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Abstract

Most modern software systems have a decentralized, modular, distributed,
and dynamic structure. They are often composed of heterogeneous com-
ponents and operate on several di�erent infrastructures. They are in-
creasingly built by composing services; that is, components owned (de-
signed, deployed, maintained, and run) by remote and independent stake-
holders. The quality of service perceived by the clients of such a com-
posite application depends directly on the individual services that are
integrated in it, but also on the way they are composed. At the same
time, the world in which such applications are situated (in particular, the
remote services upon which they can rely) change continuously. These
requirements ask for an ability of applications to self-adapt to dynamic
changes, especially when they need to run for a long time without inter-
ruption. This, in turn, has an impact on the way service compositions
are implemented using ad-hoc process languages de�ned to support com-
positions.

Indeed, the principles behind Service Oriented Computing (SOC) has
brought a simpli�cation in the way distributed applications are devel-
oped. We claim, however, that the fully potential of SOC is still to be
reached and it is our belief that this is caused by the same tools used to
build such service compositions. Indeed, mainstream approaches failed to
support dynamic, self-managed compositions, characteristics they must
have due to the changeable world they are embedded in, where it is
essential to be able to adapt to changes that may happen at run-time.
Unfortunately, mainstream SOC languages make it quite hard to develop
such kind of self-adapting compositions. It is specially hard because they
too closely resemble traditional languages, with their imperative style of
programming: it requires service architects to take care of an intricate
control �ow, in which one tries to capture all possible ways things can
go wrong and react properly to exceptional conditions. A great e�ort is
required to program the application to continue to meet its requirements
in the presence of anticipated or unanticipated changes.

In this thesis we present DSOL - Declarative Service Orchestration
Language, a novel approach in which we abandon the imperative style
adopted by currently available languages in favor of a strongly declarative
alternative. DSOL allows an orchestration to be modeled by giving
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a high-level description of the elementary activities, a loosely coupled
implementation layer and the overallGoal to be met by the orchestration.
DSOL models are then executed by an ad-hoc service orchestration

engine, which leverages automatic planning techniques to elaborate, at
run-time, the best sequence of activities to achieve the goal. Whenever a
change happens in the external environment, which prevents execution to
be completed, DSOL engine behaves in a self-healing manner. Through
dynamic re-planning and advanced re-binding mechanisms, it �nds an
alternative path toward the goal and continues executing it, until the
goal of the orchestration is reached.
DSOL provides several advantages w.r.t. traditional approaches, rang-

ing from a better support for the implementation of self-adaptive orches-
trations to a more decoupled architecture in which they may smoothly
evolve to cope with exceptional situations or to requirement changes.
DSOL models also promotes a more readable and maintainable code
through a clear separation of concerns, in which the orchestration logic
is isolated from the logic to used to handle and adapt to exceptional
situations.
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1 Introduction

Software is the driving engine of modern society. Most human activities
are either software enabled or entirely managed by software. Examples
range from health-care and transportation to commerce and manufac-
turing to entertainment and education. We are today in a stage where
existing Web technology allows information (i.e., data) to be accessed
from everywhere, being it computers or mobile devices, through the net-
work. From this situation, we are moving to a stage where also function-
alities (i.e., services) may be openly accessed and integrated to provide
new functionality and serve di�erent users.

Although the terms (software) service and service-oriented computing
(SOC) are becoming widely used, they should be made more precise to
better understand the nature of the problems we are currently facing.
A service is a software component that provides some functionality of
possible general use. Functionalities can be of di�erent levels of com-
plexity, generality, and granularity. Services and SOC di�er with respect
to (software) components and component-based computing in that ser-
vices are owned (developed, deployed, run, and maintained) by indepen-
dent stakeholders, who make them available for external use by multiple
potential clients. Accordingly, services are designed to support interop-
erable software-to-software (potentially written in di�erent programming
languages) interaction over the network.

When �rst proposed, the principles behind Service Oriented Architec-
tures (SOAs) and the Service Oriented Computing (SOC) paradigm held
the promise to solve the complexity behind programming large-scale, dis-
tributed applications. By orchestrating [1] existing services through easy
to use languages, even non-technical users were promised to be empow-
ered with the ability of creating their own added-value o�erings. Unfor-
tunately, after some years of research, technological developments, and
experience, we are still far from reaching these goals: �service orchestra-
tion� is still a di�cult and error-prone art, which requires sophisticated
skills.

The main source of complexity hampering a wider adoption of SOC
has to do with the fact that service orchestrations live in a very unsta-
ble world, in which changes occur continuously and unpredictably [2].
Indeed, if not adequately managed, these changes inevitably lead to fail-
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1 Introduction

ures. As an example, orchestrations may fail because the target services
they invoke have been discontinued by their providers, because they be-
came unreachable through the currently used interconnection network, or
because new versions have been deployed, which are incompatible with
the previous ones. It is therefore fundamental that the orchestration
could respond and adapt to such kinds of changes, �nding an alternative
strategy to achieve its goal.

De�ning and managing service orchestrations in an open and evolving
environment, however, is hard. It is specially hard using traditional �pro-
gramming" approaches adopted by mainstream orchestration languages,
like BPEL [3] and BPMN [4]. Indeed, we strongly argue that the main
reason behind this complexity is related to the very nature of such lan-
guages which too closely resemble traditional programming languages
and their imperative style: this requires service architects to take care
of an intricate control �ow if they want to (1) capture all possible ways
things can go wrong and (2) adapt to exceptional conditions, letting the
application meet its requirements even in the presence of changes.

In particular, the traditional way to achieve such kind of adaptation
is by explicitly programming the orchestration work�ow, hard-coding
all the possible alternatives to meet the requirements, and by heavily
using exception handling techniques to manage failures when they occur.
This is quite hard per-se and cannot be done by inexperienced users.
In addition, this approach forces the alternative ways to achieve the
orchestration's goal to be mixed together with the exception handling
code. This brings further complexity and results in orchestration models
that are hard to read and maintain.

This severe limitation of the state-of-practice in service orchestration
has been recognized by part of the research community, which is propos-
ing Automated Service Composition (ASC) as an alternative approach.
Unfortunately, we �nd that this alternative also has limitations. Indeed,
the number of di�erent approaches that fall under the ASC umbrella
can be roughly classi�ed in two main groups [5, 6]. The �rst includes
approaches that aim at reaching a fully automatic construction of the
orchestration from a large (potentially universal) set of semantically-rich
service descriptions, to be interpreted, selected, combined, and executed
by the orchestration engine. This should happen without the interven-
tion of the service architect, whose role is fully subsidized by the engine
itself. The second group of proposals is less ambitious, leaving to service
architects the goal of de�ning an abstract model of the orchestration,
which the engine interprets and makes concrete by selecting and invok-
ing the actual services to accomplish each task. We claim that none
of the two approaches completely solve the problem above. The former
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works in speci�c, restricted domains, but can hardly be applied in gen-
eral scenarios, since it requires all services to be semantically described
with enough details to allow the engine to choose and combine them in
the right way to satisfy the users' goals. The latter is too restrictive,
as it relies on the service architect to provide an abstract yet detailed
enough model of the orchestration, often using languages like BPEL and
BPMN, whose structure is the ultimate source of the problems.1

As we will better argument in the following chapters, existing ap-
proaches can hardly provide the required features to simplify the de-
velopment of adaptive service orchestrations, which could actually cope
with the inherent complexity of the open world they live in. To overcome
these limitations, this thesis introduces DSOL,2 an innovative approach
for service orchestrations, explicitly designed to combine an easy-to-use
language and a powerful runtime system to support the development and
execution of self-adaptive compositions.
In DSOL we follow the mainstream path that suggests human inter-

vention to model service orchestrations through an ad-hoc language, but
we abandon the imperative style of currently available languages in favor
of a strongly declarative alternative. DSOL allows an orchestration to
be modeled by describing: (i) a set of Abstract Actions, which provide
a high-level description of the elementary activities that are typical of a
given domain, (ii) a set of Concrete Actions, which map the abstract ac-
tions to the actual steps to be performed to obtain the expected behavior
(typically, invoking an external service), (iii) a Quality-of-Service (QoS)
pro�le for each concrete action that models its non-functional charac-
teristics (e.g., response time and reliability), and (iv) the overall Goal
to be met by the orchestration, including also the global non-functional
requirements to be satis�ed.
DSOL models are then executed by DEng - the DSOL Engine which

leverages automatic planning techniques to elaborate, at run-time, the
best sequence of activities (i.e., service invocations) to achieve the goal.
Whenever a change happens in the external environment, which pre-
vents execution to be completed, DEng behaves in a self-healing manner.
Through dynamic re-planning and advanced re-binding mechanisms, it
�nds an alternative path toward the orchestration goal and continues
executing it. To evaluate the e�ectiveness of this approach we fully im-
plemented DEng and made it available for downloading.3

In general, DSOL provides several advantages w.r.t. traditional ap-
proaches, ranging from a better support for the implementation of self-

1We will come back to this issues in Chapter 7, while discussing related work.
2DSOL stands for Declarative Service Orchestration Language
3
DEng is available at http://www.dsol-lang.net
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1 Introduction

adaptive orchestrations to a more decoupled architecture in which service
orchestrations may smoothly evolve to cope with changes in the external
environment. DSOL also promotes a more readable and maintainable
code through a clear separation of concerns, in which the orchestration
logic is isolated from the logic to handle exceptions during execution.
Besides the proposal of the DSOL approach, other contributions of

this thesis include:

� A new approach for Quality-of-Service (QoS) management in ser-
vice orchestrations in which we don't limit the choice of the most
appropriate services to the beginning of the execution, but we ap-
ply a technique we called Adaptive re-binding to proactively change
service binding using the information collected during execution.
Such technique leverages the DSOL adaptive capabilities to max-
imize the QoS perceived by end users.

� SelfMotion, a successor of DSOL for the development of adap-
tive service-oriented mobile applications. In SelfMotion, we pro-
pose a declarative approach to easily build phone and tablet ap-
plications by composing not only web services but also third-party
apps, and platform-dependent components to access device-speci�c
hardware (e.g., camera, GPS, etc.). SelfMotion was also fully
implemented for Android devices [7].

1.1 Organization of the Thesis

The reminder of this thesis is organized as follows:

� Chapter 2 describes the problem we are trying to tackle. To do
so, it presents the de�ciencies of current available mainstream lan-
guage and why we need a paradigm shift like the one we propose.
A motivating example guides this description.

� Chapter 3 starts by giving an overview of DSOL and its main ad-
vantages. Afterwards, it presents all the elements that compose a
DSOL orchestration model. Furthermore, it describes how DSOL

runtime system works and how it was designed to overcome excep-
tional situations.

� Chapter 4 presents an extensive comparison between DSOL and
other state-of-the-art approaches, through several running exam-
ples. Furthermore, it presents an exhaustive performance evalua-
tion of the DSOL runtime system and the overhead it imposes to
the running orchestrations.
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1.2 Publications

� Chapter 5 presents an extension to DSOL developed to include
the support for built-in Quality-of-Service (QoS) attributes. It also
presents a performance assessment of the additional overhead per-
ceived when such QoS attributes are used to select the orchestrated
services.

� Chapter 6 describes how we ported the DSOL language and its
runtime system to another context: that of mobile application de-
velopment.

� Chapter 7 discusses related works, starting from a historical per-
spective, describing those systems that are at the roots of DSOL.
Then, it presents the most relevant alternative approaches and how
they di�er from DSOL, including the QoS part. Finally, it shows
some related work in the area of mobile application development.

� Finally, Chapter 8 draws some conclusion and depicts directions
for future works.

1.2 Publications

The research work behind this PhD thesis has lead to several publica-
tions, listed in this section in order of appearance in the thesis.

1. G. Cugola, C. Ghezzi and L. Sales Pinto. DSOL: A Declarative
Approach To Self-Adaptive Service Orchestrations. In Computing,
Volume 94, Issue 7, pages 579�617. Springer, 2012.

2. G. Cugola, C. Ghezzi and L. Sales Pinto. Process Programming
in the Service Age: Old Problems and New Challenges. In En-
gineering of Software, The Continuing Contributions of Leon J.
Osterweil, pages 163�177. Springer, 2011.

3. L. Sales Pinto, G. Cugola and C. Ghezzi. Writing Dynamic Ser-
vice Orchestrations with DSOL In ICSE 2012: Proceedings of the
34th International Conference on Software Engineering, Formal
Demonstration, pages 1383�1386. IEEE, 2012.

4. L. Sales Pinto, G. Cugola and C. Ghezzi. Dealing with Changes
in Service Orchestrations. In SAC 2012: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pages 1961�1967.
ACM, 2012.
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1 Introduction

5. L. Sales Pinto. A Declarative Approach to Enable Flexible and
Dynamic Service Compositions In ICSE 2011: Proceedings of the
33th International Conference on Software Engineering, Doctoral
Symposium, pages 1130�1131. ACM, 2011.

These 5 papers are at the basis of Chapter 3 and Chapter 4

6. G. Cugola, L. Sales Pinto and G. Tamburrelli. QoS-Aware Adap-
tive Service Orchestrations. In ICWS 2012: Proceedings of the 19th
International Conference on Web Services, pages 440�447. IEEE,
2012

This paper is at the basis of Chapter 5.

7. G. Cugola, C. Ghezzi, L. Sales Pinto and Giordano Tamburrelli.
SelfMotion: A Declarative Approach for Adaptive Service-Oriented
Mobile Applications. Submitted to Journal of Systems and Soft-
ware, Special Issue on Middleware for Mobile Data Management.
Elsevier.

8. G. Cugola, C. Ghezzi, L. Sales Pinto and G. Tamburrelli. Adaptive
Service-Oriented Mobile Applications: A Declarative Approach. In
ICSOC 2012: Proceedings of the 10th International Conference on
Service Oriented Computing, pages 607�614. Springer, 2012.

9. G. Cugola, C. Ghezzi, L. Sales Pinto and G. Tamburrelli. Self-
Motion: A Declarative Language for Adaptive Service-Oriented
Mobile Apps. In FSE 2012: Proceedings of the 20th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
Tool Demonstrations, Article No. 7. ACM, 2012.

These 3 papers are at the basis of Chapter 6.
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2 Problem Statement

As introduced in the previous chapter, the Service Oriented Comput-
ing (SOC) paradigm has brought a simpli�cation in the way distributed
applications are developed, giving the possibility to easily compose exist-
ing services to provide new added-value functionalities for end users. We
claim, however, that the fully potential of SOC is still to be reached and
it is our belief that this is caused by the same tools used to build such
service compositions. Indeed, mainstream approaches failed to support
dynamic, self-managed compositions, characteristics they must have due
to the changeable world they are embedded in, where it is essential to
be able to adapt to changes that may happen at run-time.

This chapter presents a deeper analysis of the de�ciencies of main-
stream service orchestration languages in supporting self-adaptation, which
were also the main motivations to the approach proposed by this thesis.

2.1 Limitations of Currently Available

Orchestration Languages

Throughout the last two decades, di�erent approaches were taken to-
wards the so-called process programming using work�ow languages. Sev-
eral programming and modeling languages were de�ned in an attempt
to best de�ne and automate di�erent kinds of processes. More recently,
the advent of SOC has attracted much research into the area of busi-
ness processes, to provide foundations for formalization, automation, and
support to business-to-business integration, where services provided by
di�erent organizations are combined, i.e., orchestrated, to provide new
added-value services that can be made available to end users.

Two languages emerged as the de-facto standards for modeling ser-
vice orchestrations: BPEL [3] and BPMN [4]. Although the two have
some di�erences [8], they share a number of commonalities that result in
the same limitations in modeling complex processes. In particular, both
adopt an imperative style, in which service orchestrations are modeled
as monolithic programs that must capture the entire �ow of execution.
This requires service architects to address every detail in the �ow among
services�they must explicitly program all the sequences of activities and
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2 Problem Statement

take care of all dependencies among them, consider all the di�erent al-
ternatives to accomplish the orchestration goal, and forecast and manage
in advance every possible exception that may occur at run-time.
To be more precise about this issue and better illustrate the limita-

tions of existing SOC approaches, let us introduce an example scenario
called The Event Planning Service. Such example will be further used
to motivate the need for a paradigm shift like the one we propose and
to help us better describe our approach in details in Chapter 3.

2.2 The Event Planning Example

The Event Planning Service is an application designed to support the
user to organize a trip to participate on an event of her choice. The
service is supposed to help the user to buy tickets for the (night) event
and to arrange the transportation from the city where the user lives to the
city where the event is scheduled, plus the related accommodation. Such
a service is built as an orchestration of existing external services, through
which one can buy the ticket, book the transportation, and book the
accommodation. In particular, we consider the following requirements:

1. The system shall initially ask the user to provide her relevant data,
the city where she lives, the event she wants to attend, the credit
card data to pay for the ticket, and the desired transportation and
accommodation types.

2. Purchase of the ticket shall precede other actions, since the purpose
of the trip is to participate in the event.

3. Transport purchase shall precede accommodation reservation. Trans-
portation can be arranged either by plane, train, or bus. In the case
the participant does not express a preference for a speci�c trans-
portation type, the system shall automatically proceed by trying
plane, train, and �nally bus (in this order), to book the transporta-
tion.

4. Choice of accommodation shall have the following options: hotel
and hostel, in this order of preference, unless explicitly chosen by
the user.

5. The transportation and the accommodation must be booked for the
same period. The preferred option is to book the transportation
in such a way that the participant arrives at the event's location
the day before the event and departs the day after, taking her

8
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time to visit the place. The other choice is to book the outbound
transportation for the same day of the event and returning the day
after, thus requiring accommodation for a single night.

6. In the case the booking of transportation or the accommodation
could not be performed, the ticket purchase must be canceled. The
transportation booking must also be canceled if the accommoda-
tion could not be booked.

Looking at the requirements of the Event Planning Service it is clear
that its overall goal can be accomplished in several ways, although there
is some preferred (partial) ordering among the di�erent actions that build
the orchestration. In particular, while some paths represent di�erent
alternatives to accomplish the same task, others have to be done in se-
quence. For example, if the participant has no preference for transporta-
tion, booking a train is only required if there are no �ights available, but
the action of booking the transportation has to come before the action
of booking the accommodation.

Beyond that, several things can go wrong at run-time that must also be
managed. For example, service invocations may fail or take more time
than expected. This means that, at design time, architects can make
certain assumptions, but these may be invalidated at run time. To cope
with those kind of uncertainty and unexpected situations, orchestrations
can be designed as adaptive [9, 10], in order to easily adapt to changes
occurred at runtime.

Implementing this kind of adaptive orchestrations using BPEL, con-
sidered the de-facto standard language for implementing service orches-
trations, however, is not an easy task. We believe that the main reason
behind this problem is related to the imperative programming style it
adopts, which forces service architects to explicitly code all possible ac-
tion �ows, and to forecast all possible exceptions. Indeed, in practice,
architects typically design adaptive behaviors by explicitly programming
alternative paths and by heavily using exception handling techniques to
adapt the execution to detected changes in the environment (i.e., an un-
available service). Using this approach, however, such alternative paths
cannot be kept separated from each other, from the exception handling
code, and from eventual compensation logic used to undo already exe-
cuted actions. As a result, the architecture and the code are hard to
understand, maintain and evolve.

To illustrate this fact, Listing 2.1 shows a code snippet that expresses
the di�erent alternatives for booking the transportation in the Event
Planning example. The code is divided in four distinct if -blocks. The

9
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�rst (lines 4-17), following the order of preference for transportation,
contains the code responsible for booking the �ight ticket. The con-
dition to enter the �rst if -block checks either if the preferred trans-
portation (preferredTrans variable) is set to airplane or set to null,
what means the user has not expressed any preference. The second
if -block (lines 18-31) is responsible for booking a train. Note that, be-
sides checking the value bound to the preferredTrans variable, it also
checks if the �ight was already booked. This is part of the applica-
tion's adaptation logic, which, in the case the user does not express any
preference, tries all the available possibilities for booking the transporta-
tion. To implement such adaptation mechanism, the control �ow relies
on the fact that the external web services invoked to perform each sin-
gle operation return true if they are successfully executed, and false

otherwise. The return value is then bound to a variable. Afterwards,
the value of this variable is tested, and if it is false the next alternative
is executed; otherwise, the other alternatives are skipped. For instance,
the condition of the second if -block (line 18) also includes the variable
flightBooked, which guarantees that the execution will only try to book
the train if the service used to book the �ight has previously failed. The
same is done subsequently, while trying to buy the bus ticket (third if -
block), where such operation is only executed if the flightBooked and
the trainBooked variables are false. This means that both operations
could not be executed successfully. In the end, if no transportation is
booked, an exception is thrown. Note that, together with all this adap-
tation logic it is also included compensation handlers to undo the e�ects
of booking the transportation in case the accommodation for the same
period could not be booked.

Although this is just a small fragment of the orchestration we have
considered, which is by itself quite a simple example, it is easy to see how
convoluted and error prone the process of de�ning all possible alternative
paths turns out to be. Things become even more complex when run-time
exceptions, like an error in invoking an external service, enter the picture
and we have to add the code to e�ectively manage them, e.g., by invoking
alternative services.

As previously stated, we argue that the main reasons behind these
problems is that the most used orchestration languages too closely re-
semble traditional imperative programming languages with their need to
explicitly program the �ow of execution. Furthermore, this programming
style forces the application code to be mixed with the code for fault and
compensation handling, further reducing the overall readability of the
resulting code.

10
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Another important point to highlight is that, this approach makes
it impossible to introduce alternative paths of actions when something
unexpected happens during execution and none of the initially provided
options are able to accomplish the orchestration's goal. Every possible
problem has to be anticipated and managed at design time.

11
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1 . . .
2 <scope name= ' EventP lann ing '>
3 <scope name= ' BookTranspo r ta t i on '>
4 < i f>
5 <cond i t i o n>
6 <!−− p r e f e r r e dT r a n s e qua l s a i r p l a n e or
7 p r e f e r r e dT r a n s i s n u l l −−>
8 </ c o n d i t i o n>
9 <scope name= ' BookF l i gh t '>
10 <compensat ionHand le r>
11 <!−− Cance l f l i g h t r e s e r v a t i o n −−>
12 </ compensat ionHand le r>
13 <invoke o p e r a t i o n= ' bookF l i g h t '

14 i n p u tV a r i a b l e= ' t r a n s p o r t a t i o nD e t a i l s '

15 ou t pu tVa r i a b l e= ' f l i g h tBook ed ' . . . />
16 </ scope>
17 </ i f>
18 < i f>
19 <cond i t i o n>
20 <!−− p r e f e r r e dT r a n s e qua l s t r a i n or
21 ( p r e f e r r e dT r a n s i s n u l l and not f l i g h tBook e d ) −−>
22 </ c o n d i t i o n>
23 <scope name= ' BookTrain '>
24 <compensat ionHand le r>
25 <!−− Cance l t r a i n r e s e r v a t i o n −−>
26 </ compensat ionHand le r>
27 <invoke o p e r a t i o n= ' bookTra in '

28 i n p u tV a r i a b l e= ' t r a n s p o r t a t i o nD e t a i l s '

29 ou t pu tVa r i a b l e= ' t r a i nBooked ' . . . />
30 </ scope>
31 </ i f>
32 < i f>
33 <cond i t i o n>
34 <!−− p r e f e r r e dT r a n s e qua l s bus or
35 ( p r e f e r r e dT r a n s i s n u l l and not f l i g h tBook e d and
36 not t r a i nBooked ) −−>
37 </ c o n d i t i o n>
38 <scope name= 'BookBus '>
39 <compensat ionHand le r>
40 <!−− Cance l bus r e s e r v a t i o n −−>
41 </ compensat ionHand le r>
42 <invoke o p e r a t i o n= ' bookBus '

43 i n p u tV a r i a b l e= ' t r a n s p o r t a t i o nD e t a i l s '

44 ou t pu tVa r i a b l e= ' busBooked ' . . . />
45 </ scope>
46 </ i f>
47 < i f>
48 <cond i t i o n>
49 <!−− not ( t r a i nBooked or f l i g h tBook ed or busBooked ) −−>
50 </ c o n d i t i o n>
51 <throw faultName= ' Transpor ta t ionNotBooked ' />
52 </ i f>
53 </ scope>
54 </ scope>
55 . . .

Listing 2.1: Booking transportation in BPEL
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3 DSOL: A Declarative approach

for Service Orchestrations

Our main motivation in de�ning a new language for service orchestrations
was the fact that none of the currently available languages designed for
this purpose were able to cope e�ciently with unforeseen exceptions, a
feature we consider fundamental for a system that has to operate in an
open, dynamic world.
After some initial research, we realized that to achieve this goal, we had

to rethink the way in which service orchestrations are de�ned: we need a
paradigm shift. As we already noted, the imperative programming style
adopted by most process languages seems to be inappropriate to support
�exible orchestrations for several reasons: (i) processes are modeled in a
normative and rigid form, making runtime adaptations hard to achieve;
(ii) they must capture completely di�erent aspects within a single mono-
lithic model, from control �ow to exception and compensation handlers;
(iii) they require sophisticated programming skills, precluding SOC from
reaching a key goal: empowering even non-technical users to build their
own service orchestrations.
To overcome such limitations, in this chapter we present DSOL1 and

its innovative runtime system which adopt a radically di�erent, declar-
ative approach to support self-adaptive service orchestrations. With
DSOL, we aim to achieve two di�erent goals: (i) simplify the de�ni-
tion of complex service orchestrations, in order to empower even non-
technical users, such as domain experts; and (ii) increase the possibility
of runtime adaptations by letting orchestrations evolve when unforeseen
situations happen, or when the orchestration's requirements change.
A service orchestration modeled in DSOL includes di�erent aspects,

which are de�ned separately using di�erent idioms, possibly by di�er-
ent stakeholders, each bringing their own competences. In particular,
as shown in Figure 3.1, a service orchestration in DSOL includes the
following elements:

� the de�nition of the orchestration interface, i.e., the signature of
the service that represents the entry point to the orchestration;

1
DSOL stands for Declarative Service Orchestration Language
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Figure 3.1: The DSOL approach to service orchestration

� the goal of the orchestration, declaratively expressed by a domain
expert, not necessarily competent in software development, as a set
of facts that are required to be true at the end of the orchestration;

� the initial state, which models the set of facts one can assume to
be true at orchestration invocation time. This is described by the
same domain expert who formulates the goal;

� a set of abstract actions, which model the primitive operations that
can be invoked to achieve a certain goal and are typical of a given
domain. They are described using a simple, logic-like language
that can be mastered even by non-technical domain experts;

� a set of concrete actions, one or more for each abstract action,
which maps each abstract action into the concrete steps required
to implement the operation modeled by them, e.g., by invoking
an external service or executing some code. Clearly, de�ning con-
crete actions require programming skills, so they are written by a
software engineer.

