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Abstract

Space-related control problems pose a challenging task due to the strict
requirements in terms of precision and efficiency and to the highly nonlinear
dynamics involved. The classical methods for solving nonlinear optimal
control problems require a good starting guess in order to converge, while
recently have been developed approximate methods that are able to find
a solution without such a need. This thesis is focused on analysing and
improving the Approximating Sequence of Riccati Equation (ASRE) method,
that relies on solving a sequence of time-varying Linear Quadratic Regula-
tor (LQR) problems based on a pseudo-factorization of the dynamics: the
multiple-factorizations feature is exploited in order to make the most out of
the approximate method, that is then refined using a classical Two-Point
Boundary Value Problem (TPBVP) solver; the overall procedure is then
applied to some typical space-related optimal control problems.

Keywords nonlinear optimal control, space applications, astrodynamics





Sommario

I problemi di controllo relativi all’ambito spaziale risultano essere parti-
colarmente difficili da risolvere a causa dei requisiti stringenti in termini
di precisione ed efficienza, oltre che alle dinamiche fortemente non lineari
coinvolte. I metodi classici per risolvere i problemi di controllo ottimo non
lineare richiedono una buona soluzione di primo tentativo per poter conver-
gere, mentre metodi approssimati recentemente sviluppati non hanno questo
bisogno. Questa tesi si concentra sull’analisi e il miglioramento del metodo
Approximating Sequence of Riccati Equation (ASRE), che si basa sulla
soluzione di una sequenza di problemi Linear Quadratic Regulator (LQR)
tempo-varianti, ottenuti fattorizzando la dinamica: si sfrutta la possibilità
di ricavare molteplici fattorizzazioni per ottimizzare il metodo approssimato,
che viene poi rifinito con un classico solutore Two-Point Boundary Value
Problem (TPBVP); la procedura completa è stata applicata per risolvere
alcuni tipici problemi di controllo di ambito spaziale.

Parole chiave controllo ottimo non lineare, applicazioni spaziali, astrodi-
namica
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Chapter 1

Introduction

1.1 The optimal control problem

Optimal control deals with the problem of finding a set of functions that are
able to control a process over a given time interval, such that an associated
cost is minimized; this cost is, in general, a function of different variables:

states: those variables whose evolution is governed by a system of differential
equations, representing the dynamics of the process itself, that depend
on the control input;

controls: the input variables over which it is possible to optimize the whole
process;

final states: some of the states that are not eventually specified at final
time through which it is possible to modify the cost function.

The integration of the differential system requires some boundary conditions:
all of the initial conditions must be specified, while the final conditions can
be either prescribed or to be selected freely by the optimization process.
Additionally, it could be that the final time is not specified, so that the
optimization process is also in charge of selecting the optimal final time;
furthermore, the control variables could be limited, introducing in the problem
other constraints to be dealt with.

In general, the optimal control can be derived by applying Pontryagin’s
maximum principle (see [3]), that provides a necessary condition, or by
solving the Hamilton-Jacobi-Bellman equation, that represents a sufficient
condition descending from the Hamilton-Jacobi equation, which, in turn,
is equivalent to the Euler-Lagrange equation. Actually, the application of
these two principles typically requires to solve problems whose solutions
are not trivial or even not existent, so that only for particular cases, e.g,
linear optimal control problems, it is always possible to find a solution. For
the generic nonlinear optimal control problem it is often necessary to apply
approximate methods, that will be extensively presented in this thesis.
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Chapter 1

1.2 Why optimal control?

It must be said that control theory spans a multitude of possible approaches
to the issue of being able to control a process so that it will behave as
requested. Among the various possibilities (pole-placement, robust control,
adaptive control, intelligent control, etc.), optimal control stands with the
extreme simplicity of its statement: given a dynamical system and a cost
function, the optimal control is such that the cost function is minimized,
satisfying some boundary conditions. From the engineering point of view,
this is probably the most suitable way of expressing a control problem, with
an immediate feeling of what is the target of the controller, without being
concerned with the direct choice of parameters that can be difficult to relate
with the physics involved; the only requisites are a model of the dynamics
and the definition of both cost function and boundary conditions.

Going into the specific field of space applications, optimal control becomes
not only a good choice, but even a necessary one: the strict limitations in
terms of mass and power are such that, if no optimization occurs, it may be
impossible to accomplish the target of the mission. This critical aspect has
been a strong motivation for developing the optimal control theory, that is
now the main strategy adopted when dealing with space applications.

1.3 Aerospace applications

Optimal control has two main fields of applications for what concerns
aerospace related issues:

guidance: deals with the determination of the nominal optimal trajectory
to be followed;

control: deals with the adjustments and corrections needed for counteracting
possible off-nominal conditions.

Optimal guidance is typically computed off-line, resorting to a complete
model of the dynamics involved that is integrated over a finite time interval,
while optimal control, in a strict sense, is done on-line employing the sensors
aboard, solving an infinite-horizon problem.

Optimal guidance can be used to determine the trajectory to be followed
during a launch (see figure 1.1) or during an orbital transfer, while optimal
control provides a way of stabilizing the attitude of a spacecraft subject to
disturbing torques of various kind or of counteracting the natural drift from
the nominal location of the same spacecraft (see figure 1.2).

2
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Figure 1.1: VEGA’s first launch in February 2012

Figure 1.2: The International Space Station orbiting
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Chapter 2

The nonlinear optimal
control problem

2.1 Statement of the problem

The aim of this thesis is focused on finding a solution to the following problem.
Given a set of n first-order, differential equations

ẋ = f [x(t),u(t), t] , (2.1)

it is required to find the piecewise-continuous, admissible set of m control
functions u(t) defined over the given interval [ti, tf ], such that the scalar cost
function

J = ϕ [x(tf ), tf ] +

∫ tf

ti

L [x(t),u(t), t] dt, (2.2)

is minimized, satisfying n+ q boundary conditions of the form

x(ti) = xi n b.c.’s, (2.3)

x(tf ) = xf q b.c.’s, (2.4)

where 0 ≤ q ≤ n, and L is the Lagrangian of the system.

2.2 Solution by Euler-Lagrange equations

A straightforward way to solve the problem consists in adjoining the differ-
ential equations (2.1) to the cost function (2.2) with multiplier functions
λ(t):

J = ϕ [x(tf ), tf ] +

∫ tf

ti

[
L [x(t),u(t), t] + λT (t) {f [x(t),u(t), t]− ẋ}

]
dt,

(2.5)

5
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and also defining a scalar function H (the Hamiltonian) as follows:

H [x(t),u(t), t] = L [x(t),u(t), t] + λT (t)f [x(t),u(t), t] . (2.6)

The fixed-time first-order variation of equation (2.5) is obtained by differen-
tiation

δJ =

[
∂ϕ

∂x
δx

]
tf

+

∫ tf

ti

[
∂L

∂x
δx +

∂L

∂u
δu + δλT (f − ẋ)

+ λT
∂f

∂x
δx + λT

∂f

∂u
δu− λT δẋ

]
dt,

(2.7)

and the last term of the right hand side can be integrated by parts to yield:

δJ =

[
∂ϕ

∂x
δx

]
tf

−
[
λT δx

]tf
ti

+

∫ tf

ti

[
∂L

∂x
δx +

∂L

∂u
δu + δλT (f − ẋ)

+ λT
∂f

∂x
δx + λT

∂f

∂u
δu + λ̇

T
δx

]
dt.

(2.8)

Since the initial conditions are fixed, and no variation can thus occur, and
also remembering equation (2.6), expression (2.8) can be rewritten as

δJ =

(
∂ϕ

∂xf
− λTf

)
δxf +

∫ tf

ti

[(
∂H

∂x
+ λ̇

T
)
δx +

∂H

∂u
δu

+δλT
(
∂H

∂λ
− ẋ

)]
dt.

(2.9)

In order to locate the minimum of the cost function, its first variation must
be null for any arbitrary variation of x, u, λ and for any arbitrary variation of
those final states that has not been fixed among the boundary conditions; this
means that, to find the optimal control, the following differential-algebraic
equations, called Euler-Lagrange equations, must be solved:

ẋ =
∂H

∂λ
= f [x(t),u(t), t] , (2.10)

λ̇
T

= −∂H
∂x

= −∂L
∂x
− λT ∂f

∂x
, (2.11)

∂H

∂u
=
∂L

∂u
+ λT

∂f

∂u
= 0, (2.12)

enforcing the n+ q boundary conditions on the state

x(ti) = xi n b.c.’s, (2.13)

x(tf ) = xf q b.c.’s, (2.14)

6
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together with the n− q boundary conditions on the co-state descending from
the transversality condition

λTf =
∂ϕ

∂xf
n− q b.c.’s, (2.15)

for the general case of having prescribed q states at final time. Solving
equation (2.12) for the control u(t), and then substituting inside equations
(2.10) and (2.11) leads to an Hamiltonian system with variables x(t) and
λ(t): {

ẋ

λ̇

}
=


∂H

∂λ
(x,λ)

−∂H
∂x

(x,λ)

 , (2.16)

with the appropriate boundary conditions for x and λ. It must be remembered
that those above are necessary conditions for minimizing the cost function,
since also a maximum of the cost function would satisfy equations (2.16). Of
course, the problem could be more complex: final time could be not assigned,
and so it would have to be treated as a variable to be optimized according
to the problem; the states at final time could be constrained implicitly,
thus yielding additional equations to be adjoined to the cost function with
additional Lagrange multipliers; the control input could be bounded within
given limits, so that the problem should take into account possible path
constraints; these and other aspects are dealt with in [1].

