An overview of the application of dynamical mechanical analysis (DMA) to 

biological samples is reported in the work of Franke (Franke, Goken, & Hodge, 

2008). Fulcher (Fulcher, Hukins, & Shepherd, 2009) analyzes specimens from 

medial and lateral tibial plateau of adult bovine knee by the use of a flat punch 

indenter of        in diameter; the samples are solicited with a sinuosoidal 

stimulus between      and      in the frequency range [    ]   .  The 

measured storage modulus increases with frequency till a plateau of about    

       at the highest frequencies. Loss modulus appears fairly constant whereas 

the phase shift is in the range [         ]. Authors suggest viscoelasticity as 

explanation of this behavior. Huang (Huang, Wang, & Lu, 2005) proposes solution 

for viscoelastic behavior of polymers under dynamic spherical indentation tests. 

The application of nanoindentation technique coupled with dynamic mechanical 

tests on the analysis of AC is shown in Han (Han, Grodzinsky, & Ortiz, 2011): fluid 

flow induced poroelasticity is shown to primarily govern the frequency dependent 

energy dissipation, while longer time scale relaxation mainly reflects viscoelasticity. 

At microscale, indeed, dynamic modulus is linear with the square of the frequency, 

consistent with a poroelastic phenomenon. Native and PG - depleted AC from young 

bovine is tested using both classical and dynamic (up to       ) AFM - based 

nanoindentation test; two tips are used: a pyramidal one with end radius         

and half angle     and a spherical one of radius        . In the classical 

indentation, the maximum displacement applied is      corresponding to a 

maximum load of       ; the dynamic tests on native cartilage are performed at an 

offset depth of              for the spherical tip and              for the 

pyramidal while, on PG - depleted samples, the offset depths are              

and             , respectively. Results evidence no differences between tips: the 

characteristic lengths investigated are, in fact, equal. Indentation modulus is 

              for the native AC and decreases of     for the treated one. 

Storage modulus and dissipative modulus increase with the frequency: the 

magnitude of complex modulus increases from               at      to 

              at       ; PG - depleted AC shows lower dynamic and storage 

moduli whereas the dissipative behavior is comparable with the native one. A 

numerical model for the proposed experiments is shown by Nia (Nia, Han, Li, Ortiz, 

& Grodzinsky, 2011); the tissue is modeled as a fiber reinforced poroelastic material 

and the problem is solved in time domain. The storage modulus at zero frequency, 

the storage modulus at high frequency and the frequency of the peak are 

investigated; a sensitivity analysis is performed over the indentation depth 

parameter, using the isotropic case as reference.  

 



 38 
Chapter 2.  

Models and Experimental Tests in Literature 

In Table 2.1, representative results of the references presented above are 

summarized; they all refer to bovine articular cartilage. When required in the single 

Chapters, other references will be provided to directly address their specific 

questions. 
 

Table 2.1: Relevant literature data on bovine AC. 

REFERENCE EXPERIMENT LENGTH RESULT 

(Schinagl, 

Gurskis, Chen, & 

Sah, 1997) 

Confined 

compression 
   

Young Bovine AC 

Elastic modulus from       

          to              , 

from surface to deepest layer 

(Chen, Bae, 

Schinagl, & Sah, 

2001) 

Oscillatory confined 

compression 
   

Young Bovine AC 

Superficial layer. Elastic modulus 

         and strain dependent 

permeability                      

(Ficklin, et al., 

2007) 

Confined 

compression 

Unconfined 

compression 

Torsional test 

   

Newborn Bovine AC 

Equilibrium modulus of         

independent by the zone; Poisson’s 

ratios equals to      out of plane and 

     in plane 

(Chahine, Wang, 

Hung, & 

Ateshian, 2004) 

Unconfined 

compression 

Tensile 

   

Young Bovine AC 

Compressive modulus of surface 

             ; Tensile modulus 

      

(Korhonen, et al., 

2002) 

Confined 

compression 

Unconfined 

compression 

Indentation 

   

Young Bovine AC 

No differences between confined and 

unconfined tests whereas  modulus 

from indentation is higher and 

independent from tip size 

(DiSilvestro & 

Suh, 2001) 

Confined 

compression 

Unconfined 

compression 

Indentation 

   

Mature Bovine AC 

From identification based on  a 

biphasic model,  

elastic modulus                , 

Poisson ratio           , 

permeability        

            

  
 

(Simha, et al. 

2007) 
Indentation 

     to      in 

diameter 

Bovine AC 

Elastic modulus constant,           

for tip diameter greater than     ; it 

increases  up to the         in the 

case of the smallest tip 

(Jin & Lewis, 

2004) 

Stress relaxation 

Indentation 

    

(different sizes) 

Mature Bovine AC 

Instantaneous Young’s modulus 

       and Poisson’s ratio 

    ;equilibrium Young’s modulus 

         and Poisson’s ratio       



 39 
Chapter 2.  

Models and Experimental Tests in Literature 

REFERENCE EXPERIMENT LENGTH RESULT 

(Fulcher, Hukins, 

& Shepherd, 

2009) 

Dynamic 

Indentation 
   

Mature Bovine AC 

Storage modulus increases up to  

          in the range [  

  ]   . 

Fairly constant dissipative modulus 

Viscoelasticity 

(Han, et al., 2011) 
Dynamic 

Nanoindentation 
        

Young Bovine AC 

Magnitude of complex modulus 

increases from               at 

     to               at       . 

PGs depleted samples shows lower 

(up to    ) values 

Poroelasticity 

 

To relate the response of experimental tests, indentation in particular, to mechanical 

properties still remain a challenge for fluid filled tissues or materials; under these 

circumstances, indeed, the response is both time dependent and size dependent. The 

investigation of micrometric and nanometric scales as well as the application of 

dynamic tests or time domain tests with different probing tips appear unexplored 

possibilities. These considerations highlight also the need for models to interpret the 

experimental results of instrumented indentation on soft tissues exhibiting a 

poroelastic or poroviscoelastic mechanical response. 
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Methods: 

Nanoindentation Test 
 

 

 

 

 

 
 

 

 

 

 

 

In this Chapter the relevant aspects of the procedures based on the nanoindentation 

technique are shown. In Section 3.1, the theoretical basis of contact mechanics 

applied to nanoindentation tests are presented. In Section 3.2, two particular 

instruments, the Atomic Force Microscope and the Nanoindenter, are described. 

Section 3.3 describes the experiments used to investigate time dependent properties: 

creep tests and stress relaxation tests in time domain and dynamic tests in frequency 

domain. In Section 3.4, experimental problems addressed in this thesis are cleared 

up as well as the solutions adopted. Section 3.5 contains a brief description of 

samples preparation. 
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An indentation test consists on the penetration of a tip, which can have different 

shapes and different sizes, into the surface of a sample until a prescribed depth or 

overall load is achieved; during the whole procedure, indentation depth and reaction 

force are recorded. 

Varying the geometry of the tip and the indentation depth reached, this technique 

allows to study a material at different characteristic lengths. Then, if the class of 

indentation tests covers a wide range of dimensions, each of them related to the 

particular application, nanoindentation is particularly focused to the investigation at 

lengths ranging from hundreds of micrometers to nanometers. Comparing this 

technique with the classical experimental tests at macroscale (as briefly discussed in 

Chapter 2), nanoindentation has shown its capability to be non-destructive and 

insensitive to the boundary conditions of the sample: this means that the properties 

recorded are not affected by the preparation of the sample and its possible, 

consequent, damage. This experimental technique represents an effective tool which 

is capable of probing local gradients and heterogeneities, as well as to drive diverse 

deformation modes by changing indenter tip geometry, loading conditions and 

experimental time scales (Oyen & Cook, 2009).  

 
 

3.1 CONTACT MECHANICS AND THEORY OF INDENTATION 
In order to investigate the properties of a material using the indentation technique, 

the initial step is the understanding the basis of contact mechanics.  

Contact mechanics is the study of the deformation of solids that are in contact in one 

or more points (Johnson, 1985). The starting approach is presented in the paper of 

Hertz (Hertz, 1882), in which he explains the behavior of two purely elastic spheres 

in contact (but the theory can be easily generalized to the contact between an elastic 

sphere and an infinite elastic half - plane). Two conforming surfaces belong to 

bodies that fit closely together without deformations; otherwise, the surfaces are non 

- conforming and the contact is limited to a smaller area where the stress field is 

highly concentrated and independent by the conditions (geometry and boundary) far 

from the contact point. Mathematically, this last condition directly derives from the 

simplification suggested by Hertz, for which the two bodies can be considered as 

purely elastic and their contact describes an elliptical region of plane surface: as a 

consequence, the significant dimension of contact area is small compared to both the 

dimensions of each body and their radii of curvature. If far field conditions do not 

affect the contact behavior, the stress – strain field around contact falls in the theory 

of linear elasticity.  

 

 

3.1.1 Contact between two spheres within the Herzian framework 

Let us consider two elastic spheres of radii    and    and let us define   as the 

characteristic contact size (in the following,   will be regarded as contact radius); 
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the relative radius of curvature   is such that  
 

 
 

 

  
 

 

  
 The problem is solved 

under the following hypothesis: (i) surfaces continuous and non - conforming, 

   ; (ii) small strains,    ; (iii) each solid is considered as an elastic half - 

space,            ; (iv) frictionless surfaces. Parameter   is a measure of the 

macroscopic characteristic length of the bodies. 
 

 
Figure 3.1: Contact between two spheres; the quantities used in this Section are presented.  

 

When two isotropic bodies are brought in contact, the contact area is circular and its 

radius is   
 

 
(

 

  
 

 

  
). Omitting the whole mathematical formulation of the 

problem, the Hertzian solution computes the pressure distribution   and the normal 

displacement of the surface of the i - th body      (       ) as a function of the 

radial coordinate   

        [  (
 

 
)

 

]

 
 ⁄

      (3.1) 

         
    

 

  

   

  
             (3.2) 

where    is the maximum pressure applied and the pair         defines the elastic 

properties of the i - th body, Young’s modulus and Poisson’s ratio, respectively. It 

can be established that the pressure distribution proposed in Equation (3.1) is the 

unique solution of the problem and does not allow any interaction between the two 

bodies outside the contact area. The expression of the mutual approach   is 

             
 

  
        (3.3) 

Substituting the expressions of both the normal displacements      and      into 

Equation (3.3), it is possible to obtain 

 
   

    
           

 

  
      (3.4) 

from which the radius of the contact circle   and the mutual approach   are derived  
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         (3.5) 

   
    

         (3.6) 

The total load   acting on the bodies is the integral of the pressure distribution over 

the whole contact area as 

   ∫     
 

 
       

 

 
         (3.7) 

Introducing the expression of the total load   and rearranging the previous results, 

the force in function of the contact radius and in function of the mutual approach can 

be extracted 

   
 

 

 

 
        (3.8) 

   
 

 
 √ 

 
 

 
 ⁄       (3.9) 

where the trigonometric relation   
  

 
 is used. The concept of reduced modulus   

is introduced as 

 
 

  
 

    
 

  
 

    
 

  
     (3.10) 

 

3.1.2 Contact between an axisymmetric indenter and a flat surface 

The framework proposed in the Section 3.1.1 can be directly translated into the 

problem of contact between a rigid spherical indenter (indenter) and a flat isotropic 

elastic surface (sample). In this case, the reduced modulus is regarded as indentation 

modulus. 
 

 
Figure 3.2: Contact between a sphere and a flat surface; the quantities used in the description of spherical 

indentation are presented.  

 

The hypothesis of rigid indenter means that the expression of reduced modulus can 

be simplified as 

 
 

 
 

         
 

       
 

           
 

         
 

         
 

       
   (3.11) 

According to Figure 3.2, the mutual approach   introduced in Equation (3.6) can be 

recalled indentation depth    and the force can be derived 
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 √ 

 
  

 
 ⁄       (3.12) 

The mean contact pressure   , expressed as     
   

   , can be written as 

    
     

   
      (3.13) 

whereas the contact area,        , is  

                  
       (3.14) 

that, under the hypothesis of Hertzian contact, reduces to 

                      (3.15) 

Similar Equations can be developed for the case of elastic contact between a rigid 

conical indenter and an elastic flat surface as proposed by Sneddon (Sneddon, 1965).  

 
Figure 3.3: Contact between a cone and a flat surface; geometrical quantities used in the description of 

the conical indentation are presented.  
 

Total load   and indentation depth    are related as 

   
 

 
   

           (3.16) 

where   is the half angle of the cone. The expression for the contact area       is 

          
           (3.17) 

Once the contact area is computed, the concept of characteristic contact length can 

be introduced with the same meaning of the contact radius; hence,      for a spherical 

indenter and      for a conical one are defined, respectively, as 

      √       
  
     (3.18) 

                  (3.19) 

The approach of Tabor (Tabor, 1951) permits to extract an estimation of the stress - 

strain relationship from a load - indentation curve: starting his study from the 

plasticity of metals, in his work, he proposes the following Equations; recalling     

the stress (for both conical and spherical indenters),       the strain for spherical 

indentation and       the strain for conical indentation, it results that 
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       (3.20) 

         
    

 
      (3.21) 

                 (3.22) 

where    is the contact area in one of the two cases.    is an empirical constant: 

Tabor suggests        for metals. The application of Equation (3.21) to AFM-

based indentation tests can be found in Lin (Lin, Dimitriadis , & Horkay, 2007) for 

the case of non-linear elastic materials under large deformations, in Iwashita 

(Iwashita, Swain, Field, Ohta, & Bitoh, 2011) in the case of viscoelastoplastic 

behavior and in the work of Briscoe (Briscoe, Fiori, & Pelillo, 1998) for polymers. 

In all these cases, the assumption of       is used. In a second work of Lin (Lin, 

Shreiber, Dimitriadis, & Horkay, 2009) dealing with the indentation of soft tissues, 

instead,        is proposed. The first solution is accepted in this work. 

 

3.1.3 Extraction of parameters from an indentation test 

A generic loading – unloading indentation curve of a poroviscoelastoplastic material 

is presented in Figure 3.4. 
 
 

 
Figure 3.4: Typical loading – unloading indentation curve. Key feature are shown as well as the different 

behaviors of the unloading curve due to the different material responses. In the box, an example of creep, 

measured at maximum load, is highlighted.  
 

Traditionally, the information contained into an indentation curve can be 

summarized in two quantities: the indentation stiffness   and the hardness  , 
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defined as (Vlassak & Nix, 1993) 

   
  

  
       

 
 

√ 
  √ 

 
    (3.23) 

   
    

 
      (3.24) 

where the subscript     indicates the largest force or indentation depth reached.  

The indentation stiffness   is related to the elastic properties of the material through 

the value of the indentation modulus. The hardness   is a measure of the resistance 

of a material to suffer permanent plastic deformations; it is related to the imprint left 

by the indenter after the unloading phase (depending on    in Figure 3.4). 

Several techniques have been developed in order to extract these quantities from an 

indentation test: for example, in the Oliver and Pharr method the computations are 

based on the tangent of the unloading phase at maximum load and on the derivative 

of the elastic contact of an equivalent conical indenter; the Field and Swain method 

is, instead, based directly on the analysis of the unloading phase by using the elastic 

framework proposed in the previous Sections (Fischer-Cripps, 2005) of this Chapter. 

In this work, the quantities are extracted applying the theory of indentation of 

spherical or conical tips onto an elastic half - space directly to the loading curves 

and, more important, studying the behavior during the creep phases. 

The indentation modulus is the principal parameter extracted from an indentation 

test. Equation (3.11) holds in case of elastic isotropic material. Introducing the forth 

order stiffness tensor of the half space  , the same Equation can be written as 

(Delafargue & Ulm, 2004) 

      
  

    
  

     
       

 

     
    (3.25) 

where the subscript ‘s’ replaces  ‘sample’ and       and       are coefficients of  .  

According to the work of Delafargue (Delafargue & Ulm, 2004), it is also possible 

to extract an explicit formulation that links the indentation modulus to the elastic 

properties of a transversely isotropic elastic material solicited by a conical indenter 

along the axis of symmetry (direction   in the following Equations). The other two 

cases, the indentation of a transversely isotropic material along the direction normal 

to the axis of symmetry and the indentation of an orthotropic material are not 

presented here since they are not used in this work. 

The problem of indentation of a transversely isotropic material in direction   is 

axisymmetric and it gives a circular contact area; the Elliot-Hanson solution states 

   
 

   
              (3.26) 

where   is a constant that depends only on four of the five material stiffness 

coefficients: 

   
 

  
√
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√          
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  (3.27) 
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Using Equations (3.17) and (3.26) in (3.23), the indentation modulus for a 

transversely isotropic material becomes 

         
 

  
  √                

 

     
(

 

     
 

 

√          
       

)
   

 

        (3.28) 

where Equation (3.27) is used in the second equality. 

A further interesting result is presented by Vlassak (Vlassak, Ciavarella, Barber, & 

Wang, 2003): he reports that both conical and spherical indentation theories extract 

the same value for the indentation modulus         and, therefore, Equation (3.28) 

can be used also in the case of spherical indentation. 

For a poroelastic material, the information on the drained state is contained in the 

elastic stiffness tensor computed in drained condition   ; calling        
 the 

elastic compliance tensor in the drained state, it is possible to derive the compliance 

tensors in the undrained condition, as proposed by Cowin (Cowin & Doty, 2006) 

        (       )    (3.29) 

where   (     )
  

 and                  

Then, if one applies Equations (3.25) or (3.28) using, alternatively,    and   , 

where the elastic stiffness tensor in undrained condition is         
, it is possible 

to obtain analytically the values of the indentation modulus   in both drained and 

undrained conditions. 

 

 

3.2 ATOMIC FORCE MICROSCOPE AND NANOINDENTER 
All the experimental data presented in this work are collected using two instruments 

that differ each other in terms of the technologies they are based on and the working 

procedures as well as for the characteristic sizes that can be investigated (nanometric 

vs micrometric) and the domain in which they can work (frequency vs time): an 

Atomic Force Microscope (AFM), used to test AC samples with DMA tests at 

characteristic lengths from hundreds of nanometers to micrometers; a Nanoindenter 

(NI) used to test AC samples with creep tests at characteristic lengths from 

micrometers to hundreds of micrometers. Both of them are able to put a tip in 

contact with the surface of a sample and to record the load – indentation curve, 

varying experimental parameters as the geometry of the problem (tip size and 

indentation depth), loading and unloading rates, environmental conditions and 

timing. In general, they are able to probe the local properties of a material at less 

than millimetric size. 

 

3.2.1 Atomic Force Microscope 

In Figure 3.5, a scheme of a modern AFM setup is briefly described. A cantilever is 
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controlled at one end whereas a tip is mounted on the free one; the deflection of the 

cantilever is recorded through the reflection of a laser beam on the reflecting edge of 

the cantilever (Mayer & Amer, 1988). 
 

 
Figure 3.5: AFM-based nanoindentation setup.  

 

The AFM used in this work is a commercial one (Agilent Technologies 5500, 

Agilent Technologies, Santa Clara, CA, USA) equipped with a closed - loop 

scanner. Both the cantilevers and the tips can be customized for the particular needs. 

The cantilevers are commercial silicon nitride, tip - less, rectangular devices and 

their spring constants are determined by the thermal noise method (Hutter & 

Bechhoefer, 1993) which allows a level of accuracy of      ; the tips are 

customized and glued with epoxy resin (Epicote 1004, Shell Chemicals, London, 

UK) onto the free end of the cantilever using the translational stage of an optical 

microscope as described in details by Raiteri (Raiteri, Preuss, Grattarola, & Butt, 

1998). The typical sizes of the tip range at the nanometric scale. 

An AFM instrument can be used in different way, depending on the needs. The one 

used to collect data for this work is the contact mode: the tip is put in contact with 

the surface and a displacement is applied to the controlled end of the cantilever by 

the use of a piezo stage. The reaction force can be directly computed from the 

consequent reflected light. 

 

3.2.2 Nanoindenter 

Two configurations define the basis of nanoindenters actually commercialized: i) the 

sample is positioned horizontally and the tip movement is vertical; ii) the sample is 

positioned vertically and the tip movement is horizontal. Two also are the 

technologies used to apply the load and to record the displacement (or vice versa): i) 

it is inductive if the tip is driven by the current that flows into a coil; ii) it is 

capacitive if the tip is driven by the tension applied to a capacitor.  

The NI used in this work is a NanoTest Indenter with the Platform 3 software 

installed (Micro-Materials Ltd., Wrexham, UK); it can be also equipped with a 
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liquid cell able to keep samples in a hydrated and fully saturated state as used in this 

work. The sketch of the setup is shown in Figure 3.6.  
 

 
Figure 3.6: Setup of a nanoindentation test in liquid environment. 

 

In this case, the interaction between tip and sample occurs horizontally. The load is 

generated by an electric current through a coil (inductive system) and applied to one 

end of the pendulum. By means of a lever system, the force is transferred to the tip 

that is pressed into the sample. The relative displacement of the tip, measure of the 

indentation depth, is recorded through a capacitive sensor mounted on the back of 

the tip: changing the distance of the plates results in a change of tension measured 

and, through deterministic correlations, in change of depth. The whole setup is 

placed into an environment at controlled temperature and humidity. 

 

 

3.3 TIME DOMAIN AND FREQUENCY DOMAIN 
With reference to Figure 3.4, AC shows peculiar aspects from the point of view of 

nanoindentation results. First, no residual depth can be found since no plasticity 

occurs and the effects of time dependent properties are relevant: hence, some 

preliminary considerations can be suggested. 

1. AC is a soft tissue. Even with large deformations, no plasticity neither damage 

occur; the same consideration can be done for PDMS, at least within the range of 

indentation depths analyzed. These tissues recover completely after the removal of 

the load so no residual depths are present. 

2. AC and PDMS have time dependent properties. Important information about their 

properties are condensed into the creep phase, depending on the loading rate with 

which the load path is covered. 

According to the dichotomy between viscoelasticity and poroelasticity shown in 
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Chapter 2, PDMS is used in this thesis as a reference viscoelastic material. 

Time dependencies can be studied, in time domain, using creep and stress relaxation 

tests and, in frequency domain, using the procedure of Dynamic Mechanical 

Analysis. 

 

3.3.1 Time domain: creep tests and stress relaxation tests 

Creep test is a well - known procedure to measure the time dependent properties of 

material, both poroelastic or viscoelastic. It consists on applying a load until a 

certain value is reached; then, this value is kept constant and the consequent 

displacement of the actuator is measured. This displacement varies with time in 

dependence on the material properties. 

The dual experiment is the stress relaxation test in which a prescribed displacement 

of the actuator is reached and kept fixed, whereas the reaction force is continuously 

measured. In Figure 3.7 a representation of both the force and the displacement of 

the actuator in the cases of creep and stress relaxation test is presented.  
 

 
Figure 3.7: Force vs Time and Displacement vs Time in case of (a) creep test and (b) stress relaxation 

test. Force (creep) and displacement (relax) increase till the prescribed value obtained a      and, then, 

they are kept constant. As a consequence, displacement (creep) and force (relax) increase till      and, 
after that, their variations depend on the material properties. 

 

The relations between the measure itself and the properties of the material can be 

extracted by the use of proper models; in literature, several approaches are described 

in the field of soft hydrated material, proposing both exact solutions and 

approximated ones. No closed form solutions are available for spherical poroelastic 

nanoindentation problems; Mak (Mak, Lai, & Mow, 1987) proposes a numerical 

solution for flat punch indentation which has been obtained by using double Laplace 

and Hankel transforms.  

The one dimensional consolidation problem of the confined compression of 

poroelastic medium has, instead, a closed form solution for the time history 

displacement of sample top surface. The solution for isotropic tissue properties is 

(a) (b) 
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easily obtained (Biot, 1941) whereas the solution for transversely isotropic tissue 

and unconfined compression has been derived by Cowin and Mehrabadi (Cowin & 

Mehrabadi, 2007). In the following, the one dimensional consolidation problem is 

presented using the framework introduced by Cowin (Cowin & Doty, 2006).  Let us 

consider a sample of thickness   and denote the vertical direction by the subscript  . 
 

 
Figure 3.8: Scheme of a reference volume element for a saturated porous media.  