When the service exposed by the orchestration is invoked, the Inter-
preter translates the goal, the initial state, and the abstract actions into
a set of rules and facts used by an internal Planner to build an abstract
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plan of execution, which lists the logical steps through which the de-
sired goal may be reached. This plan is taken back by the Interpreter,
which enacts it by associating each step (i.e., each abstract action) with
a concrete action that is executed, possibly invoking external services. If
something goes wrong (i.e., it returns an exception), the Interpreter �rst
tries a di�erent concrete action for the abstract action that failed, oth-
erwise it invokes the Planner again to try a di�erent course of action. In
the extreme case, the service architect may intervene to add new abstract
and concrete actions to be used to solve very complex situations.
This brief description shows the main advantages of our approach with

respect to traditional ones:

1. We achieve a clear separation among the di�erent aspects of an or-
chestration: from the more abstract ones, captured by goals, initial
state, and abstract actions, to those closer to the implementation
domain, captured by concrete actions.

2. We meet one of the original goals of SOC; i.e., we involve users
who are not expert in software development into the cycle.

3. By focusing on the primitive actions available and letting the actual
�ow of execution to be automatically built at run-time through the
Planner, we allow orchestration designers to focus on the general
aspects that are typical of a certain domain and remain stable over
time, ignoring the peculiarities of a speci�c orchestration, which
may change when requirements change. This last aspect also holds
the promise to increase reusability, since the same abstract and
concrete actions can be reused for di�erent orchestrations within
the same domain.

4. By separating abstract and concrete actions, with several concrete
actions possibly mapped to a single abstract action, we allow the
DSOL Interpreter to �nd the best implementation for each orches-
tration step and to try di�erent routes if something goes wrong at
run-time, in a fully automated way.

5. Because abstract actions only capture the general rules governing
the ordering among primitive actions, the Interpreter, through a
careful re-planning mechanism, can automatically overcome poten-
tially disruptive and unexpected situations happening at run-time.

6. The modularity and dynamism inherent in the DSOL approach
allow the orchestration model to be easily changed at run-time, by
adding new abstract/concrete actions when those available do not
allow to reach the orchestration's goal.
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1 act ion buyT icke t ( Event ,PD)
2 pre : e ven t ( Event ) , paymentDeta i l s (PD)
3 post : t i c k e tBough t
4

5 act ion bookF l i g h t (From ,To , A r r i v a l , Depar tu re )
6 pre : c i t y (From ) , c i t y (To ) , date ( A r r i v a l ) , date ( Depar tu re ) ,
7 t i cke tBought , p r e f e r r e dT r a n s ( a i r p l a n e )
8 post : t r a n s po r t a t i o nBook ed (From , To , A r r i v a l , Depar tu re )
9

10 act ion bookTra in (From ,To , A r r i v a l , Depar tu re )
11 pre : c i t y (From ) , c i t y (To ) , date ( A r r i v a l ) , date ( Depar tu re ) ,
12 t i cke tBought , p r e f e r r e dT r a n s ( t r a i n )
13 post : t r a n s po r t a t i o nBook ed (From , To , A r r i v a l , Depar tu re )
14

15 act ion bookBus (From ,To , A r r i v a l , Depar tu re )
16 pre : c i t y (From ) , c i t y (To ) , date ( A r r i v a l ) , date ( Depar tu re ) ,
17 t i cke tBought , p r e f e r r e dT r a n s ( bus )
18 post : t r a n s po r t a t i o nBook ed (From , To , A r r i v a l , Depar tu re )
19

20 act ion bookHote l ( C i ty , CheckIn , CheckOut )
21 pre : c i t y ( C i t y ) , date ( CheckIn ) , date ( CheckOut ) ,
22 at ( C i ty , CheckIn , CheckOut ) , preferredAccomm ( h o t e l )
23 post : accommodationBooked ( Ci ty , CheckIn , CheckOut )
24

25 act ion bookHoste l ( C i ty , CheckIn , CheckOut )
26 pre : c i t y ( C i t y ) , date ( CheckIn ) , date ( CheckOut ) ,
27 at ( C i ty , CheckIn , CheckOut ) , preferredAccomm ( h o s t e l )
28 post : accommodationBooked ( Ci ty , CheckIn , CheckOut )

Listing 3.1: The abstract actions for the Event Planning example

3.1 The Language

In this section, we provide a detailed description of the language, in-
cluding details of each one of the elements used to specify a service
orchestration in DSOL. To better describe such elements, we leverage
the Event Planning Service presented in Chapter 2.

3.1.1 Abstract Actions

Abstract actions are high-level descriptions of the primitive actions avail-
able in a given domain, which we use as the building blocks of orches-
tration plans. They are modeled in an easy-to-use, logic-like language,in
terms of their signature, precondition, and postcondition.

Listing 3.1 illustrates the abstract actions involved in modeling our
Event Planning reference scenario. To clarify the structure of actions,
let us take the bookFlight (line 5) case as an example:

1. The action signature includes its name, that must be unique in
the orchestration domain, and a list of arguments. In the example,
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bookFlight is the name and From, To, Arrival, Departure is
the list of arguments;

2. The precondition is expressed as a list of facts that are expected
to be true in the current state for the action to be enabled. In our
example, the expressions city(From), city(To), date(Arrival),
and date(Departure) are used to constrain the values of the ar-
guments of the action, while the facts preferredTrans(airplane)
and ticketBought express the fact that the bookFlight action
must be invoked only if the user has chosen the airplane as its pre-
ferred transportation and that the ticket must have been already
bought.

3. The postconditions models, instead, the e�ects of the action on the
current state of execution by listing the facts to be added to the
state, i.e., facts that become true, and those to be removed, i.e.,
become false. In our example, when bookFlight is executed the
fact transportationBooked(From, To, Arrival, Departure) is
added to the state while no facts are removed (removed facts, when
present, are designed using the �∼� symbol).

Facts in our language are expressed as propositions, characterized by
a name and a set of arguments. The latter represent the relevant objects
of the domain. More speci�cally, arguments that start with an uppercase
letter are considered as unbound objects and must be replaced by actual
instances, i.e., those which start with a lowercase letter, to generate an
execution plan. For instance, if at any point of plan generation the fact
city(event.city) is added to the state, the object event.city becomes
available to be bound either to the From or To generic arguments in the
bookFlight action.
In some cases, it is necessary to relate di�erent states of a domain,e.g.,

to specify that when a certain situation arises new facts could be deduced.
To model these situations we introduce seam actions. Unlike standard
abstract actions, seam actions do not have a concrete counterpart, as
they do not model an actual step of the orchestration, but rather a logical
relation among facts in the domain. Listing 3.2 shows the seam actions
used in the example scenario. Consider the onTransportationBooked

case as an example. This action models the fact that after transportation
is booked we may assume that the user will be at destination from the
date of arrival till the date of departure. Similarly, the seam action
setTransportationPreference models the fact that if the user does
not express any preference about the transportation mode then all the
three means (airplane, train, and bus) are equally possible.
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1 seam act ion e x t r a c t E v e n t I n f o rma t i o n
2 pre : e v en t ( even t )
3 post : c i t y ( even t . c i t y ) , date ( even t . date ) , date ( even t . dayA f t e r ) ,
4 date ( even t . dayBe fo re )
5

6 seam act ion s e tT r a n s p o r t a t i o nP r e f e r e n c e
7 pre : p r e f e r r e dT r a n s ( empty )
8 post : p r e f e r r e dT r a n s ( a i r p l a n e ) , p r e f e r r e dT r a n s ( t r a i n ) ,
9 p r e f e r r e dT r a n s ( bus )
10

11 seam act ion se tAccommodat ionPre fe rence
12 pre : accommodation ( empty )
13 post : accommodation ( h o t e l ) , accommodation ( h o s t e l )
14

15 seam act ion onTranspor ta t i onBooked (From ,To , A r r i v a l , Depar tu re )
16 pre : t r a n s po r t a t i o nBook ed (From , To , A r r i v a l , Depar tu re )
17 post : a t (To , A r r i v a l , Depar tu re )

Listing 3.2: The seam actions for the Event Planning example

1 act ion bookF l i g h t (From ,To , A r r i v a l , Depar tu re )
2 pre : c i t y (From ) , c i t y (To ) , date ( A r r i v a l ) , date ( Depar tu re ) ,
3 bookF l i gh tA l l owed
4 post : t r a n s po r t a t i o nBook ed (From , To , A r r i v a l , Depar tu re )

Listing 3.3: The abstract action bookFlight from a di�erent model

1 act ion enab l eBookF l i g h t
2 pre : t i c ke tBought , p r e f e r r e dT r a n s ( a i r p l a n e )
3 post : b ookF l i gh tA l l owed

Listing 3.4: The seam action used to move the bookFlight abstract ac-
tion to the Event Planning model

Another important use of seam actions is to increase reusability of
abstract actions coming from di�erent models when they use di�erent
terms to express the same concepts. Seam actions may therefore help
abstract actions to move from one ontology to another. Let us consider,
for example, that the bookFlight was initially taken from a di�erent
model and was de�ned as in Listing 3.3. Note that, now instead of
having preferredTrans(airplane) and ticketBought as preconditions,
the bookFlight abstract action has bookFlightAllowed. In order to
reuse such abstract action, we could use a seam action, as illustrated in
Listing 3.4 to correlate the facts from the two models.
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3.1.2 Orchestration Goal and Initial State

Besides abstract actions, the initial state and goal are also needed to
produce an orchestration plan. The former models the state from which
the orchestration starts, while the latter represents the desired state to
reach after executing the orchestration. The goal may actually include
a set of states, which re�ect all the alternatives to accomplish the goal
of the orchestration, listed in order of preference. The Planner will try
to build a plan that satis�es the �rst goal; if it does not succeed, it will
try to satisfy the second goal, and so on.

The initial state and goal of the Event Planning scenario are illustrated
in Listing 3.5. In this case the initial state is empty, while the goal models
the acceptable results of our example, in which the orchestration will �rst
try to book the transportation and accommodation for the night before
the event until the day after, and then, if it can not be accomplished, it
tries to book from the same day of the event until the next day.

1 s t a r t t r u e
2

3 goal
4 t i cke tBought ,
5 t r a n s po r t a t i o nBook ed ( p a r t i c i p a n t C i t y , e ven t . c i t y , e ven t . dayBefore ,
6 even t . dayA f t e r ) ,
7 accommodationBooked ( even t . c i t y , e ven t . dayBefore ,
8 even t . dayA f t e r )
9 or
10 t i cke tBought ,
11 t r a n s po r t a t i o nBook ed ( p a r t i c i p a n t C i t y , e ven t . c i t y ,
12 even t . date , even t . dayA f t e r ) ,
13 accommodationBooked ( even t . c i t y , e ven t . date , e ven t . dayA f t e r )

Listing 3.5: Initial state and goal for the Event Planning example

3.1.3 Orchestration Interface

To formalize how the orchestration is exposed as a web service, DSOL
uses a Java interface properly annotated with JAX-WS [11] verbs to let
the Interpreter automatically build the WSDL of the service.

The same annotations, in particular @WebParam, are also used by
the Interpreter to create a set of additional facts to be passed to the
Planner. As an example, from the orchestration interface of our ref-
erence scenario, shown in Listing 3.6, the Interpreter builds the facts
city(participantCity), event(event), and paymentDetails(pd), which
introduce new objects to be used in generating the plan. The other two
arguments of the interface are also transformed into facts for the Planner,
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1 @WebService
2 pub l i c i n t e r f a c e EventP lann ing {
3 pub l i c vo id p l an (
4 @WebParam(name=" c i t y " )
5 S t r i n g p a r t i c i p a n t C i t y ,
6 @WebParam(name=" even t " )
7 Event event ,
8 @WebParam(name=" paymentDeta i l s " )
9 PaymentDeta i l s pd ,
10 @WebParam(name=" p r e f e r r e dT r a n s " ) @Concrete
11 S t r i n g t ranspo r ta t i onMode ,
12 @WebParam(name="preferredAccomm" ) @Concrete
13 S t r i n g accommodationType
14 }

Listing 3.6: The Event Planning orchestration interface

1 buyT icke t ( event , pd )
2 bookF l i g h t ( p a r t i c i p a n t C i t y , even t . c i t y , e ven t . dayBefore , e ven t . dayA f t e r )
3 bookHote l ( even t . c i t y , e ven t . dayBefore , e ven t . dayA f t e r )

Listing 3.7: A possible plan for the Event Planning example

but in a di�erent manner. As they are annotated as @Concrete, their
actual value (as passed by the client and transformed into a string using
the toString Java method) is used, not the formal parameter name.
Hence, if the client invokes the service with a value airplane for the
transportationMode parameter, the fact preferredTrans(airplane)

is added to the set of facts passed to the Planner. Similarly, if a null

value is used, the fact preferredTrans(empty) is used. The same will
happen for the accommodationType argument.

Using these facts, plus the goals and initial state presented in the
previous section, together with the abstract and seam actions, the Plan-
ner is able to build a plan, like the one presented in Listing 6.7 for our
reference example.2 It includes a list of abstract actions that can lead
from the initial state to a state that satis�es an orchestration goal (the
�rst one in our case). Notice that: (i) when several sequences of actions
could satisfy the preferred orchestration goal, the Planner chooses one,
non deterministically; (ii) although the plan is described as a sequence
of actions, the Interpreter is free to execute them in parallel, by invoking
each of them as soon as their precondition is satis�ed.

2We omit the seam actions from the plan as they do not represent steps to be
actually performed (e.g., invoking external services) at run-time.
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3.1.4 Concrete Actions

Concrete actions are the executable counterpart of abstract actions.
They are intended to be speci�ed by a di�erent actor, i.e., a techni-
cal person with programming skills, once the abstract actions have been
identi�ed and speci�ed by the domain expert. In the reference implemen-
tation of the DSOL engine, concrete actions are implemented through
Java methods using the ad-hoc annotation @Action to refer to the ab-
stract actions they implement. In general, several concrete actions may
be bound to the same abstract action. This way, if the currently bound
concrete action fails, i.e., it returns an exception, the DSOL Interpreter
haves other options to accomplish the orchestration step speci�ed by the
failed abstract action.
Among concrete actions, we distinguish between service actions and

generic actions. Service actions are abstract methods directly mapped
to external services. An special attribute service of the @Action an-
notation speci�es the external service to invoke, while a hot-pluggable
module of the Interpreter, the Service Selector, is responsible for tak-
ing this information and �nding the speci�ed service to be invoked. This
way, service actions may represent di�erent kinds of services, e.g., SOAP
or HTTP, while the Interpreter can be easily extended to support other
SOA technologies. Furthermore, having just a mnemonic label to refer-
ence a service allows us to have a loosely coupled model that could be
easily modi�ed, even at runtime. In fact, the actual information about
the service (e.g., URI, operation) is speci�ed externally.
As an example of service actions, see Listing 3.8. Note that the

bookFlight abstract action is bound to two di�erent concrete actions,
bookFlightUsingExpedia and bookFlightUsingKayak, which reference
two di�erent services, expedia.com and kayak.com, respectively.

1 @Action (name=" bookF l i g h t " , s e r v i c e=" exped i a . com" )
2 @ReturnValue ( " t r a n s p o r t a t i o nD e t a i l s " )
3 pub l i c abs t rac t T r a n s p o r t a t i o nD e t a i l s bookF l i g h tUs i ngExped i a (
4 S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e ) ;
5

6 @Action (name=" bookF l i g h t " , s e r v i c e="kayak . com" )
7 @ReturnValue ( " t r a n s p o r t a t i o nD e t a i l s " )
8 pub l i c abs t rac t T r a n s p o r t a t i o nD e t a i l s bookF l i gh tUs ingKayak (
9 S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e ) ;

Listing 3.8: The bookFlight service action

Unlike service actions, generic actions are ordinary Java methods to be
used as utilities every time an abstract action cannot be implemented by
simply invoking an external service. For example, when the parameters
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of the abstract action to implement have to be pre-processed before being
passed to an external service or when the action requires that some
information must be saved to an internal database. Listing 3.9 shows two
generic actions (code omitted for simplicity) to implement the buyTicket
abstract action. Notice the use of the @When annotation to guide the
Interpreter in choosing among di�erent concrete actions for the same
abstract action, based on the actual state of the orchestration.

1 @Action ( " buyT icke t " )
2 @When( "pd . method . e qu a l s ( 'CREDIT_CARD ' ) " )
3 pub l i c vo id buyT i ck e tC r ed i tCa rd ( Event evt ,
4 PaymentDeta i l s pd ){
5 // Buy t i c k e t and pay wi th c r e d i t ca rd
6 buyT i ck e tUs i ngC r ed i tCa rd ( ev t . g e t I d ( ) , pd . getCardNumber ( ) ,
7 pd . ge tCa rdHo lde r ( ) ) ;
8 }
9

10 @Action ( " buyT icke t " )
11 @When( "pd . method . e qu a l s ( 'BANK_TRANSFER ' ) " )
12 pub l i c vo id buyT icke tBankTrans f e r ( Event evt ,
13 PaymentDeta i l s pd ){
14 // Buy t i c k e t and pay wi th bank t r a n s f e r
15 buyT icke tUs ingBankTrans f e r ( e v t . g e t I d ( ) , pd . getAccountNumber ( ) ) ;
16 }

Listing 3.9: The buyTicket generic action

To execute concrete actions and, consequently execute the orchestra-
tion plan, the Interpreter needs to be able to determine which objects
should be used as parameters in the methods invocations. Indeed, the
actual state of the orchestration is represented by the abstract objects
manipulated by the Planner and by the concrete (i.e., Java) objects
manipulated by the Interpreter at run-time. Both are kept by the In-
terpreter into the Instance Session: a key-value database, which maps
each abstract object used by the Planner and referenced inside the plan
with a corresponding concrete object. When the orchestration is invoked,
the values passed by the client are associated with the corresponding ab-
stract objects and they are used to start populating the Instance Session.
When the Interpreter must invoke a concrete action to execute the next
step of the plan, it uses the Instance Session to retrieve the Java objects
to pass to the action, while the value returned by the action, if any,
is kept into the Instance Session, mapped to the abstract object whose
name is given through the @ReturnValue annotation (see Listing 3.8 for
an example). This way the abstract plan produced by the Planner is
concretely executed by the Interpreter, step by step.

To illustrate such mechanism, let us consider an invocation to the
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Event Planning service, as illustrated in Listing 3.10. As soon as the
DSOL Engine receives such request, it initializes the Instance Session
as illustrated in Table 3.1. Note that, the formal parameter names of
the orchestration interface are used as keys in the Instance Session and
mapped to the received objects. Subsequently, as previous explained,
the Interpreter generates the initial state, also based in the orchestration
interface, and invokes the Planner, which returns the plan illustrated in
Listing 6.7. The plan is then enacted as described hereafter.

To execute the �rst step of the plan, buyTicket(event, pd), the
Interpreter �rst takes the name of the abstract action, buyTicket in
this case, and looks for all concrete actions bound to it, which are
those illustrated in Listing 3.9. The Interpreter then chooses between
the two concrete actions by evaluating the expression speci�ed in the
@When annotation. Let us �rst take the expression de�ned in the method
buyTicketCreditCard, i.e., pd.method.equals(�CREDIT_CARD�). To eval-
uate such expression, the Interpreter uses the objects in the Instance
Session, what means it will take the object mapped to pd. In such case,
as the value of �eld method of object pd is �CREDIT_CARD�, the expres-
sion evaluates to true, and this concrete action is eligible to be executed.
The other one, as its expression evaluates to false, is discarded. Having
chosen which concrete action to be executed, the Interpreter needs to
�gure out which parameter values should be used in order to invoke it.
To do so, it take the abstract objects used by the Planner in the current
step of the plan, i.e., event and pd, and uses them as keys to retrieve the
objects from the Instance Session. After the objects are retrieved from
the Instance Session they are used as parameters to invoke the selected
concrete action. Note that, as the buyTicketCreditCard concrete ac-
tion does not return any value, the state of the Instance Session remains
the same.

To execute the second step of the plan the Interpreter initially fol-
lows the same process. It takes the name of the abstract action, i.e.,
bookFlight, and �nd the concrete actions bound to it, i.e., bookFlight-
UsingExpedia and bookFlightUsingKayak. As both implementations
are not annotated with a @When condition, both are eligible for execution.
In this case the Interpreter chooses one of them non-deterministically.3

Note that, in this step, to determine the parameters to be used in
the concrete action invocation, the Interpreter uses a slightly di�er-
ent mechanism. Indeed, for some of the objects, i.e., event.city,

event.dayBefore, event.dayAfter, the �dot notation� is used to call

3Chapter 5 provides details on how non-functional requirements can be used to select
the most suitable concrete action
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1 . . .
2 S t r i n g p a r t i c i p a n t C i t y = " Fo r t a l e z a " ;
3

4 S t r i n g eventName = "Beach Boys Concer t " ;
5 Date eventDate = new Date ( "2012−11−12" ) ;
6 S t r i n g e v e n tC i t y = "Mi lan " ;
7 Event d e s i r e dE v e n t = new Event ( eventName , e v en tC i t y , eventDate ) ;
8

9 S t r i n g cred i tCardNumer="0987654321" ;
10 S t r i n g cred i tCardHo lde rName="Leandro S a l e s H Pin to " ;
11 PaymentDeta i l s pd = new PaymentDeta i l s ( "CREDIT_CARD" , cred i tCardNumer ,
12 c red i tCardHo lde rName ) ;
13

14 S t r i n g t r an spo r t a t i onMode = " a i r p l a n e " ;
15 S t r i n g accommodationType = " hote " ;
16

17 EventP lann ing ev en tP l ann i ng = . . . ; // Crea te c l i e n t s i d e proxy
18 e v en tP l ann i ng . p l an ( p a r t i c i p a n t C i t y , d e s i r e dEven t ,
19 pd , t r an spo r ta t i onMode ,
20 accommodationType ) ;
21 . . .

Listing 3.10: Sample request to the Event Planning Service

their respective getter methods in the object extracted from the Instance
Session. Thus, the following values are used to invoke the selected con-
crete action: �Fortaleza�, �2012-11-11�, �2012-11-13�. Finally, the value
returned by the concrete action is added to the Instance Session under the
transportationDetails key (the value speci�ed in the @ReturnValue

annotation). The third step is executed using the same mechanisms. Fi-
nally, if the orchestration interface contains a @ReturnValue annotation,
its value will be used to extract from the Instance Session the object to
be returned to the client.

KEY VALUE

participantCity "Fortaleza"

event Event Object
[name="Beach Boys concert",
date="2012-11-12", city="Milan"]

pd PaymentDetails Object
[method="CREDIT_CARD",
cardNumber="0987654321",
holder="Leandro Sales H Pinto"]

transportationMode "airplane"

accommodationType "hotel"

Table 3.1: Instance Session before starting to execute the plan
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3.2 Failures and Compensation Actions

The ability to tolerate�both expected and unexpected�exceptions to
the standard �ow of actions is fundamental for a system that has to
operate in an open, dynamic world. Indeed, to pursue this goal, we
provide both speci�c language constructs and ad-hoc run-time facilities.

Among language constructs, we have already mentioned the ability of
associating di�erent concrete actions to the same abstract action. This
gives the Interpreter the ability to try di�erent options to realize each
step of a plan. Indeed, when an abstract action A has to be executed,
the Interpreter tries the �rst concrete action CA1 implementing A. If
CA1 fails, e.g., it throws an exception, the Interpreter tries the sec-
ond one, and so on. As an example, consider the two concrete actions
mapped to the same abstract action bookFlight in our reference orches-
tration model, which invokes two di�erent services. Now suppose that
the expedia.com service is temporarily unavailable. When the Interpreter
executes the bookFlight abstract action, the concrete action it is bound
to may fail, but this does not stop the orchestration execution. In fact,
the Interpreter automatically captures the exception and tries the sec-
ond concrete action, which invokes a di�erent external service, which
hopefully is available and executes correctly.

If, however, none of the available concrete actions is able to execute
correctly, a second mechanism is available, which involves the ability of
building an alternative plan when something bad happens at run-time.
That is, if the Interpreter is unable to realize a step (i.e., an abstract
action invoked with speci�c parameters) of the current plan, it invokes
the Planner again forcing it to avoid the failed step. This way a new plan
is computed that does not include the step that was impossible to realize.
Furthermore, by comparing the old and the new plan, and considering
the current state of execution, the Interpreter is able to calculate the
set of actions that need to be compensated (i.e., undone), as they have
already been executed but are not part of the new plan. Figure 3.2
illustrated this process. As an example, consider the case where the
outbound �ight has been booked for the day before the event (and the
inbound �ight for the day after) according to the plan in Listing 6.7, but
neither a hotel nor a hostel are available the day before the event. In such
a situation, the Interpreter invokes the Planner again, which produces a
new plan that reaches the second goal in Listing 3.5. This requires the
bookFlight action to be compensated because the new plan requires the
�ight to be booked for the same day of the event.

