
POLITECNICO DI MILANO
DEPARTMENT OF AEROSPACE ENGINEERING

DOCTORAL PROGRAMME IN ROTARY WING AIRCRAFT

WIND TURBINE SYSTEM IDENTIFICATION AND

STABILITY ANALYSIS

Doctoral Dissertation of:
Stefano Cacciola

Supervisor:
Prof. Carlo L. Bottasso

Tutor:
Prof. Luca Di Landro

The Chair of the Doctoral Program:
Prof. Luigi Vigevano

Year 2012 – XXV





Acknowledgements

My sincere gratitude goes to all the components of the Poliwind Research
Group and to all the research and industrial subjects, which have con-
tributed supporting the completion of this work in this three year.

In particular a special acknowledgement goes to Professor Carlo Luigi
Bottasso for his perseverance and competence in supervising my research,
and to Professor Alessandro Croce for his willingness and proficiency.

The Department of Electronic Systems Automation & Control of the
University of Aalborg, Denmark, and in particular Professors Rafael Wis-
niewski, the National Renewable Energy Laboratory (NREL) and in partic-
ular Dr. Alan D. Wright, Tozzi Nord S.r.l. and CRIEL S.r.l. are gratefully
acknowledged.

I wish to thank also the other colleagues, Carlo, Filippo and Federico,
for having shared with me the joy and the hassle of the research with enthu-
siasm and friendship and all the master’s thesis students, for having con-
tributed to the development of this work.

A sincere thank goes to my family, especially to my wife Chiara, that
unfailingly and daily helps me to become more and more deeply a man. In
life and in faith.

I





Contents

Introduction 3

I Identification of properties of wind turbine models 9

1 Introduction 11

2 The estimation problem 15
2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Maximum Likelihood Estimation . . . . . . . . . . . 15
2.2 Identifiability and singular values decomposition . . . . . . 17

3 Identification of blade beam models 21
3.1 Model Updating of Blade Beam Models . . . . . . . . . . . 24

3.1.1 Updating Including Modal and Static Response Data . 24
3.1.2 Updating by Constrained Optimization . . . . . . . . 25
3.1.3 Definition of Model Parameters . . . . . . . . . . . . 27

3.2 Preliminary results using simulated data . . . . . . . . . . . 29
3.3 Model Update of “Blade A” . . . . . . . . . . . . . . . . . 31

3.3.1 Description of experimental plant . . . . . . . . . . . 32
3.3.2 Estimation of beam properties . . . . . . . . . . . . . 37

3.4 Model update of “Blade B” . . . . . . . . . . . . . . . . . . 39
3.4.1 Description of experiments . . . . . . . . . . . . . . 39
3.4.2 Estimation process . . . . . . . . . . . . . . . . . . . 45

III



Contents

4 Identification of aerodynamic properties of blades 49
4.1 Estimation process . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Identification using power, thrust and blade loads . . 51
4.1.2 Identification with direct approach . . . . . . . . . . 54
4.1.3 Identification with the SVD-based approach . . . . . 55

4.2 Results from wind tunnel test data . . . . . . . . . . . . . . 60
4.2.1 Description of experiments . . . . . . . . . . . . . . 60
4.2.2 Direct approach . . . . . . . . . . . . . . . . . . . . 63
4.2.3 SVD-based approach . . . . . . . . . . . . . . . . . 66

5 Conclusions 79
5.1 Identification of beam models . . . . . . . . . . . . . . . . 79
5.2 Identification of aerodynamic properties . . . . . . . . . . . 81

II Stability and identification of periodic wind turbine models 83

6 Introduction and motivation 85
6.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Model independence . . . . . . . . . . . . . . . . . . . . . 89
6.3 Organization of this part . . . . . . . . . . . . . . . . . . . 90

7 Stability analysis of LTP systems 93
7.1 Continuous time . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Discrete time . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Illustration by a model problem . . . . . . . . . . . . . . . 101

8 System identification of LTP systems from input-output data 109
8.1 Identification using the prediction error method (PEM) . . . 110

8.1.1 Equation-error identification of LTP systems . . . . . 111
8.1.2 Output-error identification of LTP systems . . . . . . 113
8.1.3 Identification of PARMAX model . . . . . . . . . . . 114

8.2 Realization of the PARMAX sequence in state-space form . 115

9 Results and conclusions 117
9.1 Rotor edgewise response . . . . . . . . . . . . . . . . . . . 118
9.2 Tower side-side response . . . . . . . . . . . . . . . . . . . 120
9.3 Tower fore-aft and in-plane whirling response . . . . . . . . 124
9.4 The periodic Campbell diagram . . . . . . . . . . . . . . . 124
9.5 Real wind turbines: the effect of turbulence . . . . . . . . . 126

9.5.1 First blade edgewise mode . . . . . . . . . . . . . . 126
9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 128

IV



Contents

Conclusions and outlook 133

Bibliography 137

V





Introduction

1





Why system identification of wind
turbines?

WIND turbine system identification is one of the most important
ways to go in order to address the current and future needs in the
field of wind turbine modeling and analysis. This is the basic

idea which have encouraged the beginning and motivated the development
of this thesis.

First of all, a consideration is right and proper: wind turbines are ex-
tremely complex systems, whose dynamics depends on several factors such
that complex aerodynamics, complicated structural and mechanical proper-
ties, dynamics of foundations, control systems, interactions between tower
and blades, turbulent wind conditions, . . . . The modeling and the analysis
of such these systems, in the course of time, have required mathematical
models increasingly sophisticated and computational power more and more
elevated. The design of future large and very large wind turbines will surely
increase the importance of having adequate mathematical models, which
can correctly capture their relevant physics. Currently, multibody models
represent the best compromise between ability in describing the behavior
of wind turbines and low computational cost.

In this scenario, we can formulate two main questions:

1. In order to obtain high fidelity models of wind turbines we need not
only adequate mathematical models but also the correct tuning of their
parameters (e.g. structural and aerodynamic properties), therefore
how we can obtain the estimates of such parameters in order to en-
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sure the best possible fidelity to the reality?

2. Since research fortunately is continuing to provide improved simu-
lation codes, is it possible to use such these high fidelity models of
arbitrary complexity directly to perform important analysis as those
related to the stability?

The goal of the research described in this thesis is to explore the possi-
bility of using system identification to answer both the previous questions.
Some problems of interest related to the estimation of blades structural and
aerodynamic properties and to the stability analysis of a large wind turbines
will be solved by means of system identification techniques. As a conse-
quence of that, the truthfulness of the assumption made at the beginning
of the introduction, that the system identification can be used to address
the current and future need of wind turbine modeling and analysis, will be
demonstrated.

Organization of the thesis and innovative contents

The discipline of system identification was largely developed in the course
of the years. It is based on a rigorous statistic theory and on a small number
of leading principles, but actually it is very difficult to make a survey of this
art, as emphasize by the excellent lecture of L. Ljung made in 2008, [1].

Even if there exist many approaches and many fields, in which this dis-
cipline can be successfully applied, system identification for wind turbines
is still in its infancy and much need to be done before the estimation tech-
niques can be used routinely and efficiency by industry. The main innova-
tive aspect of this research concerns this lack. Some identification proce-
dures are developed and tested using real and virtual experimentation data
in order to provide mature and effective best practices to follow in the field
of wind turbine, and in general of rotary wing system, modeling and anal-
ysis.

The work is divided into two parts entitled “Identification of properties
of wind turbine models” and “Stability analysis and identification of peri-
odic wind turbine models”.

The first part concerns the estimation of the blades structural and aero-
dynamic properties from experimental data.

In the five chapters of this part, the problem of obtaining comprehensive
validated models of wind turbine will be considered. A brief review of
theory of the system identification is presented in Chapter 2 together with
several statistical metrics used to evaluate the goodness of the estimates.
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In the Chapters 3 the maximum likelihood estimator is performed in
order to identify the structural (flapwise and edgewise stiffness and tor-
sional rigidity) and inertial (mass distribution) properties of two real wind
turbine blades of 6.2 and 7.5 meters length from experimental data. The
estimation procedures is based on a unified approach, in which multiple
sources of measurements (e.g. modal and static experiments) as well as
suitable constraints (e.g. total mass and center of gravity position) can be
used together in a constrained optimization. This new introduced possibil-
ity first improves the quality of the estimates with respect to approaches
which use only, as example, modal measures, [2–5] and second allows the
estimation of the mass distribution together with the other parameters in a
non-destructive way.

The Chapter 4 considers the identification of the aerodynamic proper-
ties of wind turbine rotors. In particular the lift and drag coefficients of
the blade airfoils are estimated from measurements proper to characterize
the aerodynamic performances (e.g. thrust and power). Although in liter-
ature great attention is deserved on the extraction of lift and drag curves
from CFD simulations, [6–10], very few examples of identification from
experimental data are proposed, [11]. The proposed estimation procedure,
based again on the maximum likelihood formulation, is performed in or-
der to identify the aerodynamic properties of the blade of a wind turbine
scaled model using as measures the thrust and power coefficients obtained
from wind tunnel experimentations. The solution of this problem appears
to be hard, especially if compared with the structural identification, since
the accuracy of the estimates results very low. To overcome this drawback,
which was also reported (without finding an alternative solution) in [11],
a new formulation of the problem, based on the singular values decom-
position, are proposed. This new innovative and original method are able
to give estimates with higher level of confidence and aerodynamic models
better correlated with the experimental measures.

The second part of the thesis is related to the development of a model-
independent stability analysis of wind turbines. In literature, most pub-
lished methods to estimate the frequencies and the damping factors of the
modes of interest are based on the linear time invariant system theory, [12],
which is not suitable for a rotating system characterized by periodic coeffi-
cients, or use the multi-blade coordinate (MBC) transformation of Coleman
and Feingold [13–15], which of course is only an approximation of the rig-
orous Floquet-Lyapunov transformation used in a periodic analysis. It is
also important to emphasize the fact that any stability analysis based on
the multi-blade coordinates transformation is model dependent, difficult to
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implement and maintain
According to the proposed approach, the stability analysis is made by

two steps: first a periodic input-output model is estimated from suitable
measurements of input and output. Second the stability analysis according
to the Floquet theory is performed on the identified model, leading in turn
to the computation of all the modes which characterize the response of the
system. Consequently such this analysis results to be model-independent,
since it operates on the basis of input-output series, which can be obtained
from simulations or possibly from real wind turbine responses, and com-
pliant with the periodic nature of the system.

In Chapter 7 the stability analysis and the interpretation of the frequency
response of a linear time periodic (LTP) system is presented. Chapter 8
concerns to the estimation of three kind of periodic input-output models, the
equation-error, the output-error and the Periodic Auto-Regressive Moving
Average with eXogenous input (PARMAX) model, and to the achievement
of a canonical periodic realization in the state-space of such these models.
Finally in Chapter 9 the proposed analysis is performed on a detailed high
fidelity multibody model of a 6MW wind turbine.

Developed tools

The main goals of this work couldn’t be achieved without a suitable devel-
opment of specific tools. In particular it is possible to mention three soft-
wares: BEst (Blade Estimation) and IdeA (Identification of Aerodynamic
properties), which are concerned with the estimation of structural and aero-
dynamic properties of blades, and PSI-tool (Periodic Stability analysis
by Identification) which refers to the identification and the analysis of peri-
odic input-output models.

BEst and IdeA codes implement the methodologies described in the
first part of this thesis and are written using the Matlab computer language.
Both codes should be interfaced with an external computer program pro-
viding a suitable implementation of a the mathematical model of refer-
ence, which is a beam model for the structural case and a BEM (Blade
Element Momentum) model, for the aerodynamic case. Currently, BEst
and IdeA are interfaced with the program Cp-Lambda (Code for Per-
formance, Loads, Aero-Elasticity by Multi-Body Dynamic Analysis) [16];
however, both codes have been written in such a way to allow for the inter-
facing with other beam and BEM simulators.

PSI-tool is a tool for performing the identification of periodic input-
output models and the stability analysis of the identified models according
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to the Floquet theory and is implemented in Matlab language. The tool con-
sists in a series of Matlab functions which mainly solve the identification
problem of the PARMAX (Periodic AutoRegressive Moving Average with
eXogenous input) model from measurements of suitable input and output
time series using the prediction error algorithm as described in the second
part of the thesis. The software package is moreover completed by a set
of other functions providing the realization in the state space of identified
input-output models and the periodic stability analysis.





Part I

Identification of properties of
wind turbine models
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CHAPTER1
Introduction

THe first part of the thesis is concerned with the development of
model update procedures [17] applicable to wind turbine rotors. The
update of models from experimental measurements is part of the

broader problem of system identification [18, 19] of wind turbines, which
finds applicability in the validation and verification of mathematical models
for both design and certification, and in wind turbine active control appli-
cations, [20].

Modern comprehensive aero-servo-elastic high fidelity models of wind
turbines are based on first principles, and include sophisticated mathemat-
ical sub-models of the various components, as blades, tower and drive-
train [21]. The structural models are also coupled with aerodynamic mod-
els, which, depending on the application at hand, can range from classical
blade element inflow models (BEM), to time-accurate dynamic inflow [22]
and free-wake models, all the way to first principle computational fluid dy-
namics (CFD). Comprehensive models also include many other sub-models
related for example to generators, actuators and sensors, and are coupled
furthermore with the system controllers, including supervisors of the op-
erating states and blade pitch and torque controllers. Hence, wind turbine
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Chapter 1. Introduction

analysis codes are typically based on complex, non-linear, multi-field mod-
els which are formulated in the time domain.

The fidelity of overall models depends on the fidelity of sub-models
and of their couplings, whereas the accuracy of sub-models depends on
their ability to capture the relevant physics and on the correct tuning of
their parameters. Since modern models, based for example on multibody
formulations are actually able to reproduce opportunely the relevant physics
and the couplings between the various sub-systems, great attention must be
deserved to the tuning of the model parameters.

From this last consideration we can state the first important application
of parameter identification in the field of wind turbine system modeling: to
calibrate the parameters of wind turbine models to ensure the best possible
fidelity to reality, given an assumed mathematical model.

Parameter estimation for wind turbines is still in its infancy and much
needs to be done before suitable techniques which work in practice can
be effectively used by industry. Moreover, it appears that, given the com-
plexity of wind turbine models and of the problem of system identification
in general, a practical approach to accomplish the goal would be to use a
divide-and-conquer method to incrementally estimate the parameters of the
various sub-models. Such a practices would proceed in two main steps:
a first concerns the sub-system identification, followed by a second step
which concerns the coupled system identification.

In the first step the parameters of the sub-models (e.g. blades, tower, ac-
tuators, etc.) are estimated using specific experimental observations of each
sub-model behavior. For example, considering the estimation of structural
models, many experiments, which may include the measurement of mode
frequencies and shapes, structural deflections under known loads, etc., can
be often performed in a controlled environment with good accuracy and
low noise levels, as a laboratory. Moreover, one may consider also the
identification of aerodynamic models, such as sectional properties (e.g. lift
and drag coefficients), dynamic stall models and the measurement of rotor
performances in the wind tunnel.

Next, the identification can be conducted for the whole wind turbine op-
erating in closed-loop, in order to estimate those parameters which can not
be estimated in the first step, including for example the coupling terms, such
as those related to the inflow or to the blades-tower interference models.

Within this general framework, this part is concerned with the sub-
model identification step. More specifically, it describes the use of the
parameter estimation formulated according to the maximum likelihood in
order to update the blade structural beam models and the aerodynamic prop-
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erties of wind turbine rotors.
It is anyway important to emphasize the fact that the same methods de-

veloped in this work still remain effective tools to use for the updating pro-
cedures of other sub-models.

Organization of Part I

The work described in this part is organized as follows.
First an outline of the estimation problem is described in Chapter 2. The

maximum likelihood approach is presented as well as all those statistical
metrics using to evaluate the goodness of the identified models.

Chapter 3 and 4 is concerned with the identification respectively of the
structural and of the aerodynamic properties of wind turbine blades. The
developed procedures are described and tested by some identification tri-
als using real data provided by experimentation in laboratory and in wind
tunnel.

Finally, Chapter 5 summarizes the conclusions and the possible im-
provements of both the proposed estimation approaches.
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CHAPTER2
The estimation problem

2.1 Formulation

2.1.1 Maximum Likelihood Estimation

Consider a parametric version of the model, noted M(p), where p ∈ Rn is
a vector of parameters, related to the properties of the analyzed system.

Define a set of output quantities y = h(p), where y ∈ Rm. An ex-
perimental measurement (observation) of the outputs y can be expressed
as

z = y + r, (2.1)

where the error r is due to measurement and/or modeling errors, the lat-
ter generated by modeling approximations and unmodeled or unresolved
physical processes in M with respect to the reality.

Considering a sample of observations S = {z1, z2, . . . , zN}, the likeli-
hood function is defined as

f(S, p) =
N∏

i=1

p(zi|p), (2.2)
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Chapter 2. The estimation problem

where p(zi|p) is the probability of the observed variable zi given p. Maxi-
mum likelihood estimation seeks to find the most likely vector p for model
M by maximizing function f(S, p), i.e. it identifies the vector p that gives
the maximum probability of realizing the measurements. Given the expo-
nential nature of probability densities, the problem is re-formulated as the
minimization of the negative logarithm of the likelihood function:

p∗ = arg min
p

J, (2.3)

with J = − ln f(S, p).
Assuming a normal (Gaussian) distribution with zero mean for the resid-

uals ri, i = 1, N , and further assuming that the residuals are statistically
independent from one another, the likelihood function can be expressed as

f(S, p) =
(
(2π)m det R

)−N/2
exp

(− 1

2

N∑
i=1

rT
i R−1ri

)
, (2.4)

where
E[rir

T
j ] = R δij, (2.5)

E[·] being the expected value operator, R the error covariance and δij the
Kronecker delta symbol. The optimization cost function of problem (2.3)
then becomes

J =
mN

2
ln 2π +

N

2
ln det R +

1

2

N∑
i=1

rT
i R−1ri. (2.6)

Notice that, when modeling errors are present, the assumptions of zero
mean of the residuals r might not be fully satisfied, although they appear
to be routinely adopted in practical applications [18].

A robust numerical implementation of problem (2.3), as proposed in
Ref. [23], can be based on the following iteration, termed here Adaptive
Covariance Maximum Likelihood (ACML) method:

1. For a given error covariance R, assumed temporarily frozen, minimize
with respect to the free parameters p the cost function

J̃ =
1

2

N∑
i=1

rT
i R−1ri, (2.7)

which is obtained from Eq. (2.6) by neglecting all irrelevant constant
terms.
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2.2. Identifiability and singular values decomposition

2. For the parameters p∗ obtained at step 1, minimize with respect to R
the cost function J . The solution is obtained in closed-form, leading
to the update of the error covariance matrix (see Ref. [18], Appendix
E, for details):

R =
1

N

N∑
i=1

rir
T
i . (2.8)

If not enough samples are available to reconstruct an estimate of the
error covariance R, one can further assume the statistical indepen-
dence of the residual components, so that the covariance becomes

R = diag(. . . , r2
j , . . .), j = 1,m. (2.9)

3. Return to step 1, and repeat until convergence.

This approach should be contrasted with the classical weighted least
squares approach, which amounts to performing just step 1 once, by as-
suming R known and frozen.

2.2 Identifiability and singular values decomposition

The evaluation of the identifiability of the parameters is a critical step of all
identification problems, since it is important to select the parameters that
are going to be identified and to consider the outputs which can be used
in order to maximize the informative content of the measures. There exist
several issues which could lead to ill-posed identification problems.

For example, as simply deducible, the use of measures affected by a high
level of noise or poorly influenced by a set of parameters, leads irremedia-
bly to not accurate estimates. Moreover, it is also possible to consider two
or more parameters which involve similar effects on outputs: even if we try
to solve as best as possible the estimation problem, there will be at least
one combination of the parameters, which is actually not-identifiable.

Fortunately, in many cases a bit of practice and simple physic considera-
tions are enough to formulate a well-posed problem. In any case, the system
identification theory gives several rigorous and useful a priori and a pos-
teriori criteria to formulate and solve coherently an identification problem
and to evaluate the identifiability level of the unknowns. All these criteria
become essential for those problems characterize by low identifiability of
some parameters, which are actually harder to solve.

The basic concept for evaluating the accuracy of the estimates is the
so-called Cramér-Rao lower bound.
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Chapter 2. The estimation problem

Indicating as p̄ the true but unknown deterministic parameters to be es-
timated from measurements, it can be shown [18, 23] that the Cramér-Rao
bounds on the covariance of their estimates p∗ is given by

Var(p̄− p∗) ≥ D, (2.10)

where D = F−1, F is the Fisher information matrix

F =
N∑

i=1

GT
i R−1Gi, (2.11)

and Gi = ∂yi/∂p the sensitivity of the observations of the ith experiments
with respect to the parameters. The j element of the diagonal of D, noted
dj,j is the variance of the jth parameter, and in turn

√
dj,j is its deviation.

This result shows that the identified parameters are stochastic variables
too, and that an estimation of their variance is achievable a priori and a pos-
teriori using the sensitivity matrix computed respectively with the model
before and after the identification. In order to bridge mathematics with
physics, consider two simple examples in which the identifiability is com-
pletely lost. First, if a given parameter does not affect the outputs a column
of G would be always equal to zero leading to a singular Fisher information
matrix and to an ill-posed problem. Second, if two or more parameters have
similar effects on outputs, in the sense that the sensitivity of a parameter is
equal to a linear combination of the sensitivity of the others, there would be
one column of G that is a linear combination of the other columns leading
again to a singular information matrix. What happens in this case is that,
intuitively, it is impossible to understand how to change the parameters be-
cause there are infinite possible solutions which actually minimize the cost
functions. Of course between the completely not-identifiability and the per-
fect identifiability there are infinite levels, and the Cramér-Rao bound can
measures such levels.

In addition, the correlation matrix X is another important tool for mea-
suring the collinearity between two parameters. The element (p, q) of X
noted χp,q is computed by the following equation

χp,q =
dp,q√
dp,pdq,q

, (2.12)

where du,v is the element of matrix D located in position (u, v). It is clear
that the correlation matrix X is symmetric and has all the diagonal ele-
ments equal to 1. For the other elements, the values 1 or -1 indicate a
perfect collinearity whereas 0 a perfect decoupling. If the modulus of an
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2.2. Identifiability and singular values decomposition

extra-diagonal element |χp̄,q̄| is greater than a certain level (typically set
equal to 0.90 or 0.95) the p̄th and q̄th parameters are actually considered
not identifiable.

