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Abstract
In recent years, new technologies have provided data more complex than num-
bers or vectors, such as high dimensional arrays, curves, shapes, diffusion ten-
sors. . . These kinds of complex data can be analysed in the framework of Object
Oriented Data Analysis. This work deals with a particularly interesting example
of complex data: those belonging to a Riemannian manifold. These data are par-
ticularly interesting both from a mathematical and from a practical point of view.
In particular, we focus on the case of covariance operators.

First, a framework is developed for the analysis of covariance operators of
functional random processes, where the covariance operator itself is the object of
interest. Distances for comparing positive definite covariance matrices are either
extended or shown to be inapplicable for functional data. In particular, an infinite
dimensional analogue of the Procrustes size and shape distance is developed. The
proposed distances are used to address important inferential problems, namely,
the point estimation of covariance operators and the comparison of covariance
operators between two population of curves. These techniques are applied to two
problems where inference concerning the covariance is of interest. Firstly, in data
arising from a study into cerebral aneurysms, it is necessary to investigate the
covariance structures of radius and curvature curves among different groups of
patients. Secondly, in a philological study of cross-linguistic dependence, the use
of covariance operators has been suggested as a way to incorporate quantitative
phonetic information. It is shown that distances between languages derived from
phonetic covariance functions can provide insight into relationships between the
Romance languages.

A second contribution lies in the introduction of spatial dependence among
Riemannian data. We consider both the modeling of the dependence on the man-
ifold, generalizing the definition of covariance in linear spaces through the ex-
pected values of square distances, and the possibility to approximate non Eu-
clidean data in the appropriate tangent space, where traditional statistical tech-
niques can be used. First, the Riemannian semivariogram of a field of covariance
matrices is defined. Then, we propose an estimator for the mean which considers
both the non Euclidean nature of the data and their spatial correlation. Simulated
data are used to evaluate the performance of the proposed estimator: taking into
account spatial dependence leads to better estimates when observations are irreg-
ularly spaced in the region of interest. This allows to address a meteorological
problem, namely, the estimation of the covariance matrix between temperature
and precipitation for the province of Quebec in Canada. Finally, a kriging es-
timator based on a tangent space model is proposed for covariance fields. This
allows to deal with non stationary fields, the deterministic drift being handled in
the tangent space with traditional spatial statistics techniques.
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Introduction

This thesis is part of a line of research which deals with the statistical analysis of
data belonging to a non Euclidean space. In recent years, attention to the statisti-
cal analysis of non Euclidean data has been growing. The conceptual framework
is that of Object Oriented Data Analysis, as defined in Wang and Marron (2007).
This approach focuses on the atoms of the statistical analysis. While this is usually
a number or a vector, new technologies have provided different kinds of data, such
as high dimensional arrays, curves, shapes, diffusion tensors. . . Many of these can
be seen as elements of a non Euclidean space. Indeed, non Euclidean data are
mathematical objects more complex than numbers or vectors and they do not be-
long to a linear space. Thus, even the most simple statistical operations, such
as finding a centerpoint for the data distribution or evaluating variability about
this center, represent a challenge. Statistical analysis needs to carefully consider
the mathematical properties of the data at hand and consequently to reformulate
traditional methods in this new setting.

Data belonging to a Riemannian manifold are particularly interesting both
from a mathematical and from a practical point of view. Studies in this field have
been motivated by many applications: for example Shape Analysis (see, e.g, Jung
et al., 2011), Diffusion Tensor Imaging (see Dryden et al., 2009, and references
therein) and estimation of covariance structures. The general aim of these studies
is the extension to Riemannian data of traditional statistical methods developed
for Euclidean data, such as point estimation of mean and variance (Pennec et
al., 2006; Dryden et al., 2009), exploratory data analysis, dimensional reduction
(Fletcher et al., 2004), testing hypothesis among different populations (Schwartz-
man et al., 2010) and smoothing (Yuan et al., 2012). The common idea is to find
the correct distance to compare two elements in the non Euclidean space and to
build statistical methods based on that distance.

This thesis proposes a twofold contribution in this research field. First, we
consider the generalization of the above methods to infinite dimensional covari-
ance operators. This problem arises within Functional Data Analysis, where the
interest is on the second order structure of the functional random process. Second,
the problem of spatial dependence among Riemannian data is considered, with a
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particular attention to the case of covariance matrices.
The choice to address these specific problems is guided both by their math-

ematical and statistical interest and by the considered applications. Indeed, we
illustrate two problems where the analysis of covariance operators of functional
random variables brings insight to the statistical analysis. The first one is the
comparison of the covariance functions between different groups of patients of
the well known AneuRisk dataset (see Sangalli et al., 2009a) aiming at supporting
some choices of the previously published analysis. The second analysis addresses
a linguistic problem, namely the exploration of relationships among Romance lan-
guages. Here, the statistical units are the covariance structures among frequencies
for speakers of different languages. Data come from speech recordings provided
by Prof. J. Coleman (Phonetic Laboratory, University of Oxford) and prepro-
cessed by P.Z. Hadjipantelis (University of Warwick).

A meteorological problem is the most immediate application for spatial statis-
tics for Riemannian data. In particular, we show the analysis of covariance ma-
trices between temperature and precipitations measured in different stations in
Quebec, Canada.

Organization of the thesis
This thesis is organized in two parts. Part I deals with covariance operators of
functional random processes. Under non restrictive assumption on the random
process which generates the data, the covariance operator is a trace class operator
with non negative eigenvalues. Thus, it belongs to an infinite dimensional non
Euclidean space. Our first concern is to understand which distance is the most
appropriate to compare two elements of this space. Chapter 1 recalls the main
properties of these operators and introduces some possible distances. In Chap-
ter 2, we illustrate two inferential problems - the point estimation of covariance
operators and the comparison of covariance operators between two population of
curves- that can be addressed relying on a distance-based approach. Chapter 3
describes two applicative problems where the analysis of covariance operators is
needed.

Part II consists of the introduction of spatial dependence among Riemannian
data. It is not a trivial problem to define stochastic dependence in non linear
spaces. Here, we consider both the modeling of the dependence on the manifold,
generalizing the definition of covariance in linear spaces through the expected
values of square distances, and the possibility to approximate non Euclidean data
in the appropriate tangent space, where traditional statistical techniques can be
used.

Chapter 4 illustrates the mathematical properties of the space of covariance
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matrices and the existing statistical techniques for dealing with covariance matri-
ces as object data. The problems of estimating the Fréchet mean from a sample
of spatially dependent Riemannian data is addressed in Chapter 5. Indeed, we de-
velop our methods explicitly for the case of positive definite symmetric matrices,
with the aim to deal with covariance matrices between meteorological variables,
but they are valid in general for data belonging to Riemannian manifold. Follow-
ing the terminology introduced in Wang and Marron (2007), these data are mildly
non Euclidean, being locally Euclidean and admitting a tangent space. However,
the proposed ideas can be helpful also in a strongly non Euclidean setting, where
only a definition of distance is available. Finally, in Chapter 6 a kriging proce-
dure, i.e. the estimation of the field in an unobserved location, is developed for
covariance matrix fields. Here, the deterministic drift is handled in the tangent
space, where linear methods can be applied.
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Part I

Statistical methods for covariance
operators
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Data sets are increasingly becoming available that are best described as being
functional. In recent years, research in this field has provided many statistical
techniques to deal with this kind of data (Ramsay and Silverman, 2005; Ferraty
and Vieu, 2006; Horváth and Kokoszka, 2012). However, this work mainly fo-
cused on mean functions and on the use of associated bases to provide insight
into these means, while little attention has been paid to the explicit analysis of the
covariance operator. In many applied problems, the covariance operator is either
directly or indirectly intrinsically interesting in its own right. This paper is fo-
cused on the inference for the covariance operator of a functional random process
and primarily in providing a better understanding of which kinds of metric could
be appropriate for this inference.

Some recent works (Panaretos et al., 2010; Fremdt et al., 2012) examined test-
ing the equality of covariance structures from two groups of functional curves by
defining a test statistic through the Karhunen-Loève expansions of the two co-
variance structures. This method are therefore based on the Hilbert-Schmidt met-
ric, exploiting the immersion of the space of covariance operators in the Hilbert-
Schmidt space. However, this extrinsic approach ignores the geometry of the
space of covariance operators.

Here, we first consider the problem of the definition of possible metrics for
covariance operators. While it will be seen that some finite dimensional distances
for positive definite covariance matrices (Dryden et al., 2009) naturally lend them-
selves to functional analogues, others do not have natural extensions. Then, it will
be shown that the extended metrics can be effectively used for inference, both
in estimation and in testing the underlying covariance structure between different
groups.

Analysis of the covariance operator arises in many applied contexts, two of
which will be detailed. Firstly, in data associated with brain aneurysms, several
patient populations are routinely considered similar enough to be treated as one
population. By means of the proposed permutation test, we will explore their co-
variance structures to understand whether they can indeed be so combined. Sec-
ondly, in the linguistic analysis of human speech, the overall mean structure of
the data produced is often not of interest, but rather the variations that can be
found within the language. Here we will show that different languages can be
compared and even predicted through functional distances, allowing, for the first
time, a quantitative analysis of comparative philological relations based on speech
recordings rather than discrete textual analysis.
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Chapter 1

On the definitions of distance
between covariance operators

This chapter is devoted to consider covariance operator on infinite dimensional
Hilbert spaces as object data. The principal mathematical properties of these ob-
jects are recalled, with the aim to understand which distances are suitable to com-
pare two covariance operators. It will be seen that not all matrix based distances
are extendable to the infinite dimensional case.

1.1 Some remarks on operators on L2(Ω)

In this section we focus on properties and definitions that will be useful below.
More details and proofs can be found, e.g., in Zhu (2007).

Definition 1.1.1 Let B1 be the closed ball of unitary radius in L2(Ω), consisting
of all f ∈ L2(Ω) such that ||f ||L2(Ω) ≤ 1, where L2(Ω) is the Hilbert space of
square-integrable functions on Ω ⊆ R. A bounded linear operator T : L2(Ω) →
L2(Ω) is compact if T (B1) is compact in the norm of L2(Ω).

An important property of a compact operator on L2(Ω) is the existence of a
canonical decomposition. This decomposition implies the existence of two or-
thonormal bases {uk}, {vk} for L2(Ω) such that

Tf =
∑
k

σk〈f, vk〉uk,

or, equivalently,
Tvk = σkuk,

where 〈., .〉 indicates the scalar product in L2(Ω). The sequence {σk} ∈ R is
called the sequence of singular values for T .
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Definition 1.1.2 A bounded linear operator T is self-adjoint if T = T ∗.

If the operator is compact and self-adjoint, there exists a basis {vk} such that

Tf =
∑
k

λk〈f, vk〉vk,

or, equivalently,
Tvk = λkvk

and {λk} ∈ R is called the sequence of eigenvalues for T .
A compact operator T is said to be trace class if

trace(T ) :=
∑
k

〈Tek, ek〉 < +∞

for every orthonormal basis {ek}. For non negative definite operators, it can be
seen that the definition is independent of the choice of the basis. In the case of self-
adjoint non negative definite operators the trace is thus the sum of the eigenvalues
and this is finite for trace class self-adjoint operator. We indicate with S(L2(Ω))
the space of the trace class operators on L2(Ω).

A compact operator T is said to be Hilbert-Schmidt if its Hilbert-Schmidt
norm is bounded, i.e.

||T ||2HS = trace(T ∗T ) < +∞.

This is a generalisation of the Frobenius norm for finite-dimensional matrices.
These properties are crucial in the context of the statistical analysis of func-

tional data. Indeed, let f be a random function which takes values in L2(Ω),
Ω ⊆ R, such that E[||f ||2L2(Ω)] < +∞. The covariance operator is

Cfg(t) =

∫
Ω

cf (s, t)g(s)ds,

for g ∈ L2(Ω), where

cf (s, t) = cov(f(s), f(t)) = E [(f(s)− E [f(s)]) (f(t)− E [f(t)])] .

Then, Cf is a trace class, self-adjoint, compact operator on L2(Ω) with non neg-
ative eigenvalues (see, e.g., Bosq, 2000, Section 1.5). The space of covariance
operators is therefore strictly included in the linear spaces of trace class operators
and Hilbert-Schmidt operators. This fact is often neglected in the development
of statistical methods for covariance operators, linear methods being used that
would be appropriate for generic trace-class operators. In the following, we in-
troduce possible transformations to map the space of covariance operators to the
space of Hilbert-Schmidt operators, where linear operations are allowed.

Finally, we recall the definition of unitary operator on L2(Ω), which will be
needed for the definition of Procrustes distance in the functional setting.
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Definition 1.1.3 A bounded linear operator R on L2(Ω) is said to be unitary if

||Rf ||L2(Ω) = ||f ||L2(Ω) ∀f ∈ L2(Ω).

We indicate with O(L2(Ω)) the space of unitary operators on L2(Ω).
We take now advantage of these tools from functional analysis to introduce

possible distances that can be used to measure the difference between two covari-
ance operators.

1.2 Distances between covariance operators
In this section we propose several distances that can be used to compare the co-
variance operators of two random functions taking values in L2(Ω). These are a
generalisation to the functional setting of metrics that have been proved useful for
the case of positive semi-definite matrices (Dryden et al., 2009). However, not all
matrix based distances are extendable to the functional case.