Since the design of compensating actions usually requires application
level knowledge, DSOL allows service architects to explicitly de�ne them
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Figure 3.2: Process followed by the Interpreter to execute a service
orchestration

for each de�ned concrete action. Listing 3.11 shows how to compensate
the bookFlight action. We notice how compensation actions use the
same syntax of concrete actions, with the following di�erences: (i) it
includes the special compensation=true attribute to indicate that this
method is used for compensation purposes, and (ii) the name attribute
refers to the concrete action, instead of an abstract action, which ef-
fects will be compensated when this method is invoked. By default,
compensation actions are invoked using the same parameters of the ac-
tion to compensate. For those cases where it is necessary to use dif-
ferent parameters, they can be taken from the Instance Session using
the @ObjectName annotation, as shown in Listing 3.11, which invokes
the compensation action cancelExpediaFlightReservation with the
TransportatioDetails, previously returned by the bookFlightUsing-

Expedia it undoes.

Notice how in this example we used a further mechanism provided by
DSOL to increase robustness of the orchestration, namely the ability to
specify multiple goals for each orchestration (see Section 3.1.2). This
opportunity has been leveraged by the Planner at run-time, to build a
new plan that automatically bypasses the failed step.
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1 @Action (name=" bookF l i gh tUs i ngExped i a " , s e r v i c e=" canc e lE xp ed i a " ,
2 compensat ion=t rue )
3 pub l i c abs t rac t vo id c a n c e l E x p e d i a F l i g h t R e s e r v a t i o n (
4 @ObjectName ( " t r a n s p o r t a t i o nD e t a i l s " )
5 T r a n s p o r t a t i o nD e t a i l s f l i g h t D e t a i l s
6 ) ;

Listing 3.11: Action used to compensate bookFlightUsingExpedia

In summary, by combining the ability to specify di�erent implemen-
tations (i.e., concrete actions) for each step of a plan, with the ability
to rebuild failed plans in search of alternative courses of actions, possi-
bly achieving di�erent, still acceptable goals, our language and run-time
system allow robust orchestrations to be built in a natural and easy way.
Indeed, by combining these mechanisms, DSOL orchestrations are able
to automatically get around failures and any other form of unexpected
situation, by self-adapting to changes in the external environment.

This goal is also achieved thanks to the DSOL approach to model-
ing orchestrations, which focuses on the primitive actions more than on
the speci�c �ow of a single orchestration. This approach maximizes the
chance that when something bad happens, even if not explicitly antic-
ipated at modeling time, the actions that may overcome the situation
have been modeled and are available to the Planner and Interpreter.

Furthermore, DSOL achieves a clear separation among the di�erent
aspects of the orchestration: from the more abstract ones, captured by
goals, initial state, and abstract actions, to those closer to the imple-
mentation domain, captured by concrete actions. In de�ning abstract
actions, domain experts may focus on the functionalities the orchestra-
tion requires, ignoring how they will be implemented. This choice is
delayed to the time when concrete actions are actually de�ned. Indeed,
such approach, that decouples system design from its implementation, is
typical of mature engineering domains but it is not currently supported
by mainstream orchestration languages. DSOL's loosely coupled archi-
tecture promotes also a clean modularization of the orchestration's func-
tionalities, avoiding convoluted code which uses cascaded if-else blocks
and exception handling constructs, improving readability and maintain-
ability of the code. Finally, by encapsulating the di�erent features of
an orchestration into independent actions and by letting the actual �ow
of execution to be automatically built at run-time by the Interpreter,
DSOL increases reusability, since the same action can be easily reused
across di�erent models, and also the possibility of evolving the orches-
tration model at runtime, as described hereafter.
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3.3 Dealing with Changes at Runtime

Service orchestrations live in a very unstable world in which changes
occur continuously and unpredictably. External services invoked by the
orchestration may be discontinued by their providers, they may fail, or
they may become unreachable or incompatible with the original versions.
Furthermore, the orchestration requirements may evolve due to business
needs. It is therefore fundamental that orchestration languages and their
run-time systems provide ways to support dynamic evolution, allowing
orchestration models or even currently running instances to be modi�ed
to cope with unforeseen situations and changes in requirements.

To better illustrate these needs, we introduce another example sce-
nario, which we will use throughout this section to present how DSOL

model can be changed at runtime.

3.3.1 The Bookstore Example

The Bookstore Service is a service orchestration used by a new bookstore
to perform its sales. Initially, this service composes the following opera-
tions: an internal service that checks if the desired book is available in
stock, an external service that handles the payments, and another exter-
nal service used to contact the business partner that handles deliveries.
In particular, let us consider the following requirements:

� At service invocation, the client provides the relevant information
about the books she wants to buy, the delivery address and the
details about payment;

� First action to perform is checking the availability of books. If
they are in stock the order is saved with status open. Otherwise,
an exception is thrown;

� After checking availability and saving the order, the process con-
tinues to the payment stage. For payment, two alternatives are
available: PayPal or credit card. The preferred option is to use
PayPal, because in such way the bookstore does not need to receive
or keep any information about payments, e.g., credit card numbers,
limiting its responsibilities. PayPal itself also o�ers much more al-
ternatives of payments to the client. If, for any reason, the system
is not able to invoke the PayPal services, it enables the use of credit
card with two alternatives. The �rst is to contact the card opera-
tor directly, using its services API. In case this route fails, the last
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alternative is to save the credit card information so that the pay-
ment can be done manually. In such case, the status of the order
becomes payment pendent, (otherwise it is payment authorized). If
the payment is not authorized, an exception is thrown;

� The delivery can only be scheduled after the payment. Depending
on the payment status, the delivery is scheduled as immediate or
wait for con�rmation.

As a new bookstore that wants to enter the market gradually, due to
contractual costs reason, the managers decided to initially sell only to
national destinations. However, during this initial period the bookstore
receives a huge, international order request from a foreign university.
Although it is still not worth to start selling worldwide, the manager
sees this situation as an interesting business opportunity and wants to
ful�ll this request. The problem is that neither the current system is able
to handle it, because international orders require an extra insurance in
case of miscarriage, nor the current deliver company is able to handle
international deliveries. In order to complete this order, the system
needs to deviate [12] from the current process, including the mandatory
insurance, and also contacting a delivery company able to deliver at the
required destination.
Another natural evolution would be to accept international orders and

ship worldwide. The main di�erence of this case w.r.t. the previous one
is that the former is a deviation that applies only to a speci�c running
instance of the process, while the latter is an evolution of the whole
process, which will a�ect all further executions.

The DSOL Orchestration Model

To recall the concepts we have previously introduced in this chapter,
hereafter we describe how the Bookstore Service(BS) is implemented in
DSOL.

Orchestration Interface

Listing 3.12 shows how the orchestration interface is de�ned for the BS
orchestration. Note that, re�ecting the requirements, it receives as argu-
ments the books to be ordered, the delivery address and payment details.

Orchestration Goal and Initial State

Listing 3.13 shows the initial state and the goal for the bookstore sce-
nario. In particular, two alternative goals are listed, the preferred one
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1 @WebService
2 pub l i c i n t e r f a c e Booksto re {
3 @ReturnValue (name= ' o r d e r ' )
4 pub l i c Orde r I n f o o r d e r (
5 @WebParam(name= ' book s_ l i s t ' )
6 L i s t <Book> books ,
7 @WebParam(name= ' d e l i v e r y A d d r e s s ' )
8 Address d e l i v e r yAdd r e s s ,
9 @WebParam(name= ' paymentDeta i l s ' )
10 PaymentDeta i l s pd ) ;
11 }

Listing 3.12: The bookstore orchestration interface

1 s t a r t t r u e
2

3 goal
4 ( b o o k sAv a i l a b l e I n S t o c k and o rde rSaved and
5 paymentDoneByPayPal and d e l i v e r y S c h e d u l e d )
6 or
7 ( b o o k sAv a i l a b l e I n S t o c k and o rde rSaved and
8 paymentDoneByCreditCard and d e l i v e r y S c h e d u l e d )

Listing 3.13: Initial state and goal

that describes the situation when payment has been done through Pay-
Pal, and the alternative to follow if paying through PayPal is impossible.
As for the initial state, to model the bookstore scenario we do not need to
assert any special fact, so the initial state becomes true. Notice however
that the DSOL runtime system automatically populates the initial state
with facts that re�ect the orchestration arguments: books_list(books),
address(deliveryAddress), and paymentDetails(pd).

Abstract Actions

Listing 3.14 illustrates the abstract actions that model the bookstore
scenario. On one hand, we notice the fact that the payment by credit card
can be implemented in two di�erent ways (automatically or manually)
is not visible at this level. Similarly, we notice that there is no reference
to the order of execution, which will be automatically chosen by the
Interpreter (see Figure 3.2) at runtime in order to satisfy the goal.

Using the speci�ed abstract actions, the initial state and the orches-
tration goal the DSOL runtime system is able to build the plan shown
in Listing 3.15. Indeed, it includes a list of abstract actions that can
lead from the initial state to a state that satis�es the �rst goal of the
bookstore service.
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1 act ion checkStock ( Books )
2 pre : b o o k s_ l i s t ( Books )
3 post : b o o k sAv a i l a b l e I n S t o c k
4

5 act ion saveOrde r ( Books )
6 pre : b o o k s_ l i s t ( Books ) , b o o k sAv a i l a b l e I n S t o c k
7 post : o rderSaved , o r d e r_ in f o ( o r d e r )
8

9 act ion payByPayPal ( Order ,PD)
10 pre : o r d e r_ in f o ( Order ) , paymentDeta i l s (PD)
11 post : paymentDoneByPayPal
12

13 act ion payByCred i tCard ( Order ,PD)
14 pre : o r d e r_ in f o ( Order ) , paymentDeta i l s (PD)
15 post : paymentDoneByCreditCard
16

17 act ion s c h e d u l eD e l i v e r y ( Order , Address )
18 pre : o r d e r_ in f o ( Order ) , d e l i v e r yA d d r e s s ( Address )
19 post : d e l i v e r y S c h e d u l e d

Listing 3.14: Abstract actions

1 buyT icke t ( event , pd )
2 bookF l i g h t ( p a r t i c i p a n t C i t y , even t . c i t y , e ven t . dayBefore , e ven t . dayA f t e r )
3 bookHote l ( even t . c i t y , e ven t . dayBefore , e ven t . dayA f t e r )

Listing 3.15: A possible plan for the bookstore example

Concrete Actions

Listing 3.16 illustrates some of the concrete actions present in the BS or-
chestration. In particular, it includes one implementation of the payByPayPal
abstract action and two alternatives to accomplish the abstract action
payByCreditCard.

Changing the Bookstore model

While the declarative nature of DSOL allows easily modeling of �exi-
ble orchestrations, the modularity and dynamism inherent in the DSOL
runtime system approach provide a perfect substrate where ad-hoc mech-
anisms can be added to change the orchestration at runtime. Indeed, as
the plan of execution, i.e., the actual sequence of activities to perform,
is built at runtime, changing the orchestration is much simpler in DSOL
compared to the complex mechanisms that other, more traditional sys-
tems must put in place to obtain the same result.

In particular, as we explain in detail in the remainder of this section,
changing the orchestration at runtime requires the plan of a running
orchestration to be re-built from the current state of execution: some-
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1 @Action (name="payByPayPal " , s e r v i c e=" paypa l " )
2 pub l i c abs t rac t vo id payByPayPal ( O rd e r I n f o o rde r ,
3 PaymentDeta i l s pd ) ;
4

5 @Action (name=" payByCred i tCard " , s e r v i c e=" v i s a " )
6 pub l i c abs t rac t vo id payByCred i tCard ( O rd e r I n f o o rde r ,
7 PaymentDeta i l s pd ) ;
8

9 @Action (name=" payByCred i tCard " )
10 pub l i c vo id savePayment In fo ( O rd e r I n f o o rde r ,
11 PaymentDeta i l s pd ){
12 o r d e r . s e t S t a t u s (PAYMENT_PENDENT) ;
13 o r d e r . s e tPaymen tDe ta i l s ( pd ) ;
14 o r d e r . save ( ) ;
15 }

Listing 3.16: Example of concrete actions for the bookstore service

thing very similar to what the Interpreter already does to bypass a faulty
situation that blocks the current plan.

In general we support full changes to the orchestration model. The
service architect may add new abstract or concrete actions, remove or
modify them, change the goal of the orchestration, and even change its
interface. Moreover, we allow changes that impact the orchestration at
various levels. Indeed, when the architect submits a new model for an
existing orchestration it has to specify if it has to a�ect future executions,
current ones, or both. This way, we cover di�erent levels of updates:
from small changes, applied to single running instances, to changes to be
applied to future calls only, to major changes that have to a�ect current
and future executions.

To better characterize this aspect, we de�ne the concept of orches-
tration instance as the running orchestration that is created each time
a request is made to the interface service of the orchestration. Such
instance is represented internally by an instance descriptor, which we
extended to include a copy of the orchestration model as it was de�ned
at the time when the orchestration was invoked.

Given this premise, we notice that the case of a change that must a�ect
only new instances does not creates special problems. In such case,we
let current instances proceed using their own copy of the model, while
the main copy, used for future calls, is overwritten with the new one.

The situation is more complex when the new model has to be applied
to running instances. Indeed, this requires modifying the way the In-
terpreter operates. In particular (see Figure 3.3), as soon as the new
model is submitted, the Interpreter stops executing the current plan and
invokes the Planner to build a new plan in line with the new model. At
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Figure 3.3: Process followed by Interpreter to execute an orchestration
supporting changes at runtime

this point, as it happens for standard re-planning, the new plan is com-
pared with the old one to decide where to start executing it and which
action to undo, if any.

Notice that in applying a new model to a running instance we do not
consider changes to the orchestration interface, which are taken into con-
sideration only for future calls. Also notice that the declarative nature
of DSOL and the modularity and dynamism inherent in its runtime sys-
tem eliminate most of the typical problems about possible mismatches
between the state of current executions and the changed model. In par-
ticular, during the re-planning phase that follows the submission of a
new model, the Planner does not start from a generic �true� state, but
it takes into consideration the current state of execution, i.e., the facts
already asserted during the execution of the old plan. This guarantees
that the new plan, if found, is coherent with the current state.

To put in evidence the potential of these mechanisms, let us consider
our case study. When the order request from the foreign university ar-
rives we may decide to accept it by adding to the original model the
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1 act ion buyOrde r I n su r ance ( Order )
2 pre : o r d e r_ in f o ( o r d e r )
3 post : o r d e r I n su r anceDone
4

5 act ion s c h e d u l e I n t e r n a t i o n a l D e l i v e r y ( Order , Address )
6 pre : o rde r I n su ranceDone , o r d e r_ in f o ( Order ) , d e l i v e r y A d d r e s s ( Address )
7 post : d e l i v e r y S c h e d u l e d

Listing 3.17: New abstract actions for small deviation

abstract actions described in Listing 3.17 with the related concrete ac-
tions (omitted for brevity). As we do not want this new behavior to be
shared by the whole system, those changes will be applied only to the
running instance that received the request. This instance, instead of fail-
ing because the scheduleDelivery action could not be performed toward
an international delivery, would detect those changes and trigger the re-
plan phase. The new plan would include the scheduleInternationalDe-
livery action, that replace the scheduleDelivery actions to accomplish
part of the goal, and the buyOrderInsurance that satis�es one of the
pre-conditions of scheduleInternationalDelivery. The new plan executes
successfully and allows to manage this exceptional situation.
On the other hand, imagine that at some time the managers of our

bookstore had the chance to �nd two good partners to handle the interna-
tional deliveries. The �rst and preferred one provides also the insurance
of the order. The second one, although it deliveries to a broaden number
of destinations, does not include the insurance.
To include the �rst partner into the job and open the bookstore to

international clients, changing the concrete actions that implement the
scheduleDelivery is enough. This is shown by Listing 3.18, which shows
the concrete actions to include the �rst partner. Notice that we used the
@When annotation to guide the Interpreter in choosing between the two
methods. This change could be submitted as a global one, a�ecting cur-
rent and future instances of the orchestration when the manager decides
to extend their business worldwide. Similarly, the second partner could
be included by changing the model as made to manage the special or-
der from the international university, but this time applying the change
globally.
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1 @Action (name=" s c h e d u l eD e l i v e r y " )
2 @When( " d e l i v e r yA d d r e s s . i s N a t i o n a l ( ) " )
3 pub l i c vo id
4 s c h e d u l eN a t i o n a lD e l i v e r y ( O rd e r I n f o o rde r , Address d e l i v e r y A d d r e s s )
5 { . . . }
6

7 @Action (name=" s c h e d u l eD e l i v e r y " )
8 @When( " d e l i v e r yA d d r e s s . i s I n t e r n a t i o n a l ( ) " )
9 pub l i c vo id
10 s c h e d u l e I n t e r n a t i o n a l D e l i v e r y ( O rd e r I n f o o rde r ,
11 Address d e l i v e r yA d d r e s s )
12 { . . . }

Listing 3.18: New concrete actions for process evolution

3.4 The DSOL Execution Engine

This section presents some relevant implementation details about the
DSOL execution engine, called DEng. As described so far, DEng is
organized into three main components: the Interpreter, the Planner,
and the Service Selector.

The Interpreter is the core of the tool, being responsible for the execu-
tion of the orchestration. Essentially, it replies to requests coming from
the clients by interpreting the orchestration modeled in DSOL, with the
help of the Planner and Service Selector.

The Interpreter is built on top of Apache CXF [13], an open-source ser-
vice framework. Apache CXF supports all the service-related parts inside
DEng. It is responsible for building the service model (i.e., the WSDL
of the orchestration) from the orchestration interface speci�ed in DSOL.
Furthermore, it handles all the communication between external clients
and the orchestration, including support for several transport protocols,
e.g., HTTP, Servlet, and JMS, and a variety of web service speci�ca-
tions including WS-Addressing, WS-Policy, WS-ReliableMessaging, and
WS-Security. Apache CXF is also used to invoke the SOAP-based ser-
vices that implement DSOL's service actions, as it provides a dynamic
way to invoke such services, without the need for creating stub and data
classes in advance. Conversely, to invoke HTTP services the Interpreter
leverages the Apache Http Components [14], which support the di�erent
HTTP methods.

When a client submits a request to a DSOL orchestration, the Inter-
preter forwards the request to a class that implements the orchestration
interface. This generic implementation is automatically built by the In-
terpreter at run-time, using the Code Generation Library (CGLIB) [15].
Its role is to read the meta-data of the called method and the actual
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values of the parameters and, based on this information, build the initial
state of the orchestration and initiate the Instance Session with the key-
value pairs that correspond to the actual parameters. Then, it retrieves
the abstract actions and goals associated with the invoked method and
passes them to the Planner.

The Planner is a hot-pluggable component of DEng, which is accessed
by the Interpreter through a generic interface. The current DEng pro-
totype uses an ad-hoc planner, built as an extension of JavaGP [16, 17],
an open-source implementation of the Graphplan [18] planner. The Jav-
aGP planner was extended to support multiple goals and the possibility
of setting the initial state of the plan at run-time. The JavaGP planner
was also modi�ed to introduce the ability of inhibiting the use of some
steps in the plan, i.e., those that in the DSOL model are mapped to
concrete actions whose invocation failed.

Using the initial state and the abstract actions provided by the Inter-
preter, the Planner builds a plan to reach the speci�ed goal and returns
it to the Interpreter, which enacts it by linking each step of the plan to
the concrete actions that implement it. Classes that contain concrete
actions (methods annotated with @Action) are parsed once for all at or-
chestration start-up, and they are stored in memory using a Hash Map
binding the name of the each abstract action with the list of concrete
actions (i.e., Java methods) that implement it. In such a way, when a
step of the plan needs to be executed, all available implementations can
be retrieved in constant time.

To actually invoke concrete actions, the Interpreter parses the next
step of the plan extracting the name of the abstract action involved and
the names of the objects to pass as parameters. The former is used to
retrieve the concrete actions to invoke from the Map mentioned above,
while the latter are used to retrieve, from the Instance Session, the actual
object instances to be used as parameters. Notice that concrete actions
are invoked one by one until one is found that completes successfully. The
return value of such concrete action is stored into the Instance Session,
making it available to the following step of the orchestration.

As explained in Section 3.2, if none of the concrete actions completes
successfully, the Interpreter starts a new interaction with the Planner in
order to �nd a new plan. In this interaction, the Interpreter �rst informs
the Planner of the steps that cannot be used any more (those correspond-
ing to abstract actions for which no concrete actions are available) and
then it requests a new plan. When the new plan is built, the Interpreter
compares it with the old one to �gure out if they have steps in common
that have already been executed and if there are actions that have to
be compensated. The corresponding compensation actions are executed
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before proceeding with the new plan.
Notice that some of the concrete actions to be invoked when enacting

a plan may be �service actions� (see Section 3.1.4) modeled as properly
annotated abstract Java methods. For such methods an implementa-
tion is created at run-time using the previously mentioned CGLIB. In
particular, the Interpreter uses the meta-data of the called method to
request the Service Selector for services that match the given identi�er.
Once the services are selected, they are invoked using the dynamic clients
front-end provided by Apache CXF in case of SOAP-based services, and
using Http Components in case of HTTP services. The parameters used
to invoke the service are the same passed to the concrete action (which
were retrieved from the Instance Session as explained above). The object
returned by the service, if any, is used as a return value of the concrete
action and it is stored into the Instance Session for later use.
As it happens for the Planner, the Service Selector was also designed

to be a hot-pluggable component that can be replaced according to spe-
ci�c needs of the users. Currently, the Service Selector is implemented
as a database of service descriptions, which can be managed at run-time
through a speci�c API that allows new services to be added or existing
ones to be removed. For each SOAP-based service known to the engine,
this database holds information such as the service endpoint (WSDL),
the port and the operation that must be invoked. For HTTP services, it
holds the service endpoint (URL), the HTTP method to be used (GET,
POST, PUT, DELETE) and the media type (our current prototype sup-
ports both XML and JSON) used to exchange messages.
Finally, service orchestrations written inDSOL can be deployed in two

di�erent ways. First they can be packaged as a Web application to be
deployed in any Servlet container, such as Tomcat or Jetty. The second
option is to use an embedded server, running as a standalone application.
The �rst option has to be preferred when the orchestration is part of a
Web application that includes its own HTML GUI as a front-end. The
second option is easier to use as it relies on our DEng prototype only,
not requiring any external component.
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3.5 Conclusions

In this chapter we presented the DSOL approach for self-adaptive ser-
vice orchestrations. In particular, we presented its language constructs
and features to support runtime adaptation, including how exceptional
situations can be easily overcome and managed. Furthermore, additional
implementation details about DEng, the DSOL execution engine, were
also presented.
The next chapter presents an exhaustive evaluation of DSOL, in which

it is compared with other state-of-the art approaches through several
additional case studies. Furthermore, it also presents an extensive eval-
uation of DEng's performance and scalability.
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This chapter is divided in three parts. The �rst takes various examples of
orchestrations from the literature and compares their implementation in
DSOL and BPEL. The second does the same but taking AO4BPEL [19]
and JOpera [20] as a reference. The goal is to show the advantages
of DSOL with respect to two mature research proposals that address
similar limitations of BPEL. The last part of the chapter focuses on
performance, showing how the use of a planner to automatically decide
the actual �ow of the orchestration at run-time in practice is not a threat
to scalability.

4.1 Comparison with BPEL

To reinforce the bene�ts provided by DSOL we take several examples
from the literature and study how they can be implemented in DSOL

and the di�erences between DSOL and a state-of-the-practice language
such as BPEL.

4.1.1 The DoodleMap Example

DoodleMap [21] is a poll service used to make choices about places, with a
map view of the selected locations. DoodleMap is built by composing the
services provided by Yahoo! Local Search [22], Doodle poll service [23],
and Google Static Maps [24]. The Yahoo! Local Search service is used
to �nd places in a given location based on some criteria; for example,
�nd available restaurants in the center of Milan. The results are used
as choices for the Doodle poll service, which will create the poll, and
as markers for the Google Static Maps, which will create and return an
image map including the selected places.

At �rst, one could say that DoodleMap is a simple example but we ar-
gue that this is true only because it was not designed to be fault tolerant.
For example, the service provided by Yahoo! Local Search only works if
the queried location is inside the United States, taking the whole service
to fail when the user searches for a location abroad. To overcome this
limitation, one could replace this service by the one provided by Google
Places [25] that works for more countries. However, there are situations
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in which even Google Places could fail, for example if it is temporarily
unavailable or if it returns an empty list of places. In general, one way
to implement a fault tolerant orchestration is to provide alternatives for
the involved services, possibly in a straightforward manner. Accordingly,
in our example we will include both Yahoo! Local Search and Google
Places.

Unfortunately, the APIs provided by these two services are not com-
patible, so this situation cannot be addressed as a late binding problem.
Yahoo! Local Search can be invoked directly with the search criteria and
the location as provided by the user, while Google Places does not accept
a textual location but needs geographic coordinates as the reference for
the search. This is a common situation: including an alternative to a
service also implies changing the work�ow to introduce new accessory
services, which were not originally required but are now needed to cor-
rectly execute the replacing service. In our case, before invoking Google
Places we have to invoke a geocoding service to translate the location
provided in human-readable form by the user in geographic coordinates,
e.g., Yahoo! PlaceFinder [26] or Google Geocoding [27].

