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1. Relevance 

Understanding and quantifying the chemical and physical processes involved in flow and 

transport scenarios through porous media is of utmost importance. Relevant challenges are 

related to environmental sustainability and energy generation and exploitation, such as climate 

change and safe disposal of nuclear waste. Increasing greenhouse gases caused by human 

activities is often considered as one of the major causes of global warming.  The carbon dioxide  

(CO2) sequestration where industrially-produced CO2 are stored using subsurface saline aquifers 

and reservoirs is considered as one of the possible options which may be implemented to reduce 

greenhouse gases. The other important issues currently being addressed are related to the 

increasing demand for fresh water and oil. These include for instance remediation of 

contaminated water sources for drinking and irrigation, prevention of salt water intrusion into 

fresh water bodies, locating new oil deposits and optimizing recovery of hydrocarbons. All these 

crucial targets involve fluid flow and solute transport processes in natural porous media. 

Moreover, porous media are used widely in many manmade systems such as fuel cells (porous 

diffusion layer), packed columns, filtration, paper pulp drying, textiles etc. Besides their 

potential applications in environmental and industrial processes, they also find an important 

place in biological sciences (e.g., blood flow in the human body). Modeling flow and transport in 

porous media therefore has wide theoretical and applied interest. However, its simulation and 

predictions are very challenging because of the complexity involved in these processes and the 

(conceptual and practical) description of the host porous media at multiple scales of interest.  
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2. Scales 

In porous media, complex physical phenomena often occur on a wide range of scales. 

Length scale magnitude may vary from the pore-level (in the order of few micro meters) to the 

field level (in the order of kilometers). Hence, a continuing challenge in mathematical and 

Figure 1.Length scales in geological systems [Whitaker, S. ,1999] 
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computational modeling is to handle these relevant scales properly. In general, the appropriate 

modeling approach is a function of the scale at which the porous medium and the key processes 

of interest are described. As an example, Figure 1 provides an illustration of complexities 

associated with the description of a porous medium over multiple observation scales. 

a. Pore-scale modeling 
 

The pore-scale or micro scale typically ranges from 610  to 310  m. At this scale of 

resolution, the description of individual pores is considered. Flow at these scales is driven by the 

specific geometry of the solid phase (which determines the boundary with the fluid phases) and 

obeys local conservation laws such as the Navier–Stokes equations. Given the appropriate 

boundary conditions for the surface of the solid grains (e.g., no-slip), the velocity and pressure 

field in the pore-space can be determined by solving the Navier–Stokes equation. However for 

the groundwater flow inertial forces are assumed to be negligible with respect to viscous forces 

and the Stokes problem is frequently solved. Pore-scale modeling is appealing as the approach 

directly accounts for the fundamental physical processes that affect the fluid behavior thus 

providing improved understanding of flow and transport processes. Despite its attractiveness, the 

major difficulty involved in this approach is the presence of complex pore geometries. 

In principle, pore-scale modeling may be used to improve the prediction of parameters of 

large scale models. For instance, pore scale simulations have been used to characterize absolute 

and relative permeability [Blunt, 2001], dispersion coefficients [Wood et al., 2003; Salles et al., 

1993], and effective reaction rates [Lichtner and Tartakovsky, 2003; Tartakovsky et al 2009].  

b. Continuum-Scale Modeling 
 

http://en.wikipedia.org/wiki/Viscosity
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The solution of practical problems of flow and transport in porous media is virtually 

impossible at the pore scale. Therefore, continuum modeling approaches are typically 

introduced. In this framework the porous medium is reproduced by a continuum approximation, 

where the key characteristics of the underlying pore network are included through effective 

properties. The format of continuum scale equations for porous media has been supported both 

through experimental/phenomenological observations (e.g., Darcy law) and theoretical analyses. 

Theoretical approaches enable one to derive continuum scale systems of equations starting from 

pore scale equations. This typically relies on a set of appropriate hypotheses. Among the widely 

used approaches to derive continuum scale systems are volume Averaging and homogenization. 

The classical volume averaging method, based on ideas of laid down by Whitaker [1967] 

and Slattery [1967] starts with a set of microscopic equations which are assumed to old at a point 

in space. By averaging the microscopic equations in a volume of space, a corresponding set of 

macroscopic equations are developed over the fluid region or over the entire region. Other than 

averaging the governing equations of flow and transport, directly averaging a parameter over a 

domain of interest is also widely implemented for upscaling. This method has been used to 

upscale dispersion [Plumb and Whitaker, 1988; Wood et al., 2003] and transport for fractured 

media [Quintard and Whitaker, 1996]. Recently, by examining the difference  between the 

mathematical processes of averaging and upscaling, Wood [2009] revealed that the process of the 

volume averaging is not sufficient to reduce the number of degrees of freedom as required by 

upscaling [Cushman et al., 2002]. This target is then achieved by introducing so called scaling 

laws [Wood 2009], which allow to formulate closure relationships and typically involve the 

definition of the physical and chemical features of the considered problem. 
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Homogenization method has also been largely employed for upscaling flow and transport 

processes in porous media [ Auriault and Adler, 1995; Battiato et al., 2009]. a porous medium with 

microscopic structure characterized by period l  and a macroscopic structure with the 

characteristic length of L . A spatial scale parameter can be defined as /l L  . Instead of 

working on one function u , a family of functions u  is considered to find the limit of u  when 

0   . The limit is considered as the result of upscaling procedure for homogenization. The 

asymptotic condition 0   requires separation of spatial scales. The upscaling by the 

homogenization is completed by making the microscopic scale approximate to zero [Hornung, 

1997].  

Typically continuum or macroscopic (or lab) scale is in the order of 210   to 10 m. 

Owing to the difficulty to observe and characterize properties at the pore-scale, in this approach, 

the effective macroscopic variables are defined by averaging the microscopic properties over a 

volume. Most of the laboratory experiments are conducted at this scale to obtain required 

parameters and hence it is widely used for modeling in porous media. Proper characterization of  

continuum scale effective parameters is often a challenging task (e.g. permeability, dispersion 

coefficients, capillary pressure, relative permeability etc.), as these may depend on the pore 

structure and pore-level physical processes. 

3.  Motivation 

The pore structure and the physical characteristics of the porous medium and of the fluids 

that occupy the pore spaces determine several macroscopic or continuum parameters of the 

medium, e.g. permeability and dispersion coefficients. Understanding the relation between the 
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pore-scale properties and these continuum parameters is therefore a great interest both 

theoretically and practically in many fields. Flow and transport processes show a large 

dependence on the geometrical details of the porous media at the pore-scale while the physical 

properties of interest are observed at a larger scale.  

We consider upscaling of reactive/conservative solute transport. Upscaling from pore to 

continuum scale: it can be performed through both theoretical and numerical methods. In 

particular focus of the work are the following targets: (a) theoretical derivation of a double 

continuum model starting from pore scale equations ( Chapter 1) and (b) micro-scale numerical 

simulation and upscaling of a reactive transport process ( Chapter 2). 
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CHAPTER 1. UPSCALING OF SOLUTE 
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I. Modeling techniques 

 

1. Introduction 

Transport of conservative solutes in porous and fractured media is often described at the 

continuum (Darcy-) scale by the advection dispersion equation (ADE). This formulation is based 

on the so-called Fickian analogy to model hydrodynamic dispersion. The ability of the ADE to 

represent observed processes at various scales has been largely discussed in the literature through 

theoretical, numerical and experimental analyses. Salles et al. [1993] present a comprehensive 

theoretical and numerical study and clearly identify the limits under which dispersion can be 

considered Gaussian/Fickian in a porous medium. Non Gaussian dispersion is observed at early 

times, when the solute has not sampled completely the heterogeneous pore scale velocity 

distribution [e.g., Gelhar et al., 1992; Berkowitz et al., 2000]. This behavior has relevant 

implications in the modeling of solute breakthrough curves observed, e.g., at the field scale under 

natural and/or forced gradient tracer tests [e.g., Riva et al., 2008 and references therein]. 

Anomalous (non-Fickian) behavior associated with observed solute breakthrough curves can 

be attributed to spatial variability of the velocity field, which is generally distributed over a wide 

range of scales. Several approaches have been proposed to deal with anomalous transport in 

heterogeneous porous media at different (continuum) scales of observation [e.g., Berkowitz et al., 

2006; Neuman and Tartakovsky, 2009; and Zhang et al., 2009]. These include theoretical 

frameworks based on the continuous time random walk (CTRW) model [Berkowitz et al., 2006 

and references therein], time and/or space-time fractional derivative formulations of the system 
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[Zhang et al, 2009 and references therein], and double- [e.g., Coats and Smith, 1964] or multi-

rate mass transfer models [e.g., Haggerty et al., 2000, 2004]. These modeling approaches are 

usually supported by numerical and experimental findings [e.g., Bjielic and Blunt, 2006; 

Haggerty et al., 2004]. However, to the best of our knowledge they are still not directly grounded 

on a theoretical upscaling of micro-scale advective-diffusive processes.  

The chapter 1 is organized as follows: Section I provides a brief introduction of several 

available techniques for modeling solute transport in porous media; Section II provides the 

formulation of the pore-scale system, the formulation of the closure system and the final 

upscaled equations with a comparison with DRMT/MRMT standard models; Section III 

illustrates our application example. 

 

2. Theoretical framework. Advection-dispersion equation 

 

The mass conservation equation constitutes the basis for describing the flow and solute 

transport in the subsurface. It is basically a mass balance equation which expresses that the net 

mass flux across  the boundaries of a control volume must be equal to the accumulated mass. 

G
t


  


   (1.1) 

Where   is the conserved fluid concentration in units per unit volume,   is the flux 

vector in units of mass/conserved parameter per unit time per unit area and G  is the source/sink 

term with units of concentration per unit time. 
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In the case of porous media flows the pore-scale Reynolds  number is usually  smaller 

than 1, consequently it is possible to assume Darcy’s law to account for the relationship between 

pressure and flow. For a single phase, Darcy’s law can be written as: 

i
i i

i

Q K
q

A x





 
      

 
   (1.2) 

where q  is the Darcy velocity in units of length per unit time, Q  is the flow rate in 

volume per unit time, K  is the permeability in length squared, A  is the cross-sectional area in 

length squared,    is the viscosity in pressure-time, 
ix




 is the pressure gradient and   is given 

by: 

 P gz      (1.3) 

where P   is the pressure in force per unit area,   is the fluid density in units of mass per 

unit volume which can be related to the system pressure and temperature by an equation of state, 

g  is the acceleration due to gravity in the units of length squared per unit time and z  is depth in 

units of length. We can now substitute equation (1.2) into (1.1) to obtain the governing equation 

for the solvent phase flowing through an isotropic porous medium: 

  K K K
G

t x x y y z z

   

  

          
       

          
  (1.4) 

The flux of an individual solute contains contributions from advection and diffusion. This 

is modeled by including the effect of the local velocity field to Fick's law using: 

a D i
i

C
q C D

x


 
       

 
   (1.5) 
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where iq  is the local Darcy velocity in direction i   given in units of distance per unit 

time,   is the porosity of the medium, C  is the concentration in units of mass/quantity per unit 

volume, 
i

C

x




 is the concentration gradient in the thi   direction and D  is the dispersion tensor in 

units of distance squared per unit time which is typically defined in two or three dimensions by 

i d iD D q        (1.6) 

where dD  is the molecular diffusion coefficient (assumed isotropic),   is the tortuosity,  

iD  are the eigenvalues of D ,  and i  are the local dispersivity coefficients , they are associated 

to the principal directions of the tensor, which is aligned with the directions parallel and 

perpendicular to flow, and referred to as longitudinal and transverse dispersivities, L  and T . 

 Substituting (1.5) into (1.1) we get the governing equation for the solute or the ADE  

[Bear,1972]: 

 ( )
C

qC D C G
t

 


      


   (1.7) 

3. Multi-rate Mass Transfer model 

Double- and multi-rate mass transfer continuum-scale models (DRMT/MRMT) represent the 

porous medium through an effective description which is formed by a collection of overlapped 

mobile and immobile sub-regions. Immobile regions can also comprise low velocity zones which 

are accessible to the solute and where solute can temporarily be delayed with respect to 

processes developing within other mobile portions of the domain. These different regions are 

characterized by their own transport parameters and solute mass transfer takes place between 
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these continua. Anomalous behavior is then attributed to delayed storage of the solute within 

immobile regions and solute channeling through mobile regions. Long tails and early arrival 

times characterizing observed breakthrough curves of concentrations have been successfully 

reproduced through this conceptual picture and its mathematical representations. This improved 

modeling capability with respect to the standard ADE is associated with an increased model 

complexity, i.e., additional transport parameters are introduced, in the form of mass transfer 

coefficients describing solute exchanges between continua. 

Basically one may consider Multi-Rate Mass Transfer (MRMT) model as a modified 

advection-dispersion equation where an additional term takes into account the exchange between 

high and low conductivity regions.  This description implies that the pore space is  decomposed 

into a mobile and immobile zones. The two quantities im  and m  identify the porosities 

corresponding to the mobile and the immobile regions, respectively. In the mobile zone the 

advective transport mechanism is predominant whereas in immobile zones advection plays 

negligible role. The rate at which solute moves between these two domains is controlled by a 

mass transfer coefficient . One defines mC  and imC  , the concentrations in the mobile and 

immobile regions respectively.  The ADE is typically used to describe the solute at mobile 

region, mC . Concentration at immobile zones, imC , is influences by the source/sink term which 

represents the mass transfer exchange between a mobile zone and a of immobile zones. 

The simple form of MRMT is a double rare mass transfer(DRMT)(double 

porosity/double region) model. In DRMT one assumes that the porous media can be divided only 

into two regions: one mobile region and one immobile region. Then the model can be written as 

follows 
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   ( ) ( )  m
m m m m m im

C
qC D C C C G

t
   


        


  (1.8) 

 
( )

( )    im
im m im

C
C C

t


  


 


   (1.9) 

The MRMT model provides an extension of the DRMT, where  transport between mobile 

and immobile regions is not described by a single coefficient. This representation may be 

explained by assuming that due to geometrical complexity a single coefficient can hardly 

represent the whole mechanism of mass exchange between mobile and immobile 

regions(stagnant zones, pores/fractures, cavities, liquid inclusion etc).The MRMT can be written 

in the following form 

 
0

( )
( ) ( )m im

m m m m im

C C
qC D C f d G

t t


    


 

       
    (1.10) 

 
( )

( )     im
im m im

C
C C

t


   


  


   (1.11) 

where   is the mass transfer coefficient between the immobile zones and mobile zone, 

( )f   is the density function of mass transfer rates, m  and im  are the volume fractions of the 

mobile and immobile zones. 

The memory function can be interpreted as the particle resident time distribution function 

in the immobile zone. In other words, the memory function represents the mass flux to the 

immobile zones per unit volume of aquifer, for a unit change in concentration in the mobile 

zones [Haggerty et al., 2000; Carrera et al., 1998]. The formulation of this term depends on the 

geometry of the immobile zones and on the variability of the mass transfer or diffusion rates 

[Haggerty et al., 2000].  
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Various researches [e.g.  Zinn and Harvey., 2003] have demonstrated that MRMT models 

are able to improve the results of the ADE in the case of solute transport through heterogeneous 

porous media. 

 

 

Figure 2. Comparison of experimental results and breakthrough curves predicted by a) 

ADE and b) DRMT models (Sanchez-Villa and Carrera, 2004). 