Although the Cramér-Rao inequality and the correlation matrix are im-
portant indications of the goodness of the identified model, and in general
of the well-posedness of the estimation problem, the need of a rigorous ap-
proach to follow in the case of low identifiability still remains. One of the
possible answers arises from the singular values decomposition.

Consider the matrix G made by stacking the sensitivity matrices Gi,
multiplied to the left by R−1/2, for all i = 1, N as

G =




R−1/2G1

R−1/2G2

...
R−1/2GN




, (2.13)

and consider the singular values decomposition (SVD) of G
G = USV T . (2.14)

where U and V are the left and right square orthogonal unit matrices of the
decomposition, and S is constructed as

S =

[
Σ

0

]
, (2.15)

where Σ is a diagonal matrix whose elements σi are the singular values
typically sorted so as σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

It is simple to rewrite Eq.( 2.11) using Eq. (2.13) as

F = GT G, (2.16)

or alternately, using the right singular matrix V and singular values Σ ,

F = V Σ2V T . (2.17)

From Eq. 2.17, the inverse of F ,

F−1 = V Σ−2V T , (2.18)

is simply derivable.
Furthermore, by pre- and post-multiplying (2.10) by V and V T , the

Cramér Rao inequality holds true, since V is a full rank matrix. Therefore

Var(V T p̄− V T p∗) ≥ V T F−1V , (2.19)
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Chapter 2. The estimation problem

which, recalling (2.18), leads to the following

Var(Θ̄−Θ∗) ≥ [
Σ2

]−1
, (2.20)

where
Θ = V T p (2.21)

is a new set of unknowns computed as a particular linear combination of
the original parameters p. Notice that V is an orthonormal matrix and
therefore it could be viewed as a rotation tensor.

The inequality (2.20) means that Σ−2 represents the lower bounds of
the variance of the identification of the parameter Θ. Reminding that Σ is
a diagonal matrix, the Cramér Rao inequality could be written in the scalar
form for the jth component of the vector Θ, noted θj as

Var(θ̄j − θ∗j ) ≥
1

σ2
j

. (2.22)

A certain parameter θj for which the corresponding Cramér Rao lower
bound (1/σ2

j ) is smaller than a suitable amount, can be considered reliably
identifiable. The threshold of the variance for which a particular parameters
θj could be selected as identifiable or not has to be chosen depending on
the problem at hand.

According to the SVD, the estimation problem could be reformulated in
order to consider only the identifiable parameter, [24].

To this end define the vector of identifiable parameters as ΘID =
{θ1, θ2, . . . , θNID}T , where NID is the number of identifiable parameters
and the vector of not identifiable parameters ΘNID = {θNID+1 , θNID+2 , . . .}T .
Consequently, the right singular matrix can be divided as V = [VID VNID],
where VID = [v1, v2, . . . , vNID ] and VNID = [vNID+1, vNID+2, . . .].

The minimization of the maximum likelihood cost function (2.6) is then
performed with respect to the vector θID. Then the physical parameters p
are computed simply according to the definition in Eq. (2.21), as

p = VIDΘID. (2.23)

Moreover, the SVD provides even more information on the system iden-
tifiability through the matrix U , because its columns show which of the
available measurements actually contribute to identify the parameters.
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CHAPTER3
Identification of blade beam models

THE formulation of beam elements has received considerable attention
in the literature. Some complex applications, such as anisotropic
helicopter and wind turbine rotor blades, are solved using geometri-

cally exact formulations [25] whose fully-populated stiffness matrices are
obtained either by the use of sectional analysis theories (see for example
Ref. [26] and references therein), or directly by 3D finite elements [27,28].
The resulting blade models are used for performing simulations in all nec-
essary operating conditions using a plethora of multi-disciplinary aero-
servo-elastic modeling tools, with the purpose of estimating loads, stability
boundaries, vibration levels and other quantities of interest, as well as for
the tuning and verification of control laws.

The rotor blades of modern wind turbines, being realized using compos-
ite materials and designed under a number of aero-elastic and manufactur-
ing constraints, are typically characterized by complex distributions of their
stiffness, mass and inertial properties along the span. Often, manufactured
blades present characteristics that differ in a non negligible way from their
theoretical design values. The reasons for this are numerous, and include
manufacturing processes, uncertain material properties, modeling approxi-
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Chapter 3. Identification of blade beam models

mations, etc.
To understand the nature of the discrepancies between designed and

manufactured blades, and to provide updated high fidelity mathematical
beam models to be used in aero-elastic simulations, it is useful to de-
vise procedures that provide estimates of the physical parameters of the
blade on the basis of experimental measures obtainable on the manufac-
tured items [29–32].

This chapter describes the development of model update procedures [17]
applicable to wind turbine blades; this problem is part of the broader task
of system identification of wind turbines. The formulation is based on
an output-error maximum-likelihood constrained parameter estimation ap-
proach [18, 23, 33, 34]. The free parameters of the estimation problem are
represented by the structural and mass characteristics of a beam model of
the blade. An ad hoc interpolation scheme is used to keep the number of
free parameters to a minimum, while at the same time accounting for the
rapidly varying and often discontinuous distributions of physical properties
along the span of typical modern wind turbine blades.

The parameter estimation is formulated as a constrained optimization
problem, solved using a Sequential Quadratic Programming (SQP) ap-
proach [35]. The cost function is formulated in terms of the maximum
likelihood function and considers multiple kind of measurements, which
may include natural frequencies, mode shapes, static deflections and dy-
namic responses. The use of the maximum likelihood function allows one
to account for the stochastic nature of the problem, due to the inevitable
presence of noise and uncertainties in the measurements.

The definition of the estimation problem is complemented by a number
of equality and/or inequality constraints, which may include bounds on the
physical parameters, knowledge of the total mass and of the location of the
center of gravity of the blade, and the requirement that the updated model
improves the metric quality measure provided by the Modal Assurance Cri-
terion with respect to the initial baseline model.

Although most published methods in finite element model updating use
exclusively modal data (cf. for example Refs. [2–5] and references therein),
we argue here that one should use all possible sources of information for
increasing the reliability of model update procedures. A better identifiabil-
ity of the parameters is typically obtained only when enough information
is contained in the experimental measurements. To this reason, the present
approach is formulated so that multiple measures are fused simultaneously
together to yield more accurate estimates of the unknown parameters. To
robustify the solution of the identification problem, which is often difficult
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given its high dimensionality, an iterative approach in which the estimation
problem is divided into smaller sub-problems and repeated until conver-
gence is developed. Such algorithm greatly eases convergence, without
however affecting the quality of the results.

The idea of combining multiple sources of information for the calibra-
tion of wind turbine beam models is not new. Static deflections under grav-
ity and applied loads were used in Ref. [36] to estimate the stiffness and
mass distributions, while modal data was used for a final consistency check
of the estimates. Static deflections and modal data were fused together
using an unconstrained optimization approach in Ref. [37] to estimate the
Young modulus distribution along the blade, while the mass distribution
was assumed to be known or measured directly by cutting the blade into
sections. The same method was then further evaluated on multiple blade
estimation problems in Refs. [38, 39].

The present proposed approach differs from these related methods in a
number of ways. First, the identification of Young modulus, as opposed to
the identification of elements of the stiffness matrix as used here, requires
a precise knowledge of the cross section geometry that one must either as-
sume or measure by cutting the blade into sections. Second, a contribution
of our work is to show that one can identify the blade mass properties with
a good level of confidence together with the stiffness ones thanks to the use
of a constrained optimization, in which additional information (e.g., total
mass, center of gravity location, etc.) is infused, avoiding to make assump-
tions a priori or to cut the blade and weigh the resulting sections. Third, the
method is based on a statistical approach through a maximum likelihood
cost function. This has important practical implications. In fact, the effects
of noise in the measurements are accounted for, and there is an automatic
and physically-based way of weighting the different data sets that enter into
the process; furthermore, one can evaluate the confidence intervals of the
estimates. Fourth, we propose a specially devised divide and conquer ap-
proach that, without affecting the quality of the results, eases convergence
of these high dimensionality constrained optimization problems.

The proposed formulation is demonstrated first on simulated data re-
garding a large wind turbine blade, and then using real experimental mea-
sures obtained on two small wind turbine blades.

The procedures and the results shown in this chapter are based on those
presented in [40]
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Chapter 3. Identification of blade beam models

3.1 Model Updating of Blade Beam Models

3.1.1 Model Updating Including Modal and Static Response Data

Typically, multiple experiments can be conducted on a blade, including
measurement of the eigenfrequencies, of the eigenvectors, of static de-
flections under concentrated or distributed known loads, and temporal re-
sponses under suitable excitations. Conceptually, all this data can be prof-
itably used in a single unified model updating procedure, in order to esti-
mate the beam properties that best fit the available experimental measure-
ments.

Since parameter estimation of complex models is a problem hard to
solve, the possibility of introducing in the estimation process all the avail-
able experimental data results to be interesting in order to improve the in-
formative content of the measures. To this reason the proposed maximum
likelihood approach is formulated to account for multiple experiments.

The output vector is here defined as

y = (yT
M ,yT

S )T , (3.1)

where yM is the set of outputs accounting for modal data (frequencies and,
possibly, modal shapes), and yS the set of outputs accounting for static
deflections.

More precisely, yM is defined as

yM = (. . . , ωk,φ
T
k , . . .)T , k = 1, NM , (3.2)

where ωk is the kth natural modal frequency, φk its associated modal shape
and NM the number of modes, obtained from the solution of the corre-
sponding eigenvalue problems on model M:

[ωk,φk] = eig(k, p). (3.3)

If the eigenvectors are not experimentally available, then the set of out-
puts simply contains the modal frequencies, i.e. yM = (. . . , ωk, . . .)

T .
In both cases, we write yM ∈ RmM , where in the first case mM =
(1 + N2 nodesNdc)NM , being Nnodes the number of nodes in the FEM model
of the blade and Ndc the number of displacement components in the modal
vector, while mM = NM in the second case. The associated maximum
likelihood cost function of Eq. (2.7) is noted JM .

Consider now the static response of model M. The vector of structural
deflections at the mesh nodes, noted d, can in general be computed by
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3.1. Model Updating of Blade Beam Models

solving the following system of governing equilibrium equations

g(d,u,p) = 0, (3.4)

where u is the input (representing either point and/or distributed loads on
the structure). Clearly, the governing equations depend on the model pa-
rameters p. For each given loading condition uk of the NS available ones,
the corresponding static deflections are noted dk and the outputs are defined
as

ySk
= hS(dk), k = 1, NS, (3.5)

ySk
∈ Rmy , i.e. they are given by some function hS(·) of the beam response

(for example, they might represent the displacement components at the tip
of the beam or at some other given location along the span). Then, the
outputs for all loading conditions are gathered together to define the vector
of outputs accounting for static deflections, i.e.

yS = (. . . , yT
Sk

, . . .)T , k = 1, NS, (3.6)

where yS ∈ RmS , mS = myNS . The associated maximum likelihood cost
function of Eq. (2.7) is noted JS .

3.1.2 Model Updating by Constrained Optimization

For the practical solution of realistic problems, the model parameter es-
timation given by (2.3) is reformulated here as the following constrained
optimization

min
p

J(y,z), (3.7a)

s.t.: c(y, p) ≤ 0, (3.7b)
ylb ≤ y ≤ yub, (3.7c)
plb ≤ p ≤ pub, (3.7d)

where the outputs y were given in (3.1) and are functions of the unknown
parameters p as detailed in §3.1.1. Assuming that modal and static mea-
surements are uncorrelated, the maximum likelihood cost J in (3.7a) can
be written as the sum of two terms as

J =
1

mM

JM +
1

mS

JS, (3.8)

where JM and JS are the maximum likelihood costs expressed by Eq. (2.7)
for, respectively, the modal and static deflection data. Notice that the two
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Chapter 3. Identification of blade beam models

cost contributors are scaled by the number of available measures, mM and
mS , since the two are typically quite different between each other (e.g., tens
of static deflections and only a few eigenfrequencies, as in the examples
shown later on).

The formulation of the problem is completed by a number of constraint
conditions. Equations (3.7b) represent possible linear and/or non-linear
equality and/or inequality constraints on the outputs and/or the parameters,
as detailed further below. Furthermore, Eqs. (3.7c,3.7d) specify possible
lower and upper bounds on the outputs and the parameters, respectively.

Problem (3.7) is a Non-Linear Programming Problem (NLP), which can
be solved effectively with a number of methods, most notably SQP [35] and
Interior Point (IP) [41]. In this work, the former of the two methods was
used, with gradients of cost function and constraints computed by finite dif-
ferences. When eigenvalues and eigenvectors are included in the definition
of the problem outputs, their gradients can be computed efficiently by the
technique described in Ref. [42], although for other outputs the gradients
will in general have to be computed by numerical perturbation means.

As for most optimization problems, it is better to scale all quantities
appearing in (3.7) so as to improve conditioning. To this end, we define
scaled outputs ŷ = (. . . , ŷi, . . .)

T , obtained by dividing each output by its
corresponding measure

ŷi =
yi

zi + δ
, i = 1,m, (3.9)

and in the same way the scaled measures ẑ = (. . . , ẑi, . . .)
T

ẑi =
zi

zi + δ
, i = 1,m, (3.10)

where m is the number of available measures and δ = ‖z‖2 is used to avoid
divisions by zero; similarly, we define scaled parameters p̂ = (. . . , p̂i, . . .)

T

as

p̂i =
pi

p0
i

, i = 1, n, (3.11)

where n is the number of parameters and p0 are values related to the base-
line (initial) model; typically, these values are never equal to zero. With
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3.1. Model Updating of Blade Beam Models

these new definitions, the scaled parameter estimation problem becomes

min
p̂

J(ŷ, ẑ), (3.12a)

s.t.: c(ŷ, p̂) ≤ 0, (3.12b)
ŷlb ≤ ŷ ≤ ŷub, (3.12c)
p̂lb ≤ p̂ ≤ p̂ub, (3.12d)

which in general exhibits superior convergence and robustness when com-
pared to the unscaled problem (3.7).

Several different constraint types can be appended to the optimization
problem by means of Eqs. (3.12b), so as to account for further sources of
knowledge about the solution other than the measurements z.

For example, when identifying the mass properties of the blade, the mea-
sured total mass and center of gravity locations can be enforced as con-
straints as

c =




1− 1

M

∫ L

0

m(s) ds

1− 1

sG M

∫ L

0

m(s)s ds


 = 0, (3.13)

where M is the measured total blade mass, m(s) = m
(
p(s)

)
is the mass per

unit span, s ∈ [0, L] is a coordinate measured along the beam reference line,
being L the beam length, and sG the center of gravity location along the
span. Notice that here again the equations were written in non-dimensional
form for scaling reasons.

To ensure that the eigenvectors computed on the updated model improve
the metric quality measure provided by the Modal Assurance Criterion
(MAC) with respect to the initial baseline model, the following inequal-
ity constraints can be included in the definition of Eqs. (3.12b):

c =
(
. . . , MAC(φ0

i , zφi
)−MAC(φi,zφi

), . . .
) ≤ 0, i = 1, NM ,

(3.14)
where φ0

i is the ith eigenvector computed on the initial baseline model,
zφi

the corresponding measured eigenvector, and the operator MAC(·, ·) is
defined as

MAC(a, b) =
(aT b)2

(aT a)(bT b)
. (3.15)

3.1.3 Definition of Model Parameters

More often than not, the property distributions of wind turbine blades are
quite complex, and present high gradients or jump discontinuities, for ex-
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Chapter 3. Identification of blade beam models

ample in correspondence of the beginning and ending of shear-webs. In
order to accurately represent such complex property distributions, beam
analysis codes for wind turbine applications typically define a large num-
ber of sectional properties along the blade span. The direct use of such
sectional properties as unknown parameters in the model update processes
described above is impractical for a number of reasons. First, a large num-
ber of sections would imply a large number of unknown parameters, which
in turn would imply large computational costs. Second, and more impor-
tantly, the use of a large number of unknowns to represent beam properties
along the span will decrease the observability of the problem.

To address these problems, the identification parameters p of prob-
lem (3.7) are here defined in terms of interpolated multiplicative shape
functions that deform a given baseline property distribution, as detailed
next.

First, the blade span is divided into Nsegm segments, the kth segment be-
ing defined for sk ≤ s ≤ sk+1, where the values 0 = s1, s2, . . . , sNsegm+1 =
L identify segment boundaries. Smooth interpolations are defined on each
segment, while one may or may not impose a desired level of continuity
between segments through constraints on the parameters to be included in
Eqs. (3.12b). With no inter-segment constraints, one has a simple way to
account for discontinuities in the blade property distributions.

Next, the ith property at station s along the span of the updated model,
noted πi(s), is expressed as

πi(s) = αi(s) π0
i (s), (3.16)

where π0
i (s) is the value of the ith property for the initial model (base-

line), while αi(s) is the multiplicative deforming factor of the baseline.
The number of identified properties is noted Nprop, and πi(s) can represent
any one of the parameters of the beam model, as for example mass per unit
span, sectional inertias, bending, torsional, axial and shear (according to
the assumptions of the model) stiffnesses. For s in the kth segment, i.e.
s ∈ [sk, sk+1], the span-wise varying deforming factors are defined by the
following interpolation

αi(s) =

Nk
nodes∑

j=1

nj(ξ)α
k
ij
, (3.17)

where nj(ξ) are shape functions expressed in terms of the non-dimensional
abscissa ξ ∈ [0, 1],

ξ =
s− sk

sk+1 − sk

, (3.18)
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and αk
ij

are the associated Nk
nodes nodal values for segment k. There is ample

freedom in the choice of the shape functions; in the examples we have used
linear functions, but other choices (e.g., cubic splines) are certainly possible
and could be dictated by the specific problem at hand. While it is clearly
possible to use additive corrections to the baseline, the present multiplica-
tive approach was preferred here because it allows, for the same number
of degrees of freedom, for a richer representation of the distribution. For
example, assuming for the sake of argument a cubic baseline, a linear cor-
rection gives a quartic description with the multiplicative approach, while
only a cubic description with the additive one.

Finally, the optimization parameters are defined as the nodal values of
the shape function, i.e.

p = (. . . , αk
ij
, . . .)T , i = 1, Nprop, j = 1, Nk

nodes, k = 1, Nsegm. (3.19)

3.2 Preliminary results using simulated data

At first, we consider the application of the proposed procedures to a sim-
ulation case, with the goal of verifying the well-posedness of the problem
and the identifiability of the unknown parameters.

To this aim, we consider the 61.5 meter long wind turbine blade of
Ref. [43]. For simplicity of this preliminary study, the identification param-
eters were chosen as constants defined on three segments of equal length, as
shown in Figure 3.1, for each structural property (i.e. flap-wise, edge-wise
and torsional stiffnesses, and mass per unit span).

Figure 3.1: Definition of identification parameters for the preliminary simulation study.

The blade, clamped at the root and subjected to gravity, was loaded first
with a tip force in the flap-wise direction, then in the edge-wise direction,
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Chapter 3. Identification of blade beam models

and finally with a tip torsional moment. The outputs included the displace-
ments and rotations of ten uniformly spaced sections along the blade span,
as well as the lowest five modal frequencies. All measures were added to
a zero-mean Gaussian white error with standard deviation equal to 0.5%
of their maximum value. For displacements, such values are typical of the
case of wire transducer measurements, used later in one of the experimental
tests, see section 3.3.

Eigenvectors were not included in this simulated example, for two rea-
sons. First, in actual laboratory experiments eigenvectors are more difficult
to measure than eigenvalues and they are often associated with higher levels
of noise and uncertainty [17]. Second, eigenvectors often carry a smaller
informational content than eigenvalues; this can be explained, for example,
by recalling that the modal shapes of a beam of constant properties do not
depend on the beam properties but only on the boundary conditions. This
fact was confirmed by numerical experiments, which showed that the use
of eigenvectors brings little benefit to the quality of the property estimates
of wind turbine blades that are obtained by the sole use of eigenvalues and
static deflections.

To ease convergence and robustify the procedure, the identification was
conducted using a divide and conquer approach, where each set of proper-
ties (flap-wise, edge-wise, torsional stiffness and mass) is identified sepa-
rately, while keeping the others temporarily frozen, and then iterating until
convergence. The iteration is necessary to correctly capture all couplings,
since all parameters have some influence on all outputs, although small in
some cases.

The procedure, used here and in the following, can be summarized as
follows:

1. Estimate flap-wise, edge-wise and torsional stiffnesses, one at a time,
keeping the other ones frozen at their last updated values.

2. Maintaining the blade stiffness properties fixed, estimate the mass dis-
tribution, while enforcing constraints on measured total mass and cen-
ter of gravity position, as well as MAC constraints if mode shapes are
available.

3. Return to step 1 and repeat until convergence.

All steps are performed by solving an optimization defined by the same
cost function, i.e. using always all available measurements (static test de-
flections and modal information) and, in this sense, this approach can be in-

30



3.3. Model Update of “Blade A”

terpreted as a Gauss-Seidel-like iteration on the original fusion-based prob-
lem.

Notice that in step 1, being the blade in general twisted and coupled, the
result of each identification (e.g. of flap-wise stiffness) will be felt in the
next (e.g., edge-wise stiffness). Similarly, the modifications of the stiffness
distributions achieved by step 1 will be felt in step 2 when modifying the
mass mainly through their effects on the modes. Finally, when iterating and
repeating step 1, the modified mass will affect the solution because it will
change the blade deflection due to gravity and the modes.

Notice that this procedure is just a way to simplify convergence, but
it will not alter the results, so that the identification still remains a fusion
approach where all available measurements contribute to the estimation of
the unknown parameters. In other words, if one were to solve the prob-
lem in one shot (i.e., without divide and conquer), provided that one could
make such one shot solution converge, then one would get exactly the same
results that are obtained with the proposed divide and conquer iteration at
convergence. This is so because the various steps in which the identification
is broken, are repeated multiple times and iterated until convergence.

Table 3.1 summarizes the results of this identification exercise; the table
column labeled “Initial” reports the initial guesses for the unknown param-
eters, which were arbitrarily set to ±10÷ 20% of the real ones. The results
show that the properties associated with the central part of the blade are
more precisely identifiable than the ones towards the root, which in turn are
more precisely identifiable than the ones of the tip region. This is due to
the fact that the central part of a wind turbine blade is usually the one that
contributes the most to the rigidity of the structure. Considering the central
part of the blade, one can also observe that the flap-wise stiffness is more
precisely identifiable than the edge-wise stiffness, which in turn is more
precisely identifiable than the torsional stiffness. This can be explained by
the fact that the three stiffnesses have decreasing (in the order flap-wise,
edge-wise and torsion) effects on the displacement response of the blade,
as expected.