2.3 An example: maximum velocity transfer to a
rectilinear path

The following example has been formulated and solved in [1]: consider a
particle of mass m acted upon by a thrust force of constant magnitude ma.
Assuming planar motion with velocity [u, v], it is required to find the optimal
time-history of the thrust angle β such that after a time T the particle is
brought to an horizontal path at an height h having maximized the horizontal
component u of the velocity, starting from the origin of the reference system
of coordinates [x, y] at time t = 0. The equations of motion for the system
are

ẋ = u,

ẏ = v,

u̇ = a cosβ,

v̇ = a sinβ,

while the cost function, to be maximized, is

J = ϕ(xf ) = u(T ),

7
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since it is required to extremalize a function of the final conditions only, and
so the Hamiltonian H is simply

H = λT f =
{
λx λy λu λv

}
u
v

a cosβ
a sinβ


= λxu+ λyv + λua cosβ + λva sinβ.

At initial time the particle is located at the origin of the reference system
and it is not moving, while the only prescribed final conditions are that the
particle must be at an height h with no vertical component of velocity, so
that the boundary conditions are

x = 0,
u = 0,
y = 0,
v = 0,


t=0

y = h,
v = 0.

}
t=T

Enforcing Euler-Lagrange equations yields the dynamics of the multipliers,

λ̇ = −
(
∂H

∂x

)T
= −

(
∂f

∂x

)T
λ

⇓
λ̇x = 0,

λ̇y = 0,

λ̇u = −λx,
λ̇v = −λy,

the optimal control law,

∂H

∂β
= −λua sinβ + λv cosβ = 0

⇓

tanβ =
λv
λu

⇓

β = tan−1

(
λv
λu

)
,

and the remaining boundary conditions

λx(T ) =
∂ϕ

∂xf
= 0,

λu(T ) =
∂ϕ

∂uf
= 1.

8



The nonlinear optimal control problem

Now the problem is reduced to solving the differential equations of states
and multipliers

ẋ = u,

ẏ = v,

u̇ = a cos

[
tan−1

(
λv
λu

)]
,

v̇ = a sin

[
tan−1

(
λv
λu

)]
,

λ̇x = 0,

λ̇y = 0,

λ̇u = −λx,
λ̇v = −λy,

satisfying the boundary conditions

x = 0,
y = 0,
u = 0,
v = 0,


t=0

y = h,
v = 0,
λx = 0,
λu = 1.


t=T

The dynamics of the multipliers are easy to integrate

λx = c1,

λy = c2,

λu = −c1t+ c3,

λv = −c2t+ c4,

and, applying the boundary conditions,

λx = 0,
λu = 1,

⇒ c1 = 0,
c3 = 1,

the control law can be rewritten as

tanβ = −c2t+ c4.

Simple manipulations allow to cast the previous expression in a different
form:

tanβ = −c2t+ c4

= −c2T + c4 + c2T − c2t

= λv (T ) + λy (T )T − λy (T ) t

= tanβ0 − ct,

9
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where tanβ0 = λv (T ) + λy (T )T and c = λy (T ). Then, the system of
equations can be integrated, using β as the independent variable instead of
t, thus obtaining

x =
a

c2

(
secβ0 − secβ − tanβ log

tanβ0 + secβ0

tanβ + secβ

)
,

y =
a

2c2

[
(tanβ0 − tanβ) secβ0 − (secβ0 − secβ) tanβ

− log
tanβ0 + secβ0

tanβ + secβ

],
u =

a

c
log

tanβ0 + secβ0

tanβ + secβ
,

v =
a

c
(secβ0 − secβ) .

The constants β0 and c are determined from the two final boundary conditions
v = 0 and y = h, even though those relations turn out to be implicit:

4h

aT 2
=

1

sinβ0
− 1

2 tan2 β0
log

secβ0 + tanβ0

secβ0 − tanβ0
,

c =
2 tanβ0

T
⇒ tanβ = tanβ0

(
1− 2t

T

)
.

In figure 2.1a it is shown the optimal trajectory for h = 10, T = 10 and
a = 1, while in figures 2.1b, 2.1c and 2.1d are shown the time-profiles of the
thrust angle and of the velocity’s components, respectively.

Even though the problem solved above stems from very simple dynamics
with just four equations that are even linear in the states, it is clear that
the analytical solution is not an easy task to deal with. In general, for
more complex problems, involving many more states and with increased
nonlinearities, it is likely that analytical solutions do not exist; this leads
to the need of developing numerical procedures to solve the optimal control
problem. Those procedures, actually, only work with the necessary conditions,
converging toward local minima; there is no way of knowing if the solution
found is the global minimum.

2.4 The nonlinear programming problem

The general Nonlinear Programming (NLP) problem can be stated as follows:
find x ∈ Rn to minimize the scalar objective function F (x) subject to the
m constraints

cL ≤ c (x) ≤ cU (2.17)

and n simple bounds
xL ≤ x ≤ xU . (2.18)
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Figure 2.1: Solution of the maximum-velocity transfer problem
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This problem is a constrained minimization, with equality and inequality
constraints; first, it is interesting to deal with the simpler unbounded, equality-
constrained minimization, i.e., to impose cL = cU = 0, xL = −∞ and
xU = +∞: the classical approach is to define the Lagrangian L

L (x,λ) = F (x)− λT c (x) , (2.19)

introducing the vector λ ∈ Rm of Lagrange multipliers. Necessary conditions
for the point (x∗,λ∗) to be an optimum are

∇xL (x∗,λ∗) = 0 (2.20)

∇λL (x∗,λ∗) = 0. (2.21)

The gradient of L with respect to x is

∇xL = g −GTλ = ∇F −
m∑
i=1

λi∇ci (2.22)

and the gradient of L with respect to λ is

∇λL = −c (x) . (2.23)

Typically those equations are solved iteratively, following Newton’s method;
to do this, first the expressions (2.22) and (2.23) are expanded as first-order
Taylor series about a certain point (x,λ), so that the gradients become

∇xL = g −GTλ+ HL (x− x)−GT
(
λ− λ

)
(2.24)

∇λL = −c−GT (x− x) , (2.25)

where HL is the Hessian of the objective function. Next, these linear
approximations are solved for x and λ, assuming that the gradients are null;
this leads to linearly-approximated solutions for the x and λ vectors, and the
procedure is iterated until the difference between two consecutive iterations
is less than a prescribed value. By defining a search-direction p for a step
x = x + p, the system to be solved becomes[

HL GT

G 0

]{
−p

λ

}
=

{
g
c

}
, (2.26)

which is known as the Karush-Kuhn-Tucker system. In this way the solution is
based on a linear approximation of the constraints and a linear approximation
of the gradients, equivalent to a quadratic approximation of the quantity to
be optimized.

Inequality constraints are treated introducing a distinction between an
active set A and an inactive set A′: given a point x, those constraints that
are satisfied as equalities belong to A, while those that are strictly satisfied

12
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belong to A′. Of course, active constraints can be treated as equalities, but
it is still necessary to find out which constraints are active an which are not,
employing an active set strategy. To do this, it must be checked the sign
of the corresponding Lagrange multipliers: a negative Lagrange multiplier
identifies a constraint that is not active, and thus that constraint can be left
out of the Lagrangian.

Analogously with the optimal control problem, also for nonlinear pro-
gramming finding closed-form solutions is not a trivial task; again, numerical
procedures must be employed to solve most problems, as those related to
space applications.

13
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Approximate methods

3.1 Why approximate methods?

As seen in the previous chapter, the nonlinear, optimal control problem is
reduced to solving a so called Two-Point Boundary Value Problem (TPBVP),
i.e., a system of differential equations for the state and the co-state, whose
boundary conditions are given both at the initial and final time. This kind
of problem is hard to solve analytically, because the differential equations are
often non-trivial and also because the system can be very large. Of course,
have been developed numerical procedures that are able to solve TPBVPs
using finite difference schemes, but the downside of these algorithms is that
they require a good starting guess in order to converge quickly to the optimal
solution (shooting technique); differently, a starting guess that is not “near”
the optimal solution will cause the algorithms to require many iterations or
even not to converge to an optimal solution. Furthermore, TPBVPs related
to optimal control are such that the user must not only provide a starting
guess for the state (which can still prove to be a difficult task), but a starting
guess for the co-state, which typically lacks of physical meaning, is also
needed.

The above discussion leads to think that it would be convenient to define
a procedure that has little or no need at all of a starting guess, even at the
cost of having a sub-optimal solution; this is exactly the philosophy behind
the approximate methods that have been developed over the past decades:
the solution of the TPBVP is avoided by means of solving simpler problems
iteratively.

Examples of approximate methods are: direct transcription or direct
optimization, introduced in [24, 25, 26], which is based on representing states
and/or control variables with piecewise-continuous polynomials and then
using NLP to solve the control problem, instead of solving a TPBVP; another
way is to employ generating functions [27], obtained by applying a canonical
transformation to the Hamiltonian system (2.10)-(2.11)-(2.12) and then using
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the generating function to compute the initial conditions of the co-state, so
that the problem is solved with a simple forward-integration; lastly, taking
advantage of the well-developed theory of linear optimal control, it is possible
to rewrite the nonlinear problem in a pseudo-linear form, and then to apply
the common procedure to solve linear optimal control problems: this is what
State Dependent Riccati Equation (SDRE) and Approximating Sequence of
Riccati Equation (ASRE) methods do in order to solve a nonlinear optimal
control problem, the former over an infinite time-horizon and the latter
over a finite time-horizon. In the following, ASRE method will be employed
extensively, while the interested reader is directed to [15] and [16] for further
explanations regarding the SDRE method.

