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Acronyms & Notation 

AHP Analytic Hierarchy Process 

Cov Coverage 

BBA Basic Belief Assignment 

BDF Belief Density Function 

BFT Belief Function Theory 

CDF Cumulative Density Function 

KF Kalman Filter 

KR Kernel Regression 

GPR Gaussian Process Regression 

MAE Mean Absolute Error 

PDF Probability Density Function 

PF Particle Filtering 

rMAE Mean relative absolute error 

RUL Remaining Useful Life 

SBR Similarity Based Regression 

SIR Sampling Importance Resampling 

SRCC Spearman’s Rank Correlation Coefficient 

 
P   Pressure drop 

M   Mass flow rate 

T   Sea water temperature 

   Choke valve opening 

q   Reference index of the observable parameters 

Q   Number of observable parameters 

r   Reference index of similar pieces of equipment 

R   Number of similar pieces of equipment 

)( j
r
q tz  Value of parameter q  measured for equipment r  at time jt   
r
jz  Vector of parameters values )](),...,(),...,([ 1 jQjqj tztztz  
r

jz ,   Indication of the degradation state of equipment r  at time jt  
r
j  Random variable representing the degradation state of equipment r  at time jt  

r
j  Degradation state of equipment r at time jt  
r
j̂ :  Predicted degradation state of equipment r  at time jt  

th : Failure threshold 

jt  Discretized time instants 

Jt  Present time 

Ft   Failure time 
r
jRUL : Random variable representing the RUL of equipment r  at time jt  

r
jrul : RUL of equipment r at time jt  
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r
jlur ˆ : Prediction of the RUL of equipment r at time jt  

)(JCI   Prediction interval )](),([ supinf  JJ rulrul  containing the RUL value with probability   
r
je  RUL prediction error 

)(xpX   Probability density function of the random variable X   

]|[ XE   Expected value of X  conditioned on the information   
2
X   Variance of the random variable X   
2

),( cba   Component a, b or c of the RUL prediction error variance 

g  Physics-based degradation model 

u  Observation model 

  Data-driven degradation model 

f  Prognostic model 
r
js :  Measure of similarity between trajectories 

Xm  BBA for the uncertain variable X  

X  Domain of X  

)(Bel Ym  Belief assigned by the BBA Xm  to a set Y  

)(Pl Ym  Belief assigned by the BBA Xm  to a set Y  

 ,  Trust and similarity parameters in the SBR approach 

)(t  Prior mean of the Gaussian process in the GPR approach 

)',( ttC  Prior covariance function in the GPR approach 

Xb   BDF for the uncertain variable X  

A   Transition matrix in the KF ensemble approach 

H   Observation matrix in the KF ensemble approach 

R   Observation noise covariance matrix in the KF ensemble approach 

q   Process noise variance in the KF ensemble approach 

j   Validation residuals in the bootstrapped ensemble approach 

   Model of the process and noise prediction error variance components in the bootstrapped 
ensemble approach 

   Turbine blade creep strain 
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1 Introduction 

For industry, unforeseen equipment failure is costly, both for repair and lost revenue. The unexpected 

discovery in March 2002 of extensive corrosion in the reactor vessel head—one of the vital barriers 

preventing a radioactive release—at the Davis-Bessel nuclear power plant in Ohio led to a more than 2 years 

outage and to estimated repair costs exceeding $600 millions [1]3. The failure of rotating equipment causes 

to thermal power industry millions of dollars of unrecovered costs in lost energy production, plus additional 

millions of dollars paid in replacement equipment costs paid by casualty insurers [2]. Many other examples 

of costly unanticipated failure could easily be found, e.g., in the fields of oil & gas, aerospace, information 

technology for business-critical applications, etc. The maintenance strategies that are set up to face this 

problem traditionally fall into two categories: (i) preventive maintenance and (ii) corrective maintenance. 

The former is performed on a time-based schedule regardless of the actual condition of the equipment and 

may result in unnecessary maintenance; the latter avoids any unnecessary maintenance by only repairing 

equipment which has already failed, but it may take long times and result in significant lost revenue [3]. In 

recent times, Prognostics and Health Management (PHM) systems have gained more and more attention 

among researchers and in industry. The PHM community has envisioned the possibility of optimizing the 

time at which performing maintenance actions by knowing the actual state of health of the equipment and 

predicting its future evolution [4-5]. A successful application of PHM has the potential of increasing systems 

availability and safety, by keeping maintenance costs reasonably low [6-7]. In general terms, the tasks of 

PHM are [8-9]: (1) monitoring the equipment and detecting the presence of anomalies (detection); (2) 

assessing the health state of the system (diagnostics); (3) predicting the equipment Remaining Useful Life 

(RUL), i.e., the amount of time it will continue to perform its function according to design specifications 

(prognostics); (4) supporting decisions on what actions to take to assure safety and efficient production with 

the minimum costs (maintenance planning). Compared to fault detection and diagnosis techniques (itemized 

tasks 1 and 2), which have been extensively investigated in the last decades, prognostics (itemized task 3) is 

a relatively new research field which is still in the development phase [10]. On the other side, the possibility 

of effective maintenance planning (itemized task 4) grounds on the availability of reliable prognostic 

predictions.  

In this context, the goal of the PhD project here presented is to develop an efficient approach for the 

prediction of the remaining useful life of industrial equipment, as the necessary requirement for PHM to be 

effectively employed in industry for improved maintenance. 

The work has been performed within a cooperation between the Laboratorio di Analisi di Segnale ed Analisi 

di Rischio (LASAR, Laboratory of Signal Analysis and Risk Analysis) of the Department of Nuclear 

Engineering of the Polytechnic of Milan (http://lasar.cesnef.polimi.it/) and the division of Computerised 

Operation Support Systems (COSS) of the Institute For Energy Technologies (IFE), OECD Halden Reactor 

Project in Halden, Norway (http://www.ife.no).  

 

                                                      
3 References from [1] to [81] are literature references whereas references from [82] to [95] have been produced within 
this PhD work. 
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1.1 Review of prognostic approaches 

In general, prognostic methods can be classified in model-based and data-driven [11]. Among data-driven 

methods one can distinguish between those based on degradation modeling and those directly predicting the 

RUL [12].  

Model-based methods use an explicit mathematical model of the degradation process to predict the future 

evolution of the degradation state and, thus, the RUL of the equipment [13]. Examples of degradation models 

are the non-linear stochastic model of fatigue crack dynamics [14-15]. In practice, even when the model of 

the degradation process is known, the RUL estimate may be difficult to obtain, since the degradation state of 

the equipment may not be directly observable and/or the measurements may be affected by noise and 

disturbances. In these cases, model-based estimation methods aim at inferring the dynamic degradation state 

and provide a reliable quantification of the estimation uncertainty on the basis of the sequence of available 

noisy measurements [16]. Many approaches rely on Bayesian methods for updating the prediction upon 

collection of new data and information [17-18]: the exact Kalman filter has been largely used in case of 

linear state space models and independent, additive Gaussian noises, whereas analytical or numerical 

approximations of the exact Bayesian solution (such as the Extended Kalman filter, the Gaussian-sum filters 

or the grid-based filters) have been applied in most realistic cases where the dynamics of degradation is non-

linear and/or the associated noises are non-Gaussian [19-20]. Recently, numerical approximations based on 

the Monte Carlo sampling technique (known as particle filters) have gained popularity for their flexibility 

and ease of design [21-22]. 

On the other side, data-driven methods are used when an explicit model of the degradation process is not 

available, but sufficient historical data have been collected. Being a rapidly developing research filed, the 

research on data-driven prognostics has embraced a vast number of techniques and algorithms [7] that come 

from multiple research fields, such as reliability engineering [23-24], Bayesian inference [16,25], regression 

analysis [26-28], artificial intelligence [7,29-30], etc. All these methods are based on statistical models that 

can ‘learn’ a prognostic model from the data. In this respect, artificial neural networks are often used [26, 30, 

31]; other examples are Autoregressive Moving Average techniques [32], Relevance Vector Machines [26, 

33], similarity-based regression methods [12,29]. Recently, ensemble approaches, based on the aggregation 

of multiple model outcomes, have been introduced due to the superior robustness and accuracy with respect 

to single models [34] and the possibility of estimating the uncertainty of the predictions [35]. The interested 

reader can found a more extensive review of prognostic methods for remaining useful life estimation [7] and 

[36]. 

These methods can be use to learn from data the trend of the degradation evolution, or directly the relation 

between the observable parameter and the equipment RUL [7]: we talk about ‘degradation-based 

prognostics’ in the former case [32,37-38], and ‘direct RUL prediction’ in the latter [30,39]. The 

degradation-based approach relies on degradation state prediction followed by a failure criteria evaluation, 

which in general consists in the evaluation of the time at which degradation will exceed the failure threshold, 

i.e., the maximum value of degradation allowed for the equipment to continue performing its functions 

according to the given specifications. Data-driven approaches learn the degradation model from the time 

series of the observed degradation states through regression/trend analysis or stochastic process modeling 

[12,37]. In the direct RUL prediction, instead, the equipment RUL is directly derived from a data-driven 
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model that learns from the data the relations between the current observation and the equipment RUL, 

without passing through degradation state estimation and failure criterion definition [29-30].  

Three main open issues in prognostics are the pre-treatment of noisy or unreliable field data, the choice of a 

suitable prognostic approach given the type and quality of information available, the quantification of the 

prediction uncertainty.  

1.2 Contribution of this thesis work 

With reference to the three open issues presented above, the following objectives have guided the work 

performed during this PhD research activity [81-90]: 

1. developing methods for the verification and pre-treatment of degradation-related field data, in order 

to derive reliable prognostic information from them; 

2. identifying the most representative situations of information available, and developing properly 

tailored prognostic approaches to tackle each of them; 

3. analyzing the sources of uncertainty affecting the RUL prediction and providing methods for their 

quantification; 

4. evaluating the proposed prognostic methods in terms of the assumptions they require, their accuracy 

in predicting the equipment RUL and their ability of providing measures of confidence in the RUL 

predictions produced.  

The necessity of pre-treating data directly or indirectly related to the equipment degradation (objective 1) 

arises in real industrial applications where reliable prognostic information has to be drawn from field data 

which are typically affected by noise, sensor faults, extrapolation errors, etc. [8-9]. In fact, all these sources 

of uncertainty can be potentially amplified when projected in the future to predict the equipment RUL. For 

this reason, it is very important to reduce the uncertainty injected into the prognostic model by the input and 

training data. Providing a thorough analysis and a general solution to this problem is very difficult, since the 

problems that can arise in this context and the relative solutions depend strongly on the specific application. 

However, the importance of this problem has been standing out during the development of this thesis work 

when dealing with real industrial data, and several tools for their pre-treatment have been developed in the 

context of a case study related to the erosion of choke valves used in the oil & gas industry [91-94]. In 

particular, we developed a monotonicity-based index for evaluating the quality of the available degradation 

indications and a clustering analysis for validating the reliability of some uncertain observable parameters 

[91]. Finally, an ensemble of kernel regression models has been developed for improving the estimates of the 

uncertain parameters that are found unreliable [92-94]. 

The second objective listed above deals with the lack of general guidelines for tackling the different 

prognostic problems that one may encounter depending on the forms of information and data that are 

available for the assessment of the evolution to failure of degrading equipment. Indeed, depending on the 

situation, different prognostic methods may be applied [9-10]. Three practical situations with different 

sources of information available for the prognostic task have been identified in this work [82]. These 

situations and the prognostic methods proposed in this work to tackle each of them are summarized in Figure 

1. In all situations it is assumed to have available a sequence of observation related to the degradation of the 
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equipment of interest. In the first case considered in this work, hereafter referred to as case 1, it has been 

assumed to have available a stochastic model of the degradation process and thus, a model-based particle 

filtering (PF) method [16,25], has been set-up to predict the distribution of the system RUL and online-

update it when new observations are collected [82-83]. The second situation considered, hereafter referred to 

as cases 2, has available a number of observations related to the degradation evolution and the failure times 

of a set of similar systems operating under similar conditions. Two sub-cases can be distinguished: a first one 

(case 2A) where the relation between observations and degradation is not known and thus one has to resort to 

direct RUL prediction, and a second one (case 2B) where this relation is known and can be used to develop 

degradation-based prognostics. In case 2A a prognostic method using similarity-based regression (SBR) 

[12,29,40] has been developed [88-89], in case 2B Gaussian Process Regression (GPR) [41-42] has been 

used to model the evolution of the degradation process [86-87]. Furthermore, since, in a situation where 

more prognostic methods can be applied, it is often hard to chose among them, a combined approach which 

aggregates the different outcomes of the SBR and the GPR methods has also been developed [92]. Finally, a 

third situation considered, hereafter referred to as case 3, assumes to have available a sequence of 

degradation observations only for the equipment of interest. In this situation, it is necessary to resort to 

degradation-based prognostics, since no failure data are available from similar pieces of equipment which 

have failed in the past. Although the situation is similar to that of case 2B, more robust methods have to be 

used in this case, since much fewer data are available. For this, we resorted to the ensemble technique and 

proposed two approaches based on a Kalman Filter (KF)-aggregated ensemble [30, 81] and a bootstrapped 

ensemble of degradation models [35,82-85]. 

 

 
Figure 1: pictorial view of the situations of information available considered and the corresponding 
prognostics methods developed to tackle them. 

Case 1
Case 2

Case 3
A B

Model of the 
degradation process 
Observations from the 
equipment of interest    
Observations from 
similar equipment  
Failure threshold   

Observation equation    
Failure times of similar 

equipment 

Particle 
Filtering (PF)

Bootstrapped ensemble of linear models

Similarity‐
based 

regression 
(SBR)

Gaussian 
process 

regression 
(GPR)

Combined SBR and GPR

KalmanFilter 
(KF) ensemble

MODEL‐
BASED

DATA‐DRIVEN

Direct RUL 
prediction

Degradation‐based prognostics
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To perform their task, prognostic models have to project the current equipment condition in time, in the 

absence of future measurements about its degradation state and operational conditions. This leads to 

propagating large uncertainties which need to be assessed and managed (objective 3), by associating 

uncertainty estimates to the RUL predictions provided, so to measure the expected mismatch between the 

real and predicted equipment failure times, which can be used by the maintenance planner to confidently 

schedule maintenance actions, according to the desired risk tolerance. In this context, the contribution of this 

work has been the development of prognostic methods capable of correctly quantifying their prediction error 

and supplying a reliable prediction interval (instead of a point prediction) for the value of the RUL [82-90]. 

Also, this work has contributed to the way of investigating the capabilities of different prognostic approaches 

to deal with the uncertainty in the RUL prediction by considering the variance of the RUL prediction error as 

a suitable measure of prognostic uncertainty, decomposing it into three components representing the three 

main sources of uncertainty identified above, studying the contribution of the different sources of uncertainty 

and validating different prognostic approaches with respect to their capability of providing accurate estimates 

of the RUL prediction error variance [82].  

Two case studies with simulated data have been developed to validate the prognostic approaches poposed 

(objective 4): the linear growth of creep damage in the blades of a helium gas turbine of a Gas Turbine 

Modular Helium Reactor (GT-MHR) [81-85] and the non-linear growth of creep damage in ferritic steel 

equipment (simulated data) [86-88]. A further case study taken from the nuclear industry and concerning the 

clogging of filters in a Boiling Water Reactor (BWR) condenser has also been considered to demonstrate the 

applicability of the prognostic methods on real data [87-90]. 

1.3 Structure of the thesis 

The thesis comprises two parts. Part I, subdivided in six Sections, addresses the objectives undertaken, 

illustrates the methods developed and employed in this PhD work, and discusses some of the results obtained 

in the case studies. Part II is a collection of a work report and six selected papers, written as a result of this 

PhD work, to which the reader is referred for further details. 

The first objective considered in this work, i.e., the pre-treatment of noisy and unreliable field data for their 

use in prognostics, is introduced in Section 2 and more extensively discussed in Report A of Part II, in the 

context of choke valve erosion assessment. Section 3 introduces the concepts behind remaining useful life 

prediction and discusses the two important topics of prognostic model selection based on the available 

information (objective 2), and treatment of prognostic uncertainty (objective 3), which are further detailed in 

Papers II and III of Part II. The central Section 4 focuses on the description of the prognostic methods 

developed during this PhD to tackle the three situations of information available summarized in Figure 1 and 

provide accurate RUL prediction with reliable measures of the prediction uncertainty. In Section 4 methods 

are organized based on the specific situation of information they have been designed for. Section 5 discusses 

some results obtained in the validation of these methods on case studies about the linear growth of creep 

damage in turbine blades and the clogging of sea water filters. Both Sections 4 and 5 make extensive 

reference to the six selected papers of Part II, which treat more in details the prognostic approaches 

developed and show the results of their application to some case study among those considered. Tables 1, 2 
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and 3 summarize the structure of this thesis with respect to the objectives undertaken, the prognostic methods 

presented and, respectively, the case studies considered. 

Table 1: structure of the work with respect to the objectives undertaken 

  PART I PART II 
Objective Section Paper/Report 

1. Pre-treatment of prognostic data 2 A 
2. Model selection based on the available information 3.1, 4 II 
3. Treatment of prognostic uncertainty  3.2, 4 III 
4. Evaluation of the proposed prognostic methods 5 I-VI 

Table 2: structure of the work with respect to the prognostic methods presented 

PART I PART II 
Method Section Paper/Report 

Kalman filter ensemble 4.3.1 I 
Particle Filtering 4.1.1, 5.1 II-III 
Bootstrapped Ensemble 4.3.2, 5.1 II-III 
Similarity-based regression (SBR) 4.2.1, 5.2 IV 
Gaussian process regression (GPR) 4.2.2, 5.2 V 
Combined SBR and GPR methods 4.2.3, 5.2 VI 

Table 3: structure of the work with respect to the case studies considered 

  PART I PART II 
Case study Section Paper/Report 

Linear creep growth in turbine blades (simulated data) 5.1 I-III 
Non-linear creep growth in ferritic steel (simulated data) - IV-V 
Clogging of filters in a BWR condenser (real data)  5.2 IV-VI 
Erosion of choke valves in extraction wells (real data)  2 A 
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2 Pre-treatment of prognostic data 

In the industrial application of the prognostic approaches developed and investigated in this work, we may 

very likely have to face additional problems related to the limited and unreliable information available about 

the equipment degradation state or the future operating conditions. During this thesis work, this problem has 

been encountered in the context of a case study with real data taken from eroding choke valves located 

topside at wells in offshore platforms on the Norwegian Continental Shelf [43,91-94].  

In oil and gas industries, choke valves are used to control flow rates and protect the equipment from unusual 

pressure fluctuations. They are based on a throttle mechanism made of two circular disks, one fixed and one 

rotating, each with a pair of circular openings to create variable flow areas (see Figure 2).  

 
Figure 2: Typical scheme of a choke valve: by rotating the disk the flow is 
throttled (picture taken from www.vonkchokes.nl). 

Combined mechanisms of erosion-corrosion cause choke lifetimes of less than one year [44]. To avoid 

failures, effective erosion management strategies must be implemented, requiring the development of 

reliable models to estimate the erosion and predict the lifetime of choke valves [45-46]. A common indicator 

of the valve flow capacity is the flow coefficient VC . For a specific valve opening  , erosion produces a 

gradual increase of the valve area available for flow transit, thus determining an increase of CV. For this 

reason, knowing the value of the flow coefficient is fundamental for assessing the erosion state of the choke, 

and, consequently, for defining a failure criterion, evaluating correctly the life duration of valves, and, 

further on, modeling the degradation process.  

During operation, VC  is not directly measured but computed as a function of the pressure drop through the 

choke, P , the oil, water and gas flow rates, oM , wM  and gM , respectively, and the valve opening   

[47]. Thus, for a correct assessment of the choke erosion state, it is fundamental to have reliable 

measurements or estimates of the parameters P ,  , oM , wM  and gM , used to compute the flow 

coefficient VC . Nevertheless, only the pressure drop P , and the valve opening   are measured during 

daily standard inspections, whereas measures of water, oil and gas flows rates are taken downstream of the 

choke with a multiphase flow separator only during well tests performed about once per month. On daily 

bases, the values of oM , wM  and gM  for a single well are allocated based on the measured total 

production and on the values of physical parameters, such as pressures and temperatures related to the 

specific well. In practice, the resulting indication of the choke valve state is very noisy and lacks the physical 

monotonicity of the erosion process; allocated values of oil, gas and water flow rates are conjectured to be 

the cause of the large inaccuracies and uncertainties in the calculation of the actual valve flow coefficient. To 

Turning fork

Front disc

Bean

θ
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verify this and improve the accuracy and reliability of the available information, different tools for the pre-

treatment of degradation-related data have been developed during this thesis. 

First, a monotonicity index has been proposed to evaluate the reliability of a sequence of degradation 

indications [91]. Then, a method for verifying reliability of some uncertain parameters in the observation 

vector jz  has been developed, by means of the Fuzzy C Means (FCM) clustering algorithm [48-49,91]. 

Based on expert knowledge, the Q -dimensional space of the observable parameters is partitioned in two 

subspaces of reliable and uncertain parameters. FCM is applied to the projections of the dataset of available 

observations R
r

r

nr 1:1
}{  zD  into the subspace of the reliable parameters (e.g., pressure drop and choke 

opening in the choke valve case study) and the subspace of the uncertain parameters (e.g., oil, water and gas 

flow rates in the choke valve case study). The two partitions are compared to investigate the coherence of the 

information conveyed by the parameters. Finally, since the values of oil, gas and water flow rates in the 

choke valve case study are found unreliable, a method for improving their estimates has been developed 

based on the relations among all observable parameters. To this aim, an ensemble of Kernel Regression (KR) 

models, a distance-based regression algorithm [50-51], is devised to avoid the need of selecting the optimal 

model and to increase the robustness and reduce the uncertainty of the estimate [52-53, 91-94]. Diversity is 

injected in the ensemble by differentiating the training procedure for each KR model. Different procedures 

for the aggregation of the KR model outcomes have been compared; in particular, an original procedure, 

based on the weighted average of the single model outcomes with weights calculated using the Analytic 

Hierarchy Process (AHP) [54,91] has been developed for those situation where performance-based 

aggregation algorithms cannot be applied due to the unavailability of reliable observations for the value of 

the uncertain parameters. 

In the choke valve case study, we have noticed that, depending on the well, either the physics-based model 

for flow rates allocation or the data-driven KR models ensemble can provide the most accurate estimates of 

the flow rates to be used for computing the flow coefficient and assessing the valve erosion [92]. Physics-

based approaches rely on the assumption of deep understanding of the system behaviours and detailed 

knowledge of geometry, material properties and other characteristics of the system. On the other side, data-

driven approaches are only accurate when applied to the same, or similar, operating condition for which data 

have been collected. Outside the training space of the empirical models, physics-based models should be 

preferred, because their results come from universal first principles. The combination of physics-based and 

data-driven models, usually termed hybrid models, aims to balance out their different errors and to augment 

the robustness and interpretability of physics-based models with the sensitivity of data-driven methods 

[9,34,45]. In this work, a hybrid approach has been applied to improve the accuracy of the estimates of the 

uncertain parameters provided by the physic-based model, by appending to it the ensemble of Kernel 

Regression (KR) models [93-94]. In order to exploit the KR models only when actually needed, a local 

performance-based approach is adopted for the aggregation of the different model outcomes [55]. 

The tools developed for data pre-treatment are briefly sketched in this section; a detailed description of the 

algorithms and all the results of their application to the choke valves case study, are given in Report A of 

Part II. 
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2.1 Monotonicity index 

In general, a sequence of degradation indications r
jz ,  is expected to be monotonic, since degradation cannot 

decrease in time unless maintenance actions are performed or the degradation process includes some self-

healing mechanism. A quantitative index of monotonicity is the Spearman’s rank correlation used in 

statistics to assess how well the relationship between two variables can be described using a monotonic 

function [56]. The Spearman’s rank correlation coefficient rSRCC  between the degradation indication r
jz ,

and time r
jt , at which the observations of the r -th trajectory are taken, is computed as: 
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where )( ,
r

jzR   and j  are the ranks (i.e., the relative positions) of observation r
jz  when all observations are 

ordered with respect to the values of r
jz ,  and r

jt , respectively. Values of rSRCC  close to 1 are expected for 

a monotonic quantity.  

2.2 Cluster analysis 

Let D  be a generic set of N observations ];[ UR
jjj zzz  , of Q  parameters which can be divided in a vector 

R
jz  of Rq  reliable parameters, and another vector U

jz  of Uq  uncertain parameters, whose observed values 

are doubted to be reliable. In general, the distinction between reliable and uncertain parameters can be 

achieved based on expert judgment, data analysis or by resorting to data validations techniques which allow 

detecting anomalous behaviors in datasets. In the choke valve case study, we have ],[R Pj z  and 

],,[U
gwoj mmm z  according to expert judgment [91].  

In this work, a procedure has been proposed for verifying whether the information provided by the uncertain 

parameters in U
jz  is coherent with that of the reliable parameters in R

jz . This is done by considering the 

relative positions of the observations in the Rq -dimensional subspace of the reliable parameters, and in the 
Uq -dimensional subspace of the uncertain parameters [91]. An effective technique to find a structure in a 

collection of unlabeled objects is unsupervised clustering, consisting in the organization (partition) of the 

observations into non-overlapping, non-empty groups (clusters) so that observations of the same cluster are 

similar between them and dissimilar to the observations belonging to other clusters [57]. For the validation 

of the uncertain parameters, two different partitions ( RΓ  and UΓ ) of the dataset D  into C clusters are 

considered: RΓ  is obtained using the unsupervised Fuzzy C-Means (FCM) clustering technique in the 

reliable parameters space, whereas UΓ  obtained by applying the same technique in the uncertain parameters 

space. The cluster structure thereby identified by RΓ  is assumed as reference in the comparison with the 

partition UΓ , since it is built using only the reliable information in D . The clusters of RΓ  and UΓ  are bi-

univocally associated by minimizing the distance between the two partitions [58] and crisp partitions R  

and U  are obtained from the fuzzy partitions RΓ  and UΓ , respectively, by assigning a observation jz  to a 

given cluster if its degree of membership to the cluster, exceeds a predefined threshold, which represents the 
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required degree of confidence for the assignment. The crisp partitions R  and U  are compared by 

considering the difference between the sets of observations assigned to associated clusters. A large difference 

in the assignment of the observations to the clusters in the two partitions is taken as a symptom that the 

information conveyed by the uncertain parameters may be misleading. 

A further analysis based on a supervised clustering technique is also proposed, where a clustering algorithm 

based on Mahalanobis metrics [58] is used to obtain a partition MΓ  of the entire Q -dimensional dataset as 

close as possible to that obtained based only on the reliable parameters ( RΓ ). Based on the Mahalanobis 

metrics providing the partition MΓ , a measure of the importance in the clustering of the different parameters 

is calculated and used to verify the coherence of the information conveyed by the uncertain parameters with 

that conveyed by the reliable ones. 

2.3 Improving process parameter estimates 

The analysis presented in Section 2.1. and 2.2 performed on the choke valve case study, led to the conclusion 

that, in some circumstances, which may correspond to specific operating conditions, the physics-based 

model used to provide the allocated values of the mass flow rates oM , wM  and gM  does not work 

properly, and thus the allocations are noisy and uncertain (see Report A of Part II). For this reason, a hybrid 

ensemble approach has been developed for improving the estimates of process parameters provided by 

partially uncertain models or measurements [93-94].  

The ensemble, sketched in Figure 3, is fed with the observation jz , and provides improved estimates Uˆ jz  of 

the uncertain parameters vector U
jz .  

 

 
Figure 3: Pictorial view of the hybrid ensemble approach. 

The ensemble includes the physics-based model used to estimate the uncertain parameters U
jz  and H  data-

driven Kernel Regression (KR) models [59], which learn the relationships between the parameters from the 

dataset of all available observations D  or, if possible, from a subset of it, containing only reliable data. For 

example, in the choke valve case study, a subset of the entire available dataset D  containing only the reliable 

observations taken during well tests should be used for more robust training of the KR models. KR models 

return as outputs the estimates of the uncertain parameters they have been fed with in input. Such estimates 
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are obtained as weighted averages of the training observations, with weights decreasing in function of the 

distance between training and test observations: by use of a Gaussian kernel function [59], training 

observations closer to the test one are weighed more in the averaging because they are assumed to be more 

similar to it. Diversity between the KR models of the ensemble is obtained by varying the parameters used to 

compute the distance between training and test observations.  

Performance-based aggregation techniques have proved to be effective for the aggregation of the outcomes 

of the individual models of the ensemble. However, they require the availability of a validation dataset of 

reliable observations for the value of the parameters under estimations. In the context of the estimation of 

uncertain parameters, such validation dataset may not be available. In this work, an original procedure for the 

aggregation of the different ensemble model outcomes in the absence of a validation dataset has been 

developed, based on the AHP technique (see also Section 3.3 of Report A) [91-92]. AHP is used to assign 

performance weights to the models of the ensemble. AHP is a multi-criteria decision method that uses 

hierarchic structures to represent a decision problem [54] and provides ranking of the different models 

outcomes using relative performance measurements, without resorting to an absolute measurement of the 

model performance. It consists of two main steps: 1) structuring a hierarchy; 2) assigning priorities to the 

elements of each hierarchy level by comparative judgments of the elements based on a pre-defined scale. A 

three level hierarchy structure is used: the ensemble models (level 3) undergoes pairwise comparisons with 

respect to two criteria Z1 and Z2 (level 2) towards the goal (level 1) of obtaining high model accuracy. The 

first criterion Z1, chosen to evaluate the relative importance of model h  with respect to model 'h  in the 

estimate of a test observation jz , is the relative similarity of the two models outcomes h
j

,Uẑ  and ',Uˆ h
jz  to the 

remaining models outcome '',Uˆ h
jz , ','' hhh  . Assuming that the model outcomes of the models left out of the 

pairwise comparison are distributed around the correct value, this criterion assigns larger weights to the 

model whose outcome is more similar to those of the models left out. The similarity of two estimates h
j

,Uẑ  

and ',Uˆ h
jz  has been estimated by the inverse of their Euclidean distance ',hh

jd ; the relative importance of a 

model h  with respect to model 'h  when model ''h  is taken as reference is defined by the ratio '','',' / hh
j

hh
j dd  

and the overall relative importance of model h  with respect to model 'h  is given by the product of the 

relative importance with respect to all remaining models ','' hhh  . A second criterion Z2 for evaluating the 

performance of a model takes into account the RMSE in reconstructing the reliable parameters in h
j

,Rz , i.e. 

the root mean square difference between the reconstructed and measured values. This second criterion is 

based on the idea that robust and accurate models should be able to correctly reconstruct the reliable 

parameters despite the noise on the uncertain parameters. Based on the comparisons performed with respect 

to criteria Z1 and Z2, the AHP provides a ranking of the different model outcomes which is used to weight 

them before they are averaged to provide a single aggregated estimate of the uncertain parameters.  

In the choke valve case study, reliable observations for the mass flow rates are collected during well tests, so 

that it has been possible to apply a local performance-based techniques for aggregating the ensemble model 

outcomes [93-94]. This technique relies on the idea that each model can perform well in some regions of the 

parameter space and poorly in others; then, the aggregation has been guided by the local performance of each 

model, i.e., its reconstruction accuracy on training observations similar (and for this reason also called 

neighbors) to that under test (see also Section 4.1 of Report A) [55]. This allows exploiting the data-driven 

KR models only when they outperforms the physics-based model, thus avoiding affecting its accuracy when 

it actually outperforms the KR models. For each parameter Uq  to estimate, the local performance 
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aggregation approach adopted assigns to the generic model h  in the ensemble a weight proportional to the 

model performance evaluated considering the inverse of its mean square estimation error over the N  

training observations neig
N:1z  closest to the test observation jz . The estimation error made by model h  in 

providing the estimates h
Nqz ,neig

:1,ˆ  of the q -th parameter is obtained by comparing it to the corresponding well 

test measurement. The final estimate jqz ,ˆ  of parameter q  is obtained as the average of the multiple model 

estimates h
jqz ,ˆ  weighted with the performance-based weights. 

In Figure 4 the values of oil, water and gas flow rates measured during the well tests in the choke valve case 

study are compared with the estimates obtained by the physics-based model and by the locally-aggregated 

hybrid ensemble. Results show that the hybrid ensemble and the physics-based model estimates are in 

general very similar except for the oil flow in well 1 where the ensemble estimates significantly outperform 

the physics-based model estimates. This results from the fact that the locally-aggregated hybrid ensemble can 

correctly mediate between the physics-based and data-driven approaches, since the local-performance 

aggregation technique is able to automatically distinguish those cases in which the physics-based model 

works properly from those in which it is convenient to integrate the data-driven models.  

 

 
Figure 4: comparison of the measured valued of oil, water and gas flow rates with the estimates obtained by the physics-based model 
and the hybrid ensemble. 
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3 Remaining Useful life prediction 

The aim of prognostics is to estimate the Remaining Useful Life of degrading equipment. Let us discretize, 

for ease of exposition, the continuum time variable t into a sequence of time instants jt , ,...2,1j  assumed 

to be equally spaced. We indicate by j  the degradation level of a piece of equipment at time jt  and by 

)](),...,(),...,([ 1 jQjqjj tztztzz  a vector of observations of Q  relevant parameters )( jq tz  related to the 

equipment degradation, measured at time jt . In this work, we assume that the equipment is subject to a 

single degradation mechanism described as a random process; we do not consider the effects that other 

competing degradation mechanisms can have on the equipment degradation. It is also assumed that the 

equipment degradation cannot exceed a maximum acceptable level, hereafter referred to as failure threshold, 

th , which is fixed and identical among similar equipment. Notice that in prognostics the failure threshold 

does not necessarily indicate complete failure of the system, but, for safety margins, it is often set to a 

conservative value of the degradation beyond which the risk of complete failure exceeds tolerance limits or 

the performance of the system does not fulfill the requirements [60]. Setting at 00 t  the beginning of the 

working life of equipment r, its life duration is given by the time Ft  at which its degradation crosses the 

failure threshold, and its RUL at the present time Jt  is equal to  

 

 JFJ ttrul  . (2) 

 

3.1 Information and data for prognostics 

Different forms of information and data may be available for the assessment of the evolution to failure of 

degrading equipment. Depending on the situation, different prognostic approaches may be applied [9-10]. 

The main sources of information upon which prognostics can be based have been classified in the following 

six categories summarized in Table 4 and further detailed here:  

1. Physical model of the degradation mechanism (source A, Table 4), e.g., described by a first-order 

Markov process:  

 

 ),( 11  jjj g γ ; )(~ 00 0  p  (3) 

 

where )( 00 p  is the initial distribution of the degradation at time 0t , g  is a possibly non-linear 

transition function describing the value of a one-time-step degradation increment, and jγ , ,...2,1j

is a sequence of mutually independent vectors of state noises. Model g  can contain parameters 

referring to system inherent characteristics (material, physical, chemical, geometrical, etc.), which 

may vary from one individual system to another of the same type: this variability is described by 

probability distribution functions. 

 



16 

 

Table 4: main sources of information for prognostics 

Source Description 
Mathematical 
representation 

A Stochastic model of the degradation process eq.(3) 

B Sequence of observations related to the degradation of the test 
equipment collected at Jt :1  

test
J:1z  

C 
Historical sequences of observations related to the degradation of a 

set of R failed systems collected at )(rn  time instants jt , 
Rr ,...,2,1 , )(,...,2,1 rnj   

R
r

r
nr 1:1

}{ z  

D Value of the failure threshold th  

E Measurement equation eq.(4) 

F Durations of lives of the set of S failed systems s. R
r

r
Ft 1}{   

 

2. A set of observations, collected at different time instants, during the life of the equipment whose 

RUL we want to predict (source of information B, Table 4), hereafter referred to as test equipment, 

or of a population of R  identical or similar pieces of equipment (source of information C, Table 4), 

hereafter referred to as reference equipment. Among the observable process parameters in test
jz  there 

can be a direct measure of the degradation state of the system (e.g., depth of a crack fracture, 

elongation of a creeping component, etc.) or they can be only indirectly related to it (e.g., the time of 

travel or the intensity of ultrasonic waves for non-destructive inspections). In the following, we 

indicate by r
nr:1z  the observations collected at times r

nrt :1  during the degradation of the r-th reference 

piece of equipment, and by test
J:1z  those collected for the test equipment until the present time test

Jt :1 . 

The superscript test will be omitted when not necessary to the clarity of explanation.  

3. The value of the failure threshold th  (source D, Table 4). 

4. The observation equation (source E, Table 4), i.e., the physical model describing the relation 

between the observation jz  and the actual degradation state j  of the system: 

 

 ),( jjj u γz    (4) 

 

where u  is a known function, in general non-linear, and jγ  is a vector of measurement noises.  

5. The life durations R
r

r
Ft 1}{   of the R  reference pieces of equipment which have failed in the past 

(source F, Table 4); notice that, the actual value of the RUL of the r-th failed equipment can be 

computed at any time r
F

r
j tt   according to eq. (2) 

Three cases are considered in this work (Figure 1), in which the sequence of observations J:1z  collected 

during the life of the test equipment (source of information B) is available in combination with other 

different sources of information. 

In case 1, the physical model of the evolution of the degradation state is known, as well as the distribution 

and evolution in time of all its characteristic and external parameters (source A). Other sources of 

information available are the value of the failure threshold th  (source D) and the observation equation 
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(source E) linking the observations with the degradation state. This situation is typical for well known 

degradation mechanisms, such as the crack or creep growth processes, which have been widely studied in 

laboratory.  

In case 2, a set of observations R
r

r
nr 1:1 }{ z , from the R  reference pieces of equipment (source C) is assumed to 

be available. Each sequence of observations r
nr:1z  is hereafter called training trajectory. This situation is 

typical for short-life systems, for which many trajectories to failure can be observed. In this situation, we 

have distinguished two sub-cases A and B: in case 2A, the duration of equipment lives R
r

r
Ft 1}{   (source F) is 

known; in case 2B, instead, we know the measurement equation (source E) and the failure threshold th  

(source D). Notice that, in case 2B, life duration data could be available instead of the failure threshold, since 

the value of this latter can be derived, in general, from the degradation state of the reference equipment at the 

time of its failure, which can be in turn derived from the observations R
r

r
F 1}{ z , when the observation 

equation is available and the training trajectories have been collected until failure of the reference equipment. 

Finally, in case 3, the information available is the observation equation (source E) and the failure threshold 

th  (source D). This situation can occur in case of very reliable systems, e.g., those used in the nuclear 

industry, which have very long life durations and are usually renewed before failure happens.  

3.2 Uncertainty treatment 

A prognostic model plays the central role of receiving in input different available pieces of information 

concerning the state of health of the equipment of interest and predicting its RUL by projecting the current 

system condition in time [61-62]. Since the prediction of the Remaining Useful Life (RUL) of degrading 

equipment is performed in the absence of future measurements concerning the equipment degradation and 

operational conditions, the prognostic task is necessarily affected by large uncertainty.  

In this work, the sources of uncertainty affecting the RUL prediction are classified in three categories: 

a. Randomness in the future degradation of the equipment. This intrinsic uncertainty in the degradation 

process has several causes such as the unknown future load profile, and operation and environmental 

conditions. 

b. Modeling error, i.e., inaccuracy of the prognostic model used to perform the prediction. In model-

based prognostic approaches, this source of uncertainty takes into account the assumptions and 

simplifications made on the form and structure of the model, and the uncertainty on the model 

parameters. In data-driven approaches, it relates, for example, to the incomplete coverage of the data 

set used to train the empirical model. 

c. Uncertainty in current and past equipment degradation data, which are used by the prognostic model 

to elaborate the RUL prediction. These data are usually acquired by sensors with some measurement 

noise or derived from diagnostic systems assessing the equipment health state with some degree of 

uncertainty. 

The model and observation uncertainties (sources b and c) can be interpreted as the epistemic uncertainty 

related to our limited knowledge about the degradation process and the equipment degradation state, whereas 

the process uncertainty (source a) is related to the stochastic uncertainty intrinsic to the degradation process.  
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The challenge of managing uncertainties associated with prognostics has been recently addressed in [60-61]. 

Uncertainty management in prognostics entails to identify, classify and analyze uncertainty sources with the 

aim of associating to the RUL predictions provided by a prognostic model an estimate of its uncertainty 

[9,60,63-64], i.e., a measure of the expected degree of mismatch between the real and predicted equipment 

failure time. This information can be used by the maintenance planner to confidently plan maintenance 

actions, according to the desired risk tolerance [62].  

As degradation evolves randomly in time, due, e.g., to the scatter in the microstructural and manufacturing 

characteristics of equipment, the loading and external conditions variability, etc., the damage state of 

equipment r  at any future time jt , is better represented by a random variable )( jt  rather than by a 

deterministic quantity [65]. As a consequence, also the equipment RUL at the present time Jt  should be 

represented by a random variable JRUL  [83]. Thus, the prognostic output of interest with respect to an 

equipment with current degradation state J  is the probability density function (PDF) )|( JRUL rulp J  . The 

uncertainty described by such distribution regards the future stochastic evolution of the equipment 

degradation and, thus, it is irreducible. 

A realization Jrul  of the random variable JRUL  can be written as: 

 

 JJJJ aRULErul  ]|[   (5) 

 

where ]|[ JJRULE   is the expected value of the RUL of a piece of equipment with degradation J  at time 

Jt , and Ja  is a random variable with zero mean and variance 2
a  which represents the uncertainty on the 

future evolution of degradation (source of uncertainty a in the itemized list above). 

In practice, the exact value of the current degradation state J  as well as the true distribution of the 

equipment RUL are not know, in general, and have to be estimated from the available information. Thus, the 

objective of applying prognostics to equipment r , having available the information set   is to estimate the 

PDF )|( rulp JRUL .  

Let us assume to build a prognostic model f  that, given in input the observations J:1z , generates at time Jt  

the prediction Jlur ˆ , i.e. )|(ˆ :1  JJ flur z , based on the information set  . The realization Jrul  of the 

random variable JRUL  can be re-written as: 

 

 JJJ elurrul  ˆ  (6) 

 

where JJJ rullure  ˆ  is a random variable with zero mean and variance ]|[ JeVar  representing the error 

made by model f  in predicting the equipment RUL. Then, in practice, since it is often hard to accurately 

estimate the PDF )|( rulp JRUL , the prognostic information can be well summarized by: 

 the expected value ]|[ JRULE  of JRUL  conditioned on the set of available information  , an 

estimate of which, hereafter referred to as the RUL prediction, is provided by the prognostic model 

)|(ˆ :1  JJ flur z ;  
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 the variance of the RUL prediction error ]|[2  Je eVar
J

 , representing a measure of the accuracy 

with which the estimate Jlur ˆ  predicts the actual RUL value. 

The variance 2
Je  includes in addition to the process uncertainty (source of uncertainty a), the model 

uncertainty (source of uncertainty b) and the observation uncertainties (sources of uncertainty c). The model 

uncertainty can be due to modeling errors already included in the available information   or introduced 

while building the prognostic model that generates the RUL prediction from the available data; the 

observation uncertainty is due to measurement noises and other sources of error affecting the observations 

jz , j=1,2,…, r=1,2,… available. In Paper III of Part II it is shown that, under some independency 

assumption, the prediction error variance 2
Je , can be decomposed into three components representing the 

three sources of uncertainty a, b, and c: 

 

 22222 ])ˆ[( cbaJJe rullurE
J

   (7) 

 

In practice, when using a different framework than the probability theory to represent uncertain quantities, 

e.g., the belief function theory presented in Section 4.2.1 below, it may not be possible to produce an 

estimate of 2
Je . Then, our goal in performing prognostics, has been, more generally, to provide the estimate 

Jlur ˆ  of the expected value ]|[ JRULE  of JRUL , and a credible prediction interval 

)](),([)( supinf  JJJ rulrulCI   to which the value of JRUL  can be assigned with a confidence of at least 

 . Within a probabilistic framework, the prediction interval can easily be derived from the estimated 

prediction error variance 2
Je  under the hypothesis that the prediction error has a Gaussian distribution.  

A more detailed discussion about uncertainty treatment in prognostics can be found in Paper III of Part II. 
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4 Modeling approaches for RUL prediction 

This Section illustrates the different modeling approaches undertaken during this PhD work to cope with the 

three prognostic cases outlined in Section 3.1 and Figure 1. Each approach is described with reference to a 

well defined situation of information available; this provides a structured procedure for guiding the choice of 

the prognostic approach to be adopted depending on the information available in the specific situation 

encountered.  

However, in real industrial applications, it is common to face hybrid situations characterized by the 

availability, at the same time, of more sources of information than those considered for each particular case 

of Figure 1. In such situation, it is possible to apply multiple prognostic approaches among those presented, 

each of which makes use of different pieces of available information to provide the RUL prediction. In such 

situations, the identification of the correct prognostic approach to be applied may not be trivial, also because 

some sources of information can be partially inaccurate or affected by large uncertainty. In this context, one 

can chose between two main strategies: (i) identifying the best performing approach or (ii) properly 

combining the outcomes of the different approaches. Concerning the first strategy (i), an analysis of the 

sensitivity of the performance of different prognostic approaches to the quality and quantity of the 

information available has been carried out in the context of the linear creep growth case study presented in 

Section 5.1, by considering a case in which all the sources of information listed in Table 4 are available at 

the same time, so that all types of prognostic approaches discussed can be applied. Concerning the second 

strategy (ii), many aggregation techniques able to correctly weight the different outcomes of multiple models 

have been proposed in literature [34], some of which have been adopted and further developed also during 

this PhD (Sections 2.4 and 4.3.1); however, these strategies do not consider, in general, the problem of 

incorporating different types of prediction uncertainty measures. A solution to this problem has been 

proposed during this work, for combining predictions whose uncertainty is represented in the two different 

frameworks of probabilistic and evidential reasoning (Section 4.2.4). 

4.1 Model-based prognostics (Case 1) 

In the context of available information shaped by case 1, a model based approach is in general a good choice 

if one is confident about the accuracy of the available model of the degradation process. In this case, at time 

Jt , the current degradation state J  is not directly known, but some information about its value is conveyed 

by the stochastic dynamic model of the degradation process in eq. (3) and the observation equation in eq. (4), 

the sequence of J  observations J:1z  related to the equipment degradation state, which are assumed to be 

known. Thus, instead of estimating )|( JRUL rulp J   we are forced to restrict our objective to estimating the 

probability density function (PDF) )|( :1 JRUL rulp J z , conditioned on the observations J:1z  [82-84]. 

In this setting, it is desired to infer the unknown PDF )|( :1 Jjp z  of the degradation j  of the test 

equipment at the future times Jj tt   on the basis of all the observations J:1z . The RUL cumulative 

probability distribution )|( :1 JRUL rulP J z  is then computed from )|( :1 Jjp z  as the probability that the 

failure threshold th , whose value is also known, is exceeded before time rultJ  . A Bayesian approach is 

typically used to estimate the filtered posterior PDF )|( :1 Jjp z  by a recursive computational procedure 

divided into successive prediction and update stages [18,22]. Unfortunately, except for a few cases, including 
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linear Gaussian state space models (Kalman filter) and hidden finite-state space Markov chains (Wohnam 

filter), it is not possible to evaluate analytically the filtered posterior PDF )|( :1 Jjp z , since it would 

require the evaluation of complex high-dimensional integrals. For this reason, approximation methods are 

necessary [17-18]. Due to its flexibility and ease of design, a numerical approximation of the Bayesian 

estimate based on the Monte Carlo sampling technique and called particle filtering, has been set-up in this 

work to predict the distribution of the system RUL and online-update it when new observations are collected 

[18,22,82]. Here, only a synthetic description of particle filtering is given; for a deeper discussion about the 

Bayesian approach to prognostic, and for the analytical details of the PF method the reader is refer to Paper 

II of Part II. 

4.1.1 Particle Filtering 

The Sampling Importance Resampling (SIR) version of PF has been adopted in this work. The proposed 

approach improves the one previously proposed [16] by taking into account the uncertainty on the 

parameters of the model of the degradation process and addressing the particle degeneration problem by 

means of the resampling algorithm.  

The SIR PF method is based on sampling a large number K  of trajectories K
k

k
F 1:0 }{   (called particles), by 

recursively sampling the state k
j  from the transition PDF )|( 1

k
j

k
jjp   , which can be derived from the 

physical model in eq. (3), until the failure threshold th  is exceeded and the life duration k
Ft  of the k –th 

particle is recorded. The value k
Jrul  of the particle RUL at time step Jt  can then be computed from eq. (2). 

When an observation Jz  is collected for the test trajectory, each particle is assigned a weight k
Jw  

proportional to the likelihood of its degradation state k
Jd  at the time Jt , i.e., the probability )|( k

JJ dp zz  of 

observing Jz  given that the equipment degradation is k
Jd  [16]. The PDF )|( :1 JRUL rulP J z  is then 

approximated by an histogram of the K  weighted values k
Jrul , Kk ,...,1 , of the particle RULs at time Jt ; 

the weighted average and the weighted standard deviation of the k
Jrul  represent the prediction Jlur ˆ  of the 

expected value ]|[ :1 JJRULE z  of JRUL  and the estimate 2ˆ
Je  of the prediction error variance 2

Je , 

respectively. The prediction interval )](),([)( supinf  JJJ rulrulCI  , i.e., the interval expected to contain the 

true RUL value Jrul  with a probability of  , is obtained by setting )(inf Jrul  and )(sup Jrul  equal to the 

2/)1(   and 2/)1(   percentiles, respectively, of the RUL distribution estimated by the PF. 

Unfortunately, the procedure illustrated suffers from the so called degeneracy phenomenon: after few 

samplings, the weight variance increases and most of the K particle weights become negligible so that the 

corresponding trajectories do not contribute to the estimate of the PDF of interest [18,22]. As a result, the 

approximation of the target distribution )|( :1 JRUL rulP J z  becomes very poor and significant computational 

resources are spent trying to update particles with minimum relevance. The solution implemented to 

overcome this problem is the bootstrap resampling algorithm [17]. When degeneracy occurs, e.g. after few 

iterations of the weight updating procedure, K samples are drawn with replacement from the swarm of K 

particles; the k -th particle is sampled with a probability proportional to its weight value k
Jw  and the 

sequence of degradation state k
J:1  until time Jt  is retained for the resampled particle 'k  and recursively 

augmented with degradation states '
1

k
j   sampled one more time from the transition PDF. The K resampled 

particles are then assigned the same weight K/1 . Then, the filtering procedure continues with the original 

trajectories k
F:1  and the associated weights k

Jw  replaced by new trajectories '
:1
k
F  with weights Kwk

J /1'  .  
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As for the uncertainty in the RUL prediction, in this approach the randomness of the degradation process 

(source of uncertainty A) is described by the model, whereas the observation equation accounts for the 

observation noise (source of uncertainty C). Thus, these two causes of uncertainty are accounted for in the 

RUL prediction through the procedure of particle sampling and weights updating, respectively. On the 

contrary, the contribution of model uncertainty (source of uncertainty B) to the RUL prediction uncertainty is 

not directly considered, since it is assumed that the degradation dynamics model and the observation 

equation are exactly known. The effects of this uncertainty on the RUL prediction will be further discussed 

in Section 5.1.2. Notice, however, that if the uncertainty on the model parameters can be quantified and a 

probability distribution assigned to the value of the uncertain model parameter, the PF approach can be 

adjusted to handle also this source of uncertainty [83]. 

4.2 Data-driven prognostics based on current and historical degradation 
trajectories (Case 2) 

In case 2, the information   available at time it  includes the dataset R
r

r
nr 1:1 }{  zD  of the degradation-

related observations collected for R  training trajectories, and the sequence of observations test
J:1z  related to 

the degradation state of the test equipment. In this context of available information, we may not be able to 

estimate the probability distribution )|( Drulp JRUL  of JRUL . In practice, our objective is limited to 

providing the estimate Jlur ˆ )|( :1 Dz test
Jf  of the RUL expected value ],|[ :1

test
J

r
JRULE zD , based on the 

historical trajectories observed, and a credible prediction interval )(JCI ),([ inf Jrul )](sup Jrul  to which 

the value of r
JRUL  can be assigned with a confidence of, at least,  . 

In case 2A, the relation between a sequence of observations ': jjz  and the equipment RUL at time 'jt , can be 

directly learned from the available data by artificial intelligence techniques, e.g., artificial neural networks 

[30], kernel methods [66], etc. This is possible because the equipment RUL, r
jrul ' , can be derived in 

correspondence of any sequence of observation r
jj ':z  from the knowledge of the equipment life durations r

Ft  

through eq. (2). In Section 4.2.1, a similarity-based regression (SBR) method, using a representation of the 

uncertain variable test
JRUL  based on belief function theory (BFT), is presented to derive an empirical model 

that receives in input a subset of the test sequence of observations test
J:1z , and produces as output the RUL 

prediction test
Jlur ˆ  and the prediction interval )](),([)( supinf  JJ

test
J rulrulCI  . 

In case 2B, since the relation between the observation and the degradation state of the equipment is known, 

one can derive an indication r
jz ,  about the degradation state r

j  of the r-th equipment at any time r
jt . Then, 

a degradation-based approach can be applied in this case. The idea, is to use regression methods, e.g., linear 

and non-linear regression models, general degradation path models [7,36], etc., to build a model 

),|(ˆ
:1

test
Jj t zD   of the evolution in time of equipment degradation. The prediction Jlur ˆ  of the equipment 

RUL at time Jt  is then obtained from the relation thJJ lurt   )ˆ( . A flexible method based on Gaussian 

process regression (GPR) and presented in section 4.2.2, has been developed in this thesis work to model 

non-linear degradation processes. The RUL prediction test
Jlur ˆ  and the prediction interval 

)](),([)( supinf  JJ
test
J rulrulCI   are based on a probabilistic representation of the uncertain variables test

J  

and test
JRUL .  
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Finally, a strategy for aggregating the prediction provided by the SBR and the GPR approaches with their 

different representation of the uncertain variable test
JRUL , has been developed to provide more accurate and 

robust prediction in a case where both methods can be applied, since all sources of information considered 

for sub-cases A and B are available at the same time. This strategy, presented in Section 4.2.4, resorts to the 

definition of the BFT on the continuous real axis   [67] to allow transferring the test
JRUL  PDF provided by 

the GPR approach in the BFT framework in which the SBR prediction is represented. 