Two popular metrics for finite dimensional covariance matrix analysis are the
log Euclidean metric and the affine invariant Riemannian metric. While both
would appear to be natural candidates for generalisation to covariance operators,
in both cases, this is not straightforward due to the natural trace class structure
of the covariance operator. The trace class property implies that the (descending)
ordered eigenvalues λi are summable, i.e.∑

i

λi <∞⇒ λi → 0 as i→∞

The log Euclidean distance for two positive definite matrices, M1 and M2, is de-
fined as

dlog(M1,M2) = || log(M1)− log(M2)||.

with the log() indicating the matrix logarithm. This is not well defined for trace
class operators as this quantity tends to infinity. The affine invariant Riemannian
metric for positive definite matrices is defined as

dRiem(M1,M2) = || log(M
− 1

2
1 M2M

− 1
2

1 )||

which requires consideration of the inverse. For a compact operator, even when
it is positive definite, the inverse is not well defined (see, e.g., Zhu, 2007, Section
1.3).

Even though in applications only finite dimensional representations are avail-
able, these are usually not full rank (i.e. they have zero eigenvalues), meaning that
these metrics present the same difficulties than in the infinite dimensional case.
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This problem can be handled projecting the observation in a subspace but in gen-
eral different subspaces should be needed to best approximate the two operators
and the choice of the correct level of truncation is often problematic.

Moreover, since the distance between infinite dimensional operators is not
well defined, it is not clear how to interpret the asymptotic behaviour of the dis-
tance computed between finite dimensional representations. This could be an
issue when the dimensionality of the problem is high and different choices are
possible for the projected space.

We thus resort to some alternative distances which are well defined for self-
adjoint trace class operators with nonnegative eigenvalues.

1.2.1 Distance between kernels in L2(Ω× Ω)

Distances between covariance operators can be naturally defined using the dis-
tance between their integral kernels in L2(Ω×Ω). Let S1 and S2 be two covariance
operators and

Sif(t) =

∫
Ω

si(s, t)f(s)ds, ∀ f ∈ L2(Ω).

Then, we can define the distance

dL(S1, S2) = ||s1 − s2||L2(Ω×Ω) =

√∫
Ω

∫
Ω

(s1(x, y)− s2(x, y))2dxdy.

This distance is correctly defined, since it inherits all the properties of the distance
in the Hilbert space L2(Ω × Ω). However, it does not exploit in any way the
particular structure of covariance operators and therefore it need not to be useful
for highlighting significant differences between covariance structures. Indeed, this
is the distance induced by the Hilbert-Schmidt norm, since for the case of Hilbert-
Schmidt kernel operators ||S1 − S2||HS = ||s1 − s2||L2(Ω×Ω). Thus, it exploits
the immersion of the space of covariance operators in the Hilbert-Schmidt space,
being an extrinsic metric that ignores the geometry of the space of interest.

1.2.2 Spectral distance
A second possibility is to regard the covariance operator as an element of L(L2(Ω)),
the space of the linear bounded operators on L2(Ω). It follows that the distance
between S1 and S2 can be defined as the operator norm of the difference. We
recall that the norm of a self-adjoint bounded linear operator on L2(Ω) is defined
as
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||T ||L(L2(Ω)) = sup
v∈L2(Ω)

|〈Tv, v〉|
〈v, v〉

and for a covariance operator it coincides with the absolute value of the first (i.e.
largest) eigenvalue. Thus,

dL(S1, S2) = ||S1 − S2||L(L2(Ω)) = |λ̃1|

where λ̃1 is the first eigenvalue of the operator S1 − S2. The distance dL(., .)
generalises the matrix spectral norm which is often used in the finite dimensional
case (see, e.g., El Karoui, 2008). This distance takes into account the spectral
structure of the covariance operators, but it appears restrictive in that it focuses
only on the behaviour on the first mode of variation.

1.2.3 Square root operator distance
Since covariance operators are trace class, we can generalise the square root ma-
trix distance (see Dryden et al., 2009). Indeed, S being a self-adjoint trace class
operator, there exists a Hilbert-Schmidt self adjoint operator (S)

1
2 defined as

(S)
1
2f =

∑
k

λ
1
2
k 〈f, vk〉vk, (1.1)

where λk are eigenvalues and vk eigenfunctions of S. We can therefore define the
square root distance between two covariance operators S1 and S2 as

dR(S1, S2) = ||(S1)
1
2 − (S2)

1
2 ||HS.

Inspiration for this kind of distance comes from the log-Euclidean distance for
positive definite matrices. There, the logarithmic transformation allows to map the
non Euclidean space in a linear space. As mentioned above, a logarithmic map for
covariance operators is not available. Thus, we choose a different transformation,
namely, the square root transformation. This has been shown to behave in a similar
way in the finite dimensional setting (see Dryden et al., 2009) but it is also well
defined for trace class operators.

Any power greater than 1/2 would be a possible candidate distance. For trace
class operators in general, the square root operator is the smallest power for which
the transformed operator is guaranteed to be Hilbert-Schmidt, meaning that it is
the closest available to the log-Euclidean distance. In addition, it can be inter-
preted as a distance which takes into account the full eigenstructure of the covari-
ance operator, both eigenfunctions and eigenvalues.
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1.2.4 Procrustes reflection size-and-shapes distance
The square root operator distance looks at the distance between the square root
operators (S1)

1
2 and (S2)

1
2 in the space of Hilbert-Schmidt operators. However,

this is only a particular choice of a broad family of distances, which are based
on the mapping of the two operators S1 and S2 from the space of covariance
operators to the space of Hilbert-Schmidt operators. We can consider in general a
transformation Si → Li, so that Si = LiL

∗
i and define the distance as the Hilbert-

Schmidt norm of L1 −L2. Considering this more general framework, it is easy to
see that any of this transformation is defined up to a unitary operator R:

(LiR)(LiR)∗ = LiRR
∗L∗i = LiL

∗
i = Si.

To avoid the arbitrariness of the transformation, it is meaningful to use a Pro-
crustes approach which looks for the unitary operator R which best matches the
two operators L1 and L2, however they are defined.

In Dryden et al. (2009), a Procrustes reflection size-and-shape distance is pro-
posed to compare two positive definite matrices. Our aim is to generalise this
distance to the case of covariance operators on L2(Ω). Let S1 and S2 be two co-
variance operators on L2. We define the square of the Procrustes distance between
S1 and S2 as

dP (S1, S2)2 = inf
R∈O(L2(Ω))

||L1−L2R||2HS = inf
R∈O(L2(Ω))

trace((L1−L2R)∗(L1−L2R)),

where Li are such that Si = LiL
∗
i for i = 1, 2.

As mentioned above, the decomposition Si = LiL
∗
i can be seen as a general

form of transformation, mapping Si to a space where a linear metric is appropriate.
In particular, a good choice could be the square root transformation.

Proposition 1.2.1 Let σk be the singular values of the compact operator L∗2L1.
Then

dP (S1, S2)2 = ||L1||2HS + ||L2||2HS − 2
+∞∑
k=1

σk.

Proof. Note that

dP (S1, S2)
2 = inf

R∈O(L2(Ω))
trace((L1 − L2R)

∗(L1 − L2R))

= inf
R∈O(L2(Ω))

{trace(L∗1L1) + trace(L∗2L2)− 2trace(R∗L∗2L1)}

= ||L1||2HS + ||L2||2HS − 2 sup
R∈O(L2(Ω))

trace(R∗L∗2L1).
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We therefore look for the unitary operator R which maximises trace(R∗L∗2L1). Ex-
ploiting the definition of the trace operator and the singular value decomposition for the
compact operator L∗2L1 (which is trace class - see Bosq (2000, Section 1.5)),

L∗2L1vk = σkuk for k = 1, . . . ,+∞,

we obtain

trace(R∗L∗2L1) =
+∞∑
k=1

〈R∗L∗2L1ek, ek〉 =
+∞∑
k=1

〈R∗L∗2L1vk, vk〉 =

=
+∞∑
k=1

σk〈R∗uk, vk〉 ≤
+∞∑
k=1

σk||R∗uk||L2(Ω)||vk||L2(Ω) =
+∞∑
k=1

σk||uk||L2(Ω)||vk||L2(Ω) =
+∞∑
k=1

σk.

Thus, the maximum is reached for any operator R̃ such that

R̃∗uk = vk ∀k = 1, . . . ,+∞,

or, equivalently,
R̃vk = uk ∀k = 1, . . . ,+∞.

Substituting this optimal transformation in the definition of the distance,

dP (S1, S2)
2 = ||L1||2HS + ||L2||2HS − 2trace(R̃∗L∗2L1)

= ||L1||2HS + ||L2||2HS − 2
+∞∑
k=1

〈R̃∗L∗2L1ek, ek〉

= ||L1||2HS + ||L2||2HS − 2

+∞∑
k=1

〈R̃∗L∗2L1vk, vk〉

= ||L1||2HS + ||L2||2HS − 2

+∞∑
k=1

σk 〈R̃∗uk, vk〉︸ ︷︷ ︸
=1

.

�
The Procrustes distance takes into account the arbitrariness in the definition

of the map Si → Li. It is worth noticing that the unitary transformation allows
the operator Li to become non self-adjoint. Thus, this extends the analysis in the
Hilbert-Schmidt space to go beyond symmetric operators.

1.2.5 Finite dimensional approximation
In practical applications, we observe only a finite dimensional representation of
the operators of interest. Therefore, ideally we would require square root distance
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and Procrustes size-and-shape distance between two finite dimensional represen-
tations to be a good approximation of the distance between the infinite dimen-
sional operators. We show this fact for the more general case of Procrustes dis-
tance, with the square root distance being a special case where Li = (Si)

1
2 and R

is constrained to be the identity operator.
Let {ek}+∞

k=1 be a basis for L2(Ω), Vp = span{e1, . . . , ep} and Spi be the re-
striction of Si on Vp, i.e.

Spi g =

p∑
k=1

〈g, ek〉Siek ∀ g ∈ Vp.

In practical situations, Vp will be the subspace which contains the finite di-
mensional representation of the functional data. Let us assume that, for p→ +∞,
Lpi → Li with respect to the Hilbert-Schmidt norm, where Spi = LpiL

p∗
i . This

is not restrictive, since we can choose for instance Li = (Si)
1
2 , but every choice

which guarantees this convergence is suitable. Then, the distance between the two
restricted operators is

dP (Sp1 , S
p
2)2 = ||Lp1||2HS + ||Lp2||2HS − 2

p∑
k=1

〈R̃pLp∗2 L
p
1ek, ek〉.

Since Vp ⊂ L2(Ω), we can choose a subset vp1, . . . , v
p
p , vpk ∈ {vk}

+∞
k=1 which is

an orthonormal basis for Vp. However, they need not be the first p elements of the
basis coming from the canonical decomposition of L∗2L1. This happens because
the space Vp depends only on the original basis {ek}pk=1 and it does not depend
on the covariance structure of the data. Since the subspaces Vp are nested, we can
define a permutation s : N→ N, so that {vs(1), . . . , vs(p)} provides a basis for Vp,
for every p. Since the trace of an operator does not depend on the choice of the
basis, we obtain

dP (Sp1 , S
p
2)2 = ||Lp1||2HS + ||Lp2||2HS − 2

p∑
k=1

〈R̃pLp∗2 L
p
1vs(k), vs(k)〉

= ||Lp1||2HS + ||Lp2||2HS − 2

p∑
k=1

σs(k),

where {σs(k)}pk=1 are singular values for L∗2L1. This comes from the fact that the
action of the operator Lp∗2 L

p
1 should be equal to the action of the operator L∗2L1

on every element belonging to the subspace Vp and vs(k) ∈ Vp for k = 1, . . . , p.
Finally, as L∗2L1 is trace class, the series of its singular values is absolutely con-
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vergent and therefore also unconditionally convergent (convergent under any per-
mutation). Thus,

lim
p→+∞

dP (Sp1 , S
p
2)2 = ||L1||2HS + ||L2||2HS − 2

+∞∑
k=1

σs(k)

= ||L1||2HS + ||L2||2HS − 2
+∞∑
k=1

σk = dP (S1, S2)2.
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Chapter 2

Statistical inference for covariance
operators

In this chapter we illustrate two inferential problems that can be addressed using
the distances introduced in the previous chapter. First, we consider the point es-
timation of covariance operators. This problem have been widely considered in
Functional Data Analysis but the aim was to obtain optimal estimators with re-
spect to the Hilbert-Schmidt norm. For example, under reasonable assumptions
on the random process generating functional data, the sample covariance operator
is a consistent estimator, meaning that the Hilbert-Schmidt distance between the
estimated operators and the true operator goes to zero. Significant contributions in
this research can be found, e.g., in Besse and Ramsay (1986); Rice and Silverman
(1991); Bosq (2000); Horváth and Kokoszka (2012).

However, in an object oriented approach, we would like to have estimators
based on the distance that has been considered appropriate for the problem at
hand. Thus, we propose here Fréchet estimators for covariance operators and
different choices of metric are considered. Even if the theory of these estimators
in an infinite dimensional setting is not yet fully developed, they are the natural
way to take into account the specific geometrical features of covariance operators
in estimation procedures.

Then, we propose a method to test the equality of the covariance operator
between two groups. By means of simulation studies, it will be shown that using
a distance which considers the geometry of the space, such as Square root or
Procrustes distance, may result in a dramatic improve in the power of the test.
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2.1 Distance-based point estimation for covariance
operators

In many applications the estimation of a covariance operator is needed. In this sec-
tion we illustrate an approach to estimation procedures which is coherent with the
choice of the proper distance to compare covariance operators. First, the problem
of averaging among covariance operators of different groups is considered as well
as the estimation of the covariance operator from curves samples coming from
these groups. Then, we consider the problem of interpolation and extrapolation of
covariance operators.