 

Consider a representative volume element (RVE) of saturated porous medium: its 

strain-stress-pore pressure relationship can be written as 

  ̂   ̂   ̂   ̂   ̂      (3.30) 

where  ̂  is the overall drained elastic anisotropic compliance matrix,  ̂ is the strain, 

 ̂ the stress, p the pressure and  ̂ the Biot effective stress tensor. The latter is related 

to the mismatch between the overall elastic properties  ̂  and the solid matrix elastic 

properties  ̂ : 

  ̂  ( ̂   ̂ 
  

 ̂ )   ̂     (3.31) 

with  ̂                . The hat “^” indicates averaging on a RVE. 

Consider             the load applied to the surface, where    is a constant and 

     is the Heaviside function; two boundary conditions are applied on pore 

pressure field,          and 
  

  
        (permeable top surface and impermeable 

bottom surface). Under geometrical considerations, the only non-zero strain 

component is    . Applying Equation (3.30) and the compatibility Equations, the 

consequent displacement field        , dependent on both position   and time  , can 

be derived. Since the behavior of the material is time dependent, the displacement 

   of the surface (indicated by the vertical coordinate     ) is the sum of two 

contributions: the initial displacement at     due to the loading,   
      , and the 

transient displacement due to the creep effect,   
      . 

           
         

          (3.32) 

The behavior of a poroelastic medium is dependent on both the geometrical 

parameters of the experiment and the constitutive parameters of the material; hence, 

a dimensionless time parameter   can be introduced. For confined compression 
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tests, Galli (Galli & Oyen, 2009) uses    
  

    where   is the physical time and   is a 

diffusivity parameter which is proportional to the tissue permeability and tissue 

stiffness; its physical unit is 
  

 
. 

Equation (3.32) becomes (Biot, 1941) 

           
         

       
           

         
           (3.33) 

with 

      ∑
 

         [              ] 
      (3.34) 

where    and    are bulk modulus and Poisson’s ratio in drained condition and 

  
         

                     
;     (

  

  
) is the isotropic effective stress coefficient,  

  the Skempton parameter,     ̂   ̂ ̂ and   is a scalar function of the drained 

elastic properties of the porous matrix. 

 

3.3.2 Dynamic mechanical analysis 

An AFM - based DMA nanoindentation test consists in two phases. First, a 

prescribed mean indentation depth    is reached applying the correct load  ; second, 

over the deformed configuration obtained, an harmonic load is imposed through a 

sinusoidal signal of a given amplitude and a given frequency: a displacement signal 

of magnitude     is applied on the cantilever end connected to the piezo stage. The 

correspondent quantity, a reaction force, is computed by measuring the cantilever 

deflection    : it is a sinusoidal signal at the same given frequency but 

characterized by an amplitude and a phase shift depending on the material 

properties. In Figure 3.9, the scheme of the procedure for an AFM - based 

nanoindentation dynamic test is presented:     defines the amplitude of the signal in 

input;     defines the amplitude of the signal in output;      defines the phase 

shift. To rely into the proposed analytical framework,       : in particular, in all 

the experiments proposed in Section 4.1,          . 

In the first step of the procedure described above, the mean indentation depth is 

reached imposing a load. In order to collect the information on    over which the 

dynamic test is performed, preliminary classical loading – unloading 

nanoindentation tests are performed at each load used in the DMA analysis: 

analyzing these data within the framework of the Hertzian contact, the 

corresponding indentation depths are found for any of the load investigated. 

In a static condition, the linearity in the elastic response of the cantilever results in a 

direct relation between the measured cantilever deflection    and the reaction force 

  through the cantilever stiffness 

             (3.35) 

More generally, Equation (3.35) holds also for the amplitude of the harmonic 



 58 
Chapter 3.  

Methods: Nanoindentation Test 

reaction force when the system is solicited at a generic frequency    

                    (3.36) 

where   indicates that the amplitude and not the signal itself. 
 

 
Figure 3.9: Scheme and examples of data recorded for an AFM-based nanoindentation dynamic test. 

 

The upper end of the cantilever is driven in displacement. If prescribed displacement 

  
̅̅ ̅ is imposed, the tip penetrates into the sample of an amount   

̅̅̅ and the cantilever 

deflects of an amount   
̅̅ ̅ according to the following additive relation 

   
̅̅ ̅    

̅̅̅    
̅̅ ̅      (3.37) 

Then, the harmonic displacement of amplitude     and frequency  is applied over 

this deformed configuration. Additive decomposition for the displacements holds 

also for the signal amplitudes:  

                 (3.38) 

The outputs are the amplitude ratio,         
   

   
, and the phase lag,     , between 

the input (   ) and the output (   ) signals.  

Combining Equations (3.36) and (3.38) the following relationship can be derived 

 
  

   
 

     

       
 

      

            (3.39) 

where     is the amplitude of the harmonic indentation depth signal. 

From the work of  Cheng (Cheng, Ni, & Cheng, 2006), the reduced storage modulus 

       and the reduced loss modulus         can be calculated, in case of spherical 

tip as 

        
 

 

 

√   
  

     

   
             (3.40) 
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√   
 |

     

   
|            (3.41) 

Indeed, for the case of conical tip holds 

        
 

        

  

  
             (3.42) 

         
 

        

  

  
           (3.43) 

 

 
3.4 EXPERIMENTAL PROBLEMS AND SUGGESTED SOLUTIONS 
Nanoindentation is a widely used experimental technique for the analysis of 

biological tissues (Ebenstein, et al., 2006): its application on hard materials (i.e, 

bone tissue) is already well established as well as the theoretical and the numerical 

methods provide reliable results (Carnelli, Lucchini, Ponzoni, Contro, & Vena, 

2011). From the experimental point of view, indeed, it has a relatively simple 

experimental setup (Gouldstone, et al., 2007) that can be upgraded quite easily: the 

application in liquid environment is central in this work and presented in literature, 

for example, by Li (Li, Korhonen, Iivarinen, Jurvelin, & Herzog, 2008). 

No special procedures for sample preparation are required and, even more important, 

the technique is able to probe small amount of material with respect to the sample 

size: therefore, material properties of intact tissue can be obtained since the test is 

performed in a zone far from the boundaries. In the work of Korhonen (Korhonen, et 

al., 2002), a comparison of results obtained from confined compression, unconfined 

compression and indentation can be found, suggesting the differences can be due to 

the experimental techniques; in his PhD thesis, Wilson (Wilson, 2005) says that a 

part of the differences found in literature about the measured swelling strain in AC 

can be explained looking at the procedures used to extract the samples. 

The field of soft hydrated tissues and materials, like AC or PDMS, presents a wide 

range of open questions regarding both experiments and models, indeed. Some of 

the experimental issues addressed to this work, followed by the solutions suggested, 

are reported here. 

 
Adhesion is a phenomenon related to the presence of molecular forces, attractive or 

repulsive, between sample and tip, causing artifacts in the detection of the force if 

the dimension of the tip (or, better, the dimension of the contact length) is of the 

same length at which the electrochemical interactions act. Typical dimensions 

analyzed in this work span from tens of nanometers to few hundreds of micrometers. 

Hence, the adhesion can play a role only around the contact approach when the 

smaller probes (experiments at small characteristic lengths) are used; for all the 

other cases, adhesion effects can be neglected. Anyway, whenever this problem 

arose, it has been overcome using the proposed method for the detection of the 

initial contact point. The proper definition of the initial contact point is crucial and, 
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with or without adhesion, it requires a not trivial treatment: a wrong definition can 

follow in completely wrong considerations on the material properties.  

Experimental procedures and literature papers already present solutions to solve this 

problem. For example, if the prescribed forces are orders of magnitude higher than 

the adhesion forces, an high value for the lowest force measurable can be set; as a 

consequence, the measure starts when the tip is certainly inside the sample but 

losing the information at low loads. In the present work, instead, detectable low 

level of load is required due to the low stiffness of the material: the approaches 

proposed above can’t be used. In the work of Nia (Nia, Han, Li, Ortiz, & 

Grodzinsky, 2011) a detection algorithm during the post-processing phase is 

proposed.  

In this thesis, the following procedure is used. Let us consider a force   – 

displacement   curve as in Figure 3.10.  
 

 
Figure 3.10: Example of force displacement curve (solid line) and best fitting curve (dashed line). 

 

It is important to note that, in Figure 3.10, displacement   identifies the current 

position of the tip, from a reference position far from the surface to a certain depth 

measured from the reference point: it is not the indentation depth   ; the contact 

point has to be defined somewhere in between           for the case shown in 

Figure. Equations (3.12) and (3.16) can be rewritten as 

   
 

 
√ 
 

        
 

 ⁄      (3.44) 

   
 

 
        

          (3.45) 

assuming that the unknown parameters are the indentation modulus,   , and the 

displacement at which the contact occurs,   . A best fitting procedure is applied 

between the experimental load - displacement curve and the above relations: the 

procedure is implemented within a Matlab environment (MathWorks, Natick, MA, 

USA) using a least square method based on the interior - point algorithm. The 

knowledge of parameters    gives the possibility to define the indentation depth 

since         while    is an estimation of the quasi static indentation modulus. 

Moreover, the softness of the material and the large displacement investigated could 

invalidate the correlations proposed in literature for hard materials. Hay (Hay & 
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Wolff, 2001) proposes a correction factor in the case of load - indentation curve in 

spherical indentation, showing how the error committed using the original Hertzian 

approach increases, moving to the case of incompressible material. The 

experimental work of Dintwa (Dintwa, Tijskens, & Ramon, 2008), instead, justifies 

the application of the Hertzian contact also in case of large deformations in soft 

tissues. In the present work, based on the hypothesis of Dintwa, an high value of the 

parameter   , found in applying the best fitting procedure described above, is used 

as index of goodness of that hypothesis: hence this verification is done for all the 

curves analyzed. 

 

Again, due to the softness of the material, low forces are required even for large 

displacements. Then, the variation in voltage (or current) that the instrument has to 

detect can be very low, causing a very noisy measure. This problem rises, in 

particular, in the studies of small tips pressed at small indentation depths: the 

solution is the developing of a customized software. This point is not object of the 

this thesis since it refers to the AFM used in the University of Genova where the 

dynamic experiments are carried out. 

 

Thermal drift can play an important role in a nanoindentation test: due to the small 

amount of volume tested, variations in temperature during the experiments can result 

into local heat flow between tip and sample, potentially affecting the measure. In a 

classical loading – unloading nanoindentation the effect of thermal drift is cleared up 

providing a correction computed leaving the tip in contact at a fixed small load level 

and fitting the consequent measured displacement with a linear relation; a correction 

computed on      is a typical value for an overall time testing length of few 

minutes. All the tests performed in this work are, instead, quite a long tests, 

overcoming tens of minutes: this means that the thermal variability that can be 

extracted within the last 30 – 60 s can not be considered representative of the whole 

experiment. Therefore, since the thermal conditions are monitored and a built - in 

control system was working, the variability along the whole duration of the 

experiment can be considered at mean null. No correction is applied to the data. 

Strictly related to the previous point is the question about the separation between the 

time dependent behavior due to the tissue properties and the one due to the thermal 

drift: the suggested explanation allows to consider that the whole measure is referred 

to material properties. 

 

A particular problem is specific for tests based on DMA. A simple way to model a 

real system is through an equivalent based on a mass, a spring and a damper: this 

kind of system has a proper natural frequency. If this system is solicited at that 

specific frequency, the amplitude of its response is infinite, if no damping is present, 

or very high, depending of the amount of damping. In Figure 3.11 a typical graph of 

the oscillation amplitude with respect to the frequency for a mass – spring - damper 

system is shown: the effect of the damper is highlighted. 
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Figure 3.11: Typical amplitude response of a mass – spring – damper system. The abscissa contains the 

frequency normalized with respect of the natural frequency;   is the damping coefficient.  
 

It is obvious that the response obtained soliciting the sample around that frequency 

is meaningless. This characteristic frequency can not be deleted, but the position can 

be changed varying the properties of the system: with reference to the specific 

configuration used in this work, the stiffness of the cantilever is the changeable 

parameter since the tip is fixed. Its choice comes from the balance between a 

cantilever too stiff, that causes large natural frequency but improper detection of low 

forces, and a too soft one, that allows the detection of low forces but has a small 

natural frequency that limit the range that can be swept. As a principle, the 

possibility to investigate up to        is the criterion used in the setting up of 

dynamic experiments. 

 

3.5 SAMPLES PREPARATION 
3.5.1 AC samples 

Three different sets of AC samples are tested within the purpose of this work. 

The samples to be tested in dynamic conditions are obtained from freshly 

slaughtered mature bovine knee. They are harvested from disarticulated femour 

(proximal condyles) within     hours post - mortem using a biopsy punch with 

inside diameter of     . Each explanted plug consists of a full thickness articular 

cartilage fragment with its underlying subchondral bone. The plugs are transferred 

into PBS (                                                  
 

 
    

   ) supplemented with    
  

  
 of gentamycin, a protease inhibitor cocktail (P8340, 

St. Luis, MO, USA) and are kept on ice until use. This procedure has been 

performed at the Department of Biophysical and Electronic Engineering in 

University of Genova (Genova, Italy) 

In the case of time domain tests on bovine AC, samples are obtained from lateral 

and medial condyles of a knee of slaughtered mature exemplary of bovine. The 

extraction of the samples is performed thorough a corer with inside diameter of 

     . During the extraction, the sample is constantly kept wet with physiological 

solution to avoid damage due to high temperature caused by the friction. Each 
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explanted plug consists of a full - thickness articular cartilage fragment with its 

underlying subchondral bone. The plugs are transferred into saline solution and are 

kept at temperature of        until measurement. 
 

 
Figure 3.12: (a) Setup for the extraction of bovina AC samples; (b) sample extracted: full thickness 

articular cartilage fragment with its underlying subchondral bone. 

 

In case of time domain tests on porcine samples, they are extracted from porcine 

joints of the specie minipig,    months old and       in weight. Control cartilage 

samples and engineered cartilage samples are considered: the control ones are 

extracted from medial and lateral femoral condyles of the left posterior articulation 

whereas engineered ones are extracted from the right counterpart. Photos of the 

articulation and the samples are shown in Figure 3.13. Samples diameter is in 

between         . This procedure has been performed at IRCCS, Istituto 

Ortopedico Galeazzi (Milano, Italy). 
 

 
Figure 3.13: (a) Articulation of porcine knee; (b) zoom of femoral part of the articulation: the sites of 

extraction are highlighted; (c) sample extracted. 

(a) (b) 

(b) (a) 

(c) 
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For all the situations, no sample by sample measurement of cartilage thickness has 

been carried out since the expected indentation depths are two orders of magnitude 

lower than the cartilage thickness; therefore, no effect of through – the - thickness 

material heterogeneity is expected.  

In order to have top and bottom parallel surfaces, the irregular bone surface is 

manually grinded using a rasp just before to start the test. It is also assumed the 

freezing does not affect the behavior of the tissue as described by Kiefer (Kiefer, et 

al., 1989). 

 

3.5.2 PDMS samples 

PDMS disks are obtained mixing viscous components and curing agents with a ratio 

of 10:1 by weight using the commercial Sylgard 184 Elastomer Kit (Dow Corning, 

Midland, Michigan, USA). After mixing the two components for, at least, 5 minutes, 

cycles of applied vacuum and rest are done in order to eliminate all the air bubbles. 

PDMS samples solidify in a cylindrical mold of       of diameter and        of 

thickness at a temperature of       for    minutes. Suitable PDMS samples are 

extracted using a biopsy punch with inside diameter of      . 
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This Chapter is dedicated to all the experimental data analyzed in the presented 

work of thesis, in both frequency and time domains and at micrometric 

characteristic lengths. Section 4.1 presents the analysis of data collected from 

harmonic AFM - based nanoindentation tests on bovine samples. Section 4.2 shows 

both the experimental procedures and the data analysis for multiload 

nanoindentation creep test on bovine samples. In Section 4.3 the procedure in time 

domain is applied to investigate the mechanical properties of engineered articular 

cartilage.  
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A unified experimental technique and a relevant interpretation framework able to 

assess mechanical properties of the AC in liquid environment at multiple 

micrometric characteristic sizes are still missing. The aim of this Chapter is to 

evaluate two experimental techniques for the quantitative interpretation of the 

poroviscoelastic response of AC when it is subjected to i) dynamic mechanical tests 

in frequency domain and ii) multiload spherical indentation test coupled with a creep 

test in time domain. In both the cases, the samples are kept in physiological 

condition. The characteristic lengths investigated are in the ranges [        ]   

in the case of DMA and [      ]   in the case of multiload creep tests: hence, 

the possibility to provide constitutive information of the microstructure (up to the 

single bundle of fibers) is achieved. The procedure based on the creep tests is, then, 

used to investigate the mechanical behavior of engineered porcine cartilage.  

In Chapter 3, the basic aspects of the experimental techniques as well as the 

consolidated theoretical frameworks used to analyze experimental results have been 

presented; the samples preparation has also been shown. In this Chapter, then, the 

novel aspects and the relative results are deeply described and explained. 

 
 

4.1 AFM - BASED NANOINDENTATION DMA TESTS ON MATURE 

BOVINE ARTICULAR CARTILAGE 
AFM - based nanoindentation tests and DMA tests are widely used as shown in the 

introduction; several works are already presented coupling these techniques at other 

methodologies operating at macroscale. The application at microscale, instead, is 

still not completely investigated, especially going down to nanometric scale and 

trying to compare the effects at different characteristic lengths. 

In this work, the investigation is based on three different tips. The experiments have 

not been conducted personally but in University of Genova. In Table 4.1 the 

parameters for the pairs tip geometry – cantilever stiffness used are shown. Fixing 

the tip geometry, the choice of the cantilever stiffness is driven by the requirement 

to ensure an allowable frequency range of [     ]  . 

 
Table 4.1: Experimental setups for the three configurations used. 

SPHERICAL TIPS 

NAME CANTILEVER CONSTANT   [
  

  
] TIP RADIUS   [  ] 

                

             

CONICAL TIP 

NAME 
CANTILEVER CONSTANT 

   [
  

  
] 

HALF ANGLE 

 [ ] 
TIP HEIGHT 

  [  ] 
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In order to investigate the effect of different characteristic lengths, for any of the 

three configurations, tests are performed at different mean indentation depths,   . As 

already described, each dynamic test is preceded by a classic nanoindentation test in 

order to extract the value of   : it is obtained using the best fitting procedure 

through the Equations (3.44) and (3.45). 

Table 4.2 shows the mean indentation depths achieved, over which the harmonic 

signal is imposed. The imposed load is also presented. The best fitting procedure is 

applied to load – unload curves already averaged from different sites: therefore, the 

indentation depths obtained are mean values but the information of standard 

deviation is not available.  

 
Table 4.2: Force - displacement tests perfomed. 

GEOMETRY 
LOAD APPLIED 

 [  ] 
MEAN INDENTATION DEPTH 

  [  ] 

               

              

             

            

            

            

            

         

         

         

 

 
4.1.1 Data correction 

Over the deformed configuration obtained achieving the prescribed mean 

indentation depth, the harmonic displacement is imposed. The choice of the 

magnitude of the input cantilever displacement is a balance among having a 

measurable output, without affecting itself, and keeping the tip in contact;     
      is chosen. As in the case of classical tests, each mean indentation depth is 

investigated with the repetition of   dynamic tests: all the data are presented as mean 

and standard deviation; in the plots, the bars indicate standard deviation. 

As already presented in Chapter 3, the outputs from a dynamic test are the amplitude 

ratio,    ⁄   ( )  
   

   
, and the phase lag,   

 ( ), between the peak of the input (piezo 

displacement    
 
) and the peak of the output (cantilever deflection    

 
) waves. 

The superscript   indicates the case,               . 

For any of the configuration (cantilever and tip) studied, a preliminary oscillatory 

indentation test is carried out on a reference stiff sample in order to calibrate the 



 70 
Chapter 4. 

Experimental Tests: Nanoindentation in Frequency 

Domain and Time Domain 

phase data drift intrinsic to the measuring system. A glass microscope slide, that 

exhibits a perfectly elastic behavior at least at the temperature and applied loads of 

interest in this work, is used to this purpose; its phase lag is denoted by   
 
( ). 

Then,   
 ( ) is the raw phase lag collected for the dynamic indentation experiment 

and it is corrected according to the relation: 

   
 ( )    

 ( )    
 ( )     (4.1) 

where   
 ( ) is the corrected phase lag value. Equation (4.1) holds for all the 

configurations shown in Table 4.1 In Figure 4.1 an example of the phase shift   ( ) 

measured using the glass sample is shown. The result presented refers to 

configuration      . 

 

 
Figure 4.1:    

     ( ) measured using the glass sample for the configuration      . 

 

For the three tips analyzed in this work, the phase correction is:   
     ( )  (  

       ) for the large spherical tip;   
    ( )  (         ) for the small 

spherical tip;   
 ( )  (         ) for the conical tip.  

 
4.1.2 Experimental data analysis 

Let us recall Equations (3.40) to (3.43) in which storage and loss moduli are 

computed for both the tip geometries:   
  ( ) and   

   ( ) for the spherical tip and 

  
  ( ) and   

   ( ) for the conical one. 

In the case of quasi static loading (   ) the behavior is basically governed by the 

elastic properties of porous matrix whereas, in the case of instantaneous loading 

(   ), the behavior is governed by the fluid flow through the pores of solid 

network. In this work,    ( ) defines the drained modulus (in the case of time 

domain tests, it is recalled    maintaining the same meaning), whereas the 

undrained modulus, that exist properly only asymptotically is computed at the 

highest frequency analyzed and it is described by    (   ) (in the case of time 

domain tests, it is recalled   ). Drained and undrained moduli can be combined 

computing the normalized storage modulus (the consolidation rate in time domain) 

     ̅̅ ̅̅ ̅̅ ( ) and the drained to undrained ratio    ⁄   ( ) defined as follow 
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      ̅̅ ̅̅ ̅̅ ( )  
(   ( )    ( ))

(   (   )    ( ))
     (4.2) 

    ⁄   ( )  
   ( )

   (   )
     (4.3) 

where   indicates the configuration as shown before.      ̅̅ ̅̅ ̅̅ ( ) is dependent by the 

testing geometrical parameters;    ⁄   ( ) is dependent by the tissue properties and 

independent by its time response. 

Moreover, the balance between elastic and dissipative properties can be extracted 

from the shape of the tangent of the phase shift,    (  ), versus frequency: its peak, 

   (  )   , is a measure of the amount of all the dissipative forces. The 

corresponding frequency at which it occurs,     , is indeed related to the typical 

time scale of the phenomenon under investigation. Since the lowest frequency 

measured is equal to     , the value of    ( ) is computed as a linear extrapolation 

of the first ten experimental data, ranging from        to         , as 

presented in the work of Nia (Nia, Han, Li, Ortiz, & Grodzinsky, 2011). 

 

4.1.3 Results 

Using Equations (3.18) – (3.19) and (3.21) – (3.22) with the assumption of     , 

characteristic contact lengths and equivalent deformations can be computer for all 

the mean indentation depths analyzed. It is worth to be recalled that these two 

parameters can be considered, respectively, as a scalar representative measure of the 

inhomogeneous strain distribution beneath the indenter surface and the amount of 

tissue involved in the deformation process; these quantities, together with the 

information on the indentation depth, define an interesting way to better understand 

the response of the material and to relate them to its microstructure. In Table 4.3 

these quantities are reported: as explained regarding the data in Table 4.2, mean 

values without standard deviations are presented.  
 

Table 4.3: Indentation depths, computed equivalent deformations and characteristic contact lengths are 
reported for all the geometrical configuration analyzed. 

SAMPLE 
INDENTATION 

DEPTH   [  ] 
EQUIVALENT 

DEFORMATION    [ ] 
CHARACTERISTIC 

LENGTH   [  ] 
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SAMPLE 
INDENTATION 

DEPTH   [  ] 
EQUIVALENT 

DEFORMATION    [ ] 
CHARACTERISTIC 

LENGTH   [  ] 

                  

 

The shape of the tangent of phase shift is presented in Figure 4.2; the different 

configurations (            ) are presented in separated plots and, within a single 

plot, results for all the indentation depths are shown. Looking at the frequency of the 

peak and at the magnitude of the peak itself, it is evident how the tissue response is 

different when the characteristic length of the experiment changes. 
 

 
Figure 4.2: (a)    (  

     )( ), (b)    (  
    )( ) and (c)    (  

 )( ) measured for all the indentation 

depths analyzed in the study. 
 

