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Introduction

This dissertation deals with the inference in a crude oil market, the West Texas
Intermediate (WTI) crude oil, whose futures are quoted on the New York Mercan-
tile Exchange Market (NYMEX). The oil is sold at Cushing, Oklahoma and the
spot data are collected by the U.S. government website eia.com (whose acronym
means energy information administration), where are reported the data regarding
energy markets.
The purpose of the research underlying this dissertation is twofold: first, we were
looking for an appropriate model for the WTI crude oil market. Second, we tried
to develop a new technique for parameter estimation suitable for the models con-
sidered, allowing to get inference results when the price dynamics is described
both under the historical and the risk-neutral probability measures.
Since the data available for our study come from the spot market and the futures
prices market, the model choice will need to be performed according to satisfy
the requirement to catch both the markets structures. Hence the choice to con-
sider in models proposed a variance latent process (like in well known Heston
model) besides the usual convenience yield process, typical of the storable com-
modity financial markets. After the financial theory, that traces the evolution of
oil modeling, have been recalled, we proposed different models to be compared in
catching the observed data time series. The different models are selected in order
to resume the different possible modeling characteristics of commodity markets,
as the presence of seasonality or the possibility to observe jumps in spot dynam-
ics.
These models, always belonging to the family of the affine models, to ensure ad-
mitting the affine futures price closed formula, have been tested and compared.
Since the data comes from two different financial world, the spot market and the
futures market, we needed to analyze our model for two different measures, un-
der which we observed the two different sources of data: the historical measure
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for spot data and the risk neutral measure for futures prices. A definition of risk
premia to allow switching from one measure to another (according to Girsanov
theorem) have been provided besides the description of any model proposed.
To conduct the inference we resorted to the Particle Filter algorithms, since this
family of inference tools have demonstrated to be particularly suitable when non
gaussian or non linear latent processes are included in dynamics. Hence, in our
research study, they are preferable to other techniques since the presence of not
linear terms (and, moreover, the eventual presence of jumps processes in our
models). The algorithm family is thoroughly discussed, and main alternatives
presented in the Chapter 2. Then it is discussed and implemented the specific al-
gorithm; more specifically, the algorithm engine to carry out the inference comes
from a recent evolution in the Markov chain Monte Carlo (MCMC) and link to-
gether the two bayesian techniques which had greatest relevance in the recent
stochastic volatility econometrics literature: MCMC and Particle Filters. This
algorithms, introduced by Andrieu Doucet and Holenstein [10] show particularly
good behaviour when Stochastic volatility models (eventually with jumps) are
analyzed, since the flexible structure of Particle Filters well fits the need to filter
the non-linear (and in some cases non-gaussian) latent processes and the MCMC
gives a well-known and tested technique to sample from the distribution of pa-
rameter set of the model.
Finally, we analyzed the performances of the model studying both the ability of
the model in properly representing the data analyzed (by studying the property of
the residuals got in our model inference) and the error produced in catching the
futures prices curve for different maturities. Model including jumps showed the
best performances in both the two analysis, among the models considered.
The thesis is divided in two parts: the first part deals with the market, the models
and the algorithms to get inference. In the second part two articles are reported
in which the models proposed to describe the data for WTI spot and WTI futures
are analyzed.
In the first part the analyzed market and the main theories to describe it are pre-
sented. The attention is focused on reduced form models since in the second part
we dealt with this kind of model. In the first chapter, it is also explained how
prices for futures and options on futures can be computed when the model be-
longs to the affine family.
In the second chapter the topic moves from models to the description of algo-
rithms to get inference. Obviously, significant attention is devoted to the algo-
rithms related to the one used in our inferences studies, whose results are reported
in the second part of the thesis. Since the algorithms belongs to Markov Chain
Monte Carlo and Particle Filter algorithms, the Monte Carlo techniques are in-
troduced together with a short survey of bayesian statistics, hence the families
of algorithms used are deeply discussed and pseudo-codes provided. At the end
of the chapter are discussed the main alternatives used in literature to tackle the
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same inference problem we dealt with.
The second part consists in three chapters: the third chapter and the fourth one are
the two articles resulting from the research work underlying this thesis, while the
last chapter reports the concluding remarks and describes the interesting research
lines to be pursued in the future.
In the third chapter three models with both stochastic representation for conve-
nience yield and volatility dynamics are introduced, restricting to the case of spot
process correlated just with volatility. Estimation inference is conducted using
Particle Markov Chain Monte Carlo Methods. The first model introduced is a
stochastic volatility model in which both convenience yield and volatility process
are modeled by CIR dynamics; the other two models are variants of the first one:
one includes Merton jumps in spot dynamics, while the second one allows for
seasonality factor. In the fifth chapter two more models are introduced (which
differ among themselves for the presence of jump activity in the spot) that allow
also for correlation among convenience yield and spot dynamics. The two model
performances are compared with the performances of the model proposed by Liu
and Tang in [39], that we considered as the benchmark model for this commodity
market. In both cases analyzed, with and without taking into account the cor-
relation of the spot process with the convenience yield process, it is shown that
models with volatility process and jumps overperform the other possible models
(also the benchmark one) in catching the dynamics of the observed data analyzed.
In the fifth chapter some concluding remarks are provided and possible future de-
velopments of this work are outlined.
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CHAPTER1
Financial Models for Oil Market

1.1 Introduction

In this chapter it is presented the market, object of the analysis in the second part
of this thesis: data, structure of the market and models to describe them are in-
troduced. In the first section are outlined the main references in the literature,
tackling the modeling issue for storable commodity markets and it is presented a
quick description of the evolution of the theory of inventory, that solved the puz-
zle of contango and backwardation regimes. In the second section it is provided a
survey of the main models for this specific market in the family of reduced form
models; these models constitute the background for the models proposed and dis-
cussed in the second part of the thesis. In the last section, the tools to get prices
for derivatives (when the model is affine) are presented.

1.2 The crude oil market

Among commodities we can recognize at least two main families: storable and
non storable commodities, oil clearly belongs to the first family. Since our goal is
describing the crude oil market, and in particular the WTI1 market, we restricted

1West Texas Intermediate: the crude stream produced in Texas and southern Oklahoma which
serves as a reference or ”marker” for pricing a number of other crude streams and which is traded
in the spot market at Cushing, Oklahoma (definition from US government website eia.gov)
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Chapter 1. Financial Models for Oil Market

our study to the storable commodity family. The description of these markets co-
incides in the financial literature with the theory of storage and inventories. The
inventories are the reserve quantities for a specific commodity and the goal of
this branch of financial literature is to study how the inventory levels affect the
supply-demand equilibria and how these equilibria influence the futures2 market.
These relationships can be summarized by a return on storage, that could assume
both positive and negative values. The main issue faced in the early financial
commodity literature was the attempt to explain the curve of futures for different
maturities: this curve can exhibit a peculiar behaviour (with respect to other as-
set class markets). Two futures markets settings are possible: decreasing futures
prices for longer time to maturity, with the futures prices below the spot price
level (this state is referred as inverted future market or backwardation regime)
or the opposite setting: increasing futures prices for longer maturities and prices
above the corresponding spot prices, this state is indicated as normal future mar-
ket structure or contango regime (see Pindyck [47] or Liu and Tang [39]). This
two possible states are not explainable with any observable variable in the mar-
ket, hence the difficulties in history of commodities financial literature to model
this market catching this peculiar dynamics. An extended dissertation of these
arguments can be found in [24] or [28].
The theory of storage was outlined for the first time by Working in 1949 in [57]
analyzing the wheat market: the quotes for the futures prices are described in
terms of the “price of storage” and return required by the suppliers to store the
commodity till delivery; the article discussed thoroughly the case of positive re-
turns for storage and observed the possibility for negative returns associated to
the cases of large stored stocks. The cases of negative prices of storage are the
main focus of [58] by Wright and Williams, where it was proposed a model that
allows for physical transformation of one product in another (like in a refining
process) and it was shown that it is possible to allow for both positive and neg-
ative return for storage, with the simple representation of two object (where the
second one is a refined product of the first one), even omitting the cost for storing
products. This return for storage is synthesized in a convenience yield: the yield
gives a measure of how profitable is owning the commodity, and can be thought,
as in [47] with the expected flow of benefits for the holder of commodity inven-
tory, benefits arising from the opportunity to use inventories to reduce production
and marketing costs, and in case of refinable products from the opportunity to
transform the product.
Pindyck in 1994 [46] discussed the convenience yield and described it as a dis-
count factor that includes both the benefits and the costs due to storing process,
and introduced, by no-arbitrage argument, in a seminal paper, the representation

2A futures contract is an agreement that postpone the delivery of the commodity in the future,
within a short period after the expiry of the contract. The contract is marked to market and it is
quoted on a regulate market.
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1.3. Models in crude oil market

of the convenience yield in terms of marginal value of storage defined by the dif-
ference between spot and futures prices observed at a given time. The marginal
value of storage ψt,T , following [46], is:

ψt,T = (1 + rt,T )St − Ft,T (1.1)

where the marginal value of storage, at time t, for the maturity T is defined by the
spread between spot value St (capitalized at time T by the risk free factor rt,T )
and the futures prices quoted at time t with maturity T ; the marginal value of
storage was further analyzed and discussed, after the possible unpredictable rev-
enues from storage have been separated from the costs, considered as fixed. This
definition of the value of storage has been the background for the convenience
yield modeling in the successive literature.

1.3 Models in crude oil market

Till the work by Pindyck [46], the model used to describe the spot price process
St for the commodity prices was usually a geometric Brownian motion, as in
Black Scholes model, in presence of a continuous discount yield( that, in this
market, represents the convenience yield δ), that was a constant or a deterministic
function of time:

dSt = (r − δ)Stdt+ σStdWt (1.2)

The paper who moved on from these simplified assumptions and modeled the
convenience yield as a stochastic process has been published by Gibson and
Schwartz in 1997 [30], opening a whole literature sector of financial economics
focusing on the reduced form models3 to describe the commodity market. Their
model assumed that the convenience yield δt is ruled by Ornstein Uhlenbeck pro-
cess: 

dSt = (µ− δt)Stdt+ σStdWt

dδt = λ(δ̄ − δt)dt+ σ2dWt

dW1dW2 = ρdt

(1.3)

where the spot process St, is described by a dynamics similar to Black Scholes:
St is log-normally distributed conditionally to a given value for convenience yield
δt− (here t− = limε→0t − ε). The process δt is mean-reverting with a long run
yield parameter δ̄ and mean-reverting speed λ. The two stochastic processes are

3reduced form models describe the futures curve dynamics modeling the dynamics of the spot
process and, eventually, of latent processes, that affect the dynamics of spot and futures prices,
but are not directly observable. The main alternatives to this model family is the market models
family, for a description of this models in commodity market it is possible to refer to Eydeland
and Wolyniec [?]
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Chapter 1. Financial Models for Oil Market

correlated by a constant parameter ρ. The dynamical system (1.3) is the expres-
sion of the model under the historical measure4. Using a constant risk premium
definition, Gibson and Schwartz [30] moved to a descriptive model under the risk
neutral measure: 

dSt = (r − δt)Stdt+ σStdWt

dδt = [λ(δ̄ − δt)− η]dt+ σ2dWt

dW1dW2 = ρdt

(1.4)

where η is the risk premia in the convenience yield process.
This model resume some of the peculiarities of the storable commodities market
noticed by Pindyck in [47]:

• the convenience yield is strongly relevant

• both the two regimes (contango and backwardation) are possible

• the convenience yield fluctuates considerably over time

• convenience yield and spot price process are positively correlated

The model (1.3) was extended in [53]: in this article, Schwartz compared the per-
formances in catching the futures curve for three different models: the standard
model (1.2), the model (1.4) and a new model, based on (1.4), extended to incor-
porate a third factor to describe stochastic interest rates. Under the risk neutral
measure: 

dSt = (rt − δt)Stdt+ σStdW1

dδt = [λ(δ̄ − δt)− η]dt+ σ2dW2

drt = a(r̄ − rt)dt+ σ3dW3

dW1dW2 = ρ1dt

dW2dW3 = ρ2dt

dW1dW3 = ρ3dt

(1.5)

Schwartz’s analysis [53] showed that the performances of the models including
a stochastic representation for the convenience yield improved significantly the
performances in describing the futures market (results were compared on the ba-
sis of the rooted mean square error) with respect to the model (1.2). The two
models with stochastic convenience yield showed similar results, and the best
performing model varied from case to case, showing significant differences in

4Historical measure is the probability measure under which are observed the spot prices; the
futures prices, instead, are observed under a risk neutral probability measure. It is possible to
move from one measure to another defining risk premia for the spot market. A dissertation of how
it is possible to link the two measure via the risk premia can be find in almost any introductive
financial mathematics book, as [54]
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1.3. Models in crude oil market

the estimated future curves only when futures with maturity beyond the 7 years
were analyzed.
These models have been the main reference models in literature for the family
of reduced form, till now. Some variants have been studied and tested, one of
them was the possibility to include a seasonality term in the dynamics, as pro-
posed by Hikspoors in [36]. Another interesting variant was proposed by Ribeiro
and Hodges in [50]: their model separates the two contributes in the convenience
yield, the positive return associated to the physical owning of the commodity and
the costs, due mainly to storage and insurance, hence associated a fixed param-
eter, since their fluctuation are much less frequent than the ones associated to
positive returns (the separation is similar to the one proposed by Pindyck [46]):

dSt = (r + c− δt)Stdt+ σ
√
δtStdWt

dδt = [λ(δ̄ − δt)− η]dt+ σ2

√
δtdWt

dW1dW2 = ρdt

(1.6)

The convenience yield in this model is given by δt − c and the net convenience
yield δt, separated from the cost of storage c, can assume just positive values,
hence it has been modeled with a CIR dynamics, that cannot assume any nega-
tive values5.
This structure in the dynamics is similar to the model proposed by Liu and Tang
in [39]. Liu and Tang started their work from some econometrics results: the
influence of the convenience yield risk premia in the futures risk premium dis-
cussed by Gorton, Hayashi and Rouwenhorst [33], and the heteroskedasticity of
the convenience yield process (discussed and shown in the same article). After
an introductive discussion on the effect of heteroskedastic behaviour of the con-
venience yield, it is introduced a three factor model that includes both stochastic
convenience yield and stochastic interest rates:

dxt = [r + c− δt −
1

2
(σ2

xδδt + σ2
xrrt + V0 + vxδδt + vxrrt)]dt+

σxδ
√
δtdWδ + σxr

√
rtdWr +

√
V0 + vxδδt + vxrrtdWx

dδt = λδ(δ̄ − δt)dt+ σδ
√
δtdWδ

drt = λr(r̄ − rt)dt+ σr
√
rtdWr

(1.7)

where the xt represents the log-spot process. The model (1.7) allows for cor-
relation between the log-spot process and convenience yield, it is stochastically,
depending on the state of the convenience yield. The system (1.7) is under the
risk neutral measure; differently from the previous model presented, Liu and Tang
proposed to define the risk premia not independently from the processes. Follow-
ing the work by Dai and Singleton [18], they proposed risk premia are propor-
tional to the square root of the variables, preserving in this way the structure of

5When the condition 2λα > σ2 is met the CIR process can assume just positive values
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Chapter 1. Financial Models for Oil Market

of the dynamics of the model in (1.7) and allowing the dependence of the futures
risk premia on the convenience yield risk premia. Under the historical measure,
the (1.7) becomes:

dxt =

[
r + c− δt −

1

2
(σ2

xδδt + σ2
xrrt + V0 + vxδδt + vxrrt)

+
ηδσxδ
σδ

δt +
ηrσxr
σr

rt + ηx(V0 + vxδδt + vxrrt)

]
dt

σxδ
√
δtdWδ + σxr

√
rtdWr +

√
V0 + vxδδt + vxrrtdWx

dδt = [λδ(δ̄ − δt) + ηδδt]dt+ σδ
√
δtdWδ

drt = [λr(r̄ − rt) + ηrrt]dt+ σr
√
rtdWr

(1.8)

where [ηδ, ηr, ηx] are the three risk premia factor. The model under both the mea-
sure are analyzed in [39] and the parameter set estimated for oil and copper mar-
kets. Both the markets showed similar estimation results, in particular for the
oil market, Liu and Tang found that the correlation of the interest rates with log-
spot process is not significative for the data analyzed, while the heteroskedastic
parameter is significatively positive, confirming the initial modeling choice of us-
ing a CIR process to model the convenience yield process.
Differently from the previous model discussed, the one proposed by [59] started
from observation the skews and smiles in option on futures market, instead of
starting from the observation of the future market structure. This results in propos-
ing a different reduced form model, that includes an additional latent process to
the usual dynamics for spot process: the volatility process Vt. His description is
restricted to the risk neutral measure case (since Yan is interested in describing
just futures and options of futures):

dSt
St

= [r − δt − λJµ∗J ]dt+ σdW1 +
√
VtdW2 + Jdq

dδt = λδ(δ̄ − δt)dt+ σδdWδ

drt = λr(r̄ − rt)dt+ σr
√
rtdWr

dVt = λV (V̄ − Vt)dt+ σV
√
VtdWV + JV dq

dW2dWV = ρV dt

dW1dWδ = ρδdt

(1.9)

The use of two Wiener processes in the spot dynamics is needed to keep the affine
structure of the model, allowing to find a closed formula for the pricing problem
of futures and options on futures contracts. The process Jdq is a jump process
(whose compensator is λJµ∗J ), with exponentially distributed number of jump
arrivals in the unit of time and exponentially distributed jump size. The volatility
process and spot process are restricted to jump together.
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1.4. Appendix: Futures and Options on Futures

1.4 Appendix: Futures and Options on Futures

Provided that the model has an affine structure (see Duffie, Pan and Singleton
[17] for a discussion on the affine structure of models including jumps and Grze-
lak [34] for the limits in the correlation structure for multivariate process to keep
the model affine) the future prices can be found as the solution of the backward
Kolmogorov equation (KBE).
If X is the vector of the processes, such that each component follows the dynam-
ics

dXi = µi(X)dt+ Σi(X)dW
(i)
t

with Wiener processes, driving the stochastic behaviour, possibly correlated as:

dW
(i)
t dW

(j)
t = ρijdt

Hence, the Feynman-Kac theorem [54] leads to the backward Kolmogorov equa-
tion:

∂f

∂t
+
∑
i

[
∂f

∂Xi

µi(X) +
1

2

∂2f

∂2Xi

Σi(X) +
∑
i<j

∂2f

∂Xi∂Xi

√
Σi(X)Σj(X)ρi,j

]
= 0

(1.10)
subject to the terminal condition f(T, T ) = S(T ). The solution can be find
imposing the affine structure for the solution (the logarithm of the solution is a
linear combination of the processes involved in the dynamics). For any contingent
claim the KBE is a slight modification of (1.10):

∂f

∂t
+
∑
i

[
∂f

∂Xi

µi(Xi) +
1

2

∂2f

∂2Xi

Σi(X) +
∑
i<j

∂2f

∂Xi∂Xi

√
Σi(X)Σj(X)ρi,j

]
= rf

(1.11)
To find the prices for European call option on futures it is possible to follow
the Bakshi and Madan method [9], adapted by Yan [59] to the case of European
option on futures. The following methods is from [59]. If we denote by C(t, τ)
the price the European option with time to maturity τ and strike K on a futures
contract with maturity τ̃ > τ :

C(t, τ) = E
[
exp

{
−
∫ t+τ

t

r(s)ds

}
max{H(t+ τ, τ̃ − τ)−K, 0}

]
(1.12)

Hence by [9] (explicit computations are in [59]) it is possible to decompose the
solution:

C(t, τ) = G(t, τ)Π1(t, τ) +KB(t, τ)Π2(t, τ)
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Chapter 1. Financial Models for Oil Market

with: 

B(t, τ) = f(t, τ, 0)

G(t, τ) = f

(
t, τ,

1

i

)
f1(t, τ, φ) =

1

G(t, τ)
f

(
t, τ,

1

i
+ φ

)
f2(t, τ, φ) =

1

B(t, τ)
f (t, τ, φ)

where f1 and f2 are the characteristic function of Π1 and Π2 and f(t, τ, φ) is the
discounted characteristic function of logarithm of futures prices:

f(t, τ, φ) = E
[
exp

{
−
∫ t+τ

t

r(s)ds

}
exp {iφ lnH(t, τ̃}

]
(1.13)

where f(t, τ, φ) solves the (1.11) with terminal condition

f(t+ τ, 0, φ) = exp{iφ lnH(t+ τ, τ̃ − τ)}

Hence, it is possible to find the price for european call options on futures, solving
the 1.11

1.5 Appendix: the available data

The crude oil market analyzed in the second part of the thesis is the WTI market,
the oil extracted by North America oil companies and traded on the NYMEX6

market. On the NYMEX the only quoted contracts are the futures, the other con-
tracts are traded over the counter and are less liquid financial instruments. For
this reason, and since the lack of available quotes for spot market in literature
to approximate the spot values in was used a rolling argument, using the fu-
ture with shortest maturities available to approximate spot quotes (this is also the
quotes published by Bloomberg platform) as it has been done by Schwartz [53]7.
Spot quotations used in this thesis comes from the US governmental site eia.gov8,
where are collected data from Reuters provider and from the spot market at Cush-
ing in Oklahoma. These quotes are used as index for the futures quotations (and
are, obviously, strongly correlated with spot quotes derived by a rolling process,
as Bloomberg quotes).