2.1.1 Fréchet mean for a set of covariance operators
Let S1, . . . , Sg be the covariance operators of g different groups. Then, a possible
estimator of the mean covariance operator Σ is

Σ̂ =
1

n1 + · · ·+ ng
(n1S1 + · · ·+ ngSg),

where weights ni, i = 1, . . . , g are the numbers of observations from which the
covariance operator Si has been obtained. As we show in the proof of Proposi-
tion 2.1.1, this formula arises from the minimisation of square Hilbert-Schmidt
deviations, weighted with the number of observations, i.e.

Σ̂ = arg min
Σ

g∑
i=1

ni||Σ− Si||2HS.

If we choose a different distance to compare covariance operators, it is more co-
herent to use the chosen distance in this minimization problem.

More in general, the Fréchet mean of a random element S, with probabil-
ity distribution µ on the space of covariance operators, can be defined as Σ =
arginfP

∫
d(S, P )2µ(dS). If a sample Si, i = 1, . . . , g from µ is available, a least

square estimator for Σ can be defined using the weighted sample Fréchet mean:

Σ̂ = arg inf
S

g∑
i=1

nid(S, Si)
2.

The actual computation of the sample Fréchet mean Σ̂ depends on the choice
of the distance d(., .). In general, it requires the solution of a high dimensional
minimisation problem but some distances admit an analytic solution while for
others efficient minimisation algorithms are available. Note that Σ̂ may not be
unique for positively curved spaces, although it is unique for suitably concentrated
data (see Kendall, 1990; Le, 2001).
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Proposition 2.1.1 For the square root distance dS ,

Σ̂ = arg min
S

g∑
i=1

nidS(S, Si)
2 = (

1

G

g∑
i=1

ni(Si)
1
2 )2, (2.1)

where G = n1 + · · ·+ ng.

Proof. We prove that in general

argmin
L

g∑
i=1

ni||L− Li||2HS =
1

G

g∑
i=1

niLi,

which gives the desired result for the particular case of Li = (Si)
1
2 and L = (S)

1
2 . We

have

argmin
L

g∑
i=1

ni||L− Li||2HS = argmin
L

g∑
i=1

nitrace
(
(L− Li)∗(L− Li)

)
= argmin

L

g∑
i=1

ni{||L||2HS + ||Li||2HS − 2trace(L∗Li)}

= argmin
L

g∑
i=1

ni{||L||2HS − 2trace(L∗Li)}

= argmin
L

[
G||L||2HS − 2trace

(
L∗

g∑
i=1

niLi

)]
,

exploiting the linearity of the trace operator. It can be noticed that the second term is a
scalar product in the operator space and therefore it is minimum when L is proportional
to
∑g

i=1 niLi. We thus obtain a minimisation problem in α = ||L||HS :

argmin
L
G||L||2HS − 2trace

(
L∗

g∑
i=1

niLi

)
= argmin

α
Gα2 − 2trace

( α

||
∑g

i=1 niLi||HS

( g∑
i=1

niLi

)∗( g∑
i=1

niLi

))
= argmin

α
Gα2 − 2

α

||
∑g

i=1 niLi||HS
trace

(( g∑
i=1

niLi

)∗( g∑
i=1

niLi

))
︸ ︷︷ ︸

=||
∑g
i=1 niLi||2HS

= argmin
α
Gα2 − 2α||

g∑
i=1

niLi||HS
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and the minimum is reached for α = 1
G ||
∑g

i=1 niLi||HS . Therefore

L =
α

||
∑g

i=1 niLi||HS

g∑
i=1

niLi =
1

G

g∑
i=1

niLi.

�
For the Procrustes size-and-shape distance an analytic solution is not available.

However, the Procrustes mean can be obtained by an adaptation of the algorithm
proposed in Gower (1975). It is an iterative method that alternates a registration
step and an averaging step.

1.Initialization The algorithm is initialized with Σ̂(0) = L(0)L(0)∗, where L(0) =
1
G

∑g
i=1 niLi, Li so that Si = LiL

∗
i and G = n1 + · · ·+ ng.

2.Registration step For all the groups i = 1, . . . , g, L(k)
i = L

(k−1)
i Ri, where

Ri is the unitary operator which minimises the Hilbert Schmidt norm of
L(k−1) − L(k−1)

i Ri.

3.Averaging step The new Procrustes mean is computed: Σ̂(k) = L(k)L(k)∗, where
L(k) = 1

G

∑g
i=1 niL

(k)
i , since this minimises

∑g
i=1 ni||L−L

(k)
i ||2HS as shown

in the proof of Proposition 2.1.1.

Steps 2 and 3 are iterated until convergence, i.e. when the Hilbert-Schmidt norm
of the difference between L(k) and L(k−1) is below a chosen tolerance. In practice,
the algorithm will give a local minimum, often called Karcher mean (Karcher,
1977), in few iterations, if it is initialised with the estimate provided by (2.1).

The algorithm above is adapted from one of a number of variants of the Pro-
crustes algorithm, all of which have been shown in the finite dimensional setting
to have similar convergence properties (see Groisser, 2005). It is conjectured that
analogous convergence properties are also true in the infinite dimensional set-
ting (in particular that the finite dimensional algorithm converges to the correct
infinite dimensional limit), but the geometric arguments using in the finite di-
mensional proof by Groisser (2005) are not immediately available for the infinite
dimensional setting and we leave this for future work.

We also compared our version of the algorithm with the one proposed by Dry-
den and Mardia (1998), where each operator Li is aligned to the average obtained
from all the other operators, namely 1

G−ni

∑g
j 6=i njL

(k)
j . However, this algorithm,

in the examples below, provided the same result as the one above, while also hav-
ing very similar convergence speed and computational burden.
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2.1.2 Distance based estimation from curves sample
We have considered above the covariance operators as the starting point of the
analysis, the integral kernels of these operators being estimated with traditional
sample covariance function. However, a different approach is possible, using the
proposed distances also in the estimation of the covariance operators. Namely, an
estimate of the common covariance operator from curves samples coming from g
different groups could be

Σ̂ = arg min
S

g∑
i=1

ni∑
k=1

d(S, (fik − f̄i.)⊗ (fik − f̄i.))2, (2.2)

where i = 1, . . . , g are different groups, k = 1, . . . , ni curves within each group,
⊗ indicate the tensor product (f⊗f)v = 〈f, v〉f and f̄i. is the sample mean in the
i-th group. As in the case of sample Fréchet mean, if we choose the square root
distance, we have an explicit solution for problem (2.2) and

Σ̂ = (
1∑g
i= ni

g∑
i=1

ni∑
k=1

(fik−f̄i.⊗(fik−f̄i.))
1
2 )∗(

1∑g
i= ni

g∑
i=1

ni∑
k=1

(fik−f̄i.⊗(fik−f̄i.))
1
2 ).

For what concerns Procrustes distance, problem (2.2) can be solved with a slight
modification of the algorithm illustrated above.

2.1.3 Interpolation and extrapolation
The problem of interpolation and extrapolation in non linear spaces has been stud-
ied in deep for the case of positive definite matrices, where it has been shown that
using simply Euclidean metric can be very problematic (see, e.g, Dryden et al.,
2009). In the infinite dimensional case, the equivalent of a Euclidean approach
would be extrapolation based on kernels. Let S1 and S2 be two covariance oper-
ators and s1(s, t) and s2(s, t) their integral kernels. Thus, we can obtain a path
passing through these kernels as

s(s, t)(x) = (s1(s, t) + x(s2(s, t)− s1(s, t))), (2.3)

x ∈ R. However, just as in the case of positive definite matrices, extrapolation
based on kernel distances does not always result in a valid kernel for a covariance
operator (i.e. the associated integral operator is not non-negative definite).

Square root metric and Procrustes metric can be instead associated with the
corresponding geodesic which connects the two covariance operators S1 and S2,
being respectively

SR(x) = {(S1)
1
2 + x((S2)

1
2 − (S1)

1
2 )}∗{(S1)

1
2 + x((S2)

1
2 − (S1)

1
2 )} (2.4)
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and

SP (x) = {(S1)
1
2 + x((S2)

1
2 R̃− (S1)

1
2 )}{(S1)

1
2 + x((S2)

1
2 R̃− (S1)

1
2 )}∗, (2.5)

with x ∈ R and R̃ is an unitary operator minimising ||(S1)1/2 − (S2)1/2R||2HS .
In general, analogously to the finite dimensional case, the operator R̃ may be not
uniquely defined if the sequence of singular values of (S2)1/2(S1)1/2 is degener-
ate (see Kent and Mardia, 2001), i.e. in our case if there is more than one zero
singular value. However, any choice provides a valid geodesic with respect to the
Procrustes metric.

For every x, both geodesics provide a valid covariance operator. However, in
the case of extrapolation with square root geodesic, this operator can be the result
of the inverse (square) operation from the space of Hilbert-Schmidt operators to
the space of covariance operators. This forces negative eigenvalues, which should
be set to zero, having reached the “boundary” of the space, to be positive. Extrap-
olating to large negative values and then squaring them would likely introduce
additional variation with somewhat questionable meaning.

This effect is prevented using the Procrustes geodesic. We show this with an
artificial example using covariance operators for boys and girls growth curves in
the Berkeley study. Growth curves are functional data, consisting in the height of
boys and girls at different ages. This is a benchmark dataset in Functional Data
Analysis (see Ramsay and Silverman, 2002) and thus it provides an example of
realistic covariance structures. Let S1 and S2 be the sample covariance operator
for boys and girls curves respectively. Fig. 2.1 shows the minimum eigenvalue for
the Hilbert-Schmidt operators (S1)

1
2 +x((S2)

1
2 − (S1)

1
2 ) and (S1)

1
2 +x((S2)

1
2 R̃−

(S1)
1
2 ), x ∈ (0, 10). The former continuously decreases, while the latter correctly

stabilizes at zero. Applying the backward map to the space of covariance operator,
the square root geodesic thus presents an artifact positive eigenvalue, while the
Procrustes geodesic does not suffer from this problem.

2.2 A permutation test for two - sample comparison
of the covariance structure

In this section we show a second example of how the proposed distances can
be used in an inferential procedure, i.e. the comparison of covariance opera-
tors of two groups. Let us consider two samples of random curves. Curves
in the first sample f 1

1 (t), . . . , f 1
n1

(t) ∈ L2(Ω) are realisations of a random pro-
cess with mean µ(t) and covariance operator Σ1. Curves in the second sample
f 2

1 (t), . . . , f 2
n2

(t) ∈ L2(Ω) are realisations of a random process with mean µ(t)
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Figure 2.1: Left: Minimum eigenvalue for the extrapolated Hilbert-Schmidt oper-
ator for the square root geodesic (black) and the Procrustes geodesic(red). Right:
Correspondent square eigenvalue for SR(x) (black) and SP (x) (red).

and covariance operator Σ2. We would like to test the hypothesis

H0 : Σ1 = Σ2 vs H1 : Σ1 6= Σ2.

Recent works (Panaretos et al., 2010; Fremdt et al., 2012) proposed testing
procedures for the equality of covariance structures by defining a test statistic
through the Karhunen-Loéve expansions of the pooled covariance operator. Let
S1 and S2 the sample covariance operators, the pooled covariance operator is

R =
n1

n1 + n2

S1 +
n2

n1 + n2

S2.

Having centered observation so that they have zero means, Panaretos et al. (2010)
propose to use as test statistic

T =
n1 + n2

2
θ̂(1− θ̂)

p∑
i,j=1

〈(S1 − S2)vi, vj〉2

(θ̂λ1
i + (1− θ̂)λ2

i )(θ̂λ
1
j + (1− θ̂)λ2

j)
,

where θ̂ = n1

n1+n2
and {vk}pk=1 are the first p eigenfunctions of R and

λql =
1

nq

nq∑
k=1

〈f qk , vl〉
2,

for q = 1, 2 and l = 1, . . . , p. Thus, this test statistic considers the projections
of the difference operator S1 − S2 in the subspaces generated by the first p eigen-
functions of the pooled covariance operator R, normalized with respect to an esti-
mate of the variability of the curves in those subspaces. Under gaussian assump-
tions, these authors show that T has an asymptotical chi-squared distribution with
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p(p + 1)/2 degrees of freedom. Fremdt et al. (2012) generalize this approach to
deal also with non-gaussian process.

However, some difficulties arise in practical applications with these testing
procedures. Firstly, the test statistic above depends on the chosen number of
eigenfunctions to be considered and in practice this may lead to ambiguity in
the decision to take, different values of p providing different results (see Fremdt
et al., 2012, Section 4), even if automatic procedures can be set up for the choice
of the optimal (in some sense) number of eigenfunctions (Panaretos et al., 2010).
Secondly, these kinds of procedures have only asymptotic properties, while in
Functional Data Analysis is often the case where the sample size is relatively
small and the finite sample performance may be not sufficiently accurate in the
non gaussian case (Fremdt et al., 2012).

Thus, we propose here a different approach, aiming to overcome these limita-
tions. We would like to use the distance between two sample covariance operators
to carry out inference on the difference between the true covariance operators.
The complicated expression of the available distances makes it difficult to elicit
their distributions, even when random curves are generated from a known para-
metric model. Thus, we propose to resort to a non parametric approach, namely
permutation tests.

Permutation tests are non parametric tests which rely on the fact that, if there
is no difference among experimental groups, the labeling of the observations is
completely arbitrary. Therefore, the null hypothesis that the labels are arbitrary
is tested by comparing the test statistic with its permutation distribution, i.e. the
value of the test statistics for all possible permutations of labels. In practice, only
a subset of permutations, chosen at random, is used to assess the distribution. A
sufficient condition to apply this permutation procedure is exchangeability: under
the null hypothesis, curves can be assigned indifferently to any group.

We reformulate the test using distances between covariance operators,

H0 : d(Σ1,Σ2) = 0 vs H1 : d(Σ1,Σ2) 6= 0.

