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Summary 

 

Delivering power without requiring wire is an advance in transferring power 

technology; and it is named Wireless Power Transfer (WPT). Wireless power transfer 

makes possible to overcome drawback of conventional power transfer with wires, due to 

the wire resistance, wire routing, and so on; re-charging cell phones, game controllers, 

laptop, mobile robots, and electrical vehicles without being plugged in; making more 

reliable industrial systems and medical devices by eliminating trouble prone wiring and 

replaceable batteries; transmitting power in safe mode for human body and animals; 

providing continuous and instantaneous power transfer; and to miniaturize electrical 

systems and devices. Such advantages promote the interest of scientists, engineers, and 

researchers in studying and using wireless power transfer.  

At present, the power is delivered wirelessly by employing such diverse physical 

mechanisms as: Radio Frequency (RF), and Resonance Inductive Coupling. 

Radio Frequency: Recently, the availability of wireless standards for huge number of 

applications, from mobile phones, smart phones, to always-on WLAN devices shifted 

the attention on the extraction of energy from EM fields in the RF band. On other hand, 

Energy Harvesting Technology (EHT) allows to scavenge small amount of power from 

human activities or environment heat, light, vibration or Electromagnetic Field (EF). By 

availability the EM field in our daily life and using Energy Harvesting technology, 

nowadays the power is extractable from EM in RF range, and named Radio Frequency 

(RF) energy harvesting and it has the resulting benefit to product design (e.g. 

miniaturizing biomedical implanted devices and power supply), transfer power 

wirelessly over distance (e.g. Solar Power Satellite), in self-powering, where requires 

continuously available power source with lifespan (e.g. Wireless Sensor Network), and 
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so on. Furthermore, RF Energy Harvesting provides the possibility of recycling EM 

radiation in the free space and using it as an alternative supply source that leads to 

reduce of the EM field pollution, miniaturization of the energy harvesting system with 

respect to energy harvesting system based on the other energy sources (e.g. large size of 

a photovoltaic).  

One of the most important components in RF power harvesting system is called 

rectenna which is composed of a receiving antenna and rectifier. The receiving antenna 

plays a critical role in RF energy harvesting system, since it must extract the power 

from radiated electromagnetic waves. 

Resonance Inductive Coupling: in this mechanism, resonance is used to deliver power 

wirelessly, by tuning transmitter and receiver at mutual EM frequency. coupling 

transmitter and receiver in resonant way has two main profits: exchange power 

efficiency without much leakage (minimizing energy leakage causes the maximization 

in the transferred energy to the receiver), and improve power efficiency over distances. 

Inductive coupling techniques have been reported to have high power transfer 

efficiencies (on the order of 90%) for very short lengths (1-3cm). However, the power 

efficiency of such technique decreases for longer distance drastically.  

The biggest challenge in the design of RF energy harvesting system (rectenna) and 

wireless power transmitting systems via Resonance Inductive Coupling is the 

maximization of the transferred energy to the receiver, reduction of the size, and 

transmitting power in safe mode for human body and animals. This is possible by 

suitably redesigning the transmitting and receiving devices, trying to find the correct 

shape that allows on rising in performance, and tuning the transmitter and receiver at 

EM frequency to decrease leakage. 

In this work, an approach based on a novel evolutionary technique is proposed for the 

design of loop wire antenna configuration, with the aim of increasing the transfer 
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efficiency, the robustness of the coupling, and minimizing the average power loss, and 

miniaturization. 

The new hybrid approach here proposed, called Genetical Swarm Optimization (GSO), 

and consists in a strong co-operation of Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO). In particular, a key feature of the algorithm is that it maintains the 

integration of GA and PSO for the entire run. In each iteration, the set of solutions is 

divided into two parts and it is evolved with two techniques respectively. It is then 

recombined in the updated population for the next iteration; after that it is again divided 

randomly into two parts in the next run, in order to take advantage of both genetic and 

particle swarm operators. The population update concept can be easily understood 

thinking that a part of the individuals has been substituted by new generated ones by 

means of GA, while the remaining are the same of the previous generation but have 

been moved on the solution space by PSO. This kind of updating results in a more 

“natural” evolution, where individuals not only improve their score for natural selection 

of the fitness, or for good-knowledge sharing, but for both of them at the same time.  

A driving parameter is introduced for the GSO algorithm, called Hybridization 

Coefficient (HC); it expresses the percentages of population that in each iteration  is 

evolved with GA: so HC=0 means the procedure is a pure PSO (the whole population is 

processed according to PSO operators), HC=1 means pure GA(the whole population is 

optimized according to GA operators), where 0<HC<1 means that the corresponding 

percentage of the population is developed by GA, while the rest with PSO technique. 

The output of the evolutionary optimization method or on other words, the candidate 

design is simulated at frequency range 450MHz- 600MHz by Matlab simulation in 

order to investigate the properties of the candidate design. Rao-Wilton-Glisson basis 

function and delta-gap feed model have been used to create a system of moment 

equations (Method of Moment) in home-built Matlab simulation tool. A wire is 

represented with the use of a thin strip model having one RWG edge element per strip 

width. The strip width should be four times of the wire radius. As the last step, the 
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results obtained by Matlab are compared with the obtained results by FEKO- Lite 

(commercial software) to check and verify the reliability of the obtained results by 

Matlab for optimized antenna.   

In this study, a novel antenna by means of optimization loop wire base on fractal 

variation has been proposed for application in WPT devices and RF energy harvesting 

component. The presented optimization approach is based on a recently developed 

evolutionary method. The design procedure is well suited in order to increase the 

transfer efficiency and the robustness of the coupling, with the aim of minimizing the 

average power loss and the size of the WPT systems.   

Finally, Numerical results simulated with home-mode MoM-Matlab code have been 

verified by comparison with full-wave commercial simulator, FEKO-Lite.  
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 Chapter1 

 

Introduction 

Delivering power without requiring wire is an advance in transferring power technology 

and named Wireless Power Transfer/transmitting (WPT). Thus, Wireless power 

Transfer (WPT) as the name shows is the transfer of power ranging from milliwatts to 

kilowatts over a distance range from centimeters to several meters without 

interconnecting. Wireless power transfer makes possible to overcome drawback of 

conventional energy/power-transfer power with wires- due to the wire resistance, wire 

routing, and so on. Other benefits of the power transfer wirelessly include: re-charging 

cell phones, game controllers, laptop, mobile robots, and electrical vehicles without 

being plugged in, making more reliable industrial systems and medical devices by 

eliminating trouble prone wiring and replaceable batteries, transmitting power in safe 

mode for human body and animals, providing continuous and instantaneous power 

transfer, and to miniaturize electrical systems and devices. Such advantages promote the 

interest of scientists, engineers, and researchers in studying and using wireless power 

transfer.  

Wireless Power Transfer (WPT) is made possible by various technologies, whereas 

conventional power transmitting is solely used wire technology to deliver power. The 

technologies and methods of WPT are as the following: 

 Inductive Coupling 

The transfer of power takes place by electromagnetic coupling through a process 

known as mutual induction. The simplest example of the inductive coupling is 
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transformer. The primary and secondary coils of transformer are connected base on 

principles of electromagnetism. For instance, the battery charge of a mobile phone 

and electric toothbrush are powered by this technology.  

However, the main drawback of this technology is the short distance. The receiver 

must be kept very close to the transmitter. 

 Resonance Inductive Coupling 

The resonance inductive coupling technology is presented in order to overcome the 

main drawback of non-resonance inductive coupling technology.  

The resonance inductive coupling is combination of inductive coupling and 

resonance frequency. Receiver and transmitter are tuned to mutual electromagnetic 

frequency. Resonance causes two resonance objects of the same resonance 

frequency interact very strongly and increases the transfer efficiency with respect to 

the distance range. A common use of the technology is for powering contactless 

smart cards. 

 Radio Frequency and Microwave Power Transmission  

High amount of the power is delivered over the long distance by converting into 

microwaves; the transmitting point and receiving point must be in the line of sight. 

The process of Microwave WPT is as the following: 

1. Electrical energy to microwave energy. 

2. Capturing microwaves by using rectenna. 

3. Microwave energy to electrical energy. 

 One of the applications of Microwave WPT is in Solar Power Satellite. A satellite with 

solar panels is sent to orbit the earth and collect the sunlight. The satellite generates the 

electrical power with using solar cells. This energy is then converted into the microwave 

power and transmitting to the receivers of rectenna on the earth. At the end of the 

process, the microwave energy is converted back into electrical energy in the rectifier of 

rectenna. The similar procedure is employed to capture power from electromagnetic 

field at radio frequency band. 
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 Laser Power Transmission 

Laser method of wireless power transfer is used a coherent light beam to transport very 

high power point to point in a line of sight. In this technology, the size of the antenna 

could be much smaller, and the light could be diffracted by atmospheric particles easily.  

In this thesis, we focused on Radio Frequency Energy Harvesting and Resonance 

Inductive Coupling technologies. We proposed a novel hybrid technique of optimization 

in order to redesign and enhance the elements of the system of those technologies. 

The chapter is started with a brief review on the history of the wireless power 

delivering, and the following sections have been devoted to describe Radio Frequency 

and Resonance Inductive coupling technologies in transferred power wirelessly in 

details. 

 

1.1 History of Wireless Power Transfer 

In the early 1900’s, the physicist Nikola Tesla conceived and explored the idea of the 

wireless power transmitting. Tesla managed to build a giant coil in a large square 

building over rose a 60 m mast with a 1m diameter copper ball positioned at the top. 

The coil was resonated at a frequency of 150 KHz and was fed with 300 kw of low-

frequency power obtained from the Colorado Springs electric Company. As well, he 

succeeded to power the fluorescent lamps 25 miles from the power source without using 

wires. Nevertheless, Tesla’s work was never commercially exploited due to the 

dangerous nature of the experiments, low efficiency on power transfer, and mainly by 

the deletion of financial resources. However, the work of Tesla was based on very long 

wavelength. 

W. Brown was the first engineer who approached to use microwave and radio waves for 

effective power transmitting through long distances, in 1660’s. The most research in this 

field focused on rectennas (J. A. G Akkermans & Visser-2005, Mohammad Ali & 
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Dougal-2005, Ren and Chang-2006, Shams & Ali-2007), which are antennas capable to 

collect energy from radio waves. 

NASA for the first time in 2003 proposed a scheme to power satellites and wireless 

energy transfer by utilizing laser mechanism. The laser beam is capable to deliver very 

high energies in a line of sight. The laser mechanism is efficient to send power point to 

point, but it is dangerous mechanism for living beings.  

 

 
Nikola Tesla’s laboratory in Colorado Springs 

 

 

Over the years, the idea of Tesla, wireless power delivery have been conceived, tried, 

and tested by many (Glaser, 1968; McSpadden et al., 1996; Shinohara & Mastsumoto, 

1998; Strassner & Chang, 2002; Mickle, et al., 2006; Conner, 2007). 

 

 

1.2  Radio Frequency Technology 

Energy harvesting (EH) is the process of capturing and converting energy into usable DC 

voltage for items as small as cell phone or as large as satellites. There are various energy 
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sources for energy harvesting technology. For instance, ambient energy sources (e.g. Solar; 

Wind; Biomass; Hydro geothermal; and Tides) or handmade-man ambient energy (e.g. emitted 

Electromagnetic waves (EM) from TV signals; wireless radio networks; and cell phone towers) 

[1]. Recently, the availability of wireless standards for huge number of applications, 

from mobile phones, smart phones, to always-on WLAN devices shifted the attention on 

the extraction of power from EM fields in the RF band [2]. On other hand, there is the 

possibility of recycling EM radiation in the air and use it as an alternative supply source 

by EH technique. In additional, scavenging the power from EM can allow to reduce the 

size of the harvesting system with respect to energy harvesting system based on the 

other energy sources (e.g. large size of a photovoltaic) [3]. 