6New York Mercantile Exchange Market
7An other possibility could be considering the spot prices as a latent process to be estimate

from the model, observing just the futures prices
8Energy Information Administration
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CHAPTER2
Particle Filters

In this chapter it is presented a review of the algorithms used for the inference
with the models presented in the Chapter 1. Inference with these techniques is
carried out in the second part of the thesis. At the beginning of this chapter it
is included an essential introduction to Monte Carlo integration and Bayesian
inference. Then the algorithms are introduced. The main families of these algo-
rithms are the Markov chain Monte Carlo and the Particle filters techniques. Both
the techniques are presented in single sections devoted to them. Then it is dis-
cussed the simultaneous inference issue on the model parameters and the latent
processes, and Particle Markov chain Monte Carlo are presented (the technique,
based on MCMC and PF, it is the one used in the second part of the thesis).
Last section is devoted to shortly resume the main alternatives to Monte Carlo
estimates.

2.1 A short introduction to Monte Carlo algorithms

Monte Carlo methods were born as integration algorithms based on analogy be-
tween probability and volumes [32]. Basically, Monte Carlo methods allow to
compute integrals

I =

∫ β

α

f(x)dx

13



Chapter 2. Particle Filters

computing the expectations E [f(U)(β − α)] with U ∼ Unif(α, β). The core of
the algorithm is based on the law of large numbers, and the central limit theorem.
It is possible to build an estimator of the value of the integral, Î , relying on a
sample {x1, x2, . . . , xn} extracted from the uniform distribution (that is xi are
extractions independent from the uniform distribution).

În =
β − α
n

n∑
i=1

f(xi)

If function f(x) is integrable in [α, β], by the law of large numbers, it follows that
[32]:

În → I with probability 1 as n→∞
Moreover, if f(x) is square integrable: in formulae it exists the integral

σ2
f =

∫ β

α

(f(x)− I)2dx

then [32], asymptotically, În − I ∼ N
(

0,
σ2
f

n

)
. Since σ2

f is usually unknown it

is replaced by its sample estimate:

s2
f =

1

n− 1

n∑
i=1

(
f(xi)− În

)2

It is remarkable that the error of the Monte Carlo estimate scales as the square
root of n, that is the convergence rate of the estimate isO

(
n

1
2

)
. This means that

other quadrature algorithms (like trapezoidal rule) converges much more faster,
when we compute integrals in one dimension; Monte Carlo becomes a much
more useful technique when we move to multidimensional integration, since the
estimation error does not depend on the dimension of the integral (instead of other
integration algorithm families). This makes Monte Carlo so popular in scientific
sector where state space dimension is usually high, like in finance.

2.1.1 Variance reduction: Importance sampling
Monte Carlo goal is to get an estimate for the expectation value of a function of
a random value X (with density function p(x)):

I = E[f(X)] =

∫
R
f(x)p(x)dx (2.1)

by a sample {xi}i=1,...,N drawn independently and uniformly from the distribution
X:

Î =
1

N

N∑
i=1

f(xi)δ(x− xi) (2.2)

14



2.1. A short introduction to Monte Carlo algorithms

As already stated, the convergence rate is fixed, but there exist some techniques to
reduce the estimator variance by a factor, increasing the precision of the estimate
keeping fixed the largeness of the sample. The three main technique are stratified
sampling, control variates and important sampling.
Stratified sampling suggests to divide the sample space in non-overlapping sub-
sets {Ai}i=1,...,k such that P(x ∈ ∪iAi) = 1. Then it is possible to prove [32] the
estimator is still unbiased

E[f(X)] =
k∑
i=1

P(Y ∈ Ai)E[X|Y ∈ Ai]

and we estimate the integral (2.1) getting Monte Carlo estimates for each E[X|Y ∈
Ai].
A particular case of stratified sampling is antithetic sampling (with two strata
with equal probabilities).
Control variates is a technique which pairs up a correlated random variables Y to
the r.v. X , whose we know the mean µY . According to this technique, we sample
together the two random variables and use what we know about Y to minimize
the error in the estimate on E[X]:

Î =
1

N

N∑
i=1

(Xi − λ(Yi − µy))

This estimator is sill unbiased [32]. An optimal choice for λ is λ = −Cov(X, Y )

Var(Y )
: effectively, we are reducing the variance of the estimator on the expected value
of X by the part of variance that is possible to explain with Y (like in linear
regression), using the information available on Y (that is µY ).
Important sampling allows to sample from a different distribution with respect to
the one we want to integrate. As always, our final goal is to estimate E[f(X)]
Instead of making use of (2.2) we sample independently and uniformly from a
distribution Y (with density function q(y)) whose support includes the support of
the random variable X:

I = E[f(X)] =

∫
R

f(y)
p(y)

q(y)
q(y)dy

Hence the (2.2) becomes [32]:

Î =
1

N

N∑
i=1

f(yi)
p(yi)

q(yi)
δy(yi)

h(y) =
p(y)

q(y)
is called importance weight function and

p(yi)

q(yi)
importance weights.

The estimator is still unbiased under the hypothesis that supp(X) ⊆ supp(Y ) (we

15



Chapter 2. Particle Filters

are just computing the integral by substituting the variable). Since we are free in
choosing the importance function q(y) it is critic to choose an appropriate impor-
tant function. The following example clearly shows how delicate is the choice
of the importance function. Let us consider the simple case in which we want to
estimate the mean of X ∼ T(ν = 12) using two important functions: a gaussian
distribution (with zero mean and variance

ν

ν − 2
) and a Cauchy distribution. In

Figure2.4 are shown the probability density functions of the three distribution

Figure 2.1: probability density functions for three distribution: T-student (with
parameter ν = 12), a gaussian (with zero mean and variance equal to

ν

ν − 2
)

and a Cauchy distribution.

Even if the normal density is much more close to the t-student density than the
Cauchy distribution, it is remarkable that extreme events have higher probability
in t-student random variable than in normal r.v.. This potentially leads to highly
inhomogeneous importance weights when we run a MC simulation. In Figure2.2
and in Figure2.3 there is an example with two MC runs (each one with 10000
sampled values) for the estimation of the mean of the t-student r.v.. For the first

run we drew the values form the importance normal r.v. N
(

0,
ν

ν − 2

)
, in the

second the values are drawn from a Cauchy distribution. In Fig.2.2 for each
value sampled it is represented the importance weight value with a bar.

16



2.1. A short introduction to Monte Carlo algorithms

Figure 2.2: importance weights for a sample generate from normal distribution
and from Cauchy distribution to estimate the expected value of a random vari-
able distributed accordingly to a t-student distribution.

It is evident the lack of homogeneity when we use the normal r.v.; this lack
in homogeneity in weights values (and in particular extremely high values in
importance weights) makes the estimation via importance sampling ineffective,
as it is possible to see in Fig.2.3, where are reported the estimates at each point in
the sample. It is highlighted the first 20% of the sample to show clearly the effect
of large important weights on the effectiveness of the estimate.
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Chapter 2. Particle Filters

Figure 2.3: Monte carlo importance sampling estimation for the expected value
of a t-student distributed r.v. for different largeness of the sample. In black
the Monte Carlo sampling directly from the t-student distribution, in red the
importance sampling estimates obtained sampling from a cauchy distribution,
in blue the estimates obtained sampling from the gaussian distribution

To be effective the importance sampling technique requires need the impor-
tance function has fatter tails than the original distribution, or equivalently we
need to ensure that |w(y)| < M ∀y ∈ supp(Y ).
Importance sampling will be the core technique for the family of algorithm we
will use in our inference (Particle filters), so here it has been shown that particular
care has to be paid into the implementation of it.

2.2 Bayesian Inference and MCMC

Markov Chain Monte Carlo (MCMC) is a technique that in the last years had
become one of the most used to get inference in time series analysis, in particular
when Stochastic Volatility models are involved. The framework of these methods
is the Bayesian Statistics.

2.2.1 A short introduction to Bayesian statistics
As stated by Gelman et al [3] bayesian inference is the process of fitting a prob-
ability model to a set of data and summarizing the results by a probability dis-
tributions on the parameters of the model and on unobserved quantities such as
predictions for new observations.
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2.2. Bayesian Inference and MCMC

Let us consider a model {p(Z|θ), θ ∈ Θ}, a family of possible distribution for
the random variable Z indexed by a parameter vector θ, that is the object of our
inference. If we consider a subjective definition of probability of an event, that
is, for an individual, his personal degree of belief on the event, then bayesian
learning is a process which leads from prior knowledge (prior personal degree
of belief), formulated before the data on the phenomenon has been collected, to
posterior knowledge, including the information acquired by observed data. This
knowledge it is reflected in defining probability density for the parameter θ. The
fundamental idea of this branch of statistics is that, after seeing the experimental
results, we update the the probability distribution we had subjectively specified,
and use the Bayes’ theorem to combine experimental results (the likelihood) and
prior distribution; the result it is called posterior distribution:

π(θ|z) =
p(z|θ)π(θ)

p(z)
(2.3)

Where: π(θ|z) is the posterior density function we want to know (the probability
distribution of θ given the knowledge on z, the observed realization of Z), π(θ) is
the prior density function (that reflects our prior knowledge about the model and
its parameter), π(z|θ) is the likelihood of the observation data z given the choice
of parameter θ, and finally p(z) =

∫
Θ
p(z|θ)π(θ)dθ is the a priori probability

distribution of the observation chain.
The most difficult element to estimate in the ratio (2.3) is the a priori probability
p(z) since it would require the knowledge of the likelihood function for every
point in the state space of the parameter vector, but, since it does not depend on
θ, we can consider it like a normalizing constant and limit our study to consider

π(θ|z) ∝ p(z|θ)π(θ) (2.4)

Moving from the prior π(θ) to the posterior π(θ|z) is what we gained, in knowl-
edge, about the parameter after having taken into account the observation data z.
Once acquired this knowledge, usually the posterior information is summarized
in point estimates since these are easier to be communicated and handled, the
most used point estimate is the mean of the posterior distribution (other popular
choices are the median or the mode of the posterior distribution).
Since the priors are completely subjectively defined, it is one of the most delicate
point in bayesian estimation to cope with. Usually priors reflects expert infor-
mation about the model specification, if no reliable prior information is available
about the model and we do not want to add information we do not rely on, it is
possible to use non informative priors or improper priors. One of the most used
improper prior is the uniform one

π(θ) ∝ k; k ∈ R+
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Chapter 2. Particle Filters

another popular choice, called Jeffrey’s prior, is to use a prior proportional to the
sensitivity of the likelihood to the parameters using the information matrix H:

π(θ) ∝
√

detH(θ)

If an improper prior is chosen it is to be checked that the posterior distribution is
still a probability density; otherwise it is possible to define an uninformative prior
simply choosing a distribution with very high variance, two popular choice are
normal distribution (eventually truncated) with variance at least ten times greater
than the usual scale order of the parameter, or uniform distributions, with support
opportunely chosen to be spread enough.
Among Bayesian algorithms Markov Chain Monte Carlo (MCMC) are methods
that allow for sampling from the posterior distribution avoiding the computation
of p(z) and using Monte Carlo technique to conduct the inference. The main
algorithms are Metropolis-Hastings and Gibbs Sampling, even if they can be seen
as one the particular case of the other, we present them separately, accordingly to
the historical evolution of this subject and to make simpler the presentation of the
algorithm in a easily implementable form.

2.3 MCMC

Markov Chain Monte Carlo are techniques which refers to Markov Chain theory
to build an algorithm useful to sample from distribution we know up to a normal-
izing constant. Let consider a kernel density K. A Markov chain1 is a sequence
of a dependent random variables{Θt; t ∈ N} such that the probability distribution
of Θt given the past depends just on the previous variable Θt−1:

(Θt|Θ0,Θ1, . . . ,Θt−1) ∼ K(Θt|Θt−1)

where K(Θt|Θt−1) is a transition kernel: an application defined on Ω × B(Ω)
(where Ω is the state space of possible outcomes for Θi and B the Borel algebra)
such that {

∀θ ∈ × K(θ, ·) is a probability measure
∀A ∈ B(×) K(·, A) is measurable

The starting point for building Metropolis-Hastings (MH) algorithm is the
goal we want to achieve: our goal is sampling from the density function π(Θ|z),
the posterior distribution of the parameter set given the observed data sequence,
but as it has been already said, we don’t know it in advance (since we don’t know

1here we briefly present the theory the discrete time Markov chain, since it is useful to illustrate
how the MCMC algorithm work. The references used for this section are [51] (where it is possible
to find a thorough discussion about convergence theory for Markov chain) and [52] (where it is
presented an implementable version of the main MCMC algorithms).
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p(z)). For simplicity, we drop the dependence on the observed data sequence Z
in the notation.
To sample from π(θ) [= π(θ|z)] we make the hypothesis that this unknown dis-
tribution is the stationary distribution probability of an invariant, irreducible and
acyclic Markov Chain, where the states are the possible values for the parameters
set. The stationarity means:∫

Ω

K(θ1, θ2)π(θ1)dθ1 = π(θ2)

The existence of the stationarity distribution implies the requirement of irre-
ducibility on K. The irreducibility means that for any set A ∈ B(Ω) and any
θ0 ∈ Ω there is a positive probability to move from θ0 in A in a finite number
of steps. A sufficient condition that ensures the irreducibility is that for any θ0

K(θ0, ·) > 0 everywhere. The simplest way to impose the stationary distribu-
tion π is to construct the Markov Chain imposing it satisfies the detailed balance
condition:

K(θ1, θ2)π(θ2) = K(θ2, θ1)π(θ1) (2.5)

If the chain is irreducible and aperiodic (the property that it does not exists a
cycle of states in which the chain could get struck) the Markov chain theory en-
sure us that, as the time step goes to infinity, the chain will converge towards
a limiting distribution p that coincides with the stationary distribution π, inde-
pendently from the choice of the starting point θ0 (for almost any choice for
θ0). Hence what we need is to specify in an appropriate way the kernel K. In
the Metropolis-Hastings algorithm it is obtained by the product of two factors:
a proposal distribution q(θi|θj) = qij (whom it is easy to sample from) and an
acceptance probability αij that guarantees the condition (2.5); that is:

pij = qijαij

where:

αij = min

[
π(θj)

π(θi)

qji
qji
, 1

]
(2.6)

Hence, after a sufficient time t̄, we can consider that the stationary distribution is
reached, and the chain θ(t̄+1), . . . , θ(T ) can be taken as a sample of the stationary
distribution π. Considerations on tests to verify if the chain has reached the limit-
ing distribution are discussed in the section about MCMC diagnostics: Sec 2.3.3.
Once we get a sample {Θi; i = 1, . . . N} from the stationary distribution π a law
of large numbers for Markov chain ensures that, if Eπ|f | <∞, then [51]:

1

N

N∑
i=1

f(Θi)→ Eπ[f ] almost surely (2.7)
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The sample is not independent drawn but it exists a Central limit theorem if in
addition to previous hypothesis, it is satisfied also that Eπ[f 2] < ∞ and the
Markov chain is geometrically ergodic2[51]:

1√
N

N∑
i=1

f(Θi)− Eπ[f ]→ N (0, τ 2
f ) (2.8)

where the convergence is in law and τ 2
f = σ2(1 + 2

∑∞
k=1 ρk) and ρk = γk/σ

2 is
the autocorrelation at the k-th lag: γk = Covπ(f(θn), f(θn+k)), while σ2 = γ0

2.3.1 Metropolis-Hastings

Metropolis Hastings is an algorithm to get a sample from the distribution π, build-
ing a Markov chain; to ensure that asymptotically the random variable are dis-
tributed according to the density π.
Since we have all the elements for the algorithm it is possible to itemize the steps
of it. The starting point is a value θ0 randomly chosen.

Algorithm 1 Metropolis Hastings (MH)
1: for t=1:M do . M is the length of the chain
2: Sample a candidate θ∗ ∼ q(Θ|θ(t))

3: compute the acceptance ratio α(θ∗|θ(t)) =
π(θ∗)

π(θ(t))

q(θ∗|θ(t))

q(θ(t)|θ∗)
4: accept the new candidate θ∗ with probability α(θ∗|θ(t)) (then θ(t+1) = θ∗),

otherwise reject it and θ(t+1) = θ(t)

5: end for

Hence the Kernel is:

K(θ1, θ2) = q(θ2|θ1)α(θ1, θ2) + δθ2(θ1)

(
1−

∫
Ω

α(θ1, θ2)q(θ2|θ1)

)

2A MC is geometrically ergodic if it exists a constant λ ∈ [0, 1[ and an integrable real function
M(θ) such that ||Kn(θ, ·)π(·)|| ≤M(θ)λn.
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This kernel definition is such that it satisfies the detail balance condition (2.5) and
has stationary distribution π:

K(θ1, θ2)π(θ1) = q(θ2|θ1)α(θ1, θ2)π(θ1) + δθ1(θ2)

(
1−

∫
α(θ1, θ2)q(θ2|θ1)dθ2

)
π(θ1)

= q(θ2|θ1) min

{
π(θ2)q(θ1|θ2)

π(θ1)q(θ2|θ1)
, 1

}
π(θ1) + δθ1(θ2)

(
1−

∫
α(θ1, θ2)q(θ2|θ1)dθ2

)
π(θ2)

= min{π(θ2)q(θ1|θ2), q(θ2|θ1)π(θ1)}+ δθ1(θ2)

(
1−

∫
α(θ1, θ2)q(θ2|θ1)dθ2

)
π(θ2)

= q(θ1|θ2) min

{
1,
π(θ1)q(θ2|θ1)

π(θ2)q(θ1|θ2)

}
π(θ2) + δθ1(θ2)

(
1−

∫
α(θ1, θ2)q(θ2|θ1)dθ2

)
π(θ2)

= q(θ1|θ2)α(θ2, θ1)π(θ2) + δθ1(θ2)

(
1−

∫
α(θ2, θ1)q(θ1|θ2)dθ1

)
π(θ2)

= K(θ2, θ1)π(θ2)

Two usual choices for the proposal density q(θ2|θ1) are:

• independent from the present value of the chain (known as independent
Metropolis Hastings): q(θ2|θ1) = q(θ2)

• the new proposed value of the chain is sampled from a normal density with
mean centered in the present value of it (known as random walk MH):
q(θ2|θ1) ∼ N (θ1, σ

2)3

It is worth to notice that now we need to compute
π(θ2)

π(θ1)
that is much more

easy than computing directly the distribution π (since the difficulty in treating
the a priori probability term in (2.3) vanishes because this term can be taken into
account as a multiplicative constant that cancel out when the ratio is computed).
Hence, after a sufficient long chain {θ(t)} has been generated, we have to get
rid of the first part of the chain, to avoid that our choice of θ0 could influence
the results, and perform appropriate diagnostics tests to assess the sanity of our
sample. In the section 2.3.3 we deal more deeply with this topics.

2.3.2 Gibbs sampling
Till now, we have not been concerned with multivariate distributions, we treated
the univariate case and the multivariate case with the same tools. This approach,
in case of low-dimension distribution (can be translated in a few parameter to be

3The Random Walk Metropolis Hastings is the algorithm used in our inference in the second
part of the thesis, it is worth to be remarked that this choice automatically satisfies all the required
hypothesis discussed in the previous section for the convergence of the Markov Chain.
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estimated), could be appropriate, but it turns into a very complicate one to be
used, in case we want to manage high-dimension distributions.

An alternative tool to the Metropolis-Hastings, in multivariate case, is the
Gibbs sampling, its usefulness comes from the possibility to sample sequentially
from univariate distributions.
If Θ = (Θ1,Θ2, . . . ,Θd) the main difference with respect to the previous algo-
rithm is in the distribution used to sample:

q(Θi|Θ) = π(Θi|Θ−i, Z) (2.9)

that is, we sample from the full conditionals distribution, the conditional distri-
bution of one component of the parameter random vector given everything else:
“−i” means {j : j 6= i}.
Unlike in the MH algorithm, the proposal distribution, here, coincides with the
distribution defined by the state-space equations, hence the acceptance ratio is
always equal to one (we always accept the new sample element). The advantage
of the Gibbs algorithm is to sample from univariate distributions, even if Θ is an
r-dimension random vector.
As in the Metropolis-Hastings algorithm the starting point θ(0) is randomly cho-
sen.