3.2 Approximating Sequence of Riccati Equation

The ASRE method transforms nonlinear dynamics and cost function into
pseudo-linear and quadratic-like forms respectively, using state-dependent
functions. Then, these functions are evaluated using the solutions of the
previous iteration, and the sequence of linear time-varying problems is solved
until convergence. This method has been first developed by Banks and
Dinesh in [10], then it has been further studied by Çimen and Banks in
[11] and [12]. At each step, rather than dealing with a Riccati equation,
it is possible to solve the problem with a State-Transition Matrix (STM)
approach, as presented in [13].

The dynamic system

ẋ = f [x(t),u(t), t] , (3.1)

and the scalar cost function to be minimized

J = ϕ [x(tf ), tf ] +

∫ tf

ti

L [x(t),u(t), t] dt, (3.2)

are rearranged as

ẋ = A (x(t), t) x + B (x(t),u(t), t) u, (3.3)

J =
1

2
xT (tf )S (x(tf ), tf ) x(tf ) +

1

2

∫ tf

ti

[
xT (t)Q (x(t), t) x(t)

+uT (t)R (x(t),u(t), t) u(t)
]
dt,

(3.4)

where the functions A, B, Q and R have appropriate dimensions, and,
furthermore, S and Q must be symmetric and positive-semidefinite, while R
has to be symmetric and positive-definite. The previous expressions define a
linear, time-variant optimal control problem, and the algorithm is started
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using the initial conditions xi and no control to evaluate the state-dependent
functions, yielding a Problem 0:

ẋ[0] = A (xi, t) x[0] + B (xi, 0, t) u[0], (3.5)

J [0] =
1

2
x[0]T (tf )S (xi, tf ) x[0](tf ) +

1

2

∫ tf

ti

[
x[0]T (t)Q (xi, t) x[0](t)

+u[0]T (t)R (xi, 0, t) u[0](t)
]
dt,

(3.6)

The solution of this first problem is used to evaluate the state-dependent
functions at the next step; thus, at a generic, subsequent iteration, Problem
k has to be solved:

ẋ[k] = A
(
x[k−1](t), t

)
x[k] + B

(
x[k−1](t),u[k−1](t), t

)
u[k], (3.7)

J [k] =
1

2
x[k]T (tf )S

(
x[k−1](tf ), tf

)
x[k](tf )

+
1

2

∫ tf

ti

[
x[k]T (t)Q

(
x[k−1](t), t

)
x[k](t)

+u[k]T (t)R
(
x[k−1](t),u[k−1](t), t

)
u[k](t)

]
dt.

(3.8)

Problem k is again a linear time-varying problem, that employs the solutions
x[k−1] and u[k−1] from previous iteration k−1 to evaluate the state-dependent
functions A, B, Q and R. Solving Problem k gives x[k] and u[k].

In the present implementation of the ASRE algorithm, the stopping
criteria for the iterative process is based on the difference between two
consecutive iterations; convergence is assumed to be reached when∥∥∥x[k] − x[k−1]

∥∥∥
∞

= max
t∈[ti,tf ]

{∣∣∣x[k]
j (t)− x[k−1]

j (t)
∣∣∣ , j = 1, . . . , n

}
≤ ε, (3.9)

where ε is a prescribed tolerance. This approximate method has been proved
to converge to the optimal solution by Çimen and Banks in [12]. The
work-flow of the algorithm is shown in figure 3.1. In conclusion, the ASRE
procedure is based on solving iteratively a sequence of linear, time-varying
optimal control problems, i.e., Linear Quadratic Regulator (LQR) problems,
whose methodology will be addressed in the next section.

3.3 Solution by the State-Transition Matrix

The classical LQR problem can be subject to three different kinds of boundary
conditions:

Hard constrained problem: both initial and final conditions are pre-
scribed for all the n states.
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Figure 3.1: Work-flow of the ASRE algorithm
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Soft constrained problem: only initial conditions are prescribed.

Mixed constrained problem: final conditions are given only for q < n
states.

Each of the three cases above is solved using the STM technique, but slight
modifications occur to take into account the different boundary conditions.
In general, when x[k−1] and u[k−1] are plugged into (3.3) and (3.4), the
dynamics have the form

ẋ = A(t)x(t) + B(t)u(t), (3.10)

and the cost function is

J =
1

2
xTf S(tf )xf +

1

2

∫ tf

ti

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt, (3.11)

where the matrix S(tf ) varies according to the boundary conditions applied;
still, in general, the Hamiltonian is

H = xT (t)Q(t)x(t) + uT (t)R(t)u(t) + λT (t)A(t)x(t) + λT (t)B(t)u(t),
(3.12)

so that the control, from equation (2.12), is

∂H

∂u
= R(t)u(t) + BT (t)λ(t) = 0 (3.13)

⇓
u(t) = −R−1(t)BT (t)λ(t) (3.14)

and the Hamiltonian system of equation (2.16) will be

{
ẋ

λ̇

}
=


∂H

∂λ
(x,λ)

−∂H
∂x

(x,λ)

 =

{
A(t)x(t) + B(t)u(t)

−Q(t)x(t)−ATλ

}

=

{
A(t)x(t) + B(t)R−1(t)BT (t)λ(t)

−Q(t)x(t)−AT (t)λ

}
,

(3.15)

yielding the TPBVP{
ẋ

λ̇

}
=

[
A(t) −B(t)R−1(t)BT (t)
−Q(t) −AT (t)

]{
x(t)
λ(t)

}
, (3.16)

with the appropriate boundary conditions. Instead of solving the problem
by the Riccati equation, it is possible to employ the STM Φ(τ, t), i.e., the
matrix that, in general, solves{

x(t)
λ(t)

}
= Φ(τ, t)

{
x(τ)
λ(τ)

}
. (3.17)
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For us it is more interesting to write the relation between initial conditions
at time ti and conditions at a generic time t ∈ [ti, tf ]:{

x(t)
λ(t)

}
= Φ(ti, t)

{
x(ti)
λ(ti)

}
. (3.18)

To cut a long story short, the STM Φ(τ, t) accounts for the variations of the
final state due to the variations of the initial state of a system with given
dynamics. Moreover, for linear systems, this matrix maps also the state from
a condition at time τ to a different condition at time t. In our case, the STM
can be computed by solving the differential equation

∂Φ(ti, t)

∂t
=

[
A(t) −B(t)R−1(t)BT (t)
−Q(t) −AT (t)

]
Φ(ti, t). (3.19)

Of course, the transition from a condition to itself is mediated by an identity
matrix, and this gives the initial condition

Φi = Φ(ti, ti) = I. (3.20)

For an autonomous system this computation would be easier, since in general

∂Φ(t)

∂t
= MΦ(t), Φ(ti) = I (3.21)

⇓
Φ(t) = eMt, (3.22)

while the the time-varying case requires the integration of the system matrix

Φ(t) = Ce
∫
M(t)dt, (3.23)

where C is a constant such that Φ(ti) = I. Equivalently, this can be done by
partitioning the differential equation into four blocks[

Φ̇xx(ti, t) Φ̇xλ(ti, t)

Φ̇λx(ti, t) Φ̇λλ(ti, t)

]
=

[
A(t) −B(t)R−1(t)BT (t)
−Q(t) −AT (t)

] [
Φxx(ti, t) Φxλ(ti, t)
Φλx(ti, t) Φλλ(ti, t)

]
.

(3.24)

These four blocks can be studied separately

Φ̇xx(ti, t) = A(t)Φxx(ti, t)−B(t)R−1(t)BT (t)Φλx(ti, t), Φxx(ti, ti) = I,
(3.25)

Φ̇xλ(ti, t) = A(t)Φxλ(ti, t)−B(t)R−1(t)BT (t)Φλλ(ti, t), Φxλ(ti, ti) = 0,
(3.26)

Φ̇λx(ti, t) = −Q(t)Φxx(ti, t)−AT (t)Φλx(ti, t), Φλx(ti, ti) = 0, (3.27)

Φ̇λλ(ti, t) = −Q(t)Φxλ(ti, t)−AT (t)Φλλ(ti, t), Φλλ(ti, ti) = I, (3.28)
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and integrated, to yield the four blocks of the STM

Φxx(ti, t) = I +

∫ tf

ti

[
A(t)Φxx(ti, t)−B(t)R−1(t)BT (t)Φλx(ti, t)

]
dt,

(3.29)

Φxλ(ti, t) =

∫ tf

ti

[
A(t)Φxλ(ti, t)−B(t)R−1(t)BT (t)Φλλ(ti, t)

]
dt, (3.30)

Φλx(ti, t) =

∫ tf

ti

[
−Q(t)Φxx(ti, t)−AT (t)Φλx(ti, t)

]
dt, (3.31)

Φλλ(ti, t) = I +

∫ tf

ti

[
−Q(t)Φxλ(ti, t)−AT (t)Φλλ(ti, t)

]
dt. (3.32)

Having determined the STM Φ(ti, t), it is now possible to write the solution
of the control problem as{

x(t)
λ(t)

}
= Φ(ti, t)

{
xi
λi

}
. (3.33)

It is apparent that, in general, it is needed to evaluate λi, and this is done
requiring the enforcement of the boundary conditions; the three possible
cases, hard, soft and mixed constrained problems, are discussed below.