Therefore, extraction power from electromagnetic waves to power devices is called Radio 

Frequency (RF) energy harvesting. RF power harvesting technology has the resulting benefit to 

product design (e.g. miniaturizing biomedical implanted devices and power supply); transfer 

power wirelessly over distance (e.g. Solar Power Satellite); in self-powering; where requires 

continuously available power source with lifespan (e.g. Wireless Sensor Network); and so on. 

Fig.1.1 shows the block diagram of a RF energy harvesting system. The system operates 

as: an antenna-receiving antenna picks up the incidence electromagnetic wave at RF 

band and then the picked RF wave is converted to a DC voltage via rectifier. The DC 

voltage is stored or used to power devices. In order to reduce the transmission loss and 

increase the voltage gain, the matching network between receiving antenna and rectifier 

is necessary [4, 5].  

As been seen, the heart of a RF energy harvesting system is composed of a receiving 

antenna and rectifier that their composition is named “rectenna”. Hence, the main 

research fields focus on rectenna [6, 7, 8, and 9]. Since the role of the receiving antenna 

is, extraction the power from the radiated electromagnetic wave, rectifier’s role is 

conversion the picked power by antenna to the useful DC voltage. For enhancement of 

the performance of the RF energy harvesting, the receiving antenna and rectifier must 

be optimized and redesigned. 

 



Chapter1                                                                                                                                                          

6 

 

 

 

Figure1.1: Schematic of RF energy harvesting systems. 

 

Many works could achieve sufficient power but provided low output voltage, which 

made them inadequate for using in some application [10] such as: passively powered 

wireless sensor networks. In addition, some previous studies have proposed a new 

design of the rectifier in order to increase the efficiency of the RF-DC conversion and 

recoverable power.  

As been known, the power density decreases over longer distance. Thus, it is essential 

that the RF-DC conversion circuit be able to operate at very low receiver power. To 

overcome this, an optimized rectifier circuit has been introduced and the minimum-

threshold of the RF-DC conversion has been improved [11]. 

In [12], in order to optimize the RF energy harvesting system, author has been 

employed a DC/DC voltage boost converter for elevation the voltage level. Moreover, 

author has been used a patch antenna array as collecting the RF power from the 

incidence electromagnetic waves with efficiency of 85% at 1.8 GHz. 

However, in this work, we are more interested in raising the receiving antenna gain and 

we will address this case. 
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1.3 Resonance Inductive Coupling 

The mechanism resonance is used to deliver power wirelessly by tuning transmitter and 

receiver at mutual EM frequency; and coupling transmitter and receiver in resonant way 

has two main profits: exchange power efficiency without much leakage (minimizing 

energy leakage causes the maximization in the transferred energy to the receiver), and 

improve power efficiency over distances.  

Inductive coupling techniques have been reported to have high power transfer 

efficiencies (on the order of 90%) for very short lengths (1-3cm) [13]. However, the 

power efficiency of such technique decreases for longer distance drastically. Many 

works have been done on increasing power efficiency of such technique with respect to 

longer distances [14, 15, and 16]. In all those mentioned works, authors have developed 

a design, which consists of two helices and two singl loops [17]; as shown in Fig1. 2. In 

[14], authors have optimized the typical Strongly Coupled Magnetic Resonance, which 

has been illustrated in Fig1. 2. They are managed to achieve efficiencies 90.2% for 

15cm distance to 35% for 45cm distance and increase the efficiency of the wireless 

power transfer to compare with conventional inductive coupling [18] and conventional 

Strongly Coupled Magnetic Resonance designs [19]. The same authors have analyzed 

the geometrical parameters of the SCMR and they showed that, the optimized SCMR in 

their previous work has a wide range of local optimum. Moreover, when they launched 

the system on that optimal range, the system reached the maximum efficiency [15]. In 

[16], the efficiency of wireless power transfer via magnetic resonance has been 

improved by using transmission coil array. Although, the previous works could have 

improved the power gain over larger distance, but they still require more work with 

respect to the size of the proposed model for resonance magnetic coupling. Because, in 

some applications such as implantable medical devices the size of the suggested model 

or system plays a key role. In additional, that is an important term in design of the 

electrical devices and systems.  
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Therefore, present a model for Resonance Inductive Coupling technology that could 

meet the three requirements: a) high efficiency, b) small size, and c) longer air gap, 

make the technology more adequate for more applications for instance: RFID, 

biomedical implant devices, and electrical car charging. 

 

 

Source Element Load Element

Transmitting Element Receiving Element

 

Figure1. 2: Schematic of an SCMR power transfer system. (From [17]). 

 

 

Charging Electrical Vehicles with Resonance Inductive Coupling 

Technology 

Resonance Inductive Coupling technology could introduce a convenient charging 

system for EVs and it makes possible to charge the vehicles, as they are parked in the 

parking or in your house’s garage automatically without requiring of plugging and cord. 

Powering vehicles by electricity is a new challenge in transportation technology. 

Nowadays,  the attention of some scientists, researchers, and engineers have been 

attracted to EVs due to various advantages of EVs technology including: electric-
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powered vehicles are more economical than gas-powered vehicles, specially their 

electricity could be provided from renewable resources such as Solar, Wind, and so on; 

electric-powered vehicles pollute less than gas-powered vehicles, they are much reliable 

and require less maintenance to compare with gas-powered vehicles, and they can 

reduce the energy dependency. 

In general, an electric motor and controller propel EVs; controller supplies the power of 

electric motor and obtains its required power from a rechargeable battery. Hence, the 

batteries are the heart of EVs, since the batteries should be powerful and long-lasting 

enough to move vehicles with minimum of recharging. As aforementioned, Resonance 

Inductive Coupling is a technology, which has been developed recently for charging 

batteries of the EVs. Inductive charging makes possible to charge EVs stationary and 

roadway electrification.  

By roadway electrification, the power is deliverable to the vehicles as they move along 

an electrified section of roadway. In this method, the vehicles can provide their required 

power for traveling on freeways from the grid directly through the roadway. In 

additional, using resonance mechanism, in inductive charging roadway electrification 

allows to keep the efficiency high, as shown in Fig1. 3. 

The entire system of wireless power transfer for EVs in stationary state is shown in Fig 

1.4.  high-frequency power source will produce high frequency alternating currents in 

the transmitting antenna that inductively transfer power to the receiving antenna. 

Among works, have been done for charging the EVs stationary through Resonance 

Inductive Coupling, we could refer to [20, 21]. Authors in [20, 21] have used the coil 

design as transmitting and receiving antenna over range 100mm-300mm for air gaps. 

The maximum efficiency has reported %98 and %100 at 100 mm air gap in [20, 21], 

respectively. However, in the mentioned works, authors have not considered the size of 

the designed coils and too big to be equipped on the bottom of EVs. 
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Figure1.3: Electrified roadway concept. 

 

 

 

                  

Figure1.4: Concept of wireless power transmitter for EVs. 

 

This brings a new issue for car designers. Hence, in this study our aim is also to propose 

a model of antenna in resonance inductive coupling, with regard to the characteristic of 

antennas and its relation with power efficiency. 
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1.4 Field-to-Wire Coupling 

In this section, we address the topic from different point of view and try to model the 

problem by equivalent circuits. 

In Electromagnetic Compability field, the most effort of EMC engineers is to reduce 

electromagnetic interference and enhance performance of electronic devices in vicinity 

of interference. In order to that, some qualifications evolve to check the quality of the 

electronic devices; such as radiated emission and susceptibility.  

 

Radiated Emission 

Radiated emission is utilized to understand the factors that cause the unintentional 

radiated and the properties of those unintentional radiated in a system. As you known, 

the radiated electromagnetic field is produced, when an alternative current pass through 

a wire. Fig1. 5 illustrates two currents mode that produce the radiated emission on two 

wires parallel. The differential currents 𝐼𝐷  mode are equal in magnitude, but they are in 

opposite direction; the common currents 𝐼𝐶  mode are equal in magnitude, but they direct 

in the same direction. Therefore, the electromagnetic fields produced in opposite 

direction by the differential currents mode, tend to cancel each other but in practical, 

they are not able to cancel each other completely. In contrary, the electromagnetic fields 

produced in same direction by the common currents mode, add and produce larger 

electromagnetic fields.  

In EMC fields, we are interested in having the minimum radiated emission as much as 

possible. In [22], the differential and common currents mode have been discussed in 

details and the following results have been obtained: 

 The minimum radiated emission due to the differential and common currents 

mode  is achievable by reducing the current level, the loop area (in differential 

currents mode), and the line length (in common currents mode) 

 Reducing the loop area and length should be done early in the design. 
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In this study, we would like to propose a model antenna with the maximum radiated 

emission. Consequently, we present a model antenna for our system with either larger 

loop area or longer line length. The properties geometry of our model will be reported in 

the chapter 4. 

Wire1

Wire2

ID

I I

I

D

C

C

E E
D C

 

Figure1. 5: Illustration of the differential and common currents mode. (from [22]). 

 

Radiated Susceptibility 

Is the measurement of susceptibility of a system to an external disturbance such as 

radiated field from a Radio transmitters or radar. The susceptibility of devices to 

radiated emission is investigated by modeling field-to-wire coupling [22]. In this work, 

we utilize the derived model for investigation of radiated susceptibility testing of 

electronics devices in performance coupling between two antennas. 

Field-to-wire coupling model is studied in order to give the better view of the coupling 

phenomena. Consider a lossless and uniform/parallel two-wire line with length  ℓ 
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radius 𝑟𝑤 , and separation by distance  ℎ . Uniform/parallel transmission line is assumed 

to be excited by an external plane wave, as shown in Fig1.6. 

The two-conductor line is assumed electrically short at the frequency of interest. This 

leads to model the line with per-unit-length parameters of inductance 𝑙 and capacitor 𝑐, 

whereas the effects of the external field are presented by distributed voltage and current 

along the line [22]. Distributed voltage 𝑉  and current 𝐼  are related to the normal 

magnetic field component and the transverse electric field component, respectively [22]. 

As long as the termination impedances are not extreme values such as short or open 

circuit, the line inductance and capacitance are neglected. 

The equivalent circuit has been shown in Fig.1.6b. Under this condition, the Thèvenin 

voltage of the equivalent circuit of the line (Fig1.6b), at where the non-linear load is 

located, is derived, as shown in Fig1.6c. The voltage at points 𝐴𝐵, as the loads are 

matched, is obtained as 

 

𝑽𝑨𝑩 =  
𝟏

𝟐
𝒋ω𝓵𝒉  𝝁𝟎𝑯 + 𝒁𝒄  

𝝅𝜺𝟎

𝐥𝐧 
𝒉

𝒓𝒘
 
  𝑬 ,     𝒁𝒍 = 𝒁𝒄 = 𝒁𝒏     (1.1) 

Where, 𝐻 =  
∣𝐸∣

𝑛0
, and 𝑛0 = 𝜇0𝑐0  impedance of free space. In order to predict incidence 

field picked-up of a two-conductor line  ∣ 𝑉𝐴𝐵 ∣ is plotted against frequency, as shown in 

Fig1.7. Specific values adopted for above model are listed in the following: 

 

𝓵 = 𝟏𝟎𝒄𝒎 

𝒉 = 𝟑𝒄𝒎 

𝒓𝒘 = 𝟎. 𝟓𝒎𝒎 

𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 = 𝟎. 𝟗𝑮𝑯𝒛 − 𝟐𝑮𝑯𝒛 

 

∣ 𝑬 ∣= 𝟏𝒗/𝒎 
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Source of 

Radiation

 

                                                                           

(a) 

 

 

 

 

(b) 
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(c) 

Figure1.6: (a) A uniform/parallel two-wire line excited by an external electromagnetic wave, (b) 

circuit representation for one section of the line, and (c) Thèvenin equivalent circuit at where the 

non linear load is located. 

 

Incidence uniform plane wave is considered with endfire incidence. 