1<scope>
2 <v a r i a b l e s>
3 <v a r i a b l e name= ' i n v ok eGoog l eP l a c e s ' t ype= ' x s d : b o o l e a n ' />
4 </ v a r i a b l e s>
5 <scope name= 'Yahoo '>
6 <f a u l t H a n d l e r s>
7 <ca t c hA l l>
8 <a s s i g n>
9 <copy>
10 <from>t r u e ( )</ from>
11 <to v a r i a b l e= ' i n v ok eGoog l eP l a c e s ' />
12 </copy>
13 </ a s s i g n>
14 </ c a t c hA l l>
15 </ f a u l t H a n d l e r s>
16 <!−− i n voke Yahoo ! Loca l Search −−>
17 </ scope>
18 < i f name= ' Goog l eP l a c e s '>
19 <cond i t i o n>$ i n vok eGoog l eP l a c e s</ c o n d i t i o n>
20 <sequence>
21 <!−− i n voke Google Geocoding −−>
22 <!−− i n voke Google P l a c e s −−>
23 </ sequence>
24 </ i f>
25<scope>

Listing 4.1: BPEL implementation for the the DoodleMap alternatives

Listing 4.1 illustrates how the scenario presented above would be writ-
ten in BPEL, applying the traditional approach that achieves fault tol-
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erance through exception handling mechanisms. A boolean variable is
declared (line 3) to determine whether Google Places (together with
Google Geocoding) should be used or not. Initially the value of this
variable is set to false and it is changed to true as soon as the fault
handler (lines 6-15) attached to the scope Yahoo (lines 5-17) is enabled.
This will happen when the Yahoo! Local Search service fails (line 16).
Notice how the code, despite the simplicity of the example, is hard to
read and how it would increase in complexity as we start adding other
alternatives to this and the other services that are part of the overall
orchestration. Furthermore, the order in which the alternatives are in-
voked, i.e., the fact that Yahoo! Local Search has to be preferred to
Google Places, is hard-coded into the orchestration and it is relatively
di�cult to change.

1 act ion f i n dA v a i l a b l e P l a c e sB y L o c a t i o n ( Locat ion , Query )
2 pre : s e a r c hLo c a t i o n ( Loca t i on ) , s ea rchQuery ( Query )
3 post : l i s t o f p l a c e s ( a v a i l a b l e P l a c e s ) , b y l o c a t i o n
4

5 act ion ge tCoo rd i n a t e ( Loca t i on )
6 pre : s e a r c hLo c a t i o n ( Loca t i on )
7 post : s e a r c hCoo r d i n a t e ( Coo rd i na t e )
8

9 act ion f i n dA v a i l a b l e P l a c e sB yCo o r d i n a t e ( Coord inate , Query )
10 pre : s e a r c hCoo r d i n a t e ( Coo rd i na t e ) , s ea rchQuery ( Query )
11 post : l i s t o f p l a c e s ( a v a i l a b l e P l a c e s ) , b y c oo r d i n a t e

Listing 4.2: DSOL implementation for the the DoodleMap alternatives

Listing 4.2 illustrates how the same sub-scenario would be written in
DSOL with a major focus on the abstract actions involved. The action
findAvailablePlacesByLocation models services in which places are
searched by location, as Yahoo! Local Search, while the action find-

AvailablePlacesByCoordinatesmodels the case in which nearby places
are located based on geographic coordinates, e.g., Google Places. Finally,
the action getCoordinates models services that take a human-readable
location and transform it in geographic coordinates. If the goal of this
part of the orchestration is to �nd the list of available places, which we
could model with theDSOL fact listofplaces(availablePlaces), the
Planner may satisfy it in two ways: searching places directly by location
or �rst transforming the location into coordinates and then searching
places using these coordinates. DEng will try the former route �rst
and, if it fails, it would try the second one. All this happens at run-time
and it is fully automatic: the domain expert focused on the available
alternatives without the need for explicitly programming the exception
handling code.
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1 goal l i s t o f p l a c e s ( a v a i l a b l e P l a c e s ) , b y l o c a t i o n
2 or
3 l i s t o f p l a c e s ( a v a i l a b l e P l a c e s ) , b y c oo r d i n a t e

Listing 4.3: Using multiple goals to de�ne ordering of actions

As for the order in which the alternatives are tested, it can be left
unspeci�ed or it can be explicitly modeled, through an accurate use
of the goal. As an example, one could use the facts bylocation and
bycoordinates provided by the abstract actions findAvailablePlaces-
ByLocation and findAvailablePlacesByCoordinate, respectively, to
write a goal (see Listing 4.3) that lists, as two di�erent subgoals, the two
alternatives, thus making the preferred order among them explicit: �rst
try to �nd places by location, then by coordinates.

Another important point to highlight is how easily the DSOL code
can be reused. Imagine a variant of the original DoodleMap example in
which the user is equipped with a GPS device and the location to use is
the current one. To address this case we have to change the orchestration
interface and the overall work�ow. The former receives the location as
geographic coordinates instead of using a string, while the latter can
now invoke the Google Places directly but it needs a reverse-geocoding
service before invoking Yahoo! Local Search. In DSOL, this variant of
the original orchestration can be modeled by fully reusing the actions
part of the original model and adding the new abstract action shown in
Listing 4.4. It is the Planner that chooses which actions to invoke and in
which order to satisfy the goal of the original orchestration or the goal
of the new one.

1 act ion g e tLo c a t i o n ( Coo rd i na t e )
2 pre : s e a r c hCoo r d i n a t e ( Coo rd i na t e )
3 post : s e a r c hLo c a t i o n ( l o c a t i o n )

Listing 4.4: Reverse geocoding abstract action

Continuing with the DoodleMap example, we must now use the re-
turned list of places to invoke the poll and the map service. As they
are not related to each other, they can be invoked in parallel. However,
before invoking those services, we need to transform the list of places
into a list of choices compatible with the poll service and a list of mark-
ers compatible with the map service. Besides this, as the poll service is
a stateful service it needs to be undone (i.e., compensated) if for any
reason the whole orchestration fails.
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1<scope>
2 <f a u l t H a n d l e r s>
3 <ca t c hA l l>
4 <compensateScope t a r g e t="Doodle " />
5 </ c a t c hA l l>
6 </ f a u l t H a n d l e r s>
7 <f l ow>
8 <scope name="Map">
9 <sequence>
10 <!−− conv e r t p l a c e s i n t o markers −−>
11 <!−− i n voke map s e r v i c e −−>
12 </ sequence>
13 </ scope>
14 <scope name="Doodle ">
15 <compensat ionHand le r>
16 <!−− d e l e t e c r e a t e d p o l l −−>
17 </ compensat ionHand le r>
18 <sequence>
19 <!−− conv e r t p l a c e s i n t o p o l l c h o i c e s −−>
20 <!−− i n voke p o l l s e r v i c e −−>
21 </ sequence>
22 </ scope>
23 </ f l ow>
24</ scope>

Listing 4.5: Control �ow mixed with compensation activities

In BPEL, as shown by Listing 4.5, all these issues have to be addressed
together. The <flow> statement (lines 7-23) is used to specify that ac-
tivities related to the map and poll services must be invoked in parallel,
while the <sequence> statement (lines 9-12 and 18-21) indicates that
the inner activities must be executed in a sequence. Lines 15-17 de�ne
the compensation handler for the Doodle scope, which is activated by
the fault handler (lines 2-6) attached to the outer scope, which, in turn,
catches all the faults that might occur as the orchestration is executed.
The result is a rather convoluted code that would become really unman-
ageable if we had included the di�erent service alternatives available.

The DSOL approach instead separates the various aspects. The fact
that actions can be executed in parallel or have to be executed in se-
quence is deduced by the Interpreter based on the pre- and postcondi-
tions of the various actions part of the plan. While executing the plan,
the Interpreter invokes actions as soon as all of their preconditions are
true, i.e., all the actions of a plan whose precondition is true are invoked
in parallel. Instead if an action A1 requires a fact f to be true before
starting and f is asserted as a postcondition of an action A2 then A2

and A1 will be executed in this order. The service architect does not
need to worry about ordering and parallelism, which are deduced by the
Interpreter looking at the model itself.
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1 act ion c r e a t eMa rk e r s ( P l a c e s )
2 pre : l i s t o f p l a c e s ( P l a c e s )
3 post : l i s t o f m a r k e r s ( markers )
4

5 act ion createMapWithMarkers ( Markers )
6 pre : l i s t o f m a r k e r s ( Markers )
7 post : map( mapWithMarkedPlaces )
8

9 act ion c r e a t eOp t i o n s ( P l a c e s )
10 pre : l i s t o f p l a c e s ( P l a c e s )
11 post : l i s t o f o p t i o n s ( o p t i o n s )
12

13 act ion c r e a t e P o l l ( I n i t i a t o rName , P o l l T i t l e , Opt ions )
14 pre : i n i t i a t o rName ( I n i t i a t o rName ) , t i t l e ( P o l l T i t l e ) ,
15 l i s t o f o p t i o n s ( Opt ions )
16 post : p o l l ( p o l l )

Listing 4.6: New abstract actions for the DoodleMap orchestration

Similarly, alternative ways to execute the same action can be coded
by listing di�erent concrete actions for the same abstract action, or dif-
ferent abstract actions with the same pre- and postconditions. Finally,
compensation actions are written separately, as a special type of a con-
crete action. Ad-hoc annotations (see below) are used to identify them
as compensation actions and to specify which action they compensate.
It is the Interpreter's responsibility to decide, at run-time, if and when
compensation actions have to be invoked.

If we look at our DoodleMap example, Listing 4.6 illustrates the ab-
stract actions that need to be included to cover the new part of the or-
chestration. We notice that pre- and postconditions of createMarkers
and createMapWithMarkers are put in relation by the predicate listOf-
Markers(...), denoting the need of running the two actions in sequence,
if they appear in the same plan, while the precondition of createMarkers
and createOptions are the same, making these two actions eligible for
parallel execution, if they are part of the same plan.

Similarly, Listing 4.7 illustrates some of the concrete actions that
implement the aforementioned abstract actions. Lines 3-8 represent a
generic action that implements the abstract action createOptions and
transforms the available places into options to the poll. Lines 14-16 rep-
resent a service action that implements the abstract action createPoll

and is executed by invoking the service labeled with the key poll as
de�ned in the @Action annotation. The returned object could be refer-
enced in the future through the key pollId.

Listing 4.8 also illustrates the compensation action for createPoll.
It can be identi�ed as a compensation action because the compensation
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1 @Action
2 @ReturnValue ( ' op t i o n s ' )
3 pub l i c L i s t <Option> c r e a t eOp t i o n s ( L i s t <Place> p l a c e s ) {
4 L i s t <Option> op t i o n s = new L i s t <Option >() ;
5 f o r ( P lace p l a c e : p l a c e s ) {
6 Option op t i on = new Option ( p l a c e . getName ( ) ) ;
7 op t i o n s . add ( op t i on ) ;
8 }
9 re tu rn op t i o n s ;
10 }
11

12 @Action ( s e r v i c e = ' p o l l ' )
13 @ReturnValue ( ' p o l l I d ' )
14 pub l i c abs t rac t S t r i n g c r e a t e P o l l ( S t r i n g i n i t i a t o rName ,
15 S t r i n g p o l l T i t l e ,
16 L i s t <Option> op t i o n s ) ;

Listing 4.7: Some concrete actions for DoodleMap scenario

1 @Action (name = ' c r e a t e P o l l ' , s e r v i c e = ' d e l e t e P o l l ' ,
2 compensat ion = t rue )
3 pub l i c abs t rac t vo id d e l e t e P o l l ( @ObjectName ( ' p o l l I d ' )
4 S t r i n g p o l l ) ;

Listing 4.8: Compensation action for the createPoll action

attribute in the @Action annotation is set to true. It receives the poll's
id returned when the poll was created as a parameter and is executed by
invoking the deletePoll service.

The last case we consider is that of an alternative that depends on
an user's choice. In DoodleMap we can imagine that the map could be
created using Google Maps or Bing Maps [28] based on the preferences
of the user. The traditional approach to solve this case, and the one used
in BPEL, is based on nested if statements or switches. This can be
another source of complexity and another factor that limits reusability
of the orchestration code, as its control �ow is hardwired in the code.
DSOL addresses the same case by using the actual value of the param-
eters passed to the orchestration as facts that become part of the Initial
State (see Section 3.1.3) and can be used into the precondition of the
various actions to decide which one has to be used. Listings 4.9 and 4.10
show the DSOL and BPEL code for this case, respectively.

As a �nal remark, Table 4.1 shows a comparison between DSOL and
BPEL in terms of lines of code (LOC). The interpretation of LOC as a
quality index is rather controversial and a meaningful statistical sample
should be examined in order to support any conclusion. However, on
the one side, we can say that the value of LOC for di�erent languages to
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1 act ion createMapUs ingGoog le ( P l a c e s )
2 pre : l i s t o f p l a c e s ( P l a c e s ) , mapProv ider ( goog l e )
3 post : map( mapWithMarkedPlaces )
4

5 act ion createMapUs ingBing ( P l a c e s )
6 pre : l i s t o f p l a c e s ( P l a c e s ) , mapProv ider ( b ing )
7 post : map( mapWithMarkedPlaces )

Listing 4.9: Alternatives based on the actual parameter values as part of
the Initial State

1 . . .
2 < i f name= 'MapProvider '>
3 <cond i t i o n>
4 $doodleMapRequest . mapProv ider = ' goog l e '

5 </ c o n d i t i o n>
6 <!−− use Google Maps −−>
7 <e l s e>
8 < i f>
9 <cond i t i o n>
10 $doodleMapRequest . mapProv ider = ' b ing '

11 </ c o n d i t i o n>
12 <!−− use Bing Maps −−>
13 </ i f>
14 </ e l s e>
15 </ i f>
16 . . .

Listing 4.10: Alternatives based on a service parameter using BPEL

implement the same functionality is an indication of the level of abstrac-
tion of the language. Table 4.1 indicates that DSOL provides a higher
abstraction level. On the other side, LOC can be seen as an indicator of
the e�ort needed to develop a piece of software (see [29]).The example
suggests that DSOL might indeed help simplify development and reduce
the required e�ort.

4.1.2 Other Examples

We repeated our exercise of comparing DSOL with BPEL by implement-
ing four more scenarios: the Event Planning service, the Loan Approval
service, the ATM service, and the Trip Reservation Service. The �rst
is the example we presented in Chapter 2, which we implemented both
in DSOL and BPEL. The last three were taken from the JBoss jBPM-
BPEL v1.1.1 documentation [30]. In these examples, we took the BPEL
implementations from the JBoss distribution and re-implemented them
in DSOL.
We will not examine all of them in details as we did for the DoodleMap
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LANGUAGE CODE #LOC

Concrete Actions 42
Orchestration Interface 12

DSOL Initial State,
Goals and Abstract Actions 22
TOTAL 76

Process 214
BPEL Orchestration Interface (WSDL) 47

TOTAL 261

Table 4.1: A comparison (in term of LOC) of DSOL and BPEL when
used to model the DoodleMap orchestration

example, since the general considerations would be very similar. Rather,
here we focus on the size of the resulting model. Tables 4.2 to 4.5 report
the results we obtained. In all scenarios, the size of the BPEL code is
between 2.2 and 4 times bigger than the code required by DSOL. The
saving in size is bigger when the examples become more complex, with
various alternatives in the execution �ow. These results con�rm what
we argued before: that DSOL simpli�es the speci�cation of �exible and
self-adaptive service orchestrations.

LANGUAGE CODE #LOC

Concrete Actions 54
Orchestration Interface 16

DSOL Initial State,
Goals and Abstract Actions 38
TOTAL 108

Process 381
BPEL Orchestration Interface (WSDL) 53

TOTAL 433

Table 4.2: A comparison (in term of LOC) of DSOL and BPEL when
used to model the Event Planning orchestration

4.2 Comparison with Alternative Approaches

In the last years, several alternatives to BPEL were proposed by re-
searchers to address some of the issues we emphasized in this thesis. In
this section we describe two of them: namely AO4BPEL and JOpera,
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LANGUAGE CODE #LOC

DSOL Concrete Actions 36
Orchestration Interface 19
Initial State,
Goals and Abstract Actions 12

TOTAL 75

BPEL Process 140
Orchestration Interface (WSDL) 44
TOTAL 184

Table 4.3: A comparison (in term of LOC) of DSOL and BPEL when
used to model the Loan Approval orchestration

LANGUAGE CODE #LOC

DSOL Concrete Actions 81
Orchestration Interface 46
Initial State,
Goals and Abstract Actions 40

TOTAL 167

BPEL Process 369
Orchestration Interface (WSDL) 116
TOTAL 485

Table 4.4: A comparison (in term of LOC) of DSOL and BPEL when
used to model the ATM orchestration

which we chose as mature representatives of the state of the art in the
area. Other systems will be reviewed in Chapter 7.

4.2.1 Aspect-Oriented Extensions to BPEL

To increase modularity of orchestration models and to better support
their run-time adaptation, some researchers proposed to use Aspect-
Oriented Programming (AOP) techniques. BPEL'n'Aspects [31] and
AO4BPEL [19] are two notable representatives of this class of systems,
which are built around an aspect-oriented extension to BPEL. In this sec-
tion we focus on the latter as it addresses both modularity and run-time
adaptability as we do with DSOL.
In particular, in [19] the authors introduce various examples to illus-

trate how BPEL lacks tools to properly modularize crosscutting concerns
among several processes. Here we take them and we show how DSOL

behaves in those cases.
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LANGUAGE CODE #LOC

DSOL Concrete Actions 56
Orchestration Interface 22
Initial State,
Goals and Abstract Actions 42

TOTAL 120

BPEL Process 201
Orchestration Interface (WSDL) 66
TOTAL 267

Table 4.5: A comparison (in term of LOC) of DSOL and BPEL when
used to model the Trip Reservation orchestration

The �rst example presented in [19] (data collection for billing) assumes
that a service provider starts charging a fee for using its Web Service S1.
The client, who will receive a bill from the provider, wants to check
whether the bill is accurate. This requires counting how many times S1

has been called from any deployed orchestration. In BPEL one would
need to examine all the deployed orchestrations, �nding out where the
service is invoked, and manually including there the code to invoke a
counting Web Service. AO4BPEL solves this problem more elegantly
by declaring a single aspect to be executed after S1, which invokes the
counting Web Service.

Looking at this example from the DSOL perspective, however, we
notice that what was hard to modularize in BPEL (the crosscutting
concern) can be easily integrated into a single module in DSOL. Indeed,
in DSOL the various orchestrations invoking the original Web Service
S1 would share a single abstract action, similar to action invokeS1 in
Listing 4.11. To count how many times such action has been invoked one
could introduce a new action countS1Invocations (whose pre-condition
is the post-condition of the invokeS1), changing the goals of the involved
orchestrations to include the post-condition of the new action as shown
in Listing 4.111. This way the counting code is inserted only once and
it is the Planner which guarantees that it is included into all plans that
included the original action.

The second example presented in [19] (data persistence) moves from
the consideration that in BPEL all data elaborated during an orches-
tration is lost as soon as the orchestration ends. In several scenarios,
discarding the orchestration data is not an acceptable behavior. For in-

1The concrete action associated with action countS1Invocations, which actually
invokes the counting service, is straightforward and has been omitted.
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1 // Ac t i on s
2 act ion i nvokeS1 ( . . )
3 pre : . .
4 post : S1 Invoked
5

6 act ion c oun tS1 I n v o c a t i o n s
7 pre : S1 Invoked
8 post : coun te rFo rS1 Inc r emented
9

10 //Goal
11 goal ( . . and S1Invoked and counte rFo rS1 Inc r emented )

Listing 4.11: New abstract action and goal for the �data collection for
billing� example

stance, in the Event Planning scenario, the payment con�rmation code,
the booking con�rmation for the hotel, and the �ight details should be
stored. In BPEL, the solution for such problem would be similar to the
solution presented for the data collection for billing example. The code
to keep the desired data persistent would not be modularized in one
place but replicated in di�erent parts of di�erent orchestrations. Again,
AO4BPEL addresses such a situation by modularizing the persistence
code into a single aspect that intercepts the calls for a given activity and
stores the desired data for later use.

As in the �rst example, the peculiar approach to modeling orchestra-
tions taken by DSOL makes the data persistence aspect a well modular-
ized one. Indeed, DSOL distinguishes between the abstract, high-level
model of an orchestration (abstract actions and goals) and its imple-
mentation (the concrete actions), leaving the actual �ow of execution to
be decided at run-time. The data persistence policy can be considered
an implementation aspect to being modeled by introducing ad-hoc con-
crete actions as in Listing 4.12, which shows the original bookFlight
and bookTrain concrete actions of the Event Planning examples, and
their persistent counterparts that use an external data access object
(DAO) [32] to persist data after invoking the original actions.

The third use case for AOP presented in [19] is about business rules.
The authors do not make speci�c example, but claim that in general
business rules are hard to modularize in BPEL and are amenable to be
modeled as an aspect that intercepts some activities and encodes the
business rule in a single place. As in the previous examples, DSOL does
not su�er from this problem. Its rule-based nature allows to encode most
business rules easily as part of the various abstract/concrete actions,
while the fact that the orchestration �ow is derived at run-time by the
Planner starting from the available actions and the goal, guarantees that
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1 @ReturnValue ( " t r a n s p o r t a t i o nD e t a i l s " )
2 @Action (name=" bookF l i g h t " )
3 pub l i c T r a n s p o r t a t i o nD e t a i l s P e r s i s t e n tB o o kF l i g h t (
4 S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e ){
5 T r a n s p o r t a t i o nD e t a i l s f l i g h t D e t a i l s = bookF l i g h t ( from , to , a r r i v a l , d e p a r t u r e ) ;
6 DAO. saveData ( f l i g h t D e t a i l s ) ;
7 }
8

9 @ReturnValue ( " t r a n s p o r t a t i o nD e t a i l s " )
10 @Action (name="bookTra in " )
11 pub l i c T r a n s p o r t a t i o nD e t a i l s P e r s i s t e n tBookT r a i n (
12 S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e ){
13 T r a n s p o r t a t i o nD e t a i l s t r a i n D e t a i l s = bookTra in ( from , to , a r r i v a l , d e p a r t u r e ) ;
14 DAO. saveData ( t r a i n D e t a i l s ) ;
15 }
16

17 @Action ( s e r v i c e=" f l i g h t " )
18 pub l i c abs t rac t T r a n s p o r t a t i o nD e t a i l s b ookF l i g h t (
19 S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e ) ;
20

21 @Action ( s e r v i c e=" t r a i n " )
22 pub l i c abs t rac t T r a n s p o r t a t i o nD e t a i l s bookTra in (
23 S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e ) ;

Listing 4.12: The modi�ed bookFlight and bookTrain concrete actions
including data persistence

the appropriate actions (i.e., the appropriate business rules) are included
into every plan when they are required. As a further justi�cation of this
claim we notice that the same authors of AO4BPEL, in their paper [33]
focus explicitly on the issue of appropriately modeling business rules and
sketch two solutions considered equivalent: one based on AOP, the other
based on a rule-engine that operates in a way similar to our Planner.

The �nal example presented in [19] concerns the measurement of ac-
tivity execution time and logging. We acknowledge that this is the exam-
ple that least �ts DSOL and is also the one that mostly bene�ts from
AOP, in our opinion. While we do not have a general solution for this
case, we observe that DSOL and DEng are ultimately based on Java,
so it is not hard to integrate them with one among the many available
aspect-oriented extensions of Java, such as AspectJ [34]. For example,
Listing 4.13 illustrates an AspectJ pointcut that intercepts all calls for
a method annotated with @Action and calculates its execution time.

Besides modularity, AO4BPEL also claims that aspects can be used to
solve the problem of dynamic changes and process evolution at runtime.
To do so, aspects could be used to add, at runtime, new activities in spe-
ci�c points of the process. If business rules changes, the only thing to do
is to activate or deactivate the appropriate aspect. We claim, however,
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1 @Around ( " c a l l ( @org . d s o l . a nno t a t i on . Act i on * * ( . . ) ) " )
2 pub l i c Object execut ionT imeMon i to r ( P r o c e ed i n g Jo i nPo i n t t h i s J o i n P o i n t ) {
3 long s t a r t = System . c u r r e n tT im eM i l l i s ( ) ;
4 Object r e t u r nOb j e c t= t h i s J o i n P o i n t . p roceed ( ) ;
5 long end = System . c u r r e n tT im eM i l l i s ( ) ;
6 long execut ionT ime = end − s t a r t ;
7 . . .
8 re tu rn r e t u r nOb j e c t ;
9 }

Listing 4.13: Example on how AspectJ could be integrated with DSOL

that such an approach is not adequate for changing an orchestration.
First, the changes are limited to the declared aspects, ignoring the fact
that it is often necessary to change or remove also the activities that were
initially declared into the orchestration. Furthermore, using aspects to
evolve the orchestration means that changes, instead of being incorpo-
rated as a natural evolution of the model are realized more as a sort of
patches, which could even complicate the overall understandability and
maintainability of the orchestration.

In DSOL, changes are handled in a complete di�erent way, since the
modularity and dynamism inherent in the DSOL approach provide sup-
port for ad-hoc mechanisms to change the orchestration at runtime. In-
deed, as the plan of execution, i.e., the actual sequence of activities to be
performed, is built at runtime, changing the orchestration is much sim-
pler in DSOL compared to the complex mechanisms that other, more
traditional systems, must put in place to obtain the same result. In
general we support full changes to the orchestration model. The service
architect may add new abstract or concrete actions, remove or modify
them, change the goal of the orchestration, and even change its interface.
Moreover, we allow changes that impact the orchestration at various lev-
els. When a new model for an existing orchestration is submitted, one
can specify if it has to a�ect future executions, the current ones, or both.
This way, we cover di�erent levels of updates: from small changes ap-
plied to single running instances, to changes to be applied to future calls
only, to major changes that have to a�ect current and future executions.

4.2.2 JOPERA

JOpera [20] is a mature research product that o�ers a visual language and
a fully functional execution platform for building distributed application
composed of reusable services, which includes, but is not limited to Web
Services. The graphical and visual approach o�ered by JOpera simpli�es
modeling complex orchestrations when compared with BPEL. Moreover,
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the fact that the control �ow and the data �ow of the composition are
described separately, allows one to build orchestrations that are easier
to understand and maintain. On the other hand, the overall style of the
language is still largely procedural and consequently it su�ers from most
of the �exibility problems we have previously highlighted.