Results obtained with the conical indenter exhibit the highest values for both 

   (  )    and     ; moreover, peaks are centered on the same frequency     , 

for all the    investigated. For the spherical indenters, peaks decrease with the mean 

indentation depth; comparing the two radii, smaller is the radius higher is the 

   (  )   .      follows the same decreasing trend for the larger sphere whereas it 

appears almost constant (or slightly decreasing) for the smaller one. 

Using Equation (4.2), the reduced storage modulus can be computed for all the 

indentation depths investigated. The effect of the characteristic length results into a 

smaller value for the smaller tip throughout the whole range of frequency 

investigated as presented in Figure 4.3 for the sole spherical tips. 

In Table 4.4, experimental data extracted from Figure 4.2 and 4.3 are shown. The 

attention is focused on the drained (   ( )) and undrained (   (   )) conditions as 

(a) (b) 

(c) 
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well as on the balance between dissipative and conservative effects (   (  )   
) 

and the characteristic time of the phenomenon investigated (    ): results from all 

the configurations and indentation depths are presented. The information on 

  
  (        ) is not considered since these experimental data are not reliable. 

 

 
Figure 4.3:    ( ) function of the natural frequency f  for all the indentation depths investigated with the 

spherical tips. Solid line: indentation depths investigated with the configuration      ; dashed line: 

indentation depths investigated with the configuration     . 

 
Table 4.4: Overview on the extracted experimental quantities. Drained reduced indentation moduli, 

undrained reduced indentation moduli, maxima of the tangent of phase shift and frequency of the peak are 

shown for all the analyses. 

SAMPLE 
   ( ) [   ]    (      ) [   ]    (  )   

       [  ] 

                                    

                                           
                                           
                                          
                                            
                                         
                                     
                                       
                                 

                                 

                                 

 
In Figure 4.4, the value of drained indentation modulus is presented in function of 

the indentation depth and the characteristic contact length for all the cases analyzed. 

A clear effect of the characteristic length can be highlighted: indeed, the 

investigation of similar indentation depth (around       ) ends with results that 

differ from almost one order of magnitude if investigated with tips of different sizes, 

but it appears to belong to an increasing trend when the dependence on    is 

considered for the sole spherical tips: with the conical one, in fact, results are out of 
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this trend, even they appear consistent when    is chosen as independent variable. 

 

 
Figure 4.4:    ( ) in function of (a) the indentation depth    and (b) the characteristic contact length    

for all the cases analyzed. 

 

The maximum value of the phase shift tangent, measure of the amount of the 

dissipative effects, follows a clear decreasing dependence with both the indentation 

depth and the characteristic contact length; it is shown in Figure 4.5. 
 

 
Figure 4.5:    (  )   

 in function of (a) the indentation depth    and (b) the characteristic contact 

length    for all the cases analyzed. 

 

In Figure 4.6, the variation of      is presented in relation to the equivalent 

deformation and the characteristic contact length; in this case, the trend is not so 

clear. The behavior recorded with the conical tip is very different from the one found 

using spherical tips.  

Closing to the spherical tips, the frequency of the peak seems to decrease with the 

deformation     (as shown in Figure 4.6(a)) but, as highlighted by Figure 4.6(b), the 

different ranges of contact lengths investigated seems to respond in different ways:  

     is almost constant for low   , whereas it is decreasing for higher ones, 

suggesting the presence of a transition in tissue behaviour between these two 

conditions. 

The same transition zone can be found looking at the drained to undrained ratio for 

the spherical tips: in Figure 4.7, in fact, the trend described by spherical (small 

spherical tip) and squared (large spherical tip) markers can suggest a change in the 

same interval of characteristic contact length found above (      ).  

(a) (b) 

(a) (b) 
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Figure 4.6:      in function of (a) the equivalent deformation      and (b) the characteristic contact 

length    for all the cases analyzed. 
 

 
Figure 4.7: 

   ( )

   (   )
 in function of the characteristic contact length    for all the cases analyzed whit 

spherical tips. 

 
 

4.1.4 Discussion 

In the present work, the dynamic AFM - based nanoindentation test is used in order 

to investigate the elastic properties and the time dependent behavior of AC at 

nanometric and micrometric characteristic lengths by sweeping frequencies ranging 

from 2    to       . AC is expected to sustain cyclic or impact loading with 

frequency components that can be as high as       (Lee , et al., 2010) (Grodzinsky, 

Roth, Myers, Grossman, & Mow, 1981). AC is investigated in the proposed 

frequency range in order to avoid artifacts due to the bandwidth of the piezoelectric 

AFM scanner. According to the work of Dintwa (Dintwa, Tijskens, & Ramon, 

2008), the use of an elastic framework to analyze the measures is justified. 

The effect of the characteristic lengths on AC has been already highlighted in the 

work of Simha (Simha, Jin, Hall, Chiravarambath, & Lewis, 2007): he performs 

indentation tests on bovine patellar cartilage using flat-ended conical or cylindrical 

tips with end diameters ranging from      to     . These results show that the 

elastic modulus remains constant, around         if the tips size is greater than 

     and increases when the tip size is smaller and smaller, up to the         in 

the case of the smallest tip analyzed. In this work, two spherical tips that differ of 

one order of magnitude in radius are used in addition with a pyramidal one that ends 

(b) (a) 
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with a       radius: the results seem to be in apparent disagreement with the 

previous cited references. In Figure 4.4(a), it is shown how the indentation depths 

investigated with the large spherical tip are greater (from        up to        ) 

than the ones analyzed with the smaller tips (from        to       ): hence, 

except an overlap around       , it could be stated that the differences can be due 

to the diverse layers investigated. The explanation can be clearer looking at Figure 

4.4(b): more than diverse layers, the larger tip investigates characteristic contact 

lengths  that are   to   times greater than the greatest studied with the smaller ones. 

The behavior highlighted for the sole drained indentation modulus can be extended 

to the whole frequency range as shown in Figure 4.3: for both the tips, increasing the 

averaged indentation depth the storage modulus increases, reaching an almost 

constant value; comparing the two spherical tips, throughout the whole range of 

frequency, the storage modulus computed using the larger tips is always   to   times 

greater (depending on the averaged indentation depth) than the one computed with 

the smaller. 

According the dimensions of the constituents and their arrangement in the 

superficial layers of AC as described in the introduction, if the investigation is 

performed at a characteristic contact length lower than micron, the solicitation 

inferred by the tip is probably carried out by an arrangement of few 

macromolecules; a larger contact length, instead, resolves to the investigation of the 

overall tissue. Therefore the  hierarchical structure of AC is here evidenced. 

Loparic (Loparic, et al., 2010) uses microindentation and nanoindentation to probe 

different structures on femoral head of porcine hip. Two tips are used: a spherical 

one with radius       and a pyramidal one with nominal tip radius       ; the 

maximum load is, respectively,       and          Results show how the 

averaged stiffness measured with the larger tip is almost constant through the 

surface and equal to            , whereas two different values can be found with 

the smaller one,           related to proteoglycans and          related to 

collagen. Values of the storage modulus at drained condition found in this work fit 

the trend but not the values themself: larger tip measures higher values; the 

difference in the magnitude can be related to the different tissue (bovine vs porcine) 

investigated. Microindentation experiments on bovine cartilage sample proposed by 

Park (Park, Costa, Ateshian, & Hong, 2009) have shown that the indentation tissue 

modulus range from        to        for penetration depths up to       . In the 

work of Han (Han, et al., 2011) the storage modulus in drained condition measured 

on native AC is equal to               and increases to               to the 

limit of undrained one; these values are measured at a characteristic length of 

        without differences between the tips since this quantities remains the same. 

They agree with the results found in this work using the large tip, evaluated in a 

range of lengths from         and        . It is worth mentioning that, unlike this 

mismatching work, in the paper of Han the decreasing branch of the tangent of the 

phase shift is not measured. 
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The time dependent behavior of AC can be studied looking at two quantities, both 

related to the tangent of phase shift graph (Figure 4.3): the frequency at which the 

maximum occurs and the value of the maximum itself.  

An high peak is related to a large dissipative effect; on the contrary, a low peak is 

indicative of a more elastic behavior. Figure 4.5(a) shows how the dissipative effects 

reduce increasing the mean indentation depth: the trend is clearly followed by all the 

three tips; the same trend can be noted in dependence of the characteristic contact 

length in Figure 4.5(b). According to these two graphs, it seems that the tissue 

reduces its time dependencies if the volume solicited increases: this could be related 

with the fact that, increasing the length, the effects of the single components vanish, 

driving toward a more homogeneous elastic material. In Figure 4.3(a), the peaks 

found for the different mean indentation depths occur at different frequencies; in 

particular, higher is the mean indentation depth, lower is the frequency at which it 

occurs. In Figure 4.3(b) and Figure 4.3(c), instead, the position of the peak is 

independent (almost independent for the small spherical tip) by the mean indentation 

depth. This difference can be explained looking at the combined poroviscoelastic 

behavior that characterizes AC: as shown by (Hu, Zhao, Vlassak, & Suo, 2010) the 

characteristic time with which a viscoelastic gel responds to a time dependent 

solicitation is independent by the length at which the solicitation is applied; at the 

contrary, a poroelastic response is. Then, if a dominant poroelastic behavior is 

investigated with the larger tip, a dominant viscoelastic behavior is evidenced with 

the smaller ones. Consistently with the discussion performed on parameter    ( ), at 

a characteristic contact length lower than micron, the solicitation inferred by the tip 

is probably carried out by a network of fibrils; the intrinsic viscoelasticity of the 

filament, or a small network of macromolecules, is the predominant phenomenon 

investigated. A larger contact length (in this study, a threshold of         can be 

proposed) resolves to the investigation of the overall tissue and the weight of 

porosities become important. Some differences can be found between the smaller 

tips: the conical one investigates lengths lower than        and the spherical one is 

in between        and     . It can be stated that the response found with the 

former is directly related to the viscoelastic behavior of the collagen molecules; in 

the latter condition, instead, a small network of macromolecules plays and the 

viscoelastic behavior can be referred to the sliding between them (flow independent 

viscoelasticity), giving a slower effect in terms of both the characteristic frequency 

of the phenomenon and its magnitude. 

The behavior measured with the conical tip is also characterized by an high 

indentation strain that could help to explain, partially, the high dissipative effect 

calculated. 

The different trends shown by the two spherical tips suggest that a change in the 

mechanism of response happens at a characteristic length of       . This scale, in 

fact, can be the one in which the weight of the porosity solicited overcome the 

viscoelastic effect intrinsically present in the solid network. Indeed, both viscoelastic 

and poroelastic properties are now explainable looking at the microstructure of AC. 
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According to the dimensional description, these results can suggest how the 

characteristic lengths of viscoelastic effects are confined in the range of the 

dimensions of macromolecules ([            ]); the poroelastic effects take 

place at the scale in which the nanometric porosities are abundantly recruited from 

the solicitation.  

 

 

4.2 MULTILOAD NANOINDENTATION CREEP TESTS ON 

MATURE BOVINE ARTICULAR CARTILAGE 
Under the hypothesis that the tissue behaviour is primarily extrinsic (i.e.  

poroelastic), the response at equilibrium, the short term response and the 

permeability, are investigated through experiments with different characteristic 

lengths. The analytical solution to the confined compression of a fluid saturated 

porous solid (already shown in Chapter 3) is used to provide a quantitative 

estimation of the time dependent response of AC samples. For comparison purposes, 

the time dependent mechanical response exhibited by a Polydimethylsiloxane 

(PDMS) sample subjected to the same nanoindentation loading protocol as that used 

for AC samples, but in dry environment, is presented as a proof of a purely intrinsic 

(i.e. viscoelastic) reference response. 
 

4.2.1 Multiload nanoindentation creep experiments 

With respect to a classical indentation loading – unloading test, in a multiload 

nanoindentation test, the prescribed overall load is divided into a given number of 

steps; then, the sample is loaded with a prescribed loading rate to reach the value of 

the force corresponding to the first step; after an holding phase, the sample is loaded 

further to reach the subsequent load level. The procedure is repeated till the 

achievement of the maximum prescribed indentation load. 

In this work, the multiload nanoindentation protocol is combined with a creep 

analysis: for each step, after the initial loading phase, a holding phase of       is 

scheduled and a continuous measure of the indentation depth is carried out while the 

load is kept constant (creep test). After each holding phase, the sample is 

immediately loaded to the next step. 

In Table 4.5, the parameters set for the each test are presented. Two spherical tips 

are used:           and             The experiments with     have been 

run with a loading rate of   
  

 
; whereas, the experiments with      have been run 

with two different loading rates (  
  

 
  and    

  

 
) in order to assess the influence 

of this experimental parameter on the measured properties. A suitable number of 

indentation spots, over which the multiload test is performed, is chosen in order to 

get statistically relevant results. 

For the case of PDMS, instead, the experiments are performed in dry condition 

using two tips of radii           and            ; Table 4.6 shows the 

experimental setup for each case 
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Table 4.5: Parameters for the experiments carried out on the AC samples. 

SAMPLE 

TIP 

RADIUS  
  [  ] 

LOADING 

RATE

  [
  

 
] 

HOLD 

PHASE  
  [ ] 

TOTAL 

LOAD 

  [  ] 

LOAD 

STEPS 

INDENTATION 

SITES 

 (       )                   

 (        )                    

 (      )                  

 
Table 4.6: Parameters for the experiments carried out on the PDMS samples. 

SAMPLE 

TIP 

RADIUS  
  [  ] 

LOADING 

RATE 

  [
  

 
] 

HOLD 

PHASE  
  [ ] 

TOTAL 

LOAD 

  [  ] 

LOAD 

STEPS 

INDENTATION 

SITES 

 (      )                  

 (       )                   

 

 

4.2.2 The solution of 1D confined compression creep problem is adapted to 

nanoindentation creep test 

In this work, the solution to the problem of the surface settlement of a poroelastic 

material layer resting on a stiff impermeable base subjected to constant surface 

loading, also regarded as consolidation problem, is taken as a reference solution with 

the purpose to define a fitting function in the time domain. Although the boundary 

conditions for nanoindentation and consolidation problems are different, the 

analytical solution to the one dimensional problem is borrowed with the only 

purpose to describe the time dependent response of a poroelastic solid subject to a 

constant load (creep test); the solution is presented in Chapter 3, Equations (3.30) to 

(3.34).  For sake of clarity, Equations (3.33) and (3.34) are reported here again 

   (   )    
 (   )    

 (   )  
 (    )    

   (    )
[   ( )] (4.5) 

with 

  ( )  ∑
 

(    )   [    (    )    ] 
      (4.6) 

where    and    are bulk modulus and Poisson’s ratio in drained condition and 

  
   (    )

[  (    )     (    )]
;     (

  

  
) is the isotropic effective stress coefficient,  

  the Skempton parameter,     ̂   ̂ ̂ and   is a scalar function of the drained 

elastic properties of the porous matrix.    indicates the displacement of the top 

surface; superscrip   indicates the instantaneous response whereas superscript   the 

transient one. 
For the articular cartilage, incompressibility of the constituent material of the porous 

solid matrix and incompressibility of the wetting fluid have been assumed. 

Consequently,    ,     and    ; Equation (4.5) becomes 
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  (   )    (   )    (   )  
(    )   

   (    )
[   ( )]  (4.7) 

In order to use Equation (4.7) as a phenomenological fitting function for the force-

displacement data of nanoindentation tests,   is regarded as the vertical 

displacement of the tip (in place of   ) and it has the meaning of indentation depth 

   used in Section 4.1. A new dimensionless time   is defined in analogy to that 

introduced  by Galli (Galli & Oyen, 2009):   

   
  
 
 

  (     )
       (4.8) 

in which, two characteristic lengths of a spherical indentation have been introduced:  

the radius of the spherical indenter,  , and the displacement at the end of the hold 

phase,  (     ). In definition (4.8),   
 
 is a fitting parameter which plays the role 

of a diffusivity parameter. In the nanoindentation problem, parameter    is 

proportional to tissue permeability and drained indentation modulus. 

Even if the penetration depth does increase during the creep phase, for sake of 

simplicity only the final penetration is accounted in the definition of  ; for this 

reason, only creep data showing a creep displacement (       ) less than     of 

initial displacement (  ) have been retained. 

In order to use Equation (4.7) for multiload nanoindentation creep tests, the 

displacement history during creep at the j - th load level   ( )is described with a 

two parameters (  
 
   

 
) fitting curve  

           
 
 (  )     (4.9) 

in which      is the indentation depth at the beginning of the creep phase and  (  ) 
defined in Equation (4.6), both computed for the j-th load level. Parameter 

  
 ( )[  ] is the difference between the displacement in the drained (   ) and 

that in the undrained (   ) conditions;   
 ( ) [

   

 
]      , depends on the 

drained indentation modulus    and the permeability  . The superscript j indicates 

the load level considered. 

 

4.2.3 Experimental data analysis 

The output data at each load level   of the experimental test are: 

1. the indentation force   
 
 and the undrained displacement   

 
. The undrained 

displacements (  
 
) at the j - th load level   

 
 is obtained as summation of 

undrained displacement increments:   
 
 ∑    

  
   (  

 ), in which the 

undrained displacement increment is    
 (  

 )           (      ). 

2. The drained indentation depth   
 
, that represents the tissue response in 

drained (equilibrium) conditions. It is the indentation depth measured at the 

end of the j - th creep phase,   
 
   (      ). 
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3. The time domain data   
 ( ) which is the displacement history measured 

for each j - th load level during the holding phase. 

Figures 4.8 and 4.9 show representative force history and displacement responses 

collected for the tip radius     . 

 

Figure 4.8:  (a) Force vs time: ten load steps from      to      have been applied with load increments 
of 0.1 mN; (b) typical displacement in function of time recorded during the whole experiment. Open 

circles indicate the end of the creep phase at each load level. 

 

 
Figure 4.9: Example of drained curve (solid line) and undrained curve (dotted line) for the case 

 (       ). The data are presented by their mean values and standard deviations. 

 

Figure 4.10 shows the creep behavior for all the ten levels of the same case 

presented above, as an example. The time is scaled in the range [       ]  for all 

the curves. 

 

 
Figure 4.10: Example of creep curves related to the ten increasing loads in the range [    –   ]    

(a) (b) 
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The theory of the spherical indentation of a purely elastic half - space, based on the 

Hertzian contact theory (Johnson, 1985), is shown in Equation (3.12). Equation 

(3.12) can be used to fit the (     ) and (     ) data points to identify drained 
(  ) and undrained (  ) indentation moduli. To this purpose the following fitting 

Equations are introduced: 

    
 

 
  √ 

 
  

 

       (4.10) 

    
 

 
  √ 

 
  

 

       (4.11) 

where   [        ] is known. For PDMS samples, the modulus computed using 

data at the end of the creep phases is the long term modulus      (   ).  

Applying a best fitting procedure on the experimental curves   
 ( ) using Equation 

(4.9), the parameter   
 ( ) can be identified. By using the definition of   

 ( ), a 

value for the depth dependent indentation permeability can be estimated as 

     
 ( )  

   
 
( )

  
      (4.12) 

In order to highlight the effect of characteristic size of each load level and each 

indenter tip radius, a suitable normalization of the indenter displacement is 

introduced, also regarded as consolidation ratio: 

   
 ̅̅ ̅  

(  ( )   
 
)

(  
 
   

 
)

      (4.13) 

The characteristic contact lengths and the equivalent deformations are computed as 

expressed in Equations (3.18) and (3.21) using     . In order to discriminate 

between drained and undrained conditions, these two quantities are rewritten as 

       
 

 √(    
 
   

  
)

 

     (4.14) 

        
 

 
      
 

 
       (4.15) 

where the subscript   indicates spherical indentation and the subscript   indicates 

drained or undrained condition: in fact,   
 
 is equal to   

 
 in the case of undrained 

condition and   
 

 in the case of drained condition. 

The above Equations and the best fitting procedures are implemented into the 

commercial code Matlab (MathWorks, Natick, MA, USA) and the constrained 

interior-point algorithm is used in a least square framework to find the optimum 

parameters. 

 

4.3.4 Results on articular cartilage 

In Table 4.7, values of both the drained modulus    and undrained modulus   , 

identified by best fitting on the load - indentation curves using Equations (4.10) and 
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(4.11), are presented. The values are shown as mean and standard deviation, both 

computed over all the repetitions performed under the same conditions. Goodness 

parameter    
is also reported. The drained indentation modulus obtained with the 

small tip is larger than that obtained with the larger indenter. In particular, drained 

indentation modulus obtained with the      tip is about         for both the 

loading rates; whereas a value of               is found with the     tip.  This 

size dependence is not observed in the undrained modulus. To check the effect of 

the loading rates, experiments are carried out on cartilage samples with the larger tip  

( (       ) and  (        )) at two different rates:   
  

 
  and    

  

 
. As 

expected, a significant effect is found on the undrained response whereas no 

statistical difference was found on the equilibrium (drained) response. In all cases, 

undrained moduli are significantly higher than the drained ones. 

Figure 4.11 shows the same data of Table 4.7 as an histogram: Figure 4.11(a) reports 

the drained modulus whereas Figure 4.11(b) to the undrained one. The black bars 

indicate the standard deviation of each value. 
 

Table 4.7: Values of    and    for AC sample as mean value and standard deviation. 

SAMPLE 

DRAINED MODULUS 

   [   ] 
UNDRAINED MODULUS 

   [   ] 
mean std dev R

2 
mean std dev R

2
 

 (       )                        

 (      )                        

 

 
Figure 4.11: (a) Drained moduli for the cases of different tips and same loading rate; (b) Undrained 

moduli for the cases of same tip and different loading rates. Mean and standard deviation are presented. 

 

In order to highlight the effect of the length scale at which the experiment is carried 

out, the dependence on the indentation strain and on the contact radius is accounted 

for. Figure 4.12 and Figure 4.13 present, respectively, the drained and undrained 

moduli as a function of the equivalent deformation (graphs 4.12(a) and 4.13(a)) and 

the contact radius (graphs 4.12(b) and 4.13(b)). For each value in the plots, mean 

and standard deviation (vertical line) are reported; the horizontal lines indicate the 

maximum and minimum deformation / contact radius achieved during the  multiload 

experiments. An increasing indentation modulus is found for increasing 

(a) (b) 
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representative equivalent deformation; on the contrary, a decreasing modulus is 

found for an increasing characteristic length.  

 

 
Figure 4.12: (a) Drained moduli vs equivalent deformation; (b) Drained moduli vs contact radius. Mean 

(marker) standard deviation (solid line) are presented as well as the range of both the parameters analyzed 

into a single multiload test (dotted line). Only tests carried out at the same loading rates are reported. 

 

 
Figure 4.13: (a) Undrained moduli vs equivalent deformation; (b) Undrained moduli vs contact radius. 

Mean (marker) standard deviation (solid line) are presented as well as the range of both the parameters 

analyzed into a single multiload test (dotted line). Only tests carried out at the same loading rates are 
reported. 

 

Figure 4.14 reports the values of indentation permeability (mean and standard 

deviation) computed as a function of the equivalent deformation (Figure 4.14(a)) 

and characteristic length (Figure 4.14(b)) for all load levels.  

 

 
Figure 4.14: (a) Indentation permeability with respect to the equivalent deformation; (b) indentation 
permeability with respect to the contact radii. Mean (marker) and standard deviation are presented. 

(a) (b) 

(b) 

(b) 

(a) 

(a) 
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A decreasing permeability is found with increasing representative indentation strain; 

whereas, permeability is greater at larger characteristic lengths. 

 

4.3.5 Results on PDMS 

Table 4.8 shows the values of the long term indentation modulus calculated for the 

PDMS samples. 
 

Table 4.8: Values of     for PDMS samples as mean value and standard deviation. 

SAMPLE 
LONG TERM MODULUS     [   ] 

mean std dev    

 (      )                 

 (       )                 

 

It is worth to be noted that the long term response for PDMS is independent of the 

indenter radius. 

 
4.3.6 Time dependent response of AC and PDMS samples under 

nanoindentation 

Figure 4.15(a) reports the consolidation ratio for ten representative levels of load 

using the      tip. For each level of load, the total indentation force is distributed 

over a contact area that increases with the force; thus, each load level is 

characterized by a specific characteristic size (i.e. the radius of the contact area). As 

expected from a fluid filled solid under a constant load, the consolidation rate is 

greater for smaller characteristic sizes; i.e. for increasing levels of the load, the 

contact area increases and the time required to achieve a given consolidation ratio 

increases as well.  