4.2.1 Similarity-based prognostics 

In this Section, we present a direct RUL prediction approach to prognostic which uses the set of training 

trajectories R
r

r
nr 1:1 }{ z  to perform a data-driven analysis of similarity with the test trajectory test

J:1z  and provide 

the prediction test
Jlur ˆ  of the test equipment RUL [12,29,40,88-89], and the prediction interval )(test

JCI

),([ inf Jrul  )](sup Jrul  [88-89]. In this Section, only a brief overview of the proposed prognostic method is 

given. For the analytical details of the procedure, the author is referred to Paper IV of Part II. 

The first requirement of the approach is to define a measure to evaluate the similarity between trajectories. 

This is done considering the pointwise difference r
jd  between n-long sequences of observations r

jnj :1z  of 

the training trajectories and the sequence of the n latest observations test
JnJ :1z  of the test trajectory. The 

similarity r
js  of the training trajectory segment r

jnj :1z  to the test trajectory is defined as bell-shaped 

function of the distance measure r
jd : 

 

 







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

2)(
exp

r
jr

j

d
s  (8) 

 

The arbitrary parameter   can be set by the analyst to shape the desired interpretation of similarity: the 

smaller is the value of   the stronger the definition of similarity. For the prediction of the test equipment 

RUL, a RUL prediction r
jlur *ˆ  is assigned to each training trajectory Rr :1 , by considering the difference 

between the trajectory failure time r
Ft  and the last time instant r

jt *  of the trajectory segment r
jnj *:1* z  which 

has the maximum similarity r
js *  with the test trajectory:  

 

 r
j

r
F

r
j ttlur **ˆ   (9) 

 

Then, the prediction SB
Jlur ˆ  of the test equipment RUL at time test

Jt  is given by the similarity weighted sum 

of the predictions r
jlur *ˆ :  
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As for the estimate of the prediction uncertainty, the distribution of the RUL predictions r
jlur *ˆ  associated to 

the different training trajectories provides a measure of the prediction uncertainty. However, our knowledge 

about the actual equipment RUL is limited and partial, e.g., because the number of historical trajectories 

available is small, and the predictions r
jlur *ˆ  are the result of the arbitrary, although reasonable, measure of 

similarity adopted rather than the outcome of a real stochastic process. Then, in this work, we have 

considered more appropriate to resort to belief function theory (also called Dempster-Shafer or evidence 

theory [68-69]), rather than to probability theory, for representing the uncertain variable JRUL  based on the 

available information. 

The similarity measure r
js  defined in eq. (8) is interpreted as a measure about the relevance of the source of 

information represented by trajectory r . Then, a basic belief assignment (BBA) r
RULtest

J
m  is associated to its 

RUL prediction as follows: [40]: 

 

 
r
jRUL

r
RUL

r
j

r
j

r
RUL

sm

slurm

test
Jtest

J

test
J

*

**

1)(

})ˆ({








 (11) 

 

where ],0[ max test
JFRUL tttest

J
  is the frame of discernment, i.e., the domain of test

JRUL ,, and the arbitrary 

parameter ]1,0[  defines the degree of trust given to the reference trajectories: if 1  a part of belief will 

always be assigned to the entire RUL domain JRUL , even in the case a reference trajectory were exactly 

identical to the test one. Notice that the mass assigned to JRUL  represents our ignorance about test
JRUL , 

since it is the amount of evidence about its value that cannot be assigned to any subset of the RUL domain.  

The distinct sources of information inducing the BBAs, r
RULtest

J
m  can be combined according to the 

Dempster’s rule of combination [40,70] to obtain the BBA test
JRULm . The information conveyed by this BBA 

can be represented by the belief )(Bel Jm CI  and the plausibility )(Pl Jm CI  of the hypothesis test
JRUL

JCI ,[ inf
Jrul ]sup

Jrul  defined, respectively, as 

 

 



JJ

J

CIIC

JRULJm ICmCI )()(Bel  (12) 

 

and 

 

 



JJ

J

CIIC

JRULJm ICmCI )()(Pl  (13) 

 

The belief associated to an interval JCI  represents the amount of belief that directly supports the hypothesis 

],[ supinf
JJ

test
J rulrulRUL  , whereas the plausibility represent the maximum belief that could be committed to 

this hypothesis if further information became available. Then, belief and plausibility can be seen as lower 

and upper bounds on the probability that the hypothesis ],[ supinf
JJ

test
J rulrulRUL   is true. In this work, the left 

bounded intervals ]),([)( inf   JJ rulCI  to which a predefined belief   is assigned, have been 

considered as a prediction interval for the RUL value, since the probability of )(J
test
J CIRUL   is larger 
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than  , and thus the probability of a failure happening before inf
Jrul  is lower than 1 . This way the 

prediction interval )(JCI  provides to a maintenance planner able to specify a maximum acceptable failure 

probability of 1  the latest time )(inf Jrul  at which, according to the available information, a probability 

to have a failure lower than 1  is guaranteed.  

Notice that the prediction interval thus obtained accounts for all three sources of uncertainty listed in Section 

3.2. Indeed, the evidence conveyed by the predictions r
jlur *ˆ  is related to the process uncertainty, since each 

trajectory represents a different degradation process, and to the model uncertainty, since each prediction 
r
jlur *ˆ  can be interpreted as the outcome of a different similarity-based prognostic model; moreover, the 

discounting strategy accounts for the presence of noise on the observations, since noise reduces the similarity 

between trajectories and thus the belief assigned to their predictions, and, as a consequence, increases the 

amplitude of the prediction interval, i.e. the estimated prediction uncertainty. 

4.2.2 Degradation-based: Gaussian Processes  

When direct indications r
nrz :1,  about the equipment degradation state are available for a number R  of 

training trajectories, the most natural data-driven technique for RUL estimation is to model the equipment 

degradation evolution and compare the extrapolated future degradation trajectory to a failure criterion. In this 

Section, a prognostic approach that uses Gaussian process regression [41-42] to explicitly model the 

evolution of equipment degradation as a stochastic process based on the available sequences of degradation 

indications r
nrz :1,  is proposed [86-87]. GPR is a powerful and flexible method for performing nonparametric 

probabilistic inference over functions [41] and can be effectively used for modeling degradation as a 

stochastic process [86-87]. To do that, it is necessary to assume that the distribution of the degradation states 

is Gaussian with different mean )]([ jtE   and variance )]([ jtVar   at every time instant jt . This hypothesis 

is done in GPR to allow analytical calculations that make inference simpler. Although one cannot always 

prove that degradation states are normally distributed, in the absence of outstanding evidence to support a 

different assumption, we suggest preferring this one to others that would make the inference from data more 

difficult.  

For mapping the function )(t  given the input t , the GPR defines a prior for it in the form of a distribution 

over functions specified by a Gaussian Process (GP). A GP is a collection of random variables any finite 

number of which has a joint Gaussian distribution. A real GP )(t  is completely specified by its mean 

function )]([)( tEt   and covariance function ))]'()'())('()([()',( ttttEttC    . This prior 

is taken to represent our prior beliefs over the kind of functions we expect to observe. Typically the prior 

mean and covariance functions adopted will have some free parameters, called hyper-parameters. Although 

the choice of the covariance function must be specified by the user, various methods have been proposed for 

determining the corresponding hyper-parameters from training data [41]. In this work, the hyper-parameters 

have been optimized by maximizing the marginal likelihood of the dataset set of input/output pair 

});{(
:1;:1,/ Rrnj

r
j

r
j

train
zt rzt


 D  drawn from the training trajectories.  

Given the prior information about the GP, the set of hyper-parameters, and the observation dataset 
zt /D , 

including datasets train
zt /D  and });{( :1,/ Jj

test
j

test
j

test
zt zt  D , drawn, respectively, from the training and test 

trajectories, GPR provides a method for predicting the conditional probability density function (PDF) 

)|( /


 zttest
j

p D  of the future degradation states test
j , test

J
test
j tt   of the test trajectory. For this, a restriction 
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on the prior distribution to contain only those functions that agree with the observed data is imposed; the 

resulting posterior distribution of the output )|( /
 zt

test
jt D  in correspondence of the input test

jt  is Gaussian 

with mean ]|)([ /
 zt

test
jtE D  and variance ]|)([ /

 zt
test
jtVar D  given by [41]: 
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where traint  and trainz  are the vectors of all the inputs and, respectively, outputs in 
zτ /D  and C  indicates 

the covariance matrix containing the values of ),( '
'

r
j

r
j ttC  evaluated for all possible pairs of inputs in traint . 

Since the dataset 
zt /D , used for conditioning the prior GP, is drawn partly from the reference equipment and 

partly from the test equipment, it is possible to make the GPR capable of learning both the structure 

underlying the degradation processes which is common to all similar equipment, and the specific variation 

around this structure that characterizes the degradation of the test equipment. This result has been obtained 

by using a covariance function of the following form [71,86-87]: 

 

 )',()',()',(),(),(),( 2'2\'1'
''' jjrrrrttCttCttC z

rrrrrr
jjjjjj     (15) 

 

where 2
z  is the variance of the white Gaussian noise affecting the degradation indications r

jz ,  and the 

reference index assigned to the test trajectory is 1 Rr . The first term of the kernel corresponds to the 

covariance associated to the common structure underlying all degradation trajectories; the second represents 

the covariance owing to the variation of each trajectory around the common structure of all degradation 

trajectories. This term assumes a finite value only when the inputs r
jt  and '

'
r
jt  refers to the same trajectory, 

since we have assumed the variation specific to each trajectory to be uncorrelated across trajectories. Finally, 

the third term accounts for the observation noise associated to the indications r
jz ,  of the degradation state 

r
j .  

Given the value of the failure threshold, assumed here to be known, and the conditional distribution of the 

degradation state )|( /


 zttest
j

p D , the RUL cumulative distribution function (CDF) )( /


ztRUL rulP test
J

D  is 

computed as the probability that the degradation test
j  at the future time rult test

J
test
j   will exceed the 

failure threshold th  (Paper V, Part II). The prediction Jlur ˆ  is then given by the mean of the distribution 

described by )( /


ztRUL rulP test
J

D  and the prediction bounds )(inf Jrul  and )(sup Jrul , by, respectively, its 

2/)1(   and 2/)1(   percentiles; finally, its variance can be taken as an estimate of the prediction error 

variance 2
Je .  

As for the different sources of uncertainty, the process and noise uncertainties, learned from the training 

trajectories, are represented by the degradation state variance ]|)([ /
 zt

test
jtVar D  and projected to the 

prediction of the RUL CDF. The model uncertainty is related, instead, to the choice of the mean and 

covariance functions of the prior GP and the optimization of their hyper-parameters. Having used a single 

prior GP for the regression, we doubt that the resulting prediction interval )(JCI  can capture the modeling 

uncertainty. For a more comprehensive treatment of the prognostic uncertainty, an ensemble approach can be 

adopted (see, for example, Section 4.3.2 of this thesis or reference [28]) which allows accounting for model 
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uncertainty, by considering the distribution of the outcomes of different models trained on random replicates 

of the training dataset or under different prior assumptions. 

4.2.3 Aggregated degradation-based and direct RUL 

Degradation–based prognostics (Section 4.2.2) provides a more informative and transparent output than 

direct RUL prediction (Section 4.2.1), since it supplies a prediction not only of the current equipment RUL, 

but of the entire degradation trajectory the equipment will follow which can be checked against, e.g., expert 

intuition to verify its consistency. Moreover, contrarily to direct RUL prediction, this approach can be 

applied even when no historical failure data are available. On the other side, direct RUL prediction does not 

require the identification of a degradation indicator and of a failure threshold which may introduce further 

uncertainty and sources of errors. Thus, when both degradation-based and direct RUL prediction approaches 

can be applied, it is hard to choose between them. For this reason, we suggest to resort to an ensemble 

approach to develop both prognostic models and aggregate their outcomes so to removes the necessity of 

choosing the best performing one and potentially increasing the robustness and accuracy of the prediction.  

In this Section, we consider this ensemble approach for combining the SBR and the GPR models presented 

in Sections 4.2.1 and 4.2.2. The main obstacle in the aggregation of the RUL predictions provided by the 

SBR and the GPR approaches is the combination of their two different representations of the uncertain 

variable JRUL . In this context, an important contribution of this thesis work has been the development of a 

technique for aggregating uncertainty measures generated in the two different frameworks of evidential and 

probabilistic reasoning. For this, the definition of the BFT on the continuous real axis   has been used [67], 

where masses generalizes into densities so to allow representing also probability density functions.  

To extend the belief function theory to real numbers, it is assumed that masses are only allocated to closed 

intervals ],[ rulrul . A convenient graphical representation of these intervals is the half-plane highlighted in 

grey in Figure 5, which contains all the sets of pairs rulrulrulrul  0:),( 2  representing the interval 

],[ rulrul .  

 

 

Figure 5: graphical representation of intervals ],[ rulrul . 
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A belief density function (BDF) ),( rulrulb test
JRUL  is defined on this half-plane; the total belief 

]),([Bel jjb rulrul  assigned by the BDF b  to an interval is the integral of test
JRUL

b  over the triangle 

jj rulrulrulrulrulrul  ,:),( 2  highlighted in grey in Figure 6 (left), whereas its plausibility 

]),([Pl jjb rulrul  is the integral of test
JRULb  over the half-plane :),( 2rulrul ,0 jrulrul  jrulrul   

highlighted in grey in Figure 6 (right). 

 

 

Figure 6: graphical representation of the belief (left) and plausibility (right) associated to the interval ],[ jj rulrul . 

Within the framework of continuous BFT, the BBA ),}ˆ({ 1* test
J

test
J RUL

R
r

r
jRUL lurm   defined in the SBR 

approach can be represented by the BDF SBR
RULtest

J
b  assigning the mass )( test

J
test
J RULRULm   to the interval 

],0[ max
Jrul  and the masses })ˆ({ *

r
jRUL

lurm test
J

 to the degenerated intervals of null dimension ]ˆ,ˆ[ **
r
j

r
j lurlur , 

j=1:R, lying on the boundary rulrul   of the half-plane of all possible RUL intervals. Concerning the GPR 

prediction, the straightforward interpretation of a PDF within the framework of continuous BFT would 

assign finite density ]),([ rulrulb test
JRUL )( /


zτRUL rulp test

J
D  only to the points on the boundary rulrulrul  . 

However, since our knowledge of the equipment RUL is partial and based on uncertain assumptions, a better 

strategy for representing the GPR prediction in the BFT framework, is to consider it as a pignistic PDF , i.e., 

the probability that a rational person will assign to an interval ],[ rulrul  based on the evidence induced on   

by the underlying BDF test
JRULb  which value is unknown [70]. According to the pignistic transformation [70], 

many BDF test
JRULb  can induce the same pignistic probability Betb . In this work, we evoke the principle of 

minimal commitment, that formalizes the idea that one should never give more support than justified to any 

subset of test
JRUL , for selecting the least committed belief function in a set of equally justified belief 

functions induced by the pignistic PDF )()( /
 zτRUL rulprulBetb test

J
D . This way, we can also relax the 

hypothesis underlying the RUL PDF predicted by the GPR approach, which is based on the uncertain 

assumption of normally distributed degradation states and on a rather arbitrary choice of the prior mean and 

covariance functions [72]. A method for computing the least committed BDF GPR

RULtest
J

b  is given in Paper VI of 

Part II for unimodal pignistic PDFs.  

Having represented in the framework of continuous BFT both the BBA resulting from SBR and the PDF 

generated by GPR, the outcomes of the two approaches can be combined using the Dempster’s rule to obtain 

the combine BDF test
JRULb . The analytical expression of SBR

RULtest
J

b , GPR
RULtest

J
b  and test

JRULb  are given in Paper VI of 

rul  jrul  rul  jrul  

jrul  

rul  

jrul  

rul  
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Part II. Given the combined BDF ),( rulrulb test
JRUL , a credible left-bounded interval ],[)( inf  JJ rulCI   for 

the value of the RUL can be estimated as for the SBR approach, by considering the interval to which the 

BDF test
JRUL

b  assigns the desired belief  . 

4.3 Data-driven prognostics based on current degradation trajectory only 
(Case 3) 

This Section tackles the situation of available information described in case 3, which is characterized by the 

availability of only the sequence of degradation-related observations J:1z  collected during the degradation of 

the equipment of interest. Also, it is assumed that the value of the failure threshold and the observation 

equation are known, so that it is possible to define a failure criterion and to derive from the observations the 

indication Jz :1,  about the degradation state of the equipment at the different observation time instants Jt :1 . 

Then, a degradation-based approach can be applied in this case; on the contrary, direct RUL prediction is 

unfeasible since no historical life duration data are available.  

As already mentioned for case 2, empirical modeling of the degradation process can be achieved by training 

the most suited parametric or non-parametric degradation model, e.g., linear and non-linear regression 

models, general degradation path models, Gaussian processes etc. [7,36] with the available data. However, in 

this case, model )|(ˆ
:1, Jj zt    has to be build based on a single censored sequence of degradation 

indications Jz :1, . Then, the number of observation available is, in general, much smaller and the 

observations available describe only partially the degradation process, since the equipment of interest has not 

yet failed. In this context of very limited information available, it has been of primary importance to develop 

robust prognostic approaches. In this work, the ensembles technique has been exploited to satisfy such 

requirement. Indeed, an ensemble of prognostic models can improve the reliability of the single model since 

the weaknesses of the individual models are compensated by the other models in the ensemble [34]. Also, by 

measuring the performance of the individual models and giving more importance to the predictions of the 

best performing ones, more accurate RUL predictions can be obtained [35]. Moreover, an ensemble can 

naturally accommodate new information by adding new models tailored to it, without discarding the old 

models in the ensemble. Updating the overall ensemble model in this incremental way requires reduced 

computational efforts in comparison to re-building a model from scratch based on all available (old and new) 

data [73]. A procedure for ensemble-based incremental learning has been developed in this work and is 

presented in Paper I of Part II.  

The implementation of an ensemble of prognostic models requires (a) building the diverse models and (b) 

combining their RUL predictions. Concerning task (a), diversity among the individual models of the 

ensemble can be obtained by using different modeling techniques, differentiating the training parameters or 

the models structure, selecting different features of the training data, or using different datasets to train 

individual models [34]. Here, diversity between the models has been obtained by using bootstrapped 

replicates hD  of the available data set }{ :1, JzD  to train the different models )|(ˆ hh
j t D   of the 

ensemble. The vital element of this technique is the instability of the prediction method: if perturbing the 

training set can cause significant changes in the predictor constructed, then a bootstrapped ensemble can 

improve accuracy [74]. During this thesis work an original technique for the generation of the replicated 
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training datasets, which further increases the diversity between the models of the ensemble, has been 

developed and is described in Paper I of Part II. 

Concerning task (b), when compared to the failure threshold, the degradation estimated by each model 

provides a different prediction h
Jlur ˆ  of the equipment RUL. Common techniques for the aggregation of 

multiple model outcomes are based on statistics, e.g., the simple mean and the median, or on models 

performance, e.g., the globally or locally weighted average [55]. In general, the aggregation requires 

associating a weight hw  to the prediction h
Jlur ˆ  made by each ensemble model h  and combining the 

predictions by means of a weighted average. In case of large noise affecting the degradation indications 

Jz :1, , the traditional aggregation techniques may lead to noisy predictions of the equipment RUL since all 

the ensemble models are built considering bootstrapped replicates of the same noisy data. A possibility to 

improve the accuracy and robustness of the predictions Jlur ˆ  in such cases is to properly filter them. In this 

respect, Section 4.3.1 proposes an effective strategy, inspired by the discrete KF [30, 81], for both 

aggregating the multiple model outcomes and filtering the ensemble predictions. 

The limit of the KF-based ensemble is that it does not automatically provides a measure of the RUL 

prediction uncertainty. To overcome this limitation, a bootstrapped ensemble approach is used to quantify 

the prediction uncertainty based on two steps [35,82-85]: in a first step, the model uncertainty is estimated 

based on the distribution of the RUL predictions of an ensemble of bootstrap models; in the second step, the 

prediction and noise uncertainties are evaluated based on the RUL prediction error made by the ensemble of 

models when applied to a validation dataset. This second steps can be straightforward applied in a situation 

such as the one considered in case 2A, where input/output pairs );( , jj rulz  for which jrul  is known are 

available for the validation step, but is not suited for case 3, where no life duration data are available. An 

original solution for the application of the bootstrap ensemble approach to uncertainty estimate in the 

absence of life duration data has been developed during this thesis and is presented in Section 4.2.2. 

4.3.1 Kalman Filter ensemble 

Let us consider an ensemble of H  degradation models )|( hh t D  trained on an equivalent number of 

bootstrapped replicates hD  of the available data set D . At the current time step Jt  each model provides a 

different RUL prediction h
Jlur ˆ .  

In general, a Kalman Filter [75] is a recursive method which uses a state dynamics model, a measurement 

equation and a set of observations to estimate the state of the system at time t . In this work, a methods for its 

application to the aggregation of the outcomes h
Jlur ˆ , Hh :1  of an ensemble of degradation-based 

prognostic models h  has been proposed. In this context, one aims to estimate the expected value 

]|)([ :1 JJtRULE z  of the equipment RUL at time Jt . Then, the state is defined as a vector of two elements: 

the RUL expected value ]|)([ :1 JJtRULE z  and the rate of modification in time of the RUL, i.e., 

  tttRULtRUL jj  /)()( , which is set constantly equal to -1, since the RUL of a component decreases 

of one time unit for every time unit passed. This way, assuming 1t , the state evolution in time can be 

described through the linear dynamic model:  
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where 









10

11
A  is the transition matrix and )( jt  is an additive white Gaussian process noise with 

variance q ; in practice, since the variance of the process noise is not known, q  is set as an arbitrary constant 
which affects the smoothness of the resultant state estimate time series (lower values of q imply higher 
amount of smoothing). The process noise )( jt  is added to account for the fact that the mean value of the 

RUL distribution is affected by the stochasticity of the evolution of the degradation level between time 1jt  

and jt  and, as a consequence, does not deterministically decrease of 1 time unit at every time step. 

The observation vector of the KF is assumed to be formed by the RUL predictions h
Jlur ˆ  of the H  models in 

the ensemble. Then, the measurement equation is: 
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Where 
T











000

111




H  is the observation matrix and )(te  is the observation noise with covariance 

matrix R. Notice that although the vector of the RUL predictions is called observation vector according to 
the KF terminology, in this case it is formed by the model outcomes which are not measured quantities. As a 
consequence, in this application the observation noise covariance matrix R  should contain the prediction 

error covariance of the ensemble models. Since, however, the prediction error covariances 2
je  are 

unknown, assuming independence between the errors of the different models h , matrix R  is taken diagonal 

and equal to: 

 
 ),...,,...,( 11

1
1

H
J

h
JJ msemsemsediag R  (18) 

 

with the performance h
N p

mse 1  of model h  computed by considering the mean square average over all the 

indications Jz :1,  collected at time Jj tt   of the relative difference between the time h
jt̂  at which the 

observed degradation state ,z  is reached according to model h , and time jt . Thus, the weight assigned to 

each model is proportional to its performance in estimating the degradation trajectory up to the last available 

measurement time Jt  and matrix R  can be updated each time a new measurement becomes available. Using 

eq.(18) for the estimation of R  and having set the value of parameter q , the posterior prediction of JRUL  

and the corresponding error covariance matrix are obtained through the traditional predict and an update 

phases of the Kalman Filter (see Paper I of Part II for the analytical details).  

A merit of this approach is that it does not imply any constraint on the linearity of the degradation models

)|( hh t D , since only the outputs of the predictive models are used in the KF scheme; thus, the non-linearity 

of the degradation process can be described by using non-linear degradation models, with no additional 



32 

 

complication for the KF-based aggregation procedure. Moreover, the approach removes the necessity of 

filtering the degradation measurements which is a challenging problem for non-linear degradation processes. 

The drawback of this approach is that the posterior error covariance matrix provided by the KF can no more 

be interpreted as an estimate of the prediction error covariance. Thus, the proposed KF approach which 

constitutes an effective technique for the aggregation of the outcomes of the ensemble models, does not 

provide an estimation of the uncertainty affecting the RUL. 

4.3.2 Bootstrapped ensemble  

In their basic form, many regression methods that can be used for building a degradation model 

)|(ˆ Djj t   provide in output a point prediction of the degradation states without any information on the 

uncertainty of the estimate from which only a point prediction )(ˆ ,JJ zflur   of the RUL can be derived by 

comparison with the failure threshold. In this Section we propose a method for estimating the uncertainty of 

the RUL prediction provided by a generic degradation model .  

Under the hypothesis that the model )( ,Jzf   is as an unbiased estimator of ]|[ :1 jJRULE z , i.e., 

)]([ ,JzfE  ]|[ :1 jJRULE z , an estimate of the model error variance, 2
B , is obtained from an ensemble of 

models )|( , hJh z D , Hh :1  trained using bootstrapped replicates hD  of a training dataset trnD , drawn 

from D . Given a generic input Jz , , the models of the ensemble generate H  different predictions h
Jlur ˆ ; 

their variance is taken as the estimate 2ˆ B  of the model error variance 2
B  [35,82-85], whereas their average 

is taken as the best prediction Jlur ˆ  of the equipment RUL. 

With respect to the estimate of the remaining part of the RUL prediction variance, which is caused by the 

randomness of the degradation process and the observation noise (sources of uncertainty A and C ), i.e. 
222
CACA   , an independent validation dataset valD  has to be used. The ensemble of empirical models 

)|( :1, JJh zt  is applied to the observations val
jz ,  in the validation dataset to obtain the RUL predictions 

val
jlur ˆ , which should be used to calculate, for each validation observation val

jz , , the prediction residuals j : 

 

 )(ˆ)ˆ( ,
222 val

jB
val
j

val
jj zrullur    (19) 

 

The set of input/output pairs obtained by associating to all the observations val
jz , , in valD  the corresponding 

residuals j  is used for training an empirical model )()(ˆ ,,
2

jjCA zz     of the residual variance 

approximating the unknown relation between the input jz ,  and the variance of the residuals [35]. 

In practice, given the set of available information described for case 3, the residuals j  cannot be computed 

in correspondence of any of the observation jz , , since there are no available pairs ),( , jj rulz  for which 

jrul  is known. To overcome this problem, we consider a model )(~ˆ
',', jjjjt θ , which receives in input a 

vector of two degradation states ],[ '', jjjj θ  and returns in output the estimate ',
ˆ

jjt  of the time interval 

needed to reach the degradation state j  starting from 'j  [82]. In general, model )(~
', jjθ  can be derived 

from model )( jt . The prediction jlur ˆ  is obtained from this model by setting jj z ,   and thj  ' ; in 

this view, the RUL prediction at time jt  corresponds to the estimate of the time interval thJt ,  needed to 

increase the degradation state from the currently observed degradation state Jz ,  to the failure threshold th . 
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The dataset of input/output pairs tz /D , associating to all couples of degradation indications ', jjθz

],[ ',, jθjθ zz  the time interval  ', jjt jj tt '  needed to obtain the degradation increment jθjθ zz ,',  , is drawn 

from the available observations and partitioned into a training and a validation dataset, trn
tz /D  and val

tz /D : 
trn

tz /D  is used to train an ensemble of regression model )|(~ ,
/',

htrn
tzjj

h
Dzθ , whereas val

tz /D  is used to test the 

ensemble of models h~ , and collect examples of its prediction error val
jj

val
jj tt ',',ˆ   . From it, one can compute 

the prediction residuals ', jj  associated to the input ', jjθz , to be used for training the empirical model 
2

', ˆ)( CAjj  θz  for the sum of the process and noise variance components. The value of the variance 

component 2
CA  for the RUL prediction error is then obtained by feeding to model   the input 

],[ ,, thjthJ z θz  [82]. The prediction error variance is then computed as the sum of the estimates 2ˆ B  and 
2ˆ CA , i.e., 2

Je )(]ˆvar[ ,thJ
h
Jlur θz . Finally, assuming that the prediction error has a Gaussian 

distribution, the bounds )(inf Jrul  and )(sup Jrul  of the prediction interval can be computed according to the 

theory of the bootstrap method [35] as: 

 

 JeconfJJ clurrul   ˆˆ)(inf   and JeconfJJ clurrul   ˆˆ)(sup   (20) 

 

where 
confc  is the 2/1   percentile of a Student’s t-distribution with number of degrees of freedom equal 

to the number H of bootstrap models.  

Notice that the training data );( ',', jjjj θz , used to build model  , cover a range of values for the input 

', jjθz  in general different from that of the input thJ ,θz  to which the model is applied to obtain the estimate 
2ˆ CA . This can represents a limit to the quality of this estimate, since in general the performance of 

empirical models are good when applied to input regions well described by training data, and decrease 

moving away from these regions.  

  



 

5 Num

5.1 Cre

The three d

turbine blad

generation 

conditions s

turbines op

degradation

turbomachin

reactor flow

velocities w

Figure 7 sh

and the hig

turbine blad

Figure 7: Deb

Creep is an 

a protracted

major probl

elongation, 

Norton Law

namely the 

detailed cre

III of Part I

three appro

capability o

simulated cr

merical a

eep growth

different case

de in which 

IV high tem

such as work

perating at s

n process ca

nery since it

w conditions 

which can im

ows an exam

gh cost of tu

des. 

blading in a high

irreversible 

d length of tim

lem due to t

ε, is taken a

w. The blad

failure thresh

eep growth m

II. The data u

oaches on a 

of correctly 

reep growth 

applicatio

h in turbi

es presented 

creep dama

mperature ga

king tempera

such elevate

an experienc

t is accompa

and can resu

mpact on barri

mple of high-

urbine blade 

h pressure turb

deformation

me and at hi

the high ope

as a measure

de is discard

hold, which 

model implem

used in this 

large numb

estimating 

trajectories a

ons 

ine blades

in Section 4

age is develo

as reactor, w

atures excee

d temperatu

ce the loss 

anied by abr

ult in turbine 

iers in nucle

-pressure tur

replacement

bine [77]. 

n process affe

igh temperatu

erational tem

e of the blad

ded when th

assures that 

mented and a

case study h

ber of differ

the uncertai

are shown in

s 

4 have been c

oping [81]. T

which is char

eding 900°C.

ures is creep

of its blad

rupt changes

missiles, i.e

ar power pla

rbine debladi

t are strong

ecting materi

ures. In the h

mperatures, a

e creep strai

he accumulat

the risk of b

a deeper disc

have been nu

rent blade d

inty on the 

n Figure 8. 

considered w

The applicat

racterized by

. The predom

p deformatio

des, one of 

s in the pow

e., irregularly

ants causing 

ing occurred

reasons for 

ials exposed 

high pressure

and is often t

in and mode

ted elongatio

lade failure i

cussion of th

umerically sim

degradation 

provided R

with referenc

tion has focu

y rather extr

minant dama

on [76]. A 

the most fe

wer conversio

y shaped proj

severe dama

d in a German

performing 

to a load bel

e turbine firs

the life-limit

led as a stoc

on reaches a

is below the 

his case study

mulated in o

trajectories 

RUL predicti

ce to the prog

used on the 

reme turbine

age mechanis

turbine und

feared failur

on equipmen

jectiles trave

ages to the fa

n power plan

prognostics 

low their ela

st stage, blad

ting process 

chastic proce

a pre-determ

desired safe

y, can be fou

order to allow

and thus ev

ion. Exampl

34

gnostics of a

turbine of a

e operational

sm affecting

ergoing this

e modes of

nt and in the

elling at high

acilities [77].

nt [77]. This

on creeping

astic limit for

des creep is a

[76]. Blade

ess using the

mined value,

ty limit. The

und in paper

w testing the

valuate their

les of some

4 

a 

a 

l 

g 

s 

f 

e 

h 

. 

s 

g 

r 

a 

e 

e 

, 

e 

r 

e 

r 

e 



35 

 

 
Figure 8: Examples of creep growth trajectories. 

The main sources of degradation-related information for the creep growth process are listed in Table 5.  

Table 5: main sources of information for prognostics of a creeping turbine blade 
Source Description Mathematical representation 

A The creep growth model and the distributions of the 
model parameters 

Paper II, Part II 

B Measurements of the creep strain of the currently 
creeping blade taken at J  different time instants jt  

noisez JJJ  :1:1,:1 z  

C 
Historical measurements of the creep strain of a set of 
R  blades failed for creep, taken at rn  different time 

instants jt  

r
n

r
n rr z

:1,:1 z , Rr :1  

D The value of the failure threshold  1.5% thth   

E The observations equation (direct creep strain 
measurements with a white Gaussian noise j ) 

jJJ   :1:1z  

F The length of life of the set of S failed blades. r
Ft , Rr :1  

 

At every time Jt  during the life of a turbine blade, the set of observations J:1z  is assumed to be available; 

the objective of the analysis is to obtain a prognostic prediction for the test trajectory at different time 

instants Jt , ,...2,1J . Three situations, corresponding to the three prognostic cases of Section 4, have been 

artificially constructed for the turbine blade case study. In case 1, the sources of information A, B, D and E of 

Table 5 are assumed to be available and the model-based PF approach presented in Section 4.1.1 is adopted 

to predict the distribution of the equipment RUL. In cases 2, where the sources of information available are 

B, C and F of Table 5, and in case 3, where we have available sources of information B, C, D and E, the 

bootstrapped ensemble of models presented in Section 4.3.2 is used to provide the RUL prediction Jlur ˆ  with 

an estimate of the prediction error variance 2
Je . In case 2, 13R  training trajectories and the duration of 

their lives are available for training and validating an ensemble of 25H  linear least square models 

)|( /
h

rulzJ
hf Dz  for direct RUL prediction. In case 3, the dataset h

tz /D  is drawn from the available data 
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about the test trajectory only, and used to build and validate an ensemble of 25H  linear least square 

degradation-based prognostic models. Notice that, in this case, since a minimum number of historical data 

must be available to build the prognostic model, the prediction is performed only after time instant 30t , i.e., 

when at least 30 observation are available.  

Figure 9 shows the evolution of the true RUL value Jrul  of the blade RUL (continuous thick line), its 

predicted value Jlur ˆ  (dots) and the corresponding prediction interval with 68.0  (continuous thin line) 

obtained during the life of a turbine blade by the three prognostic approaches. These results show that it is 

possible to provide accurate RUL predictions with a reliable quantification of their uncertainty in all three 

cases considered. The best results are obtained in case 1, which is the one with the maximum amount of 

information available. The prediction intervals provided in case 3 are characterized by large oscillations and 

low accuracy, especially at the beginning of the trajectory, i.e., when few training data are available. 

Furthermore, the RUL prediction itself is noisy. This effect could be reduced by properly filtering the 

predictions, e.g., by using the Kalman Filter ensemble approach presented in Section 4.3.1.  

 
Figure 9: true Jrul  (continuous thick line) of a turbine blade, predicted value Jlur ˆ  (dots) and prediction interval 

)68.0(JCI  (continuous thin line) for the three prognostic approaches. 

Many further analyses, presented in Paper III of Part II, have been performed in the context of this case study 

to perform a robust evaluation of the performances of the three approaches and to determine whether the 

estimates of the prediction intervals provided by them properly describe the uncertainty in the RUL 

predictions.  
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Also, in order to provide some indications to the decision maker about which approach should be adopted in 

a case in which all the sources of information listed in Table 5 were available (so that all the three 

approaches presented can be applied), we have performed an analysis of the sensibility of the performance of 

the three prognostic approaches to the quality and quantity of the information available. To this purpose, we 

have considered the following indicators of the quality and quantity of the information:  

A. the amplitude of the noise affecting the creep strain measurements; 

B. the number of past measurements of the current trajectory available for making the RUL prediction;  

C. the accuracy of the physical model of the degradation process; 

D. the number of historical degradation trajectories available. 

The performance of the three approaches is evaluated considering 250 test trajectories. Figure 10 shows the 

variation of the relative mean square error ( rMAE ) when: (A) the amplitude of the noise affecting the creep 

strain measurements is varied from 0 to 0.03 (upper-left); (B) the current time instant at which prognostic is 

performed increases (upper-right); (C) a bias of variable amplitude is added to one of the parameters of the 

physical model used by PF to simulate its reduced accuracy (bottom, left); (D) the number of historical 

trajectories available for training the empirical model increases (bottom, right).  

 
Figure 10: performance of the proposed approaches in different settings of information available. 
The vertical (red) line indicates the value assigned to the parameter in the numerical application 
of Figure 9. 

Considering the results obtained performing this sensibility analysis (see also Paper II of Part II for an in-

depth discussion of them), we have been able to provide the following guidelines for the choice of the 

prognostic approach: if one is very confident about the accuracy of the available physical degradation model, 
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approach 1 should be preferred; on the contrary, if one doubts about the model accuracy, approach 2 is, in 

general, the most accurate, especially if the number of historical trajectories available is large. However, if 

the measurement noise is small, the system is close to failure and many degradation measurements have been 

taken during the current degradation trajectory, approach 3 can provide better accuracy. 

Consider however that, when multiple approaches with comparable degree of accuracy are available, an 

alternative strategy to the choice of the best performing approach consists in the combination of the different 

approaches outcomes. An application of the method presented in Section 4.2.3 for combining different 

complementary prognostic approaches, handling different sources of information available at the same time, 

is presented in the next Section in the context of a case study about prognostics of clogging filters in a BWR 

nuclear power plant.  

5.2 Filter clogging 

In this Section, we consider the problem of predicting the RUL of filters used to clean the sea water entering 

the condenser of the BWR reactor of a Swedish nuclear power plant [87-90]. During operations, filters 

undergo clogging and, once clogged, can cumulate particles, seaweed, and mussels from the cooling water in 

the heat exchanger. For this reason, prompt and effective cleaning of the filters is desirable; predictive 

maintenance can help achieving this result, keeping maintenance costs reasonably low.  

From data collected on field, we have available 8R  sequences of observations r
nr:1

z , Rr :1  taken during 

the clogging process of as many historical filters. Each observation ],,[ r
j

r
j

r
j

r
j TMP z  contains the 

measurements of the pressure drop r
jP , the flow across the filter r

jM , and the sea water temperature r
jT  

collected at time r
jt  during the clogging process of the r -th filter. It has been well established in the 

literature concerning the study of filter clogging by solid aerosols [78] and liquid aerosols [79] that the 

clogging of a filter medium leads to an increase in pressure drop over the filter as long as the filtration 

velocity, and thus the flow, is kept constant. It is also known that the pressure drop is proportional to the 

square of the filtration velocity. Given these results, one can take as indicator of the state of clogging of filter 

r  at time jt the ratio [80]: 

 

 
2,

)( r
j

r
jr

j
M

P
z




  (21) 

 

Figure 11 shows the sequences of clogging indications r
nrz
:1, , Rr :1  collected on field during the clogging 

process of the filters. We can see from this Figure that the clogging process is affected by large uncertainties, 

which can be ascribed to the very variable conditions of the sea water; in this context, the challenge is to 

provide sufficiently narrow confidence interval for the value of the filters RUL.  

Due to the absence of physical knowledge about the failure threshold, it has been arbitrarily set to the value 

175th , based on the observation of the filters clogging state, indicated by r
jz , , at the time they 

undergoes maintenance. Having set the value of the failure threshold, we can derive the life durations r
Ft  of 

the available reference filters. 
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In this case study, both the direct RUL prediction and the degradation-based approaches applies. The SBR 

approach described in Section 4.2.1, the GPR approach presented in Section 4.2.2, have thus been compared 

and their outcomes aggregated using the combination strategy proposed in Section 4.2.3.  

 

 
Figure 11: available clogging trajectories r

nrz
:1,

, Rr :1 . 

Figure 12 shows, for three representative clogging trajectories r 1, 5, and 7, the true RUL value Jrul  

(continuous red line), the RUL prediction Jlur ˆ  (dots) and the lower bound )(inf Jrul  of the left bounded 

prediction interval with 9.0  (dotted line) supplied by the three approaches. Predictions are performed at 

each time instance during the evolution of a trajectory r , using the remaining 71R  trajectories rr '  

for training. Due to the large uncertainty of the process, for all three approaches the RUL prediction accuracy 

is rather low and the confidence intervals large, although the error and the amplitude of the prediction 

interval decrease with time. The GPR approach provides prediction intervals which are narrower that those 

of the similarity-based approach. This latter in fact provides a lower prediction bound )(inf Jrul  which is 

often very close to zero; as pointed out in [88] a vacuous SBR prediction (i,e., a prediction interval equal to 

the domain test
JRUL  of test

JRUL ), does not means that the evidence of very early failure is significant, but 

only that the evidence drawn from the reference trajectories is not sufficient to assert with the desired belief 

9.0  that the RUL value belongs to any subset of the RUL domain test
JRUL . In other words, the prediction 

0inf, SB
Jrul  is a statement of ignorance about the value of test

JRUL . Such intervals are too large to be 

effectively used by an operator to make a decision about the best time for undertaking a maintenance action. 

However, the large intervals predicted by the SBR approach can provide a correct indication that the 

information conveyed by the training trajectories is not relevant for a specific test trajectory, e.g., because 

they are too dissimilar. This can be seen for trajectory 7r  where the GPR approach provides narrower 

confidence intervals, but such intervals do not include the true RUL value. Notice also that, for this 

trajectory, the prediction provided by SBR is more accurate than provided by GPR. Thus, the SBR approach 

provides always coverage very close to one, although at the price of too large prediction intervals. The 

0 5 10 15 20 25 30 35 40

40

60

80

100

120

140

160

180

200

220

240

Time tj [days]

F
ilt

er
 c

lo
gg

in
g 

z 
,jq
 [

ba
r/

(m
3 /s

)2 ]

 

 

q=1
q=2
q=3
q=4
q=5
q=6
q=7
q=8

th



40 

 

proper combination of the two methods allows obtaining the desired coverage with smaller prediction 

intervals than those provided by the SBR approach. In paper VI of Part II it is shown that this is made 

possible by the choice of the least committed isopignistic BDF transformation which relaxes the information 

conveyed by PDF )( /


zτJRUL
rulp test

J
D  predicted by the GPR method, thus making its relevance comparable to 

that of the SBR-predicted BBA.  

 

 
Figure 12: Predictions GPR

Jlur ˆ  and )9.0(inf,GPR
Jrul  supplied by the GPR approach. 

Finally, it must be mentioned that, in the combination of the SBR and GPR model outcomes, the accuracy is 

reduced with respect to that of the individual SBR outcome. We expect that different strategies for the 

aggregation of the SBR and GPR RUL predictions, accounting, e.g., for the historical performance of the two 

methods, have the potential of improving the accuracy of the combined prediction.  
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6 Conclusions 

Due to its importance in making PHM exploitable in industrial applications, a first important issue tackled in 

this PhD work has been the pre-treatment of the available prognostic information, which in real industrial 

application can be strongly affected by noise, inaccuracies and other sources of errors. In this context, the 

main contribution of this work has been to devise a procedure for validating the reliability of the available 

observations and improve the quality of those found unreliable, based on the other available observations. A 

fuzzy C Means clustering analysis has been applied to verify the consistency of the reliable and uncertain 

parameters values observed. When found unreliable, parameter observed values are improved by using an 

ensemble of Kernel regression models wisely aggregated. To this aim, an original aggregation strategy based 

on the AHP algorithm has been proposed for those cases where reliable values for the parameters under 

estimation are not available for evaluation model performance; on the other side, when they are available, the 

use of a local performance-based aggregation strategy is suggested. This procedure, applied to the real data 

related to choke valves erosion, has allowed recognizing some unreliable parameters (i.e., the oil, water and 

gas mass flow rates) and providing more accurate estimates of their values, which have the potential of 

improving the quality of the valve erosion assessment. The contribution given by this thesis work to 

prognostic data pre-treatment answers to some problem among the large variety of problems that may arise 

in drawing exploitable degradation-related information from sensor measurements, which remains one of the 

main open issues in the field of prognostics [3,8].  

Besides data pre-treatment, the main contributions of this PhD thesis work concern the development of 

prognostic approaches for tackling different situations of information available, capable of supplying 

accurate predictions of the equipment RUL with, at the same time, a reliable quantification of the RUL 

prediction uncertainty. Quantitative considerations have been made with regards to simulated case studies 

concerning the linear and non linear growth of creep in steel equipment and to a real case study about filter 

clogging. Table 6 summarizes the different situation of information available considered and the prognostic 

methods developed to tackle each of them. The merits and open issue of the methods presented are also listed 

in the table. Moreover, since some method can provide a prediction of the future degradation trajectory and 

the RUL probability distribution, whereas others are limited to providing a prediction of the RUL expected 

value, with, eventually, a credible interval for its true value, Table 6 points out which outcomes are provided 

by the different method. In all situations, we have been able to supply accurate prediction of the RUL 

expected value and reliable prediction intervals for the true RUL value.  

In case 1, the capability of Bayesian approaches, and particle filtering in particular, of providing accurate 

predictions when a physical model of the degradation process is available has been largely proven in the 

literature about model-based prognostics. The results obtained in this work show that the PF approach 

provides a good approximation of the exact distribution of the equipment RUL in the case in which an 

accurate model reproducing the equipment degradation process is available. When using model-based 

approaches, imprecision of the model in the reproduction of the degradation process due to simplifications, 

incorrect model structure or assumptions on the equipment specific geometries or material properties, etc., 

can be amplified over time, causing uncertain estimates of the RUL distribution. It has been shown in this 

work that, using particle filtering, it is possible to account for model parameters uncertainty in the prediction 

of the RUL distribution. Moreover, it is known that, by including model parameters in the state vector, one 
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can perform model adaptation in conjunction with state tracking. In any case, it is very difficult for a 

physics-based model to account for all aspects of a degradation process; for example, it is common to neglect 

some of the interactions between different degradation mechanisms or the possible existence of self-healing 

mechanisms which can reverse the degradation process and are likely to increase the uncertainty of the future 

degradation evolution. All these non-modeled phenomena can be accounted for by adding further noise to 

the process model which will result in a larger confidence interval associated to the RUL estimate. Further 

research is needed to quantify the impact of modeling errors on the final prediction of model-based 

approaches.  

In case two, where a physics-based model of the degradation process is not available, two methods, 

similarity based regression and Gaussian process regression, have been proposed to provide, respectively, 

direct and a degradation-based RUL predictions, based on the available training trajectories. These methods, 

which provides satisfactorily results when several training trajectories with limited variability are available, 

can provide RUL prediction intervals with, respectively, too large amplitude or insufficient coverage when 

applied to degradation processes characterized by a large variability of the degradation trajectories followed 

by similar pieces of equipment. The coverage values obtained from the GPR methods, which are lower than 

expected, have been ascribed to the fact that the method do not correctly accounts for the model uncertainty. 

In this view, the use of an ensemble of different GPR models is envisaged as a possible improvement. 

Furthermore, future research should focus on the reduction of the prediction uncertainty of the SBR 

prognostic model. To reduce the prediction uncertainty when the SBR and GPR can both be applied, the 

aggregation of different prognostic methods using different pieces of available information has been 

considered. In the case study about filter clogging, the outcome of SBR prognostics, which makes use of life 

duration data, and those of GPR prognostics, which uses direct degradation indications, have been combined 

in the framework of the belief function theory. This approach has allowed increasing the reliability of the 

prediction intervals, while keeping them reasonable narrow.  

Finally, in case 3, due to the little information available, the use of an ensemble approach has been proposed 

as an effective solution for increasing the robustness and accuracy of the prediction and quantifying the RUL 

prediction uncertainty. A Kalman filter-based ensemble and a bootstrapped ensemble of data-driven 

degradation models have been developed and applied to the linear creep growth case study. Results have 

proven the capability of the KF ensemble of increasing the prediction accuracy by filtering out the 

measurement and prediction noises, without imposing any restriction about the linearity of the degradation 

model. The main limitation of this method is that it does not supply a measure of the prediction uncertainty. 

On the other side, the bootstrapped ensemble approach provides reliable estimates of the prediction 

uncertainty. However, the bootstrap method requires building an empirical model for the estimate of the 

RUL prediction error variance which is then used outside the region covered by the training data: although 

good extrapolations have been obtained in the linear creep growth case study, the feasibility of the approach 

on more complex, non-linear models should be verified. Notice, however, that, when a single censored 

sequence of degradation indications is available, it can be very difficult, in practice, to develop a purely data-

driven non-linear degradation model. Thus, in practice, an assumption of linearity of the degradation process 

has often to be adopted. 
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Table 6: schematic view of the proposed prognostic methods 

Case 1 

Information available 
 

A. Degradation model 
B. Current observations’ sequence 
D. Failure threshold  
E. Measurement equation 

Prognostic approach  Model-based approach 

Computational method  Particle Filtering 

Predicted outcome  Future degradation evolution  
RUL probability distribution 
RUL expected value  
Credible interval for the true RUL value 

Merits  Accurate and precise predictions 
Treatment of model parameters uncertainty 
Particle degeneration problem addressed by resampling 

Open issues Implementation of an effective parameter updating strategy 
Guidelines for the setting of PF parameters (process and observation noises) 
The method does not account for errors in the model structure and assumptions 

Case 2 

Information available 
 

B. Current observations’ sequence 
C. Historical observations’ sequences  
F. Life duration data 

Prognostic approach  Data-driven approach - Direct RUL prediction 

Computational method  Similarity-based regression using belief mass assignments for uncertainty 
representation 

Predicted outcome RUL expected value  
Credible interval for the true RUL value 

Results  Accurate predictions 
Guidelines for the setting of the model parameters (similarity and trust parameters   
and  ) 

Open issues The prediction intervals provided can be very large or even coincident with the RUL 
domain 

Information available 
  

B. Current observations’ sequence 
C. Historical observations’ sequences  
D. Failure threshold  
E. Measurement equation 

Prognostic approach  Data-driven approach – Degradation-based prognostics 

Computational method  Gaussian process regression 

Predicted outcome Future degradation evolution  
RUL probability distribution 
RUL expected value  
Credible interval for the true RUL value 

Merits Accurate and precise predictions 
Modeling of non-linear degradation processes with weak prior assumptions in the 
absence of physics-based knowledge about the degradation mechanism 

Open issues Extension needed to account for model uncertainty in the predicted RUL distribution 
and credible interval 
Guidelines for selecting the prior on the mean and covariance functions are needed 
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Information available 
 

B. Current observations’ sequence 
C. Historical observations’ sequences  
D. Failure threshold  
E. Measurement equation 
F. Life duration data 

Prognostic approach  Data-driven approach – combined direct RUL prediction and degradation-based 
prognostics 

Computational method  Representation of belief density function on continuous real axis   

Predicted outcome RUL expected value  
Credible interval for the true RUL value 

Merits  Improved reliability of the predicted credible interval with respect to GPR model 
while keeping its amplitude relatively small with respect to SBR model. 

Open issues Further testing on a greater number of real and simulated data is needed 
Extension needed to include multi-modal RUL distributions 

Case 3 

Information available 
 

B. Current observations’ sequence 
D. Failure threshold  
E. Measurement equation 

Prognostic approach  Data-driven approach –Degradation-based prognostics 

Computational method  Kalman Filter-based ensemble 

Predicted outcome RUL expected value  

Merits  Filtering of the measurement and prediction noise 
Improved RUL prediction accuracy with respect to the individual best model 
Guidelines for the setting of KF parameters (process and observation noise) 
Capability of incremental-learning 
Applicability to non linear degradation processes 

Open issues Does not provide a measure of the RUL prediction uncertainty 
In case of non-linear degradation processes it can be hard to develop an accurate 
degradation model, due to the limited information available 

Information available 
 

B. Current observations’ sequence 
D. Failure threshold  
E. Measurement equation 

Prognostic approach  Data-driven approach –Degradation-based prognostics 

Computational method  Bootstrapped ensemble 

Predicted outcome RUL expected value  
Credible interval for the true RUL value 

Results  Provides a measure of the RUL prediction uncertainty when not automatically given 
by the regression method 

Open issues Extrapolation outside the region of training data 
Its applicability to non-linear degradation processes should be verified 
In case of non-linear degradation processes it can be hard to develop an accurate 
degradation model, due to the limited information available 
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Abstract 

In offshore oil platforms, choke valve erosion is a major issue. To asses choke valve health state, the valve 

flow coefficient is commonly used. However, the traditional procedure for evaluating the erosion indicator 

introduces some inaccuracies which undermine the possibility of using it for prognostic purposes. The main 

reason for that was identified in the fact that the actual flow coefficient value is analytically calculated as a 

function of measured and allocated parameters. The latter are actually measured only during well test, 

whereas, on a daily basis, they are derived with large uncertainties from a physics-based model. In the 

present work, a clustering procedure is applied to the data collected on a single eroding choke to verify the 

coherence between the information conveyed by the measured parameters conjectured to be reliable 

(pressure drop and choke opening) and the three allocated ones (oil, water and gas mass flow rates); results 

proved the physics-based model to be often inaccurate. To overcome this hurdle, we resort to an ensemble of 

data-driven models built using a Kernel Regression (KR) technique. Results show that a hybrid approach 

which appends the data-driven ensemble to the physics-based model can improve the flow rates estimates. In 

order to exploit the KR models only when they actually outperform the physic-based model, a local 

performance-based approach is adopted for the aggregation of the different model outcomes.  