3.3.1 Hard constrained problem

For the Hard Constrained Problem (HCP), boundary conditions are provided
for all states both at initial and final time

x(ti) = xi, (3.34)

x(tf ) = xf , (3.35)

and the value of λi can be obtained by simply enforcing the respect of the
final conditions, writing {

x(tf )
λ(tf )

}
= Φ(ti, tf )

{
xi
λi

}
(3.36)

⇓
x(tf ) = xf = Φxx(ti, tf )xi + Φxλ(ti, tf )λi (3.37)

⇓
λi = Φ−1

xλ (ti, tf ) [xf −Φxx(ti, tf )xi] , (3.38)

so that the solutions of the problem for state and co-state will be

x(t) = Φxx(ti, t)xi + Φxλ(ti, t)Φ
−1
xλ (ti, tf ) [xf −Φxx(ti, tf )xi] , (3.39)

λ(t) = Φλx(ti, t)xi + Φλλ(ti, t)Φ
−1
xλ (ti, tf ) [xf −Φxx(ti, tf )xi] , (3.40)
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and for the control

u(t) = −R−1(t)BT (t)λ(t) (3.41)

⇓
u(t) = −R−1(t)BT (t)Φλx(ti, t)xi −R−1(t)BT (t)Φλλ(ti, t)Φ

−1
xλ (ti, tf )xf

+R−1(t)BT (t)Φλλ(ti, t)Φ
−1
xλ (ti, tf )Φxx(ti, tf )xi.

(3.42)

A necessary condition for the existence of a solution is that the matrix Φxλ

must be invertible, i.e., non-singular.

3.3.2 Soft constrained problem

Soft Constrained Problem (SCP) only provide initial conditions for the state;
this means that the final state will not be constrained, and thus the variations
of the final state are taken into account inside the cost function using a
weighting matrix S(tf ) ∈ Rn×n:

J =
1

2
xTf S(tf )xf +

1

2

∫ tf

ti

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt. (3.43)

The control problem is defined by 2n differential equations, but only n
boundary conditions are given; applying the transversality condition from
equation (2.15), the missing boundary conditions are found through

λf =

(
∂ϕ

∂xf

)T
(3.44)

⇓
λ(tf ) = S(tf )x(tf ). (3.45)

Enforcing the respect of the final conditions{
x(tf )
λ(tf )

}
= Φ(ti, tf )

{
xi
λi

}
(3.46)

⇓{
x(tf )

S(tf )x(tf )

}
= Φ(ti, tf )

{
xi
λi

}
, (3.47)

yields an algebraic system of two vectorial equations with two vectorial
unknowns, x(tf ) and λi:

x(tf ) = Φxx(ti, tf )xi + Φxλ(ti, tf )λi, (3.48)

S(tf )x(tf ) = Φλx(ti, tf )xi + Φλλ(ti, tf )λi. (3.49)
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Substituting expression (3.48) in (3.49) for x(tf ) and solving for λi gives

λi = [Φλλ(ti, tf )− S(tf )Φxλ(ti, tf )]−1 [S(tf )Φxx(ti, tf )−Φλx(ti, tf )] xi,
(3.50)

so that the solution of the control problem is

x(t) =
[
Φxx(ti, t) + Φxλ(ti, t) [Φλλ(ti, tf )− S(tf )Φxλ(ti, tf )]−1

[S(tf )Φxx(ti, tf )−Φλx(ti, tf )]
]
xi,

(3.51)

λ(t) =
[
Φλx(ti, t) + Φλλ(ti, t) [Φλλ(ti, tf )− S(tf )Φxλ(ti, tf )]−1

[S(tf )Φxx(ti, tf )−Φλx(ti, tf )]
]
xi,

(3.52)

u(t) = −R−1(t)BT (t)λ(t). (3.53)

In this case, a necessary condition for the existence of the solution is that
the matrix

Φλλ(ti, tf )− S(tf )Φxλ(ti, tf )

must be non-singular.

3.3.3 Mixed constrained problem

The Mixed Constrained Problem (MCP) is mid-way between the previous
examined cases: q < n states are prescribed both at initial and final time,
while the others are given only at initial time. Taking advantage of the
above discussions, both state x and co-state λ are partitioned into subsets,
depending on whether the final condition is prescribed or not. Let the state
be decomposed as x = (y, z), where y are the q components known at
final time, y(tf ) = yf , and z are the remaining n − q components of the
state. The co-state shall be decomposed as λ = (ξ,η) accordingly. The
transversality condition becomes ηf = S(tf )zf , where S(tf ) ∈ R(n−q)×(n−q)

is the weighting matrix of the final conditions. The STM is then partitioned,
too, so that the solving system becomes

y(t)
z(t)
ξ(t)
η(t)

 =


Φyy(ti, t) Φyz(ti, t) Φyξ(ti, t) Φyη(ti, t)
Φzy(ti, t) Φzz(ti, t) Φzξ(ti, t) Φzη(ti, t)
Φξy(ti, t) Φξz(ti, t) Φξξ(ti, t) Φξη(ti, t)
Φηy(ti, t) Φηz(ti, t) Φηξ(ti, t) Φηη(ti, t)




yi
zi
ξi
ηi

 . (3.54)

Enforcing the respect of the final conditions gives an algebraic system of four
vectorial equations with four vectorial unknowns zf , ξi, ξf and ηi

yf
zf
ξf

S(tf )zf

 =


Φyy(ti, tf ) Φyz(ti, tf ) Φyξ(ti, tf ) Φyη(ti, tf )
Φzy(ti, tf ) Φzz(ti, tf ) Φzξ(ti, tf ) Φzη(ti, tf )
Φξy(ti, tf ) Φξz(ti, tf ) Φξξ(ti, tf ) Φξη(ti, tf )
Φηy(ti, tf ) Φηz(ti, tf ) Φηξ(ti, tf ) Φηη(ti, tf )




yi
zi
ξi
ηi

 ,

(3.55)
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that, once solved, gives the initial co-state λi = (ξi,ηi), allowing, as before,
to find the solution of the control problem.
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ASRE method:
implementation issues and
improvements

In the previous chapter, the ASRE methodology has been addressed in its
theoretical formulation, but moving to the numerical implementation of the
algorithm leads to the arousal of many issues, most of them related to the
exploitation of the degrees of freedom that this method involves. In this
chapter it will be then explored what are the features of ASRE method
that can be exploited in order to improve the algorithm. From now on,
for simplicity’s sake, it will be assumed that the nonlinear dynamics are
control-affine, i.e., the matrix B (x, t) will be unique and not a function of
the control u(t); this is made because dynamics that are not control-affine
would led to further degrees of freedom that has been chosen not to explore.
Also, the time-dependence of non-autonomous systems will be omitted to
avoid a possible clumsiness of the notation.

4.1 Discretization of the solution

First of all, it is sensible to spend some words about the numerical discretiza-
tion that is necessarily involved in the process: the time domain [ti, tf ] is
divided into N − 1 intervals using N internal points; those internal points
constitute the discretized time-vector t. Actually, the numerical integration
of the STM, that is the core of the algorithm, is carried out using a variable-
step numerical Ordinary Differential Equation (ODE) solver, that guarantees
an higher precision, but the results, i.e., the state, the co-state and the
control, are again formatted as vector (or matrices) containing samples taken
at the time instants of the time-vector t.
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4.2 Dependence on the factorization

It must be said that the ASRE algorithm requires a factorization of the
nonlinear dynamics with State Dependent Coefficients (SDCs). The reader
will immediately notice that finding such a factorization can be a non-trivial
task, mostly because, for systems with at least two states, there exists an
infinite number of factorizations. Given a dynamical system

ẋ = f(x), (4.1)

where xT = {x1, x2}, so that

ẋ1 = f1(x1, x2), (4.2)

ẋ2 = f2(x1, x2), (4.3)

it is possible, for example, to factorize the dynamics using a matrix A1(x)

{
ẋ1

ẋ2

}
=

f1(x1, x2)

x1
0

0
f2(x1, x2)

x2


︸ ︷︷ ︸

A1(x)

{
x1

x2

}
, (4.4)

or using a matrix A2(x)

{
ẋ1

ẋ2

}
=

 0
f1(x1, x2)

x2
f2(x1, x2)

x1
0


︸ ︷︷ ︸

A2(x)

{
x1

x2

}
. (4.5)

Not only, as there exists a family of linear combinations of these two particular
factorizations

A3(x) = (1− α) A1(x) + αA2(x), 0 ≤ α ≤ 1 (4.6)

that will produce other factorizations of the initial system

A3(x)x = [(1− α) A1(x) + αA2(x)] x = (1− α) f(x)+αf(x) = f(x), (4.7)

and this procedure can be applied to any system with n > 1 states. One
could think that choosing a factorization instead of another will not influence
the solution to which the ASRE method converges, but, actually, this is not
the case, as shown by the following example.
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4.2.1 An example

Let us consider an optimal control problem, whose dynamics, taken from
[18], are

ẋ1 = x2,

ẋ2 = x1x2 + u,

with

x(ti) =

{
2
1

}
, ti = 0,

x(tf ) =

{
4
1

}
, tf = 4.

The cost function is

J =

∫ tf

ti

[
x2

1 + x2
2 + u2

]
dt.

Since the dynamics of the problem are control-affine and the cost function is
quadratic with reference to both states and control, the factorized form of
the problem

ẋ = A x + B u,

J =

∫ tf

ti

[
xTQ x + uTR u

]
dt,

is unique (but from matrix A) by using

B =

[
0
1

]
, Q =

[
1 0
0 1

]
, R =

[
1
]
.

The uncontrolled-dynamics are nonlinear, and thus they can be factorized in
many forms; for example, two possible factorizations are

A1(x) =

[
0 1
0 x1

]
, A2(x) =

[
0 1
x2 0

]
.