Algorithm 2 Gibbs Sampling Algorithm (GS)
1: for t=1:M do . M is the length of the chain
2: we sample θ(t)

1 ∼ π(Θ1|θ(t−1)
2 , . . . , θ

(t−1)
d , z)

3: . . .
4: we sample θ(t)

i ∼ π(Θ2|θ(t)
1 , . . . , θ

(t)
i−1, θ

(t−1)
i+1 , . . . , θ

(t−1)
d , z)

5: . . .
6: θ

(t)
d ∼ π(Θ2|θ(t)

1 , . . . , θ
(t)
d−1, z)

7: end for

One interesting application of the Gibbs sampling is in the case of latent process,
in fact it has been used to get inference for models in finance with latent pro-
cesses. In their work in 1994, Jacquier Polson and Rossi [20] showed that for
even simple cases of models with latent processes where the errors are not gaus-
sian or linear (they considered log-Arch models) these algorithms outperform sig-
nificantly the two main rival algorithms: method of moments and method based
on quasi-maximum likelihood (that is Extended Kalman Filter). Both these two
algorithms are presented in the last section of the chapter. Since then, the econo-
metrics literature became more and more interested in MCMC algorithms, and
when the model is not gaussian and linear (in this case the optimal choice is the
Kalman filter), MCMC became standard tools in getting inference for both pa-
rameters and latent processes dynamics. In the cases of continuous Stochastic
Volatility models (discretized using Euler rule) Eraker Johannes and Polson in
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[8] and Eraker in [22] and Yu, Li and Wells in [12], among others, used this al-
gorithm get inference, under both the historical measure and getting an estimate
also for the market risk premia using observed data coming from both the spot
market and the derivative market.
Let us consider the case in which we want to sample from π(Θ, X|Z) where X
is the latent process and Z the chain of the observations. Since π(Θ, X|Z) =
π(Θ|X,Z)π(X|Θ, Z), if we know how to sample form the full conditional dis-
tributions we can define a Gibbs sampling algorithm to sample ”asymptotically”
from the required distribution. It is important to notice that whenever we can-
not write down the full conditional distribution for a a parameter or it is not
simple to sample from it, it is always possible to replace a Gibbs step with a
MH step (these kind of algorithms are part of hybrid MCMC algorithm, and
it exists a vast literature implementing them successfully in a lot of different
cases): In [8], [22] and [12], the Gibbs sampling is applied to Stochastic Volatil-

Algorithm 3 Gibbs Sampling for SV models
1: for t=1:M do . M is the length of the chain
2:
3: for j=1:d do . d is the dimension of the parameter vector
4: sample θ(t)

j ∼ π(Θj|θ(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . θ

(t−1)
d , x(t−1), z)

5:
6: end for
7: for j=1:d do . d is the dimension of the parameter vector
8: sample x(t)

j ∼ π(Xj|x(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j+1 , . . . x

(t−1)
d , θ(t−1), z)

9:
10: end for
11: end for

ity models in finance, since we do not know the full conditional for θ(t)
j ∼

π(Θj|θ(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . θ

(t−1)
d , x(t−1), z) it is implemented a Metropolis-Hastings

step to sample for the model parameters, while standard Gibbs sampling steps are
used for the stochastic volatility process, since it is possible to write the full con-
ditional distribution, once the continuous dynamics is discretized.

2.3.3 MCMC Diagnostics
It is important to notice that the Gibbs sampling algorithm could be considered as
a particular case of the Metropolis-Hastings algorithm (in which the acceptance
ratio is 1), hence the considerations about convergency we will make for MH are
valid for the Gibbs sampling, too.
The construction of the MCMC procedure are such to ensure that, if the Markov
chain is convergent, it converges towards the desired probability density. To prove
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the convergence of the algorithm we need to satisfy the two condition of irre-
ducibility and aperiodicity of the chain (typical requests of the Markov chain
theory); and it is obvious that they lead to some restrictions for the proposal dis-
tribution. Some sufficiency results have been already cited in the introductive part
of this section on MCMC.
From these theoretical results we have our working hypothesis for the proposal,
to ensure that the theoretical requirements are satisfied4. But it is not sufficient
to ensure the efficiency of the algorithm. First of all, we specify further what
we mean with efficiency: for our purposes the MCMC algorithm is efficient if it
reach quickly the stationary distribution and explores its support properly (with-
out, for example, remaining stuck in a mode), saying it differently we need that
the Markov chain has good mixing properties.
As before for irreducibility and aperiodicity, we can reach our goal “tuning” the
proposal distribution, but differently from before, we have not specific rules to
satisfy, but just some rules of thumb to address our choices. It is obvious that
using a proposal with a distribution approximately similar to the posterior den-
sity would be preferable. The variance can be used as tuning factor to get an
“optimal” acceptance ratio5. In Gelman, Gilks and Roberts [4], it is discussed
the optimal value for acceptance ratio: for an one-dimension problem it is sug-
gested the ratio should be between 40% and 50%, while the dimension increases
the suggested ratio value decreases till a value about 23% for high-dimensional
problem. A possible strategy to improve the efficiency of the algorithm, it is to
run small chain, tuning the proposal density to obtain a good acceptance ratio,
then we can run a longer chain to perform our desired analysis.
Once tuned the proposal distribution and got the chain, the essential point is
checking if the stationary is reached and its support properly explored. Since the
first part of the chain is influenced by the initial choice we made arbitrarily and
first states of the chain are not extracted from the limiting distribution, we need
to get rid of them (the part that ”has memory” of our initial choice): the burn-in
sequence. The Geweke diagnostics can be useful to determine if our choice for
the burn-in was not appropriate (it doesn’t prove definitively the effective con-
vergence, but gives an evidence of not convergence in most of the bad cases).
The Geweke convergence diagnostics of the chain it is conducted comparing the
means of two different batch extracted from the sample. Since the state of the
chain are usually autocorrelated it is needed to define the spectral density of the
chain {θ(t); t = 1, . . .M}:

S(ω) =
1

2π

+∞∑
k=−∞

Cov(θ(0), θ(k)) exp{ikω} (2.10)

4Since in Metropolis within Gibbs with Random Walk Metropolis Hastings (RWMH) step is
the technique we use in the second part of the thesis, we remark again that using RWMH we are
ensured to satisfy these requirements.

5The ratio that tracks the percentage of accepted proposals
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The spectral density (2.10) is related to the asymptotic variance of the chain.
Geweke [29] suggests to use this spectral density to build the convergence diag-
nostics test: the first step is splitting the chain in two non-overlapping batches6

and computing the means of the two sub-chains:

µ̂1 =
1

M1

M1∑
t=1

θ(t)

µ̂2 =
1

M2

M∑
t=M−M2+1

θ(t)

Then it is needed to estimate the two asymptotic variance,
σ̂1,2

M1,2

, by (2.10) oppor-

tunely truncated. Geweke [29] proved that the distribution of the statistics
√
M(µ̂1 − µ̂2)√
σ̂1

M1

+
σ̂2

M2

converges asymptotically to a standard normal distribution and can be used to
check the lack of convergence of the chain or detect the burn-in to be discarded.
Possible alternatives to this convergence test is the Kolmogorov−Smirnov test on
two batches after thinning the subchain to construct two quasi−iid samples from
the two batches coming from the MCMC starting chain7.
Another issue is to avoid that the chain can be stuck in a mode and we don’t
recognize the bad behavior (if we perform the tests to check the convergence to
the stationary distribution it will not highlight any misbehavior, in this case). A
possible way is to run different chain from different starting points θ(0), and com-
pare the results. Some simple graphs can be used to help in detecting bad mixing
property (and can be used in tuning the proposal distribution): a plot of the time
series can highlight if the chain remain stuck for an excessive long time in a par-
ticular value, an autocorrelation plot can, instead, show the speed of the chain
in forgetting the dependence from previous values: a slow-decay function in the
autocorrelation graph suggests bad mixing properties.
Supposing we are sure we reached the stationary distribution and we eliminated a
sufficiently long burn-in period, then we need to pay attention to how to define the
useful estimator using the sample we have generated; in particular, a last remark

6Geweke test is the one used to check the lack of convergence in our estimation, conducted in
the second part of the thesis, we used for the two batches the first 35% of the chain and the last
50% of it, once removed the burn-in.

7Thinning the chain is a largely used technique, according to which the chain it is divided in
batches, sufficiently large to consider each mean of the batch zero-correlated with the other batch
means, then the batch means are used as a new sample with zero autocorrelation.
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is due about the variance estimation for the stationary distribution. While for the
mean estimate we can just compute the mean of the values of the chain excluded
the burn-in values, using the law of large numbers (2.7), the sample variance
estimate can be a biased estimator if we do not take into account the autocor-
relations (2.8). This because (as highlighted in [14]) we are not extracting i.i.d.
sample from the distribution but we are generating a chain with Markov property,
hence the values are correlated among themselves. To solve this problem and to
get an unbiased estimator there are two possibilities: using the (2.8) or thinning
the chain, dividing the chain in equally spaced batches, computing the standard
deviation of the mean values of the batches8. The batch standard deviation is a
unbiased estimator of the standard deviation of the stationary distribution, under
the hypothesis that the batch width is longer than the characteristic mixing time,
that is the time needed by the chain to forget the initial value (indications to infer
it can be obtained by the autocorrelation graph).

2.4 Particle filter Algorithms

Particle filters have been introduced by Gordon et al. in [44], as a recursive
bayesian algorithm to overcome standard algorithm limitations in dealing with
non-linear models or non-gaussian noise. The algorithm was the so called boot-
strap filter, it was proposed as an alternative to the Extended Kalman filter (EKF)
algorithm for non linear system state space model, and they showed how the
bootstrap filter, in the considered example in [44], even with a modest number of
sampled paths is significantly superior to the EKF algorithm. The reason of the
PF advantage is that this family of algorithms does not rely on any local lineari-
sation or functional approximation, which may lead to gross distortion of the true
underlying structure.
Hence the particle filters fits perfectly the need to filter latent processes in multi-
factor dynamics when the we have non linear system state space (for example
when we deal with CIR processes) or non-Gaussian noise (as when jump pro-
cesses are included in dynamics).
A possible alternative in the family of the Monte Carlo methods, to get inference
on our model specification, are the Monte Carlo Markov Chain (MCMC) algo-
rithms that we discussed in previous section 2.3, but in Sec.2.4.5 it is shown how
to integrate these two Monte Carlo families to get inference on model specifica-
tions and latent process.

2.4.1 Application range
Particle filter algorithms are bayesian recursive Monte Carlo techniques that can
be applied to state space form models.

8the sample obtained by thinning is zero correlated but not necessarily i.i.d.
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A general state space model is a discrete time system model, specified via a pa-
rameter set θ ∈ Θ, where an hidden state vector {xt; t = 0, . . . T} (with xt ∈ X )
of the model determines the probability density with which an observable vari-
able {zt; t = 1, . . . T} is observed. The dynamic model is represented:

zt ∼ p(zt|xt, z1:t−1, θ)

xt ∼ p(xt|x0:t−1, z1:t−1, θ)

x0 ∼ p(x0|θ)
(2.11)

with t = 1, . . . , T . The main components are: an initial distribution p(x0|θ), a
measurement density p(zt|xt, z1:t−1, θ) and a transition density p(xt|x0:t−1, z1:t−1, θ).
When the transition density function depends just on the most recent past value,
p(xt|x0:t−1, z1:t−1, θ) = p(xt|xt−1, θ), the model is said first-order Markovian; if
the transition density depends only on the most recent past value, and the obser-
vation at any time t is independent from the other observed value conditionally
to the present value of the hidden state, xt, then the model is said to be an Hidden
Markov Model: 

zt ∼ p(zt|xt, θ)
xt ∼ p(xt|xt−1, θ)

x0 ∼ p(x0|θ)
(2.12)

Figure 2.4: Structure of an Hidden Markov model. With circles are indicated the
hidden variables, while the boxes represent the observable variables

It is worth noting that the models we introduced in the chapter 1 can be rep-
resented under the form (2.12), so also ours. Hence, since our estimation goal
is restricted to (2.12), our description of the algorithms will follow this system
but the algorithms presented can be trivially extended to the more general model
(2.11). The first issue to take into account is the estimation of hidden state values,
that is the estimation of {xt; t = 0, . . . T}, considering θ fixed and known. From
the specification of the model indicated in (2.11) at time t = 1 we know the den-
sity p(x0|θ). Then, starting from t = 1 and going further on (supposing to know
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p(xt−1|z1:t−1, θ)), we can obtain the so called prediction density:

p(xt|z1:t−1, θ) =

∫
X
p(xt|xt−1, z1:t−1, θ)p(xt−1|z1:t−1, θ)dxt−1 (2.13)

Since we move to time t, a new information becomes available, zt, and by the
Bayes theorem, we can update the prediction density:

p(xt|z1:t, θ) =
p(zt|xt, z1:t−1, θ)p(xt|z1:t−1, θ)

p(zt|z1:t−1, θ)
(2.14)

(2.14) is called filtering density. The problem in using (2.13) and (2.14) to build
an efficient algorithm to make inference on the hidden state process {xt; t =
0, . . . T} is due to the not feasibility of the integral computation involved in
(2.13). Hence we need to find a numerical approximations. Among other pos-
sibilities to numerically approximate it (extended Kalman filter and Gibbs sam-
pling) we give a presentation of Particle Filter (PF) algorithms. The first one
proposed by Gordon et al. in [44] was the bootstrap filter, and it was presented
again in a slightly modified version by Doucet Godsill and Andrieu [2] under the
name Sequential Importance Sampling Algorithm (SIS). We describe this version
and his main variations in the next part of this chapter.

2.4.2 Sequential Importance Sampling algorithm
The main point of this algorithm is that, since it is not possible to sample from the
state posterior p(x0:T |z1:T ) we adopt an approach that sequentially implements
the Importance Sampling technique to generate a Monte Carlo sample. Sequen-
tially, at any time step t, as a new observation zt is available we predict and filter
the hidden variable, considering, for the moment, the parameter set θ known. Let
us suppose to draw a weighted sample {(xit, ωit); i = 1, . . . , N}from the filtering
density (2.14) at time t. Each simulated value xit is called a “particle” with as-
sociated a probability weight ωit. Alternatively we can say that we can use this
“particle sample” as Monte Carlo estimate for the filtering density:

p̂(xt|z1:t, θ) =
N∑
i=1

ωitδxt(x
i
t) (2.15)

And we can approximate the prediction density (2.13) and the filtering den-
sity(2.14), using of the estimation in (2.15):

p(xt+1|z1:t, θ) ≈
N∑
i=1

ωitp(xt+1|xit, θ) (2.16)

p(xt+1|z1:t+1, θ) ≈
N∑
i=1

ωit
p(zt+1|xit+1, z1:t, θ)p(xt+1|xit, θ)

p(zt+1|z1:t, θ)
(2.17)
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the two quantities just defined are called empirical prediction density and em-
pirical filtering density (2.17). To get a new sample from the filtering density
we draw a a sample using Importance Sampling technique: we propagate the
previous particle set {xit; i = 1, . . . , N} to {xit+1; i = 1, . . . , N} through the im-
portance function q(xt+1|xit, z1:t+1, θ). Then we update the weights ωit to the new
weight set {ωit+1; I = 1, . . . , N}, using the importance weights defined in section
2.1.1.

ωit+1 ∝
p(zt+1|xit+1, z1:t, θ)p(x

i
t+1|xit, θ)

q(xt+1|xit, z1:t+1, θ)
ωit (2.18)

In the bootstrap filter version of the algorithm q(xt+1|xit, z1:t+1, θ) = p(xt+1|xit, θ).
Summarizing up: we want to approximate the smoothing density with the

particle set:

p(x0:T |z1:T , θ) ≈
N∑
i=1

ωiT δx0:T (xi0:T )

and by definition the particle weight are the importance weight of a sample draw
from a proposal distribution q(x0:T |z1:T , θ):

ωiT =
p(x0:T |z1:T , θ)

q(x0:T |z1:T , θ)
(2.19)

It is possible to elaborate the (2.19) using the Bayes formula, to get a recursive
definition for this importance weights, for the model (2.12):

ωit =
p (x0:t|z1:t)

q (x0:t|z1:t)
(2.20)

=
p(x0:t, zt|z1:t−1)

q(x0:t|z1:t)p(zt|z1:t−1)
(2.21)

=
p(x0:t−1|z1:t−1)p(xt, zt|x0:t−1, z0:t−1)

q(x0:t|z1:t)p(zt|z1:t−1)
(2.22)

=
p(x0:t−1|z1:t−1)p(zt|x0:t, z0:t−1)

q(x0:t|z1:t)p(zt|z1:t−1)
p(xt|x0:t−1, z0:t−1) (2.23)

=
p(x0:t−1|z1:t−1)p(zt|xt)
q(x0:t|z1:t)p(zt|z1:t−1)

p(xt|xt−1) (2.24)

=
p(x0:t−1|z1:t−1)

q(x0:t−1|z1:t−1)

p(xt|xt−1)p(zt|xt)
p(zt|z1:t−1)q(xt|x0:t−1, z1:t−1)

(2.25)

Since p(zt|x1:t−1, θ) is not dependent on the given particle we can treat it like a
normalizing factor, hence, the non-normalized weights in the SIS algorithm come
from the recursive formula:

ωit = ωit−1

p(zt|xt, θ)p(xt|xt−1, θ)

q(xt|xt−1, θ)
(2.26)
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It is important to notice that we can recursively compute also the importance
weights, this allow us to write down the Sequential Important Sampling in an al-
gorithmic form.

Algorithm 4 Sequantial Importance Sampling Algorithm (SIS)
1: for k=1:T do . iteration on time
2: for j=1:N do . each j identify a particle
3: sample

x
(j)
k ∼ q(xk|x(j)

0:k−1, z0:k)

. if k = 1 sample from q(x0|θ)
4: compute the importance weights:

ω
(j)
k =

p(zk|x(j)
k )p(x

(j)
k |x

(j)
k−1, z1:k−1, θ)

q(xk|x(j)
0:k−1, z0:k, θ)

ω
(j)
k−1

5: end for

6: normalize the weights: w(j)
k =

ω
(j)
k∑N

l=1 ω
(l)
k

7: end for

In Fig.2.5 it is reported a graphical scheme of the SIR algorithm. At a given
step:

• the stating point is the initial particle set {(xit, ωit); i = 1, . . . N} approxi-
mating the distribution p(xt|z1:t

• the particles are propagated via the importance function q(xt+1|zt+1, xt)

• finally, the weight are update to have a new sample: {(xit+1, ω
i
t+1); i =

1, . . . N} approximating the distribution p(xt+1|z1:t+1)
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Figure 2.5: Scheme of a SIS algorithm at step t

2.4.3 SIR and APF
As discussed in [2] the unconditional variance of the importance weights in-
creases over time, to limit the degeneracy of the algorithm the most natural strat-
egy is to select an importance function which minimizes the variance of the im-
portance weights conditionally on the simulated trajectories xi0:t−1 and the obser-
vation chain z0:t. As proved in [2] the optimal importance function to minimize
this variance is

q(xt|xt−1, z1:t, θ) = p(xt|xt−1, zt, θ) (2.27)

But this requires to sample from p(xt|xit−1, zt), that is possible if we are able to
evaluate

p(zt|xit−1) =

∫
X
p(zt|xt)p(xt|xit−1)dxt (2.28)

but this integral have no analytical solution, generally. The second method to pre-
vent the degeneracy of the SIS algorithm is the resampling step technique, that
modifies the SIS algorithm, and it is at the basis of the Sequential Importance
Resampling (SIR) algorithm and the Auxiliary Particle Filter (APF) algorithm.
The resampling step is helpful in eliminating trajectories with small importance
weights and focusing on the more probable trajectories; on the contrary, the re-
sampling step has a computational cost in time required to resample, so it can be
used a measure of the degeneracy of the algorithm to discriminate if the resample
step is needed. A suitable measure, introduced by Liu in 1996, and discussed in
[2] and in [7], is the estimated effective sample size N̂eff:

N̂eff =
1∑N

l=1(ω
(l)
k )2

(2.29)
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When N̂eff is below a given threshold a resample step is applied and it is drawn a
sample from the particle set {(xi0:t, ω

i
t); i = 1, . . . , N}: the resampled particle set

is characterized by equal weights and we can use it to approximate the smoothing
density. The SIR algorithm is:

Algorithm 5 Sequential Importance Resampling (SIR)
1: for k=1:T do . iteration on time
2: for j=1:N do . each j identify a particle
3: sample

x
(j)
k ∼ q(xk|x(j)

0:k−1, z1:k, θ)

. if k = 1 sample from q(x0|θ)
4: compute the importance weights:

ω
(j)
k = ω

(j)
k−1

p(zk|x(j)
k )p(x

(j)
k |x

(j)
k−1)

q(xk|x(j)
0:k−1, z0:k)

5: end for

6: normalize the weights: w(j)
k =

ω
(j)
k∑N

l=1 ω
(l)
k

7: for j=1:N do . RESAMPLE step (if N̂eff < Nthreshold)

8: sample x(j)
0:k from

N∑
i=1

w
(i)
k δx(i)0:k

9: set all the weights equal to 1
N

10: end for
11: end for

In Fig.2.6 it is reported a graphical scheme of the SIR algorithm at a given
step:

• the stating point is the initial particle set {(xit, ωit); i = 1, . . . N} approxi-
mating the distribution p(xt|z1:t

• we resample from it, getting an equally weighted sample (approximating
the same distribution p(xt|z1:t); in this way, we allow only the most proba-
ble particle to survive

• the survived particles are propagated via the importance function q(xt+1|zt+1, xt)

• finally, the weight are update to have a new sample: {(xit+1, ω
i
t+1); i =

1, . . . N} approximating the distribution p(xt+1|z1:t+1)
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Figure 2.6: Scheme of a SIR algorithm at step t

An alternative to the SIR algorithm was proposed by Pitt and Shephard in [49],
since in its original version uses auxiliary variables, its name is Auxiliary Particle
Filter (APF). Following on, it is presented the version discussed in [7], which
differs from the original one since it applies the resampling step just one time
instead of two times; in this version, the resample step is performed at each time
step.
The APF, with respect to the SIR algorithm, introduces an important feature: the
resampling step (removing the low probability trajectory) is performed before the
propagation step: in resampling we select the “ancestors” of the particles, and the
selection is performed on the basis of an importance function closest as possible
to the optimal importance function p(xt|xt−1, zt, θ) (2.27).
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Algorithm 6 Auxiliary Particle Filter Algorithm (APF)