Let S1 and S2 be the sample covariance operators of the two groups. We use
d(S1, S2) as a test statistic, since large values of d(S1, S2) are evidence against
the null hypothesis. If we considered all the possible permutation of the assigned
labels, we would obtain an exact p-value as the proportion of the distances be-
tween the sample covariance operators of the permuted curves greater than or
equal to d(S1, S2). However, the total number of permutations is usually compu-
tationally unfeasible and thus we resort to Monte Carlo method. We consider M
random permutation of the labels {1, 2} on the sample curves and we compute
d(S

(m)
1 , S

(m)
2 ), m = 1, . . . ,M , where S(m)

i is the sample covariance operator for
the group indexed with label i in permutation m. Now the p-value of the test can
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be approximated with the proportion of d(S
(m)
1 , S

(m)
2 ) which are greater than or

equal to d(S1, S2),

p− value =

∑M
m=1 I{d(Sm1 ,S

m
2 )>d(S1,S2)}

M
=

1

M
]{d(Sm1 , S

m
2 ) > d(S1, S2)}.

For this formulation of the permutation test, equality of mean functions is
essential. However, if the two groups have different (and unknown) means, an
approximated permutation test can be performed, having first centered the curves
using their sample means. This is a common strategy for testing scaling parame-
ters, such as variance, for univariate real random variables (see, e.g., Good, 2005,
Section 3.7.2). The test obtained is approximate in the sense that the nominal
level of the test is exact only asymptotically for n1, n2 → +∞. This happens be-
cause the observations are only asymptotically exchangeable, due to the fact that
µ̂i(t) = 1

ni

∑ni
k=1 f

i
k(t) → µi(t) and therefore centered observations asymptoti-

cally do not depend on the original labels.

2.2.1 Simulation studies
We now consider simulation studies to explore the behaviour of the different dis-
tances with various modifications of the covariance structure. All the curves are
simulated on [0, 1] with a Gaussian process with mean sin(x) and covariance func-
tion Σ1 and Σ2 respectively. Observations are generated on a grid of p = 32 points
with six different sample sizes N = 5, 10, 20, 30, 40, 50. Each permutation test is
performed with M = 1000 and the test is repeated for 200 samples, so that we
can evaluate the power of the test for different values of sample size and differ-
ent degrees of violation of the null hypothesis. Since the aim is to investigate the
performance of the different distances, we choose this simple simulation set up
and two different modifications of the covariance structure. More complete sim-
ulation studies would be needed to evaluate the performance of the propose non
parametric approach with respect to the existing parametric techniques but this is
the scope for future works.

Fig. 2.2 shows the covariance function Σ1 for the first group in all the sim-
ulations (where this covariance was obtained from the male curves within the
Berkeley growth curve dataset (Ramsay and Silverman, 2005)).

First simulation: We consider the case in which the first two eigenvalues of Σ2

are a convex combination of the first two eigenvalues of Σ1, while the remaining
eigenvalues and all the eigenfunctions are the same,

λ2
1 = γλ1

2 + (1− γ)λ1
1

λ2
2 = γλ1

1 + (1− γ)λ1
2

(2.6)
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Figure 2.2: Integral kernel of the true covariance function Σ1 for reference group.

Figure 2.3 shows the estimated power for different values of γ and N .
It is worth to mention that, despite the normality of the data, traditional para-

metric tests for comparison of covariances can be applied only when N > p, i.e.
N = 40, 50. Indeed, the power is low also in these cases, since the sample size
is small with respect to dimension p = 32. Note that the square root and Pro-
crustes tests are the most powerful here, and all tests have the correct type I error
probability.

Second simulation: We consider now a difference in the total variation be-
tween the covariance operators in the two groups, so that

Σ2 = (1 + γ)Σ1.

In this simulation, we can also compare the proposed method with the generalisa-
tion of the Levene test (see Anderson, 2006), since this is a procedure to test for
differences in multivariate dispersion. The univariate Levene test is an analysis
of variances (ANOVA) performed on the deviations from the groups means. In
the multivariate case, ANOVA is performed on the set of distances between each
observation and the group centroid. In our functional case, the L2(R) is used as
distance and the sample mean as group centroid, being the minimizer of the sum of
square distances within the group. Even if the simulated data are indeed Gaussian,
we present results for the permutation version of this test to give a fair compar-
ison with our method. Thus, this test uses the ANOVA F-statistics of the L2(R)
distances between curves and group means but the p-value of the test is obtained
comparing the observed value with the permutational distribution, as happens for
the testing procedure based on operator distances.
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Figure 2.3: Power estimated via simulation for different values of γ and N ob-
tained with Procrustes size-and-shape distance (red line), Square root distance
(green line), Kernel L2(Ω × Ω) distance (black line) and Spectral distance (blue
line). The purple line shows the significance level α = 0.05.

Fig. 2.4 shows the estimated power for different values of γ andN . For smaller
N the Levene test has a high type I error. For larger N and γ, the Procrustes and
square root tests are a little more powerful than those based on kernel L2 and
spectral distance, while the Levene test perform slightly worse.

We apply also the proposed permutation test to the comparison of covariance
operators of the original Berkeley growth curves for male and female. The test
with square root distance result in a p-value of 0.15, while the test with the Pro-
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crustes distance has a p-value of 0.19. There is no strong evidence of the differ-
ence in covariance structures between the two groups, thus supporting the claim
by Ramsay and Silverman (2002) that the difference between the two groups is
somehow smaller than expected, being limited to phase variability.

Figure 2.4: Empirical power obtained in the second simulation for different val-
ues of γ and N with Procrustes size-and-shape distance (red line), Square root
distance (green line), Kernel L2(Ω × Ω) distance (black line), Spectral distance
(blue line) and generalised Levene test (cyan line). The purple line shows the
significance level α = 0.05.
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Chapter 3

Applications

In this chapter, two applications are shown where the analysis of covariance struc-
tures may benefit from the distance-based inferential procedure illustrated in the
previous chapter. The first application involves biological data, namely radius
and curvature of the Inner Carotid Artery for patients suspected of being affected
by cerebral aneurysm. Here the aim is to explore if different groups of patients
have different covariance structures. The second application involves a linguistic
problem, the analysis of relationships among Romance languages, i.e. languages
with a common root in the Latin language. Data come from audio recordings of
groups of speakers from different languages but the focus of the analysis is the
covariance function among frequency intensities in speech, this being considered
a significant feature for the language.

3.1 Data from AneuRisk Project
We illustrate here a possible application of the inferential technique described
above. We consider data that have been collected within the AneuRisk Project,
designed to investigate the role of vessel morphology and blood fluid dynamics on
the pathogenesis of cerebral aneurysm (http://mox.polimi.it/it/progetti/aneurisk).
A detailed description of the problem can be found in Sangalli et al. (2009a).

The AneuRisk data set is based on a set of three-dimensional angiographic im-
ages taken from 65 subjects, hospitalised at Niguarda Ca Granda Hospital (Milan)
from September 2002 to October 2005, who were suspected of being affected by
cerebral aneurysms. Out of these 65 subjects, three groups can be identified:

• 33 subjects have an aneurysm at or after the terminal bifurcation of the
Internal Carotid Artery (ICA) (Upper group)

• 25 subjects have an aneurysm along the ICA (Lower group)
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• 7 subjects have not had any aneurysm (No-aneurysm group).

In general, Upper group subjects are those with the most dangerous aneurysms.
Qualitative considerations based on fluid dynamic and visual explorations of the
data lead Sangalli et al. (2009a) to join the Lower and No-aneurysm groups in a
single group, to be contrasted to the Upper group. Here, we explore possible dif-
ferences between Lower and No-aneurysm groups looking at covariance operators
of vessel radius and curvature.

Starting from the angiographies of the 65 patients, estimates of vessel radius
and curvature are obtained with the procedure described in Sangalli et al. (2009b),
resulting in a free-knots regression splines reconstruction of radius and curva-
tures. Each patient is therefore described by a pair of functions Ri(s) and Ci(s),
i = 1, . . . , 65, where the abscissa parameter s measures an approximate distance
along the ICA, from its terminal bifurcation toward the heart (for conventional
reasons, this abscissa parameter takes a negative value to highlight that the direc-
tion is opposite with respect to blood flow). These curves are defined on different
intervals, thus we restrict our analysis to the region which is common to all curves
(i.e., for values of abscissa between -25 and -1).

For the moment, we ignore the problem of misalignment among curves, even
if we expect this to mask some of the group differences. We show later how the
results change if the analysis is performed on registered curves, thus decoupling
amplitude and phase variability, as suggested in the original analysis. Fig. 3.1
shows radius and curvature for the two groups, while their covariance operators
can be seen in Fig. 3.2. We evaluate the kernels of the covariance operators on an
equispaced grid of p = 512 points.

We want now to verify the equality of the two groups in terms of covariance
structure, since a visual inspection of the covariance operators would seem to in-
dicate differences. A permutation test for equality of radius covariance operators
result in a p-value of 0.94 using Procrustes distance and 0.885 with Square root
distance. P-values of permutation tests for equality of curvature covariance opera-
tors are 0.86 for Procrustes distance and 0.775 for Square root distance. Therefore,
there is no statistical evidence for difference of covariance operators between the
two groups. Thus, the decision taken in the original analysis to treat the curves as
being from a single group is not rejected.

Let us now consider the two groups used in Sangalli et al. (2009a), i.e. patients
with aneurysm in the upper part of the artery and patients with aneurysm in lower
part of the artery or no aneurysm at all, to understand if our method can high-
light differences on the covariance structures. Fig. 3.3 shows radius and curvature
covariance operators. Performing the permutation test on radius covariance oper-
ators for these two groups, we find p-values less than 0.0001 both for Procrustes
distance and Square root distance. For the curvature covariance operators, we
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Figure 3.1: Curvature (top) and Radius(bottom) for the 65 patients in the range of
abscissa common to all curves. Black coloured curves correspond to patients of
the Lower group, red coloured curves to patients of the No-aneurysm group and
green coloured curves to patients of the Upper group.

obtain p-values of 0.1 for Procrustes distance and 0.02 for Square root distance.
Thus, both distances provide far smaller p-values than in the previous case indicat-
ing that the difference between these two groups is worth investigation. However,
the evidence is somewhat weak for curvature, as the Procrustes distance is only
significant at p ≤ 0.1, with this distance being free from the arbitrary choice of
decomposition.

As mentioned before, some of the difference between the two groups may also
be masked by a misalignment of the curves. Sangalli et al. (2009a) pointed out that
this data present a phase variability, due to biological difference among patients,
that is ancillary to the analysis. For this reason, we perform the test also on the
curved aligned by the method proposed in Sangalli et al. (2009a). This method
focuses on the first derivative of the coordinates of the vessel centerline. It looks
for the affine linear transformations on the curvilinear abscissa that maximizes an
appropriate measure of similarity among patients. Thus, we obtain the warping
functions hi, i = 1, . . . , 65 and a new set of radius and curvature curves Ri(hi(s))
and Ci(hi(s)), i = 1, . . . , 65.

Fig. 3.5 shows the covariance operators of radius and curvature for the aligned
curves for the group of patients with aneurysm in the lower part of the ICA and
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Figure 3.2: Covariance operator for curvature (left) and radius (right) for the for
the Lower (first row) and No aneurysm (second row) groups.

Figure 3.3: Covariance operator for curvature (left) and radius (right) for the Up-
per (first row) and Lower or No aneurysm (second row) groups.
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for those with no aneurysm. In this case, testing the difference of radius covari-
ance functions between these two groups results in p-values of 0.855 with Square
root distance and 0.845 with Procrustes distance, while testing the difference in
curvature covariance functions gives p-values of 0.61 with Square root distance
and 0.54 with Procrustes distance. Fig. 3.6 shows instead the covariance opera-
tors of the aligned radius and curvature for the group of patients with aneurysm
in the upper part of the ICA and for the group formed by both patients with no
aneurysm and patients with aneurysm in the lower part of the ICA.

The permutation tests result in p-values lesser than 0.005 for both Square root
distance and Procrustes distance and for both radius and curvature covariance
functions. Indeed, having dealt with curves misalignment makes more evident
the difference between these two groups (patients with aneurysm after the termi-
nal bifurcation of the ICA and patients with aneurysm along ICA or no aneurysm)
in terms of covariance structure, thus supporting results in Sangalli et al. (2009a).
Moreover, this confirms also that the registration procedure is successful in sepa-
rating phase and amplitude variability.

Figure 3.4: Registered Curvature (top) and Radius(bottom) for the 65 patients.
Black coloured curves correspond to patients of the Lower group, red coloured
curves to patients of the No-aneurysm group and green coloured curves to patients
of the Upper group.
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Figure 3.5: Covariance operator for curvature (left) and radius (right) for the
Lower (first row) and No aneurysm (second row) groups in the case of aligned
curves.

Figure 3.6: Covariance operator for curvature (left) and radius (right) for the Up-
per (first row) and Lower or No aneurysm (second row) groups in the case of
aligned curves.
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3.2 Exploring relationships among Romance languages
The traditional way of exploring relationships across languages consists of ex-
amining textual similarity. However, this neglects phonetic characteristics of the
languages. Here a novel approach is proposed to compare languages on the ba-
sis of phonetic structure. People speaking different Romance languages (French,
Italian, Portuguese, Iberian Spanish and American Spanish) are registered while
pronouncing words in each language. The output of the registration for each word
and for each speaker consists of the intensity of the sound over time and fre-
quencies. The aim is to use this data to explore linguistic hypotheses concerning
the relationships between different languages. However, while the temporal as-
pects of each individual word are important, we will concentrate on frequencies.
Previous studies (Aston et al., 2010; Hadjipantelis et al., 2012) have indicated
that covariance operators characterise languages well, and these will be the ob-
ject of study. The operators summarise phonetic information for the language,
while disregarding characteristics of singular speakers and words. For the scope
of this work, we focus on the covariance operators among frequencies in the log-
spectrogram, estimated by putting together all speakers of the language in the data
set. The spectrogram is a two dimensional time-frequency image which gives lo-
calised time and frequency information across the word. We consider different
time points as replicates of the same covariance operator among frequencies. It is
clear that this is a significant simplification of the rich structure in the data but in
itself can already lead to some interesting conclusions.