 

Figure 2 shows that the DRMT model is able to reproduce the concentration profile while 

the ADE fails.  However relationships between memory functions and physical properties of the 

aquifer are not clearly established yet, the appropriate format of the memory function has been 

shown to be a function of the medium heterogeneity. The formulation of the memory function 
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depends on the geometry of immobile zones and on the variability of mass transfer or diffusion 

rates [Haggerty et al., 2000].  

For idealized cases, some a priori estimates of the mass exchange coefficient have been 

proposed [Van Genuchten and Dalton., 1986; Gwo et al., 1998]. Numerical simulation of local-

scale transport can be used to evaluate macroscopic properties [Lessoff and Dagan, 2001]. 

However, in general, these properties are derived through experiments interpretation. With this 

approach, macroscopic properties of a heterogeneous sample are obtained using a curve-fitting 

procedure.  

Volume averaging approach has been used to provide theoretical foundation of DRMT 

and MRMT models in bimodal porous media. These works focus on the analysis of transport in 

heterogeneous porous media where the anomalous transport behavior may be due to the 

heterogeneity of the permeability field. Ahmadi et al.[1998] derived a two-equation model using 

the large-scale volume averaging method. This method provides three closure problems that give 

an explicit link between the different scales, and makes it possible to determine directly the 

macroscopic properties associated with bimodal porous media, constituted by high and low 

permeability regions. Cherblanc et al. [2003] proposed an original numerical procedure to solve 

these three closure problems. The developed tools were used to discuss the influence of the local-

scale characteristics on the large-scale properties, in the case of a nodular system. Later 

Cherblanc et al. [2007] analyzed ability of the proposed DRMT model to represent the non-ideal 

behavior of more general heterogeneous systems. The need for a time-evolving effective mass 

transfer process has been identified previously in the literature, as summarized in the 

introduction. Chastaned and Wood[2008] using unsteady closure assumption derived an 

expression for mass transfer term which includes convolution product between the time 



18 

 

derivative of a concentration and a closure function (memory function). The expression is 

equivalent to the expressions proposed at other works [Moyne, 1997; Landereau et al., 2001; 

Haggerty et al., 2000]  

  



19 

 

II. Upscaling transport through volume averaging 

 

1. Introduction  

This section aims at providing a theoretical foundation of double- and multi-rate mass 

transfer continuum-scale models (DRMT/MRMT). As such, we consider pore-to-Darcy scale 

upscaling of solute transport in macroscopically homogeneous porous media and identify the 

pore scale velocity field as the primary source of continuum-scale observed anomalous features 

of transport. We start from a pore scale advective-diffusive system and derive a two-equation 

continuum model through an application of the volume averaging method [Whitaker, 1999]. The 

fraction of the averaging volume occupied by the fluid phase is subdivided into two sub-regions, 

according to the relative influence of advective and diffusive transport terms. Similar strategies 

have been pursued in the literature, e.g., in the framework of biofilm growth modeling in porous 

media [Orgogozo et al., 2010]. 

As anticipated in previous Section I theoretical and  numerical works grounded on volume 

averaging arguments [Ahmadi et al., 1998; Quintard et al., 2001; Cherblanc et al., 2003, 2007; 

Golfier et al., 2011] consider upscaling from Darcy- to field- scale in bimodal porous media, i.e., 

systems which are characterized by the occurrence of high and low hydraulic conductivity 

regions. These authors assume that a continuum scale description of the transport process based 

on the ADE holds within each sub-region. Numerical simulations are then employed to study the 

validity of different single- or two-equation models which have the same format of Darcy-scale 

single- or dual-continuum equations and can be derived upon invoking different assumptions on 
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local concentration equilibrium. In this context, non-Fickian behavior of the solute is assumed to 

be due to the heterogeneity of the hydraulic conductivity field. Recent pore scale numerical 

studies and experimental observations show that the complex micro-scale structure of rock 

samples can give rise to persistent anomalous behavior even within media which appear to be 

homogenous at the continuum scale [e.g., Bijeljic et al., 2011]. 

Upscaling through volume averaging typically requires suitable closure relationships. These 

provide the link between small scale variation of velocity and concentrations and volume 

averaged quantities. While steady-state closure approximations are generally assumed to hold, 

here we rely on an unsteady (time-dependent) closure following Moyne [1997], Chastanet and 

Wood [2008], Porta et al. [2012], and Wood and Valdes-Parada [2012]. An unsteady closure 

formulation allows to (a) retrieve closed form equations explicitly embedding nonlocal temporal 

behavior and (b) include these in the final upscaled equations through time convolutions. We 

pursue an approach similar to the one presented by Chastanet and Wood [2008], who employ a 

time-dependent closure while considering Darcy- to field-scale upscaling of solute transport in 

heterogeneous bimodal porous media through volume averaging. These authors (a) show that 

such an unsteady closure leads to a time dependent formulation of the (upscaled) mass transfer 

coefficient and (b) provide a solution of the unsteady closure problem through a Laplace 

transform for a simplified geometry of the domain. In this work we provide a direct link between 

pore scale quantities and the coefficients of the upscaled two-equation model. The derived 

upscaled model embeds a minimal set of assumptions. Therefore, it is possible to identify the 

assumptions which are implicitly embedded in DRMT/MRMT models by direct comparison of 

our upscaled formulation with the standard DRMT/MRMT model equations. 
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2. Problem description 

We consider transport of a passive solute through a single phase flow field taking place in 

a fully saturated porous domain,  . The latter comprises a solid (  ) and a liquid ( l ) phase. 

We assume steady-state Stokes flow to take place in the pore space with a given velocity 

distribution ˆ ˆ( )u x , x̂  denoting the vector of space coordinates and   indicating dimensional 

quantities. The liquid-solid phase boundary surface is assumed to be impervious. We consider 

the solute to be diluted so that diffusion in the liquid space is governed by Fick’s law. Under 

these assumptions, the distribution of solute concentration in the liquid is governed by the 

advection-diffusion equation. Intergranular diffusion effects are here neglected. The fluid domain 

l  is partitioned into two distinct sub-regions,   and  , i.e., l      . These can be 

identified as a function of the relative importance of the (advective and diffusive) mechanisms 

acting on transport of the diluted species. 

We introduce here the local Pèclet number ˆˆ ˆ ˆ ˆ ˆ/ ( ) /D APe t t a D  u x , where â  is a 

characteristic spatial dimension of the pore space, and    ˆ ˆ ˆ ˆ ˆ/At ax u x  and 
2 ˆˆ ˆ /Dt a D  are 

characteristic time scales of advective and diffusive processes, respectively. Advective transport 

is described through the spatially variable velocity field and the diffusion coefficient D̂  is 

assumed to be constant in l . For convenience, we refer to   and   as mobile and 

immobile regions, respectively. These can be identified through the local value of ˆ( )Pe x , i.e., 

     ˆ ˆ ˆ ˆ: , :l lPe K Pe K         x x x x . The boundary surface between   
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and   can be defined as   ˆ ˆ:l Pe K   x x . We consider transport to be advection 

dominated if  ˆ 10Pe x  and set K = 10 in our application. 

We introduce two characteristic lengths of the pore scale medium structure, â  and â , 

respectively related to   and  . The appropriate choice of these scales may be problem 

dependent and is intrinsically linked to the key transport features associated with the geometry 

considered. For example, â  may be related to the size of relatively large cavities or small 

regions surrounding the grains, depending on which one of these is expected to play the 

dominant role in governing mass exchanges between the identified mobile and immobile zones. 

We introduce Û  and Û , which are defined as the average velocities in the fluid phase within 

  and  , respectively, the advective time scale, ˆˆ ˆ /At a U    and a characteristic 

concentration scale, 0ĉ . The latter is, e.g., provided by the initial concentration distribution or 

through the boundary conditions acting on the external boundary, ext , of the porous medium. 

Solute transport within the pore space is governed by the following system of equations  

2

2
ˆ

ˆ ˆˆ [ ]
ac

a c c
t Pe



  







    


u  x   (1.12) 
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ˆ ˆˆ [ ]
ac

a c c
t Pe



  


 






    


u   x  (1.13) 

Here, 0ˆ ˆ/i ic c c  is (dimensionless) concentration in i , i ic c  (c and i  respectively being 

concentration in l  and the phase function, 1i   for ˆˆ , ,iV i    x  and 0i   otherwise) 

ˆ ˆ/ At t t , ˆˆ /i i iUu u , ˆ ˆˆ /i i iPe U a D   and ˆ ˆˆ ˆ( ) / ( )a aU U      . Note that  (1.12)-(1.13) is 
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set in a dimensionless temporal reference frame, while spatial derivatives are kept in dimensional 

form for convenience. The dimensionless time is expressed in terms of the advective time scale 

in the mobile phase, because this process is considered to have a relevant influence on the overall 

transport scenario. The corresponding boundary conditions at the liquid-liquid and liquid-solid 

interfaces within l  are 

ˆ ˆ

ˆ ˆ0    ; 

ˆ,       

   

c c

c

c c



 

 

  

 

  

  





n n

n x

x . (1.14) 

Here,   identifies the liquid-solid boundary interface; unit vector n  is normal to   and 

directed from   towards  , and   n n . Boundary conditions (1.14) ensure the 

continuity of the flux and solute concentration at the boundary   between the two regions. 

The system (1.12)-(1.13) is completed by the following boundary conditions on ext  

ˆn 0e ic   ˆ x ,out imp   (1.15) 

ˆ
ˆi

e i e i i
i

a
c c N

Pe
   u n n ,  ˆ x in  (1.16) 

where ,i   , en  is the inward unit normal to the external boundary, and Ni is a (non 

dimensional) flux term. Here, ext  has been decomposed into three parts, i.e., the inflow and 

outflow boundaries, respectively indicated as in  and out , and an impermeable boundary imp . 

We assume concentration to be constant in the domain at the initial time, i.e., 

ˆ( , 0)ic t C x   (1.17) 
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3.  Volume averaging 

 

 

Figure 3. Sketch of the pore scale partition of the averaging volume  . 

 

We adopt the volume averaging method [Whitaker, 1999] and average (1.12)-(1.13) over 

a volume, V̂  , that includes solid, V̂  , and mobile,   ˆ ˆ ˆ:lV Pe K    x x , 

and immobile,   ˆ ˆ ˆ:lV Pe K     x x , liquid sub-regions. A sketch of the averaging 

volume is reported in Figure 3. The characteristic length scale of V̂  is 0̂ ˆir a . 

Considering the scalar field  , the superficial ( i ) and intrinsic ( , ,
i

i i   ) 

averages of i i   within V̂  and V̂  are defined as 

 
 

 ˆ ˆ

1
ˆ ˆ ˆ ,

ˆ ˆ
i

i i

i i i
x

i V

d i
V

        
x

x y y
x

 (1.18) 
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It then follows that 
i

i i   , ˆ ˆ/i iV V   and 1        , where   = 

ˆ ˆ/i V V  . 

We then introduce [Whitaker, 1999]  

     
ˆ ˆ

1 1ˆ ˆˆ ˆ ˆ
ˆ ˆ

A A

dA dA
V V

 
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                      n n  (1.19) 
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
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 

 

n n

n n

 (1.20) 

Here, Â  and Â  are the internal surfaces delimiting volumes ˆ
iV  ( , )i    within V̂  and n

,   n n  are the corresponding outward unit normal vector. Note that Â    by definition 

because fluid velocity vanishes at the liquid-solid boundary (see also Figure 3). 

Application of volume averaging requires to decompose the pore scale concentration 

field into two contributions, i.e., 

i

i i ic c c    (1.21) 

where 
i

ic  ( , )i    is defined according to (1.18) and ic  is a zero-mean fluctuation term 

representing local deviations from 
i

ic  within ˆ
iV . We introduce ˆ

cL , L̂ , and 1
ˆ
cL , as the length 

scales respectively associated with the variations of (averaged) concentration, porosity and 

concentration gradient, i.e., 
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  
 

   
 
 

  (1.22) 

Here, O() indicates order of magnitude of the quantities in parenthesis and X  is a 

characteristic magnitude of the spatial variation of X over the length scale ˆXL . 

We show here the main steps of the volume averaging procedure. Let us integrate 

equation (1.12) in the volume V 
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ˆ ˆˆ [ ]
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a c c
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Pe
  

 





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
u  (1.23) 

Applying definition of the intrinsic average we find   
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u  (1.24) 

Now we use volume average theorem (1.20) to obtain 
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 (1.25) 

Note that two surface integrals are included in (1.25). Both of them are induced by 

boundary flux exchange between the two regions. In particular the first one is due to advection 

through the boundary between two phases and the second one is due to diffusion. Consequently 
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the volume averaged equation in the  and  regions will be always coupled to each other 

through these terms.  

Using the volume averaging theorem as in equation (1.25) we get 

ˆ

2 2
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 (1.26) 

Then we introduce the following decompositions of concentration and velocity fields 

c c c


    (1.27) 

u u u


    (1.28) 

where c ,u  are the zero-mean fluctuations of the local concentration and velocity in 

volume V̂   respectively. 

After we substitute (1.27), (1.28) into (1.26) one finds  
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 (1.29) 

Equation (1.29) represents the region-averaged transport equations in the superficial 

form. We identify several macro-scale terms such as macro-scale dispersion and diffusion also 

terms that involve the spatial deviation quantities. In addition, the inter-region flux (last term) is 

specified entirely in terms of pore-scale concentration fields.  Our aim is now to develop the 

closure problem, which will allow us to determine the diffusive and dispersive terms. We start by 
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decomposing inter-region flux into macro-scale quantities and spatial deviation quantities. It can 

be shown  that  

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆˆ
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A A

a a a a
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 u u  (1.30) 

Above we used the divergence theorem to express the area integral over the velocity field 

and the assumption that velocity is divergence free. Then we use that for spatially periodic 

system,  is zero. 

Using these assumptions we can write inter-region flux in terms of spatial deviation of 

the concentration 
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 (1.31) 

Following the same steps described above we can write equation for the  -phase. Then 

the system for both regions take following form: 
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 (1.32) 
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The last integral term appearing on the right hand side of (1.32) and (1.33) represents the 

concentration flux through the surface Â . Boundary integrals on the liquid solid surface Â  

do not appear in the volume averaged equations, due to the corresponding zero-flux boundary 

condition in (1.14). Equations (1.32)-(1.33) can be derived upon assuming typical scale 

separation hypotheses for the two concentration fields, namely 
2

0 1
ˆ ˆˆ c cr L L , 2

0 1
ˆ ˆˆ cr L L , 

0ˆ ˆˆi ca r L . 