Figures 4.1 and 4.2 illustrate, respectively, the control �ow and the
data �ow diagrams for the DoodleMap scenario described in Section 4.1.1.
These descriptions are inherently rather complex. As in BPEL, service
orchestrations in JOpera must be modeled in all details, forcing the ar-
chitect to decide and forecast at design time the best alternatives and
the order in which such alternatives must be tried. Fault tolerance must
be explicitly programmed by heavily using exception handling mecha-
nisms. For example, the arrow with a red dot end that connects activity
YahooLocal with activity GoogleGeocode means that GoogleGeocode

must be executed after YahooLocal if the latter fails. Similarly, the ques-
tion mark that annotates some activities denotes that they are guarded
by some condition. For example, CreateGoogleMap and CreateBingMap

depend on the user's choice. In DSOL all these features are handled
automatically by the Planner, facilitating the job of the architect and
allowing the orchestration to evolve more easily. Moreover, although the
JOpera user does not need to specify some details, like, for example,
which activities have to be performed in order and which ones can be
done in parallel (a detail that is deduced by the execution engine from
the data �ow diagram), the process structure remains quite complex to
de�ne and rigid to evolve.

Although the graphical formalism provided by JOpera and the textual
one provided byDSOL are not easy to compare, we contend that the �ne-
grain, imperative modeling imposed by JOpera leads to readability and
maintainability issues that do not apply to the DSOL solution, which
bene�ts from a declarative approach that focuses on the relevant details
of the orchestration, while other aspects, including the actual �ow of
execution, are decided at run-time. As a comparison, DSOL requires 76
lines of code and 7 abstract actions in total to encode the same example
reported in Figures 4.1 and 4.2.

4.3 Empirical Assessment

In the previous sections we focused on the expressiveness and usability of
our modeling languageDSOL. Here instead we are interested in testing if
and how using a planner to decide the actual �ow of the orchestration at
run-time may negatively impact performance. To do so, we developed an

53



4 Case Studies and Evaluation

Figure 4.1: DoodleMap control �ow modeled in JOpera

application that automatically generates di�erent sets of related abstract
actions and goals and we used the Planner to extract a plan from these
data. To test the performance of the Planner under di�erent situations,
we varied the number of abstract actions that are part of the model
and their structure, i.e., the number of parameters they have and the
complexity of their pre- and postconditions. For preconditions, we also
distinguished between the predicates that include some of the action's
parameters (e.g., predicate listofplaces(Places) in the precondition
of abstract action createMapUsingGoogle from Listing 4.9), from those
that are pure (fully bound) facts that must be true for the action to be
called (e.g., predicate mapProvider(google) in the same abstract ac-
tion). The same distinction was made for postconditions, distinguishing
between facts that involve some of the action's parameters (e.g., fact
listofplaces(availablePlaces) in the postcondition of abstract ac-
tion findAvailablePlacesByLocation), from those that are fully bound
(e.g., fact byLocation in the same abstract action).
We considered a base scenario characterized by the following parame-

ters: 50 abstract actions, 4 predicates in each precondition and postcon-
dition (2 of one type and 2 of the other). As for the goal, it was chosen in
a way that plans with di�erent sizes would be generated2: 5, 10, and 15.
We repeated each experiment 30 times and plotted the average result we
measured and the 95% con�dence interval [35].
Our evaluation was carried out for a server deployed in the Amazon

cloud, con�gured as a small instance [36] and running Ubuntu Linux
10.10. This environment was set up to emulate a typical con�guration

2The size of the plan di�ers from the actual number of abstract actions that compose
it, as some of the actions can be executed in parallel. For plans of size 5, 10, and
15 the mean number of abstract actions in the plan is 8, 16, and 26, respectively.

54



4.3 Empirical Assessment

Figure 4.2: DoodleMap data �ow modeled in JOpera

used to deploy service orchestrations in real scenarios.

Figure 4.3 shows the results we measured in the base scenario. They
show the feasibility of our approach as the time to create the plan is
very reasonable. For instance, if we consider the case of plans of size 10
(i.e., involving 16 abstract actions, on average) it only takes 250 ms to
the Planner to build such plans. If only one third of the 16 actions are
calls of external services, the overhead caused by external interactions
will dominate the overhead imposed by the Planner. Even in the case of
building a rather complex plan including 26 abstract actions on average,
with size of 15, requires only 550 ms of the Planner.

Figures 4.4 and 4.5 show how the complexity of preconditions impacts
on the time required to build the plan. In Figure 4.4, we consider the
base scenario but we change the number of predicates in preconditions
from 2 to 6. In Figure 4.5, we keep the number of predicates in pre-
conditions �xed(4) and change the ratio of the two types of predicates
involved. At one extreme all the predicates reference one of the action's
parameters (they are unbound predicates), while at the other extreme
they are all bound. While a growing number of predicates in precon-
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Figure 4.3: Time required to build plans of di�erent sizes for the base
case

Figure 4.4: Time required to build plans of di�erent sizes varying the
number of predicates in preconditions

ditions and particularly a growing number of the unbound ones has a
negative impact on the plan building time, this remains acceptable, with
a max value of 3.5 sec and an average value just above 1 sec. Again, we
expect these values to be dominated by the time required to invoke the
external services that build such complex orchestrations.

Figures 4.6 and 4.7 make a similar analysis on postconditions. Notice
that in Figure 4.7, the case in which none of the facts in postconditions
refers to the actions' parameters is not possible because it would lead to
an empty plan. The results are similar to the previous case, with a worst
case of 4 sec and an average of 1.5.

Figure 4.8 shows the time required to build a plan in our base scenario
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Figure 4.5: Time required to build plans of di�erent sizes varying the
proportion between the types of predicates in preconditions

Figure 4.6: Time required to build plans of di�erent sizes varying the
number of facts in postconditions

but changing the number of available abstract actions from 30 to 100
(they were 50 in the base scenario). Our Planner scales very smoothly
here, with a time that is almost constant and always below 1 sec. Starting
from this positive result, we decided to investigate what happens in the
worst case in which there is no plan to reach the goal. Figure 4.9 shows
our base scenario, with a growing number of available abstract actions
and with specially chosen goals that cannot be satis�ed. Here we see that
the number of available actions impacts on the number of combinations
to test before concluding that no plan can be built. In the worst case
(100 abstract actions) the Planner takes more than 15 sec to decide that
no plan may reach the goal. This is a negative result but it has been
obtained in a fairly tough scenario: 100 actions and no plan. In a more
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Figure 4.7: Time required to build plans of di�erent sizes varying the
proportion between the two types of facts in postconditions

Figure 4.8: Time required to build plans of di�erent sizes varying the
number of available abstract actions

reasonably sized scenario like our default one (50 actions), the worst case
of no plan requires only 2 sec to be solved.

In general, from the above assessment we may conclude that our ap-
proach is feasible and the use of a Planner introduces an acceptable
(often negligible) overhead in the execution time of the overall orches-
tration. To further con�rm this statement, we compared the overall
performance of our DEng run-time, from planning to actual execution
of the orchestration, with one of the most widely adopted BPEL en-
gines: ActiveBPEL [37]. In particular, we compared the time required
to complete the whole DoodleMap orchestration (see Section 4.1.1) in-
cluding the time to invoke the various web services involved, observing
the system from a client's perspective. We invoked the orchestration

58



4.3 Empirical Assessment

Figure 4.9: Time required to discover that a goal is not satis�able in sce-
narios characterized by a growing number of abstract actions

with di�erent inputs to test di�erent paths of execution (including those
that require DEng to initially build a plan that will fail, with the need
to re-plan at run-time), and repeated our tests multiple times to account
for the variations that may come from invoking the external services.

Engine Time (ms)

DEng 1571

ActiveBPEL 1543

Table 4.6: Performance comparison between DEng and ActiveBPEL

Table 4.6 shows the results we obtained when the orchestration is
invoked to build a DoodleMap for pizza restaurants in New York. Yahoo!
Local Search completes successfully in this scenario and the orchestration
is executed without faults. Both engines require approximately the same
time to complete the orchestration, with DEng being slightly slower (by
less than 30 ms).

Engine Time (ms)

DEng 2579

ActiveBPEL 2130

Table 4.7: Performance comparison between DEng and ActiveBPEL in
presence of faults that require re-planning

Table 4.7 shows the results obtained when the orchestration is invoked
with pizza restaurants in Milan as the key parameter. The Yahoo! Local
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Search fails as it can only handle requests for locations in the USA. In
BPEL this failure triggers the fault handler that enables the orchestra-
tion to use the Google Places service to �nd the set of available loca-
tions. In DSOL, this will force the Interpreter to invoke the Planner
once again to build the new plan that includes the Google Places related
action. Again, the response time is similar, with DEng being slower by
a greater but still acceptable margin of 450 ms.

Engine Time (ms)

DEng 2075

ActiveBPEL 1873

Table 4.8: Performance comparison between DEng and ActiveBPEL

Finally, Table 4.8 shows the average time considering both alternatives
together. In this scenario, the impact of our planning-based approach,
plus the overhead introduced by the other parts of our engine, which
make many run-time decisions using late-binding at each step, from the
choice of the actual services to invoke, to the choice of the concrete
actions to use, to the choice of the �ow of execution itself, a�ect perfor-
mance for 200 ms, i.e., 10% of the total time. We argue that this is an
acceptable price to pay for the �exibility that it brings.
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of Service

So far, we have pointed out the advantages of implementing service or-
chestrations using DSOL w.r.t. traditional approaches (e.g., [3, 4])
which force service architects to explicitly code all possible action �ows,
and to forecast both expected and unexpected situations. Unexpected
situations in the service orchestrations, however, are not limited to the
functional behavior of the composed services but also extend to the Qual-
ity of service (QoS) pro�le they o�er, which includes, for example, their
expected response time, reliability, and accuracy. Indeed, changes in the
non-functional behavior of services may a�ect the orchestration's ability
to satisfy its own QoS requirements.

To prevent those kind of violations and maximize the probability of
satisfying also non-functional requirements, in this chapter, we present
some extensions we have included to DSOL to consider also QoS pro�les
in order to select the services that best meet the overall non-functional
requirements of the orchestration.

In particular, DSOL models the QoS attributes of external services as
part of the available actions, while the QoS requirements of the whole or-
chestration are modeled as part of its goals. At orchestration invocation,
DEng uses linear optimization techniques to search for an optimal ser-
vice binding that could satisfy the orchestration goals, even in presence
of con�icting non-functional requirements. In addition, DSOL supports
two forms of run-time adaptation directly related with QoS. First, it is
able of modifying the initial service binding to achieve further optimiza-
tion given the knowledge acquired during execution (e.g., the fact that
a service, originally considered non-fully reliable, executed correctly).
Second, it leverages the DSOL re-planning techniques to optimize the
orchestration QoS in presence of faults, maximizing reliability. These
forms of optimization and adaptability applies both to pre-de�ned QoS
metrics (execution time and reliability), but also to user-de�ned metrics,
which allow service architects to express domain speci�c, non-functional
requirements.
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5.1 Programmable Dinner Example

ProgrammableDinner (PD) is the service orchestration we use to illus-
trate the QoS-related functionalities of DSOL and its capabilities. PD
orchestrates external services to organize a social event by choosing a
restaurant, a movie, and inviting a group of friends. To implement PD,
we considered the following requirements:

RQ1: The system shall initially ask the user to provide the relevant data,
i.e., the list of friends she wants to invite, the desired location for
the social event and a movie title.

RQ2: Based on the indicated location, the system shall provide the weather
forecast for the following days, plus a list of restaurants (includ-
ing a set of reviews about each of them) and a map showing their
position. Based on the movie title, the system shall suggest a list
of movies similar to the one indicated, including a set of reviews
about each of them.

RQ3: Given the data presented to the user, she must select a movie, a
restaurant and the best day for the social event. Based on such
information, the system shall provide the list of theaters that play
the movie at the requested date.

RQ4: Using the location of the selected restaurant and theater, the sys-
tem shall present the needed directions.

RQ5: The indicated list of participants shall receive a message containing
all the details concerning the organized event.

RQ6: The overall system response time, not including the user think
time, shall be less than 1.5s and the overall system reliability should
be greater than 0.99.

RQ7: The system should perform as fast as possible.

RQ1-5 represent the desired functional behavior of the system, while
RQ6 and RQ7 are non-functional requirements. Note that, while the
satisfaction of the functional requirements depends directly on the choice
of the available actions, the satisfaction of non-functional requirements
depends on the choice of the speci�c service providers adopted which may
be functionally identical but di�er signi�cantly for their quality pro�le.

As for the previously presented orchestrations, the overall goal�i.e.,
the union of all functional and non-functional requirements�may be
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Figure 5.1: ProgrammableDinner Orchestration Schema

accomplished in several ways, although there is some preferred ordering
among the di�erent actions that build the orchestration, e.g., the choice
of the movie has to precede the choice of the theater. The UML Activity
Diagram in Figure 5.1 (input activities in gray), models these precedence
relationships.

To implement PD we may exploit the set of existing, publicly avail-
able Web services listed in Table 5.1. In most cases there are di�erent
alternatives for the same required feature that are functionally equiv-
alent, while in one case (the searchRestaurant action) we have two
alternatives that di�er in their parameters (i.e., coordinates or location
name). Each service in the table may be associated to QoS data like
response time (T) and reliability (R). These data may come from SLAs
provided by service providers (as for the Azure Service Bus which reports
in its SLA a reliability equal to 99.95%)1 or they may come from direct
measurements and estimates (e.g., [38, 39]).

1http://www.windowsazure.com/en-us/support/sla/
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Action Return Value Possible Providers

getMap A map of a location Google, Bing, MapQuest

getDirections Directions to a destination Google, MapQuest, Bing

getForecasts Weather forecast Wunderground, World Weather

searchRestaurant List of restaurants Yahoo!, Google,

given a location CityGridMedia

searchTheater List of theaters given a Google, Yahoo!,

location and a movie CityGridMedia

getReviews Restaurant reviews Yelp, CityGridMedia

getSimilarMovies Similar Movies from Rotten Tomatoes,

a movie title TasteKid

getMovieReviews Reviews of a list Rotten Tomatoes,

of movies NY Times Movie Reviews API

sendMessage None Nexmo, Hoiio

Table 5.1: Programmable Dinner Composed Services

1 @WebService
2 pub l i c i n t e r f a c e ProgrammableDinner {
3 @ReturnValue ( ' recommendation ' )
4 pub l i c Recommendation s t a r t (
5 @WebParam(name= ' d e s i r e d L o c a t i o n ' )
6 S t r i n g l o c a t i o n ,
7 @WebParam(name= 'movie ' )
8 S t r i n g s im i l a r_mov i e ,
9 @WebParam(name= ' p a r t i c i p a n t s ' )
10 L i s t <Pa r t i c i p a n t > f r i e n d s ) ;
11 }

Listing 5.1: The ProgrammableDinner orchestration interface

The ProgrammableDinnner Orchestration Model

Before introducing the new features included to support QoS attributes,
let us describe how PD is implemented in DSOL.

Orchestration Interface

Listing 5.1 shows how the orchestration interface is de�ned for the PD
orchestration. As for the requirements, it receives as arguments the
desired location for the event, the movie to be used as reference to suggest
another movies, and the list of participants.

Orchestration Goal and Initial State

Listing 5.2 shows the initial state, which already includes those facts
automatically generated by DEng, and the goal for the �rst part of
PD (before asking the user to select the restaurant, the movie and the
date).
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1 s t a r t d e s i r e d L o c a t i o n ( l o c a t i o n ) , movie ( s im i l a r_mov i e ) ,
2 p a r t i c i p a n t s ( f r i e n d s )
3

4 goal f o r e c a s t ( f o r e c a s t_ i n f o , l o c a t i o n ) and
5 l i s t_ o f_ r e s t a u r a n t s ( n ea r b y_r e s t au r an t s ) and
6 r e v i ew s I n c l u d edTo ( nea r b y_r e s t au r an t s ) and
7 mapWithMarkers ( r e s t a u r a n t s ) and
8 l i s t_o f_mov i e s ( s im i l a r_mov i e s ) and
9 r e v i ew s I n c l u d edTo ( s im i l a r_mov i e s )

Listing 5.2: Initial state and goal

Abstract Actions

Listing 5.3 illustrates some abstract actions present in the PD scenario.
Notice how they closely re�ect the activities described in Figure 5.1,
leaving out all the implementation details, i.e., which service of Table 5.1
to be invoked, and also the actual execution sequence. Notice also the
use of the seam action getAddress to help the planner to deduce the
fact that the desired location is also an address, so it can be �geocoded�.

Using the speci�ed abstract actions, the initial state and the orchestra-
tion goal the DSOL runtime system is able to build two distinct plans
as shown in Listing 5.4 and Listing 5.5. Indeed, both plans include a
list of abstract actions that satis�es the goal in Listing 5.2. Note that,
although their are functional equivalent, their structure is slightly di�er-
ent. The �rst plan search restaurants using the location as informed by
the user, while the second had to geocode it and search restaurant using
the coordinate of the speci�ed location.

Concrete Actions

Listing 5.6 illustrates the concrete actions from the PD model that im-
plements the getForecast abstract action. Note how service and generic
actions are mixed together to guarantee that both concrete actions return
compatible objects.

5.2 Adding QoS to DSOL

QoS-aware orchestration infrastructures must consider the following non-
functional aspects: (i) choosing the best services to be orchestrated, and
(ii) designing the orchestration structure based on the available services.

To achieve these objectives, we had to include new features to both
DSOL language and run-time system. In particular, the language now
includes the following constructs:
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1 act ion g e tFo r e c a s t ( Loca t i on )
2 pre : d e s i r e d L o c a t i o n ( Loca t i on )
3 post : f o r e c a s t ( f o r e c a s t_ i n f o , Loca t i on )
4

5 act ion s e a r c hRe s t a u r a n t s ( Loca t i on )
6 pre : s e a r c hLo c a t i o n ( Loca t i on )
7 post : l i s t_ o f_ r e s t a u r a n t s ( n ea r b y_r e s t au r an t s )
8

9 act ion s e a r chRe s t au r an t sByCoo rd i n a t e ( Coo rd i na t e )
10 pre : c o o r d i n a t e ( Coo rd i na t e )
11 post : l i s t_ o f_ r e s t a u r a n t s ( n ea r b y_r e s t au r an t s )
12

13 act ion ge tRe s t au r an tRev i ews ( P l a c e s )
14 pre : l i s t_ o f_ r e s t a u r a n t s ( P l a c e s )
15 post : r e v i ew s I n c l u d edTo ( P l a c e s )
16

17 act ion g e t S im i l a rMov i e s ( Mov i eT i t l e )
18 pre : movie ( Mov i eT i t l e )
19 post : l i s t_o f_mov i e s ( s im i l a r_mov i e s )
20

21 act ion getMov ieRev iews ( Movies )
22 pre : l i s t_o f_mov i e s ( Movies )
23 post : r e v i ew s I n c l u d edTo ( Movies )
24

25 act ion createMapWithMarkers ( P l a c e s )
26 pre : l i s t _ o f ( P l a c e s )
27 post : mapWithMarkers ( P l a c e s )
28

29 seam act ion ge tAdd re s s ( Loca t i on )
30 pre : d e s i r e d L o c a t i o n ( Loca t i on )
31 post : a dd r e s s ( Loca t i on )
32

33 act ion geoCode ( Address )
34 pre : a dd r e s s ( Address )
35 post : c o o r d i n a t e ( add r e s s_coo rd i n a t e )

Listing 5.3: ProgrammableDinner Abstract actions

� The @QoSProfile annotation allows concrete actions to be aug-
mented with their QoS pro�les. It requires the orchestration de-
signers to specify, for each annotated concrete action, the qual-
ity metrics it contains and also its correlated expected value. As
previously mentioned, these data are obtained by direct measure-
ments or declared by the service provider as part of a service con-
tract (SLAs). Listing 5.7 shows the �rst concrete action of List-
ing 5.4 with information about its expected reliability, e.g., 99.5%,
and average response time, 300ms.

� The goal de�nition is now extended to include also the non-func-
tional requirements of the orchestration. Listing 5.8 illustrates the
goal de�nition corresponding to requirements R6 and R7. Notice
that to cope with con�icting QoS requirements, we may specify
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1 g e tFo r e c a s t ( l o c a t i o n )
2 s e a r c hRe s t a u r a n t s ( l o c a t i o n )
3 g e t S im i l a rMov i e s ( s im i l a r_mov i e )
4 addReviewsTo ( n ea r b y_r e s t au r an t s )
5 getMov ieRev iews ( s im i l a r_mov i e s )
6 createMapWithMarkers ( n ea r b y_r e s t au r an t s )

Listing 5.4: A possible plan for the ProgrammableDinner example

1 g e tFo r e c a s t ( l o c a t i o n )
2 geoCode ( l o c a t i o n )
3 s e a r chRe s t au r an t sByCoo rd i n a t e ( add r e s s_coo rd i n a t e )
4 s e a r c hRe s t a u r a n t s ( l o c a t i o n )
5 g e t S im i l a rMov i e s ( s im i l a r_mov i e )
6 addReviewsTo ( n ea r b y_r e s t au r an t s )
7 getMov ieRev iews ( s im i l a r_mov i e s )
8 createMapWithMarkers ( n ea r b y_r e s t au r an t s )

Listing 5.5: Another possible plan for the ProgrammableDinner example

both desired bounds and preferred optimizations. Depending on
the QoS metric, the desired bounds represent the lower (e.g., for
reliability) or upper (e.g., for response time) bounds that the or-
chestration must meet. In our example, according to R6, we want
a reliability of at least 0.99 and a response time of at most 1.5s.
Since di�erent con�gurations could meet these bounds, we may also
ask to optimize against a speci�c metric by using the min and max

keywords. In our example, according to R7, we ask to minimize
the response time.

These enhancements in the modeling language re�ect to changes in
the run-time system. Indeed, the original DSOL Planner (as introduced
in Chapter 3.1) generates all possible plans that satisfy the functional
requirements of the orchestration, while the Interpreter chooses non-
deterministically one of them and executes it, binding each abstract ac-
tion to one among the available concrete actions. At this point, DSOL
has to change this behavior to consider QoS, since (1) the structure of
plan to be executed and (2) how the chosen abstract actions are bound
to concrete actions (i.e., services) plays an important role on QoS man-
agement. In particular, DSOL now formalizes the problem of �nding the
plan to run and the concrete actions to bind as an optimization problem,
and it exploits linear programming techniques [40] to solve it.
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1 @Action (name = " g e tFo r e c a s t " )
2 @ReturnValue ( " f o r e c a s t_ i n f o " )
3 pub l i c L i s t <Foreca s t> WundergroundServ iceWrapper ( S t r i n g l o c a t i o n ) {
4 WundergroundResu l t s r e s u l t s = getForecastWithWunderground ( l o c a t i o n ) ;
5 L i s t <ForecastDay> r e s u l t = r e s u l t s . g e t F o r e c a s t ( )
6 . g e t S imp l e f o r e c a s t ( ) . g e tFo r e c a s t d a y ( ) ;
7 L i s t <Foreca s t> f o r e c a s t s = new Ar r a yL i s t <Foreca s t >() ;
8 f o r ( Forecas tDay f o r e c a s t : r e s u l t ){
9 f o r e c a s t s . add (new Fo r e c a s t ( f o r e c a s t . g e tCond i t i o n s ( ) ) ) ;
10 }
11 re tu rn f o r e c a s t s ;
12 }
13 @Action (name = " g e tFo r e c a s t " )
14 @ReturnValue ( " f o r e c a s t_ i n f o " )
15 pub l i c L i s t <Foreca s t> Wor ldWeatherOn l ineServ i ceWrapper ( S t r i n g l o c a t i o n ) {
16 Wor ldWeathe rOn l i neResu l t s r e s u l t s =
17 getForecas tWithWor ldWeathe rOn l ine ( l o c a t i o n ) ;
18 L i s t <Weather> r e s u l t = r e s u l t s . getData ( ) . getWeather ( ) ;
19 L i s t <Foreca s t> f o r e c a s t s = new Ar r a yL i s t <Foreca s t >() ;
20 f o r (Weather weather : r e s u l t ) ;
21 S t r i n g v a l u e = weather . getWeatherDesc ( ) . ge t ( 0 ) . ge tVa lue ( ) ;
22 f o r e c a s t s . add (new Fo r e c a s t ( v a l u e ) ) ;
23 }
24 re tu rn f o r e c a s t s ;
25 }
26

27 @Action ( s e r v i c e = " wo r l dwe a t h e r o n l i n e " )
28 pub l i c abs t rac t Wor ldWeathe rOn l i neResu l t s
29 getForecas tWithWor ldWeathe rOn l ine ( S t r i n g l o c a t i o n ) ;
30

31 @Action ( s e r v i c e = "wunderground" )
32 pub l i c abs t rac t WundergroundResu l t s
33 getForecastWithWunderground ( S t r i n g l o c a t i o n ) ;

Listing 5.6: Concrete actions

1 @Action ( s e r v i c e = "wunderground" )
2 @QoSPro f i l e ( me t r i c s={" r e l i a b i l i t y " , " response_t ime " } , v a l u e s ={0.995 ,300})
3 pub l i c abs t rac t WundergroundResu l t s
4 getWeatherForecastWithWunderground ( S t r i n g l o c a t i o n ) ;

Listing 5.7: Concrete actions with QoS Pro�le

The optimization problem includes:

� A set of abstract actions A = {a1, . . . , an} where n ≥ 1.