Let fijk(t) ∈ L2(Ω) be a realisation of a random process, where i = 1, . . . , L
are different languages, j = 1, . . . , n the groups (i.e. different time points) and
k = 1, . . . , K the observations (individual speakers). As mentioned above, the
working hypothesis is that the significant information of the different languages
are in the language-wise covariances Si rather than in the individual observations
fijk. Here some preliminary results are reported, focusing on the covariance op-
erator for the word “one” spoken across the different languages by a total of 23
speakers across the five languages. This word is similar in each language (coming
from the common Latin root), but different enough to highlight changes across
the languages (American Spanish: uno; French: un; Iberian Spanish: uno; Italian:
uno; Portuguese: um). This also highlights that in this case, textual analysis is
difficult as three of the languages have the same textual representation.

Fig. 3.7, 3.8 and 3.9 show the covariance operators estimated for each lan-
guage with the estimator (2.2), using Square root distance Procrustes distance and
Kernel distance respectively. Fig. 3.10 shows dissimilarity matrix among esti-
mated covariance operators for each language and the corresponding dendrograms
obtained with complete linkage. Indeed, it seems that focusing on the covariance
operator allows the capture of some significant information about languages. Re-
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Figure 3.7: Estimates of frequency covariance operators for the five romance lan-
guages, using Square root distance.
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Figure 3.8: Estimates of frequency covariance operators for the five romance lan-
guages, using Procrustes distance.

37



Figure 3.9: Estimates of frequency covariance operators for the five romance lan-
guages, using Kernel distance.
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Figure 3.10: First row: Distance matrix among Fréchet estimates, obtained
with Square root distance (left), Procrustes distance (center) and Kernel dis-
tance (right), where I=Italian, F=French, P=Portuguese, SA=American Spanish,
SI=Iberian Spanish. Second row: Correspondent dendrograms obtained with a
complete linkage.

lationships among covariance operators have features which are expected by lin-
guistic hypotheses, such as strong similarity between the two Spanish varieties
(American and Iberian) and Italian, which are correctly found using both Square
root distance and Procrustes distance. These two distances provide essentially the
same distance structure among languages, while Kernel distance matrix is slightly
different and in worst agreement with existing linguistic knowledge. However, not
all our conclusions directly support textual analysis. The distance of Portuguese
from both Spanish languages is greater than expected, Moreover, for historical
reasons American Spanish is expected to be nearer than Iberian Spanish to Ital-
ian, but the covariance structures indicate this is reversed. We can also compare
the distance between covariance operators with a distance elicited by linguistic
experts, based on geographical and historical information on languages evolution.
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Fig. 3.11 reports a scatterplot of the square root distance between covariance op-
erators and this geo-historical distance for every pairs of languages. As expected,
pairs including Portuguese language behave very differently, this reflecting the
exceptional difference in frequency covariance structure not unexpected by lin-
guistic experts.

Figure 3.11: Left: Distances among languages based on historical and geograph-
ical information. Right: Scatterplot of geographical distance v.s. square root
distance between covariance operators for each pair of languages.

Thus, as this analysis is currently based on the word “one”, providing further
assessment using a much larger corpus will be of significant interest, and is the
subject of ongoing work.

A particularly interesting objective of the analysis is to provide insight into
the change of the frequency structure along the path of language evolution. This
would be inherently linked to extrapolation based on the distances we have pro-
posed. The Portuguese language presents a very different covariance structure
with respect to the other Romance languages. Therefore, it would be of interest
to compare its frequency covariance operator with the one extrapolated from the
covariances of the two Spanish languages, to see if this kind of covariance was
expected (and a linear model of distance appropriate). In the opposite direction of
the evolutionary path, we try also to compare Italian frequency covariance opera-
tors with the one extrapolated from the two Spanish varieties. First, we use in the
extrapolation the distance-based estimates obtained with the same distance that
determines the geodesic. The extrapolated covariance operator for Portuguese (P)
is obtained with the method proposed in Section 2.1.3, evaluating the extrapola-
tion line from Iberian Spanish (SI) operator to American Spanish (SA) operator at
x = d(SSA, SP )/d(SSA, SSI). For Italian (I), we evaluate the line from American
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Spanish to Iberian Spanish at x = d(SSI , SI)/d(SSA, SSI).
Fig. 3.12 shows the integral kernels of the extrapolated operators and the es-

timate obtained from Portuguese data with the same distance. Fig. 3.13 reports
the same pictures for the Italian case. Table 3.1 reports the comparison between
Portuguese covariance operator and the correspondent geodesic estimate obtained
from Iberian and American Spanish. In this case, Procrustes extrapolation pro-
vides a better results with respect to all the considered distances. On the contrary,
Square root extrapolation behaves slightly better in the extrapolation towards Ital-
ian covariance operator (see Table 3.3). This is not surprising, since the extrap-
olation for Italian covariance operator is a “short distance” extrapolation, where
the square root mapping does not introduce large artificial effects.

We consider also the application of the three extrapolation methods to the
same covariance estimates to decouple the effect of the estimation and those of
the extrapolation. Table 3.2 and 3.4 show the comparison between the extrapola-
tion starting from kernel-based estimates of the covariance operators of the two
Spanish varieties and the kernel-based estimates of Portuguese and Italian respec-
tively. Here the Procrustes method is shown to be better both for Portuguese and
for Italian, even if the advantage is far greater for the former. Thus, we can con-
clude that the extrapolation based on Procrustes geodesic is to be preferred, as
expected from the theory.

Thus, we can conclude that some features of the most “extreme” language in
the family can be expected, such as a higher variability in the high frequency.
On the other hand, unexpected features are also present, for example a higher
variability also in the middle range frequencies for Portuguese, and these are worth
of deeper linguistic explorations.
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Table 3.1: Comparison between estimates Portuguese covariance operator and the
extrapolation from the two Spanish varieties.

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root estimate 10.57292 8.022398 NaN
Procrustes estimate 11.03729 8.186329 NaN

Kernel estimate 12.15648 8.95952 NaN
Square root distance

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root estimate 10.28457 7.45902 NaN
Procrustes estimate 10.77405 7.631172 NaN

Kernel estimate 11.78495 8.33287 NaN
Procrustes distance

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root estimate 2161.635 725.2036 2187.593
Procrustes estimate 2349.609 870.1691 2375.824

Kernel estimate 3004.293 1448.528 4471.765
Kernel distance

Table 3.2: Comparison between kernel-based estimate of Portuguese covariance
operator and the extrapolation from kernel-based estimates of the two Spanish
varieties.

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root distance 14.5469 13.42664 NaN
Procrustes distance 13.83603 12.77588 NaN

Kernel distance 3107.697 2524.992 5372.538
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Table 3.3: Comparison between estimates of Italian covariance operator and the
extrapolation from the two Spanish varieties.

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root estimate 3.552607 4.192906 NaN
Procrustes estimate 4.093186 4.179287 NaN

Kernel estimate 6.799505 6.370495 NaN
Square root distance

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root estimate 3.132686 3.674005 NaN
Procrustes estimate 3.613229 3.319093 NaN

Kernel estimate 6.494973 6.002709 NaN
Procrustes distance

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root estimate 111.4949 275.9129 282.5581
Procrustes estimate 228.2282 233.6398 239.9034

Kernel estimate 479.4734 250.2278 424.3027
Kernel distance

Table 3.4: Comparison between kernel-based estimate of Italian covariance opera-
tor and the extrapolation from kernel-based estimates of the two Spanish varieties.

Square root Procrustes Kernel
geodesic geodesic extrapolation

Square root distance 6.282191 6.228176 NaN
Procrustes distance 5.755854 5.69689 NaN

Kernel distance 329.8802 258.4509 232.9852
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Figure 3.12: First row: Kernel extrapolated for Portuguese from the two Spanish
languages using equation (2.3) (left). It is not a valid kernel for covariance oper-
ators, since the associated integral operator is not non negative definite. Sample
covariance function for Portuguese speakers (right). Second Row: Covariance
operator extrapolated for Portuguese from the two Spanish languages with the
square root mapping of equation (2.4) (left) and covariance operator estimated
from Portuguese speakers using equation (2.2) and square root distance (right).
Third row: Covariance operator extrapolated for Portuguese from the two Span-
ish languages with the Procrustes alignment in equation (2.5) (left) and covariance
operator estimated from Portuguese speakers using equation (2.2) and Procrustes
distance(right).
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Figure 3.13: First row: Kernel extrapolated for Italian from the two Spanish lan-
guages using equation (2.3) (left). It is not a valid kernel for covariance opera-
tors, since the associated integral operator is not non negative definite. Sample
covariance function for Italian speakers (right). Second Row: Covariance opera-
tor extrapolated for Italian from the two Spanish languages with the square root
mapping of equation (2.4) (left) and covariance operator estimated from Italian
speakers using equation (2.2) and square root distance (right). Third row: Covari-
ance operator extrapolated for Italian from the two Spanish languages with the
Procrustes alignment in equation (2.5) (left) and covariance operator estimated
from Italian speakers using equation (2.2) and Procrustes distance(right).
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Part II

Spatial statistics for covariance
matrices
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This part of the dissertation is focused on the development of spatial statistical
methods for Riemannian data, with a particular focus on the case of covariance
matrices. Little attention has been paid to this problem, while in many applications
data are spatially distributed. In the general context of complex data, this issue has
recently received much attention within the field of functional data analysis (see
Delicado et al., 2012; Gromenko et al., 2012; Menafoglio et al., 2012) but the
extension to non Euclidean data is even a greater challenge because they do not
belong to a vector space.

We move here the first steps in the direction of developing a statistics theory
for data belonging to a Riemannian manifold. Tools for the description of spa-
tial dependence are proposed and the problem of estimation of the mean in the
presence of spatial dependence is addressed. Chapter 5 introduces a semivari-
ogram for covariance matrix data and an estimator for the mean from a sample
of spatially correlated covariance matrices. A model for generating samples from
a random field of spatially correlated positive definite matrices is illustrated and
simulated data are used to evaluate the performance of the proposed estimator of
the mean. If observations are spatially located on an irregular grid, this method
provides better estimates than those obtained ignoring spatial dependence. We
apply this method to obtain a better estimate of the covariance matrix between
temperature and precipitations in the province of Quebec, Canada.

Then, in Chapter 6, a local tangent space approximation is used for describing
a non stationary random field taking value in a Riemannian manifold. The choice
of a local linear approximation is needed because the definition of a deterministic
drift and a correlated error term directly on the manifold is not straightforward.
The methods here introduced rely only on the definition of a distance among data
and on the locally Euclidean structure of the manifold. Thus, applications to any
Riemannian manifold is possible, once the geometry of the manifold has been
carefully considered.
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Chapter 4

Statistical analysis of positive
definite symmetric matrices

Positive definite symmetric matrices are an important instance of data belonging to
a Riemannian manifold. In this section, we introduce notation and a few metrics,
together with their properties, that we deem useful when dealing with data that
are positive definite symmetric matrices. A broad introduction to the statistical
analysis of this kind of data can be found, e.g., in Pennec et al. (2006) or Dryden
et al. (2009).

Let PD(p) indicate the Riemannian manifold of positive definite symmetric
matrices of dimension p. It is a convex subset of Rp(p+1)/2 but it is not a linear
space: in general, a linear combination of elements of PD(p) does not belong to
PD(p). Moreover, the Euclidean distance in Rp(p+1)/2 is not suitable to compare
positive definite symmetric matrices (see Moakher, 2005, for details). Thus, more
appropriate metrics need to be used for statistical analysis. A good choice could
be the Riemannian distance: the shortest path between two points on the manifold.
A description of the properties of Riemannian manifolds in general, and of PD(p)
in particular, can be found in Moakher and Zéraı̈ (2011) and references therein.

Let Sym(p) be the space of symmetric matrices of dimension p. The tangent
space to the manifold of positive definite symmetric matrices of dimension p in
the point S ∈ PD(p) is TSPD(p) = Sym(p). It is worth to recall that for every
pair (S,A) ∈ PD(p)× Sym(p), it exists an unique geodesic curve γ(t) such that

γ(0) = S
γ′(0) = A

and this curve has the expression

γ(t) = S
1
2 exp(tS−

1
2AS−

1
2 )S

1
2
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where exp(C) indicates the exponential matrix of C ∈ Sym(p). The exponential
map of PD(p) in S is defined as the point at t = 1 of this geodesic, thus

expS(A) = S
1
2 exp(S−

1
2AS−

1
2 )S

1
2 .

Thus, the exponential map takes the geodesic passing through S with “direction”
A and follows it until t = 1. The exponential map has an inverse, the logarithmic
map, defined as

logS(P ) = S
1
2 log(S−

1
2PS−

1
2 )S

1
2 ,

where log(D) is the logarithmic matrix of D ∈ PD(p). The logarithmic map
returns the tangent element A that allows the correspondent geodesic to reach P
in t = 1.