1: for j=1:N do sample xj0 ∼ q(x0|θ) and set

ω0 =
p(x0|θ)
q(x0|θ)

2: end for
3: for k=1:T do . iteration on time
4: the sample {(x(i)

0:n−1, w
(i)
k−1); i = 1, . . . N} is given

5:
6: for j=1:N do . each j identify a particle
7: sample

x̃
(j)
k ∼ q(x̃k|x(j)

0:k−1, z0:k)

8: sample . RESAMPLE step

ji ∼ q(j|z1:k, θ) ∝ w
(j)
k−1p(zk|x̃k, θ)q(x̃k|x

(j)
0:k−1, z0:k−1)

9: sample

x
(j)
k ∼ q(xk|x

(ji)
0:k−1, zn)

10: compute the importance weights:

ω
(j)
k−1 =

p(zk|x(j)
k )p(x

(j)
k |x

(j)
k−1)

q(xk|x(j)
0:k−1, z0:k−1)q(x̃

(j)
k |x

(j)
0:k−1, z0:k−1)

11: end for

12: normalize the weights: w(j)
k =

ω
(j)
k∑N

l=1 ω
(l)
k

13: end for

An important remark about the APF (Algorithm 6) is that can be viewed as
a SIR algorithm with the peculiar choice of the importance function. So, the
efficiency of the APF algorithm depends just on the approximation of the density
p(xt|zt+1, x1:t, θ). In literature, as discussed in [7] the usual choice is to take in
the algorithm 6:{

x̃k = µk = E[xk|xk−1, zk−1, θ]

q(x̃k|x(j)
0:k−1, z0:k) ∝ p(zk|µk, θ)

(2.30)

Further attempts to address the problem of sample impoverishment and degen-
eration of the algorithm, particularly relevant in Particle Filter literature are two
proposal: resample-move proposed by Gilks and Benzuini in [31] (where they
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suggest to add a MCMC step after resampling to reduce the degeneracy of the
Particle filter algorithm) and block sampling by Doucet, Briers and Senecal in
[1], both techniques propose to rejuvanate the sample by substituting old sam-
pled (and resampled) values by new values for the particles, using a MCMC step
or an additional importance sampling step. In Resample Move algorithm [31]
it is suggested to use a Gibbs sampler after the resampling, using a transition
kernel invariant with respect to the smoothing density distribution, since it is usu-
ally not possible to sample directly from this distribution, we can substitute the
Gibbs step with a Metropolis-Hastings step with an opportune acceptance ratio,
as usual. Since the moved particles are approximately distributed according to
the desired distribution (we sampled with Particle filter: we are sampling from
the unknown distribution via importance sampling) we do not need any burn-in.
In block sampling technique described in [1] it is suggested a variation with re-
spect to the resample-move in [31]: to sample new values for old particles it is
used a new importance function, discarding old particle after the ”move” step, in
this way also the weights associated to the particle change. In the pseudo-code
algorithm (Algorithm7) it is presented the Resample-Move technique in a SIR
algorithm where, with Kk it is indicated the kernel of the Gibbs sampler:

Kk(x
′
1:k, x1:k) = δx′1:k−L(x1:k−L)

k∏
s=k−L+1

p(x′s|z1:k, x
′
1:s−1, xs+1:k) (2.31)

2.4.4 Parameter Estimation with Particle filter
Particle filter can be used also to make inference about the parameter set. The
starting point is considering the likelihood function of the data:

P (z1:N) =

∫
ωNp(x0:N |z1:N)d(x0:N) (2.32)

This formulation allows us to estimate the likelihood (as explained in [7]), at least
for the SIS algorithm, using of our simulated particle set:

P̂ (z1:N) =
1

M

M∑
j=1

ω
(j)
N (2.33)

But if we resampled like in SIR or APF algorithm this approach cannot be ap-
plied. In these case we can decompose:

P (z1:N) = p(z1)
N∏
i=1

p(zi|z1:i−1) (2.34)
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Algorithm 7 Resample Move
1: for k=1:L do . iteration on time
2: for j=1:N do . each j identify a particle
3: sample

x
(j)
k ∼ q(xk|x(j)

0:k−1, z1:k, θ)

. if k = 1 sample from q(x0|θ)
4: compute the importance weights:

ω
(j)
k = ω

(j)
k−1

p(zk|x(j)
k )p(x

(j)
k |x

(j)
k−1)

q(xk|x(j)
0:k−1, z0:k)

5: end for

6: normalize the weights: w(j)
k =

ω
(j)
k∑N

l=1 ω
(l)
k

7: for j=1:N do . RESAMPLE step

8: sample x(j)
0:k from

N∑
i=1

w
(i)
k δx0:k(x

(i)
0:k)

9: set all the weights equal to 1
N

10: end for
11: end for
12: for k=L+1:T do . each j identify a particle
13:
14: for j=1:N do . each j identify a particle
15: sample

x
(j)
k ∼ q(xk|x(j)

0:k−1, z1:k, θ)

. if k = 1 sample from q(x0|θ)
16: compute the importance weights:

ω
(j)
k = ω

(j)
k−1

p(zk|x(j)
k )p(x

(j)
k |x

(j)
k−1)

q(xk|x(j)
0:k−1, z0:k)

17: end for

18: normalize the weights: w(j)
k =

ω
(j)
k∑N

l=1 ω
(l)
k

19: for j=1:N do . RESAMPLE and MOVE steps

20: sample x(j)
0:k from

N∑
i=1

w
(i)
k δx0:k(x

(i)
0:k)

21: set all the weights equal to 1
N

22: sample x′(j)k−L+1:k ∼ Kk(xk−L+1:k, x
(j)
0:k)

23: set x(j)
0:k = (x

(j)
0:k−L, x

′(j)
k−L+1:k)

24: end for
25: end for 38
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We know how to estimate p(zi|z1:i−1) with all our PF algorithms, and it is simply:

p̂(zi|z1:i−1) =
N∑
j=1

p(zi|x(j)
i )w

(j)
i (2.35)

The search for the optimal parameter set can be, then, performed using a Maxi-
mum Likelihood estimator, using a minimization algorithm to find the maximum
of the loglikelihood function. Obviously, the use of a gradient based minimiza-
tion algorithm brought with himself all the drawbacks typical of this algorithm
(the main one: local minimum searching); due to the stochastic nature of the al-
gorithm we should use a stochastic version of the gradient algorithm as explained
in [7].
A second possible choice to get the parameter set is using another common algo-
rithm: expectation maximization. Let us consider [5] the marginal loglikelihood
L(θ) of the observation process given the parameter set and we approximate it
using the expectation with respect to the hidden data X . Considering the model
(2.12):

L(θ) = Eθ[log pθ(z1:T )] =
T∑
k=1

log

∫
pθ(zk|xk)pθ(xk|zk−1)dxk (2.36)

We can approximate the loglikelihood defining the function Q(θ, θ′):

Q(θ, θ′) = Eθ′ [log pθ(z1:T )] (2.37)

where we computed the expectation using as parameter set a current estimate θ′.
In [5] it is proven that if Q increases the Log-Likelihood function increases, then
we can use the function Q to find the Maximum Likelihood. The EM algorithm
consists in computing the expectation (2.36) and then maximizing Q(θ, θ′) with
respect to θ. Iterating this two step we will reach a stable point θ∗ that is our
estimate. In [5] it is shown how we can estimate the Q(θ, θ′) function, making
use of elements that we can compute via a PF algorithm:

Q̂(θ, θ′) =
M∑
j=1

w
(j)
1 log pθ(x

(j)
0 )+

+
N∑
t=1

M∑
j=1

w
(j)
t+1 log pθ(x

(j)
t+1|x

(j)
t )+

+
N∑
t=1

M∑
j=1

w
(j)
t log pθ(zt|x(j)

t )

(2.38)

where the weightsw(j) and the particles x(j) are obtained by PF using the parame-
ter set θ′. To perform the maximization step, maximizing Q̂(θ, θ′) with respect to
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Algorithm 8 EM Algorithm
1: while θk − θk−1 > Vthres do . Vthres is a setted threshold value
2: Use a PF algorithm using as parameter set θk−1, obtaining the weights w(j)

and the particles x(j)

3: compute Q̂(θ, θk−1)

4: compute θk = arg maxθ

(
Q̂(θ, θk−1)

)
5: k = k + 1
6: end while

θ, we need again an optimization algorithm like the gradient based ones. Starting
from a randomly chosen value θ0 for the parameter set, the algorithm is : Some
variants to this algorithm have been introduced by Andrieu and Doucet in [6].
An other possible choice to estimate the parameter is estending the parameter
state of the hidden state variables to incorporate also the θ state space Sn =
(X0:n, θ), so we can use directly the Particle Filter algorithms already discussed,
introducing some sort of dynamics for the parameter, given the severe issues of
degeneracy the use of Resample-Move algorithm is needed. This naive technique
has been used, but the algorithm has been proved to be inefficient.

2.4.5 Particle Markov Chain Monte Carlo

All the previous algorithms suffer of well-known inefficiency drawbacks and de-
generacy issues: when the largeness of the state space of the hidden state vari-
ables object of our estimation increases with respect to the number of particles,
the joint density pθ(x0:T |z1:T ) approximation becomes poor and the particle set
need to be rejuvenated. PMCMC, a new class of algorithm introduces by Doucet,
Andrieu and Holenstein in 2010 [10] overcomes these difficulties since they not
try to approximate directly the joint posterior density pθ(x0:T |z1:T ) but to return
single sample, approximately distributed according to pθ(x0:T |z1:T ) (nesting a PF
algorithm in a MCMC setting)9. The core of the algorithm is the estimation of the
marginal likelihood p(θ|z1:n) using the posterior density estimate p̂(x0:n|z1:n, θ)
obtained via a PF algorithm, the unbiasedness of the estimated likelihood has
been proved by Del Moral in [41]. The version reported the Algorithm9 is the
Particle Marginal Metropolis Hasting (PMMH) [10].
According to this algorithm we are using a Metropolis Hastings algorithm where
the proposal density is:

q((θ∗, x∗0:T )|(θ, x0:T )) = q(θ∗|θ)p(x∗0:T |z1:T , θ
∗) (2.39)

9Moreover, since it relies in two nested bayesian method, to get inference for both the param-
eter set and the latent processes, it can be considered a more natural solution for double inference
than the EM algorithm and its variants.
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Algorithm 9 Particle Marginal Metropolis Hastings (PMMH) - SIR
1: for i=0 do
2: Set θ(0) arbitrarily
3: Run a PF algorithm to get a MC sample for the posterior distribution
p(x0:T |z1:T , θ(0))

4: extract a sample of 1 particle from the empirical smoothing distribution

X0:T (0) ∼ p̂(x0:T |z1:T , θ(0))

5: Set the marginal likelihood estimate p̂(z1:T |θ(0)) computed by:

p̂(zt|z1:t−1, θ(0)) =

(
N∑
k=1

ω
(k)
t

N

)

6: end for
7: for i=1:NMH do . Metropolis Hastings steps
8: Sample θ∗ from q(θ|θ(i− 1))
9: Run a PF algorithm to get a MC sample for the posterior distribution
p(x0:T |z1:T , θ∗)

10: extract a sample of 1 particle from the empirical smoothing distribution

X0:T∗ ∼ p̂(x0:T |z1:T , θ
∗)

11: Set the marginal likelihood estimate p̂(z1:T |θ∗) considering the estimator:

p̂(zt|z1:t−1, θ
∗) =

(
N∑
k=1

ω
(k)
t

N

)

12: compute the probability probability

α = min

{
1,

p̂(z1:T |θ∗)p(θ∗)
p̂(z1:T |θ(i− 1))p(θ(i− 1))

q(θ(i− 1)|θ∗)
q(θ∗|θ(i− 1))

}
13: with probability α set (θ(i), X0:T (i)) = (θ∗, X∗0:T ) otherwise

(θ(i), X0:T (i)) = (θ(i− 1), X0:T (i− 1))
14: end for
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Under the usual condition for the proposal density q(θ∗|θ) for the Metropolis
Hastings algorithm, the authors in [10] proved that the sequence of sample is a
sample from a Markov chain whose distributions (at each time step) converge to
the limiting distribution p(X0:T , θ|z1:T ), if an additional technical requirement on
the resampling scheme is satisfied10.
Pitt and Shephard extended [40] the standard PMMH algorithm 9 (where a SIR
algorithm it is nested in the MCMC structure) with a version using an APF algo-
rithm to estimate the marginal likelihood, the pseudo code is in Algorithm10. In
the second part of the thesis we used the Algorithm 9 to get our inference.

2.5 Other methods

2.5.1 Method of Moments

One possible alternative to the Monte Carlo methods is to use the method of mo-
ments (MM), the idea underlying MM methods is simple: after having computed
the theoretical moments of our model, we can get an estimate of the parameter
set comparing them with the moments of the empirical distribution of realized
observations. Even if the idea is very simple, his application is not simple at all,
since there are a lot of practical issues to manage. First of all the choice of the
moments. Obviously, the first moments are the most significant, but to which
order of moments it is important to include in the algorithm, and how to weight
the different moments is still an open issue in literature (for sure the first two mo-
ments are more important than the sixth and seventh and we have to take it into
account). But these are not the only practical issues to cope with: if our model
has a latent process we cannot usually find the moments function analytically.
Duffie and Singleton proposed in [19] a method of moments based on simula-
tion: given a parameter set specification we can simulate via a Monte Carlo the
distribution obtained with our model and use this distribution to compute numer-
ically the moments. Numerical methods can, then, be applied to infer the best
parameter specification to make the simulated moments the closest11 as possible
to the moments of the empirical distribution. To present this methods we follow
the résumé written by Renault [38]. The notation is the same used in the previous
chapters, and in general in the whole thesis.
With

∑T
i=1 K[zt] we indicate the vector of the moments based on the observed

chain {zt}t=0,...N , and with
∑T

i=1 K[z
(h)
t (θ)] the moment of the hth simulation,

10This requirement is satisfied for the classical SIR algorithm [10] but it is not proved that
Resample Move and Block Sampling techniques satisfy it.

11To keep the norm of the errors the closest as possible to zero; since we want to construct
an “efficient” norm (or said in a different way an efficient cost function) we come back to the
practical issues we discussed before (number of moments to include and optimal weight matrix
specification).
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Algorithm 10 Particle Marginal Metropolis Hastings (PMMH) - APF
1: for i=0 do
2: Set θ(0) arbitrarily
3: Run a PF algorithm to get a MC sample for the posterior distribution
p(x0:T |z1:T , θ(0))

4: extract a sample of 1 particle from the empirical smoothing distribution

X0:T (0) ∼ p̂(x0:T |z1:T , θ(0))

computed by:

p̂(zt|z1:t−1, θ(0)) =

(
N∑
k=1

ω
(k)
t

N

)(
N∑
k=1

ω
(k)
t−1|t

)

5: Set the marginal likelihood estimate p̂(z1:T |θ(0))
6: end for
7: for i=1:NMH do . Metropolis Hastings steps
8: Sample θ∗ from q(θ|θ(i− 1))
9: Run a PF algorithm to get a MC sample for the posterior distribution
p(x0:T |z1:T , θ

∗)
10: extract a sample of 1 particle from the empirical smoothing distribution

X∗0:T ∼ p̂(x0:T |z1:T , θ
∗)

11: Set the marginal likelihood estimate p̂(z1:T |θ∗) computed by:

p̂(zt|z1:t−1, θ
∗) =

(
N∑
k=1

ω
(k)
t

N

)(
N∑
k=1

ω
(k)
t−1|t

)

12: compute the probability ratio

α = min

{
1,

p̂(z1:T |θ∗)p(θ∗)
p̂(z1:T |θ(i− 1))p(θ(i− 1))

q(θ(i− 1)|θ∗)
q(θ∗|θ(i− 1))

}
13: with probability α set (θ(i), X0:T (i)) = (θ∗, X∗0:T ) otherwise

(θ(i), X0:T (i)) = (θ(i− 1), X0:T (i− 1))
14: end for
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then our parameter estimate is obtainable searching for the θ which minimize the
following norm.

‖ 1

T

T∑
i=1

Zt

{
K[zt]−

1

M

M∑
h=1

K[z
(h)
t (θ)]

}
‖ (2.40)

Zt is a matrix of chosen instruments and could be used as weight function to
define the importance of the different moments we have taken into account. A
slight modification of this technique, allow to construct a new estimator: the

efficient method of moments (EMM) estimator. Replacing
1

T

∑T
i=1 ZtK[zt] with

the solution of a maximization problem:

max
β

1

T

T∑
i=1

qt(z(0, t), β)

where qt(z(0, t), β) is the log-likelihood of an auxiliary model used as approxi-
mation of our real model12. In this formulation the estimate for θ is obtained by
minimizing the norm:

‖ 1

T

T∑
i=1

∂qt(z(0, t), β)

∂β
− 1

M

M∑
h=1

∂qt(z
(h)(0, t), β)

∂β
‖ (2.41)

It has been proved by Gouriroux, Monfort and Renault in [11] that the estimator
is unbiased and efficient, meaning that asymptotically has the same efficiency of
the maximum likelihood estimator for the auxiliary model13. Since we search for

β as the maximizer of
1

T

∑T
i=1 qt(z(0, t), β) the estimator that minimize (2.42)

becomes simply:

min
θ
‖ 1

TM

T∑
i=1

M∑
h=1

∂qt(z
(h)(0, t), β)

∂β
‖ (2.42)

2.5.2 Quasi Maximum Likelihood
The quasi Maximum likelihood (QML) method is a family of methods based on
an approximation of the likelihood function. Since we don’t know analytically the
functional form of the likelihood for a process with stochastic volatility, a possible
solution is to use an approximated model to estimate the likelihood function, then

12Obviously, now we can choose a model for which we know how to compute analytically the
likelihood function

13The EMM estimator is asymptotically equivalent (also as distribution form) to the MLE
estimator for the auxiliary model, and inherits its asymptotic properties
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this function is used to build the estimator for our parameter set.The approximated
likelihood function is the quasi likelihood function.
The main algorithm of this family, that can be applied to Stochastic Volatility
models is the Extended Kalman Filter, a QML version of the well-known Kalman
filter. We follow the discussion and the algorithm presented in [37]. Kalman
Filtering is a filter technique that has been built to study state-space models where
the noises are gaussian and the relation between the states and the observation is
linear, but has been extended to include also non linear systems.
The standard Kalman filter applies just to Gaussian linear models. As usual we
indicate with X the unobservable state and with Z the observable variable. The
requirements for the application of the Kalman filter is that X ∼ N (mx, Sxx)
and Z ∼ N (mz, Szz). Let us indicate with Sxz the covariance between the two
random variable. Since both the variable are affected by gaussian noises and their
relation in the state-space formulation is linear, via the standard Kalman filter we
can infer[37] that the conditional distribution of the latent process X given the
observation process Z is normal with mean and variance:

mx|z = mx +K(z −mz)
K = SxzS

−1
zz

Sx|z = Sxx −KSxz
where K is the Kalman gain.

Even if our model does not fit the Kalman filter requirements, we can use the
Kalman filter on the local first order linearization of it, than with the likelihood
estimated by the Kalman filter on the linearized model. If we maximize it to
search for the estimate of the parameter set we are using a QML estimator.

This method is known as Extended Kalman Filter (EKF). Let our model be:{
xk = f(xk−1, ξk)
zk = g(xk, uk)

with ξk and uk two uncorrelated sequence of i.i.d. gaussian noises; ξk and uk are
also uncorrelated with xk−1 and xk.
Let ξk ∼ N (0, Qk) and uk ∼ N (0, Rk). Then we define two estimate for xk:
a priori estimate x̂−k = E(xk) (estimation taken at time k − 1) and a posteriori
estimate x̂k = E(xk|zk) (estimation taken after we observed the kth observation
value). Hence, we can also define two estimation error: e−k = xk − x̂−k and ek =

xk − x̂k, and two error covariance matrices P−k =
[
e−k e

−T
k

]
and Pk =

[
eke

T
k

]
.

Then defining: 
Aij = ∂fi

∂xj
(x̂k−1, 0)

Wij = ∂fi
∂ξj

(x̂k−1, 0)

Hij = ∂gi
∂xj

(x̂−k , 0)

Uij = ∂gi
∂uj

(x̂−k , 0)
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The estimation at time k is [37]:{
x̂−k = f(x̂k−1, 0)
P−k = AkPk−1A

T
k +WkQk−1W

T
k

We define a Kalman gain matrix Kk by Pk = (I −KkHk)P
−
k .