4. Equations for fluctuations 

 
The system of equations (1.32)-(1.33) includes terms that depend on the concentration 

fluctuations c  and c . Formulation of closure relationships is then required to enable one to 

express c  and c  in terms of volume averaged concentrations. Subtracting the volume averaged 

equations (1.32)-(1.33) from the original pore scale system (1.12)-(1.13) leads to 
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 (1.34) 

Let’s consider the convective transport term in (1.34). We make use of the velocity 

decomposition to obtain 

c c c c
  

         u u u u  (1.35) 
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Using the divergence theorem and ignoring the deviations of volume fraction one can get 

ˆ 0


  u  (1.36) 

Here we simplify the diffusive flux 
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As a final simplification we make use of the averaging theorem to write 
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using that the average of the deviation equal to zero we write 
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These allow us to recast the previous result in more compact form given by 
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Now let’s estimate and compare diffusive terms 
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comparing the orders of magnitude of two terms in (1.41) we can neglect the second one 

when satisfied the length scale assumption ˆâ h  . We can do the same with the convective 

terms so that 
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[ ],      
c c

u c O u c O
u u

L l

 

   

 



     
     
  
    

 (1.42) 

and the first one in (1.42)can be neglected. On the basis of these simplifications equation 

for c  may be written in the form of  
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ˆˆ ˆ

ˆ ˆ
ˆ

ˆ

1 ˆˆ ˆ ˆ
ˆ

A

c
a c a c

t

a a
c a c c dA
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 
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 


  



 

    

   
        

      


u u

un

 (1.43) 
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


  



  

    

   
       

      


u u

un

 (1.44) 

with boundary and initial conditions 

   
 

   

ˆˆ ˆ ˆ,

ˆˆ,

ˆ ˆ ˆ

c c A

c c c c A

c c c c



    

 

    

 

      

       

     

               

n n x

x

n n n ˆˆ A x

 (1.45) 

ˆ ˆ( , 0) 0,          ( , 0) 0c t c t    x x  (1.46) 

Note that the terms ˆâ c 



   
  

u  and ˆâ c 



   
  

u  are not included in (1.43)-(1.44) 

following standard volume averaging analyses [Whitaker, 1999]. The validity of this assumption 

in the presence of a Dirichlet boundary condition is discussed in Golfier et al. [2002] in the 

context of upscaling of heat transfer in capillary tubes. Here, we note that, as opposed to the 



32 

 

work of Golfier et al. [2002] where the Dirichlet boundary condition for the fluctuation term is 

expressed in terms of an averaged value, our (1.45) involves the difference between two 

averaged concentrations, c c
 

  . Albeit this argument cannot be used in general to 

compare orders of magnitude of averaged concentration and local deviations, equation (1.43)-

(1.44) are consistent with previous studies where volume averaging of two-region transport 

model is performed in the presence of boundary conditions of the kind (1.45) [e.g., Orgogozo et 

al, 2010; Chastanet and Wood, 2008].  

Following Whitaker [1999], the porous medium is conceptualized as a collection of unit 

cells containing pores of arbitrary shapes. The solution of (1.43)-(1.44) is then performed within 

a unit cell in the presence of periodic boundary conditions. The system (1.43)-(1.44) is composed 

by two time dependent equations with time-invariant coefficients. Hence, its solution tends 

asymptotically towards a steady state condition, i.e., a steady closure of the system is valid only 

for long enough times. The relevance of the transient stage on the solution depends (in general) 

on the geometry of the problem at the level of the unit cell and on the Péclet number in each sub-

region as suggested in Porta et al. [2012]. Here, we retain the transient effects in the formulation 

of the closure problems associated with both mobile and immobile regions. Note that, even as 

one could (in principle) assume problem (1.44) to reach steady state at early time due to small 

advective effects ( 10Pe  ), boundary conditions (1.45) link the closure problems in the two 

sub-regions considered. Hence, the solution to the closure problem in the immobile region is 

likely to be influenced by the mobile region also for relatively long times. As the system is linear 

in c  and c , superposition can be invoked. The spatial distribution of the concentration 

fluctuations can then be written in terms of the source terms appearing in (1.43)-(1.45), which 
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are expressed as functions of the intrinsic average of the concentrations and their gradients. 

These latter quantities can be considered as uniform within the averaging volume on the basis of 

scale separation arguments. 

Following Moyne [1997], we assume the following relationships to hold 

 

 

1 1 0

1 1 0

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ* * *

c c c g c c
t t t

c c c g c c
t t t

   

       

   

       

  
        

  

  
     

  

g g

g g

 (1.47) 

Here, dimensional vectors 1ˆ g , 1ˆ g , 1ˆ g , 1ˆ g  and dimensionless scalars 0g  and 0g  are closure 

variables, and   indicates convolution, e.g.,    1 1

0

ˆ ˆˆ ˆ
t

c t c d
t

 

    


 
     
 

g g . 

Note that different linear combinations of the source terms appearing in (1.43)-(1.45) are 

possible and lead to different formulations for the closure variables. Here, we rely on the 

formulation (1.47), which has been previously suggested and employed for the analysis of heat 

transport [Moyne, 1997] and mass transfer in heterogeneous bimodal porous media [Ahmadi et 

al., 1998; Quintard et al., 2001; Cherblanc et al., 2003, 2007; Golfier et al., 2011].  

5. Closure equation systems 

Here  the details of the complete system of equations are presented (i.e., six equations, 

three of which are defined in V̂  and three in V̂ ; note that these equations are coupled in pairs 

through boundary conditions (1.45))  which is used to compute the closure variables introduced 

in (1.47).  
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Problem I 

1 2

1 1 1
ˆˆ

ˆ ˆ ˆˆ ˆˆ ˆ
a

a a
t Pe



 


     






      


 
   
 

  

g
u ug g v ;   ˆˆ Vx  (1.48) 

1 2

1 1 1
ˆˆ

ˆ ˆ ˆˆ ˆ ˆ
a

a
t Pe






     



 


     


 
   
 

  

g
u g g v ;             ˆˆ Vx   (1.49) 

Boundary conditions at the internal surfaces Â  and Â  of the unit cell are 

1 1ˆ ˆ g g  ˆˆ Ax  (1.50) 

1 1ˆ ˆ( ) ( )        n g I n g  ˆˆ Ax  (1.51) 

 1ˆ ˆ 0    n g   ˆˆ A x  (1.52) 

We assume that initial solute concentration is uniform within the system. In the presence 

of, e.g., zero initial concentration, the corresponding initial condition is 

1 1ˆ ˆ( 0) 0,           ( 0) 0t t    g g  (1.53) 

The following two conditions are additionally set due to the system periodicity  

1 1 1 1ˆ ˆˆ ˆ ˆ ˆ( ) ( ),      ( ) ( ),      1,2,3i ia ar r r r i       g g g g  (1.54) 

1 1ˆ ˆ0,           0
 

  g g  (1.55) 

We use vectors v  and v  to represent the two following quantities 
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1 1
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ˆ
ˆ

1 ˆˆˆ ˆ
ˆ

A

a
a dA

PeV





    



 
    

  
 uv n g g  (1.56) 

2

1 1

ˆ

ˆ
ˆ

1 ˆˆˆ ˆ
ˆ

A

a
a dA

PeV





    



 
    

  
 uv n g g  (1.57) 
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The definition of the other two coupled systems of equations is reported below and relies 

on the same type of formulation illustrated above. 

Problem II 

1 2

1 1
ˆˆ

ˆ ˆ ˆ
a

t Pe

 
  






   


 
 

  

g
g v V̂x  (1.58) 

1 2

1 1 1
ˆˆ

ˆ ˆ ˆˆ ˆˆ ˆ
a

a a
t Pe



 


      



 


     


 
    
 

  

g
u ug g v V̂x  (1.59) 

Internal surface boundary conditions: 

1 1ˆ ˆ g g  ˆˆ Ax  (1.60) 

   1 1ˆ ˆˆ ˆ        n g n g I  ˆˆ Ax  (1.61) 

   1ˆ ˆ       n g n I   ˆˆ A x  (1.62) 

Initial conditions: 

1 1ˆ ˆ( 0) 0,           ( 0) 0,t t    g g  

 (1.63) 

Periodicity: 

1 1 1 1ˆ ˆˆ ˆ ˆ ˆ( ) ( ),      ( ) ( ),      1,2,3i ia ar r r r i       g g g g  (1.64) 

Average: 

1 1ˆ ˆ0,           0
 

  g g  (1.65) 

We use vectors v  and v  to represent the following quantities 
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 uv n g g  (1.67) 

Problem III 
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a
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g g
Pe






    



 
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

 
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 
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u        V̂x  (1.68) 

0 2

0 0 1
ˆ

ˆ ˆ ˆˆ
ag

a
t

g g
Pe






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

  


     


 
   
 

  

u     V̂x  (1.69) 

Internal surface boundary conditions: 

0 0 1g g    ˆˆ Ax  (1.70) 

   0 0ˆ ˆg g       n n  ˆˆ Ax  (1.71) 

 0ˆ 0g   n   ˆˆ A x  (1.72) 

Initial conditions: 

1 1( 0) 0,           ( 0) 0g gt t      

 (1.73) 

Periodicity: 

0 0 0 0ˆ ˆ( ) ( ),      ( ) ( ),      1,2,3i ia ag r g r g r g r i         (1.74) 

Average: 
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0 00,           0g g
 

    

 (1.75) 

Here, the mass transfer coefficients,   and  , are defined by 
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 un  (1.76) 
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 un  (1.77) 

 

6.  The upscaled two-equation transport model 

 
Substitution of (1.47) into (1.32)-(1.33) yields the closed form of the desired (upscaled) 

two-equation model. The continuum scale system driving the evolution of the (volume) averaged 

concentration can be formulated as 
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 (1.78) 
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 (1.79) 

Equations (1.78) and (1.79) are nonlocal in time, as they include time convolutions. Terms 

appearing in (1.78)-(1.79) are indicated and grouped as follows, to highlight their distinct 

contributions. The terms denoted as ADi (i = , ) are the standard advective terms. Terms 

indicated as AADi (i = , ) are additional advective terms, containing the difference between the 

two averaged concentrations. Terms ME1i and ME2i (i = , ) represent mass exchange between 

the two sub-regions considered. Terms D1i and D2i (i = , ) represent dispersive effects. The 

resulting upscaled system of equations can then be compared against the DRMT/MRMT 

formulations in a straightforward manner. 

Note that all coefficients appearing in (1.78)-(1.79) are dimensionless. The definition of 

these coefficients is provided in the following, where we distinguish: 

 Advective coefficients. Besides the two mean velocities, 


u  and 


u , the following 

advective coefficients appear in (1.78)-(1.79) 
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 
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 uv n g g  (1.80) 
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The following two coefficients appear due to the introduction of the closure variables 0g  

and 0g   

0 0

ˆ

ˆ
1 ˆ
ˆ
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aPe g g dA
V




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         d u n (1.85) 

These may interpreted as additional convective coefficients which arise as a consequence 

of mass exchange between the two regions V̂  and V̂ . 

 Dispersive coefficients. These are defined as the tensors 
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 Mass transfer coefficients 
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All these coefficients are directly linked to the pore scale characteristics of the system 

and can be computed once the pore scale geometry and velocity fields are available for a given 

geometry of the unit cell. The formulation of the upscaled system presented above is similar to 

that obtained by application of volume averaging to solute transport in heterogeneous porous 

media at a larger scales [e.g., Ahmadi et al., 1998; Quintard et al., 2001; Cherblanc et al., 2003, 

2007; Chastanet and Wood, 2008; Golfier et al., 2011]. Our upscaled coefficients are expressed 

directly in terms of pore scale quantities and the porous medium is assumed to be homogeneous 

(in terms of hydraulic conductivity distribution) at the continuum scale. 

Our upscaled two-equation system (1.78)-(1.79) can be readily compared against typical 

dual- and multi-rate mass transfer (DRMT/MRMT) formulations [Haggerty et al., 2000, 2004]. 

As previously recalled, these models represent pore scale mass fluxes between regions associated 

with different characteristic velocities through mass transfer processes taking place at a 

continuum scale and driven by a set of effective parameters. A typical formulation associated 

with MRMT models is presented by system (1.10)-(1.11) 

0

( ) ( ) ( )m
m m im

C
L C f C C d

t
  




  
   (1.92) 
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( )im
m im

C
C C

t



 


  (1.93) 

Here, mC  and imC  are solute concentrations in the mobile and immobile phase, respectively;   

is the ratio between immobile and mobile phase porosities; ( )mL C  is the operator representing 

solute migration due to advection and dispersion;  f   is a probability distribution function 

associated with the continuous set of first-order rates controlling mass transfer between mobile 

and immobile phases and satisfying 

0

( ) 1f d 


 . In this sense, the quantities  and  

representing in (1.78)-(1.79) the volumetric fractions of the mobile (V̂ ) and immobile (V̂ ) 

regions within the unit cell are respectively termed as mobile and immobile porosity in the 

context of traditional MRMT formulations. Note that the liquid-liquid interface integral 

describing mass transfer between V̂  and V̂  is split into different components in (1.78)-(1.79). 

These include (a) kinetic mass transfer terms which are expressed through the coefficients   

(1.91) and   (1.90) that are characterized by the same format of the corresponding terms 

appearing in MRMT models, and (b) advective-like quantities, which include the coefficients 

(1.80)-(1.83). These latter coefficients account for advective-diffusive exchanges taking place 

through the boundary between the - and - regions and are usually not included in MRMT 

models. 

The comparison between the volume averaged system (1.78)-(1.79) and the MRMT 

model (1.92)-(1.93) allows to identify the key hypotheses embedded in the latter. These can be 

summarized as follows. 
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1) The advective and dispersive terms appearing in (1.92) and depicting transport in the 

mobile region are local in time. Our upscaled formulation reduces to a similar format 

when one introduces in (1.86) the asymptotic solution for the closure variable 1
ˆ g , i.e., 

when the solution of the corresponding quasi-steady closure problem is employed. In this 

sense, the MRMT scheme implicitly assumes that subdividing the pore space into 

different sub-regions incorporates nonlocal dispersive effects taking place in the mobile 

region. The MRMT model retains nonlocal contributions only in the mass exchange 

terms.  

2) All terms associated with advective and dispersive effects and appearing in (1.79) are 

neglected in (1.93), which describes transport in the immobile region. 

3) The additional advective terms of the type AADi (i = , ) are usually neglected in 

MRMT formulations. This may be justified on the basis of the following assumptions 

   ˆ ˆ ˆ ˆ ˆ ˆ; ;c c c c c c c c       

       
           (1.94) 

In other words, if the gradients of concentration within the - and -regions are similar, 

then the gradient of their difference becomes negligible. Clearly, this might not be a 

sufficient condition if 
i

i id u ; likewise, it might not be a necessary condition if 

i

i id u . The validity of the assumption (34) may depend on the specific case 

considered as well as pore scale concentration distribution at initial time (e.g., the 

condition expressed in (1.94) might be attained only for long times) because id  depends 

on pore scale geometry and the ensuing spatial fluctuations of the velocity field. 

Assuming that (1.94) holds, leads to 
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 ˆ ˆ ˆ* * *c c c
t t t
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 * * * *ˆ ˆ ˆ ˆ ˆ ˆ* * *c c c
t t t

  

  

           
       

             
D D D D  (1.98) 

This imply that the two equations of the upscaled model (17)-(18) are coupled only 

through the difference of the two average concentrations (and not through their gradients) 

when (1.94)-(1.98) hold, consistent with the MRMT formulation (1.92)-(1.93). 

4) Mass exchange terms in (1.78)-(1.79) include the usual mass transfer coefficients  and 

. They also include two additional terms (ME1 and ME2) representing advective 

effects, which are not explicitly represented in the standard MRMT model. As a 

consequence, the effective mass transfer coefficient appearing in traditional MRMT 

models may implicitly represent the combined effects of the advective (1.80)-(1.83) and 

standard (1.90)-(1.91) mass transfer coefficients. The relative proportion of mobile and 

immobile porosity is usually unknown in field or laboratory scale settings and is often 

considered as a calibration parameter in typical applications of MRMT models. 