� For each abstract action ai, a set of concrete actions Ci = {ci,1,
. . . , ci,mi} where mi ≥ 1. Each concrete action ci,j is characterized
by a response time ti,j > 0 and a reliability ri,j ∈ [0, 1].

� A set of plans P = {P1, . . . , Pl} where l ≥ 1, each modeled as a
set of abstract actions.
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1 goal RQ1 and RQ2 . . . RQ5
2 and des i r ed ( r e l i a b i l i t y , 0 . 9 9 ) and des i r ed ( response_t ime , 1500)
3 and min ( re sponse_t ime )

Listing 5.8: Goal De�nition Including QoS Requirements

We de�ne a binding variable si,j,x ∈ {0, 1} (where i ∈ [1, n], j ∈ [1,mi],
and x ∈ [1, l]) to indicate if the concrete action ci,j is bound to the
abstract action ai in plan Px (i.e., si,j,x = 1) or vice versa (i.e., si,j,x = 0).
This assignment must meet the following constraints:

(∀x, i|ai ∈ Px)
∑

0<j≤mi

si,j,x ≤ 1 (5.1)

(∀x, i|ai 6∈ Px)
∑

0<j≤mi

si,j,x = 0 (5.2)

(∀x, i, j|si,j,x 6= 0)→ (∀x′, i′, j′|x′ 6= x) si′,j′,x′ = 0 (5.3)

Equation 5.1 and 5.2 together indicate that we bind at most one concrete
action to every abstract action part of a plan, while we leave unbound
those abstract actions that are not part of a plan. Equation 5.3 indicates
that if we bind a concrete action in a plan x, we cannot bind any action
in plans di�erent from x. In other words we bind one and only one plan.
Accordingly, a valid assignment to binding variables si,j,x returns a single
plan bound to a set of concrete actions.

Given these de�nitions, our optimization problem boils down to �nd
the optimal assignment to si,j,x, i.e., the assignment corresponding to
a bound plan that satis�es QoS requirements. This can be formalized
by introducing two aggregation functions fR and fT , for reliability and
response time, respectively.2 In particular, fT is the sum of all ti,j of
each concrete action such that si,j,x is set to one:3

fT =
∑
∀i,j,x

si,j,x × ti,j

Similarly, fR aggregates reliability by multiplying ri,j to the power of
si,j,x:

fR =
∏
∀i,j,x

r
si,j,x
i,j

2In presence of other, user de�ned metrics, we add similar functions.
3For parallel actions, DSOL considers only the slowest one.
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Given these two aggregation functions and indicating with G the set of
all possible assignments to binding variables si,j,x, we may de�ne the op-
timization problem looking at the goal de�nition. For example, recalling
Listing 5.8, we have that the optimal assignment is de�ned as follows:

minimize:
∀g∈G

fT ,

subject to: fT < 1500ms

fR > 0.99

Since fR is non linear with respect to the optimization variables si,j,x,
we linearize it using a typical technique [40], which applies the logarithm
to both sides of the equation: log(fR) > log(0.99).
The optimization problem above is solved by the DSOL Interpreter,

which internally relies on AMPL [41] to �nd the optimal assignment to
si,j,x, i.e., to choose the plan to execute and how to bind concrete actions
to abstract ones.
At run-time, DSOL applies two additional mechanisms: (1) Adaptive

Re-Binding and (2) Adaptive Re-Planning, to further optimize the QoS
perceived by the end user based on the actual situations encountered.
Next paragraphs illustrate these two mechanisms referring to the PD
example.

5.3 Maximizing Performance via Adaptive

Re-binding

In the case the orchestration goals specify that the response time must
be minimized, the DSOL engine does not limit to blindly execute the
plan returned by the Optimizer, but it applies an Adaptive Re-Binding
strategy. With this term we indicate the fact that it evaluates, at every
step of execution, alternative bindings to abstract actions that could
decrease the expected response time of the orchestration. If a better
alternative (i.e., a faster concrete action) is found, the engine re-binds
the current action automatically.
Notice that better alternative actions may be actually found since,

even if the condition of optimality concerning the bindings produced by
the Optimizer holds before starting the execution of the plan, it may
not hold anymore during its execution. Indeed, during execution, the
QoS values associated to concrete actions can be updated. In particular,
the reliability of actions already performed can be set to one.4 Increas-

4If a concrete action appears more than once in a plan, we set reliability equal to
one only for the invocations already occurred.
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Figure 5.2: Adaptive Re-Binding Example

ing the reliability of certain actions implies that other concrete actions,
initially discarded by the Optimizer because too unreliable to reach the
speci�ed bound, may now become eligible for execution, and they could
be actually chosen if lead to a lower response time. In other words, their
high probability of failure was compensated by the already successfully
executed actions, and they can now be taken into consideration.

Let us illustrates this scenario by recalling our PD example. Let us
imagine that the DSOL engine has already executed part of the plan:
the next action to execute is the searchTheater operation. As reported
in Table 5.1 we have three alternatives to implement this step and let us
assume Google was the concrete action chosen by the Optimizer. We can
decompose the overall reliability of the plan in three contributes. The
�rst regards actions already performed, the second is the reliability of the
concrete action currently bound to searchTheater (i.e., Google), and
the third is the expected reliability of concrete actions to be executed
after searchTheater. If the �rst contribute was equal to 0.998 at opti-
mization time (see Figure 5.2), at run-time, as it was already successfully
executed, we may assume it as being 1. This enables the CityMediaGrid
concrete action: it has a lower reliability than Google, but now that
we updated the reliability of the preceding actions it is reliable enough
to reach RQ6. Being faster than Google it becomes the best choice to
minimize the response time, i.e., to satisfy RQ7.

This kind of reasoning is performed by DSOL at every step of the plan.
Indeed, this is a fast search (we proceed incrementally, focusing only on
the next abstract action to execute) that may considerably improve the
overall response time of the orchestration, especially in presence of very
e�cient but unreliable services.
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5.4 Maximizing Reliability in Presence of Failures

If we focus on reliability, we may observe that in de�ning our optimiza-
tion problem we did not take into consideration the DSOL ability to
adapt the orchestration at run-time, re-binding faulty actions to alter-
native services and, if this was not enough, re-building the entire plan to
circumvent multiple failures. This choice is motivated by the impossibil-
ity to correctly estimate and account how this re-binding and re-planning
mechanisms (to improve reliability) may impact response time.5 This
means that the optimal plan initially found by the Optimizer, including
the mapping to concrete actions, is expected to provide the desired reli-
ability by itself. In our PD example, the optimal plan coming from the
Optimizer will succeed 99% of the times (RQ6).
On the other hand, the adaptive features of DSOL are there, and they

can be used to improve the reliability perceived by the end-user. In prac-
tice, in presence of a faulty service, DSOL re-binds the corresponding
abstract action to an alternative concrete action. This way, an invoca-
tion that should fail can be saved and terminate correctly, contributing
to increase the overall reliability.
Moreover, if all alternatives fails, DSOL builds an alternative plan

that skips the failed action (eventually compensating already performed
actions that are not part of the new plan), thus enabling new opportu-
nities to end the orchestration correctly. In this re-planning case, the
Optimizer is invoked again to choose the new optimal plan among the
alternative ones.
It is important to notice that in all these cases response time require-

ments are not guaranteed anymore. The engine is doing its best to
overcome a failure and the completion of the orchestration is the cur-
rent priority. On the other hand, we do not ignore response time. At
re-binding time DSOL chooses alternative actions ordered by response
time, while at re-planning time, it runs the Optimizer to choose the best
plan also considering response time.
Finally, it is important to notice that DSOL updates automatically

the QoS attributes of concrete actions based on their observed behavior.
This implies that two subsequent invocations to the same orchestration
may be served by di�erent services or di�erent plans if the conditions
change between the �rst and the second invocation. For example, a
variation on the response time or reliability of the concrete actions used
in the plan in Listing 5.4 may a�ect its overall non-functional pro�le
what is automatically perceived by the Optimizer, and in the case this

5Indeed, re-planning and re-binding may require compensating one or more actions,
which further impact execution time.
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plan was previously the one with higher probability to satisfy the non-
functional goal, it may not be anymore, what means that now the �rst
choice is the plan in Listing 5.5.

5.5 Domain Speci�c QoS Metrics

So far we only considered reliability and response time as QoS met-
rics. However, orchestration designers may need to consider other QoS
aspects, such as costs or availability, to model domain speci�c require-
ments. To cover these scenarios, DSOL allows domain speci�c QoS
metrics to be easily de�ned.
Domain Speci�c QoS Metrics (DSQM) are characterized by their name

(e.g., �cost� or �availability�) and by two aggregation operators: 〈s, p〉,
which are used by DSOL to calculate the DSQM value for an entire plan
starting from the DSQM value of each action. In particular, both s and
p can be algebraic operators (+,−,×, /) or simple functions (min, max,
abs, avg). Operator s indicates to DSOL how to aggregate the value of
actions executed in sequence, while operator p indicates how to aggregate
parallel actions. As an example, 〈+,max〉 are the operators for the pre-
de�ned response time metric, while 〈×,×〉 are those for reliability. The
de�nition of DSQM is characterized also by the metric limit which may
be upper or lower. The former indicates that the optimal plan should
have at least the desired value expressed by the goal de�nition, vice-
versa the latter indicates that the desired value will be considered as a
maximum limit for the DSQM.
The introduction of DSQM a�ects both DSOL language and run-time

system. Let us start from the language with an example that extends
the PD orchestration adding the following requirement:

� RQ8: The total cost for executing the orchestration should not
exceed 3$.

Imagine that both the sendMessage and getForecast services charge
a small fee for each invocation, the exact amount depending from the
service provider. To satisfy RQ8 we de�ne the DSQM �cost� (C) as
reported in Listing 5.9. It uses the sum as aggregate operator both for
sequential and parallel actions.

1 de f i ne ( cos t , aggregat ion<+, +>, l im i t<upper >)
2 goal RQ1 and RQ2 . . . RQ5
3 and des i r ed ( r e l i a b i l i t y , 0 . 999 ) and des i r ed ( response_t ime , 1500)
4 and des i r ed ( cos t , 3) and min ( re sponse_t ime )

Listing 5.9: DSQM De�nition
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Given a DSQM, at run-time DSOL behaves as explained in the pre-
vious sections except for the optimization problem, which now includes
additional aggregation functions, similar to fR and fT and de�ned using
the respective aggregation operators. For the cost example, this means
adding the aggregation function fC , de�ned using the sum to aggregate
both sequential and parallel actions. We use it, together with the def-
inition of the metric limit, to de�ne an additional constraint fC < 3
starting from the goal in Listing 5.9.

5.6 Performance Assessment

To validate the new features presented in this chapter we have extended
DSOL evaluation in a two step approach. First, it evaluates the overhead
imposed by the optimizer to �nd the optimal mapping between concrete
and abstract actions.6 Secondly, it investigates the potential speed-up it
provides.
Our experiments were carried out in a local server con�gured to emu-

late a typical application server used to deploy service-based applications.
Such server had the following con�guration: Intel Core i5 processor, 4GB
RAM and Ubuntu Linux (version 11.10) operating system.

5.6.1 DSOL + QoS Overhead

Determining the optimal plan given the set of available actions and the
orchestration goal, introduces an overhead at execution time, which we
measured as follows. First of all we measured the overhead considering
plans of variable dimensions in terms of the number of abstract actions
considered. Figure 5.3(a) reports the optimization time for plans com-
posed by an increasing number of abstract actions. In this experiment,
each abstract action has three alternative concrete actions. The mea-
sured optimization time account for less than 12ms for a plan comprising
�fty abstract actions, which is a perfectly acceptable overhead consider-
ing that the resulting orchestration would probably involve a number of
service invocations close to �fty,7 which needs seconds to execute.
The second experiment we made kept constant the number of abstract

actions (i.e., the plan length) increasing the number of concrete alter-
natives associated to each abstract actions. Figure 5.3(b) reports the
results obtained with a plan composed of twenty abstract actions. Even

6This overhead does not include the time required to �nd the possible plans, as such
time is strongly related to the abstract actions domain. For further details we
refer to Chapter 4.

7Most DSOL actions results in invoking an external service.
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Figure 5.3: DSOL + QoS Validation

in this case the optimization time is negligible w.r.t. the plan execution
time: less than 9ms in the worst case of four concrete alternatives for
each abstract action. Note that, in practice, the number of alternative
concrete actions that can be found for each abstract action is typically
small, for example, in our PD orchestration we was not able to �nd more
than three alternatives for each action.
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5.6.2 DSOL + QoS Speed-Up

Once we veri�ed that our general optimization strategy introduces a
negligible overhead w.r.t. a non optimized solution, we were interested
in measuring the impact on performance of our mechanisms.

We started measuring the speed-up gained through the adaptive re-
binding mechanism described in Section 5.3. We considered a plan com-
posed by twenty abstract actions with two concrete actions each. The
�rst is selected at optimization time while the second becomes the more
convenient option at execution time because it has a response time 20%
faster and its lower reliability is compensated by the already executed
actions. In absence of re-binding we measured an average execution time
for the orchestration of 4.069s. Then we activated the re-binding mech-
anism and let it run a growing number of times, from one to 19 (we
have a total of 20 actions). The results we measured are reported in
Figure 5.3(c). We notice that we gain a linear speedup which is maxi-
mum when we let DSOL re-bind every possible action. The speedup we
measure in this case is 18.62%. This is very close to 20%, which is the
maximum theoretical speedup we could obtain under this scenario. This
demonstrates that the advantages of the re-binding mechanism come at
a negligible cost: the di�erence between 18.62% and 20%, which is the
overhead of �nding the best alternative and re-binding it.

The last test we performed was to measure the overall speed-up of
DSOL w.r.t. a non optimizing solution. To do so, we took our Pro-
grammableDinner example and measured the actual (average) execution
time of all the alternative services that can be used to compose the or-
chestration. In absence of an optimizer like the one integrated in DSOL
we could expect that a standard engine (like DSOL) takes a random
plan, so we measured the average execution time of all possible plans: it
takes 2s to complete. Then we let DSOL run the orchestration asking it
to minimize the execution time. The result we measured was 1.2s, which
corresponds to a speed-up of 40%.

In general, those results demonstrate that the optimization problem
solved by DSOL and the adaptive re-binding mechanism it implements,
introduce a limited and negligible overhead with respect to the execution
of the entire orchestration, while providing a signi�cant potential speed-
up in terms of response time (not to mention the advantages in terms of
reliability and the fact that it provides a guaranteed QoS as speci�ed by
the user in the goal).
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5.7 Conclusion

In this chapter we have presented how DSOL was extended to support
quality requirements and adaptivity. We introduced an optimizer which
generates an optimal solution in terms of execution plan and bindings.
Furthermore, we provided a novel solution that further optimizes re-
sponse time and reliability via adaptive re-binding and re-planning. We
discussed all these features relying on a service orchestration built out
of real publicly available services. Finally, we measured the overhead of
our approach and the potential speed-up it may o�er to orchestrations
to demonstrate the pro and cons of the proposed extensions.
The next chapter presents the use of DSOL in the development of

mobile applications, a di�erent environment when compared to the one
we addressed so far but which shares with the latter several common-
alities like the unpredictability of the context in which applications are
deployed, and how they combine di�erent third party functionalities.
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The recent massive adoption of mobile devices�such as smartphones
and tablet PCs�is coercing people to increasingly depend on them and
on the services they provide even for the most ordinary daily activities.
Looking from that perspective, mobile devices make software literally
ubiquitous and pervasive, creating an increasing demand for high quality
mobile applications to meet societal needs.

�Invented� by Apple for its iOS operating system and successively
adopted by Google for the Android OS, apps are driving the growth of
this mobile phenomenon. They are usually small-sized, often distributed
and single-task applications, which the user may easily download (often
for free) and install on her device to empower it with new capabilities
with respect to those that come pre-installed.

The mobile market that enables this interaction is an extremely dy-
namic and vibrant ecosystem characterized by thousands of new apps
published worldwide every week. This is posing new challenges to mod-
ern Software Engineering, mainly because of all the need for e�ective de-
velopment strategies centered around strong time-to-market constraints.
To answer this challenge while keeping the various qualities of developed
software under control, a component-based development process is usu-
ally adopted. This is enabled by the same development frameworks that
come with modern mobile operation systems, which allow components in-
stalled on the same device to easily communicate and invoke each other.
As a result, most mobile apps are developed by composing together:
(1) ad-hoc developed components, (2) existing services available on-line,
(3) third-party apps, and (4) platform-dependent components to access
device-speci�c hardware (e.g., camera, GPS, etc.).

The typical approach to develop such heterogeneous software artifacts
follows a (possibly iterative) three-step approach. Developers �rst con-
ceive the list of needed functionality and they organize them in a suitable
work�ow of execution. Secondly, they evaluate the trade-o�s between
implementing such functionality directly or resorting to existing services
or third-party apps. Finally, they build the app by implementing the
needed components and integrating all the pieces together.

Building apps as orchestrations of components, services and/or other
third-party applications, however, introduces a direct dependency of the
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system with respect to external software artifacts which may evolve over
time, fail, or even disappear, thereby compromising the application's
functionality. Moreover, di�erently from traditional software systems,
the development of mobile apps is characterized by an increased, often
explicit dependency with respect to hardware and software settings of
the deployment environment. Indeed, even if developed for a speci�c
platform (e.g., iOS or Android), the same app may be deployed on a
plethora of di�erent devices characterized by heterogeneous hardware
and software con�gurations (e.g., available sensors, list of pre-installed
components, OS version, etc.). As an example, consider the case of an
iPhone application using the built-in camera. The current iPhone has an
auto focus camera while previous versions, still in widespread use, were
equipped with �xed focus cameras. This di�erence, albeit apparently
minor, if left unmanaged may impact the application's ability to satisfy
its requirements.

To cope with these peculiarities, apps also need to be adaptive ([9, 10]),
both because of the heterogeneous environments they are deployed in and
because of the external services and apps they rely upon. As for tradi-
tional service orchestrations, engineers develop such kind of adaptive
mobile application by explicitly programming the needed adaptations
by heavily using branches in the execution �ow and exception handling
techniques to manage unexpected scenarios when they occur. This is not
easy to do and results in complex code that intertwines the application
logic with all the logic to cope with the peculiarities of each device and
with unexpected situations that may happen at run-time. This brings
further complexity, resulting in hard to read and maintain code.

We address this issue by proposing an implementation of DSOL that
targets the development of mobile applications which we refer to as Self-
Motion.1 Using SelfMotion, developers are forced to abandon the
mainstream imperative path in favor of a strongly declarative alterna-
tive, which allows mobile apps to be modeled by describing: (1) a set
of Abstract Actions, which provide a high-level description of the ele-
mentary activities that realize the desired functionality of the app, (2) a
set of Concrete Actions, the actual steps to be performed to obtain the
expected behavior (e.g., invoking an external service or calling a pre-
installed, third-party application), (3) a QoS Pro�le for each concrete
action that models its non-functional characteristics (e.g., energy and
bandwidth consumption), and (4) the overall Goal to be met and the
QoS Policy to be adopted in reaching such goal (e.g., minimizing power
consumption).

1Self-Adaptive Mobile Application.
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SelfMotion apps are executed by a client-side middleware that lever-
ages an internal planner to elaborate, at run-time, the best sequence of
abstract actions to achieve the goal, based also on the current deployment
context, e.g., available sensors and device's hardware. The mapping be-
tween abstract and concrete actions is done, then, in accordance with
a previously speci�ed QoS Policy. Furthermore, the SelfMotion mid-
dleware works similarly to the DSOL engine: whenever an unexpected
situation is faced, e.g., a third-party app is not installed in the device,
which prevents successful completion of the elaborated plan of execution,
the middleware automatically, and transparently to the developer and
to the app's user, builds an alternative plan toward the goal and contin-
ues executing the app, which results in a nice and e�ective self-healing
behavior.
In this chapter we describe such implementation approach in details,

and we show, through a set of experiments, its e�ectiveness and its per-
formance, showing how the approach based on a client-side embedded
planner scales well even when the goal becomes complex and requires,
to be satis�ed, several activities to be called in the correct order.
In particular, for a clear and e�ective explanation of SelfMotion we

rely on a realistic mobile app illustrated in Section 6.1 and used as a
reference example throughout the chapter. The SelfMotion approach
is described in detail in Section 6.2, while Section 6.3 discusses its advan-
tages with respect to the state of the art. Finally, Section 6.4 evaluates
the performance of SelfMotion in several scenarios of growing com-
plexity while Section 6.5 draws some conclusions.

6.1 A Motivating Example: The ShopReview

App

Let us now introduce ShopReview (SR), the mobile app we will use
throughout this chapter. SR is inspired by an existing application (i.e.,
ShopSavvy)2 and it allows users to share various information concerning
a commercial product. In particular, a SR user may use the app to pub-
lish the price of a product she found in a certain shop (chosen among
those close to her current location). In response, the app provides the
user with alternative nearby places where the same product is sold at a
more convenient price. The unique mapping between the price signaled
by the user and the product is obtained by exploiting its barcode. In
addition, users may share their opinion concerning the shop where they
bought the product and its prices on a social network, such as Twitter.

2http://shopsavvy.mobi/
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Name Description

GetPosition Retrieves the current user location

InputPrice Collects the product's price from the user

ReadBarcode Acquires the barcode of the product

GetProductName Translates the barcode
into the product name

SearchTheWeb Retrieves, through the Internet,
more convenient prices o�ered

on e-commerce sites

SearchTheNeighborhood Retrieves, through the Internet,
other nearby shops which o�er

the product at a more convenient price

SharePrice Lets the user share the price of a product
found on a given shop on Twitter

Table 6.1: ShopReview functionality.

As already mentioned, the development process for an app like SR
starts by listing the needed functionality and by deciding which of them
have to be implemented through an ad-hoc component and which can
be realized by re-using existing solutions (i.e., external services available
online or third party apps that can be found pre-installed on the device
or that can be installed on demand). For example, the communication
with social networks may be delegated to a third party app to be in-
stalled on demand, while geo-localization of the user may be performed
by exploiting a pre-existing component that accesses the GPS sensor on
the device.

In making these choices developers have to remember that run-time
conditions may change and may subvert design-time assumptions, im-
pacting on the ability of the app to operate correctly. As an example,
developers must consider the di�erences in the various devices that will
run their app to let it adapt to these di�erent devices. Similarly, they
have to make the right choices to minimize the impact of changes in the
external services they rely upon, either letting the app adapt to those
changes or not using them at all, with the result of being forced to re-
implement a functionality that may be easily found on line.

Given these premises, let us assume we choose the functionalities listed
in Table 6.1 as the main building blocks for the SR app. Let us also as-
sume we decide to realize the ReadBarcode functionality as an ad-hoc
developed component that extracts the product's barcode from a pic-
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ture taken using the mobile camera.3 Since such component may exe-
cute correctly only on devices with an auto focus camera and does not
work properly on other devices, our choice would limit the usability of
our app. To overcome this limitation and allow a correct barcode recog-
nition also on devices with �xed focus cameras, SR needs to provide a
form of adaptivity. Indeed, it has to detect if the camera on the current
device supports auto-focus; if it does not, it has to invoke an external
service to process the acquired image with a special blurry decoder algo-
rithm. A similar approach can be used to get the user location (i.e., to
implement the GetPosition functionality), which in principle requires a
GPS,4 a hardware component that may not be available on every device.
To execute SR on devices lacking a GPS we may o�er a di�erent imple-
mentation of the GetPosition functionality, which shows a map to the
user for a manual indication of the current location.

The code snippet reported in Listing 6.1 describes a possible implemen-
tation of the described adaptive behavior for the Android platform ([7]).
Although this is just a small fragment of the SR app, which is by itself
quite a simple app, it is easy to see how convoluted and error prone
the process of de�ning all possible alternative paths may turn out to
be. Things become even more complex considering run-time exceptions,
like an error while accessing the GPS or invoking an external service,
which have to be explicitly managed through ad-hoc code. We argue
that the main reason behind these problems is that the mainstream
platforms for developing mobile applications are based on traditional
imperative languages in which the �ow of execution must be explicitly
programmed. In this setting, the adaptive code�represented in List-
ing 6.1 by all the if-else branches�is intertwined with the application
logic, reducing the overall readability and maintainability of the resulting
solution, and hampering its future evolution in terms of supporting new
or alternative features, which requires additional branches to be added.

Notice that these concepts apply also to the case of the third-party
apps invoked to obtain speci�c functionality, like those used by SR to
access the various social networks. These apps are typically installed by
default on devices but they can be removed by users, thus jeopardizing
the app's ability to accomplish its tasks.

3This is the choice made by the original ShopSavvy app.
4We are assuming that a Network Positioning System is not precise enough for our
needs.
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1 PackageManager mng = getPackageManager ( ) ;
2 i f (mng . hasSys temFeature ( PackageManager .FEATURE_CAMERA_AUTOFOCUS)){
3 //Run l o c a l barcode r e c o g n i t i o n
4 } e l s e {
5 // Invoke remote s e r v i c e w i th b l u r r y decode r a l g o r i t hm
6 }
7

8 Loca t i on l o c a t i o n = nu l l ;
9 i f (mng . hasSys temFeature ( PackageManager .FEATURE_LOCATION_GPS)){
10 Lo c a t i o nP r o v i d e r p r o v i d e r = Locat ionManager .GPS_PROVIDER;
11 Locat ionManager locManager =
12 ( Locat ionManager ) g e tSy s t emSe r v i c e ( Context . LOCATION_SERVICE ) ;
13 t r y {
14 // Return n u l l i f the GPS s i g n a l i s c u r r e n t l y not a v a i l a b l e
15 l o c a t i o n = locManager . getLastKnownLocat ion ( p r o v i d e r ) ;
16 } catch ( Excep t i on e ){
17 l o c a t i o n = nu l l ;
18 }
19 }
20

21 i f ( l o c a t i o n==nu l l ){
22 // Dev ice wh i tou t GPS or an e x c p e t i o n was r a i s e d i n v o k i n g i t .
23 //We show up a map to a l l ow the u s e r to i n d i c a t e
24 // i t s l o c a t i o n manua l l y
25 showMap ( ) ;
26 }

Listing 6.1: Adaptive Code Example.