Next, we consider the identification of the structural properties of two
real wind turbine blades using experimental data, named in the following
blades A and B, respectively.

3.3 Model Update of “Blade A”

The blade was tested by a consultant of the manufacturer for the purpose
of verifying the resistance of the blade. Although these tests were not de-
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Chapter 3. Identification of blade beam models

Table 3.1: Identified parameters for the preliminary study using simulated data.

Parameters Real Initial Identified

α1
11 (root) 1.0 1.2 1.011

Flap-wise α2
11 (central) 1.0 1.2 1.001
α3

11 (tip) 1.0 1.2 1.011

α1
21 (root) 1.0 0.8 0.996

Edge-wise α2
21 (central) 1.0 0.8 0.997
α3

21 (tip) 1.0 0.8 1.007

α1
31 (root) 1.0 0.9 1.002

Torsional α2
31 (central) 1.0 0.9 0.994
α3

31 (tip) 1.0 0.9 0.991

α1
41 (root) 1.0 1.1 1.013

Mass α2
41 (central) 1.0 1.1 0.995
α3

41 (tip) 1.0 1.1 0.969

signed for identifying the blade structural properties, it was found that the
collected data was of sufficient quality and informational content even for
this purpose, although with the limitations and problems noted here below.

3.3.1 Description of experimental plant

In order to perform the static tests, the blade was bolted at the root and
equipped with five saddles placed along its span. Loads were applied at
each saddle in the vertical direction at three different points labeled C0, C1

and C2, as shown in Figure 3.2, via cables equipped with load cells and
connected to an overhead traveling crane. Wire distance transducers were
attached at points A1 and A2 on each saddle, as shown in Figure 3.2; an
additional wire transducer was attached at the blade tip.

Static test data are collected loading blade in different points along blade
span and in different points of the load applicators to involve mostly flap
deflections and torsional rotations. For each load condition the available
measures are the elongations of the eleven thread transducers (two trans-
ducers for each saddle and one connected to the blade tip). It’s important to
note that for each section, having only at best 2 transducers, there is no way
to compute without approximations all the 6 displacement components.

Table 3.2 reports the weight of each saddle. Note that such this mass are
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3.3. Model Update of “Blade A”

Figure 3.2: Sketch of saddle used for the loading of blade A.

not negligible compared to the blade mass, and therefore must be consid-
ered in the beam model during the identification.

Table 3.2: Mass of the load saddles.

Load Load Load Load Load
saddle 1 saddle 2 saddle 3 saddle 4 saddle 5

Mass [kg] 37.2 30.6 19.0 14.9 12.6

Static tests

Figure 3.3 shows a schematic view of the experiments: for each load case
Fi represents the force applied to the ith section then Cj the jth point at
which the load have been applied.

The details of the flap experiments (i.e. values of forces and their own
points of application) are in reported in Table 3.3. Then Figure 3.4 show
the measures of the transducers. The corresponding data for the torsional
experiments are presented in Table 3.4, and in Figure 3.5.

From the measures provided by the wire transducers, the vertical deflec-
tions δs and the torsional rotations δr of each sections were obtained under
the assumption of small deviations from the reference configuration, which
holds in the case of the present measurements.

Notice that some of these load cases are far from optimal from the point
of view of the identification of blade structural properties. In fact, whenever
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Chapter 3. Identification of blade beam models

Figure 3.3: Notation for the definition of the load conditions of Blade A.

Table 3.3: Flap experiment: loads. Forces are in kN.

Load Section 1 Section 2 Section 3 Section 4 Section 5
case Fi Cj Fi Cj Fi Cj Fi Cj Fi Cj

1 5.40 C0 0 - 0 - 0 - 0 -
2 0 - 3.24 C0 0 - 0 - 0 -
3 0 - 0 - 2.03 C0 0 - 0 -
4 0 - 0 - 0 - 0.99 C0 0 -
5 0 - 0 - 0 - 0 - 0.40 C0

Table 3.4: Torsional experiment: loads. Forces are in kN.

Load Section 1 Section 2 Section 3 Section 4 Section 5
case Fi Cj Fi Cj Fi Cj Fi Cj Fi Cj

1 4.32 C1 0 - 0 - 0 - 0 -
2 0 - 1.66 C1 0 - 0 - 0 -
3 0 - 0 - 1.07 C2 0 - 0 -
4 0 - 0 - 0 - 0.56 C1 0 -
5 0 - 0 - 0 - 0 - 0.30 C1
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(a) Experiment 1.
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(b) Experiment 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

η − nondimensional blade coordinate

M
ea

su
re

s 
fr

om
 tr

an
sd

uc
er

s 
[m

m
]

 

 

l
1

l
2

(c) Experiment 3.
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(d) Experiment 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

η − nondimensional blade coordinate

M
ea

su
re

s 
fr

om
 tr

an
sd

uc
er

s 
[m

m
]

 

 

l
1

l
2

(e) Experiment 5.

Figure 3.4: Measures coming from transducers.
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(a) Experiment 1.
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(b) Experiment 2.
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(c) Experiment 3.
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(d) Experiment 4.
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(e) Experiment 5.

Figure 3.5: Torsional experiment: measures coming from transducers.
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3.3. Model Update of “Blade A”

outboard saddles remain unloaded, a complete section of the blade behaves
as a rigid body. Therefore, displacement measures along it carry no in-
formational content on its stiffness characteristics. Furthermore, only few
measurements were made, and this prevented us from reserving a part of
the data set for the validation of the identified model, as commonly done.

Modal tests

Several dynamic trials have been done in order to define the natural fre-
quencies of the blade.

Modal frequencies were found putting two monoaxial accelerometers
PCB393B12 of 0.23 kg weight on a section located at 4510 mm from root
and impacting the blade using a shock hammer test (SHT) PCB086B20.
The accelerometers were placed with the axes orthogonal to each other so
as to measure approximately the flapwise acceleration with the first and the
edgewise with the second accelerometer. Table 3.5 reports the first 4 natural
frequencies of the blade.

Table 3.5: Natural frequencies of the blade.

Mode I flapwise I edgewise II flapwise II edgewise
Frequencies [Hz] 3.65 7.43 10.89 27.34

Total mass and center of gravity position

In order to measure the total mass and the center of gravity position, the
blade was weighted 32 times using two load cells placed in several known
positions. From each of the 32 weighting it is possible to estimate simply
the total mass, M , and the center of gravity position, rCG, imposing the
equilibrium of the systems. The mean values of M and rCG, other than the
measured blade length are reported in Table 3.6.

3.3.2 Estimation of beam properties

Piecewise linear shape function were used for all unknown distributions.
By performing a few tests until satisfactory results were obtained, it was de-
termined to use five nodes for the flap-wise and torsional stiffnesses, three
nodes for the mass distribution, two nodes for the edge-wise stiffness. The
reduced number of edge-wise degrees of freedom is due to the lack of tests
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Chapter 3. Identification of blade beam models

Table 3.6: Total mass and blade center of gravity position.

Length [m] Total mass [kg] CG position [m]

6.2 74.14 1.93

with edge-wise loading, which does not allow for an accurate estimation
of this stiffness distribution. Notice also that, since the total mass and the
center of gravity position are included as constraints in the identification
process, the number of nodes of the corrective function of the mass distri-
butions must be greater than 2; otherwise there would be no ways to modify
the mass distribution without violating the constraints.

For some of the load cases, Figure 3.6 shows the measured deflections
(triangular symbols), the deflections computed with the model prior to iden-
tification (dashed lines), and the ones after identification (solid lines), plot-
ted as a function of the non-dimensional blade span η = s/L. Table 3.7
reports the measured eigenfrequencies, as well as the ones prior to and after
identification. For all outputs, the initial large discrepancies are markedly
reduced after identification, and the identified model appears to be well
correlated with the experimental data.

Table 3.7: Lowest natural frequencies of blade A.

Mode I Flap I Edge II Flap II Edge

Initial model 3.79 6.94 12.72 22.86
Identified model 3.62 7.50 11.73 25.29

Measures 3.65 7.43 10.89 27.34

The estimated blade properties are displayed in Figure 3.7. Each figure
shows the initial (dashed lines) and the identified (solid lines) properties, as
well as their Cramér-Rao standard deviations. Because a nominal torsional
rigidity was not available prior to identification, Figure 3.7(c) shows only
the identified one. Notice that the edge-wise stiffness and mass distributions
have a lower level of confidence than the other quantities; for the former
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3.4. Model update of “Blade B”
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Figure 3.6: Static deflections for some loading conditions of blade A. Triangle symbols:
experimental data; dashed lines: initial model; solid lines: identified model.

quantity, this is due to the lack of specific edge-wise load cases, as noted
above.

3.4 Model update of “Blade B”

3.4.1 Description of experiments

A second, different, wind turbine blade was tested by its manufacturer;
these tests were specifically aimed at supporting a model update activity.

Length, total mass and center of gravity position

The blade was initially measured and weighted multiple times, by suspend-
ing it at different span-wise locations using two cables equipped with load
cells. The blade length and the average values of mass M and span-wise
location xCG of the center of gravity along the blade pitch axis are reported
in Table 3.8.
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Chapter 3. Identification of blade beam models
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(a) Flap-wise stiffness.
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(b) Edge-wise stiffness.
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(c) Torsional rigidity.
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(d) Mass distribution.

Figure 3.7: Blade A: span-wise distribution of initial (dashed lines) and identified (solid
lines) properties, and their Cramér-Rao standard deviations (dotted lines).

Length [m] Total mass [kg] CG position [m]

7.52 140.2 2.577

Table 3.8: Length, mass and center of gravity position of blade B.
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3.4. Model update of “Blade B”

Static tests

The blade was bolted at the root and equipped with three saddles placed
along its span. Loads were applied at each saddle in a direction making
an angle α with respect to the vertical, at two different points labeled C0

and C1 (cf. Figure 3.8), via a cable equipped with a load cell connected by
means of snap hooks.

Figure 3.8: Sketch of saddle used for the loading of blade B.

Table 3.9 reports the mass and geometric characteristics of the saddles.
The location of the saddles from the blade root is labeled xO, while the
position of the load application points are given in the reference frame of
axes x, y, z of Fig. 3.8, with origin at the center of the blade root circle.

Separate load cases involving mainly flap-wise, mainly edge-wise and
mainly torsional responses were considered. For each case (mainly flap,
edge or torsional), three different load conditions were considered, two of
which were used for conducting the identification, while the third one was
used for the validation of the estimated model parameters. For the first load
condition all three saddles were loaded, while for the second condition only
the two saddles closer to the tip were loaded; finally, for the third condition
loads were applied only at the tip saddle. Such conditions are linearly in-
dependent, so that the use of one of them for validation after identification
constitutes a meaningful verification of the goodness and generality of the
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Chapter 3. Identification of blade beam models

Saddle 1 Saddle 2 Saddle 3

Mass [kg] 25.4 21.8 20.3

xO [mm] 3017.0 5085.0 6503.0

yC0 [mm] 0.0 0.0 0.0
zC0 [mm] 215.0 -159.0 -150.0

yC1 [mm] -1025.0 -1200.0 -1185.0
zC1 [mm] 215.0 -159.0 -150.0

Table 3.9: Saddle mass and geometric characteristics.

identified model.
Load magnitudes were chosen not to exceed maximum allowed ones,

but also large enough to excite not too small responses, given the fact that
the present blade is short and rather stiff.

The vertical and horizontal components of the loads applied at each
blade section are computed considering the angle α between the vertical
and the direction of loads and including also the weight of the snap hooks
and of the load cell as simply deducible from Figure 3.8.

The deflection of the blade was measured using a Leica Scan
Station C10 laser scanner [44]. Black markers were placed on the
blade surface at nineteen equally spaced sections along the blade span as
shown in Fig. 3.9. Scan data was processed with the Leica Cyclone
7.1 software, that allows one to obtain the marker coordinates in a given
reference frame. Measurements were also performed on the unloaded
blade, so as to obtained the deflected configuration under the sole action
of the gravitational field. Figure 3.10 shows some typical blade scan im-
ages obtained during the laboratory experiments.
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3.4. Model update of “Blade B”

Figure 3.9: Marker IDs and their location on the blade surface.

(a) Scanner image of a torsional static test. (b) Detail of a blade section and of its markers.

(c) Unloaded (dark) and loaded (light) blade cross
sections, for one of the torsional loading conditions.

Figure 3.10: Laser scanner images of blade and supporting frame.
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Chapter 3. Identification of blade beam models

Once the coordinates of markers had been computed using the laser
scanner software, the motion of each blade section was obtained by a non-
linear least squares fit. With reference to Figure 3.11, the blade pitch axis
is located at point H in the unloaded configuration, and at point K in the
loaded one; similarly, the mth marker is located at Pm in the unloaded case,
and at Qm in the loaded one. The relationship between the two configura-
tions can be written as

(Qm −H) = T (Pm −H) + s, (3.20)

where s is the unknown sectional translation vector, and T (ψ) the rotation
tensor parameterized in terms of the unknown rotation vector ψ = ϕk,
with rotation angle ϕ and rotation axis k. Finally, the sectional motion is
computed as

{s, ψ} = arg min
s, ψ

Nmark∑
m=1

εT
mεm, (3.21)

where Nmark is the number of markers for the considered blade section and
εm = (Qm −H)− T (Pm −H)− s.

Figure 3.11: Computation of translation and rotation of a blade section from its marker
coordinates.

The lowest modal frequencies of the blade were estimated by impacting
the blade with a shock hammer, and measuring the response with fifteen
mono-axial accelerometers. Fourteen accelerometers where placed along
the span in orthogonal pairs, one aligned with flap and the other with edge
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3.4. Model update of “Blade B”

motions, while the last one was placed in the blade tip region away from
the pitch axis to better resolve the torsional response. Figure 3.12 shows
the FFT for accelerometers #1, #2 and #3 (i.e. those at the blade tip) as
well as #15 (placed at the root bolted connection, on the frame side), for
excitations in the flap-wise (at left) and edge-wise (at right) directions. The
shock hammer tests were repeated twenty times, and the first four blade
natural frequencies, computed as the mean values of all trials, were used as
modal outputs in the identification process.

(a) Flap-wise excitation. (b) Edge-wise excitation.

Figure 3.12: FFT of some blade accelerometers for shock hammer tests.

It appears that the root constraint is not perfectly rigid, and in fact the
supporting frame is subjected to vibrations as indicated by accelerometer
#15; the flexibility of the frame will be further confirmed by the static test
measures (see Figure 3.13 later on). This will be taken into account dur-
ing the estimation of the blade model parameters, by introducing unknown
stiffnesses at the root boundary condition so as to model this effect. The
effects of flexibility of the boundary conditions in the calibration of blade
models has been previously considered, as described in Ref. [45].

3.4.2 Estimation process

All nominal blade properties showed a marked discontinuity at the 4% span
location, due to a change in the lamination sequence in the root region. Ac-
counting for this, the identification parameters were also allowed to jump
at that location by using two segments (see definition of model parameters
in §3.1.3). The root segment was associated with a single (span-wise) con-
stant identification unknown; the same constant was used in the flap-wise
and edge-wise directions, to account for the cylindrical shape of the blade
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Chapter 3. Identification of blade beam models

at the root. For the rest of the blade we used piecewise linear shape func-
tions, with two nodes for the flap-wise and edge-wise distributions, one for
the torsional rigidity, and three nodes for the mass distribution; such values
were determined by performing the identification for an increasing number
of them, until satisfactory results were obtained.

In order to model the flexibility of the supporting frame of the blade,
three (flap-wise, edge-wise and torsional) torsion springs of unknown stiff-
ness were added to the blade model at the root clamp, and included in the
set of identification parameters. It was observed that the addition of these
unknowns rendered the problem harder to solve, since they tended to pro-
duce effects on the outputs that were highly correlated with the ones due
to the parameters modeling the blade root region. A detailed study of the
Fisher information matrix showed that the couple of spring/root parameters
related to the edge-wise stiffnesses had a better level of identifiability than
the flap-wise pair.

For all loading conditions, Figure 3.13 shows the measured deflections
(triangular symbols), the deflections computed with the model prior to iden-
tification (dashed lines), and the ones after identification (solid lines); mea-
sured torsional rotations of the blade sections appear to be quite noisier than
displacements. The rightmost column, labeled loading conditions 3, shows
validation results, in the sense that the data was not used for the identifica-
tion of the blade properties. All plots, including the validation ones, show
a good quality of the identified model.

Notice, as mentioned previously, the flexibility of the supporting frame:
in fact, the slopes of the measured deflections at the blade root (η = 0) are
clearly different from zero, indicating a flexible root boundary condition.

Table 3.10 reports the eigenfrequencies. Two sets of estimates are given
here. Following the initial values, shown in the first line of the table, the
second line reports the values obtained by using a non-fusion approach,
where stiffnesses were identified first by using all static deflections, and
mass was identified next by using the measured eigenfrequencies, mass
and center of gravity, while keeping stiffness frozen. The third line reports
the values identified by using the proposed and previously explained fu-
sion approach, and associated with the static deflections that were shown
in Figure 3.13. By comparing with the fourth row, which reports the mea-
sured values, it appears that the estimates of the fusion-based approach are
better than the ones of the non-fusion-based approach. On the other hand,
by comparing the results in terms of displacements, which are not reported
here for brevity, one can observe a very slight better correlation of the non-
fusion-based results with the measures. This is expected, since the fusion
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Figure 3.13: Static deflections for the loading conditions of blade B. Triangle symbols:
experimental data; dashed lines: initial model; solid lines: identified model. The
rightmost column shows validation data, and was not used in the identification process.

approach tries to fit the model parameters to all available measures, while
accounting for their relative accuracy through the adaptive error covariance.
Therefore, the non-fusion approach may appear to better fit a sub-set of the
data, but this is just an artifact of its locality and lesser generality.

Table 3.10: Lowest natural frequencies of blade B.

Mode I Flap I Edge II Flap II Edge

Initial model 4.677 8.994 18.71 39.56
Identified model (non-fusion) 4.579 6.876 16.06 29.51

Identified model (fusion) 4.579 7.168 16.75 28.70
Measures 4.578 7.172 16.78 28.69

The fusion-based estimated blade properties are displayed in Fig-
ure 3.14. Each figure shows the initial (dashed lines) and the identified
(solid lines) properties, as well as their Cramér-Rao standard deviations.
Notice the very large discrepancy between the nominal and identified mass
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Chapter 3. Identification of blade beam models

properties; the former were affected by large errors, as also readily shown
by the initial weighing of the blade. This large discrepancy between the
weight of the nominal and the manufactured blade can be justified by the
low accuracy in the unsophisticated and low cost manufacturing process
and in particular to the excessive presence of non structural mass, like resin
and filler, which was not accurately controlled by the manufacturer.
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(a) Flap-wise stiffness.
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(b) Edge-wise stiffness.
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(c) Torsional rigidity.
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(d) Mass distribution.

Figure 3.14: Blade B: span-wise distribution of initial (dashed lines) and identified (solid
lines) properties, and their Cramér-Rao standard deviations (dotted lines).
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CHAPTER4
Identification of aerodynamic properties of

blades

THE behavior of wind turbines is principally influenced by the aero-
dynamics of the rotor. This elementary and basic fact is enough to
emphasize the importance of having an accurate description of the

aerodynamic properties of the blades of wind turbines. Without a correct
characterization of the rotor aerodynamics, the predictive capabilities of
any wind turbine model are dramatically reduced.

At present, several aerodynamic models of wind turbines and rotarywing
aircraft are based on the lifting line theory, which represents an excellent
compromise between accuracy of results and computational costs.

According to the lifting line theory, a lifting body, as a wing or a blade,
is associated to a line on which several airfoils are collected. The aero-
dynamic characteristics of each airfoil are stored in three look-up tables
describing the lift, the drag and the moment coefficients as functions of the
angle of attack, Reynolds number and Mach number. At each station along
the lifting line, the aerodynamic loads of the local airfoil are computed in-
terpolating conveniently the aerodynamic look-up tables starting from the
local chord length, the local angle of attack and the local Reynolds and
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Chapter 4. Identification of aerodynamic properties of blades

Mach number, which are computed considering the wind speed and the ro-
tor rotation as well as the motion involved by the flexibility of the body
linked to the lifting line.

Typically, aero-servo-elastic multibody models of wind turbines use lift-
ing lines coupled with static or dynamic inflow models to model the aerody-
namics of blades, nacelles and towers, introducing often in the computation
the effects of the dynamic stall, the tip and hub losses, tower shadow in or-
der to make the simulation the more realistic as possible, [46, 47].

The use of aerodynamic models based on lifting lines is not limited to
multibody simulations: with the growth of interest in wind farms model-
ing, the attention of many wind engineers has moved to the study of turbine
wakes through large eddy simulations (LES) codes, in which the aerody-
namics of turbines is typically described by three rotating lifting lines, [48].

As simply deducible, the accuracy of the results obtained using any kind
of code implementing lifting line theory, depends essentially and strongly
on two factors. First, on how the look-up tables with the aerodynamic coef-
ficients are accurately tuned and second on how the flow around the lifting
body has a two dimensional behavior.

Considering the first factor, it’s important to know that lift, drag and
moment coefficients of airfoils are generally extracted from wind tunnel
tests, [49,50], or computed using aerodynamic softwares as X-Foil, [51].
It’s reasonable to imagine, therefore, that experimentation uncertainties,
manufacturing processes and computational approximations would affect
the goodness of such aerodynamic properties.

But the second factor above mentioned results to be more critical, espe-
cially in the field of wind turbine modeling. In some working conditions
the flow around the blades is far from being two dimensional, especially
in the root region where the flow is almost always stalled because of the
presence of very thick or cylindrical airfoils. In a rotating blade the stalled
flow, by interacting with the radial pressure gradient due to blade rotation,
tends to run along the blade span, increasing the lift of the stalled part of
the blade. This effects is called “centrifugal pumping”. Moreover, the ra-
dial flow induced by the centrifugal pumping, accelerates under the action
of the Coriolis force toward the trailing edge delaying in this way the stall.
These three-dimensional effects, which often manifest themselves up to the
fifty percent of the blade, are detailed explained in [52].

The possibility to reproduce the complex aerodynamics of rotating
blades within the lifting line framework, less onerous from the compu-
tational point of view, in order to have models which better predicts the
behavior of a real wind turbines is currently an important topic of research.
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4.1. Estimation process

Exploit the fact that CFD codes are able to model suitably the three-
dimensional flow around a rotating wing, in literature several methods
have been proposed to recover the three-dimensional effects in the two-
dimensional properties of the airfoils, [6–10].