The characteristic size of the indentation can be changed by changing the tip radius. 

In Figure 4.15(b), the consolidation ratio is reported for ten levels of load, using the 

    tip. The time response under multiload creep is qualitatively similar to the 

response obtained with the larger tip; consolidation is considerably faster for small 

tip with respect to that observed with the large tip as shown in Figure 4.15(c). 

Following the theoretical solution of the consolidation problem, the   
 ̅̅ ̅ becomes 

independent from the characteristic size if the normalized time  ̅   
  
 

   (      )
 is 

considered. To this purpose, the diffusivity parameter   
 
 identified by the curve 

fitting procedure is used.    
values found for all curves fitting the creep data ranged 

between     and      for the large tip radius and between     and      for the small 

radius tip. If consolidation curves are reported as a function of normalized time for 

all the load levels and for all tip radii, no appreciable difference can be observed; in 

Figure 4.15(d), the consolidation curves for all the studied cases overlap. This result 

indicates that the displacement risen under constant load is mostly owed to the 
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poroelastic dissipation mechanism. 

As a comparison, Figure 4.16 shows the time dependent response to a constant 

indentation load for PDMS in dry condition: the normalized consolidation rate   
 ̅̅ ̅ as 

a function of the natural time overlaps within the experimental scattering for all 

characteristic lengths; this shows that, for PDMS, the time dependent phenomenon 

is independent on the contact radius of the experiment. It can be then speculated that 

indentation on PDMS in dry condition is mostly an intrinsically viscoelastic 

phenomenon. Also in this case, only few representative curves are presented. 
 

 

Figure 4.15: (a) Consolidation ratio curves for a representative 10 load levels for the experiment 

 (       ) in function of natural time. (b) Consolidation ratio curves for a representative 10 load levels 

for the experiment  (      ) in function of natural time. (c) Curves in (a) and (b) are plotted together. (d) 
Selected consolidation ratio curves  in dependence of normalized time for all the three cases analyzed for 

AC samples. 
 

 
Figure 4.16: Normalized indentation depth plotted in dependence of natural time for PDMS samples. For 

the different tip radii and loading condition, only representative curves are presented. 

(a) 

(c) 

(b) 

(d) 
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4.2.6 Discussions 

The complex behavior of the superficial layers of the AC derives from the spatial 

organization in which the different constituents are arranged (Jurvelin, et al., 1996). 

In this work, the attention is focused on the effect of the characteristic length of the 

nanoindentation experiment on the time dependent response of AC in a 

physiological (i.e. liquid) environment. The analyses allow identifying both drained 

and undrained indentation moduli as well as permeability. Characteristic lengths are 

investigated by performing nanoindentation experiments with spherical tips with 

two different radii and with different penetration depths obtained by setting multiple 

levels of load. 

In terms of elastic properties, the value of drained modulus is three times higher in 

the case of the smaller tip (          ) than in the case of larger one (     
       ). A comparatively smaller decrease, of about    , can be observed for the 

undrained modulus, instead, with an opposite trend. This effect has already been 

pointed out in the work of Simha (Simha, Jin, Hall, Chiravarambath, & Lewis, 2007) 

in which the drained indentation modulus, measured on bovine patella cartilage, 

decreases up to three times (from         to        ) when the radius of 

curvature of a conical tip increases from        to     . Simha concludes that the 

indentation modulus is dependent on the indenter radius due to the spatial 

heterogeneity of the volume fraction of collagen fibrils and their orientation 

distribution as well as to the different amount of AC tissue involved with different 

tip size. Further considerations can be done by introducing the equivalent 

deformation and the contact radius in the data analyses. The experiments carried out 

with the small tip cover a wide range of high equivalent deformations 

(      [     –      ]) and small characteristic contact sizes (     [      ]   ); 

vice versa, those conducted with the large tip investigate a range of smaller 

equivalent deformations (      [     –      ]) with large contact sizes 

(     [   -   ]   ). According to Figures 4.12, the drained indentation modulus 

(measure of the elastic properties of the solid matrix in AC) increases with the 

equivalent deformation applied, as seen at macroscale with unconfined compression 

(Li, Buschmann, & Shirazi-Adl, 2003), and decreases with the increasing contact 

radius. Merging the two results, the following explanation can be suggested: the 

drained modulus increases if smaller volume of tissues (namely, a smaller amount of 

collagen fibrils) are recruited and loaded at high strains unlike the activation of a 

high number of collagen fibrils loaded at low strains, suggesting a size dependence 

of the elastic response given by tissue heterogeneity. In the work of Bonnevie 

(Bonnevie, Baro, Wang, & Burris, 2012), the drained modulus is measured using a 

spherical tip of        pressed into the sample to reach indentation depths in the 

range [          ]: they have shown that for indenter tip greater than      in 

radius, the drained modulus is fairly constant, as confirmed by the work of 

Korhonen (Korhonen, et al., 2002). Hence, by increasing the length at which the 

analysis is performed, the AC is better approximated as a homogenous medium. 
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The value of the undrained modulus increases substantially if the loading rate 

increases, as expected and evidenced in the histogram in Figure 4.11(b) (result on 

sample  (       )). Comparing the cases having the same rate and different tip 

radius, the undrained modulus is slightly affected by the equivalent deformation: 

indeed, if the loading conditions are such that the volumetric load is completely 

sustained by the physiological fluid, no dependence on tip radius can be evidenced. 

The high values of the    found in all the cases show that the hypothesis of Hertzian 

contact is acceptable for both the drained and undrained moduli (Dintwa, Tijskens, 

& Ramon, 2008) for which a purely elastic behavior can be expected.  

In this study, the penetration depths of all experiments are lower than      . It is 

reasonable to consider that through - the - thickness inhomogeneity plays no relevant 

role in such small amount of material. The capability of nanoindentation to probe 

small amount of materials (unlike compression tests on large samples) and, in 

particular, to analyze thin superficial layers, is one of the key features of this specific 

experimental technique. Inhomogeneous material properties can be probed by 

making nanoindentation on different sites on the sample; through – the - thickness 

inhomogeneity of articular cartilage can be probed by slicing tissue sample at 

different depths or making cross - section indentations. 

Anisotropy is also an important issue on cartilage mechanics. It is well known that 

superficial layers exhibit in - plane Young’s modulus (or stiffness, for more 

generally non - linear material response) higher than that along the thickness 

direction. This peculiar property is owed by the collagen fibrils orientation 

distribution which, on superficial layers, has the predominant direction parallel to 

the articulating surface. In this work, the indentation parameter which account for 

tissue stiffness is the indentation modulus ( ). Theoretical solutions to the problem 

of indentation on elastic anisotropic materials show that the indentation modulus is a 

known function of the elastic tensor components (see for example the work of 

Delafargue (Delafargue & Ulm, 2004)). For isotropic materials this relationship 

reduces to   
 

    ; in this definition,   is the Young’s modulus and   is the 

Poisson ratio. As in the work of Hu (Hu, Zhao, Vlassak, & Suo, 2010), where 

phenomenological estimations are proposed, a one dimensional problem is here 

considered; in this case, moreover, the analytical solution is borrowed from a one 

dimensional consolidation problem and it allows an estimation of the tissue 

indentation permeability at different equivalent indentation strains. In the cases 

analyzed in Figure 4.14(b), all the curves show a decreasing trend. More interesting 

are the results in Figure 4.14(a): matching the results from the two tips, it is clear 

that the permeability of the tissue is lower for higher equivalent deformations. In 

particular the permeability as a function of the equivalent indentation strain can be 

fitted with a function of strain (Ateshian, Warden, Kim, Grelsamer, & Mow, 1997) 

     ( )     
         (4.16) 

where    and    are two fitting parameters. Figure 4.17 shows the result of the best 



 89 
Chapter 4.  

Experimental Tests: Nanoindentation in Frequency 

Domain and Time Domain 

fitting procedure, where            
  

  
 and        .  

 

 
Figure 4.17: Permeability in function of the deformation. The dot line is the best fitting found using the 

exponential relation in Equation (4.16). 

 
Nia (Nia, Han, Li, Ortiz, & Grodzinsky, 2011) finds an average permeability of 

      
  

  
 on immature bovine cartilage samples by a dynamic AFM - based 

nanoindentation; whereas, Chen (Chen, Bae, Schinagl, & Sah, 2001) computes a 

permeability extrapolated at zero compressive strain of            
  

  
 on 

superficial layers of adult bovine cartilage samples using confined compression 

experiments. Furthermore, Williamson (Williamson, Chen, & Sah, 2001) shows that 

tissue permeability is strain dependent (values are in the range             
  

  
  

for compressive strain ranging from      to     ) as well as age - dependent, 

finding decreasing permeability with tissue age, especially at large strain. 

Williamson has also found positive correlations between permeability and 

constituent concentrations. The creep nanoindentation technique presented in this 

paper predicts tissue permeability which is lower than that found by Nia and Chen; 

however, experimental conditions and tissue sources should be carefully accounted 

for when making consistent comparisons between tissue permeability measures. 

Confined compression tests induce a uniaxial fluid flow along the thickness 

direction with a flowing path length of the order of the sample thickness. Indentation 

tests, instead, induce a multiaxial flow of water with a fluid path which is of the 

order of the contact radius. This is a substantial difference that may well justify the 

different permeability estimates. In one dimensional  consolidation the characteristic 

length  is the sample thickness; for nanoindentation problem, it can be assumed that 

the characteristic length   ̃ is proportional to the contact radius    through a 

proportionality constant  .  

   ̃            (4.17) 

Therefore, the normalized time in Equation (4.8) can be rewritten as 

   
   

    (     )
      (4.18) 
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A multiload nanoindentation creep tests is simulated on an isotropic elastic material 

(Young’s modulus            and Poisson’s ratio       ) with homogeneous 

and strain - independent permeability           

  
. Five load levels are simulated, 

[          ], with both the tips presented in this work,     and     . The creep 

curves, five for each tip, are fitted by using Equation (4.9) and parameter   can be 

extracted for each of them; the goodness of the fitting is represented by an 

        . Consistently with the analytical prediction (Equation (3.12)), the drained 

modulus estimated using Equation (4.10) is equal to         for both the tips.  

Parameters    remains constant throughout the loads in both the cases, in agreement 

with the tissue homogeneity, with mean values of      
   

 
 and      

   

 
 for      

and    , respectively. Parameter   can be estimated from   and   , since    is 

known and     is extracted as in Equation (4.12). Indeed 

   √
  

    

 
      (4.19) 

and two values are found:         and         ; it appears that this proportional 

parameter is almost constant with the tip radius. 

The comparison with literature data shows that the proposed experimental technique 

still needs to be validated as a toll to determine permeability of the superficial layers 

of articular cartilage; nevertheless, it has been proven that it can offer an insight in 

the poroelastic response of the tissue at small scale. The validation for tissue 

permeability will imply a thorough comparison among different techniques with the 

same tissue source, harvesting location as well as testing condition. In particular, it 

is worth to investigate whether permeability assessment through the time domain 

nanoindentation used in the present work and the frequency domain nanoindentation 

are somewhat related.  

The results presented suggest that the overall behavior related to the porosity is not 

affected by the characteristic length of the test but it is dependent on the applied 

deformation only, at least in the range of sizes explored in this study. Further studies 

exploring a wider size range are required to identify the characteristic length range 

of validity of this theory. 

The time dependent response is recorded over a time span of     seconds. The 

choice of the       of holding time is a compromise between the total duration of 

the whole experiment session and the necessary condition of achieving an 

equilibrium configuration (total dissipation of the excessive pore pressure). In order 

to check the achievement of a steady state configuration at a good level of accuracy, 

the numerical derivative of the creep displacement  as a function of time has been 

computed as shown in Figure 4.18 for the sole mean curves in any case. It has been 

found that, for all experimental types (both the tip radii), a negligible time derivative 

(steady state) has been recorded after less than     . A further argument to support 

this choice can be found by considering the function  ( ), introduced in Equation 
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(3.34) as a summation of exponential terms, the dominant contribution of which is 

given by the first one: 
 

  [       ]. For a tip radius        , tissue 

permeability           
  

  
 and a drained indentation modulus            

(the case having the longest characteristic time), this term corresponds to a 

characteristic time of       , which is about 3 times lower than total duration of the 

creep phase. In conclusion, for this specific tissue properties (tissue stiffness and 

permeability) and characteristic indentation length, all characteristic times are 

substantially lower than      .  
 

 

 
Figure 4.18: Numerical derivative computed for the mean curves obtained from sample (a)  (      ), 

(b)  (       ) and (c)  (        ). 
 

For comparison purposes, the same experimental protocol has been applied on 

PDMS samples in dry conditions which is expected to be homogeneous and 

intrinsically viscoelastic. Table 4.8 evidences that no statistical differences (p-value 

from the t-test equal to     ) on drained indentation moduli can be found between 

the experiments with different tip radii (                     ). Figure 

4.16 shows that PDMS has a prevalent viscoelastic behavior: indeed, normalized 

creep curves (normalized displacement vs natural time) obtained at different 

indentation loads overlap, i.e. do not exhibit size dependence. This result has been 

experimentally proved also by Hu (Hu, Chen, Whitesides, Vlassak, & Suo, 2011) 

Unlike the PDMS, the time response of cartilage can be explained through the 

poroelastic dissipation mechanism. Indeed, Figure 4.15 suggests that poroelasticity 

is the main phenomenon governing AC in superficial zone. In the figure, the size 

dependence induced using two different tip radii and different penetration depths is 

(a) (b) 

(c) 
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shown by plotting normalized displacement vs natural time. If the normalized 

displacement is plotted against the normalized time, by using normalization rule 

introduced in Equation (4.8), all curves overlap (size dependence disappears) as 

suggested by the analytical solution of a poroelastic problem. This result supports 

the initial hypothesis that poroelasticity is the main dissipation mechanism at least at 

the time scales investigated in this study.  

It can be expected that intrinsic viscoelastic behavior of collagen fibrils as well as of 

the other molecular components of cartilage solid matrix may also play a role. 

However, as the typical fibril diameter is           , viscous dissipation should 

be detectable for characteristic sizes much smaller than those investigated in this 

work and on larger time scales. It can be speculated that AFM - based indentation 

using a sharp tip radius and low applied loads may be suitable to probe the 

viscoelastic response of the fibrillar component: indeed, it has been shown in 

Section 4.1  

The newly gained knowledge that can be achieved through the technique proposed 

in this work that operates at the microscale, combined with AFM - based technique 

operating at a lower scale level will be also critical in the development of novel 

diagnostic tools for cartilages pathology as these properties are important indicators 

to relate alteration in the tissue mechanical properties to its molecular structural 

changes: Section 4.3 provides an interesting example. 

 
 

4.3 MULTILOAD NANOINDENTATION CREEP TESTS ON 

PORCINE ARTICULAR CARTILAGE: A COMPARISON 

BETWEEN HEALTY AND ENGINEERED TISSUES 
This Section describes the results of a collaboration with the Istituto Ortopedico 

Galeazzi based on the comparison of mechanical properties between native porcine 

AC and engineered porcine AC to evaluate cartilage repair when a lesion is healed 

in different engineered constructs.  

In Table 4.9 the samples are presented: control samples are not subjected to zonal 

differentiation, so all the measures are summarized under a sole sample   , whereas 

the engineered ones are, since different treatments are considered. 

 
Table 4.9: List of porcine samples under investigation. 

CONTROL 

SAMPLE 

ENGINEERED SAMPLES 

NAME DESCRIPTION 

   

      
Proximal Lateral sample. Scaffold and autologous 

Adult Stem Cell (ASC) 

      Proximal Medial sample. Only scaffold 

      Distal Lateral sample. Empty 

 

A brief description of the engineered tissues is required: sample  
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      is extracted from a zone in which, after the injury is created, the scaffold is 

implanted together with stem cells of the same animal that can differentiate during 

the growth; sample       contains only the scaffold and no stem cells; in sample 

      the injury is left evolving without any insertion of scaffold or cells. The 

multiload nanoindentation creep test are performed using the two tips,           

and            , at a single loading rate of   
  

 
. The hold phase is always 

      long. In Table 4.10 the parameters set for each experiment are shown 
 

Table 4.10: Parameters for the experiments carried out on porcine samples. 

SAMPLE 

TIP 

RADIUS  
  [  ] 

TOTAL 

LOAD 

  [  ] 

LOAD 

STEPS 

INDENTATION 

SITES 

  (   )              

  (    )             

     (   )              

     (    )             

     (   )            

     (    )             

     (   )              

     (    )               

 

The total load reached is not fixed to      for all the experiments due to the 

softness of some samples; in those cases, the maximum indentation depth equal to 

      imposed by the instrument used is the first condition achieved. 

 

4.3.1 Results on porcine articular cartilage 

Data of all the samples are analyzed to extract the drained modulus   , and the time 

dependent properties: the permeability  , if    can be correctly extracted; parameter 

    otherwise. The whole procedure has been already presented in Section 4.2 on 

bovine samples: results permit to infer about mechanical properties of the three 

methodologies with respect to control sample. In Table 4.11 the values of the 

drained modulus are shown for all the cases under the hypothesis of Hertzian 

contact. As for bovine samples, smaller tip resolves to higher values.  
 

Table 4.11: Values of    for all the porcine samples as mean value and standard deviation. 

SAMPLE 
DRAINED MODULUS    [   ] 

mean std dev R
2 

  (   )              

  (    )             

     (   )             

     (    )             
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SAMPLE 
DRAINED MODULUS    [   ] 

mean std dev R
2 

     (   )              

     (    )             

     (   )             

     (    )            

 

In Figure 4.19, the same information is presented as histograms to better visualize it. 

Star indicates that the hypothesis of Hertzian contact is not verified: value of    is, 

in fact, quite small; the tissue does not behave as an elastic medium and the 

estimated    is, in these cases, not representative of drained modulus. 
 

 
Figure 4.19: Drained modulus computed for all the samples and for both the tips considered 

 

Since the hypothesis of Hertzian contact is not verified for samples  
      and      , their proposed drained modulus is no more than a rough estimation 

of their elastic properties; then, Equation (4.12) can be properly used only for 

samples     and      . Therefore, a first comparison on the different tissues is done 

on parameter    that condenses the poroelastic properties. Further on, only the mean 

curves and the mean values are considered, for sake of simplicity.  
 

 
Figure 4.20: Parameter   , in term of maximum and minimum values found with both the tips, is shown 

for all the four cartilage samples 

 

Parameter    shows a decreasing trend with respect to the indentation depth; in 
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Figure 4.20, for any sample, the maximum value (first load level) and the minimum 

one (last load level) are shown for both the tips used. The poroelastic fitting is not 

good for sample      , whereas sample       shows an opposite trend (   increases 

with depth) when investigated with the larger radius. Sample      , indeed, is in 

good agreement with the control one. 

Consistent values for the indentation permeability can be computed for the samples  
   and       when investigated with both the tips. Then, in Figure 4.21 the trend of 

permeability with respect to the equivalent deformation is presented for both the 

samples. Sample       appears a little less permeable at smaller deformation. 
 

 
Figure 4.21: Indentation permeability in function of the deformation in the case of control sample 

(circles) and engineered sample       (squares). 
 

 
Figure 4.22: (a) Consolidation ratio curves for representative load levels for the experiment on    sample 
in function of natural time (solid lines) and normalized time (dashed lines). (b) Consolidation ratio curves 

for representative load levels for the experiment on       sample in function of natural time (solid lines) 

and normalized time (dashed lines). (c) Consolidation ratio curves for representative load levels for 

experiments on       sample in function of natural (solid lines) and normalized (dashed lines) time 

(a) 

(a) (b) 

(c) 
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Finally, using the normalization of the time proposed in Equation (4.8), the 

poroelastic hypothesis is checked. In Figure 4.22 selected curves are presented for 

the sample    (Figure 4.22(a)),       (Figure 4.22(b)) and       (Figure 4.22(c)) for 

both the two tips. In each graph, the selected curves are shown with respect to 

natural time   and normalized time  ̅. As expected, a complete overlap between 

creep curves collected at different load and different tip radii is found for the control 

sample. In the case of sample       the overlapping is good enough to consider the 

material governed mainly by poroelasticity whereas sample       shows a more 

complex behavior. Curves collected at different depths overlap within the same tip 

when normalized time is used; between the tips, instead, the overlapping does not 

occur. No data are presented for the sample       since no acceptable poroelastic 

fitting can be found. 

 
4.3.2 Discussion 

The methodology proposed in Section 4.2 is here used to evaluate three different 

engineered tissues. A lesion is get on articular cartilage of minipig animals and it is 

treated with: scaffold and cells (sample      ); scaffold without cells (sample      ); 

neither scaffold nor cells (sample      ). Native sample, that represents the healthy 

condition of porcine AC, is used as comparison. Drained modulus and permeability 

(parameter   , more in general) are chosen as quantities to be compared. 

No comparison is performed based on the concepts of characteristic contact lengths 

and equivalent deformations since almost all the tests reach the maximum depth of 

     , giving approximately    up to        and       and     up to      and 

     for      and    , respectively. 

With reference to the control sample, the values found are in agreement with the 

literature, suggesting again that the procedure is suitable to extract mechanical 

parameter for soft tissues. Testing porcine cartilage, Loparic (Loparic, et al., 2010) 

finds a drained modulus of              using a spherical indentation with a tip 

radius equal to      : according with its increasing trend while the radius 

decreases,                for the smaller tip and               for 

the larger appear consistent values. In his work, Franke (Franke, et al., 2007) 

measures a reduced modulus of           using a Berkovich tip and applying a 

load of       . These last results are also found in agreement with the following 

paper (Franke, Goken, Meyers, Durst, & Hodge, 2011) in which porcine cartilage is 

tested by the use of dynamic test with a Berkovich tip. Even if the averaged 

maximum indentation depth is comparable with the       reached in this study, the 

load applied is more than two times higher than the one used in this work as well as 

the deformation. Using different loading conditions on a complex hierarchical 

structure can explain the differences on the values found. 

As expected from its preparation, sample       better replicates the properties of 

native cartilage with respect to drained elastic properties, overall elastic behavior 

and permeability: indeed, Hertzian hyphotesis is verified, like in the case of native 



 97 
Chapter 4.  

Experimental Tests: Nanoindentation in Frequency 

Domain and Time Domain 

sample. In particular, it has almost the same indentation modulus, with both      

and    , whereas the permeability appears slightly smaller than control condition for 

low levels of deformation. Furthermore, this last consideration is supported looking 

at Figure 4.22(b): applying the time normalization, curves overlap within the same 

tip radius whilst, between the tips, the same occurs only in an averaged way. 

Samples       and      , instead, show comparable estimations (Herzian contact not 

verified) of drained elastic properties between themself but two or three times lower 

than the control. Figure 4.20 suggests how poroelastic properties are absolutely not 

comparable with the target:       is characterized by an increasing trend for 

parameter   if investigated with the larger tip and applying the poroelastic theory to 

      gives meaningless results. To confirm this statement, in Figure 4.22(c) no 

overlapping occurs if the normalized time is introduced. Besides, dashed gray curves 

seem to overlap already with respect to natural time, suggesting that viscoelastic 

properties can play a relevant role, at least at the largest length analyzed. This last 

result confirms the very limited ability for cartilage to self-healing (Henrotin & 

Reginster, 1999): if the lesion is untreated, the regrowth results a tissue with worst 

properties, losing its poroelastic aspects. 

A lower drained indentation modulus related to the larger tip is a consolidated 

outcome; among the samples analyzed here, this condition is achieved not only for 

native and       samples, but also for       sample. This consideration suggests that 

the particular scaffold used appears suitable to define a skeleton over which the cells 

can grow: in fact, when the natural migration of chondrocytes happens, its structure 

is able to respond in a similar way than the fibrous organization of native cartilage. 

On the contrary, it does not provide the proper porous properties showing more 

marked viscous aspects than control condition at least at the characteristic length 

scales analyzed here. Thus, the particular growth of stem cell in this kind of scaffold 

is very promising: elastic properties are recovered almost completely, whereas the 

organization of the porosity seems not to replicate the proper native condition. It is 

important to remember that the interests in the organization at micrometric length 

derives from the fact the macroscopic properties arise from the microstructure and 

only a proper microscopic organization can result in correct mechanical properties. 
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In this Chapter the implementation of a poroelastic model capable to simulate the 

problem of dynamic mechanical analysis applied to nanoindentation is presented. In 

Section 5.1, the theoretical and numerical backgrounds are widely explained. The 

proper validation of the model and a sensitivity analysis are shown in Section 5.2: 

the effects of geometrical (setup of a spherical nanoidentation test) and constitutive 

(mainly, anisotropy ratio and out - of -plane Poisson’s ratio for a transversely 

isotropic material) parameters are studied. In Section 5.3, the model is used in an 

inverse procedure to identify the constitutive parameters from selected experimental 

data analyzed in Section 4.1. 
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The aim of the present Chapter is to study, by means of numerical models, the 

poroelastic frequency response of AC, or poroelastic soft hydrated tissues in general, 

subjected to dynamic nanoindentation test.  