The Riemannian distance between elements P1, P2 ∈ PD(p) is the length of
the geodesic connecting P1 and P2, i.e.

dR(P1, P2) = || log(P
−1/2
1 P2P

−1/2
1 )||F =

√√√√ n∑
i=1

(log σi)2,

where the σi are the eigenvalues of the matrix P−1
1 P2 and ||.||F is the Froebenius

norm for matrices, defined as

||A||F =
√

trace(ATA).

This distance is also called trace metric, for instance in Yuan et al. (2012).
Once a metric has been introduced in PD(p), we can address the problem

of estimating the mean given a sample of positive definite symmetric matrices.
In recent years, many authors (Fletcher et al., 2004; Pennec et al., 2006; Dryden
et al., 2009) proposed to use the Fréchet mean for a more coherent approach in
dealing with data belonging to a Riemannian manifold. The Fréchet mean of a
random element S, with probability distribution µ on a Riemannian manifold, is
defined as

ΣR = arginfP

∫
dR(S, P )2µ(dS)

and it can be estimated with the sample Fréchet mean

Σ̂R = arginfP

n∑
i=1

dR(Si, P )2, (4.1)

where Si, i = 1, . . . , n is a sample from µ. For the PD(p) case, both the Fréchet
mean and the sample Fréchet mean exist and are unique (see, e.g, Moakher and
Zéraı̈, 2011). By means of extensive comparisons, Dryden et al. (2009) show that
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using estimators based on the Riemannian distance, or its approximation, gives
better results than the estimator based on Euclidean metric.

Analogously, the variance of S can be defined as

σ2 = Var(S) = E[dR(S,ΣR)2]

and estimated with the sample variance

σ̂2 =
1

n

n∑
i=1

dR(Si, Σ̂R)2.

In practical applications, using the Riemannian distance could be computa-
tionally expensive. For this reason, other distances have been proposed to com-
pare two positive definite symmetric matrices. For example, we may consider
the Cholesky decomposition of the positive definite symmetric matrix P , i.e. the
lower triangular matrix with positive entries L = chol(P ) such that P = LLT .
Then, Wang et al. (2004) defined a Cholesky distance between two positive defi-
nite symmetric matrices as

dC(P1, P2) = ||chol(P1)− chol(P2)||F .

Using the Cholesky distance, the sample Fréchet mean for a sample Si, i =
1, . . . , n, is easily computed:

Σ̂C = ∆̂C∆̂T
C , where ∆̂C =

1

n

n∑
i=1

chol(Si).

Another possibility is to resort to the square root distance (Dryden et al.,
2009):

dS(P1, P2) = ||P
1
2

1 − P
1
2

2 ||F ,

where P
1
2 is the matrix square root of P . Also for this case a simple formula

exists for the sample Fréchet mean which minimizes square root distances from a
sample S1, . . . , Sn of positive definite symmetric matrices:

Σ̂S = ∆̂S∆̂T
S , where ∆̂S =

1

n

n∑
i=1

S
1
2
i .

It is worth noticing that the square root distance is also defined for non negative
definite matrices. Thus, it is to be preferred in applications where matrix data may
have zero eigenvalues, or very small eigenvalues which lead to instability in the
computation of the Riemannian distance or the Cholesky decomposition.
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In the following, we propose methods that are based on a general distance
d(., .) on the manifold. In practice, the appropriate distance has to be chosen by
looking at the problem at hand while weighing computational efficiency.

We will need also to exploit the identification between Sym(p) and Rp(p+1),
defining a map which associates each symmetric matrix with a vector of Rp(p+1).
Many choices are of course possible, we indicate with vec(A) the row-wise vec-
torization of the non redundant elements of a symmetric matrixA and with vec−1(a)
the inverse operation, defined for a ∈ Rp(p+1). For example, for p = 2, we have

vec(A) =

 A11

A12

A22


and

vec−1(a) =

(
a1 a2

a2 a3

)
.
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Chapter 5

Estimation of the mean for spatially
dependent non Euclidean data

In this chapter we address the problem of estimating the mean from a spatially
dependent sample of positive definite symmetric matrices, following the exposi-
tion in Pigoli and Secchi (2012). However, the proposed technique relies only on
the definition of distance and thus it can be easily applied to any metric space,
even if for the interpretation of the method we sometimes refer to the Riemannian
geometry of PD(p).

A generalization of the Fréchet mean (4.1) is proposed, which takes into ac-
count spatial dependence among Riemannian observation. To do this, we also
define a semivariogram for Riemannian data.

5.1 Semivariogram for positive definite symmetric
matrices

Let us consider the random field

{S(s) ∈ PD(p) : s ∈ D} (5.1)

where D is a subset of Rd, E[S(s)] = Σ ∈ PD(p) for every s ∈ D. Since our
aim is to perform the statistical analysis from a single incomplete realization of
the random field, we ask the spatial dependence between S(s1) and S(s2) to be a
function only of h = s1−s2, for s1, s2 ∈ D. This can be formally stated using the
notion of joint probability measure on the manifold (see Pennec, 2006, for more
details about probability measures on manifolds). For s1, . . . , sn ∈ D, consider
the finite-dimensional measure

µs1,...,sn(Γ1, . . . ,Γn) = P (S(s1) ∈ Γ1, . . . , S(s1) ∈ Γn),
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for all possible Γ1, . . . ,Γn in the Borelian σ-field of PD(p). We require the ran-
dom field to be strictly stationary, i.e. for every finite set s1, . . . , sn ∈ D,

µs1,...,sn(Γ1, . . . ,Γn) = µs1+h,...,sn+h(Γ1, . . . ,Γn)

for all possible Γ1, . . . ,Γn in the Borelian σ-field of PD(p) and for all h ∈ Rd

such that s1 + h, . . . , sn + h ∈ D.
In general, the definition of a covariance between two random elements on a

Riemannian manifold is not straightforward, but in this particular setting a natural
extension of the variogram seems to be available. Indeed, in the one dimensional
Euclidean setting the variogram is defined as

2γ̃E(h) = V ar(x(s+h)−x(s)) = E[(x(s+h)−x(s))2]−E[x(s+h)−x(s)]2 =

= E[(x(s + h)− x(s))2]− (E[x(s + h)]− E[x(s)])2

i.e, the expected value of the squared Euclidean distance between the random vari-
ables minus the square Euclidean distance between their expected values. Hence,
we may generalize the notion of variogram by substituting the Euclidean distance
with a more appropriate distance, based on the geometry of the Riemannian man-
ifold. By analogy with its definition in spatial statistics for Euclidean data (see,
e.g, Cressie, 1993), we define the variogram for a positive definite matrix field as

2γ̃(h)
.
= E[d(S(s + h), S(s))2]− d(E[S(s + h)], E[S(s)])2 (5.2)

and consequently,

Var(S(s)) = lim
||h||→0

γ̃(h), Cov(S(s), S(s + h)) = Var(S(s))− γ̃(h) (5.3)

when the limit exists. Since we assume E[S(s)] = Σ for every s ∈ D, the
Riemannian semivariogram simply becomes

γ̃(h) =
1

2
E[d(S(s + h), S(s))2].

In practice, we require that spatial correlation depends only on the length of the
distance between two points s1 and s2, thus restricting to the case of an isotropic
semivariogram, where γ̃(h) = γ(||h||). This assumption is useful for estima-
tion, but it can be removed in applications when information about the anisotropic
structure of the field generating the data is available. Thus, in the presence of a
sample (S(s1), ..., S(sn)) generated by the random field (5.1), the isotropic semi-
variogram γ can be estimated from the empirical Riemannian distances, for in-
stance by means of the classical estimator illustrated in Cressie (1993):

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

d(S(si), S(sj))
2,
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whereN(h) = {(si, sj) ∈ D : h−∆ < ||si−sj|| < h+∆; i, j = 1, . . . , n}, ∆ is a
positive (small) quantity acting as a smoothing parameter, h = ||h|| and |N(h)| is
the number of couples (si, sj) belonging toN(h). Finally, a model semivariogram
can be fitted to the empirical semivariogram, via least squares. As it happens in
the Euclidean setting, an accurate estimation of the semivariogram is crucial for
subsequent analysis. All the guidelines and methods developed for vector data
can also be easily applied to the estimation of γ̃.

5.1.1 Stochastic dependence in non Euclidean spaces
The development of statistical methods for the analysis of samples generated by
random fields of positive definite matrices asks for a definition of stochastic de-
pendence between two random elements taking values on a Riemannian manifold.
In Euclidean spaces, the covariance is a measure of linear dependence between
two random variables. However, in a non Euclidean framework linear dependence
cannot be properly captured. While in many applications geodesics can be used
as a surrogate of linear subspaces, this is not possible here, since an element of the
manifold does not generate a geodesic in the way a random vector in a Euclidean
space generates a linear subspace, thus allowing for measuring linear dependence.

The definition proposed in the previous section is based on the difference be-
tween the common variance of the random elements and half the expected value of
their square distance. In this section, we explore properties and limits of this def-
inition to fully understand the peculiarity of a non linear space for what concerns
stochastic dependence.

Let (A,B) be a random vector whose components are positive definite ma-
trices. The spatial model proposed in the previous section leads to a covariance
between the random matrices A and B defined as

Cov(A,B) :=
1

2
{σ2

A + σ2
B − (E[d(A,B)2]− d(E[A],E[B])2)} (5.4)

where, for S = A,B, we set E[S] = arginfΣE[d(S,Σ)2] and σ2
S = Var(S) =

E[d(S,E[S])2].
In the Euclidean setting, covariance is a measure of how close to a linear

subspace observations are expected to lie, e.g. a straight line in R2. No linear
subspaces exist on a Riemannian manifold, unless locally. In this framework the
covariance measures how “near” observations are expected to be, with respect to
their variability (i.e., the variance of the individual random elements A and B). A
negative covariance indicates that A and B are expected to be farther apart than
what it is to be expected by looking only at their marginal means and variances.

To better understand (5.4), we may focus on the special case E[A] = E[B] = Σ
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and V ar[A] = V ar[B] = σ2, which is of interest in spatial models. Then

Cov(A,B) ≤ σ2,

since E[d(A,B)2] ≥ 0. The maximum value is taken forA = B andCov(A,A) =
σ2. Therefore the covariance defined in (5.4) has an upper limit that is reached
when the random elements are the same.

5.2 Estimation of the mean from a spatially corre-
lated sample on a Riemannian manifold

This section addresses the problem of estimating the mean given a sample of spa-
tially correlated positive definite symmetric matrices. The influence of spatial
correlation on estimation and prediction is well known in the traditional Euclidean
setting (see, e.g., Cressie, 1993) and it has been recently highlighted also for the
case of functional data (Gromenko and Kokoszka, 2011). In particular, in the
presence of strong spatial correlation, the sample mean can be inefficient as esti-
mator for the mean of the population, having larger variance than estimators that
take into account spatial dependence, see Cressie (1993, Section 1.3) for a proof
in the case of real valued random variables and Gromenko and Kokoszka (2011),
for extensive simulation studies on functional data. Indeed, in the presence of
highly irregular spatial designs, the sample may contain a great amount of data
coming from close by locations, together with a few isolated and distant observa-
tions. If spatial correlation is strong, data from close by locations are expected to
provide similar information; their influence on the estimate should be mitigated,
with respect to the few data coming from distant locations.

We propose an estimator for the mean Σ of a random field S ∈ PD(p) which
generalizes the estimator proposed by Gromenko and Kokoszka (2011) for a linear
space. It is defined as a weighted sample Fréchet mean:

W = arginfP

n∑
i=1

λid(S(si), P )2, (5.5)

where S(si) is the observation of the random field S at location si ∈ D. Weights
λi have to be chosen taking into account the spatial dependence among observa-
tions. Analogously to Section 4, we add a subscript to indicate the distance that
has been used in the estimation procedure: WR is the weighted sample Fréchet
mean using the Riemannian distance andWS is the weighted sample Fréchet mean
using the square root distance. Minimization of the weighted sum of square dis-
tance to estimate Fréchet mean on the manifold has been first proposed in Dryden
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et al. (2009) in the context of smoothing for Diffusion Tensor Imaging fields.
Their aim is to estimate the diffusion tensor for each point of the domain, starting
from noisy and discrete observations. Thus, weights are chosen as function of the
distance of each observations from the point where the estimate is needed. This
approach has been recently developed in Yuan et al. (2012), where a local polyno-
mial regression estimator for the conditional mean E[S(s)|s = s0] is introduced.

Differently from these previous works, we here want to estimate the uncondi-
tional mean of the random field (5.1), starting from a spatially correlated sample
of data belonging to the manifold. This leads to a different choice of weights λi,
that should now take into account the dependence among the random elements the
data are realizations of. Following the analogy with the Euclidean setting, we ask
the weights λi to solve the quadratic constrained minimization problem:

min
n∑
i=1

n∑
j=1

λiλjCov(S(si), S(sj)),
n∑
i=1

λi = 1, λi ≥ 0 for i = 1, ..., n. (5.6)

In the Euclidean case, (5.6) is equivalent to the minimization of the mean square
error, but this need not be true for a general Riemannian manifold. However,
choosing the weights λi as the solution of problem (5.6) meets the qualitative re-
quest to attribute less influence to subsets of data which are strongly correlated.
We also ask the weights to be non negative to avoid instability in the minimiza-
tion on the manifold, since, in any case, the solution of the minimization problem
would not result in a linear combination of the data. Many numerical methods ex-
ist to solve the quadratic programming problem set in (5.6). We resort to that pro-
posed in Goldfarb and Idnani (1983). The covariance structure Cov(S(si), S(sj))
is obtained from the model semivariogram estimated with the procedure illustrated
in the previous section.