On the other hand, the use of system identification techniques to extract
the aerodynamic properties of the airfoils of wind turbines, could actually
fill the gap between the predictions of the models based on the lifting line
theory and the real behavior of turbines, but unexpectedly, in literature there
are not many examples related to this important topic. Ref. [11] is one of the
few examples in which an attempt of computing airfoil properties through
identification procedures is presented. The work developed in this chapter
tries to cover this lack, suggesting two approaches of parametric estimation
and showing a rigorous analysis of the problem.

The chapter is divided into three sections. Section 4.1 describes two
possible approaches to solve the estimation problem: in the first, noted
here as direct approach, the unknowns represent corrective functions to
be applied directly to the aerodynamic properties of the airfoils belonging
the blades. In the second approach, at contrary, the estimation problem is
reformulated using the singular values decomposition in order to achieve a
better conditioned problem. This second approach is noted here as SVD-
based approach.

Section 4.2 shows, for both the approaches, the results obtained from
the identification of the aerodynamics of the scaled wind turbine model V2
from wind tunnel test data.

Finally in Section 5.2, conclusions and possible future developments of
the identification of the aerodynamics of wind turbine rotors are presented.

4.1 Estimation process

4.1.1 Identification using power thrust coefficients and blade loads

Consider now a wind turbine model in which the aerodynamics is mod-
eled by a parametric version of the well-known BEM (Blade Elementum
Momentum) theory. The dynamics of the system is generally computing
solving a non linear set of equations as

gd(x, ẋ, w, p) = 0, (4.1)

where p is the parameter vector, used to parametrize the aerodynamic prop-
erties, x is the state vector and w is the input vector, composed of wind
speed, and wind turbines controls, i.e. pitch angles of the blades and electri-
cal torque. Together with the dynamic equations (4.1), the output equation
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are given
q = hd(x, ẋ, w, p), (4.2)

where q ∈ Rl is the output vector.
Consider now the stationary regime on which the system, if asymptot-

ically stable, converges after an initial transitory under the action of con-
stant, non turbulent and axial wind, constant pitch angles and constant elec-
trical torque. In order to compute such this regime, it is possible to solve
a more efficient static problem, in which the rotating parts of the turbine
are clamped while the air flow due to the rotation of the blades and the
centrifugal acceleration are reproduced for a given rotor speed according to
the Galilean relativity. This equilibrium condition is computing solving the
following static problem

gs(x, u, p) = 0, (4.3)

where the input u is now determined by the wind speed V∞, the rotor speed
Ω and the pitch angle β such that u = {V∞, Ω, β}T . Together with (4.3)
the output equations is defined as

y = hs(x, u, p), (4.4)

where y ∈ Rm is the output vector.
In the development of this work, only stationary working conditions are

considered. This simplification allows to perform the estimation using the
outputs of static simulations, which in general require less computational
time than the dynamic computations, leading to estimation processes per-
formed in reasonable time.

The working conditions of a real wind turbines are often far from being
constant, because the presence of rotor uptilt, wind shear and turbulence in-
volve periodic and in general non constant working regimes. To this reason
measures of the inputs and outputs above mentioned have to be intended
as obtained by averaging over a suitable number of rotor revolutions. This
simplification is generally considered valid especially when the test experi-
ments are performed in a low turbulent wind tunnel as the case analyzed in
this chapter.

Consider N test conditions (or experiments), the input of the ith experi-
ment, with i = 1, N , is defined as ui = {V∞i, Ωi, βi}T .

For a wind turbine in which the structure is considered infinitely rigid,
the couple of variables V∞ and Ω, could be substituted by the tip-speed-
ratio (TSR) λ defined as λ = ΩR/V∞, with R the rotor radius. Of course
for a flexible structure, the aeroelasticity plays an important role in the de-
termination of the performances of the turbines. In such these cases, the use
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4.1. Estimation process

of V∞ and Ω in the input vector is preferable to reproduce correctly also the
deformations of blades.

A large number of measurements, which can be useful for the identifi-
cation purpose, can be extracted from a wind turbines.

In particular, the torque (or alternately power) and thrust measurements,
which are typically available in most of the operative turbines, represent
the first sources of information regard the rotor aerodynamics. Moreover,
also the loads measured at different locations along blade span can be con-
sidered. Unfortunately, the possibility of having also the blade loads as
output involves important modifications to the blades commonly used be-
cause they must be opportunely equipped with strain gages, which in turns
need accurate calibration procedures.

The treatment made in this section is related to the case of having also
the blade loads as measures but the proposed estimation approaches are
tested considering only thrust and torque measured because the wind tur-
bine scaled model V2 was at the moment not equipped with blade load
sensors.

Because the measures of torque T and power P have the same infor-
mative content, since they are linked together by the rotor speed Ω, which
is measured, it is possible to consider as output only one of them. In the
following the use of the power measure is preferred.

The output vector y ∈ Rm related to the ith test condition, noted here
yi is defined as

yi = {Pi, Fi, . . . , M (j)
x i, M (j)

y i
, M (j)

z i, . . .}T , j = 1, Nsec (4.5)

where the subscript i indicates values related to the ith test condition, Pi

and Fi are respectively power and thrust, M
(j)
x i, M

(j)
y i and M

(j)
z i represent

respectively the edgewise, flapwise and torsional blade bending moment
measured at the jth station along blade span and Nsec is the number of
sections in which the load sensors are located.

Rather than power P and thrust F , it is better to use the relative coeffi-
cients CP and CF

CP i = Pi
1
2
ρiV∞3

i πR2 ,

CF i = Fi
1
2
ρiV∞2

i πR2 ,
(4.6)

where ρi the air density of the ith experiment. As power and thrust coeffi-
cients it is possible to introduce also the moment coefficients as

C
(j)
Mx,y,z i

=
M

(j)
x,y,zi

1
2
ρiV∞

2
i πR3

, (4.7)
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which lead to the definition of a new non dimensional output

yi = {CP i, CF i, . . . , CM
(j)
x i, CM

(j)
y i

, CM
(j)
z i, . . .}T , j = 1, Nsec. (4.8)

The associated maximum likelihood cost functions of Eq. (2.6) is noted
JA,

JA =
mN

2
ln 2π +

N

2
ln det R +

1

2

N∑
i=1

(zi − yi)
T R−1(zi − yi), (4.9)

with R the variance of the measurement noise.
Finally the estimation problem is formulated as this bounded optimiza-

tion problem

min
p

JA(y,z), (4.10a)

s.t.: ylb ≤ y ≤ yub, (4.10b)
plb ≤ p ≤ pub, (4.10c)

According to the Adaptive Covariance Maximum Likelihood (ACML)
method just described in Section 2.1.1, the minimization of JA, if the matrix
R is unknown, can be perform with a two step iteration which considers the
alternate estimation of p and R. In this case the cost function for a given
fixed R, noted J̃A is defined as

J̃A =
1

2

N∑
i=1

(zi − yi)
T R−1(zi − yi). (4.11)

4.1.2 Identification with direct approach

Modeling the aerodynamic properties of a blade through lifting line theory
is not trivial. Typically, the external shape of wind turbine blades is defined
by lofting some suitable airfoils, noted here as reference airfoils, according
to chord and twist distributions of the blade, generally designed to optimize
the aerodynamic performances in an iterative process, [53, 54].

The two-dimensional aerodynamic properties of the airfoils loacated at a
generic station along blade span are computed interpolating the properties
of the reference airfoils generally known from wind tunnel test or from
numerical computations.

The method described in this sections, noted direct approach, is based
on the estimation of additive unknown corrective functions, which modify
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directly the baseline of the reference airfoils,

Ci
k(α) = Ci

k

0
(α) + ∆i

k(α) (4.12)

where Ci
k(α) is the kth aerodynamic property, (i.e. lift, drag or moment

coefficients), of the ith airfoil of reference, Ci
k
0
(α) is the same properties

but related to the baseline model, while ∆i
k(α) is the corrective additive

function. The number of aerodynamic properties is noted Naerprop whereas
the number of reference airfoils Nairf.

Each corrective function is defined by the following interpolation

∆i
k(α) =

Nk,i
nodes∑

j=1

ηj(α)δk
ij

(4.13)

where ηj(α) are suitable shape functions and δk
ij

are the associated Nk,i
nodes

nodal values of the kth property of the ith airfoil.
The optimization parameters are then defined as the nodal values of the

shape functions.

p = {. . . , δk
ij
, . . .} i = 1, Nairf k = 1 : Naerprop j = 1 : Nk

nodes
(4.14)

It is important to underline that this estimation approach is very sim-
ilar to that used for identifying the blade structural properties, see Chap-
ter 3. A substantial difference is due to the different kind of corrective
functions used, multiplicative for the structural and additive for the aero-
dynamic identification. In the aerodynamic case it is better to use additive
functions as unknown because the lift coefficient CL could assume a null
value for a certain angle of attack. For that angle of attack the lift coefficient
would be permanently equal to 0 if a multiplicative corrections are used.

4.1.3 Identification with the SVD-based approach

The identification of the aerodynamic properties of rotors is a very com-
plex problem especially if the available measures are only related to power
and thrust obtained in some working condition. As it will be underlined in
Section 4.2.2 dedicated to the results of the direct approach, the difficulty
arises first because the airfoils closer to the root have low level of identifi-
ability and second the number of parameters to-be-identified grows as the
number of reference airfoils increases, leading to a dramatic reduction of
the accuracy of the estimates. Even for simple cases, as for example the one
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related to the estimation of V2 rotor properties, which has only two refer-
ence airfoils, the need of developing a method more robust, able to handle
problems with low level of identifiability, is important. Of course such this
method can be formulated according to the singular values decomposition,
and it is noted here SVD-based approach.

First of all, it is necessary to consider the kth aerodynamic property,
with k = 1, Naerprop and Naerprop the number of aerodynamic properties to-
be-identified, as a function of the angle of attack α and of a variable ξ
linked in a bijective way to the non-dimensional blade span η. The kth
aerodynamic coefficient Ck is then defined as

Ck = Ck(α, ξ(η)), (4.15)

The variable ξ could be equal for example to the non-dimensional blade
span or to the thickness of the blade, on the basis of the specific needs. As
example, choosing ξ(η) = η, according to Equation 4.15 the lift coefficient
of the airfoil located at η = η̄ related to the angle α = ᾱ is indicated with
CL(ᾱ, η̄).

The kth identified property is defined in the same way as

Ck(α, ξ(η)) = C0
k(α, ξ(η)) + ∆k(α, ξ(η)) (4.16)

where C0
k(α, ξ(η)) is the nominal property and ∆k(α, ξ(η)) is the kth un-

known corrective function.
The range of interest of the two variables α and η defines the two-

dimensional domain D = D(α, ξ(η)). For each properties Nk
nodes nodes

are defined in the domain D.
Each corrective function is described by means of suitable shape func-

tions φkj(α, ξ(η)) with j = 1, Nk
nodes,

∆k(α, ξ(η)) =

Nk
nodes∑

j=1

φkj(α, ξ(η))δk
j (4.17)

where δk
j are the nodal values of the kth aerodynamic properties. As for

the previous case, several kind of shape functions, linear, quadratic, cubic,
etc. . . , can be chosen according to the specific problem at hand. In the
development of this work, linear shape functions have been chosen.

All the nodal values for each aerodynamic properties are collected in a
vector t of length Nt, named physical parameters, as

t = {. . . , δk
j , . . .}T k = 1, Naerprop, j = 1, Nk

nodes, (4.18)
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Figure 4.1: Stacking of the nodal values in a vector. Only CL and CD are displayed for
clarity, but it is also possible to include for example Cm.

as symbolically depicted in Figure 4.1

Since the vector t contains different kind of variables, for example lift
and drag coefficients, which may assume values of different magnitude, it’s
essential to scale each element of t, δk

j , by an suitable reference value δk
j ref

.
All these scaled values are collected in the vector t̂,

t̄ = {. . . , δk
j /δ

k
j ref

, . . .}T k = 1, Naerprop, j = 1, Nk
nodes. (4.19)

The sensitivity matrix for the ith experiment is computed as Gi =
∂y/∂t̄.

Eventually, compute the matrix G, stacking matrices R−1/2Gi as in
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Eq. 2.13

G =




R−1/2G1

R−1/2G2

...
R−1/2GN




, (4.20)

and compute its singular values decomposition, G = UΣV T .
According to what stated in Section 2.2, this decomposition can be used

to reformulate the identification problem in a more robust and identifiable
way. Define then the new orthogonal parameters θ

θ = V T t̄, (4.21)

or alternately for the wth component of the θ, noted θw,

θw = vT
w t̄, (4.22)

where vw is the wth column of the right singular matrix V . The Cramèr Rao
variance of the orthogonal parameter θw, noted σ2

w is computed according
to Eq. (2.20) as

σ2
w =

1

Σ2
w,w

, (4.23)

where Σw,w is the wth element of the diagonal of matrix Σ, which actually
corresponds to the wth singular value.

Since the vector t̄ is scaled, the standard deviation σw could be inter-
preted as the normalized deviations with respect to the reference values
used to scaled the parameter vector t. This remark allows to select sim-
ply a threshold of identifiability σd for accepting or discarding a particular
orthogonal parameter θw if its deviation σw is lower (accept) or greater (dis-
card) than σd. A typical values for σd is 0.05.

The vector of parameters to-be-identified p is thus composed by all the
parameters θw which σw ≤ σd,

p = {. . . , θw, . . .} w ≤ NID, (4.24)

where NID is the number of identifiable parameters. All the other θw for
w > NID are discarded since their level of identifiability is too low.

The estimation problem is then solved by minimizing the cost function
defined in (4.9).
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Indicating the identified parameters with p̂, the physical scaled parame-
ters t̄ can be computed from equation (4.22) as

t̄ =

NID∑
w=1

vwp̂ (4.25)

The treatment hitherto exposed is strictly related to the particular needs
of the analyzed problem, but clearly estimation approaches based on the
SVD are very common especially in robotics: a general review of the use
of SVD in an identification procedures is presented in [24, 55–57].

It is interesting to observe that the identifiable part of the right singular
matrix VID, could be interpreted as an orthonormal basis of the identifiable
space of the parameters, whereas the not identifiable part VN is related to
the null space. Any change of the parameters proportional to VN does not
produce significant changes in the outputs, so as to make identifiable that
set of parameters.

Consider now a vector vm with 1 ≤ m ≤ NID between the identifiable
basis vectors. The ith element of vm is associated to the shape functions
related to the ith element of the vector t as defined in Eq. (4.17). As a
consequence of that, the vector vm can be resorted, by proceeding in the in-
verse way with respect to what depicted in Figure 4.1, restoring the physical
meaning of the parameters, since each element of vm is associated to a par-
ticular node in the domainD(α, ξ(η)) and to a particular aerodynamic prop-
erties. From each vm, with m = 1, Nid is then possible to extract NAerprop

shapes, noted here SVD-modal shapes, ψmk
(α, ξ(η)) with k = 1, NAerprop,

defined in the two dimensional domain D(α, ξ(η)). In addition the correc-
tive functions of the kth aerodynamic properties can be expressed in a more
intuitively way by means of these SVD-modal shapes, as

∆k(α, ξ(η)) =

Nid∑
m=1

θmψmk
(α, ξ(η)). (4.26)

The definitions of the vector of unknown p and of the estimation prob-
lem as in Eq.(4.24) conclude the SVD-based approach formulation.

From the Eq. (4.26) its also clearly visible that coupled corrections of
more aerodynamic properties (e.g. CL and CD) are involved together, since
the same unknown θm acts on the whole set of ψmk

(α, ξ(η)). This is true
as long as in a vector vm of the identifiable basis, parameters related to dif-
ferent aerodynamic properties are present. Of course this fact is absolutely
coherent with the physics due to the coupled nature of the problem.
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Finally, due to the intrinsic nonlinearity of the system, the sensitivity
matrices Gi, i = 1, N , computed with the nominal model, could be signif-
icantly different respect those computed at the end of the estimation algo-
rithm. For this reason it is opportune to repeat the optimization algorithm,
until convergence, updating at every turn the sensitivity matrices, and in
turn the SVD-modal shapes. Notice that, together with the updating of the
SVD-modal shapes, also the covariance matrix R has to be recomputed,
according to the adaptive covariance maximum likelihood algorithm (see
Section 2.1.1). This leads to the following iteration:

1. Compute the sensitivity matrices Gi and the SVD-modal shapes
ψmk

(α, ξ(η)) using the nominal model;

2. Perform the estimation;

3. Update the SVD-modal shapes ψmk
(α, ξ(η)) and the error covariance

matrix R, then return to step 2 until convergence.

4.2 Results from wind tunnel test data

4.2.1 Description of experiments

The estimation techniques for the aerodynamic parameters of wind turbine
rotors, described in Section 4.1, have been performed in order to update the
aerodynamic model of the wind tunnel scaled model V2. The V2 turbine
is the first aeroelastically-scaled wind tunnel model of a real wind turbine
Vestas V90, [58]. The V2 turbine was tested during the last three years
for more than 100 hours in the wind tunnel of the Politecnico di Milano
(see a schematic view of the wind tunnel in Figure 4.2), which is one of the
largest one in Europe, in order to design and prove advanced control laws,
to perform wake measurements, to study the interactions between turbines
and several other applications.

Two airfoils, the AH79-100C (see Ref. [49]) and the WM006 (see
Ref. [59]) have been chosen as reference airfoils to design the aerodynamic
shape of V2 in order to achieve high aerodynamic performances even at the
low Reynolds numbers at which the V2 works. Table 4.1 and Figure 4.3
shows the locations of these airfoils with respect to the blade span.

The V2 model was tested in the aeronautical section, see Figure 4.2,
at several working conditions in order to explore as much as possible the
TSR-pitch domain. Each condition was opportunely chosen to maintain
the highest possible average Reynolds number on blades without exceed-
ing the maximum rotor speed and the maximum torque available. As a
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Figure 4.2: Schematic view of the wind tunnel of Politecnico di Milano.

Table 4.1: Location of the airfoils of the V2 wind turbine.

Distance Non-dimensional Airfoil Thickness ratio
from root [m] blade span η [%]

0.0000–0.0196 0.00–0.02 Cylinder 100
0.0196–0.1315 0.02–0.14 Cylinder → AH79-100C variable
0.1315–0.4067 0.14–0.42 AH79-100C 10
0.4067–0.6733 0.42–0.70 AH79-100C → WM006 variable
0.6733–0.9622 0.70–1.00 WM006 9

consequence of that the differences between the average Reynolds number
of all the trials are very low.

The torque of the rotor was measured by means of strain gages located
on the rotor shaft and previously calibrated by suitable test bed trials; the
rotor speed was computed from the encoder data. The longitudinal force
generated by the turbine was measured by a balance located at the tower
root. The outputs of the balance was also corrected removing the drag of
the group tower-nacelle, obtained by a dedicated experimentation testing
the turbine without the blades in the same wind tunnel. The wind speed
was measured by accurate pressure measurements system downstream and
upstream the test section. In addition the air density was computed from air
pressure, temperature and humidity during the whole set of tests.
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Figure 4.3: Location of the airfoils of the V2 wind turbine. Schematic view.

The measured force and power coefficients, CFm and CPm was computed
according to the following equations,

CFm =
Fm

1
2
ρmV∞

2
mπR2

, CPm =
TmΩm

1
2
ρmV∞

3
mπR2

(4.27)

where Fm is the measured force, Tm the measured torque, Ωm the measured
rotor speed, V∞m the measured wind speed and ρm the measured air density.

The force and power coefficients, as well as the TSR was also corrected
to consider the effects of the blockage of the wind tunnel using Eq. 4.28,

CFc = CFm

(
V∞m

V ′

)2

(4.28a)

CPc = CFm

(
V∞m

V ′

)3

(4.28b)

λc = λm
V∞m

V ′ (4.28c)

where V ′ is the equivalent free airspeed, computed according to a suitable
blockage correction method. Among the plethora of blockage correction
methods, see for example Refs. [60–62], the BMCB method, [61], was cho-
sen after having compared the results of such these methods with those
obtained by CFD simulations of V2 in free air and in wall boundary con-
ditions [10], performed with the code ROSITA, [63], which solves RANS
equations on Chimera grid with Spallart-Allmaras turbulence model.

The vector of measurements of the ith test condition, noted zi is then de-
fined as zi = {CPc i, CFc i}T , where the subscript ‘c’ indicates the corrected
measures.

Table 4.2 summarizes the 33 test conditions and the related measures,
used in the estimation approach.
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Table 4.2: Test conditions and measures used for the identification of the aerodynamic
properties of V2.

Trial β TSR V∞ CP CT
Trial β TSR V∞ CP CT] [deg] [m/s] ] [deg] [m/s]

1 -1.0 5.84 6.74 0.255 0.425 20 2.0 4.97 7.71 0.218 0.316
2 -1.0 6.76 6.29 0.314 0.509 21 2.0 5.89 6.69 0.277 0.400
3 -1.0 7.63 5.58 0.340 0.595 22 2.0 6.80 6.26 0.309 0.446
4 -1.0 8.44 5.04 0.334 0.646 23 2.0 7.74 5.50 0.305 0.478
5 -1.0 9.33 4.56 0.308 0.689 24 2.0 8.68 4.90 0.272 0.489
6 -1.0 9.97 4.27 0.276 0.728 25 2.0 9.56 4.45 0.229 0.512
7 0.0 5.84 6.74 0.266 0.417 26 2.0 10.25 4.15 0.171 0.526
8 0.0 6.76 6.30 0.318 0.491 27 3.0 4.97 7.71 0.223 0.308
9 0.0 7.63 5.58 0.340 0.561 28 3.0 5.89 6.68 0.273 0.384
10 0.0 8.51 5.00 0.324 0.599 29 3.0 6.80 6.26 0.292 0.412
11 0.0 9.38 4.54 0.298 0.632 30 3.0 7.74 5.50 0.273 0.426
12 0.0 9.94 4.28 0.266 0.661 31 3.0 8.71 4.89 0.232 0.431
13 1.0 4.90 7.82 0.203 0.315 32 3.0 9.69 4.39 0.162 0.435
14 1.0 5.89 6.68 0.275 0.412 33 3.0 10.42 4.09 0.080 0.438
15 1.0 6.80 6.26 0.318 0.473
16 1.0 7.68 5.54 0.329 0.525
17 1.0 8.59 4.96 0.304 0.546
18 1.0 9.43 4.51 0.273 0.570
19 1.0 10.23 4.16 0.222 0.602

4.2.2 Direct approach

The approach named direct approach, see Section 4.1.2, was performed in
order to estimate the aerodynamic models of V2. First of all, in a prelim-
inary analysis the angles of attack, at which the airfoils work, have been
performed by means of BEM simulations. Figure 4.4 shows the contour
plot of the angles of attack related to four spanwise stations for varying-
pitch angle β and TSR. The ‘x’-marks indicate the test conditions.