To achieve this goal, a suitably developed computational model for the simulation of 

harmonic forced oscillations on poroelastic media in the frequency domain is used. 

The analytical solution available for confined compression test is used as benchmark 

to validate the numerical model. Then, the computational model is proven to be well 

- suited to explore the effects of material constitutive parameters and experiment 

characteristic size in harmonic nanoindentation tests. Sensitivity analyses are 

performed for both geometrical and constitutive parameters. In the former, a linear 

poroelastic isotropic material of given Young’s modulus, Poisson’s ratio and 

permeability is indented using a spherical tip. The role played by the indenter radius 

and the indenter penetration depth are highlighted. In the latter case study, a linear 

elastic transversely isotropic material is indented in a fixed geometric configuration, 

by varying the anisotropy ratio and the out - of - plane Poisson’s ratio. Length scale 

effect and anisotropic properties, in fact, introduce complexities in the model but the 

key features of an interesting tissues as AC are hidden behind them. Once the model 

is validated and the sensitivity analysis performed, it is applied to a real situation: 

among the experimental data presented in the Section 4.1, experiments collected 

with the larger spherical tip (             ) are considered again. This 

continuum based numerical model is used with the purpose to determine constitutive 

parameters, as the anisotropy ratio between the axial and transverse stiffness of the 

superficial layers, shear modulus, local permeability of the fluid-filled tissue as well 

as the Poisson’s ratios of superficial layers in mature bovine articular cartilage. 

 
 

5.1 DMA NUMERICAL MODEL 
 

5.1.1 Anisotropic elastic material 

According to the framework proposed by Zienkiewicz (Zienkiewicz & Taylor, 

2000), the constitutive relation in a transversely isotropic linear elastic material for 

an axisymmetric case yields: 

 

{
  
 

  
 

   
  

  
 

    

  
 

    

  

    
    

  
 

  

  
 

    

  

    
    

  
 

    

  
 

  

  

    
   

  

     (5.1) 

where  ,   and   are respectively the axial, radial and circumferential coordinates.   

identifies the Young’s modulus and   the Poisson’s ratio; subscripts   and   indicate 

the in - plane contribution (radial and circumferential directions) and the out - of - 
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plane contribution (axial direction), respectively; in the     plane the material 

response is isotropic. 

Defining the anisotropy ratio   
  

  
 and recalling      ,      and      , the 

compliance matrix can be written as 
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    (5.2) 

The validity of the constitutive relation, in a thermodynamic sense, is subjected to 

the positive definition of the compliance matrix. Because of the symmetry of the 

matrix, the conditions come from the positivity of principal minors, as follows: 

{
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    (5.3) 

As shown in Figure 5.1, given a value of  ,   can span over the space defined under 

the respective thin curve, because the more restrictive condition is given by the third 

Equation in System (5.3). 

 

 
Figure 5.1: Bold line: plot of second Equation in (5.3);  thin lines: plot of third Equation in (5.3), 

assuming   as parameter. Only positive values of   are considered. 

 
If one considers the case in which the in - plane and the out – of - plane Poisson’s 

ratios are equal, the compliance matrix becomes  
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    (5.4) 

and the positively definiteness conditions have the form of 
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   (5.5) 

In Figure 5.2 as well, given a value of  ,   can span over the space defined under the 

thin curve, because the more restrictive condition is given by the third Equation in 

System (5.5). 

 

 
Figure 5.2 Bold line: plot of  second Equation in (5.5); the solid line is the graph of the third Equation in 

(5.5). Only positive values of   are considered. 
 

 
5.1.2 Implementation 

In this Section the problem formulation for a saturated porous medium is briefly 

introduced: spatial configuration is assumed. 

According to Cowin and Doty (Cowin & Doty, 2006), if one considers a 

representative volume element (RVE) subjected to a total stress   and to a pressure 

 , the deformation of the medium can be split in two parts (Voigt notation is 

adopted): 

- i) Elastic deformation of the solid matrix due to the effective stress     
(Terzaghi, 1943) namely 

              (5.6) 

where   is the total Cauchy stress,    [           ]   
- ii) Volumetric elastic deformation due to the fluid pressure. 

By combining the above two contributions, the total deformation can be written as 

      
(    )   

 

   
    (5.7) 

where   is the elastic drained stiffness matrix, Ks is the bulk modulus of the solid 

matrix. Then, the total stress is  

                (5.8)  

where     
     

   
 is the Biot coefficient. In case of isotropic material, the 
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drained bulk modulus KT is defined as    
     

 
 

   

 (    )
 in which ν is the 

Poisson’s ratio and     
  

  
. In this way, using two mechanical parameters as Ks 

and KT, the parameter α is defined. 

Concerning the fluid phase, the total variation of fluid content  ̇ has to be defined. 

Its time variation is due to several contributions: 

- Total macroscopic deformation of the structure; 

- Fluid compression due to pressure increment; 

- Matrix compression due to pressure increment; 

- Matrix deformation due to matrix stresses. 

Introducing the porosity a as the ratio between the volume of pore fluid and the total 

volume,   
   

  
, the total variation of fluid can be written as 

  ̇      ̇   
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    (5.9) 

that can be reduced as 

  ̇       ̇  
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      (5.10) 

where the Biot modulus    is defined as 
 

  
 

 

  
 

   

  
, KF is the bulk modulus of 

fluid phase and the overdot indicates the partial derivative with respect to time. 

Equations (5.8) and (5.10) describe the coupled constitutive Equations for a 

poroelastic medium: 

 {
          

 ̇       ̇  
 ̇

  

     (5.11) 

The system of Equations (5.11) holds for small displacements and small strains, 

when hydrostatic fluid stresses, isothermal process and total fluid saturation are 

assumed. Since bulk modulus of the solid matrix is much larger than volumetric 

compressibility of the porous medium, the assumption of intrinsic incompressibility 

is done. If also fluid is assumed incompressible, the Biot coefficient and the Biot 

modulus become, respectively,     and 
 

  
   (Simon, 1992). 

The equilibrium equation, in a general framework, is  

 {
   ( )      ̈     

         
     (5.12) 

where   and   are, respectively, body forces and surface forces in a RVE of volume 

Ω and boundary Γ. 
In the absence of inertia and body forces, the terms   and   ̈ are equal to zero. 

The flow of the pore fluid is assumed to obey Darcy’s law, i.e. the fluid flux J is 

proportional to the gradient of the pressure    : 
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              (5.13) 

where K [
  

   
] is the permeability tensor. In case of isotropy and homogeneity, the 

permeability reduces to a scalar   which can be a function of the void ratio, a. 

The continuity equation is  

     ( )   ̇       (5.14) 

Substituting Equation (5.13) in (5.10), under the hypothesis of isotropic and 

homogeneous permeability, the continuity equation becomes 

     (  )      ̇     (5.15) 

A finite element formulation of the above set of governing Equations has been 

obtained by using the Galërkin approach which provides the basis for the weak 

formulation of the first Equation in (5.11) and Equation (5.15). The principle of 

virtual displacements is formulated as follows:  

 ∫     
 

     ∫    
 

     ∫   
 

                             

        (5.16) 

where    is the virtual displacement and    is the virtual strain compatible with 

virtual displacement. A virtual pressure principle is also considered 

 ∫     
 

      ∫   
 

 ̇            (5.17) 

where    is the virtual pressure variation. In this simplified model, the material 

parameters are the isotropic homogeneous permeability parameter k and the elastic 

parameters in the drained stiffness matrix   . Integrals in Equations (5.16) and 

(5.17) are evaluated on the whole region Ω and on its boundary Γ. The region Ω is 

divided into finite elements, denoted hereinafter by the superscript (e). In a single 

element both the virtual field and the actual field are interpolated as follows: 
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      (5.18) 

where the entries of the vectors    and    are the unknown variables of 

displacement and pressure for the single n - th element and the matrices          

and    describe the shape functions for the displacement field, the shape functions 

for the pressure field, the compatibility matrix for strain and the gradient matrix for 

pressure, respectively. Introducing for each element the connectivity matrices   
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and   
  that link the displacement (pressure) degrees of freedom of a single element, 

   (   ), to all the displacement (pressure) degrees of freedom for the whole model, 

  ( )  the governing Equations in the finite element framework are derived 
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where       
   and       

  . As the vectors    and    can be simplified in 

the system of Equations (5.19) and recalling 
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the problem can be written as 

 {
           

    ̇        
     (5.20) 

By imposing a harmonic forced displacement  ̅ at a given frequency    and known 

magnitude    

  ̅     
          (5.21) 

the model response will be of the form: 

 {
        

    

        
    

      (5.22) 

where       and       are, in general, complex numbers, defined by a modulus and 

a phase shift. 

Substituting (5.21) and (5.22) into the system (5.20), the problem reduces to 

 {
         

              
        

    

            
              

        
    

  (5.23) 

where the right hand side terms come from the imposed displacement (5.22). In 

particular, since the known displacement has an amplitude    that is a real vector, 

   is only composed by its real part     and    is only composed by its imaginary 

part    . Finally, the poroelastic problem under harmonic forced displacement (in 

the case of imposed force, the derivation is similar) becomes, in matrix form 

 [
       

          
]  [

     

     
]  [

  

  
]   (5.24) 

The above set of finite element Equations have been implemented in the Matlab 

environment (MathWorks, Natick, MA, USA). 
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5.1.3 Limit cases: numerical computation of drained and undrained indentation 

moduli  

The behavior of a poroelastic medium is governed by the mechanical properties of 

the matrix and the flow of the fluid through pores; these two aspects can be analyzed 

separately by studying the frequency response for two limit cases. 

In particular, if one considers the limit to quasi - static loading (   ), the fluid 

pressure is uniform into the specimen and there is equilibrium with the external 

pressure: the behavior is then governed by the porous matrix only; this condition is 

defined as drained state. The second limit case is the ideal step loading (   ), in 

which  ̇=0 and the hydrostatic stress component is carried by the fluid: this 

condition is defined as undrained state. 

The analytical computation of the limit cases has been already shown in Equation 

(3.25) for the isotropic case and Equation (3.27) for the transversely isotropic one. 

Let us move to the proposed numerical model, instead. Since the solutions described 

by the vectors       and       have complex entries, they can be explicitly 

expressed as 

 {
            

            
     (5.25) 

where    and    are the real parts and    and    are the imaginary parts. 

Substituting (5.25) in (5.23), the problem can be written as 

 {
   (      )     (      )     

      (      )     (      )     
  (5.26) 

And, simplifying, 

 {
                             

             
                    

  (5.27) 

This system of two vector Equations can be split in the real and imaginary parts 

giving a system of four vector Equations: 

 

{
 
 

 
                

             

               

                 

    (5.28) 

If     (drained state), the system (5.28) becomes  
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     (5.29) 

and the solution, in terms of pressure and displacement, is 
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If     (undrained state), the system (5.28) becomes  
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     (5.31) 

and the solution, in terms of pressure and displacement, is 
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In a displacement - based test, the reaction force under the indenter is the sum of the 

reaction force on each node ‘of the indenter’. For both      and    , these 

nodal forces are such that 

 {
     
     

      (5.33) 

This result shows that, at both bounds, the behavior can be described only by real 

forces and displacements. 

 
5.1.4 Implementation of a DMA AFM - based nanoindentation test   

A typical DMA AFM - based nanoindentation test has been already widely 

explained. Here, the procedure is replicated by a two steps numerical simulation. In 

the first step, the preload is applied and a static (time independent) indentation is 

simulated; in the second step, an harmonic load is applied and the problem is solved 

in the frequency domain, where the reference (initial) configuration is the one 

obtained from the preload indentation. A two - dimensional axisymmetric model for 

spherical poroelastic dynamic indentation has been built. A rigid, spherical indenter 

of radius   is pressed into a cylindrical sample of radius   and height  . 

Indentation depth is denoted by   . The radius of the specimens is 20 times larger 

than the radius of the tip and the height of the specimen is 30 times larger than the 

indentation depth. These conditions are assumed to guarantee that the mechanical 

response to indentation is not affected by the domain boundaries. 

For the first step, model geometry is defined and discretization is performed 

(approximately 15000 first order four-node elements) using the commercial 
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displacement - based finite element code Abaqus 6.8-EF1 (Simulia, Providence, RI, 

USA). A quasi - static indentation is simulated with depth    to obtain the deformed 

state to be used as input for the harmonic loading. According to the purpose of this 

step, the material model is linear elastic. The contact radius is resolved with 

approximately 30 elements. In Figure 5.3, a representation of the assembly 

constituted by a tip and a sample, is shown; since the model is axisymmetric the 

cartoon in Figure 5.3(a) is just a 3D representation.  

 
 

 
Figure 5.3: (a) 3D visualization of the axisymmetric mesh in the undeformed configuration and (b) the 

2D axisymmetric mesh of the model in the deformed configuration with a zoom of the zone under the tip. 

The generic dimensions are highlighted.  

 
Subsequently, the deformed geometry is used as input for the frequency domain 

model developed within the Matlab environment (MathWorks, Natick, MA, USA). 

The deformed mesh is used as stress - free initial configuration for the simulation of 

the dynamic nanoindentation in the frequency domain, according to the poroelastic 

framework introduced. A poroelastic material is now considered. An harmonic 

vertical displacement     of        is imposed to the node set representing the 

contact radius. It is worth noting that for the linearized framework (small 

displacement oscillations) implemented in this work, the model response is 

independent of the displacement oscillation magnitude. The investigated range of 

frequencies varies from      (drained condition) up to the undrained condition, here 

simulated with a conventional frequency of       . 

Results coming out from the simulation are: the vertical reaction force   

  ( )        ( ), where   ( ) is the magnitude of the sinusoidal response, and  

the correspondent phase shift   ( ), both dependent on the imposed frequency  . 

For sake of clarity, the way and the quantities used to analyze the results are briefly 

recalled here. The reduced storage modulus    ( ) and the reduced loss modulus 

    ( ) can be calculated as (Cheng, Ni, & Cheng, 2006) 
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in which   is the tip radius. 

The normalized storage modulus    ̅̅ ̅̅  highlights the effect of geometric parameters  

and it is defined as  

    ̅̅ ̅̅ ( )  
(   ( )     ( ))

(   (   )    ( ))
     (5.36) 

The drained to undrained ratio 
   ( )

   (   )
 is dependent on the tissue properties and 

independent of its time response. The value of the tangent of the phase 

shift,    (  ), versus frequency and the peak frequency,     , are measures of the 

typical scale in which fluid flow mainly occurs. 

Numerical results is also analyzed by using the normalized frequency defined in 

analogy to the Equation (4.5) (Galli & Oyen, 2009) as follows:  

  ̅   
   

 
      (5.37) 

where the parameter   has the same role of parameter    in Section 4.2 and it is 

proportional to the permeability and to the elastic modulus;   is kept constant 

through all the simulations performed. 

 

 

5.2 DMA NUMERICAL MODEL: SENSITIVITY ANALYSIS ON 

GEOMETRICAL AND CONSTITUTIVE PARAMETERS 

 

5.2.1 Validation  

The validation of the numerical code in the frequency domain is carried out by 

solving the plane strain problem of confined compression for which the analytical 

solution is known. The bottom and the lateral edges are impermeable whereas the 

top boundary is permeable. Due to the homogeneity along the horizontal direction (x 

direction), the problem can be simply reduced to a 1-D problem. In particular, the 

analytical solution in terms of fluid pressure and of top boundary displacement reads 

(Cowin & Doty, 2006): 
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 (   )  
 

 
√

 

    
   ( √

    

 
)         (5.39) 

where f is the frequency and c is a material parameter. In case of isotropic elasticity 

and incompressible materials,   
  (    )

(    )(     )
 in which   [   ] is the Young’s 

Modulus,    is the drained Poisson’s ratio,   [
   

 
] is the permeability. Equation 

(5.38) shows the value of the pressure as a function of the depth of the specimen and 

of the frequency, while Equation (5.39) shows the value of the displacement of the 

upper surface as a function of the frequency. The implemented model well compares 
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with the reference analytical solution: Figure 5.4 shows the fluid pressure 

distribution across the normalized thickness for a selected frequency. 
 

 
Figure 5.4: Pressure versus normalized depth for the 1-D benchmark problem; symbols refer to the finite 

element formulation; the solid line refers to the analytical solution (Cowin & Doty, 2006). 

 

 
5.2.2 Effect of geometrical parameters 

The harmonic indentation problem is first studied with respect to geometrical 

parameters. The indented material is, at this stage, modeled as homogeneous, 

isotropic and linear elastic with Young’s modulus           , Poisson’s ratio 

        and constant permeability          
  

   
. These values fall within the 

range of interest for AC tissue. Indeed, in the literature, a wide range of values for 

Young’s modulus can be found. Variability is basically a consequence of the 

specific type of tissue (human or animal or site of harvesting) as well as the probing 

technique. Jurvelin (Jurvelin, Buschmann, & Hunziker, 2003) reports Young’s 

modulus of             after unconfined compression on samples extracted from 

the patellofemoral groove of human knee; Boschetti (Boschetti, Pennati, Gervaso, 

Peretti, & Dubini, 2004) performs unconfined compression tests on hip human 

native cartilage, obtaining             on the surface,             on the 

middle and             on deep layers. Kiviranta (Kiviranta, Lammentausta, 

Toyras, Kiviranta, & Jurvelin, 2008) carries out indentation on human patellae 

cartilage at different stages of tissue degradation due to osteoarthritis, that yielded 

values of             for healthy cartilage,             for early degeneration, 

down to             for advanced degradation. Concerning animal samples, 

Miller (Miller & Morgan, 2010) recently reports from microindentation and 

unconfined compression on human knee patellofemoral groove samples a mean 

value for Young’s modulus of        . 

Different indentation depths and indentation radii are considered and the results for 

the different cases are compared. In particular, Table 5.1 summarizes the (    ) sets 

along with model geometries used here to evaluate the effect of indentation depth 

while indenter radius R is kept constant. Table 5.2 reports the (    ) sets and the 

respective specimen geometries adopted to investigate the effect of 

indenter/specimen size (i.e., the characteristic size), while the      ratio (i.e., an 
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estimation of the equivalent deformation) is kept constant. 
 

Table 5.1: (    ) case studies and respective model geometries for the evaluation of indentation depth 

effect (constant indenter radius). Sample radius W set to 20 times the indenter radius, sample height B set 
to 30 times the indenter radius. 

 [  ]   [  ]     [ ]  [  ]  [  ] 

                     

                     

                      

                      

 

Table 5.2: (    ) case studies and respective model geometries for the evaluation of size dependence 
(constant equivalent deformation). Sample radius W set to 20 times the indenter radius, sample height B 

set to 30 times the indenter radius. 

 [  ]   [  ]     [ ]  [  ]  [  ] 

                     

                      

                  

                      

 

In Table 5.3, the results obtained from the sensitivity analyses with respect to 

geometrical parameters are summarized. A good consistence is found in terms of 

reduced storage modulus     and reduced loss modulus     computed at limit 

conditions. Using Equation (3.27), the analytical estimates    ( )          and 

   (   )          can be obtained. Results in Table 5.3 fit well, bearing in 

mind that the undrained stiffness matrix can be defined only asymptotically.  

In Figure 5.5 the values of    ̅̅ ̅̅  (consolidation ratio) are presented for both constant 

radius (a) and constant      ratio (b) cases, versus frequency. For both sets of 

analyses, it has been found that the frequency response shifts towards higher 

frequencies at decreasing penetration depth (Figure 5.5(a)) or decreasing indenter 

radius (Figure 5.5(b)).  
 

Table 5.3: Geometric sensitivity analysis, involving all case studies. 

CASE 

STUDY 

     

   ( ) 

[   ] 

    
(   ) 

[   ] 

   ( )

   (   )
 

[         ] 

     
   (  ) 

     

[  ] 

   ( )

   (   )
 

[          ] 
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CASE 

STUDY 

     

   ( ) 

[   ] 

    
(   ) 

[   ] 

   ( )

   (   )
 

[         ] 

     
   (  ) 

     

[  ] 

   ( )

   (   )
 

[          ] 

    
       

                         

                               

    
       

                       

 

 
Figure 5.5: (a)    ̅̅ ̅̅  vs frequency for simulations at given radius and (b) at given ratio. 

 
Figures 5.6(a) and 5.6(b), show that the frequency responses overlap for all 

numerical experiments when normalized frequency  is used.  

 

 
Figure 5.6: (a)    ̅̅ ̅̅  vs normalized frequency for simulations at given radius and (b) at given ratio. 

 
Figure 5.7 shows the tangent of the phase shift for all the analyzed cases. A shift of 

the frequency at peak can be found for both sets of numerical examples.  

As for the consolidation rate, the response in terms of tangent of phase shift versus 

normalized frequency shows an overlap of frequency at peak (Figure 5.8). It is 

worth noting that the geometric parameters   and    affect the frequency at peak in 

both sets of analyses. 

(a) 

(a) (b) 

(b) 
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Figure 5.7: (a)    (  ) vs frequency for simulations at given radius and (b) at given ratio. 

 

 
Figure 5.8: (a)    (  ) vs normalized frequency for simulations at given radius and (b) at given ratio. 

 

The relationship between the frequency at peak versus the geometrical parameter 

   , in a log - log plot, is presented in Figure 5.9; a good fitting with a linear 

function has been found of Equation:             (   )
       

 

 
Figure 5.9:      vs geometrical parameter (   ) for all cases.  

 

 

5.2.3 Effect of constitutive parameters 

The transversely isotropic model presented in Section 5.1 is now considered. The 

same nomenclature is used further on. 

The sensitivity analysis is performed with respect to the anisotropy ratio   and the 

out - of - plane Poisson’s ratio ν. The other constitutive parameters (      ) are 

kept fixed according to the following assumptions:  

(a) 

(a) (b) 

(b) 



 116 
Chapter 5.  

Numerical Model of Nanoindentation DMA Test 

in Frequency Domain 

(i) Shear modulus has been assumed as          ; 

(ii) axial Young modulus has been chosen according to the following 

relationship      ; 

(iii) two different cases have been considered for the in - plane Poisson’s 

ratio  : a)  =0 and  b)     . 

In Tables 5.4 and 5.5 the values of parameters   and   used in the analyses are 

presented, for in - plane Poisson’s ratio     and    , respectively.  

 
Table 5.4: Parametric study in the case of in-plane Poisson’s ratio    . 

                         

 

    

 

                                        

                                        

                                        

                                        

                                        

 
Table 5.5: Parametric study in the case of in-plane Poisson’s ratio    . 

                         

 

    

 

                                    

                                     

                                     

                                     

                                      

 
As shown in Section 5.1, for a fixed set of parameters (        ), an upper bound 

for the out - of - plane Poisson’s ratio ν, namely     , can be found. The results, for 

each value of the anisotropy ratio  , are presented here for different values of  
 

    
. 

The drained to undrained ratio 
   ( )

   (   )
 obtained through the numerical model is 

reported as a function of   and for in - plane Poisson’s ratio  =0 (Figure 5.10(a)); a 

good agreement with the analytical estimation is also observed (dashed lines). In 

Figure 5.10(b) a comparison between the two cases a)  =0 and  b)     is reported. 

In all cases a decrease of the drained to undrained ratio is found for materials with 

high anisotropy ratio (small  ). It is worth noting that the drained to undrained ratio 

can be smaller than 0.5 (lower bound for isotropic materials) for   smaller than 0.4. 

In Figure 5.11, the tangent of the phase shift as a function of lambda is presented, 

showing the comparison between the two cases of in - plane Poisson’s ratio  . 

Figure 5.11 shows that the peak of phase shift is significantly affected by the 

anisotropy ratio; whereas, the frequency at peak is affected by the anisotropy ratio to 

a lesser extent.  
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Figure 5.10: (a) The drained to undrained 

   ( )

   (   )
 vs   is shown, parametrized with the ratio 

 

    
 . Solid 

lines refer to FEM simulations; dotted lines refer to analytical solutions. (b) Comparison of the drained to 

undrained ratio for   = 0 (open symbols) and     (filled symbols). 