5.3 Simulation studies
In this section we present a simulation study to test the performance of the pro-
posed mean estimator. To do this, we introduce a simple method for simulating
a random field of positive definite matrices with spatial correlation. Then, we
use the simulated field to compare the weighted sample Fréchet mean WS with
the usual sample Fréchet mean Σ̂S , for different experimental designs. Here, we
choose the square root distance to compare two positive definite matrices for com-
putational savings and to avoid problems with nearly singular matrices.
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5.3.1 Simulation of a random field in PD(2)

We want to simulate a positive definite symmetric matrix field S(s) ∈ PD(2) with
mean Σ and a spatial correlation structure. This is obtained through the sample
covariance matrices of the realizations of a gaussian random vector field v. This
is a relatively easy way to address the problem of simulating from a multivariate
random variable where each entry is a positive definite matrix and a dependence
is present among different entries.

Let s ∈ D ⊂ R2 indicate the spatial coordinates of two independent gaussian
random field x(s), y(s), with 0 mean and spatial covariance

Cov(x(si), x(sj)) = Cov(y(si), y(sj)) =

{
exp(−q‖si − sj‖2) ‖si − sj‖2 > 0;

1 ‖si − sj‖2 = 0,

for si, sj ∈ D.
Given a 2 × 2 matrix A, say A = (1, 1; 0, 1), the random vector field v(s) =

A(x(s), y(s))T has covariance matrix Σ = AAT = (2, 1; 1, 1). We generate N
realizations of the random vector field v(s) and compute the sample covariance
matrix

S(s) =
1

N − 1

N∑
k=1

(vk(s)− v̄(s))(vk(s)− v̄(s))T ∼Wishart(Σ, N − 1).

The positive definite symmetric matrix field S(s) has thus mean Σ and it has a
spatial dependence structure inherited by the spatial correlation of the underlying
vector field v(s). The law of the random field S(s) depends on the parameters q
and N , which determine respectively the spatial dependence and the variability.
In Fig. 5.1 some realizations of the matrix random field are reported for different
values of q and N , using ellipses to represent 2 × 2 positive definite symmetric
matrices. It can be seen that larger values of q correspond to lower spatial depen-
dence and larger values of N to lower variability. By inspecting the realizations
of the field, we can guess that for q and N both small, taking into account spatial
dependence improves the estimate of the unconditional mean Σ. Indeed, for large
values of N the variability of the field is so small that every single observation is
a good representative of the mean and so every estimation techniques is adequate.
Of course, when q is large, no spatial dependence is present, observations are in-
dependent and thus the sample Fréchet mean is the proper estimator. Hereafter we
focus on the case when q and N are small.
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Figure 5.1: Simulation of the positive definite random fields, for different values
of q and N . Each statistical unit S(si) (a 2 × 2 positive definite symmetric ma-
trix) is represented as an ellipse that is centered in si and has axis √σjej , where
S(si)ej = σjej for j = 1, 2.
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Figure 5.2: First row: three datasets obtained in the first simulation for the three
experimental designs: regular grid (left), irregular (middle) and clustered (right).
Second row: weights λi assigned to each location, rounded down to the third dec-
imal digit, for the first simulated field and the three experimental designs. Third
row: empirical semivariograms obtained from the three experimental designs in
the first simulation. A fitted gaussian model is superimposed to the empirical
semivariogram (solid line).
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5.3.2 Estimation of the mean Σ of the simulated field
We now compare the proposed estimator with the sample Fréchet mean for three
different experimental designs. We simulate 20 realizations of the random field
S(s) on a rectangular grid, setting q = 0.01 and N = 4, which is a case of high
variability and high spatial dependence. We then subsample each realization in
different points si, obtaining different sets of observations for each experimental
design. Fig. 5.2 shows the datasets for the first simulation: each statistical unit
S(si) (a 2× 2 positive definite symmetric matrix) is represented as an ellipse that
is centered in si and has axis √σjej , where S(si)ej = σjej for j = 1, 2. The
first experimental design corresponds to a regular grid, the second to an irregular
grid, while the third grid presents a cluster of spatial locations. The same picture
shows the empirical semivariogram obtained for each dataset with a superimposed
gaussian semivariogram fitted via least squares. For each realization of the ran-
dom field S, we estimated the mean for the three experimental designs both with
the sample Fréchet mean Σ̂S and the weighted Fréchet mean WS . Fig. 5.3 shows
the boxplots of the distances dS(Σ̂S,Σ) and dS(WS,Σ) for the three experimental
designs. The weighted estimator behaves better, especially in the case of clus-
tered data, where it is able to disregard some of the redundant information coming
from points in the cluster. Fig. 5.2 shows also the weights λi obtained in the first
simulation for the three experimental designs.

5.4 Applications to the estimation of mean covari-
ance structure for meteorological variables

The simulation studies of the previous section support the tenet that the estimate
of the mean covariance could be improved by taking into account data spatial de-
pendence. As an illustrative application, we consider the problem of estimation
of the mean covariance between different meteorological variables, say temper-
ature and precipitation. Temperature and precipitation are two very important
climatic variables. Their co-variability is also of interest: a better understanding
of their relationship can provide insights on the precipitation-forming process or
improve weather forecasting methods. Moreover, relative behavior of temperature
and precipitation affects agricultural production (Lobell and Burke, 2008, see[).
For a broader introduction to the importance of the temperature - precipitations
relationship and its estimate see, e.g., Trenberth and Shea (2005) and references
therein.

We focus on the Quebec province, Canada. Data from Canadian meteorologi-
cal stations are made available by Environment Canada on the website
http://climate.weatheroffice.gc.ca. Indeed different measurement stations provide
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Figure 5.3: Boxplot of dS(Σ̂S,Σ) (left) and dS(WS,Σ) (right) for the three exper-
imental designs: regular pattern (left), irregular (center) and clustered (right).

meteorological data along time and a first idea could be to bundle all data to-
gether in order to estimate the covariance between meteorological variables. This
procedure is questionable since it does not take into proper account the spatial
distribution of the measurement stations, which can be far from a regular grid
on the region of interest. Analyzing similar data, coming from Canadian mete-
orological stations, Gromenko and Kokoszka (2011) point out the relevance of
spatial dependence between measurement stations when estimating the monthly
mean temperature function.

Fig. 5.4 shows the map of Quebec and the meteorological stations for which
monthly data for temperature and precipitation are available, from 1983 to 1992.
We assume that the monthly variation of the mean covariance between tempera-
ture and precipitation stays unchanged along the years of this short time period.
The goal is to estimate the mean covariance between temperature and precipita-
tion for each month of the year. Thus, for each meteorological station, we use
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the 10-year measures of temperature and precipitation to estimate a 2× 2 sample
covariance matrix for every month from January to December. Fig. 5.4 shows the
ellipse representation of these covariance matrices for January.

Figure 5.4: Left: Map of Quebec. Blue stars indicate positions of meteorological
stations. Right: For each meteorological station an ellipse is plotted, representing
2× 2 covariance matrix between temperature and precipitations in January.

Locations of the meteorological stations form an irregular pattern within Que-
bec. Thus, we expect that taking into account spatial dependence leads to a more
accurate estimate of the mean covariance between temperature and precipitation
in Quebec. We also assume that spatial dependence is constant along time. This
allows to have more data for variogram estimation, which is a crucial point in the
analysis. Fig. 5.5 shows the empirical semivariogram estimated with the method
proposed in Section 5.1, with a superimposed fitted gaussian variogram, and the
weights for each station obtained by solving (5.6). It is interesting to notice that
three stations are associated with almost zero weights: this means that they are
bringing redundant information for the estimation of the mean covariance struc-
ture.

An ellipse representation of the estimates obtained with sample Fréchet mean
Σ̂S and weighted sample Fréchet mean WS for the 12 months of the year appears
in Fig. 5.6. The two estimators provide similar estimates for the winter period,
from October to February, where a positive correlation exists between temperature
and precipitation in the coldest months of the year. This is in agreement with Isaac

62



Figure 5.5: Left: Empirical semivariogram for the covariance matrix between
temperature and precipitation (black points) and least squares fitting of a gaussian
semivariogram. Right: Weights given to every station for the estimation of the
average covariance matrix. Weights are rounded down to the third decimal digit.

and Stuart (1991), where correlation between daily temperature and precipitation
is considered for the whole Canada by looking at the temperature precipitation
index, i.e. the percentage of precipitation occurring at temperatures colder than
the median daily temperature. They found that in January more precipitation is
observed in relatively warm days.

The weighted sample Fréchet mean WS provides a quite different estimate
for the beginning of spring (March and April), where no correlation seems to be
present, while the sample Fréchet mean Σ̂S would suggest a positive correlation.
For April, Isaac and Stuart (1991) found great variability of the temperature pre-
cipitation index in the different Canadian provinces. For Quebec, however, it is
around 50%, thus suggesting no correlation. The two estimates agree again for
May and June (negative correlation), while for summer months estimates pro-
vided by the weighted sample Fréchet mean WS suggest a different total variation
for these covariance matrices (lower in July and September, greater in August)
but both of them indicate that there is no correlation between temperature and
precipitation, thus agreeing with Isaac and Stuart (1991) who report a tempera-
ture precipitation index around 50% for Quebec and Ontario in July, contrary to
the trend of all the other Canadian provinces.

In conclusion, estimates provided by the proposed estimator WS are in full
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Figure 5.6: Ellipses representing the estimated covariance matrix between tem-
perature and precipitations in Quebec, for the twelve months of the year. First
Row: Sample Fréchet mean Σ̂S . Second row: Weighted Fréchet mean WS .

agreement with previous analysis of Canadian climate, while ignoring spatial de-
pendence among measurement stations leads to anomalous results for March and
April. Moreover, dealing with the covariance matrix, rather than with the temper-
ature precipitation index, supplies also information about temperature and precip-
itation variability. Differences between the estimates of total variability provided
by WS and Σ̂S are concentrated in summer months. In August, our method esti-
mates a greater total variability, while in July and September a lower one.

5.4.1 Choice of a different design for meteorological stations
As shown in Section 5.4, the spatial correlation among the meteorological stations
of Quebec implies that three of them bring no significant information for the es-
timation of the mean covariance between temperature and precipitation. We now
imagine to have the possibility to add a new meteorological station. We assume
that the spatial dependence between data generated by the meteorological stations
is described by the gaussian semivariogram represented in Fig. 5.5, estimated via
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least square from the empirical semivariogram. We aim at finding a site for the
new station that makes the weights λi, given to the stations for mean covariance
estimation, as close as possible to 1/n, being n the total number of meteorologi-
cal stations, the new one included. This would provide an estimator (5.5) with a
smaller variance.

Let us superimpose a fine grid of points on the region of interest and indicate
with x and y the latitude and the longitude of a point on the grid. For each grid
point (x, y), we solve problem (5.6) pretending that the new station is located
in (x, y). We thus obtain a new weight λi(x, y) for each of the n meteorological
stations. The utility of positioning the new station in (x, y) is defined as

U(x, y) = 1−
n∑
i=1

(λi(x, y)− 1

n
)2.

We now look for the site (x, y) where the utility U(x, y) is maximized. Fig. 5.7
shows the utility function on the Quebec province and the site for the new station
maximizing it. Of course, the exercise considers only the problem of estimation
of the mean covariance between temperature and precipitation, disregarding other
quantities of interest for meteorological analysis.

Figure 5.7: Left: Utility function U(x, y) evaluated on the Quebec province. Lo-
cations of the already existing station are indicated by red circles, while the blue
star corresponds to the maximum of the utility on the Quebec province. Right:
Weights assigned to the new set of measurements stations.
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Chapter 6

Kriging interpolation for
Riemannian data

In this chapter a novel proposal for kriging of Riemannian data is described. This
method is illustrated for the special case of positive definite symmetric matrices,
but it can be easily applied every time that a tangent space and correspondent
logarithmic and exponential map are available.

Let S(s1), . . . , S(sn) ∈ PD(p) be observations from a realization of a random
field and s1, . . . , sn ∈ Ω ⊆ R2. The aim is to predict the value of the same
realization in an unobserved location s0.

Many works have recently considered the problem of dealing with manifold-
valued response variables. Some of them propose non parametric (see Yuan et al.,
2012, and referece therein) or semi-parametric (see Shi et al., 2012) approaches
but this implies a lack of interpretability or the reduction of multivariate predictors
to univariate features. In particular, these approaches do not allow to introduce the
spatial information in the prediction procedure.

In this dissertation, a different line of research is followed, along the lines
of those who try to extend to manifold-valued data parametric (generalized) lin-
ear models (see, e.g. Fletcher, 2012). We propose here a novel linear regression
model for Riemannian data based on a tangent space approximation. This model
has been developed with the aim to take into account a drift effect in the univer-
sal kriging for manifold data. However, it could be useful in general to address
multivariate regression in the context of Riemannian data.

6.1 A tangent space model for Riemannian data
Under the hypothesis that the dispersion of the observations on the manifold is
not too large, a tangent space can be used to approximate data in a linear space,
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where an additive model can be used to describe the relationship between response
variable and covariates. This allows to extend well established statistical tools for
regression models to the context of manifold valued response variable. Let us
consider the model

S(x;β,Σ) = expΣ(A(x;β) + ∆) (6.1)

where Σ ∈ PD(p) andA(x;β) ∈ Sym(p) depends on the matrix β ∈ Rp(p+1)/2×(r+1)

of unknown deterministic parameters, r being the number of predictors and x the
covariates vector. ∆ ∈ Sym(p) is a random matrix such as E[vec(∆)] = 0 and
Cov(vec(∆)) = σ2I. Thus, this manifold valued random variable is generated
following the geodesic passing through Σ with tangent vector A(x;β) + ∆: the
geodesic to be followed to obtain the realization of the variable is controlled by
the covariates vector x but an additive error is also present. The expression of the
symmetric matrix A has to be specified and in this work we deal with the linear
model

veck(A) = βTk.x, (6.2)

for 1 ≤ k ≤ p(p + 1)/2, where βk. ∈ R(r+1) is the kth-row of the parameter
matrix. This strategy, involving a tangent space approximation, can be followed
also to generalize to manifold valued response variables more complex model,
such as non linear or generalized regression.