 

 

 

Figure1.7: ∣ 𝑉𝐴𝐵 ∣ versus frequency. 
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1.5  Antenna Design and Optimization Technique 

Therefore, the biggest challenge in the design of RF energy system (rectenna) and 

wireless power transmitting systems is the maximization of the transferred energy to the 

receiver in order to increasing their performance of these technologies. This is possible 

by suitably redesigning the transmitting and receiving devices, reduction of the size, 

trying to find the correct shape that allows on rising in performance, and tuning the 

transmitter and receiver at EM frequency to decrease leakage, and transmitting power in 

safe mode for human body and animals. With this aim an approach based on a novel 

evolutionary technique is proposed for the design of an optimized antenna 

configuration. 

As been known, when two antennas are placed closely, a coupled mode resonance 

phenomena are created between them. In order to maximize delivering power, the 

radiation antennas should be reduced. As well as, the distance between antennas is short 

with respect to the wavelength; if the distance between antennas could be extended over 

such coupled mode phenomena, they would benefit a number of applications. In this 

study, we chose loop wire antenna as structure for optimization due to several reasons: 

a) loop wire antennas are common structure in wireless power transfer system [23, 24], 

b)they have greater efficiency than monopole or dipole antennas in case of being 

electrically large, c) and they are useable in low-power short-range transmitter [25, 26]. 

Evolutionary optimization algorithms are global search techniques, thus they can 

overcome the drawbacks of the traditional optimization methods: in fact, they can face 

nonlinear and discontinuous problems, with a great number of variables. Among the 

main evolutionary optimization approaches, it is worth mentioning the Genetic 

Algorithm (GA) and the Particle Swarm Optimization (PSO). 

In this work, a novel hybrid technique, named Genetic Swarm Optimization (GSO), is 

used: several comparative studies over different optimization tasks have shown the 

effectiveness of Genetic Swarm Optimization in exploring the problem hyperspace, 
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especially for the optimization of large domain objective functions; moreover, GSO has 

been already successfully applied to the optimization of antennas, wireless systems and 

energy harvesting devices [27,28], usually allowing to reduce the number of iterations, 

and thus the computational effort, requested to optimize complex EM problems. 
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Chapter 2 

 

Numerical Method-Matlab 

 

2.1 Introduction 

A wire antenna is treated as one-dimensional segment model. Requirement theory 

behind of this model is a special integral equation. Too large ratio of the radius to the 

length in one-dimensional segment model causes some problem. Hence, to avoid this 

problem, Matlab is used to investigate the properties of the antenna under analysis. A 

wire is represented by a thin strip model having one RWG edge element for strip width; 

the width of the strip should be four times the wire radius [29]. 

 

2.2 Antenna Theory 

Two methods that in the last three decades have been more successful in the analysis of 

many intractable antenna problems are the Integral Equation (IE) method and the 

Geometrical Theory of differential (GTD).  

The Integral Equation method describes the solution of the antenna problems in form of 

an integral, where the induced current density is usually unknown and part of the 

integral. Then, Method of Moments (numerical technique) are used to solve the 

unknown induced current density. Afterwards, the radiation integrals are used to find 

the radiated fields and other systems parameters. These parameters include: 

 Antenna near field 

 Antenna far field 
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 Surface current distribution 

 Input impedance and return loss 

 Antenna transfer function and antenna-to-antenna link 

There are two types of IE’s: one is the Electric Field Integral Equation (EFIE), another 

one is the Magnetic Field Integral Equation (MFIE). Electric Field Integral Equation is 

convenient for wire-type antenna; whereas Magnetic Field Integral Equation is only 

valid for closed surfaces. Standard Matlab package is applied in order to solve and 

simulate the Integral Equation (to find the solution of the unknown induced current 

density) by using the Method of Moments. Rao-Wilton-Glisson (RWG) basis functions, 

the electric field integral, and the feeding –edge model are the background materials of 

the underlying Method of Moments (MOM) code.  

 

2.3 Matlab Code 

In Matlab, the numerical steps of the moment method (MM) are calculated by Matlab 

source codes and the antenna mesh generator files, successively. It is worth nothing that 

these codes are executed sequentially. 

There are two main Matlab scripts. The first script impmet.m computes the impedance 

matrix 𝑍 [29] in order to determine electric current distribution on the antenna surface, 

and it is the basic and the most important step of the moment method. The second script 

point.m computes the radiated field of an infinitesimally small electric dipole or a group 

of dipoles at any points in space. This code allows us to determine the near and far field 

of an antenna. If the both mentioned scripts are programmed correctly, the rest of the 

work usually does not constitute any difficulties. The rest of Matlab codes are used to 

support and visualize the input and output data for an antenna. Those codes that their 

names start with rwg, e.g., rwg1.m, rwg2.m, rwg3.m are associated with the antenna 
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structure operations. Those codes that their names start with efield such as efield1.m, 

efield2.m, efield3.m are associated with the near and far field antenna parameters. 

 

2.4 Antenna Structure 

Antenna structures can be built in Matlab with two different ways. One way is the built-

in mesh generator of the Matlab PDE toolbox (type command pdetool on workspace of 

Matlab). In this way, the mesh generator uses the convenient Graphical User Interface 

(GUI) to create planar structures of any rectangles, polygons, and circles. The design is 

able to be a 3D structure by writing a short script involving the 𝑧-coordinate 

dependency. For instance, a planar rectangle is created by PDE toolbox, as shown in 

Fig2.1.  

An unstructured mesh could be created either by clicking on the ∆ button on the top of 

the PDF Toolbox window or by selecting Initialize Mesh from the mesh menu. In order 

to have a structured mesh, selecting parameters option from the mesh menu and typing 

“inf” at maximum edge size part. Afterward, refine the mesh several times to obtain the 

structured mesh. Fig2. 2 represents unstructured and structured mesh for a circle with 

one diameter in PDE window. 

The Second way is base on identifying the boundary of the antenna structure 

analytically. Matlab function Delaunay and function Delaunay3 are used respectively, to 

create mesh to the structure and to approach 3D structure. The advantage of this way is 

that 3D antenna surface and volume meshes are created arbitrary and the PDE toolbox is 

not requirement any longer. In this work, we utilized the strip mesh. The strip mesh is 

defined by cell size and strip width. Each cell is divided to two triangles by drawing the 

chord of the cells. The accuracy of the mesh depends on the number of the triangles. 

Obviously, we are able to obtain precise results by increasing the number of the 

triangles.  
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(a) 

 

(b) 

 

Figure 2.1: Two plate meshes create in PDE window: (a) Unstructured mesh; (b) Structured 

Mesh. 
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(a) 

 

(b) 

 

Figure2. 2: created circle with: (a) Unstructured mesh; and (b) Structured Mesh.  
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Fig2.3 shows a loop antenna and a helical antenna that have been created by identifying 

the boundary antennas. 

 

Figure 2.3: Loop and helical antenna created by the second way. 

 

As aforementioned, the accuracy of the simulated model is controllable with the number 

of the triangles. In order to that, the created configuration in Fig2. 3 is again plotted in 

Fig2. 4 by decreasing the cell size. As well as, more examples have been given to show 

the flexibility of the method in various cases (Fig2.5).  

 

2.5  Impedance Matrix and Surface Current 

Consider a dipole antenna that whose surface is divided into separate triangles as shown 

in Fig. 2.6 (a). It is worth nothing that the used method of moments (MOM) relies on 

RWG (Rao-Wilton-Glisson) edge elements [30]. Each pair of triangles has a common  
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Figure2.4: Loop and helical antenna with small cell size. 

 

edge which constitutes the corresponding RWG edge element; see Fig 2.6 (b). Triangles 

of each pair distinguish with a plus and minus sign(𝑇±).  

A basis function (or vector function) of the edge element 

 

𝒇 𝒓 =  

 
𝒍

𝟐𝑨+ 𝝆
+ 𝒓            𝒓 𝒊𝒏 𝑻+

 
𝒍

𝟐𝑨− 𝝆
− 𝒓            𝒓 𝒊𝒏 𝑻−

𝟎                    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

                        (2.1) 

 

Where, 𝑙 is the length of edge, 𝐴± is the area of triangle 𝑇±, and 𝜌± connects the free 
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(a) 

 

 

(b) 

Figure2.5: Examples of the created antenna in Matlab: (a) Helical tapered antenna; (b) Fractal 

antenna. 
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Figure 2.6: Schematic of a RWG edge element. 

 

vertex of the plus/minus triangle to the observation point 𝑟; index 𝑐 denotes the center 

of triangles 𝑇±. Finally, the surface electric current on the antenna surface will obtain as 

the summation of the contribution (2.1) over all edge elements, with unknown 

coefficients. 

𝑱 ≅   𝑰𝒏
𝑵
𝒏=𝟏 𝒇𝒏(𝒓)                     (2.2) 

Where, 𝑁 is the number of edge element. 𝐈 is unknown coefficient, which will obtain 

from the impedance equation (or the moment equation) as the unique solution of the 

equation. The linear impedance equation may be written in matrix forms 

 

 𝒁. 𝑰 = 𝑽                       (2.3) 
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Where, 𝑍 = [𝑍𝑚𝑛 ] is an 𝑁 × 𝑁 impedance matrix and 𝐼 = [𝐼𝑛 ] and 𝑉 = [𝑉𝑚 ] are 

column vectors of length 𝑁; indexes 𝑚 and 𝑛 correspond to two edge elements. 

Elements 𝑍 and 𝑉 are given by 

 

𝒁𝒎𝒏 = 𝒍𝒎[𝒋𝝎  𝑨𝒎𝒏+.
𝝆𝒎
𝒄+

𝟐
+ 𝑨𝒎𝒏

− .
𝝆𝒎
𝒄−

𝟐
 + 𝚽𝒎𝒏

− −𝚽𝒎𝒏
+ ]        (2.4) 

Where 

𝑨𝒎𝒏
∓ =  

𝝁

𝟒𝝅
[
𝒍𝒏

𝟐𝑨𝒏
+  𝝆𝒏

+
𝑻𝒏

+  𝒓′ 𝒈𝒎
±  𝒓′ 𝒅𝒔′ +

𝒍𝒏

𝟐𝑨𝒏
−  𝝆𝒏

−
𝑻𝒏
−  𝒓′ 𝒈𝒎

∓  𝒓′ 𝒅𝒔′ ]           (2.4a) 

𝚽𝒎𝒏
± =

𝟏

𝟒𝝅𝒋𝝎𝜺
[
𝒍𝒏

𝑨𝒏
+  𝒈𝒎

±
𝑻𝒏

+  𝒓′ 𝒅𝒔′ −
𝒍𝒏

𝑨𝒏
−  𝒈𝒎

±
𝑻𝒏
−  𝒓′ 𝒅𝒔′ ]                (2.4b) 

Where 

𝐠𝐦
±  𝐫′ =

𝐞𝐣𝐤∣𝐫𝐦
𝐜±−𝐫′∣

∣𝐫𝐦
𝐜±−𝐫′∣

                      (2.4c) 

And 

𝑽𝒎 = 𝒍𝒎(𝑬𝒎
+ .

𝝆𝒎
𝒄+

𝟐
+ 𝑬𝒎

− .
𝝆𝒎
𝒄−

𝟐
)                        (2.5) 

Where 

𝑬𝒎
± = 𝑬𝒊(𝒓𝒎

𝒄±)                       (2.5a) 

 

Note that  𝐸𝑖𝑛𝑐  is the electric field of an incident electromagnetic signal. 

 

𝝆𝒎
𝒄+ =  𝒓𝒎

𝒄+ − 𝒗𝒎
𝒄+,𝝆𝒎

𝒄− = −𝒓𝒎
𝒄− + 𝒗𝒎

−  
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When, 𝑣𝑚
𝑐± denote the centroil point. 

 

2.6  Code Sequence 

The source code in the Matlab directory is divided into two sequences; the first 

sequence includes the Matlab scripts rwg.m; the second one includes the Matlab codes 

efield.m. Fig 2.7 shows the flowchart of algorithm which determines the process of 

simulation by Matlab. 