As underlined in the previous section, given two factorizations, it is always
possible to obtain infinite factorizations by linear combinations. Following
this idea, a third factorization, or, better, a family of factorizations, is

A3 (α,x) = (1− α) A1(x) + αA2(x),

with 0 ≤ α ≤ 1. Figure 4.1 shows the trajectories obtained by solving
the problem using the ASRE method; first of all, it is clear that the three
different factorizations lead to three different solutions, and this of course
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Figure 4.1: Trajectories of the solutions obtained with three different factor-
izations A1, A2 and A3(α = 0.5)

means that either the three solutions are the same in terms of the cost
function or one of them will be better than the others. Looking at the values
of the cost function for the three factorizations in Table 4.1, it appears that
the best one is A1(x), and also its rate of convergence is the fastest; the
trend is confirmed by factorization A3(x), whose cost function and rate of
convergence are bounded by the performances of the other two factorizations
for 0 ≤ α ≤ 1.

The above example shows clearly that the choice of the factorization is
of paramount importance for the ASRE method, because choosing the right
factorization can lead to a better solution, while other factorizations can
yield poor results or even not converge. In the next sections it will be studied
what are the properties of a factorization that influence the convergence of
the algorithm.

4.3 Consistency with boundary conditions

The first remark regarding the properties of a factorization is about con-
sistency, i.e., the fact that it is possible for some factorizations to be not
defined for some points of the state-space. In general, it is not possible to
know a priori what will be the trajectory of the solution of a given problem,
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Table 4.1: Performances of the three factorizations, termination tolerance
10−6

Objective function Iterations

A1 52.24 12
A2 64.91 56
A3 53.13 21

so that a particular factorization cannot be checked for consistency along
the trajectory, but, on the other hand, boundary conditions are prescribed,
at least for initial time. Recalling Problem 0 of the ASRE method for a
control-affine problem

ẋ[0] = A (xi, t) x[0] + B (xi, t) u[0], (4.8)

J [0] =
1

2
x[0]T (tf )S (xi, tf ) x[0](tf ) +

1

2

∫ tf

ti

[
x[0]T (t)Q (xi, t) x[0](t)

+u[0]T (t)R (xi, t) u[0](t)
]
dt,

(4.9)

it is apparent that matrix A(x, t) has to be defined for x(ti) = xi, otherwise
any subsequent numerical manipulation would become cumbersome.

Regarding final conditions, that are assigned in the hard constrained and
mixed constrained formulations, it must be noticed that the state-dependent
matrices are never directly evaluated for x(tf ) = xf ; final conditions are
enforced through the state transition matrix

x(t) = Φxx(ti, t)xi + Φxλ(ti, t)Φ
−1
xλ (ti, tf ) [xf −Φxx(ti, tf )xi] . (4.10)

If the above expression was evaluated analytically for t = tf , the state at
time t will be exactly equal to the final condition enforced

x(tf ) = Φxx(ti, tf )xi + Φxλ(ti, tf )Φ−1
xλ (ti, tf ) [xf −Φxx(ti, tf )xi] (4.11)

= Φxx(ti, tf )xi + xf −Φxx(ti, tf )xi (4.12)

= xf , (4.13)

but, actually, the numerical procedure, knowing the expression of the time-
function Φxλ(ti, t), first computes the numerical value of Φ−1

xλ (ti, tf ), then
evaluates the product of the previous functions

Φxλ(ti, t)Φ
−1
xλ (ti, tf ) = h(t) (4.14)

and lastly function h(t) is evaluated for t = tf . Due to numerical approxi-
mations, it is possible that h(tf ) 6= I, and this means that the algorithm is
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likely to produce trajectories that are nominally fixed at the final conditions,
but actually only passing very near to them

x(tf ) = xf + δ, ‖δ‖ � 1. (4.15)

This fact, that could seem to be a lack of precision, in some cases allows
to tolerate “nominal” inconsistency with final conditions, without worrying
about the numerical procedure. Still, the consistency with final conditions is
in general a critical issue.

Coming back to the choice of the factorizations, it is clear that the first
required property of a factorization to be used within the ASRE method
is the consistency with initial conditions, while the consistency with final
conditions is, strictly speaking, not always necessary, but it is advisable to
exclude those factorizations that are not consistent with final conditions.

4.4 Global controllability

A second property that the ASRE method requires in order to work at its
best is controllability : a system is controllable if and only if always exists
an admissible control that is able transfer the state from a condition to
another in a finite time. For a non-controllable system, in general, it is not
always possible to move from one state to another in a finite time, and this
would pose some problems in terms of solving the optimal control problem
associated, and so the choice of the factorization must be such that the
system will be controllable.

Controllability is a property that can be checked for in different ways,
depending on the system that has to be studied; in the following it will be
presented how to check form controllability for nonlinear systems, linear
time-variant systems and linear time-invariant systems.

4.4.1 Controllability check for nonlinear systems

In [4, 18] it has been proposed an algorithm for the nonlinear, control-affine
system

ẋ = a (x) + B (x) u, (4.16)

where x ∈ Rn and u ∈ Rm, whose controllability is defined in terms of the
dimension of the span of the smallest nonsingular and involutive distribution
∆c (x) containing the columns bi of B (x), 1 ≤ i ≤ m, and invariant under
a (x) and the bi: a sufficient condition for system (4.16) to be controllable is

rank [∆c (x)] = n ∀x (4.17)

In order to evaluate ∆c (x) it is possible to use the following recursive
algorithm:

30



ASRE method: implementation issues and improvements

1. Let ∆0 = span (B) = span (bi).

2. Let ∆1 = ∆0 + [a,bi] + [bj ,bi], 1 ≤ i ≤ m, 1 ≤ j ≤ m, where [a,g] is
the Lie bracket of a and g, i.e.,

[a,g] =
∂g

∂x
a− ∂a

∂x
g, (4.18)

and + indicates the sum of the spans.

3. Let ∆k = ∆k−1 + [a,dj ] + [bi,dj ], 1 ≤ i ≤ m, 1 ≤ j ≤ m, where {dj}
is a basis for ∆k−1.

4. Terminate when ∆k+1 = ∆k.

In this way it is possible to check for the controllability of a nonlinear,
control-affine system, but in general it is not true that if the nonlinear system
is controllable (true controllability) then any factorization will lead to a
controllable system (factored controllability), as stated in [18]; this means
that each factorization has to be checked for controllability.

4.4.2 Controllability check for linear time-variant systems

Similarly to the check for consistency, it must be verified whether a given
factorization A(x, t) is controllable; this is necessary because the ASRE
algorithm is actually based on solving a sequence of LQR problems, which
in general are Linear Time-Variant (LTV) problems, as can be seen by
inspecting a generic iteration k of the sequence

ẋ[k] = A
(
x[k−1](t), t

)
x[k] + B

(
x[k−1](t), t

)
u[k]. (4.19)

The controllability of the system depends only upon the choice of the fac-
torization A

(
x[k−1](t), t

)
, which is actually only time dependent, since the

solution x[k−1](t) of the previous iteration k−1 is known. The controllability
property of the ASRE method for a given factorization is then reduced to
the controllability of a LTV system.

The most natural way of checking the controllability of a LTV system is
by employing the controllability gramian

P =

∫ tf

ti

Φ(ti, τ)B(τ)BT (τ)ΦT (ti, τ)dτ, (4.20)

where Φ(ti, τ) is the STM, solution of

Φ̇(t, τ) = A(t)Φ(t, τ), Φ(t, t) = I. (4.21)

According to [5], a system is controllable over the domain [ti, tf ] if and only
if the controllability gramian is non-singular, or, equivalently,

rank [P] = n, (4.22)
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where n is the dimension of the state-space. Since the controllability gramian
is a square matrix, it is sufficient to have

det [P] 6= 0, (4.23)

to guarantee controllability on the whole time domain [ti, tf ]. Actually, it
would be better to know whether a factorization can lead to a non-controllable
system before initializing the ASRE algorithm, i.e., to know if there is in
general any point on the space-time domain that would lead to a loss of
controllability; this can be done employing a figure that is explicitly function
of the state and time, as shown in the next section.

4.4.3 Controllability check for linear time-invariant systems

The controllability criterion for linear time-invariant systems is a simplifi-
cation of the general controllability criterion; for a system whose dynamics
are

ẋ = A x + B u, (4.24)

where x ∈ Rn and u ∈ Rm, the controllability matrix is defined as

Kc =
[
B AB A2B · · · An−1B

]
, (4.25)

and the system will be controllable if and only if

rank [Kc] = n. (4.26)

This criterion stems directly from equation (4.22) applied to autonomous
systems, and applying the criterion to state-dependent matrices A (x, t) and
B (x, t) yields a controllability matrix that is again state-dependent

Kc (x, t) =
[
B (x, t) A (x, t) B (x, t) · · · An−1 (x, t) B (x, t)

]
, (4.27)

and using this expression it is easy to investigate whether a given factorization
A (x, t) will produce a system that is controllable for any state and time,
without having the need of knowing the actual trajectory of the solution. The
resulting check is very conservative, because any factorization that can lead
to an uncontrollable system will be discarded, even if the uncontrollability is
located on a point of the space-time domain that is not actually near the
trajectory of the solution.

4.5 Optimal controllability

Until now it has been studied what are the factorizations that, even though
they are true representations of the nonlinear problem, do not allow to solve
the optimal control problem using the ASRE algorithm. After discarding
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the factorizations that are not consistent or not always controllable, still the
amount of factorizations that can be employed is typically very large, but
remembering section 4.2.1, it would be interesting to automatize the choice
of the factorization so to find the best solution in terms of cost function.
Speaking of how to get that “best” solution, again the property to work with
is the controllability of the system: this is maximized by choosing a proper
factorization.

The correlation between controllability and optimality is only conjectured,
and it is based on the fact that the more a system is controllable, the less
should be the control effort, as hinted in [19], with a benefit in terms of cost
function, that is typically an increasing function of the control effort.