 

 
Figure 5.11:    (  ) vs   parametric with the ratio 

 

    
 ;     (open symbols)      (filled symbols). 

 

Indeed, Figure 5.12 shows a decrease of the frequency at peak while remaining 

within the same order of magnitude; the case η=ν is shown. 

 

 
Figure 5.12:      vs   parametrized with the ratio 

 

    
. 

 
5.2.4 Discussion 

The object of this Section is to assess the frequency response of hydrated biological 

tissues to dynamic indentation loading through a numerical approach. The focus is 

on the effects of the characteristic lengths of the experiment and of the anisotropic 

(a) (b) 
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properties of the tissue.  

The results have shown that the indentation radius (for constant penetration depth) 

has a large effect on the real part of the material response (see Figure 5.5(a)), 

whereas penetration depth (for constant      ratio) has a negligible effect on the 

real part of the response (see Figure 5.5(b)). In both cases, when normalized 

(dimensionless) frequency is used, the geometric effect disappears (all curves 

overlaps). This is consistent with a purely poroelastic response of the material as can 

be inferred from the analytical solution presented for the one dimensional confined 

compression in the frequency domain. Indeed, the analytical solution shows that the 

frequency response of pressure and displacement (Equations (5.38) and (5.39)) is 

dependent on the ratio 
   

 
 thus indicating that a the problem is strictly dependent on 

a dimensionless frequency  ̅  
   

 
 in which the characteristic length of the 

experiment ( ) is introduced. In this Section, this concept is extended to the 

frequency domain by introducing the dimensionless frequency for the indentation 

problem (Equation 5.37). 

In the case of constant tip radius, if the indentation depth grows, both the values of 

   ( ) and    (   ) decrease, as well as the maximum value of the tangent of 

the phase shift. For a large indentation depth, that is still reasonable in real 

experiments, the ratio 
   ( )

   (   )
 is higher and both    ( ) and    (   ) are lower 

than expected from theory (see Table 5.3): the assumption of Hertzian contact 

introduced in the work of Delafargue (Delafargue & Ulm, 2004) may then not hold. 

A good agreement between numerical and analytical responses in terms of the real 

part (
   ( )

   (   )
), has been found for anisotropic poroelastic material. Slight 

differences found between numerical and analytical predictions can be due to the 

limitations of the elastic contact solutions used in the analytical model.  

Furthermore, the undrained to drained ratio is strongly dependent on the anisotropy 

ratio. In fact, the lowest values of 
   ( )

   (   )
 can be found for strongly anisotropic 

materials, i.e.    , while for isotropic material  
   ( )

   (   )
    . 

By combining the information on Figures 5.10(b) and 5.11, it is possible to infer 

that, for a small anisotropy ratio    , both the undrained to drained 
   ( )

   (   )
 ratio 

and the tangent of the phase are less sensitive to Poisson’s coefficients. This is an 

advantage when identifying material properties of anisotropic materials for which it 

is difficult to identify Poisson's ratios accurately. Even if the sensitivity analysis is 

performed on a relatively small range of variability for some parameters (e.g. the in - 

plane Poisson’s ratio  ), the results show that the mechanical properties can vary to 

a large extent in some regions of the space defined by the 5 - ple (          ) for a 

transversely isotropic material. Other works have already shown that dynamic 

indentation testing on cartilage tissue is a technique able to provide more 
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information with respect to quasi - static indentation experiments (Miller & Morgan, 

2010) (Han, et al., 2011).  

The results obtained in the present work lead to two important conclusions: first, if 

poroelasticity is the main dissipation mechanism for tissues exhibiting a time 

dependent response under dynamic indentation, then the results in terms of the 

dimensionless frequency will be independent on the geometric parameters. 

Consequently, if further size dependence is still observed in the dimensionless 

frequency domain, then further dissipative mechanisms are playing a role, and 

viscoelasticity would probably be involved. A second relevant result obtained in the 

present investigation is that nanoindentation experiments on poroelastic specimens 

in the frequency domain are strongly affected by material anisotropy. It follows that 

anisotropy ratio of anisotropic tissues (like articular cartilage) can be identified by 

carrying out nanoindentation experiments along one single direction in the 

frequency domain. In this case, experiments in drained and undrained conditions 

should be carried out. 

Further developments are required for a reliable application to the frequency 

dependent characterization of biological tissues like cartilage, such as the 

implementation of the anisotropy of the hydraulic tensor in the finite deformation 

framework proposed by Ateshian (Ateshian & Weiss, 2010) or Federico (Federico & 

Herzog, 2008), and the formulation of the frequency domain response of nonlinear 

fibril reinforced constitutive law, more suited for cartilage tissues. A continuous 

distribution of fibril orientation of the collagen network as proposed in Shirazi 

(Shirazi, Vena, Sah, & Klisch, 2011) or in Federico (Federico & Gasser, 2010). This 

latter improvement would imply the linearization of the finite strain nonlinear 

constitutive law to be used in place of the transversely isotropic linear Equations 

which relates the increments of the stress with the increments of strains. 

 

 

5.3 DMA NUMERICAL MODEL: PARAMETERS IDENTIFICATION  
Numerical models are widely used because of their ease to collect information with 

respect to the real experimental tests; it is obvious that such of models need to use 

the correct parameters as input in order to reach meaningful results with a certain 

level of confidence. The main idea is to identify a set of parameters such that, over a 

desired range of operating conditions and in some well - defined sense, the model 

outputs are close to the system outputs when both of them are submitted to the same 

inputs (Castello, Rochinha, Roitman, & Magluta, 2008). Hence, the inverse 

approach on the parameters identification means to use the results from a completely 

known model to fit the experimental results coming from samples of which the 

knowledge about the mechanical parameters is low or null at all (Lei & Szeri, 2007). 

Due to incompleteness of available information and unavoidable measurements 

errors, system identification only achieves an approximation of the actual system. 

The identification problem on soft tissues is an issue of current interest. For 

example, Olberding and Suh (Olberding & Suh, 2006) propose a method for the 
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material characterization of soft biological tissues using a biphasic poroviscoelastic 

constitutive model and data from creep and stress relaxation test collected with a 

solid plane - ended cylindrical indenter. In the work of Namani (Namani, Simha, & 

Lewis, 2003), instead, the nonlinear material parameters of bovine AC is identified 

by matching experimental and analytical microindentation load - displacement 

curves.  

 

5.3.1 Specific sensitivity analysis 

The sensitivity analysis proposed in Section 5.2 describes a useful overview about 

how a soft hydrated tissue responds to an harmonic oscillation. Nevertheless, in 

order to apply an identification procedure to a real case, it is useful to reorganize 

those selected results. 

In Figure 5.13(a) drained modulus    ( ) is plotted as a function of the anisotropy 

ratio   and parameterized with respect of the out - of - plane Poisson’s ratio  ; 

similarly, in Figure 5.13(b) undrained modulus    (   ) is presented.    ( ) is 

almost constant with   but decreases with   whereas the opposite situation occurs 

for    (   ).  
Figure 5.14(a) shows how the anisotropy ratio affects the value of the peak of the 

tangent of the phase shift and Figure 5.14(b) the relation between the same ratio and 

the frequency at which this peak occours; if the material is isotropic, the peak is 

lower and occours at lower frequency then in case of high anisotropy. 
 

 
Figure 5.13: (a)    ( ) and (b)    (   ) function of anisotropy ratio  ; parametrized with ratio 

 

    
. 

 

 
Figure 5.14: (a)    (  ) and (b)      function of anisotropy ratio  ; parametrized with ratio 

 

    
. 

(a) (b) 

(a) (b) 



 121 
Chapter 5.  

Numerical Model of Nanoindentation DMA Test  

in Frequency Domain 

Unlikely to the drained and undrained moduli (Figure 5.13),   and   affect both the 

quantities reported in Figure 5.14 in a more complex way. The frequency at peak 

increases with increasing anisotropy with a repeatible pattern almost independent by 

 : this latter parameter rises or lowers the whole curve. The tangent of the phase 

shift, besides, is less affected by variation in the ratio 
 

    
 if highly anisotropic case 

is considered. It is worth to be noted, indeed, that the limit of 
 

    
   describes a 

sort of incompressible condition. 

Combining the information in Figure 5.13 and Figure 5.14 and keeping fixed the set 

[          ]  [                                

  
 ], in Figure 5.15 the effect 

of  the anisotropy ratio   on the whole shape of both the storage modulus and the 

tangent of phase shift is present. In Figure 5.15(b), the dashed line describes the 

linear trend (in a log - linear graph) of peak of the tangent in function of the 

frequency. Decreasing in   corresponds in the increasing of both the difference 

between drained and undrained conditions as well as the dissipative effects, since 

the peak in Figure 5.15(b) becomes higher. 
 

 
Figure 5.15: Effect of the anisotropy ratio on (a) the real part of elastic modulus and (b) the tangent of 

phase shift. 

 

 

 
Figure 5.16: Effect of permeability on    (  )

 

Figure 5.16 explains the effect of the permeability (fixed constitutive parameters: 

[        ]  [                      ]); in the plot,    (  ) is presented in 
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function of the natural frequency for three different values of parameter  . 

The effect of the permeability k is to shift the peak along the frequency axis; greater 

is k, faster is the phenomenon.  

To complete the study, some further remarks: increasing the value of axial stiffness 

  , the magnitude of both drained and undrained moduli increase; vice versa, if it 

decreases, both the moduli decrease. The axial stiffness has no influence on the 

characteristic time of the phenomenon. Furthermore, the shear modulus   affects 

both the ratio 
   (   )

   ( )
 and the magnitude of the peak: both of these quantities 

increase, increasing   but with a lower effect than the one due to  .  

 
5.3.2 Identification of constitutive mechanical parameters of AC 

The experimental curves considered in this identification process are presented in 

Section 4.1; in Figure 5.17 graphs of    ( ) and    (  ) are reported again, for 

sake of clarity: linear abscissa axis is considered in Figure 5.17(a)  while logarithmic 

one in Figure 5.17(b). Curves refers to the experiments conducted with a tip radius 

      for all the mean indentation depth    analyzed. 

 

 
Figure 5.17: Experimental data collected with       tip at four mean indentation depths. (a)    ( ) and 

(b)    (  )( )

 
The in - plane Poisson’s ratio is set null,    . All the variables in the set of 

constitutive parameters [          ] have been changed during the best fitting 

procedure using the rules described below.  

1. The axial modulus    and the shear modulus   are chosen to have both the 

drained and undrained conditions of the order of magnitude of the 

experimental data; 

2. The anisotropy ratio   and the out - of - plane Poisson’s ratio   are chosen 

in order to adjust the shape of both the graphs    ( ) and    (  )( ). 

3. The permeability   is chosen to have the peak of the tangent of phase shift 

centered at the correct experimental frequency. 

In Figure 5.18(a) and Figure 5.18(b), both the experimental data and the best fitting 

results are shown. 

(a) (b) 
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Figure 5.18: Best fitting results for all the analyzed experimental data, in terms of (a)    ( ) and (b) 

   (  )( ). 

 

In Table 5.6, the constitutive parameters estimated for all the analyzed experimental 

data are presented. It seems that elastic properties in the first three cases are almost 

the same and they differ with respect to the last case.  
 

Table 5.6: Estimated sets of constitutive parameters for all the experimental data with             . 

  [  ]   [   ]   [   ]  [ ]  [      
  

  
]  [ ]    ( )[   ] 

                           

                              

                               

                               

 

Drained storage modulus (through elastic parameters) and permeability are 

identified separately and independently each other; tip radius and mean indentation 

depths are known data. Recalling Equation (5.37) and explicating parameter  , the 

normalized frequency can be written as 

  ̅  
   

   ( ) 
      (5.40) 

In Figure 5.19 the tangent of phase shift is plotted against the normalized frequency:  
 

 
Figure 5.19: Best fitting results for all the analyzed experimental data, in terms of (a)    ( ) and (b) 

   (  )( ). 

(a) (b) 
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A proper normalization is used for each curve: in this framework, the peaks are 

centered at the same value, consistently with the poroelastic behavior already 

explained for this set of data (Section 4.1). 
 

 

5.3.3 Discussion 

A novel method for the estimation of poroelastic constitutive parameters of AC, and 

soft hydrated tissues in general, has been presented: it is based on the coupling 

between experimental and numerical results on DMA AFM - based spherical 

nanoindentation. The tissue is modeled as a transversely isotropic poroelastic 

material with isotropic and strain - independent permeability. A specific sensitivity 

analysis, that extends the results obtained in Section 5.2, is performed in order to 

better highlight how the five parameters considered affect the global quantities 

extracted experimentally. Almost the whole range of frequency experimentally  

investigated are here considered,   [     ]  . The study of the behavior at 

high frequency is useful to understand the effects of impact and fast torsion in 

sports, as explained by Buckwalter (Buckwalter, 2002). 

This further analysis proves again all the criticism related to the choice of 

constitutive parameters, when applied to an identification process with real data. 

New interesting correlations have been extracted. Once axial elastic modulus and 

shear modulus are fixed, the drained behavior is driven only by the out - of - plane 

Poisson’s ratio whereas the undrained behavior by the anisotropy ratio; then, it is 

possible to identify them separately. Also the permeability can be uniquely 

estimated since the characteristic time of the experiment is well defined by the 

frequency at which the peak of the tangent of phase shift occurs. Within the 

limitations of the proposed model, these three rules define an easy and clear way 

towards the identification. Anisotropy ratio and out - of - plane Poisson’s ratio affect 

the peak of the tangent of phase shift in an opposite way: increasing parameter  , the 

magnitude of the peak increases; increasing parameter  , the magnitude decreases.  

The experimental data have been discussed and explained in Section 4.1, together 

with their agreements with literature results. According to the depth dependent 

properties of AC (Chen, Bae, Schinagl, & Sah, 2001), experimental data show both 

drained and undrained moduli increasing with the mean indentation depth; the effect 

of the depth can be also seen looking at the magnitude and the position of the peak: 

both of these measures are lower if the mean indentation depth is higher. The 

estimated out - of - plane Poisson’s ratio (        ) seems to be constant through a 

thickness up to         as well as the anisotropy ratio (        ); besides, the 

permeability shows a slight decrease with the indentation depth, whereas the drained 

modulus itself increases. Even if the identification process proposed by Nia (Nia, 

Han, Li, Ortiz, & Grodzinsky, 2011) is focused on a smaller characteristic length 

(        versus experiments considered here ranging from        to       ) and 

young bovine AC is considered, the parameters estimation found in this Section are 

consistent with those results: in her work, she uses a fiber reinforced model, finding 
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                ,                 and                 

  
, referring to 

the matrix stiffness, the fiber stiffness and the permeability, respectively. A unique 

Poisson’s ratio equal to     is imposed. Considering the increasing trend of the 

elastic properties with the depth (or, more in general, with the characteristic length) 

it can be expected higher elastic moduli (axial or transversal) for larger contact 

lengths; however, since fibers in superficial layer are mostly parallel to the surface, 

       can be related to the axial stiffness whereas        to the transversal one: 

those values differ of almost a factor   , very close to an anisotropy ratio of      

found here. Regarding permeability, instead, values of an order of magnitude lower 

are identified; the explanation can be found looking at the different lengths 

investigated. The work of Lu (Lu, Wan, Guo, & Mow, 2010) studies the effect of 

aspect ratio (ratio between the ratio of a flat punch indenter and the sample 

thickness) on indentation creep tests at millimetric characteristic length; the 

agreement between numerical results and experimental data is found using an 

aggregates modulus of         , a Poisson’s ratio equal to      and a permeability 

of            

  
. These values are completely in accordance with the proposed ones 

in Table 5.6. 

An improvement with respect to the suggested references is that this work give also 

the possibility to manage the Poisson’s ratios that allows to look for a more 

complete description of the tissue. 

No frequency dependent properties are taken into account; however, the good 

agreement found between experimental and numerical results and the conclusions 

provided in the work of Park (Park, Costa, Ateshian, & Hong, 2009) suggests that 

the mechanical properties do not vary with the frequency, at least in the proposed 

ranges of lengths and frequencies.  

According with the microstructure of the tissues, some hypotheses can be proposed: 

the constancy of the anisotropy ratio can be explained with the fact that the fibers 

distribution of the considered layers remain almost constant up to         of 

depth; the increasing on the elastic properties can be due, then, not to a change in the 

material but to different ways (i.e. different deformation applied) in the recruitment 

of the components, mainly collagen fibers bundles. 

The procedure presented here use an inverse approach to estimate constitutive 

parameters. Only one indentation is required to estimate all of them, reducing 

drastically the amount of material to be tested and of time to use for the analysis. 

The homemade developed software for the simulation of DMA nanoindentation tests 

simulates the problem directly in the frequency domain, overcoming the time 

consuming aspect (i.e., waiting for the achievement of steady state condition) of the 

implementation in the time domain. The interest is with specific regard to the effect 

of material anisotropy and of the characteristic size of the experiment: the 

anisotropic properties and tissue permeability affect the dynamic response to 

dynamic indentation in a peculiar fashion along with the geometric features of the 
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test. As widely explained in Chapter 1, the hierarchical structure of cartilage shows 

both time scale dependence and length scale dependence. The different structure, 

from single macromolecules to representative volume elements, interact each other 

in different ways as response of different solicitations. For example, by comparing 

the different response, at the same scale, of different tissues (i.e. native vs 

osteoarthritic or native vs engineered) this identification technique shows that the 

proposed poroelastic numerical model can be used for the extraction of mechanical 

properties and, potentially, for the early detection of pathologies as well as for the 

validation of engineered tissues.  
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In this Chapter a poroviscoelastic constitutive relationship that includes a 

continuous fiber distribution is considered and its numerical implementation in a 

User MATerial subroutine is described. 

Section 6.1 is dedicated to the description of the relation, showing values for the 

mechanical parameters consistent with literature results; Section 6.2 shows relevant 

numerical implementation issues; in Section 6.3 the sensitivity analysis (geometrical 

parameters of fibers distribution) based on unconfined compression test is 

presented; in Section 6.4 results from sensitivity analysis is applied to  a 

nanoindentation problem. 
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In Chapter 2, models for the description of the behavior on AC have been presented 

but only few of them consider the effect of all the tissue constituents. Moreover, 

they are often validated by the use of experimental tests at macroscale as tension, 

compression or indentation; Wilson (Wilson, van Donkelaar, van Rietbergen, & 

Huiskes, 2005), in particular, shows a wide range of results collected at macroscale. 

From a numerical point of view, simulation of nanoindentation test introduces more 

difficulties than tests at macroscale due to the high nonlinearities induced by the 

deformation field around the tip. In general, rigorous numerical approach can 

overcome all the troubles related to the experimental approach, helping a better 

understanding of experimental data. 

The experimental work presented by Han (Han, et al., 2011) states that intrinsic 

properties (mainly, viscosity) and extrinsic properties (mainly, porosity) work in 

different ways, depending on the characteristic lengths of the experiment. The 

dichotomy between viscoelasticity and poroelasticity is a more recent topic. In 1963, 

Elmore (Elmore, Skoloff, Norris, & Carmeci, 1963) states that the response, in case 

of macroscopic indentation test, is primary due to the fluid exudation. The work of 

Huang (Huang, Mow, & Ateshian, 2001) and Hu (Hu, Zhao, Vlassak, & Suo, 2010) 

propose quantitative correlations based on the study of elastomeric gels behavior. 

For these reasons, the effect of the characteristic length of the experiment can not be 

neglected: in modeling AC viscous and porous aspects have to be considered within 

the description of the single components. 

In this Chapter a poroviscoelastic with continuous fiber distribution model is 

implemented in the finite element commercial code Abaqus 6.8-EF1 (Simulia, 

Providence, RI, USA) with the purpose to simulate nanoindentation tests. This 

model is developed from the one presented by Shirazi (Shirazi, Vena, Sah, & Klisch, 

2011). The aim of the numerical model presented here is to determine the 

relationship between the properties of the tissues (constitutive parameters), the 

geometrical feature of the experiments (nanoindenter tip radii) and the mechanical 

response of the nanoindentation experiment in the time domain. The final purpose of 

the model is to identify the values of input parameters which best fit the 

experimental results presented in Section 4.2, collected from multiload 

nanoindentation creep test with             radius. 

First, a sensitivity analysis is performed using stress relaxation unconfined 

compression test keeping fixed the constitutive parameters of the material and 

varying the shape of fiber distribution. Material parameters are chosen in agreement 

with literature data. The purpose is to have idea about the overall behavior of the 

material and to suggest a way to use simple confined compression test to set up the 

more complex nanoindentation simulation. 

 

 

6.1 DESCRIPTION OF THE CONSTITUTIVE RELATIONSHIP 
In this Section, the peculiar aspects of the constitutive relation as well as the relevant 

numerical details regarding its implementation in a User defined MATerial (UMAT) 
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routine are shown. First, the mechanical parameters, related to the single 

constituents are presented; then, the numerical issues are pointed out.  

  

6.1.1 Mechanical constitutive parameters 

The mechanical constitutive parameters refer to the major tissue constituents that 

play a role in the mechanical response of AC: collagen (COL), glycosaminoglycans 

(GAGs) and matrix (MAT). 
 

   ̂[   ]    [ ]  GAGs parameters.  

The relationship between the swelling pressure,      , and the GAGs density in a 

reference configuration,   
    , is  

         (  
    )       (6.1) 

The consequent Cauchy stress can be computed as  

        (
  
    

 
)
  

      (6.2) 

Since the information on   
    is not known for the specific tissue over which the 

identification process will be applied,  Equation (6.2) is rearranged as follow 

         (
  
    

 
)
  

    (  
    )  (

 

 
)
  
    ̂ (

 

 
)
  
   

        (6.3) 

where the new parameter   ̂ summarizes also the information on the density. 

According to Equation (6.1), parameter   ̂ is the swelling pressure in reference 

configuration and a proper value can be extracted from the work of  Chahine 

(Chahine, Chen, Hung, & Ateshian, 2005): the relation between the swelling 

pressure       (or osmotic pressure) and the fixed charge density     (or   ) is 

extracted for different saline concentrations as shown in Figure 6.1;     is, namely, 

the GAGs density. The physiological value for the saline concentration is       .  
 

 
Figure 6.1: Swelling pressure in dependence on fixed charged density and parameterized in term of the 

bath concentration Reprinted from Biophysical Journal, 83, Chahine, Chen, Hung, Ateshian, Direct 

measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room 

temperature, 1546, Copyright (2005), with permission from Elsevier [OR APPLICABLE SOCIETY 
COPYRIGHT OWNER]. 
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The work of Ateshian (Ateshian, Rajan, Chahine, Canal, & Hung, 2009), supported 

by the work of Lu (Lu & Mow, 2008), suggests that mature bovine AC has typical 

values for    ranging in between      
   

 
 and     

   

 
. A more precise value can 

be found in the work of Han (Han, Chen, Klisch, & Sah, 2011) in which the value of 

    
   

 
 at    strain is proposed as characteristic of the whole AC sample: from 

the knowledge on the structure of AC at microscale (Buckwalter, Mankin, & 

Grodzinsky, 2005), GAGs concentration is lower in the superficial layer and, 

consequently,    should be a bit lower than the averaged value of     
   

 
. 

Choosing        
   

 
 in Figure 6.1 and moving on the proper curve, a value of 

  ̂           is considered as a given input for the simulations. Swelling strains 

along axial and radial directions obtained through the numerical simulations will be 

compared with experimental measures of swelling strains reported by Broom 

(Broom & Flachsmann, 2003), Wang (Wang, et al., 2008) (Wang, Zheng, Niu, & 

Mak, 2007) and Wilson (Wilson, 2005). 

In the work of Buschmann (Buschmann & Grodzinsky, 1995) a PB - cell model for 

the explanation of the relation between swelling pressure and GAGs concentration is 

presented. GAGs are modeled as charged cylinders of radius  ; the intercharge 

distance is defined by parameter   and the radial distance between two cylinder is  . 

In Figure 6.2, the prediction of PB-cell model for varying parameters   and   is 

shown. 
 

 
Figure 6.2: Swelling pressure in dependence on concentration of GAGs (Buschmann & Grodzinsky, 

1995). 
 