Let us consider a sample (x1, S1), . . . , (xn, Sn). The goal is to fit the tangent
plane approximation which best models the relationship between x and S, i.e. to
find

(Σ̂, β̂) = arg min
Σ,β

1

2

n∑
i=1

||βxi − vec(logΣ(Si))||2Rp(p+1)/2 , (6.3)

where logΣ indicates the logarithmic map that projects each element of PD(p) on
the tangent space of PD(p) in Σ. Thus, our estimator looks for the linear model in
the tangent space which minimizes the error sum of squares. It has to be noticed
that the solution of problem (6.3) is a maximum likelihood estimator if vec(∆)
has a multivariate normal distribution.

Indeed, given a sample (x1, S1), . . . , (xn, Sn), the likelihood function for the
multivariate gaussian model on the tangent space is

L(Σ,β, σ2|Si,xi, i = 1, . . . , n) =
n∏
i=1

1

(2πσ2)p(p+1)/2
e−

1
2σ2

yTi yi ,

where yi = vec(logΣ(Si))− βxi). The correspondent log-likelihood is therefore

l(Σ,β, σ2|Si,xi, i = 1, . . . , n) = −np(p+1)
4

log(2πσ2)+

− 1
2σ2

∑n
i=1

∑p(p+1)/2
k=1 (vec(logΣ(Si))k − βTk.xi)

2
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and its maximization is equivalent to the minimization of problem (6.3).
For a given known Σ, minimization of (6.3) is an ordinary least square problem

on the tangent space, since

n∑
i=1

||βxi − logΣ(Si)||2Rp(p+1)/2 =
n∑
i=1

p(p+1)/2∑
k=1

(βTk.xi − vec(logΣ(Si))k)
2 =

=

p(p+1)/2∑
k=1

||βTk.X−Yk.(Σ)||2Rn ,

where X is the (r + 1) × n matrix whose columns are the vectors of predictors
and Y(Σ)i. is the i-th row of the matrix such that Yki(Σ) = vec(logΣ(Si))k. Thus,
each term of the previous sum is minimized with respect to β by the ordinary least
square solution

β̂k.(Σ) = (XTX)−1XTYk.(Σ) (6.4)

and the global solution should be in the form (Σ, β̂(Σ)). Finally, the problem

min
Σ

1

2

n∑
i=1

||β̂(Σ)xi − vec(logΣ(Si))||2Rp(p+1)/2 (6.5)

has to be numerically solved. Here we resort to Nelder-Mead algorithm imple-
mented in the optim() function in the R software (R Development Core Team,
2009), with constrains to ensure the matrix to be positive definite. This works
well for two or three dimensional matrices, while in case of higher dimensional
matrices more efficient optimization tools would be needed, for example gradient
descend or Newton methods on the manifold (see, e.g, Dedieu et al., 2003). In
this way, we obtain an estimate for the parameters:

Σ̂ = arg minΣ
1
2

∑n
i=1 ||β̂(Σ)xi − vec(logΣ(Si))||2Rp(p+1)/2 ,

β̂k. = (XTX)−1XTYk.(Σ̂) for 1 ≤ k ≤ p(p+ 1)/2

This method asks to specify the model (6.2) for the matrixA. Since this model
is defined on the tangent space, well established techniques can be used for model
selection, for example cross-validation.

6.2 Universal and ordinary kriging
In this section we apply the tangent space approximation above to non-stationary
manifold-valued random field. The main idea is to use a tangent space model to
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approximate the geometry of the manifold and to refer to the tangent space to deal
with spatial dependence. Thus, the proposed model is

S(s;β,Σ) = expΣ(A(x(s);β) + ∆(s)) (6.6)

where ∆(s) is a zero-mean second-order stationary random field taking values in
the Euclidean space of symmetric matrices.

The estimation procedure follows the idea illustrated, e.g., in Cressie (1995)
and it is based on an iterative algorithm. First, the estimate of the tangent space
model is initialized with the estimator proposed in the previous section for the
case of independent errors. Then, the spatial dependence of the random field ∆
on the tangent space is estimated with traditional methods for Euclidean data,
considering the residuals ∆

(0)
i = A(x(si); β̂) − logΣ(Si) as an incomplete re-

alization of the random field ∆. The space of symmetric matrices is a linear
space, endowed with the scalar product 〈A,B〉F = trace(AB) and the distance
||A−B||2F = trace((A−B)(A−B)). Thus, all the well known tools from spatial
statistics can be used.

Once the spatial covariance structure has been estimated, a new estimate for
the tangent space model is provided substituting the least square estimators for the
model coefficients with the generalized least square estimators

β̂GLS(Σ) = arg min
β

p(p+1)/2∑
k=1

(βTk.X−Yk.(Σ))TΓ−1(βTk.X−Yk.(Σ)) =

=

 (XTΓ−1X)−1XTΓ−1Y1.(Σ)
...

(XTΓ−1X)−1XTΓ−1Yp(p+1)/2.(Σ)


where Γsr is the covariance between ∆s and ∆r. Thus, the new minimization
problem would be

Σ̂ = arg min
Σ

1

2

n∑
i=1

||β̂GLS(Σ)Tx(si)− vec(logΣ(Si))||2Rp(p+1)/2 .

This problem can be solved with the Nelder-Mead algorithm, even if at each step
some subiterations are needed to estimate the spatial covariance structure and thus
the model coefficients. The model being estimated, a kriging interpolation on the
residuals provides an estimate for the field S in the unobserved location s0,

Ŝ(x(s0)|S(x(s1)), . . . , S(x(sn))) = expΣ̂(vec−1(β̂GLS(Σ̂)Tx(s0)) +
n∑
i=1

λ0
i∆i),
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where ∆i are the residuals in the known locations s1, . . . , sn and λ0 = (λ0
1, . . . , λ

0
n)T

is the vector of weights from the ordinary kriging estimation. Let

c = (cov(∆(s1),∆(s0)), . . . , cov(∆(sn),∆(s0)))T

and 1 = (1, . . . , 1)T , then

λ0 = Γ−1c + Γ−11
1− (1TΓ−1c)

1TΓ−11
.

This model includes as a special case the ordinary kriging, where the deter-
ministic part of the model does not depend on spatial location.

6.3 Kriging for Quebec meteorological data
In this section the proposed kriging prediction is applied to the covariance matrix
between temperature and precipitations in Quebec. Data are the same which have
been considered in Section 5.4 but the aim of the analysis is now different, since
we want to predict the covariance matrix in unobserved locations, starting from
the incomplete realization of the field. At first, we still make the hypothesis that
the matrix random field has a constant mean and thus only a constant term is
included in the tangent space model, obtaining an ordinary kriging of the random
field. Looking at the empirical semivariogram in the tangent space, we can choose
a exponential model for spatial dependence. However, since we are working on
different tangent spaces for the different months, we have to estimate separate
semivariogram for each month, unlike what we have done in Section 5.4. This
means that fewer data are available for the estimation of the spatial structure. Fig.
6.1 shows the estimated matrix field for the months of January and July, as well
as the correspondent semivariogram on the tangent space.

Focusing separately on each month for the estimation of the spatial structure
allows to notice that the hypothesis of stationarity may not be adequate for all
months. In January, for example, the semivariogram suggests to introduce a non
stationary drift term. Here the choice of an appropriate model is needed. We
investigated linear and quadratic models with respect to longitude and latitude,
including an interaction term. We found that the only choice which allows to have
a stationary residual term is a linear term on the longitude, the final model being

A(Longitudei,Latitudei) = β0 + βLongLongitudei.

A possible meteorological interpretation is that more negative values for the lon-
gitude mean a greater distance from the Atlantic Ocean.
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Figure 6.1: Ordinary kriging for covariance matrix between temperature and pre-
cipitations, green ellipses indicating original data (left) and empirical and model
exponential semivariogram (right) for the months of January (first row) and July
(second row).
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Figure 6.2: Universal kriging for covariance matrix between temperature and pre-
cipitations, green ellipses indicating original data (top left), drift term depending
on longitude (top right) and empirical and model exponential semivariogram (bot-
tom) of the residuals for the month of January.
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The estimate of the coefficient vector for longitude is

β̂Long =

 0.04956154
−0.3550782

2.543298


and its effect on the covariance matrix field can be appreciated in Fig. 6.2, which
shows the semivariogram for the residuals and a representation both of the drift
term and of the kriging estimation of the matrix field. It is worth to notice that
spatial dependence seems to be very low, once the drift has been removed, the de-
terministic trend explaining most of the variability. This is not completely unex-
pected, since Menafoglio et al. (2012) report similar results for temperature curves
when using average meteorological data. This is implicit in our data, since we use
yearly replicates for the estimation of covariance and thus intra-year dependence
is not visible.
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Conclusions and further
development

This dissertation is in the framework of Object Oriented Data Analysis, focus-
ing in particular on covariance operators as elements of manifolds. The overall
aim is to find out how taking into account the non Euclidean structure of these
mathematical objects can benefit the statistical analysis.

In Part I the problem of dealing with covariance operators on L2(R) has been
investigated. The choice of the appropriate metric is crucial in the analysis of co-
variance operators: some suitable metrics have been proposed and their properties
have been highlighted. In particular two metrics have been successfully applied to
infinite dimensional covariance operators: the square root operator distance and
the Procrustes size-and-shape distance. Both these metrics rely on the mapping of
the covariance operators to a suitable space of Hilbert-Schmidt operators where a
linear distance, i.e. the Hilbert-Schmidt norm of the difference of the operators, is
appropriate. The square root operator distance uses the square root map defined
in (1.1), while the Procrustes distance allows for unitary transformations in the
space of Hilbert-Schmidt operators, thus taking into account the arbitrariness of
the representation given by the chosen mapping transformation.

On the basis of an appropriate metric, statistical methods can be developed to
deal with covariance operators in a functional data analysis framework. Here the
notable cases of point estimation of covariance operators and two groups hypoth-
esis testing are illustrated. The latter technique has proved useful for the analysis
of the AneuRisk data, where investigating the covariance structures of different
groups supports the results of previously published analysis. Moreover, in some
applications the covariance operator itself is the object of interest, as shown with
the linguistic data of Section 3.2. Here, linguistic scholars suppose that the co-
variance operator of frequency intensities catches significant phonetic features of
the language. Using the square root and Procrustes distances to analyse these co-
variance operators for some Romance languages, preliminary results support this
hypothesis, while also detecting some phonetic structures which deserve deeper
linguistic explorations.
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Many other developments are of course possible, both in the theoretical as-
pects of the proposed statistical methods and in data analysis. In particular, there
is considerable scope for development of the consistency properties for estima-
tors proposed in Section 2 and of necessary conditions for (local) convergence
of the Procrustes algorithm in infinite dimensions. The proposed extrapolation
procedure is a seminal idea for the development of linear models for covariance
operators, this being a promising line of research for future works. The analysis of
linguistic data is only preliminary and more significant results are expected when
many words are taken simultaneously into account. Moreover, interactions with
linguistic scholars can suggest other possible investigations of the data.

In Part II, we introduced spatial statistics methods which take into account the
specific nature of the non Euclidean data at hand. We introduced a semivariogram
whose definition consistently relies only on the notion of distance between two
elements of the space to which data belong. This allows to tackle the problem of
estimation of the mean from a spatially correlated sample of non Euclidean data.
The proposed method relies only on the notion of distance between non Euclidean
data and therefore it can be applied to any Riemannian manifold. Here we have
focused on the notable case of positive definite matrices to show the effectiveness
of our approach, both with simulations and with a significant real data applica-
tion. However, our work can be easily adapted to other kinds of non Euclidean
data. An example could be the covariance operator considered in Part I of this the-
sis: taking into account spatial dependence could generate interesting analysis for
that kinds of problems. Indeed, Horváth and Kokoszka (2012) show that taking
into account spatial dependence provides better estimates for functional princi-
pal component, i.e. for the correspondent covariance operator. However, they
deal with covariance operators as Euclidean objects, looking for estimators that
minimize Hilbert-Schmidt norm. Our approach can be easily generalized to this
infinite dimensional setting and it would allow to consider other possible metrics
for covariance operators.

In Section 5.4 we apply our method to a meteorological problem, the esti-
mation of the covariance matrix between temperature and precipitation in the
province of Quebec (Canada). We show that taking into account spatial depen-
dence provides estimates that are in a better agreement with known meteorological
information.

Finally, we illustrate a possible way to deal with the non stationarity of the
covariance matrix field: ordinary or universal kriging based on a tangent space
approximation of the manifold. This allows for the consideration of spatial depen-
dance in smoothing procedures, such as those proposed in Dryden et al. (2009) or
Yuan et al. (2012). The statistical analysis of a non stationary Riemannian field is
still an ongoing research. Deeper investigation are needed for a better understand-
ing of the relationship between the spatial dependence on the tangent space and
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those measured directly on the manifold. Moreover, theoretical properties of the
estimators for parameters of the tangent space model still have to be investigated,
as well as the feasibility of solving the least squares problem in more general
situation.

In conclusion, the statistical analysis of non Euclidean data is a very promis-
ing research field which will become more and more important with the diffusion
of complex measurement systems. In particular, dealing properly with covari-
ance operators bring new insight to the statistical analysis, as shown here in some
practical applications.
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