Hence, we can write [37]:

x̂k = x̂−k +Kk(zk − h
(
x̂−k , 0)

)
(2.43)

The optimal Kalman gain is the matrix minimizing the mean square error Pk
within the class of the linear estimator. This is:

Kk = P−k H
T
k

(
HkP

−
k H

T
k + UkRkU

T
k

)−1
(2.44)

To get our parameter estimator it is used a joint filter which gives us not only the
state process estimate but also the parameter estimate: the density we have to take
into account is the

p(x1:T , θ|z1:T ) =
p(z1:T |x1:T , θ)p(x1:T |θ)p(θ)

p(z1:T )

If we do not now in advance anything on θ (said in an equivalent way, there is no
prior information in p(θ)) then the estimation will be obtained by maximizing the
likelihood, in formulae

(x̂1:T , θ̂) = arg max
(x1:T ,θ)

p(z1:T |x1:T , θ) (2.45)

This algorithm works well when we are using a model whose linearized version is
a good approximation and the noises are gaussian. We have already discussed in
section about MCMC algorithm that in different papers like [20] methods based
on MCMC showed better performances than the corresponding ones of Methods
of Moments and Quasi-Maximum likelihood algorithms. In [37] it is shown that
in case of model like Bates, PF algorithms show the best performances, among the
alternatives discussed, in getting inference both for the latent processes dynamics
and the model parameters.
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CHAPTER3
Historical and Risk-Neutral Estimation

in a Commodity Market with a two
factor Stochastic Volatility model

3.1 Introduction

Stochastic volatility models are a well-known choice in commodity markets, Ge-
man [28] and Hikspoors [36] discussed some of the most popular models of this
kind in commodity finance. The seminal paper, to which they refer is the one
by Schwartz [53], where the commodity spot values are modeled by a mean re-
verting process and the convenience yield is incorporated in the discount factor.
While Cortazar and Schwartz [16] proposed an extension of the original Schwartz
model adding one factor to describe the long-term interest rate by an Ornstein-
Uhlenbeck process, Eydeland and Geman [23] proposed a different extension
adding a mean reverting OU-process to describe the instantaneous variance of
the diffusion term in the spot dynamics.
As Geman [27] pointed out, the use of mean reversion in the dynamics of spot
values is controversial, in particular for crude oil market (the object of our anal-
ysis) it is not always needed. In the same work it was suggested a simple test to
discriminate if a mean reverting dynamics is preferable to a simple diffusion pro-
cess, the results shows that for time series starting from 2005 there is no strong
evidence for a mean reverting modeling choice.
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Further developments were implemented, as in Ribeiro and Hodges [50], to de-
scribe the dynamics for the oil sector of commodity market. Moreover in this
paper (Ribeiro and Hodges [50]), it is also pointed out that the possibility for
convenience yield to assume negative values (to explain the contango effect in
commodity market) from a theoretical viewpoint is due to the cost of storage im-
plied in prices dynamics; if this term was separated off the convenience yield,
then a Cox-Ingersoll-Ross process for the convenience yield would automatically
exclude arbitrage opportunities in the market. In the model proposed in this arti-
cle, we stand on this remark by Ribeiro and Hodges, modeling the convenience
yield (once the cost of storage is separated off) with a CIR dynamics but with-
out imposing any linear dependence of the spot dynamics diffusion term on the
convenience yield; on the contrary, we prefer to include an extra volatility factor
(with a CIR dynamics, like in the well known Heston model1). The possibility
of jumps with finite activity (modeled by a compound Poisson process with nor-
mally distributed jump size) is allowed in a second version of the model, which
has been tested with the same data set used for inference in the model without
jumps. A third version of the model substitutes the jump term with a seasonality
term (modeled by the usual periodic function, as suggested also by Hikspoors
[36]), allowing for a comparison between the effect of jumps and of the sea-
sonality term in the goodness of fit of analyzed data set. Data set used for the
estimation come from the WTI index spot values, quoted in NYMEX market,
and the futures written on it, more details about data sets are given in a dedicated
section. The time window considered spans from 01/02/2007 to 31/12/2010.
Inference under both the historical and the risk-neutral measures are quite com-
mon in literature for models of this kind, and they could be easily extended to
the present one. Some authors resorted to Bayesian analysis to get inference in
stochastic volatility framework: since the seminal paper by Jacquier, Polson and
Rossi [20] a fast-growing literature is exploring the application of Bayesian es-
timation techniques, in particular MCMC methods, to get inference for models
belonging to this family. A branch of this literature is devoting to study joint
estimation under historical and risk neutral measure, using both stock and deriva-
tives prices data. The link between the two measures is provided by a suitable
parametric choice of the Radon-Nikodym derivative.
The main references in this section are the two papers by Eraker [22] and by Er-
aker, Johannes and Polson [8] in which some popular stochastic volatility models
are analyzed using a Gibbs sampling algorithm. Further references in which the
Gibbs sampling method is used to get inference for stochastic volatility models,
eventually including jumps, are the papers by Forbes, Martin and Wright [25]
and, more recently, by Yu, Li and Wells [12], who extended the results by Eraker
[22] including different jump models in the analysis and compare them; all these

1Together with the model we present a closed formula for future prices in Section4.3 and the
prices for option written on futures in Section4.9
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paper refer to equity markets, analyzing S&P500 or DAX data. Another Bayesian
technique which is becoming popular to get inference in a stochastic volatility
framework, and when latent factor are present in general, is the particle filter
(PF) method. This is a bayesian filter algorithm based on sequential importance
sampling for bayesian networks; differently from Kalman filter, it can be used
also for non-gaussian and non-linear dynamics. A complete survey on the the-
oretical background and implementation details on particle filters are the papers
by Andrieu and Johansen [7], and Arulampalam et al. [42], while for application
to stochastic volatility models Javaheri [37], Johannes, Polson an Stroud [43],
Aihara [55]. Since the success of PF techniques, different authors have worked
on efficient estimation with Particle filters, and conjunction of MCMC and PF
algorithms; this culminated in a paper by Andrieu, Doucet and Holestein [10],
where have been introduced the particle Markov Chain Monte Carlo algorithms
that implement for inference on parameter set of a model an MCMC where the
marginal likelihood is estimated by a nested Auxiliary particle filter. We have
adopted an algorithm belonging to this family to carry out inference on the model
chosen.

3.2 The Models Proposed

We studied three possible different variants of a basic model (Model B) consisting
in a two-factor model, including a volatility process and a convenience yield pro-
cess into spot price dynamics. Both the spot variance and the convenience yield
processes follow a CIR dynamics. Under the historical measure P the dynamics
of the model B is the following:

dSt
St

= (µ+ c− δt)dt+
√
VtdW

(P)
St

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
δt

dVt = β(V̄ − Vt)dt+ ξ
√
VtdW

(P)
Vt

dW
(P)
St

dW
(P)
Vt

= ρdt

(3.1)

In (3.1) we used the standard notation: we identified the spot value at time t with
St, with δt it is represented the convenience yield process (once we separated
it from the cost of storage and insurance, c) and with Vt the variance process.
WSt , Wδt , WVt are 3 Brownian motion, with Wδt independent from the other
two process, while WSt and WVt are correlated as written in (3.1).
Besides model B, we considered the same model allowing for jumps (Model J)
in the spot dynamics (modeled with jump arrivals time poisson distributed and
lognormally distributed jump size), and the basic model with a seasonality term
in spot dynamics (Model S). The model with seasonality includes in spot dynam-
ics the usual sinusoidal term (like discussed also by Hikspoors [36]) The only
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stochastic differential equation changing in the system dynamics moving from
one model to the other is the spot equation. In the following system we introduce
a general dynamics (from which we can easily obtain our three models):

dxt = (µ+ c− δt −
1

2
Vt)dt+

√
VtdW

(P)
xt + dJ

(P)
xt

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
δt

dVt = β(V̄ − Vt)dt+ ξ
√
VtdW

(P)
Vt

St = exp{g(tyear) + xt}
g(tyear) = ζ1(sen(2πtyear + ω1)) + ζ2(cos(2πtyear + ω2))

dW
(P)
xt dW

(P)
Vt

= ρdt

(3.2)

with tyear the number of days from the first of January of the same year divided by
365. J (P)

xt is a jump process, where the number of jump arrivals on a given time are
poisson distributed with λj parameter, and the jump size are normally distributed
with mean µJ and variance σ2

J . We make the usual choice of describing the price
dynamics through the log-price process: xt = log[St]. We decided to keep the
rates not stochastic and we fix them at the FED levels. As already discussed by
Schwartz [53], comparing performances in capturing the futures observed struc-
ture for models with and without stochastic interest rate, the performances in
using stochastic interest rates do not show any significant improvement, if we ex-
clude the longest maturity futures (about ten-years maturity). Hence, accordingly
our longest maturity considered is 5 years futures, we preferred to do not allow
stochastic interest rates to make the model more parsimonious.
From (3.2) we can obtain the three models fixing some parameters

• Model B : we fix λJ , the parameter of Poisson-distributed jump time ar-
rivals, to zero and ζ1 = ζ2 = 0

• Model J : we fix ζ1 = ζ2 = 0

• Model S : we fix λJ = 0

In order to describe the dynamics under the risk-neutral measure, we need to de-
fine the Radon-Nikodym derivative of this measure with respect to the historical
one. The parametric form we choose is the same proposed by Heston[35] and by
Pan [45], which preserves the model structure under the measure change. This
can be specified by the following relations between the Wiener processes under
the two measures, provided by the Girsanov theorem:

dW
(Q)
δt

= dW
(P)
δt
− ηδ
σ

√
δtdt

dW
(Q)
Vt

= dW
(P)
Vt
− 1√

1− ρ2

(
ρηSt +

ηV
ξ

)√
Vtdt

dW
(Q)
xt = dW

(P)
xt + ηSt

√
Vtdt

(3.3)
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Where we have denoted by ηS the risk premium associated with the Brownian
part of the spot dynamics.
Hence, we can write the dynamics just described under the measure P by the
system (3.2), also under the risk-neutral measure Q2 :

dxt = (r + c− δt −
1

2
Vt − µ∗)dt+

√
VtdW

(Q)
xt + dJ

(Q)
xt

dδt =
(
α(δ̄ − δt) + ηδδt

)
dt+ σ

√
δtdW

(Q)
δt

dVt =
(
β(V̄ − Vt) + ηV Vt

)
dt+ ξ

√
VtdW

(Q)
Vt

St = exp{g(tyear) + xt}
dW

(Q)
St

dW
(Q)
Vt

= ρdt,

(3.4)

where µ∗ and dJ (Q) denote respectively the predictable compensator and the com-
pensated jump measure. It is worth remarking that, since the cost of storage is
separated off the dynamics of the convenience yield, δt this is modeled by a CIR
process that prevents it from assuming negative values, automatically excluding
arbitrage opportunities in the market, as pointed out in Ribeiro and Hodges [50].
Moreover, since δt − c can assume both positive and negative values, normal and
inverted futures market structures are both allowed.
To cope with the inference in this setting we use a Euler discretization method.
The discretized model (under the risk neutral measure) can be written as follows:
xt+1 = xt + (r + c− δt −

1

2
Vt − µ∗)∆t+

√
1− ρ2

√
Vtε

(S)
t+1 + ρ

√
Vtε

(V )
t+1 +

∑N
(J)
t+1

i=1 ε
(J)
i,t+1

δt+1 = δt +
(
α(δ̄ − δt) + ηδδt

)
dt+ σ

√
δtε

(δ)
t+1

Vt+1 = Vt +
(
β(V̄ − Vt) + ηV Vt

)
dt+ ξ

√
Vtε

(V )
t+1

(3.5)
Where each ε(S)

t+1, ε(V )
t+1 and ε(δ)t+1 are normally distributed random variables with

zero mean and variance ∆t. In the discretized jump addend, the N (J)
t+1 are inde-

pendent Poisson distributed r.v. with parameter λJ , while ε(J)
i,t are independent

normal r.v. with mean (µJ − ηJ) and variance σ2
J . All the random variables just

listed are independent on each other.
Under the historical measure the same discretization holds, provided that the risk
premia {ηδ, ηV , ηJ} and the compensator µ∗ are set to zero, while the drift coef-
ficient rf has to be substituted by µ.
The futures price is given by the following expression:

F (0, τ) = exp{A0(τ) + xt + A2(τ)δt} (3.6)

where τ = T − t is the futures time to maturity. Details about computations and
the specifics of the functionsA0(τ) and A2(τ) are provided in Section4.3. In case

2for the basic model we just fix to zero µ∗ and dJ (Q)
xt , for the model with seasonality we add

the seasonality factor (g(tyear)) to the spot dynamics like in (3.2)

51



Chapter 3. Hist and RN estimation with SV model in Oil Market

we consider model allowing for seasonality, the future formula slightly changes;
it becomes:

F (0, τ) = exp{g(Tyear) + A0(τ) + xt + A2(τ)δt} (3.7)

where Tyear is the time in years the maturity day differ from the first of January of
the same year.
Since the prices of a futures are affected by different kind of noises (possible
incomplete specification of the model, market inefficiency, random noise, etc) we
modeled the logarithm of the price of the futures making the hypothesis that the
market price, lnFM(0, τ), are represented by the theoretical price got by (4.8)
plus an error distributed as a white noise εfut ∼ N (0, σ2

ε )
3:

lnFM(0, τ) = lnF (0, τ) + εfut (3.8)

3.3 Futures Prices

When the underlying follows, under the the dynamics Q (4.6) the Kolmogorov
backward equation for the generic contract value, f(t, xt, δt, Vt, Jt), at time t,
when the underlying follows, under the Q measure, the dynamics (4.6) is:

∂f

∂t
+
∂f

∂x
(rf + c− λµ∗J − δt −

1

2
Vt) +

1

2

∂2f

∂x2
Vt+

+
∂f

∂δ

[
α(δ̄ − δt)− ηδδt

]
+

1

2

∂2f

∂δ2
σ2δt+

+
∂f

∂V

[
β(V̄ − Vt)− ηV Vt

]
+

1

2

∂2f

∂V 2
ξ2Vt+

+
∂2f

∂V ∂x
ρξVt+

+ λE [f(t, xt + ln(1 + J), δt, Vt)− f(t, xt, δt, Vt)] = 0

(3.9)

The PDE (4.10) has to be solved with the usual terminal condition f(t = T ) =
H(xT , δT , VT ) with H payoff at time T maturity, and since we are dealing with
futures the final payoff is:

H(xT , δT , VT ) = exp{xT} (3.10)

We make the hypothesis of a solution form:

ft = exp{A0(t) + A1(t)xt + A2(t)δt + A3(t)Vt}
3σ2
ε = 0, 08 is consistent with the value observed for the mean of the daily spread of the

highest-lowest prices for futures in the considered range
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if we try this guess solution into (4.10), we get the follow ODE system:

− ∂A0(τ)

∂τ
+ A1(τ)(rf + c) + A2(τ)αδ̄ + A3βV̄ = 0

− ∂A1(τ)

∂τ
= 0

− ∂A2(τ)

∂τ
− A1(τ)− A2(τ) + 1

2
A2

2(τ)σ2 = 0

− ∂A3(τ)

∂τ
− 1

2
A1(τ) + 1

2
A2

1(τ)− A3(τ)(β + ηV ) + 1
2
A2

3(τ)ξ2 + A1(τ)A3(τ)ρξ = 0

(3.11)
where we changed variable from t to τ = T − t 4 .
Since the payoff is (4.11) we obtain the initial condition for the ODE system:

A0(0) = 0

A1(0) = 1

A2(0) = 0

A3(0) = 0

(3.12)

Solving previous system we get :

A0(τ) = (rf + c)τ − 2αδ̄

σ2

[
Bτ + log

(
D −B exp{Cτ}

D −B

)]
A1(τ) = 1

A2(τ) = − 2
σ2

exp{Cτ} − 1
exp{Cτ}

D
− 1

B

A3(τ) = 0

(3.13)

with: 
C =

√
(α + ηδ)2 + 2σ2

D =
(ηδ + α) + C

2

B =
(ηδ + α)− C

2

(3.14)

3.4 The Data

The data used for the analysis are relative to WTI Cushing Crude Oil spot and
futures quotations on NYMEX market from 1/02/2007 to 28/09/2011. We used
the the first 85% if the data-set to get the inference on our model and reserved
the last 15% of dates for out of the sample performances study. The range of

4Note that in the Futures price obtained there is no dependence on the jump process parameters
in strict analogy with Yan [59].

53



Chapter 3. Hist and RN estimation with SV model in Oil Market

dates for the estimation goes from 1/02/2007 to 31/12/2010, and the spot data
are presented in Figure 3.1.
Spot data are collected from the US Energy information administration website
where a large collection of energy related time series (among which the WTI
FOB spot prices) is provided. Daily closing data are taken into account for any
available working day in the interval. A plot of the spot data used in estimating
parameter set of the different models analyzed is in figure Fig.3.1

Figure 3.1: Spot FOB data for WTI crude oil

Besides spot data, for any working day we recorded a panel of 12 future con-
tract values at opening time. Their maturity day is fixed on the first working day
of each month of 2012. So for any trading day we analyzed a spot datum and 12
futures data, and in the range there are 988 dates. Hence the data set consists in
988 spot values and 11856 future contracts.
In addition to this data set we reserved a panel of data to evaluate out of the sam-
ple performances. The data set include again a FOB spot datum and a panel of
12 future data (with different maturity one for each month of 2012, the maturi-
ties are set on the first trading day), the range of dates goes from 01/01/2011 to
28/09/2012. The number of working days in the range is 187.
Future contracts are usually characterized by their behaviour when time to matu-
rity goes to zero. If at a certain date the futures quotation increases when the time
to maturity become longer, it usually said the future market is normal, otherwise
is said inverted. In figure Fig.4.2 are indicate the dates for which we can observe
a normal future market (equivalent to the value +1) and the dates with an inverted
future market(equivalent to the value −1).

Figure 3.2: The dates in the data set used for the parameter estimation are di-
vided in normal future market days (+1 value) and inverted future market days
(−1 value)
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In the analyzed period and in the data set used to evaluate out of the sample
performances are present both the future market behaviour. The two behaviour
are shown in the figures Fig.3.3 and Fig.3.4 and illustrate, respectively, the future
market structure at the date 11/05/2011 and at 25/08/2011.

Figure 3.3: Normal future market: WTI future quotations 11 May 2011, different
maturities. On x-axis are the days to delivery

Figure 3.4: Inverted future market: WTI future quotations 25 August 2011, dif-
ferent maturities. On x-axis are the days to delivery

From the available range of dates we extracted a second data-set from 11/12/2010
to 28/09/2011; again we used about the first 85% of the dates to get inference
and the remaining part to evaluate out of the sample performances evaluation.
The data set used for the inference goes from 11/12/2010 to 30/06/2011. The
spot quotations are reported in the Figure 4.1, in this reduced dataset it is ex-
cluded the period from June 2008 to December 2008, when a disastrous fall in
FOB quotations was observed in the market (the barrel price went from about
150$ to about 30$). In Figure 3.6 are reported, as done for the previous dataset,
with dates characterized by a normal future market structure and with dates char-
acterized by an inverse future structure. We excluded the model with seasonality
from the analyzed models, since the dates range spans just one year and a half,
hence any inference on yearly periodic functions would be affected by the too
short range considered. The number of working dates in this range is 350 and, as
before, we considered for each date one spot FOB quotation and 12 futures for
each date, hence our inference data-set consists in 350 spot data and 4200 futures
data. The out of the sample performances are evaluated on the data-set consisting
in 81 spot data and 972 futures data, these data correspond to the range of dates
from 01/07/2011 to 28/09/2011.
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Figure 3.5: Spot FOB data for WTI crude oil for the reduced dataset

Figure 3.6: The dates in the data set used for the parameter estimation are di-
vided in normal future market days (+1 value) and inverted future market days
(−1 value)

3.5 Inference Algorithm

The reference object of our inference is the vector {Θ, V0:T , δ0:T , J0:T} where
V0:T , δ0:T , J0:T are the three latent processes (the variance process, the conve-
nience yield and the jump process) and Θ is the set of parameters, that is our
main inference target:

Θ = {ε, µ, c, α, δ̄, σ, ηδ, β, V̄ , ξ, ρ, λ, µJ , σJ}
5. For simplicity we shall indicate with X0:T the vector of the three latent pro-
cesses {V0:T , δ0:T , J0:T}, and by Z1:T the set of observed market data (coming
from log return time series, Y1:T , and futures price quotations F1:T ).
To make inference in a so large state space, Particle Markov Chain Monte Carlo
methods (from now on PMMC) represents an efficient technique, since it allows
to simulate the latent processes in a single simulation block. The PMMC allows
to sample from p(Θ, X0:T |Z1:T ), that is the joint probability distribution of the
parameter set and the latent processes given the observed data. To sample with
a Monte Carlo technique from such a probability distribution we make use of a
particle filter algorithm6 to estimate the marginal likelihood L(z1:T |Θ), this will

5in the case of the model with seasonality we replace the parameters referring to
jumps({λ, µJ , σJ}) with the parameters referring to seasonality: {ζ1, ζ2, ω1, ω2}

6Details about the generic Particle Filter algorithm and probability distributions used in the
simulation we conducted are in Section3.6.
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3.6. Particle Filter

be used in defining an acceptance ratio probability that will ensure that after a
certain amount of time, whatever point in state space we started from, we will
sample from the right distribution, getting unbiased estimate for Θ.
The MCMC method used is a variant of the well known Metropolis-Hastings
algorithm

• At step (s=0)
after setting a starting point Θ = θ(0) arbitrarily, then a Sampling Im-
portant Resampling algorithm is implemented. SIR algorithm allows to
simulate the latent processes x(0)

1:T from the distribution p(X1:T |Z1:T , θ(0))
and an estimate of the marginal likelihood p(Z1:T |θ(0))

• At step (s from 1 to MC, the length of the Markov chain sequence we want
to simulate)
a new value set, θ∗, is sampled from a proposal (symmetric) distribution
q(·|θ(s− 1)) and the new sampling value is accepted with a probability:

min

(
1,

p(z1:T |θ∗)p̃(θ∗)
p(z1:T |θ(s− 1))p̃(θ(s− 1))

)
where p̃(·) is the prior distribution, while p(z1:T |θ∗) is the likelihood for the
observation chain given the parameter set θ∗.
Again the marginal likelihood and x∗1:T comes form a PF algorithm run.
If accepted: θ(s) = θ∗, otherwise: θ(s) = θ(s− 1).