Figures 4.4(a) and 4.4(b) show that the angles of attack range of
the AH79-100C airfoil is about [−1 ÷ 20] deg, whereas from Fig-
ures 4.4(c) and 4.4(d), the range for WM006 is [0÷10] deg. Of course there
are no possibilities to obtain accurate results out of these ranges. The nodes
of the corrective functions to-be-estimated,for both airfoils, have been cho-
sen according to these indications and after some identification trials. The
values of such these nodes are displayed in Table 4.3.

The comparison between identified outputs and measures are displayed
in Figure 4.5, which shows the power coefficients, and in Figure 4.6, which
shows the thrust coefficients.

Notice the large discrepancies between the outputs of the nominal model
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(a) Angles of attack of AH79-100C at η = 0.14.
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(b) Angles of attack of AH79-100C at η = 0.42.
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(c) Angles of attack of WM006 at η = 0.70.
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Figure 4.4: Angles of attack of the airfoils at the tested conditions. Solid lines: contour
plot of the angles of attack; ‘x’ marks: tested conditions.
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4.2. Results from wind tunnel test data

Table 4.3: Nodes of the corrective functions to-be-estimated.

Airfoil Nodes for CL Nodes for CD

corrective functions [deg] corrective functions [deg]

AH79-100C -1, 4, 8, 11, 14 -1, 4, 8, 11, 14
WM006 1, 4, 7, 10 1, 4, 7, 10

and the measures and, at contrary, the great correlation achieved with the
new identified model, for both CP and CF measurements.

The identified aerodynamic properties are displayed in Figure 4.7. Each
figure shows the nominal, dashed lines, and the identified properties, solid
lines, as well as the Cramèr Rao standard deviations. In particular, the lift
coefficient of the WM006 airfoils are very different from the nominal one:
the identified lift curve appears to be shifted downward with respect to the
nominal one as the airfoil had a lower camber. Actually, due to the reduced
dimensions of the blade, even small imprecisions in the blade manufac-
turing process could cause considerable dissimilarities in the shape of the
airfoils leading in turn to large differences in the aerodynamic properties.

Notice also the different level of standard deviation between the esti-
mated properties of the inner, AH79-100C, and outer airfoil, WM006.
Several observations can be outlined. First the standard deviation of the
outer airfoils suggest that the properties of WM006 are estimated better
than those of AH79-100C. At contrary the inner airfoil shows a very low
level of confidence, barely acceptable. This results is actually expected,
since typically the global performances of turbines are strongly influenced
by the outer part of the blades.

Furthermore, the analysis of the correlation matrix shows a strong
collinearity among the airfoil parameters, as highlighted by Ta-
ble 4.4 and 4.5 which show the correlation matrix X between respectively
the lift and drag parameters of both the airfoils. The cross-correlation val-
ues greater than 0.95 are also marked in bold font. It appears that the prop-
erties of the inner airfoil is correlated with the properties of the outer one
in the pre-stall range.

Although the quality of the identification, as seen by looking at the com-
parison between measures and outputs, appears deceptively good, these
simple considerations highlight the difficulty of the problem: the sensi-
tivity of the outputs with respect to inner airfoil parameters are low and
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Figure 4.5: Comparison of power coefficients for the tested conditions obtained with the
direct approach. Triangle symbols: measures; dashed lines: original model; solid
lines: identified model.

characterize by a high level of correlations with those of the outer airfoil.
As a consequence, the estimate of the properties of the inner airfoil has a
very low level of confidence, as also shown by the Cramèr Rao deviations
displayed in Figure 4.7. But the most problematic issue arises from the
strong correlation between the parameters of the two airfoils: any errors in
the identification of the inner airfoil properties affect in a significant and
perhaps unpredictable way the estimate of the outer airfoil properties.

Notice that it is easy to imagine that any attempt of identifying the aero-
dynamic properties of a real wind turbine, whose shape is made by lofting
more than two airfoils, has few possibility to give accurate results with-
out the use of local measures, as for example the blade loads at different
span-wise.

4.2.3 SVD-based approach

The SVD-based approach, described in Section 4.1.3, was performed for
repeating the identification of the aerodynamic model of V2 using the same
set of measures of Table 4.2.

The aerodynamic properties were considered as a function of the an-

66



4.2. Results from wind tunnel test data

4 6 8 10
0

0.2

0.4

0.6

0.8

TSR

C
F

β = −1 deg

 

 

Measures
Original model
Identified model

4 6 8 10
0

0.2

0.4

0.6

0.8

β = 0 deg

TSR

C
F

4 6 8 10
0

0.2

0.4

0.6

0.8

β = 1 deg

TSR

C
F

4 6 8 10
0

0.2

0.4

0.6

0.8

β = 2 deg

TSR

C
F

4 6 8 10
0

0.2

0.4

0.6

0.8

β = 3 deg

TSR

C
F

Figure 4.6: Comparison of thrust coefficients for the tested conditions obtained with the
direct approach. Triangle symbols: measures; dashed lines: original model; solid
lines: identified model.

gle of attack α and of the non-dimensional blade span η. The do-
main D(α, η) was discretized with a grid of 42 nodes, defined at
each couples (αd(m), ηd(n)); m = 1, Nα; n = 1, Nη; where αd =
{−8, 1, 3, 5, 7, 9, 25, } [deg] and ηd = {0, 0.2, 0.4, 0.6, 0.8, 1.0} [deg]
are the vectors, respectively of length Nα = 7 and Nη = 6, which define
the discretization of the variable α and η. Moreover all corrective func-
tions were imposed to be equal to 0 for all α ≤ −8 and α ≥ 25 [deg] in
order to link the identified with the nominal properties out of the range of
identifiability. The same grid was used for both the corrective functions
of lift and drag, whereas the moment coefficients of the airfoils were kept
fixed to the nominal values due to the lack of specific measures, e.g. the
torsional loads along blade span. The reference values, used to scale the
unknown parameters, were chosen equal to 1.0 for the unknowns related to
the lift coefficients and equal to 0.08 for the parameters related to the drag
coefficients.

The sensitivity matrices of the outputs with respect to the 60 scaled
physical parameters have been computed using finite differences and the
matrix G, defined in Eq. (4.20) was built for a given noise covariance ma-
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Figure 4.7: Aerodynamic properties estimated with the direct approach. Nominal model:
dashed lines; identified model: solid lines; Cramér-Rao standard deviations: dotted
lines.
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4.2. Results from wind tunnel test data

Table 4.4: Correlation matrix between lift coefficients CLof the airfoils of V2.

Nodes AH79-100C WM006
[deg] -1 4 8 11 14 1 4 7 10

A
H

79
-1

00
C -1 1.00 0.88 0.76 0.63 0.45 -0.98 -0.89 -0.75 -0.47

4 — 1.00 0.85 0.70 0.49 -0.92 -0.99 -0.82 -0.50
8 — — 1.00 0.76 0.52 -0.78 -0.86 -0.95 -0.47
11 — — — 1.00 0.53 -0.65 -0.70 -0.85 -0.72
14 — — — — 1.00 -0.45 -0.50 -0.56 -0.85

W
M

00
6 1 — — — — — 1.00 0.93 0.78 0.48

4 — — — — — — 1.00 0.83 0.51
7 — — — — — — — 1.00 0.56
10 — — — — — — — — 1.00

trix R equal to sigma2
EI , where σE = 0.005, which is an appropriate value

for both the CP and CF measurements according to the experimental accu-
racy in measuring the thrust and the torque of the rotor.

The computation of the singular values of G, Σww, and in turn of the
variances of the orthogonal parameters, σ2

w = 1/Σ2
w,w, shows that there are

only ten linear combinations of the physical parameters which are actually
identifiable with a good level of accuracy. This is clearly visible from Fig-
ure 4.8(a), where the variances of the orthogonal parameters are displayed
as well as the threshold of identifiability chosen equal to 0.003, which cor-
responds to an expected standard deviation of the identified parameters of
about the 5.5% of the reference values. After having performed the first
estimation process of the ten identifiable orthogonal parameters, the SVD-
modal shapes were updated recomputing the sensitivity matrix G and then a
second optimization was executed. The variances of the orthogonal param-
eters related to the second estimation process are displayed in Figure 4.8(b).
The number of identifiable parameters is now twelve, greater then the previ-
ous process. This difference is not surprising since the problem is nonlinear
and the aerodynamic properties identified in the first process are actually
very different form those of the baseline model.

Looking at Figure 4.9 and 4.10, which show the identifiable SVD-shapes
respectively from the first to the sixth and from the seventh to the twelfth,
some simple considerations can be done:
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Table 4.5: Correlation matrix between lift coefficients CDof the airfoils of V2.

Nodes AH79-100C WM006
[deg] -1 4 8 11 14 1 4 7 10

A
H

79
-1

00
C -1 1.00 0.98 0.96 0.90 0.70 -0.99 -0.98 -0.95 -0.71

4 — 1.00 0.98 0.91 0.70 -0.99 -0.99 -0.96 -0.72
8 — — 1.00 0.92 0.70 -0.97 -0.98 -0.99 -0.71

11 — — — 1.00 0.70 -0.91 -0.91 -0.94 -0.84
14 — — — — 1.00 -0.70 -0.71 -0.72 -0.86

W
M

00
6 1 — — — — — 1.00 -0.99 -0.96 0.72

4 — — — — — — 1.00 -0.97 0.72
7 — — — — — — — 1.00 0.73
10 — — — — — — — — 1.00

• Due to the coupled physics of the problem, each shape is associated
to both CL and CD parameters.

• As expected, the root region, up to the 20% of the blade length, is
characterized by little identifiability, since the CP and CF measures
are not sufficiently influenced by the airfoils near the root, as simply
predictable.

• Most shapes present sharp variations in the α direction; this highlights
the ability of the various shapes in distinguishing the effects generated
at different angles of attack. On the other hand, the changes in the η
direction is typically more modest showing that it is harder to sepa-
rate the effects of the various spanwise sections with a good level of
confidence. These remarks show actually that the considered mea-
sures allows to estimate the behavior of the aerodynamic properties
as a function of the angle of attack and, at contrary, the difficulty of
having a better spanwise identifiability, as just noted in Section 4.2.2.

• The parameters related to the lift coefficient and to the outer part of
the blades are mostly involved in the first three identifiable shapes.
This actually demonstrates what was just noticed in Section 4.2.2 that
the properties related to the lift coefficients of the outer airfoil are the
most identifiable.
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Figure 4.8: Variances of the orthogonal parameters for the first (left) and second (right)
estimation process. The black horizontal solid line indicates the threshold of identifia-
bility.

It is interesting to note that the analysis performed by means of the SVD
gives the important mathematical demonstration of all the limits of the di-
rect approach, highlighted by an extensive practice and just noted in Sec-
tion 4.2.2.

Figures 4.11 and 4.12 display the comparison between the measures and
the outputs prior to and after the identification. All plots show an excel-
lent correlation of the estimated model, which seems even better than the
one obtained with the direct approach. In addition, notice that only 12
unknowns have been used in the SVD-based estimation, less than the 18
parameters related to the direct approach. This fact newly is not surpris-
ing since the SVD, by selecting the most identifiable combinations of the
parameters, acts also in order to optimize the number of unknowns to-be-
identified to have the best correlation with the experimental measures to-
gether with a suitable confidence of the estimates.

The new identified properties are displayed in Figures 4.13 to 4.17,
which show the CL (left) and CD (right) coefficients for the airfoils located
at some sections along blade span. All plots show the nominal (dashed line)
and the identified (solid line) properties, as well as the related standard de-
viations (dotted line). Moreover in Figure 4.16, together with the properties
of the airfoil at the 86% of the blade also the properties identified with the
direct approach are displayed: the similarity between the results achieved
by the two approaches are quite similar. Despite its limits, the direct ap-
proach, regarding this section of high identifiability, gives results coherent
and comparable to those obtained with the more rigorous SVD-based ap-
proach.

71



Chapter 4. Identification of aerodynamic properties of blades

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #1 − C
L

AoA [deg]

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #1 − C
D

AoA [deg]

(a) 1st SVD-shape.

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #2 − C
L

AoA [deg]

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #2 − C
D

AoA [deg]

(b) 2nd SVD-shape.

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #3 − C
L

AoA [deg]

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #3 − C
D

AoA [deg]

(c) 3rd SVD-shape.

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #4 − C
L

AoA [deg]

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #4 − C
D

AoA [deg]

(d) 4th SVD-shape.

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #5 − C
L

AoA [deg]

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #5 − C
D

AoA [deg]

(e) 5th SVD-shape.

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #6 − C
L

AoA [deg]

0

0.5

1

0

10

20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Non−dimensional
blade span

Shape #6 − C
D

AoA [deg]

(f) 6th SVD-shape.

Figure 4.9: First to sixth identifiable SVD-shapes.
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Figure 4.10: Identifiable SVD-shapes.
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Figure 4.11: Comparison of power coefficients for the tested conditions obtained with
the SVD-based approach. Triangle symbols: measures; dashed lines: original model;
solid lines: identified model.
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Figure 4.12: Comparison of thrust coefficients for the tested conditions obtained with
the SVD-based approach. Triangle symbols: measures; dashed lines: original model;
solid lines: identified model.
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(b) Properties of the airfoil at η = 0.14.

Figure 4.13: Aerodynamic properties of the airfoil located at η = 0.14. Solid lines: iden-
tified properties; dashed lines: nominal properties; dotted lines: standard deviations.
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(a) Properties of the airfoil at η = 0.40.
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(b) Properties of the airfoil at η = 0.40.

Figure 4.14: Aerodynamic properties of the airfoil located at η = 0.40. Solid lines: iden-
tified properties; dashed lines: nominal properties; dotted lines: standard deviations.
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(a) Properties of the airfoil at η = 0.72.
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(b) Properties of the airfoil at η = 0.72.

Figure 4.15: Aerodynamic properties of the airfoil located at η = 0.72. Solid lines: iden-
tified properties; dashed lines: nominal properties; dotted lines: standard deviations.
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(a) Properties of the airfoil at η = 0.86.
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(b) Properties of the airfoil at η = 0.86.

Figure 4.16: Aerodynamic properties of the airfoil located at η = 0.86. Thick solid
lines: properties identified with the SVD-based approach; Thin solid lines: properties
identified with the direct approach; dashed lines: nominal properties; dotted lines:
standard deviations of the SVD-based estimates.
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4.2. Results from wind tunnel test data
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(a) Properties of the airfoil at η = 0.97.
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(b) Properties of the airfoil at η = 0.97.

Figure 4.17: Aerodynamic properties of the airfoil located at η = 0.97. Solid lines: iden-
tified properties; dashed lines: nominal properties; dotted lines: standard deviations.
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CHAPTER5
Conclusions

IN this part of the thesis some methods for estimating the blade struc-
tural and aerodynamic properties from experimental data are described.
The proposed procedures can be used for identifying rotor properties

of wind turbines, so as to improve the predictive capabilities of aero-elastic
simulations. Furthermore, the same procedures can be used for understand-
ing the nature of discrepancies between nominal design characteristics of
the blade and the manufactured item, which in turn may have positive feed-
backs which include improvements in the manufacturing process or new
design solutions to optimize the rotor performances.

In the next two sections the conclusions for both the structural and aero-
dynamic identification processes will be summarized.

5.1 Identification of beam models

The proposed procedure for estimating the blade structural properties was
tested with the help of simulated and real experimental data. From the re-
sults presented in Chapter 3, as well as extensive testing with other blade
identification problems not reported here for brevity, the following conclu-
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Chapter 5. Conclusions

sions can be drawn:

• Using multiple experiments in a measurement fusion approach, as the
one pursued here, improves the quality of the estimates; specifically,
we found that the use of static load tests can lead to better estimates
of the blade structural parameters than those obtained by the sole use
of measured natural frequencies, as also observed in Ref. [37].

• The inclusion of equality and inequality constraints is an effective way
of including all available information in the estimation problem. Fur-
thermore, the use of bounds on the estimation parameters can help in
assuring that the results are within physically admissible limits.

• As for all parameter estimation problems, great care has to be taken
to ensure the well posedness of the problem, and the identifiability of
unknown parameters. This issue was considered here by studying the
Fisher information matrix.

• The use of a divide and conquer approach can greatly robustify the
procedure. In fact, breaking the identification parameters into groups
leads to smaller and better conditioned problems. All couplings
among the various groups can be recovered by iteratively repeating
the sub-identification problems for each group. Such iterations were
found to converge very quickly.

• The adaptive estimation of the error covariance leads to an iterative so-
lution of least-squares-like problems with given weighting. The max-
imum likelihood formulation relieves the user from the choice of the
weighting factors, which are computed automatically. This proved to
be useful especially when considering multiple diverse measurements,
as in the present case. Furthermore, the method allows one to define
bounds on the covariance of the estimates.

• Experiments aimed at providing data for parameter estimation should
be carefully designed so as to provide complete results with a suffi-
cient level of accuracy. Incomplete load cases, imperfect clamp condi-
tions, partial recording of blade section motions and other limitations
were found here to complicate the identification process of the tested
blades.

• The use of gradient-based methods, SQP in the present case, leads to
relatively fast execution times, high precision solutions and an exact
handling of linear and non-linear constraints. On the other hand, one
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5.2. Identification of aerodynamic properties

can not guarantee the achievement of the global optimum, and trap-
ping in local minima is possible. The use of global optimizers, possi-
bly coupled to the present local one for efficiency, should be pursued
in the continuation of this research.

5.2 Identification of aerodynamic properties

Two different approaches for the identification of the aerodynamic prop-
erties of wind turbine rotors from experimental data have been presented
in Chapter4. In the first approach, noted direct approach, the direct esti-
mation of lift and drag coefficients is performed. In the second approach,
noted SVD-based approach, the singular values decompositions of the sen-
sitivity matrix, performed before each identification, is used to recast the
problem in order to restrict the estimation of only those quantities which
are actually identifiable with a suitable level of accuracy, improving in this
way the goodness of the achieved results.

Both these approaches have been performed in order to identify the
aerodynamic model of the scaled wind turbine model V2, using thrust and
power measurements obtained from a wind tunnel experimentation. From
the achieved results the following conclusions can be stated:

• The problem of estimating the rotor aerodynamics is very hard, es-
pecially if compared with the structural one presented in Sections 3.
Thrust and power measures, which are typically available in all wind
turbines, have a great informative content but not enough to distin-
guish the effects of many airfoils along blade span, and therefore to
identify their properties with a good level of accuracy. The computa-
tion of the Cramèr Rao lower bound of the unknowns and the study
of the correlation of the Fisher information matrix have highlighted
heavy collinearity between the properties of the inner and outer air-
foils, particularly evident in the drag coefficients. This issue leads to
an identification problem for which it is difficult to assure the well-
posedness.

• The SVD-based approach, at least for the author’s opinion, appears to
be the sole able to solve rigorously the estimation problem, getting rid
of all the troubles related to the low identifiability of some parame-
ters and then helping the user to formulate correctly the optimization
problem. The model achieved with the SVD-based approach is actu-
ally better correlated with measures than the one resulting from the
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direct approach, and moreover presents lower and acceptable devia-
tions of the estimates.

Even if the work here illustrated represents a great innovation in the liter-
ature related to the modeling of wind turbine rotors, there are some aspects
which deserve to be opportunely studied in the next future developments.

First of all the use of loads measurements along the blade span could
improve the informative content of the experimental data, leading to the
possibility of identifying the aerodynamic properties of many airfoils along
blade span. In such these conditions also the direct approach might have
more possibility of producing results with a suitable level of confidence.

Rather than the introduction of the blade loads as outputs in the esti-
mation process, the possibility of identifying a model from experimental
data provided by a wind turbine operating in a real environment must be
carefully considered.

First of all, since turbines operate according to a regulation trajectory,
which forces the blade airfoils to work in a narrow range of angle of attack,
one needs to suitably extend such range. This demand would require the
machine to be operated at varying partialized set points.

Second, the methods described here assume steady operating conditions.
In practice such these regimes do not exist because of wind variability and
turbulence. Avoiding the use of transient model instead of the steady one,
which probably would incur in a non-reasonable computational effort, one
could compute averages over suitable time windows and use some careful
data processing.

In any case, it seems that the extension to real field data requires that
the design of the experiments and the collection of test data be carefully
studied. Probably, for performing as best the aerodynamic updating process
of a real wind turbine, three conditions must be satisfied:

• The tested wind turbine must be equipped with two or more load sen-
sors located at opportune blade stations;

• The controller of the turbine must be designed in order to allow the
trimming of the machine at several partialized set points;

• Although not mandatory, the test data might be collected in low tur-
bulence conditions.

An application of the present formulation to field test data, which ac-
counts for the above mentioned points, is currently under investigation.



Part II

Stability analysis and
identification of periodic wind

turbine models
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CHAPTER6
Introduction and motivation

THE estimation of damping is useful in a variety of tasks related to
the design and verification of a wind turbine, for example for ex-
plaining the causes of observed vibration phenomena, for assessing

the proximity of the flutter boundaries to the operating envelope of the ma-
chine, for evaluating the efficacy of control laws in increasing the damping
of low-damped modes, etc. It is expected that the design of the future large
and very large wind turbines which are being proposed for the exploita-
tion of off-shore resources will further increase the importance of stability
analysis. In fact, new designs will explore rotors of low solidity with long,
slender and light-weight blades operating at high tip-speed-ratios, whose
response will not only be affected by the drive-train/nacelle/tower flexi-
bility, but also by the additional couplings induced by the hydro-elastic
characteristics of the submerged, and possibly floating, structure and by its
interaction with the marine environment.

Stability analysis methods use some appropriate linear model of the sys-
tem, capable of representing with sufficient fidelity its response in the prox-
imity of a given operating condition. If the model is assumed to be linear
time invariant (LTI), then stability can be readily assessed by LTI stability
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Chapter 6. Introduction and motivation

theory, for which a variety of methods is readily available [12, 64–67].
However, wind turbine models are more appropriately characterized by

periodic rather than time invariant coefficients [68]. In fact, periodic ef-
fects are caused by gravitational and aerodynamic loads, the latter due to
rotor-in-plane wind components, vertical and horizontal wind shears, and
the interaction with the tower. Therefore linear time periodic (LTP) mod-
els, whose stability characteristics are described by Lyapunov-Floquet the-
ory [69, 70], are customarily employed.