At the first step, the antenna structure is modeled analytically; then Delaunay 

triangulation is applied to the structure by using Matlab function Delaunay. The script 

rwg1.m and rwg2.m create RWG edge elements in order to compute the impedance 

matrix in the Matlab script rwg3.m. Calculation of the input impedance and radiation 

resistance are done in the script rwg4.m by determining excitation voltage. It is worth 

noting, the source of the induced current could be either the voltage source with 1 𝑣 𝑚  

magnitude and zero phase or an incident electromagnetic wave with 1 𝑣 𝑚  electric 

field. The final script (rwg5.m) of the first sequence is devoted to visualize the surface 

current distribution of the antenna; as shown in Fig 2.8. 

After the first code sequence is complete, scripts efield1.m, efield2.m, and efield3.m 

provide radiation signal at a point in the free space, radiation patterns of the antenna 

including 3D patterns, and the antenna gain. It is noticeable that the files with mat suffix 

(in Fig 2.7) are applied to save the information of each script; and using those 

information in the next script. 

 

2.7 Electrically Large Loop Antenna 

In this section, a square loop wire antenna with the length 𝑙 = 154𝑚𝑚 and the cross-

sectional radius 𝑟𝑤 = 1.1421 𝑚𝑚 at frequency 500𝑀𝐻𝑧 are created and the surface 

current distribution along the antenna is visualized. The loop contains 325 triangles. 
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The feeding edge of the structure is specified at point (−0.07,0,0) by applying the delta 

gap model.  

 

rwg1.m

rwg4.m

rwg2.m

rwg5.m

rwg3.m

efield3.

m

efield1.

m

efield2.

m

Antenna Mesh

Mesh1.mat

    Mesh2.mat

Impedance.mat

Current.mat

       Mesh2.mat

      Current.mat

            First Sequence

       Second Sequence

 

 

Figure 2.7: Flowchart of algorithm of antenna simulation by Matlab. 
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Figure 2.8:  Surface current distribution along a square loop antenna at 500𝑀𝐻𝑧 frequency with 

a voltage source located at point (−0.07,0,0). 

 

As seen in Fig2.8, the surface current on the antenna is not distributed constantly. Thus, 

the simulated loop square wire antenna is an electrically large loop antenna at 

frequency 500𝑀𝐻𝑧. The white color corresponds to the maximum current density 

magnitude. 
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Chapter 3 

 

Optimization Method 

 

3.1 Introduction 

In recent years several evolutionary algorithms have been developed for optimization of 

every type of electromagnetic problems. The general goal of the optimization is to find 

a solution that represents the global maximum or minimum of a fitness function. 

Electromagnetic optimization problems generally contains a large number of 

parameters; these parameters can be either continuous, discrete, or both, and often 

include constraints in allowable values. In addition, the solution domain of 

electromagnetic optimization problems often has non differentiable and discontinuous 

regions, and often utilizes approximations or models of the true electromagnetic 

phenomena to conserve computational resources. 

Global search methods present two competing goals, exploration and exploitation: 

exploration is important to ensure that every part of the solution domain is searched 

enough to provide a reliable estimate of the global optimum; exploitation, instead, is 

also important to concentrate the search effort around the best solutions found so far by 

searching their neighborhoods in order to reach better solutions. Often global search 

methods are used together with other local search algorithm in order to improve 

efficiency and accuracy of the searching process [31]. 

The evolutionary computation algorithms (EA) are stochastic optimization methods that 

emulate biologic processes or natural phenomena. The capability of finding a global 
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optimum without being trapped in local optima, and the possibility of well face 

nonlinear and discontinuous problems with great numbers of variables, are some 

advantages of these techniques. Besides these methods do not needs to compute any 

derivatives in order to optimize the objective function and this fact allows managing 

more complex fitness function.  

Moreover, in contrast with traditional searching methods, EAs do not depend strongly 

on the starting point. Often a bad choice of the initial values can slow down the 

convergence of the entire process; or even drive the convergence towards a wrong 

solution (e.g. towards a local instead a global maximum or minimum). Although, these 

algorithms have strong stochastic basis, but they need a lot of iterations to get a 

significant result, in particular when the optimization problem has a big number of 

unknowns. 

Among the main evolutionary optimization approaches it is worth mentioning the 

Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO).  

Msot of the times, PSO have faster convergence rate than GA early in the run, but they 

are often outperformed by GA for long simulation runs, or when the number of 

unknowns increases. This is due to the different types of search, adopted by the two 

algorithms. 

The new hybrid technique here proposed is called Genetical Swarm Optimization, 

consists in a strong co-operation of GA and PSO, since it maintains the integration of 

the two techniques for the entire run of simulation. In fact, in each iteration, some of the 

individuals are substituted by new generated ones by means of GA, while the remaining 

part is the same of the previous generation but moved on the solution space by PSO. 

Doing so, the problem of premature convergence of the best individuals of the 

population to a local optimum, one of the most known drawbacks found in tests of 

hybrid global-local strategies, has been cancelled. 
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The effectiveness of the proposed procedure has been validated with different 

electromagnetism problems, showing a good behaviour in particular for the 

optimization of large-domain functions. 

 

3.2 Genetic Algorithm 

Genetic Algorithms simulate the natural evolution, in terms of survival of the fittest, 

adopting pseudo-biological operators such as selection, crossover and mutation [32, 33]. 

In GA, the set of parameters that characterizes a specific problem is called an individual 

or a chromosome and is composed of a list of genes. Each gene contains the parameter 

itself or a suitable encoding of them. Each individual therefore represents a point in the 

search space, and hence a possible solution to the problem. For each individual of the 

population a fitness function is therefore evaluated, resulting in a score assigned to the 

individual. Based on this fitness score, a new population is generated iteratively with 

each successive population referred to as a generation. The GAs use three basic 

operators (selection, crossover, and mutation) to manipulate the genetic composition of 

a population. Selection is the process by which the most highly rated individuals in the 

current generation are chosen to be involved as “parents” in the creation of a new 

generation. The crossover operator produces two new individuals (i.e. candidate 

solutions) by recombining the information from two parents. Genetic Algorithms are 

very efficient at exploring the entire search space, but are relatively poor in finding the 

precise local optimal solution in the region in which the algorithm converges. Many 

efforts on the enhancement of traditional GAs have been proposed, by modifying the 

structure of the population or the role that an individual plays in it; the Genetic 

Algorithm developed for this application uses real encoded genes, since for high 

number of variables they result in faster than binary ones in convergence towards the 

maximum value. 

Moreover, several additional operators have been developed for GA in order to get a 

faster convergence rate; Hybrid GAs, in order to solve the previous problem, use local 
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improvement procedures as a part of the evaluation of the individuals of the population: 

these procedures complement the global search strategy of the GA. Evidently, each 

model is not optimal for all problems for many reasons. One of the most known 

drawbacks that were found during tests of hybrid GA is the problem of premature 

convergence of the best individuals of the population towards a local optimum. 

 

3.3  Particle Swarm Optimization 

The PSO has been introduced in the middle of 90’s [34, 35, 36] and it is based on 

a”social interaction” metaphor in which the parameter space is searched by controlling 

the trajectories of a set of particles according to a swarm- or flock-like set of rules. The 

position of each particle is used to compute the value of the function to be optimized. 

Individual particles are then attracted, with a stochastic-varying strength, by both the 

position of their best past performance and the position of the global best past 

performance of the whole swarm. 

PSO is akin to the other stochastic methods performing a global search in the parameter 

space without getting trapped in local minima. In the recent years the interest for its 

application to electromagnetic problems has been rapidly increasing [37, 38, 39], and 

several papers have been published comparing it with other optimization techniques, 

mainly with GA [40, 41, 42, 43]. 

 

3.3.1 Traditional PSO Implementation 

Particle Swarm Optimization (PSO) is one of the more recently developed evolutionary 

techniques; it is based on a suitable model of social interaction between independent 

agents (particles) and it uses social knowledge in order to find the global maximum or 

minimum of a generic function [35]. While for the GA, as shown in section 3.2, the 

improvement in the population fitness is assured by pseudo-biological operators, such as 

selection, crossover and mutation, the main PSO operator is the velocity update that 
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takes into account the best position explored during the iterations, resulting in a 

migration of the swarm towards the global optimum. 

In the PSO the so called swarm intelligence (i.e. the experience accumulated during the 

evolution) is used to search the parameter space by controlling the trajectories of a set of 

particles according to a swarm-like set of rules [37, 38].  

In particular, the position of each particle is used to compute the value of the function to 

be optimized. Consequently every position is a particular solution of the optimization 

problem. Individual particles traverse the problem hyperspace and are attracted by both 

the position of their best past performance and the position of the global best 

performance of the whole swarm. Particles are moved in the domain of the problem 

with variable speeds and every position they reach represents a particular configuration 

of the variables set, which is then evaluated in order to get a score. 

At each step the position of each swarm particle corresponds to one potential “optimal” 

solution for the problem, therefore the value of the function that mathematically models 

the problem, the fitness or cost function, is evaluated for all these possible solutions and 

the one that gives the best cost value. 

As GA, the standard PSO algorithm is therefore an iterative procedure in which a set 

of 𝑖 =  1. . , ,𝑁𝑝 particles, or agents, are characterized by their position Xi and velocity 

Vi with which they move in the M-dimensional space domain 𝐷 of a cost function 

𝑓(𝑋). A full treatment of the method can be found in [36] but for sake of clarity and 

uniformity of notation it is briefly summarized in the following. At the beginning 

positions and velocities have completely random values 𝑋𝑖
(0)

and 𝑉𝑖
(0)

, then they are 

updated iteratively according to the rules: 

 

 

𝑽𝒊
𝒌+𝟏 = 𝝎𝒌𝑽𝒊

𝒌 + 𝝓𝜼𝟏 𝑷𝒊 − 𝑿𝒊
𝒌 + 𝝓𝜼𝟐(𝑮 − 𝑿𝒊

𝒌)                      (3.1) 

 

𝑿𝒊
𝒌+𝟏 = 𝑿𝒊

𝒌 + 𝑽𝒊
𝒌+𝟏                                (3.2) 
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being 𝑃𝑖  the best position ever attained by particle 𝑖 itself (personal knowledge) and G 

the best position ever attained by the particle swarm (social knowledge); 𝜔𝑘 =

𝜔0𝑒
−𝛼𝑘 + 𝜔1 is a friction factor slowing down particles, 𝜂1 and 𝜂2 are positive 

parameters tuning the pulls towards the personal and global best positions and 𝜙 is a 

random number of uniform distribution in the [0,1] range. Please note that, if 𝜙 appears 

more than once in a given formula it is assumed to have different values each time. 

The presence of random weights in the pull terms generated by the particle’s best 

position 𝑃𝑖  and the global swarm best position 𝐺 causes wide oscillations and a random 

search in the entire parameter space. Such oscillations are precious whereas they 

broaden the search of each particle but they have some drawbacks since they can 

produce continuous oscillation around the optimal point. Such oscillation can be 

dampened, and so the convergence enhanced, via an effective use of the 𝜔 parameter. 

Having a friction factor which is a function of 𝑘 was suggested in [44]. Starting the 

optimization process with a high value for 𝑘 and reducing it as 𝑘 increases encourage 

the particles to explore the whole space domain in the beginning, in search of the global 

minimum, and then allow them to better investigate the region in which this minimum is 

supposed to be located. 

An important aspect connected with the efficiency of the PSO is the way in which the 

particles moving towards the border of the solution space are handled; in [42] three 

different solutions are proposed: the first one consists in setting to zero the velocity of 

the particles arriving at the domain boundary, the second one models the boundaries as 

perfect reflecting surfaces, so that the particles impinging on them are reflected back in 

the solution space; finally the third one allows the particles to fly out from the solution 

space, without evaluating the cost function any more, until the particle eventually gets 

back in the domain. In this work the second technique has been adopted, since 

preliminary tests seem to suggest that this is the one guaranteeing the faster 

convergence. 
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If the iterative process is not yet arrived at the end (i.e. if the cost function has not yet 

reached the fixed threshold value or if the number of iterations does not equals the 

maximum allowed) a new step is performed: particles move from their position 

according to a swarm- or flock-like set of rules, being attracted, with a stochastic-

varying strength, by both the position of their best past performance and the position of 

the global best past performance of the whole swarm. Note that the PSO completely 

differs from the typical GA based evolutionary algorithms since it does not implement 

any selection or mutation of individuals, but particles adapt themselves to the 

geometrical characteristics of the solution space they are moving in. 