At this point, controllability must be regarded as a merit figure and no
longer as a binary property of a system. How to characterize this continuous
property? While the distinction between controllable and uncontrollable is
very sharp, defining the level of controllability requires some thought; a good
way to measure the controllability could be the controllability radius, defined
in [20, 22] as the smallest 2-norm of a perturbation of (A,B) that makes the
system uncontrollable

ρ (A,B) = min
∆A,∆B

‖(∆A,∆B)‖ , (4.28)

s.t. (A + ∆A,B + ∆B) is uncontrollable.

It has been proved in [21] that

ρ (A,B) = min
λ∈C

σmin [(A− λIB)] , (4.29)

where the function σmin returns the smallest singular value of its matrix
argument. Actually this method is not the most suited for the ASRE, because
it is based on evaluating the minimum perturbation that makes the system
uncontrollable around a nominal point which is not so easy to determine.

A better way to characterize controllability for the ASRE algorithm is
still based on evaluating the distance of the system from being uncontrollable,
but this time the approach is different: starting from the notion that a system
is controllable if the controllability gramian P(tf , ti) is not singular

det [P(tf , ti)] 6= 0, (4.30)

it could seem reasonable to adopt the value of the determinant itself as a
merit figure of controllability. Actually, as noticed in [20], such a choice
would be misleading, since it is easy to prove that a matrix that is nearly
singular can show a determinant much greater than zero:

A =

[ 1

ε2k+1
ε

ε ε

]
,

det [A] = ε1−2k−1 − ε2 = ε−2k − ε2.
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It is clear that if ε � 1, and this is typical of numerical procedures that
approximate zeros with small values, then the matrix A will be almost
singular, while the determinant will be much greater than one, for k ≥ 1. To
avoid this kind of problems, it can be remembered from linear algebra that
the determinant of a matrix is equal to the product of its eigenvalues λi

det [P(tf , ti)] =
n∏
i=1

λi. (4.31)

This means that among the controllability gramian’s eigenvalues of an un-
controllable system, at least one one of them must be null. This fact can
be exploited for a controllable system, assuming that the smallest absolute
eigenvalue is a good index of how much the matrix is close to singularity; in
fact, decomposing a gramian matrix using the spectral theorem

P = UΛU−1, (4.32)

where U is the matrix whose column are the eigenvectors of P and Λ is the
diagonal matrix of the eigenvalues of P, evaluating its determinant

det [P] = det
[
UΛU−1

]
, (4.33)

and applying the properties of the determinant operator

det [XY] = det [X] det [Y] , det
[
X−1

]
=

1

det [X]
, (4.34)

⇓

det [P] = det [U] det [Λ] det
[
U−1

]
= det [Λ] = det


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,
(4.35)

makes clear that a matrix will be close to singularity only when at least
an eigenvalue is close to zero, regardless of the determinant’s value. Going
beyond this, it must be taken into account that eigenvalues suffer of ill
conditioning, i.e., small perturbations of a matrix can lead to big variations
of its eigenvalues, as underlined by Paige in [20]; to overcome this issues
it is recommended to employ singular values rather than eigenvalues: the
singular values of a matrix A are the square roots of the eigenvalues of the
matrix A∗A, where A∗ is the hermitian conjugate of A. The singular values
of a matrix are positive real numbers that can be used instead of eigenvalues.

In conclusion, it has been verified that it is possible to define a con-
trollability index based on the smallest singular value of the controllability
gramian of a system stemming from a given factorization of the dynamics.
Maximizing this controllability index allows to find the best factorization, as
it will be shown in the next section.
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4.6 Implementation of the modified ASRE

Bearing in mind all that has been said in the previous sections, it is now
time to proceed in defining the details of how the new algorithm will work.
Given the optimal control problem defined by the dynamics

ẋ = f (x,u, t) ,

{
x ∈ Rn
u ∈ Rm (4.36)

where the system is supposed to be control-affine, for the sake of simplicity,
along with the cost function

J = ϕ (xf , tf ) +

∫ tf

ti

L [x(t),u(t), t] dt, (4.37)

where L [x(t),u(t), t] is supposed to be a quadratic form of the control u(t),
and the boundary conditions

x(ti) = xi ∈ Rn, (4.38)

x(tf ) = xf ∈ Rq, (4.39)

where 0 ≤ q ≤ n, the starting point is the set of h factorizations such that

f (x,u, t) = Aj (x, t) x + B (x, t) u, j = 1, 2, . . . , h. (4.40)

Before initializing the ASRE algorithm, the factorizations are checked for
consistency with initial conditions, selecting only those SDC matrices that
fulfil the condition

Aj (xi, ti) ∈ Rn×n, (4.41)

while any other matrix is discarded; next, the subset of factorizations that
are consistent with initial conditions is checked for global controllability,
making use of controllability matrix Kc: if it is possible to find at least one
point

[
x, t
]

in the space-time domain that solves the equation

det [M (x, t)] = 0, (4.42)

where M (x, t) is the square matrix

M (x, t) = Kc (x, t) KT
c (x, t) , (4.43)

then the associated factorization is not always controllable. Expression (4.43)
is needed because, as suggested in [15], the controllability matrix for multiple-
input systems is not square, and so it is not possible to evaluate directly
its determinant to check for uncontrollability, while the matrix M (x, t) is a
square matrix that clearly becomes singular when matrix Kc (x, t) is not full
rank or, equivalently, when the system is not controllable. Equation (4.42)
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is, in general, a nonlinear algebraic equation, and is solved numerically with
the Levenberg-Marquardt method, using as starting guess the initial boundary
condition xi.

Then, those k matrices that are both consistent with initial conditions
and always controllable are passed to the ASRE algorithm, that now has
a different work-flow, because the method embeds the maximization of the
controllability of the system:

1. As for the classical ASRE, the process is initialized using the initial
conditions, while for any other subsequent iteration it is employed the
solution of the previous iteration: at the first iteration the matrices

Aj (x, t) are evaluated for x(t) = xi, yielding a set of matrices A
[1]
j (t) =

Aj (xi, t), while at a generic iteration p > 1 the SDC matrices are

evaluated for x(t) = x[p−1](t), thus obtaining a set of matrices A
[p]
j (t) =

Aj

(
x[p−1](t), t

)
.

2. Then, it is defined a matrix A[p] (α, t) that is a linear combination of

all the factorizations A
[p]
j (t)

A[p](t) =

k−1∏
j=1

(1− αj) A
[p]
1 +

k−1∑
i=2

αi−1

k−1∏
j=i

(1− αj) A
[p]
i + αk−1A

[p]
k ,

(4.44)
where αT =

[
α1, α2, . . . , αk−1

]
is a vector of coefficients. By properly

choosing the value of α, it is possible to obtain any of the factorizations

A
[p]
j (t), e.g., having three factorizations A1(t), A2(t) and A3(t), matrix

A (α, t) will be

A (α, t) = (1− α1) (1− α2) A1(t) + α1 (1− α2) A2(t) + α2A3(t),
(4.45)

with

α =

{
α1

α2

}
. (4.46)

The three “parent” factorizations are easily recovered:

α1 =

{
0
0

}
A (α1, t) = A1(t) (4.47)

α2 =

{
1
0

}
A (α2, t) = A2(t) (4.48)

α3 =

{
0
1

}
A (α3, t) = A3(t) (4.49)

This family of factorizations is consistent with the nonlinear problem,
i.e.,

ẋ = A (α, t) x + B(t)u, (4.50)
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Figure 4.2: Domain of vector α

only if the 1-norm of α is equal or less than one and its components
are positive {

‖α‖1 ≤ 1
αj ≥ 0, j = 1, 2, . . . , k − 1

(4.51)

This means that, for the three factorizations case, the domain of α will
be a triangle whose vertices lie at the three point α1, α2 and α3, as
depicted in Figure 4.2b.

3. Next, matrix A[p] (α, t) is used to determine which is the factoriza-
tion that maximizes the controllability of the system; recalling the
controllability index, defined as the minimum singular value of the
controllability gramian, it is necessary to solve the following problem
in order to optimize the choice of the factorization: given the linear,
time-variant system

ẋ[p](t) = A[p] (α, t) x[p](t) + B[p](t)u[p](t) (4.52)

find α that maximizes the minimum singular value of the controllability
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gramian

P(α) =

∫ tf

ti

Φ (α, ti, τ) B(τ)BT (τ)ΦT (α, ti, τ) dτ, (4.53)

where Φ(α, ti, τ) is, as usual, the STM that solves for

∂Φ (α, t, τ)

∂t
= A (α, t) Φ (α, t, τ) , Φ (α, t, t) = I. (4.54)

The constraints to which the optimization variable is subject are{
‖α‖1 ≤ 1
αj ≥ 0, j = 1, 2, . . . , k − 1

(4.55)

It could seem that the constraints are nonlinear, but actually they can
be reformulated in a linear manner:

∑
j αj ≤ 1

αj ≥ 0,
j = 1, 2, . . . , k − 1

(4.56)

The above problem can be formally expressed as

max
α

σmin [P(α)] subject to

{
‖α‖1 ≤ 1
αj ≥ 0, j = 1, 2, . . . , k − 1

(4.57)
and it is solved numerically using NLP, which requires a starting guess
for α: the first iteration, p = 1, employs a value of α that is located in
the middle of the domain, as shown in Figure 4.2a and 4.2b, while for
any iteration p > 1 the starting guess for α is the optimal value of the
previous iteration. The solution consists in a vector α for which the
controllability of the system is maximized; this solution is associated

to an optimal factorization A
[p]
opt(t) = A[p] (α, t).