Rather than directly applying Floquet theory on a LTP model to study its
stability, one can first turn the LTP model into an equivalent LTI one by a
coordinate transformation, and then perform a standard LTI stability analy-
sis. The infinitely numerous Lyapunov-Floquet state transformations make
this possible by achieving the exact cancellation of all periodic terms in the
model. However, a more common approach [14, 71] is to use the multi-
blade coordinate (MBC) transformation of Coleman and Feingold [13, 72]
(cf. also the review given in reference [73]). This transformation, which can
be interpreted as an approximation of one of the exact Lyapunov-Floquet
transformations [14, 15], expresses the model rotating degrees of freedom
into an inertial frame with the effect of a strong reduction, but in general
not an exact elimination, of the periodic content of the state matrix. The
remaining periodicity is either neglected or removed by averaging, so that
the resulting invariant model can at this point be analyzed using standard
invariant techniques. We will call this approach in the following MBC-LTI.
The neglected periodicity is more relevant for anisotropic rotors (i.e. when
blades are aerodynamically or structurally different), for anisotropic wind
conditions (i.e. with sheers and/or cross-flow), and in the presence of grav-
ity; the effects of such approximations on the stability analysis, although
often acceptable in many cases, are however in general difficult to assess
and quantify a priori.

According to what stated in [74–76], which are three original works on
which the results shown here are mainly based, there are two main aspects
in the stability analysis of wind turbines: periodicity and the dependence on
a model. In this part of the thesis a new approach that accounts for both in
ways that try to overcome some limitations of current methods is proposed.

6.1 Periodicity

Regarding periodicity, the proposed method rigorously accounts for the pe-
riodic nature of the problem, building on Floquet stability theory of LTP
systems [77, 78]. The motivation behind this approach lies in the fact that
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6.1. Periodicity

the approximate treatment of periodic terms of contemporary methods im-
plies approximations that invariably neglect some aspects of the behavior
of the system. Although such approximations may have been usually ac-
ceptable for the current wind turbines, they may become more questionable
as industry explores modern controllers and designs of increasing size that
try to beat the cubic weight growth curve.

In fact, the use of stability theory shows a richer picture than the one
customarily obtained by the use of the standard approximate transforma-
tion methods described above, as first noticed in reference [74]. For each
of the harmonics computed by the MBC-LTI approach (e.g., first tower
fore-aft, first blade flap, first blade edge, second blade flap, etc.), the fully
periodic approach reveals the presence of a fan made by an infinite number
of harmonics of varying “strength”.

(a) MBC-LTI (b) LTP

Figure 6.1: Qualitative standard (at left) and periodic (at right) Campbell diagrams (for
clarity, one single mode is shown for the standard diagram, and the corresponding
single fan for the periodic one).

To better illustrate this concept, Figure 6.1 shows at left a Campbell
diagram obtained by the MBC-LTI approach, and at right its fully periodic
version. As customarily done, the plot represents the system harmonics ω
vs. the rotor speed Ω; the plot also reports the per-rev excitation harmonics
indicated as straight dashed lines emanating from the origin. For simplicity
of exposition, and not to clutter the figure, the plot on the left shows only
one single frequency, which by its shape and location in this qualitative
image might represent the first flap blade frequency, slightly increasing with
respect to the rotor speed due to centrifugal stiffening. The one on the
left part of the figure is the Campbell diagram representation that would
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Chapter 6. Introduction and motivation

normally be obtained by using a classical approach, and which represents
an important design tool since it readily illustrates the possible intersections
between system eigenfrequencies and per-rev excitation harmonics.

In reality, a rigorous LTP analysis reveals the picture shown on the right
part of the same Figure 6.1. Here, for that same first blade flap mode, we
observe not only the principal harmonic already visible in the left plot, but
also an infinite number of associated super-harmonics fanning out from the
principal one at about±kΩ, k = 1, . . . ,∞. All harmonics in the fan have a
varying degree of “strength”, indicated in the picture by the thickness of the
solid line. These additional super-harmonics are invisible to the classical
approach1.

These results descend directly from the theory of periodic systems,
which shows that the stability of the solution is contained in the mon-
odromy matrix, i.e. the matrix mapping the system states into the states
after one period (one rotor revolution). From the characteristic multipli-
ers, which are the eigenvalues of the monodromy matrix, one can readily
derive the characteristic exponents. In turn, the characteristic exponents,
being the analogues of the eigenvalues in the LTI case, yield the frequency
and damping factor of each harmonic of the system. Finally the periodic
eigenvectors of the system are computed, which yield modal participation
factors that measure the relative strength of each harmonic within its fan, as
illustrated in the plot above. Modal participation factors rigorously clarify
the degree of periodicity of each fan. In fact, the closer the participation
of a certain harmonic is to one, the more that fan behaves as invariant (i.e.
non periodic); in the limit, if one harmonic has a participation factor of ex-
actly one and all others are zero, then the fan collapses into a single line,
yielding the usual picture seen at left in Figure 6.1. On the other hand, if
some super-harmonics have significant participation factors, then the fan
is strongly affected by periodicity. In such cases, crossing of a significant
super-harmonic with a per-rev excitation in conditions where enough en-
ergy is present (e.g. high rotor speeds) may results in vibratory phenomena.
Notice that these would not be explainable if one try to describe a periodic
mode using only one frequency.

1LTP theory does not allow for the classification of one specific harmonic as the principal one, as the whole
fan of harmonics is generated as part of the analysis. However, to ease the bridge between the classical view and
the present one, we term here and in the following “principal harmonic” the member of the fan that most closely
resembles the one that would have been obtained by the MBC-LTI approach; coherently, all other members of
the same fan are termed “super-harmonics”.
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6.2. Model independence

6.2 Model independence

Regarding the dependence on a model for the conduction of a stability anal-
ysis, we remark that methods that rely on coordinate transformations, such
as the MBC-LTI approach described above, are usually difficult to imple-
ment and maintain. In fact, given the software implementation of any suit-
able mathematical wind turbine model, one would first have to develop its
linearization. Next, one would need to implement the Coleman transfor-
mation of the rotating degrees of freedom of the model, followed by some
specific additional elaboration to remove any remaining periodic term. It
is clear that, if the original non-linear model is of high fidelity and hence
highly complex, as the ones used in most current comprehensive codes,
then the implementation of these software modifications can imply a con-
siderable effort. Even more importantly, it means that every time the non-
linear model is improved or expanded, this has to be followed by a similar
upgrade of its MBC-LTI derivation.

To overcome such hurdles, in this work periodic stability analysis theory
is not applied to the analytical expression of a specific model, but rather it
is formulated in terms of input-output discrete-time histories. Such time
histories could come from “virtual” experiments performed on any model,
from simplified ones to the more advanced contemporary comprehensive
multibody-based aero-hydro-servo-elastic models. On the practical side,
this implies that one can easily replace the model with a different (new or
better) one, without having to modify or adjust in any way the stability
analysis procedure. Furthermore, by properly expanding the formulation
presented here to include the effects of process noise, the time histories
could also come from measurements obtained on the real wind turbine op-
erating in the field.

Using this approach, inputs are represented by either pitch, torque and/or
by externally applied force signals, studied so as to excite the response of
the mode(s) of interest. On the other hand, outputs are represented by the
corresponding measurements of components of the system response (veloc-
ities, accelerations, loads, etc.), chosen so as to exhibit a high informational
content on the mode(s) of interest. This procedure is graphically depicted
in Figure 6.2.

Given such suitable input-output time histories, a Periodic Auto-
Regressive Moving Average model with eXogenous inputs (PAR-
MAX) [79] is fitted to the histories using system identification techniques,
and more specifically with the prediction error method [80, 81]. Finally,
the periodic stability analysis theory of Floquet is applied to the state-space
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Chapter 6. Introduction and motivation

Figure 6.2: Model-independent stability analysis process.

realization of the identified model to yield frequencies, damping and modal
participation factors of each harmonic in each fan. From this point of view,
this method could be interpreted as an extension to periodic models of the
method of Prony [82]. A somewhat related approach is pursued in refer-
ence [83], which proposes an output-only modal analysis in the frequency
domain, made possible by the identification of the periodic harmonic trans-
fer function of the system [77].

6.3 Organization of this part

The work presented in this part is organized according to the following
plan.

At first, the stability theory of LTP systems is briefly reviewed in Sec-
tion 7. The continuous and discrete-time formulations in § 7.1 and § 7.2
explain the presence of the frequency fans and lead to the definition of
the modal participation factors as periodicity indicators. To better illus-
trate these concepts, we consider in § 7.3 the simplified model problem of
a rotor-tower system in a vacuo, which also clearly establishes the differ-
ences between a periodic stability analysis and an approximate MBC-LTI
one.
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Next, Section 8 describes the process of identifying LTP systems from
input-output data using the prediction error method. The identification
techniques of three models are described: the equation error approach, is
formulated in § 8.1.1, whereas the output error method, in § 8.1.2, and the
estimation of PARMAX models in § 8.1.3. Finally, § 8.2 describes the
realization of the identified periodic reduced model in state-space form.

The paper is completed by several numerical experiments, reported in
Section 9, which illustrate the main findings of this work with the help
of the detailed model of a multi-MW wind turbine implemented in a high
fidelity aero-servo-elastic simulation code.
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CHAPTER7
Stability analysis of LTP systems

7.1 Continuous time

A generic LTP system in continuous time can be written in state space form
as

ẋ = A(t)x + B(t)u, (7.1a)
y = C(t)x + D(t)u, (7.1b)

where t is time, x, u and y the state, input and output vectors, respectively,
while A(t), B(t), C(t) and D(t) are periodic system matrices such that

A(t + T ) = A(t), B(t + T ) = B(t), (7.2a)
C(t + T ) = C(t), D(t + T ) = D(t), (7.2b)

for each t. The smallest T satisfying equation (7.2) is defined as the sys-
tem period. Vector u contains the machine control inputs (i.e. blade pitch
angles, electrical torque, possibly the yaw angle) as well as exogenous in-
puts related to the wind states (e.g. wind speed, vertical or lateral shears,
cross-flow, etc.). The closed-loop case may be considered by including the
effects of the control law in the A(t) matrix; in this case, the u vector is
only related to wind states.
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Chapter 7. Stability analysis of LTP systems

To study the stability of (7.1a), its autonomous version is considered
together with the associated initial conditions:

ẋ = A(t)x, x(0) = x0. (7.3)

The state transition matrix Φ(t, τ), that maps the state x(τ) at time τ into
the state x(t) at time t through

x(t) = Φ(t, τ)x(τ), (7.4)

obeys a similar equation with its initial conditions

Φ̇(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I, (7.5)

where I is the identity matrix. The periodicity of the system, involves the
bi-periodicity of the transition matrix, such that

Φ(t + T, τ + T ) = Φ(t, τ). (7.6)

Notice also that the swapping of the indices t and τ in the transition ma-
trix implies its inverse, that is Φ(t, τ)−1 = Φ(τ, t). Even if in continuous
time the expression of the transition matrix, in general, can’t be worked out
analytically, it is however possible to figure out its determinant through the
Liouville-Jacoby formula

detΦ(t, τ) = e
∫ t
τ Tr(A(σ)dσ), (7.7)

which proves also that Φ(t, τ) is invertible ∀(t, τ). This is no more true in
the discrete time case, see the first chapter of [77] for the details.

As it will be described in the following, an important role in the sta-
bility analysis of the periodic systems is played by the state transition ma-
trix over one period Ψ(τ) = Φ(τ + T, τ), termed monodromy matrix.
Equations (7.6) and (7.7) entails that in continuous time Ψ(τ) is periodic,
Ψ(τ) = Ψ(τ + T ) and non singular ∀τ .

The general behaviour of an LTP system was first formalized by Gaston
Floquet and Aleksandr Lyapunov, [69, 70].

The Floquet-Lyapunov problem is the one of finding, if any, a periodic
invertible state-space transformation y(t) = Q(t)x(t) such that the result-
ing system,

ẏ = Ry, (7.8)

is time-invariant, i.e. the matrix R, termed also Floquet factor, is constant.
In the new coordinates the dynamic matrix R is given by

R = Q(t)A(t)Q−1(t) + Q̇(t)Q−1(t). (7.9)
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which shows also that Q(t) must obeys the following matrix differential
equation

Q̇(t) = RQ(t)−Q(t)A(t) (7.10)

The solution of (7.10) is

Q(t) = eR (t−τ)Q(τ)Φ(τ, t). (7.11)

Imposing the periodicity condition Q(τ + T ) = Q(τ), one gets

Q(τ) = eRT Q(τ)Φ(τ, τ + T ), (7.12)

which gives in turn the important relationship between the monodromy ma-
trix and the Floquet factor as

Ψ(τ) = Q(τ)−1eRT Q(τ). (7.13)

From (7.13) it is possible to compute the Floquet factor R for any in-
vertible initial condition Q(τ), by the following

R =
1

T
log

[
Q(τ)Ψ(τ)Q(τ)−1

]
(7.14)

Notice that there is an infinite number of Floquet factors, and therefore
an infinite number of Floquet-Lyapunov transformations, first, because one
can choose any invertible initial condition Q(τ), and second because in the
complex domain the matrix logarithm has infinite possible solutions. In
particular, this latter remark will be deeply analyzed later on.

Giving Q(τ) and R, the transformation matrix Q(t) is readily obtained
using Equation (7.11).

Starting from (7.11) after simple analytical computations the transition
matrix results to be

Φ(t, τ) = P (t)eR (t−τ)P (τ)−1 (7.15)

where the periodic matrix P (t) = Q(t)−1 is also termed periodic eigenvec-
tor. Equation 7.15 could be simplified, as commonly done, choosing τ = 0
and P (0) = I , leading to

Φ(t, 0) = P (t)eR t. (7.16)

Equations (7.15) and 7.16 show also that any periodic system is asymp-
totically stable if all the eigenvalues of R, noted θj , j = 1, . . . , Ns, Ns

being the order of the system, and termed characteristic exponents have
negative real part. Rather than in terms of the Floquet factor, the stability
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assessment could be done referring to the monodromy matrix. In fact, since
the monodromy matrix correlates the state vector of two different time in-
stants separated by one period, it is simply to derive the equation which
describes the free motion of the state sampled at time τ + kT, k ∈ N,
noted x̂(k) = x(τ + kT ), as

x̂(k) = Ψ(τ)kx̂(0). (7.17)

Eq. (7.17) is the governing equation of a linear invariant discrete time sys-
tems with Ψ(τ) as dynamic matrix. Therefore the system is asymptotically
stable if all the eigenvalues of the monodromy matrix, θj , called character-
istic multipliers belong to the open unit disk in the complex plane. It is also
possible to demonstrate that the eigenvalues of the monodromy matrix and
their multiplicity are actually time invariant even if the monodromy matrix
is in general time periodic, see [77] for proofs and details. For this reason
we can ignore the time instant when referring to the characteristic multipli-
ers. The eigenvalues θj and associated eigenvectors sj , are obtained by the
spectral factorization of the monodromy matrix,

Ψ(τ) = S diag{θj}S−1, (7.18)

with S = [. . . , sj, . . .].
From the factorization of Ψ, recalling (7.13), one gets the factorization

of R as
R = Q(τ)S diag{ηj}S−1Q(τ)−1, (7.19)

where the characteristic exponents ηj are related to the characteristic mul-
tiplies θj through the following expression:

θj = eηjT . (7.20)

Equation (7.20) leads to a multiplicity of solutions of characteristic expo-
nents, as

ηj =
1

T
log θj =

1

T

(
log |θj|+ i(∠(θj) + 2`π)

)
, (7.21)

where ` ∈ Z is an arbitrary integer. This indeterminacy however does not
affect the real frequency content of the response, since the transition matrix
is uniquely defined.

To this end, consider for each mode one of the infinite solution of (7.21),
for example the one with ` = 0, noted η̂j . Thus, any other characteristic
exponents, ηj could be computed from η̂j as

ηj = η̂j + i
2mπ

T
, m ∈ Z (7.22)
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Inserting (7.19) into (7.15), one can express the state transition matrix
as

Φ(t) =
Ns∑
j=1

Zj(t)e
η̂jt, (7.23)

where Zj(t) = P (t)Q(τ)SIjjS
−1, while Ijj is a matrix with the sole

element (j, j) equal to 1 and all others equal to 0. The periodic matrix
Zj(t) can be expanded in a Fourier series as follows

Zj(t) =
+∞∑

n=−∞
Zjne

i n 2π
T

t, (7.24)

where Zjn is the matrix of complex amplitudes of the nth harmonic of
Zj(t), leading to the following expression of the transition matrix:

Φ(t) =
Ns∑
j=1

+∞∑
n=−∞

Zjne
(η̂j+i n 2π

T
)t. (7.25)

From Equation (7.25) one can see that, for each mode, an infinite number
of exponents, which play the role of eigenvalues of the LTI systems, partic-
ipates in the response of the system and a single frequency is not sufficient
to characterize completely the mode. All the exponents, as symbolically
depicted in figure 7.1, have imaginary parts which differ in integer multi-
ples of the 2π/T and same real parts, thus all exponents of a given mode,
are all together stable or not. This fact of course is not surprising since the
stability of the system is just determined from the characteristic multipliers,
which are defined without indetermination.

However, in several applications, as for example in wind turbine model-
ing, it’s also interesting to characterize the behaviour of the response of
the systems. Therefore the knowledge of the exponents η̂j + i n2π

T
be-

comes important, since they give in turn their own frequencies ωjn and the
proper damping factors ξjn. In addition the amplitudes Zjn determine the
strengths of the relative harmonics. The measurement of the relative con-
tribution can be obtained introducing the participation factors, φjn, defined
as

φjn =
‖Zjn‖∑
n ‖Zjn‖

, (7.26)

where ‖·‖ is a matrix norm. The triads {ωjn, ξjn, φjn} describe completely
the behaviour of the periodic system. The participation of a given output
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Figure 7.1: Representation of the eigenvalues characterizing the response of a periodic
continuous-time system. A couple of complex conjugate poles is shown.

y can be measured introducing the output-specific participation factor, de-
fined as

φjn =
‖CZjn‖∑
n ‖CZjn‖

, (7.27)

Moreover, the apparent indeterminacy in the computation of the imagi-
nary part of the logarithm of the characteristic multipliers in equation (7.21)
is then understood. In fact, all the exponents that satisfy equation (7.20) are
in effect present in the response of the system, as it can be seen from equa-
tion (7.25). Since the transition matrix is uniquely defined, any choice of
the integer ` in equation (7.21) would act as a shift in the frequency content
of Zj , such that all the triads {ωjn, ξjn, φjn} remain exactly the same, as
first observed in [84] and later discussed in [78].

Sometimes, one of the amplitude matrices Zjn is predominant with re-
spect to the others. In such cases, the resulting participation factors will be
all close to zero, except that related to the predominant harmonic, which
is at contrary close to one. This fact suggest two considerations. First, the
harmonic participation factor can be used as a “periodicity indicator”: the
closer the participation of a certain harmonic of a given mode is to one, the
more that mode behaves as invariant. Second, in practical application, if a
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given participation factor is predominant with respect to the others, a single
frequency characterization could be accepted.

Often, although not always, the harmonic with the highest participation
is very similar in terms of frequency and damping to the one that would re-
sults from the invariant analysis of periodic systems based on the Coleman
transformation (MBC-LTI approach). As suggested in [76], and previously
noted, such harmonic may be called the principal one, while the others may
be termed super-harmonics. The formulas however show clearly that such
a dichotomy, although useful to bridge the classical and periodic views, is
in reality wrong, since periodic modes are not defined by a single frequency
but by an infinite multitude, where each frequency is spaced from its two
neighbors by plus and minus the rotor speed Ω = 2π/T . Furthermore,
any one of these harmonics could resonate with the external excitations.
For this reason the Campbell diagram of a periodic system, noted peri-
odic Campbell diagram, should show not only one line per mode, but a fan
made by infinite numbers of harmonics with different participation factors
as qualitatively depicted in Figure 6.1.

7.2 Discrete time

The autonomous dynamic equations of a generic LTP system in discrete
time and its initial conditions are

x(k + 1) = A(k)x(k), x(0) = x0, (7.28)

where k is a generic time instant and A(k) is a periodic matrix of period K
such that A(k + K) = A(k) ∀k. Similarly, the transition matrix obeys the
following equations and initial conditions

Φ(k + 1, κ) = A(k)Φ(k, κ), Φ(κ, κ) = I. (7.29)

In this work we consider only reversible systems, i.e. those for which
det(Φ(k, κ)) 6= 0 ∀(k, κ). Notice that in the continuous-time case the
reversibility is always guarantee (cf. Sections 7.1 and reference [77,85] for
the detailed treatment).

For reversible discrete-time systems, the state transition matrix Φ(k, κ)
can be decomposed in periodic and contractive factors as

Φ(k, κ) = P (k)R(k−κ)P (κ)−1, (7.30)

where P (k) is periodic and R is constant. Here again, the monodromy
matrix is defined as the transition matrix over one period, i.e.

Ψ(κ) = Φ(κ + K, κ) = P (κ)R(K − κ)P (κ)−1, (7.31)
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Chapter 7. Stability analysis of LTP systems

whose spectral decomposition yields its characteristic multipliers θj and
eigenvectors S:

Ψ(κ) = S diag{θj}S−1. (7.32)

As in the continuous time case, the characteristic multipliers and their mul-
tiplicity are in effect independent by the index κ.

The relationship between characteristic multipliers and characteristic
exponents becomes then

θj = ηK
j . (7.33)

In the discrete-time case, the apparent multiplicity of the characteristic
exponents appears as a phase indetermination since

ηj =K

√
|θj|

(
cos

(
∠(θj) + 2`π

K

)
+ i sin

(
∠(θj) + 2`π

K

))
, (7.34)

where ` = 0, . . . , K − 1 is an arbitrary integer, see Figure 7.2 for a
schematic representation. As in the continuous-time case, this does not
in reality generate any inconsistency since frequencies, damping and par-
ticipation factors of the various harmonics are unaffected by this apparent
arbitrariness.

Figure 7.2: Representation of the eigenvalues characterizing the response of a periodic
discrete-time system. A couple of complex conjugate poles is shown.
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Following the same approach of the continuous-time case, the transition
matrix can be written as

Φ(t) =
Ns∑
j=1

K−1∑
n=0

Zjn

(
|ηj|e(i∠(ηj)+n 2π

K
)
)k

. (7.35)

This shows that the jth mode is characterized by K exponents with the
same modulus and different phases. Each exponent can be transformed
into the continuous one using the following expression

ηjc =
1

∆t
log

(
ηjd

)
, (7.36)

where ∆t is the sampling time and subscripts (·)c and (·)d refer, respec-
tively, to the continuous and discrete-time cases. Once the continuous-time
exponents are computed, frequencies, damping and participation factors
can be readily obtained as in the continuous-time case.