 

3.3.2   Some Consideration on PS 

The PSO is gaining a big popularity, especially because of its simplicity in 

implementation, its robustness and its “optimization capability” for both single 

objective and multi-objective problems. PSO proved to be in all considered cases at 

least comparable, and often superior, to its most famous competitor, the GA [43, 45]. 

Besides the easiness of the implementation, the PSO presents the advantage of being 

well suited for optimization problems with both discrete and continuous parameters, and 

for parallel computing implementation [39, 46]. 

All these features make the PSO particularly appealing and attracted the interest of the 

electromagnetic community in the last years [42, 47]. However, the use of such a 

technique, requiring the evaluation of the cost function thousands of times needs 

particular care for electromagnetic problems, in which the cost function is often very 

computationally expensive. Moreover, there is some application in which PSO is by 

outperformed by GA [43]. For this reason, the development of new versions of the PSO 

algorithm with enhanced properties is a challenging issue. 
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3.4   The Class of Meta-Swarm Algorithm 

Recently, the Particle Swarm Optimization (PSO) method has been successfully applied 

to different electromagnetic optimization problems. Because of the complexity of this 

kind of problems, the associated cost function is in general computationally expensive. 

A rapid convergence of the optimization algorithm is hence required to attain results in 

short time. 

In this section some new PSO based techniques, aimed to improve the performances of 

the standard PSO with a negligible overhead in the algorithm complexity and 

computational cost are presented. All of them will exploit multiple interacting swarms. 

In the literature, the use of more than one swarm or PSO is very sporadic, and, to the 

author best knowledge, previously completely absent in conjunction with 

electromagnetic problems. In [48] a division of the population in cluster is proposed. 

Contrarily to what is done here, in [48] the particles belonging to a cluster are chosen 

according to a ”minimum distance” criterion, and the equations that manage the 

evolution of the single particle are modified, substituting its personal and/or the global 

bests with those of the center of the cluster the particle belong to. In this way, however, 

the complexity of the algorithm increases since the particles division into clusters must 

be performed and managed. In [49] two separate PSOs are used to optimize a two-

objective problem: each PSO focus on one aspect of the problem and they interact 

through the cost function. Finally, in [50] the Cooperative Particle Swarm (CPSO) 

method is introduced. This technique splits the domain in subspaces, each searched by a 

swarm, hence requiring additional functions to reconstruct the point where the cost 

function is to be evaluated and a more complex way, with respect to conventional PSO, 

to handle and store personal and global bests. 

The most performing CPSO-𝐻𝑘  (H stands for Hybrid, k is the subspace dimension [50]) 

algorithms relies on the co-evolution of a CPSO and a PSO with exchange of 

information between the two, leading to an even more complex algorithm. On the other 
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hand, the algorithms here presented exhibit just one or two terms to be summed to the 

velocity update function, and no other additional complexity. 

 

 

3.4.1 Undifferentiated Meta-Swarm 

Here three variations over the standard PSO algorithm are described. All of them use 

multiple swarms to enhance the capabilities of global search, but adopt different simple 

rules for describing the interactions among them; therefore the overhead to the 

traditional implementation is negligible.  

The implementation here proposed is similar but simpler than those of Cooperative 

Particle Swarm (CPSO) methods [51,52]. These latter splits the domain in subspaces, 

each searched by a swarm, hence requiring additional functions to reconstruct the point 

where the cost function is to be evaluated and a more complex way, with respect to 

conventional PSO, to handle and store personal and global bests. 

 

 

Figure3.1: Undifferentiated Meta-Swarm basic layout. Forces over a generic particle are: (a) 

pull toward personal best𝑃1,𝑗 ; (b) pull toward swarm best 𝑆1; (c) pull toward global best G 

(belonging to swarm 2); (d) repulsion from the other swarm’s barycentre 𝐵2. 
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Meta PSO 

Meta PSO (MPSO) is the most straightforward of the methods here presented and 

simply consists in using more than a single swarm. Particles are now characterized by 

two indexes: an index 𝑗 =  1, . . . ,𝑁𝑠 defining the swarm they belong to and an index 

𝑖 =  1, . . . ,𝑁𝑝𝑗 within the swarm. For sake of simplicity in the following all swarms 

will be considered as having the same number of particles 𝑁𝑝 =  𝑁𝑝𝑗   ∀𝑗 =

 1, . . . ,𝑁𝑠. The MPSO velocity update rule is: 

 

𝑽𝒋,𝒊
𝒌+𝟏 =  𝝎𝒌𝑽𝒋,𝒊

𝒌 + 𝝓𝜼𝟏 𝑷𝒋,𝒊 − 𝑿𝒋.𝒊
𝒌  + 𝝓𝜼𝟑 𝑺𝒋 − 𝑿𝒋,𝒊

𝒌  + 𝝓𝜼𝟐(𝑮 − 𝑿𝒋,𝒊
𝒌 )        (3.3) 

 

where 𝑃𝑗 ,𝑖  is the particle personal best position, 𝑆𝑗  is the global best position of swarm 

𝑗 (swarm social knowledge) and 𝐺 is the global best position of all swarms (racial 

knowledge), while the other symbols have the same meaning as in (3.1). 

Position update and boundary handling are the same as in standard PSO with just one 

more index. 

 

Modified Meta PSO 

As an enhancement to MPSO aimed at keeping swarms apart from each other, and 

hence widening the global search, an inter-swarm repulsion is introduced and a 

Modified 𝑀𝑃𝑆𝑂 (𝑀²𝑃𝑆𝑂) produced. The velocity update rule becomes: 

 

 

𝑽𝒋,𝒊
𝒌+𝟏 =  𝝎𝒌𝑽𝒋,𝒊

𝒌 + 𝝓𝜼𝟏 𝑷𝒋,𝒊 − 𝑿𝒋.𝒊
𝒌  + 𝝓𝜼𝟑 𝑺𝒋 − 𝑿𝒋,𝒊

𝒌  + 𝝓𝜼𝟐 𝑮 − 𝑿𝒋,𝒊
𝒌   

− 𝝓𝝃
𝑩𝒔
𝒌−𝑿𝒋,𝒊

𝒌

∣𝑩𝒔
𝒌−𝑿𝒋,𝒊

𝒌 ∣𝜸𝒔≠𝒋             (3.4) 
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where the last term is a sum of the repulsions between each single particle and all the 

other swarms barycenters 𝐵𝑗
𝑘 =  1 𝑁𝑝   𝑋𝑗 ,𝑖

𝑘𝑁𝑝
𝑖=1

 weighted by a random value 𝜙 and a 

fixed weight 𝜉 The repulsive force introduced is a function of distance according to 

power 𝛾. If γ = 2, as used here, force decays as the inverse of distance. 

 

Stabilized Modified Meta PSO 

As a further enhancement to the 𝑀²𝑃𝑆𝑂 it can be ruled that the swarm which is 

performing best, i.e. the swarm j whose social knowledge coincides with the racial 

knowledge 𝑆𝑗  =  𝐺, is not repelled by other swarms, or, in other words, stabilizes it-

self. This allows for the best swarm to keep exploring the surroundings of the current 

best position, refining it, whereas other swarms extend the search in other points of the 

space, hence greatly enhancing the possibility of escaping a local minimum. 

Figure 3.1 shows graphically the basics of all these algorithms. Only two swarms are 

depicted, for sake of clarity. Swarm 1 is represented via white symbols, swarm 2 via 

black symbols. Only forces on a single particle 𝑋1,𝑗 , with velocity 𝑉1,𝑗  belonging to 

swarm 1 are shown. Of course not all these forces are present, depending on the 

algorithm. 

 

 

3.4.2 Differentiated Meta-Swarm 

The multiple swarm techniques presented above use several swarms spanning the whole 

domain in order to have better and faster exploitation of the whole space domain 

without being trapped in local minima. The three techniques, presented also in [47], 

differ in the rule that manages particles, exhibiting just one or two terms to be summed 

to the velocity update function. The added complexity is hence negligible and of course 

the intrinsic parallel nature of PSO is maintained. 
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These three techniques will be identified in the following as Undifferentiated Meta 

PSOs, the word Undifferentiated meaning that all the particles of all swarms obeys to 

the same rules. 

The simplest of these Meta PSOs is further modified here, and two other new schemes 

have been obtained, named in the following Differentiated Meta PSOs, in which the 

behavior of the particles within a swarm is managed with different rules. 

Despite of their simplicity, both the Undifferentiated and the Differentiated Meta-PSO 

work better than the standard PSO. The effectiveness of the Undifferentiated and 

Differentiated Meta-PSO algorithm can also find a confirmation in the analysis on the 

different possible social interaction models reported in [53], in which it is hypothesized 

that tightly connected particle swarms, as in the standard PSO scheme, may not be so 

good in finding the problem optimum, since they can be entrapped in local sub-optima, 

while this risk is lower in case of moderately connected societies, as the proposed 

schemes are.  

As opposed to the Meta-Swarms presented in section 3.4.1, in which each agent was 

equal to any other agent, in the Differentiated Meta-Swarm algorithms proposed here 

below different velocity update laws holds on agent-by-agent bases. In particular both 

the proposed algorithms are still based on a multi-swarm approach, but in each swarm a 

particle is bestowed a special ’leader’ status. If the bee similitude often used for PSO 

holds, we can think of this special particle of each swarm as the ’queen bee’. 

It is worth noticing that two different flavors for each of the algorithms described above 

can be implemented, one where the leader particle never changes, and these will be 

referred to as Absolute Leader algorithm, and one where the leader particle can change 

within a swarm, usually by setting as leader the particle exhibiting the best performance 

(the one whose personal best coincides with the swarm’s best). This second family will 

be indicated as Democratic Leader algorithms. In this work the Leader paradigm will be 

applied only to the MPSO algorithm. 



Chapter 3  
 

43 

 

In principle it can be applied to any Meta PSO algorithm but preliminary analyses 

showed that the MPSO is the one taking the larger benefit. The resulting algorithms will 

be denoted as ALMPSO or DLMPSO (Absolute Leader Meta-PSO and Democratic 

Leader Meta-PSO), respectively. In these algorithms the leaders behave indeed as the 

agents of a MPSO, with an attraction towards the leader personal best (personal 

knowledge) an attraction towards the swarm best (social knowledge) and an attraction 

towards the global best of all leaders (racial knowledge). On the other hand all other 

swarms agents obey to interactions which are confined within the swarm itself, that is, 

they are not subject to racial knowledge. The updating rule for the velocity of the MPSO 

algorithm [47] can therefore modify as 

 

𝑽𝒋,𝒊
𝒌+𝟏 =  𝝎𝒌𝑽𝒋,𝒊

𝒌 + 𝝓𝜼𝟏 𝑷𝒋,𝒊 − 𝑿𝒋.𝒊
𝒌  + 𝝓𝜼𝟑 𝑺𝒋 − 𝑿𝒋,𝒊

𝒌  + 𝝓𝜼𝟐 𝑮 − 𝑿𝒋,𝒊
𝒌  + 

𝜹
𝒋,𝒊

𝑳𝒋𝝓𝜼𝟐(𝑮− 𝑿𝒋,𝒊
𝒌 )        (3.5) 

 

 

while the updating rule for the position remains the same as in (3.2): 

 

𝑿𝒋,𝒊
𝒌+𝟏 = 𝑿𝒋,𝒊

𝒌 + 𝑽𝒋,𝒊
𝒌+𝟏             (3.6) 

 

In (3.5) 𝛿
𝑖𝑗

𝐿𝑗
is a function which value is 1 only if 𝑖 =  𝐿𝑗 , being 𝐿𝑗 the index denoting the 

leader of swarm j, otherwise it is 0. 