4. Now the algorithm proceeds with the classical ASRE iteration, solving
the LTV optimal control problem

ẋ[p] = A
[p]
opt(t)x

[p] + B[p](t)u[p], (4.58)

J [p] =
1

2
x[p]TS[p]x[p] +

1

2

∫ tf

ti

[
x[p]TQ[p](t)x[p] + u[p]TR[p](t)u[p]

]
dt.

(4.59)

to find x[p](t) and u[p](t).

As before, the routine is repeated until the termination criterion is satisfied.
This modified ASRE (MASRE) algorithm is now able to be fed with many
factorization of the nonlinear problem, and at each iteration it will be selected
the optimal factorization in terms of the controllability index. The work-flow
of the MASRE algorithm is shown in Figure 4.3.
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Figure 4.3: Work-flow of the modified ASRE algorithm
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4.7 A note on automatic factorization

It would be now interesting to find a way to compute automatically the SDC
factorizations of the dynamical system starting from the nonlinear equation
(2.1), i.e., to find a matrix A and a matrix B such that

A(x, t)x + B(x,u, t)u = f(x,u, t). (4.60)

For the sake of simplicity, it shall be assumed that the dynamical system is
control-affine. This means that only one B matrix exists:

A(x, t)x + B(x, t)u = f(x,u, t). (4.61)

Matrix A is then the solution of

A(x, t)x = f(x,u, t)−B(x, t)u = g(x, t). (4.62)

The expression for g(x, t) is obtained easily, but the resulting system to be
solved is of course under-determined, meaning that there are more unknowns
(the elements of A) than equations. This gives rise to the infinite possible
factorizations, but it is necessary to develop a routine to solve the system as
many times as needed.

First, it is necessary to determine if the system can be solved: to do this
it is possible to enforce the elegant algorithm devised by R. W. Bass in [17].
Given a vectorial function g(x, t) such that g(0, t) = 0, the following identity
is true:

g(x, t) ≡ g(x, t)− g(0, t) ≡
∫ 1

0

∂g(λx, t)

∂λ
dλ ≡

∫ 1

0

([
∂g(x, t)

∂x

]
x=λx

x

)
dλ,

(4.63)
so that

g(x, t) ≡
∫ 1

0

[
∂g(x, t)

∂x

]
x=λx

dλ x = Aparentx (4.64)

⇓

Aparent(x, t) =

∫ 1

0

[
∂g(x, t)

∂x

]
x=λx

dλ. (4.65)

It must be noticed that this algorithm works only for those function that are
null in the origin. Once a particular solution Aparent is obtained, any other
solution can be seen as the sum of the particular solution with a matrix
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Anull whose rows belong to the null space of the x vector:

(Aparent + Anull) x = Aparentx + Anullx = g(x, t) (4.66)

⇓
Anullx = 0 (4.67)

⇓

[
anulli1 anulli2 · · · anullin

]
x1

x2
...
xn

 = 0, i = 1, 2, . . . , n. (4.68)

Then, once a basis for the null space has been computed, it is possible to
combine linearly the elements of that basis to obtain the rows of the Anull

matrices. The linear combination can be made using random coefficients, cre-
ating as many factorization as needed. Each of these factorizations will then
be checked for consistency with initial conditions and global controllability.

4.7.1 Example of automatic factorization

Given a nonlinear, control affine dynamical system

ẋ1 = x2,

ẋ2 = x1x2 + u,

the system is then divided into an “uncontrolled-dynamics” part and a
“control” part: {

ẋ1

ẋ2

}
=

{
x2

x1x2

}
+

{
0
u

}
.

Since the linear nature of the “control” part, it easy to factorize it:{
0
u

}
=

[
0
1

]
u.

Then, the non-linear “uncontrolled-dynamics” part is factorized using the
algorithm presented above:

g(x) =

{
x2

x1x2

}
= Ax.

First, the Jacobian of the vector field g(x) is computed:

∇g(x) =

[
0 1
x2 x1

]
.
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Subsequently, the Jacobian of the vector field is evaluated at x = λx:[
0 1
x2 x1

]
x=λx

=

[
0 1
λx2 λx1

]
.

Then, the expression is integrated over λ in the interval [0, 1], yielding the
“parent” factorization Aparent:∫ 1

0

[
0 1
λx2 λx1

]
dλ =

[ ∫ 1
0 0dλ

∫ 1
0 1dλ∫ 1

0 λx2dλ
∫ 1

0 λx1dλ

]
⇓

Aparent(x) =

[
0 1

1
2x2

1
2x1

]
.

Next, it is necessary to evaluate a basis for the null space of the vector x;
since this example is set in a 2D space, the null space is the line orthogonal
to the vector x:

Null(x) = α
[
−x2

x1
1
]

= αxnull α ∈ R.

At this point, combining elements of the null space, it is possible to build
matrices whose right product with the vector x gives a vector of zeros:

Anullx =

[
αxnull
βxnull

]{
x1

x2

}
=

{
0
0

}
α, β ∈ R.

Summing the parent factorization Aparent with the null matrix Anull gives
another factorization of the initial system. Since the coefficients α and β can
be chosen randomly, an infinite number of factorizations is readily obtained,
for example: {

α
β

}
=

{
1
−1

}
⇒ A

[1]
null =

−x2

x1
1

x2

x1
−1


⇓

A1 = Aparent + A
[1]
null =

 −x2

x1
2

x1x2 + 2x2

2x1

x1 − 2

2

 .
In general, for a problem with n states, the basis of the null space of the
vector x consists of n− 1 row vectors vj ∈ Rn; a linear combination of these
vectors still belongs to the null space, and so the rows of the Anull matrices
can be built by linearly combining the basis:

Anull =


α11v1 + α12v2 + · · ·+ α1n−1vn−1

α21v1 + α22v2 + · · ·+ α2n−1vn−1
...

αn1v1 + αn2v2 + · · ·+ αnn−1vn−1

 , αij ∈ R. (4.69)
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In this chapter it has been studied how the ASRE algorithm can be
improved, making it a more useful instrument. Still it would be interesting
to evaluate the capabilities of this method by inspecting whether the solution
obtained is optimal or rather sub-optimal. To do this it is possible to use
the solution from the ASRE as a starting guess of a classical TPBVP solver;
this issues will be faced in the next chapter.
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Refinement of the
approximate solution

In the previous chapter it has been explained how the ASRE algorithm has
been improved and how these improvements can be practically implemented.
Starting from the nonlinear optimal control problem and some factorizations,
the routine is able to provide a solution; since the ASRE method is an
approximate one, its solution will be suboptimal. This approximation is the
price paid to avoid guessing the initial Lagrange multiplier function, which
is the typical limitation of a classical numerical solver for optimal control
Boundary Value Problem (BVP). In a way, it is as if the role played by the
choice of an initial guess for a BVP solver is transferred to the choice of the
factorization for the ASRE algorithm, and in the previous chapter it has
been proposed a way to carry out this choice in an automatized way. Still,
it is desirable to obtain an optimal solution, at least in a numerical sense.
To do this, the natural continuation of the routine is the refinement of the
ASRE solution with the help of a classical BVP numerical solver, which is
actually, from another point of view, the same as computing an optimal
solution using as starting guess the solution of the ASRE algorithm.

In this chapter it will be first recalled the analytical form of the BVP
stemming from the optimal control problem, then a brief overview of the
classical numerical approaches to the BVP follows and lastly it is explained
how to practically interface the ASRE routine with the BVP numerical
solver.

5.1 Optimal control and BVPs

Given the dynamical system

ẋ = f (x,u, t) , (5.1)
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with proper boundary conditions, the cost function

J =
1

2
ϕ (xf , tf ) +

1

2

∫ tf

ti

L (x,u, t) dt, (5.2)

and defining the Hamiltonian

H (x,u, t) = L (x,u, t) + λT f (x,u, t) , (5.3)

first-order necessary conditions for finding the control that minimizes the
cost function while respecting the dynamical constraints are

ẋ =
∂H

∂λ
, (5.4)

λ̇ = −∂H
∂x

, (5.5)

0 =
∂H

∂u
, (5.6)

subject to the set of boundary conditions completed by the transversality
condition

λTf =
∂ϕ

∂xf
. (5.7)

The algebraic equation (5.6) can be exploited to express the control u(t) as
function of state and co-state, so that the optimal control problem becomes
a boundary value problem of the form

ż = F(z, t), (5.8)

where zT =
{
x λ

}
and

F =


∂H

∂λ

−∂H
∂x

 , (5.9)

along with the proper two-point boundary conditions

g (z(ti), z(tf )) = 0. (5.10)

It must be noticed that, in general, it is not always possible to obtain an
explicit expression of the control u(t) as function of state x(t) and co-state
λ(t), but, since it has been assumed that the dynamics are control-affine, it
is sufficient to require a cost function that is a quadratic form of the control
u(t), and from now on this assumption will hold.

In general, a given TPBVP can have no solution, a single solution, a
finite number of solutions or even infinite solutions, but, as shown in section
2.3, it is always difficult to solve the problem analytically. For this reason,
have been developed numerical procedures that solve the BVP; in the next
section it will be presented an overview of the different kind of solvers and a
more detailed explanation of the numerical solver used in this thesis.
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5.2 Numerical approaches to the BVPs

According to [6], BVP numerical solver can be divided into four categories:
simple-shooting methods, multiple-shooting methods, differences methods
and variational methods.

5.2.1 Simple-shooting methods

The BVP is first treated as an Initial Value Problem (IVP), whose unique
solution, under mild hypotheses, will depend on an unknown parameter, and
then the value of the parameter is computed enforcing the final conditions,
i.e., to solve the BVP

ż = f (z, t) ,
g (z(a), z(b)) = 0,

(5.11)

first, the corresponding IVP

ż = f (z, t) ,
z(a) = s,

(5.12)

is processed, yielding a solution z = z (t; s), and then the final condition is
enforced, finding the zeros si of the algebraic equation

g (z(a; s), z(b; s)) ≡ g (s, z(b; s)) = 0, (5.13)

so that z (t; si) are solutions of the BVP.