In the same cited work, the equilibrium modulus computed for uniaxial confined 

compression test on adult bovine sample is measured in function of the molarity of 

the solution in which the sample is submerged. A best fitting is obtained using the 

following parameters of PB - cell model:                              . 

Hence, it is possible to choose the curve that in Figure 6.2 is relative to the proposed 

parameters and to apply a best fitting procedure based on Equation (6.1): it is worth 

to be noted that   
         to match the notation used in Buschmann. The result of 

the best fitting procedure is presented in Figure 6.3. 
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Figure 6.3: Best fitting of the selected numerical curve from Buschmann (Buschmann & Grodzinsky, 

1995) 

 

The best fitting parameters are:                
  

  

   
    [ ]      . Since 

the parameter    is overcome by parameter   ̂ in the proposed formulation, this best 

fitting procedure allows to identified parameter    that will be kept fixed further on. 

 

   [   ]  MAT shear modulus. 

The work of Buckley (Buckley, Glghorn, Bonasser, & Cohen, 2008) shows that the 

static shear modulus    of the most superficial AC layers is in the range [     
    ]    ; this value belongs to the tissue as a whole, so it is not referred to the 

properties of the sole matrix.  The experimental condition used by Buckley consists 

in a precompression step of a      of the total thickness and a following application 

of an angular displacement                (equivalent of a shear strain of     ). 

The consequent shear modulus is computed as 

    
   

       
      (6.4) 

where   is the thickness of the specimen,    is the torque and      
 

 
    is the 

moment of inertia for a disk of radius  . 
A preliminary simulation of torsion test, the details of which will be described 

further, is done in order to set up the proper value of   that, combined with the 

particular fiber distribution chosen, returns a shear modulus    [         ]    . 

 

  ( ) [
  

 
]  Permeability, as required by Abaqus  

From the experimental tests performed on the particular AC tissue shown in Section 

4.2, a relation between permeability   and equivalent strain     has been found as 

follow: 

  (   )       
                         (6.5) 

where     is the equivalent deformation. According to the work of van der Voet (van 

der Voet, 1997), the relation  ( ) is obtained from the parameters     and    found 

in Equation (6.5). In particular,  
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  ( )    (
   

    
)
  

     (6.6) 

where   is the current void ratio and    is the initial void ratio. Since the time 

dependent response of AC is due on the interaction between poroelastic and 

viscoelastic effects, the value of    can be adjusted in order to obtain results more 

similar to the experimental ones, if needed. 

 

   [   ]          [   ]          [      ]        The single 

bundle of collagen fibers is modeled by the use of a Standard Linear Solid 

(SLS) as in Figure 6.4.  

 

 
Figure 6.4: Standard Linear Solid model. 

 

In the work of Wilson (Wilson, van Donkelaar, van Rietbergen, & Huiskes, 2005), 

the authors identify a set of parameters for a SLS configuration suitable for AC 

modeling. Rearranged them consistently with the model in Figure 6.4, the 

parameters used in the UMAT are:                              
          . If needed, since the time-dependent response of AC is due on the 

interaction between poroelastic and viscoelastic effects, values of    and    can be 

adjusted, keeping fixed the long term response of the SLS element,    
    

     
 and 

its time constant,    
  

 
. 

 
6.1.2 Geometrical parameters 

Let us consider the reference systems in Figure 6.5: Figure 6.5(a) shows a 3D 

Cartesian reference system whereas Figure 5(b) is the 2D reduction. In a 3D 

framework, the following fiber distribution is assumed   

  (   )  
 

 
[(
   ( )    ( )

 ̃
)
 

 (
   ( )    ( )

 ̃
)
 

 (
   ( )

 ̃
)
 

]
  

 (6.7) 

where  ̃,  ̃ and  ̃ are the semi-axis of an ellipsoid and the variable   provides a 

generalization of the function proposed by Ateshian (Ateshian, Rajan, Chahine, 

Canal, & Hung, 2009).   is the total volume of the distribution. In a axisymmetric 

framework, Equation (6.7) can be reduced as follow 
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  ( )  
 

 
[(
   ( )

 ̃
)
 

 (
   ( )

 ̃
)
 

]
  

    (6.8) 

It is trivial to say that, if Equation (6.7) want to model axisymmetric distribution 

applied to a non - axisymmetric problem, the consequent distribution is equal to 

distribution in Equation (6.8) with  ̃   ̃; this will be the case analyzed in this 

Chapter when a 3D model is used. 

Set [ ̃  ̃  ] defines the parameters to be varied in both the sensitivity analysis and 

the following identification process. Using this approach,  ( ) can be though as a 

measure of COL fibers density: Wilson (Wilson, van Donkelaar, van Rietbergen, 

Ito, & Huiskes, 2004), suggests a value for the superficial layer dependent by the 

condition in the deepest zone whereas Pierce (Pierce, et al., 2010) estimates values 

for COL fibers density by making use of multiphoton microscopy (Lilledahl, Pierce, 

Ricken, Holzapfel, & de Lange Davies, 2011). 
 

 
Figure 6.5: (a) 3D and (b) 2D Cartesian reference systems. 

 

6.1.3 Stresses derivation 

Let us consider COL, GAGs and MAT in their initial configurations,    
   ,   

     

and   
    respectively; hence three deformation gradients that bring the components 

in reference configuration can be defined as   
   ,   

     and   
   . If an initial 

equilibrium step (swelling step) is imposed to obtain a global stress free condition in 

which collagen fibers are in tension to balance the swelling pressure, it can be 

correctly assumed that the unique deformation gradient   provided by Abaqus takes 

into account the different initial configurations and can be used itself for the 

constitutive description of the three components separately: this explains why only 

one deformation gradient tensor is considered in the following Equation. 

In reference configuration, the total 2
nd

 Piola Kirchhoff stress      acting in a RVE 

can be computed as the sum of the contribution of the three components,      
                where 

       (     )     (6.9) 

is the isotropic matrix contribution (Neo - Hookean material) and 

        
  ̂

 (    )
      (6.10) 
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is the GAGs contribution.   is the right Cauchy Green tensor,   is the Jacobian of 

the transformation defined by   and   is the identity tensor. 

Using a push forward operation, stresses in current configuration can be derived as, 

respectively, 

      
 

 
(   )     (6.11) 

        
  ̂

   
       (6.12) 

where   indicates the Cauchy stress for the i - th component and   is the left Cauchy 

Green tensor. 

     is the portion of stress deputed to COL. Let us consider the reference system in 

Figure 6.5(a). A generic direction   in 3D space can be computed as follow 

   [

   ( )   ( )

   ( )

   ( )   ( )
]  [

  
  
  
]    (6.13) 

where    is the contribution along x - direction,    along z - direction and    y - 

direction. The vector is defined in reference configuration so it does not change with 

the applied transformation. 

The 2
nd

 Piola Kirchhoff stress      is built as summation of the contributions in all 

the directions  , sweeping a sphere of total volume  ; the angles   and   range, 

respectively, in [   ] and [    ]. In Voigt notation, the generic component of 

stress becomes 

    
    ∫  ̅ ̃ (   )  (   )  (   )    

  (6.14) 

where    is the pyramidal volume reference.  

 ̃ indicates a modified Heaviside function that describes the activation rule for the 

fibers and it will be presented in the next section;    is the infinitesimal volume 

such that    
 

 
   ( )    . 

 ̅ is the stress along the selected direction and it is derived from the 1D differential 

constitutive equation for the SLS model presented in Figure 6.4: 

   ̅̇  (     ) ̅      ̇          (6.15) 

where   is the stretch along the selected direction as   
 

 
  (   )  (   )(    

 )    (   )  (   )   .    is the generic component of the Green Lagrange 

strain tensor.  

Equation (6.15) is an implicit form: in the next Section a numerical discretization is 

presented. Inserting Equation (6.15) in (6.14), the generic component becomes 

    
    

 

 
∫ ∫  ̅ ̃ (   )  (   )  (   )   ( )    

 

 

  

 
 (6.16) 

In an axisymmetric framework, the behavior of the material is independent by 



 137 
Chapter 6.  

Poroviscoelastic FEM including Continuous Fibers 

Distribution  

direction  . This means that stretch   can be computed using          (instead of  ):   

          [
   ( )

   ( )
 

]     (6.17) 

and the fiber distribution depends only on the angle   as shown in Equation (6.8). 

Then, Equation (6.16) is simplified by separating the dependence on the two angles 

as follow 

    
    

 

 
 ̅ ∫  ( )  ∫  ( )  ( )   ( )  

 

 

  

 
  (6.18) 

where  ( ) and  ( ) are particular functions depending on the direction chosen. 

Equation (6.18) is a simplification of Equation (6.16) since ∫  ( )  
  

 
 has an 

analytical solution for any  ̅.  In order to clarify these last two functions, an example 

is shown.  

Let us consider the contribution to the component    
    of the generic direction 

( ̅  ̅). The product   (   )  (   ) becomes 

   ( ̅  ̅)  ( ̅  ̅)     ( ̅)   ( ̅)   ( ̅)   ( ̅) ( ̅) (6.19) 

where 

  ( ̅)     ( ̅)      (6.20) 

  ( ̅)     ( ̅)   ( ̅)     (6.21) 

In the numerical implementation, stresses are requested in current configuration: 

applying the push forward transformation to Equation (6.18) it can be obtained 

    
    

 

 
      

      
      (6.22) 

The fiber activation function  ̃ is described by the following piecewise function: 

 
 ̃      
  ̃   

               (6.23) 

 
 ̃  (      ) {    [

 (     )

 (      )
]}      

  ̃  
 (      )

(      )
   [

 (     )

 (      )
]    [

 (     )

 (      )
]
             

        (6.24) 

  ̃   
  ̃   

              (6.25) 

The values used for the simulations showed in this Chapter are:       ,       

and        . This regularization function is introduced to mitigate the strong non 

- linearities that could be due to the on - off Heaviside function. 
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6.2  NUMERICAL ISSUES 
In this Section, issues related to the  numerical implementation are presented, 

limiting to the most relevant aspects. 

 
6.2.1 Discretization of angle coordinate   

Since this work is focused on the superficial layers of AC, the fibers distribution has 

to be markedly anisotropic, to obtain the direction parallel to the surface stiffer than 

the perpendicular one: that means  (  
 

 
)   (   ). For sake of 

computational effectiveness, the distribution function has been unevenly sampled: 

the sampling point distribution is denser in region with higher gradients, as shown in 

Figure 6.6(b). 

 

 
Figure 6.6: (a) even sampling and (b) uneven sampling for a generic anisotropic fibers distribution. 

 

It is worth to be noted that, in the case of Figure 6.6(a), the peak is not caught. 

 
3.4.1 Discretization of the collagen stress  ̅ 

The expression in Equation (6.15) can be discretized using a central difference 

scheme (no computations are shown): 

    
̅̅ ̅̅  (  

    
     
 

 
 

  

)   
̅̅ ̅̅  (

 
     
 

 
 

  

) [        (
 

  
 
     

 
)   ] 

        (6.26) 

where    is the current time,    the previous time,          the time step,     the 

stretch at previous time and            with     the stretch at the current time. 

   
̅̅ ̅̅  is the stress computed at current time and    

̅̅ ̅̅  the stress computed at previous 

time. Equation (6.26) holds for the generic angle  ̅. 

The numerical derivative for the stress is used to compute the stiffness tangent 

matrix (as shown further on): 

 
  ̅

  
 (

 
     
 

 
 

  

) (
 

  
 
     

 
)    (6.27) 

(a) (b) 
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6.2.3 Derivation of the stiffness tangent matrix 

The implementation of this constitutive law into the commercial finite element code 

Abaqus requires the computation of the correct stiffness tangent matrix; in the case 

of constitutive laws in total form, the consistent tangent matrix       is computed 

through the variation of the Kirchhoff stress  . The whole derivation is not reported 

here. 

The final expression of the stiffness tangent matrix is 

        
 

 
[
 

 
(                           )                    ]  

        (6.28) 

where       is the 4
th

 order stiffness tensor in reference configuration computed as 

       
    

    
. The first addendum in Equation (6.28) is the corotational part. 

According to the proposed derivation, the stiffness tangent matrix is computed for 

this particular constitutive law. 

The generic coefficient of the total Cauchy stress of the material,    
    is the 

summation of the three contributions 

    
       

       
        

       (6.29) 

Then, in spatial configuration, the corotational part in Equation (6.28) becomes 

      
       

 

 
(      

          
          

          
   ) (6.30) 

The 4
th

 order stiffness tensor in reference configuration is derived below for the 

three components 
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  )   (6.31) 
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where      
  and         are two generalized tensor defined as 

      
  

∫ ∫  ( ) 
  ̅

  
   ( )  (   )  (   )  (   )  (   )

 

 
    

  

 
 (6.34) 

         

∫ ∫  ( )   ̅   ( )  (   )  (   )  (   )  (   )
 

 
    

  

 
 (6.35) 

Then, the stiffness tangent matrix in spatial configuration becomes 

             
       (     

         
          

   )             (6.36) 

  ̅

  
 is the numerical derivative of collagen stress as in Equation (6.27). 



 140 
Chapter 6.  

Poroviscoelastic FEM including Continuous Fibers 

Distribution  

6.2.4 Permeability 

The permeability is implemented through the built - in *Soils solver directly in 

Abaqus. 

 

6.3 SENSITIVITY ANALYSIS BASED ON CONFINED 

COMPRESSION TEST 
 

6.3.1 Methods 

A preliminary sensitivity analysis is carried out with the purpose to assess the role of 

parameters governing the fiber distribution on the material response under 

unconfined compression test. 

For any of the fibers distribution analyzed, the test consists in two phases. First, a 

3D torsion test on a purely elastic material is performed to set the value of matrix 

shear modulus  . In Figure 6.7, initial geometry and boundary conditions are shown. 
 

 
Figure 6.7: Geometry and boundary condition for the simulation of torsion test. 

 

This simulation consists of two steps. First, the swelling is applied without external 

solicitations: the new sizes of the disk are         and        ; then, the 

disk is compressed of an amount   ̅̅ ̅         and torqued of the specific angular 

displacement      ̅̅ ̅̅ ̅            (equivalent of a shear strain of     ).     and     

indicate the percentage of swelling in radial (plane xy) and axial (z) directions. As 

shown in Equation (6.4),   is not constant for all the fiber distribution but it is varied 

to maintain a uniform   in the range [         ]    . 

Once, the matrix shear modulus is found, a stress relaxation unconfined compression 

test on a poroviscoelastic material is set. In the following Figure, a sketch of the 

geometry and boundary conditions is presented. Radial indicates the x - direction 

whereas Axial indicates the y - direction.  

This simulation is organized as follow: 1. the swelling is applied followed by a 

relaxation step: since the material is poroviscoelastic, a dwell period is allowed to 

reach equilibrium condition after the swelling pressure is applied. At the end of this 

step, the new sample sizes are         and         as dimensions. 2. Six 

load increments each followed by a dwell period are performed sequentially. The 

displacements is applied on the upper surface with a constant strain rate  ̇       
 

 
  

R0 

H0 
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for overall compression strains                equal to [                    

   ] ; the subscript   [   ] indicates the load levels. The dwell period to allow 

for stress relaxation lasts for 120 s.   
 

 
Figure 6.8: Geometry and boundary conditions for the simulation of unconfined compression stress 

relaxation. 
 

All the constitutive parameters are chosen based on the considerations done in the 

previous Sections and summarized in Table 6.1. 
 

Table 6.1: Constitutive parameters for articular cartilage. 

PGs 
 ̂           

        

COL 

             

             

              

MATRIX   (identified for any distributions) 

PERMEABILITY 

     
   

  

 
 

        

   (identified for any distributions) 

 

The value of the initial void ratio    is chosen in order to have a void ratio     at 

the end of the swelling relax phase. 

According to the fibers distribution presented in Equation (6.8), the sensitivity 

analysis is performed varying the geometrical parameters in the ranges selected:  

 ̃  [     ];  ̃  [             ], with the constraint  ̃   ̃;   [         ]. 
The simulations performed are summarized in Table 6.2. 

In the subsequent Figures, all the distributions are plotted in function of angle  . 

Figures are organized as follow: in Figure 6.9, all the subplots refer to the case 

 ̃     ; in Figure 6.10, all the subplots refer to the case  ̃      ; in Figure 6.11, all 

the subplots refer to the case  ̃      . In each Figure, subplot 1 contains data with 

 ̃   , subplot 2 contains data with  ̃    and subplot 3 contains data with  ̃   . 

Black lines have      , gray lines have     and light gray lines have      . 

R0 

H 

H0 
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To highlight the behavior in correspondence of   
 

 
, direction parallel to the 

surface, only the interval   [        ]     is presented; hence, the value of 

 (   )   (   ) is indicated in the legend boxes. 

 
Table 6.2: Fibers distributions considered. 

  [ ] 

FIBERS 

DISTRIBUTIONS 

 ̃[ ]  ̃[ ]           

      I II III 

      IV V VI 
      VII VIII IX 

       X XI XII 
       XIII XIV XV 

       XVI XVII XVIII 

       XIX XX XXI 

       XXII XXIII XXIV 

       XXV XXVI XXVII 

 

 

 
 

Figure 6.9: Fibers distributions in the case of   ̃     . 
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Figure 6.10: Fibers distributions in the case of   ̃      . 

 

Figure 6.11: Fibers distributions in the case of   ̃      . 

 
To have a complete overview of the analysis a further information is required. In 

Figure 6.12, the values of the integrals, computed as     ∫  ( )  
 

 
, are shown 

for all the distributions; this means that the amount of collagen fibers is different 

among the distributions studied. 

The role of the distributions are compared using these parameters. 

       [  ]. Reaction force measured at the end of the relaxation phase at 

the highest strain imposed. 

       [  ]               , where       [  ] is the reaction force 

measured at the beginning of the relaxation phase at highest strain imposed. 

    [ ]  
    

  
    . swelling deformation in axial direction.       is the 

vertical displacement of the upper layer after the swelling phase;    
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        is the thickness of the sample. 

    [ ]  
    

  
    . swelling deformation in radial direction.       is the in 

- plane displacement of the outer boundary of the surface after the swelling 

phase;            is the radius of the sample. 
 

 
Figure 6.12: Fibers distribution density in all the cases studied. 

 

 

6.3.2 Results 

In the following Tables, the results for all the simulations are shown in terms of 

swelling: both axial and radial directions are considered. Tables are divided for 

different values of parameter  ̃. 
 

 Table 6.3: Amount of swelling for the distributions with  ̃     . 

 ̃      
   [ ]    [ ]    [ ]    [ ]    [ ]    [ ] 
                                

 ̃                                    
 ̃                                    
 ̃                                  

 

Table 6.4: Amount of swelling for the distributions with  ̃      . 

 ̃       
   [ ]    [ ]    [ ]    [ ]    [ ]    [ ] 
                                

 ̃                                    
 ̃                                    
 ̃                                  

 

Table 6.5: Amount of swelling for the distributions with  ̃      . 

 ̃       
   [ ]    [ ]    [ ]    [ ]    [ ]    [ ] 
                                

 ̃                                   
 ̃                                  
 ̃                                  
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Figure 6.13 contains a visualization of all the data presented above. Figure 6.13(a) 

refers to the axial swelling, whereas Figure 6.13(b) to the radial swelling, in 

percentage with respect to the initial sizes. 
 

 
Figure 6.12: Swelling for all the simulation in percentage with respect to the initial lengths: (a) axial and 

(b) radial. 
 

The drained behavior can be described by the use of the reaction force 

       measured at the end of the whole simulation (higher strain applied). Figure 

6.14 contains this information for all the simulations, organized as in Figure 6.13. 
 

 
Figure 6.14: Reaction force in drained condition in correspondence of the highest strain applied for all 

the cases. 
 

Time dependency results in different behaviors if the material is analyzed at the end 

of the loading phase or at the end of the relaxation phase. Only the higher strain 

condition is considered (     ), since it is representative of the whole behavior of 

the tissue, and the difference in terms of reaction force is plotted for all the 

(a) 

(b) 
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distribution analyzed. This information is presented in Figure 6.15. 
 

 
Figure 6.15: Difference between undrained and drained conditions in correspondence of the highest 

strain applied for all the cases. 
 

 
6.3.3 Discussion 

The sensitivity analysis proposed can help understanding model behavior.  

Parameters  ̃ and  ̃, for a fixed exponent  , define the value of the distribution along 

  
 

 
 and    , respectively, independently each other. Besides, fixing exponent   

and parameter  ̃, if  ̃ is decreasing,  (   ) decreases and the distribution is 

narrower; fixing exponent   and parameter  ̃, if  ̃ is decreasing,  (  
 

 
) decreases 

and the distribution is wider. Also the effect of the exponent   is not trivial: fixing 

parameters  ̃ and  ̃, if   increases, both  (   ) and  (  
 

 
) increase to have a 

wider distribution. Then, if one considers   
 

 
 fixed as in the work of Ateshian 

(Ateshian, Rajan, Chahine, Canal, & Hung, 2009), it appears to lose a wide range of 

distributions analyzable. 

The effect of GAGs in swelling properties is shown in Figure 6.13. Results are in 

agreement with literature, especially for the axial swelling around    ; in both 

radial and axial directions, swelling appears strongly related to the ratio between 

fibers content in radial and axial directions. See, for example, the light gray diamond 

marker in Figure 6.13: it refers to the distribution with higher fibers density parallel 

to surface. The expected lowest radial swelling results in the largest axial one.  

With a comparison purpose, drained properties itself and drained to undrained 

relation are proposed only at higher strain imposed. In his work, Ficklin (Ficklin, et 

al., 2007) states that the mechanical properties of articular cartilage are positively 

correlated with collagen content only at high compressive strain (larger than    ): 

hence, only the results obtained at     of strain are shown here. With reference to 

Figures 6.14 and 6.15, even if all the samples considered has a shear modulus almost 

constant, higher is the content in fibers, higher is the drained modulus; moreover, a 

larger difference between drained and undrained responses is related to a more  

anisotropic distribution. 

A peculiar aspect of an unconfined compression test on articular cartilage is the 
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radial contraction during the relaxation phase. This phenomenon has been 

investigated as in the work of Fortin (Fortin, Buschmann, Bertrand, Foster, & Ophir, 

2003) and it has been evidenced in this sensitivity analysis: this consideration is a 

further good validation for the presented model. 

 

 

6.4 CONFINED COMPRESSION TESTS AND NANOINDENTATION 

TESTS 
At the end of any swelling relaxation phase, the coefficients of the stiffness tangent 

matrix can be extracted from the implemented UMAT. Equations (3.28) and (3.29) 

can be used to estimate drained indentation modulus and undrained indentation 

modulus, assuming the solid matrix as a transversely isotropic material: this 

assumption is reasonable due to the highly anisotropic distributions considered. 

These two moduli are plotted in Figure 6.16, for all the distributions. 

 

 
Figure 6.16: Drained indentation modulus ( ) and undrained indentation modulus ( ) computed for all 

the distribution analysed, using the stiffness tensor at the end of swelling relaxation phase and assuming a 
transversely isotropic material. 

 

Three selected fibers distributions [          ], representative of three 

markedly different conditions, are chosen. Simulation of a multiload 

nanoindentation creep test is set in order to reproduce five load levels [    
      ], using a        spherical tip      and implementing the same protocol 

used for the equivalent experimental tests explained in Section 4.2: load step of 

      , loading rate of  
  

 
 and hold time of      . The pairs  (     ) and 

(     ) can be also extracted numerically, one for each load level; then, 

Equations (4.7) and (4.8) are used to compute numerical drained and undrained 

moduli. Figure 6.17 shows the comparison, in term of drained modulus    (Figure 

6.17(a)) and undrained modulus    (Figure 6.17(b)), between the values estimated 

theoretically (from information on stiffness tensor, as in Figure 6.16) and the values 

computed as best fitting (from numerical load - displacement pairs). Numbers 

identify the distribution; i indicates multiload nanoindentation creep test whereas c 

unconfined compression stress relaxation test. 

A good agreement can be found between the predicted drained indentation modulus 
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from the stiffness matrix and the computed one from multiload nanoindentation test: 

since the stiffness matrix can be extracted with a very simple simulation (in terms of 

time consumption), this approach appears interesting from the point of view of a 

parameter identification process for nanoindentation tests. In case of the undrained 

one, instead, the prediction fails: it is worth to be noted that the implemented 

constitutive relation accounts also for viscous aspects that are not considered in the 

analytical Equations (3.28) and (3.29), based on a purely poroelastic material. It 

seems, than, that viscoelasticity plays a role in the instantaneous response of AC, at 

least in the configurations studied. 
 