Parameter calibration influences the value of the effective advective coefficient which is 

considered through application of (1.92). Hence, the calibration of the optimal 

mobile/immobile porosity partition may embed also the effects of the mass exchange 

terms ME1 and ME2 in (1.78)-(1.79). 
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5) The mass transfer coefficients appearing in (1.78)-(1.79) depend on velocity, as (1.80)-

(1.83) and (1.90)-(1.91) include terms associated with normal velocity components 

i u n . The dependence of the effective mass transfer rate coefficients on velocity has 

been discussed by Haggerty et al. [2004]. These authors analyzed a large set of 

laboratory scale data and concluded that effective mass transfer coefficients display a 

mild dependence on the system velocity even for long times, when diffusive exchanges 

are dominant. Moreover, it can be observed that the effective dispersion coefficients, and 

particularly the dispersion coefficient in the mobile phase, depend on the local 

distribution of velocity within the averaging volume, as shown in (1.86). Hence, the 

effective dispersion tensor appearing in (1.78)-(1.79) is a priori influenced by the 

criterion one selects to partition the pore space into the - and - regions. This feature 

should be taken into account while calibrating the dispersive term in (1.92). 

The DRMT model formulation is a simplification of the MRMT model. The 

corresponding transport equations can be expressed as 

( ) ( )m
m m im

C
L C C C

t



  


  (1.99) 

( )im
m im

C
C C

t



 


  (1.100) 

where mass transfer between the two regions is represented through a linear model. As observed 

by Chastanet and Wood [2008] in the context of transport in (large scale) heterogeneous porous 

media, different levels of simplifications can be introduced to reduce the mass exchange term 

ME2i in (1.78)-(1.79) to the format which is assumed in (1.99)-(1.100). First, if the temporal 
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variation of the difference  c c 

 
  is slower than that associated with the coefficient   

and  , then the following approximation holds 

   * ( ) ,i ic c c c
t

t i   

   
   




      (1.101) 

The latter is termed as uncoupled transient model by Chastanet and Wood [2008]. If a quasi-

steady solution can be assumed to hold for the closure variables 0g  and 0g , then the 

coefficients i  are constant in time and the mass transfer terms ME3 reduces to the classical 

form of the DRMT model. This approximation is termed quasi-steady model by Chastanet and 

Wood [2008]. The effect of the mass exchange terms ME1 and ME2 is not explicitly considered 

in (1.99)-(1.100) and the effect of the contribution of these two terms can be considered as 

embedded in the calibration of the mobile/immobile porosity partition. 

The full set of assumptions mentioned above enable one to recover the (local in time) DRMT 

model from (1.78)-(1.79). Although nonlocal formulations are more rigorous than their localized 

counterparts from a theoretical viewpoint, solving them is computationally demanding and 

requires the formulation of complex algorithms. In this sense, one could argue that there are no 

unique guidelines in terms of the optimal choice between alternative modeling options and one 

should always balance different factors, including (i) model accuracy, (ii) mathematical and 

computational complexity, and (iii) availability of characterization information at the scale of 

interest. In this sense, our work does not claim that the formulation proposed in (1.78)-(1.79) 

should be employed to model any practical situation. Instead, our key aim is to put into evidence 

the complete set of assumptions which are implicitly embedded in the well known and widely 
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used DRMT/MRMT transport models and provide a direct link between the parameters 

embedded in these models and pore scale transport features. 
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III.  Application 

1. Problem setup 

 

Figure 4. Sketch of the plane channel geometry 

Theoretical results of Section II are illustrated here through a scenario where solute transport 

is taking place within a two-dimensional plane channel. Solute migration in the channel is due to 

advection (governed by a Poiseuille flow configuration) and molecular diffusion. The transient 

behavior of the coefficients characterizing the upscaled two-equation model is identified. The 

latter is obtained through a one-dimensional solution of the unsteady closure system. It is shown 

that time convolutions do not play a relevant role in this simple case, because asymptotic values 
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of the coefficients are attained rapidly. The local in time two-equation model is then solved and 

the relative importance of all terms and associated coefficients appearing in the final two-

equation model is quantified through an order-of-magnitude analysis. A compact formulation 

which can be employed to describe the upscaled system dynamics is finally derived from the full 

two-equation model and a comparison against classical DRMT/MRMT models is presented. 

We solve (1.78)-(1.79) to describe solute transport within a plane channel aligned along the 

x-direction and characterized by a uniform aperture ĥ , under steady-state flow conditions. Figure 

4 depicts a schematic representation of the problem setup. The distribution of the longitudinal 

component of velocity, û , is known analytically and is described by a parabolic expression along 

the transverse direction, ŷ . We subdivide the channel space into two low-velocity zones (-

regions), located near the channel impermeable walls, and a high-velocity zone (-region), 

located in between them. The width of the two -regions is determined upon setting a threshold 

for local Péclet number at the value K = 10. 

We remark that, while this simplified geometry is not fully representative of complex 

porous media structures, it enables one to clearly show the way pore scale features propagate to 

DRMT/MRMT models.  

2. Closure Problems 

Here we present the set of the closure problems (1.48)-(1.77) in case of the plane channel 

under consideration. In this particular geometry the closure equations can be written in a one-

dimensional formulation, i.e. along the channel section. 
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Initial conditions of the problem are 

1 1ˆ ˆ( 0) 0,        ( 0) 0g t g t      

 (1.107) 

The following conditions are also imposed 
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Initial conditions: 

1 1ˆ ˆ( 0) 0,           ( 0) 0,g gt t      

 (1.114) 

Average: 
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Problem III 
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Initial conditions: 

1 1( 0) 0,           ( 0) 0g gt t      

 (1.121) 

Average: 

0 00,           0g g
 

    (1.122) 

 

Time dependent solution of the presented closure equations system can be obtained 

numerically in order to analyze time behavior of the system (1.78)-(1.91). On the other hand the 

analytical expression of the closure variable can be obtained in the steady state asymptotic 

solution, which is attained for long times.  

3. Analytical solutions 

The asymptotic solution of the closure problems  and the coefficients (1.80)-(1.91) can be 

obtained analytically, upon considering that the closure problem is invariant along the x-

direction.  

After the assumptions above the closure system for Problem I becomes a system of 

ordinary differential equations  

22
1 1

ˆ
ˆ ˆ( )

ˆ

a
a

d
u y g v

dy Pe



   




 

 
 

  

;   ˆ ˆ / 2y a  (1.123) 
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1 1

ˆ
ˆ ˆ( )

ˆ

a
a

d
u y g v

dy Pe


    




 

 
 

  

;    ˆˆ ˆ/ 2 / 2a y h     (1.124) 
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1 1ˆ ˆg g   ˆ ˆ / 2y a  (1.125) 

1 1ˆ ˆ
1

ˆ ˆ

dg dg

dy dy

 
   ˆ ˆ / 2y a  (1.126) 

1ˆ
0

ˆ

dg
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
    ˆˆ / 2y h  (1.127) 

The following conditions are also imposed 

1 1ˆ ˆ0,           0g g
 

    (1.128) 

Solving (1.123) gives 
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  (1.130) 

where 1C and 2C  are constants. 

Solving (1.124) we obtain 
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4 2
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a
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y

y
C

d a
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 
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where 3C and 4C  are constants. 
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Then by applying boundary conditions (1.125)-(1.127) and average constraints (1.128), 

one can find the 1C , 2C , 3C , 4C , v , v . 

 The analytical expressions for the full set of closure variables can be obtained 

accordingly. The dull analytical solutions are provided below and graphically in Figures 5-7. 

2

2 2 2

4 2

1

4 3 2

ˆ
ˆ ˆ ˆ ˆ( )

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

180 (2 )1
60 5(6 )

360

30(6 )( 4 ) 30(12 ) 6(5 )( 12 )

2

(180 360 ( 2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ) 10 ˆ8 ( 2 ) 24 ( 5 ))ˆ

ˆ

y Pe
yPe Pe a

a

Pe y a a Pe a Pe y a

a a a

Pe y a y a a y a a a ya a a

g y


  


      

  

         



 
    


      
 



      





2 2ˆ ˆ ˆ ˆ( 6 6 )a a a a a    




  

  (1.133) 

2 2 2

2 2 2 2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ15 (4 ) 6 6 6( 2 ) 6

60( 2 )(3 4 )

2 (40 7 ) 6 6 6( 2 ) 6

60 (

ˆ
ˆ ˆ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

2 )(3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ4 )

a Pe y ya a y a a a

a a a a

a Pe y ya a y a a a

a a a

y

a a

g
      

   

      

    



       
 

 
 

       





 



  (1.134) 

2 2 2

2

1

2

2

(( 10 ) 60 60 )ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ(

( 3 )

6
)

ˆ0 ( 2 )(ˆ ˆ ˆ ˆ ˆ ˆ6 6 )

a Pe a a a a y a

a a a a a a
y

a
g

      

  



  





     

  
   (1.135) 

3 2 2

2

1

4 3 2

2

2 2 2

(15(2 ) (40 31 ) 18 )

60 ( 2 )(3

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ( )

ˆ ˆ ˆ ˆ 4 )

30 ( 2 ) 60 ( 2 )

60 ( 2 )(3 4 )

3 (30(

ˆ

ˆ ˆ

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ) 5(8 17 ) 6ˆ ˆ ˆ ˆ6 )

6

a Pe a Pe a a Pe a

a a a a a
g

y Pe a a y Pe a a

a a a a a

y a Pe a P

y

e a a Pe a

       

    

     

    

     









   


 

  


 

 



 

20 ( 2 )(3 4 ˆ )ˆ ˆ ˆ ˆa a a a a     

  (1.136) 

2 2

0

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ( )

ˆ

6 6 6( 2 ) 6

( 2ˆ ˆ )

y ya a y a a a

a a
g

a
y

    

  


     


   (1.137) 



54 

 

2 2

0
ˆ ˆ

ˆ( )
ˆ ˆ

3

( 2 )ˆ

y a
yg

a a a



  





 
   (1.138) 

 

Figure 5. Asymptotic solutions of the closure variables for the Problem I 
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Figure 6.  Asymptotic solutions of the closure variables for the Problem II 

 

Figure 7.  Asymptotic solutions of the closure variables for the Problem III 
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Upon substitution of  (1.133)-(1.138) into (1.80)-(1.91) we obtain the following 

analytical expression of the coefficients appearing in (1.78)-(1.79) 
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4. Results 

In this section we analyze the upscaled two-equation transport system  for a plane 

channel. In particular, we analyze the time and space behavior of the coefficients and terms of 

the equations. The impact of every term on the global behavior of the system is analyzed and 

possible simplifications are discussed.  

For the purpose of our analysis, we consider a Péclet number, where the average velocity 

is given by    /U u u
 

           , to characterize the continuum scale behavior 

of the system. 
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Figure 8. Dependence of the advective coefficients (1.139)-(1.142)  on hPe . 

 

Figure 8 depicts the dependence of the asymptotic advective coefficients (1.139)-(1.142) 

on Peh. The coefficients are all normalized with respect to U. Note that 0 u n  in this case 

and the coefficients ijv  in (1.139)-(1.142) essentially represent a diffusive mass exchange 

between the - and - regions identified. We observe that  v v  for the full range of 

considered hPe . On the other hand v  and v  are of the same order of magnitude and attain 

the same value for large hPe . All these coefficients reach asymptotic values for large hPe , 

becoming proportional to U, i.e., they depend linearly on hPe  for 1hPe . 
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Figure 9. Dependence on hPe  of the dispersive coefficients introduced in (1.145)-(1.148) 

 

Figure 9 depicts the dependence on hPe  of the asymptotic dispersive coefficients (1.145)-

(1.148). The classical Taylor-Aris expression 
* 21 / 210TA hD Pe   [Wooding, 1960] which is 

typically included in an ADE-based transport model is also presented as a term of comparison. 

Note that the dispersion coefficients embedded in the two-equation model (1.78)-(1.79) are 

proportional to 
2
hPe . All the dispersive coefficients 

*
ijD  (1.145)-(1.148) are considerably smaller 

than 
*
TAD . This happens because part of the hydrodynamic dispersion is included in the mass 

transfer and the additional advective coefficients resulting from the upscaling procedure.  
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Figure 10. Time evolution of (a) dispersive coefficients *
ijD  ( , ,i j   ), (b) advective coefficients 

d  and d , and (c) mass transfer coefficients for 20hPe  ; (d) dependence on hPe  of the 

asymptotic time (
*
Dt ) at which each of the coefficients attains its asymptotic value. Black and 

open symbols are associated with coefficients respectively appearing in (1.78)-(1.79). 

 

Figure 10 depicts the dependence of the model coefficients on the dimensionless time 

2ˆ ˆˆ /Dt th D . Coefficients are grouped into three subsets, depending on their role in the two-

equation model. We then quantify the times at which the coefficients attain their asymptotic 

value as a function of hPe . 
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Figure 10a presents the time evolution of the four dispersive coefficients *
ijD  ( , ,i j   ) 

for 20hPe  . All dispersive coefficients *
ijD  reach their asymptotic values at 0.03Dt  . This 

result can be compared against the findings of Wang et al. [2012], who consider a time varying 

dispersion coefficient in a single-equation model. The dispersion coefficient appearing in their 

single-equation model varies in time ranging between the value associated with the diffusion 

coefficient and the asymptotic value given by the Taylor-Aris expression [Wooding, 1960]. In 

our scenario, the approach towards an asymptotic value takes place in a relatively short time 

interval because of the small local variability displayed by the velocity field within the - and -

regions considered. Hence, the source terms iu  appearing in  (1.48) and (1.49) do not have a 

strong influence on the problem. This result supports the hypothesis 1) underlying the MRMT 

model according to which this dispersion term can be considered local in time in the set-up 

considered. We observe that * *D D   and * *D D   during the entire time interval 

considered. Figure 10b shows the temporal behavior of the two coefficients d  and d . It can be 

observed that the coefficient d  exhibits a large variation in time and reaches its asymptotic 

value ( 1.1) at 0.07Dt  . Conversely, the temporal variability of d  appears to be negligible. 

Figure 10c depicts the time evolution of the coefficients which are related to mass exchange 

between the two regions  and . It can be seen that the two coefficients i  ( ,i   ), which are 

associated with the same closure problem, display the same temporal dynamics and exhibit large 

variations over time. On the other hand, the coefficients ijv  ( , ,i j   ) display a limited range 

of variability between their initial and asymptotic values. The largest time variation is associated 
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with coefficients id  and i , all of which are related to closure problem (1.68)-(1.77). Hence, it 

appears that the asymptotic solution for (1.116)-(1.122) (Problem III) is attained at later times 

than the solutions of the other closure variable systems (1.102)-(1.108) (problem I) and (1.109)-

(1.115) (problem II). Figure 10d depicts the way the asymptotic time (
*
Dt ) at which each of the 

coefficients attains its asymptotic value for the considered setting depends on hPe . All mass 

exchange coefficients i  reach their asymptotic value for a dimensionless time 0.13Dt   

regardless the value of hPe  considered. The asymptotic times associated with the remaining 

coefficients display some dependence on hPe . For hPe  up to 120, the largest (dimensionless) 

time required by these coefficients to reach an asymptotic value is smaller than 0.16. This shows 

that temporal variability of the coefficients is confined to a very limited range of times for the 

example considered, in agreement with the findings of Orgogozo et al. [2010] for a similar 

setting. 