A further problem addressed in this work is the non-monotonicity of the erosion indicator observed during 

well tests. Some hypotheses about the causes of this problem are discussed and possible improvements 

suggested.  
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1 Introduction 

Predicting the evolution of the equipment degradation allows efficient planning of maintenance operations 

(Garvey et al., 2009; Vachtsevanos et al., 2006; Jarrell et al., 2004). In general, a prognostic model can be 

developed based on information directly or indirectly related to equipment degradation (Hines & Usynin, 

2008). In practice, however, field data are affected by noise, sensor faults and extrapolation errors and need 

to be verified and possibly corrected before they are used for developing the prognostic model. 

In this paper, we consider the degradation of choke valves located topside at wells on the Norwegian 

Continental Shelf (Nystad et al., 2010; Haugen et al., 1995). The difference between the actual valve flow 

coefficient and its theoretical value is retained as the indicator of the choke valve health state and is used to 

assess the level of erosion affecting the choke. While the theoretical value of the valve flow coefficient 

depends only on the choke opening, the actual valve flow coefficient is analytically calculated on a daily 

basis as a function of the pressure drop through the choke which is directly measured and oil, gas and water 

flow rates which are allocated based on the measured total production from a number of wells and on 

physical parameters (pressures and temperatures) related to the single well. Such flow rates are actually 

measured only during a number of well tests carried out throughout the valve life. In practice, the resulting 

indicator of the choke valve state is very noisy and lacks the physical monotonicity of the erosion process; 

allocated values of oil, gas and water flow rates are conjectured to be the cause of the large inaccuracies and 

uncertainties in the calculation of the actual valve flow coefficient. To verify this, data are processed by the 

Fuzzy C Means (FCM) clustering algorithm (Dunn, 1974; Jain et al., 1999). FCM is applied to the 

projections of the five-dimensional dataset into the subspace of the two measured parameters (pressure drop 

and choke opening) and the subspace of the three allocated parameters (oil, water and gas flow rates). The 

two partitions are compared to investigate the coherence of the information conveyed by the parameters. A 

supervised clustering algorithm based on Mahalanobis metrics (Zio & Baraldi, 2005) is used to obtain a 

partition of the entire five-dimensional dataset as close as possible to that obtained based only on the two 

measured parameters. A measure of the importance of the parameters in the clustering is calculated and used 

to verify the coherence of the information conveyed by the less reliable allocated parameters with that 

conveyed by the two reliable ones. 

Since the values of oil, gas and water flow rates are found unreliable, a method for correcting them based on 

the relations among all parameters has been developed. To this aim, an ensemble of Kernel Regression (KR) 

models is devised. KR is a distance-based regression algorithm (Nadaraya, 1964; Atkeson et al., 1997); an 

ensemble of four KR models is used to avoid the need of selecting the optimal model and to increase the 

robustness and reduce the uncertainty of the estimate (Perrone & Cooper, 1992, Bonissone, 2010). Diversity 

is injected in the ensemble by differentiating the training procedure for each KR model. The aggregation of 

the KR model outcomes is obtained through an original procedure based on the weighted average of the 

single model outcomes with weights calculated using the Analytic Hierarchy Process (AHP) (Saaty, 1980). 

We have noticed that, depending on the well, either the physics-based model for flow rates allocation or the 

data-driven KR models ensemble can provide the most accurate estimates of the flow rates to be used for 

computing the flow coefficient and assessing the valve erosion. This is probably due to the specific 

conditions of the well. Physics-based approaches rely on the assumption of deep understanding of the system 

behaviours and detailed knowledge of geometry, material properties and other characteristics of the system. 
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On the other side, data-driven approaches are only accurate when applied to the same, or similar, operating 

condition for which data have been collected. Outside the training space of the empirical models, physics-

based models should be preferred, because their results are derived from universal first principles. It is 

almost universally agreed in the forecasting literature that no single method is best in every situation (Zhang, 

2003; Chatfield, 1988); moreover, real-world problems are often complex in nature and any single model 

may not be able to capture different patterns equally well. Thus, in practice, it is usually difficult to decide 

whether one particular model is more effective than the other in all the operational range. By combining 

different methods, the problem of model selection can be bypassed (Zhang, 2003). The combinations of 

physics-based and data-driven models are usually termed hybrid models. The result of combining the 

estimates of physics-based model and data-driven methods is to balance out their different errors and to 

augment the robustness and interpretability physics-based models with the sensitivity of data-driven methods 

(Zio, 2012; Coble & Hines, 2009; Polikar, 2006). The modeling framework underpinning hybrid methods is 

certainly more complicated, but offers clear advantages on the reliability and accuracy of the predictions.  

In this work, the hybrid approach is applied to improve the accuracy of the mass flow rates estimates by 

appending to the ensemble of Kernel Regression (KR) models the physics based model providing the 

allocated values of the mass flow rates. In order to exploit the KR models only when actually needed, a local 

performance-based approach is adopted for the aggregation of the different model outcomes. The 

performance of the proposed approaches are evaluated on real data from 26 choke valves of 5 different wells, 

and compared to those of the physics based model and the KR ensemble. 

In this work, it has been noticed that, even when only well tests are used to compute the erosion indicator 

and, consequently, its value is not affected by the inaccuracies in the allocated mass flow rates, still, it do not 

show high monotonicity. We conjectured this to be due to other sources of uncertainty and errors that affect 

the information available and undermine the possibility of using it for prognostic purposes. Some hypothesis 

about their nature are suggested and discussed in this work. 

The remaining part of this work is framed as follows. The traditional procedure for the construction of a 

health indicator assessing the choke valve erosion state is presented in Section 2 where the clustering 

procedures is introduced to verify the reliability of the allocated parameters; in Section 3, an ensemble of KR 

models aggregated by a AHP-based procedure is proposed to improve the accuracy of the allocated flow 

rates and applied to the choke dataset; in Section 4, the hybrid ensemble approach is presented and results 

discussed; in Section 5 the quality of the erosion indicator and the possibility of using it for prognostic 

purposes are discussed; finally, conclusion and potential perspectives for future work are drawn in Section 6. 

2 Choke valve erosion assessment 

In oil and gas industries, choke valves are normally located on top of each well and are used to balance the 

pressure on several wells into a common manifold to control flow rates and protect the equipment from 

unusual pressure fluctuations.  

In Figure 1, left, a choke valve is sketched. The throttle mechanism consists of two circular disks, each with 

a pair of circular openings to create variable flow areas. One of the disks is fixed in the valve body, whereas 

the other is rotated either by manual operation or by actuator, to vary or close the opening. For large pressure 
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drops, the well streams which contain gas, liquid and sand particles can reach 400-500 m/s and produce 

heavy metal loss mainly due to solids, liquid droplets, cavitation, and combined mechanisms of erosion-

corrosion, resulting in choke lifetimes of less than a year. In Figure 1, right, the picture of an eroded choke 

valve is shown. The main parameters determining erosion potential in the chokes are the fluid velocity and 

the resulting angle of sand through the choke discs. Erosion management is vital to avoid failures that may 

result in loss of containment, production being held back, and increased maintenance costs. Moreover, 

several chokes are located subsea, where the replacement cost is high. Then, the need has increased for 

reliable models to estimate erosion and lifetime of choke valves, in order to allow implementing effective 

maintenance strategies (Wold et al., 2010; Ngkleberg & Sontvedt, 1995; Birchenough, 1994). 

 

      

Figure 1: Typical choke valve of rotating disk type (http://www.vonkchokes.nl/) (left). Example of eroded choke disk(right). 

A common indicator of the valve flow capacity is the flow coefficient CV, which is related to the effective 

flow cross-section of the valve. For a specific valve opening θ, erosion produces a gradual increase of the 

valve area available for the flow transit, thus determining an increase of CV (eq. 1). For this reason, knowing 

the value of the flow coefficient is fundamental for assessing the health state of the choke. During operation, 

CV is not directly measured but computed, for a two-phase flow, as (Metso Automation, 2005): 

 

 ;  (1) 

 

where  are the oil, water ans gas flow rates, respectively,  the corresponding fluid 

fractions and ρo,w,g the corresponding densities, ρmix the mixture density,  is the total 

mass flow rate of the oil-water-gas mixture, J is the gas expansion factor, Fp(θ) is the piping geometry factor 

accounting for the geometry of the valve/pipe reducer assembly and ΔP is the pressure drop through the 

choke. Eq. (1) and the values of ρo,w,g, J, Fp(θ) and N6 are derived from fluid dynamics; parameters ΔP, θ,  

,  and  are measured or allocated during operation, i.e., calculated by a physics-based model of 

the piping process.  
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2.1 Choke valve dataset 

For a correct assessment of the choke erosion state, it is fundamental to obtain frequent and reliable 

measurements or estimates of the parameters ΔP, θ, ,  and  used to compute the flow coefficient 

CV. Nevertheless, only the pressure drop ΔP across the choke and the valve opening θ are known with good 

level of accuracy on a daily basis, since the first is directly measured during standard daily inspections (SI) 

whereas the second is a control parameter imposed by the actuator; hereafter, we will refer to these 

parameter as observed parameters. On the other side, measures of water, oil and gas flow rates are taken 

downstream of the choke only during well tests (WT) with a multiphase flow separator. On a daily basis, the 

values of ,  and  are allocated for a single well by a physics-based model accounting for the 

measured total production from a number of wells and on physical parameters (pressures and temperatures) 

related to the specific well. Figure 2 schematizes the procedure for the estimation of the flow coefficient. 

 

 

Figure 2: pictorial view of the procedure for the estimation of CV. 

The value of the parameters in input to the physics-based model has not been recorded. Only the values of 

the choke-related parameters ΔP, θ, ,  and  collected during WT and SI have been recorded 

during a protracted period of time for five different wells. Tables 1 and 2 outline the available information: 

the daily allocated values of ,  and , the daily observed values of ΔP and θ and the values of , 

 and  measured during well tests. Since degraded valve disks are replaced, data collected for a single 

well refer to different disks. 

Table 1: Available information 

 Standard Inspections (SI) Well Test Inspections (WT) 

ΔP Measured Measured 

θ Control signal Control signal 

,  and  Allocated Measured 
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Table 2: Number of SI and WT patterns for each choke. 

Well Disk NSI NWT  Well Disk NSI NWT 

1 1 259 7  5 1 499 24 
2 1 597 36   2 373 17 

2 899 37   3 333 16 
3 358 14   4 134 7 

3 1 191 9   5 286 15 
2 194 10   6 153 11 
3 211 14   7 81 6 
4 977 44  6 1 226 17 
5 570 19   2 344 14 

4 1 318 20   3 238 12 
2 96 6   4 870 28 
3 131 6      
4 112 7      

 

Figure 3 shows the trend of the parameter values collected during SI (continuous line) and WT (stars) for the 

eroding choke disk of well 1. Figure 4 shows, for the same disk, the values of the health indicator δCV 

computed using daily SI data (continuous line) and WT measurements (stars).  

 

 
Figure 3: Parameters trends (continuous line represents SI, stars indicate WT) 
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Figure 4: Health indicator δCV using SI (continuous line) and WT (stars). 

2.2 Data validation procedure 

In this Section, a cluster analysis procedure is proposed to evaluate the reliability of the allocated parameters. 

Notice that all the results provided in this Section are obtained using only the data available for well 1.  

In general, δCV is expected to be monotonic since erosion cannot decrease in time unless maintenance 

actions are performed. A quantitative index of monotonicity is the Spearman’s rank correlation used in 

statistics to assess how well the relationship between two variables can be described using a monotonic 

function (Mayers et al., 2010). The curve of δCV computed using the SI data, is highly noisy and presents 

remarkable oscillations. The Spearman’s rank correlation coefficient rS between δCV and time tk at which the 

measurements are taken is computed as: 

 

  (2) 

 

where  is the five-dimensional vector containing the parameter values collected at 

time tk, and  and k are the ranks (i.e., the relative positions) of pattern xk when all patterns are 

ordered with respect to the values of δCV and tk, respectively. Values of rS close to 1 are expected for a 

monotonic quantity. Results show that δCV behaves monotonically (rS=0.9643) only when WT measurements 

are used to compute it. On the contrary, the lower monotonicity (rS=0.7401) obtained when δCV is calculated 

using SI data suggests that some of the allocated mass flow rate values may be unreliable. A cluster analysis 

is performed in this Section in order to verify this hypothesis. In Section 2.2.1, the main steps of the 

procedure of cluster analysis proposed are presented; in Section2.2.2, the results of its application to the 

choke valve erosion case study are discussed. 
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2.2.1 Cluster analysis 

Let X be a generic set of N patterns , k=1,…,N, of P=5 parameters which can be divided in a 

vector  of pr=2 reliable parameters, and another vector  of pu=3 possibly 

unreliable parameters.  

In general, the distinction between reliable and unreliable parameters can be achieved considering expert 

judgment, data analysis or by resorting to data validations techniques which allow detecting anomalous 

behaviors in datasets. In the choke valve case study, parameters ΔP and θ are classified as reliable according 

to expert judgment, whereas the allocated parameters, ,  and  are judged unreliable.  

The aim is here to propose a procedure for verifying whether the information provided by the unreliable 

parameters in  is coherent with that of the reliable parameters in . This is done by considering the 

relative positions of the patterns in the pr-dimensional subspace Sr of the reliable parameters, and in the pu-

dimensional subspace Su of the unreliable parameters. 

An effective technique to find a structure in a collection of unlabeled objects is unsupervised clustering, 

consisting in the organization (partition) of the patterns into non-overlapping, non-empty groups (clusters) so 

that patterns of the same cluster are similar between them and dissimilar to the patterns belonging to other 

clusters (Devijver & Kittler, 1982). For the validation of the unreliable parameters, two different partitions 

(Γr and Γu) of the dataset X into C clusters are considered: Γr is obtained using the unsupervised Fuzzy C-

Means (FCM) clustering technique in the reliable parameters space Sr, whereas Γu obtained by applying the 

same technique in the unreliable parameters space Su. 

The FCM technique is an unsupervised clustering technique which makes no use of a priori known 

information on the true classes of the patterns (Yuan et al., 1995). The clustering is based on the 

minimization of a weighed sum Y of the distances d(xk, vc) between the patterns xk and the cluster centers vc,  

 

  (3) 

 

where the weight μc(xk) denote the membership of xk to cluster c, and ω is a parameter which controls the 

degree of fuzziness of the clusters (often a value between 1 and 2 is found suitable in application) (Zio & 

Baraldi, 2005). In the traditional algorithm (Dunn, 1974), the distance is Euclidean. The membership values 

μc(xk) and the cluster centers vc are computed via an iterative procedure reported, for completeness, in 

Appendix A.  

The information used to build the partition Γr is incomplete, since only pr out of P parameters are used; on 

the other hand, the cluster structure thereby identified is assumed as reference in the comparison with the 

partition Γu, since it is built using only the pr reliable parameters in . Due to the incompleteness of the Γr 

information base, one could observe disagreement between Γr and Γu not only when the values of the 

unreliable parameters in  used to build Γu are incorrect, but also when they give information which, 

despite being correct, is uncorrelated with that given by the reliable parameters in . For example, two 

different clusters can coincide when projected on Sr and be well separated on Su instead; in such a situation, 
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one can obtain significantly different partitions Γr and Γu, despite the correctness of the unreliable 

parameters. Since in the choke valve case study the unreliable parameters  are somehow 

correlated to the reliable parameters  (see eq. (1)), the possibility of observing uncorrelated 

parameters has not been considered in this work. 

Operatively, the cluster analysis is performed as follows: 

1. Identify the optimal number of clusters C to be used for the partitions Γr and Γu. This is obtained by 

considering the minimum of the compactness and separation validity function s(C): 

 

  (4) 

 

which represents the ratio between the cluster compactness, measured by the average distance of the 

patterns from their cluster centers and the separation between the clusters, measured by the minimum 

distance between two cluster centers. Notice that the numerator tends to decrease when the 

compactness increases and the denominator tends to increase when the separation increases. For this 

reason, in order to obtain a partition characterized by highly compact and well separated clusters, 

one has to find the optimal number of clusters which minimizes the validity function s(C). 

2. The fuzzy partitions Γr and Γu of the N data into C clusters are obtained using the FCM clustering 

algorithm (see Appendix A). 

3. The clusters of Γr and Γu are bi-univocally associated cr↔cu by minimizing the partition distance 

D(Γr, Γu) between the partitions Γr and Γu. In this respect, the distance D(Γr, Γu) defined in Zio and 

Baraldi (2005) has been used: 

 

  (5) 

 

where 0≤ ≤1 is the membership of the k-th pattern to the c-th cluster of the partition Γr and 

Γu. 

4. Crisp partitions Ωr and Ωu are obtained from the fuzzy partitions Γr and Γu, respectively, by assigning 

a pattern xk to a given cluster c if its degree of membership to the cluster, μc(xk), exceeds a 

predefined threshold , which represents the required degree of confidence for the 

assignment. If the condition  is not fulfilled for any cluster or if it is verified for more 

than one cluster, the pattern is not associated to any cluster. The crisp partitions Ωr and Ωu
 are 

compared by considering the difference between the sets of patterns  and  assigned to the 

associated clusters cr and cu. A large difference in the assignment of the patterns to the clusters is 

taken as a symptom that the information conveyed by the unreliable parameters may be misleading. 
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2.2.2 Results 

According to this procedure, the dataset XSI of the NSI =259 SI available patterns of well 1, , k=1,…, NSI, 

is projected into the subspaces Sr=ΔP×θ and Su= × ×  of the measured (reliable) and allocated 

(unreliable) parameters of the choke valve case study, respectively. Two partitions Γr and Γu of the dataset 

XSI into C=5 clusters are obtained using the FCM algorithm with degree of fuzziness ω=2. 

The clusters of Γr and Γu are then coupled by minimizing the partition distance D(Γr, Γu) in eq. (5) and the 

same cluster index c=1,…,5 is assigned to each member of the pair of associated clusters. The minimal value 

found for the partition distance is 0.47 which is high considering that, by definition, the maximum partition 

distance is 1. With a degree of confidence γ=0.4, 255 patterns out of the total 259 patterns of XSI are assigned 

without ambiguity to the clusters of Γr and 219 to the clusters of Γu. The remaining patterns are ambiguous. 

Ambiguous patterns in Γr, which differ from those in Γu, are located at the boundaries between clusters 1 and 

3 and clusters 2 and 3, and for this reason their membership to both clusters is large. 

Figure 5 shows the partitions Γr and Γu of the 259 SI patterns in the space Sr. It can be seen that in Γr, the 

clusters are clearly separated, contrarily to what happens in Γu. Moreover, one can observe large differences 

in clusters’ composition, e.g. many patterns that belong to cluster 1 in Γr are assigned to cluster 5 in Γu; 

patterns of clusters 2, 3 and 4, which are well separated in Γr, are, instead, mixed in Γu.  

 

 
Figure 5: Visualization on the space Sr=ΔP×θ of the patterns assigned to the five clusters in Γr (top) 
and Γu (bottom). In the top graph, the WT patterns are also shown (black dots, numbered in 
chronological order). 

Table 3 compares the number of patterns assigned to the same cluster in Γr and Γu (4th column) to the total 

number of patterns assigned separately to each cluster of Γr and Γu (2nd and 3rd column, respectively). Notice 

that, globally, less than half of the patterns (47%) assigned to a cluster of Γr are assigned to the associated 

cluster of Γu (last row in the Table). 
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Table 3: Number of patterns assigned to each cluster in Γr (2nd column), in 
Γu (3rd column), in both Γr and Γu (4th column) and percentage of patterns 
assigned to the same cluster in both partitions with respect to the number of 
patterns assigned to that cluster in Γr 

Cluster c Γr Γu Γr & Γu (Γr & Γu)/( Γr) 

1 45 15 14 31.11% 

2 56 49 15 26.79% 

3 77 48 32 41.56% 

4 25 47 15 60.00% 

5 52 60 43 82.69% 

 255 219 119 46.67% 

2.2.3 Supervised evolutionary clustering 

To confirm the conclusions drawn in the previous Section, a further analysis based on a supervised clustering 

technique is here performed. Firstly, a partition Γs, as similar as possible to Γr, is obtained using a supervised 

evolutionary clustering technique based on Mahalanobis metrics in the space of all parameters. 

A set Xlab of Nlab labeled training data is built by choosing, among the NSI patterns of XSI, those belonging to 

one of the C clusters in Γr with a membership  and labeling them with the index c of the cluster 

they are assigned to. The evolutionary algorithm searches for the optimal metrics to be used by the FCM in 

order to achieve clusters as close as possible to the clusters of the labeled patterns.  

In this view, each cluster c is defined by an individual geometric distance  through a dedicated 

Mahalanobis metric, defined by a definite positive matrix Mc: 

 

  (6) 

 

The classification task amounts to an optimization problem in which the metrics, i.e., the geometric distance 

functions, become additional parameters to be determined besides the fuzzy partition. The supervised target 

of the optimization is that of minimizing the partition distance D(Γ,Γ*) between the a priori known partition 

Γ and the obtained partition Γ* as defined in eq. (5). 

For the optimization, we integrate an evolutionary algorithm for determining the C optimal geometric 

distance functions (Yuan et al., 1995) with the FCM algorithm for determining the optimal fuzzy partition 

based on such distance. For more details on the algorithm one can refer to Zio & Baraldi (2005). 

A measure of importance  of a parameter xp, p=1,…,P for the assignment of a pattern to a cluster c 

is: 

 

  (7) 
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where , j,p=1,…,P are the coefficients of the lower triangular matrix  for cluster c 

obtained from the decomposition of the Mahalanobis matrix Mc into its Cholesky factors Gc, i.e., 

ccc GGM T  (Zio and Baraldi, 2005). 

The importance values )( omI c
M , )( wmI c

M  and )( gmI c
M  associated to the allocated parameters are 

compared to those associated to the reliable ones, )( PI c M  and )(cI M : if the importance of allocated and 

reliable parameters is similar, one can conclude that they both convey useful information for defining the 

partition Γs; vice versa, if the importance of the allocated parameters is lower than that of the measured 

parameters, one should doubt about their reliability, since the information they convey appears to be 

incoherent with that of the measured parameters. 

Table 4 reports the measures of importance  obtained for the five parameters and for each cluster. The 

allocated parameters have low importance compared to the measured ones, meaning that they do not 

significantly contribute to the assignment of the patterns to any of the clusters. 

Table 4: measures of importance  of the different parameters 

Reliable parameters Allocated parameters 

Cluster c ΔP θ   

 

1 2.221 1.770 0.095 0.048 0.105 

2 2.410 5.933 0.000 0.001 0.002 

3 2.175 4.443 0.050 0.009 0.011 

4 0.362 7.847 0.013 0.696 0.008 

5 0.288 3.802 0.044 0.097 0.199 
 

The analysis performed in this Section has shown that the information conveyed by the allocated parameters,  

,  and , i.e., the oil, water and gas mass flow rates, respectively, lowers the quality of the choke 

valve health indicator δCV. For this reason, an empirical method for providing more accurate estimates of the 

mass flow rates has been developed and is presented in the following Section. 

3 Improving the quality of the allocated parameters 

After verifying that the allocated values of , , and  in the choke valve case study are noisy and 

unreliable, a procedure for improving the accuracy of these estimates is here proposed. This is done by 

means of empirical models which learn from a training set the relationships between the parameters, and 

provide as output an estimate  of the allocated parameters in the input pattern xk. Different regression 

techniques such as those based on the use of principal component analysis (Baraldi et al., 2009), artificial 

neural networks (Fantoni & Mazzola, 1996; Marseguerra et al., 2006), support vector machines (Sun et al., 

2005), evolving clustering methods (Chevalier et al., 2009) have been applied to this purpose. In this work, 

Kernel Regression models (Nadaraya, 1964; Atkeson et al., 1997) have been chosen. 
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3.1 Kernel regression 

Kernel Regression (KR) models provide estimates by developing local models in the neighborhoods of the 

test patterns they are fed with. Estimates are obtained as weighted averages of the training patterns, with 

weights decreasing as the distance between the test and the training pattern increases. In this view, training 

patterns closer to the test pattern are conjectured to be more similar to it, thus giving the most relevant 

contribution to its estimate. 

Let Xtrn={xk}, k=1,…, Ntrn be the training set used for the estimate of the test pattern xtst. To develop the KR 

model, parameters are divided into a predictor group (PG) and a response group (RG) (with the two groups 

eventually overlapping). For the estimate of xtst, the KR algorithm assigns to each training pattern xk a weight 

wk=K[dPG(xtst,xk)], where K is the kernel function which produces the weight for a given distance dPG(xtst,xk), 

between the training and the test patterns, computed considering only the parameters of the predictor group. 

The estimate  of the RG parameters of the test patterns is obtained as a weighted average of the RG 

parameters of the training patterns: 

 

  (8) 

 

The kernel function K must be such that training patterns with small distances from the test pattern are 

assigned large weights and vice versa. Among the several functions which satisfy this criterion, the Gaussian 

kernel is commonly used (Wand & Schucany, 1990): 

 

  (9) 

 

where the parameter h defines the kernel bandwidth and is used to control how close training patterns must 

be to the test pattern to be assigned a large weight. In order to compute dPG, the PG parameters are rescaled 

in the range [0, 1]. 

In the present case study, the choice of training dataset and predictor parameters is critical. In principle, both 

the WT and the SI patterns can form the training dataset; due to their greater reliability, only the WT should 

be used for training the KR models. However, when few WT data are available, such as for well 1, the 

allocated value can help completing the information available for the data-driven model. Then, we devised 

the four different models listed in Table 5, by differentiating the training set. 

Finally, the response group is formed by the unreliable parameters that need to be estimated, i.e., .  
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Table 5: Model training procedures in case 1. 

Model Training set Predictor parameters 

1 Well test data XWT Measured  

2 Standard inspections data XSI Measured  

3 Well test data XWT Measured & allocated  

4 Standard inspections data XSI Measured & allocated  

3.2 Ensemble approach 

Since the performance of the models depends on the characteristics of the parameter to be estimated and the 

intensity of the noise (Baraldi et al., 2011), it is difficult to identify a single best model.  

Using an ensemble of models allows overcoming this dilemma. Indeed, the general idea underlying 

ensembles is to create many models and combine their outputs in order to achieve a performance better than 

that provided by each individual model in the ensemble (Perrone & Cooper,1992). Models’ prediction 

diversity plays a fundamental role when ensemble approaches are devised. In fact, individual models 

committing diverse errors can be opportunely combined in such a way that the error of the aggregated 

prediction is smaller than the error of any of the individual models. 

Different techniques for the aggregation of the outcomes of individual models have been proposed in the 

literature, the most common being statistics methods like the simple mean, the median and the trimmed mean 

(Baraldi et al., 2009; Polikar, 2007). Other aggregation techniques which allow improving the ensemble 

performance consider weighted averages of the model outcomes with weights proportional to the 

performance of the individual models. In this respect, both global approaches (in which the performance is 

computed on all the available patterns) and local approaches (which measure the performance only on the 

patterns closed to the test one) have been proposed (Baraldi et al., 2010). Since in the choke valve case study 

a complete input-output set of patterns is represented by the WT only, where only few WT are available, 

model weighting cannot be based on a measure of the performance of the individual model. For this reason, a 

new strategy is proposed in Section 3.2.1 based on the use of the Analytic Hierarchy Process (AHP) (Saaty, 

1980). 

3.3 Outcome aggregation with Analytic Hierarchy Process 

AHP is a multi-criteria decision method that uses hierarchic structures to represent a decision problem and 

provides ranking of different choices (Saaty, 1980). It consists of two main steps: 1) structuring a hierarchy; 

2) assigning priorities to the elements of each hierarchy level by comparative judgments of the elements 

based on a pre-defined scale.  

In this application, AHP is used to assign performance weights to the models of the ensemble using relative 

performance measurements, without resorting to an absolute measurement of the model performance. The 

hierarchy structure sketched in Figure 6 is used. The four models on level 3 are compared with respect to the 

two criteria Z1 and Z2 of the level 2 towards the goal (level 1) of obtaining high model accuracy. 
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Figure 6: Model weighting hierarchy structure 

The basic tool for assigning priorities to the elements of a level of the hierarchy are matrices of pairwise 

comparisons based on the criteria defined at the previous level. For the hierarchy of Figure 6, two matrices of 

comparisons  and  have to be defined, each one containing elements aij representing the relative 

importance of model i when compared to model j based, respectively, on criteria Z1 and Z2. 

Once a matrix of comparisons  is defined, the vector of priorities  of the models in level 3 of the 

hierarchy with respect to criterion Zl is given by the eigenvector associated to the maximum eigenvalue of 

matrix . The priority vectors obtained for each criterion are weighted with the priority assigned to the 

corresponding criterion and averaged to obtain the overall priority vector π=[π1, π2, π3, π4] assigning the 

priority πm to model m. 

In the proposed aggregation method, the priorities assigned to each model are used as weights to aggregate 

the models’ outcomes through a weighted average: 

 

  (10) 

 

where  is the estimate provided by model m of the unreliable parameters in . 

In this application, the first criterion Z1, chosen to evaluate the relative importance of model i with 

respect to model j in the reconstruction of a test pattern , is the relative similarity of the two models 

outcomes  and  to the remaining models outcome , m≠i, j. Assuming that the outcomes of the 

models left out of the pairwise comparison are distributed around the correct value, this criterion assigns 

larger weights to the model (i or j) whose outcome is more similar to those of the models left out. 

The similarity of two patterns  and  has been estimated by the inverse of their Euclidean distance 

; the relative importance  of a model i with respect to model j when model m is taken 

as reference is defined by: 

 

  (11) 
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and the entry aij of the comparison matrix A is given by the product of the relative importance values 

 m=1,…,4, m≠i, j: 

 

  (12) 

 

According to the AHP method, the quality of a matrix of comparison can be evaluated considering its 

consistency. Matrix  is consistent if the following equation is satisfied for any i, j and k (Saaty, 1980): 

 

  (13) 

 

In our case, substituting eqs. (11) and (12) in eq. (13) gives: 

 

where  and, by definition, . This shows that, in the proposed approach, matrix 

 is consistent. 

A second criterion Z2 for evaluating the performance of a model takes into account the root mean square 

error (RMSE) in reconstructing the reliable parameters in , i.e. the root mean square difference between 

the reconstructed and measured values. This second criterion is based on the fact that robust and reliable 

models should be able to correctly reconstruct the reliable parameters of  despite the noise on the 

unreliable parameters of . Since all model performances are evaluated with respect to the same reference, 

i.e. the reliable measurements in , the pairwise comparison is not needed in this case, and the vector of 

priorities  is computed by taking for each model h=1,…,4, the inverse of its RMSE, i.e. 

. 

Finally, the two criterions Z1 and Z2 of level 2 of the hierarchy are given the same importance and thus the 

priority vector π is given by:  

 

  (14) 

3.4 Results 

The ensemble approach proposed in this Section is applied to the single choke disk of well 1 to improve the 

quality of the erosion indicator δCV, in this case where very few WT are available. First, the mass flow rates 

,  and  allocations are corrected, then the estimates are used to calculate the δCV from eq. (1). 

Notice that, since the coefficients of the physical model in eq. (1) are not available to the authors, their value 
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has been derived by fitting this model to the data available for well 1. The resulting evolution of δCV is 

shown in Figure 7 (continuous line).  

In Baraldi et al., (2010), it is shown that in the case of very noisy parameters, the estimation error can be 

reduced by iterating the estimation procedure: the estimate of the noisy parameters obtained at the previous 

iteration is repeatedly given in input to the estimation model. Then, to improve the δCV estimate, at one 

iteration, the values of the allocated parameters in  estimated by the ensemble at the previous iteration are 

given in input to the ensemble together with the original values of the reliable parameters in . The δCV 

computed using the mass flow rates estimates obtained when this procedure is iterated 10 times is shown in 

Figure 7 (dots).  

The values of  obtained using the estimated values, both in case of 1 or 10 iterations, are more 

monotonic and more similar to those obtained in correspondence of the WT inspections (dots). Nevertheless, 

neither the AHP ensemble nor any of the single models considered can produce a totally monotonic indicator 

and some anomalous behaviors remains (e.g., some peaks such as the one occurring between 150 and 200 

operational days which corresponds to a decrease in the pressure drop not followed by a decrease of the 

allocated values of the mass flow rates). 

 

 
Figure 7: Comparison of the erosion indicator obtained using the allocated values of the mass flow rates 
(dshed line), those estimated by the AHP ensemble with 1 (continuous line) and 10 iterations (dots), and 
those measured during WT (asterisks) 

Table 6 compares the value of the Spearman’s rank correlation coefficient rS measuring the monotonicity of 

the health indicator obtained using the SI dataset, the estimates of the four individual models and those of the 

AHP ensemble iterated 1 and 10 times. Results show that estimating ,  and  allows increasing the 

monotonicity of the health indicator δCV with respect to that obtained by directly using the values computed 

during standard inspections. Furthermore, notice that in this case model 3 generates a health indicator 

slightly more monotone than that obtained by using the AHP ensemble. Nevertheless, since ensemble 
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approaches have proved to increase robustness compared to single best models, the estimates obtained by the 

latter should be preferred. 

 

Table 6: Monotonicity rs of the health indicator calculated using the SI dataset, the individual models estimates and 
those of the AHP ensembles with 1 (1-AHP) and 10 (10-AHP) iterations. 

SI data Model 1 Model 2 Model 3 Model 4 
1-AHP 

ensemble 

10-AHP 

ensemble 

0.740 0.847 0.903 0.920 0.843 0.915 0.919 

 

The KR models in Table 5 are then applied to the remaining 5 wells to obtain estimates of the mass flow 

rates ,  and . In analogy with well 1, for the test pattern xtst collected for a specific choke, only 

patterns concerning the same choke are considered. This is done to better evaluate the method performance 

when few WT data are available. In practice, when estimating the test pattern xk for a specific choke c, only 

the patterns xj , j=1,…,k-1 previously collected during the life of the c-th choke are used as training patterns.  

Performance are given by the root mean square error in the estimation of the flow rates, normalized in the 

range [0,1]. In order to verify the performance of the models, we have considered a test set formed by the 

NWT patterns of XSI collected the same day of a well test. Indeed, since an accurate measure of the process 

parameters under estimation is available for these patterns, they can be used to assess the performance of the 

estimation models. The subset retained for testing is formed by the Ntst patterns for which the value of the 

opening and the pressure drop considered for the allocation, i.e., which are given in input to the models for 

estimating the mass flow rates, are very similar to the values actually recorded at the time of the well test. 

Also, only data collected after the 5th WT are retained for testing, so that at least 5 WT data are always 

available for training the KR ensemble models. Table 7 gives the number Ntst of well tests of each well used 

for validating the methods and compares the performance of the allocations, the four KR models, and the 

AHP ensemble.  

Table 7: Number of validation WT patterns for each well. 

Well Ntst 
RMSE (10-2) 

SI Mod 1 Mod 2 Mod 3 Mod 4 AHP 

1 58 7.23 4.60 7.70 4.47 7.24 5.11 

2 40 2.28 3.37 3.27 2.94 2.66 2.73 

3 8 1.53 9.22 5.22 6.75 1.71 6.24 

4 34 3.34 5.10 4.65 3.89 3.41 3.79 

5 25 5.44 5.85 5.82 5.75 5.55 4.55 

Average 165 4.68 4.82 5.59 4.28 4.82 4.23 
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Results show that in average the AHP ensemble outperforms both the allocations and all single models. 

However one can notice that the ensemble estimates do not always outperform the allocation. This can be 

due to two main reasons:  

1) for some choke valve the allocations are highly accurate, and thus they cannot be improved through 

the KR estimates; 

2) in some cases, e.g., those characterized by abrupt changes in the operating conditions of the choke 

such as large variations of the choke opening, the patterns used for the model training may not cover 

the range of parameter values of interest for the test pattern. 

With respect to the situation at point 1) one can have a prior indication of the accuracy achieved by the 

allocations and the KR ensemble by considering the corresponding RMSE obtained in the estimates of the 

previous well test of the same choke; in this view, a different strategy for process parameters estimation is 

implemented in the next Section by resorting to a hybrid ensemble aggregated by a local aggregation 

strategy. On the other side, with respect to the situation at point 2) an estimate of the confidence of the 

ensemble outcome could be provided by analyzing the position of the test pattern with respect to the 

distribution of the training patterns. 

4 Hybrid modeling approach 

As shown in the previous Section the allocated values of , , and  can be noisy and unreliable 

(Baraldi et al., 2011); however the data-driven on-line procedure proposed for improving the accuracy of 

their estimates does not always outperform the allocations. For this reason, in this Section we propose a 

procedure based on a hybrid approach (Penha et al., 2002) combining the physics-based model used for the 

allocations and the ensemble of data-driven models.  

There are two major approaches to hybrid modeling: the series and the parallel approach (Penha et al.2002). 

In the serial hybrid approach (Figure 8, left), data-driven models are used to model parameters in the 

physics-based model which is used to model the system (Psichogios & Ungar, 1992). In the parallel hybrid 

approach (Figure 8, right) data-driven models are trained to predict the residuals not explained by the first 

principle model (Thompson & Kramer, 1992).  

 

 
Figure 8: Schematic of series (left) and paraller (right) hybrid approaches 
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In this work, we wish to apply a hybrid modeling approach for the estimation of the mass flow rates. Neither 

the series and the parallel approaches can be applied in their basic formulation, since, as explained in Section 

2, the inputs fed to the physics-based model for estimating the mass flow rates have not been recorded and 

thus no dataset is available for training a data-driven model (DD) in the framework described by Figure 8. 

For this reason, the different approach presented in Figure 9 has been devised: the values of the parameters 

, , and  in  allocated by the physics-based model and the two measured parameter ΔP and θ 

are fed in input to a data-driven model, whose output is a new data-driven estimate  of the allocated 

parameters. The data-driven estimate  is then aggregated to the physics-based one, , within a 

hybrid ensemble (HE) approach similar to the parallel configuration of Figure 8, to obtain improved 

estimates  of the flow rates. 

 

 

Figure 9: Schematic of the hybrid modelling approach proposed. 

Once again, the ensemble of KR models has been adopted for the construction of the DD model. However, 

since for most of the wells considered an acceptable number of WT data is available, it is preferred to use 

only WT data for training the data-driven models. Many different models can still be devised by 

differentiating the predictor parameters based on which distances are computed in the KR algorithm. The 

four models listed in Table 8 have been retained for the construction of the ensemble, based on some 

considerations about the quality of the information conveyed by the different parameters (e.g., parameters θ 

and ΔP are reliable and thus used in all four models) and on the performance of the model in estimating the 

mass flow rates of a validation dataset (e.g., it has been verified that a model using as predictor parameters 

only the pressure drop ΔP and the opening θ performs very poorly).  

These four models are used, within an ensemble approach, in a parallel configuration with the physics-based 

model (Figure 10); this allows overcoming the dilemma of selecting the optimal model, and increases the 

robustness of the final estimate by using the DD model only when needed. To achieve this, an effective 

aggregation strategy has been implemented, different than the AHP aggregation strategy which was 

developed for a situation characterized by the lack of a sufficient number of historical data upon which 

basing the evaluation of the different models performance. Indeed, when such data are available, 
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performance-based aggregation methods, e.g., the local aggregation, are in general preferred, since they are 

likely to produce more accurate results.  

Table 8: Model training procedures in case 2. 

Model Training set Predictor parameters 

1 Standard inspections data XSI  

2 Standard inspections data XSI  

3 Standard inspections data XSI  

4 Standard inspections data XSI  

 

 

 

Figure 10: Schematic of the hybrid ensemble of model. 
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the estimate  of the p-th parameter is then obtained by comparing  to the corresponding WT 

measurement ; the local weight  assigned to model m is taken as the inverse of its mean square 

estimation error over the Nn patterns closest to : 

 

  (15) 

 

The final estimate  of parameter p is obtained as the weighted average of the multiple model estimates 

.  

  (16) 

4.2 Results 

The hybrid ensemble is here applied to estimate the mass flow rates ,  and  from patterns 

collected at wells 2 to 6. Notice that the model used to estimate the mass flow rates at well W is trained by 

considering only WT data from the same well, since it has been observed that well behaviors vary from one 

well to another. In practice, when estimating the test pattern xtst=xk for a specific well W, only the WT 

patterns xj , j=1,…,k-1 previously collected during the life of the w-th well are used by the KR model to 

generate the estimates . Due to the fact that degraded choke valves are replaced, patterns collected for a 

single well may refer to different chokes. 

The total number of available well tests used for training and the number of well tests used for testing is 

given in Table 9. The ensemble performance is evaluated by considering the RMSE between the estimated 

values  and the corresponding WT measurements, normalized in the range [0,1]. Similarly, the RMSE 

is computed also for the physics-based allocations and for an ensemble made only by the KR models (data-

driven ensemble). Table 10 compares the RMSE values. 

Table 9: Number of training and validation WT patterns for each well. 

Well NWT Ntst 

2 87 68 

3 96 59 

4 39 20 

5 96 54 

6 71 36 
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Table 10: Comparison of the performance of the hybrid ensemble with that of the physics-based model and of the data-
driven ensemble 
 RMSE (10-2) 

 Well 2 Well 3 Well 4 Well 5 Well 6 average 

Physics-based 7.118 2.742 1.056 3.248 5.796 4.435 

Data-driven ensemble 4.438 3.892 3.395 4.208 6.277 4.441 (+0.1%)

Hybrid ensemble 3.877 2.984 1.194 3.665 5.480 3.623 (-18%)

 

Results show that the data-driven ensemble outperforms the physics-based model only for well 2, producing 

a 38% reduction of the RMSE, whereas in the other four wells the physics-based model generates more 

accurate estimates than the data-driven ensemble. The hybrid ensemble mediates between the physics-based 

and data-driven approaches: it slightly reduces the good performance of the physics-based model on wells 3, 

4 and 5, but, at the same time, enhances significantly the performance of both the data-driven and the 

physics-based model on well 2. This confirms that the local-performance aggregation technique is able to 

automatically distinguish those cases in which the physics-based model works properly from those in which 

it is convenient to integrate the data-driven models.  

In Figure 11 the measured valued of oil, water and gas flow rates for the test patterns are compared with the 

estimates obtained by the physics-based model and by the hybrid ensemble. Results shows that the hybrid 

ensemble and the physics-based model estimates are in general very similar except for the oil flow in well 1 

where the ensemble estimates significantly outperform the physics-based model estimates.  

 

 

Figure 11: comparison of the measured valued of oil, water and gas flow rates with the estimates obtained by the physics-based 
model and the hybrid ensemble. 
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5 Erosion indicator  

In this Section we discuss the possibility of using δCV as an erosion indicator. 

Table 11 reports the Spearman’s rank correlation coefficient rs, indicating the monotonicity of δCV computed 

in correspondence of the well test for each eroding disk with more than 3 WT available. These results show 

that the δCV can lack of monotonicity even when the mass flow rates are directly measured (see for example 

disk 1 of well 1 or disk 7 of well 4), and thus the erosion indicator is not affected by the large inaccuracies of 

their allocated values. In Table 11, the cells corresponding to those disks which were assessed as being worn-

out or with leakage at the time of their changing are highlighted by a grey background; notice that in this 

case the coefficient rs is always larger than 0.8, showing a good degree of monotonicity δCV. The last line of 

the table shows the average value of rs computed considering all disks (white background) or the disks with 

worn-out state (grey background). Table 12 shows the same results in the case all SI data are considered. The 

monotonicity in this case is slightly reduced. 

Table 11: Monotonicity rs of δCV calculated using the WT data 

 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 

Well 1 0,46 0,76 0,89     

Well 2 1,00 0,89 0,99 0,59 0,74   

Well 3 1,00 1,00 0,86 0,86   

Well 4 0,56 0,82 0,95 1,00 0,96 0,90 -0,49 

Well 5 0,93 0,73 0,96 0,86   

Average 0,79 0,92 

Table 12: Monotonicity rs of δCV calculated using the the SI data 
 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 

Well 1 0,46 0,70 0,59     

Well 2 0,95 0,81 0,93 0,42 0,83   

Well 3 0,07 0,83 0,90 0,86    

Well 4 0,65 0,70 0,93 0,94 0,92 0,93 0,51 

Well 5 0,82 0,85 0,77 0,89    

Average 0,75 0,86 

 

It would be interesting to evaluate the monotonicity rs also for the δCV obtained using the estimated mass 

flow rates. This is not possible since we do not have the model used by the Company that supplied us the 

data, to derive the value of the flow coefficient from the five parameters ΔP, θ, ,  and . Then, a 

model for the flow coefficient model is empirically derived from the available WT data by mean of an 

ensemble of artificial neural networks (ANNs) (Gola et al., 2012). Table 13 shows the value of rs for the 

sequences of δCV values obtained from the estimated mass flow rates using the ANNs ensemble. Results 

show that in this case the monotonicity has a net drop; this is probably due to the fact that the ANN model is 

not enough accurate. Further development of this model is required if one whishes to use the outcomes of the 

hybrid ensemble for improving the accuracy of the erosion indicator. 
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Table 13: Monotonicity rs of δCV calculated using the hybrid ensemble estimates 

 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 

Well 1 0,41 0,69 0,41     

Well 2 0,90 -0,08 0,79 0,14 0,58   

Well 3 0,45 0,89 0,54 0,55    

Well 4 0,35 0,23 0,64 0,76 0,76 0,88 -0,89 

Well 5 0,72 0,65 0,93 0,77    

Average 0,53 0,65 

 

Figure 12 shows the evolution in time of the δCV indicator for the 12 disks changed when worn-out. One can 

see that the failure time has large variation from about 100 to 800 working days. This depend on the 

condition of the wells whose sand production, the main cause of disks erosion, can have large oscillations. 

Also, the δCV value at the beginning and at the end of the disk life varies significantly from one disk to 

another, thus making difficult to associate to the δCV value a physical level of erosion of the disk.  

 

 

Figure 12: δCV indicator for the 12 valves changed when worn-out. 

Table 14 shows the value of the δCV recorded at the first and the last days of the disk lives. Notice that these 

values have large variations, from a minimum of -13.89 and 2.54, respectively, to a maximum of 7.8 and 

13.69. The variance in the health indicator value at failure gives a measure of its prognosability: a wide 

spread in the δCV values at failure makes difficult to accurately fix the value of a failure threshold stating the 

boundary between a disk in good condition and an eroded one. Then, it is not possible to extrapolate from the 

0 100 200

5

10

C
V

0 100 200
0

5

0 50 100
0

5

10

15

0 50 100 150
0

5

0 50 100
2

4

6

0 200 400
0

10

0 50 100 150
-5

0
5

10
15

0 100 200 300

0

5

10

0 100 200

0
2
4
6
8

0 100 200
-10

-5

0

5

0 100 200 300
0

5

Working days

0 200 400 600 800

-5

0

5

10

Well 5

Well 3

Well 2

Well 4



PART I 28 

sequence of δCV values the failure time of the system as the time at which the value of the δCV indicator 

exceeds the failure threshold. 

Table 14: δCV values recorded the first (last) day of the choke disk lives 

 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 

Well 1 -1,23 (-) -0,11 (-) 7,80 (-)         

Well 2 3,23 (8.69) 2,03 (3.31) 2,32 (-) 5,30 (-) -1,93 (-)     

Well 3 0,12 (-) 0,75 (10.66 1,78 (6.32) 3,00 (4.22)        

Well 4 -13,89 (-) 3,69 (9.58) 0,43 (-) -1,85 (13.69) -1,58 (3.34) 0,50 (5.89) 0,52 (-) 

Well 5 -6,87 (2.54) 0,52 (-) 0,79 (4.30) -0,48 (6.84)        
 

Min = -13.89 (2.54) Max = 7.8 (13.69) Mean = 0.21 (6.61) Std = 4.20 (3.44) 

 

Since they can be observed even when only well test data are considered, the low monotonicity and 

prognosability of the δCV as an erosion indicator is clearly not due to the poor accuracy of the allocated 

values of the mass flow rates, and has to be related to further sources of uncertainty and errors affecting the 

available information. We conjecture them to be: 

1. the δCV indicator depends also on other parameters (e.g., the valve opening) than the valve erosion;  

2. the actual erosion state of the valve can be assessed only when the choke valve is changed; moreover 

this assessment is optional and completely based on the operator opinion.  

3. the procedure for collecting data during well tests is error-prone, e.g., data are hand written, the 

possible failure of the separator used for flow rates measurements can remain undetected, etc; 

With reference to the first itemized source of uncertainty, in Figure 13 the δCV indicator calculated in 

correspondence of the well tests is shown as a function of the opening. From this figure, a weak correlation 

between the two parameters, with the δCV decreasing as the opening increases, can be perceived and suggests 

that the δCV indicator is a function not only of the erosion but also of the valve opening. The fact that the 

correlation coefficient between the δCV indicator and the valve opening, shown in Table 15, is largely 

negative for most of the choke disks supports our hypothesis. If true, this could affect its performance as a 

prognostic indicator by contributing to the decrease of its monotonicity and prognosabiliy, since different 

values of the δCV indicator would correspond to the same level of disk erosion. 

The empirical identification of the relationship between the δCV indicator and the valve opening, is a hard 

task, since the δCV value depends, at the same time, from the opening and the disk erosion state, which is 

unknown for all the historical data available. In facts, the actual erosion state of the valve is assessed only 

qualitatively and only when the valve is changed; moreover this assessment is optional and it is not based on 

a rigorous classification of the erosion levels but rely completely on the operator opinion (second itemized 

source of uncertainty). 

One can also notice that, even for fixed values of the opening, the δCV calculated in correspondence of well 

test measurements does not always increase monotonically. This introduces some doubts about the reliability 

of the data collection procedure also during the well test (third itemized source of uncertainty). To solve this 

problem and thus improve the quality of erosion assessment, a validation of such procedure is deemed 

necessary.  
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Figure 13: delta δCV indicator versus opening 

Table 15: Correlation with the opening of δCV calculated using the WT (SI) data 

 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 

Well 1 .38 (.12) -.51 (-.59) -.56 (-.60)         

Well 2 -.92 (.90) .60 (-.35) -.71 (-.24) -.10 (-.26) -.83 (-.80)     

Well 3 .58 .27 -.91 (-.86) -.42 (-.19) .38 (-.14)       

Well 4 -.93 (-.41) -.78 (-.74) -.82 (-.67) -.94 (-.92) -.65 (-.59) -.77 (-.66) -.83 (-.35) 

Well 5 -.81 (-.73) -.57 (-.10) .46 (.59) -.56 (-.42)       

Average -0.44 (-0.42) -0.44(-0.49) 

6 Conclusions and open issues 

In this report, we have tackled the problem of providing a reliable health indicator of a choke valve used in 

offshore oil platforms which undergoes erosion. The health indicator is derived from the valve flow 

coefficient which is a valve parameter that regulates the analytical relationship between the pressure drop 

across the choke and the flow of oil, water and gas through the choke. However, the traditional procedure for 

calculating this indicator introduces some uncertainties and errors which undermine the possibility of using it 

for prognostic purposes. Some of the main problems which have been identified in this work are: 

1. The actual valve flow coefficient is analytically calculated on a daily basis as a function of the 

pressure drop through the choke which is directly measured and oil, gas and water flow rates which 

are allocated based on the measured total production from a number of wells and on physical 

parameters (e.g., pressures and temperatures) related to the single well. Allocated values of oil, gas 

and water flow rates are conjectured to be the cause of the large inaccuracies and uncertainties in the 

calculation of the actual valve flow coefficient. 

2. The difference between the theoretical and actual value of the valve coefficient (δCV) is usually 

retained as an indication of the choke valve erosion. However, since the flow coefficient depends on 

the opening, the δCV itself might depend on it, and not, as pursued, on the erosion level only.  
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3. The procedure for collecting data during well tests is error-prone, e.g., data are hand written, the 

separator used for flow rates measurements or the actuator imposing an opening value to the choke 

can fail, etc. 

4. The actual erosion state of the valve can be assessed only when the choke valve is changed; 

moreover this assessment is optional and relies completely on the operator opinion. 

The main contribution of this work has been given with respect to the problem at item 1., by devising a 

procedure to evaluate the accuracy of the allocated parameters and improve it based on the other available 

measurements (pressure drop and choke opening), which are conjectured to be reliable, and on a number of 

well tests performed throughout the valve life which provide few reliable measurements also for the oil, 

water and gas flow rates.  

Fuzzy C Means clustering has been applied to verify the consistency of the measured and allocated 

parameters. A comparison of the FCM partitions obtained in the space of the measured and allocated 

parameters has been made and the importance of each parameter in the data partitioning by a supervised 

evolutionary clustering has been evaluated. The results of the analyses performed on the choke valve data 

have indicated the low quality of the allocated values of the mass flow rates. This has led to the development 

of a method for improving their accuracy. To this aim, Kernel Regression models have been devised. 

Different training procedures have been adopted to generate diverse models within an ensemble approach. 

To aggregate the outcomes of the individual models, an original technique based on the Analytic Hierarchy 

Process (AHP) method has been used. The application of the proposed method to the choke valve case study 

has allowed significant improvement of the oil, water and gas mass flow rates calculation and, as a 

consequence, it has improved the quality of the health indicator. However it has been noted that when 

allocations are accurate, the KR ensemble can worsen the accuracy of the mass flow rates estimates. To 

overcome this problem, a hybrid ensemble approach has been proposed. In the application considered, the 

hybrid ensemble is constituted by one physics-based model and four data-driven models based on kernel 

regression. The aggregation of the outcomes of the models in the ensemble is done by a weighting technique 

based on the local performance of the ensemble models. The results obtained from the application of the 

approach on a number of choke valves have confirmed that in those circumstances where the physics-based 

model is inaccurate, an ensemble approach appending to it a selection of diverse data-driven models can 

increase the accuracy of the estimates. The hybrid ensemble correctly favors the most accurate between data-

driven and physics-based models, thus allowing the improvement of the parameter estimate. 

Concerning the problem at item 2, the available data are not suited for deriving in an accurate and reliable 

way the relation between flow coefficient, opening and erosion. This, instead, could be achieved by using a 

set of flow coefficient values collected in correspondence of a fixed erosion level for different values of the 

choke openings. Also, a set of data assessing the level of erosion of a disk at different time steps along its 

operating life, would supply useful information for deriving the correlation between the δCv indicator and 

valve erosion.  