Equation (3.5) holds of course both for Absolute and Democratic algorithms. In the 

former case the value of 𝐿𝑗  is chosen at the beginning and never changed (in this case it 

is computationally simpler to consider 𝐿𝑗  =  1, ∀𝑗 =  1 . . . ,𝑁𝑠); whereas in the latter 

case 𝐿𝑗  is updated at each time iteration 𝑘 by having 𝐿𝑗  pointing to that agent for 

which 𝑃𝑗 ,𝑖 = 𝑆𝑗 . In both cases the algorithm complexity is not significantly different 

than that of a MPSO. 
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Fig3. 2 shows this algorithm graphically. As in the previous case only two swarms are 

depicted, for sake of clarity. Swarm 1 is represented via white symbols, swarm 2 via 

black symbols. The leader of each swarm is highlighted with an additional circle. The 

swarm leader is subject to three forces, whereas each other particle in the swarm only to 

two. 

 

 

Figure3.2:  Differentiated Meta-Swarm basic layout. Forces over the genetic particle are: (a) 

pull toward personal best 𝑃1,𝑗  ; (b) pull toward swarm best 𝑆1. For what concerns the leader, he 

is subjected also to (c) pull toward global best 𝐺 (belonging to swarm 2). 

 

 

3.5  Genetical Swarm Optimization 

Some comparisons of the performances of GA and PSO are present in literature [54], 

underlining the reliability and convergence speed of both methods, but continuing in 

keeping them separate.  

Due to the different search method adopted by the two algorithms, the typical selection-

crossover-mutation approach versus the velocity update one, both the algorithms have 

shown a good performance for some particular applications but not for other ones. For 

example we noticed in our simulations that sometimes GA outperformed PSO, but 



Chapter 3  
 

45 

 

occasionally the opposite happened showing the typical application driven characteristic 

of any single technique. In particular PSO seems to have faster convergence rate than 

GA early in the run, but often it is outperformed by GA for long simulation runs, when 

the last one finds a better solution. 

Anyway, the population-based representation of the parameters that characterizes a 

particular solution is the same for both the algorithms; therefore it is possible to 

implement a hybrid technique in order to utilize the qualities and uniqueness of the two 

algorithms.  

Some attempts have been done in this direction, with good results, but with a weak 

integration of the two strategies. Precisely, most of the times, one technique is used 

mainly as a pre-optimizer for the initial population of the other technique. In [55], for 

example, the authors test two different combinations of GA and PSO, using the results 

of one algorithm as a starting point for the other (in both the orders) to optimize a 

profiled corrugated horn antenna. 

Another hybridization strategy is proposed in [56], where the upper-half of the best-

performing individuals in a population is regarded as elite and, before using GA 

operators, it is first enhanced by means of PSO, instead of being reproduced directly to 

the next generation. 

The hybrid technique here proposed, called Genetical Swarm Optimization (GSO), and 

consists in a strong co-operation of GA and PSO, since it maintains the integration of 

the two techniques for the entire run.  In fact, this kind of updating technique yields a 

particular evolutionary process where individuals not only improve their score for 

natural selection of the fitness or for good-knowledge sharing, but for both of them at 

the same time. 

In each iteration, the population is divided into two parts and they are evolved with the 

two techniques respectively. They are then recombined in the updated population, that is 

again divided randomly into two parts in the next iteration for another run of genetic or 

particle swarm operators. Fig3. 3 and Fig3. 4 show the flowchart of the developed 
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algorithm, the idea that stands behind the algorithm and the way to mixing the two main 

techniques, respectively. 

The population update concept can be easily understood thinking that a part of the 

individuals is substituted by new generated ones by means of GA, while the remaining 

are the same of the previous generation but moved on the solution space by PSO.  

 

 

 

 

Figure3. 3: The flow-chart of the GSO algorithm. 

 

The driving parameter of GSO algorithm is the Hybridization Coefficient ℎ𝑐(𝑖); it 

expresses the percentage of population that in each iteration is evolved with GA: so 

ℎ𝑐(𝑖) = 0 means the procedure is a pure PSO (the whole population is processed 

according to PSO operators), ℎ𝑐(𝑖) = 1 means pure GA (the whole population is 

processed according to GA operators), Whereas, 0 < ℎ𝑐(𝑖) <  1 means that the 
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corresponding percentage of the population is developed by GA, while the rest with 

PSO technique. 

 

Figure3. 4: Splitting of the population in subgroups during the iterations. 

 

 

3.5.1 The GSO Algorithm Class 

The hc approach opens a wide spectrum of possible merging strategies between GA and 

PSO, since the hc itself can be varied during the optimization run. In fact, the number of 

individuals evolved by a particular procedure, in each iteration, can change according to 

predefined variation rules of the hc parameter, in order to exploit a better convergence. 

This feature essentially extends the GSO concept to stand as a class of hybrid 

evolutionary algorithms. 

For instance, a step variation of hc between 0 and 1 (or vice versa) occurring after half 

the run, realizes an hybridization approach similar to the one used in [55], where the 

population is initially evolved by PSO, then the resulting individuals, after about 50% 

iterations, are evolved by GA (and vice versa). 

The different rules of variation of ℎ𝑐(𝑖) during iterations identify several “flavours” in 

the class of GSO algorithms, as shown in [57]: both traditional implementations of PSO 

and GA can be obtained too, by keeping ℎ𝑐 𝑖 = 0 and ℎ𝑐 𝑖 = 1 for the entire run.  
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The best value of ℎ𝑐 𝑖  or its best variation rule for a given problem are hardly known a 

priori. Therefore the two different adaptive rules were proposed, in order to combine in 

the most effective way the properties of the GA and the PSO approaches also for 

unknown problems. 

The first one is the so-called Dynamical GSO, as referred in [57]; in this implementation 

the ℎ𝑐 parameter is updated during iterations according to the following rule: 

 

𝒇 𝒙 =  𝒉𝒄 𝒊 + 𝒗
𝒆
−𝝃

𝒊′

𝑵

𝒌
,            𝑖𝑓𝚫𝒇  𝒊′ < 𝚫𝒇 (𝒊)

𝒉𝒄(𝒊),                            𝑖𝑓𝚫𝒇 (𝒊′) ≥ 𝚫𝒇 (𝒊)

          (3.7) 

 

Where 𝑁 is the total number of iterations, 𝐾 is the number of individuals in the 

population, 𝑖 ′ = 𝑖 + Δ𝑖, 𝑣 = ±1 (versus), 𝜉 = 2 (damping), and Δ𝑓  𝑖 ′ =  𝑓  𝑖 ′ − 𝑓 (𝑖); 

here 𝑓 (𝑖 ′) is the best fitness value obtained after 𝑖 ′iterations and ∆𝑖 = 5. 

The second implemented technique is the so-called self-Adaptative GSO that derives the 

ℎ𝑐 updating rule from the traditional PSO technique: in fact, if we consider the value of 

ℎ𝑐 𝑖 ′  in the 𝑖 ′ -th iteration, then we can call 𝑉ℎ𝑐(𝑖′) the variation between ℎ𝑐(𝑖 ′) and 

ℎ𝑐(𝑖) and so we can write: 

 

𝒉𝒄 𝒊′ = 𝒉𝒄 𝒊 + 𝑽𝒉𝒄(𝒊′)          (3.8) 

 

Therefore, the problem is simply to find the right velocity update to properly change 

ℎ𝑐(𝑖) during the run; following the PSO similarity, we can define a personal best 𝑃ℎ𝑐  

value that has been obtained during the run and therefore write: 

 

𝑽𝒉𝒄 𝒊
′ = 𝝎.𝑽𝒉𝒄 𝒊 + 𝝓.𝜼. (𝑷𝒉𝒄 − 𝒉𝒄 𝒊 )                     (3.9) 

 



Chapter 3  
 

49 

 

Where 𝑃ℎ𝑐  is chosen analyzing the slope of the increasing of the fitness score during the 

iterations, i.e. if in iteration 𝑖  the increment of fitness is higher than in the previous 

history, then 𝑃ℎ𝑐 = ℎ𝑐(𝑖 ). 

However, differently from the traditional expression for the velocity update of standard 

PSO, in this case the problem is mono-dimensional and there is only one single agent, 

therefore the personal best of 𝑃ℎ𝑐  is also the global best, and so the definition of (3.9) is 

simpler than (3.1). It is worth noticing that this updating procedure can not take 

advantage of the cooperation among several particles, therefore, to avoid stagnation in 

sub-optimal values, a random mutation is added to the ℎ𝑐(𝑖) value when the slope of the 

fitness curve and the velocity are equal to zero. 

Preliminary analyses are here presented with respect to the other optimization 

techniques dealing with classical optimization problems. The application of these tools 

to the antennas developed for this work will be presented in the next chapter. 

 

 

3.5.2 Preliminary Analysis 

With the aim to validate the effectiveness of the developed technique, we used different 

values of hc in order to discover the best hybridization parameter and to compare GSO 

with pure PSO and GA, simply by setting ℎ𝑐 = 0 or ℎ𝑐 = 1. 

A first comparison of the different performances has been made on a classical 

optimization problem, i.e. finding the maximum of an N-dimensional 𝑠𝑖𝑛𝑐 function 

given by the equation: 

 

𝒇 𝑿 =   
𝐬𝐢𝐧(𝒙𝒊−𝒙𝟎,𝒊)

(𝒙𝒊−𝒙𝟎,𝒊)

𝑵
𝒊=𝟏      (3.10) 

 

where N is the dimension of the domain,  1,0ix  and ix i  3.0,0 . 
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To analyze the efficiency of the different approaches when the solution space dimension 

increases, three different cases of growing complexity were chosen , thus considering N 

= 5, 10 and 20.  

The results reported in Fig3. 5-7 shows the fitness behaviour related to different hc 

values for the sinc function for different problem dimensions. In additional, from 

preliminary analyses it has been clear that the value of ℎ𝑐(𝑖) plays a role in affecting the 

speed of convergence, for instance very good performances have been obtained for the 

optimization of the sinc function by considering ℎ𝑐 𝑖 = 0.2,∀ 𝑖 for the N-dimensional 

𝑠𝑖𝑛𝑐 function and it does not depend on the dimension of the problem.  Furthermore, the 

obtained best hc value (0.2) means that, for a big sized problem, the basic PSO can be 

strongly improved by adding a small percentage of genetic operators on the population. 

 

 

 

Figure3. 5: Final fitness for different hc values (5-D 𝑠𝑖𝑛𝑐 function optimization, average over 

50 samples). 
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Moreover, while for a small number of unknown GSO performance is similar to GA 

and PSO ones (Fig. 3.5), if the size of the problem increases (Fig. 3.6, 3.7), GSO 

behaviour improves and outperforms GA and PSO during iterations. 

 

 

 

Figure3. 6: Final fitness for different hc values (10-D sinc function optimization, average over 

50 samples). 

 

It is important to notice that the evaluation of the fitness function is the most relevant 

time consuming task, while the computational overhead of the optimizer operators, 

different for the considered techniques, is negligible. This is particularly true in 

electromagnetic optimization. Therefore the larger the population, the longer is the 

single iteration, since several evaluations of the fitness function must be performed to 

complete the step. For this reason, the different techniques have been compared in terms 
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of performed fitness evaluations rather than iterations, in order to fairly compare the 

different algorithms regardless of the number of individuals in the population. 

Furturemore, as results reported in Fig3.8-10 show, it seems that the improvments 

introduced by the hybridization are increasing with the dimention of the problem to be 

  

 

Figure3. 7: Final fitness for different hc values (20-D sinc function optimization, average over 

50 samples). 