5. Analysis of whole system behavior 

We then analyze the effect of the assumptions which can be invoked to simplify the 

upscaled system (1.78)-(1.79) and link it to DRMT/MRMT transport models. We do so by 

solving (1.78)-(1.79) in a one-dimensional setting. The solution is performed numerically 

through a finite difference method in time and space by employing an explicit method to 

approximate time derivatives. We consider transport of a finite slug of solute at a given 

concentration 0ĉ  which is initially introduced in a finite portion of the plane channel. The 

channel length is set as a function of Peh in a way that the outlet boundary condition does not 
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influence the solution for the dimensionless times of interest. On the basis of the results shown in 

Figure 10d and in agreement with previous literature findings for similar settings [e.g., Orgogozo 

et al., 2010], we neglect here the influence of time convolutions and consider the asymptotic 

values of the coefficients. Our aim is to provide a quantitative analysis of the influence of each 

term appearing in the system (1.78)-(1.79) and study the appropriateness of the assumptions of 

DRMT and MRMT models in this simple geometrical setting. For the purpose of our 

comparison, we compute the L1-norm 

 
ˆ

1
0

ˆ ˆ( )

L

i iL
T T x dx    (1.151) 

Here, L̂  is the length of the channel and Ti represents any of the terms appearing in (1.78)-(1.79). 

The relative contribution of each term is then calculated as 

1

1

1

R i L
i L

i L

T
T

T



  (1.152) 

1

R

i L
T  providing a quantitative measure of the relative importance in the whole domain of each 

term appearing in the upscaled two-equation model. 

 

Figure 11a and Figure 11b show the temporal evolution of (1.151), as calculated with 

reference to all terms appearing in the transport equations associated with the - (Figure 11a) and 

- (Figure 11b) regions. A considerable variation in the relative importance of the different terms 

is observed for short times. One should note that the behavior of the system at these short times 

is strongly influenced by the initial condition, which is characterized by local discontinuities of 

the concentration field. Scale separation constraints do not hold under these conditions. Hence, 



64 

 

the upscaled formulation may not be accurate. The relative magnitude of the different terms 

stabilizes after some time (i.e., 1Dt   in Figure 10). 

 

 

Figure 11. Temporal evolution of the relative magnitude of the terms Ti for the (a) - and (b) - 

region transport equations. Definitions of the terms are provided in (1.78)-(1.79). 

 

Figure 12. Comparison of the relative influence of the terms Ti for different Péclet numbers and 

dimensionless time 3Dt  . Definitions of the terms are provided in (1.78)-(1.79). 
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Figure 12a-b compare the relative contribution of the various terms considered for 

different Péclet numbers at a dimensionless time 3Dt  , for which the initial condition does not 

influence the solution. Figure 12a depicts the results associated with transport equation (1.78) 

related to the mobile region. We observe that some terms appear to be negligible for all values of 

hPe  considered. In particular, the dispersive term (D2) is seen to have a negligible impact on 

(1.78). The same observation can be made for the additional advective term AAD. The relative 

importance of this term grows with hPe . However, it is noted that AAD remains of the order of 

10
-3

, regardless the relatively large values associated with its associated coefficient d  (see 

Figure 10b; note that dimensionless average velocity u


  = 1). This result supports the 

rationale underlying assumption (1.94) and justifies neglecting the term AAD in the upscaled 

model describing the configuration considered. The relative importance of the dispersive term 

(D1) decreases as hPe  grows. The standard dispersive term D1 is always dominant with 

respect to D2 The relative contribution of the two mass exchange terms ME1 and ME3 is 

always relevant and tends to stabilize at a constant value for large hPe . On the other hand, the 

influence of ME2 decreases with hPe . 

Figure 12b shows the results of the corresponding analysis for the -region transport 

equation (1.79). Here, mass exchange terms (ME1, ME2, ME3) dominate the problem, while 

the dispersive terms and the additional advective term are negligible. The relative influence of 

the advective term increases with hPe , to reach a maximum value of about 0.1. We recall that in 
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our example the subdivision between the - and -region is set by considering that Pe  10, so 

that the influence of the advective term in the -region is limited by this constraint. 

Considering the results reported in Figure 11 and Figure 12 and retaining only the terms 

which are associated with a relative influence larger that 5% for any of the values of hPe  

considered in Figure 12, the upscaled two-equation model can be recast into the following 

simplified format 
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 (1.154) 

To verify the appropriateness of the assumptions underlying (1.153)-(1.154) we simulate 

the transport problem by successively removing different terms from (1.78)-(1.79). Figure 13 

compares the solution obtained on the basis of the complete system (1.78)-(1.79) against the 

results which can be obtained by considering different degrees of simplifications of the problem. 

System 2 in Figure 13 corresponds to the solution of (1.153)-(1.154), while System 1 is a further 

simplified formulation which is obtained by dropping also the term D1. The latter simplification 

would be suggested in this case by the relatively limited influence displayed by this dispersive 

term at late times. System 3 illustrated in Figure 13 is more complex than System 2 and 

corresponds to neglecting only the dispersive terms D2,D1, and D2 from (1.78)-(1.79). The 
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solution of System 3 is substantially identical to that of the full system, suggesting that the terms 

D2, D1, and D2 do not affect the distribution of solute concentration at the continuum scale.  

 

Figure 13. Comparison of (upscaled) concentration fields obtained by solving the full system 

(1.78)-(1.79) and results associated with different degrees of simplifications of the 

problem. 

 

Note that the solution of System 2 (1.153)-(1.154) can be found upon neglecting the two 

additional advective terms AAD and AAD from System 3. We observe that these two terms play 

some role in the process development even as their influence appears to be limited (Figure 12). 

The solution associated with System 2 shows a slight under diffusion, even though it appears to 



68 

 

be reasonably accurate. We recall that the formulation of System 2 is compatible with a DMRT 

model where advection is considered also in the transport equation associated with the immobile 

region. Including this latter term in the model appears to be necessary in the configuration we 

examine, because the solute is migrating by advection also in the -region. However, stagnant 

zones where velocity is associated with very small values are likely to play an important role in 

high complexity geometries and one might assume that advection in the immobile region could 

be safely disregarded in the upscaled model. The solution of System 1 is notably different from 

the results of the other models. The concentration peak is highly overestimated and the 

concentration field is not symmetric, showing a thick backwards tail. This result suggests that the 

effect of dispersion in the mobile region cannot be disregarded, even though this terms might 

appear to play a negligible role for large times when compared to mass exchange contributions. 

IV.  Conclusions 

 

We present theoretical developments grounded on volume averaging and leading form 

the pore scale advection diffusion equation towards a two-equation continuum (Darcy) scale 

formulation of conservative transport in macroscopically homogeneous porous media. We 

contrast our upscaled formulation against the well known and widely used DRMT/MRMT 

transport models to evidence the complete set of assumptions which are implicitly embedded in 

these models. Our work leads to the following major conclusions. 

1) All coefficients appearing in our upscaled two-equation formulation are explicitly 

linked to pore scale geometry and velocity distribution. The derived system is more 
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complex than usual DRMT/MRMT models and is nonlocal in time. The simplifications 

required to reduce our upscaled formulation to the standard DRMT/MRMT models are 

illustrated and discussed. Our analysis shows that key assumptions implied by 

DRMT/MRMT models are that (i) The MRMT model retains nonlocal contributions 

only in the mass exchange terms, while the advective and dispersive terms appearing in 

(1.92) and describing transport in the mobile region are local in time; (ii) the gradients 

of concentration within the mobile and immobile are similar, thus allowing to neglect 

the additional advective terms of the type AADi (i = , ) which appear in our upscaled 

formulation so that the two equations of the MRMT model are coupled only through the 

standard mass exchange terms. 

2) The effective mass rate exchange parameters included in MRMT models depend on the 

pore scale velocity normal to the interface between mobile and immobile regions. This 

result supports previous experimental observation by Haggerty et al. [2004], who noted 

that effective mass transfer coefficients adopted to interpret laboratory scale data tend to 

display a mild dependence on the system velocity. 

3) Mass exchange processes occurring at the pore scale between the mobile and immobile 

regions give rise to the appearance of advective coefficients (1.80)-(1.83) in the upscaled 

system of equations which are not typically included in MRMT/DRMT models. These 

terms might affect (i) the calibration of the mobile/immobile proportion and (ii) the 

kernel of the memory function involved in MRMT models. 

4) We present the solution of our upscaled model (1.78)-(1.79) and provide a quantitative 

analysis of the effects of various simplification strategies in the context of a simple 

illustrative example. The latter involves solute transport within a plane channel 
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characterized by a uniform aperture under steady-state flow conditions. While this 

simplified geometry is not fully representative of complex porous media structures, it 

enables one to clearly show the way pore scale features propagate to DRMT/MRMT 

models. It also allows obtaining analytical solutions for the asymptotic solution of the 

closure problems and the system coefficients (1.80)-(1.91). The temporal dynamics of the 

model coefficients (1.80)-(1.91) is numerically investigated. 

5) We provide an assessment of the influence of all the terms included in the our upscaled 

two-equation model. Our results show that a DRMT model can reproduce the solution of 

our upscaled model with a reasonable accuracy for the scenario analyzed, provided that 

advection is retained also in the immobile region. 

Our results and observations may provide a useful basis to (a) interpret studies of 

uncertainty propagation, inverse modeling and parameter estimation related to DRMT and 

MRMT models, and/or (b) assess the key elements underpinning the potential/ability of 

DRMT/MRMT models to interpret upscaled results stemming from pore scale transport 

simulation or laboratory experiments and exhibiting non-Fickian behavior. 
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CHAPTER 2. PORE-SCALE SIMULATION OF 

REACTIVE TRANSPORT 
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I. Introduction 

 

Efficient simulation of diffusion-controlled chemical reactions in complex media remains 

a challenge for multiple disciplines, including hydrology [Dentz et al,2010.  Transport features 

may significantly affects the reaction rate, driving the spreading and mixing of reactants. 

Typically averaged concentration models merge the mixing at local and the spreading at a larger 

scale [Cirpka, 2002].This overlapping of reaction and  transport at different scales can cause 

serious errors on the rate of mixing and on reaction rates [Gramling et al, 2002; Kapoor et al, 

1998; Raje and Kapoor, 2000]. 

Traditionally, reactive transport is modeled through a continuum-based approach where 

all solute concentrations are averaged over a representative elementary volume [Bear 1972; 

Dagan., 1989]. Recent studies indicate that such a continuum-based approach may not be 

adequate for understanding reactive transport.  

The advection diffusion/dispersion reaction equation (ADRE) is a striking example of a 

continuum formulation which is typically employed to model solute evolution in geological 

formations [Bear and Cheng, 2010; Rubin, 1983]. A theoretical analysis based on 

homogenization [Battiato and Tartakovsky, 2011] shows that this formulation is strictly 

applicable in a relatively narrow region in the phase space identified by the Peclet and 

Damkohler (Da) numbers. In particular, the sufficient conditions for the ADRE to be valid are 

not met for large Da and Pe. Formulation and investigation of models which can reliably predict 

solute evolution outside the range of validity of the ADRE is an active field of research. In this 

context, micro-scale simulations are a powerful tool to improve our understanding of the key 
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features of the basic processes affecting the system behavior on multiple scales and consequently 

to investigate the reliability of existing models and/or to assist in the validation of novel 

modeling approaches. 

Reactive flows in the presence of bimolecular irreversible homogeneous reactions of the 

kind A+B→C are considered in a number of literature studies [Kang and Redner, 1985; Kapoor 

et al., 1997; Benson and Meerschaert, 2008; Willingham et al., 2010; Tartakovsky et al., 2009; 

Edery et al., 2012]. This chemical setting is very simple, as compared to the geochemical 

reaction patterns which can be observed in real porous and fractured systems. Nevertheless, it 

serves as an ideal benchmark setting to characterize the effects of micro-scale processes on 

upscaled parameters included in effective formulations. Some works are focused on the 

description of the process evolution from a global perspective, e.g., [Kang and Redner, 1985; 

Benson and Meerschaert, 2008].  These studies highlight the tendency of the system towards a 

large-time asymptotic behavior characterized by a diffusion/dispersion limited global reaction 

rate. 

The simulation of an irreversible reaction taking place in a plane channel is analyzed in 

[Kapoor et al., 1997]. This work introduces the definition of a segregation factor, which 

quantifies the global effect of incomplete solute mixing on the reaction rate. Numerical 

simulations quantify the influence of local fluctuations of reactant concentrations on a section-

averaged effective model. This effect is shown to be particularly relevant for large Pe and Da. A 

general one-dimensional effective formulation of the process which includes these effects in the 

presence of arbitrary initial conditions is still lacking. 

A parallel injection of the reactants into artificially built two-dimensional porous media is 

simulated at the pore scale in [Willingham et al., 2010; Tartakovsky et al., 2009]. The results of 
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these studies highlight the effects of the pore space geometry and of incomplete mixing of 

reactants at the pore scale on the reactive process. In particular, it is shown in [Tartakovsky et al., 

2009] that an ADRE formulation overestimates the global reaction rate for large Pe. Similar 

results are also compared in [Tartakovsky, 2010] against a Langevin model. The latter is found to 

perform better than the ADRE, its superior predictive capability being attributed to the improved 

description of the dispersion term. 

Experimental works in [Gramling et al., 2002; Raje and Kapoor, 2000] consider instead a 

replacement scenario, i.e., a laboratory column filled with a nonreactive solid matrix is initially 

saturated with a solution containing chemical species A which is progressively replaced by the 

injection of a solution containing B. The reaction takes place as the two reactants A and B mix. 

Standard continuum models based on the ADRE lead to a significant overestimation of the 

reaction product in both studies. These continuum formulations include (i) a constant dispersion 

coefficient which is calibrated from non reactive experiments, and (ii) a reaction kinetic 

coefficient derived from batch reactor experiments. The authors suggest that pore scale 

incomplete mixing is responsible of the failure of the predictive capability of their modeling 

approach. 

Further studies specifically focus on the formulation of interpretative models capable of 

capturing the key results of the experiment presented in [Gramling et al., 2002]. These modeling 

approaches include particle tracking Continuous Time Random Walk [Edery et al., 2010] and 

effective continuum approximations based on the ADRE [Sanchez-Villa et al., 2010; Rubio et al., 

2008]. A detailed recent review of aspects related to these modeling approaches is available in 

[Edery et al., 2012]. The continuum formulations proposed in [Sanchez-Villa et al., 2010; Rubio 

et al., 2008] are successful in reproducing the published experimental results through the 
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introduction of some effective reaction parameters. These are mainly based on heuristic 

arguments and are not grounded on a firm theoretical analysis. 

The theoretical work presented in [Porta et al., 2012] attempts to fill this gap. It shows 

how adopting a transient closure approximation of volume-averaged advective-diffusive-reactive 

processes can lead to a volume-averaged formulation of an effective continuum model which 

includes the traditional ADRE as a special case. Key results of the analysis presented in [Porta et 

al., 2012] are associated with fast reactions for which the ratio Da/Pe is much larger than 1. The 

formulation proposed for this scenario includes (i) a mixing dependent dispersion coefficient for 

the two reactive species, and (ii) a closed expression for the second order reaction term. The 

latter is associated with the cross-covariance of solute concentrations within the averaging 

volume. 

The modeling strategies illustrated in [Sanchez-Villa et al., 2010], which are based on 

considering (i) a dispersion coefficient different from the one estimated through a conservative 

transport experiment and (ii) a time dependent reaction rate parameter are consistent with the 

theoretical developments presented in [Porta et al., 2012]. 

The present work aims at analyzing the behavior of a reactive within the two-dimensional 

disaggregated porous media in the presence of a homogeneous irreversible bimolecular reaction. 