Concerning the problem at item 3, the simplest way to validate the well test measurement could is to repeat 

each measurement multiple times and verify the agreement between the different measurements. A more 

robust and reliable validation strategy requires the development of a physics-based or data-driven model 

estimating the value of the mass flow rates from other well parameters (e.g., pressures, temperatures, etc.). 
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Discrepancies between the values estimated by the model and those obtained from the well test, could then 

be retained as symptoms of well test measurement errors (Du et al., 1997; Heyen & Kalitventzeff, 2006).  

Finally, concerning the problem at item 4, a standardized rating scale for evaluating the erosion level should 

be set up and used to assess the disk erosion, at least every time the disk is changed. Also, tests for assessing 

the valve performance at different erosion levels would help defining a threshold on the erosion level which 

can be accepted. 

Appendix A: The unsupervised Fuzzy C Means technique 

The Fuzzy C Means (FCM) technique is an unsupervised clustering technique, since it makes no use of a 

priori known information on the true classes of the data. The clustering is based on the minimization of a 

weighed sum Y of the distances d(xk,vc) between the patterns xk and the cluster centers vc, 

 

  (A1) 

 

where the weight  denotes the membership of xk to clusters c and ω is a parameter which controls the 

degree of fuzziness of the clusters (often a value of 2 has been found suitable as in Zio & Baraldi, 2005). In 

the traditional algorithm (Dunn, 1974) the distance is Euclidean: 

 

  (A2) 

 

where I is the identity matrix.  

The membership values  which minimize Y (eq. (A1)) for a given a set of centers vc, c=1,…,C, are 

computed as in eq. (A3) and used in eq. (A4) to compute a new optimal set of clusters centers, which are in 

return used in eq. (A3) to update the membership values. The iterative procedure provides the optimal fuzzy 

partition of the dataset. 
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Based on the set of optimal centers vc, c=1,…,C, a generic pattern xk is assigned to cluster c provided that its 

membership  exceeds a threshold  representing the degree of confidence that xk belongs to c. 

If the condition  is never fulfilled or if it is verified for more than one value of c, the pattern is not 

associated to any cluster. 
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Abstract 

The safety of nuclear power plants can be enhanced, and the costs of operation and maintenance reduced, by 

means of prognostic and health management systems which enable detecting, diagnosing, predicting and 

proactively managing the equipment degradation toward failure. In this paper we propose a prognostic 

method which predicts the Remaining Useful Life (RUL) of a degrading system by means of an ensemble of 

empirical models. The RUL predictions of the individual models are aggregated through a Kalman Filter 

(KF)-based algorithm. The method is applied to the prediction of the RUL of turbine blades affected by a 

developing creep. 

 

Keywords: Creep, Ensemble, Kalman Filter, Prognostics and health management. 

Acronym 

RUL Remaining Useful Life 

KF Kalman Filter 

BAGGING Bootstrapping AGGregatING 

MTTF Mean Time To Failure 

MD MeDian 

GWA Globally Weighted Average 

SM Single Model 

MSE Mean Square Error 

Notation 

  generic time instant 

i  i -th measurement time instant 

t  time instant at which the prediction of the RUL is performed 

f  failure time 
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f̂   predicted failure time 
m

f̂  failure time predicted by the m -th model of the ensemble 
)( id   direct measure of the system degradation level reached at time i  

thd  system failure threshold 

ND  dataset of N  measured values )( id   
gD   g -th subset of ND  containing K  temporally consecutive measurements; 

1,...,1,0  Gg  

G  number of subsets in which ND  is partitioned 
hg ,D  h -th bootstrapped replicate of dataset gD ; Hh ,...,2,1  

H  number of bootstrapped replicates generated from gD  

 1,0B   BAGGING fraction 

);( Df  empirical model of the degradation evolution trained on dataset D  
);( mmf D  m -th empirical model of the ensemble, trained on dataset mD , hgKm   

);()(ˆ D fd   prediction of the degradation level at times   produced by model f  
GHM   total number of ensemble models 

)(tRUL  actual value of the RUL at time t  

)(tRUL  mean value of the RUL distribution at time t  

)(ˆ tLUR m  prediction of )(tRUL  produced by the m -th model of the ensemble 

)(ˆ tLUR  prediction of )(tRUL  produced by the ensemble 
)(twm  weight associated to the m -th model in the prediction of )(ˆ tLUR  

)(z t  KF observations 

)(x t  KF state of the system at time t  

A  KF transition matrix 

H  KF observation matrix 
)(v t  process noise 
)(tu  observation noise 

Q  process noise covariance matrix 

q element (1,1) of matrix Q  

R  observation noise covariance matrix 

)(ˆ tx  KF a posteriori system state estimate 
)(tP  KF a posteriori error covariance matrix estimate 

)(2 tRUL  element (1,1) of matrix )(tP  
)(x̂ t  KF a priori system state estimate 

)(P t  KF a priori error covariance matrix estimate 

)(K t  Kalman gain  

)(tr  RUL rate of modification in time 

)(tv  white Gaussian noise associated to the evolution in time of )(tRUL  

)(2 tv  variance of )(tv   

)(tum  observation noise due to the prediction error of the m -th model 

)(2 tmu
  variance of )(tum  

m
N p

mse 1  performance of model m  up to the last available measurement )(
pNd   

)( i  creep strain measured at time i  



PART II 4 

th  failure threshold for creep strain 

i  creep strain increments between times i  and 1i  

Φ  turbine blade creep activation energy 

  Arrhenius law pre-exponential factor  

n  Norton law creep stress exponent 

  ideal gas constant 

T  turbine blade operating temperature 

s  turbine blade applied stress 

  rotational speed of the turbine 

  turbine blade density  

hubr  hub radius of the turbine 

tipr  tip radius of the turbine 

s  fluctuations in the stress applied to a specific blade 
MTTF  estimated mean value of the blades failure time ( f ) 

2
f

  estimated variance of the blades failure time ( f ) 
mb  and m

od  parameters of the linear model defining );( mmf D  for the creep growth process 

)(te  RUL prediction error 

MSE  mean square RUL prediction error 

SCORE  asymmetric indicator of the performance in the RUL prediction 

1 Introduction 

Prognostics and health management (PHM) aims at solutions for effective maintenance strategies, to reduce 

the risk of failure of equipments with low maintenance costs. These solutions are founded on knowledge and 

information about the equipment degradation evolution to predict the equipment Remaining Useful Life 

(RUL), i.e., the amount of time the equipment will continue to perform its function [1] [2]. 

In general, different forms of information and data may be available for the prognostic assessment of the 

trajectory to failure of an equipment undergoing degradation, e.g., time-to-failure data of similar equipments, 

direct or indirect measures of the degradation path of the monitored equipment or of a set of similar 

equipments under similar operating conditions, information on exogenous operational and environmental 

parameters, deterministic, empirical or semi-empirical models of the degradation process, etc. Depending on 

the situation, different methods, or their combination, may be applied [3] [4]. 

In this work, the following information is assumed to be available for the development of the prognostic 

model: 

(I) the maximum degradation level beyond which the equipment fails (i.e., the failure threshold); 

(II) a collection of values of parameters related to the equipment degradation level evolution. 

The historical values of the equipment degradation level (information in II) are used to build a prognostic 

model which predicts the future degradation evolution; then, the equipment RUL can be estimated as the 

time remaining until the predicted degradation level reaches the failure threshold (information in I). 
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The primary objective of this work is to develop the prognostic model in the case in which the available 

values of the parameters indicating the equipment degradation level are affected by uncertainty. This 

situation is encountered in many applications where the direct measurement of the equipment degradation 

level is either not precise or not possible. In the latter case, the equipment degradation is typically inferred 

from other measured parameters. For example, in rotating equipments the crack depth is usually not directly 

measurable during operation, but vibrations can provide an indirect indication. Techniques for estimating the 

equipment degradation level from indirect parameters can be found in [5]; they are not considered in the 

present work, where we assume that a directly measurable parameter indicates the equipment degradation 

level, and investigate the effects on the RUL prognosis of the uncertainty affecting its value. 

The approach here undertaken to satisfy such requirement exploits an ensemble of prognostic models. One 

motivation behind the use of an ensemble of models is that it increases the robustness of the prediction. By 

measuring the performance of the individual models and giving more importance to the predictions of the 

best performing ones, a robust and accurate RUL estimate can be obtained [6]. Furthermore, the ensemble is 

open to accommodate new information by simply adding to the old models new models built on the new 

information [7]. This allows reducing the computational efforts associated to the model updating. 

For using an ensemble of prognostic models one must (a) build the diverse models and (b) combine their 

RUL predictions [6]. Concerning (a), in this work the individual models are all of the same type but trained 

on different datasets constructed by Bootstrapping AGGregatING (BAGGING) the degradation 

measurements available [8]. Concerning (b), the aggregation of the RUL model outcomes is performed by a 

Kalman Filter (KF)-based method which allows weighting the models according to their performance and, at 

the same time, filters out the noise in the predictions [9]. In this work, the Kalman Filter method is originally 

used, beyond its traditional purpose, as a device for the effective performance-based aggregation of the 

outcomes of the ensemble models. 

The proposed approach is compared to i) a statistical approach based on the use of the mean time to failure 

(MTTF) ii) a single predictive model iii) an ensemble of predictive models based on different aggregation 

methods, such as the Median (MD) and the Globally Weighted Average (GWA) [10].  

The case study considered for the comparison regards the prediction of the RUL of a turbine blade 

undergoing a creep degradation process [11]. The creep strain level values have been numerically simulated 

using a traditional model of the creep growth. Artificial data have been used in order to allow testing the 

method on a large number of different blade degradation trajectories and comparing the performance of the 

different approaches considering different levels of noise on the creep strain measurements. 

The remaining part of the paper is organized as follows: Section 2 defines the prognostic problem and the 

general approach proposed to tackle it; in Section 3, the ensemble approach is described, focusing on the 

BAGGING technique used for the generation of diverse models and the Kalman Filter (KF)-based 

aggregation technique; in Section 4, the method is applied to a simulated case study concerning the 

prediction of the creep evolution in a turbine blade; finally, Section 5 states some conclusions and draws on 

potential future steps of the work. 
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2 Degradation modeling for prognostics 

Let us consider an equipment undergoing a degradation process and let )( id   be the measure of the 

degradation level reached at time i . When the degradation reaches the threshold value thd , the equipment 

fails; let f  indicate the time at which the failure occurs.  

At the generic time t a dataset ND  of N  values )( id  , measured at previous times ti  , Nt ,...,2,1 , is 

available. The objective is to estimate the RUL of the equipment, i.e., tf  . 

To address the problem, one can develop an empirical model );( Nf D  which, based on the N  

measurements in ND  available at the current time t , predicts the future component degradation level )(ˆ d  

at times t , i.e, );()(ˆ
Nfd D  . The prediction can be extended up to the time f̂  at which the 

predicted degradation level )(ˆ
ftd  exceeds the failure threshold thd , i.e., );(ˆ 1

Nthf df D . Since 

degradation is a stochastic process, both the future degradation level and the failure time are random 

variables. In the following, the model predictions )(ˆ d  and f̂  should be considered estimates of the mean 

value of the distributions of the degradation level and failure time, respectively.  

Notice that as time t proceeds, new measurements )( id  , ,...2,1  NNi  become available and can be 

incorporated in the degradation model to update the estimate f̂  of the failure time. 

The choice of the modelling technique to be used for building the model );( Nf D  depends on the 

specificity of the problem under study and on the information available. A plethora of approaches have been 

proposed to develop prognostic models: a typical distinction is made between model-based and historical 

process data-driven approaches. Within the former category, experimental data can be used to calibrate the 

parameters of the model within the state-observer formulation typical of a filtering problem with given state 

model. On the other hand, there are methods that do not use any explicit form of model and rely exclusively 

on process history data. Empirical techniques like artificial neural networks [9] [12], Support or Relevance 

Vector Machines [13] [14], local Gaussian regression [15], fuzzy similarity-based methods [16] are typical 

examples. 

3 Ensemble approach to prognostics 

It is shared experience that in forecasting, no single method is best for all situations [17]: real-world 

problems are often complex in nature and any single model may not be able to capture different patterns 

equally well. Ensembles of models build their outcome from a combination of the outcomes of the individual 

models. They have been proven an effective solution, since the errors of the individual models are 

compensated by the other models [6] [7]. Such compensation of the errors strongly depends on the diversity 

among the individual models of the ensembles [6] [8] [11] [20]: if these perform differently in different 

regions of the input space, the errors tend to balance out in the combination. Hence, in practice, an ensemble 

of models outperforms a single model only if the ensemble individual models are diverse [6], [7], [18]. to 

this purpose, different techniques to obtain diversity have been proposed [8] [9] [22] [23] and will be 

discussed in Section 3.1. On the other hand, when computational costs are an issue, a single model is 

preferred, given the computational burden of developing ensemble approaches. Notice also that an ensemble 

can naturally accommodate new information by adding new models tailored to the new information, without 
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discarding the old models in the ensemble. Updating the overall ensemble model in this incremental way 

requires reduced computational efforts in comparison to re-building a model from scratch based on all 

available (old and new) data [21] [7]. 

Section 3.1 describes how the diversity among the base ensemble models is obtained in the prognostic 

modeling approach here proposed; Section 3.2 illustrates the KF-based technique adopted to aggregate the 

single model outcomes. 

3.1 Generation of multiple models by BAGGING 

Diversity among the individual models of the ensemble can be obtained by different approaches: using 

different modeling techniques [22], differentiating the training parameters or the models structures [23], 

projecting the training data into different training spaces [9] [24] [25], or using different datasets to train 

individual models [8] [26]. A detailed discussion is beyond the purpose of this work; useful considerations 

can be found in [6]. In this work, diversity between the models has been obtained by resampling of the 

training data using the bootstrapping AGGregatING (BAGGING) method [6] [8] [27] [28]. It consists in 

generating multiple versions of a predictor by making bootstrap replicates of the dataset and using these as 

training sets of different empirical models. The vital element of the BAGGING technique is the instability of 

the prediction method: if perturbing the training set can cause significant changes in the predictor 

constructed, then bagging can improve accuracy [8].  

In this work, in order to further increase the diversity between the models of the ensemble, the original 

training dataset  )(),...,(),...,( 1 NiN ddd D  is partitioned into G  subsets each of which contains K  

temporally consecutive measurements:  )(),...,2(),1( KgKdgKdgKdg D , 1,...,1,0  Gg . Next, 

the BAGGING technique is applied to each subset gD  to generate a number H  of bootstrapped replicates
hg ,D , Hh ,...,2,1 , of each subset gD  by randomly sampling (with replacement) for each replicate a 

fraction  1,0B  of the K  data contained in gD . Fig. 1 reports the procedure followed to generate the 

different training datasets. 

For each of the GHM   bootstrapped training datasets hg ,D , Hh ,...,2,1 , 1,...,1,0  Gg , a model 

);( m
mf D  is built (trained). Note that for simplicity of notation, the two indexes h  and g  have been 

grouped together in a single index hgKm  . The differently trained models predict different failure times 

);(ˆˆ 1 m
thm

m
f dd D  and, thus, different values of the mean value of the remaining useful life distribution 

tLUR m
f

m ̂ˆ . 
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Figure 1: Procedure for the generation of diverse training datasets. 

3.2 Aggregation of the models outcomes by the Kalman Filter  

Common techniques for the aggregation of multiple models outcomes are based on statistics, e.g., the simple 

mean (SM) and the median (MD), or on models performance, e.g., the globally weighted average (GWA) 

[10] [29] [30]. 

In general, the aggregation requires associating a weight mw  to the prediction mLUR ˆ
 made by each 

ensemble model mf  and combining the predictions by means of a weighted average: 

  
 


 



m

m
m

mm

w

LURw

LUR

ˆ

ˆ  (1) 

 

According to the SM approach, all weights are equal, i.e., )(1 GHwm  , GHm  ,...,2,.1 ; the GWA 

requires the computation of weights inversely proportional to the RUL prediction performance of each 

ensemble model; finally, for the computation of the MD, all weights are set equal to zero except for the 

weight Cmw  corresponding to the reconstruction CmLUR ˆ  which lies in the centre of the distribution of the 

m  models predictions mLUR ˆ , Mm ,...,2,.1 . 

In case of large noise affecting the degradation measurements )( id  , these aggregation techniques may lead 

to noisy predictions of the equipment RUL since all the ensemble models are built considering bootstrapped 

replicates of the same noisy data. 

A possibility to improve the accuracy and robustness of the )(ˆ tLUR  predictions in such cases is to properly 

filter them. In principle, the degradation measurements can be filtered instead of the RUL predictions, but in 

case of non-linear degradation processes this would be a more challenging problem since it cannot be solved 

with the basic (linear) KF. In this respect, this work proposes an effective strategy, inspired by the discrete 

KF [9], for both aggregating the multiple model outcomes and filtering the ensemble predictions. 

t
td

G subsets
g = 0, …, G-1
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θK selected
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In general, a KF [31] is a recursive method which uses a system dynamics model, a measurement equation 

and a set of measurements )(tz , called observations, to estimate the state )(tx  of the system at time t . In the 

discrete KF, the system's dynamics model and the measurement equation take the form in (2)(2): 

 

 







)()()(

)()1()(

ttt

ttt

uHxz

vAxx
 (2) 

 

Where t  is a discrete time step index, A  and H  are the transition and observation matrices, and )(tv  and 

)(tu  are the process and observation noises, assumed to have a zero mean normal distribution with 

covariance matrices Q  and R , respectively.  

The algorithm for the solution of (2) goes through a predict and an update phase. The predict phase 

(equations (3) and (4) below) uses the state estimate )(ˆ tt x  and the estimate of the error covariance 

matrix )( tt P  from the previous time step to produce their a priori estimate )(ˆ tx  and )(tP  at the 

current time step t : 

 

 )(ˆ)(ˆ ttt  xAx  (3) 

 

 QAAPP T  )()( ttt  (4) 

 

In the update phase (equations (5)-(7) below), the a priori prediction is combined with the current 

observations )(tz  to obtain the a posteriori estimates )(ˆ tx  and )(tP  of the state and error covariance matrix: 

 

   1
)()()(

  RHHPHPK TT ttt  (5) 

 

  )(ˆ)()()(ˆ)(ˆ ttttt   xHzKxx  (6) 

 

   )()()( ttIt  PHKP  (7) 

 

where )(tK  is the Kalman gain at time t . 

In the application of the Kalman Filter to the aggregation of the RUL predictions provided by the multiple 

ensemble models, the state vector x  is constituted by the mean value )(tRUL  of the equipment RUL at the 

t -th time step and by the term   tttRULtRULtr  /)()()(  representing the RUL rate of modification 

in time, i.e.,  Tx )()()( trtRULt  . Thus, assuming 1t , the system can be described through a linear 

dynamic model as in (8) below, where the RUL rate of change )(tr  is set constantly equal to -1, since the 

RUL of a component decreases of one time unit for every time unit passed. Nevertheless, the mean value of 

the RUL distribution, which is affected by the stochasticity of the evolution of the degradation level between 
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time 1t  and t , does not deterministically decrease of 1 time unit at every time step: for this reason, an 

element of uncertainty is introduced in (8) through the additive white Gaussian noise )(tv . 
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 (8) 

 

By comparison of (8) with the first equation of the system dynamics model in (2)(2), the observation matrix 

is 









10

11
A  and the process noise covariance matrix is 










00

0)(2 tv
Q , where )(2 tv  is the variance of  

)(tv . 

The measurement vector )(tz  of the Kalman Filter is assumed to be formed by the )(tRUL  predictions of 

the M models in the ensemble, i.e., Tz ])(ˆ...)(ˆ...)(ˆ[)( 1 tLURtLURtLURt Mm .  

The observation matrix H has been taken equal to: 
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


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





01

01

01


H  (9) 

 

in order to obtain that each observation )(ˆ tLUR m  is equal to the actual RUL at time t  plus an observation 

noise )(tu m .  

Notice that although )(tz  is called measurement vector in the KF terminology, in this case it is formed by the 

model outcomes which are not measurable quantities. As a consequence, in this application the observation 

noise covariance matrix R  should contain the prediction error covariance of the models. Since, however, the 

prediction error covariances of the ensemble models )(2 tmu
  are unknown and cannot be correctly computed 

from data, given that at the current time t the true value of the equipment RUL is not available, they have 

been roughly estimated. To this purpose, R  has been taken equal to: 

 

 ),...,,...,( 11
1
1

M
N

m
NN ppp

msemsemsediag R  (10) 

 

with the model mf  performance m
N p

mse 1  computed by considering the relative difference between the time 
m
i̂  at which the degradation level )( id   is reached according to model mf , i.e., ))((ˆ 1

im
m
i df    and the 

time i , for all the pN  measurements )( id   collected at time ti  : 
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 
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i
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mse
p
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1 )ˆ(

1   (11) 

 

Thus, the weight assigned to each model is proportional to its performance up to the last available 

measurement time pN  and matrix R  can be updated each time a new measurement becomes available. 

Furthermore, assuming independence between the errors of the different ensemble models mf , matrix R  is 

taken diagonal. 

With respect to the matrix Q , representing the process covariance matrix, it has been assumed equal to: 

 

 









00

0q
Q  (12) 

 

where q  is an arbitrary constant which affects the smoothness of the resultant state estimate time series 

(lower values of q  imply higher amount of smoothing). 

Using (10) and (12) for the estimation of R  and Q , the )(tRUL  prediction is obtained according to (3)-(7). 

The drawback of this approach is that the first element of the resulting matrix )(tP : 

 

 









00

0)(
)(

2 t
t RUL

P  (13) 

 

can no more be interpreted as an estimate of the prediction error variance. Thus, the proposed KF approach 

which constitutes an effective technique for the aggregation of the outcomes of the ensemble models, does 

not provide an estimation of the uncertainty affecting the RUL. 

In Appendix, it is shown how the aggregation is performed in the simplified case of an ensemble made of 

2M  models. The RUL estimate at time t  turns out to be a weighted combination of the estimates 

generated by the m models of the ensemble plus a sort of )1( m -th estimate given by the previous time 

estimate )1(ˆ tLUR  diminished of the one time unit which has passed: 1)1(ˆ)(ˆ 1  tLURtLUR m . The 

weights assigned to the different models depend on the observation noise covariance matrix R , and thus are 

proportional to the model performance in (11), whereas that assigned to the )1( m -th estimate depends on 

the process noise covariance matrix Q . 

Finally, notice that the approach does not imply any constraint on the linearity of the degradation model 

);( Df , since only the outputs of the predictive models are used in the KF scheme; thus, the non-linearity of 

the degradation process can be described by non-linear degradation models, with no additional complication 

for the KF-based aggregation procedure. Moreover, the approach removes the necessity of filtering the 

degradation measurements which is a challenging problem for non-linear degradation processes. 
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4 Case study 

In this Section, the proposed prognostic method is applied to the RUL prediction of a turbine blade in which 

creep damage is developing. Creep is an irreversible deformation process affecting materials exposed to a 

load below the elastic limit for a protracted length of time and at high temperature. Notice that a turbine 

undergoing this degradation process can experience the loss of its blades, one of the most feared failure 

modes of turbomachinery since it is accompanied by abrupt changes in the power conversion system and in 

the reactor flow conditions [32]. Fig. 2 shows an example of high-pressure turbine deblading occurred in a 

German power plant [32].  

 

As shown in Fig. 3, the uniaxial creep deformation consists in an augmentation of the original length and a 

reduction of the diameter. In this work, the adimensional quantity  , defined as the percentage of elongation 

of the turbine blade in the longitudinal direction with respect to its original length, is considered as measure 

of the creep strain. Methods for measuring blades deformation can be found in [34] and [35]. 

4.1 Creep growth model 

The creep evolution has been simulated using the Norton Law, assuming that the dependence from the 

temperature follows the Arrhenius law [36]: 

 

 nts
Tdt

d
)(exp 












 (14) 

 

where dtd  is the creep strain rate,   is the activation energy, α and n are material inherent characteristics 

varying from one blade to another,   is the ideal gas constant, T  is the blade operating temperature and s  

 
Figure 3: Schematics of a specimen before and after a 
creep test [33]. 

 
Figure 2: Deblading in a high pressure turbine [32]. 
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is the applied stress. For simplicity, the blade temperature is supposed equal to the gas temperature and the 

stress s  is derived from the rotational speed   of the turbine:  

 

 2
22

)(
2

)( t
rr

ts
hubtip 


  (15) 

 

where   is the blade density and hubr  and tipr  are respectively the hub and tip radiuses. The rotational speed 

  and the gas temperature T  are external parameters depending on the power setting of the gas turbine. 

To numerically simulate the creep evolution, (14) is discretized in the time domain:  

 

 tts
tT

ttt n 










 )(
)(

exp)()(   (16) 

 

assuming 5t days. 

The variations of parameters   and n  from one blade to another have been simulated by sampling their 

values from normal distributions at the beginning of each new simulated degradation path, whereas the 

variation in time of the rotational speed   and the gas temperature T  is simulated by sampling their values 

)(t  and )(tT  from normal distributions at each discrete time instant t . Finally the fluctuations in the stress 

applied to a specific blade, which are due to fabrication defects, aging and corrosion of the blade, to 

vibrations of the system or turbulences of the gas flow are modeled through a random variable s  added to 

the stress s  in (16). 

A turbine blade is considered within its useful life if the creep elongation strain in the longitudinal direction 

of the turbine blade is less than 1 or 2% of its initial length. Thus, the failure threshold for creep strain th  is 

set equal to the value of 1.5.  

The values of the parameters )(tT , )(t , hubr  and tipr  have been set with reference to the helium gas turbine 

of a Gas Turbine Modular Helium Reactor (GT-MHR) developed by an international consortium, with a 

targeted 286MWe generation per module [37]; the material inherent characteristics  , n  and   are taken 

assuming that the blade is made of Ni-base cast Superalloy 713LC [37]. The distributions used for the 

parameters are reported in Table I. 

4.2 The prognostic problem 

The objective of the present case study is to predict the RUL of a degrading turbine blade using the following 

information: 

 an estimate of the mean ( 6.822MTTF  days) and variance ( 32 1083.5 
f  days2) of the blades 

failure time ( f ) distribution. These values have been obtained by considering a set of 50 simulated 

degradation paths. 

 the failure threshold value 5.1 ththd  ; 
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 the first 50N  direct measurements of the blade creep strain   )50(),...,1( ddD  )50(),...,1(   

(recorded every 20 days). Two different cases will be considered in the following Sections: a) 

 )50(),...,1(   are directly obtained from eq. (16) without considering any measurement error 

(hereafter, they will be named undisturbed data) and b) an artificial white noise with standard 

deviation of 0.02 has been added to  )50(),...,1(   in order to simulate the measurement error (noisy 

data). Fig. 4 shows an example of simulated creep growth path (left) corresponding to the 

undisturbed case and the associated noisy creep strain measurements (right). 

Table I: Type of Distribution, Mean Value and Standard Deviation used for the Creep Growth Model Parameters 

Variable Symbol Distribution Units 
Parameters of the 

distribution 

Activation energy   Deterministic kJ/mol 290  

Norton Law parameters   Normal (N/m2)-n/h 4103  , 

%5  

 n  Normal - 6n , %2.0n  

Failure threshold for creep strain th  Deterministic % 5.1th  

Operating temperature )(tT  Normal K 1100T , 

%1T  

Rotational speed )(t  Normal rpm 3000 , 

%1  

Density    Deterministic Kg/m3 8000  

Hub radius hubr  Deterministic m 7.0hubr  

Tip radius tipr  Deterministic m 87.0tipr  

Stress fluctuations s Gamma ),(   MPa 10;2  

 

The procedure proposed in Section 3.1 has been applied to the 50 available measurements  )50(),...,1(   

using the ensemble parameter values reported in Table II. 

The initial state for the KF is set considering the estimated mean and variance of the blades failure time, i.e., 

MTTFtRUL  )0( , 22 )0(
f

tRUL   . 

 

 
Figure 4: An example of undisturbed creep growth path (left) and corresponding noisy measurement sequence (right). 
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Table II: Ensemble Model Parameters 

Parameter Undisturbed data  Noisy data 

G 2 2 

K 25 25 

H 5 5 

B  1 5 

q 0.1 0.1 

 

The creep strain measures available, )( i , are not uncorrelated, since they refer to a single degradation path, 

where the degradation level reached at any time steps depends on the past evolution of the degradation 

process. Thus, bootstrapping from the original dataset  )50(),...,1( D  does not produce dataset replicates 

which are effective for constructing significantly diverse models. For the linear process considered in this 

work, the creep strain increments )()( 1 iii     at different time steps are uncorrelated and time-

independent; thus one can consider the dataset  501,...,' D  instead of  )50(),...,1( D , without loss 

of useful information, and use it for training the models. For the RUL estimation, a linear model 

 mm
o

mm bf );( D  of the creep growth is built: the parameters mb  and m
o  are estimated by applying the 

least squares method to a fictitious degradation trajectory obtained as the cumulative sum of the increments 

in mD . Then, at the current time t  (which is here assumed to coincide with the last measurement time pN ), 

the RUL, i.e., the time needed to reach the failure threshold th , is estimated by each model m  as: 

 

 
m

Nth
m

b
tLUR p )(
)(ˆ  
  (17) 

 

Notice that this is equivalent to assume that the degradation evolves linearly with slope mb  starting from the 

last available measurement )( pN  and that the parameter m
o  has no influence on the RUL prediction of 

model m . 

4.3 Analysis of the Kalman Filter ensemble performance 

In order to verify the proposed KF approach, the method has been applied to 500 simulated degradation 

paths different from those used in 1) for estimating the mean and variance of the blade failure time f . The 

performance achieved by the proposed KF approach has been compared with those obtained using: 

 the traditional statistical method based on the estimate of the mean time to failure (MTTF), 

according to which the RUL prediction is given by ttMTTFtLUR  6.822)(ˆ ; 

 a single linear predictive model (SM) built using all the 50N  available creep strain 

measurements; 

 the same ensemble of models aggregated using two classical aggregation methods: the median (MD) 

and the globally weighted average (GWA), which have been demonstrated to outperform the simple 

mean [10].  
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For each of the 500 simulated degradation paths, the different methods have been applied in correspondence 

of Ntst time instants, 50 pN . Notice that the new creep strain measurements acquired as time passes, 

)(),...,(),( 5251 pN , are not used to update the values of the model coefficients mb  which are kept fixed 

to their values found by using the first 50N  measurements. However, the last available information on the 

creep strain, )( pN  is used in eq. (11) for updating the computation of the model performances used in 

matrix R (10) and in eq. (17) for computing )(ˆ tLUR m . The performance of each method has been evaluated 

through two indicators: the mean square prediction error MSE and the SCORE: 
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where  

 

 )()(ˆ)( nnn RULLURe    (20) 

 

The SCORE indicator is based on an asymmetric and exponential scoring function [38], such that late 

predictions are penalized more heavily than early predictions.  

Table III shows the performance obtained when the methods are applied in correspondence of measurements 

collected from 50  to the failure of the blade. Fig. 5 compares the performance of the KF ensemble with that 

achieved by the other methods in terms of the ratio, successR , between the number of degradation paths in 

which the KF ensemble outperforms each of the other strategies and the total number of degradation paths 

considered (500). Finally, Fig. 6 compares the sequence of RUL predictions obtained with a single model, 

with a KF ensemble of models and with the MTTF-based method for a single degradation path with noisy 

measurements. 

The obtained results show that the methods based on the modeling of the degradation process outperform on 

average the MTTF method. This is due to the fact that they take into account the information regarding the 

measured degradation level, which becomes progressively more important for the prognosis, as time passes. 

Notice that the KF ensemble is the only ensemble aggregation method which outperforms the single model 

and the MTTF methods both in the case of undisturded and noisy data, with sensible improvements in the 

latter case. The superior performance of the KF ensemble has two main reasons: the ability of the ensemble 

of balancing out the errors of its individual models and the noise filtering operated by the Kalman filter. To 

this purpose, Fig. 6 shows that the noise affecting the time series of the single model predictions is 

effectively reduced using the KF ensemble. 
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Table III: Comparison of the Prediction Performance of Different Prognostics Methods, with Models Built 
Using the First N Measurements only 

Method Undisturbed data  )50(),...,1(   Noisy data  )50(),...,1(   

 √MSE SCORE √MSE SCORE 

MTTF 11.703 3.263 11.703 3.263 

Single Model 6.241 0.896 6.834 1.014 

Median 6.076 0.897 9.167 5.208 

GWA 5.785 0.797 7.397 1.037 

KF 6.128 0.919 6.400 0.862 

 

 
Figure 5: Fraction of degradation paths in which the KF ensemble outperforms the 

Results also show that in case of noise the KF ensemble outperforms the other methods, whereas in the case 

of undisturbed data, the GWA and the median give better results since the filtering function of the KF 

ensemble seems to slightly damage the information contained in the correct measurements available instead 

of correcting the noise. On the other side, in case of noise, the traditionally aggregated ensembles perform 

poorly. With respect to a statistical-based aggregation method, such as the median, this is due to the fact that 

in case of noise the distribution of the model prediction is asymmetric and characterized by a large variance 

(Fig. 7). On the other hand, a performance based aggregation method, such as the globally weighted average, 

is characterized by large oscillations of the weights associated to the different individual models of the 

ensemble. This effect can be observed in Fig. 8 where the variations of the weights assigned to four different 

models of the ensemble during a creep degradation path in the case of undisturbed (top) and noisy (bottom) 

measurements are shown. Notice that the time evolution of the weights assigned to the generic m-th model of 

the ensemble at two successive time steps 
pN  and 1

pN  is characterized by large oscillations in the case 

of noise. This is due to the fact that the weights are proportional to the model performance which may vary 
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remarkably since the predicted failure time, m
i̂ , depends from the noisy creep strain measurement )(

pN  

according to: 
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Figure 6: Comparison of KF Ensemble, Single Model and MTTF predictions of the RUL for a test degradation 
path. 

 

  

Figure 7: Histogram of the RUL predictions of 100 different models at t=50 in case of clean (left) and noisy (right) data. 
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Figure 8: Weights assigned to 4 different models of the ensemble during a degradation path in 
case of undisturbed (upper) and noisy (bottom) data. 

4.4 The choice of the parameters 

In this Section we discuss the influence of the parameter setting on the KF ensemble performance. To this 

aim, the performance of the KF ensemble has been evaluated by varying, one at a time, the value of 

parameters B , G or H. The results reported in Fig. 9 refer to the MSE committed in the RUL prediction 

performed at successive time steps from 50  to the time of blade failure in 200 simulated blade degradation 

paths different from those used in the previous Section. Figure 9 compares the square root of the MSE (eq. 

(18)) made by the Single Model (continuous line) with that made by the KF ensemble for different values of 

B  (left), G (middle), H (right) in case of noisy data. 

Figure 9 (left) shows that low values of B  should be preferred. This is due to the fact that low values of B  

generate more diversity in the bootstrap replicates used to train the ensemble models [39]. With respect to 

the number of data subsets G, Figure 9 (middle) shows that the ensemble MSE tends to decrease until G 

reaches the value of 6. Since higher values of G cause more diversity between the data subsets used for 

training the classifiers, also in this case the best choice of the parameter is influenced by the diversity of the 

models. Notice, however, that, as the number of subsets becomes larger, the ensemble performance tends to 

decrease given that the number of patterns in the training subsets becomes very small. For example, the 

number of patterns with G=10 is less than 5, which is not sufficient for training accurate models. Fig. 9 

(right) shows that the KF ensemble performance remarkably increases until H reaches the value of 10. Since 

the computational burden of developing a KF ensemble increases linearly with H, an optimal trade-off 

between performance and computational time should be found and one may accept to use values of H lower 

than 10, if it is necessary to reduce the computational burden. 
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Figure 9: RMSE of the KF Ensemble predictions for different values of B  (left), K (middle), H (right) in case of noisy data. 

With respect to the choice of the initial conditions ( )( NtRUL  , )(2
NRUL t   ), in this work we have used 

the available estimates of the mean and variance of the blades failure time. In other cases, the choice of the 

initial condition )( NtRUL   is expected to be derived from expert knowledge whereas the value of 

parameter )(2
NRUL t    can be established considering that the higher it is, the lower the confidence in the 

assumption about the initial state )( NtRUL  . 

Finally, also the parameter q  affects the RUL prediction since it determines the relative importance of the 

ensemble model outcomes with respect to that of the prediction 1)1(ˆ)(ˆ 1  tLURtLUR m  (Section 3.2). 

Fig. 10 shows the variation of the ensemble performance with q: we can see that values between 0.1 and 1 

provide good performance whereas values lower than 0.1 imply too much smoothing and, on the contrary, 

values larger than 1 prevent from filtering out the noise. 

 

  

Figure 10: RMSE of the KF Ensemble predictions for different 
values of q in case of noisy data. 
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4.5 Incremental updating of the overall ensemble 

In the prognostic scheme previously presented, the information contained in the new measurements )( i , 

i pNNN ,...,2,1  , which become available as time passes, is used only for updating the weights in the 

KF and GWA aggregation methods. This allows saving computational time but can be not sufficiently 

accurate in the case in which the degradation trend varies remarkably. On the other side, retraining all the 

models of the ensemble at each time step could be prohibitively costly for complex degradation processes.  

As stated in Section 3, an ensemble can naturally accommodate new information, without discarding the old 

models in the ensemble. Thus, a trade-off between computational costs and accuracy can be found by adding 

to the ensemble some few models trained by considering the new available information. To show this, 

5H  new models are added to the ensemble every time 25wN   new creep strain measurements become 

available. Each model is built by applying the BAGGING technique to the dataset made of the last 25wN  

measurements. 

Table IV: Comparison of the Prediction Performance of Different Prognostics Methods, with Models 
Updated Using Measurements Taken at Time t >50 

Method 
No Noise Noise  

√MSE SCORE √MSE SCORE 

Single Model 6.078 0.835 6.642 0.946 

KF 5.969  0.859 6.126 0.788 

 

In Table IV, the performance obtained with the updated KF ensemble are compared to those obtained by a 

single model whose parameter are recomputed every 25wN  time steps using all the available degradation 

measurements. Also in this case the KF ensemble outperforms the single model, although the linear 

degradation process considered in this case study can obviously be well approximated by a single model if 

enough data are available and an accurate estimate of the model parameters can be achieved.  

5 Conclusions 

Different forms of information and data may be available for the prognosis of the RUL of an equipment 

undergoing degradation. In this work, we have considered a practical situation in which some degradation 

measurements taken during the first part of the equipment degradation path are available and we know the 

failure threshold, i.e., the maximum degradation level which still allows the correct functioning of the 

equipment. The prognostics has been developed resorting to an ensemble of linear models, individually 

created by BAGGING and then aggregated using a Kalman Filter-inspired strategy. 

The effectiveness of the proposed method has been tested in a simulated case study regarding the RUL 

prediction of turbine blades with a developing creep. The results obtained have confirmed that the use of an 

ensemble of models improves the accuracy of the RUL prediction with respect to a single model built using 

all the available measurements. 
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Furthermore, the Kalman Filter-inspired aggregation strategy allows reducing the noise affecting the 

prediction. In this respect, the criticality of properly assigning the Kalman Filter parameters has been 

thoughtfully addressed and some guidelines for setting the parameters according to the quality and quantity 

of the information available have been provided. In particular, the analyst is required to provide: a) an a 

priori estimate of the component RUL at time Nt  , b) a parameter )(2
NRUL t    which is related to the 

analyst confidence on this estimate (higher the parameter value, lower the confidence) and c) a parameter q  

related to the smoothness of the time evolution of the RUL prediction (higher is q, smoother is the RUL 

prediction time series). 

Finally, the proposed approach has been shown to provide an effective way for updating the prognostic 

model when new measurements of the degradation level of the equipment are collected. 

In this work, the comparison between the single model and the proposed ensemble has been made by 

considering in both cases a linear model for the RUL prediction. Notice that the use of advanced data-driven 

modeling techniques for the RUL prediction is expected to increase the accuracy of the prognostic model 

and, thus, of both approaches. It is, however, expected that the performance of the ensemble will still be 

more satisfactory than that of the single model due to the ensemble ability of balancing out the errors of 

single models and of filtering the noise. In this respect, future work will be devoted to the verification of the 

ensemble performance employing different types of prognostic models and considering real data in the case 

study. 

Appendix: two-models KF ensemble 

For further understanding of the mechanisms underpinning the KF aggregation, let us consider a two-models 

ensemble which produces at (discrete) time instant t the two predictions )(ˆ 1 tLUR  and )(ˆ 2 tLUR , one for each 

model: 
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Equations (A1) (A2) and (A3) give the state and observation vectors )(tx  and )(tz , the transition and 

observation matrices A  and H , and the covariance matrixes R , Q  and P , where 2,1
1

2
2,1 )(

pNmset   

Developing the computations in (3) and (4) with 1t , one obtains for the predict phase: 
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where qtptp  )1()( .  

Similarly, expanding (5) (6) and (7) one obtains for the update phase: 
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where 2
1

1 /1 w , 2
2

2 /1 w  and  pwK /1  can be seen as weights assigned to models 1, 2 and to the KF 

system dynamics model, respectively. Thus, the aggregated prediction of the RUL resulting from (A8) is a 

weighted average of the ensemble models prediction plus the additional prediction 1)1()(ˆ 3  tRULtLUR  

generated during the predict phase of the KF method. 
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Abstract 

In practical industrial applications, different prognostic approaches can be used depending on the 

information available for the model development. In this paper, we consider three different cases: 1) a 

physics-based model of the degradation process is available; 2) a set of degradation observations measured 

on components similar to the one of interest is available; 3) degradation observations are available only for 

the component of interest.  

The objective of the present work is to develop for these three cases properly tailored prognostic approaches 

and to evaluate them in terms of the assumptions they require, the accuracy of the Remaining Useful Life 

(RUL) predictions they provide and their ability of providing measures of confidence in the model outcomes. 

The first case is effectively handled within a particle filtering (PF) scheme, whereas the second and third 

cases are addressed by bootstrapped ensembles of empirical models. From the methodological point of view, 

the main novelty of the work consists in the development of a bootstrap method able to assess the confidence 

in the RUL prediction in the third case characterized by the unavailability of any degradation observations 

until failure. 

A case study is analyzed, concerning the prediction of the RUL of turbine blades affected by a developing 

creep.  

 

Keywords: Prognostics, particle filtering, bootstrapped ensemble, turbine blade, creep. 

1 Introduction 

Prognostics aims at supplying reliable predictions about the Remaining Useful Life (RUL) of a component or 

system undergoing degradation. This is expected to improve planning of maintenance actions, increase safety 

and lower costs [1] [2].  

Different forms of information and data may be available for the assessment of the evolution to failure of a 

degrading system, e.g., time-to-failure data of similar systems, direct or indirect measures of the degradation 

states reached during its evolution or during the evolution of a set of similar systems under similar operating 
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conditions, information on exogenous operational and environmental parameters, deterministic, empirical or 

semi-empirical models of the degradation process, etc. Depending on the situation, different prognostic 

methods may be applied [3] [4]. 

In this work, we consider three practical situations with decreasing information available for the prognostic 

task, and propose accurate and robust prognostic methods for each of them.  

In general, prognostic methods can be classified in model-based and data-driven methods [5]. Model-based 

methods use an explicit mathematical model of the degradation process to predict the future evolution of the 

degradation state and, thus, the RUL of the system [6]. Examples of degradation models are the non-linear 

stochastic model of fatigue crack dynamics [7] [8] or the creep growth model based on the Norton law [9]. In 

practice, even when the model of the degradation process is known, the RUL estimate may be difficult to 

obtain, since the degradation state of the system may not be directly observable and/or the measurements 

may be affected by noise and disturbances. In these cases, model-based estimation methods aim at inferring 

the dynamic degradation state and provide a reliable quantification of the estimation uncertainty on the basis 

of the sequence of available noisy measurements. Many approaches rely on Bayesian methods [10] [11]: the 

exact Kalman filter has been largely used in case of linear state space models and independent, additive 

Gaussian noises, whereas analytical or numerical approximations of the Kalman filter (such as the Extended 

Kalman filter, the Gaussian-sum filters or the grid-based filters) have been applied in most realistic cases 

where the dynamics of degradation is non-linear and/or the associated noises are non-Gaussian [12]. 

Numerical approximations based on the Monte Carlo sampling technique have gained popularity for their 

flexibility and ease of design [13].  

In the first case considered in this work, hereafter referred to as case 1, we have available a stochastic model 

of the degradation process and we know the value of the failure threshold, i.e., the maximum  degradation 

beyond which the system loses its function. Also, a sequence of observations of the system degradation state 

are available and an observation equation describes the relation between the observations and the system 

degradation state. On this basis, a Monte Carlo-based filtering technique, called particle filtering (PF), is set-

up to predict the distribution of the system RUL and online-update it when new observations are collected. 

The proposed approach improves the one previously proposed in [14] and [15] by taking into account the 

uncertainty on the parameters of the model of the degradation process and addressing the particle 

degeneration problem by means of the resampling algorithm [16]. 

On the other side, data-driven methods are used when an explicit model of the degradation process is not 

available, but sufficient historical data have been collected. These methods are based on statistical models 

that ‘learn’ trends from the data [17]. In this respect, artificial neural networks are often used [5] [18] [19]; 

other examples are Autoregressive Moving Average techniques [20], Relevance Vector Machines [18] [20] 

[21], fuzzy similarity-based methods [22]. Recently, ensemble approaches, based on the aggregation of 

multiple model outcomes, have been introduced due to the superior robustness and accuracy with respect to 

single models [23] and the possibility of estimating the uncertainty of the predictions [24]. 

In this work, data-driven methods have been developed to tackle two different situations of information 

available (hereafter referred to as cases 2 and 3). In case 2, a number of observations of degradation 

evolution and the failure times of a set of similar systems operating under similar conditions are available; in 

case 3 only observations of the degradation of the system for which we want to predict the RUL and the 
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value of the failure threshold are available. In both cases, the proposed prognostic approaches are based on 

the regression of the system degradation state by using an ensemble of bootstrapped models [24] which 

allows providing the uncertainty of the estimated RUL, caused by the uncertainty in the data, the variability 

of the system behavior and the empirical model error. From the methodological point of view, the main 

contribution of the present work consists in the approach developed to deal with case 3 which, differently 

from case 2, is characterized by the unavailability of degradation data until the component failure and, thus, 

of the input (degradation value) output (RUL) pairs used in case 2 for estimating the uncertainty in the RUL 

prediction. 

The three cases are studied with reference to the creep growth process in the blades of a helium gas turbine 

of a Gas Turbine Modular Helium Reactor (GT-MHR) [25] [26]. 

The problem of selecting the most appropriate prognostic approach in the case in which a mix of the 

information considered in cases 1,2 and 3 is available, has also been addressed by comparing the 

performance of the three proposed approaches and by investigating their sensitivity to the accuracy of the 

model of the degradation process and to the amount and accuracy of the empirical data available. 

The remainder of the paper is organized as follows: in Section 2 the objectives of the prognostic activity are 

presented; in Section 3, the sources of information for prognostics are discussed; in Section 4, the three cases 

considered are described; in Section 5, the prognostic methods developed to tackle the three cases are 

presented; in Section 6, the problem of blade creeping in high temperature turbines is illustrated and the 

prognostic results obtained in the three different cases considered are discussed; in Section 7 the problem of 

selecting the correct approach for specific situations of information available is discussed; finally, in Section 

8 some conclusions are drawn and potential for future work suggested. 

2 Information and data for prognostics 

Let us discretize, for ease of exposition, the continuum time variable t into a sequence of time instants it , 

i=1,2,… assumed to be equally spaced.  

The aim of prognostics is to estimate the Remaining Useful Life iRUL  of a degrading system, i.e., the time 

left from the current time it  before the system degradation crosses the failure threshold. Since degradation 

evolution is intrinsically random, the system iRUL  is a random variable and, thus, the objective of applying 

a prognostic method to a system whose current degradation state is id  is to estimate the probability 

distribution )|( iiRUL drulp
i

 of iRUL  at time it .  

Table I summarizes the main sources of information upon which prognostics can be based [4]: 

 A physical model of the degradation mechanism (source A, Table I), e.g., described by a first-order 

Markov process:  

 

 ),( 11  jjj dgd γ ; 0d ~ )( 00 dpD  (1) 
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where jd  is the degradation state at time jt , )( 00
dpD  is the initial distribution of the degradation at 

time 0t , g  is a possibly non-linear function describing the value of a one-time-step degradation 

increment and jγ , ,...2,1j is a sequence of mutually independent vectors of state noises. The model g 

can contain parameters referring to system inherent characteristics (material, physical, chemical, 

geometrical, etc.), which may vary from one individual system to another of the same type: this 

variability is described by probability distribution functions. The model can also describe the 

dependence of the degradation process from external parameters (environmental, operational, etc.), 

which may vary during the system life. Although these parameters are not directly related to the system 

degradation state, they may influence its evolution. Some of these parameters may be directly 

observable and measured by sensors, others may not; for some, there may be a priori knowledge of their 

behavior in time or statistical knowledge of their distribution.  

Table I: main sources of information for prognostics 

Source Description 
Mathematical 
representation 

A Dynamic model of the degradation process eq.(1) 

B Sequence of observations related to the degradation of the system 
collected at it j ,...,2,1  

i:1z  

C 
Historical sequences of observations related to the degradation of a 

set of S failed systems collected at Ns time instants jt ; s=1,…,S; 
j=1,…,Ns 

s
Ns:1z , s=1,…,S 

D Value of the failure threshold thd  

E Measurement equation eq.(2) 

F Durations of lives of the set of S failed systems s. Ls, s=1,…,S 

 

 A set of observations i:1z , collected at different time instants it :1 , during the life of the system whose 

RUL we want to predict (source of information B, Table I) or of a population of identical or similar 

systems (source of information C, Table I). Among the observable process parameters in z  there can be 

a direct measure of the degradation state of the system (e.g., depth of a crack fracture, elongation of a 

creeping component, etc.) or they can be only indirectly related to it (e.g., the time of travel or the 

intensity of ultrasonic waves for non-destructive inspections). 

 The value of the failure threshold thd  (source D, Table I). 

 The observation equation (source E, Table I), i.e., the physical model describing the relation between 

the observation jz  containing the values of the observable process parameters measured by sensors at 

some time instant jt  and the actual degradation state jd  of the system: 

 

 ),( jjj dh nz   (2) 

 

where h is a known function, in general non-linear, and jn  is a vector of measurement noises.  
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 The life durations S
ssL 1}{   of a number S  of similar systems which have failed (source F, Table I); 

notice that, the actual value of the RUL of the s-th failed system can be computed at any time si Lt   as  

 

 is
s
i tLrul   (3) 

3 Three prognostic cases with different sources of information 

Three cases are considered in this work, in which a set of measurements i:1z  collected during the life of the 

system whose RUL we want to predict (source of information B) is available in combination with other 

different sources of information (Table II). 

Table II: information available in each of the three prognostic cases considered 
Source of information Case 1 Case 2 Case 3 

A Dynamic model X   

B Current observations’ sequence  X X X 

C Historical observations’ sequences  X  

D Failure threshold  X  X 

E Measurement equation X  X 

F Life duration data  X  

 

In case 1, the physical model of the evolution of the degradation state is known, as well as the distribution 

and evolution in time of all its characteristic and external parameters (source A). Other sources of 

information available are the value of the failure threshold thd  (source D) and the observation equation 

(source E) linking the observations with the degradation state. This situation is typical for well known 

degradation mechanisms, such as the crack or creep growth processes, which have been widely studied in 

laboratory.  

In case 2, a set of observations S
s

s
Ns 1:1 }{ z , of S  similar systems (source C) and the duration of their lives 

(source F) are available. This situation is typical for short-life systems, for which many trajectories to failure 

can be observed.  

Finally, in case 3, the information available is the observation equation (source E) and the value of the failure 

threshold thd  (source D). This situation can occur in case of very reliable systems, e.g., those used in the 

nuclear industry, which have a very long life duration and are usually renewed before failure happens.  

4 Modeling approaches 

This Section illustrates the three modeling approaches undertaken to cope with the three prognostic cases 

outlined in Section 3 (Table II). 
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4.1 Case 1: Particle Filtering  

In case 1, at time it , the current degradation state id  is not directly known, but the stochastic system 

dynamic model of eq. (1), the observation equation of eq. (2), the sequence of i  observations i:1z  related to 

the system degradation state and the value of the failure threshold thd  are available. Thus, instead of 

estimating )|( iiRUL drulp
i

 we are forced to restrict our objective to estimating the probability density 

function (pdf) ))(,|( :1 thiiiRUL dtDrulp
i

z , conditioned on the observations i:1z  and on the fact that at time 

it  the equipment has not yet failed, i.e., thi dtD )( , 

In this setting, defining )( jtD  the random variable which describes the degradation state at time jt , it is 

desired to infer the unknown pdf ))(,|( :1)( thiijtD dtDdp
j

z  of the degradation jd  at the future times 

ij tt   on the basis of all the previously estimated distribution of the state values )|( :11:0)( 1:0 ijtD dp
j

z
 and 

of all the observations i:1z . The RUL cumulative probability distribution ))(,|( :1 thiiiRUL dtDrulF
i

z  is 

then computed from ))(,|( :1)( thiijtD dtDdp
j

z  as the probability that the failure threshold thd  is exceeded 

before time ii rult  : 

 

 




 






th

iij

i

d

jthiijrulttD

thiiii

thiiii

thiiiithiiiRUL

ddtDdp

dtDrultL

dtDrultL

dtDrulRULdtDrulF

d))(,|(

))(,|Prob(

))(,|Prob(

))(,|Prob())(,(

:1)(

:1

:1

:1:1

z

z

z

zz

 (4) 

 

In the prognostic problem, we resort to PF for estimating ))(,|( :1)( thiijtD dtDdp
j

z  and solving the 

integral in eq.(4). In particular, the Sampling Importance Resampling (SIR) version of PF is here adopted, 

whose analytical details are provided in Appendix A.  