According to this algorithm we are sampling from a Markov chain whose limiting
distribution is:

p(Θ, X1:T | Z1:T ) = p(θ|z1:T )pθ(x1:T | z1:T )

We can also discard the information about hidden state process and use the sam-
ple to get inference about θ, if we need just the last one.
To reduce the number of rejected proposal, and increase mixing of the chain dif-
ferent techniques are known, as Metropolis within Gibbs variant, that is the one
we implemented in our sampling algorithm. The output coming from the PMMH
(particle Metropolis Hastings algorithm), as any MCMC output need to be re-
sized, removing the burn in, that is the part of the chain needed by algorithm to
get to the stationary distribution. To check that convergence to stationary distri-
bution was reached (for all the parameters) we adopted the Geweke test [29].

3.6 Particle Filter

We implemented the ASIR algorithm proposed by Pitt and Shephard [40] to
generalize the standard sampling important resampling algorithms, attempting to

57



Chapter 3. Hist and RN estimation with SV model in Oil Market

mitigate the sample impoverishment effect, sampling the ancestor of the particle
at each time step, adapting the proposed “particle” sample to the new incoming
information. The starting point to define the algorithm is the discretized dynam-
ics of the model (4.7) adding the future formula (3.7).
First of all a remark about notations: since the spot data are collected at the end
of the day and the future prices at the opening, with Vt, δt, Jt we identify respec-
tively the value of the variance and the convenience yield processes at the same
time when the future prices are registered, while the Jt identify the jumps occur-
ring within the day till the spot value is observed. The discrepancy between the
time of the future observation and the spot one is one other source of error we
take into account in the future error with which we observe the futures quotations
in the market.
Let us consider the time t a sample for the latent process {δt−1, Vt−1}, that is:
{δ(i)

t−1, V
(i)
t−1} with associated weights π(i)

t−1, where i = 1, . . . Ns where Ns is the
number of particles. Before propagating the particles,that is obtaining a sam-
ple for the latent processes at time t we select the ancestor for this new sample.
In practise, we define an expected value for the latent process sample at time t:
{δ̄(i)

t , V̄
(i)
t } and use this estimate to attach a weight function ω(i)

t|t−1 to the particles
and select the best fitting the new information incoming:

δ̄
(i)
t = α(δ̄ − δ(i)

t−1)∆t

V̄
(i)
t = β(V̄ − V (i)

t−1)∆t

ω
(i)
t|t−1 =

∑
k φ
(
yt|m(i)

yt + kµj,Σ
(i)
yt + kσ2

j

) λkj e−λj
k!

π
(i)
t

m
(i)
yt = (r + c− δ̄(i)

t − 1
2
V̄

(i)
t )∆t

Σ
(i)
yt = V̄

(i)
t ∆t

(3.15)

Hence we get a Ns long sample {δ(s)
t−1, V

(s)
t−1} from the distribution {δ(i)

t−1, V
(i)
t−1}

associated to probability weights
ω

(i)
t|t−1∑
i ω

(i)
t|t−1

. This are our selected ancestors, we

will propagate using the (4.7). First we simulate the jumps. The number of
jumps N j

t happening in the time passing from t − 1 to t is distributed according
to a Poisson with parameter λj:

N
(s)
t = k with probability q(N j(s)

t ) = φ
(
yt|m(s)

yt + kµj,Σ
(s)
yt + kσ2

j

) λkj e−λj
k!

For numerical purposes we need to restrict to a finite number of possible jumps,
since the time interval consists in one day, we can fix the maximum number of
jumps at 1.
Hence, the jump amplitude is simulated from a normal, as suggested in [43] we
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incorporate the new return information in our sampling:

J
(s)
t ∼ q(Jt|yt) = N

(
N

(s)
t µj +N j

t

σ2
j

V̄
(s)
t ∆t

(
yt − (r + c+ (ηS −

1

2
)V̄t − δ̄(s)

t )

)
,

N
(s)
t σ2

j

(
1−N (s)

t

σ2
j

V̄
(s)
t ∆t

))
Once we have a sample for the jumps, we sample the value of the “particles” for
the variance and the convenience yield:
δ

(s)
t ∼ p(δ

(s)
t |δ

(s)
t−1) = N

(
δ̄

(s)
t , σ2δ

(s)
t−1∆t

)
V

(s)
t ∼ p(V

(s)
t |V

(s)
t−1, δ

(s)
t−1, yt, Jt) =

= N
(
V̄

(s)
t + (yt − (r + c− δ̄(s)

t − 1
2
V̄

(s)
t−1)∆t− J(s)t)ξ

√
1− ρ2, ρ2ξ2V

(s)
t−1∆t

)
Hence we compute the new weights π(s)

t :
π

(s)
t =

π
(s)
t−1

ω
(s)
t|t−1

λ
N

(s)
t

j e−λj

N
(s)
t !

1

q(N
(s)
t |yt)

φ(J
(s)
t |µj, σ2

j )

q(J
(s)
t |yt)

φ(yt|(r + c− δ(s)
t − 1

2
V

(s)
t−1)∆t+ J

(s)
t , V

(s)
t−1∆t)

(3.16)

where ε(V,s)t is the random value got for ε(V )
t and corresponding to the s-th particle

An unbiased [40] estimate for the marginal likelihood of the observation given the
parameter set is:

p̂(y1:T , F1:T ) = p̂(y1, F1)
∏T

t=2 p̂(yt, Ft|yt−1, Ft−1)

p̂(yt, Ft|yt−1, Ft−1) =

(∑Ns
s=1

π
(s)
t

Ns

)(∑Ns
s=1 ω

(s)
t|t−1

) (3.17)

At this stage we can add an other re-sample step from the particles with weights
π

(s)
t , conditional on a measure of the impoverishment of the sample, if we resam-

ple we have to set all the weights equal to
1

Ns

.

To obtain the algorithm for the model without jumps it is sufficient to set all
N

(s)
t = 0 for all t in the algorithm presented in this section.

3.7 Numerical Results

To conduct our inference for each of our models discussed in section 4.2, we sim-
ulated Markov chains of 30000 steps (from these we discard about 10000 sampled
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points as burn-in of the Markov chain7). We used the mean of the posterior distri-
bution p(Θ|Z0:T ) as point estimate for each parameter; these results are reported
in the Table 4.1. Together with means we reported also the standard deviation of
the posterior distributions.

Table 3.1: Parameter inference: posterior means (and posterior standard devia-
tion) of the model parameter set Θ for three analyzed models. All values are
expressed on a daily basis and are scaled by a 100 factor

Model Parameters Basic Model Model with Seasonality Model with Jumps

ηS
0.0892 0.0859 0.1041

(0.0069) (0.0717) (0.0046)

c 0.2043 0.1972 0.1895
(0.0061) (0.0943) (0.00257)

α
0.0942 0.1242 0.4633

(0.0415) (0.0651) (0.0652)

δ̄
0.1977 0.1965 0.1868

(1.10E − 3) (0.0058) (5.25E − 4)

σ
0.0511 0.0694 0.27

(0.0061) (0.0226) (0.0021)

ηδ
0.0293 0.0256 0.0357

(6.95E − 4) (0.0035) (3.96E − 4)

β
0.5294 1.4486 0.7909

(0.2811) (0.8001) (0.5878)

V̄
0.0429 0.0392 0.0235

(7.22E − 4) (0.0092) (5.61E − 4)

ξ
0.2616 0.3405 0.155

(0.0666) (0.1159) (0.015)

ρ
−64.44 −33.06 −55.98
(2.0302) (16.60) (0.64)

ζ1
− 0.6712 −

(−) (0.2534) (−)

ζ2
− −0.7275 −

(−) (0.1607) (−)

ω1
− 2.6048 −

(−) (2.2499) (−)

ω2
− 3.4644 −

(−) (4.2490) (−)

λJ
− − 5.689

(−) (−) (0.2001)

µJ
− − −0.7241

(−) (−) (8.91E − 3)

σJ
− − 7.373

(−) (−) (0.1594)

7The lack of convergence has been tested by Geweke test, and at 1% significance we can
reject the hypothesis of not convergence of the Markov Chain. For any further detail about test,
estimation error and algorithm used to compute them we refer to the manual written by Smith
[56].
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Since for all the three models the cost of storage (c) estimate is greater than
long run convenience yield (δ̄) one, then c − δt assumes often positive values,
which reflects in a normal market effect in futures structure, as it is present for
most of the dates in the considered period. From Fig.3.7 and Fig.3.8 we can ob-
serve that the estimate for δt is greater than the estimate for c in the same periods
when in the markets are observed an inverted future market, as it is possible to
see comparing Fig.4.2 and Fig.3.6 with Fig.4.2.
The inference results show for all the models a low level in long-run volatility, for
the basic model the estimated value for V̄ is 0.0429 (corresponding to an annu-
alized long-run volatility close to 3.5%), a value that well represent the historical
standard deviation we recognize in the return time series analyzed, if we exclude
the period from June 2008 to December 2008, in which spot quotation faced a
dramatic fall resulting in a sudden increase in volatility level. As expected the
model with seasonality show similar values to the basic model for the volatility
process parameters, since the seasonality function do not affect the volatility dy-
namics, just the log-spot one. The main difference among this two models is in
the correlation parameter, in model with seasonality we found a lower value for
correlation. The posterior for the parameters ζ1, ζ2, ω1, ω2 show mean values
close to zero, and higher variances with respect to the others parameter posteri-
ors. Comparing the results of the inference carried out with the basic model and
with the model that allows the spot dynamics to jump we can observe similar
point estimates for all the parameters involved in the spot and in the convenience
yield SDE, the differences are in the parameter estimates for the volatility pro-
cess, where we can observe in particular a lower value for the long-run volatility
in the case with jumps with respect to the basic model; obviously, this is the effect
of jumps that absorb partially the volatility of the spot dynamics. The intensity
of jumps has a value significantly different from zero, the point estimate suggest
an average of 5.6% days with jumps.
Together with inference about the parameters we got also inference on the path
of the latent processes (convenience yield and variance process). In the follow-
ing figures (Fig.3.7, Fig.3.8 and Fig.4.5) are shown the inference on the latent
processes for the different models, the blue line represent the mean of all path,
that we can interpret as our estimate for the process. In all the dynamics we can
notice how during the period from June 2008 to December 2008, the filtered dy-
namics behaves like in presence of outliers. This will have an impact also in the
diagnostics performances of the inference, but comparing Table 4.1 and Table
3.2(inference obtained using the two different data sets, including and excluding
the discussed period) we can see that it does not impact heavily in the parameter
estimates.
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Figure 3.7: Inference on dynamics for the convenience yield and the volatility
process got under the model without seasonality or jumps

Figure 3.8: Inference on dynamics for the convenience yield and the volatility
process got under the model with seasonality

Figure 3.9: Inference on dynamics for the convenience yield and the volatility
process got under the model with jumps
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It is interesting to notice when the filtered process for the convenience yield
is above the “threshold” represented by the estimated cost of storage plus the risk
free rate. In this cases it is more valuable to keep the commodity sooner, since
the yield produced is positive, hence in these cases the future prices are generally
higher for shorter maturities than longer (inverted future market). If we compare
the filtered dynamics we reported above, with the figure 4.2 (where are indicated
the normal future market day, and the inverted ones), the equivalence discussed
works quite fine.
As discussed in the section 4.5 we conduct the inference for the basic model and
for the model with jumps also for a restrict set of dates, excluding the period with
the sudden fall in WTI quotations.
Comparing inferences reported in Table 3.2 with the one reported in Table 4.1 we
can notice the slightly lower estimate for the intensity of the jump process, since
the new dataset spot dynamic is less erratic than the previous one. Other changes
are in the elasticity constant of the mean reversion processes (in the convenience
yield and in the volatility process), since now, without the large movements due
to the period excluded from dataset, hence higher value for the “mean reverting
speed” are preferred. Following we report the filtered latent process for the two
models.

Figure 3.10: Inference on dynamics for the convenience yield and the volatility
process got under the model without seasonality or jumps

Figure 3.11: Inference on dynamics for the convenience yield and the volatility
process got under the model with jumps
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Table 3.2: Parameter inference: posterior means (and posterior standard devia-
tion) of the model parameter set Θ for three analyzed models. All values are
expressed on a daily basis and are scaled by a 100 factor

Model Parameters Basic Model Model with Jumps

ηS
0.1209 0.2012

(0.0069) (0.0194)

c
0.1983 0.1715

(0.0061) (0.00587)

α
1.7618 3.521

(0.0415) (1.38)

δ̄
0.1950 0.1606

(1.10E − 3) (0.0066)

σ
0.0616 0.4581

(0.0061) (0.0411)

ηδ
0.0285 0.0318

(6.95E − 4) (0.0013)

β
3.3356 2.559

(0.2811) (1.08)

V̄
0.0461 0.0283

(7.22E − 4) (0.00194)

ξ
0.2646 0.5267

(0.0666) (0.034)

ρ
−66.04 −54.99
(2.0302) (0.981)

λJ
− 4.039

(−) (0.447)

µJ
− −1.084

(−) (0.0062)

σJ
− 9.363

(−) (0.5387)

3.8 In the sample and out of the sample performances

To compare performances by the two model we analyzed both in the sample and
out-of the sample results. For in the sample results we, as Yu, Li, Wells [12],
analyzed the ε residuals to verify if the assumption of normality is satisfied , if
it is then the model well describes the dynamics of data we are studying. Out of
the sample we ran a particle filter algorithm using the parameter set we got from
inference and check the RMSE and MAE for futures and option on futures, to
value which perform better perform for risk-management purposes.
To analyze the goodness of fit and to compare the different models, we studied
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the residuals ε(S)
t , ε

(V )
t , ε

(δ)
t from (4.7):



ε
(S)
t =

xt+1 − xt − (µ+ c− δt)∆t− Jt+1√
Vt∆t

ε
(V )
t =

Vt+1 − Vt − β(V̄ − Vt)∆t
ξ
√
Vt∆t

ε
(δ)
t =

δt+1 − δt − α(δ̄ − δt)∆t
σ
√
δt∆t

(3.18)

Since the model hypothesis is they are distributed according to a standard normal,
we use the Kolmogorov-Smirnov test to check this hypothesis and the skewness
and kurtosis of the distributions to compare the different models.

Figure 3.12: Histogram for the residuals for the basic model

Figure 3.13: Histogram for the residuals for the model with seasonality term
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Figure 3.14: Histogram for the residuals for the model with jumps

Table 3.3: Analysis of the residuals under the historical measure for the three
model, for each residual is reported the p-value of the Kolmogorov-Smirnov
test, the skewness and the kurtosis of the distribution

Residual Basic Model Model with Seasonality Model with Jumps

εS

KS test 0.151 0.47 0.1399
skewness −0.045 −0.048 0.061
kurtosis 2.998 2.86 3.152

εδ

KS test 1.6E − 15 2.4E − 20 1.3E − 24
skewness −0.141 0.33 0.389
kurtosis 9.26 9.77 10.29

εV

KS test 3.1E − 15 3.1E − 23 1.8E − 6
skewness 2.95 1.98 0.039
kurtosis 12.31 8.924 2.697

For the risk neutral dynamics we evaluate the square root of the mean of
quadratic errors (RMSE) and the absolute mean error (AME)for both the data
sets: the data set used for parameter estimation (in the sample set ITS) and the
data set outside the first one (out of the sample OTS). Results are shown in Table
??.

Futures error Basic Model Model with Seasonality Model with Jumps

ITS
RMSE 1.036 0.956 1.08
AME 0.525 0.457 0.499

OTS
RMSE 1.033 0.878 0.35
AME 0.583 0.488 0.21

As it is shown by p-value for the Kolmogorov-Smirnov test we have to reject
the normality hypothesis for at least two of the residuals: the convenience yield
and the volatility residuals, the presence of the period with the fall of WTI spot
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has a great impact in the sampled path, in particular we notice in the histograms
(Fig. 4.6, 4.7, 4.8) of the residuals εδ, εV a skewed distribution , and with some
values far form the mode values that brought a much more large kurtosis than for
a normal distribution. Model with jumps seems to mitigate the effect of leptokur-
tic distribution, explaining a part of the outliers variance value with an increased
jump activity. The model with seasonality does not improve the performances of
the model regarding εδ, εV , but the p-value of the KS test for the spot residuals
is much higher than the correspondent value for the other two models. The errors
associated with the futures, both in the sample and out of the sample, suggest
there is not a real improvement using seasonality, for jumps out of sample errors
shows a better performances, due to the greater flexibility given by using three la-
tent process than two in our particle filter approach. This improvement has a cost
in required time to run the single PF algorithm: spanning observed data coming
from 998 dates and using 2000 “particles”, for the basic model we need 6.45 sec-
onds, for the model including the seasonality term the time is equal (the number
of latent process simulated is the same), the model including jumps requires 9.03
seconds. All the algorithms written in Matlab have been running on a i3(3, 07
GHz) pc.
Using the reduced sample set we confirm the positive impact in performances of
including jumps in model dynamics. Performances are in Table 3.4 and in Table
3.5. Using this data-set the model with jumps in spot well-score in the sample
performances, revealing itself a good model, succeeding in capturing the dynam-
ics for WTI quotation and futures in the analyzed date interval.

Figure 3.15: Histogram for the residuals for the basic model using the second
data-set
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Figure 3.16: Histogram for the residuals for the model with jumps using the
second data-set

Table 3.4: Analysis of the residuals under the historical measure for the three
model, for each residual is reported the p-value of the Kolmogorov-Smirnov
test, the skewness and the kurtosis of the distribution. We refer to the second
dataset

Residual Basic Model Model with Jumps

εS

KS test 0.436 0.241
skewness −0.319 −0.175
kurtosis 3.517 2.181

εδ

KS test 0.220 0.1085
skewness −0.311 0.360
kurtosis 3.340 3.480

εV

KS test 1.7E − 14 0.303
skewness 2.131 −0.174
kurtosis 9.701 2.327

Table 3.5: Second dataset futures performances

Futures error Basic Model Model with Jumps

ITS
RMSE 1.933 0.997
AME 1.417 0.455

OTS
RMSE 0.735 0.41
AME 0.574 0.33

3.9 Conclusions

In this paper we analyzed three models in capturing the dynamics of WTI spot
characteristics and the future market structure. Two data sets have been used to
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get inference, the first one includes a period characterized by a sudden fall in
spot quote dynamics, while the second one excludes it. We found that model
with jumps has the best performances in both cases and succeeds in properly
describing the second set of observed data, even if no one of the three models
succeeds in capture the dynamics of the observed data for the first set. Hence
we analyzed the performances of the basic model and the model with jumps with
a smaller dataset, where we excluded the period with the abrupt movement and
we found that the while the basic model still show some problem in well fitting
the observed data, the jump including jumps in spot dynamics succeed in it. We
reported also the performances in capturing future market dynamics for a set of
data outside the set used to get the inference for the parameter set of the model.
Again the Jump model shows the best performances but it requires a longer time
to run the algorithm with respect to both basic and seasonality model. It is worth
remarking that the analysis of our data shows that sample correlation between
convenience yield process and spot logarithm process is significant. A model
including correlation between these two processes will be the subject of future
investigation.

3.10 Appendix: Future Options prices

To evaluate, under theQ measure, a general contingent G claim, whose payoff is
determined by an underlying whose dynamics follows (4.6), with the seasonality
function fixed at zero g(tyear) = 0, we refer to the PDE:

1

∂H

∂t
+
∂H

∂x
(rf + c− λµ∗J − δt −

1

2
Vt) +

1

2

∂2H

∂x2
Vt+

+
∂H

∂δ

[
α(δ̄ − δt)− ηδδt

]
+

1

2

∂2H

∂δ2
σ2δt+

+
∂H

∂V

[
β(V̄ − Vt)− ηV Vt

]
+

1

2

∂2H

∂V 2
ξ2Vt+

+
∂2H

∂V ∂x
ρξVt+

− rfH + λE [H(t, xt + ln(1 + J), δt, Vt)−H(t, xt, δt, Vt)] = 0

(3.19)

Following Heston [35] and Bakshi, Madan [9] we can decompose the value C
at time t of an European option that gives the right at maturity time T to acquire
a futures contract, whose deliver is fixed at T ′ , at a fixed price K:

C(t, τ, τ
′ − τ) = G(t, τ)Π(t, τ)−KB(t, τ)Π(t, τ)

where τ = T − t and τ ′ = T
′ − t; B(t, τ) is the price at time t of a discount bond

and G(t, τ) is the price at time t of a forward which deliver at time t+ τ the asset
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S(t+ τ).
The decomposition has been proved by Yan [59]. Bakshi and Madan [9] proved
that:

B(t, τ) = f(t, τ ; 0)

G(t, τ) =
1

i

∂f(t, τ ; 0)

∂φ

f1(t, τ ;φ) =
1

iG(t, τ)

∂f(t, τ ;φ)

∂φ

f2(t, τ ;φ) =
1

G(t, τ)
f(t, τ ;φ)

(3.20)

where f1(t, τ ;φ) and f2(t, τ ;φ) are respectively the fourier transform of the
two probability terms Π1(t, τ) and Π2(t, τ). Hence each term can be recovered
once computed f(t, τ ;φ), that is the characteristic function of the underlying
of the contingent claim (in this case the characteristic function of the logarithm
of the future prices). Since f(t, τ ;φ) is the price of a contingent claim paying
exp{iφH(t + τ, τ̃ − τ)} at maturity t + τ , its value can be found solving (4.17)
with the terminal condition:

f(t+ τ ; 0) = exp{iφH(t+ τ, τ̃ − τ)} (3.21)

If we use the trial solution:

f(t, τ ;φ) = exp{θ0(τ) + θδ(τ)δt + θV (τ)Vt + iφ[x+ A0(t) + A2(t)δt]}

in (4.17), we get the following ODE system.