The reactive process is simulated through a particle tracking algorithm. The methodology is 

based on the codes and routines which have been previously employed for the study of several 

non reactive and reactive transport problems in fractured or porous media [Salles et al., 1993; 

Salles et al., 1993; Mourzenko et al., 1996; Debenest et al., 2005] and are modified to include the 

treatment of the chemical reaction. The main objectives of the work are: (i) the development and 

assessment of a particle based numerical methodology for homogeneous reactive transport 
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process simulations; (ii) the detailed illustration of the process on the basis of the observation of 

key quantities on different scales; (iii) the assessment of the validity of closed formulations of a 

one-dimensional section-averaged model and, in particular, the validation of the upscaled 

volume averaged equations derived in [Porta et al., 2012]. The analysis is performed considering 

a wide range of combinations of Peclet and Damkohler numbers, to investigate (a) the effect of 

the relative strength of these two parameters on the process evolution, and (b) their role in the 

definition of effective dispersion and reaction coefficients. 

This chapter is organized as follows. Section II provides a definition of the problem 

setting in terms of the key equations governing the system at the micro-scale. Section III 

describes the particle tracking algorithm and the computation of the velocity field. The selected 

simulation settings and a multiscale description of the phenomenon evolution is provided in 

Section IV. Section V is divided into two main parts: (i) the derivation of a section-averaged 

model is recalled, (ii) the effective coefficients in the equations are computed and compared 

against the corresponding theoretical predictions. 
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II. Problem statement 

 
We consider the transport of three diluted chemical species A, B and C  within the two-

dimensional disaggregated porous media, corresponding to arrays of cylinders. The media is 

constructed from periodic unit cells ( Figure 14). 

 

Figure 14. The media constructed from periodic unit cells 

 

We assume an irreversible homogeneous bimolecular reaction is taking place in the liquid 

phase and solutes A and B react to form the product C, i.e. A + B → C. The initial distributions 

of concentrations ˆAc  and ˆBc  of the two species A and B  are assumed to be known in the 

domain. Consider that the reactive process does not produce any change in the porous medium 

and in the characteristics of the fluid. 
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It is assumed that the chemical species are sufficiently diluted so that diffusion is 

described by Fick’s Law. The dynamics of solute concentrations are described by  
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where û  is the fluid velocity, ˆ
iD  ( , ,i A B C  ) the molecular diffusion coefficient and r̂  

is the reaction rate. A first order chemical reaction is considered 

ˆˆ ˆ ˆA Br kc c    (2.4) 

where 
3ˆ[ / ]k m mol s  is the reaction rate coefficient. The diffusion is considered to be 

isotropic and equal for all the chemical species, i.e. ˆ ˆ ˆ
A B CD D D D    . Then system can be 

written in dimensionless form  
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The dimensionless quantities are defined as following 
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where *û  is the mean fluid velocity, 0ĉ  is a characteristic concentration value for the 

problem, l̂  is the characteristic length (ex. length of the unit cell, radius of solid grains, cavity 

aperture, etc ). 

Then we introduce time scales which influence dynamics of the species concentrations: 

a) the advection time scale 
*
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b) the diffusion time scale 
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  ,where *D̂  is the effective dispersion coefficient. 

The following dimensionless time scales are introduced 
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The system (2.5)-(2.7) should be completed by the following boundary and initial conditions: 
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Here , L is the length of the domain; iN  represents the dimensionless flux of each species 

at the inflow boundary located at 0x  . For simplicity and without any loss of generality, it is 

assumed that 0Cc   at 0t  . 
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III. Numerical technique 

1. Particle tracking 

The reactive transport process is simulated via a particle tracking algorithm which is 

based on a series of routines [Porta et al., 2012] which were used to investigate pore scale 

reactive transport processes in porous media and fractures in a variety of physical settings. The 

media space is discretized into elementary cubes iK  of side â  . Three different sets of particles 

are defined, each corresponding to a different chemical species. Starting from a known location 

of the particles at time ˆkt  , the displacement vector for each particle is computed as 

ˆˆ ˆˆˆ ˆ[ ( )]k
Dt t  d u x d    (2.15) 

where û  is the fluid velocity, t  the time step magnitude and ˆ ˆ
Dd  the diffusive 

displacement. The last one is associated with a random orientation ˆ Dd  and a module equal to 

ˆ ˆ6D t     (2.16) 

The velocity ˆˆ ˆ[ ( )]ktu x  is evaluated at the position of the particles ˆˆ( )ktx at the beginning 

of the time step, using a second order Taylor series. The Taylor approximation is done separately 

for the determination of each component of the velocity field. For example, for the x-component 

of ˆˆ ˆ[ ( )]ktu x  it can be written as 
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where 0û , the first, ˆ û , and second gradients, ˆ ˆ û , are evaluated at the closest point 

( )
0
ˆ x
x . For the x-component of the velocity field ˆˆ ˆ[ ( )]ku tx , 

( )
0
ˆ x
x is the center of one of the two faces 

in x (parallel to x-axis) of the cube that contains the particle.  

The advective displacement in (2.15) is computed with the velocity at ˆˆ( )ktx  , whereas 

the fluid velocity theoretically varies along the particle path. To limit the effect of this 

approximation, an upper bound is set for particle displacements as 

ˆ ˆ ˆˆ ˆ ˆmax[ ( )]M u t a       x    (2.18) 

where 1   .  The time discretization step t  is fixed according to (2.18). Note that as 

  decreases, the accuracy of the simulation and the computational cost increase, as a smaller t  

is required in (2.18).  A value   0.6   is selected on the basis of preliminary numerical tests for 

 

Figure 15. Sketch of possible particle displacements 

 

passive transport conditions.  Once the displacement is computed by (2.15), the new 

particle position is given by 
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ˆˆ ˆˆ ˆ( ) ( )k kt t t  x x d    (2.19) 

Reflection boundary conditions are imposed at the solid walls, preserving the modulus of 

the complete displacement d̂ . Critical steps of the proposed procedure include (a) the 

representation of the bimolecular reaction process and (b) the update of the ensuing 

concentration fields.  The probability of A and B particles to react inside a cube is proportional to 

(i) the concentration of the reacting species, (ii) the particles residence time inside the cube and 

(iii) the reaction kinetic coefficient.  The procedure illustrated in the following aims at providing 

the best approximation of the first two quantities, as k̂   is assumed to be constant. Consider a 

particle of species A that interacts with the field of ˆ( )Bc t  . The time evolution of concentration 

ˆ( )Ac t  interacting with ˆ( )Bc t is described by 
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Hence, the probability that reaction takes place is 1A ARP SP   . Assuming that  

concentration is constant within cube iK  and along the time discretization step t , the reaction 

probability can be linearized as 

0 0
ˆ ˆˆ ˆ( ) ( ) ( ) ,    ( ) ( ) ( )A i B i C i B i A i C iRP K kc c K T K t RP K kc c K T K t     (2.22) 

for the A and B particles. Here, the factor ( )C iT K  is the fraction of the time step t  

spent by the particle in cube iK . Note that the linearized formulations (2.22) are accurate if the 
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condition R̂t t   is fulfilled. In order to avoid any artificial mixing between the two reactants A 

and B 

2
0

ˆˆ ˆ ˆ
1

ˆˆ

K
D

K K
R

a kct
Da

Dt
      (2.23) 

must be satisfied, where KDa  is the Dahmkohler number based on the grid size. Figure 

15 depicts the location of three particles of species A at time 0̂t  . During t  , particle 1p  

remains within 1K  so that 1CT   . The concentration ( )B ic K   in (2.22) is known from the 

previous time step computation or by the initial condition.  A Bernoulli trial is then performed 

and the probability ARP  is compared with a uniformly distributed random number,  0,  1 .RN   

If ARN RP  , the reaction takes place, the A particle disappears and is replaced by a C particle. 

On the other hand, if ARN RP  , the reaction does not take place and particle A remains in the 

system. If the particle reacts, the location of the reaction and the newly formed C particle are 

randomly assigned along the path described by the displacement 1d  . In these cases, the factor 

CT  in (2.22) accounts for the fact that the particles paths are split between different cubes. The 

fractions of the time step spent by a particle within a cube along the path are computed upon 

assuming that particle displacements take place at a constant velocity during t  . Hence, CT  in 

(2.22) corresponds to the fraction of the total computed displacement inside each cube.  Updating 

of the concentration fields is then based on the residence time of the particles within each cube, 

i.e. the fractions of the time step t  spent by the particles within a cube is taken into account 
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through the quantity CT  . The dimensionless concentration of species s   (   ,  ,  s A B C  ) in cube 

iK   can be computed as 

1

1
( ) ( )

p

j

N
p

s i iC
Kj

c K T K
NP

    (2.24) 

Here, ( )jp

iCT K  is the fraction of time step spent by particle jp  in cube iK  ,  KNP  is the 

number of particles per cube which renders a concentration 0ĉ   , i.e., 

3
0ˆ ˆK molNP a NP c    (2.25) 

where molNP  is the number of particles which corresponds to one mole of solute. For 

simplicity, in the following we assume
3

0ˆ 1 /c mol m  . The concentration in (2.24) takes into 

account the residence time of the particles in each cube. The amount of solute assigned to a 

single particle can be distributed into different cubes. The procedure described insures that 

minimum concentration values do not depend on KNP .  

2. Velocity field 

 

Firstly, it is important to note that we consider that the solid phase is considered 

impermeable to the fluid phase. Therefore, we consider that the flow in the intragranular pore 

space is government by the Navier-Stokes equations with a condition of adhesion to the wall. In 

addition, the condition of adhesion to the wall is replaced by a condition of zero velocity at the 

wall means that the interface is considered to be immobile, or at least its deformation is so slow 

that an approximation of quasi-static is applicable. 
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The Reynolds number is defined as; 

Re
vR




   (2.26) 

and   is the dynamical viscosity, R  is the grain diameter and v   is the fluid velocity (the 

average density of the fluid velocity, which is equal to the volumetric flow rate per unit area) . 

We assume that the flow remains laminar over the entire range of flow regarded in our case. We 

accept as a general rule that the transition between laminar and turbulent flow occurs for 

Reynolds numbers greater than 100 (e.g., about 150 to 300 for a three-dimensional random 

stacking of cylinders according Dybbs and Edwards, [1984]) . The fluid is considered 

incompressible. We impose a constant global flow rate, this implies that the flow is stationary. 

Therefore, the fluid velocity can be determined before any further calculation and used in our 

simulations. 

Using all the remarks made earlier, the fluid flow is governed by the Stokes equations 

are: 

2  p v    (2.27) 

0 v    (2.28) 

0,        at solid-liquid interfacev    (2.29) 

where v   is the local velocity, μ is the dynamic viscosity p   is the pressure.  

Equations (2.27)-(2.29) are solved once and the velocity field can be used resulting in all 

simulations to come. As the geometry of the solid phase is periodic, the velocity field is also, and 

the problem does not need to be solved in the unit cell periodic pattern. In the absence of inertial 

effects, the local velocities are proportional to the macroscopic pressure gradient p . Therefore, 
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we only need to solve the problem for a particular value of p . Then, the velocity field for flow 

or imposes a certain value of the pressure gradient can be obtained simply by readjusting the 

particular solution with an appropriate multiplicative factor. A first version of a numerical solver 

for equations of Stokes in a complex 3D environment was made by Lemaitre et al [1990]. He 

used a method of artificial compressibility, with a finite difference scheme. Then, the 

performance of the code were significantly improved and the fourth order of spatial 

discretization was introduced by Coelho, [1996]. 

 

Figure 16. Illustration of the pressure and velocity fields discretization. The pressure p  

is determined at the centers of cubic fluid and components of the velocity field (u, v, w) are 

determined at the centers of the faces of cubes orthogonally to those above. If we use the second 

order formulation (a), the balance of matter on the cube is obtained by considering the speed is 

uniform across each face of the cube. In formulating the fourth order(b), the speed on one side is 

a quadratic function of position, which depends on speed adjacent faces. 
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There are many criteria for convergence in the solver, which are based on the local 

velocity difference on the overall conservation of the flow and the stability of the average flow in 

the iterative solution scheme has. Excellent convergence of the velocity field (that is to say, the 

speed difference negligible) is necessary for a rigorous application of the random walk method. 

A complete description of the algorithm was made by Lemaitre et al [1990] and Coelho [1996] 

and will not be repeated here. However, one aspect is detailed further. Recall that the geometry 

of the porous medium is partitioned into elementary cubes, identified by integer coordinates (

, ,i j k ), they are either filled with fluid or solid. The pressure p  in the fluid is estimated at the 

centers of cubic fluids and velocity components ( , ,u v w ) are determined at the centers of faces 

orthogonal to the corresponding direction, as shown in Figure 16. A system of linear equations 

for these quantities is obtained by discretizing the balance equations that result from the 

integration of the equation of mass of each elementary cube of fluid. This gives  

0,               c B B ds
t




    

 
p

n v

   (2.30) 

where   is the volume of the cube, with its border  , n  is the normal vector , and c  is 

the coefficient of compressibility of the fluid. For stationary boundary conditions, we obtain a 

flow stable, then 
t





p
 vanishes and the equation (2.30)  reduces to 0B  , in agreement with 

(2.28) and in accordance with the artificial value c , as it should be. Two versions of the flow 

solver has been developed, with spatial discretization is second to fourth order either. In the 

second case the velocity field is obtained with greater precision, but has a greater cost in terms of 

computation time. Of course, the expression for B depends on the order of discretization and 

must be chosen in such a way that the balance equation 0B   is consistent with the solute 
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transport equation. In the second order formulation, B is simply reduced to a sum of the 

components of the velocity vectors normal to each face of the 4 faces of the cube, as if the flow 

passing through each face, as shown in Figure 16a . In formulating the fourth order, the mass 

balance is obtained by integrating the normal components of the speed which depend on the 

position and is a quadratic function of the speed at the center of the face and at the centers of 

neighboring faces as in Figure 16b. The random walk algorithm which has been used in most of 

our simulations requires that B  vanishes in the formulation to fourth order.  
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IV. Simulations 

1. Simulations setup. 

The methodology from the previous section is applied to a geometry with a regular 

distribution of grains. We consider hexagonal packing as the distribution of the grains and 

cylinders as the grains. All the cylinders have the same radius, cr  , and the distance between the 

centers of the cylinders is taken as the characteristic length, l̂  , for this setup.  

Numerical simulations are performed for a different combinations of Peclet and 

Dahmkohler numbers for the hexagonal micro-scale geometry  with different porosities. To 

change the porosity of the system,  , we vary the radius , cr . The set of the Peclet and 

Dahmkohler numbers and set of the used porosities is reported in Table 1 

  

Porosities 25% 36% 50% 

Peclet numbers 6 24 96 

Dahmkohler numbers 8.1 64.8 1038 

Table 1. Set of parameters used for the numerical simulations with hexagonal packing 
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Figure 17.Geometry of the unit cell with hexagonal packing of cylinders with different 

porosities of the media: a) 0.25; b) 0.36 c) 0.5 .  

 

Figure 17 demonstrates the unit cells with different porosities ( a) 25%  b) 36%  c)  50%.) 

with calculated distribution of the velocity field. 

The pore space is initially filled by a solution with uniform concentration, 0 1Ac   of 

species A. Species B is injected into the system as a step input with a fixed concentration 1Bc  , 

at 0x   and time 0t  .  