The SIR PF method is based on sampling a large number K of trajectories K
k

k
id 1:0 }{   (called particles), by 

recursively sampling the state k
jd  from the transition pdf )|( 1)( 1

k
j

k
jtD ddp

j 
 which can derived from the 

physical model in eq. (1). Then, the posterior pdf )|( :1)( iitD dp
i

z  can be approximated as [10]: 

 

 )()|(
1

:0)(
k
i

K

k

i
k
iiitD ddwdp i 



z  (5) 

 

where k
iw  is the importance weight associated to the sampled state sequence k

id :0 , Kk ,...,2,1 . The weight 
k
iw  can, then, be recursively computed as: 

 

 







K

k

k
i

k
iitZ

k
i

k
iitZk

i

wdp

wdp
w

i

i

1

1)(

1)(

)|(

)|(

z

z
 (6) 
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where )|()(
k
iitZ dp

i
z  is the likelihood of the observation iz . 

To predict the pdf of the degradation states at future times jt , j=i+1,i+2,…, the prediction stage is iterated 

for each particle, by recursively appending the sampled trajectory k
id :0  with a new degradation states k

id 1 ,
k
id 2 ,…, k

jd , while keeping the weights fixed to their values k
iw  calculated at the time it  of the last 

observation. Indeed, the pdf )|( :1)( ijtD dp
j

z  can be approximated as: 

 

 )()|(
1

:0)(
k
j

K

k

j
k
iijtD ddwdp j 



z  (7) 

 

Finally, the pdf ),|( :0)( th
k
iijtD dddp

j
z  conditioned on the fact that thi dtD )(  can still be approximated 

resorting to eq. (7) but taking into account only those particles whose degradation at time it  is below the 

threshold, i.e., th
k
i dd  . Operatively, this entails setting to zero the weights of these particles and 

normalizing the remaining ones, thus getting a new set of weights k
iw~ .  

Notice that the approximated pdf thus obtained is a discrete probability mass function where only the 

degradation values k
rult ii

d   assumed by the particles at time ii rult   have a finite probability equal to their 

weights k
iw~ ; then, the integral in eq. (4) corresponds to the summation of the weights of the particles whose 

degradation at time ii rult   exceeds the threshold thd : 

 

 

















K

k

th
k

rult
k
i

d

j
k

rult

K

k

j
k
ithiiiRUL

ddHw

dddwddrulF

ii

th

iii

1

1

:1

)(~

d)(~),( z

 (8) 

 

where )( th
k

rult ddH
ii
  is the Heaviside step function. 

The application of the particle filtering procedure to the estimation of )|( :1iiRUL rulp
i

z  is detailed in the 

pseudo-code of Figure 1. 

Unfortunately, the procedure illustrated suffers from the so called degeneracy phenomenon: after few 

samplings, the weight variance increases and most of the K weights in eq. (8) become negligible so that the 

corresponding trajectories do not contribute to the estimate of the pdf of interest [10][16]. As a result, the 

approximation of the target distribution ))(,|( :1 thiiiRUL dtDrulp
i

z  becomes very poor and significant 

computational resources are spent trying to update particles with minimum relevance.  

A possible solution to this problem is offered by the bootstrap resampling algorithm, which is detailed in the 

pseudo-code of Figure 2 [11]. When degeneracy occurs, e.g. after few iterations of the weight updating 

procedure, K samples are drawn with replacement from the swarm of K particles; the k-th particle is sampled 

with a probability proportional to its weight value k
iw~  and the sequence of degradation state k

id :1  until time 
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it  is retained for the resampled particle k’ and recursively augmented with new degradation states '
1

k
jd  . The 

K resampled particles are then assigned the same weight K/1  is assigned to all of them. Then, the filtering 

procedure continues with the original trajectories k
jd :1  and the associated weights k

iw~  replaced by new 

trajectories '
:1
k

jd  with weights Kwk
i /1~ '  .  

 

 

Figure 1: Particle filtering operative procedure for estimation of the RUL cumulative distribution. 

 

 

Figure 2: Procedure for performing resampling at time it . 
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4.2 Case 2: Data-driven prognostics based on an ensemble of bootstrapped 
models trained on degradation and life duration data  

In case 2, the information available at time it  is a set of degradation observations S
s

s
Ns 1:1 }{ z , taken during 

the trajectory to failure of S  similar systems, the duration of their life sL , and the observations i:1z  related 

to the degradation state of the system of interest. 

In this context of information available, we are not able to estimate the probability distribution, 

)|( :1iiRUL rulp
i

z , of iRUL  for a system that at time it  is in the degradation state id . In practice, our 

objective is limited to obtain: 

1. an estimate ilur ˆ  of the expected value 
iRUL  of RULi; 

2. an estimate 2
ˆˆ

ilur  of the variance of the prediction error ])ˆ[( 22
ˆ iilur rullurE

i
 ; this quantity can be 

interpreted as a measure of the accuracy with which the predicted value ilur ˆ  is expected to describe 

the actual irul . 

The idea is to develop an empirical model: 

 

 ii lurf ˆ)( z  (9) 

 

of the relationship between the degradation observation available at time , iz , and RULi. This empirical 

model receives in input the current observation iz  and produces as output the RUL prediction, ilur ˆ  and an 

estimate 2
ˆ ilur  of the variance of the predicted error. 

In order to develop the model, a dataset: 

 

 S
s

N
i

s
i

s
ioi

srul 11/ }};{{  zD  (10) 

 

is extracted from the set of observations S
s

s
Ns 1:1 }{ z , by associating to the observation iz  taken at time it  

during the s-th trajectory to failure, the corresponding RUL: 

 

 i
ss

i tLrul   (11) 

 

The dataset oi /D  can be used to train an empirical model built using one among the many data-driven 

modeling methods existing today (e.g., polynomial regression, non-parametric regression, neural networks, 

etc.).  

In general, the regression problem can be framed as follows: given a set of data pairs N
iii y 1},{ z , generated 

from: 

 

it
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 iii hy  )(z  (12) 

 

where iy  is the target value, )( ih z  the true input/output relation and i  a process noise with zero mean and 

standard deviation )(2
i

i
z . Our aim is to train a model )( if z  using the data N

iii y 1},{ z , which approximate 

)( ih z . According to [24] the developed empirical model can be interpreted as an estimate of the mean 

distribution of the target values given an input vector iz . In this context, Heskes [24] proposed a method, for 

providing a measure of confidence in the prediction )( if z  (see appendix B for a detailed description of the 

method). In our application, assuming iRUL  a random variable with mean )( iRULi
z  and variance 

)(2
iRULi

z , we can write the relationship between pairs };{ s
i

s
i rulz  as: 

 

 iiRULi irul   )(z  (13) 

 

where )( iiRUL z  is the expected value of the RUL value given the observation iz  and i  is a random 

variable with zero mean and standard deviation )()( 22
iRULi

ii
zz   . Comparing eq. (13) with eq. (12) we 

have ii ruly   and )()( iRULi i
h zz  . Accordingly, )( if z  is interpreted as an estimator of )( iRULi z  and, 

as described in [24], the uncertainty in the prediction )( if z  is quantified by the prediction error variance 

)(2
ˆ ilur i

z  which can be decomposed into two terms:  

 

    
)()(

])([)]()([

])ˆ[()(

22

22

22
ˆ

iRULim

iiRULiRULi

iiilur

i

ii

i

rulEfE

rullurE

zz

zzz

z













 (14) 

 

where the term )(2
im z  is the model error variance describing the regression error made by the model 

)( if z  in estimating the true RUL mean value )( iRULi z , and the term )(2
iRULi

z  is the RUL variance 

caused by the uncertainty on the future degradation of the system and describing the accuracy of )( iRULi z  

in predicting the target irul .  

Notice that the application of the method described in Appendix B to the estimate of the model error 

variance )(2
im z , and the RUL variance )(2

iRULi
z  requires the partition of the input/output dataset oi /D  

into a training and a validation datasets, trn
oi /D  and val

oi /D : the training dataset is used to train the regression 

model )( if z , whereas the validation dataset is used to test )( if z  and collect examples of its prediction 

error. Since the two datasets trn
oi /D  and val

oi /D  have to be independent in order to avoid underestimating the 

variance )(2
iRULi

z , we have considered a validation dataset vals S
s

N
i

s
i

s
i

val
oi rul 11/ }};{{  zD  made by 

input/output pairs taken from trajectories different from those used to build the training dataset trn
oi /D . 

In practice, the overall approach to estimate ilur ˆ  and 2
ˆˆ

ilur  requires to: 

 train an ensemble of models B
b

b
oii

bf 1/ )}|({ Dz using bootstrapped replicates b
oi /D  of the training 

dataset trn
oi /D ; 



PART II 12 

 test the bootstrapped ensemble on the validation dataset val
oi /D  to compute the prediction residuals 

)(2 s
ir z  as in eq. (B4) of Appendix B (with s

ii ruly  ); 

 use the set of residuals input/output pairs vals S
s

N
i

s
i

s
i r 11

2 })}(;{{ zz  to train the model )(ˆ)( 2
iRULi

i
zz    

describing the dependence of )(ˆ 2
iRULi

z  from iz  [24][27];  

 when a new observation iz  about the degradation state of a functioning system is collected compute 

the output b
ilur ˆ  of each models )|( /

b
oii

bf Dz  of the ensemble; 

 compute the prediction ilur ˆ , i.e., the estimate of the RUL expected value 
iRUL : 

 

 



B

b

b
OIi

b
Bi flur

1

/
1 )|(ˆ Dz  (15) 

 

 compute the estimate )(ˆ 2
im z  of the model error variance: 

 

  



B

b

i
b

OIi
b

Bim lurf
1

2
/

12 ˆ)|()(ˆ Dzz  (16) 

 

 apply the model )( iz  to the input iz  to obtain the RUL variance estimate )(ˆ 2
iRULi

z ; 

 sum up the two variance components to obtain the prediction error variance 2
ˆ ilur :  

 
 )(ˆ)(ˆ)( 222

ˆ iRULimilur ii
zzz    (17) 

4.3 Case 3: Data-driven prognostics based on an ensemble of bootstrapped 
models trained on degradation data only 

This case is characterized by the availability of the observations i:1z  related to the degradation state of the 

system of interest at j different measurement time instants up to the current time it , the relative observation 

equation and the value of the failure threshold thd . Given the observation equation, an estimate of the 

degradation state jd  can always be derived from the observation jz . For simplicity of illustration, we 

consider here only a situation where the observation jz  is a direct measure of the degradation state jd , 

eventually affected by a zero-mean noise, and thus no further estimate of jd  is needed. 

The modeling approach proposed in the previous Section, based on the availability of input/output pairs 

formed by the observations iz  and the corresponding RUL value irul , cannot be directly applied to this 

case. For this reason, an approach which uses the time series i:1z  of the past observations to build a model of 

the time evolution of the degradation process is proposed. Notice that the approach differs from that used in 

case 1 since the physical stochastic model describing the true dynamics of the degradation process (eq. (1)) is 

unknown and should be replaced by an empirical deterministic model derived from the few available data. 

Coherently, the estimate of the prediction error variance )(2
ˆ ilur i

z  should account also for the error made 

when approximating the true degradation process with the empirical model. 
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A generic model of the evolution of the degradation state of the system, achieved by fitting the most suited 

degradation model, e.g., linear and non-linear regression models, general degradation path models, etc. [28] 

to the sequence of data i:1z , can be written as: 

 

 )(ˆ
jj td   (18) 

 

where jd̂  is the degradation value at time jt  predicted by the model. 

The prediction ilur ˆ  of the system RUL at time it  is then obtained from the relation  

 

 thii dlurt  )ˆ(  (19) 

 

An estimate of the prediction error variance )(2
ˆ ilur i

z  cannot be obtained by means of the method proposed 

in case 2, since there are no available pairs '
1},{ N

jjj rul z  for which jrul  is known, and thus the prediction 

residuals '
1

2 )}({ N
jjr z  cannot be computed in correspondence of any of the observation i:1z . To overcome 

this problem, we consider a model  

 

 )(~ˆ ',', jjjjt d  (20) 

 

which receives in input a vector of two degradation states ][ '', jjjj ddd  and returns in output the estimate 

',
ˆ

jjt  of the time interval needed to reach the degradation state jd  starting from 'jd . In general, model 

)(~
', jjη d  can be derived from model )( jt  according to: 

 

 )(-)()(~ˆ 1-
'

1-
',', jjjjjj ddt   d  (21) 

 

The prediction ilur ˆ  is obtained from this model by setting ijd z  and thj dd ' ; in this view, the RUL 

prediction at time it  corresponds to the estimate of the time interval thit ,  needed to increase the 

degradation state from id  to the failure threshold thd . Model )(~
', jjd  is assumed to be an unbiased 

estimator of the mean value )( ',', jjt jj
d  of the random variable ', jjt ; the variance )( ',

2
jjm d  of the 

difference between the estimate )(~
', jjd  and )( ',', jjt jj

d  represents the uncertainty associated to the 

model ~ ; the variance 2
', jjt  of the difference between )( ',', jjt jj

d  and the actual target value ', jjt  

represents the uncertainty in the evolution of the degradation process from jd  to 'jd . Being 2
t  and t  

functions of the input ', jjd , eq. (12) becomes: 

 

 ',',', )(', jjjjtjj jjt    d  (22) 
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where ', jj  represent a process noise with zero mean and standard deviation )( ',
2

',
jjt jj

d . 

The bootstrap method used for case 2 and described in Appendix B, can now be applied considering, instead 

of the quantities iy , )( ih z  and )( if z , the quantities ', jjt , )( ',', jjt jj
d  and )(~

', jjd , respectively. 

As underlined in Section 4.2, to avoid underestimating the prediction error, the validation datasets should not 

contain measurements belonging to degradation trajectories used for training. Since only a single trajectory is 

now available, the solution proposed is to partition the dataset i:1z  into two sequences of consecutive 

measurements, }{ :1 trnN
trn zD   and }{ :1iN

val
trn zD . An ensemble of B models B

bjj
b

1', )}(~{ d  is then 

generated by training each model on a bootstrapped replicate bD  of trnD  and validated on validation dataset 
val

oi /D  derived from valD :  

 

 i
jj

i
Njjjjjjjjj

val
oi trn

ttt 1'
1

1'','',/ }]}[],[{{ 


 zzdD  (23) 

 

The prediction residuals )( ',
2

jjr d  are then computed as in eq. (B4) of Appendix B , where iy  is replaced by 

', jjt  and )( i
bf z  is replaced by )(~

', jj
b d  and used to build the empirical model )(ˆ ',

2
',

jjt jj
d   

estimating the variance )( ',
2

',
jjt jj

d  of ', jjt . The RUL variance )(ˆ 2
iRULi

z  is then obtained from model 

  fed with the input ][, thithi dzd  . 

Thus, when a new observation iz  is collected at time it , the outcomes of the ensemble models are use to 

generate the RUL prediction: 

 

 ∑
1

, )(~1
ˆ

B

b

thi
b

i
B

lur


 d  (24) 

 

and the prediction error variance estimate 

 

 )(]ˆ)(~[
1

)()(ˆ ,

1

2
,

222
ˆ ∑ thi

B

b

ithi
b

iRULimlur lur
Bii

ddzz  


 (25) 

 

Notice that the training data used to build model   cover a range of values for the input ', jjd  in general 

different from that of the input thi,d  to which the model is applied to obtain the estimate 2ˆ
iRUL . This 

represents a limit to the quality of the estimate 2ˆ
iRUL , since the performances of empirical models tend to 

degrade when they are applied to input patterns belonging to regions far away from those containing the 

patterns used to train the model. 
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5 Numerical application 

In this Section, the three different cases presented in Section 3 are considered with reference to the 

prognostics of a turbine blade in which creep damage is developing [26]. Creep is an irreversible 

deformation process affecting materials exposed to a load below the elastic limit for a protracted length of 

time and at high temperature. Notice that a turbine undergoing this degradation process can experience the 

loss of its blades, one of the most feared failure modes of turbomachinery since it is accompanied by abrupt 

changes in the power conversion system and in the reactor flow conditions [29]. Figure 7 shows an example 

of high-pressure turbine deblading occurred in a German power plant [29].  

 

 

As shown in Figure 4, the uniaxial creep deformation consists in an augmentation of the original length and a 

reduction of the diameter. In this work, the adimensional quantity ε, defined as the percentage of elongation 

of the turbine blade in the longitudinal direction with respect to its original length, is considered as measure 

of the creep strain. 

5.1 Information available for prognostics 

The main sources of degradation-related information for the creep growth process, listed in Table IV, are 

further detailed in this Section. 

Information A: creep growth model  

Creeping in turbine blades is a stochastic degradation process which can be modeled through the Norton 

Law, assuming that the dependence from the temperature follows the Arrhenius law [9]: 

 

 
Figure 4: Schematics of a specimen before and after a 
creep test (http://www.twi.co.uk/content/jk69.html). 

 
Figure 3: Deblading in a high pressure turbine [30]. 
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where dtd  is the creep strain rate, Q  is the activation energy, A  and n  are material characteristics 

varying from one blade to another, R  is the ideal gas constant, T  is the blade operating temperature and φ is 

the applied stress. For simplicity, the blade temperature is supposed equal to the gas temperature and the 

stress φ is derived from the rotational speed ω of the turbine:  

 

 2
22

2
 hubtip rr 

  (26) 

 

where   is the blade density and hubr  and tipr  are the hub and tip radiuses, respectively. The rotational speed 

ω and the gas temperature T are external parameters depending on the power setting of the gas turbine. 

Table III: type of distribution, mean value and standard deviation used for the creep growth model parameters 

Variable Symbol Distribution Units 
Parameters of the 

distribution 

Activation energy Q Deterministic kJ/mol Q=290 

Norton Law parameters A Normal (N/m2)-n/h μA=3·10-4; σA=5% 

 N Normal - μn=6; σn=0.2% 

Operating temperature Ti Normal K μT=1100; σT=1% 

Rotational speed ωi Normal rpm μω=3000; σω=1% 

Density  Ρ Deterministic Kg/m3  =8000 

Hub radius rhub Deterministic m hubr =0.7 

Tip radius rtip Deterministic m tipr =0.87 

Stress fluctuations δφ Gamma MPa θ=2; k=10

 

For t  sufficiently small compared to the time horizon of the analysis (here t 5 days, with respect to the 

time horizon of several thousands), the state space model in eq. (26) can be discretized to give: 
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The characteristic parameters A  and n  vary from one blade to another, whereas the external parameters, i.e., 

the rotational speed ω and the gas temperature T vary continuously in time; all these parameters are assumed 

to have normal distributions. Finally, the fluctuations in the stress applied to a specific blade, which are due 
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to fabrication defects, aging and corrosion of the blade, vibrations of the system or turbulences of the gas 

flow, are modeled through a random variable δφ added to the stress φ in eq. (27).  

The values and distributions of the parameters T, ω, hubr  and tipr  have been set with reference to the helium 

gas turbine of a Gas Turbine Modular Helium Reactor (GT-MHR) developed by an international consortium, 

with a targeted 286MWe generation per module[25]; the material inherent characteristics A, n and   are 

taken assuming that the blade is made of Ni-base cast Superalloy 713LC [25]. The distributions used for the 

parameters are reported in Table III. 

Information B: creep strain measurements 

This source of information consists in a sequence of observations i:1z  of creep strain performed on the blade 

on which we want to apply the three prognostic approaches, hereafter called ‘test trajectory’. Given the 

unavailability of real experimental data, in this work the creep growth trajectory is simulated using eq. (27). 

The variation in time of the rotational speed ω, the gas temperature T and the stress fluctuations δφ are 

simulated by sampling their values ωj, Tj and δφj from the relative distributions (Table III) at each time 

instant tj. Every 30 days a creep strain measurement jz , corresponding to the creep strain j , is simulated 

by using eq. (28). A total number of 87 creep strain measurements have been simulated for a turbine blade 

with parameters A=3·10-4 and n=6.  

In order to verify the performance of the prognostic approaches, the simulation of the test trajectory has been 

conducted until the time L at which the creep strain reaches the failure threshold. The difference between L 

and the time ti at which the prognosis is performed is the actual remaining useful life of the turbine blade and 

will be referred to as “true RUL”, and represented by the notation irul  (Column 1, Table V).  

Information C: historical creep strain measurements 

This source of information consists in a number S=13 of historical sequences of creep growth observations 

from similar blades. In analogy to what is done for information B, the degradation trajectories have been 

simulated using eq. (27). The variations of the characteristic parameters A  and n  from one blade to another 

have been simulated by sampling their values from normal distributions at the beginning of each new 

simulated degradation path. Some examples of simulated creep growth paths are shown in Figure 8. 

 

Figure 5: Examples of creep growth paths. 
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For each trajectory, a number Ns of direct creep strain measurement sN:1z , one every 30 days, are simulated 

according to eq. (28) (Information E).  

Information D: failure threshold  

A turbine blade is considered within its useful life if the creep elongation strain in the longitudinal direction 

of the turbine blade is less than 1% or 2% of its initial length. Thus, the failure threshold for creep strain th  

is set equal to the value of 1.5%.  

Information E: measurement equation  

For simplicity, we assume to be able to directly measure the value of the creep strain once every 30 days. 

Consequently, the observation equation is: 

 

 jjj  z  (28) 

 

where j  is a white Gaussian measurement noise with standard deviation 02.0 . 

Information F: life duration data 

The time step at which the creep strain j  exceeds the failure threshold th  is collected for each of the S=13 

simulated degradation trajectories and represents the life duration sL
 
of the simulated turbine blade.  

Table IV: main sources of information for prognostics of a creeping turbine blade 

Source Description 
Mathematical 
representation 

A The creep growth model and the distributions of the model 
parameters 

eq. (27) and Table III 

B Measurements of the creep strain of the currently creeping blade 
taken at i different time instants jt  

iii :1:1:1  z  

C Historical measurements of the creep strain of a set of S blades 
failed for creeping, taken at Ns different time instants jt  

s
NS:1z , s=1,…,S 

D The value of the failure threshold  ththd   

E The measurement equation and the noise distribution eq. (28) and )Pr(   

F The length of life Ls of the set of S failed blades. Ls,  s=1,…,S 

5.2 The three prognostic problems and corresponding modeling approaches 

According to the three cases presented in Section 2, three prognostic problems have been tackled with 

respect to the turbine blade case study described in the previous Section 5.1. In all cases, the objective of the 

analysis is to predict at time it , i=1,…,87, the RUL distribution for the test trajectory. At every time it  

during the life of the turbine blade, the set of observations i:1z  is assumed to be available (source of 
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information B) and the predictions of the RUL is updated according to the new available information, i.e., 

the last observation iz . 

In case 1, the sources of information A, B, D and E in Table IV are available. The particle filter has been 

applied and a number 1000U  of particles are simulated starting from 00  . Particle resampling is 

performed once every 5 measurements. The particle filter has been preferred to the Kalman filter since the 

distribution of the process noise is not Gaussian as a consequence of the combination of speed, temperature 

and stress fluctuations in the creep growth process described by eq. (27). 

In case 2, sources of information B, C and F in Table IV are available. 10trnS  trajectories among the 

13S  totally available are used for building an ensemble of 25B  linear least square models  

 

 i
bbb

oii
b Dlur zz  10/ )|(ˆ  , (29) 

 

whereas the remaining 3valS  trajectories are used to validate the ensemble and build the training dataset 

for the model  
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210

2ˆ)( iiRULi i
zzz    (30) 

 

estimating the RUL variance )(2
iRULi

z .  

In case 3, prognostic results are achieved based on the sources of information D and E of Table IV together 

with the information on the test trajectory (source of information B). In this case, the prognostic model has 

been developed only after time 30t  in order to have available a dataset }{ :1 izD   of at least 30i  direct 

creep strain measurements. This dataset has been partitioned into a training dataset trnD  containing the first 

75% of the available measurements and a validation dataset valD  containing the remaining 25%. An 

ensemble of 25B  linear least square models  
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is built and the models  
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are derived from it. Notice that, in a linear process, the time needed to increase the degradation state from j  

to 'j  is proportional to the degradation increment jjjj   '',  and does not depend on the initial and 
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final degradation states. The ensemble of models is tested on the validation dataset made of input/output 

pairs  
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and the prediction residuals ', jjr  obtained are used to train the linear model  

 

 ',', )( jjjj zz    (34) 

 

for the variance of Δt. The predictions b
ilur ˆ  and the estimate 2ˆ

iRUL  are obtained respectively from the model 

ensemble b~  and from model   in correspondence of the input iththi zz  , . This way, the data used 

for training model   concern creep strain increments which for the first two thirds of the trajectory are 

smaller than the increment thi,z  considered for obtaining the prognostic results, so that the empirical model 

)( ', jjz  is used in an input region not described by the training data. 

Finally, the prediction ilur ˆ  and the relative prediction error variance are obtained from eqs. (23) and (24). 

Each time it , i=31,…,87, a new measurement becomes available, a new ensemble of models is built and a 

new RUL prediction is obtained. 

5.3 Results 

Table V reports the RUL predictions obtained by applying the three prognostic approaches of cases 1, 2 and 

3 to a degrading blade. The first row refers to the RUL prediction performed at time 147550 t  days on the 

basis of the measurements 50:1z  of the test trajectory, the second to the prediction performed at time 

237580 t  days on the basis of the measurements 80:1z . Column 1 reports the true RUL value, irul , 

observed for the turbine blade under test, whereas columns 2 and 3 report the expected value 
iRUL  and the 

variance 2

iirul  of the distribution )|Pr( iiRUL  . This latter distribution represents the irreducible 

uncertainty of the RUL prediction which is caused by the stochastic future evolution of the creep strain. 

)|Pr( iiRUL   has been obtained by simulating P=1000 degradation trajectories all characterized by the 

values A and n of the blade under test and by a creep strain i  at time ti. Notice that the predictions ilur ˆ  of 

the three approaches provide satisfactory estimates of 
iRUL , whereas in all the cases the prediction error 

variances 2
ˆˆ

ilur
 
tend to overestimate 2

iirul . This is due to the fact that according to eq. (14), 2
ˆˆ

ilur  takes into 

consideration both the uncertainty due to the future stochastic evolution of the test trajectory represented by 
2

iRUL  and the uncertainty due to the prognostic model regression error 2
m . It is interesting to observe that 

an analyst which has to decide the maintenance policy to be applied to the turbine blade would like to have 

the least uncertain prediction of the RUL. Thus, in the case in which the analyst were in the position to 

choose one of the three prognostic approaches, he/she would prefer the one which guarantees the lowest 

uncertainty, i.e., the one whose prediction error variance is smaller. 
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Table V: estimates of iRUL  and 2
irul  at time 147550 t (first row) and 237580 t  (second row) in the three prognostic 

cases considered. 

    Case 1 Case 2 Case 3 

it  ruli iRUL  2
iRUL  ilur ˆ  2

ˆˆ
ilur  

ilur ˆ  2
ˆˆ

ilur  
ilur ˆ  2

ˆˆ
ilur  

1475 1110 1092 90 1085 107 1079 109 1075 238 

2375 210 264 42 247 45 167 63 248 57 

 

In correspondence of each prediction ilur ˆ , it is also possible to estimate the prediction interval )(PI  

 

 )()( supinf  iii CrulC  , (35) 

 

i.e., the interval expected to contain the true RUL value irul  with a probability of 1 . According to the 

three approaches, this interval can be obtained as follows: 

 In case 1, )(inf iC  and )(sup iC  are the 2/  and 2/1   percentiles, respectively, of the RUL 

distribution estimated with the particle filtering method. 

 In cases 2 and 3, assuming that the prediction error has a Gaussian distribution, the interval can be 

computed according to the theory of the bootstrap method [24] as: 

 

 
ii lurconfiilurconfi clurrulclur ˆˆ ˆˆˆˆ     (36) 

 

where 
confc  is the 2/1   percentile of a Student’s t-distribution with number of degrees of freedom 

equal to the number B  of bootstrapped models. 

Figure 6 shows the evolution of the true value of the blade RUL (continuous thick line), its estimated value 

ilur ˆ  (dots) and the corresponding prediction interval for 32.0  (continuous thin line) obtained during the 

turbine blade life at times , i=1,…,80. In case three, since a minimum number of historical data must be 

available to build the predictive model, the prediction is performed only after t30. Notice that in this case the 

prediction intervals are characterized by large oscillations and low accuracy, especially at the beginning of 

the trajectory, i.e., when few training data are available. Furthermore, the RUL prediction itself is very noisy. 

This effect can be reduced by properly filtering the predictions. To this purpose, since the time evolution of 

the RUL is a linear process ( 1)1()(  trultrul ), and assuming a Gaussian noise affecting the prediction, 

Kalman filtering can be applied [26]. 

 

it
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Figure 6: true RUL (continuous thick line) of a turbine blade with its predicted value ilur ˆ  (dots) and prediction interval (continuous 

thin line) for the three prognostic cases. 

In order to perform a robust analysis of the performances of the three approaches, the model in eq. (27) has 

been used to generate 250 different creep growth trajectories. For each trajectory, the prognostic indicators 

)(ˆ iilur z  and the confidence interval )32.0(inf
iC  have been computed at Ntst different time steps, once every 

150 days, based on the past measurements collected once every 30 days. 

For each degradation test trajectory, two performance indicators are computed: 

1. the mean relative absolute error rMAE: 

 

 





tstN

i i

ii

tst rul

lurrul

N
rMAE

1

ˆ1
 (37) 

 

which evaluates the accuracy of the estimate ilur ˆ  with respect to the true irul  of the system. Notice 

that since ilur ˆ  estimates the expected value of 
iRUL  and not the true value of the irul , this value is 

not expected to be zero even for the best possible prognostic model. 

2. the coverage:  
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This indicator is used to verify whether the estimation of the prediction interval )32.0(PI  actually 

contains with probability 1-0.32=0.68 the true RUL of the system. Coverage values around 0.68 

indicate satisfactory estimation of the prediction interval. 

The average values rMAE  and Cov  of the performance indicators obtained in the three cases over the 250 

test trajectories are reported in Table VI.  

Table VI: prognostic performance in the three prognostic cases considered 

rMAE  Cov  

Case 1 0.150±0.009 0.663±0.018 

Case 2 0.172±0.009 0.613±0.019 

Case 3 0.170±0.009 0.682±0.014 

 

The best results are obtained in case 1, which is the one with the maximum amount of information available. 

In this case the prediction is accurate (low rMAE) and the uncertainty of the prediction well estimated 

(coverage close to 0.68). The accuracy of the prediction in case 3 slightly outperforms the one in case 2, 

although a smaller amount of information is available to build the model. This can be explained by 

considering that in case 2 the prediction is based on knowledge about the creeping behaviors of a population 

of similar, but not identical blades, i.e., characterized by different values of parameters A and n; on the 

contrary, in case 3 the empirical model is trained using degradation data concerning only the turbine blade of 

interest and thus all training data refer to the same values of parameters A and n. To confirm this hypothesis, 

in Table VII two cases 1b and 2b analogous to cases 1 and 2 are considered: in case 1b it is assumed that the 

exact values of parameters A and n are known for each blade, whereas in case 2b the degradation trajectories 

used to build the training dataset are simulated using the same value of A and n considered in the test 

trajectory. We observe that the accuracy of the prediction is increased and in both cases 1b and 2b the results 

are better than in case 3 given the larger amount of information available.  

Table VII: prognostic performance in case 1 when parameters A and n are assumed known and in case 2 when 
parameters A and n are kept constant for all historical training trajectories 

rMAE  Cov  

Case 1b 0.135±0.009 0.669±0.019 

Case 2b 0.145±0.007 0.623±0.016 

6 Different information settings 

In the previous Sections, we have considered three well defined situations of information available and we 

have developed three, properly tailored, prognostic approaches. However, in real applications, it is common 

to face hybrid situations characterized by the availability, at the same time, of multiple sources of 

information. Furthermore, since some sources of information can be partially inaccurate or affected by large 
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uncertainty, the identification of the correct prognostic approach to be applied can become a non trivial 

problem. In order to provide some indications to the decision maker, we consider a case in which all the 

sources of information listed in Table II are available (so that all the three proposed approaches can be 

applied) and we perform an analysis of the sensibility of the performance of the three prognostic approaches 

to the quality and quantity of the information available. To this purpose, we have considered the following 

indicators of the quality and quantity of the information:  

E. the amplitude of the noise affecting the creep strain measurements; 

F. the number of past measurements of the current trajectory available for making the RUL prediction;  

G. the accuracy of the physical model of the degradation process; 

H. the number of historical degradation trajectories available. 

The performance of the three approaches is evaluated considering 250 test trajectories. Figure 7 (upper-left) 

shows the variation of the relative mean square error (rMAE) when the amplitude of the noise affecting the 

creep strain measurements is varied from 0 to 0.03. Notice that the performances of the three approaches 

decrease as the amplitude of the noise increases, and that the third approach is the most sensible to this 

parameter. 

 

 

Figure 7: performance of the proposed approaches in different settings of information available. The vertical (red) line indicates the 
value assigned to the parameter in the numerical application of Section 5. 

With respect to the second indicator, Figure 7 (upper-right) shows the mean absolute error of the approaches 

when they are applied at different time instants during the evolution of the degradation trajectories. Since 

every 30 days a new measurement is collected, the number of measurements available for making the RUL 

prediction increases as time passes. In this case, the performance is evaluated using the mean absolute error 

(MAE) instead of the rMAE which tends to be very noisy at the blade end-of-life, when the denominator irul  

of eq. (37) gets close to zero. The performance of approach 3 is the most affected by the time at which the 

prognosis is made: the performance is very poor at the beginning of the degradation trajectory, when very 
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few measurements are available for the construction of the empirical degradation model, but it increases 

significantly as time passes and, finally, when the creep strain becomes close to the failure threshold, 

approach 3 outperforms the other approaches. 

The sensibility of approach 1 to the accuracy of the physical model (indicator 3.) has been estimated by using 

in the PF process model of eq. (27) a biased value of parameter A: its mean value has been taken in the range 

[2.7 10-4; 3.6 10-4] instead of equal to its true value μA=3·10-4 (Table III). Figure 7 (bottom, left) shows that 

the particle filtering approach outperforms the others only if the available degradation model is very 

accurate: an error of 10% in the estimate of A is sufficient to decrease approach 1 performance under those of 

the other two methods. Similar results have been obtained varying the values of other parameters of the 

process model. 

Finally, with respect to indicator 4, we have verified the performance of approach 2 varying the number of 

historical trajectories available for training the empirical model from 2 to 30. Figure 7 (bottom, right) shows 

that the rMSE made by approach 2 decreases when the number of historical trajectories increases from 2 to 

12 and then tends to stabilize around a value very close to the performance of approach 1. 

Considering the results obtained performing this sensibility analysis, we can provide the following guidelines 

for the choice of the prognostic approach: if one is very confident about the accuracy of the available 

physical degradation model, approach 1 should be preferred; on the contrary, if one doubts about the model 

accuracy, approach 2 is, in general, the most accurate, especially if the number of historical trajectories 

available is large. However, if the measurement noise is small, the system is close to failure and many 

degradation measurements have been taken during the current degradation trajectory, approach 3 can provide 

better accuracy. 

When multiple approaches with comparable degree of accuracy are available, an alternative strategy to the 

choice of the best performing approach consists in the combination of the different approaches outcomes. 

This requires the development of a weighting strategy for the aggregation of the predictions made by the 

different approaches, based on their performances in the different situations of information available. To this 

aim, the aggregation techniques proposed in literature within the study of the ensemble system [23][26] will 

be considered in a future work. 

7 Conclusions 

Different forms of information and data may be available for the prognosis of the RUL of a system 

undergoing degradation. In this work, we have considered three practical situations with decreasing amount 

of information available: in the first case the model of the degradation process is available, in the second case 

the model is not available but can be empirically derived from a number of observations collected during the 

degradation trajectories to failure of similar systems, in the third case only direct measurements of the 

degradation state reached during the life of the system of interest are available. 

In this work, we have discussed the choice of the prognostic method in different information settings, 

considering the accuracy and the ability of providing measures of confidence in the RUL prediction of 

different prognostic approaches. In the first considered case, where a physical model of the degradation 
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process is available, a particle filtering approach has been properly tailored to the prognostic problem, 

whereas a bootstrapped ensemble-based technique has been proposed and further developed to estimate the 

uncertainty of the RUL prediction in those situations where a priori knowledge of the mechanisms and 

models of the degradation process are missing (cases 2 and 3). For this, the prognostic problem has been 

reformulated, so that it was possible to define training and validation datasets of input/output pairs necessary 

for the construction of the prognostic model and the assessment of its accuracy; furthermore, solutions to 

ensure the independency between these two datasets have been developed. The merit of the proposed 

approach is that it allows producing a confidence interval for the RUL prediction, even when a measure of 

the prediction accuracy is not automatically provided by the regression method adopted. 

The approaches proposed have been tested on a case study concerning the creep growth process in a high 

temperature turbine blade. The results show that both the particle filter and the bootstrapped ensemble 

methods provide a reliable prediction of the system RUL with a quantification of its uncertainty, the particle 

filter being the best performing method. 

With respect to the ensemble of bootstrapped models trained with historical measurements of the degradation 

process in similar systems, the main limitation of the method is that it is not able to learn the peculiar 

characteristics of the system of interest but it tends to reproduce an ‘average’ degradation trajectory. To 

overtake this problem, a different modeling approach could be used, such as that based on the idea of fuzzy 

similarity [22], or a procedure for updating the ensemble with the information conveyed by new observations 

could be implemented [26]. 

For the application of the ensemble to the last case, in which only direct measurements of the degradation 

state reached during the life of the system of interest are available, the bootstrap method requires building an 

empirical model for the RUL variance estimate which is then used outside the region covered by the training 

data. Although good extrapolations have been obtained in the linear creep growth case study, the feasibility 

of the approach on more complex models should be verified. 

Finally, it has been shown that in the general case where all sources of information are available, the 

performance of the three proposed approaches varies depending on the quantity and quality of the available 

information. Thus, aggregating their outcomes within an ensemble approach can improve the prediction 

accuracy; to this purpose, the choice of an effective weighting strategy is crucial and will be the objective of 

future research. 

Appendix A: Particle Filtering 

Given the first-order Markov process in eq. (1) and a set of observations i:1z  related to the equipment 

degradation state jd  by eq. (2), we aim at predicting the filtered posterior pdf )|( :1)( iitD dp
i

z  at time it . 

Within a Bayesian framework, the filtered posterior pdf )|( :1)( iitD dp
i

z  is recursively computed in two 

stages: prediction and update [16][31]. Given the pdf )|( 1:11)( 1  iitD dp
i

z  at time 1it , the prediction stage 

involves using the transition probability )|( 1)( iitD ddp
i

 defined by the system equation (1) and the known 

distribution of the noise vector 1iγ  to obtain the prior probability distribution of the system state id  at time 

it  via the Chapman-Kolmogorov equation:  
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where the Markovian assumption underpinning the system model (1) has been used. 

At time it , a new observation iz  is collected and used to update the prior distribution via Bayes rule, so as to 

obtain the required posterior pdf of the current state id  [33]: 
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where the normalizing constant is 

 

 iiitZiitDiitZ ddpdpp iii d)|()|()|( )(1:1)(1:1)(    zzzz  (A3) 

 

The recurrence relations (A1) and (A2) form the basis for the exact Bayesian calculation of the pdf 

)|( :1)( iitD dp
i

z  at time it .  

Unfortunately, except for a few cases, including linear Gaussian state space models (Kalman filter) and 

hidden finite-state space Markov chains (Wohnam filter), it is not possible to evaluate analytically these 

distributions, since they require the evaluation of complex high-dimensional integrals. 

An alternative and effective approach is that of resorting to Monte Carlo sampling methods for integration. 

This solution is based on sampling a large number K of trajectories K
k

k
id 1:0 }{   (called particles), from a 

suitably introduced importance function )|( :1:0 iidq z . In the following we briefly describe how these 

simulated trajectories can be utilized for filtering out the unobserved trajectory of the real degradation 

process. For more details, one can refer to the specialized literature, e.g., [11] and [16]. 

The posterior probability )|( :1)( iitD dp
i

z  we wish to calculate is the marginal of the probability 

)|( :1:0)( :0 iitD dp
i

z , i.e., the multiple integral of this latter with respect to 11,...,, io ddd  in   , , which 

may be formally extended to include also the variable id  by means of a δ-function, viz.,  

 

     udududpdp iiiitDiitD ii dd)()|,()|( 1:0:11:0)(:0)( 1:0 zz  (A4) 

 

Then, by using the large number of trajectories K
k

k
id 1:0 }{   sampled from the importance function  

)|( :1:0 iidq z , the integral can be approximated as [10]: 
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where k
iw  is the importance weight associated to the state sequence k

id :0 , Kk ,...,2,1 , sampled from 

)|( :1:0 iidq z  and is given by 
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Typically )( :1)( itZ i
p z  cannot be expressed in closed form. However, in [10] it is shown that the 

approximation in (A5) is equivalent to: 
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where k
iw~  and k

iw  are, respectively, the unnormalised and normalized importance weights: 
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It is often convenient to choose the importance density to be the transition probability: 
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so that the importance function factorizes as follows 
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and one can obtain samples by augmenting each of the existing ones k
id 1:0   with the new state k

id  sampled 

from )|( 1)(
k
i

k
itD ddp

i  . 

Using the Bayes rule, the hypothesis of Markovianity of the process and the fact that the observation iz  

depends on the state id  only, i.e., )|()|( )(:0)(
k
iitZ

k
iitZ dpdp

ii
zz  , the wights k

iw~  defined in eq. (A8) can 

be rewritten as (details of the calculations can be found in [16]): 
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where )|()(
k
iitZ dp

i
z  is the likelihood of the observation iz , which can be derived from the observation 

equation (2). 

The resulting normalized weights k
iw  are then: 

 

 







K

k

k
i

k
iitZ

k
i

k
iitZk

i

wdp

wdp
w

i

i

1

1)(

1)(

)|(

)|(

z

z
 (A12) 

Appendix B: Bootrapped ensemble-based estimate of the prediction 
uncertainty 

Assume we are given a set of data pairs N
iii y 1},{ z , generated according to 

 

 iii hy  )(z  (B1) 

 

where iy  is the target value, )( ih z  true input/output relation and i  a process noise with zero mean and 

standard deviation )(2
i

i
z . When we train a model )( if z  on such data, our aim is to approximate )( ih z ; 

such a model can be interpreted as an estimate of the mean distribution of the target values given an input 

vector iz . In many practical application, all the more in prognostics, it is highly desirable to have a measure 

of confidence in the prediction )( if z . As described in [24] the uncertainty in the prediction )( if z  is 

quantified by the prediction error variance )(2
if z  which can be decomposed in two terms:  

 



PART II 30 

    
)()(

])([)]()([

]))([()(

22

22

22

iim

iiii

iiif

i

yhEhfE

yfE

zz

zzz

zz











 (B2) 

 

where the term )(2
im z  is the variance of the distribution of )()( ii hf zz   and is concerned with the 

accuracy of the model )( if z  in estimating the true function )( ih z , whereas the term )(2
i

i
z  is the variance 

of the distribution of )( iii hy z , and is concerned with the accuracy of )( ih z  in predicting the target 

iy  itself. 

To generate an estimate of )(2
im z  one can resort to a bootstrapped ensemble of models B

bi
bf 1)}({ z  built 

on bootrapped replicates of the original set of data pairs N
nii y 1},{ z . These replicates are obtained by 

randomly sampling with replacement N data pairs from the original dataset. As derived in [32], the 

bootstrapped outputs B
bi

bf 1)}({ z  provide us with the empirical estimate of the distribution of  

)()( ii hf zz  . This estimate is given by the distribution of )()( i
b

i ff zz  , where )( i
bf z  is the average 

value of the predictions B
bi

bf 1)}({ z  and is retained as the estimate of the true function )( ih z  to which we 

have no access. Thus, under the hypothesis that )( i
bf z  is an unbiased estimator of )( ih z  and that the 

distribution )()( ii hf zz   is Gaussian (see [32] for more details), the term )(2
im z  can be estimated as 
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To estimate total variance )(2
if z , we need to build a model that provide an estimate for the noise term 

)(2
i

i
z  in correspondence of an input iz . Such a model is found by fitting the residuals  
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which should be calculated on a validation dataset different than the training set to avoid overfitting and 

underestimating of the variance )(2
i

i
z . In other words, we train a model )( iz  on the set of input output 

pairs '
1

2 )}(,{ N
nii r zz  by maximizing the loglikelihood function 
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written under the hypothesis that the residuals )(2
ir z  have a Gaussian distribution with zero mean and 

variance which can be shown to be equal to )(2
i

i
z : 
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where eq. (B2) has been used in the last equivalence of eq. (B6). 

Finally, the prediction error variance in correspondence of the input iz  can be approximated by: 
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Abstract 

We look at different prognostic approaches and the way of quantifying confidence in equipment Remaining 

Useful Life (RUL) prediction. More specifically, we consider: 1) a particle filtering scheme, based on a 

physics-based model of the degradation process; 2) a bootstrapped ensemble of empirical models trained on 

a set of degradation observations measured on equipments similar to the one of interest; 3) a bootstrapped 

ensemble of empirical models trained on a sequence of past degradation observations from the equipment of 

interest only. 

The ability of these three approaches in providing measures of confidence for the RUL predictions is 

evaluated in the context of a simulated case study of interest in the nuclear power generation industry and 

concerning turbine blades affected by developing creeps. 

The main contribution of the work is the critical investigation of the capabilities of different prognostic 

approaches to deal with various sources of uncertainty in the RUL prediction. 

 

Keywords: Prognostics, uncertainty, particle filtering, bootstrap ensemble, turbine blade, creep. 

1 Introduction 

In prognostics the current system condition is projected in time by a predictive model [1-2]. Since the 

prediction of the Remaining Useful Life (RUL) of degrading equipment is performed in the absence of future 

measurements concerning equipment degradation and operational conditions, the prognostic task is 

necessarily affected by large uncertainty. In this work, the sources of uncertainty affecting the RUL 

prediction are classified in three categories: 

a. Randomness in the future degradation of the equipment. This intrinsic uncertainty in the degradation 

process has several causes such as the unknown future load profile, and operation and environmental 

conditions. 

b. Modeling error, i.e., inaccuracy of the prognostic model used to perform the prediction. In model-based 

prognostic approaches, this source of uncertainty takes into account the assumptions and simplifications 
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made on the form and structure of the model, and the uncertainty on the model parameters. In data-

driven approaches, it relates to the incomplete coverage of the data set used to train the empirical model. 

c. Uncertainty in current and past equipment degradation data, which are used by the prognostic model to 

elaborate the RUL prediction. These data are usually acquired by sensors with some measurement noise 

or derived from diagnostic systems assessing the equipment health state with some degree of uncertainty. 

Table I: nomenclature 

Symbol Description Symbol Description 

ti i-th time instant h reference index of the ensemble models 

di equipment degradation at time ti H number of empirical models 

zi physical observations related to di s
ir  prediction residual obtained in correspondence 

of the input s
iz  RULi random variable (rv) representing system RUL 

at time ti χ empirical model for the prediction of the 
residuals variance  δi difference between RULi and its expected value 

E[RULi] id̂  prediction of di at time ti 

ruli realization of RULi η(ti) empirical model for the prediction of di 

f(zi) prognostic model for the prediction of ruli dj,j’ vector of the degradation states at tj and tj’ 

rûli prediction of ruli Δtj,j’ rv representing the time interval to evolve 
from dj to dj’ 2

ˆ ilur  prediction error variance  
2
A  prediction error variance due to randomness in 

the future degradation of the equipment 
)(~

', jjd  empirical model for the prediction of Δtj,j’ 

',
ˆ

jjt  estimate of Δtj,j’ 
2
B  prediction error variance due to modeling error 

'jjt  difference between Δtj,j’ and its mean value  
2
C  prediction error variance due to uncertainty in 

equipment degradation data  
rj,j’ prediction residual obtained in correspondence 

of the input dj,j’ 

s index of the equipment εj creep strain at time tj 

S number of equipments Q creep activation energy 

Ls failure time of the s-th equipment ωj turbine rotational speed 

dth failure thresholds K constant relating the load to ωj  

Pr(x) probability distribution function of the rv x R ideal gas constant  

Pr(x|y) conditional probability distribution function of 
the rv x given y 

Tj blade operating temperature at time tj 

j  stress fluctuations 

µx mean value of the rv x υj creep strain measurement noise 

σx standard deviation of the rv x εth creep strain failure threshold 

g transition function of the degradation state hh
1,01,0 / 

 
coefficients of the h-th empirical model of 
approach 2/3 γj process noise vector 

2ˆ x estimate of 2
x  /2,1,0  

coefficients of the empirical model of the 
residual variance χ of approach 2/3 p index of the Monte Carlo sampled particle 

P number of particles Δεj,j’ degradation increment from tj to tj’ 
p
iw weight of the p-th particle at time ti ', jjz  observed degradation increment from tj to tj’ 

D dataset made by the observations zi α significance level of the confidence interval 

Di/o dataset of the input/output pairs ( s
iz , s

irul ) )(supinf/ iC inferior/superior bound of the (1-α)-
confidence interval for the RUL prediction trn/val apex/subscript indicating training/ validation 

sets of data 
confc

 
(1-α/2) percentile of a Student’s t-distribution 
with H degrees of freedom Ntrn/val number of training/validation patterns 
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Other possible sources of uncertainty, which are not considered in this work, are the imperfect knowledge of 

the value of degradation beyond which the equipment can no longer perform its functions (failure threshold), 

or the time at which the degradation process starts (degradation initiation). Furthermore, in this work we 

assume that the equipment degradation is caused by a single degradation mechanism, not considering the 

uncertainty on the degradation caused by the onset of other, possibly competing, mechanisms [3]. 

The challenge of managing uncertainties associated with prognostics has been recently addressed in [1-2,4-

5]. Uncertainty management in prognostics entails to identify, classify and analyze uncertainty sources with 

the aim of associating to the RUL predictions provided by a prognostic model an estimate of its uncertainty 

[4-7], i.e., a measure of the expected degree of mismatch between the real and predicted equipment failure 

time. This information, provided in the form of a probability distribution of the equipment RUL, can be used 

by the decision maker to confidently plan maintenance actions, according to the desired risk tolerance [2].  

In this context, the objective of the present paper is to contribute to the way of investigating the capabilities 

of different prognostic approaches to deal with the uncertainty in the RUL prediction. To this aim, the 

analysis is performed with respect to three previously developed approaches [8]. 

A first approach, hereafter named “approach 1”, is based on a mathematical model of the degradation 

process for the RUL prediction [9], embedded in a filtering method capable of accounting for the 

stochasticity of the process (source of uncertainty A) and the noise affecting the measurements (source of 

uncertainty C). Most filtering approaches rely on Bayesian methods and provide the probability distribution 

of the RUL [10-11]. The exact Kalman filter has been largely used in case of linear state space models and 

independent, additive Gaussian measurements and modeling noises, whereas analytical or numerical 

approximations of the exact solution (such as the Extended Kalman filter, the Gaussian-sum filters or the 

approximate grid-based filters [12]) have been applied in cases where the dynamics of degradation is non-

linear and/or the associated noises are non-Gaussian [13]. Numerical approximations based on the Monte 

Carlo sampling technique have gained popularity for their flexibility and ease of design [14-17]. Among 

them, Particle Filtering (PF) is often considered a state-of-the-art technology in the prognostic field and used 

as a term of comparison for newer approaches. The model-based particle filter approach here considered was 

firstly applied to state estimation for diagnostics [18-19] and then applied to prognostics [20-21]. According 

to the particle filtering scheme proposed in [20], the RUL distribution prediction is performed by considering 

the stochastic model of the degradation process and the on-line observations of the equipment degradation. 

In [22], this particle filtering-based prognostic approach is discussed with respect to the design of a 

predictive maintenance strategy, whose advantages are then compared with those of other maintenance 

strategies.  

We consider also two data-driven approaches [23], based on statistical models that ‘learn’ trends from 

historical data. In particular, we consider bootstrap ensemble approaches [24-25], which are based on the 

aggregation of multiple model outcomes and have gained interest due to their ability of estimating the 

uncertainty in the predictions. These approaches allow estimating the model uncertainty (source of 

uncertainty B) by considering the variability in the predictions of the diverse models of the ensemble [24]. 

On the other hand, the estimate of the uncertainty due to the stochasticity of the degradation process (source 

A) and the input noise (source C), requires to investigate the relation between the input and the error of the 

prognostic model based on its performance on a validation dataset. In what we will refer to as “approach 2”, 
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a bootstrap ensemble model is built to estimate the equipment RUL based on sequences of observations of 

evolution to failure of a set of similar equipments operating under similar conditions; in what we will refer to 

as “approach 3”, a bootstrap ensemble model is built based on a sequence of degradation observations only 

of the equipment whose RUL we want to predict. Although approaches 2 and 3 are both based on the 

development of an ensemble of bootstrap models, they differ for the type of model used. Whereas in 

approach 2 we can directly model the RUL as a function of the observed parameters, in approach 3 we have 

to model the degradation evolution as a function of time, since direct RUL observations are not available. 

The three approaches are investigated with reference to the creep growth process in the turbine blades of a 

Gas Turbine Modular Helium nuclear Reactor (GT-MHR) [26-27]. The data used in this case study have 

been numerically simulated using a traditional model of the creep growth. Artificial data have been used in 

order to allow testing the three approaches on a large number of different blade degradation trajectories and 

thus evaluate their capability of correctly estimating the uncertainty on the provided RUL prediction.  