 

optimized: if we consider the optimization of the well-known 𝑁-dimensional sinc 

function, for 𝑁 = 5 average performance of all the considered method (increasing GA 

and PSO, for comparison) are almost the same , although the traditional methods 

sometimes fails in finding the optimal value, as shown by the bar indicating the worst 

performance (over 100 independent trials) in Fig3. 8. When 𝑁 = 10, the average 
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performances of GSO as slighty better than GA and significantly better than PSO 

(Fig3.9), while, for 𝑁 = 20, the improvement introduced by the hybridization is not 

negligible, since just the different GSO implementations are able to locate the optimal 

value, as shown by the bar indicating the best performance in Fig3. 10, while, for the 

considered number of iterations, neither GA nor PSO are able to get the optimal value in 

100 trials and their average performance is lower than GSOs’one. Moreover, the best 

performance is here obtained using ℎ𝑐 = 0.2, since this value has been found to be the 

optimal for this kind of problem, but anyway the adaptive straegies are still better than 

the traditional technique. 

 

 

 

Figure3. 8: Final values of the sinc function optimization with N = 5 variables 

obtained with different hybridization strategies (average results over 100 trials). 
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3.5.3 Performance Analysis 

With the aim of validating the effectiveness of the developed technique for 

electromagnetic applications, the author chose the optimization of a linear array of 100 

elements. This application has been already considered in literature in order to compare 

the performances of the different algorithms in the determination of the complex phased 

array weights to best meet a specified far-field side-lobe requirement. 

The antenna is a linear phased array of one hundred half-wavelength spaced radiators. 

The far-field radiation pattern to be optimized is 𝐹.𝐹. (𝜃)  =  𝐸.𝑃. (𝜃) ・ 𝐴.𝐹. (𝜃), 

where 

 

𝑨 ∙ 𝑭 𝜽 =  𝑨𝒏𝒆
𝒋𝟐𝝅𝒏(𝒅 𝝀) 𝐬𝐢𝐧 𝜽 𝑵

𝒊=𝟏           (3.11) 

 

 

is the array factor in which is the number of radiative elements, are the complex element 

weights to be determined. The voltage element pattern, according to [54] is assumed to 

be: 

 

𝑬 ∙ 𝑷 ∙ (𝜽) =  𝒄𝒐𝒔𝟏.𝟐𝜽             (3.12) 

 

 

The cost measure to be minimized is the arithmetic mean of the squares of the excess 

far-field magnitude above the specified side-lobe level. The side-lobe mask is the same 

used in [54] which include a 60 𝑑𝐵 notch on one side. 

In the present work, the GA engine implemented in GSO uses real encoding of genes 

with tournament selection; uniform crossover occurs with probability 𝑃𝑐𝑟𝑜𝑠𝑠 =  80% 

while the random mutation rate is 𝑃𝑚𝑢𝑡 =  5%. For PSO we use 𝜙1  =  2, 𝜙2  =  2 and 

𝜔 =  0.7 in equation (3.1). Each run has been conducted with a population of 10 

individuals and stopped after 50 000 iterations. 
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Several hybridization techniques have been tested for the optimization of the linear 

array: Fig3.11 and Table 3. 2 show the results of the best four procedures, after 400 000 

fitness evaluations, as well as the average of 100 trials.  

The effectiveness of GSO method emerges both for the static case (ℎ𝑐 =  0.2) and for 

the self-adaptive case, that results a fast and reliable hybridization strategy. 

This technique is exploiting the distinctive attributes of the two algorithms, results in a 

general purpose tool that can represent a fast method for optimization of large domain 

objective functions. This feature makes it suitable for application on a wide range of 

electromagnetic problems. 

 

 

 

Fig.ure3. 9: Final values of the sinc function optimization with N = 10 variables 

obtained with different hybridization strategies (average results over 100 trials). 
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Figure3. 10: Final values of the sinc function optimization with N = 20 variables 

obtained with different hybridization strategies (average results over 100 trials). 

 

 

 

 

 

 

 

 

 

 

 

Table3. 1: results of the sinc function optimization for different problem dimensions and rules 

of variation for the hc parameter during iterations: average final values over 100 independent 

trails and, in parentheses, their standard deviation. 
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Figure 3.11: Performance comparison between different techniques for the linear 

array optimization (100 trials). 

 

 

 

Table 3.2: Linear Array Optimization. 
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Chapter 4 

 

Design and Numerical Results 

 

4.1 Introduction 

In chapter two, we described the Method of Moment –Matlab Codes, which later in this 

chapter will be employed to investigate the properties of the loop wire antenna under 

analysis. Whereas, we devoted chapter three to explain two dominate evolutionary 

optimization methods- Genetic Algorithm and Particle Swarm Optimization- and we 

showed Particle Swarm Optimization in detail for electromagnetic problems. At the end 

of the chapter three, Genetic Algorithm and Particle Swarm Optimization has been 

merged in well cooperation to present a new evolutionary optimization method, is called 

Genetical Swarm Optimization. 

In this chapter, the proposed evolutionary optimization method (Genetic Swarm 

Optimization) will be applied to optimize the square loop wire antenna by considering 

fractal variation.  

And then, the candidate antenna is analyzed by electromagnetic solver (MoM-Matlab 

Code); automated design procedure is illustrated in Fig4.1. We should mention that, for 

the first time, Kim and Jaggared [58] introduced the application of the fractal to the field 

of antenna theory. At the final section of this chapter, we will simulate the structure 

under analysis by commercial simulator such as FEKO-Lite [59] and compare those 

with the obtained results by Matlab in order to check and verifying the reliability our 

design. 
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Figure4.1: Illustration of design procedure. 

 

4.2 Considered Geometry 

In order to optimize antenna for wireless energy transfer, and to improve the wireless 

link performances of WPT, preliminary analyses have been conducted on an equivalent 

model based on two identical square loop wire antennas, as reported in Fig4.2, separated 

by an air gap. The choice of such geometry is due to the need of reducing antenna 

dimension [60].  

The starting geometry is a square loop antenna. The following geometries are the results 

of Genetical Swarm Optimization with respect to the fractal variation, as shown in Fig4. 

3. The direction of the arrows, pointes in the output of Genetical Swarm Optimization 

order. 
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Figure4. 2: A schematic of idea of the two identical antennas. 

 

 

 

 

                                                    

                         (a)                                                                                   (b) 

                                                 

                                (c)                                                                           Optimized 

 

Figure4. 3: Loop wire antenna shape and its optimization. 
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4.3 Simulation Analysis 

 

Scattering Parameters 

 

Scattering parameters or S-parameters are used to describe the behavior of a network at 

high-frequency, where the network is complex and it is difficult to present the 

characteristics of the network with lumped parameters. On other hand, S-parameters 

make possible to treat a network as a “black box”; as shown in Fig4.4. 

 

+ +

- -

Network

(Black Box)

I2
I1

V1 V2

 

Figure4. 4: Two ports network. 

 

We considered the “black box” contents two antennas in communication. The 

transmitting power from antenna 1 and the receiving power by antenna 2 are defined in 

term of S-parameters matrix as the following: 

 

 
𝑺𝟏𝟏 𝑺𝟏𝟐

𝑺𝟐𝟏 𝑺𝟐𝟐
           (4.1) 

 

𝑆11 and 𝑆22  refer to  the reflected power by antenna1 and 2, respectively. 𝑆12 and 𝑆21  

represent the transferred power from antenna 1 to antenna 2 and vice versa. Hence, the 

small value of  𝑆11 means, the most of the transmitting power has radiated in the free 



Chapter 4 

62 

 

space from antenna 1 and the less amount of the transmitting power has reflected at port 

of the antenna 1. Whereas, the big value of  𝑆21  implies that the most of the delivered 

power from the antenna 1 to the antenna 2 has been absorbed by antenna 2. 

Therefore, if we would be able to redesign two antennas in communication with small 

value for the reflection coefficient (𝑆11) and big value for the transmission coefficient 

(𝑆21), it is worth saying that we increased performance between antennas. 

S-parameters could be cast in terms of the terminal voltages and currents at two ports 

network; shown in Fig4 .5: 

 

𝑺𝟏𝟏 =
 𝟏 − 𝒚𝟏𝟏  𝟏 + 𝒚𝟐𝟐 + 𝒁𝟎𝒚𝟏𝟐𝒚𝟐𝟏

∆
                                  (𝟒. 𝟐) 

𝑺𝟐𝟏 =
−𝟐𝒚𝟐𝟏

∆
                                                                                   (𝟒.𝟑) 

Where, 𝑍0 = 50 

∆=  𝟏 + 𝒁𝟎𝒚𝟏𝟏  𝟏 + 𝒁𝟎𝒚𝟐𝟐 − 𝒁𝟎𝒚𝟏𝟐𝒚𝟐𝟏      

𝒚𝟏𝟏 =
𝑰𝟏
𝑽𝟏

|𝑽𝟐=𝟎 

𝒚𝟐𝟐 =
𝑰𝟐
𝑽𝟐

|𝑽𝟏=𝟎 

𝒚𝟏𝟐 =
𝑰𝟏
𝑽𝟐

|𝑽𝟏=𝟎 

𝒚𝟐𝟏 =
𝑰𝟐
𝑽𝟏

|𝑽𝟐=𝟎 
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Reciprocity Theory 

The reciprocity theorem is utilized in simplifying the antenna theory, it is named base on 

its application in the antenna theory. Strong Reciprocity Theorem allows deducing the 

properties of receiving antennas from those of transmitting antennas and vice versa, 

where receiving and transmitting antennas are identical. Week Reciprocity Theorem 

allows interchanging in the performance of receiving and transmitting antennas, where 

all the differences are in the construction of receiving and transmitting antennas (refer to 

[61] in order to more understanding of week reciprocity theorem). In this study, we have 

applied strong reciprocity theorem in order to simplifying our designed antennas. 

 

Strong Reciprocity Theorem 

Assume two identical antennas by a gap separation. A voltage source is placed at the 

terminal port of the antenna I and the flowed current through the antenna, produces the 

electromagnetic force 𝐸1. Antenna II is excited by the electromagnetic force 𝐸1 and a 

current is induced through the antenna.  

Strong reciprocity theorem states that if this time, the voltage source is applied at the 

terminal port of antenna II, the induced current through antenna I, while antenna I is 

exposed to the radiated electromagnetic force 𝐸2 from antenna II, is equal to the induced 

current through antenna II by the radiated electromagnetic force 𝐸1 from antenna I. 

Thus, S-parameters of a network with strong reciprocity and symmetric characteristic 

could be simplified as: 

𝑺𝟐𝟏 = 𝑺𝟏𝟐 

𝑺𝟏𝟏 = 𝑺𝟐𝟐 

 

4.3.1 Antenna Optimization Procedure 

The procedure of optimization and design is described as the following: 
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Each candidate antenna (the output of Genetical Swarm Optimization) is simulated by 

Matlab in the frequency rang 450𝑀𝐻𝑧 − 600𝑀𝐻𝑧. We are interested in this range 

frequency (Low Ultra High Frequency) due to being ideal for a whole range of 

applications indoors/outdoors and appearing perpetually in urban areas.  

Matlab simulation is interactively called by the presented optimization procedure, in 

order to evaluate the coupling performances of the proposed antenna geometrics, as 

shown in Fig4.3. 

The aim of the analysis was to design the geometry in order to maximize the coupling 

versus the displacement. 

The data interface between optimization algorithm and numerical modeler is managed by 

a built-in function called “fitness function”. The fitness function (FF) decodes the 

information provided by GSO into geometrical dimensions to assign to the antenna 

design; afterwards, FF analyses the new configuration and then it evaluates the 

feasibility, the 𝑆11and 𝑆21  of parameters of the wireless system. 

In order to maximize the energy transfer it is desirable to have antenna matched in the 

frequency band of interest, and minimizing 𝑆11that is the return loss at port 1. Moreover, 

it is necessary to maximize the coupling performance 𝑆21 .  