− ∂φ0(τ)

∂τ
+ iφ(rf + c− λµ∗J) + φδαδ̄ + θV βV̄ = 0

− ∂A1(τ)

∂τ
= 0

− ∂φδ(τ)

∂τ
+ iφ− φδ(α + ηδ) + 1

2
φ2
δ(τ)σ2 = 0

− ∂θV (τ)

∂τ
− 1

2
iφ− 1

2
φ2 − θV (β + ηV ) + 1

2
ξ2θ2

3 + iφθV ρξ = 0

(3.22)

where φδ(τ) = θδ(τ) + iφA2(τ̃ − τ) and φ0(τ) = θ0(τ) + iφA0(τ̃ − τ) with
terminal condition: 

φ0(0) = iφβ0(τ̃)

φδ(0) = iφβδ(τ̃)

θV (0) = 0

(3.23)
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Solving the ODE system we get:

θV = − 2

ξ2

(
exp{CV τ} − 1
exp{CV τ}

AV
− 1

BV

)
with 

CV =
√

(ηV − iφρξ + β)2 + ξ2(φ2 + iφ)

AV = 1
2
[(β + ηV − iφρξ) + CV ]

BV = 1
2
[(β −+ηV − iφρξ)− CV ]

And:

φδ = − 2

σ2

Aδ exp{Cδτ}+BδC̄

exp{Cδτ}+ C̄

where: 

Cδ =
√

(α + ηδ)2 + 2σ2iφ

Aδ = 1
2
[(ηδ + α) + Cδ]

Bδ = 1
2
[(ηδ + α)− Cδ]

C̃δ =
√

(α + ηδ)2 + 2σ2

Ãδ = 1
2
[(ηδ + α) + C̃δ]

B̃δ = 1
2
[(ηδ + α)− C̃δ]

C̄ =

iφ
exp{C̃δ τ̃} − 1
exp{C̃δ τ̃}

Ãδ
− 1

B̃δ

− Aδ

Bδ − iφ
exp{C̃δ τ̃} − 1
exp{C̃δ τ̃}

Ãδ
− 1

B̃δ

Finally we solve for φ0:

φ0 =iφ(rf + c− λµ∗J)τ − 2βV̄

ξ2

(
(BV + CV )τ + log

AV exp{−CV τ} −BV

CV

)
−

−2αδ̄

σ2

(
(Bd + Cd)τ + log

1 + exp{−Cdτ}C̃
1 + C̃

)
+

+iφ

(
(rf + c)τ̃ − 2αδ̄

σ2

(
(B̃δ + C̃δ)τ̃+

+ log
Ãδ exp{−C̃δ τ̃} − B̃δ

Ãδ − B̃δ

))
+ λJ

(
exp

{
iφµJ −

1

2
φ2σ2

J

}
− 1

)
with:

µ∗J = exp

{
µJ +

1

2
σ2
J

}
− 1
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CHAPTER4
A double correlated 3 factor model for

Crude Oil Market

4.1 Introduction

One of the key elements in modeling crude oil markets is the convenience yield
process. Since the seminal work by Schwartz [53], where the convenience yield
has been introduced as a discount factor in a reduced form model for commodi-
ties, and later by Cortazar and Schwartz [16], where a detailed discussion on these
models is presented, several different studies have been developed, in which the
convenience yield have been related to the inventory level, giving a macroeco-
nomic interpretation to the convenience yield. A long list of articles discussed this
topic. Among the others, that by Liu and Tang [39] analyzed both the modeling
problem in commodity market and the connection with the theory of inventory,
showing its important role in explaining the commodity spot dynamics. From a
pure financial point of view the convenience yield level reflects in the structure
of the future markets both in the contango and backwardation regimes. Hence,
even if it has been described as a discount yield, the dynamics usually proposed
was Vasicek-type in order to allow both positive and negative values. Liu and
Tang [39] and Ribeiro and Hodges [50] proposed two different models with con-
venience yield valuated up to a constant as a CIR dynamics. Even if the reason
leading to their choices are quite different, the models exhibit strong similarities:
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while Ribeiro and Hodges start from separating the cost of storage and insurance
from the possible positive revenues from physically owning the commodity, Liu
and Tang motivate their choice with the aim to explain the econometric evidence
they found of heteroskedasticity in the market analyzed. Both the models agree
in considering the Wiener process driving the spot dynamics correlated with the
convenience yield process and the square root of the same process multiplies up
to a scale factor the Wiener diffusion process driving the spot dynamics. The
purpose of the present paper is to provide a further contribution on the subject by
performing a detailed analysis of three different, but related models of crude oil
market based on some inference results obtained via a recently developed estima-
tion method, usually called ”Particle Filtering”. In our analysis we started from
the model proposed by Liu and Tang [39] and studied its performances in catch-
ing spot and futures time series for WTI in the period 2010 − 2011, comparing
this model with two different variants including a new factor: volatility process.
In order to get an affine process we need to add a second Wiener process not cor-
related with the first one. An attempt in a similar direction has already been done
by Yan [59], who proposed the extension of the simple Schwartz model by adding
a volatility factor to explain the skew and smile phenomenon observable in the
option on the futures market. Since the data set used is not so huge and the matu-
rities of futures taken into account are long up to 3 years, we didn’t allow interest
rates to have a stochastic dynamics since, as it was already discussed in the orig-
inal work by Schwartz, the interest rates have a positive impact in describing the
dynamics just when we consider longer maturities futures. It was also shown by
Liu and Tang that correlation of interest rates dynamics with log-spot dynamics
is not significant. Because of the similarities between the present models and the
stochastic volatility models for equities, in order to obtain estimates we decided
to adopt techniques analogous to those discussed in Eraker [22] and Yu, Li and
Wells [12], where a Markov Chain Monte Carlo method is used to get inference
on S&P500 index analyzing both the spot market and the option market data.
Our algorithm, belonging to Markov Chain Monte Carlo family, has been intro-
duced by Doucet, Andrieu and Holenstein [10]. Pitt et al. [40] further developed
the algorithm proposed, by suggesting to use particle filters (particularly suitable
for latent process filtering) to estimate the marginal likelihood of the parameters.
The optimality of the Particle Filter algorithm in applying to Stochastic volatility
models is the topic discussed by Johannes, Polson and Stroud [43]. The structure
of the paper is the following: in Section 2 we present the models we are going to
study, while in Section 3 we compute in close form for the models examined the
futures prices we need in order to apply our inference procedure; in Section 4 we
present our estimation algorithm, while in Section 5 we illustrate the data set on
which base our inference; in Section 6 we provide and discuss the main results
of our study, while in Section 7 we analyze the in and out of the sample per-
formances of our estimation method. Section 8 contains some final remarks and
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suggests possible developments of the present work. The explicit computation of
futures options prices is postponed to the appendix.

4.2 The Models

We studied three different models, the first one being our benchmark, and this is
the model originally presented by Liu and Tang [39]. The other two extend the
first one by including two stochastic processes into the dynamics: the first one
introduces volatility process and the second one includes also a jump process, of
the compund Poisson type, with exponentially distributed arrival jump times and
lognormal jump size density. The benchmark model has been introduced by Liu
and Tang, who describe the stochastic dynamics under the historical measure P.
We decided to keep the rates not stochastic and we keep it fixed at the FED levels.
As already discussed by Schwartz [53], by comparing performances in capturing
the futures prices structure for models with and without stochastic interest rate,
the performances in using stochastic interest rates do not show any significant im-
provement, if we exclude the longest maturity futures (about ten-years maturity).
Hence, since our longest maturity considered is 5 years futures, we preferred to
do not allow stochastic interest rates to make the model more parsimonious.
Liu Tang Model is a two-factor model with a stochastic convenience yield fol-
lowing a CIR dynamics1:

dxt =

[
µ+ c− δt −

1

2
(σ2

δδt + V0 + Vδδt)

]
dt+ σδ

√
δtdW

(P)
1 +

√
V0 + VδδtdW

(P)
2

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
1

(4.1)
We made the usual choice of describing the price dynamics through the log-price
process: xt = log[St]. The convenience yield process is given by δt − c, and it
can assume both positive and negative values. W1 and W2 are two independent
Brownian motions, the superscript P being a reminder that this description holds
under the historical measure.
In order to explain both the time series of spot prices and futures prices, we need
to specify the risk premia to link the historical and risk neutral measures. We
followed for this model the same choice made by Liu and Tang, with risk premia
linearly proportional to the square root of the state variables, maintaining the

1The model in its structure is similar to the one proposed by Ribeiro and Hodges [50], but
has some relevant differences, in particular in the correlation between the spot process and con-
venience yield process.
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same model structure under both measures.
dW

(Q)
δt

= dW
(P)
δt

+ λ(Yt)dt

λ(Yt) =
√
YtΘ

Θ =
[ηδ
σ
, ηx

]
Hence we recognize that in (4.1):

µ = rf + ηδ
σδ
σ
δt + ηx (V0 + Vδδt)

The dynamical model expressed in (4.1) under the historical measure, under the
risk neutral measure maintain the same structure:dxt =

[
rf + c− δt −

1

2
(σ2

δδt + V0 + Vδδt)

]
dt+ σδ

√
δtdW

(Q)
1 +

√
V0 + VδδtdW

(Q)
2

dδt = [α(δ̄ − δt)− ηδδt]dt+ σ
√
δtdW

(Q)
1

(4.2)
The other two models considered introduce the volatility factor Vt, both of them
are a three factor model where the variance process and the convenience yield
process are modeled via a CIR dynamics, the second one including a jump pro-
cess in the log-spot dynamics. The first of these models (the one without jumps):

dxt = (µ+ c− δt)dt+
√
VtdW

(P)
St

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
δt

dVt = β(V̄ − Vt)dt+ ξ
√
VtdW

(P)
Vt

dW
(P)
St
dW

(P)
Vt

= ρdt

(4.3)

The last model taken into account has the same structure of the previous one,
allowing the spot dynamics to jump. The jump part is modeled via a compound
Poisson process: J (P)

xt is the jump process, where the jump arrival times are expo-
nentially distributed with λj parameter, and the jump sizes (in the log-price) are
normally distributed with mean µJ and variance σ2

J .
dxt = (µ+ c− δt)dt+

√
VtdW

(P)
St

+ dJ
(P)
xt

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
δt

dVt = β(V̄ − Vt)dt+ ξ
√
VtdW

(P)
Vt

dW
(P)
St
dW

(P)
Vt

= ρdt

(4.4)

Since the (4.3) model can be considered a particular case of (4.4), setting the
parameter λJ = 0 we discussed just the second one, recalling that the same con-
clusions hold also for the first one, just by setting to zero the parameter λJ .
In order to describe the dynamics under the risk-neutral measure, we need again

76



4.2. The Models

to define the Radon-Nikodym derivative of this measure with respect to the his-
torical one. The parametric form we choose follows the one proposed by Heston
[35] and discussed by Dai and Singleton [18] and by Pan [45], and it has been
used by Yu, Li and Wells [12] in their analysis of Bates model under both histor-
ical and risk neutral measures. This choice preserves the model structure under
the measure change. This can be specified by the following relations between the
Wiener processes under the two measures, provided by the Girsanov theorem:

dW
(Q)
δt

= dW
(P)
δt
− 1√

1− ρ2
δ

(
ρδηx −

ηδ
σ

)√
δtdt

dW
(Q)
Vt

= dW
(P)
Vt
− 1√

1− ρ2
V

(
ρV ηx −

ηV
ξ

)√
Vtdt

dW
(Q)
1 = dW

(P)
1 + ηxσδ

√
δtdt

dW
(Q)
2 = dW

(P)
2 + ηx

√
Vtdt

(4.5)

Where we have denoted by ηx the risk premium associated with the two Wiener
processes in the spot dynamics. We chose to associate the same ηx to both the
processes since both the processes affect the spot dynamics in the an analogous
way. In addition to this, if we defined two different risk premia one for each
process, it could be possible to redefine an unique risk premia as a weighted
average of these two.
Hence, we can write the dynamics just described under the measure P by the
system (4.4), also under the risk-neutral measure Q2 :

dxt = (r + c− δt −
1

2
Vt − µ∗)dt+

√
VtdW

(Q)
xt + dJ

(Q)
xt

dδt =
(
α(δ̄ − δt) + ηδδt

)
dt+ σ

√
δtdW

(Q)
δt

dVt =
(
β(V̄ − Vt) + ηV Vt

)
dt+ ξ

√
VtdW

(Q)
Vt

St = exp{g(tyear) + xt}
dW

(Q)
St
dW

(Q)
Vt

= ρdt,

(4.6)

where µ∗ and dJ (Q) denote respectively the predictable compensator and the com-
pensated jump measure. It is worth remarking that, since the cost of storage is
separated off the dynamics of the convenience yield, δt this is modeled by a CIR
process that prevents it from assuming negative values, automatically excluding
arbitrage opportunities in the market, as pointed out in Ribeiro and Hodges [50].
It is worth to remark that again the convenience yield is expressed by δt − c and
it can assume both positive and negative values to catch both the normal future
market structure and the inverted future structure.
To cope with the inference in this setting we use a Euler discretization method.

2for the basic model we just fix to zero µ∗ and dJ (Q)
xt , for the model with seasonality we add

the seasonality factor (g(tyear)) to the spot dynamics like in (4.4).
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The discretized model (under the historical measure) can be written as follows:
xt+1 = xt +

[
µ+ c−

(
σ2

2
+ 1

)
δt −

1

2
Vt

]
∆t+

√
Vtε

(1)
t+1 +

√
δtε

(2)
t+1 +

∑N
(J)
t+1

i=1 ε
(J)
i,t+1

δt+1 = δt + α
(
δ̄ − δt

)
dt+ σ

√
δtε

(δ)
t+1

Vt+1 = Vt + β
(
V̄ − Vt

)
dt+ ξ

√
Vtε

(V )
t+1

(4.7)
Where each ε(1)

t+1 is correlated with ε(δ)t and ε(2)
t+1 is correlated with ε(V )

t+1 and are
normally distributed random variables with zero mean and variance ∆t. In the
discretized jump addend, the N (J)

t+1 are independent Poisson distributed r.v. with
parameter λJ , while ε(J)

i,t are independent normal r.v.
The futures price is given by the following expression:

F (0, τ) = exp{A0(τ) + xt + A2(τ)δt} (4.8)

where τ = T − t is the futures time to maturity. Details about computations
and the specifics of the functions A0(τ) and A2(τ) are provided in the following
section. Details for these two function for the model proposed by Liu and Tang,
can be found in their paper [39].
Since the futures prices are affected by different kind of noises (possible incom-
plete specification of the model, market inefficiency, random noise, etc) we mod-
eled the logarithm of their market price, lnFM(0, τ), by assuming it is represented
by the theoretical price given by (4.8) plus an error distributed as a white noise
εfut ∼ N (0, σ2

ε )
3:

lnFM(0, τ) = lnF (0, τ) + εfut (4.9)

4.3 Futures Prices

When the underlying follows, under the the dynamics Q (4.6) the Kolmogorov
backward equation for the generic contract value, f(t, xt, δt, Vt, Jt), at time t,
when the underlying follows, under the Q measure, the dynamics (4.6) is:
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+
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∂x
(rf + c− λµ∗J − (1 +

σδ
2

)δt −
1

2
Vt) +

1

2

∂2f

∂x2
(Vt + σ2

δδt)+

+
∂f

∂δ

[
α(δ̄ − δt)− ηδδt

]
+

1

2

∂2f

∂δ2
σ2δt+

+
∂f

∂V

[
β(V̄ − Vt)− ηV Vt

]
+

1

2

∂2f

∂V 2
ξ2Vt+

+
∂2f

∂V ∂x
ρξVt +

∂2f

∂V ∂δ
ρδσσδδt+

+ λE [f(t, xt + ln(1 + J), δt, Vt)− f(t, xt, δt, Vt)] = 0

(4.10)

3Our choice to fix σ2
ε = 0, 08 is consistent with the value observed for the mean of the daily

spread of the highest-lowest prices for futures in the considered range
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4.3. Futures Prices

The PDE (4.10) has to be solved with the usual terminal condition f(t = T ) =
H(xT , δT , VT ) with H payoff at time T maturity, and since we are dealing with
futures the final payoff is:

H(xT , δT , VT ) = exp{xT} (4.11)

We make the hypothesis of a solution form:

ft = exp{A0(t) + A1(t)xt + A2(t)δt + A3(t)Vt}

if we try this guess solution into (4.10), we get the follow ODE system:



− ∂A0(τ)

∂τ
+ A1(τ)(rf + c) + A2(τ)αδ̄ + A3βV̄ = 0

− ∂A1(τ)

∂τ
= 0

− ∂A2(τ)

∂τ
− A1(τ)− A2(τ) + 1

2
A2

2(τ)σ2 + A1(τ)A2(τ)ρδσδσ = 0

− ∂A3(τ)

∂τ
− 1

2
A1(τ) + 1

2
A2

1(τ)− A3(τ)(β + ηV ) + 1
2
A2

3(τ)ξ2 + A1(τ)A3(τ)ρξ = 0

(4.12)
where we changed variable from t to τ = T − t 4 .

Since the payoff is (4.11) we obtain the initial condition for the ODE system:
A0(0) = 0

A1(0) = 1

A2(0) = 0

A3(0) = 0

(4.13)

Solving previous system we get :

A0(τ) = (rf + c)τ − 2αδ̄

σ2

[
Bτ + log

(
D −B exp{Cτ}

D −B

)]
A1(τ) = 1

A2(τ) = − 2
σ2

exp{Cτ} − 1
exp{Cτ}

D
− 1

B

A3(τ) = 0

(4.14)

with: 
C =

√
(α + ηδ − ρδσσδ)2 + 2σ2

D =
(ηδ + α− ρδσσδ) + C

2

B =
(ηδ + α− ρδσσδ)− C

2

(4.15)

4Note that in the Futures price obtained there is no dependence on the jump process parameters
in strict analogy with Yan [59].
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4.4 Inference Algorithm

The reference object of our inference is the vector {Θ, V0:T , δ0:T , J0:T} where
V0:T , δ0:T , J0:T are the three latent processes (the variance process, the con-
venience yield and the jump process) and Θ is the set of parameters: Θ =
{ε, µ, c, α, δ̄, σ, ηδ, β, V̄ , ξ, ρ, λ, µJ , σJ}. For simplicity we indicate with X0:T the
vector of the three latent processes {V0:T , δ0:T , J0:T}, and by Z1:T the set of ob-
served market data (coming from both asset price and futures price quotations).

To make inference in a so large state space, Particle Markov Chain Monte
Carlo methods (from now on PMMC) represents an efficient technique. The tech-
nique was presented by Andrieu et al. [10], here it also shown trough application
to one model of Stochastic Volatility family, the algorithm efficiency in sampling
from the distribution of Θ and X0:T given the observed data sequence Z1:T . The
algorithm belongs to the families of MCMC and Particle filter, and this reflects
in the good capability to deal with non linear model. The implemented version
is the one presented and discussed by Pitt et al. [40]. The main feature of the
algorithm described there is that it is possible to build a MCMC to sample from
the distribution p(Θ|Z1:T ) (since Θ is multidimensional, with large dimension, a
Metropolis within Gibbs technique has been used to improve the mixing of the
chain) running the MCMC algorithm with an estimate for the marginal likelihood
p(Z1:T |Θ) has been used (the likelihood is marginal with respect to the parameter
set, since the latent processes have been integrated out) and it has been got by us-
ing a Auxiliary Particle Filter algorithm. Details about the algorithm, and proof of
convergence of the algorithm can be found in Andrieu et al. [10] and in Pitt et al
[40]. To design the Auxiliary Particle Filter we extended the algorithm discussed
by Johannes, Polson and Stroud [43] and implemented in a version without data
augmentation, since as it has been shown in the same paper the the benefits of
data augmentation for such a kind of models when using daily data is negligible,
moreover in a regime of low volatility of volatility, as it is our analyzed cases.