The remainder of the paper is organized as follows: Section 2 presents the terminology used in the paper and 

the problem setting; in Section 3, the decomposition of the prediction error variance into three terms 

corresponding to the randomness in the future degradation of the equipment, the modeling error, and the 

uncertainty in current and past equipment degradation measures is reported; in Section 4, the three 

considered prognostic approaches are described; in Section 5, the problem of blade creeping in high 

temperature turbines is illustrated and the capability of uncertainty management of the three prognostic 

approaches are discussed; finally, in Section 6 some conclusions are drawn and potential future work 

suggested. 

2 Terminology and problem setting 

In this work, we assume that the equipment is subject to a single degradation mechanism described as a 

random process; we do not consider the effects that other competing degradation mechanisms can have on 

the equipment degradation. Also, we assume that degradation cannot exceed a maximum acceptable level, 

hereafter referred to as “failure threshold”, dth, which is fixed and identical among similar equipment. Notice 

that in prognostics the failure threshold does not necessarily indicate complete failure of the system, but, for 

safety margins, it is often set at a conservative value of the degradation limit beyond which the risk of 

complete failure exceeds tolerance limits or the performance of the system does not fulfill the requirements 

[28]. Since the failure threshold is usually derived from expert knowledge or from experimental 

measurements of the equipment degradation at failure, its estimate is typically affected by uncertainty which 

contributes to increase the RUL prediction error variance. Methods to deal with the uncertainty on the failure 

threshold have been proposed in [29-30], and, for this reason, this aspect is not considered in the present 

work. 

We indicate by di the equipment degradation level at time ti and we assume that its direct measure is not 

available, but some physical observations zi related to it are obtained. We indicate by z1:i=(z1, z2, …, zi) the 

past and present observations taken at times ittt ...,, 21  for the equipment whose RUL we want to predict. In 

some cases, also the sequences of observations of evolution to failure of a set of S similar equipments 
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operating under similar conditions are available and we will indicate by s
Ns:1z , s=1,…,S, the observations 

taken at times 
sNtt ,...,1  for the s-th equipment whose failure time is sL , where 

sNs tL  . 

The objective of prognostics is the estimation of the equipment RUL, i.e., the time left from the current time 

it  before the equipment degradation, currently of value di, crosses the failure threshold dth. As degradation 

evolves randomly in time, the equipment RUL at time ti is a random variable which will be referred to as 

RULi. Thus, the objective of applying prognostics to an equipment of current degradation level di is to 

estimate the probability density function (pdf) )|Pr( ii dRUL . The uncertainty described by such distribution 

regards the future stochastic evolution of the equipment degradation and, thus, it is irreducible. 

A realization irul  of the random variable iRUL  can be written as: 

 

 idRULi ii
rul   |  (1) 

 

where 
ii dRUL |  is the RUL expected value of the equipment with degradation di at time ti, and δi is a random 

variable with zero mean and variance 2
A  which represents the uncertainty on the future evolution of 

degradation (source of uncertainty A). 

Furthermore, in practice, the ‘exact’ model, g, of the equipment degradation process is not available (source 

of uncertainty B) and the degradation di at time ti is not exactly known (source of uncertainty C). In this 

setting, the complete distribution of iRUL  cannot be derived and prognostics is limited to estimating: 

 the expected value of RULi 

 the variance of the prediction error as a measure of the accuracy with which the estimated expected 

value predicts the actual RUL value. 

With respect to the estimate of the expected value of RULi, it will be indicated by rûli and considered as our 

RUL prediction. The prognostic model which generates at time ti the estimate rûli of RULi on the basis of the 

observations zi will be referred to as f, i.e. rûli=f(zi). Finally, we indicate by 2
ˆ ilur  the estimate of the 

prediction error variance, defined by ])ˆ[( 22
ˆ iilur RULlurE

i
 . 

3 Prediction error variance 

According to [24], the prediction error variance 2
ˆ ilur  can be decomposed into two terms: 2

A , the variance  

related to the uncertainty on the future degradation of the equipment whose degradation at time ti is di 

(source of uncertainty A), and 2
CB , the variance related to the imprecision of the model )( if z  (source of 

uncertainty B) and the noise on the data iz  (source of uncertainty C): 

 

 
     2

|
2

|

2222
ˆ

)(
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idRULdRULi

CBAiilur

fERULE

lurRULE

iiii

i

z

 




 (2) 
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In some applications, it can be useful to distinguish the uncertainty due to the modeling error (source B) from 

that due to the noise on the input data (source C). To this aim, we introduce the quantity 
iiRUL z|  which 

represents the RULi expected value of a degrading equipment for which at time it  we have the observations 

iz , and we assume that )( if z  is an unbiased estimator of 
iiRUL z| .Thus we obtain: 

 

 

     
     

22

2
||

2
|

2
|||

2
|

2
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))()(

CB

dRULRULRULi

dRULRULRULidRULiCB

iiiiii

iiiiiiii

EfE

fEfE













zz

zz

z

zz

 (3) 

 

Combining eqs. (2) and (3), one obtains: 

 

         
222

2
||

2
|

2
|

22
ˆ

)(
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CBA

dRULRULRULiidRUL

iilur

iiiiiiii

i

EfERULE

RULlurE













zzz  (4) 

 

Notice that these results have been obtained by assuming that the different components of the prediction 

error are independent and thus the expected values ))]()([( || idRULdRULi fRULE
iiii

z   and 

)])()([( ||| iiiiii dRULRULRULifE   zzz  in eqs. (2) and (3), respectively, are zero. 

4 Modeling approaches for RUL prediction 

This Section illustrates briefly the three modeling approaches considered for RUL prediction. 

4.1 Approach 1: Particle Filtering 

In approach 1, a Monte Carlo-based filtering technique, called particle filtering [10,12], is used to predict the 

pdf )|Pr( :1iiRUL z  of the equipment RUL at time ti. The prediction is based on the following information: a 

sequence of observations i:1z  related to the equipment degradation at times t1, t2, …, ti, the (observation) 

equation describing the relation between zi and the degradation level di at time ti, the failure threshold thd , 

and the (stochastic) model of the equipment degradation dynamics, e.g., described by a first-order Markov 

process:  

 

 ),( 11  jjj dgd γ ; 0d ~ )Pr( 0d , ,...2,1j  (5) 

 

where  )Pr( 0d  is the initial distribution of the degradation at time 0t , g  is the possibly non-linear state 

transition function and jγ  is the noise vector.  
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The estimation of the probability distribution )|Pr( :1 iid z  of the degradation id  at time it  given the set of 

observations i:1z  is obtained by a recursive computational procedure divided into successive prediction and 

update stages [12]. In the prediction stage, supposing that the probability distribution function (pdf) 

)|Pr( 1:11  iid z  at time 1it  is available, the transition probability distribution )|Pr( 1ii dd  derived from the 

model in eq. (5) is used to obtain the prior pdf of the degradation state )|Pr( 1:1 iid z  at time step it  via the 

Chapman–Kolmogorov equation [12]. In the update stage, the posterior distribution )|Pr( :1 iid z  is obtained 

using the incoming measurement iz  to update the prior distribution via the Bayes rule, based on the 

likelihood function )|Pr( ii dz  defined by the observation equation [12]. The updated posterior probability 

distribution )|Pr( :1iiRUL z  can then be computed as the probability )|Pr( :1 iiRUL z

]|)(Pr[ :1 ithii dRULtd z  that the degradation level at time ii RULt   exceeds the failure threshold thd  

[20-21,31]. 

The recursive computation of the posterior )|Pr( :1 iid z  involves an integral which in practical cases does not 

have a closed-form solution. For this reason, approximated solutions have been proposed, like the Extended 

Kalman Filter, the Gaussian sum filter, and grid-based methods [32-33]. Also, Monte Carlo sampling 

techniques have become of increasing interest. Among these, particle filtering provides a solution by 

approximating the integrals in the Bayesian recursive procedure with weighted summations over a high 

number of samples called particles [10,12].  

The application of the particle filtering procedure to the estimation of )|Pr( :1iiRUL z  is detailed in the 

pseudo-code given in Figure 1. The P particles Pp ,...,1  are future degradation trajectories built by 

recursively sampling the particle degradation state p
jd  at time jt  from the transition probability distribution 

)|Pr( 1
p
j

p
j dd   derived from the degradation model, until the failure threshold thd  is exceeded and the length 

of life pL  of the particle is recorded. The value p
irul  of the particle RUL at time step it  can then be 

computed from ipp
i tLrul  . When an observation iz  is collected, each particle is assigned a weight p

iw  

proportional to the likelihood )|Pr( p
ii dz  of observing iz  given the degradation level p

id  reached by the 

particle at the time it  [20]. The distribution )|Pr( :1iiRUL z  is then approximated by an histogram of the P  

weighted values p
irul  of the particle RULs at time it ; the weighted average and the weighted standard 

deviation of the values p
irul , Pp ,...,1  represent the prediction ilur ˆ  of the expected value iRUL  of iRUL  

and the estimate 2
ˆˆ

ilur  of the prediction error variance 2
irul , respectively.  

The sampling importance resampling (SIR) algorithm is used to avoid the degeneracy problem of the particle 

filtering algorithm, which consists in having all but one of the importance weights close to zero after several 

weight updates [12]. This algorithm requires sampling, after one or more updates of the particle weights, a 

new set of particles from the old one with probability for a particle to be sampled proportional to its weight 

(see pseudo-code in Figure 2). New degradation trajectories have to be sampled starting from the degradation 

state p
id  of each particle resampled at the observation time it  and new values of the particles duration of life 

pL  are recorded. For more details the interested reader may refer to the specialized literature (e.g., [10,12]). 
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Figure 1: Particle filtering operative procedure for RUL estimation [8]. 

 

 

Figure 2: Procedure for performing resampling at time it  [8]. 

 

FOR p=1:P 
1. Sample 0d ~ )Pr( 0d  

2. j=0; 0tt j   

WHILE thj dd   

3. j=j+1; ttt jj  1  

4. sample p
jd ~ )|Pr( 1

p
j

p
j dd   

END WHILE 

5. Register the particle failure time j
p
f tt   

END FOR 
FOR i=1:N 

6. Collect the observation iz  

FOR p=1:P 

7. Compute the RUL of the particle i
p
f

p
i ttrul   

8. Compute the weights:  

IF 0p
irul  set 0p

iw  

ELSE )|Pr(1
p

ii
p
i

p
i dww z   

END FOR 

9. Normalize the weights 



P

k

k
i

p
i

p
i wwwn

1

 

10. Build the probability density function of the equipment RUL at 

time it  as the histogram of the P weighted particle RULs p
irul . 

11. Compute )Mean(ˆ p
ii rullur   

12. Compute )Var(ˆ 2
ˆ

p
i

ilur
rul  

END FOR 

 

At time it  

1. Compute p
irul  and p

iwn  as in Figure 1 
FOR p=1:P 

2. Sample a particle k with probability equal to its weight 
k
iwn  

3. set k
i

p
i dd  , j=i and ij tt   

WHILE thj dd   

4. j=j+1; ttt jj  1  

5. sample p
jd ~ )|Pr( 1

p
j

p
j dd   

END WHILE 

6. Register the new particle failure time j
p
f tt   

END FOR 

7. Assign equal weights to each particle Pwn P
i 1:1   

8. Build the RUL probability density function and compute its 

moments ilur ˆ  and 2
ˆ

ˆ
lur  as in Figure 1. 
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Notice that by this approach the distribution )|Pr( :1iiRUL z  is estimated, which is different from the 

distribution )|Pr( ii dRUL  of the equipment RUL at time ti, given that the equipment has degradation di at 

that time. However, in the Bayesian framework, this is the maximum information we can have on RULi. 

As for the uncertainty in the RUL prediction, in this approach the randomness of the degradation process 

(source of uncertainty A) is described by the model, whereas the observation equation accounts for the 

observation noise (source of uncertainty C). Thus, these two causes of uncertainty are accounted for in the 

RUL prediction through the procedure of particle sampling and weights updating, respectively. On the 

contrary, the contribution of model uncertainty to the RUL prediction uncertainty is not directly considered 

(source of uncertainty B), since it is assumed that the degradation dynamics model and the observation 

equation are exactly known. The effects of this uncertainty on the RUL prediction will be further discussed 

in Section 4.3.1. Notice, however, that if the uncertainty on the model parameters can be quantified and a 

probability distribution assigned to the value of the uncertain model parameter, the PF approach can be 

adjusted to handle also this source of uncertainty [34]. 

4.2 Approach 2: bootstrapped ensemble of empirical models trained on 
sequences of degradation observations and life time data  

Approach 2 is based on the development of an empirical model f representing the relationship between the 

degradation observations iz  available at time  and the corresponding equipment RUL. The empirical 

model is built considering the observations of a set of S trajectories s
Ns:1z , s=1,…,S, of similar equipments 

which have each reached failure in a time Ls discretized in Ns steps. The empirical model receives in input 

the observations iz  and produces as output the RUL prediction, ilur ˆ . In order to develop the model, a dataset 

of input/output pairs }:1;1);;{(/ s
s
i

s
ioi Ni,…,S s=rul  zD  is extracted from the set of observations s

Ns:1z  

by associating to the observations s
iz  at time it  along the s-th trajectory to failure the corresponding 

realization of RULi, i.e., iss
i tLrul  . The dataset oi /D  can then be used to train an empirical model based 

on one among the many data-driven modeling methods existing today (e.g., polynomial regression, non-

parametric regression, neural networks, etc.). In their basic form, these methods provide in output a point 

prediction ilur ˆ  of the RUL without any information on the uncertainty of the estimate [35]. To overcome this 

limitation, the bootstrap method for estimating the accuracy in the prediction of a stochastic output whose 

mean value and variance are unknown functions of the input is used in this work. Under the hypothesis that 

the model  is as an unbiased estimator of 
iiRUL z| , i.e., iiRULifE zz |)]([  , the model error 

variance 2
B  can be rewritten as follows [24,36]: 
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 (6) 

 

An estimate of the model error variance, 2
B , is then obtained from an ensemble of models )|( /

h
oii

hf Dz , 

h=1,…,H trained using bootstrapped replicates h
oi /D  of a training dataset trn

oi /D , drawn from oi /D . Given a 

it

ii lurf ˆ)( z
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generic input iz , the models of the ensemble generate H different predictions )|(ˆ /
h

oii
hh

i flur Dz ; their 

variance is assumed as the estimate )(ˆ 2
iB z  of the model error variance )(2

iB z  [24,37], whereas their 

average is taken as the best estimate ilur ˆ  of the equipment RUL. 

With respect to the estimate of the remaining part of the RUL prediction variance, which is caused by the 

randomness of the degradation process and the observation noise (sources of uncertainty A and C ), i.e. 
222
CACA   , an independent validation dataset val

oi /D  is used. In particular, the ensemble of empirical 

models )|( /
h

oii
hf Dz is applied to the observations in the validation dataset val

oi /D . The obtained RUL 

predictions s
Ns

lur :1
ˆ , s=Strn+1,…,S are used to calculate, for each validation observation sval

i
,z , the prediction 

residuals s
ir : 

 

 )(ˆ)ˆ( ,22 sval
iB

s
i

s
i

s
i rullurr z  (7) 

 

The set of input/output pairs obtained by associating to the observations sval
i

,z , valSs ,...,1 , i=1,…,Ns, in 
val

oi /D  the corresponding residuals s
ir  is used for training an empirical model )(ˆ)( 2

iCAi zz    of the 

residual variance approximating the unknown relation between the input iz  and the variance of the residuals 

[24,38]. 

When a new observation iz  is collected, the following procedure is applied in order to obtain the estimate 

ilur ˆ  of the equipment RUL and of the corresponding variance 2
ˆˆ

ilur : 

 Compute the output h
ilur ˆ  of each models )|( /

h
oii

hf Dz  of the ensemble; 

 Compute the point estimate of the RUL: 

 

 



H

b

h
oii

h
i f

H
lur

1

/ )|(
1

ˆ Dz  (8) 

 

 Compute the RUL prediction uncertainty as follows:  

 

 )()]|(var[)(ˆ)(ˆˆ /
222

ˆ i
h

oii
h

iCAiBlur f
i

zDzzz     (9) 

 

Then, 2
ˆ

ˆ
ilur  accounts for all three sources of uncertainty listed in Section 1. 

However, the degradation measurements depend on the entire past trajectory of degradation, which means 

that training and validation data taken from the same trajectory are not independent, causing an 

underestimation of the variance. For this reason, the validation dataset val
oi /D  is made by input/output pairs 

);( s
i

s
i rulz , s=1,…,Sval, i=1,…,Ns, taken from trajectories different from those used in training. Furthermore, 

to ensure enough diversity of the models in the ensemble, the bootstrapped training datasets h
oi /D , h=1,…,H, 

are sampled from trn
oi /D  as follows: first, Strn training trajectories are randomly sampled with replacement 

from the Strn different trajectories of trn
oi /D ; then, trnN  input/output pairs );( s

i
s
i rulz  are sampled with 

replacement from the total amount of input/output pairs in trn
oi /D . 
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4.3 Approach 3: Bootstrapped ensemble of empirical models trained on a 
sequence of past degradation observations from the equipment of interest 
only 

Approach 3 is based on the development of an empirical model of the degradation process based on the time 

series of its past observations i:1z  and used for identifying the time at which the degradation will exceed the 

failure threshold. For simplicity of illustration the observations i:1z  are assumed to be direct measures of the 

degradation d1:i, eventually affected by noise. 

The approach differs from approach 1 in that the stochastic model describing the dynamics of the 

degradation process is not available and actually the point is to develop it empirically. Coherently, the 

estimate of the prediction error variance )(2
ˆ ilur i

z  should account also for the error of approximation of the 

empirical model. 

The approach differs from approach 2 in that there are no available pairs );( ii rulz  for which irul  is known 

for training and validating the prognostic model )|( / oiif Dz . 

Empirical modeling of the degradation process can be achieved by fitting the most suited degradation model, 

e.g., linear and non-linear regression models, general degradation path models, etc. [39] to the available data. 

Let us call )(ˆ
jj td   a generic model of the equipment degradation, derived from the sequence of data i:1z . 

The prediction ilur ˆ  of the equipment RUL at time it  can be simply obtained from the relation 

thii dlurt  )ˆ( . Once again an estimate of the prediction error variance )(2
ˆ ilur i

z  is needed, but cannot be 

obtained by means of the method proposed for approach 2 since there are no available pairs );( ii rulz  for 

which irul  is known, and thus eq. (7) cannot be used to calculate the value of the prediction residual ir  in 

correspondence of the observation iz . 

Let us, instead, consider a model )(~ˆ
',', jjjjt d  receiving in input a vector of two degradation values 

],[ '', jjjj ddd  and returning in output the estimate ',ˆ jjt  of the time interval needed to reach degradation 

jd  starting from 'jd . Notice that model )(~
', jjd  can be derived, in general, from model )( jt : 

 

 )()()(~ 1
'

1
',', jjjjjj ddt    d  (10) 

 

The prediction ilur ˆ  is then obtained from this model by setting ijd z  and thj dd ' , which means that the 

RUL prediction at time it  corresponds to the estimate of the time interval thit ,  needed to increase the 

degradation from id  to the failure threshold dth. 

The relation between the input ],[ '', jjjj ddd  and the output ', jjt  of the model in eq. (10) is:  

 

 ',',', jjjj ttjjt     (11) 

 

where 
',', ', jjjj tjjt t     is a zero mean random variable with variance 2

', jjt  representing the 

uncertainty in the evolution of the degradation process from jd  to 'jd  and ', jjt  is the mean value of the 

random variable ', jjt . Both 2
', jjt  and ', jjt  are, in general, functions of the input ', jjd .  
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The observations i:1z  are used to build input/output pairs )];,[( '','', jjjjjjjj ttt  zzd , 1,...,1  ij ; 

ijj ,...,1'   and the bootstrapping of approach 2 can be applied to estimate the variance of the prediction 

error of the model in eq. (10) by building training and validation datasets of input/output pairs. As underlined 

in Section 3.2, to avoid underestimating the prediction error, the validation datasets should not contain 

measurements belonging to degradation trajectories used for training. Since only a single trajectory is now 

available, the solution proposed is to partition the dataset D into two sequences of consecutive 

measurements, }{ :1 trnNtrn zD   and }{ :1iNval
trn zD  and to use trnD  for building the model )(ˆ td   and 

valD  for building the dataset of input/output pairs )};{( '',',/ jjjjjj
val

oi ttt  dD , 1,...,1  iNj trn ; 

ijj ,...,1'   to be used for estimating the prediction error. 

An ensemble of models )|( hh t D , h=1,…,H, is trained using bootstrap replicates Dh of the training dataset 

Dtrn, and the ensemble of models )|(~
',

h
jj

h Dd  is derived from eq. (10). The average and variance of the 

ensemble model prediction are retained as the estimates ',ˆ jjt  and )(ˆ ',
2

jjB d  of, respectively, the time 

interval ', jjt  and the error variance of model )|(~
', Dd jj . The ensemble of models is applied to the 

validation dataset val
oi /D  in order to obtain a set of prediction residuals ', jjr : 

 

 )(ˆ)ˆ( ',
22

',',', jjBjjjjjj ttr d  (12) 

 

Finally, an empirical model )(ˆ)( ',
2

', jjCAjj dd  , estimating the part of the error variance 2

', jjt  due to 

the stochasticity of the degradation process and the observation noise (sources of uncertainty A and C), is 

trained using the input/output pairs );( ',', jjjj rd . The sum of the RUL and noise variance equipments, 

)(ˆ 2
iCA z , is then obtained from this model by setting ],[,', thithijj dzdd  .  

Notice that the training data );( ',', jjjj rd  used to build the models cover a range of values for the input ', jjd  

in general different from that of the input ],[, thithi dzd   to which the model is applied to obtain the 

estimate )(ˆ 2
iCA z . This can represents a limit to the quality of the estimate )(ˆ 2

iCA z , since in general the 

performance of empirical models are good when applied to input regions well described by training data, and 

decrease moving away from these regions.  

When a new observation iz  of the degradation id  is collected at time it , the multiple RUL predictions 

]|[~ˆ ,
h

thi
hh

ilur Dd  and the RUL variance estimate )()(ˆ ,
2

thiiCA dz    are used to obtain the prediction 

ilur ˆ  and the relative estimate 2
ˆlur  of the prediction error variance: 

 

 




H
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h
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H
lur

1

ˆ
1

ˆ
 (13) 

 )()]|(~var[)(ˆ)(ˆˆ ,,
222

ˆ thi
h

thi
h

iCAiBlur i
dDdzz     (14) 

 

As for approach 2, all three sources of uncertainty listed in Section 1 are taken into account in the estimate 
2
ˆˆ

ilur . 
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monitoring sensors to gas turbines used in the power generation and aerospace industries. In [50], a magnetic 

sensor relying on high-frequency eddy currents actively induced in passing blades, is tested on field trials 

with jet engines and it is demonstrated the capability of generating online clearance measurement for each 

blade. Similar results are obtained in [51] using a microwave sensing system, which is claimed to be capable 

of performing blade monitoring in the harsh environment of the first turbine stages.  

In [45] it is observed that long-term trends in BTP can be measured and its future application to monitoring 

creep-related blade deformation is anticipated. In [44], the possibility of using BTP in blade failure risk 

analysis and diagnosis is analyzed and a blade prognostic approach based on BTP linear regression is 

proposed. In [50] a general framework for PHM of turbine blades is proposed, considering blade tip 

clearance and other damage indicators such as vibrations, blade angular position, etc. 

Notice that, given the advancements in blade tip clearance sensing technology, a sufficient amount of data 

for training and validation of prognostic models can be expected to be available in the future. Furthermore, 

notice that the amount of real data necessary to validate the prognostic approaches developed can be largely 

reduced by resorting to the leave-one-out cross-validation procedure [52]. 

5.1 Degradation model 

Modeling the degradation of a turbine blade is a hard task, especially if one needs to take into account all 

mechanisms involved and their interactions. For the purpose of this work, we limit ourselves to considering 

the accumulation of creep damage. Creep is an irreversible deformation process affecting materials exposed 

to a load below their elastic limit for a protracted length of time and at high temperatures. In the high 

pressure turbine first stage, blades creep is a major problem due to the high operational temperatures, and is 

often the life-limiting process [53]. Blade elongation, ε, is taken as a measure of the blade creep strain. 

In this work, the creep evolution is modeled using the Norton Law discretized with a step t 5 days, 

assuming that the dependence from the temperature follows the Arrhenius law [27,54]: 

 

   tK
RT

Q
A

n
jj

j
jj 








  2

1 exp ,     00   (15) 

 

where j  is the creep strain at time jt , Q  is the activation energy, A  and n  are material inherent 

characteristics varying from one blade to another, K  is a constant relating the load to the rotational speed 

j , R  is the ideal gas constant, jT  is the blade operating temperature and j  is a random variable 

modeling the fluctuations in the stress applied to a specific blade, which are due to fabrication defects, aging 

and corrosion of the blade, vibrations of the equipment or turbulences of the gas flow. Oscillations of the 

rotational speed j , and of the blade operating temperature jT , are represented by considering their 

deviations from the mean values   and T  as noises. In practice,   jj  and Tjj TT    are 

Gaussian random variables with mean values zero and assigned standard deviations. Thus, the noise vector 

jγ  in eq. (5) can be set equal to ];;[ jjjj T γ . 
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The values of the parameters jT , j  and K  have been set with reference to the helium gas turbine of a Gas 

Turbine Modular Helium Reactor (GT-MHR) developed by an international consortium, with a targeted 

286MWe generation per module [26]; the material inherent characteristics A and n are taken assuming that 

the blade is made of Ni-base cast Superalloy 713LC [26]. The distributions used for the parameters are 

reported in Table II.  

Table II: type of distribution, mean value and standard deviation used for the creep growth model parameters 

Variable Symbol Distribution Units 
Parameters of the 
distribution 

Activation energy Q Deterministic kJ/mol Q=290 

Norton Law parameters A Normal (N/m2)-n/day μA=7.2·10-3; σA=5% 

 n Normal - μn=6; σn=0.2% 

Operating temperature Tj Normal K μT=1100; σT=1% 

Rotational speed ωj Normal rpm μω=3000; σω=1% 

Load parameter  K Deterministic Kg/m  =1068 

Stress fluctuations δφ
 

Gamma MPa θ=2; k=10

 

Eq. (15) represents a stochastic process whose unknowable future evolution (cause A, Section 1) produces an 

irreducible uncertainty in the RUL prediction. Parameters A and n instead represent an uncertainty in the 

model (source B, Section 1). In fact, to a specific blade correspond fixed parameters A and n but their exact 

values are not known in practice; to include this source of uncertainty in the model, we assume to know with 

a certain precision the range of values of these parameters and associate to them a probability distribution 

(Table II).  

For simplicity, it is assumed that it is possible to directly measure at inspection time tj the value of the creep 

strain εj. Thus, the observation equation is: 

 

 jjj  z  (16) 

 

where j  is a white Gaussian measurement noise with standard deviation συ=0.02. Then, the likelihood 

)|Pr( p
jj dz  used in the particle filtering approach is Gaussian with mean p

jd  and variance 2
 . This noise 

represents a source of uncertainty (source C, Section 1) in the final RUL prediction.  

The failure threshold for creep strain th  is set equal to the value of 1.5%. 

Given the unavailability of real experimental data, a sequence of creep strain measurements i:1z  on the blade 

of interest, hereafter called ‘test trajectory’, is simulated using eq. (15). The variation in time of the rotational 

speed ω, the gas temperature T and the stress fluctuations δφ are simulated by sampling their values ωj, Tj 

and δφj from the relative distributions (Table II) at each time instant tj. Every 30 days a measurement jz , 

corresponding to the creep strain j , is simulated by using eq. (16). A total number of 87 creep strain 

measurements have been simulated for a turbine blade with parameters A=3·10-4 and n=6.  
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In order to verify the performance of the prognostic approaches, the simulation of the test trajectory has been 

conducted until the time L at which the creep strain reaches the failure threshold. The difference between L 

and the time ti at which the prognosis is performed is the RUL of the turbine blade; it will be referred to as 

“true RUL”, and represented by the notation irul .  

Also, a number S=13 of historical creep growth trajectories of similar blades have been simulated using eq. 

(15). To induce variability in the behavior of the similar blades the values of the characteristic parameters A  

and n  from one blade to another have been sampled from normal distributions (Table II) at the beginning of 

each new simulated degradation trajectory. Some examples of simulated creep growth trajectory are shown 

in Figure 4. 

For each trajectory, a sequence of Ns direct creep strain measurement 
sN:1z , one every 30 days, are simulated 

according to eq. (16).  

 

 
Figure 4: Examples of creep growth trajectories. 

5.2 Results 

During the life of the turbine blade, at every time it , the set of observations i:1z  is assumed to be available; 

the objective of the analysis is to predict at time it , i=1,…,87, the RUL distribution for the test trajectory. 

Three situations have been artificially constructed for the turbine blade case study described in the previous 

Section 4.1, corresponding to the three prognostic approaches of Section 3.  

In the PF approach 1, the model of eq. (15) is used to simulate a number 1000P  of particles starting from 

00  . Particle resampling is performed once every 5 measurements. Note that the particle filter has been 

preferred to the Kalman filter since the distribution of the process noise is not Gaussian as a consequence of 

the combination of speed, temperature and stress fluctuations in the creep growth process described by eq. 

(15). 

In the bootstrapped ensemble approach 2, which uses multiple sequences of degradation observations, 

Strn=10 trajectories among the S = 13 totally available are used for building an ensemble of H=25 linear least 

square models i
hhh

oii
h Dlur zz  10/ )|(ˆ  , whereas the remaining Sval=3 trajectories are used to validate 

the ensemble and build the training dataset for the least squares model 2
210)( iii zzz    

estimating the RUL variance 2
CA .  
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In the bootstrapped ensemble approach 3, which uses the time series of degradation observations, the 

prognostic model has been developed only after time 30t  in order to have available a dataset }{ :1izD   of at 

least i=30 direct creep strain measurements. This dataset has been partitioned into a training dataset Dtrn 

containing the first 75% of the available measurements and a validation dataset Dval containing the remaining 

25%. An ensemble of H=25 linear least square models j
hhh

j
h tt  10)|(  D  is built and the models 

h
jj

h
jj

h
1',', /]|[~  zDz   are derived from it. Notice that in a linear process, the time needed to increase 

the degradation level from j  to 'j  is proportional to the degradation increment jjjj   '',  and does 

not depend on the initial and final degradation values. The ensemble of models is tested on the validation 

dataset made of input/output pairs  jjjjjjjj
val

oi ttt  '','',/  ;zzzD , j=Ntrn+1,…,i-1, j'=j+1,…,i and 

the prediction residuals ', jjr  obtained are used to train the linear model ',', )( jjjj zz    for the variance 

of Δt. After time 30t , each time it , i=31,…,87, a new measurement becomes available, a new ensemble of 

models h~  and a new model   for the prediction error variance are built. The predictions h
ilur ˆ  and the 

estimate 2ˆ CA  are obtained respectively from the models h~  of the ensemble and from model   in 

correspondence of the input iththi zz  , . Since the data used for training model   concern creep strain 

increments which for the first two thirds of the trajectory are smaller than the increment iththi zz  ,  

considered for obtaining the prognostic results, the empirical model )( ', jjz  is used in an input region not 

described by the training data.  

In all three approaches, in correspondence of each prediction ilur ˆ  we estimate the prediction interval 

])();([ supinf  ii CC , i.e., the interval expected to contain the true RUL value irul  with a probability of 1-α. 

This interval is obtained as follows: 

 In approach 1, )(inf iC  and )(sup iC  are the 2/  and 2/1   percentiles, respectively, of the RUL 

distribution estimated by Particle Filtering. 

 In approaches 2 and 3, assuming that the prediction error has a Gaussian distribution, the value of 

)(inf iC  and )(sup iC  can be computed according to the theory of the bootstrap method [24] as: 

 

 ilurconfii clurC ˆ
inf ˆˆ)(    and ilurconfii clurC ˆ

sup ˆˆ)(    (17) 

 

where 
confc  is the 2/1   percentile of a Student’s t-distribution with number of degrees of freedom 

equal to the number H of bootstrap models. 

Figure 5 shows the evolution of the true value ruli of the blade RUL (continuous thick line), its estimated 

value ilur ˆ  (dots) and the corresponding prediction interval for 32.0  (continuous thin line) obtained 

during the turbine blade life at times , i=1,…,87, by the three prognostic approaches.  

The prediction intervals provided by approach 3 are characterized by large oscillations and low accuracy, 

especially at the beginning of the trajectory, i.e., when few training data are available. Furthermore, the RUL 

prediction itself is noisy. This effect can be reduced by properly filtering the predictions. To this purpose, 

since the time evolution of the RUL is a linear process ( 1)1()(  trultrul ), and assuming a Gaussian 

noise of the prediction, Kalman filtering can be applied [27]. 

 

it
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Figure 5: true ruli (continuous thick line) of a turbine blade, predicted value ilur ˆ  (dots) and prediction interval 

])32.0();32.0([ supinf
ii CC  (continuous thin line) for the three prognostic approaches. 

 

5.3 RUL distribution and prediction interval 

The objective of this Section is to determine whether the estimates of the prediction intervals provided by the 

three approaches properly describe the uncertainty in the RUL predictions. In practice, we want to know 

whether the estimates 2
ˆˆ

ilur  are satisfactory approximations of the real 2
ˆ ilur . According to eq. (4), 2

ˆ ilur  can 

be decomposed into the sum of three terms, due, respectively, to the process randomness, 2
A , the model 

error, 2ˆ B , and the noise on the observations, 2
C . It is also of interest to consider the term 222

CACA  

, since all three approaches proposed do not estimate these two terms separately. The computation of the true 

value of 2
ˆ ilur  would ideally require the availability of an infinite number P of equipment degradation 

trajectories which at time ti are in the degradation state εi. Since in the case study here considered we can 

artificially generate degradation trajectories, an high number P=1000 of degradation trajectories has been 

used to numerically approximate the variance 2
ˆ ilur . For the p-th simulated trajectory, we have computed: 1) 

its true RUL, i
Pp

i tLrul  , with Lp being the equipment life duration along the p-th trajectory, 2) the 

equipment RUL prediction, p
ilur ˆ , provided by the prognostic model in correspondence of the observations 

p
ii

p
i  z  with p

i  a random Gaussian noise with variance 2
 . Then, 2

ˆ ilur  has been approximated by: 
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Similarly, the computation of the true value of   2
|

2
iRULA RULE p

ii
   is approximated by:  

 

 




P

p

p
iRULA rul

P ii
1

2
|

2 ][
1


 (19) 

 

where the RUL expected value 
iiRUL  |  is approximated by 



P

p

i
p

P

tL

1

. 

The real value of   2
|

2
iRULCA RULE

ii
 z  has been approximated by considering the P=1000 

equipment degradation trajectories which at time ti are in the degradation state εi and for which the 

observations p
iz  have been collected, and computing: 
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 (20) 

 

where p
iiRUL z|

  has been approximated by simulating P′=1000 new degradation trajectories, each one 

starting from a different degradation state '' p
i

p
i

p
i   z . This procedure allows to propagate the 

uncertainty on the true degradation state given the observation p
ii

p
i  z  to the RUL mean value and to 

approximate p
iiRUL z|

  by: 
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'
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1
P
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p
iRUL

rul
P

p
ii z

  (21) 

 

Notice that the terms 2
A  and 2

CA  do not depend on the approach. In Figure 6 (left), the true RUL 

distribution )|Pr( iiRUL  , approximated by the distribution of the 1000 simulated p
irul , is shown at the 

times 51518  tti  days, 135546 t  days and 213573 t  days, whereas in Figure 6 (right) the true values 

of the standard deviations A  (continuous line) and CA  (dots) are reported as a function of the blade 

creep strain level i . 

Differently from the variance terms 2
A  and 2

C , the model error variance term 2
B  depends on the 

modeling approach used to estimate the RUL. Considerations on 2
B  will be done in the following Sections 

5.3.1, 5.3.2 and 5.3.3. 
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Figure 6: pdf )|Pr( iiRUL   of the RUL of a turbine blade at three different instances of the degradation trajectory (left) and 

evolution of the RUL standard deviations A  (continuous line) and CA  (dots) as a function of the creep strain i  at time it . 

5.3.1 Prediction interval provided by the PF approach 1 

The specific blade undergoing the creep degradation process is characterized by fixed values of the 

parameters A and n in eq. (15), which in general are not known. In this Section, in order to evaluate the PF 

performance in the estimate of the prediction uncertainty, the approach is firstly applied assuming to know 

the exact value of these parameters. In Figure 7, the distribution )|Pr( :1 iiRUL z  predicted by the particle 

filtering method (left, dashed line) and the estimate of the prediction error standard deviation ilur ˆ̂  (right, 

dots), are compared to the true RUL distribution )|Pr( iiRUL   (left, continuous line) and standard deviation 

CA  (right, continuous line) of Figure 6. In can be noticed that the method supplies an accurate prediction 

of the RUL distribution, and correctly estimates the prediction uncertainty for all values of the creep strain εi. 

The more realistic case where the exact values of parameters A and n are not known has then been 

considered. In this case, uncertainty in the prognostic model (source of uncertainty B) is introduced. The 

particle filtering approach 1 handles it by generating particles characterized by different values of A  and n  

randomly sampled from the distributions of Table II. In Figure 8, the true RUL distribution )|Pr( iiRUL   

(left, continuous line) and standard deviation CA  (right, continuous line) of Figure 6 are compared to the 

distribution )|Pr( :1iiRUL z  provided by the method (left, dashed line) and the estimate of the standard 

deviation ilur ˆ̂  (right, dots). 

It can be noticed that the estimated prediction error standard deviation ilur ˆ̂  is larger than the actual RUL 

standard deviation CA , especially for low values of i , due to the model error variance 2
B . There are 

two main reasons for which the difference between ilur ˆ̂  and CA  decreases as the current creep strain gets 

closer to the failure threshold: i) the effect of the variability of the parameters A  and n  on the RUL 

distribution is lower if the gap between the degradation level i  and the failure threshold th  is smaller; ii) 

the SIR particle filtering method selects among the large set of particles initially created with random values 

of A  and n  those having the values of these parameters closer to those of the specific blade undergoing the 

creep degradation process. 
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Figure 9 compares the estimated prediction error standard deviation ilur ˆ̂  with the true prediction error 

standard deviation ilur ˆ  for the PF approach 1. The results confirm that, as expected, the PF approach 1 

supplies accurate estimates of the prediction error variance 2
ˆ ilur , combining properly the contribution of the 

process stochasticity 2
A ,  the noise 2

C  and the model error 2
B , described respectively by the degradation 

model (eq. (15)), the observation equation (eq. (6)) and the A and n parameters distributions (Table II). 

 

 

Figure 7: comparison of the pdf )|Pr( iiRUL   (left, continuous line) and the standard deviation CA  (right, continuous line) with, 

respectively, the pdf )|Pr( :1iiRUL z  (left, dashed line) and the estimated standard deviation ilur ˆ̂  (right, dots), obtained with the PF 

approach 1, assuming exact knowledge of the parameters A and n. 

 

 

Figure 8: comparison of the pdf )|Pr( iiRUL   (left, continuous line) and the standard deviation CA  (right, continuous line) with, 

respectively, the pdf )|Pr( :1iiRUL z  (left, dashed line) and the estimated standard deviation ilur ˆ̂  (right, dots), obtained with the PF 

approach 1, assuming to know only the distribution of the parameters A and n. 
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Figure 9:  comparison of the estimated prediction error standard deviation ilur ˆ̂  (dots), 

with the true prediction error standard deviation ilur ˆ  (continuous line). 

5.3.2 Prediction interval provided by approach 2 

In order to estimate the real uncertainty affecting the RUL prediction of an ensemble of models, it is 

necessary to add the real model uncertainty 2
B  to the noise and process randomness represented by 2

CA  

(Figure 6, right). The real model uncertainty   2
|

2 ˆ iRULB lurE
ii
 z  can be approximated by following 

the procedure reported in Appendix A. Basically, M different ensemble models are trained using different 

sets of creep growth trajectories; then, for P′′ test trajectories, the observations '''' p
ii

p
i  z , p′′=1,…,P′′ 

are simulated and the RUL predictions mp
ilur ,''ˆ  collected for each ensemble model m=1,…,M; finally, the 

corresponding errors mp
iRUL

lurp
ii

,''
|

ˆ'' z
  are computed, and the square values of these differences are 

averaged over the P′′ trajectories and the M models to supply the numerical approximation of 2
B : 

 

 
 


''

1'' 1

2,''
|

2 ]ˆ[
1

''

1
''

P

p

M

m

mp
iRULB lur

MP
p
ii z

  (22) 

 

The continuous line in Figure 10 shows the real values of CA  (left), B  (middle) and 
ilur ˆ  (right) during 

the life of a turbine blade as a function of its creep strain i . It can be observed that the term )( iCA    

dominates the term )( iB  , except in the very proximity of the failure threshold where CA  goes to zero, 

whereas the model error remains larger due to the uncertainty related to the unknown value of the failure 

threshold. 

The dotted lines in Figure 9 represent the estimates of these quantities provided by the bootstrap ensemble. 

The standard deviation CA  estimated by the bootstrap ensemble is significantly larger than its real value. 

As in approach 1, this is due to the fact that the training trajectories have different values of parameters A  

and n  and, thus, the empirical model learns the variance of a population of different blades instead of that of 

the specific blade with fixed values of A  and n . 
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Figure 10: comparison of the bootstrap estimates (dashed line) and true values (continuous line) of )( iB   (left), )( iCA    

(middle) and )(ˆ ilur i   (right) during the life of a turbine blade for different values of its creep strain i . 

In Figure 10, the estimate of the model error variance 2
B  appears to be not very accurate. Figure 11 shows 

that the inaccuracy can be even more remarkable if other test trajectories are considered, characterized by 

values of A  and n  far away from the mean value of their respective distributions ( 4103 A  and  

6n ). Notice that the real model uncertainty depends on the test trajectory: the model trained on the 

historical trajectories tends to learn the ‘average’ behavior of the general creep growth trajectory; the 

consequence is that the model makes larger errors when the test trajectory is different from the ‘average’ 

trajectory. On the contrary, the estimate, 2ˆ B , of the model uncertainty provided by the bootstrap ensemble 

depends only on the value of i , being independent from the specific values of A  and n  of the test 

trajectory. 

 

 

Figure 11: comparison of the bootstrap estimates (dashed line) and true (continuous line) values of B  during the life of three 

turbine blades with different values of parameters A  and n . 

Differently from approach 1, the ensemble approach 2 is not able to learn the true values of A  and n  of the 

current test trajectory. Furthermore, this limitation of the model is not properly described by the prediction 

interval provided by the ensemble. 
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The reason for which the proposed bootstrap approach 2 is not able to correctly model the evolution of the 

error made by the model for a specific test trajectory is that the assumption that the predictive model )( if z  is 

an unbiased estimator of the RUL expected value 
iRUL , is not fully verified. In fact, if we build several 

ensemble models trained with different randomly chosen datasets and perform the RUL prediction with each 

one of them, we notice that the average RUL prediction ilur ˆ  over the different ensemble models is different 

from the RUL mean value computed over a set of creep growth trajectories with fixed values of A  and n . 

This is shown in Figure 12 where the distribution )|ˆPr( iilur z  of the prediction ilur ˆ  obtained at 4.0i  by 

several ensemble models is compared to the true RUL distribution )|Pr( iiRUL   for 3 different values of 

parameters A  and n : 1) -4102.85A , 5.99n ; 2) -4103.00A , 6.00n ; 3) -4103.15A ; 6.01n . 

 

 

Figure 12:  comparison of the distributions of the prediction ilur ˆ  with the distribution of the actual RUL of three 

turbine blades with different values of parameters A  and n  at 4.0i . 

On the other side, the models trained on the historical trajectories are unbiased estimators of the RUL of the 

generic turbine blade with random values of A  and n  as it can be seen by comparing the distribution of the 

RUL prediction ilur ˆ  with the distribution of the actual RUL of a population of turbine blades with randomly 

sampled values of A  and n  (Figure 13).  

Figure 14 compares the bootstrap estimates (dots) of )( iCA    (left), )( iB   (middle) and )(ˆ ilur i   

(right) with their true values obtained for a population of different turbine blades with parameters A  and n  

normally distributed. 

These results confirm that the bootstrap approach 2 can actually provide a satisfactory estimates of 

)( iCA   , )( iB   and )(ˆ ilur i   for a population of different turbine blades, and thus the proposed 

approach correctly quantifies the uncertainty of the prediction produced by the prognostic model for a 

generic creeping blade. 
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Figure 13: comparison of the distributions of the prediction ilur ˆ  with the distribution of the RUL of a 

population of turbine blades with normally distributed values of A  and n  at 4.0i . 

 

Figure 14: comparison of the bootstrap estimates (dashed line) of )( iCA    (left), )( iB   (middle) and )(ˆ ilur i   (right) with their 

true values (continuous line) for a population of turbine blades with normally distributed values of A  and n . 

5.3.3 Prediction interval provided by approach 3 

Figure 15 shows the analogous results of Figure 9 for approach 3. Notice that good estimates of )( iCA    

are achieved only for large values of i , i.e., when a large validation dataset is available and the model 

)( ',ii   is used in the same range of input values where it has been trained. We also notice that the value of 

)( iCA    is largely underestimated.  
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Figure 15: comparison of the bootstrap estimates (dots) and true (continuous line) values of )( iB   (left), )( iCA    (middle) and 

)(ˆ ilur i   (right) during the life of a turbine blade for different values of its creep strain i . 

To understand the reason for which the proposed bootstrap approach 3 tends to underestimate the model 

error variance in this case, it must be pointed out that, from a probabilistic point of view, the single available 

trajectory used for training the models is only one of an infinite number of possible trajectories, which may 

be drawn from the creep growth process we wish to model. Thus, bootstrap sampling of creep strain 

measurements from a single degradation trajectory does not account for the variability of all possible 

degradation trajectories.  

In the case of a linear process, it is possible to overcome this limitation, by considering, instead of the 

sequence of creep strain measurements iz :1 , the set of independent creep strain increments for time unit 

)/()( 11 jjjjj ttzzz   , 1,...,1  ij . In this way, the variability of the training data is increased, and a 

better representation of the intrinsic variability of the process is provided. An accurate model of the process 

can still be achieved by estimating the parameters βh, h=1,…,H, of the models of the ensemble 
h

jjjj
h  /)(~

',',   as the average value of the creep strain increments of the bootstrap replicate h
incrD  

of the new training dataset }{ 1:1  i
trn
incr zD . Figure 16 shows that a more accurate estimate of B  and lur ˆ  is 

achieved using this new ensemble of models. 

6 Conclusions 

Three prognostic approaches have been investigated, particularly with respect to the treatment of the 

uncertainty in the predicted equipment RUL. Quantitative considerations have been made with regards to a 

simulated case study concerning the creep growth process in a high temperature turbine blade. The results 

show that the particle filtering approach provides a good approximation of the exact distribution of the 

equipment RUL in the case in which an accurate model reproducing the equipment degradation process is 

available. A limit of particle filtering is particle impoverishment, which relates to the failure of maintaining 

the diversity of particles and is caused by the resampling approach adopted to avoid particle degeneracy. 

Particle impoverishment implies the impossibility of the particles to correctly represent all possible 

evolutions of the degradation process, which include, for example, changes in time due to the variation of 
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operating conditions. In this context, different resampling methods, such as the one proposed in [55], which 

samples particle considering not only the particle weight but also their spatial distribution (state values), can 

be considered. 

 

Figure 16: comparison of the bootstrap estimates (dots) and true values (continuous line) of CA  (left), B  (middle) and ilur ˆ  

(right) during the life of a turbine blade for different values of its creep strain i  obtained using as training data for the ensemble of 

models the creep strain increments between consecutive observations. 

When using model-based approaches, imprecision of the model in the reproduction of the degradation 

process due to simplifications, incorrect model structure or assumptions on the equipment specific 

geometries or material properties, etc. can be amplified over time, causing unreliable estimates of the RUL 

distribution. Using particle filtering, it is possible to include model parameters in the state vector and, thus, 

perform model adaptation in conjunction with state tracking. In any case, it is very difficult for a physics-

based model to account for all aspects of a degradation process; for example, it is common to neglect some 

of the interactions between different degradation mechanisms or the possible existence of self-healing 

mechanisms which can reverse the degradation process and are likely to increase the uncertainty of the future 

degradation evolution. All these non-modeled phenomena can be accounted for by adding further noise to 

the process model which will result in a larger confidence interval associated to the RUL estimate. Further 

research is needed to quantify the impact of modeling errors on the final prediction of model-based 

approaches.  

In the bootstrap approaches 2 and 3 considered, it has been shown that a reliable prediction of the equipment 

RUL with a correct quantification of its uncertainty can be obtained. With respect to the ensemble of 

bootstrapped models trained with historical sequences of observations in approach 2, the main limitation is 

that it is not able to learn the peculiar characteristics of the equipment of interest but it tends to reproduce an 

‘average’ behavior. To overtake this problem, a different modeling approach could be used, such as that 

based on the idea of fuzzy similarity [56], or a procedure for updating the ensemble with the information 

conveyed by new observations [27]. 

The application of the bootstrap ensemble in the time series scheme of approach 3, in which only direct 

measurements of the degradation experienced by the equipment of interest are available, has shown the 
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importance of injecting diversity into the bootstrapped models by using independent training data, in order to 

correctly quantify the modeling error. The case study considered is characterized by a linear degradation 

process, so that independent training data can be obtained by considering the creep strain increments 

between consecutive measurements; on the contrary, this would not be feasible for non-linear degradation 

processes. Furthermore, in this case of very little information available, the bootstrap method requires 

building an empirical model for the RUL variance estimate which is then used outside the region covered by 

the training data. Although good extrapolations have been obtained in the linear creep growth case study, the 

feasibility of the approach on more complex models should be verified. 

Contrarily to physics-based models, we expect that data-driven methods can automatically learn from data 

the effects on the equipment RUL of phenomena influencing the degradation process, such as self-healing 

and interactions between different degradation mechanisms. The capability of data-driven methods of 

providing correct estimates of the RUL and its uncertain distribution depends on the availability in the 

training set of examples of the phenomena that we want to represent. 

In this work, the problem of detecting the initiation of a degradation process, which is usually achieved by 

using properly developed diagnostic systems, has not been addressed. Although none of the approaches 

presented in this work requires knowing the exact time at which degradation has initiated, late detection of 

an ongoing degradation process will reduce the number of degradation measures available for prognostics; 

this is expected to reduce the RUL prediction accuracy and increase its uncertainty especially in approaches 

1 and 3 which, contrarily to approach 2, generate their RUL prediction on the basis of past degradation 

measurements. . 

Since only artificial data have been used in the case study considered in this work, conclusions about the 

successful application of these approaches in the field cannot be directly drawn. The analyses performed 

have shown the potential of these methods in performing RUL prediction with adequate management of its 

uncertainty; in this sense, they hold promises for future research aimed at confirming this potential in the 

application to real data.  

Appendix A: approximation of the model error and prediction error 
variances 

In the empirical ensemble-based approaches 2 and 3, the true value of the model error variance 2
B  has been 

approximated for different values of the creep strain i , as the mean square value of the model error 

)(ˆ| iiRUL lur
ii

zz   made by different ensembles on 200 creep growth trajectories sampled for a turbine blade 

with parameters A=3·10-4 and n=6. The details of the procedure are sketched in the pseudo-code of Figure 1A 

for approaches 2 and 3.  
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Figure 1A: procedure for approximating )(2
iB   in approaches 2 and 3. 
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Abstract 

We develop a prognostic method for estimating the equipment remaining useful time and its uncertainty. The 

method is based on belief function theory and fuzzy similarity. The maintenance planner defines the 

maximum acceptable failure probability, and is informed by the prognostic method of the time at which this 

probability is exceeded. 

 

Keywords: Prognostics, belief function, creep, filter clogging 

1 Introduction 

Several data-driven methods have been proposed for predicting the Remaining Useful Life (RUL) of 

degrading equipment [Hines & Usynin, 2008; Zio, 2012, Vachtsevanos , 2006], i.e., the time left before the 

equipment will stop fulfilling its functions. Data-driven methods rely on the availability of observations 

collected during the degradation of one or more similar equipments and are usually based on the regression 

of the future degradation path until the criteria indicating failure is reached [Baraldi 2012a-b,2013a-c]. 

However, the information available for modeling the future equipment degradation can be scarce and 

incomplete, e.g., few examples of similar equipment degradation trajectories can be available, the 

degradation state of the equipment can be not directly measured, and the failure criteria can be not known. 

Furthermore, the RUL estimate should take into account the intrinsic uncertainty due to the variability of the 

degradation process (caused, for example, by the micro-structural differences between pieces of the same 

equipment, or by the unforeseen future loads, operational settings, and external conditions) [Baraldi et al. 

2012], which implies that we cannot be sure that two identical pieces of equipment, having walked through 

the same degradation path up to the present time, will keep following exactly the same path even in the 

future. Another source of uncertainty in the RUL estimate is the measurement noise. 

Thus, given the scarcity of information typically available and the different sources of uncertainty to which 

the RUL estimate is subject, data-driven models can commit large errors in the RUL estimate [Yan et al., 

2004] and uncertainty management becomes a fundamental task in prognostics. In practice, it is necessary to 

provide the maintenance planner with an assessment of the expected mismatch between the real and 
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predicted equipment failure times, in order to allow them to confidently plan maintenance actions, according 

to the maximum acceptable failure probability [Tang et al., 2009]. 