 
Figure 6.17: Comparison between stress relaxation unconfined compression and multiload creep 

indentation in terms of (a) drained properties and (b) drained to undrained properties for the three selected 
fibers distribution. 

 

Experimental data on multiload nanoindentation creep tests have been shown in 

Chapter 4, Section 4.2. In Figure 6.18 the experimental results are shown again in 

terms of drained and undrained curves (Figure 6.18(a)) and creep curves (Figure 

6.18(b)), considering only five levels of load (to be consistent to the chosen settings 

for the simulated tests); regarding the creep curves, only the mean value is shown 

since the variability is highlighted on the drained  and undrained curves. 
 

 
Figure 6.18: (a) Experimental drained and undrained curves obtained with      tip and (b) creep curves 

obtained with      tip, both based on five levels of load. 
 

In Figure 6.19, the experimental data shown above are compared with results 

obtained by simulating the test using the three fibers distributions mentioned and 

maintaining the constitutive parameters used for the sensitivity analysis. 

(a) (b) 

(a) (b) 
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Figure 6.19: (a) Drained and undrained curves and (b) creep curves (zoom at low loads)  obtained from 

simulation using three selected distribution with      tip and investigating five levels of load. 
  

Curves in Figure 6.19 show that a proper parameter identification for the 

experimental data is still not achieved: thus, to find a suitable set of parameters 

defines a further development of this thesis. The configurations studied seem not to 

replicate the experiments: then, this analysis can be considered as a preparatory step. 

Therefore, small adjustments are required also on the constitutive parameters 

chosen: in the following Figures, hints for possible solutions are investigated.  
 

Figure 6.20: (a) Drained and undrained curves and (b) creep curves (zoom at low load) obtained from 

simulation using distribution      and halving the matrix shear modulus. Unmodified case      is 
reported as comparison. 

 

Figure 6.21: (a) Drained and undrained curves and (b) creep curves (zoom at the low loads and low time) 

obtained from simulation using distribution      and doubling the instantaneous response of SLS model. 

Unmodified case      is reported as comparison.  

(a) 

(a) 

(a) 

(b) 

(b) 

(b) 
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Figure 6.22: Creep curve obtained at           from simulation using distribution    and halving the 

characteristic relaxation time of SLS model. Unmodified case    is reported as comparison. 
 

In Figure 6.20 the effects of an halved matrix shear modulus   is shown using 

distribution      as reference. The same distribution is used in the analysis of the 

effect of stiffer (doubled) instantaneous response for COL fibrils (maintaining the 

same long term response and the same characteristic relaxation time) presented in 

Figure 6.21. Besides, the effect of an halved characteristic relaxation time is 

inquired on distribution    and highlighted in Figure 6.22. 

The above results can be summarized as follow. Fixing a fibers distribution and 

decreasing the matrix shear modulus, the material is softer in both drained and 

undrained conditions and the difference between these two limits increases, the 

drained to undrained ratio decreases (Figure 6.20): the weight of the anisotropic part 

of the tissue becomes more relevant than the isotropic one. Increasing in 

instantaneous response of collagen fibers, maintaining constant the drained 

properties of the fibrils, results in a stiffer undrained condition (Figure 6.21). 

Halving the viscosity, the characteristic relaxation time decreases and the drained 

condition is achieved faster (Figure 6.22). 
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Chapter 7 is dedicated to discuss results providing connections among the single 

aspects analyzed separately in the previous Chapters.  

Section 7.1 shows a comparison between experimental data collected in frequency 

domain and the ones in time domain. The novel constitutive relation is used in 

Section 7.2, to improve the code that simulate harmonic tests. Section 7.3 compares 

the aims explained in the Introductory Chapter with the results achieved to highlight 

the scientific relevance of this work. Section 7.4 shows the guidelines for further 

developments and improvements. 
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Considering the three central Chapters (Chapter 4, Chapter 5, Chapter 6), each of 

them addresses a specific argument; a complete and dedicated discussion is 

performed separately for everyone; methodologies are highlighted with respect to 

their positive aspects and their limitations, data are explained providing comparisons 

with literature, results are critically analyzed. Nevertheless, these presented aspects 

belong to the unique idea of articular cartilage mechanical characterization: then, 

further discussions that try to connect the different areas is required. Experimental 

tests in frequency domain and time domain are here compared each other; the 

poroviscoelastic with fibers distribution constitutive relation is used for suggesting 

possible explanation of experimental evidences; the model for DMA test is 

improved based on a more complete solid skeleton modeling.  

 

 

7.1 COMPARISONS AT DIFFERENT CHARACTERISTC LENGHTS 
In Chapter 4, experiments carried out with an AFM in frequency domain (DMA) 

and experiments carried out with a NI in time domain (creep) are shown. Two main 

differences characterize the two sets of experiments: the nature of the solicitation, 

harmonic displacement controlled test versus constant load, and the characteristic 

length investigated, up to few microns versus up to hundreds of microns. In both 

cases, the AC samples are extracted from the posterior joints of adult bovine 

exemplaries, but two different animals are considered: hence, a certain amount of 

intraspecific variability has to be taken into account in analyzing the results. 

In Figure 7.1 drained moduli    computed in the case of multiload nanoindentation 

spherical creep tests (samples         
 and        

) and spherical dynamic tests 

(samples       and     ) are shown together. These values are plotted in function of 

the characteristic length    (Figure 7.1(a)) and the equivalent deformation     

(Figure 7.1(b)), without forgetting that each tip investigates also different 

indentation depths (Figure 7.1(c)). As presented in Section 4.2, multiload tests allow 

to easily investigate multiple characteristic lengths that properly refer to a unique 

value of   : markers indicate the computed mean value whereas the lengths 

investigated are highlighted by dashed lines; in the case of dynamic tests, instead,  a 

value of    is presented for any length investigated.   

 

 

(a) (b) 
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Figure 7.1: Comparison between time domain (creep) tests and frequency domain (DMA) tests analysed 

in this work in terms of (a) characteristic length, (b) equivalent deformation and (c) indentation depth. 
 

Within the same typology of experiment, two different trends are present: in creep 

tests, larger tip results in lower modulus; in DMA, the viceversa occurs. In terms of 

drained modulus, three bandwidth are noticeable, related to tens of    , hundreds of 

    and around      ; at the same time, looking at Figure 7.1(c) the tests can be 

classified according to three ranges of depth investigated: hundreds of nanometers, 

few micrometers and tens of micrometers. Accounting for the size effect at larger 

lengths (explained in Section 4.2), three different zones have been investigated in 

the present work and the tissue results stiffer at larger ones. The same conclusion 

can be obtained if the characteristic contact length is considered: larger is this 

parameter, stiffer is the tissue. Therefore, the tissue shows not only its characteristic 

depth dependence but also the amount of volume recruited plays a major role in the 

measured elastic properties, suggesting that the interactions among the single 

structures (measured at micrometers) magnify their specific properties (that have 

been investigated at nanometers with the smaller tips). Moreover, from the works of 

Simha (Simha, Jin, Hall, Chiravarambath, & Lewis, 2007) and Korhonen 

(Korhonen, et al., 2002), an upper bound for the size effect peculiar of articular 

cartilage in indentation tests is proposed: if the tip is larger than few millimeters no 

difference in terms of drained modulus is found. In this work, this effect disappear if 

the superficial layer is investigated with spherical tip of radii        and         : 

than, a lower bound for this phenomenon can be suggested. 

From both the tests typologies, a characteristic time of the experiment can be 

extracted and it is related to the predominant phenomenon investigated. In Section 

4.1, suggestions about the position of the peak frequency are presented and a 

transition from poroelasticity to viscoelasticity is evidenced when the behavior is 

investigated moving from a larger to a smaller tip: the behavior investigated with the 

conical tip and the smaller spherical tip has been already explained. Then, the 

following comparison takes into account only the larger spherical tip used in 

harmonic tests, since poroelasticity is the predominant phenomenon. 

Dynamic tests allow a fast estimation of the characteristic time since the position of 

the peak is easily identified as in Figure 4.2; on the contrary, an estimation of 

characteristic time in a creep test can be conducted applying a best fitting procedure 

(c) 
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using a series of exponential functions or computing the numerical time derivative 

as shown in Figure 4.18. Dynamic tests conducted with the larger tip result in a 

characteristic frequency that decreases with the indentation depth from (mean 

values)         to        that corresponds to characteristic times increasing from 

       to       ; smaller tip in creep tests results in less than     wheras the larger 

tip in less than    . These last estimation are based on the fact that the steady state 

condition is reached in       in the case of     and around     for     . Imaging 

to relate these values to the equivalent deformation, the following situation occurs. 

At equivalent deformation         , the characteristic time is lower than    ; in 

between     and    , time increases with     up to       ; around    , it is greater 

than seconds. The larger time that the tissue requires to reach the equilibrium 

condition when higher deformations are applied is consistent with the concept of 

depth dependent permeability; independently by the lengths scales analyzed, this 

relation appears always verified. 

Dynamic tests allow also the quantification of the dissipative effects through the 

magnitude of the peak in the tangent of phase shift graph: Figure 4.2(a) describes a 

peak decreasing from      to      moving from an indentation depth of        to 

      . The peak of numerical derivative in Figure 4.18, instead, is higher in case of 

smaller tip than in case of larger one. Decreasing in the characteristic length (smaller 

indentation depth or smaller tip radius) increases the dissipative effect: if the 

characteristic size is large, in fact, the role of dishomogeneities (porosity, in this 

case) is averaged with the elastic properties of the solid matrix. 

A separated analysis has to be conducted with the smaller spherical tip and the 

conical tip on DMA test. They both investigated indentation depth up to a max of 

      , but with different characteristic lengths (up to        for the spherical 

and        for the conical) and equivalent deformations. An high frequency 

viscoelastic behavior is found with the conical tip whereas the spherical tip has, 

probably, given the possibility to investigate a transitional zone. 

 

 

7.2 POROVISCOELASTIC FIBERS REINFORCED MODEL AS 

STARTING CONFIGURATION FOR A DMA TEST 
The poroviscoelastic with continuous fibers distribution constitutive relationship 

allows an improvement for the proposed numerical model (Chapter 5) that simulates 

DMA tests directly in frequency domain. 

This model has shown its capability in terms of reducing the time consumption in 

the numerical simulation of this kind of tests; moreover, together with the intrinsic 

possibility of this methodology in investigating a wider range of parameters with 

respect to time domain tests, the proposed sensitivity analysis as well as the 

parameters identification have given interesting results in interpreting AC 

mechanical behavior. Its most important limitations are focused in three aspects, 

basically: the linearized framework; the solid matrix modelling; the homogeneous 
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and isotropic permeability. For the latter point, improvements and developments can 

define future objectives arising from this work of thesis; on the contrary, the 

constitutive relation proposed in Chapter 6 can help regarding the first two ones. 

In the presented DMA model, the solid part of AC sample is modelled as a 

transversely isotropic material: in the numerical discretization, the material 

properties of the single elements do not change in dependence of its position, under 

the tip or far from the solicitation area. The model implemented is linearized: hence 

it can investigate the behavior of the tissue only around the deformed condition 

reached at the end of the initial step of the procedure.   

The purely elastic version of the implemented constitutive relation can be used to 

simulate this first phase: a quasi - static indentation is performed and a more realistic 

deformed configuration is achieved. Moreover, the effect of the complex strain field 

resulting from the indentation test is caught exporting the specific stiffness matrix of 

each element of the mesh and introducing it into the DMA numerical model. This 

model still works in a linearized framework but investigates a condition 

(displacement field and material properties) obtained from a model that accounts for 

the non - linearities of the tissue. 

The parameters obtained by best fitting procedure on the DMA model proposed in 

Chapter 5 have been already discussed and a marked difference is found between the 

            case and the other configurations considered. Then, the following two 

sets of parameters are identified using the improved procedure described above 

(Table 7.1). 
 

Table 7.1: Geometrical and constitutive (elastic only) parameters used. 

MODEL   ̂                     ̃     ̃         

ADIN                          

BDIN                              

 

Figure 7.2 shows that model ADIN reproduces configuration             in terms of 

storage modulus and tangent of phase shift, but it is unsuitable to reproduce 

configuration            in terms of       .  

Regarding the second set, instead, parameters are identified using configuration 

          ; its application to configurations            and             results 

automatically in an acceptable good prediction for both        and         , as 

shown in Figure 7.3.  

In both the cases, permeability is still adjusted manually to match the position of the 

peak and its contribution remains linear and homogeneous. 

Results proposed here can improve the conclusions provided in Section 5.2. 

Consistently with them, this new identification procedure finds two different sets of 

parameters to describe the whole experiment: the behaviour measured at the largest 

mean indentation depth, indeed, is achieved using a denser fibers distribution and a 

slightly higher matrix shear modulus than in the case of the lower mean indentation 
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depths investigated, even if the parameters remain close each other.  

Two interesting conclusions can be done. Focusing on model BDIN, differences in the 

measure behaviors are given by different deformation condition of the same tissue 

structure. Model ADIN can replicate the phase shift trend in all the cases (Figure 

7.3(b)), suggesting that the anisotropy ratio   between the radial and axial stiffness 

is one of the predominant reasons that regulate the balance between conservative 

and dissipative effects: in fact, both the models result in a similar          as 

identified in Section 5.2. 
 

 
Figure 7.2: (a) Storage reduced modulus and (b) tangent of phase shift. Grey lines defines experimental 

tests whereas black lines indicate the numerical results using model ADIN. 
 

 
Figure 7.3: (a) Storage reduced modulus and (b) tangent of phase shift. Grey lines defines experimental 

tests whereas black lines indicate the numerical results for the model BDIN. 
 

 

 

7.3 AIMS AND RESULTS 
In this work of thesis the mechanical characterization of the superficial layers of AC 

is performed by making use of experimental techniques in frequency domain 

(dynamic mechanical tests)  and time domain (multiload nanoindentation creep 

tests). Numerical simulations of the experimental tests can help the explanation of 

experimental data: then, to achieve this goal, two numerical tools are developed and 

implemented. An homemade Matlab - based code that simulates DMA tests and a 

constitutive relationship that accounts for the single constituents (collagen, 

proteoglycans and matrix) including a continuous distribution for collagen bundles 

(a) (b) 

(a) (b) 
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have been presented. The three main aspects investigated, shown separately in the 

three central Chapters, belongs to the unique global purpose of a proper mechanical 

investigation of the tissue at micrometric lengths. 

In the Introductory Chapter, the motivations that define the basis over which this 

thesis is developed and the questions that this thesis want to address are shown. 

Chapter 1 to Chapter 3 are dedicated to the description of the background. The tissue 

under analysis is shown from a structural point of view: its components are 

presented with a specific focus on their typical length scales as well as the 

interconnections that occurs among them; the pathologic condition is also briefly 

presented with particular respect to the role of superficial layers, the importance of 

which justifies the interest on this mechanical investigation. The results, both 

experimental and by modeling, already present in literature are shown with the 

purpose to identify the state of art of the research about articular cartilage 

biomechanics and the well - established analytical models used to analyze 

indentation tests.  

 

In Section 4.1, the dynamic mechanical tests conducted at characteristic lengths 

between hundreds of nanometers to tents of micrometers are presented: even if my 

role is related to data analysis (the experiments have not been directly conducted by 

myself), the strong interactions between my group in Politecnico di Milano and the 

group in University of Genova results in a continuous feedback loop: the data 

analysis allows to understand intermediate results in order to refine the setup 

parameters and to achieve the goal of the proper investigation of the tissue. DMA 

tests have confirmed its advantages in probing mechanical properties of a material, 

even in the case of soft hydrated tissues.  

 This kind of test allows to sweep a wide range of frequency without 

changing the setup, permitting a fast and complete investigation from 

drained to undrained conditions; moreover, the procedure is almost 

insensitive and quite robust to tip change (i.e. the characteristic length 

analyzable).  

 The poroviscoelastic behavior of articular cartilage is investigated by 

introducing the concepts of characteristic lengths and equivalent 

deformations: depending of these measures, the tissue shows a dominant 

poroelastic response at micrometer lengths that turns toward a dominant 

viscoelastic response at hundreds on nanometer sizes. Around       , a 

transition occurs in terms of elastic properties and balance between elastic 

and dissipative forces but not for the overall dissipative effects that 

decrease with depth. The measures are consistent with the tissue structure 

and, then, this study appears a quantitative justification of tissue behavior. 

 The characteristic time of the phenomenon investigated is used discriminate 

poroelastic behavior from viscoelastic behavior, based on the spatial 

dependence typical of the former one. 
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Section 4.2 proposes a novel method that couples nanoindentation tests and creep 

tests. Nanoindentation multiload creep test has shown to be a suitable technique in 

investigating local poroelastic properties at micrometric characteristic lengths. 

 At micrometric characteristic lengths, the superficial layers of articular 

cartilage show a predominant poroelastic behavior. 

 The methodology proposed confirms a trend already shown in literature: 

larger is the tip, higher is the measured drained indentation modulus. In 

this study, by making use of the concept of characteristic lengths and 

equivalent deformation, an explanation is suggested: an higher magnitude 

of the solicitation (strain imposed) has a major role than a large volume 

solicited (that depends on contact radius), possibly related to the role of 

collagen fibrils activation state. 

 The analytical function derived by the uniaxial consolidation problem of a 

poroelastic medium subjected to a confined compression test define a fast 

tool for the local estimation of permeability. The simplification in 

considering an uniaxial problem is balanced by the introduction of a 

corrective factor for the contact radius that takes into account for a more 

complex fluid path and that seems to be independent by the tip radius. 

Nevertheless, the strain dependency found for the permeability is 

consistent with results proposed in literature.   

 

Chapter 5 is dedicated to the description of an homemade numerical code for the 

simulation of DMA tests. The proposed numerical code allows to simulate the 

problem directly in frequency domain, saving computational time. Besides, it is a 

powerful tool for the identification of material properties from experimental data.  

 The model is implemented in a Matlab environment and simulate the 

problem under the assumptions of small strains (linearized framework), 

isotropic and homogenous permeability, incompressibility of solid and fluid 

parts.  

 A wide sensitivity analysis is performed on both geometrical parameters of 

a DMA spherical nanoindentation and the constitutive parameters of the 

tissue. By considering an isotropic material, it has been shown that the 

indenter radius (for constant penetration depth) has a larger effect on the 

material response that the penetration depth (for constant deformation). By 

varying the constitutive parameters (anisotropy ratio and out - of - plane 

Poisson’s ratio), the material shows an high variability in the response: the 

importance of a proper choice of material parameters has been highlighted 

as well as the capability of nanoindentation test to take into account for all 

of them, allowing their identification. 

 An identification process has been performed using experimental data 

presented in Section 4.1 (data collected with the larger spherical tip shows a 

dominant poroelastic behavior) to infer about material properties: 
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throughout the thickness investigated, the material has a constancy in the 

anisotropy ratio and out - of - plain Poisson’s ratio, maintaining the 

increasing depth dependency of elastic properties and the decreasing trend 

with deformation for the permeability. 

 

In Chapter 6 a poroviscoelastic with continuous fiber distribution constitutive 

relationship, developed in collaboration with Professor Stephen Klisch in his 

laboratory at California Polytechnic State University, is presented. In order to 

achieve a proper modeling of articular cartilage mechanical behavior, porous and 

viscous aspects have to be considered as well as the structural distribution of 

collagen fibrils. 

 The relation is implemented in a User MATerial subroutine for the 

commercial code Abaqus.  

 The implemented relation takes into account the mechanical function of the 

three main components of the tissue, inserting in between the most 

complete numerical modeling available in literature. Swelling properties 

are deputed to proteoglycans, whereas viscoelasticity is considered in 

collagen fibers modeling. 

 With reference of harmonic nanoindentation test, it has been proved that a 

single set of parameters (both constitutive and geometrical) define correctly 

the structural organization of a tissue thickness of a range           
        in the superficial layers. In fact, the deformed configuration and 

material properties passed to the homemade code using that set, properly 

replicate and predict the consequent dynamic tissue behavior.  

 

Nowadays, the pressing toward methodologies to test articular cartilage for the early 

detection of pathologies or to evaluate engineered tissue is high: in Section 4.3 the 

procedure based on multiload nanoindentation creep test is applied on engineered 

porcine articular cartilage. 

 The methodology has shown its capability in discriminating the different 

materials (different grades of treatment) highlighting the peculiar properties 

of them. The results of the blind investigation is that the artificial tissue 

improves its biomechanical properties, moving from a self-healed sample 

to the most complete treatment that includes an artificial scaffold together 

with autologous stem cells. 

 The most complete treatment seems to stimulate a proper cartilage growth 

since its properties are comparable to native one in terms of drained 

modulus whereas the permeability is just slightly lesser. 

 The treatment based on the sole scaffold shows the size effect on drained 

modulus like the native condition, suggesting that the particular scaffold 

structure is a good starting point over which the chondrocytes can build the 

fibers organization. 
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7.4 FUTURE DEVELOPMENTS 
The presented work analyzes the problem of mechanical characterization of the 

superficial layers of articular cartilage. This problem is investigated from multiple 

points of view, showing the complexity of reaching a complete understanding of the 

behavior of this tissue. Looking at the results proposed in this thesis, the major 

future approach is to improve the proper connections among the single aspects 

(experiments and simulations) and its extention to clinical applications and to study 

pathologies. In this sense, this last Chapter suggests some preliminary attempts, the 

results of which require further validations. 

Dynamic tests and creep tests have shown to be consistent as far as the same 

phenomenon (poroelasticity) is investigated. Starting from the results of this work, 

interesting comparisons could be extracted if more focused tests are set up. A 

investigation conducted at the same characteristic lenghts on the same sample by 

using both time domain and frequency domain tests can conduct to a deeper 

structural explanations: creep tests allow to an easier study of the long term behavior 

(low frequencies) whereas DMA tests provied more robust information at higher 

frequency (with a proper experimental setup). The work of Chin (Chin, Khayat, & 

Quinn, 2011) shows an example about how to combine creep tests with stress - 

relaxation tests in extracting mechanical properties from AC sample: a similar 

approach can be applied also at micrometric length scale to achieve a deepest 

knowledge on articular cartilage structure. 

The work of Miller (Miller & Morgan, 2010) proposes to compare results obtained 

at miscroscale with the ones obtained at macroscale. A sistematic approach in which 

the same sample is tested at different characteristic lenghts seems to be a natural 

consequence of the results shown in this thesis: starting from the lowest scale, 

possibly investigating the single constituents or a small base network (as show in 

this work applying DMA using a very small tip), it could be possible to reconstruct 

the interactions among the structures from which the macroscopic properties derive 

and are directly responsible for articular cartilage mechanical function. 

The application of the methodology based on creep tests on engineered tissues has 

shown the possibility to discriminate mechanical properties in tissues with different 

structural arrangements. The step toward the application on the early detection of 

pathological conditions is the next one: in vitro enzimatic digestion is a methods that 

permits to recreate conditions similar to the different stages of osteoarthits allowing 

the possibility to have controlled tissues to test before an in vivo implant.  

Nevertheless, an improved knowledge on a soft hydrated tissue like articular 

cartilage can give a definitely contribute in the field of material science, toward the 

design and the production of advanced, bio - inspired hierachical materials. 

Numerical methods can have an important role as shown in the work of Wilson 

(Wilson, Huyghe, & van Donkelaar, 2006). Hence, both the DMA model and the 

constitutive relationship can be further refined and improved. The work of Ateshian 

(Ateshian & Weiss, 2010), for example, proposes an anisotropic formulation for the 

permeability tensor: permeability is a crucial properties in articular cartilage and its 
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proper modeling becomes a mandatory request. The homemade code that simulate 

harmonic tests can be improved accounting for a more realistic implementation of 

permeability but also introducing the compressibility for the solid part or inertial 

phenomenon. The poroviscoelastic with continuous fibers distribution is still not 

completely investigated; then, the first step is using its actual version to investigate 

the tissue, basing on available experimental data: Section 7.2 just define a  

promising hint that require a deeper analysis. Furthermore, more complex 

formulations for permeability and viscoelasticity (i.e. quasi - linear viscoelasticity) 

can be introduced: this work, indeed, has shown the importance that the balance 

between these two properties has in the biomechanics of this amazing tissue.  
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