With the time, the two reactants move along the channel, reaction between them takes 

place and a traveling wave of C species moves along the channel. The dimension of the unit cells 

in the case of hexagonal packing is 72 60  [cubes] with the dimension of cube 5ˆ 2 10a m   . 

Diffusion coefficient 9 2ˆ 2 10 /D m s   . The length of the domain in the x-direction L̂  is 

chosen as a function of the total simulation time,  in  a  way  that  ensures  the  reactive  process  

can  be  observed  into  the  channel  for a prescribed time. To avoid any interference of the 

injection boundary condition on the early time system evolution, we set 1Bc   and 0Ac   for 
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0x x  and 0t  , and prescribe 0
ˆx l  to avoid that B particles exit the system from the inlet 

section by diffusion. 

As the amount of particle per cube value NP 50K   has been found to be a good 

compromise between accuracy and computational. Typical simulation of the reactive transport in 

this case last from 1 to 6 weeks depending on the parameters. Such the difference in computation 

time between the simulations is due to the different length of the media needed for different 

values of Peclet number to reach the asymptotic( diffusion/dispersion limited) regime.   

c. Dispersion 
 

The dispersion is an effective transport property of porous media that results from the 

combination of transport mechanisms convective and diffusive. It plays an important role in the 

transport of solute.  

Quantify the mass, the average position and spread-solute cloud can be calculated by the 

first three moments of the concentration 

3
0 ( ) ( , )M t c t d  r r

   (2.31) 

3
1( ) ( , )t c t d M r r r

   (2.32) 

3
2 ( ) ( , )t c t d M rr r r

    (2.33) 

 In addition, we define the central second  moment 2M
 as 

' ' '
2 2 1 1 M M M M

   (2.34) 

where 
'
1 1 0MM M

 and
'
2 2 0MM M

. 
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The main point is the intuitive idea that, after a certain time, the solute samples all 

statistics of the microstructure and flow. This is possible thanks to the molecular diffusion. In 

addition, if the time is long enough, the solute has "forgotten" the details of the initial spatial 

distribution and moves at the same speed as the fluid. 

*1lim
t

d

dt


M
v

   (2.35) 

where 
*

v  is the interstitial velocity. 

'
*21

lim
2 t

d

dt


M
D

   (2.36) 

where 
*

D  is called the dispersion tensor. It can be shown that this tensor is symmetric, 

positive definite, but it is not spherical. Anisotropy is introduced by the direction of the flow. 

 

Figure 18. Evolution of dispersion coefficient *D for three Peclet numbers: Pe=6(  ),  

Pe=24 (  ) , Pe=96 (   ). 
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To evaluate the dispersion coefficients we fill several unit cells in the simulation domain 

with a solute. Then we apply equation (2.36) to the solute plume.  Figure 18 depicts time 

evolution of the dispersive coefficients for 3 Peclet numbers over diffusion time Dt  . 

To fully characterize the media for the simulations, we present longitudinal effective 

dispersion coefficients, *D , for different simulations' parameters in Table 2.  

 6Pe   24Pe   96Pe   

0.25   0.964 4.962 48.591 

0.36   0.983 5.088 45.851 

0.50   0.976 4.260 34.604 

Table 2. Dispersion coefficients for the simulations 

2. Results of the simulations 

The time evolution of the total amount of the reaction product C is given by 

* ( ) ( )C CTC t c t d



     (2.37) 

The global reaction rate or global production rate of C can be written as a time derivative 

of 
* ( )CTC t .Depending on the reference time scale the global reaction rate expressed as 

*

* * **
* * * * *

* *( ) ,    ( ) ,    ( )C C CD
D D R R D D D

D R D

dTC dTC dTCR
R t R t R t R D

dt dt Da dt
       (2.38) 

Figure 19 depicts the temporal evolution of 
* ( )CTC t and 

*
RR  for all values Da and Pe 

reported at Table 1. The porosity of the system for the results at Figure 19 is 0.25  .  
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Figure 19. Temporal evolution ( Rt ) of 
*
CTC  and

*
RR  for different Da values: Da = 8.1 - 

a) and d); Da = 64.8 - b) and e); Da = 1038 - c) and f). Every subplot presents the evolution for 

three values of Pe: Pe=6(  ),  Pe=24 (  ) , Pe=96 (   ).The porosity of the system 0.5  . 

It should be noted temporal dynamics of 
*
RR  are characterized by a reaction limited 

regime, that is associated with an early time increase of 
*
RR . This phase is then followed by a 

diffusion limited regime. The latter corresponds to the decreasing trend of 
*
RR  which is observed 

after the peak value occurring at a transition time 
* 1R Rt t  . It is observed that 

*
RR  is 

proportional to 
0.5

Rt


 for long times (
*

R Rt t ). As a consequence, the time evolution of 
*
CTC  also 

exhibits a clear change in the slope around 
*

R Rt t  (Figure 19a) and is proportional to 
0.5
Rt at late 

time. Advective processes cause 
*
RR and 

*
CTC  to increase with the Peclet number. The reaction 

and diffusion limited regimes can still be clearly identified as the transition time 
*
Rt  increases 
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with Pe  . All values of Pe  explored are characterized by a similar late time behavior, associated 

with 
* 0.5
R RR t  and 

* 0.5
C RTC t . These asymptotic results related to the diffusion limited regime 

are consistent with previous works presented in [Kang and Redner, 1985; Benson and 

Meerschaert,2008].

 

Figure 20. Temporal evolution ( ) of   and  for different Pe values : Pe = 6 - a) and d); 

Pe= 24 - b) and e); Pe = 96 - c) and f). Every subplot presents the evolution for three values of 

Da: Da=8.1(  ), Da= 64.8 (  ) , Da= 1038 (  ).The porosity of the system 0.5   . 

Figure 20 displays the evolution of 
*
DR and 

*
CTC for different combinations of Pe  and 

Da . It should be noted that to emphasize the influence of Pe  on the reactive process 
*
DR is 

considered instead of 
*
RR . The reaction rate 

*
DR  is independent of Da  for 1Dt    (Figure 20a–

c). As a consequence, 
*
CTC  at the end of the simulation is only slightly dependent on Da , 

because its influence is confined to the early times ( 1Dt  ,Figure 20d–f). The dimensionless 
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time 
* * /D Rt t Da  is here introduced to identify the occurrence of the peak of 

*
DR . The behavior 

of the system for 
*

D Dt t  depends on the particular set of initial conditions. The problem tends to 

become limited by diffusion/dispersion as the reaction time decreases. This is reflected by the 

observation that 
*
Dt decreases with Da . The time 

*
Dt defining the transition between the reaction 

and diffusion limited regions depends on both Pe  and Da . 

 

Figure 21. Temporal evolution ( *Dt ) of 
*
CTC  and

*
*DR  for different values of   : 0.25 

- a) and d); 0.36  - b) and e); 0.50  - c) and f). Every subplot presents the evolution for all 

values of Pe and Da: 8.1(  ),  64.8 (  ) , 1038 (  ). 

Figure 21 presents the set of simulation results as a function of the dimensionless time 

*Dt . It can be noted that in the asymptotic regime 
* 0.5

*C DTC t and 
* 0.5

* *D DR t  collapse onto the 

same curves for all the investigated ( Da , Pe  ) pairs. Hence, the dependence of 
*
CTC  and 

*
*DR  on 

Pe  can be expressed by the dispersion coefficient *D . The evolution of the reactive process and 
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the longitudinal dispersive mass exchanges are characterized by the same time scale in the late 

time asymptotic regime. 

 

Figure 22 Temporal evolution of the section-averaged concentration of the two reactants 

Ac (black curve) and Bc (red curve)and of the reaction product Cc (green curve), centered at XF . 

Numerical results are for Pe = 6 and 0.25   

Figure 22 shows the longitudinal distribution of the section-averaged concentrations along the 

channel for selected combinations of Pe  and Da . The results are presented for different 

observation times by adopting the reference frame fX , where ˆˆˆ /fX ut h , to allow a direct 

comparison between the concentration snapshots. Da  strongly influences the spatial distribution 

of the three species mean concentrations along the channel. It can be noticed from the Figure 22a 

and Figure 22d that(in case of high values of Da ) distribution of reactant C  is mainly localized 

near reaction front fX . However in case of low Da  numbers solute C  spreads more. Indeed, 

*
DR  for 1Dt   is the same for the values of Da (Figure 22a) which means that for high values of 

Da  the reaction front will be thinner than for small values of Da . 
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Figure 23. Snapshot of the simulation for Pe=6, Da=1038, 3Dt  .  

 

Figure 24.Snapshot of the simulation for Pe=24, Da=1038, 3Dt  . 
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Figure 23- Figure 24 depict the distribution within the channel of the solutes and mixing 

intensity A Bc c  of the reactants for selected observation times and combinations of Pe  and Da  . 

This allows a detailed investigation of the micro-scale spatial features of the region where 

mixing of the two reactants A and B takes place. The size of the mixing zone highly depends on 

Pe  and Da .  Generally, A Bc c  is maximum at fx X . The presence of immobile zones induces 

a stretching of the reaction zone with time. This, in turn, causes an increase of the contact surface 

between the two reactants. This, in turn, causes an increase of the contact surface between the 

two reactants. 

.  

Figure 25.Snapshot of the simulation for Pe=24, Da=8, 3Dt   .  

This mechanism explains the dependence of 
*
Rt  on Pe  observed before, i.e., the 

stretching of the mixing zone induces a global increase of
*
RR . The fingerprint of the velocity 
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field is recognizable in the mixing zone. The product A Bc c may vary by one order of magnitude 

over a single cross section. As lateral mixing does not have time to take place in the presence of 

a fast reaction, the two reactants are incompletely mixed over the cross section.  On the other 

hand, for small Da  , lateral mixing induced by diffusion smoothes out the product A Bc c along the 

y-direction (Figure 25). 

The initial stretching of the front (Figure 23-Figure 24) obviously increases with Pe  , i.e. 

when the velocity variations over the channel section are largest. Two combined effect of 

longitudinal mixing and front stretching and the fingerprint of the velocity field with a persistent 

incomplete mixing of the reactants over the channel section become more evident for large Pe . 

To summarize, for the adopted initial conditions the evolution of the reactive process appears to 

be driven by the Damkohler and the Peclet numbers for short times. At this stage, the global 

reaction rate continuously increases as the diffusive (or dispersive) fluxes exceed the capability 

of the reaction to consume the reactants at the front. As time increases, dispersion (or diffusion) 

becomes the limiting factor and Pe  governs the evolution of the global reaction rate in the 

channel through the effective dispersion coefficient *D . Transition towards this late time regime 

takes place for 
*  ( )R Rt t Pe . Nevertheless, Da  always displays an important and persistent 

influence on the spatial distribution of the reactants along the channel and on the local features of 

the mixing zone, where reaction takes place. In particular, a fast reaction induces a clear 

correlation between the velocity field and the spatial patterns of the mixing of the reactants. 
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V. Upscaling of parameters 

An effective model of the reactive transport process described in Section II is derived 

through averaging of the governing equations across the section of the simulation media. The 

analysis relies on the developments illustrated by Porta et al.[2012] and based on volume 

averaging. Then, effective model coefficients are introduced and calculated from the particle 

tracking numerical simulations. 

1. Theoretical framework. Volume averaging. 

Firstly we introduce two new concentration fields D B Ac c c   and E C Bc c c   to 

simplify the initial system. Then the expressions for the concentrations are introduced into the 

system (2.5)-(2.3) and after some manipulations system takes following form 

 21B
B B B D B

c Da
c c c c c

t Pe Pe


     


u   (2.39) 

21D
D D

c
c c

t Pe


   


u    (2.40) 

21E
E E

c
c c

t Pe


   


u    (2.41) 

It should be noted that (2.40) and (2.41) are not coupled with other equations and can be 

solved independently. Applying the volume averaging ( described at Chapter I) to (2.40) leads to 

21 1

SL

l
lli

i

l l

i i i i

A

c
c

t

c c c dA c
Pe V

 

 


  



  
        

  
  



u

n u

  (2.42) 
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where index l  - means that averaging is being performed over liquid phase, ,i D E , 

SLA  - solid-liquid interface. 

Following Porta et al.[2012] we present two different volume averaged equations for the 

reactive species B corresponding to 1) Da Pe  and 2)    O Da O Pe . 

Hence, the equation in the case of Da Pe  is  

 

   

21 1

SL

l
l l l lB

B B B B

A

l l l

B B D B B D B

c
c c c c dA

t Pe V

Da
c c c c c c c

Pe

   



  
         

   
  

      
  

u n

u

  (2.43) 

In the second case when    O Da O Pe  the corresponding equation is 

 

 

21 1

SL

l
l l l lB

B B B B

A

l l l

B B D B

c
c c c c dA

t Pe V

Da
c c c c

Pe

   



  
         

   
  

    
  

u n

u

  (2.44) 

The cross covariance term  B B Dc c c appearing in (2.43) was explored numerically 

[Kapoor et al., 1997; 1998 ] for a Poiseuille flow condition taking place within straight conduit. 

Numerical results show that, in the specific condition examined, the relevance of the so called 

segregation intensity factor, which is linked to the above mentioned average of the fluctuations 

product, increases with Da Pe  . Numerical simulations performed Battiato et al. [2009] for a 

diffusion-reaction setting within fully saturated idealized medium, at 1Da  ( 27Da  ) and in 

the vicinity of the reaction front, indicate that neglecting these terms related to non-uniform 

mixing is not the weakest approximation. For the sake of generality the term  B B Dc c c  is 
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included (2.43). In equation (2.44), related to the condition    O Da O Pe , we adopt the 

simplifying assumption that the influence of the second order term can be neglected. The range 

of conditions under which this assumption can provide reliable results are examined in next 

sections. We note that we do not consider here scenarios for which Da Pe  because this leads 

to the standard advection dispersion equation, as it has been shown by, e.g., Battiato et al.[2010], 

in the framework of upscaling via multiple scale expansion of an advection-diffusion problem 

with heterogeneous reaction.  

2. Closure 

Equations (2.42)-(2.44) are written in unclosed form since they contain microscopic 

quantities ic . The closure of (2.42)-(2.44) is obtained by considering the equations satisfied by 

ic . In the following part of the thesis the closure equations are derived for the concentrations of 

the conservative components Dc  and Ec  closure equations for the reactive species Bc  for two 

cases: 1)  Da Pe  and 2)    O Da O Pe .  

 

a. Transport equation for conservative species 
 

 

To derive equation satisfied by ic  we divide (2.42) by   and subtract the resulting form 

of the equation from (2.40)-(2.41) which leads to 
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21

1 1 1

SL

li
i i i

l

i i i

A

c
c c c

t Pe

c c dA c
Pe V





     



  
         

  
  



u u

n u

  (2.45) 

The following estimates hold on the basis of the order of magnitude of the terms in (2.45) 

provided by Whitaker [1999] 

2 1

SL

l

B i i

A

c c dA c
V


 
      
 
 

 n   (2.46) 

1
i ic c


  u u    (2.47) 

The estimates (2.46)-(2.47) allow to simplify (2.45) as 

21li
i i i

c
c c c

t Pe


     


u u    (2.48) 

The equation (2.48) is subject to the following boundary and initial conditions 

         
l

i i SLc c A    n n x    (2.49) 

0( 0)i ic t c     (2.50) 

where 0ic  is the initial distribution of the spatial deviation of the concentration at the pore 

scale. Following the Whitaker [1999], the problem set (2.48)-(2.50) is solved within a unit cell. 

l

ic  can be considered as uniform within the cell. Assuming periodic structure for the porous 

medium and a periodic velocity field allows imposing periodic boundary conditions on the 

external surface of the cell 

( ) ( ),    0
l

i i i ic l c c  r r    (2.51) 
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where il are the lattice vectors of the unit cell. 