In this context, the objective of the present work is to provide a measure of confidence in the RUL prediction 

provided by a data-driven prognostic model. To this purpose, we consider the similarity-based prognostic 

model proposed in [Zio & Di Maio, 2010] which uses a set of reference degradation trajectories collected in 

a reference library and performs a data-driven similarity analysis for predicting the RUL of a newly 

developing degradation trajectory (hereafter called test trajectory). The matching process is based on the 

evaluation of the distance between the reference and test trajectories [Angstenberger, 2001]. This prognostic 

model is here extended in order to provide a measure of confidence in the RUL prediction. To address this 

issue, we adopt a solution based on the belief function theory (BFT) (also called Dempster-Shafer or 

evidence theory) [Dempster, 1967; Shafer, 1976]. The BFT allows combining different pieces of (uncertain) 

evidence, based on the assignment of basic belief masses to subsets of the space of all possible events, which 

are, in this case, the possible values that the equipment RUL can assume. In practice, the proposed method 

considers each reference trajectory as a piece of evidence regarding the value of the RUL of the test 

trajectory. These pieces of evidence are discounted based on their similarity to the test trajectory and pooled 

using the Dempster’s rule of combination [Petit-Renaud & Denoeux, 2004]. The result is a basic belief 

assignment (BBA) that quantifies one’s belief about the value of the RUL for the test trajectory given the 

reference trajectories. From the BBA, the total belief (i.e., the amount of evidence) supporting the hypothesis 

that the RUL will fall in any specific interval can be computed. In this context, we propose to define a 

prediction interval as an interval to which a sufficiently large total belief has been assigned. 

The method is applied to two case studies considering simulated data generated by a non-linear model of 

creep growth in ferritic steal and real industrial data concerning the clogging of filters used to clean the sea 

water pumped in a Boiling Water Reactor (BWR). 

The remaining part of the paper is organized as follows: in Section 2 the methodology for the similarity-

based prediction of equipment RUL is described and a method for integrating it with the belief function 

theory to supply a measure of confidence in the similarity-based RUL prediction is proposed; in Section 3 

two numerical applications are presented: the first using artificial data about the growth of creep damage in 

ferritic steel, the second concerning the clogging of sea water filter, for which real data are available; in 

Section 4 some conclusions are drawn from the results presented. 

2 Methodology 

We assume the availability of R reference trajectories which contain measurements collected during the 

process of degradation of R pieces of equipment similar to the one currently monitored (test equipment). 

Each reference trajectory, r=1,…,R, is made of a sequence  of nr observations, 

, representing the evolution of P relevant parameters  measured at 

different time instants , i=1:nr up to the last measurement time  before the failure time, . 

With respect to the test equipment, a sequence of observations  from  to the present time  is 

assumed to be available. 
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2.1 Similarity-based RUL prediction 

The idea underpinning the RUL estimation method is to evaluate the similarity between the test trajectory 

and the N reference trajectories and to use the RULs of the reference equipments to estimate the RUL of the 

test equipment, taking into account the similarities between the trajectories [Petit-Renaud & Denoeux, 2004; 

Wang et al. 2008; Zio & Di Maio, 2010]. 

Trajectory similarity is evaluated considering the pointwise difference between n-long sequences of 

observations. At the present time , the distance  between the sequence of the n latest observations 

 of the test trajectory, and all the n-long segments , j=n:nr that can be extracted from the 

reference trajectories r=1:R is computed: 

 

  (1) 

 

where  is the square Euclidean distance between vectors x and y. 

The similarity  of the reference trajectory segment  to the latest test trajectory segment  

is defined as a function of the distance measure  [Zio & Di Maio, 2010]: 

 

  (2) 

 

The arbitrary parameter  is set by the analyst: the smaller is the value of  the stronger the definition of 

similarity. A strong definition of similarity implies that the two segments under comparison have to be very 

close in order to receive a similarity value  significantly larger than zero. In practice, parameter  is 

often set to the value that minimizes the error of the similarity-based prediction calculated on a validation 

dataset. 

For the prediction of the test equipment RUL, a value  is assigned to each reference trajectory r=1:R 

by considering the difference between the trajectory failure time  and the last time instant  of the 

trajectory segment  which has the maximum similarity  with the test trajectory:  

 

  (3) 

 

Then, the similarity-based (SB) prediction  of the test equipment RUL at time  is given by the 
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   (4) 

 

The ideas behind the weighting of the predictions  supplied by the individual trajectories is that: i) all 

failure trajectories in the reference library can, in principle, bring useful information for determining the 

RUL of the trajectory currently developing; ii) those segments of the reference trajectories which are most 

similar to the latest part of the test trajectory should be more informative about the value of its RUL. 

2.2 Prediction interval based on belief function theory 

Given the uncertainty to which the RUL estimate is subject, maintenance plans cannot usually be based only 

on the RUL prediction provided by eq. (4). In this Section, we assume that the maintenance planner is able to 

specify a maximum acceptable failure probability, , and we proposes a method to identify the latest time at 

which, according to the available information, we can guarantee that the probability to have a failure is lower 

than   To this aim, we resort to the Belief Function Theory. 

For the ease of clarity, only the notions of BFT necessary for the understanding of the proposed method will 

be now presented. For further details about the mathematical developments and the possible interpretations 

of the theory, the interested reader is referred to Dempster (1976), Shafer (1976) and Smets (1998). 

The BFT represents the belief of an agent about the value of an uncertain variable  assuming values  in 

the frame of discernment , based on the available information, by a basic belief assignments (BBA) 

made of a set of masses  assigned to subsets Yk, k=1,2,… of . The mass  represents the 

belief that the value of  belongs to the subset Yk. Any subset Yk with associated a finite mass , 

is called focal element; the BBA verifies the condition that the sum of all its masses is 1.  

Let us assume that two distinct sources of information induce the two BBAs  and , according to the 

Dempster’s rule of combination the two BBAs can be aggregated into the BBA : 
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is a normalization factor introduced to convert a possibly subnormal BBA (i.e., a BBA assigning a finite 

mass to the empty set ) into a normal one. 

It sometimes occurs that one has some doubts about the reliability of a source of information inducing the 

BBA . In this case the discounting operation can be used to reduce by some factor  the belief 

assigned by  to the evidence conveyed by that information [Petit-Renaud & Denoeux, 2004]: 

 

  (7) 

 

Notice that the mass assigned to the frame of discernment  represent the ignorance we have about the 

value of Y because it indicates the absence of evidence that the value of Y belongs to any subset  of .  

The BFT has been applied to treat uncertain information in classical nonparametric regression by associating 

to each training pattern of input/output pairs (xi, yi) the BBA  having as single focal 

element the pattern output yi [Petit-Renaud & Denoeux, 2004].  

In the similarity-based approach, it is assumed that the relevance of the information supplied by a training 

pattern depends on its similarity to the test pattern. Hence, we propose to reduce the belief assigned by the 

BBA induced by a training pattern proportionally to its dissimilarity to the test pattern by using the 

discounting operation. In more detail, to apply this procedure to the input/output pairs ( , ), r=1:R, 

associating to each reference trajectory its RUL prediction  derived in Section 2.1, we associate to 

each input/output pair the BBA  and the discounting factor , where  and

 defines the degree of trust given to the reference trajectories. In particular, the discounting factor 

 can be seen as a dissimilarity measure. Thus, the discounted BBAs , r=1:R is obtained 

from: 

 

  (8) 

 

The frame of discernment  is the domain of  defined by the interval , where 

 is the maximum possible life duration of the equipment provided by an expert. The quantity 

 is the maximum value that can be assumed by the variable RUL at the present time 

, whereas 0 is, obviously, the minimum possible value of the equipment RUL.  

It is important to notice that if  a part of belief will always be assigned to the ignorance represented by 

, even in the case a reference trajectory were exactly identical to the test one. On the other hand, for 

, the belief  assigned to a prediction  can reach the value of 1 if the reference 

trajectory  is identical to the test trajectory, so that their similarity is 1: this can produce counterintuitive 

results (see Section 3.2) and should in general be avoided. In fact, by assigning a belief  
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diverge in their future evolution due to the intrinsic uncertainty caused by the variability of the degradation 

process. 

Finally, by combining the discounted BBAs , r=1:R by the Dempster’s rule of combination, we obtain 

the combined BBA : 

 

  (9) 

 

where  

 

  (10) 

 

Within the framework of BFT, a method for estimating the expected value for the variable  from the 

BBA in eq. (9) is given by the pignistic expectation  [Smets, 1994; Petit-Renaud & Denoeux, 2004]: 

 

  (11) 

 

The main difference between the RUL prediction given by the similarity-based approach  in eq. (4) 

and that given by the pignistic expectation  in eq. (11) is that the latter also considers the degree of 

ignorance, i.e., the part of belief assigned indiscriminately to the entire domain  represented by the 

second term of eq. (11). In practice, the pignistic expectation  can be seen as a similarity weighted 

average of the reference trajectories RUL with the addition of a term corresponding to the middle of the RUL 

domain, which can be interpreted as the prior information about the RUL value in the absence of any 

empirical evidence, weighted by a measure of the overall dissimilarity of the test trajectory with the training 

trajectories. 

Given the BBA in eq. (9), we can also calculate the belief associated to any interval  as the 

sum of the belief masses associated to all subsets included into . The belief associated to an 

interval  represents the amount of belief that directly supports the hypothesis , 

where  is the true RUL of the test equipment, and it has been interpreted as a lower bound for the 

probability that  or, analogously, as an upper bound for the probability that 
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is assigned to it provides the following information about the probability distribution of the true equipment 
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interpretation of  can be used to plan the maintenance action: performing maintenance before 

 guarantees a probability of failure lower than . 

3 Numerical application  

In this Section we verify the proposed method on simulated and real data. 

Performance are evaluated on Ntst test trajectories , q=1:Ntst, and Ntrn different training sets 

, l=1:Ntrn. Let us define  and , l=1:Ntrn, q=1:Ntst, as the predictions 

obtained at a time instant  corresponding to the fraction  of the life duration of the q–th test 

equipment, when training set l is used. Three performance indicators are considered:  

 The Mean Square Error (MSE), i.e., the mean value of the square error  

made in predicting the true RUL,  of the test equipment. The MSE measures the accuracy 

of the prediction  and is desired to be as small as possible. 

 The Coverage (covα) of the prediction interval , i.e., the percentage of 

times the condition  is verified, where  is the belief associated by 

the RUL BBA to the interval . This indicator measures the reliability of the confidence 

interval; we expect to obtain values of covα larger than , since the belief  associated to 

interval  is a lower bound to the possibility that the test equipment RUL belongs to it.  

 The mean amplitude (MAα) of the interval , which gives a measure of the 

precision of the RUL prediction. In order to have a high precision, we wish the keep the value of 

MAα as small as possible.  

The performance indicators are calculated for three value of : ,  and .  

In the following Section 3.1 the similarity-based method is applied to simulated data concerning the 

evolution of creep damage in ferritic steel. The influence on the prognostic performance of parameters  

and  is investigated and some indications about the choice of their values is derived.  

On the basis of these results, in Section 3.2, the method is applied to real data taken from a case study about 

the clogging of filter in a BWR condenser. 

3.1 Artificial dataset: Creep growth in ferritic steel 

Ferritic steels are widely used for welded steam pipes in the construction of power plant components that 

operate under high temperature and stress conditions. In such conditions the creep deformation and rupture 

are important factors in determining the equipment lifetimes.  

3.1.1 Creep growth models 

We have simulated the evolution of creep damage in ferritic steel exposed to the load  using the uni-axial 

form of the non-linear creep constitutive equations proposed within the framework of Continuum Damage 

Mechanics by Mustata & Hayhurst (2005): 
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  (12) 

 

where  is the creep strain, i.e., the percentage of elongation of the turbine blade in the longitudinal 

direction with respect to its original length,  and  are two damage state variable describing, respectively, 

the coarsening of the carbide precipitates, and the inter-granular creep constrained cavitation damage, H is 

the hardening state variable, used to represent the strain hardening effect attributed to primary creep, and , 

, , , , and  are material inherent characteristics. Each characteristic  

varies with the temperature according to the Arrhenius law, i.e., , m=1:6, where T is 

the operating temperature and  and  are parameters whose values have to be determined 

experimentally. 

To generate different trajectories, the intrinsic variability of the degradation process is simulated by sampling 

the values of the load  and temperature T to which the steel is exposed at each time step from a normal 

distributions centered on their mean values, whereas the variability of the degradation process of similar 

pieces of equipment is simulated by sampling the values of parameters  and , m=1:6, at the 

beginning of each new simulated degradation trajectory. Finally, in order to generate the sequence of 

observations , collected with a sampling time of 1000h, a white Gaussian noise  is 

added to the simulated creep strain  at the observation time . We assume failure to happen when the 

limiting creep strain value of 2% is reached. Figure 1 shows an example of simulate creep growth trajectory 

(upper) and the corresponding sequence of observations  (bottom). 

 

 
Figure 1: example of simulated creep growth trajectory (upper) with the 
corresponding sequence of observations (bottom). 
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3.1.2 Results 

The model in eq.(12) is used to generate Ntst=50 test trajectories and Ntrn=50 sets of R=7 reference 

trajectories. The similarity-based approach proposed in this work is applied to each test trajectory at the three 

different life fractions , using the Ntrn different sets of reference trajectories simulated. Two RUL 

predictions are obtained using the similarity-based weighted average in eq. (11), , and the pignistic 

expectation of the BBA in eq.(4). The prediction interval is estimated using the target belief .  

In Figure 2 the variation of the square root of the MSE indicator with parameter  is shown for the three life 

fractions  considered; the performance obtained by the prediction  (continuous line), and by the 

prediction  in correspondence of two different values of parameter ,  (thick dashed line) and 

 (thin dashed line), are compared. As expected, the prediction error decreases as the life fraction  

increases, i.e., as we get closer failure. Results in Figure 2 show that the accuracy of the pignistic prediction 

 in terms of MSE increases with  and with , since the product  decreases with the values 

of these two parameters (notice that, if  is low the similarity  is low for most trajectories) and thus a 

large belief is assigned to the ignorance, i.e., to the domain  of . This interval is not considered 

in the similarity-based weighted average  whose maximum accuracy obtained for values of 

parameter  around  remains always higher that the accuracy of . The prediction  

outperforms  for value of  larger than  only if parameter  is close to 1. Due to its higher 

accuracy, only the similarity-based weighted average  will be considered hereafter. 

 

 

Figure 2: comparison of square root of the MSE made by the prediction  obtained using similarity-based weighted average 

(continuous line) and the prediction  obtained as the pignistic expectation from a BBA computed using  (thick dashed 

line) and  (thin dashed line) as a function of parameter . 

The precision of the prediction, which is evaluated by the indicator MAα, is also an important aspect to be 

considered in the optimization procedure. However, the choice of parameters  and  should be 

subordinated to the verification that the coverage Covα is actually larger than . Lower values of the 

coverage would indicate that a too large belief mass has been assigned to the predictions  provided by 

the reference trajectories most similar to the test trajectory, so that the belief  assigned to the prediction 

interval is not justified by the experimental evidence. 

Figure 3 shows the coverage Cov0.2 of the left bounded prediction interval  (upper), the square root 

of the MSE made by the prediction  (middle), and the mean amplitude MA0.2 of the interval 

 (bottom) in correspondence of three different values of parameter  as a 

function of the parameter . 
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Figure 3: value of the three performance indicators as a function of  at three fractions  of the trajectory life durations 

and for three values of . 

For the value of  that maximizes the accuracy of the prediction  the coverage is always 

larger than the minimum accepted value of . However, for such a small value of  the precision, 

represented by the indicator MA0.2, is much lower than for  and . This is further 

investigated in Figure 4 which shows the RUL prediction with the relative prediction interval for a specific 

trajectory (left) in correspondence of two different values of parameter :  (upper) and 

 (bottom). Notice that for  the lower bound of the prediction interval is equal to 0 

for large part of the trajectory (Figure 4, upper, left); this does not mean that the evidence of very early 

failure is high (as demonstrated by the fact that the predicted RUL is far from 0), but only that the evidence 

drawn from the reference trajectories is not sufficient to assert with the desired belief  that the 

RUL value is actually larger than 0. In other words, the prediction  is a statement of ignorance 

about the value of . Contrarily, in the case of  (Figure 4, bottom, left) the lower bound of 

the prediction interval is always higher than 0. Figure 4, right shows the values of the similarity  assigned 

to each reference trajectory r=1:7 and the BBA  assigned to the corresponding prediction  and 

to the RUL domain  at time  hours, which is characterized by a confidence bound equal 

to 0 using . Notice that the similarities  obtained using  are significantly lower 
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domain using  is larger than 0.2, so that the total belief assigned to the trajectories predictions 

 does not reach the required value of 0.8. This is due to the fact that if  is small, the similarity of a 

reference trajectory tends to result small except that in the rare case of trajectory very similar to the test 

trajectory. As a consequence, for very small values of , it is often hard to support with sufficient evidence 

the hypothesis that the RUL value belongs to any subset of the RUL domain .  

 

 
Figure 4: comparison of the RUL prediction with confidence bound (left) and the similarity values and BBAs assigned to the 

different trajectories at 2181123   hours (right) for two values of  : 5105   (upper) and 4105   (bottom).  

With respect to the optimal choice of the parameters  and , we have adopted the following procedure: 

1. we derive conditions on the value of  as a function of the value of  by imposing Cov0.2>0.8 (for 

instance, in this case study we have  if  and  if ).  

2. For each  we consider the maximum acceptable value of , since in correspondence of it the 

minimum amplitude MA0.2 is obtained and evaluate the square root of the MSE indicator in 

correspondence of it. The tradeoff between prediction accuracy and precision is considered to set the 

values of parameters  and .  

Table I shows for the three values of lambda considered, the square root of the MSE indicator, the maximum 

acceptable value of , , and the amplitude MA0.2 and coverage Cov0.2 in correspondence of . 

Based on these results, we set the parameters to the values  and , since for this 

value of  performance are better with respect to the value  both in terms of accuracy and 
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precision, whereas, compared to , a large improvement of the precision is observed, against a 

small reduction in the accuracy. 

Table I: performance indicators for three different value of  in correspondence of . 

  

    

  

 1.0 0.7 0.6 

 Cov0.8 

 0.915 0.868 0.846 

 0.918 0.814 0.870 

 0.955 0.840 0.861 

  (103) 

 9.065 9.851 10.552 

 6.272 6.807 6.976 

 3.089 3.589 3.793 

 MA0.8 (103) 

 17.871 6.217 9.202 

 12.571 4.568 6.233 

 8.646 2.685 3.304 

 

Figure 5 shows the predictions obtained at all measurement time instants  of 4 different test trajectories. 

Two phenomena can be observed in this Figure: first, some situations of ignorance about the value of  

where , are still encountered. This is due to the fact that the information provided by the 

reference trajectories is not relevant for a specific test trajectory, e.g., because they are too dissimilar. 

Another noticeable phenomenon in Figure 5 is the presence of large jumps of the confidence bound . 

These jumps occur when the reference trajectory corresponding to the minimum RUL prediction  

included in the prediction interval in order to attain the desired belief  changes.  
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Figure 5: predictions obtained for 4 different test trajectories using 4105   and 7.0 . 

In order to investigate this undesired effect, a new test trajectory (Figure 6, bottom, continuous line) is built 

by considering parts of different training trajectories (Figure 6, bottom, dots and dashed lines). In particular, 
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order to simplify the analysis of the results, no noise is added to the creep strain values simulated, neither for 

the reference, nor for the test trajectories. RUL predictions are performed during the evolution of such 

artificial trajectory using  and the index rinf of the reference trajectory producing the RUL prediction 

 corresponding to the confidence bound, is recorded and shown in Figure 6 (left, upper). 

An index rinf=0 indicates that the lower bound is given by the RUL domain , i.e., by the situation of 

ignorance where . Evident jumps of the confidence bound can be observed when the index rinf 
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Figure 6: Prediction (left) obtained for an artificial test trajectory (right) using 7.0 . 

Although justified by the method, the oscillations of the confidence bound may be confusing for the 

maintenance planner. A reduction in the oscillations can be obtained by increasing the value of lambda  or 

reducing the value of , at the price of a lower accuracy and precision.  

Figure 7 shows the RUL predictions obtained for the same four trajectories of Figure 5 using for the 

parameters the values  and . Table II compares the performance of the prediction 

computed on Ntst=50 test trajectories different from those used for optimizing the parameters, in this case and 

in the case of Figure 5 where  and . In the Table, the mean value of the RUL, , for 

different values of the life fraction  is also shown, and the performance indicators  and MA0.2 are 

expressed also as a percentage of . 

Table II: RUL prediction performance. 
    

 (104) 2.711 1.827 0.975 

Cov0.8 ; 
 0.782 0.814 0.849 

; 
 0.838 0.850 0.853 

 (103) ; 
 9.152 33.8% 5.965 32.6% 3.191 32.7% 

; 
 9.822 36.2% 6.160 33.7% 3.411 35.0% 

MA0.8 (103) ; 
 8.445 31.2% 5.594 30.6% 3.228 33.1% 

; 
 11.300 41.7% 7.167 39.2% 3.960 40.6% 
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Figure 7: predictions obtained for 4 different test trajectories of Figure 5 using 3105   and 5.0 . 

The results of Figure 7 and Table 2 confirm that the oscillation of the confidence bound can be damped down 

by increasing the value of lambda  or reducing the value of , but this choice increases the prediction 

error and the amplitude MA0.2. Clearly, to an increased MA0.2 corresponds also a higher value of the 

coverage indicator Cov0.2. 

When a situation with a larger density of reference trajectories is considered, the oscillations of the lower 

bound becomes of smaller amplitude, although more frequent. This happens, for example, when a larger 

number R of reference trajectories is available or when the variability within the degradation trajectories 

becomes smaller. To show this, we have reduced the variance of the parameters  and , m=1:6, and of 

the load  and temperature T used in the model of eq.(12) to simulate Ntst=50 test trajectories and Ntrn=50 

training sets of R=50 reference trajectories. The optimization procedure applied for the case with R=7 has 

been used to set the parameters to the values  and . Four examples of the predictions 

obtained are shown in Figure 8, whereas the values of the performance indicators are presented in Table 3. 

As expected, with a higher density of training trajectories available, the prediction is both more accurate and 

precise. 
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Figure 8: predictions obtained for 4 different test trajectories using R=50 reference trajectories and 
parameters 5105   and 95.0 . 

Table III: RUL prediction performance with  and  

    

 (104) 3.108 2.090 1.102 

Cov0.8 0.814 0.832 0.808 

 (103) 5.313 17.1% 3.444 16.5% 1.659 15.1% 

MA0.8 (103) 4.961 16.0% 3.187 15.2% 1.788 16.2% 

3.2 Real dataset: Clogging of BWR condenser filters 

In this Section, we consider the heat exchanger filters used to clean the sea water entering the condenser of 

the BWR reactor of a Swedish nuclear power plant. During operations, filters undergo clogging and, once 

clogged, can cumulate particles, seaweed, and mussels from the cooling water in the heat exchanger. For this 

reason, prompt and effective cleaning of the filter is desirable; predictive maintenance can help achieving 

this result, keeping maintenance costs reasonably low. From data collected on field, we have available 

sequences of observations  , q=1:8 taken during the clogging process of Q=8 historical filters. Each 

observation  contains the measurements of the pressure drop , the flow across the 

filter , and the sea water temperature  collected at time  during the clogging process of the q-th 

filter. It is known that the clogging process is affected by large uncertainties, due to the variable conditions 
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of the sea water; in this context, the challenge is to provide a sufficiently narrow confidence interval for the 

RUL prediction. 

The prognostic method proposed is applied to each trajectory q at the three life fractions , using the 

remaining R=7 trajectories as reference trajectories. Figure 9 shows how the three performance indicators 

vary with parameter  for three values of parameter . These results confirm those obtained for the 

simulated creep growth data: the MSE has a minimum around  and the value of the MA0.2 indicator 

decreases with both  and . Notice also that, for the values of  considered in Figure 9, almost all 

possible values of , are acceptable since the coverage Cov0.2 is always larger than 0.8, except for  

and . The precision obtained for  when  is very close to that obtained for , 

whereas the error is lower. Then, we set  and  and generate a prognostic prediction in 

correspondence of each observation available. Results are shown in Figure 10 for all Q=8 test trajectories 

available.  

 

 
Figure 9: value of the three performance indicators as a function of  at three fractions  of the trajectory life 

durations and for three values of . 
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Figure 10: predictions obtained for the Q=8 filter clogging trajectories available using parameters  and 

. 

In trajectory 4, the confidence bound is for most of the time equal to zero. This means that its similarity with 

all reference trajectories is rather low, and thus the prediction is very uncertain. In trajectory 6, we notice that 

the confidence bound is higher than the RUL prediction. This is an example of the counterintuitive results 

that can be obtained by setting  if two trajectories are very similar. Figure 11 shows the similarities  

and the BBAs  assigned to the reference trajectories for the test trajectory 6 at time  working 

days (upper). We notice that trajectory 8 receives the belief assignment . Figure 11 

also shows the evolution of the observable parameters , , and  (bottom), for the test trajectory 6 

and the reference trajectory 8 receiving the maximum belief assignment. We notice that all three parameters 

, , and  of the two trajectories are very similar around time  but evolve very differently 

after that time.  

To correct this problem, it is sufficient to reduce the value of parameter . Figure 12 shows the predictions 

obtained for the Q=8 trajectories, when parameters  and  are used. Results show that in 

many cases the accuracy is rather low and the prediction interval large. However, due the small number of 

training trajectories available and the large uncertainties affecting the clogging process, we can be satisfied 

with this result.  
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Figure 11: evolution of the three obbservable parameters q
iP , q

iM , and q
iT  (bottom) 

for trajectories q=6 and a=8, with similarities r
js *  and BBAs RULm  at time 1515   

working days (upper). 

 
Figure 12: predictions obtained for the Q=8 filter clogging trajectories available using parameters 05.0  and 

95.0 . 
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in practice, without a reliable measure of their uncertainty, we have integrated the similarity-based approach 

in the framework of belief function theory, and provided a method for supplying a prediction interval for the 

value of the RUL.  

Two key elements in the application of the method are the parameter , which defines how strong is the 

desired interpretation of similarity, and parameter , which defines the degree of trust given to the 

reference trajectories. Using artificial data simulated by a non-linear model for creep growth in ferritic steel, 

we have analyzed how the values of these two parameters influence the performance of the method, and 

given some indications about how to set them.  

Finally, we applied the method to the problem of predicting the RUL of clogging filters, obtaining prediction 

intervals for the value of the RUL with satisfactorily accuracy, considering the large uncertainties affecting 

the clogging process. 

A limit of the method is the presence of possibly large oscillations in the confidence bound provided, which 

may be confusing for the maintenance planner. It has been shown that such oscillations can be reduced by 

conveniently setting the parameter values; however, this would also reduce the accuracy and precision of the 

prediction, and for this reason we suggest considering filtering as a different solution for smoothing the 

predictions. Notice however, that the amplitude of the oscillation decreases as the density of the reference 

trajectories increases.  

Finally, the possibility of assigning masses of belief to intervals or fuzzy numbers [Petit-Renaud & Denoeux, 

2004] instead of single RUL values should also be investigated. 
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Abstract 

This paper presents a prognostic method that uses Gaussian Process Regression (GPR) to build a stochastic 

model of the equipment degradation evolution.  

GPR is a probabilistic technique for non-linear non-parametric regression that computes the distribution of 

the future equipment degradation states by constraining a prior distribution defined by a Gaussian Process to 

fit the available training data, based on Bayesian inference. Training data are taken from sequences of 

degradation measures collected from a set of similar historical equipments which have undergone a similar 

degradation process in the past. Given new degradation measures from the currently degrading equipment 

(test trajectory), an estimate of the distribution of the remaining useful life before failure (RUL) is obtained 

by comparing the future degradation states of the equipment, predicted by the GPR, with a failure criterion.  

Different approaches for building the degradation model based on GPR have been developed and tested on 

simulated data concerning the evolution of creep damage in ferritic steel and real data concerning the 

clogging of sea water filters placed upstream the heat exchangers of a BWR condenser. 

 

Keywords: Prognostics, Gaussian Process Regression, creep, filter clogging 

1 Introduction 

Several data-driven and model-based methods have been proposed for predicting the Remaining Useful Life 

(RUL) of degrading equipment [Hines & Usynin, 2008; Zio, 2012], i.e., the remaining time during which the 

equipment can continue performing its function in a safe and efficient way, with the final goal of 

implementing advanced predictive maintenance strategies which have the potential of increasing safety and 

lowering costs [Muller et al., 2008]. Model-based methods assume that an accurate mathematical model of 

the degradation process is available from first principle combined with large amount of experimental data. 

On the other side, data-driven methods rely on the availability of observations collected during the 

degradation process of one or more similar pieces of equipment, from which the RUL prediction can be 

directly or indirectly derived. Direct RUL prediction approaches make use of Artificial Intelligence 
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techniques, e.g., Artificial Neural Networks (ANNs) [Peel, 2008; Santosh et al., 2009], similarity-based 

regression [Wang et al., 2008; Zio & Di Maio, 2010], etc., to directly map the relation between the 

observation and the equipment RUL. However, when the observations collected are directly related to the 

equipment degradation state, the most natural data-driven technique for RUL estimation is to use regression 

to model the equipment degradation evolution and compare the extrapolated future degradation path to a 

failure criterion. This approach provides a more informative and transparent output, since it supplies a 

prediction not only of the current equipment RUL, but of the entire degradation path which can be checked 

against, e.g., expert intuition to verify its consistency. Moreover, contrarily to direct RUL prediction, this 

approach can be applied even when no historical failure data are available.  

Current research works [Vachtsevanos & Wang, 2001; Goebel et al, 2008] show the effective use of ANNs 

for degradation-based prognostic systems. A limit of ANNs models is that they do not provide, in general, an 

explicit quantification of the uncertainty of the predicted states, like do, instead, methods such as Relevance 

Vector Machine (RVM) [Tipping, 2001] or Gaussian Process Regression (GPR) [MacKay 1998; Rasmussen 

& Williams, 2006] which make use of Bayesian inference. The prediction uncertainty is caused by the model 

uncertainty (due, e.g., to the limited amount of data used to build it), the uncertainty on the observation (due, 

e.g., to sensor noise), and the process uncertainty (due, e.g., to the unforeseen future loads and operating 

conditions) [Baradi et al., 2012]. The intrinsic ability of RVM and GPR to fit probability distribution 

functions (pdfs) to the degradation data is desirable for prognostics where uncertainty management is of 

paramount importance [Tang et al. 2009; Liu et al., 2011]. In practice, the RVM method is actually a special 

case of a Gaussian Process (GP) [Rasmussen & Williams, 2006]. In this context, this paper proposes the use 

of the GPR for a prognostic approach [Mohanty et al. 2011] that explicitly models the uncertainty in the 

future degradation states and provides prediction of the future equipment degradation in the form of a 

Gaussian pdf. The hypothesis of Gaussianity, required by the GPR approach, allows analytical calculations 

that make inference simpler. Then, although one cannot always prove that degradation states are normally 

distributed, in the absence of outstanding evidence to support a different assumption, it is reasonable to adopt 

this assumption rather than others that would make the inference from data more difficult.  

GPR can be used to predict the evolution in time of the distribution of the degradation state or of its rate of 

growth, which, in turn, can be modeled as a function of time or of degradation. In this work, we proposed a 

strategy to implement each of these three approaches: 1) modeling the degradation state as a function of 

time; 2) modeling the degradation rate as a function of time; 3) modeling the degradation rate as a function 

of the degradation state. In any case, the final output is a prediction of the distribution of the future 

degradation states. By comparing this distribution at different time instants with the value of a fixed failure 

threshold, i.e., the maximum value of degradation beyond which the equipment cannot be operated, it is 

possible to calculate the distribution of the equipment RUL. 

The problem of correctly inferring the degradation process of the test equipment from observations coming 

from different pieces of equipment, which have similar behavior, but have necessarily followed different 

degradation trajectories than the test equipment, is faced by describing the degradation process as the 

composition of two elements: a general structure of the degradation trajectory, common to all pieces of 

equipment, and a variation around this structure which is different for each piece of equipment and thus 

uncorrelated between trajectories. 
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Two case studies are considered in this work to validate the method and compare the three approaches 

proposed. In the first case study, the method is tested on simulated data generated by a non-linear model of 

creep growth in ferritic steel. In the second case study, we show the results of the application of GPR to real 

data concerning the clogging of filters used to clean the sea water pumped through the secondary side of a 

BWR condenser to cool the steam in the primary side. The performance of each proposed approach to GPR-

based prognostics is evaluated in terms of the accuracy and precision of the RUL prediction and the 

reliability of the uncertainty estimates provided. 

The remaining part of the paper is organized as follows: Section 2 describes the method for performing RUL 

predictions based on GPR and details the three approaches proposed for degradation modeling; Section 3 

shows the results obtained by applying the GPR to the two case studies considered; finally, in Section 4 we 

draw some conclusions and suggest potential future work. 

2 Methodology 

2.1 Gaussian Process Regression 

Gaussian process regression is a powerful and flexible approach to performing inference over functions 

[Rasmussen & Williams, 2006]. In a regression problem which aims to map from an input x  to an output 

)(xf , GPR defines the prior for the output )(xf  in the form of a distribution over functions specified by a 

Gaussian Process. A GP is a collection of random variables any finite number of which has a joint Gaussian 

distribution. A real GP )(xf  is completely specified by its mean function )(xm  and covariance function 

)',( xxk : 
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where x  represents a vector of input values and ),( xxK  indicates the co-variance matrix containing the 

values of )',( xxk  evaluated for all possible pairs of inputs in x . 

This prior is taken to represent our prior beliefs over the kind of functions we expect to observe. Typically 

the prior mean and co-variance functions that we use will have some free parameters, called, usually, hyper-

parameters. Although the choice of covariance function must be specified by the user, various methods have 

been proposed for determining the corresponding hyper-parameters from training data [Rasmussen & 

Williams, 2006], e.g., the conjugate gradient optimizer that maximizes the marginal likelihood of the training 

set with respect to the hyper-parameters.  

Given the prior information about the GP, the value of the hyper-parameters and a set of training data 

Niiixy yx :1)},{(),(  yxD , the posterior distribution over functions is derived by imposing a restriction on 

the prior distribution to contain only those functions that agree with the observed data [Rasmussen & 
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Williams, 2006]. In other words, we impose the output in correspondence of the test input vector tstx  to be 

drawn from the same GP as the training data xyD , and thus we have:  
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The presence of a white Gaussian noise i  with variance 2  on the observations iy  can be accounted for 

by adding the noise variance to the co-variance function: 

 

 }),();(GP{~)( 2Ixxxυxy  Kmf  (3) 

 

where I  is the identity matrix. 

From eq. (2) the posterior distribution of the output Dtst |f  in correspondence of the input vector tstx  can be 

derived [Rasmussen & Williams, 2006]: 
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2.2 Prognostic model  

It is assumed that R training trajectories are available from measurements collected during the process of 

degradation of R pieces of equipment similar to the one of interest (test equipment). Each reference trajectory 

r=1:R is made of a sequence r
nrz
:1

 of observations r
jz  directly related to the degradation state r

j  of the r-th 

equipment at time j , j=1:nr, where rn  is the last measurement time before failure. Equipment fails when 

its degradation exceeds the failure threshold value th ; let r
F  indicate the time at which the failure of the r-

th piece of equipment occurs. A sequence of observations test
Jz :1  from 1  to the present time J  is available 

also for the test equipment. 

The goal of the GPR prognostic model is to predict the future degradation states of the equipment of interest 

and from them compute its RUL. Due to the scatter in the microstructural and manufacturing characteristics, 

the loading and external conditions variability, etc., the damage state, at any time instant, is better 

represented by a random variable )(  rather than by a deterministic quantity [Mohanty, 2011]. As a 

consequence, also the equipment RUL at the present time J  should be represented by a random variable 

)( JRUL   [Baraldi et al., 2012]. 
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In this work, we assume the distributions of the degradation states to be Gaussian with different mean )(  

and variance )(2   at every time instant  , and use the GPR method to evaluate the conditional probability 

density function (pdf) ),|)(( :1)(
test

Jzt ztp test D  of the future damage state )(test , p   given the training 

dataset rR
r
nz rz :1:1

}{ D , and the test trajectory test
Jz :1 . Three different approaches are considered to infer the 

conditional pdf ),|)(( :1)(
test

Jzt ztp test D  from data based on GPR: 

1) We directly model the degradation state )(  as a function of time by defining the prior: 

 

 }),();(GP{~)( ττττ  Km  (6) 

 

where τ   is a vector of time instants. The hyper-parameters of )(τm  and ),( ττK  are optimized 

using the set of training data Rrn
r
jjz rz :1;:1/ };{( D  derived from the training trajectories. Finally, 

predictions of the mean )(  and the variance )(2    of the pdf ),|)(( :1)(
test

Jzt ztp test D  of future 

degradation states are obtained from eq. (5) by conditioning the GP in eq. (6) on the training data in 

z/D  and those available from the part of test trajectory already observed: J
test
jj z :1};{( .  

2) We model the degradation rate d  as a function of time by defining the prior: 
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In practice, time can be discretized so that the integrals in eq. (8) become summations over finite 

increments )'')('( 1 jjjd    . 

3) We model the degradation rate d  as a function of the degradation state by defining the prior: 

 

 }),();(GP{~)( δδδδ  dd Kmd  (9) 
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where δ  is a vector of degradation states. The hyper-parameters of )(δdm  and ),( δδdK  are 

optimized using the set of training data Rrnjjj
r
j

r
j

r
jdzz rzzz :1;1:111/ ))}/()(;{(   D  derived 

from the training trajectories. Predictions of the mean )(d  and the variance )(2  d  of the 

degradation rate pdf are obtained from eq. (5) for any value of degradation   in input by 

conditioning the GP in eq. (9) on the training data in dzz /D  and on the test data 

1:111 ))}/()(;{(   Jjjj
test
j

test
j

test
j zzz  . The mean )(  and the variance )(2    of the pdf of 

interest ),|)(( :1)(
test

Jzt ztp test D  are obtained as the average and the variance of the degradation states 

of a large number sampN  of degradation trajectories sampled from: 

 

 
))((0,~

)(

2

1

jdj

jjj

N

d







 δ
 (10) 

 

starting from the last observed degradation state test
Jz  at time J  and using the Monte Carlo 

sampling algorithm. 

Notice that, in this particular case where data are available both from historical (training) equipments and 

from the currently degrading (test) equipment, we aim to learn about the common structure underlying all 

degradation processes from the test trajectories available, but also to draw from the test trajectory the 

information about the specific variation around this structure that characterizes the equipment of interest.  

To achieve this, the covariance function is built as follows [Mann et al., 2011]: 

 

 )',()',()',(),(),(),( 2'
2

'
1

'
'''

jjy
rrrrrr rrrrxxkxxkxxk jjjjjj    (11) 

 

where x  and y  are the input and output specific to each approach adopted and the reference index assigned 

to the test trajectory is 1 Rr . The first term of the kernel corresponds to the covariance associated with 

the common structure underlying all degradation trajectories; the second represents the covariance owing to 

the variation of each trajectory around the common structure of a degradation process. This term assumes a 

finite value only when r
jx  and '

'
r
jx  are taken from the same trajectory, since we assume the variation specific 

to each trajectory to be uncorrelated across trajectories. Finally, the third term accounts for the observation 

noise associated with the observation of a specific output y .  

The functions chosen to represent our prior on the mean and covariance of the GP are fundamental 

ingredients for the correct application of GPR. In the literature about GPR, the prior on the mean is often set 

to the constant value of zero, after appropriate normalization of the training data [Shi et al., 2005; Rasmussen 

& Williams, 2006]. However, this does not seem a convenient choice when the function to regress has an 

evident trend, as for degradation modeling. In these case the prior mean function is chosen to accurately 

represent the trend (linear, power low, etc.) of the function to regress, which can be often guessed from a 

graphical view of the training data. Notice however that imposing a particular functional form for )(xm  does 

not constrain the updated mean tstf  of the output variable to follow that same functional form.  
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The efficacy of different combination of mean and covariance functions in modeling a set of training data 

can be evaluated based on the marginal likelihood obtained by each of them. 

Given the value of the failure threshold, assumed here to be known, and the conditional distribution of the 

degradation state ),|)(( :1)(
test

Jzt ztp test D , the RUL cumulative distribution function (cdf) 

),|( :1)(
test
JzJRUL zrulP

J
D  is computed from ),|)(( :1)(

test
Jz zp D  as the probability that the degradation 

)(  at time JJ rul  exceeds the failure threshold thd  [Baraldi et al., 2013]: 
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 (12) 

 

where   is the standard normal cdf.  

From the RUL cdf one can derive the prediction Jlur ˆ  of the equipment RUL as the mean value of the RUL 

distribution and the confidence interval )](),([)( supinf  jj rulrulCI   containing the true value of the test 

equipment RUL, hereafter referred to as Jrul , with probability  . 

3 Numerical application  

In this Section the three approaches proposed for applying GPR to prognostics are verified on data simulated 

using a non-linear model of creep growth in ferritic steel (Section 3.1), and on real data taken from a case 

study about the clogging of filter in a BWR condenser (Section 3.2).  

The quality of the prediction depends from the choice of the mean and covariance functions. In this work, 

different choices for the mean and covariance functions have been compared based on their marginal 

likelihood. Notice that, finding the optimal choice in absence of any knowledge about the actual process that 

governs the system can be a hard task. Since, to the best of our knowledge, a widely agreed procedure for the 

selection of GPR mean and covariance functions is not yet available in literature, we limited this choice to 

pick out of some reasonable combination of covariance functions available from the literature [Rasmussen & 

Williams, 2006] the one with the largest marginal likelihood, without assurance that the choice is optimal 

and that the assumptions about the process are correct. The mean and covariance functions used in this work 

are listed in Appendix A. 

Given Ntst test trajectories q
J:1z , q=1:Ntst, and Ntrn different sets of training trajectories }:1,{

:1
RrD r

n
l
z r  z , 

l=1:Ntrn, each prognostic approach is used to provide the predictions l
z

q
J Dlur |ˆ )(  and l

z
q
J DCI |)()(  , in 

correspondence of the life fraction  , i.e., at time step q
F

q
J   )( . Performances are evaluated by 

comparing such prediction with the true RUL value q
Jrul )(  to compute three performance indicators:  

 The square root of the Mean Square Error (RMSE), i.e., the average value over all test trajectories 

q=1:Ntst and training sets l=1:Ntrn of the square error 2
)()( )|ˆ( q

J
l
z

q
J rulDlur    made in predicting the 
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true RUL of the test equipment. The MSE measures the accuracy of the prediction and is desired to 

be as small as possible.  

 The Coverage (Covα) of the prediction interval l
z

q
J DCI |)()(  , i.e., the percentage of times the 

condition l
z

q
J

q
J DCIrul |)()()(    is verified. This indicator measures the reliability of the 

confidence interval; we want the value of Covα to be as close as possible to α.  

 The amplitude (MAα) of the confidence interval l
z

q
J DCI |)()(   averaged over all test trajectories 

q=1:Ntst and training sets l=1:Ntrn; this indicator gives a measure of the precision of the RUL 

prediction. In order to have a high precision, we wish the keep the value of MAα as small as possible.  

3.1 Artificial dataset: Creep growth in ferritic steal - 

In this Section, GPR is applied to the prediction of the failure time of simulated degradation trajectories 

representing the accumulation of creep damage in a ferritic steel. Ferritic steels are widely used for welded 

steam pipes in the construction of power plant components that operate under high temperature and loads. In 

such conditions the creep deformation and rupture are important factors in determining the equipment 

lifetimes.  

3.1.1 Creep growth models 

The evolution of creep damage in ferritic steel exposed to the load   is simulated using the uni-axial form of 

the non-linear creep constitutive equations proposed within the framework of Continuum Damage 

Mechanics by Mustata & Hayhurst (2005): 
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 (13) 

 

where   is the creep strain, i.e., the fraction of elongation of the metallic piece in the longitudinal direction 

with respect to its original length,   and   are two damage state variable describing, respectively, the 

coarsening of the carbide precipitates, and the inter-granular creep constrained cavitation damage, H is the 

hardening state variable, used to represent the strain hardening effect attributed to primary creep, and A , B , 

*H , h , cK , and C  are material inherent characteristics. Each characteristic CKhHBA c ,,*,,,6:1   varies 

with the temperature according to the Arrhenius law, i.e., )/exp(0 TQmmm  , m=1:6, where T is the 

operating temperature and 0m  and mQ  are parameters whose values have to be determined experimentally. 

To generate different trajectories, the intrinsic variability of the creep growth process is simulated by 

sampling the values of the load   and temperature T to which the steel is exposed at each time step from a 

normal distribution centered on their mean value, whereas the variability of the creep growth process 

between similar pieces of equipment is simulated by sampling the value of parameters  and , m=1:6, 0m mQ
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at the beginning of each new simulated trajectory. We assume failure to happen when the limiting creep 

strain value of 0.02 is reached. Finally, to generate the sequence of observations r
njjj

r
n rr :1:1

})({  z , 

collected one every 100 days, a white Gaussian noise j  with standard deviation 4102   is added to 

the simulated creep strain )( j  at the observation time j . The time interval between two observations is 

rather large; in practical applications, this can happen when the costs of an inspection are elevated. Here this 

choice was done to limit the number of training data, since computational costs of GPR scales typically as 

)( 3NO with the number N  of training data. Figure 1 shows an example of simulate creep growth trajectory 

(upper) and the corresponding sequence of observations r
nr:1z  (bottom). 

For a better evaluation of the method, we have adopted two different sets of parameters (see Appendix B for 

their distribution) to simulate trajectories with smaller or larger variability. Figure 2 compares 10 trajectories 

with low (upper) and high (bottom) variability. 

 

          

3.1.2 Results 

In this Section we show, first, some results obtained by applying the three approaches proposed in Section 

2.2 to a single creep growth trajectory; for this a set of R=10 training trajectories is used. In this first part we 

consider only trajectories with low variability (Figure 2, upper). Then, we compare the performances 

obtained by the three approaches in correspondence of trajectories with low and high variability. 

In Figure 3, the predicted future evolution of degradation obtained by the GPR in approach 1 is compared 

with the true evolution of the test trajectory at two prediction time instants, 11   hour (left) and 

2640012   hours (right). Notice that the prediction accuracy is lower, i.e., the confidence interval is larger, 

for a prediction done at time 11   since no data are available from the test trajectory, and the GPR can only 

account for the common structure of the degradation process drawn from the training trajectories; on the 

other side, at time 2640012   the precision increases, since GPR is able to learn from the data collected 

during the test trajectory its peculiar behavior thank to the second term )',(),( '
2 ' rrxxk rr

jj   of the covariance 

function in eq. (11). See Section 3.1.3 for a further discussion of this aspect.  

Figure 2: examples of creep growth trajectories with low 
(upper) and high (bottom) variability. 
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Figure 1: example of simulated creep growth trajectory 
(upper) with the corresponding sequence of observations 
(bottom). 
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Figure 3: GPR prediction of future degradation states obtained at two time instants 11   hour (left) and 

2640012   hours (right) using approach 1. 

In approaches 2 and 3, GPR is used to predict the degradation rate d  as a function of, respectively, the time 

and the degradation state  . In Figure 4 and 5, the predicted degradation rate (upper) and the corresponding 

prediction of the future degradation evolution (bottom) are shown for approaches 2 and 3, respectively. The 

predicted value of the degradation rate (continuous line) is compared with its true value (asterisks) observed 

for the test trajectory.  

Results show that these two approaches are less effective in learning the peculiar behavior of the test 

trajectory as more data are collected during its evolution. This could be due to the fact that the observed 

degradation rate is affected by a larger noise than the degradation state, since the relative effect of 

measurement and process noises more evident on the small values of the degradation rates than on those, 

larger, of the degradation states. For this reason, after a sufficient amount of observations is collected, we 

expect approach 1 to provide narrower confidence intervals )(CI  than approaches 2 and 3.  

Figure 6 compares the RUL prediction obtained by the three approaches at different time instants, with the 

true RUL value of the test trajectory considered. All three approaches can predict the equipment RUL fairly 

well, although the prediction of approach 3 appears less accurate in the first part of the trajectory. Approach 

2 supplies narrower confidence intervals for the RUL prediction than the other two approaches at the 

beginning of the trajectory; however, the reliability of such interval has to be verified by checking that their 

coverage is close enough to the target value of 9.0 . 

For a more robust evaluation of the performance of the three approaches proposed, the model in eq. (13) is 

used to generate Ntst=100 test trajectories with low variability (Figure 2, upper) and Ntrn=10 different sets of 

R=10 similar training trajectories. For each training dataset simulated, the three approaches are applied to 

each test trajectory at four different life fractions , ,  and , and the 

three performance indicators, Cov0.9, RMSE, and MA0.9 are computed. The same procedure is repeated 

simulating trajectories with high variability (Figure 2, bottom). Figure 7 and 8 show the values of the three 

performance indicators in case of, respectively, low and high variability of the trajectories. The average 

value of the RUL, mRUL, of the test trajectories at each life fraction  is also shown for comparison with 

the values of the indicators RMSE and MA0.9. A horizontal (red) line indicates the target value  for 

the coverage (upper, left).  
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Figure 4: GPR prediction of the degradation rate (upper) and of the future degradation states (bottom) 
obtained at two time instants 11   hour (left) and 2640012   hours (right) using approach 2. 

 
Figure 5: GPR prediction of the degradation rate (upper) and of the future degradation states (bottom) 
obtained at two time instants 11   hour (left) and 2640012   hours (right) using approach 3. 
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Figure 6: Comparison at different time instants of the RUL 
prediction with the true RUL value for the three GPR-based 
approaches. 

 
Figure 7: Comparison of the performance of the three approaches for trajectories with low variability. The horizontal (red) 
line in the Cov0.9 figure (upper, left) indicates the target coverage value 9.0 . 
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Figure 8: Comparison of the performance of the three approaches for trajectories with high variability. The horizontal (red) 
line in the Cov0.9 figure (upper, left) indicates the target coverage value 9.0 . 

In case of creep growth trajectories with low variability, the error RMSE and the amplitude of the confidence 

interval MA0.9 are always much smaller than the mean RUL, being, respectively, around the 10% and the 

30% of mRUL. As expected, the value of both indicators decreases with the life fraction , since more data 

are available and failure is closer, and thus the effects of the process uncertainty on the accuracy and 

precision of the prediction are reduced. The increase in the accuracy and precision with the life fraction is 

more evident for approach 1. This approach is able to provide always the most accurate predictions, and, 

toward the end-of-life of the equipment, even the narrowest confidence interval compared to the other two 

approaches. Moreover, it is also the only approach obtaining a coverage always close to . Approach 

2 provides narrower confidence intervals at the beginning of the equipment life, but fails attaining the 

coverage value of 0.9, so that we cannot rely on such narrow intervals. Finally, approach 3 obtains good 

coverage except for , i.e., very close to the equipment failure, but is less accurate (larger RMSE) 

than approach 1. 

Similar results are obtained when trajectories with large variability are considered (Figure 8). Although in 

this case no approach is able to assure a coverage of 0.9, approach 1 goes very close to this target, whereas 

approach 2 come up to it only when the equipment is close to failure. The confidence interval supplied by 

approach 1 is rather large in the first part of the trajectory, with a value that, at 3.0 , is almost twice the 

average RUL value, mRUL,. However, due to the large variability of the trajectories, such a large confidence 

interval may be necessary to correctly represent the intrinsic uncertainty of the future creep evolution. 

Finally, although in this case we cannot state that approach 1 is the most accurate and precise (at 3.01  ,

6.02   it is outperformed in accuracy by approach 3 and by approach 2 at 95.04  ), the RMSE is 

always comparable with that obtained by the other two approaches and does not exceeds the 30% of the 

average RUL, mRUL. 
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In this case study, approach 1 has demonstrated to outperform the other two approaches proposed, although 

all three approaches have shown the capability of tackling the prognostic problem and supply accurate RUL 

prediction with a measure of the prediction uncertainty. However, the fact that the coverage is often lower 

than its target value shows that the prediction uncertainty is not correctly quantified. Further research is 

necessary to identify how to correctly account for all sources of uncertainty affecting the RUL prediction; we 

suggest, in particular, that model uncertainty could play a significant role, especially in case of high variable 

trajectories. In this case, resorting to an ensemble of GPR models [Shi et al., 2005], could allow achieving 

higher reliability and improved prediction performance.  

Notice finally that, as already mentioned, the choice of the covariance also impacts the performance of the 

method; the development of a procedure for the selection of GPR covariance functions is a fundamental 

requirement for the successful exploitation of GPR in prognostics. 

3.1.3 Analysis of the covariance function 

In this Section we study the effects of the two terms )',( '
'1

r
j

r
j xxk  and )',()',( '

'2 rrxxk r
j

r
j   of the covariance 

function in eq. (11). For this, approach 1 has been applied using the covariance function in eq. (11) without 

the first term 1k , first, and then without the second term 2k . The predictions about the future degradation 

states provided by approach 1 without the first term 1k  (upper) or without the second term 2k  (bottom) of 

the covariance function are shown in Figure 9 at time instant 11   hour (left) and 2640012   hours 

(right). 

These results show that if the first term 1k  of eq. (11), which refers to the common structure underlying all 

creep growth trajectories, is not considered (Figure 9, upper), the GPR model predictions at time 11   are 

very uncertain (Figure 9, upper, left). This is due to the fact that no information is available about the test 

degradation trajectory, and at the same time the information coming from the training trajectory is not used 

for conditioning the prior GP distribution, but only for optimizing the hyper-parameters of the covariance 

function k . As more data about the test trajectory become available the prediction improves (Figure 9, 

upper, right), but remains, however, less accurate and precise than that in Figure 3 (right), where the 

complete covariance function is used. 