6.2 The SelfMotion Approach

Here we introduce the SelfMotion approach and explain how to design
an app like SR to achieve a form of self-adaptation that overcomes the
problems discussed above.

6.2.1 Introducing SelfMotion

To support the development of adaptive mobile applications SelfMo-

tion follows the same declarative approach proposed by DSOL, includ-
ing several steps both at design and run-time. At design-time, it supports
the work of domain experts and software engineers through a multi-
layer declarative language, which supports the design of an application
through di�erent abstraction levels, while at run-time it o�ers an exe-
cution environment, which uses planning techniques to reach the app's
goals, adapting to the di�erent, expected or unexpected, situations that
may be encountered.

Although SelfMotion follows the main ideas of DSOL, it includes
some particular concepts exclusive to mobile domains. More speci�cally,
as shown in Figure 6.1, a SelfMotion application includes:
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Figure 6.1: SelfMotion Conceptual Architecture.

� the app's Goals, expressed as a set of facts that are required to be
ful�lled by the app's execution;

� the Initial State, which models the set of facts one can assume to
be true at app's invocation time. Moreover, it includes application-
speci�c facts speci�ed at design-time and context-speci�c facts, au-
tomatically derived by the SelfMotion middleware at run-time,
like the availability of a GPS device or the presence of an auto-focus
camera;

� a set of Abstract Actions, which specify the primitive operations
that can be executed to achieve the goal;

� a set of Concrete Actions, one or more for each abstract action,
which map them to the executable snippets that implement them
(e.g., by invoking an ad-hoc component or an installed third-party
application);

� a QoS Pro�le for each concrete action, which models its non-
functional characteristics (e.g., energy and bandwidth consump-
tion);

� the QoS Policy to be adopted in reaching the goal (e.g., minimizing
energy consumption).

At run-time, the Interpreter translates the goal, the initial state, and
the abstract actions into a set of rules and facts, used by the Planner
to build an abstract execution plan, which lists the logical steps through
which the desired goal may be reached. This plan is taken back by the
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Interpreter to be enacted by associating each step (i.e., each abstract
action) with the concrete action that may better satisfy the given QoS
policy. These concrete actions are then executed, possibly invoking ex-
ternal services, third-party apps, or ad-hoc components. If something
goes wrong the SelfMotion middleware adapts to the new situation
by looking for alternative concrete actions to accomplish the failed step of
execution or by invoking the Planner again to avoid that step altogether.

6.2.2 The SelfMotion Declarative Language

This section provides a detailed description of the fundamental concepts
behind the SelfMotion declarative language.

Abstract Actions

Following the DSOL concepts, abstract actions are high-level descrip-
tions of the primitive actions available to accomplish the app's goal.
They represent the main building blocks of the app. Listing 6.2 illus-
trates the abstract actions for the SR reference example: they corre-
spond to the high level functionalities listed in Table 6.1. Note that, in
some cases, the same functionality may correspond to several abstract
actions, depending on some contextual information (e.g., if the device
has an auto focus camera or not). For example, we split the GetPosition
functionality into two abstract actions getPositionWithGPS (lines 1-3)
and getPositionManually (lines 9-11). We also introduce an enableGPS

abstract action (lines 5-7), which encapsulates the logic to activate the
GPS. Similarly, the blurryReadBarcode abstract action (lines 25-27)
represents a component in charge of recognizing barcodes from pictures
taken with �xed focus cameras.

Goal and Initial State

Besides abstract actions, the goal and initial state are also used to model
apps in SelfMotion. The goal speci�es the desired state resulting from
the app's execution. One may actually specify a set of states, which
re�ect all the alternatives to accomplish the app's goal, listed in order of
preference. The Planner will start by trying to build an execution plan
to satisfy the �rst goal; if it does not succeed it will try to satisfy the
second goal, and so on. As an example, in the SR app (see Listing 6.3)
we have two alternative goals. The �rst one requires the GPS sensor and
the second relies on the user input to retrieve the current location.
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1 act ion getPos i t ionWithGPS
2 pre : hasGPS , i sGPSEnabled
3 post : p o s i t i o n ( g p sPo s i t i o n )
4

5 act ion enableGPS
6 pre : ∼i sGPSEnabled
7 post : i sGPSEnabled
8

9 act ion g e tPo s i t i o nManua l l y
10 pre : t r u e
11 post : p o s i t i o n ( u s e rD e f i n e dPo s i t i o n )
12

13 act ion i n p u t P r i c e (Name)
14 pre : productName (Name)
15 post : p r i c e ( p r o du c tP r i c e )
16

17 act ion acqu i r ePho to
18 pre : hasCamera
19 post : image ( barcode Image )
20

21 act ion r eadBarcode ( Image )
22 pre : image ( Image ) , hasAutoFocusCamera
23 post : ba rcode ( productBarcode )
24

25 act ion b lu r r yReadBarcode ( Image )
26 pre : image ( Image ) , hasFixedFocusCamera
27 post : ba rcode ( productBarcode )
28

29 act ion getProductName ( Barcode )
30 pre : ba rcode ( Barcode )
31 post : productName (name)
32

33 act ion searchTheWeb (Name)
34 pre : productName (Name)
35 post : p r i c e s ( o n l i n e P r i c e s )
36

37 act ion searchTheNe ighborhood ( Barcode , P o s i t i o n )
38 pre : ba rcode ( Barcode ) , p o s i t i o n ( P o s i t i o n )
39 post : p r i c e s ( l o c a l P r i c e s )
40

41 act ion s h a r eP r i c e (Name , P r i c e )
42 pre : productName (Name) , p r i c e ( P r i c e )
43 post : p r i c e Sha r e d

Listing 6.2: ShopReview Abstract Actions.

The initial state complements the goal by asserting the facts that
are true at app's invocation time. It includes application-speci�c facts
asserted by app's designers at design-time and context-speci�c facts au-
tomatically added at run-time by the SelfMotion middleware, which
detects the features of the mobile device in which it has been installed.
Table 6.2 illustrates some examples of the latter. Note that they are
added in negated form if a given fact is not true, e.g., ∼hasGPS is in-
cluded to the initial state if the device does not have a GPS sensor.
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1 p r i c e s ( l o c a l P r i c e s ) and p r i c e s ( o n l i n e P r i c e s ) and
2 p r i c e Sha r e d and p o s i t i o n ( g p sPo s i t i o n )
3

4 or
5

6 p r i c e s ( l o c a l P r i c e s ) and p r i c e s ( o n l i n e P r i c e s ) and
7 p r i c e Sha r e d and p o s i t i o n ( u s e rD e f i n e dPo s i t i o n )

Listing 6.3: ShopReview Goal.

1 hasFixedFocusCamera and hasGPS and ∼i sGPSEnabled

Listing 6.4: ShopReview Initial State.

For the SR app, no application-speci�c fact is included in the initial
state, which is fully populated by the SelfMotion middleware. Assum-
ing that SR is deployed in a device equipped with a �xed-focus camera
and with a GPS sensor that is currently disabled, the initial state be-
comes the one shown in Listing 6.4.

Concrete Actions

As for DSOL, concrete actions are the executable counterparts of ab-
stract actions. For example (see Table 6.3), in our SR app we have
di�erent implementations for some of the abstract actions. The get-

ProductName abstract action can be mapped to three concrete actions:
two of them exploit a remote Web service (i.e., searchupc.com and
simpleupc.com) to map the barcode to a product name, while the third
one explicitly asks the product name to the user. Having multiple con-
crete actions for the same abstract one allows the SelfMotion mid-
dleware to choose the one that better satis�es the QoS policy (more on
this later) but, most important, it allows the Interpreter to overcome
unexpected situations in which a given concrete action does not exe-
cute successfully (e.g., a web service fails), or cannot be executed (e.g.,
an external required app is not installed in the device) by invoking an
alternative concrete action.

As the current SelfMotion prototype was developed for the Android
platform, concrete actions are also implemented through Java methods,
supporting the same ad-hoc annotations we introduced previously. Re-
calling some concepts, we use the annotation @Action to refer to the
implemented abstract action, as in Listing 6.5, which shows the three
concrete actions that implement the getProductName abstract action.
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Name Description

hasGPS The device has a GPS sensor

isGPSEnabled The device has a GPS sensor
and it is enabled

hasCamera The device has a camera

hasAutoFocusCamera The device has a camera and
it supports auto-focus

hasFixedFocusCamera The device has a camera but
it does not support auto-focus

lowBattery The device's battery level is low

Table 6.2: Example of facts automatically added to the initial state by
the SelfMotion middleware.

QoS Pro�les

The concrete actions mapped to the same abstract one are functionally
equivalent but they may di�er in several non-functional aspects. For
instance, consider the getProductName abstract action and the three
corresponding concrete actions reported in Table 6.3. Those that rely
on a remote service are characterized by a higher energy consumption
with respect to the one that rely on the input manually provided by the
user. Thus, from an energy perspective, the last option is preferable.
Conversely, considering usability, the concrete action that needs the user
intervention is less preferable. Finally, considering cost, one of the three
alternative relies on a Web service that charges a fee on a per-request
basis (i.e., simpleupc.com), while the others do not have any associated
cost.

SelfMotion allows developers to declare all these non-functional as-
pects by relying on the @QoSProfile annotation, as illustrated in List-
ing 6.5. In particular, this annotation contains two lists of parameters:
metrics and values. The list of metrics allows developers to declare the
QoS attributes they are interested in. In the example, the list of metrics
includes usability, cost, and energy. The second list contains the value
associated with each metric. For example, concerning energy consump-
tion, the actions that invoke remote services are annotated with −1,
while the action that performs a local computation is annotated with
0. With these values we express the fact that remote invocations a�ect
the battery usage more than local computation. Similarly, concerning
usability, we annotate the three actions with di�erent impact values to
indicate that the automatic alternatives are preferable over those which
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Abstract Actions Concrete Actions

getPositionWithGPS Ad-hoc Component (user localization
via GPS)

enableGPS Ad-hoc Component (enable GPS sensor)

getPositionManually Ad-hoc Component (manual
user localization)

inputPrice Ad-hoc Component (textual input
from the user)

acquirePhoto Ad-hoc Component (photo acquisition
from the mobile camera)

readBarcode Ad-hoc Component (local barcode
recognition)

burryReadBarcode WebService (remote barcode
recognition)

Web service (searchupc.com)
getProductName Web service (simpleupc.com)

Ad-hoc Component (textual input
from the user)

searchTheWeb Web service (kelkoo.it)
Web service (buscape.com)

searchTheNeighborhood Web service (shopsavvy.mobi)

Third-party app (ubersocial.com)
sharePrice Third-party app (twicca.r246.jp)

Web service (dev.twitter.com)

Table 6.3: ShopReview Concrete Actions.

bother the user asking for an explicit input. Finally, concerning cost,
we annotated with 1 the action that invokes the simpleupc.com service
since it charges a fee for each invocation.

Summing up, by relying on the @QoSProfile annotation, we are able
to characterize the non-functional behavior of concrete actions. In par-
ticular, it is important to notice that, using the described approach we
do not need to necessarily know the real QoS values of each alternative
concrete action but only their relative di�erence (this also depends on the
way the QoS Policy is speci�ed, see later). In other words, considering
for example the energy consumption, we do not need to know the actual
energy consumed by each action but only the fact that those actions that
use the network consume more energy than those that only perform lo-
cal computations. This brings two signi�cant advantages. First, we may
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1 @Action (name="getProductName" )
2 @ReturnValue ( "name" )
3 @QoSPro f i l e ( me t r i c s={" u s a b i l i t y " , " c o s t " , " ene rgy " } ,
4 v a l u e s ={1 ,0 ,−1})
5 pub l i c S t r i n g getProductNameViaSearchUPC ( Barcode barcode ){
6 S t r i n g ba rcodeVa lue = barcode . ge tVa lue ( ) ;
7 // Invoke h t tp :// s ea r chupc . com/
8 S t r i n g productName = sea r chupc ( ba rcodeVa lue ) ;
9 re tu rn productName ;
10 }
11

12 @Action (name="getProductName" )
13 @ReturnValue ( "name" )
14 @QoSPro f i l e ( me t r i c s={" u s a b i l i t y " , " c o s t " , " ene rgy " } ,
15 v a l u e s ={1 ,1 ,−1})
16 pub l i c S t r i n g getProductNameViaSimpleUPC ( Barcode barcode ){
17 S t r i n g ba rcodeVa lue = barcode . ge tVa lue ( ) ;
18 // Invoke h t tp :// s imp l eupc . com/
19 S t r i n g productName = s imp l eupc ( ba rcodeVa lue ) ;
20 re tu rn productName ;
21 }
22

23 @Action (name="getProductName" )
24 @ReturnValue ( "name" )
25 @QoSPro f i l e ( me t r i c s={" u s a b i l i t y " , " c o s t " , " ene rgy " } ,
26 v a l u e s ={−1 ,0 ,0})
27 pub l i c S t r i n g getProductNameFromUser ( Barcode barcode ){
28 S t r i n g ba rcodeVa lue = barcode . ge tVa lue ( ) ;
29 //Ask the u s e r f o r the p roduc t name
30 S t r i n g productName = . . . ;
31 re tu rn productName ;
32 }

Listing 6.5: getProductName Concrete Actions.

ignore the real QoS values, which may be di�cult to measure and de-
pendent on the speci�c device. Second, this approach allow us to express
application-speci�c QoS values, such as usability, which can hardly be
measured to produce an absolute value, but rather may be more easily
stated in relative terms with respect to di�erent alternatives.

QoS Policies

Given the QoS characterization as described so far, it is also necessary to
instruct the SelfMotion middleware about the di�erent policies used
to guide, at run-time, the Interpreter in prioritizing metrics, comparing
their associated values, and choosing the best concrete actions to execute.
Note that, as we are running in an environment with limited resources, we
decided to follow a di�erent strategy to QoS management when compared
to the one adopted by DSOL execution engine which leverages an linear
optimizer to �nd the best binding between abstract and concrete actions.

91



6 DSOL in Motion

1 qos : d e f a u l t
2 pre : ∼l owBat t e r y
3 max : u s a b i l i t y
4 min : c o s t
5 min : ene rgy
6

7 qos : e n e rgySave r
8 pre : l owBat t e r y
9 min : ene rgy
10 max : u s a b i l i t y
11 min : c o s t

Listing 6.6: QoS Policy De�nitions.

Indeed, as explained hereafter, in SelfMotion we use QoS attributes
to select the best concrete action looking only to the current step of the
plan.

A QoS policy is de�ned in the SelfMotion language with the key-
word qos followed by the name of the policy. In addition, each policy
de�nition contains: (1) a pre-condition, similar to that of abstract ac-
tions, and (2) an ordered list of QoS preferences decorated with the min
and max keywords.

Since a SelfMotion application may have multiple QoS Policies,
pre-conditions are used to enable or disable each policy. In particular, at
start-up, the Interpreter evaluates the policies in order and adopts the
�rst one whose pre-condition is enabled in the initial state.

Let us consider Figure 6.6, which reports two possible QoS policies for
the SR example: default and energySaver. Imagine that the middle-
ware, at start-up, set in the initial state the fact∼lowBattery, indicating
that the battery is well charged. In this case, the �rst policy with a valid
pre-condition is default and, as a consequence, the SR application will
be executed using this speci�c policy. In particular, default is composed
by three ordered constraints: (1) max: usability, (2) min: cost, and
(3) min: energy. The three constraints will be applied in order. Ev-
ery time the Interpreter must execute an abstract action with many
corresponding concrete actions, it will invoke the one with maximum
usability. If this criterion does not result in the selection of an unique
concrete action (i.e., many actions have the same maximum usability
value), the Interpreter applies the second constraint (i.e., the minimum
cost) to the set of actions with the maximum usability. If even this cri-
terion is not able to identify an unique candidate, the Interpreter applies
the third constraint (i.e., minimum energy). If neither this is enough to
�nd an unique concrete action to invoke, the Interpreter chooses non-
deterministically among the available actions. The same occurs if all
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actions do not have an associated QoS Pro�le or if none of the existing
QoS policies has a valid precondition.

Given these premises, if we consider, for example, the getProductName
abstract action, with its concrete counterparts reported in Listing 6.5,
and the defaultQoS policy, the Interpreter �rst selects the getProduct-
NameViaSearchUPC and getProductNameViaSimpleUPC actions, which
have the maximum usability value. Then it applies the second constraint
(i.e., minimum cost) selecting only the getProductNameViaSearchUPC,
the one that is invoked.

Summing up, by specifying one or more QoS policies developers en-
code a hierarchical system of priorities among available concrete actions,
which in turn allow an adaptive behavior of the resulting app, as dis-
cussed later on in Section 6.3.2.

6.2.3 The SelfMotion middleware

As previously introduced, the SelfMotion middleware is in charge of
executing the app. At start-up it analyzes the current device and pop-
ulates the initial state with the set of facts that describe the device's
features (i.e., the available sensors, the battery state, etc.). Second, it
invokes its two internal components: the Planner and the Interpreter.

The Planner analyzes the goal, the initial state, and the abstract ac-
tions and produces an Abstract Execution Plan, which lists the logical
steps (i.e., the abstract actions) to reach the goal. The Interpreter, takes
this plan and executes it by associating each abstract action with a con-
crete one, chosen according to the QoS policy that is currently active,
invoking external components where speci�ed.

If something goes wrong during this process (e.g., an ah-hoc compo-
nent returns an exception), the Interpreter �rst tries a di�erent concrete
action for the abstract action that failed (following the order of prece-
dence established by the QoS policy in use). If no alternative actions
can be found or all alternatives have failed, it invokes the Planner again
to build an alternative plan that skips the abstract action whose con-
crete counterparts have all failed. This approach allows SelfMotion

to automatically adapt to the situations (and failures) it encounters at
run-time, maximizing reliability. All of this occurs without requiring
designers to explicitly code complex exception handling strategies. Ev-
erything is managed by the SelfMotion middleware, which uses the
set of alternative concrete actions associated to the same abstract action
as backups of each other, while the Planner is in charge of automati-
cally determining the sequence of steps that satis�es the goal under the
circumstances and the deployment context actually faced at run-time.
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1 acqu i r ePho to
2 b lu r r yReadBarcode ( barcode Image )
3 enableGPS
4 getPos i t ionWithGPS
5 getProductName ( productBarcode )
6 i n p u t P r i c e ( name)
7 searchTheWeb (name)
8 searchTheNe ighborhood ( productBarcode , g p sPo s i t i o n )
9 s h a r eP r i c e (name , p r i c e )

Listing 6.7: A Possible Abstract Execution Plan.

Listing 6.7 reports a possible plan of the SR example for a device
with �xed focus camera (i.e., hasFixedFocusCamera is set to true) and
with a GPS sensor available but not enabled (i.e., hasGPS set to true,
isGPSEnabled set to false).

As far as the implementation is concerned, the current SelfMotion

prototype uses a porting of the same ad-hoc planner we used for the
DSOL engine to the Android platform.

From a deployment point of view, the Interpreter is installed on the
mobile device, since it is in charge of actually executing the app. The
Planner, instead, may be deployed either locally or remotely. In the �rst
case, plan generation and interpretation take place in the same execu-
tion environment, while in the second case the Planner is deployed on a
remote server and the Interpreter invokes it as a service when needed.
The two strategies di�er in their performance, as we will discuss in Sec-
tion 6.4.

6.3 Advantages of the SelfMotion Approach

This section describes the main advantages of our approach with respect
to the development process usually adopted for apps. The discussion
refers also to the SR example.

6.3.1 Decouple Design from Implementation.

SelfMotion achieves a clear separation among the di�erent aspects of
the app: from the more abstract ones, captured by goals, initial state,
and abstract actions, to those closer to the implementation domain, cap-
tured by concrete actions. In de�ning abstract actions, developers may
focus on the functionalities the app has to provide, ignoring how they will
be implemented (e.g., through ad-hoc developed components, invoking
external services, or launching third party apps). This choice is delayed
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to the time when concrete actions are de�ned. Moreover, if di�erent
concrete actions are associated with the same abstract one, the actual
choice of how a functionality is implemented is delayed to run-time, when
abstract actions are bound to concrete ones. For example, consider the
GetProductName functionality of the SR app. In the initial phase of the
app's design, developers may focus on the features it requires�the pre-
condition�and the features it provides�the post-condition. Later on,
they can implement a �rst prototype of this functionality (a concrete
action) that leverages an ad-hoc developed component (i.e., the manual
input of the product name) and they may realize that this solution needs
to be improved in terms of usability. Then, the app may gradually evolve
by adding other concrete actions that implement the same functionality,
e.g., exploiting a Web service. This approach, that decouples system de-
sign from its implementation, is typical of mature engineering domains
but it is not currently supported by mainstream apps' development en-
vironments. SelfMotion is an attempt to address this issue.

6.3.2 Enable Transparent Adaptation.

By separating abstract and concrete actions (with their QoS pro�le)
and by supporting one-to-many mappings among abstract and concrete
actions we solve two key problems of mobile apps: (1) how to adapt the
app to the plethora of devices available today, and (2) how to cope with
failures happening at run-time.

As an example of problem (1), consider the implementation of the
GetPosition functionality given in Listing 6.1 and compare it with its
SelfMotion counterpart, which relies on several abstract actions with
di�erent preconditions (see Listing 6.2). The former requires to explic-
itly hard-code (using if-else constructs) the various alternatives (e.g., to
handle the potentially missing GPS), and any new option introduced by
new devices would increase the number of possible branches. Conversely,
SelfMotion just requires a separate abstract (or concrete) action for
each option, leaving to the middleware the duty of selecting the most
appropriate one, given the current device capabilities and the order of
preference provided by the app's designers.

As for problem (2), consider the example of the GetProductName func-
tionality, which is implemented in SelfMotion by a single abstract ac-
tion mapped to three di�erent concrete actions (Listings 6.2 and 6.5).
The middleware initially tries the �rst concrete action, which invokes
an external service. If this returns an exception, the second concrete
action is automatically tried. In the unfortunate case this also fails, the
third concrete action is tried. Finally, if none of the available concrete
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actions succeeds, SelfMotion may rely on its re-planning mechanism
to build an alternative plan at run-time. As an example, consider the
case in which the Interpreter is executing the plan reported in List-
ing 6.7 and let us assume that the GPS sensor fails to retrieve the user
location (e.g., because we are indoor) and throws a system exception.
The middleware automatically catches the exception and recognizes the
getPositionWithGPS as faulty, which has no alternative concrete ac-
tions. The Planner is then invoked to generate a new plan that avoids
the faulty step. The new plan will include the getPositionManually

abstract action, whose concrete counterpart will ask the position to the
user through an ad-hoc pop-up. Again, obtaining the same behavior
using conventional approaches would require a complex usage of excep-
tion handling code, while SelfMotion does everything automatically,
relieving programmers from the need of explicitly handling the inter-
twined exceptional situations that may happen at run-time.

Finally, the possibility of specifying multiple QoS policies also reveals
the adaptive nature of SelfMotion apps. Indeed, let us recall the pol-
icy example in Listing 6.6. In the previous section we considered the case
of a device with a fully charged battery, which would select the default
policy. If we consider now the alternative scenario in which batteryLow

is set true in the initial state, the energySaver policy would be selected.
This change results in a di�erent behavior of the Interpreter (and conse-
quently a di�erent behavior of the app), which will prioritize the energy
e�cient actions. As an example, the GetProductName functionality this
time would be realized by executing the getProductNameFromUser con-
crete action. In other words, through an accurate use of QoS policies,
SelfMotion allows developers to easily build apps that adapt to the
execution context.

6.3.3 Improve Code Quality and Reuse.

As a �nal advantage of SelfMotion we observe that by promoting
a clean modularization of the app's functionality into a set of abstract
actions and their concrete counterparts, and by avoiding convoluted code
using cascaded if-else and exception handling constructs, SelfMotion

improves readability and maintainability of apps' code.