7.3 Illustration by a model problem

A simple model problem is used for illustrating the main characteristics
of the classical periodic stability analysis described above. The problem
represents the coupled side-side tower and edgewise blade response of a
wind turbine in vacuo. In this simplified model, the side-side flexibility of
the tower is rendered by an equivalent spring that connects the hub to the
ground [86]. Similarly, the blade is represented by a rigid body connected
to the hub by means of equivalent hinges, whose characteristics in terms
of offset from the axis of rotation and stiffness are chosen so as to match
the first edgewise natural frequency of the blade [68]. The model includes
gravity because the blade stiffness varies periodically under the effects of its
own weight, effects that depend on the blade azimuthal position in its travel
around the rotor disk. Figure 7.3 shows a sketch of the system, whereas
Table 7.1 reports a list of the main model parameters and their values.

The B + 1 linearized periodic equations of motion of the system write

M(ψ)ẍ(t) + C(ψ)ẋ(t) + K(ψ)x(t) = 0, (7.37)

where the state vector is defined as

x(t) =
(
ζ1(t), ζ2(t), ζ3(t), yc(t)

)T
, (7.38)

ζi being the lag angle of the ith blade and yc the horizontal displacement
of the hub, ψ = ψ1 = Ω(t)t and ψi = ψ1 + (i − 1)2π/B, i = 2, 3, the
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Figure 7.3: Schematic view of the rotor-tower model system. Only one blade is shown, for
clarity.

Table 7.1: Rotor-tower model system: main parameters and their numerical values.

Parameter Symbol Value

Number of blades B 3
Rotor radius R 75 [m]

Rated rotor speed Ωr 1.2 [rad s−1]
Hinge offset e 25.651 [%R]
Mass of hub mh 7.5000E+4 [kg]

Blade mass (movable part) mb 1.4482E+4 [kg]

Blade mass (fixed part) mf
b 1.0873E+4 [kg]

Blade static moment Sb 2.7116E+5 [kg m]
Blade moment of inertia Ib 7.4881E+6 [kg m2]

Edgewise spring stiffness Kζ 2.1192E+8 [Nm]
Edgewise spring damper δζ 1.7555E+6 [Nm s]

Tower spring stiffness Kc 7.3116E+5 [Nm−1]
Tower spring damper δc 1.3294E+4 [N sm−1]
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7.3. Illustration by a model problem

azimuthal angle of rotor and individual blades, while

M(ψ)=




Ib 0 0 Sbs(ψ1)

0 Ib 0 Sbs(ψ2)

0 0 Ib Sbs(ψ3)

Sbs(ψ1) Sbs(ψ2) Sbs(ψ3) mh + B(mb + mf
b )


 , (7.39a)

C(ψ) =




δb 0 0 0

0 δb 0 0

0 0 δb 0

−2SbΩs(ψ1) −2SbΩs(ψ2) −2SbΩs(ψ3) δc


 , (7.39b)

K(ψ) =




Keζ +g Sbc(ψ1) 0 0 0

0 Keζ +g Sbc(ψ2) 0 0

0 0 Keζ +g Sbc(ψ3) 0

−SbΩ
2c(ψ1) −SbΩ

2c(ψ2) −SbΩ
2c(ψ3) Kc


 ,

(7.39c)

where s(ψ) and c(ψ) indicate the sine and the cosine of angle ψ, and Keζ =
Kζ + eRΩ2.

A classical MBC-LTI analysis would lead to the identification of four
modes, which include the tower side-side, backward in-plane whirling,
blade edgewise and forward in-plane whirling modes, in the order from
lower to higher. A time continuous periodic stability analysis was per-
formed from varying rotor speeds, which, as previously discussed, reveals
a much higher number of harmonics. To illustrate this fact, for the rated
rotor speed case, the frequencies of the harmonics with the five highest par-
ticipation factors are reported in Table 7.2; these frequencies were grouped
according to the principal classical modes named above.

Table 7.2: Frequency of the harmonics with the five highest participation factors at rated
rotor speed, grouped by classical modes.

Tower Backward whirl Blade edgewise Forward whirl

Super-harmonic (−j2Ω) 0.0378 0.3036 0.4649 0.6823
Super-harmonic (−jΩ) 0.1533 0.4940 0.6558 0.8731

Principal harmonic 0.3443 0.6847 0.8467 1.0640
Super-harmonic (+jΩ) 0.5352 0.8756 1.0377 1.2549

Super-harmonic (+j2Ω) 0.7262 1.0665 1.2286 1.4458

Figure 7.4 shows the response spectra of one of the blades, at left, and
the hub, at right. By comparing these spectra with Table 7.2, one can eas-
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Table 7.3: Output-specific participation factor for the frequency of Table 7.2

Tower Backward whirl Blade edgewise Forward whirl
ζ1 yc ζ1 yc ζ1 yc ζ1 yc

Harmonic (−i2Ω) 0.002 0.000 0.001 0.000 0.000 0.001 0.014 0.001
Harmonic (−iΩ) 0.376 0.000 0.098 0.000 0.011 0.003 0.919 0.000

Principal harmonic 0.002 0.999 0.017 0.994 0.973 0.968 0.010 0.934
Harmonic (+iΩ) 0.606 0.000 0.872 0.000 0.016 0.001 0.056 0.000

Harmonic (+i2Ω) 0.012 0.000 0.011 0.000 0.000 0.000 0.000 0.000

ily identify most frequencies. In particular, a part from the well known
principal harmonics, one should notice the two tower super-harmonics that
appear very prominently (and rather unexpectedly for the MBC-LTI view,
for which these modes should not exist) in the blade response spectrum at
0.1533 and 0.5352 Hz.

Table 7.3 illustrates the fact that each fan of modes may exhibit a more or
less periodic behavior when looking at specific outputs. For each frequency
of Table 7.2, this new table reports the participation factors computed using
output ζ1 (at left) and output yc (at right), using equation (7.27). For ex-
ample, the tower fan of modes behaves as largely invariant when observed
through the tower displacement yc (cf. the principal harmonic participation
at 0.9997), but has a strongly periodic character when observed through the
blade lag response (cf. the principal harmonic participation at 0.0017, while
the super-harmonics +iΩ and −iΩ are 0.6058 and 0.3763, respectively). A
similar behavior is observed for the backward and forward in-plane whirls,
while the opposite is true for the blade edgewise one. These non-classical
effects stress further the difference between the LTI and LTP views of the
problem, the latter being much more complex and richer than the former.
This also highlights once more the arbitrariness of labeling a frequency as
the principal harmonic: what appears prominently in one output (e.g. the
“classical” tower frequency in the tower displacement), can almost disap-
pear in comparison with the its super-harmonics in another output (e.g.,
again the “classical” tower frequency observed in the blade lag response).
Nonetheless, we keep using this terminology in the following for its practi-
cal utility and to ease the exposition.

Figure 7.5 shows the computed frequencies, damping and participation
factors, plotted for varying rotor speed. Each frequency plot represents a
diverging fan, each fan labeled by the classical name of its principal har-
monic. Looking at the participation factor plots, it appears that only the
tower mode is largely invariant; on the other hand, both whirling modes are
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Figure 7.4: FFT of the transient response of the rotor-tower model problem.

characterized by a strongly periodic behavior, and their response is not well
described by a single frequency.

Although the present model problem is quite simple, it still captures
some interesting effects that help in clarifying the difference between a fully
periodic and a MBC-LTI analysis. In fact, the presence of gravity renders
the rotor anisotropic, due to a variation of lag stiffness that depends on the
blade azimuthal position (cf. matrix K(ψ) in equation (7.39c)). Hence,
Coleman transforming the rotating lag degrees of freedom will not exactly
remove periodicity from K(ψ), although it will do so for the mass and
damping matrices. Given definition (7.38) of the state vector, the Coleman
transformation matrix is [14]

B(ψ) =




1 c(ψ1) s(ψ1) 0

1 c(ψ2) s(ψ2) 0

1 c(ψ3) s(ψ3) 0

0 0 0 1


 , (7.40)

and, upon transformation according to KMBC(ψ) = B−1(ψ)K(ψ)B(ψ),
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(b) Backward whirling mode
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(c) Blade edgewise mode
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(d) Forward whirling mode

Figure 7.5: Frequencies, damping and participation factors for the rotor-tower model
problem, computed at varying rotor speeds.
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the resulting stiffness is

KMBC(ψ) =




Keζ
g Sb

2
0 0

g Sb Keζ +
g Sb

2
c(3ψ1)

g Sb

2
s(3ψ1) 0

0
g Sb

2
s(3ψ1) Keζ − g Sb

2
c(3ψ1) 0

0
3

2
Ω2 Sb 0 Kc




.

(7.41)
As expected, the transformed matrix exhibits a remaining periodicity at 3
per-rev due to the presence of gravity. Figure 7.6 shows the Frobenius
norm of the amplitude of the first harmonics of the Lyapunov-Floquet and
Coleman transformations. Among the infinite possible Lyapunov-Floquet
transformations, we chose the one that is more similar to the Coleman one.
To make this possible, one must set in Eq. 7.15 the initial condition of the
periodic eigenvector equal to the initial condition of the Coleman transfor-
mation, P (0) = B(0). The figure shows very clearly that the Coleman
transformation approximates well the constant and the one per-rev content
of the Lyapunov-Floquet transformation, while it completely neglects all
higher frequencies.
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Figure 7.6: Frobenius norm of the amplitude of the first harmonics of the Lyapunov-
Floquet (circle marks) and of the Coleman (x marks) transformations.

The dependence of the Froude number, which measures the relative
weight of the aerodynamic and gravitational forces, on the inverse of a char-
acteristic length (e.g., the rotor radius), implies that gravitational effects are
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expected to play a prominent role in future very large wind turbines. In
turn, this might soon emphasize the limits of the classical Coleman-based
analysis.
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CHAPTER8
System identification of LTP systems from

input-output data

IN the previous chapter it was shown how to conduct a rigorous stabil-
ity analysis of LTP systems. In this section, we show how to build a
discrete-time state-space LTP model from a sequence of N measure-

ments, restricting the discussion to the single-input/single-output (SISO)
case. This result is obtained in two steps: first a PARMAX input-output
model is identified, which is then realized in state-space form to yield the
final discrete-time model used for stability analysis.

Three different models are considered: the PARX model, (also noted
as periodic equation-error model), the output-error and the PARMAX. No-
tice that equation-error and output-error can be viewed as two particular
cases of the PARMAX model. The basic method for identifying such these
models is the Prediction Error Method (PEM), [81].

Of course the identification and the analysis of periodic models is not
new in literature. The study of several seasonal phenomena, as for example
those related to hydrology, [87–90], electrical consumption, [91–93], cli-
matology, [94], econometrics, [95], leads to the identification of periodic
time series.
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Moreover periodic models are largely used to the analysis and control of
rotating systems, such that rotorcrafts and wind turbines, for example, the
equation-error method was used in reference [96] for the identification of a
PARX model of a helicopter rotor.

On the other hand, the output-error method [23, 80] was used in refer-
ence [74] to identify a PARX model from transient responses of a wind tur-
bine. The output-error method has superior statistical characteristics since
it allows to consider opportunely the presence of measurement noise, but
necessitates of a non-linear iteration for its solution. To ease its conver-
gence, the equation-error method is often used to generate a suitable initial
guess for the non-linear solve. The equation and the output-error methods
are briefly reviewed in the following in the context of the present PARX
identification problem, Sections 8.1.1 and 8.1.2

Both these approaches could be able to characterize the response of a
wind turbine, but their application must be restricted to systems subjected
to deterministic inputs since their structure does not consider the presence
of a process noise. This limitation could be restrictive if one tries to es-
timate a model from a turbine operating in a real environment, where the
effects of wind turbulence can be important. To this reason, Section 8.1.3
is dedicated to the identification of PARMAX sequences, which is a model
more adequate in describing the properties of the noise term.

8.1 Identification using the prediction error method (PEM)

Consider a measure of a generic output of the system z and an input
u, sampled at a constant rate ∆t and note z(k) and u(k) respectively
the measure the output and the input at a generic time instant k∆t, with
k = 1, 2, . . . , N and N the number of samples.

Suppose then that the dynamics of z(k) is dictated by the Periodic Auto-
Regressive Moving Average with eXogenous input sequence of period K,

z(k)=
na∑
i=1

ai(k)z(k−i)+

nb∑
j=0

bj(k)u(k−j)+
nc∑

w=1

cw(k)η(k−w)+η(k), (8.1)

where ai(k) = ai(k + K), bj(k) = bj(k + K) and cw(k) = cw(k + K)
are respectively the periodic coefficients of the Auto-Regressive (AR), of
the eXogenous (X) and of the Moving Average (MA) part, and η(k) is the
process noise supposed to be white, gaussian and with periodic variance
σ(k)2.
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8.1. Identification using the prediction error method (PEM)

According to Ref. [97, 98], the optimal one-step ahead predictor of sys-
tem (8.1) is

ẑ(k|k − 1) = −
n∑

i=1

(ci(k))ẑ(k − i|k − i− 1)+

+
n∑

i=1

(ai(k) + ci(k))z(k − i) +
n∑

i=1

bi(k)u(k − i),

(8.2)

where ẑ(v|v − 1) is the prediction of the measure at time v, z(v), from the
knowledge of all data till time step v − 1, and n = max(na, nb, nc) is the
order of the system. Since in this work, only one-step-ahead predictor are
considered, to simplify the notation we drop the second time index when
defining any predicted variables, thus ẑ(v) = ẑ(v|v − 1).

Now the estimation problem is simply formalized according to PEM: the
identification problem is the one of finding the periodic coefficients ai(k),
bi(k) and ci(k) which minimize the cost function J defined as the mean
value of the square of the prediction error

J =
1

N

N∑

k=1

(ε(k))2 (8.3)

where ε(k) is the prediction error at time instant k defined as

ε(k) = z(k)− ẑ(k). (8.4)

The Equation (8.2) could be specialize on the basis of the particular
model, leading to the different identification methods for equation error,
output error and PARMAX.

8.1.1 Equation-error identification of LTP systems

In the equation-error approach, output measures z(k) are assumed to obey
the PARX sequence,

z(k) =
na∑
i=1

ai(k)z(k − i) +

nb∑
j=0

bj(k)u(k − j) + η(k), (8.5)

which is obtained from (8.1) by fixing to the null value all the cl coefficients,
i.e. by neglecting the MA part. The unknowns to-be-estimated are then
the periodic coefficients ai(k) and bj(k). The lack of the MA part greatly
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simplify the estimation because the predictor

ẑ(k) =
n∑

i=1

ai(k)z(k − i) +
n∑

i=1

bi(k)u(k − i), (8.6)

becomes linear in the parameters and the identification problem involves
the solution of a linear regression, as explained in detail in the following.

First, to reduce the number of unknowns, the periodic coefficients ai(k)
and bj(k) can be approximated by using truncated Fourier expansions, i.e.

ai(k) = ai0 +

NFa∑

l=1

(
ac

il
cos (lψ(k)) + as

il
sin (lψ(k))

)
, (8.7a)

bj(k) = bj0 +

NFb∑
m=1

(
bc
jm

cos (mψ(k)) + bs
jm

sin (mψ(k))
)
. (8.7b)

The unknown coefficients ai0, ac
il

, as
il

, bj0, bc
jm

and bs
jm

are collected in a
vector of parameters p to be identified:

p = (. . . , ai0, ac
il
, as

il
, . . . , bj0, bc

jm
, bs

jm
, . . .)T , (8.8)

where i = (1, . . . , na), j = (1, . . . , nb), l = (1, . . . , NFa) and m =
(1, . . . , NFb

).
Define now the row vectors

ϕa

(
ψ(k)

)
= [1, cos

(
ψ(k)

)
, . . . , cos

(
NF aψ(k)

)
,

sin
(
ψ(k)

)
, . . . , sin

(
NF aψ(k)

)
], (8.9a)

ϕb

(
ψ(k)

)
= [1, cos

(
ψ(k)

)
, . . . , cos

(
NF bψ(k)

)
,

sin
(
ψ(k)

)
, . . . , sin

(
NF bψ(k)

)
], (8.9b)

and in turn

ar,s = z(r)ϕa

(
ψ(s)

)
, (8.10a)

br,s = u(r)ϕb

(
ψ(s)

)
. (8.10b)

By writing equation (8.6) for all predicted output signals, one obtains the
following overdetermined system

ẑ = Tp, (8.11)
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8.1. Identification using the prediction error method (PEM)

where ẑ = {ẑ(q), ẑ(q + 1), . . . , ẑ(N)}T ,

T =




aq−1,q . . . aq−na,q bq,q . . . bq−nb,q

aq,q+1 . . . aq−na+1,q+1 bq+1,q+1 . . . bq−nb+1,q+1

...
...

...
...

...
...

aN−1,N . . . aN−na,N bN,N . . . bN−nb,N




(8.12)

and q = max(na, nb) + 1.
Introducing the prediction error ε = {ε(q), ε(q + 1), . . . ε(N)}T and

the measurement vector z = {z(q), z(q + 1), . . . z(N)}T , the following
equation is derived

ε = z − Tp (8.13)

The unknown vector of parameters is then readily minimizing the cost func-
tion J = εT ε through the pseudo-inversion of T as

p = (T T T )−1T T z. (8.14)

8.1.2 Output-error identification of LTP systems

In the output-error approach, it is assumed that an error-free output signal
y(k) obeys a PARX sequence

y(k) =
na∑
i=1

ai(k)y(k − i) +

nb∑
j=0

bj(k)u(k − j), (8.15)

whereas the error η(k) affects measures z(k), i.e.

z(k) = y(k) + η(k). (8.16)

The predictor of system (8.15–8.16) is

ẑ(k) =
n∑

i=1

ai(k)y(k − i) +
n∑

i=1

bi(k)u(k − i), (8.17)

which is nonlinear in the parameters since the variable y depends in turn on
the parameters p as it is clear from Eq. (8.15).

As in the previous case, coefficients ai(k) and bi(k) are approximated
with a suitable number of harmonics using (8.7). Then, the resulting un-
known vector p is computed by minimizing the sum of the square of the
prediction error:

J =
N∑

k=1

(
z(k)− ẑ(k)

)2
. (8.18)
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Minimization of J involves a non-linear iteration in which output y(k)
is computed by solving (8.15) for k = max(na, nb) + 1, . . . , N start-
ing from initial conditions chosen such that z(k) = y(k) for k =
1, . . . , max(na, nb).

8.1.3 Identification of PARMAX model

The presence of the MA-part in the PARMAX model allows a more ade-
quate characterization of the disturbance term with respect to that provided
by the equation and output-error models, if the analyzed system is subject
to a process noise. This freedom, unfortunately, reflects itself in a more
complex estimation procedure.

According to the prediction error method, the predictor of the PARMAX
model is

ẑ(k) =
nc∑

w=1

cw(k)(z(k − w)− ẑ(k − w))+

+
na∑
i=1

(ai(k))z(k − i) +

nb∑
j=1

bj(k)u(k − j),

(8.19)

which is non-linear in the parameters since any ẑ(k) is a function of its
previous values ẑ(k − w) which in turn depend on the parameters.

Here again, the periodic unknowns cw(k) are approximated in sine and
cosine expansions as ai(k), bj(k),

cw(k) = cw0 +

NFc∑
n=1

(
cc
wn

cos (nψ(k)) + cs
wn

sin (nψ(k))
)
, (8.20)

and the parameter vector p becomes

p = (. . . , ai0, ac
il
, as

il
, . . . , bj0, bc

jm
, bs

jm
, . . . , cw0, cc

wn
, cs

wn
, . . .)T ,

(8.21)
where i = (1, . . . , na), j = (1, . . . , nb), w = (1, . . . , nc) l = (1, . . . , NFa),
m = (1, . . . , NFb

), and n = (1, . . . , NFc). Then, p is estimated minimizing
iteratively the sum of the square of the prediction error ε(k) = z(k)− ẑ(k).

Moreover, looking at the predictor (8.2), it is easy to verify that the pre-
dicted measure ẑ(k) obeys a PARX model, in which the unknowns cw(k),
apart a change of sign, represent the coefficients of the periodic autoregres-
sive part. Therefore it is possible that, during the optimization process, the
coefficients cw(k) involve an unstable predictor leading to the impossibility
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of performing effectively the identification. This happens if the parame-
ters ai(k) and cw(k) describe a non-minimum phase PARMA model, i.e. a
model with at least a zero which does not belong to the unit open disk, [77].

In literature there are basically three methods to overcome this problem.
The first is an heuristic approach in which the coefficients cw(k) are halved
repeatedly till the achievement of a stable predictor. This method actually
corresponds to a re-initialization of parameters cw(k) with unknown effects
on the convergence of the estimation. The second approach is based on the
computation a new minimum phase representation of the non-minimum
phase PARMA, such that the impulsive responses of both models, mini-
mum and non-minimum, have the same autocorrelation function. This new
canonical model is obtained by solving a suitable periodic Riccati equa-
tion, [97]. The third approach proposed in [98], is similar to the second but
it is based on the multivariate Rissanen factorization algorithm, [99].

In the development of this work, an alternative and original method
based on a constraint optimization is used: the stability of the predictor
is enforced by a non-linear constraint within the estimation process and the
resulting constraint optimization is performed by a Sequential Quadratic
Programming (SQP) algorithm [35]. The estimation problem results then
reformulated as

min
p

J(z(k)− ẑ(k); p), (8.22a)

s.t.: |Z(p)| ≤ 1, (8.22b)

where |Z(p)| are the absolute values of the zeros of the PARMAX model
defined by the unknown vector p.

8.2 Realization of the PARMAX sequence in state-space form

For a given PARMAX coefficients a periodic realization in state-space form
is necessary in order to perform the stability analysis as previously de-
scribed, in Section 7.2.

In order to simplify the treatment, since the MA-part does not affect the
stability of the system, only PARX models are here analyzed.

To this end, consider a discrete-time state-space system in observable
canonical form

x(k + 1) = A(k)x(k) + B(k)u(k), (8.23a)
y(k) = C(k)x(k) + D(k)u(k), (8.23b)
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where

[
A(k) B(k)

C(k) D(k)

]
=




0 0 . . . 0 αn(k) βn(k)

1 0 . . . 0 αn−1(k) βn−1(k)

0 1 . . . 0 αn−2(k) βn−2(k)
... . . . . . . ...

...
...