On the other side, if we do not consider the second term  of eq. (11) (Figure 9, bottom), which refers to 

the variation of each trajectory around the common structure of the creep growth process, the GPR model 

predictions at time  are much less uncertain (Figure 9, bottom, left), but no improvement can be 

observed as more data become available (Figure 9, bottom, right). In other words, the model is not able to 

learn the peculiar behavior of the test trajectory, since all observations, does not matter which equipment 

they refer to, are given the same relevance when used for conditioning the prior GP distribution. 

It is clear that the two terms  and  are complementary, and for this reason their combination, as shown 

in Figure 3, assures better prediction performance along the entire duration of the degradation trajectory.  

 

2k

11 

1k 2k



PART II 16 

 
Figure 9:GPR prediction of future degradation states obtained at two time instants 11   hour (left) and 

2640012   hours (right) using approach 1 without the first term 1k  (upper) or the second term 2k  of the 
covariance function in eq. (11). 

3.2 Real dataset: Clogging of BWR condenser filters 

In this Section, we consider the problem of predicting the RUL of filters used to clean the sea water entering 

the condenser of the BWR reactor of a Swedish nuclear power plant. During operations, filters undergo 

clogging and, once clogged, can cumulate particles, seaweed, and mussels from the cooling water in the heat 

exchanger. For this reason, prompt and effective cleaning of the filter is desirable; predictive maintenance 

can help achieving this result, keeping maintenance costs reasonably low.  

An increasing number of articles can be found in the literature concerning the study of filter clogging by 

solid aerosols [Song et al., 2006] and liquid aerosols [Contal et al., 2004]. Common for these articles is that 

the results are achieved in a controlled environment: in the experimental setup all degradation quantities, 

indicators of degradation, and stressors are automatically measured and recorded. This is not the case in this 

industrial case study where, for a filter q at time j , we only have available the measurements of the 

pressure drop q
jP , and the flow across the filter q

jM . However, it has been well established that the 

clogging of a filter medium leads to an increase in pressure drop over the filter as long as the filtration 

velocity, and thus the flow, is kept constant. It is also known that the pressure drop is proportional to the 

square of the filtration velocity, and thus we take as an indicator of the state of clogging of filter q at time j
the ratio [Nystad, 2009]: 
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Figure 10 shows the sequences of observations q
nq:1z , q=1:Ntst collected on field during the clogging process 

of Ntst=8 filters. We can see from this Figure that the clogging process is affected by large uncertainties, 

which can be ascribed to the very variable conditions of the sea water; in this context, the challenge is to 

provide sufficiently narrow confidence interval for the value of the filters RUL.  

Due to the absence of physical knowledge about the failure threshold, its value has been arbitrarily set to the 

value 175th .  

 

 

Figure 10: available clogging trajectories q

nq:1
z , q=1:8. 

The three prognostic approaches proposed are applied at each time instant of each trajectory q=1:8 available, 

using the remaining R=7 trajectories as training trajectories. Figure 11, 12 and 13 shows the RUL prediction 

supplied by, respectively, approach 1, 2 and 3.  

Due to the large uncertainty of the process, the accuracy of the RUL prediction is always rather low and the 

confidence intervals are very large in all three approaches. At a first glance, the outcomes of approaches 1 

and 2 appear quite similar, unless for trajectories q=5 and q=8 where approach 1 provides more accurate 

RUL predictions and narrower confidence intervals. In Figure 13 the RUL prediction provided by Approach 

3 appear, instead, more accurate, but the confidence intervals are much larger and noisy than for the other 

two approaches. 
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Figure 11: Comparison of the RUL prediction supplied by approaches 1 (dots) and of its confidence bounds (dotted line) 
with the true RUL value. 

 
Figure 12: Comparison of the RUL prediction supplied by approaches 2 (dots) and of its confidence bounds (dotted line) 
with the true RUL value. 

To better evaluate the three approaches, the performance indicators RMSE, and MA0.9 are also computed in 

correspondence of the four life fractions , ,  and ; since only 8 

trajectories are available, to correctly verify the reliability of the method, the coverage indicator Cov0.9 is 

evaluated over all the predictions performed at each time instant . Figure 14 shows these results and 

compares the coverage indicator Cov0.9 with the target value  and the RMSE, and MA0.9 indicators 

with the average value mRUL of the filters RUL at each life fraction .  
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Figure 13: Comparison of the RUL prediction supplied by approaches 3 (dots) and of its confidence bounds (dotted line) 
with the true RUL value. 

 
Figure 14: Comparison of the performance of the three approaches on the Ntst=8 filter clogging trajectories. The horizontal 
(red) line in the Cov0.9 figure (upper, left) indicates the target coverage value 9.0 . 

Results show that the coverage is very close to the target value 9.0  for all three approaches. The 

prediction error (RMSE), however, is always quite large, ranging from being about half of the average RUL 

value mRUL at the beginning of the clogging process ( 3.01  ),up to almost three times (approach 1) this 

value at 95.04  . Approach 3 achieves always the highest accuracy, contrarily to approach 1 that obtains 

always the largest RMSE. On the other side, approach 1 assures the narrowest confidence intervals for the 

value of the filters RUL, although their amplitude is still many times the average RUL value mRUL. 
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In the context of filter clogging, due to the large uncertainties involved, we believe that the capability of 

providing narrower confidence intervals (but still, reliable) of approach 1 should be preferred to the higher 

prediction accuracy of approaches 2 and 3. 

4 Conclusions 

In this work, we have considered the problem of predicting the RUL of degrading equipment and providing a 

measure of confidence in that prediction, based on a set of training degradation trajectories observed in 

similar equipments which have failed in the past. We have resorted to Gaussian Process Regression to model 

the evolution of the equipment degradation. GPR treats degradation as a random variable, rather than as a 

deterministic quantity, and thus is able to model the intrinsic variability of the degradation process and 

provide predictions about the distribution of future degradation states. By comparing these predictions with a 

failure threshold, it has been possible to obtain the RUL prediction in the form of a pdf, from which the 

derivation of confidence intervals for the value of the equipment RUL is straightforward. Moreover, an 

effective structure of the covariance function has been proposed to allow accounting both for the common 

structure underlying all degradation trajectories and for the variations specific to each trajectory.  

Three different approaches for applying GPR to degradation modeling have been proposed and their 

performance compared in two case studies concerning, respectively, simulated data about the accumulation 

of creep damage in ferritic steel, and real data about the clogging of filters used to clean the sea water 

entering a BWR condenser. In both cases, the first approach proposed, which models the degradation state as 

a function of time, slightly outperforms the other two, which model the degradation rate as a function of time 

and, respectively, of the degradation state. However, also approaches 2 and 3 have shown to be capable of 

providing accurate prediction and could result more suited than approach 1 for treating a different prognostic 

problem: for example, approach 3 could provide better results if applied to a situation with a weaker 

observation noise or where the relation between degradation rate and degradation state is more accurately 

modeled by a GPR, than that between degradation state and time.  

When applied to prognostic problems characterized by the high variability of the degradation trajectories, the 

RUL prediction interval provided by the GPR prognostic approach can fail achieving the desired coverage. 

We interpreted this as an indication that some sources of uncertainty, most probably the model uncertainty, 

have not been correctly accounted for. We suggest that resorting to the ensemble techniques [Shi et al., 2005; 

Baraldi et al., 2012], has the potential of improving these results.  

It cannot be ruled out that the results obtained are also affected by the choice of the covariance functions. 

Here, this choice has been done by a trial and error procedure, with the goal of maximizing the marginal 

likelihood of the GP with respect to the training data. We believe that the development of a justified 

procedure for the selection of GPR covariance functions is a fundamental requirement for the successful 

exploitation of GPR in prognostics. 

A further important aspect of GPR is its computational cost which scales typically as )( 3NO  with the 

number of training examples. In our application this was not a problem since we have been working with 

small training datasets, but it can make the application of the method prohibitive even on modern 

workstations for larger problems (e.g. 410N ). Various methods have been suggested in the literature to 
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reduce this problem by approximating the computations [Rasmussen & Williams, 2006; Shi et al., 2005], and 

should be considered in future work to make GPR-based prognostics more efficient, especially when used in 

combination with Monte Carlo sampling (approach 3), which is also a computationally costly procedure. 

Appendix A: mean and covariance functions used in the case studies 

In the case studies considered in this work, combinations of the covariance functions listed in Table 1A have 

been used. Table 2A and 3A show the mean function and the terms )',(1 xxk  and )',(2 xxk  of the covariance 

function in eq. (11) used in the case studies of Section 3.1 and Section 3.2, respectively.  

Table 1A: list of the basic covariance functions used in the case studies of Section 3; symbols ib , i=1,2,…, are used to 
indicate the hyper-parameters of the covariance function. 

Covariance function Symbol Analytical expression of )',( xxk  

Constant )',( xxConst  1b  

Linear )',Lin( xx  )'(1 xxb   

Polynomial )',(Poly xxd  dbxxb )'( 21   
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Table 2A: list of functions used to define the prior on the GP mean and covariance in the creep growth case study 
(Section 3.1); symbols ia , i=1,2,…, are used to indicate the hyper-parameters of the mean functions. 

 
Mean function )(xm  

Terms of the covariance function in eq. (11) 

)',(1 xxk  )',(2 xxk  

Approach 1 


3

0i

i
i xa  )',(Mat 2/3 xx  )',(Poly)',RQ( 3 xxxx    

Approach 2 


2

0i

ii xa  )',(Mat 2/3 xx  )',(Poly)',RQ( 2 xxxx   

Approach 3 xa1  )',( xxNN  )',(Poly1 xx  
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Table 3A: list of functions used to define the prior on the GP mean and covariance in the clogging filters case study 
(Section 3.2); symbols ia , i=1,2,…, are used to indicate the hyper-parameters of the mean functions. 

 Mean function 

)(xm  

Terms of the covariance function in eq. (11) 

)',(1 xxk  )',(2 xxk  

Approach 1 


2

0i

i
i xa  )',SE( xx  )',(Poly)',( 1 xxxx NN  

Approach 2 xaa 10   )',SE( xx  )',()',Lin()',( xxxxxxConst   

Approach 3 xa1  )',(Poly1 xx  )',(Poly1 xx  

Appendix B: distribution of the parameters in the creep growth model 
of Section 3.1.1 

All parameters 0m  and mQ , 6:1m  which defines the quantities CKhHBA c ,,*,,,6:1   of the creep 

growth model in eq. (13), the temperature T  and the load   are assumed to have a Gaussian distribution 

with standard deviation equal to the 0.2% (low variability) or 0.5% (high variability) of their mean values 

given in Table 1B. 

Table 1B: mean values of parameters 0m  and mQ , 6:1m  of the creep growth model in eq. (13) 

Parameter 01  [h-1] 02  [MPa-1] 03  04  [MPa] 05  [h-1] 06  
Mean value 5105.1   

50 5.6 
11105.9   

6102.3   
5103   

 

Parameter 1Q
 2Q

 3Q
 4Q

 5Q
 6Q

 
Mean value 4109.1   

3450 1450 9800 
41045.1   

6850 
 

Parameter T  [°C]   [MPa]  
Mean value 565 100 
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Abstract 

We consider two data-driven prognostic approaches for predicting the remaining useful life (RUL) of 

degrading equipment having available sequences of observations taken during the degradation of similar 

pieces of equipment. The first degradation-based approach uses Gaussian Process Regression (GPR) to 

develop a probabilistic model of the evolution of a degradation indicator and provide the probability 

distribution of the equipment RUL; the second approach uses a similarity-based (SB) method to directly map 

the relation between the observations and the equipment RUL, and provide a measure of confidence in the 

RUL prediction by representing it in the framework of belief function theory.  

Since the performance of the two approaches are comparable, rather than choosing the best performing one, 

a method for combining their outcomes and their two different representation of the prediction uncertainty 

based, respectively, on probabilistic and evidential reasoning, has been proposed. For this, the belief function 

theory defined on the continuous space is adopted to transform the RUL probability density function 

supplied by the GPR method into a belief density function based on the least commitment principle. Then, 

the Dempster’s rule is used to aggregate the belief assignments provided by the GPR and the SBR 

approaches.  

The method is applied to the problem of predicting the RUL of filters used to clean the sea water entering the 

condenser of the boiling water reactor (BWR) in a Swedish nuclear power plant.  

 

Keywords: Prognostics, belief function theory, Gaussian process regression, filter clogging 
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1 Introduction 

For industry, unforeseen equipment failure is costly, both for repair and lost revenue. Recent times have seen 

the development of predictive maintenance, which is based on the assessment of the actual equipment 

condition and on the prediction of the optimal time at which performing maintenance. The underlying 

concept is that of failure prognostics, i.e., predicting the Remaining Useful Life (RUL) of the equipment, 

defined as the amount of time it will continue to perform its function according to the design specifications 

[Zio & Compare, 2013].  

In general, methods for predicting the equipment RUL can be classified in model-based and data-driven [Zio, 

2012]. Model-based methods use an explicit mathematical model of the degradation process to predict the 

future evolution of the degradation state and, thus, the RUL of the equipment. However, such detailed 

knowledge is available only for few well studied degradation mechanisms, whereas, most often, equipment 

degradation depends on the interaction between several degradation mechanisms, which can be very hard to 

model [Li & Pham, 2005]. Moreover, in order to be used for correctly propagating the uncertainty affecting 

the RUL predictions, these models should explicitly account for the uncertainty in the degradation process 

that arises due to scatter in microstructural properties, and to variable loadings and external conditions 

[Baraldi et al., 2012].  

On the other side, data-driven methods are used when an explicit model of the degradation process is not 

available, but sufficient historical data have been collected. Among data-driven methods one can distinguish 

between (i) those based on degradation modeling and (ii) those directly predicting the RUL [Wang, 2010]. 

Degradation-based approaches (i) are based on statistical models that learn through regression/trend analysis 

or stochastic process modeling [Gorjian et al., 2009; Wang, 2010] a model of the degradation evolution from 

the time series of the observed degradation states, and use it to predict the future degradation states; the 

predicted degradation is then compared with a failure criteria, such as the maximum value of degradation 

allowed before the equipment fails performing its functions according to the given specifications (failure 

threshold). Direct RUL predictions (ii), instead, resort to artificial intelligence techniques to directly map the 

relation between the observable parameters and the equipment RUL [Schwabacher & Goebel, 2007], without 

the need of predicting the equipment degradation state and fixing the value of the failure threshold [Peel, 

2008, Zio & Di Maio, 2010]. 

In this work we resort to data-driven prognostics to tackle the problem of predicting the RUL of filters 

placed upstream the condenser of the boiling water reactor (BWR) of a Swedish nuclear power plant to clean 

the sea water entering the secondary side of the cooling system. During operations, particles, seaweed, and 

mussels from the cooling water can cumulate in the filter medium, causing a clogging process. Thus, to 

assure correct and efficient operations, which require these wastes to be stopped before entering the 

condenser, prompt and effective cleaning of the filter is desirable; predictive maintenance can help achieving 

this result, keeping maintenance costs reasonably low. For this, sequences of observations taken during the 

clogging process of few historical filters are available (training trajectories). Each observation contains the 

values of three parameters (pressure drop, flow across the filter, and sea water temperature) which provide 

indirect indications about the degradation (clogging) state of the filters. It is known that this clogging process 

is affected by large uncertainties, due to the variable conditions of the sea water; in this context, the 

challenge is to provide a sufficiently narrow confidence interval for the RUL prediction. In fact, uncertainty 
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management is of paramount importance in prognostics, and requires providing a measure of the RUL 

prediction uncertainty, e.g., in the form of a prediction interval for the RUL value. This allows assessing the 

expected mismatch between the real and predicted equipment failure times, which can be used by the 

maintenance planner to confidently plan maintenance actions, according to the desired risk tolerance [Tang 

et al. 2009; Liu et al., 2011].  

Two prognostic approaches, one of the degradation-based type (i) and the other of the direct RUL prediction 

type (ii), are implemented in this work. The degradation-based approach (i) uses Gaussian Process 

Regression (GPR) [Rasmussen & Williams, 2006; Baraldi, Mangili et al., 2013] to fit probability distribution 

functions (pdfs) to the training degradation trajectories. This way the uncertainty in the future evolution of 

the degradation states is explicitly modeled and the predictions about the future degradation state distribution 

can be provided in the form of a Gaussian pdfs [Mohanty et al. 2011; Baraldi, Mangili et al. 2013]. By 

comparison of the predicted distribution of the future degradation states with a failure threshold it is possible 

to estimate the probability distribution of the equipment RUL, and from that derive a prediction interval for 

the RUL value. On the other side, the direct RUL prediction approach (ii) adopted makes use of a similarity-

based (SB) method that performs a data-driven similarity analysis between the training trajectories and a 

newly developing degradation trajectory (test trajectory) to predict its RUL [Zio & Di Maio, 2010]. To treat 

the prediction uncertainty, a solution based on the belief function theory (BFT) (also called Dempster-Shafer 

or evidence theory [Dempster, 1967; Shafer, 1976]) has been adopted. The BFT allows combining different 

pieces of (uncertain) evidence, based on the assignment of basic belief masses to subsets of the space of all 

possible events (or ‘frame of discernment’), which corresponds, in this case, to the RUL domain. Basically, 

the prognostic method adopted considers each training trajectory as a piece of evidence regarding the value 

of the RUL of the test trajectory [Baraldi, Mangili et al., 2013]. These pieces of evidence are discounted 

based on their similarity to the test trajectory and pooled using the Dempster’s rule of combination [Petit-

Renaud & Denoeux, 2004]. The result is a basic belief assignment (BBA) that quantifies one’s belief about 

the value of the test trajectory RUL given the evidence provided by the reference trajectories. The calculation 

of a prediction interval relies on the definition of the total belief assigned by the predicted BBA to an 

interval, which represents a lower bound for the probability that the test equipment RUL belongs to such 

interval.  

Degradation –based prognostics provides a more informative and transparent output, since it supplies a 

prediction not only of the current equipment RUL, but of the entire degradation trajectory that the equipment 

will follow, which can be checked against, e.g., expert intuition to verify its consistency. Moreover, 

contrarily to direct RUL prediction, this approach can be applied even when no historical failure data are 

available. However, identifying a degradation indicator and fixing a failure threshold may introduce further 

uncertainty and sources of errors. Thus, in practice, it is often hard to choose between these two approaches. 

For this reason, we considered the possibility of aggregating the outcomes of both methods: indeed, the 

aggregation of multiple models that make use of different pieces of information available has often proven to 

make the prediction more accurate and robust [Polikar, 2006].  

In this context, the main contribution of this work is to propose a technique for aggregating the outcomes 

provided by two different prognostic approaches making use of different representation of the prediction 

uncertainty. For this, we have resorted to the extension of the BFT to the continuous real axis   [Smets, 
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2005], which allows the transformation of pfds into belief densities. Then, based on the least commitment 

principle, the RUL pdf predicted by the GPR method is transformed into a belief density function and the 

Dempster’s rule of combination is used to aggregate it with the BBA provided by the SB approach [Ristic & 

Smets, 2004].  

The remaining part of the paper is organized as follows: in Section 2, we briefly state the prognostic problem 

of interest for this paper; Section 3 describes the method for performing RUL predictions based on GPR; in 

Section 4, the methodology for providing prediction intervals for the RUL value based on the SB method in 

the framework of BFT is described; in Section 5 a BFT-based technique for aggregating the outcomes of the 

GPR and SB approaches is proposed; Section 6 presents the results of the numerical application of these 

methods to the prediction of the RUL of clogging filters; finally, in Section 7 we state our conclusions and 

suggest some potential future work.  

2 Problem statement 

It is assumed that a set of training trajectories is available from measurements collected during the process of 

degradation of R pieces of equipment similar to the one of interest (test equipment). Each training trajectory 

r=1:R is made of a sequence r
nr:1

z  of observations )](),...,(),...,([ 1
r
j

r
P

r
j

r
p

r
j

rr
j zzz z  representing the 

evolution of P relevant parameters r
pz  measured at different time instants r

j , j=1:nr during the degradation 

evolution of the r-th equipment, up to the last measurement time r
nr  before its failure, which occurs at time 

r
F . Equipment is assumed to fail when its degradation exceeds the a maximum acceptable value th , called 

failure threshold. It is also assumed that an indication r
jz ,  about the degradation state r

j  of the r-th 

equipment at time r
j  can be derived from the values of the observed parameters in r

jz . A sequence of 

observations test
J:1z  from test

1  to the present time test
J , and consequently a sequence of indirect degradation 

observations test
Jz :1, , is available also for the test equipment. 

The goal of a prognostics model is to predict the RUL of the test equipment at the present time test
J . Due to 

the scatter in the microstructural and manufacturing characteristics, the loading and external conditions 

variability, etc., the degradation evolution is better represented by a stochastic process, rather than by a 

deterministic function [Mohanty, 2011]: as a consequence, the degradation state of an equipment at any 

future time   and the equipment RUL at the present time test
J  should be represented by the random 

variables )(  and test
JRUL . Then, prognostics is expected to provide with the prediction Jlur ˆ  of the mean 

value of the variable test
JRUL , a representation of its uncertainty [Baraldi et al., 2012]. In this work, we 

consider a satisfactorily representation of the prediction uncertainty the left bounded prediction interval 

]);([)( inf   JrulPI  containing the true value of the test equipment RUL, hereafter referred to as true
Jrul , 

with probability at least equal to  . Such definition of the prediction interval do not supply the value of the 

upper bound for the RUL prediction; however, only the lower bound is of interest for the maintenance 

planner, since it assures that the risk of a failure happening before a time interval equal to )(inf Jrul  has 

passed is lower than 1 . 
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3 Degradation-based prognostics: Gaussian Process Regression  

In the context of a degradation-based prognostic approach, we aim to model the evolution of equipment 

degradation as a stochastic process based on the available observations r
nrz
:1,  about the degradation 

trajectories of similar pieces of equipment. The predicted distribution of the future degradation states is then 

compared with the failure threshold th , whose value is assumed to be known, to predict the distribution of 

the equipment RUL.  

Gaussian process regression is a powerful and flexible approach for performing probabilistic inference over 

functions [Rasmussen & Williams, 2006] and can be effectively used for modeling degradation as a 

stochastic process [Baraldi, Mangili et al., 2013]. To do that, it is necessary to assume that the distribution of 

the degradation states is Gaussian with different mean )(  and variance )(2   at every time instant  . 

The GPR method is used to evaluate the conditional probability density function (pdf) )|( /)(


 zτ
test

τ testp D  

of the future degradation states )( test , 
test
J

test    of the test trajectory, given the observation dataset 


zτ /D  containing both the dataset });{( :1;:1,/ Rrnj
r

j
r
j

train
zτ rz  D  drawn from the training trajectories and the 

dataset });{( :1,/ Jj
test

j
test
j

test
zτ z  D  drawn from the test trajectory. For mapping the function )(  given the 

input  , the GPR defines the prior for it in the form of a distribution over functions specified by a Gaussian 

Process (GP). A GP is a collection of random variables any finite number of which has a joint Gaussian 

distribution. A real GP )(  is completely specified by its mean )(m  and covariance )',( k  

functions: 

 

 
))]'()'())(()([()',(

)]([)(

}),();(GP{~)(













mmEk

Em

Km ττττ

 (1) 

 

where τ  represents a vector of input values and ),( ττK  indicates the covariance matrix containing the 

values of )',( k  evaluated for all possible pairs of inputs in τ . 

This prior is taken to represent our prior beliefs over the kind of functions we expect to observe. Typically 

the prior mean and co-variance functions that we use will have some free parameters, called, usually, hyper-

parameters. Although the choice of the covariance function must be specified by the user, various methods 

have been proposed for determining the corresponding hyper-parameters from training data [Rasmussen & 

Williams, 2006]. Here, the hyper-parameters are optimized by maximizing with the conjugate gradient 

method the marginal likelihood of the dataset set train
zτ /D  drawn from the training trajectories.  

Given the prior information about the GP, the set of hyper-parameters, and the observation dataset 
zτ /D , the 

posterior distribution over functions is derived by imposing a restriction on the prior distribution to contain 

only those functions that agree with the observed data [Rasmussen & Williams, 2006]. In other words, we 

condition the output in correspondence of the test input vector tst  to the available observations 
zτ /D  drawn 

from the same GP, and thus we have:  
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where trainτ  is the vector of all the inputs in 
zτ /D . 

The posterior distribution of the output )|( /
 zτ

test D  in correspondence of the input test  is Gaussian with 

mean )( test  and variance )(2 test   which can be derived from eq. (2) [Rasmussen & Williams, 2006]: 

 

 ))(),((~)|( 2
/

testtest
z

test N   
  D  (3) 

 

where  

 

 
),()],()[,(),()(

))(()],()[,()()(
12

1

testtraintraintraintraintesttesttesttest

traintraintraintraintesttraintesttest

KKKk

mKKm





ττττ

τzτττ














 (4) 

 

where trainz  is the vector of all the outputs in 
zτ /D . 

Since the data 
zτ /D , which are used for conditioning the prior GP, come partly from the training equipment 

and partly from the test equipment, it is possible to make the GPR capable of learning both the structure 

underlying the degradation processes which is common to all test and training trajectories, and the specific 

variation around this structure that characterizes the test trajectory. This result is obtained by using a 

covariance function of the following form [Mann et al., 2011; Baraldi, Mangili et al, 2013]: 

 

 )',()',()',(),(),(),( 2'
2

'
1

'
''' jjrrrrkkk z

rrrrrr
jjjjjj    (5) 

 

where 2
z  is the variance of the white Gaussian noise affecting the observations r

jz ,  and the reference index 

assigned to the test trajectory is 1 Rr . The first term of the kernel corresponds to the covariance 

associated with the common structure underlying all degradation trajectories; the second represents the 

covariance owing to the variation of each trajectory around the common structure of all degradation 

trajectories. This term assumes a finite value only when r
j  and '

'
r
j  are taken from the same trajectory, since 

we assume the variation specific to each trajectory to be uncorrelated across trajectories. Finally, the third 

term accounts for the observation noise associated with the observation r
jz ,  of the degradation state r

j .  

Given the value of the failure threshold, assumed here to be known, and the conditional distribution of the 

degradation state )|( /)(


 zττ testp D , the RUL cumulative distribution function (cdf) )( /


zτJRUL rulP test
J

D is 

computed as the probability that the degradation )( test  at the future time J
test
J

test rul  will exceed 

the failure threshold thd  [Baraldi et al., 2013]: 
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 (6) 

 

where   is the standard normal cdf.  

From the RUL cdf one can derive the prediction GPR
Jlur ˆ  of the equipment RUL as the mean value of the 

RUL distribution and the prediction interval ]),([)( inf,   GPR
J

GPR
J rulCI  as the left bounded interval 

containing with probability   the true value of the test equipment RUL, hereafter referred to as true
Jrul . 

4 Direct RUL prediction: Similarity-based RUL prediction 

Within a direct RUL prediction prognostic approach, the mapping between observations r
jz  (or sequences of 

observations) and the corresponding RUL value is derived directly from the training trajectories without 

modeling the degradation process. In this work, this is done by using the similarity-based regression model 

presented in Baraldi, Di Maio et al. (2013). The idea underpinning this approach to RUL estimation is to 

evaluate the similarity between the test trajectory and the R reference trajectories available and use the RULs 

of these latter to estimate the RUL of the former, accounting for how similar they are [Petit-Renaud & 

Denoeux, 2004; Wang et al. 2008; Zio & Di Maio, 2010]. In this context, the Belief Function Theory is used 

to treat and quantify the uncertainty affecting the SB RUL prediction by assigning to each training trajectory 

a mass of belief related to its similarity to the test trajectory. In this paper, only few notions of BFT will be 

recalled as soon as they become necessary for the understanding of the method. For a general introduction to 

the BFT and for further details about the mathematical development s and the possible interpretations of the 

theory, the interested reader is referred to Dempster (1976), Shafer (1976) and Smets (1998). 

The first requirement of the approach is to define a measure to evaluate the similarity between trajectories. 

This is done considering the pointwise difference between n-long sequences of observations normalized in 

the range [0.2;0.8]. At the present time J , the distance r
jd  between the sequence of the n latest 

observations test
JnJ :1z  of the test trajectory, and all n-long segment r

jnj :1z , j=n:nr of all reference 

trajectories r=1:R is computed as: 

 

 


 
n

i

r
inj

test
inJ

r
jd

1

2
zz  (7) 

 

where 
2

yx   is the square Euclidean distance between vectors x  and y . 
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The similarity r
js  of the training trajectory segment r

jnj :1z  to the test trajectory is defined as a function of 

the distance measure r
jd . In Zio & Di Maio (2010) the following bell-shaped function has turned out to give 

robust results in SB regression due to its gradual smoothness: 

 

 

















2

exp
r
jr

j

d
s  (8) 

 

The arbitrary parameter   can be set by the analyst to shape the desired interpretation of similarity: the 

smaller is the value of   the stronger the definition of similarity. A strong definition of similarity implies 

that the two segments under comparison have to be very close in order to receive a similarity value r
js  

significantly larger than zero.  

For the prediction of the test equipment RUL, a RUL value r
jlur *ˆ  is assigned to each training trajectory 

r=1:R by considering the difference between the trajectory failure time r
F  and the last time instant r

j*  of 

the trajectory segment r
jnj *:1* z  which has the maximum similarity r

js *  with the test trajectory:  

 

 r
j

r
F

r
jlur **ˆ    (9) 

 

Then, the prediction SB
Jlur ˆ  of the test equipment RUL at time test

J  is given by the similarity weighted sum 

of the values r
jlur *ˆ :  

 

 








R

r

r
j

R

r

r
j

r
j

SB
J

s

lurs

lur

1
*

1
** ˆ

ˆ   (10) 

 

In of belief function theory the belief of an agent about the value of a variable test
JRUL , based on the 

available information, is represented by a basic belief assignment (BBA) of a mass )( i
RUL Ym test

J
 to all focal 

elements iY , i=1,2,… of the frame of discernment test
JRUL , i.e., the domain of test

JRUL ; all elements 

assigned with a mass of belief 0test
JRULm  are the focal elements of the BBA. The BBA verifies the 

condition that the sum of the masses of all its focal elements is 1. The domain test
JRUL  of test

JRUL  is defined 

as the interval ],0[ max test
JF   , where max

F  is the maximum possible life duration of the equipment; we 

assumed its value to be indicated by an expert. The quantity maxmax
J

test
JF RUL  is the maximum value 

that can be assumed by the variable RUL at the present time test
J , whereas 0 is, obviously, the minimum 

possible value of the equipment RUL. Then, within the BFT framework, the different predictions r
jlur *ˆ  can 

be taken as the unique focal element of as many BBAs 1})ˆ({ * r
j

r
RUL

lurm test
J

, r=1:R.  

The similarity measure r
js  defined in eq. (9) is interpreted as a measure about the relevance of the source of 

information inducing the BBA 1})ˆ({ * r
j

r
RUL

lurm test
J

 and the discounting operation is used to reduce the 
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belief assigned by r
RULtest

J
m  to the evidence conveyed by r-th trajectory by some factor )1( *

r
js  , ]1,0[ , 

representing the dissimilarity between the test and the r-th training trajectory. The discounted BBAs 

})ˆ({~
*

r
j

r
RUL

lurm test
J

, r=1:R, are thus obtained [Petit-Renaud & Denoeux, 2004]: 

 

 
r
jRUL

r
RUL

r
j

r
j

r
RUL

sm

slurm

test
Jtest

J

test
J

*

**

1)(~

})ˆ({~








 (11) 

 

The arbitrary parameter ]1,0[  defines the degree of trust given to the reference trajectories: in fact, if 

1  a part of belief will always be assigned to the entire RUL domain JRUL , even in the case a reference 

trajectory were exactly identical to the test one. Notice that the mass assigned to JRUL  represent the 

ignorance we have about the value of test
JRUL  because it indicates the absence of evidence that it belongs to 

any subset of the RUL domain smaller than the domain itself. For a detailed discussion about the choice of 

the parameters   and  , the interested reader is referred to Baraldi, Di Maio et al. (2013).  

According to the Dempster’s rule of combination, two distinct sources of information inducing two BBAs, 

e.g., 1
test
JRUL

m  and 2
test
JRUL

m , can be combined to give the aggregated BBA 21
test
JRUL

m  [Petit-Renaud & Denoeux, 

2004]: 
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where the mass 0)(21 
test
JRUL

m  is imposed to convert a possibly subnormal BBA (i.e., a BBA assigning a 

finite mass to the empty set  ) into a normal one and where K  is a normalization factor introduced to 

make the masses )(21 i
RUL

Ym test
J

  assigned to all focal elements sum up to 1. Then, by aggregating through eq. 

(13) the R discounted BBAs r
RULtest

J
m~  in eq. (12) one obtains the aggregated BBA: 
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where  

 

  
 


R

r rr

r
j

r
j

R

r

r
j sssK

1 '

'
**

1
* )1()1(   (14) 

 



11 

 

The information conveyed by a BBA can be represented by a belief )(Bel if Y  or by a plausibility function 

)(Pl if Y  defined, respectively, as 

 

 



ii

J

YY

iRULif YmY
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)()(Bel '  (15) 

 

and 
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
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J
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The belief associated to an interval ],[ supinf
JJ RULRUL  represents the amount of belief that directly supports 

the hypothesis ],[ supinf
JJ

test
J rulrulRUL  , whereas the plausibility represent the maximum belief that could be 

committed to this hypothesis if further information became available. Then, belief and plausibility can be 

seen as lower and upper bounds on the possibility that the hypothesis ],[ supinf
JJ

test
J rulrulRUL   is true. Let us 

consider a left bounded interval ],[ inf Jrul ; the belief assigned to such interval is a lower bound for the 

evidence that the RUL of the test equipment is larger than the lower bound inf
Jrul . Then, we can define the 

prediction interval for the RUL of the test equipment as the interval ]),([)( inf,   SB
J

SB
J rulCI  to which a 

predefined belief   is assigned. 

5 Predictions aggregation based on belief function theory 

As shown in Baraldi, Di Maio et al. (2013) and Baraldi, Mangili et al. (2013), both the SB and the GPR 

approaches are effective prognostic methods which allows providing accurate RUL predictions with reliable 

measures of the prediction uncertainty. Moreover, they both have some advantages: the SB approach does 

not require the definition of a degradation indicator and the identification of a failure threshold whereas the 

GPR approach provides a more informative and transparent output, since it predicts the entire degradation 

path which can be checked against, e.g., expert intuition to verify its consistency. Thus, it can be hard, in 

practice, to choose between the two approaches. Moreover, when multiple predictions with a comparable 

accuracy and reliability are available, an alternative solution to the choice of the best one is their aggregation, 

which has the potential of increasing the accuracy and robustness of the prediction. For this reason, we 

undertake in this Section the aggregation of the GPR and SB approaches.  

Different techniques for the aggregation of the outcomes of individual models have been proposed in the 

literature, from statistic methods like the simple mean and the median [Baraldi et al., 2011; Polikar, 2007], to 

weighed averages of the model outcomes based on the global or local performances of the individual models 

[Baraldi et al., 2010; Bonissone et al., 2008]. However, the main obstacle in the aggregation of the RUL 

predictions provided by the SB and the GPR approaches concerns the combination of two different 

representations of the prediction uncertainty. This work focuses on this second aspect, and with respect to the 
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choice of a strategy for the combination of the RUL predictions  and , limits to adopt the most 

straightforward solution, i.e., the simple mean: 
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For the aggregation of the two representation of the RUL uncertainty provided by the SB and the GRP 

approaches and based, respectively, on evidential and probabilistic reasoning, we use the definition of the 

BFT on the continuous real axis   [Smets, 2005], where masses generalizes into densities so to allow 

representing also probability density functions. This theory is only briefly introduced here; the interested 

reader may refer to Smets (2005) and Ristic & Smets (2004) for further details. 

To extend the belief function theory to real numbers, it is assumed that masses are only allocated to closed 

intervals ],[ xx . A convenient graphical representation of these intervals is the half-plane highlighted in grey 

in Figure 1, which contains all the sets of pairs xxxx  :),( 2  representing the an interval ],[ xx . A 

belief density function (BDF) ),( xxf  is defined on this half-plane, which assigns to each point ),( xx  the 

mass ]),([ xxmx  representing the evidence that ],[ xxx .  

 

 
Figure 1: graphical representation of intervals ],[ xx . 

The total belief ]),([Bel 11 xxf  assigned by the BDF f  to an interval, e.g., ],[ 11 xx  in Figure 1, is the 

integral of the BDF ),( xxf  over the triangle 11
2 ,:),( xxxxxx   highlighted in grey in Figure 2 

(left), whereas its plausibility ]),([Pl 11 xxf  is the integral of ),( xxf  over the half-plane 

112 ,:),( xxxxxx   highlighted in grey in Figure 2 (right). 
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Figure 2: graphical representation of the belief (left) and plausibility (right) associated to the interval ],[ 11 xx . 

Within the framework of continuous BFT, the BBA defined by eq. (14) for the RUL value in the similarity 

based approach can be represented by assigning finite masses only to the degenerated intervals of null 

dimension ]ˆ,ˆ[ **
r
j

r
j lurlur , j=1:R, lying on the boundary RULRUL   of the half-plane of all possible RUL 

intervals, and to the RUL domain RUL , i.e., interval ],0[ max
JRUL  (see Figure 3). This is represented 

through the following BDF ),( RULRULf SB
RULJ

: 

 

 RULtest
J

test
J

r
j

test
JJ RULRULlur

R

r

r
jRUL

SB
RUL mlurmRULRULf 



  )(})ˆ({),(
*ˆ

1
*  (18) 

 

where r
jlur *ˆ  and 

RUL  are Dirac delta functions which are always zero except when the conditions 
r
jRULRULRUL *  and, respectively, JFRULRUL   max,0  are verified. Notice that, since the 

equipment RUL assumes only positive values, the half-plane of interest for the RUL prediction (highlighted 

in grey in Figure 3) is defined by the two constraints RULRUL 0 . 

 

 

Figure 3: graphical representation of ),( RULRULfSB . 
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Concerning the GPR prediction, the straightforward interpretation of a pdf within the framework of 

continuous BFT would assign a finite value equal to the probability density )( /


zτJRUL
rulp test

J
D  to the BDF 

),(1 RULRULf GPR
RULJ

 for all intervals for which JrulRULRUL   (Figure 4, left). This BDF 

),(1 RULRULf GPR
RULJ

 can be expressed as follows:  

 

 )()|(),( /
1 RULRULRULpRULRULf zτRUL

GPR
RUL test

JJ
  D  (19) 

 

where )( RULRUL   is a Dirac delta function which is always zero except when the condition 

RULRUL   is verified. Such transformation keeps intact the information conveyed by the pdf 

)( /


zτJRUL
rulp test

J
D .  

However, our knowledge of the equipment RUL can be considered partial and based on uncertain 

assumptions. For this reason, a different strategy for representing the GPR prediction in the BFT framework 

is also considered, which assumes the pdf provided by GPR to be only a representation of some potential 

betting behaviors, i.e., how an agent would bet about the unknown value of the variable test
JRUL . In the 

interpretation of the BFT proposed by Smets (1998), this would be called a pignistic pdf Betf  induced on   

by the underlying BDF f  whose value is unknown. According to the pignistic transformation [Smets, 2005], 

many BDF f  can induce the same pignistic probability Betf . The set of BDF whose related pignistic pdf 

equals Betf  is called the set of isopignistic BDFs induced by Betf . In this work, we evoke the least 

commitment principle (never give more belief than needed) to select the least committed (LC) isopignistic 

BDF ),(2 RULRULf GPR
RULJ

 induced by the pignistic pdf )()( /
 zτJRULJGPR rulprulBetf test

J
D . Other possible 

choices could be done to select a different isopignistic BDF, however, to limite the scope of this work, only 

the least committed BDF transformation is considered here.  

It can be shown [Smets, 2005] that for a unimodal pignistic pdfs with mode )](max[arg J
GPR
RUL rulBetf

J
  

the focal sets of LC BDF ),(2 RULRULf GPR
RULJ

 are intervals ],[ RULRUL  which satisfy  

 

 )()( RULBetfRULBetf GPR
RUL

GPR
RUL JJ

  (20) 

 

Such intervals form a line in the half plane of all possible intervals which starts from point ),(   (see 

Figure 4, right). Since GPRBetf  is a bell-shaped density, RUL  is uniquely defined by a function of RUL , 

)(RUL and the LC BDF is defined by:  

 

 )]([)(])([),(2 RULRULRULBetfRULRULRULRULf GPR
RUL

GPR
RUL JJ

   (21) 

 

where )(RULBetf GPR
RULJ

  is the derivative of GPR
RULJ

Betf  calculated at RUL  and RUL . 
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Figure 4: graphical representation of the two possible transformations ),(1 RULRULfGPR  and ),(2 RULRULfGPR  of 

the RUL probability density function supplied by the GPR into a belief density function. 

Once the RUL pdf predicted by the GPR approach is expressed in the form of a BDF function, either 

),(1 RULRULf GPR
RULJ

 or ),(2 RULRULf GPR
RULJ

, it can be combined with the SB prediction expressed by the BDF 

),( RULRULf SB
RULJ

 using the Dempster’s rule of combination. For a definition of the conjunctive 

combination rule in the continuous frame of the real axis  , please refer to Smets (2005). The two 

combination strategies, which considers, respectively, ),(1 RULRULf GPR
RULJ

 or ),(2 RULRULf GPR
RULJ

, are 

hereafter referred to as Comb1 and Comb2. The combined BDFs obtained from Comb1 and Comb2 are, 

respectively,  
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where 1K  and 2K  are normalization constants that make ),(1 RULRULf Comb
RULJ

 and ),(2 RULRULf Comb
RULJ

 

integrate to 1 and  , rm  and m  are used instead of max
JRUL , })({ *

r
jRUL RULm J and )( RULRULJm  , 

respectively, for ease of notation. 

Jrul  
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Given the combined BDF ),(1 RULRULf Comb
RULJ

 or ),(2 RULRULf Comb
RULJ

, a credible left-bounded interval for 

the value of the RUL can be estimated as in Section 4 for the SB approach, by taking the intervals 

]),([)( 1inf,1   Comb
J

Comb
J rulCI  and ]),([)( 2inf,2   Comb

J
Comb
J rulCI  to which a predefined belief   is 

assigned by the relative BDF. 

6 Filter clogging prognostics – a case study 

In this Section, we consider the problem of predicting the RUL of filters used to clean the sea water entering 

the condenser of the BWR reactor of a Swedish nuclear power plant. During operations, filters undergo 

clogging and, once clogged, can cumulate particles, seaweed, and mussels from the cooling water in the heat 

exchanger. For this reason, prompt and effective cleaning of the filters is desirable; predictive maintenance 

can help achieving this result, keeping maintenance costs reasonably low.  

From data collected on field, we have available Ntst=8 sequences of observations q
nq:1

z  , q=1: Ntst taken 

during the clogging process of Q=8 historical filters. Each observation ],,[ q
j

q
j

q
j

q
j TMP z  contains the 

measurements of the pressure drop q
jP , the flow across the filter q

jM , and the sea water temperature q
jT  

collected at time q
j  during the clogging process of the q-th filter. To apply degradation-based prognostics, it 

is necessary to derive from the observations q
jz  and indication of the state of clogging affecting the filter at 

time j . An increasing number of articles can be found in the literature concerning the study of filter 

clogging by solid aerosols [Song et al., 2006] and liquid aerosols [Contal et al., 2004]. Common for these 

articles is that the results are achieved in a controlled environment: in the experimental setup all degradation 

quantities, indicators of degradation, and stressors are automatically measured and recorded. This is not the 

case in this industrial case study; however, it has been well established that the clogging of a filter medium 

leads to an increase in pressure drop over the filter as long as the filtration velocity, and thus the flow, is kept 

constant. It is also known that the pressure drop is proportional to the square of the filtration velocity. Given 

these results, we take as an indicator of the state of clogging of filter q at time j the ratio [Nystad, 2009]: 

 

 
2,

)( q
j

q
jq

j
M

P
z




  (24) 

 

Also, due to the absence of physical knowledge about the failure threshold, it has been arbitrarily set to the 

value 175th . Figure 5 shows the sequences of observations q
nqz
:1, , q=1:Ntst collected on field during the 

clogging process of the filters. We can see from this Figure that the clogging process is affected by large 

uncertainties, which can be ascribed to the very variable conditions of the sea water; in this context, the 

challenge is to provide sufficiently narrow confidence interval for the value of the filters RUL.  
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Figure 5: available clogging trajectories q
nq:1

z , q=1:8. 

6.1 Results 

The two prognostic approaches proposed in Sections 3 and 4 and the combination strategy proposed in 

Section 5 are applied at all time instants of each trajectory q, using the remaining R=7 trajectories qr   as 

training trajectories.  

The priors on the mean and covariance function of the GP used to model the clogging process in the GPR 

approach are set as in Baraldi, Mangili et al. (2013) and are: 
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where 3:0a , 2:1b , and 4:1c  are the hyper-parameters optimized by maximizing the marginal likelihood of the 

dataset train
zτ /D  derived from the training trajectories.  

Notice that the application of the method proposed in Section 5 to transform the RUL pdf predicted by the 

GPR approach into the BDF 2GPR
RULJ

f  only applies for bell-shaped distributions. However, the GPR can 

generate even multimodal pdf. In this work, we impose artificially a bell-shape to the pdfs predicted by the 

GPR. In practice, if for some values Jrul  lower than the coordinate   of the maximum of the predicted pdf 

)( JGPR rulBetf , its derivative is negative (or, vice versa, is positive for some values Jrul  larger  ), the value 

of )( JGPR rulBetf  is forced to be constant instead of decreasing (increasing), and the new unimodal pdf thus 

obtained is normalized so to integrate to one. This device is here justified by the fact that a single failure 
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mode, clogging, determines the filters RUL, and thus we have no reasons to believe that the RUL 

distribution should be multi-modal. As a consequence, we attribute the possibly multimodal form of the 

predicted RUL pdf, to errors made by the GPR model in propagating far in the future the distribution of the 

degradation states. However, in general, this device should be avoided by extending the LC inverse pignistic 

transformation to the case of multimodal pdfs.  

Concerning the SB approach, we used parameters 05.0  and 95.0  according to the results obtained in 

Baraldi, Di Maio et al. (2013). 

Figures 6 and 7 show the RUL prediction and the lower bound of the prediction interval for 9.0  supplied 

by, respectively, the GPR and the SB approaches. Due to the large uncertainty of the process, for both 

approaches the accuracy of the RUL prediction is always rather low and the confidence intervals large. 

Notice, however, that the GPR approach supplies, in general, smaller prediction intervals than the SB 

approach. This latter in fact predicts a lower bound which is very often equal to zero; as pointed out by 

Baraldi, Di Maio et al. (2013) this does not means that the evidence of very early failure is high (as 

demonstrated by the fact that the predicted RUL can be much larger than zero), but only that the evidence 

drawn from the reference trajectories is not sufficient to assert with the desired belief of 9.0  that the 

RUL value belongs to any subset of the RUL domain test
JRUL . In other words, the prediction 0inf, SB

Jrul  is 

a statement of ignorance about the value of test
JRUL . Although the large intervals predicted by the SB 

approach cannot be used efficiently by the maintenance planner, they can provide a correct indication that 

the information conveyed by the training trajectories is not relevant for a specific test trajectory, e.g., because 

they are too dissimilar. This can be seen for trajectories q=4 and q=7 where the GPR approach provides 

narrower confidence intervals, but such intervals do not include the true RUL value. Notice also that, for 

these two trajectories, the prediction SB
Jlur ˆ  is more accurate than GPR

Jlur ˆ . 

 

 

Figure 6: Predictions GPR
Jlur ˆ  and )9.0(inf,GPR

Jrul  supplied by the GPR approach. 
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Figure 7: Predictions SB
Jlur ˆ  and )9.0(inf,SB

Jrul  supplied by the SB approach. 

Figure 8 shows the RUL prediction Comb
Jlur ˆ  (dots) obtained by averaging the GPR and the SB approaches 

and the lower bounds of the prediction intervals for 9.0  obtained using the combination strategies 

Comb1 (dotted line) and Comb2 (continuous line). When Comb1 is used, the predicted confidence bounds 

are very similar to those of the GPR approach. This is due to the fact that Comb1 keeps intact the information 

conveyed by the pdf )( /


zτJRUL
rulp test

J
D , and thus provides much stronger information about the RUL value 

with respect to that provided by the SB BBA. When, instead, the information conveyed by the pdf 

)( /


zτJRUL
rulp test

J
D  is relaxed through the LC transformation performed by Comb2, the resulting BDF 

),(2 RULRULf Comb
RULJ

 is influence also by the information conveyed by the SB BBA. This can be observed for 

trajectories q=4 and q=7, where Comb2 provides larger confidence bounds than the Comb1 and the GPR 

approaches, thus appearing to be a more robust approach, since its prediction intervals include the true RUL 

value, and, at the same time are much narrower than those provided by the SB approach. 

To better evaluate the different approaches considered, they are applied to each trajectory q in 

correspondence of the life fraction , i.e., at time step  to provide the predictions  

and . Four life fractions , ,  and  are 

considered. Performances are evaluated by comparing such prediction with the true RUL value  to 

compute two performance indicators:  

 The square root of the Mean Square Error (RMSE), i.e., the average value over all clogging 

trajectories q=1:Ntst of the square error  made in predicting the true RUL of the 

test equipment. The MSE measures the accuracy of the prediction and is desired to be as small as 

possible.  
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 The amplitude (MA0.9) of the interval , averaged over all clogging 

trajectories q=1:Ntst; this indicator gives a measure of the precision of the RUL prediction. In order to 

have a high precision, we wish the keep the value of MA0.9 as small as possible.  

 

 

Figure 8: Prediction Comb
Jlur ˆ  (dots) and prediction bounds )9.0(1inf,Comb

Jrul  (dotted line) and )9.0(2inf,Comb
Jrul  (continuous line) 

supplied by Comb1 and Comb2, respectively. 

A third indicator, the coverage Cov0.9, is evaluated over all the predictions performed at each time instant q
J  

along the clogging trajectories by considering the percentage of times the condition )9.0()(
,
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q
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J CIrul    is 

verified. This indicator measures the reliability of the confidence interval; we want the value of Cov0.9 to be 

larger than α=0.9.  

Figure 14 shows the value of these indicators obtained for the GPR and the SB approaches and their 

combination Comb2. Comb1 is not considered since its RUL prediction is equal to that of Comb2 whereas its 

prediction interval is almost equal to that of the GPR approach. The average value of the RUL, mRUL, of the 

test trajectories at each life fraction   is also shown (bottom, right) for comparison with the value of the 

RMSE indicator. A horizontal (red) line indicates the target value 9.0  for the coverage (upper, left).  

The results in Figure 9 show that the error and the amplitude of the prediction interval decrease with the 

equipment life fraction and that the error is always comparable to the average RUL value mRUL. These 

results confirm what already seen in Figures 6, 7 and 8: the GPR approach provides prediction intervals 

which are narrower that those of the SB approach but cannot assure the desired coverage of 0.9; on the other 

side, the SB approach makes a smaller error than the other methods, and has a coverage very close to one, 

but at the price of providing the largest prediction intervals. The proper combination of the two methods 

allows obtaining the desired coverage with smaller prediction intervals than the SB approach; however, the 

accuracy is reduced in comparison with the similarity based approach. We expect that different strategies for 
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the aggregation of  and , accounting, e.g., for the historical performance of the two methods, 

have the potential of improving the accuracy of the prediction . 

 

 
Figure 9: Comparison of the performance indicators Cov0.9 (upper, left), MA0.9 (upper, right) and RMSE (bottom, left) for the three 
approaches. The fourth graph (bottom, right) shows the average RUL, mRUL. The horizontal (red) line in the Cov0.9 graph (upper, 
left) indicates the target coverage value 9.0 .  

7 Conclusions 

In this work, we have considered the problem of predicting the RUL of degrading equipment and providing a 

measure of its uncertainty, based on sequences of observations collected during the degradation trajectories 

of a set of similar equipments which have failed in the past. Two different prognostic approaches have been 

considered: a degradation-based approach resorting to Gaussian process regression to model the evolution of 

the equipment degradation and predict the probability distribution of the equipment RUL, and a direct RUL 

prediction approach which exploits SB regression and belief function theory for inferring a basic belief 

assignment for the value of the test equipment RUL.  

In the application of the two methods to the real data concerning the clogging of filters used in a BWR 

condenser, it is observed that the prediction intervals provided by the SB approach have good coverage, but 

are extremely large, whereas those provided by the GPR are narrower but do not achieve the desired 

coverage. 

A third approach has, then, been proposed, which is based on the aggregation of the outcomes of these two 

complementary methods. The main difficulty in performing such aggregation has been the necessity of 

combining two different representations of uncertainty, based, respectively, on probabilistic and evidential 

reasoning. By resorting to the belief function theory on continuous variables, it has been possible to translate 
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both representations of the uncertainty variable JRUL  within the same framework and subsequently 

aggregate them using the Dempster’s rule.  

The results obtained by applying the method to the filter clogging case study, have shown that the RUL 

predictions obtained by aggregating the GPR and the SB approaches represents a good compromise since 

they reach the desired coverage, contrarily to the GPR predictions, keeping the prediction intervals narrower 

than those provided by the SB approach alone.  

Notice that, the aggregation method proposed in this paper with reference to the aggregation of two specific 

prognostic methods, can be applied to any situation requiring the combination of multiple uncertain 

predictions represented in the different frameworks of probabilistic and evidential reasoning. 

Concerning the accuracy of the combined prediction Comb
Jlur ˆ , future research should consider aggregation 

strategies different than the simple mean adopted in this work, e.g., performance-based aggregation 

strategies, which, by accounting for the prediction error made by each approach on historical validation data, 

have the potential of improving the accuracy of the aggregated prediction.  

Notice also that, in a situation where one had reasons to be more confident about the accuracy and reliability 

of the available RUL pdf, isopignistic transformations different than that based on the least commitment 

principle, should also be considered, since they have the potential of reducing the amplitude of the prediction 

intervals.  
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