Then a quasi-steady solution of (2.48) is typically derived [Ochoa-Tapia et al., 1991; 

Whitaker, 1999; Battiato, 2011]. The solution can be written as  

i ii ic c b    (2.52) 

where the vectors iib  are closure variables. By introducing the expression (2.52) into 

equations (2.48) one can derive the equation for the closure variables 

21
ii ii

Pe
   u b u b    (2.53) 

ii  n b n    (2.54) 

 

b. Reactive transport equation. Case of Da Pe   
 

Subtracting (2.44) from (2.39) and using estimates (2.46)-(2.47) leads to    

     

21lB
B B B

l l l

B B D B B D B B D

c
c c c

t Pe

Da
c c c c c c c c c

Pe


      



      
  

u u

  (2.55) 

The reaction term in (2.55) can be reformulated as 

     

       

l l l

B B D B B D B B D

l l l

B B D B B D B B D B B D

c c c c c c c c c

c c c c c c c c c c c c

      
  

       
  

  (2.56) 

The closure problem is nonlinear in Bc  due to the format of the reaction term. We 

consider here a linearized form of (2.55) by using assumption 
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     2 2l l l

B B D B B D B B B D B Dc c c c c c c c c c c c         (2.57) 

according to which the local variation of the second order terms is neglected. By the 

virtue of (2.57), the closure equation (2.55) becomes 

   21l l l lB
B B B B B D B B D

c Da
c c c c c c c c c

t Pe Pe

           
  

u u   (2.58) 

When Da Pe  the following estimates hold 

   
l l l l

B B D B B D B B

Da
c c c c c c c c

Pe
      
  

u u   (2.59) 

    21l l l

B B D B B D B

Da
c c c c c c c

Pe Pe
    
  

  (2.60) 

Assuming that the typical time scale associated with the problem is not small, i.e., 

(1)t O , leads to   

    
l l l B

B B D B B D

cDa
c c c c c c

Pe t

   
   

  (2.61) 

Considering (2.61) allows to simplify (2.58) to the following algebraic relationship 

2

l

B
B D l l

B D

c
c c

c c



   (2.62) 

This implies that the evolution of Dc  drives the distribution of Bc . The reaction is locally 

fast enough so that the amount of available reactant Bc is instantaneously adjusted according to 

(2.62) as Dc  evolves. Finally, substituting (2.53) into (2.62) leads to 

2

l
l B

B DD D l l

B D

c
c c

c c
  


b    (2.63) 
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c. Reactive transport equation. Case of    O Da O Pe   
 

According to the standard derivation, the closure equation for this case is 

   21l l l lB
B B B B B D B B D

c Da
c c c c c c c c c

t Pe Pe

           
  

u u   (2.64) 

When    O Da O Pe  the time scales characterizing reaction and advection are of the 

same order of magnitude and (2.64) cannot be further simplified. In this case the closure 

equation (2.64) for the reactive species B and the equation (2.48) are coupled, as both Bc  and Dc  

appear in (2.64). Making use of superposition leads to 

0

0 0

0 0

l

B
B BB BD

l

D DD D

l
E EE

E

cc

c c

c c

      
       
     
         

 

b b

b

b

   (2.65) 

where DDb  and EEb can be computed independently through (2.53). We can then write 

l l

B BB B BD Dc c c   b b    (2.66) 

This leads to the following equations for the closure variables BBb  and BDb  

 21
2

l l

BB BB BB B D

Da
c c

Pe Pe
      
  

u b u b b   (2.67) 

 21
2

l l l

BD BD BD B D BD B

Da
c c c

Pe Pe
       
  

u b u b b b   (2.68) 

     BB SLA   n b n x    (2.69) 

0     BD SLA  n b x    (2.70) 
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3. Upscaled system 

In this section developments of Section 1 are coupled with the closure developed in 

Section 2 to write the closed form of the system being upscaled. 

The scheme of this section will be the same as the previous one, i.e. : 1) the nonreactive 

transport 2) case when Da Pe  and 3) case when    O Da O Pe . 

 

a. Nonreactive transport 
 

 

Making use equation (2.52) and putting it into (2.42) gives the closed form of equations 

(2.40)-(2.41): 

 
l

l lli
i i i

c
c c

t Pe Pe

 
 



               
u I D   (2.71) 

where ,i D E  . 

The total dispersion in (2.71) is defined as 

1

SL

i ii ii

A

dA Pe
V

 D b n ub    (2.72) 

which includes the effect of molecular diffusion, effective diffusion(taking into account 

the geometry of the unit cell) and hydrodynamic dispersion. The formulation is consistent with 

that in Whitaker [1999] for non-reactive transport. 

 

b. Reactive transport equation. Case of Da Pe   
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Substituting (2.63) into (2.43) leads to 

   

2

2
2

l
l l l lB

B B D D

l
l l l lA

B B D D Dl

B

c
c c c M

t Pe Pe

cDa
c c c M c

Pe c

 
 




        
 

 
    
  

u D

b

  (2.73) 

where DD  is defined by (2.72) and 

l

B

l l

B A

c
M

c c



   (2.74) 

It can be shown that (2.73) can be reduced to a model describing the dispersion of a 

conservative component when 0Ac   . Recalling that D B Ac c c    allows rewriting dispersive 

term in  (2.73) as 

 l l l

D D D B Ac M c c M
Pe Pe

           
    

D D   (2.75) 

Then assuming that 0Ac  (i.e. D Bc c , 0M  ) (2.75) takes form of 

lim
A

l l

D D D B
c

c M c M
Pe Pe

 



         
   
D D   (2.76) 

So that equation  (2.73) transforms into  

 
l

l l lB
B D B

c
c c

t Pe


 


       
 

u I D   (2.77) 

Equation (2.73) shows that (a) the upscaled dispersive flux (i.e. 

l l

B D Dc c M
Pe

      
 
I D ) is described by a non-Fickian component depicting the 

interactions between molecular diffusion and effective dispersion, and (b) the dispersive term is 
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proportional through M  to the upscaled concentrations 
l

Bc and 
l

Dc , thus suggesting that 

chemical reaction and hydrodynamic dispersion are intimately connected. 

Equation (2.73) also shows that the effect of dispersion in the case of reactive transport 

can be different from what observed for conservative solutes. This result is consistent with recent 

developments [Valdes-Parada et al., 2011]. This suggests that upscaled dispersion coefficients 

calibrated on the basis of conservative transport settings cannot be systematically adopted to 

model reactive transport in the same flow conditions. 

c. Reactive transport equation. Case of    O Da O Pe  
 

Substituting (2.66)  into (2.43) leads to 

 
 

 

l
l l l l l lB

B B B B B D

l

BD D

c Da
c c c c c

t Pe Pe

c
Pe


  




        
 

   

u D

H

  (2.78) 

Here, BD  is defined by (2.72) and the interactive dispersion tensor BDH  is defined as 

1

SL

BD BD BD

A

dA Pe
V

 H b n ub    (2.79) 

We note that all dispersive fluxes in (2.78) are spatially dependent through 
l

Bc and 

l

Dc . Equations (2.67) and (2.68) become independent in the limit for 0Da   and the 

interactive dispersion tensor BDH vanish from the resulting upscaled equation. It means that the 

importance of the interactive dispersion term tends to increase with the reaction rate. 



112 

 

4. Results. Numerical upscaling. 

This section is devoted to the numerical computation of the dispersive and reactive 

coefficients presented in previous section (Chapter 2 Section V.3.). The upscaled coefficients are 

going to be compared with the results of the simulations presented in Chapter 2 Section IV. 

We start the analysis from the solution of the closure equation  in the case of non-reactive 

transport, i.e. equation (2.53).  

The upscaled dispersion coefficient, *
UD  , is computed using the equation (2.72) and 

compared with the real one that is computed via particle tracking simulations, *
RD , and presented 

before (Figure 18) . 

 

Figure 26. Comparison of the real dispersion coefficients *
RD ( ) and the upscaled 

coefficients *
UD ( ) with different porosity of the unit cell  : a) 0.25   b) 0.36   c) 

0.50   

Figure 26 shows that the values of the upscaled coefficients calculated by equation (2.72) 

are very close to the real values of dispersion calculated through particle tracking algorithm. The 

fitting is quite good for the all values of porosity. 

The reaction-related term appearing in (2.73) includes contribution of the product of the 

volume averaged concentrations and the second order term. We focus here on the latter. A single 

closure variable, Db  , is employed to close (2.43). Consequently, the second order term 
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 B B Dc c c  is proportional to the volume average of 2
Db  . This implies that the upscaled 

reaction term is intimately linked to the micro-scale behavior of a nonreactive species, as Db  

provides the solution for the closure of a conservative transport problem and emphasizes the 

interaction between dispersion and reaction under these conditions. In previous studies [Porta et 

al., 2012] it was shown that in the case of plane channel geometry the incomplete mixing is 

proportional to Pe   with 2   (i.e. 
2 2
D Peb  ). Figure 27 shows that in the case of our 

geometry the volume average of 2
Db  is proportional to Pe   with 1.5  ( i.e. 

2 1.5
D Peb  ). 

 

 

Figure 27. Volume average of 2
Db as a function of Pe  with different porosity of the unit 

cell  : 0.25  ( );  0.36  ( ); c) 0.50  ( ) 

The next step of the analysis is to assess the predictive performance of the effective 

reaction coefficient appearing in the upscaled equation (2.73) against the results of the micro-
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scale simulations. In the volume averaged equation (2.43), the reaction rate,
l

A Br c c  , is 

expressed as the sum of the two following terms 

1

l l

A Br c c    (2.80) 

and 

2

l

A Br c c    (2.81) 

If the scale separation constraints ( 2
0 1c cL Lr  , 0 cLr  - reported at Chapter 1) for 

averaging the reaction term are met then the reaction rate is 

1 2

l l l l

A B A B A Br c c c c c c r       (2.82) 

It mean that if the reactant concentration gradient is large the scale separation condition is 

not respected and the reaction term cannot be averaged. Previously it was reported [Battiato et 

al., 2009] that the scale separation is not met in the case of a fast bimolecular reaction in a batch 

system. 

To define the domain where the constraints are valid we define the error averaging 

function 

1 2

( , , , , )av

r r d

E f t Pe Da l
r d









 

 





   (2.83) 

where avl  - is the dimension of the averaging volume in the transversal direction. The 

dimension of avl  is [cubes] (Chapter 2 Section IV) and the minimum value in our case is 16 

[cubes] that is the length of periodicity. 
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Figure 28. Map of the averaging error function for the case of porosity 0.5  and values 

of Pe number: a) 6Pe   b) 24Pe   c) 96Pe  . 

 

Figure 29. Map of the averaging error function for the case of porosity 0.25  and 

values of the averaging length avl : a) 36avl  b) 72avl   c) 144avl  . 

Figure 28 and Figure 29 show that the validity of the approximation (2.82) highly 

depends on the combination of the parameters , ,avl Pe Da . Figure 28 depicts that when Pe  

number is  relatively small then the averaging length should small as well.  This is in agreement 

with the observation that for the small value of Pe  the reaction takes place in a very small region 

(since mixing is reduced) so we need short averaging length in order to capture the process with 

a nice resolution. On the contrary, when Pe  is high and the reaction zone spreads through a long 

distance then we can use bigger values of the averaging volume. The same can be seen from the 

Figure 29 which shows the dependence of the error function on Da  and Pe  at constant 

averaging length. It can be noted that for high Da numbers, when the gradients of reaction rate 
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are quite high, we need to choose small averaging length or the Pe number should be big enough 

to stretch the reaction zone. 

In the volume averaged equation (2.43), the global reaction rate *
DR   defined by (2.38), is 

expressed as the sum of the two following terms 

(1) l l

A B

L

R c c dx     (2.84) 

(2) l

A B

L

R c c dx     (2.85) 

Here, (1)R is a first order reaction term, which is usually included in standard continuum 

formulations; (2)R  is the second order term taking into account the cross covariance between the 

concentrations of the reactants along the cross section. The contribution of (2.84) and (2.85) are 

evaluated through the micro-scale simulations. The closure expression for  (2)R is 

 
2

(2) 2( 1)
l

D DU

L

R M M b c dx      (2.86) 

Then the upscaled global reaction coefficient can be evaluated as 

 (2)* (1)
U UR R R    (2.87) 
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Figure 30. Time evolution of the quantities (2.84)-(2.87) for simulation with parameters: 

96Pe   , 0.5  , 36avl     and Da  values : a) 8.1Da  , b) 64.8Da  , c) 1038Da  . The 

quantities are : ( ) (1) */ DR R  ,  ( ) * */U DR R ,   ( )  (2) */ DUR R ,   ( ) (2) */ DR R . 

Figure 30 provides the time evolution of the quantities defined at (2.84)-(2.87) together 

with *
DR defined by (2.38). Comparing Figure 30a and Figure 30c allows recognizing the relative 

contribution of (1)R and (2)R  to the global reaction rate for different values of Da  number. For 

small Da , (1)R  coincides with *
DR , as it is always much larger than (2)R . In this case, the 

reaction is not fast enough to preserve the anticorrelation of the concentration field. The effect of 

(2)R  on the global reaction rate is significant for large Da  Figure 30c. Hence, neglecting this 

second order term leads to significantly overestimating the global reaction rate. The values of the 

term (2)
UR are in a good agreement with (2)R . The global upscaled reaction rate, *

UR , yields an 

accurate estimate of *
DR . 
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VI. Conclusions 

The work is focused on the multiscale analysis of a reactive flow in the presence of a 

homogeneous irreversible reaction. the problem is solved at the micro-scale through a numerical 

approach based on a particle tracking simulation of the reactive transport process. The purpose of 

the numerical study was: (a) to provide an accurate description of the  reactive process at 

multiple observation scales, and (b) to characterize dependence on Da   and Pe  of the upscaled 

coefficients of effective one-dimensional model. The later is obtained through volume averaging 

of the micro-scale transport equations. The major conclusions of this work can be summarized as 

follows: 

1.  The dynamics of the global production of C  are characterized by two distinct stages. 

In the first stage, the reaction rate increases with the time proportionally to Da  and Pe . In the 

second stage, the global reaction rate is described by a power law decay and is proportional to 

0.5t  . An asymptotic regime is observed for various combinations of Da  and Pe . The transition 

between early time behavior which is influenced by the selected initial conditions and the 

asymptotic regime occurs for a dimensionless diffusion time *
Dt  .  

2.  An equilibrium between the reactive process and the dispersive flux bringing the 

reactants at the mixing zone is observed in the asymptotic regime. The Da  strongly influences 

the spatial distribution of the reactants observed in the medium. It also influences the micro-scale 

patterns of the reactant mixing zone.  

3.  The influence of the reactive process on the effective dispersion coefficient is assessed 

through numerical upscaling.  
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4. The volume averaged model captures the global reaction rate of the system through the 

sum of two different contributions ,i.e. a first- and a second- order term, respectively given by 

the product of the two averaged concentrations and the cross correlation of the local 

concentrations of the reactant. The results demonstrate the role played by Da  and Pe on the 

occurrence of incomplete mixing. Stretching induced by the velocity field is the primary source 

of the observed incomplete mixing of reactants.  
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