0 0 . . . 1 α1(k) β1(k)

0 0 . . . 0 1 β0(k)




, (8.24)

and x = {x1 x2 . . . , xn}T

Through simple mathematical computations from (8.23a–8.24), the fol-
lowing sequence is derived

xn(k) = xn−1 + α1(k − 1)xn(k − 1) + β1(k − 1)u(k − 1) (8.25)
= xn−2(k − 2) + α2(k − 2)xn(k − 2) + α1(k − 1)xn(k − 1)+

(8.26)
β1(k − 1)u(k − 1) + β2(k − 2)u(k − 2) (8.27)

= . . . (8.28)

xn(k) =
n∑

i=1

αi(k − i)xn(k − i) +
n∑

i=1

βi(k − i)u(k − 1). (8.29)

From the output equation, (8.23b) and by the definition of matrix C(k),
Eq. (8.30) is derived

y(k) = xn(k) + β0(k)u(k), (8.30)

which leads, together with (8.25) to the input-output behaviour of system
(8.23),

y(k) =
n∑

i=1

αi(k−i)y(k−i)+
n∑

i=1

[
βi(k−i)−β0(k−i)αi(k−i)

]
u(k−1)+β0(k)u(k).

(8.31)
Comparing (8.31) with (8.5), it can be easily shown that (8.23–8.24) is

equivalent, i.e. it has the same impulsive response, to (8.5) if the system
coefficients are chosen as follows

αj(k) = aj(k + j), ∀j = (1, . . . , na), (8.32a)
β0(k) = b0(k), (8.32b)
βj(k) = bj(k + j) + aj(k + j)b0(k), ∀j = (1, . . . , nb). (8.32c)
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CHAPTER9
Results and conclusions

A detailed aero-elastic model of a direct-drive 6 MW wind turbine was
used in this work for testing the proposed stability analysis formula-
tion. The model, implemented with the wind turbine simulation code
Cp-Lambda [16, 100], is based on a finite element multibody approach,
using Cartesian coordinates and scaled Lagrange multipliers for the en-
forcement of constraints. Time marching is performed with an implicit
non-linearly unconditionally stable energy decaying scheme. Blades and
tower are modeled with geometrically exact beam elements, while aerody-
namics is rendered by a classical blade-element momentum (BEM) model
based on the annular stream-tube theory with wake swirl, including tip and
hub loss models, including unsteady corrections and dynamic stall. While
the implementation of a MBC-LTI approach in a code of similar complexity
would be a major undertaking, we stress here again that the use of a differ-
ent simulation tool other than Cp-Lambda would require no change to the
software implementation of the proposed stability analysis procedures.
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9.1 Rotor edgewise response

At first we consider the estimation of the level of damping of the edgewise
rotor modes, which is typically quite light due to the small aerodynamic
damping associated with such motions. In order to perturb the system, two
edgewise force doublets were applied near the blade tip and at mid span.
Amplitude and length of the doublets were tuned so as to excite a linear
response of the modes of interest. The analysis was conducted in non-
turbulent wind conditions, between rated rotor speed Ωr and 1.33 Ωr, so as
to investigate the behavior of the system in the over-speed regime.

The order of the to-be-identified reduced model was chosen according
to some simple considerations. First, since the frequency content of the
outputs shows three distinct peaks, na was set equal to 6. Second, the fact
that the wind is constant allows one to identify only one coefficient, β1(k),
of the exogenous part, so that nb = 1. Furthermore, the periodicity of the
coefficients was approximated with NFa = 1 and NFb

= 6. The number of
time steps in a period and the number of periods used for the identification
were chosen so as to achieve the best agreement between measures and
predicted outputs.

Figure 9.1 shows a comparison between the normalized edgewise root
bending moment that was measured on the simulation model (solid line)
and the one predicted by the identified PARX one (dashed line), in the
time (left) and frequency (right) domains, for a rotor speed equal to about
1.13 Ωr. The plots show an excellent correlation between the quantities of
the virtual plant and of the identified model. Notice that the third mode has
a very short characteristic time, such that it vanishes very quickly in the
first time instants after the perturbation; this is also the span of time used
to compute the initial conditions. This implies that results related to the
third mode do not have the same level of accuracy of the first and second
modes. For this same operating condition, Table 9.1 reports the frequency,
damping and participation factors of the lowest five harmonics for the first
and second edgewise fans of modes.

Figure 9.2 shows, for lowest edgewise fan, the normalized frequencies
(scaled by the rated rotor speed), damping and participation factors as a
function of rotor speed. Note the rough behavior of the participation fac-
tors, due to the fact that uncertainties propagate more in these quantities
than in frequencies or damping factors.

The periodic Campbell diagram of Figure 9.2 at left shows resonant con-
ditions around a rotor speed of 1.15 Ωr. In fact, not only the principal fre-
quency with the highest participation intersects the 4 per rev, but also the
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Figure 9.1: Comparison between measured (solid line) and predicted (dashed line) nor-
malized blade root bending moment, in the time (left) and frequency (right) domains.

Table 9.1: First and second blade edgewise fans of modes.

(a) 1st blade edgewise mode

Frequency [×Rev] Damping Participation

2.0321 0.0434 0.0114
3.0314 0.0291 0.1351
4.0311 0.0219 0.5807
5.0309 0.0175 0.1392
6.0308 0.0146 0.0013

(b) 2nd blade edgewise mode

Frequency [×Rev] Damping Participation

9.2661 0.1137 0.0344
10.2602 0.1027 0.1839
11.2554 0.0936 0.4173
12.2514 0.0860 0.2112
13.2479 0.0796 0.0754
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Figure 9.2: Frequencies, damping and participation factors of the first edgewise mode.

other super-harmonics intersect the per-rev excitation harmonics. These
multiple resonances are in fact visible in the machine response. Figure 9.3
shows the amplitude of the harmonics of the blade root edgewise bending
moment, computed in a stationary trimmed condition in constant wind, as a
function of rotor speed. Notice, a part from the 4 per rev resonance, also the
presence of other peaks at 2, 5 and 6 per rev, as predicted by the periodic
Campbell diagram. Here again, the presence of these peaks could not be
justified by a standard MBC-LTI analysis.

9.2 Tower side-side response

A zero-mean side-side force chirp applied at the tower top was used to
perturb the machine operating in closed-loop under the effects of a steady
mean wind. The time history of the blade root edgewise bending moment
and tower root fore-aft and side-side bending moments were recorded from
the end of the perturbing signal. In this case, na was set equal to 2 in
order to model the presence of a single mode, and since the wind remains
constant nb equal to 1, while the Fourier truncation of the coefficients was
performed with NFa = NFb

= 5.
Figure 9.4 shows a comparison between the virtual plant measure and
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Figure 9.3: Amplitude of the 1 to 6 per rev edgewise blade root moment harmonics as a
function of rotor speed. Values are scaled with the maximum edgewise moment at Ωr.
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Figure 9.4: Comparison between measured (solid line) and predicted (dashed line) nor-
malized tower root side-side bending moment in the frequency domain.
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the identified output in the frequency domain, for the tower side-side bend-
ing moment at a wind speed of 5 m/s. Table 9.2 summarizes the results
in terms of frequency, damping and participation factors for the first tower
side-side fan of modes. Even if the principal tower frequency around 2.8
per rev has a participation that is close to 1, its associated super-harmonics
are visible in the FFT of the response displayed in Figure 9.4.

Table 9.2: First tower side-side fan of modes.

Frequency [×Rev] Damping Participation

0.2072 0.0783 0.007
0.7936 0.0204 0.004
1.7935 0.0090 0.006
2.7935 0.0058 0.964
3.7935 0.0043 0.009
4.7935 0.0034 0.002

The simplified model problem discussed previously showed that the
tower super-harmonics may appear prominently in the blade response. To
verify this fact with respect to the present more realistic case, we performed
the identification of a new model using the blade root edgewise bending
moment measurements. Figure 9.5 and Table 9.3 summarize the results. As
expected from the model problem, even here the figure shows two promi-
nent peaks related to the tower super-harmonics. Notice also, as a side note,
the presence of a small peak at a frequency of about 10 per rev, which is
one super-harmonic of the forward whirling in-plane fan, similarly to what
can be observed for the simplified model problem in Figure 7.4(a).

Table 9.3(a) shows that, although the tower principal harmonic is not
visible in the response (cf. Figure 9.5), its frequency is still correctly esti-
mated (cf. the present value of 2.7955 with the one in Table 9.2 of 2.7935).
The periodic identification is capable of assigning the two peaks related
to the tower super-harmonics to a single mode fan, both having high par-
ticipation factors approaching 50%, while a participation close to zero is
assigned to the principal harmonic.

Comparing Tables 9.2 and 9.3(a), one can again observe the phe-
nomenon previously illustrated with the help of the simplified model prob-
lem: the first tower side-side fan of modes has a markedly invariant char-
acter when observed through the tower response (the tower base bending in
this case), while a strongly periodic one when observed through the blade
response (the blade edgewise bending in this case). We further note that,
due to the definition of the output in the realized state-space model of equa-
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9.2. Tower side-side response
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Figure 9.5: Comparison between measured (solid line) and predicted (dashed line) nor-
malized blade root edgewise bending moment in the frequency domain.

Table 9.3: Side-side tower and blade edgewise fans of modes.

(a) 1st tower side-side mode

Frequency [×Rev] Damping Participation

0.7957 0.0283 0.0243
1.7955 0.0125 0.3557
2.7955 0.0080 0.0901
3.7955 0.0059 0.4319
4.7954 0.0047 0.0685

(b) 1st blade edgewise mode

Frequency [×Rev] Damping Participation

5.9900 0.0343 0.0015
6.9895 0.0294 0.0899
7.9891 0.0257 0.7872
8.9888 0.0229 0.0985
9.9885 0.0206 0.0021
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Chapter 9. Results and conclusions

tions (8.23–8.24), modal participation factors computed from the identifi-
cation and realization of a PARX model are automatically output-specific.

9.3 Tower fore-aft and in-plane whirling response

Due to the coupling between fore-aft and side-side tower modes, the back-
ward and forward in-plane whirling modes are visible in both the fore-aft
and side-side tower root moments. In this work the in-plane whirling modes
were identified from the fore-aft moment, since the response in the side-side
direction is dominated by the very low damped side-side tower mode.

The two backward and forward whirling modes are separated in fre-
quency by about 2 Ω. This fact may have an effect on the identification
process, because different modes separated by multiples of the rotor fre-
quency could be interpreted as different super-harmonics of the same fan
of modes. To overcome this issue, an invariant model, obtained by simply
setting NF a = 0, was fitted to the measures. The resulting model, which
necessarily considers the backward and forward whirlings as two distinct
modes since it is blind to the presence of fans, was then used as the initial
guess for the identification of the periodic model.

Results of the identification conducted in this way are shown for a uni-
form wind condition at 5 m/s in Figure 9.6 and Table 9.4. The identified
model matches well the response of the system, although there are minor
spurious oscillations.

9.4 The periodic Campbell diagram

The previously identified fans of modes are collected in the partial periodic
Campbell diagram shown in Figure 9.7. The figure shows the principal
harmonic (thick solid line) and four super-harmonics (thin solid lines) for
the first tower fore-aft, backward in-plane whirling, blade edgewise and
forward in-plane whirling fans of modes. The per-rev excitation harmonics
are reported as grey dashed lines emanating from the origin of the plot.
For better readability, the plot is repeated four times, one for each fan of
modes. Each plot reports in color solid lines the harmonics of one specific
fan. A complete Campbell diagram should also report other relevant fans of
modes, as the first tower side-side, blade flap, out-of-plane whirling modes,
etc., which however were not reported here for the sake of simplicity.

This plot should highlight once again that the full picture of the possible
resonant conditions emerging from a periodic analysis is much richer than
the one obtained by classical means. This scenario is further complicated
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9.4. The periodic Campbell diagram
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Figure 9.6: Comparison between measured (solid line) and predicted (dashed line) nor-
malized tower root fore-aft bending moment in the frequency domain.

Table 9.4: First tower fore-aft and in-plane whirling fans of modes.

(a) 1st tower fore-aft mode

Freq
Damping Participation

[×Rev]

0.7858 0.0268 0.0008
1.7856 0.0118 0.0675
2.7856 0.0075 0.8691
3.7855 0.0056 0.0607
4.7855 0.0044 0.0014

(b) Backward in-plane whirling

Freq
Damping Participation

[×Rev]

4.9760 0.0394 0.0034
5.9754 0.0328 0.0541
6.9749 0.0281 0.5624
7.9746 0.0246 0.1178
8.9743 0.0218 0.1899

(c) Forward in-plane whirling

Freq
Damping Participation

[×Rev]

7.1021 0.0336 0.0583
8.1016 0.0295 0.1577
9.1012 0.0262 0.5758

10.1009 0.0236 0.1651
11.1007 0.0215 0.0306
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by the fact that the same harmonic can have a high or low participation fac-
tor depending on the specific output considered, something that is difficult
to synthesize in one single diagram as the one shown here.
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(a) Tower mode
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(b) Backward whirling mode
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(c) Blade edgewise mode
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(d) Forward whirling mode

Figure 9.7: Periodic Campbell diagram of the comprehensive multibody model of a 6 MW
wind turbine.

9.5 Real wind turbines: the effect of turbulence

9.5.1 First blade edgewise mode

In order to identify the first blade edgewise mode from a more realistic
scenario, the Cp-Lambdamodel of the 6MW wind turbine, in closed loop,
was used also to perform simulations of the system in several different wind
conditions from 3 to 9 m/s. All the simulations consider also an exponential
model of the wind shear layer, with exponent equal to 0.2, as well as a wind

126



9.5. Real wind turbines: the effect of turbulence

turbulence of category C, (about 10% of intensity).
To perturb the turbine in order to excite the edgewise modes, two edge-

wise force doublets were applied near the blade tip and at mid span, as just
described in 9.1.

The blade root bending moment edgewise was recorded from the end of
the perturbation for a suitable number of rotor revolutions. To perform the
identifications, the average values of wind speed and rotor speed are used.

The wind speed is considered as the sum of its mean value and the tur-
bulence modeled as a process noise. The PARMAX models were chosen
for identifying a model of the blade edgewise modes according to the PEM
algorithm described in Section 8.1.3.

By means of a trial and error approach the complexity of the model was
selected as Na = 6, Nb = 1, Nc = 2, NFa = 1, NFb

= 1 and NFc = 0.
Notice that the MA-part was considered not periodic (NFc = 0) because
actually there are no physical reasons to justify a periodic behavior (with
the same period of the turbine) of the turbulence.

Figure 9.8 shows the comparison between the blade root bending mo-
ment edgewise measured and predicted with the identified PARMAX model
in time domain (at left) and in frequency (at right), for a mean wind speed
equal to 8 m/s. The goodness of the identification is proved by the excellent
correlation achieved.
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Figure 9.8: Comparison between measured (solid line) and predicted with PARMAX
model (dashed line) normalized blade root bending moment, in the time (left) and
frequency (right) domains.

The results of the stability analysis of the identified model, in term of
frequencies, damping and participation factors of the first blade edgewise
mode, are also reported in the Table 9.5.
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Table 9.5: First blade edgewise fan of modes.

Frequency [×Rev] Damping Participation

2.8770 0.0638 0.0110
3.8755 0.0474 0.2067
4.8746 0.0377 0.5442
5.8740 0.0313 0.2237
6.8736 0.0267 0.0087

Finally, the periodic Campbel diagram related to first blade edgewise
fan of modes, obtained from transient responses of the turbines in turbulent
wind by means of the PARMAX identification is shown in Figure 9.9.
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Figure 9.9: Frequencies, damping and participation factors of the first edgewise mode
identified with PARMAX model.

9.6 Conclusions

In this work we have presented a new method for the stability analysis of
wind turbines, that is based on the identification of a LTP reduced model
that best fits a transient response of the system. Once the model has been
identified, stability is assessed using the theory of Floquet for periodic sys-
tems.
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9.6. Conclusions

Based on the results of this study, the following consideration can be
drawn:

• The proposed method, since it operates on the bases of input-output
sequences, is applicable to models of arbitrary complexity, as well as
to arbitrary system (wind turbines, helicopters, etc.).

• Floquet theory shows that a single frequency is not sufficient to
fully characterize a periodic mode, because in reality several multi-
harmonics participate in the response of the system and each of them
may resonate with the per rev excitations. The presence of these addi-
tional harmonics, that was shown to appear in the spectra of simplified
model problems as well as more realistic wind turbine models, can not
be explained by the widespread simplified approaches in current use.

• The use of the participation factor allows one to measure how periodi-
cally (or invariantly) a specific fan behaves. This concept also clarifies
the issue of the apparent indetermination of characteristic exponents,
which was a major source of confusion in the literature when it was
tried to characterize a periodic mode with a single frequency.

• For the examples studied herein, it appears possible to identify re-
duced models of excellent quality, i.e. that produce outputs very close
to the measured ones. For other common problems in system iden-
tification one has to guarantee the generality of the identified model,
i.e. its ability to approximate also situations that are not in the identi-
fication data set. In the present application this is not necessary, and
this greatly simplifies the problem of obtaining good quality reduced
models, which in turn helps in obtaining good quality results from the
stability analysis.

• The possibility of performing the proposed stability analysis of a real
wind turbine was also explored, by simulating a real scenario in which
the wind turbine operates in turbulent wind conditions. In such these
conditions PARMAX models are identified instead of the simpler
PARX, which are not adequate to consider turbulence as a process
noise. The achieved results show a good quality of identified models
and, consequently, accurate estimations of frequencies, damping and
participation factors.

• An original procedure to estimate PARMAX model was also pro-
posed: the minimization involved by the identification process is
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viewed as a constraint optimization in which the stability of the PAR-
MAX predictor is accounted as a nonlinear constraint. The opti-
mization is then performed using a sequential quadratic programming
(SQP) method. The proposed algorithm works as well as others pro-
posed in literature, in which the stability of the predictor is guaranteed
by projection methods based on the periodic Riccati equation or on
the Rissanen factorization.

The present study can be improved and expanded in a few directions.
In terms of improvements, the most important might be the use of multi-

ple outputs, as opposed to the single output used here. In fact, it was shown
how super-harmonics could manifest themselves in different ways for dif-
ferent signals, as shown by the case of the tower super-harmonics that were
inconspicuous in the tower loads but showed prominently in the blade ones.
Furthermore, this means that one has to identify different models for dif-
ferent modes and has to pick the best signal for each, which complicates
the process. The use of many outputs in the identification process could
significantly simplify this aspect.

In terms of expansions of the proposed approach, the application to real
wind turbines operating in the real environment must be studied more ac-
curately, in order to understand if adequate estimations could be achieved
also in presence of higher levels of turbulence with respect to those used
in this work. According to the procedure described in this work, a suit-
able experimentation on real turbines requires at least the possibilities of
perturbing the machines with an external impulsive forces, which can be
reproduced in practice by a pyrotechnic loads, but of course it could be in-
teresting to explore the possibility of performing the identification without
external forces, using only the turbulence to excite the modes of interest
of the turbine. Regarding the measurements, at the current state of the re-
search, it seems that blade root and tower root loads as well as wind and
rotor speed measurements be enough to perform the estimation of the most
interesting modes.



Conclusions and outlook
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System identification in the next future
developments of wind turbine engineering

FUTURE improvements of wind turbines cannot be done without ade-
quate developments of the supporting technologies. This is clearly
visible looking at the fact that the current trend in wind turbine en-

gineering is that of building bigger turbines for the off-shore environments.
The opportunities of the off-shore wind are great for two basic reasons.

Off-shore wind first is a huge available resource and second, but not less
important, it can relieve all the issues concerning the acceptability of large
wind turbines, as precisely summarized in the acronym NIMBY (Not In
My Back Yard). At least for the author’s opinion, exploiting the off-shore
resources appears to be mainly the way to go in order to make the wind
energy can contribute more significantly to solve the energy problem in the
global context.

On the other hand, the growth of dimensions of turbines leads irreme-
diably to an increasing of the cost of energy, if the up-scaling is performed
without introducing innovative technologies, e.g. smart flexible blades, new
control laws, new strategies in supervisioning the wind farms, etc. . . , to sig-
nificant technological problems (logistics and maintenance), and finally to
the need of more sophisticated design methods, which could opportunely
consider the hydro-aero-servo-elastic nature of the entire system.

These issues will surely stress even more the necessity of mathematical
tools of analysis and validation, and consequently the importance of the
system identification and of that rigorous theory on which this discipline is
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based. Some interesting applications, in which this discipline can become
essential in the next future, could be listed.

First, the possible use of blades with passive technology of loads allevi-
ation, such that the bend-twist coupling, necessary to improve the perfor-
mances and the life of the blades without increasing the duty cycle of the
pitch actuators [101], will emphasize the need of an accurate characteriza-
tion of the structural properties of blades in order to correctly capture the
whole stiffness matrix. Currently, there are no works related to this im-
portant topic, which might be studied with the same tools and theory pre-
sented here. On the other hand the new advanced active control laws, such
that the individual pitch control (IPC) proposed in [102], the Higher Har-
monic Control (HHC) or the Receding Horizon Control (RHC) [103–105],
need, in addition to an adequate structural model, also an accurate charac-
terization of the rotor aerodynamic properties. The identification of blade
aerodynamic properties can become a basic tool to use for obtaining a suit-
able rotor model and consequently for allowing the design of model-based
control laws, which of course, without a validated aerodynamics, would
have few possibilities of performing correctly in a real environment, as also
notice in [103]. The identification of aerodynamic properties from wind
tunnel data have performed very well, but the interesting and important ex-
tension to field data must be still studied accurately.

A second important application of the tools described in this work con-
cerns again the advanced control of wind turbines. A periodic framework
can be used to formulate many advanced controllers such that the Periodic
Linear Quadratic Regulator [106] or the HHC and IPC [107, 108]. Cur-
rently there exist no studies related to the stability of the coupled systems
wind turbine-HHC/IPC although the use of such controllers is extensively
treated in literature. We can expect that in the next future this issue would
surely emphasizes the importance of having rigorous tools for performing
periodic stability analysis. Moreover, it’s not so daring to foresee that the
design of more complex machines, floating turbines or rotors which con-
template technologies of passive reduction of loads (e.g. the bend-twist
coupling), will stress further the need of model-independent and rigorous
stability analysis approach and possibly its introduction in automatic pro-
cedures of aero-structural turbine design.

All the tools developed in this thesis can be used for both the over men-
tioned applications, but of course many other possible uses of the system
identification in wind turbine engineering could be found. Among the pos-
sible applications it is proper to mention the health monitoring [109] and
the estimation of yaw misalignment [110] and the estimation of simple re-
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duced model for tuning and optimizing the control laws [111, 112].
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