To reach out these different objectives, we chose a multi-objective approach called ε-

constrained method [62] by adopting thresholds for the fitness function in order to 

identify different phases into fitness score evaluation: In the first stage, fitness score 

value ƒ is then defined as: 

 

ƒ═ − 𝟓𝟎 (𝒖𝒏𝒕𝒊𝒍 𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒚 𝒊𝒔 𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆) 
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Load= 50

Voltage Source= 1V

d

Receiving 

antenna

Transmitting

antenna

L

 

Figure4. 5: case study analyzed with Matlab. 

 

In order to penalize unfeasible solutions; when geometrical feasibility is obtained, ƒ is 

computed as: 

ƒ═ − 𝟑𝟎 − 𝑺𝟏𝟏   (𝒊𝒇 𝑺𝟏𝟏 > −10) 

 

To minimize, return loss at the considered working frequency. Finally, when return loss 

has reached the desired value: 

 

ƒ═ 𝑺𝟐𝟏                       (𝒊𝒇 𝑺𝟏𝟏 < −10)  

 

In order to, maximize antenna matching at the considered working frequency. 



Chapter 4 

66 

 

Here, the optimization procedure considers a population of 10 candidate solutions per 

iteration and it runs for 500 iterations, thus leading to 5000 cost function calls. Self-

adaptive hc is considered to maximize the GSO performances, as reported in [63]. 

A sample evolution of fitness value is reported in Figure4. 6; where the stage 2 and 3 are 

highlighted. Moreover, in the same figure the hc value during iterations is reported, 

showing that, in this particular case, self-adaptive GSO goes towards an almost exclusive 

application of PSO operators. For each configuration mentioned in 4.2 section,   𝑆11 is 

plotted, versus  𝑆21   to observe the reflection of the optimization procedure in the 

antenna size and the antenna matched. As presented in Fig4. 7, the optimized antenna has 

the best matching and size.  

As well as, the scattering parameters and the dimensions of the considered geometries in 

section 4.2 are shown in Fig4 .8, Fig4. 9 and Fig4. 10, respectively.  

As been observed in Fig4. 8 and Fig4. 9, the smallest value of 𝑆11and the greatest value 

of 𝑆21  are belonged to the optimized antenna; moreover, the size of antenna is minimized 

by the optimized antenna. It means the optimized candidate met the all requirements for 

having robustness coupling between antennas. 

In wireless power transfer technology, the power efficiency is a key parameter. The 

power gain or efficiency of the analyzed geometrics can be expressed as follows: 

 

𝜼 =  
𝑷𝒐𝒘𝒆𝒓 𝒅𝒆𝒍𝒊𝒗𝒆𝒓𝒆𝒅 𝒕𝒐 𝒕𝒉𝒆 𝒍𝒐𝒂𝒅

𝑷𝒐𝒘𝒆𝒓 𝒇𝒓𝒐𝒎 𝒔𝒐𝒖𝒓𝒄𝒆
=

∣ 𝑺𝟐𝟏 ∣ ²

𝟏−∣ 𝑺𝟏𝟏 ∣ ²
 

 

And the efficiency of each candidate is plotted in Fig4. 11. The optimized candidate 

reached the highest efficiency, as shown in Fig4. 11. The candidate (b) also has the 

good efficiency as the optimized candidate; as you have observed in Fig4.7, the 

candidate (b) is not however well-matched and sized to compare with the optimized 
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configuration. The design procedure is well suited in order to increase energy efficiency 

and the robustness of the coupling, with the aim of improving the transmission power 

wirelessly. 

 

Figure4. 6: Evolution of fitness score and hc values during iterations. 

 

 

4.4 Distance and Power Gain 

Parameter d in Fig4. 5 indicates the distance between the origin point of the transmitting 

antenna and the receiving antenna; the parameter d is fix in pervious simulations and 

models.  The distance d between two candidate antennas was considered equal to the 

length of the one side of the antenna; for instance, the parameter d in Fig4. 5 equals to 

the length of the side of the optimized antenna L= 91mm. 

0 50 100 150 200 250 300 350 400 450 500 

-20 

-10 

0 

Fitness max Value 

Iterations 

0 50 100 150 200 250 300 350 400 450 500 
0 

0.5 

1 
hc value during the run 

Iterations 



Chapter 4 

68 

 

 

 

 

 

 

4.5 5 5.5 6 

x 10 
8 

-30 

-25 

-20 

-15 

-10 

-5 

0 
Configuration (b) 

Frequency, Hz 

  

  

S 
1 1 

S 
2 1 

Matching: bad  
Size: Improved 

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 

x 10 
8 

-25 

-20 

-15 

-10 

-5 

0 

Frequency, Hz 

  

  

S 
1 1 

S 
2 1 

Configuration (a) 

Matching: good 
Size: bad 

 

 

              S-Parameters, dB 

S-Parameters, dB 



Chapter 4 

69 

 

 

                

 

Figure4. 7: The matching antenna for each geometry.  
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        Figure4. 8:  Return loss comparison of each configuration. 

 

            Figure4. 9: Coupling performance of each configuration. 
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Figure4. 10: Size comparison of analyzed geometrics. 

 

 

                          Figure4. 11: The power efficiency of the considered configurations. 
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As mentioned in Resonance Inductive Coupling section of chapter one, the coupling 

performance of the antennas would decrease by increasing the distance between them. 

Thus, improving the power gain over the longer distance, gives possibility to extend the 

applications of this technology. 

In this section, we supposed that the distance d is a variable parameter. The power gain 

or efficiency is computed and plotted for several different values of the d in order to 

investigate the impact of the longer distance on our optimized model, see Fig4. 12. At 

the end, the worse case (the model with the longest d) is compared with the 

configuration (a) with 𝐿 =  154 𝑚𝑚  and the same d as the worse case, shown in Fig4. 

13. 

As been seen in Fig4. 12, increasing the separated gap of antennas cause the decreasing 

of the antenna coupling.  However, the worse case (𝑑 = 250 𝑚𝑚) of the optimized 

antenna has still higher efficiency than two square loop antennas with the same 

separated gap and longer length; as presented in Fig4. 13. This means that we are 

managed to optimize the simple square loop antenna structure, which is able to deliver 

more power over longer distance. 

 

4.5 Frequency Analyzing 

The loop antenna is named the electrically large antenna, when the perimeter of the 

loop antenna is greater than  𝜆
10 . 

 

𝑷𝒍𝒐𝒐𝒑 ≫ 𝝀
𝟏𝟎           (4.4) 

Large loop antenna usually has either a circular or square shape. Both circular and 

square loops are usually operated near the first resonance point, which occurs for a 

perimeter of slightly greater than one wavelength [64]. 
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            Figure4. 12: the efficiency of transferred power in each distance. 

 

 

                 Figure4. 13: Comparison the worse case and two loop square antennas. 
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𝑷𝒍𝒐𝒐𝒑 > 𝝀𝒇𝒓
           (4.5) 

 

Where, 𝜆𝑓𝑟   is the wavelength at the resonance frequency. 

 

𝝀𝒇𝒓
=  

𝟑∗𝟏𝟎𝟖

𝒇𝒓
               (4.6) 

 

The following table I reports the perimeter and one wavelength at the resonance 

frequency for the candidate antennas. The configuration (a) and the optimized antenna 

are only which meet the equation (4.5). And it could be said that the resonance 

frequency of the configuration (b) and (c) are not practical. It is worth noting that, the 

equations (4.5) and (4.6) give the ability to design and tune an electrically large loop 

antenna at the interested resonance frequency. 

For instance, the perimeter of antenna Shape (a) is increased to 𝑝 = 0.626 in order to 

tune antenna at frequency the same as frequency of the optimized antenna (479.7𝑀𝐻𝑧), 

as shown in Fig 4. 14. 

 

4.6 Validation of the results 

In this section, for checking and verifying the reliability of the results, the return loss at 

port 1 of the configurations reported in Fig4. 3 plotted by Matlab have been compared 

with the return loss of the simulated configurations (Fig4. 3) by FEKO-Lite [59]. As we 

expected, there is a good agreement between the Matlab and FEKO-Lite results, as 

shown in Fig4. 15. 
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                                                                        Table I. 

 

 

Figure4.14: represents the increased perimeter loop square antenna to obtain the same frequency 

as frequency of the optimized antenna. 

 

 

Configuration Perimeter 𝑷 (𝒎) 𝒇𝒓 𝑴𝑯𝒛 𝝀𝒇𝒓
 

a 0.616 506 0.592 

b 0.309 494.55 0.606 

c 0.27 497.52 0.602 

Optimized 0.770 479.7 0.625 
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(3) 

Figure4. 15: Comparison of the obtained 𝑆11 parameter by Matlab and FEKO for configuration 

1) (b), 2) (c), and 3) Optimized. 
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Chapter 5 

 

Conclusions 

 

In this study, we have designed an antenna configuration to exploit the Radio Frequency 

and Resonance Inductive Coupling mechanisms for transferring power wirelessly. For 

designing antenna a merged optimization technique by the name of Genetic Swarm 

Optimization has been applied, and the candidates of the antenna that have been 

produced by the optimization procedure, have been characterized with electromagnetic 

solver (MoM-Matlab). 

As been described in chapter 1, the role of the antenna in Radio Frequency energy 

harvesting system is providing RF-power for rectifier; whereas, the rectifier must 

convert this RF-power to DC-power for supplying electrical devices. Thus, it would be 

tricky to design and propose an antenna model with the high gain power for the RF 

energy harvesting system in primary step of process. Since, we have observed that the 

most previous works have been presented and suggested models for improvement and 

development the performance of the rectifier. In additional, in chapter 1, we have also 

shown that the Resonance Inductive Coupling mechanism has benefits in wide range of 

applications such as Electrical Vehicles, if the coupling phenomena between two 

antennas could be kept robust by increasing their distance.  In order to have the 

maximum coupling or in other words the maximum power efficiency, we should keep 

two factors in the mind during redesigning antennas: a) decreasing radiated emission, 

and b) increasing transmission coefficient.  
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Genetic Swarm Optimization is a merged technique of Genetic algorithm technique and 

Particle Swarm Optimization technique (GA and PSO are described in more details in 

chapter 3), which is utilized for reaching to our purpose in this work. As aforementioned 

in chapter 3, GSO has advantages in: solve large domain objective function, face non-

linear and discontinuous problems, and reduce the number of iteration and the 

computational efforts. It is worth noting that, as well authors in [43, 65, and 66] have 

been shown the reliable and effective of the presented procedure (GSO) for a wide 

spectrum of applications in electromagnetic. 

The outputs of the optimization method have been simulated in home-built MoM solver. 

We used the Matlab environment in this thesis due to the drawbacks of the other 

Electromagnetic solver software, when the ratio of the wire diameter to its length is 

becomes too large. The structure of the antenna out-coming from the optimization 

procedure has been built by identifying boundary of its geometry in home-built solver 

and we controlled the accuracy of our results with the number of the meshes. In chapter 

2, several examples have been given to show the impact of the number of triangles in 

the structure and alternative way (Graphical User Interference) of building the antenna 

structure in Matlab. As verifying and checking our results obtained with Matlab, they 

have been compared with the same results obtained with a well-assessed commercial 

software such as FEKO-Lite. As have been illustrated in Fig4. 13 in chapter4, there is a 

good agreement between the results. 

It could be said we succeed to propose a model antenna by optimization methods with 

the power efficiency more than the power efficiency has been reported in [18]. 

Furthermore, the designed antenna is miniaturized to compare with the models 

presented in [20, 21] for charging Electrical Vehicles; and the small size feature of the 

optimized antenna makes the designed antenna suitable to install at the bottom of the 

vehicles. Most relevant results of this study have been published in [67]. 
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Of course, additional features could be required in order to raise the power gain of the 

designed antenna over the longer distance and make them sufficient in Electrical 

Vehicles’ recharging system. Therefore, a perspective future work might be studying 

the integration of the optimized antenna in an array system, to improve the coupling 

with displaced objects. 
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