Moreover, by encapsulating the various features of an app into inde-
pendent actions and by letting the actual �ow of execution to be auto-
matically built at run-time by the middleware, SelfMotion increases
reusability, since the same action can be easily reused across di�erent
apps. This advantage is fundamental to shorten the development life-
cycle, which is crucial in the mobile domain.
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6.4 Validating the SelfMotion Approach

To validate the SelfMotion approach, we implemented a publicly avail-
able open-source tool.5 Although our approach is general and applies
with limited technological modi�cations to several existing mobile frame-
works, we focused on the Android mobile platform [7] for our prototype.
The initial validation we report in this section consists of a testing cam-

paign we performed, exploiting the Android emulator as well as several
real mobile devices, to measure the overhead introduced by SelfMo-

tion w.r.t. conventional approaches. The experiments showed that this
overhead exists but it is practically negligible. More speci�cally, we mea-
sured how the plan generation step performed at run-time by the Planner
represents the major element of overhead and the potential bottleneck of
SelfMotion. The time to execute this step depends on two factors: (1)
the plan length, and (2) the number of abstract actions in the domain,
while it is not a�ected by the number of available concrete actions, as the
binding between concrete and abstract actions is performed separately,
by the Interpreter. As far as this aspect is concerned, we measured that
it does not add a measurable overhead to the overall running time.
Before showing the results we obtained, we describe the testing plat-

forms we chose. For the experiments involving a local deployment of
the Planner we used two di�erent hardware settings: a Samsung Galaxy
SII, which represents the typical Android-enabled device available today,
and a netbook equipped with 1GB of RAM, an Atom processor, Debian
Linux, and Sun Java Virtual Machine 1.5. The latter represents next
generation Android devices (e.g., the Lava Xolo X900 ) powered by the
new Intel SOC for smartphones, which integrates the same Atom CPU
and the same amount of RAM. For the experiments involving a remote
deployment, we installed the Planner on a remote server equipped with
an i7-2720qm processor, 4GB of RAM, Debian Linux, and Sun Java
Virtual Machine 1.5. Moreover, we repeated all experiments discussed
hereafter at least thirty times, varying the seeds to generate the work-
load, for each described scenario. The �gures shown below provide the
average results we obtained.
Moving from the consideration above, we started analyzing how the

plan length impacts performance. In particular, we developed a scenario
in which we had twenty abstract actions and a goal de�nition satis�able
through a plan composed of six of these actions. We measured the time
needed to obtain the plan and we repeated the experiment changing
the goal de�nition in order to obtain plans of increasing length�from

5http://www.dsol-lang.net/self-motion.html where the implementation the SR
app can also be found.
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six to �fteen�recording the time needed to compute them, both with
a local and with a remote deployment of the Planner. Figure 6.2(a)
shows that, by running this testbed with a local Planner and with an
initial plan including six actions, the Planner takes around 440ms to
complete. The time needed to generate the plan gradually increases up
to 2051ms for a plan that includes �fteen actions. Figure 6.2(b) shows
instead how the Atom-based platform provides improved performance,
reducing the times by an order of magnitude. Finally, if we choose to
rely on a remote execution, the plan generation time decreases of another
order of magnitude, as reported in Figure 6.2(c). Notice that the results
we report for the remote case�here and in the following experiments�
do not include the time required to invoke the Planner remotely, as the
time to traverse the network strongly depends on the actual connection
type of the device (e.g., gprs vs. WiFi), and the characteristics of the
deployment in general.
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(c) Remote Evaluation.

Figure 6.2: Plan Generation Time over Plan Length.

Our second test set focuses on the impact of the number of abstract
actions on the plan generation time. For this we built a scenario in
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which there is an increasingly large set of abstract actions and a goal
de�nition that generates a plan using eight of them. Figure 6.3(a) shows
that, with ten abstract actions and a local deployment on the Sam-
sung Galaxy SII, the SelfMotion Planner takes about 622ms to com-
plete. This time gradually increases up to 807ms when sixty abstract
actions are available. As in the previous scenario, the Atom platform
and the remote deployment provide further advantages, as reported in
Figure 6.3(b) and 6.3(c).
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Figure 6.3: Plan Generation Time over Abstract Actions.

In general these results show an acceptable overhead even on today's
devices: an overhead that should not a�ect the overall app usability. This
is especially true if we consider that loading a typical mobile app on to-
day's devices may require one or more seconds�not milliseconds�and
executing it requires tens of seconds. Moreover, our implementation,
albeit e�cient, is just a prototype, and a signi�cant performance im-
provement may be achieved by introducing ad-hoc features, such as plan
caching. Finally, we observe that our experiments considered plans of
length up to �fteen and up to sixty abstract actions. These are overesti-
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mates of the values we may encounter on real apps, which are typically
characterized by a limited number of abstract functionality as shown by
the example described in Section 6.1. Indeed, the plan length of the
SR app includes eight or nine abstract actions (depending on the de-
vice capabilities) and the Planner generates the most complex of these
plans in 333ms (Samsung Galaxy SII), 55ms (Atom), and 6.6ms (remote
execution).
Finally, we brie�y report some considerations on local versus remote

plan generation. The choice among them essentially depends on: (1) the
number of abstract actions�which represent an upper-bound of the plan
length�and (2) the computational capability of the device. The more
powerful a device is, the larger the set of abstract actions it is able to
handle successfully in a reasonable time. Since the computational power
is known only at run-time, the decision between local or remote plan
generation cannot be made statically but it has to be delayed to execution
time. Clearly, a local plan generation is generally preferable, since it
allows the app to execute successfully even if the device is not connected
to the Internet. Notice that SelfMotion is adaptive even in choosing
between these two alternatives, which are a�ected by the device on which
the prototype actually runs. Indeed, at design-time, given the set of
abstract actions available, SelfMotion estimates the length of the plan.
Depending on this value, at run-time, knowing the characteristics of the
device where it is running, the middleware autonomously decides whether
the plan generation must be performed locally or remotely.
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6.5 Conclusions

In this chapter, we presented SelfMotion, an incarnation of the DSOL
declarative approach designed to support systematic development of mo-
bile apps. In contrast to the approaches used by the most adopted mobile
platforms, SelfMotion exploits automatic planning techniques to elab-
orate, at run-time, the best sequence of activities to achieve the app's
goal.
SelfMotion contributes to the research in adaptive software systems

and services by investigating a declarative approach for the e�ective and
e�cient development of adaptive apps conceived as hybrid compositions
of services and components. Indeed, it provides a fully functional middle-
ware, which supports adaptivity and enforces a decoupling of the business
logic from the adaptation logic, facilitating code reuse, refactoring, and
code evolution.
To demonstrate the advantages of SelfMotion in terms of: (1) ease

of use, (2) adaptation capabilities, and (3) quality of the resulting code,
we used the proposed approach to implement a realistic example inspired
by an existing worldwide distributed mobile application. In addition, we
assessed the overhead introduced by the approach and its scalability by
performing a validation campaign, which demonstrated the applicability
of the approach.
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7 Related Work

In this chapter we provide a detailed description of some of the ap-
proaches available in the literature that are related to the work presented
in this thesis. In the �rst part, we take a step back and introduce some
works that have inspired us to propose DSOL. The second part dis-
cusses other alternative approaches which, similar to DSOL, also focus
on tackling the complexity of de�ning service orchestrations, including
quality-of-service management. Finally, we discuss some related work
that focus on the e�ective and e�cient development or mobile applica-
tions.

7.1 Looking to the Past to Take Inspiration for

the Future

The problem of de�ning and managing service orchestrations in which
architects have to deal with an intricate control �ow trying to capture
all possible ways things can go wrong and react to exceptional situations
even in the presence of anticipated and unanticipated changes, i.e., im-
plement adaptive service orchestrations, has very strong similarities to
what was discovered in the late 1980s and in the 1990s in the research
area on software processes. This area was mostly boosted by Oster-
weil's seminal work [42]. Osterweil recognized the need to formalize the
software development process so that it could be analyzed, improved,
and automated. This area was sometimes referred to using the term
process programming, although the low-level term �programming" does
not do justice to the real essence of Osterweil's proposal. Rather, the
idea was that software processes were important conceptual entities to
understand, model, and possibly automate. Indeed, the same concept
was later applied to other human-intensive domains besides software de-
velopment, where the term work�ow instead of process became more
commonly used.

One of the important �ndings of the work on (software) processes was
that because of the active and creative role of humans in the process, de-
viations [12] were important to handle [43, 44]. The software process, in
fact, supports humans and manual activities as well as automated tools.
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Unlike tools, humans cannot be seen as �subroutines" to invoke to get
fully predictable results. Moreover, humans can tolerate inconsistencies,
whereas tools seldom can. Finally, because processes are long-running
entities, they need to evolve as the situation may change during the
course of execution. Having recognized these distinctive feature, the pro-
cess work in the 1990s sought ways to model �exible processes through
sophisticated mechanisms and studied how to manage deviations and
inconsistencies arising in the process enactment. This past work can be
classi�ed in three main directions:

7.1.1 Process programming with exceptions

A number of approaches investigated how to adapt the exception han-
dling constructs that are supported by standard programming languages
for inclusion in languages intended for process de�nition and automa-
tion. The emphasis here is on using a process language, as in Osterweil's
original proposal, to program the process. Perhaps the most completely
developed approach is the APPL/A language [43], which is based on
an imperative paradigm. The idea of using exceptions has the obvi-
ous advantage that the normal process �ows are clearly distinguishable
from the exceptional �ows in the process description. This allows for a
certain degree of separation of concerns and supports a cleaner program-
ming style than handling exceptional conditions through conventional
if�then�else constructs. The main drawback of this approach is that it
requires all possible exceptional conditions to be identi�ed before writ-
ing the process code. This can be quite restrictive in highly dynamic
contexts in which new and unanticipated cases may arise.

7.1.2 Re�ective mechanisms

Through re�ection, languages support reasoning about, and possibly
modi�cation of, programs. Re�ective features are often available in con-
ventional programming languages. They have been also proposed and
experimented within process languages. As an example, on the SPADE
environment [45], was developed a fully re�ective process modeling lan-
guage (SLANG) based on Petri nets, which allows meta-programming.
That is, in SLANG one can develop a process whose objective is to mod-
ify an existing process or even an existing process instance. The potential
advantage of such an approach over the previous one is clear: the pro-
cess model does not need to anticipate all possible exceptional situations,
since it can include the (formal) description of how the process model
itself can be modi�ed at execution-time to cope with unexpected situa-
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tions. The main drawback of this approach is that it may bring further
rigidity into the approach: not only the process must be modeled (or
�programmed�) in all detail, but so also must the meta-process, i.e., the
process of modifying the model itself.

7.1.3 Flexible approaches

Both previous cases are based on the assumption that a precise and en-
forceable process model is available and there is no way to violate the
prescribed process. In other terms, there is no way to treat a deviation
from the process within the formal system. Re�ective languages support
changes to the process, but all possible changes must follow a prede�ned
change process, i.e., again there is no way to �escape� from a fully de-
�ned, prescriptive model. The key idea to overcome this limitation was
to abandon the ambitious but unrealistic goal of modeling every aspect
of the process in advance, following an imperative, prescriptive style,
to focus on certain constraints that should be preserved by the process,
without explicitly forcing a pre-de�ned course of actions. Any process
that satis�es the constraints would thus be acceptable. This brings a
great �exibility in process enactment, avoiding micro-management of ev-
ery speci�c issue while focusing on the important properties that should
be maintained. Usually, these approaches are coupled with advanced
runtime systems that support the users in �nding their way through the
actual situations toward the process goals, while remaining within the
boundaries determined by the process model. An early example of this
approach is described in [46].
This category is also the one we mainly took as inspiration to develop

DSOL, abandoning the imperative style followed used by most of the
service composition languages and adopting a strongly declarative and
�exible approach. Such �exibility was leveraged by the runtime system
to simplify the de�nition of exception-safe service orchestrations and to
allow deviations and changes during process execution.

7.2 Alternative Approaches to Service

Composition

During the last years, various proposals have been made to reduce the
complexity inherent in de�ning service compositions, with the goal of
further increasing the di�usion of this technology. Hereafter, we review
those that are mainly related with our work.
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As an alternative to BPEL and BPMN in the speci�cation of service
compositions, other languages, like JOpera [20] (see our speci�c com-
parison in Section 4.2.2), Jolie [47], and Orc [48], were proposed. While
easier to use and often more expressive than BPEL and BPMN, they do
not depart from the imperative paradigm, and consequently they share
with them the same problems that motivate our work.

To overcome these limitations, other researchers followed the idea
of adopting a declarative approach. Among those proposals, DecSer-
Flow [49, 50] is the closest to our work. In DecSerFlow service chore-
ographies are de�ned as a set of actions and the constraints that relate
them. Both actions and constraints are modeled graphically, while con-
straints have a formal semantics given in Linear Temporal Logic (LTL).
There are several di�erences between DecSerFlow and DSOL. First of
all, DecSerFlow focuses on service choreographies and on modeling them
to support veri�cation and monitoring. Conversely, we focus on ser-
vice orchestrations and speci�cally on enacting them. This di�erence
motivates the adoption of LTL as the basic modeling tool, as it enables
powerful veri�cation mechanisms but introduces an overhead that can be
prohibitive for an enactment tool [49]. The DSOL approach to model-
ing o�ers less opportunities for veri�cation but it can lead to an e�cient
enactment tool. Secondly, DSOL emphasizes re-planning at run-time as
a mechanism to support self-adaptive service orchestrations that maxi-
mize reliability even in presence of unexpected failures and changes in
the external services. This is an issue largely neglected by DecSerFlow,
as it focuses on speci�cation and veri�cation and it does not o�er speci�c
mechanisms to manage failures at run-time.

GO-BPMN [51, 52, 53] is another declarative language, designed as
a goal-oriented extension for traditional BPMN. In GO-BPMN business
processes are de�ned as a hierarchy of goals and sub-goals. Multiple
BPMN plans are attached to the �leaf� goals. When executed, they
achieve the associated goal. These plans can be alternative or they can
be explicitly associated to speci�c conditions through guard expressions
based on the context of execution. Although this approach also tries
to separate the declarative statements from the way they can be ac-
complished, the alternative plans to achieve a goal must be explicitly
designed by the service architect and are explicitly attached to their
goals. The engine does not automatically decide how the plans are built
or replaced; it just chooses between the given options for each speci�c
goal, and it does so at service invocation time. The DSOL ability to
build the plan dynamically and to rebuild it if something goes wrong at
run-time, improves self-adaptability to unexpected situations.

The approach described in [54] de�nes a goal-oriented service orches-
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tration language inspired by agent programming languages, like AgentS-
peak(L) [55]. One of the main motivations of this approach is the possi-
bility of following di�erent plans of execution in the presence of failures.
The main di�erence with our approach is that the alternative plans need
to be explicitly programmed based on the data stored into the Knowl-
edge Base and the programmer needs to explicitly reason about all the
possible alternatives and how they are related, in a way similar to that
adopted by traditional approaches. In the presence of faults, the facts
that compose the Knowledge Base are programmatically updated to trig-
ger the execution of speci�c steps that have to be speci�ed in advance
to cope with that situation. No automatic re-planning is supported.

As brie�y introduced in Chapter 1, the complexity in de�ning Web
service compositions is also being tackled through Automated Service
Composition (ASC) approaches. While our research was motivated by
the desire of overcoming the limitations of mainstream orchestration lan-
guages in terms of �exibility and adaptability to unexpected situations,
ASC is grounded on the idea that the main problem behind service or-
chestration is given by the complexity in selecting the right services in the
open and large scale Internet environment. The envisioned solution is to
provide automatic mechanisms to select the right services to compose,
usually based on a precise description of the semantics of the services
available.

For example, in [56], user requirements and Web services are both de-
scribed in DAML-S [57], a semantic Web service language, and linear
logic programming is used to automatically select the correct services
and generate a BPEL or DAML-S process that represents the composite
service. Similarly, [58] presents an extension of Golog, a logic program-
ming language for dynamic domains, to compose and execute services
described in DAML-S, based on high-level goals de�ned by users. Both
approaches requires the exact semantics of services to be de�ned formally
(e.g., in DAML-S) and they do not support dynamic rede�nition of the
orchestration at run-time to cope with unexpected situations.

Similar considerations hold for those ASC proposals that adopt plan-
ning techniques similar to those adopted in DSOL. In these approaches
the planning domain is composed by the semantically described services
and goals are de�ned by end-users. For example, [59] uses the SHOP2
planner to build compositions of services described in DAML-S. Simi-
larly, [60] proposes an algorithm, based on planning via model-checking,
that takes an abstract BPEL process, a composition requirement and
a set of Web services also described in BPEL and produces a concrete
BPEL process with the actual services to be invoked. In SWORD [61],
the to-be composed services are described in terms of their inputs and
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outputs, creating the "service model". To build a new service the devel-
oper should specify its input and output, which SWORD use to decide
which services should be chosen and how to combine them. [62] and
[63] use requirements speci�ed by the �nal user through queries in order
to discover and compose the �nal orchestration. Both approaches use
an internal planner for choosing the services that best match the user
request. While [62] uses an ad-hoc execution infrastructure, [63] aug-
ments an abstract BPEL process with the selected services to enact the
composition.

Other ASC approaches start from an abstract �template process�, ex-
pressed either in BPEL, e.g., [64, 65], or as a Statechart, e.g., [66] and,
taking into consideration QoS constraints and end-user preferences, se-
lect the best services among those available to be actually invoked. As
mentioned in the Introduction, these approaches focus on a relatively
simpler problem thanDSOL, as they focus on �selecting the right services
at run-time�, leaving to the service architect the (complex) task of de�n-
ing the abstract �work�ow� to follow. Moreover, as they use traditional,
procedural languages as the tool to model this abstract work�ow, they
su�er from the limitations and problems that we identi�ed in Chapter 2.
Moreover, most of the ASC approaches proposed so far operate before
the orchestration starts, while DSOL includes advanced mechanisms to
automatically adapt the orchestration to the situations encountered at
execution time. This is particularly evident if we consider the problem
of compensating actions to undo some already performed steps before
following a di�erent work�ow that could bypass something unexpected.
A problem that, to the beast of our knowledge, is not considered by any
of these approaches.

As a �nal notice, we observe that the three-layered architectural model
for self-management described by [67] and [68] was also used as an inspi-
ration for DSOL and its engine. In particular, the layers de�ned by this
architecture are: the goal management layer, responsible for the gener-
ation of plans from high-level goals (in our approach, the Planner); the
change management layer, which is concerned with using the generated
plans to construct component con�gurations and direct their operation
to achieve the goal addressed by the plan (in our approach, the DSOL
Interpreter, which interacts with the Planner and executes the generated
plan); at last, the component layer, which includes the domain speci�c
components (in our approach, the abstract/concrete actions, used to
build and enact the plan).
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7.3 Quality-of-Service Management

Many existing approaches have an explicit support for QoS with di�erent
levels of abstractions and leveraging on a plethora of di�erent techniques.
For example, Menascé [69] discusses QoS issues in the domain of services,
introducing the response times, availability, security, and throughput as
QoS parameters. His paper also discusses the need of SLAs without
advocating any speci�c model to manage, aggregate and optimize QoS
behaviors of service orchestrations.

In particular, concerning optimization, many approaches exploit linear
programming to manage QoS for orchestrations. For example, Aggrawal
et al. [70] view QoS-based composition as a constraint satisfaction/op-
timization problem and �nd an optimal solution by applying integer
linear programming. Zeng et al. [71] present comprehensive research
about QoS modeling and QoS-aware compositions. In particular, they
use statecharts to model orchestrations in which services are selected
from a pool of alternative services using linear programming techniques
such that it optimizes a local as well as global QoS criteria. Alternatively
to linear programming, in [72], the authors leverage on fuzzy distributed
constraint satisfaction techniques for �nding the optimal orchestration.
All these approaches di�ers from our proposal in many aspects. First we
do not consider only alternative bindings in �nding the optimal orches-
tration but we also consider structural alternatives (i.e., plans) in �nding
the optimal solution. Secondly, we support domain speci�c metrics and
adaptivity in terms of adaptive re-binding and re-planning.

Concerning the aggregation functions for QoS metrics, other exist-
ing approaches propose similar techniques aimed at aggregating metrics
(e.g., [73, 74, 75]). For example, Cardoso et al. [75] compute aggre-
gate QoS by applying a set of reduction rules to the work�ow until one
atomic task is obtained. In addition, other approaches support custom
speci�c metrics such as [73, 76]. However, all these approaches may not
guarantee the optimal solution with respect to QoS even if they may be
suitable where optimality is not mandatory and execution e�ciency is
preferred. Among these works let us mention the approaches based on
genetic programming such as [77, 78] or on heuristics (e.g., [79]).

Finally, concerning speci�cally adaptivity and re-planning we may
mention respectively [80, 81] and [82]. The �rst two approaches do not
focus on QoS, conversely the third one provides an e�cient re-planning
technique that, however, do not guarantees the optimal solution.

Summing up, none of the existing approaches, at the best of our
knowledge, mix together an optimal solution, custom speci�c metrics
and adaptive capabilities as DSOL with the adaptivity techniques of
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re-binding and re-planning. In addition, this is the �rst approach that
combines planning together with optimization which allow the easy of use
of declarative languages with the guarantee of optimality. Furthermore,
di�erently from most of the QoS approaches, DSOL consider quality-of-
service as part of the language, including speci�c constructs and runtime
mechanisms to deal with it. Indeed, DSOL does not require any exter-
nal proxy or broker to select the best alternative to be invoked, further
simplifying its application.

7.4 Software Engineering and mobile applications

The recent massive adoption of mobile devices generated an increasing
interest on engineering mobile applications. A lot of research is focusing
on the e�ective and e�cient development of such systems, as summarized
by [83] and [84]. Existing works span a wide range of approaches: from
how to achieve context-aware behavior (e.g., [85]) to how to apply agile
methods in the mobile domain (e.g., [86]).

Let us �rst consider context-aware frameworks. These approaches aim
at supporting the development of mobile applications that are sensitive to
their deployment context (e.g., the speci�c hardware platform) and their
execution context (e.g., user location) ([87]). For example, Subjective-
C ([85]) provides context-oriented abstractions on top of Objective-C,
a mainstream language used for programming iOS applications. The
EgoSpaces middleware ([88]) can be used to provide context informa-
tion extracted from data-rich environments to applications. Another
approach to mobile computing middleware is presented in [89], which
exploits the principle of re�ection to support adaptive and context-aware
mobile capabilities. In general these approaches provide developers with
abstractions to query the current context and detect context changes;
i.e., they directly support context-dependent behavior as �rst-class con-
cept. In the same direction, approaches like [90, 91] provide speci�c
context-aware extensions to the Android platform.

From our point of view, the aforementioned approaches do not di-
rectly compete with ours, but rather they can be viewed as orthogonal.
SelfMotion may bene�t from their ability to detect context informa-
tion, for example, to generate plans whose initial state is populated with
information related to the surrounding context. The added value of
SelfMotion is instead its ability to automatically build an execution
�ow based on the context and the overall design approach it promotes.

Other existing related approaches (e.g., [92]) provide solutions for
multi-platform app development. Approaches like [93] and [94] allow
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developers to code using standard technologies (e.g., Javascript and
HTML5) and deploy the same codebase on several platforms, includ-
ing as iOS or Android. These frameworks have a great potential but
at the same time they currently su�er from the same limitations as tra-
ditional app development, such as the intertwined business logic with
adaptation code and limited support for code maintainability.
None of the above e�orts speci�cally deals with service-oriented mo-

bile applications, which instead represent a signi�cant portion of the
apps developed so far. The work by [95] describes an approach for
service composition in mobile environments and evaluates criteria for
judging protocols that enable such composition. They mainly concen-
trate on a distributed architecture that facilitates service composition
and do not focus on the application layer nor on its adaptation capa-
bilities, as instead SelfMotion does. Generally speaking, the existing
approaches to service-oriented mobile app on mobile environments focus
on enabling the service composition, without considering the associated
consequences, such as the need of adaptation.
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Service-oriented computing holds great promises. Through it, an open
and dynamic world of services becomes accessible for humans, who can
be empowered by useful application components that are developed by
service providers and exposed for possible use. Service-oriented comput-
ing may also generate new business. For example, it supports service
provision by brokers who can integrate third-party services and export
new added-value services. Because services live in open platforms, the
computational environment is continuously evolving. New services may
be created, old services may be discontinued, and existing services may
be evolved by their owners.

Service-oriented computing raises several important challenges that
need to be addressed by research to become successful. In particular,
how can the new systems we build by composing existing services be de-
scribed? How can such descriptions accommodate the need for tolerating
the continuous changes that occur in the computational environment?

Service compositions may be achieved through work�ow languages.
Work�ows describe processes through which humans interact with soft-
ware components and compose them to achieve their goals. The existing
work�ow languages that have been developed to support service compo-
sitions, unfortunately, are still very primitive. Indeed, they have limited
support to deal with the unpredictability and changeability of the world
they live in. De�ning adaptive service orchestrations in a simple and
straightforward manner is still a goal hard to be achieved.

In this thesis we presented an approach to overcome the limitations
of currently available service orchestration languages, in particular when
failures occur and the application needs to self-adapt to unexpected sit-
uations. This approach is based on a new language called DSOL, which
models the orchestration declaratively, focusing on the set of available
activities, without having to explicitly declare the control �ow of the
orchestration. The execution �ow is just generated at run-time through
an ad-hoc planner, part of the DSOL engine. This simpli�es the task of
modeling complex orchestrations, increases the level of reusability, and
can easily achieve self-adaptation in the presence of failures.

Several mechanisms are part of DSOL to build self-adapting orches-
trations. First, each activity is modeled through an abstract description
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coupled with several concrete implementations, to be tried in case of
failures. If this is not enough, the Planner can be re-invoked during pro-
cess execution to �nd an alternative way to accomplish the orchestration
goal, by-passing those activities that cannot be successfully executed,
and undoing already executed activities of the old plan, if necessary. At
last, as no explicit work�ow is pre-de�ned, new activities (i.e., abstract
and concrete actions) can be added to the model at run-time, without
the need to redeploy the entire orchestration.
For the future, we envision di�erent lines of work. First, we believe

that there is still space to improve both the DSOL language and its
runtime system. The former, for example, still does not provide support
for loops in the abstract layer. Iterations need to be implemented in
the concrete level. As for the DEng run-time system, while the current
prototype is fully operational (and downloadable) 1, we think there is still
space to further improve performance and also reliability and robustness.
Another aspect that we want to improve is the support to monitoring
running orchestrations. We currently catch faults as they happen and
we start our counter-measures (invoking alternative concrete actions or
re-building the plan), but we are not able to �anticipate� faults. More
advanced monitoring mechanisms may try to anticipate faults, e.g., by
checking for the actual availability of external services in advance, before
their unavailability impacts the running orchestration.
Moreover, we plan to build a complete (graphical) tool, possibly inte-

grated in an IDE like Eclipse [96], to further simplify the de�nition of
abstract actions, goals, and orchestration interfaces.
Finally, to fully validate our approach we want to test its feasibility in

additional, real world systems.
To conclude, while research in Web services and related technologies

is a relatively mature �eld and extensively used in practice, it is con-
tinuously evolving to satisfy new demands. We do not believe that the
contributions of this thesis represent a �nal answer to most of the prob-
lems we identi�ed. However, we are convinced that it provides a valid
contribution to guide future research e�ort.

1
DEng is available at http://www.dsol-lang.net
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