4.5 The Data

The data used for the analysis are relative to WTI Cushing Crude Oil spot and fu-
tures quotations on NYMEX market from 11/01/2010 to 28/09/2011. We used
the the first 85% if the data-set to get the inference on our model and reserved the
last 15% of dates for out of the sample performances study. The range of dates
for the estimation goes from 11/01/2010 to 30/06/2011, and the spot data are
presented in Figure 4.1.
Spot data are collected from the US Energy information administration website
where are collected teh closing day spot values registered in the Cushing Okla-
homa market and communicated to the managers of the U.S. government website.
Daily data are taken into account for any available working day in the interval.
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4.5. The Data

A plot of the spot data used in estimating parameter set of the different models
analyzed is in figure Fig.4.1

Figure 4.1: Spot FOB data for WTI crude oil

Besides spot data, for any working day we recorded a panel of 12 future con-
tract values. Their maturity day is fixed on the first working day of each month of
2012. So for any trading day we analyzed a spot datum and 12 futures data, and
in the range there are 350 dates. Hence the data set consists in 350 spot values
and 4200 future contracts.
In addition to this data set we reserved a panel of data to evaluate out of the sam-
ple performances. The data set include again a FOB spot datum and a panel of
12 future data (with different maturity one for each month of 2012, the maturi-
ties are set on the first trading day), the range of dates goes from 01/07/2011 to
28/09/2011. The number of working days in the range is 81.
Futures contracts are usually characterized by their behavior at different maturi-
ties, when the futures prices are higher than spot value, increasing over longer
maturities, hence the market is normal, otherwise inverted. If at a certain date the
futures quotation increases when the time to maturity become longer, it usually
said the future market is normal, otherwise it is said inverted. In the analyzed data
set the usual structure is normal, ad it switch to inverted structure for a few days
in the closing part of the time series. In figure Fig.4.2 are indicate the dates for
which we can observe a normal future market (equivalent to the value +1) and
the dates with an inverted future market(equivalent to the value −1).

Figure 4.2: The dates in the data set used for the parameter estimation are di-
vided in normal future market days (+1 value) and inverted future market days
(−1 value)
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4.6 Numerical Results

To conduct our inference for each of our models discussed in section 4.2, we sim-
ulated Markov chains of 35000 steps (from these we discard about 10000 sampled
points as burn-in of the Markov chain5). We used the mean of the posterior distri-
bution p(Θ|Z0:T ) as point estimate for each parameter; these results are reported
in the Table 4.1. Together with means we reported also the standard deviation of
the posterior distributions.

Table 4.1: Parameter inference: posterior means (and posterior standard devia-
tion) of the model parameter set Θ for three analyzed models. All values are
expressed on a daily basis

Model Parameters Liu-Tang Model with Vol Model with Vol & Jumps

ηS
5.44e− 4 1.31e− 3 1.91e− 3

(6.48e− 4) (6.40e− 5) (8.05e− 5)

c
1.32e− 3 1.25e− 3 1.30e− 3

(7.69e− 5) (1.11e− 4) (3.35e− 5)

α
5.10e− 3 1.74e− 4 2.82e− 4

(1.44e− 3) (1.44e− 4) (5.672e− 4)

δ̄
1.24e− 3 1.20e− 3 1.21e− 3

(3.36e− 5) (3.45e− 5) (4.34e− 5)

σ
7.57e− 4 4.79e− 4 9.11e− 4

(1.63e− 4) (1.46e− 4) (1.34e− 4)

ηδ
1.932e− 4 1.66e− 4 3.01e− 4
(2.24e− 5) (1.33e− 5) (1.11e− 5)

β
− 1.64e− 1 1.41e− 2

(−) (1.47e− 2) (9.59e− 3)

V̄
− 3.99e− 4 5.69e− 4

(−) (3.44e− 5) (2.73e− 5)

ξ
− 5.96e− 3 1.03e− 2

(−) (2.61e− 3) (2.92e− 3)

ρ
− −26.64% −53.31%

(−) (1.10e− 1) (1.01e− 1)

λJ
− − 2.33e− 2

(−) (−) (3.41e− 3)

µJ
− − −2.89e− 3

(−) (−) (4.38e− 4)

σJ
− − 1.10e− 1

(−) (−) (3.74e− 3)

σδ
4.01e− 1 1.06e− 2 9.50e− 3

(3.27e− 4) (2.01e− 4) (1.34e− 4)

ρδ
− 67.38% 72.87%

(−) (1.65e− 2) (9.17e− 1)

V
1.83e− 5 − −

(1.51e− 5) (−) (−)

Vδ
2.55e0 − −

(6.91e− 1) (−) (−)

5The lack of convergence has been tested by Geweke test, and at 1% significance we can
reject the hypothesis of not convergence of the Markov Chain. For any further detail about test,
estimation error and algorithm used to compute them we refer to the manual written by Smith
[56].
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4.6. Numerical Results

Since for all the three models the cost of storage (c) estimate is greater than
long run convenience yield (δ̄) one, then c − δt assumes often positive values,
which reflects in a normal market effect in futures structure, as it is present for
most of the dates in the considered period. From Fig.4.3 and Fig.4.4 and Fig.4.5
we can observe that the estimate for δt have higher values in similar periods, that
correspond to inverted future market structure. The intensity of jumps has a value
significantly different from zero, the point estimate suggest an average of 2.3%
days with jumps.
Together with inference about the parameters we got also inference on the path
of the latent processes (convenience yield and variance process). In the follow-
ing figures (Fig.4.3, Fig.4.4 and Fig.4.5) are shown the inference on the latent
processes for the different models, got as the mean of all path.

Figure 4.3: Inference on dynamics for the convenience yield under the Liu &
Tang model

Figure 4.4: Inference on dynamics for the convenience yield and the volatility
process got under the two-factor model
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Figure 4.5: Inference on dynamics for the convenience yield and the volatility
process got under the two-factor model with jumps

In Liu Tang model the estimate of the constant volatility V0 is low (about
2e − 5 which corresponds to 0.5% yearly basis variance, uncorrelated with con-
venience yield) this reflect in a higher volatility scale factor for the convenience
yield σδ and higher estimated values for the process δt with respect to the other
two model. The long run variance for the two model proposed is between 4e− 4
and 5.6e− 4 that is much more close to the variance of the observed sample spot
set (3.7e− 4).
It is interesting to notice when the filtered process for the convenience yield is
above the “threshold” represented by the estimated cost of storage plus the in-
terest rate (in the period considered the rate quoted by FED was at 0.25% on
yearly basis, hence on daily basis is slight smaller than 1e − 5): in this cases
it is more valuable to keep the commodity sooner, since the yield produced is
positive, hence in these cases the future prices are generally higher for shorter
maturities than longer (inverted future market). It is possible to notice that both
for the two proposed model the net convenience yield is greater than rf + c just
in a few dates at the end of the analyzed period, when effectively the market
showed an inverted structure, in the other dates, when the market was character-
ized by a normal future structure, in our filtered net convenience yield dynamics
we found δt < rf + c. The benchmark model generally shows higher values for
the convenience yield δt − c with respect to the two proposed model, since the
volatility of the spot process has to be explained with the convenience yield pro-
cess. About the volatility process the model without jumps shows a more erratic
process for the volatility with respect to the model with jumps where the jumps
activity partially absorbs the volatility of the spot dynamics.

4.7 In the sample and out of the sample performances

To compare performances by the two model we analyzed both in the sample and
out-of the sample results. For in the sample results we, as Yu, Li, Wells [12],
analyzed the ε residuals to verify if the assumption of normality is satisfied , if

84



4.7. In the sample and out of the sample performances

it is then the model well describes the dynamics of data we are studying. Out of
the sample we ran a particle filter algorithm using the parameter set we got from
inference and check the RMSE and MAE for futures and option on futures, to
value which perform better perform for risk-management purposes.
To analyze the goodness of fit and to compare the different models, we studied
the residuals ε(S)

t , ε
(V )
t , ε

(δ)
t from (4.7):



ε
(S)
t =

xt+1 − xt − (µ+ c− δt)∆t− Jt+1√
[Vt + σ2

δδt]∆t

ε
(V )
t =

Vt+1 − Vt − β(V̄ − Vt)∆t
ξ
√
Vt∆t

ε
(δ)
t =

δt+1 − δt − α(δ̄ − δt)∆t
σ
√
δt∆t

(4.16)

Since the model hypothesis is they are distributed according to a standard normal,
we use the Kolmogorov-Smirnov test to check this hypothesis and the skewness
and kurtosis of the distributions to compare the different models.

Figure 4.6: Histogram for the residuals (only for the log-return process and the
convenience yield process) using the Liu & Tang model

Figure 4.7: Histogram for the residuals for the two-factor model
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Figure 4.8: Histogram for the residuals for the two factor model with jumps

Table 4.2: Analysis of the residuals under the historical measure for the three
model, for each residual is reported the p-value of the Kolmogorov-Smirnov
test, the skewness and the kurtosis of the distribution

Residual Liu-Tang Model with Vol Model with Vol & Jumps

εS

KS test 0.012 0.086 0.068
skewness −0.009 −0.174 −0.230
kurtosis 5.499 3.03 3.241

εδ

KS test 0.069 0.049 0.047
skewness 0.342 0.297 0.336
kurtosis 3.671 3.313 3.763

εV

KS test − 6.31E − 7 0.0781
skewness − 1.708 −0.147
kurtosis − 8.497 3.973

For the risk neutral dynamics we evaluate the square root of the mean of
quadratic errors (RMSE) and the absolute mean error (AME) for both the data
sets: the data set used for parameter estimation (in the sample set ITS) and the
data set outside the first one (out of the sample OTS). Results are shown in Table
??.

Futures error Liu-Tang Model with Vol Model with Vol & Jumps

ITS
RMSE 1.193 1.018 0.551
AME 0.818 0.606 0.329

OTS
RMSE 0.561 1.045 0.508
AME 0.418 0.648 0.327

As it is shown by p-value for the Kolmogorov-Smirnov test we have to reject
the normality hypothesis for at least two of the residuals: the convenience yield
and the volatility residuals, the presence of the period with the fall of WTI spot
has a great impact in the sampled path, in particular we notice in the histograms
(Fig. 4.6, 4.7, 4.8) of the residuals εδ, εV a skewed distribution , and with some
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values far form the mode values that brought a much more large kurtosis than for
a normal distribution. Model with jumps seems to mitigate the effect of leptokur-
tic distribution, explaining a part of the outliers variance value with an increased
jump activity. The model with seasonality does not improve the performances of
the model regarding εδ, εV , but the p-value of the KS test for the spot residuals
is much higher than the correspondent value for the other two models. The errors
associated with the futures, both in the sample and out of the sample, suggest
there is not a real improvement using seasonality, for jumps out of sample errors
shows a better performances, due to the greater flexibility given by using three la-
tent process than two in our particle filter approach. This improvement has a cost
in required time to run the single PF algorithm: spanning observed data coming
from 998 dates and using 2000 “particles”, for the basic model we need 6.45 sec-
onds, for the model including the seasonality term the time is equal (the number
of latent process simulated is the same), the model including jumps requires 9.03
seconds. All the algorithms written in Matlab have been running on a i3(3, 07
GHz) pc.

4.8 Concluding Remarks

In this paper we analyzed three models in the attempt to capture the dynamics
of WTI spot characteristics and the futures market structure. The first model is a
model recently proposed by Liu and Tang (2011), which we used as a benchmark
model, while the two proposed models are both variants of the previous one in-
cluding as a new factor the volatility process and possibly jumps. We compared
the models analyzing the residual to see what model best fits the observed data
set, and we found evidence that, for our parameter set (in the sample analysis) and
for a subsequent data set involving a panel of 50 dates for 12 different maturity
time futures, in both cases the model with jumps performs much better than the
other two model, while in out of the sample performances the benchmark model
exhibited better performances than the proposed model without jumps. The in-
ference procedure presented in this paper does not estimate the risk premium
associated to volatility process (ηV ), since the futures prices are not directly af-
fected by this process. In the Appendix an explicit calculation of futures options
price is provided for our models, but we did not use these prices in our estimation
procedure. Both the length of the time series and the time required to get the
price of each option contribute to make the algorithm quite time consuming, pre-
venting to keep the required time to run the inference procedure including these
prices within acceptable limits. In order to allow the algorithm to get an estimate
also for the volatility risk premium, a possible choice could be that of taking into
account random sampled subsets of all option on futures available quotes. This
will be anyway the subject of future work.
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4.9 Appendix: Future Options prices

To evaluate, under theQ measure, a general contingent G claim, whose payoff is
determined by an underlying whose dynamics follows (4.6), with the seasonality
function fixed at zero g(tyear) = 0, we refer to the PDE:

∂H

∂t
+
∂H

∂x
(rf + c− λµ∗J − (1 +

σδ
2

)δt −
1

2
Vt) +

1

2

∂2H

∂x2
(Vt + σ2

δδt)+

+
∂H

∂δ

[
α(δ̄ − δt)− ηδδt

]
+

1

2

∂2H

∂δ2
σ2δt+

+
∂H

∂V

[
β(V̄ − Vt)− ηV Vt

]
+

1

2

∂2H

∂V 2
ξ2Vt+

+
∂2H

∂V ∂x
ρξVt +

∂2H

∂δ∂x
ρδσσδδt

− rfH + λE [H(t, xt + ln(1 + J), δt, Vt)−H(t, xt, δt, Vt)] = 0

(4.17)

Following Heston [35] and Bakshi, Madan [9] we can decompose the value C
at time t of an European option that gives the right at maturity time T to acquire
a futures contract, whose deliver is fixed at T ′ , at a fixed price K:

C(t, τ, τ
′ − τ) = G(t, τ)Π(t, τ)−KB(t, τ)Π(t, τ)

where τ = T − t and τ ′ = T
′ − t; B(t, τ) is the price at time t of a discount bond

and G(t, τ) is the price at time t of a forward which deliver at time t+ τ the asset
S(t+ τ).
The decomposition has been proved by Yan [59]. Bakshi and Madan [9] proved
that:

B(t, τ) = f(t, τ ; 0)

G(t, τ) =
1

i

∂f(t, τ ; 0)

∂φ

f1(t, τ ;φ) =
1

iG(t, τ)

∂f(t, τ ;φ)

∂φ

f2(t, τ ;φ) =
1

G(t, τ)
f(t, τ ;φ)

(4.18)

where f1(t, τ ;φ) and f2(t, τ ;φ) are respectively the fourier transform of the
two probability terms Π1(t, τ) and Π2(t, τ). Hence each term can be recovered
once computed f(t, τ ;φ), that is the characteristic function of the underlying
of the contingent claim (in this case the characteristic function of the logarithm
of the future prices). Since f(t, τ ;φ) is the price of a contingent claim paying
exp{iφH(t + τ, τ̃ − τ)} at maturity t + τ , its value can be found solving (4.17)
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with the terminal condition:

f(t+ τ ; 0) = exp{iφH(t+ τ, τ̃ − τ)} (4.19)

If we use the trial solution:

f(t, τ ;φ) = exp{θ0(τ) + θδ(τ)δt + θV (τ)Vt + iφ[x+ A0(t) + A2(t)δt]}

in (4.17), we get the following ODE system.



− ∂φ0(τ)

∂τ
+ iφ(rf + c− λµ∗J) + φδαδ̄ + θV βV̄ = 0

− ∂A1(τ)

∂τ
= 0

− ∂φδ(τ)

∂τ
− iφ(1 +

σ2
δ

2
)− σ2

δ

2
φ2 − φδ(α + ηδ) + 1

2
φ2
δ(τ)σ2 + iφφδρδσδσ = 0

− ∂θV (τ)

∂τ
− 1

2
iφ− 1

2
φ2 − θV (β − ηV ) + 1

2
ξ2θ2

3 + iφθV ρξ = 0

(4.20)
where φδ(τ) = θδ(τ) + iφA2(τ̃ − τ) and φ0(τ) = θ0(τ) + iφA0(τ̃ − τ) with

terminal condition: 
φ0(0) = iφβ0(τ̃)

φδ(0) = iφβδ(τ̃)

θV (0) = 0

(4.21)

Solving the ODE system we get:

θV = − 2

ξ2

(
exp{CV τ} − 1
exp{CV τ}

AV
− 1

BV

)

with 
CV =

√
(ηV − iφρξ + β)2 + ξ2(φ2 + iφ)

AV = 1
2
[(β + ηV − iφρξ) + CV ]

BV = 1
2
[(β + ηV − iφρξ)− CV ]

And:

φδ = − 2

σ2

Aδ exp{Cδτ}+BδC̄

exp{Cδτ}+ C̄

where:

89



Chapter 4. A double correlated 3 factor model for Oil Market



Cδ =

√
(α + ηδ − iφρδσσδ)2 + 2σ2iφ(1 +

σ2
δ

2
− iφσ

2
δ

2
)

Aδ = 1
2
[(ηδ + α− iφρδσσδ) + Cδ]

Bδ = 1
2
[(ηδ + α− iφρδσσδ)− Cδ]

C̃δ =
√

(α + ηδ − ρδσσδ)2 + 2σ2

Ãδ = 1
2
[(ηδ + α− ρδσσδ) + C̃δ]

B̃δ = 1
2
[(ηδ + α− ρδσσδ)− C̃δ]

C̄ =

iφ
exp{C̃δ τ̃} − 1
exp{C̃δ τ̃}

Ãδ
− 1

B̃δ

− Aδ

Bδ − iφ
exp{C̃δ τ̃} − 1
exp{C̃δ τ̃}

Ãδ
− 1

B̃δ

Finally we solve for φ0:

φ0 =iφ(rf + c− λµ∗J)τ − 2βV̄

ξ2

(
(BV + CV )τ + log

AV exp{−CV τ} −BV

CV

)
−

−2αδ̄

σ2

(
(Bd + Cd)τ + log

1 + exp{−Cδτ}C̃
1 + C̃

)
+

+iφ

(
(rf + c)τ̃ − 2αδ̄

σ2

(
(B̃δ + C̃δ)τ̃+

+ log
Ãδ exp{−C̃δ τ̃} − B̃δ

Ãδ − B̃δ

))
+ λJ

(
exp

{
iφµJ −

1

2
φ2σ2

J

}
− 1

)
with:

µ∗J = exp

{
µJ +

1

2
σ2
J

}
− 1
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CHAPTER5
Concluding remarks and future

perspectives

In this thesis several affine models have been presented and tested with data ob-
served in WTI spot market and WTI futures markets.
In particular, in Chapter 3 three models including volatility process have been
proposed: a 3 factor model with two latent CIR process (volatility and conve-
nience yield), proposed together with two variants of it, one model including a
seasonality term and the other including jumps.
It resulted that adding a seasonality term does not affect significantly the model
performances. In Chapter 4, two more models have been introduced as extended
versions of models introduced in Chapter 3, allowing the spot process to be cor-
related both with volatility and with convenience yield process. These proposed
models have been compared with the Liu and Tang model [39]. In both cases
(double correlated in Chapter 4 and single correlated in Chapter 3) the models
including a volatility process factor display better performances when the spot
dynamics is allowed to include jump activity, showing better results than all the
other discussed models, included the benchmark model proposed by Liu and Tang
in [39].
Performances are compared both analyzing data fitting properties (evaluated by
the residuals) and the errors in catching and reproducing the futures term struc-
ture. Resuming the results got for the time series analyzed, the models with
volatility factor performed better than Liu and Tang model in describing the spot
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dynamics, as it is possible to notice analyzing the spot residuals; moreover, jump
activity, absorbing part of the variance of the spot dynamics, has a positive impact
in the whole model performances, thus resulted in normally distributed residuals.
As discussed by Yan [59] the volatility process has a positive impact also in de-
scribing the option on futures market. Hence, analysis including implied volatil-
ities of options on futures will be the subject of our future research. The affine
models allow us to find closed formulae for the characteristic of the option price
function, by the method described by Bakshi and Madan [9] which further de-
velops the method firstly proposed by Carr and Madan [13]. The closed form
solutions, got following this theory, are reported in Chapter 3 and in Chapter 4.
Since we wish to include implied volatility surfaces, the first step is to get the
corresponding Black Scholes prices; hence, we can define a market error in anal-
ogy with what it has been done with the futures prices (modeling the observed
prices as affected by a white noise error with respect to the theoretical prices) and
provide the likelihood definition required in the inference process, as explained
in Chapter 2 and implemented for futures prices in Chapter 3 and Chapter 4.
Some preliminary attempts have already been conducted, using the whole set of
data and using the fast Fourier transform technique (FFT) to get model prices
for options. The optimized algorithm running the FFT requires between 1 and 2
seconds to compute the prices at a given date for different strikes, but since the
algorithm has to run for each date and for different maturities, the time required
grows rapidly when the time series of analyzed data increases. To reduce further
the time needed, it is our intention to restrict our analysis to “at the money” op-
tions (this allows us to avoid to interpolate in order to get the prices at different
strike levels, as it is explained in [26]). To further reduce the time required it
is possible to sample a subset of dates in which the option data are taken into
account in the inference algorithm, otherwise (if the date does not belong to the
selected subset) just the futures term structure and the spot value will be consid-
ered. At each run the subset of dates, in which the options are taken into account,
is sampled again. This technique has already been implemented by Eraker in [22]
to reduce the time required by the Gibbs sampling algorithm used to get inference
for Bates model using S&P500 spot and options values. Reducing the analyzed
data, in the way just described, it is possible to keep the running time within the
order of a few days, even using a single core pc. Other possible research lines
could explore the code parallelizing attempt; some efforts in the general tech-
nique has already been done by Pitt et al. [40].
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