5.2.2 Multiple-shooting methods

Simple-shooting methods can be not the best kind of solver for problems that
are highly nonlinear, because the solution of the IVP will be very sensitive
to the choice of the initial conditions, meaning that the integration over
the domain will be unstable, especially for higly nonlinear dynamics. For
this reason, multiple-shooting methods split the domain into smaller pieces,
making it easier to integrate, and then it is enforced the respect of the
two-point boundary conditions along with the continuity of the solution over
the complete domain.

5.2.3 Difference methods

Difference methods basically consist in replacing the differential quotients
with difference quotients and solving the discrete equations that are so
obtained. For example, to solve the BVP

ż = f(t),
z(a) = α, z(b) = β,

(5.14)

47



Chapter 5

first, the domain [a, b] is subdivided into n+ 1 equal subintervals

a = t0 < t1 < · · · < tn < tn+1 = b, tj = a+ jh, h :=
b− a
n+ 1

, (5.15)

then, employing the central difference formula

∆zi =
zi+1 − zi−1

2h
, (5.16)

the discretized approximation zi ≈ z(ti) of the BVP solution must satisfy
the following equations: 

z0 = α,
zi+1 − zi−1

2h
= f(ti),

zn+1 = β.

(5.17)

This structure can be rearranged as

Az̃ = b, (5.18)

where A is the n× n tridiagonal matrix

A =
1

2h


0 1 0
−1 0 1

. . .
. . .

. . .

−1 0 1
0 −1 0

 , (5.19)

while z̃ and b are Rn vectors

z̃ =



z1

z2
...

zn−1

zn


, b =



f(t1) +
α

2h
f(t2)

...
f(tn−1)

f(tn)− β

2h


. (5.20)

Solving the linear system allows to find an approximation of the BVP solution.
For those problems where the right-hand side of differential equation (5.14) is
not only function of t but also of z, it is usually possible to take into account
the additional zi’s by suitably modifying matrix A, using it not only for the
terms stemming from the difference quotients but also for the terms coming
from function f (z, t), so that the problem it is again reduced to solving a
linear system of equations.
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5.2.4 Variational methods

Variational methods rely, in general, on approximating the solution of a BVP
by finding the function ys that minimizes a quadratic form F (y); ys belongs
to the subspace of all the functions that are null at the boundaries of the
domain [a, b]. The minimization occurs by choosing a proper basis of the
subspace. Collocation methods are a particular set of variational methods:
having chosen a proper basis and a set of collocation points, it is enforced
the satisfaction of the differential equations on the collocation points.

The solver employed to refine the ASRE solution is the collocation method
presented in [29], that exactly satisfies the differential equation

y′ = f (x,y) , (5.21)

at both ends and midpoint of each interval [xj , xj+1] of the mesh

a = x0 < x1 < · · · < xn < xn+1 = b, (5.22)

using cubic polynomials as basis, so that the approximate solution is a
continuous function S(x), whose coefficients are found by solving the system
of algebraic, nonlinear equations

S′(xj) = f (xj ,S(xj)) ,

S′
(
xj + xj+1

2

)
= f

(
xj + xj+1

2
,S

(
xj + xj+1

2

))
,

S′(xj+1) = f (xj+1,S(xj+1)) ,

(5.23)

on every interval of the mesh. As said in [29], this method is a fourth-order
approximation of an isolated solution y(x), i.e.,

‖y(x)− S(x)‖ ≤ Ch4, (5.24)

where C is a constant and h is the unit step of the mesh. As any other
classical BVP solver, this collocation method requires a good starting guess
in order to initialize the solution of the algebraic system of equations (5.23),
that for the case in exam comes from the solution of the ASRE. In the next
section it will be briefly presented how to cast the optimal control problem
definition and the solution of the ASRE into suitable forms.

5.3 Interface between ASRE and BVP solver

The approximate solution of the optimal control problem coming from the
ASRE routine is expressed as functions evaluated at discrete locations of
a time grid that counts N − 1 intervals; those functions are state xASRE ,
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co-state λASRE and control uASRE . The BVP associated to the control
problem is {

ẋ

λ̇

}
=


∂H

∂λ

−∂H
∂x

 , (5.25)

so that, in order to initialize the BVP solver, first it is necessary to provide
the vector field of the problem, then the boundary conditions and lastly
the starting guess, expressed as a time-mesh and a vector containing the
values of the initial guess at each point of the mesh. The first two tasks are
accomplished by resorting to a symbolic processing of the optimal control
data, while the provision of an initial guess simply consists in the time
grid adopted by the ASRE algorithm and the vector that results from
concatenating the ASRE solution of state and co-state

{
ẋ

λ̇

}
=


∂H

∂λ

−∂H
∂x

 ⇒ ż = F(z), (5.26)


x(ti) = xi
x(tf ) = xf

λT (tf ) =
∂ϕ

∂xf

⇒ g (z(ti), z(tf )) = 0, (5.27)

{
xASRE
λASRE

}
⇒ zguess. (5.28)

In order to improve the convergence of the BVP solver, it is possible to
provide the analytical forms of the Jacobians of both vector field and boundary
conditions. To do this, again, it is possible to exploit symbolic manipulations.

5.4 Work-flow of the complete solver

The previous section allows to link the ASRE algorithm with the BVP
algorithm, producing a complete solver able to compute the optimal state,
co-state and control histories. In Figure 5.1 it is shown the flowchart of this
complete solver.
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definition of the problem

automatic
factorization

modified
ASRE

algorithm

approximate solution

BVP
reformulation

BVP solver
algorithm

optimal solution

Figure 5.1: Work-flow of the complete solver
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Astrodynamics applications
and other examples

In this chapter it will be presented a selection of examples that show how the
modified ASRE algorithm along with the BVP solver can deal with a number
of problems, yielding satisfying results. First it will be solved a couple of
simple benchmark problems, then a few examples of astrodynamics related
optimal control problems will be analysed and solved in detail.

6.1 Benchmark problems

The first two problems studied have no specific physical meaning, but are
handy to grasp the basics of the solver presented. The first problem has been
already introduced in section 4.2.1, while the second example is a slightly
more nonlinear problem.

6.1.1 Benchmark problem 1

Given the dynamic system

ẋ1 = x2,
ẋ2 = x1x2 + u,

(6.1)

with boundary conditions

x(ti) =

{
2
1

}
, ti = 0,

x(tf ) =

{
4
1

}
, tf = 4,

it is required to find the control u(t) that minimizes the cost function

J =
1

2

∫ tf

ti

[
x2

1 + x2
2 + u2

]
dt. (6.2)
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The factorized form is

ẋ = A x + B u,

J =
1

2

∫ tf

ti

[
xTQ x + uTR u

]
dt,

(6.3)

with

B =

[
0
1

]
, Q =

[
1 0
0 1

]
, R =

[
1
]
,

and the algorithm has been provided with four different factorizations of the
uncontrolled dynamics

A1(x) =

[
0 1
0 x1

]
, A2(x) =

[
0 1
x2 0

]
,

A3(x) =

[
x2 1− x1

0 x1

]
, A4(x) =

[
x2 1− x1

x2 0

]
.

It must be noticed that all the four factorizations are consistent with the
initial boundary conditions

A1(xi) =

[
0 1
0 2

]
, A2(xi) =

[
0 1
1 0

]
,

A3(xi) =

[
1 −1
0 2

]
, A4(xi) =

[
1 −1
1 0

]
,

but this is not true for what concerns controllability. In fact, evaluating the
controllability matrices of the four factorizations

Kc1(x) =

[
0 1
1 x1

]
, Kc2(x) =

[
0 1
1 0

]
,

Kc3(x) =

[
0 1− x1

1 x1

]
, Kc4(x) =

[
0 1− x1

1 0

]
,

it is clear that the ranks of Kc1(x) and Kc2(x) are always equal to the
number of states

det [Kc1(x)] = −1 ∀x,
det [Kc2(x)] = −1 ∀x,

while both Kc3(x) and Kc4(x) become singular when x1 = 1

det [Kc3(x)] = x1 − 1,

det [Kc4(x)] = x1 − 1.

It is interesting to notice that the factorizations that are not always control-
lable, A3(x) and A4(x), are not a “natural” representation of the uncontrolled
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Table 6.1: Iterations of the MASRE algorithm for the first benchmark
problem, computational time 40.0 s with an Intel Core2 Quad CPU 2.50 GHz

Error σmin J Matrix

1 2.000 2.082 2.436× 101 A1

2 7.173× 10−1 1.578× 106 2.505× 101 A1

3 1.412× 10−1 1.130× 107 2.606× 101 A1

4 1.294× 10−2 1.960× 107 2.613× 101 A1

5 1.648× 10−3 2.009× 107 2.612× 101 A1

6 1.767× 10−4 1.997× 107 2.612× 101 A1

7 1.893× 10−5 1.996× 107 2.612× 101 A1

8 2.259× 10−6 1.996× 107 2.612× 101 A1

9 2.083× 10−7 1.996× 107 2.612× 101 A1

dynamics, i.e., while the nonlinear system is obtained by simply multiplying
A1(x) and A2(x) with the state vector x, A3(x) and A4(x) rely on some
sort of addition and subtraction of the same term. The algorithm is then
initialized, having set the value of the termination tolerance to 10−6.

The algorithm is able to detect the non-controllability of factorizations
A3(x) and A4(x), and so it discards them. Then, the MASRE routine starts
and its sequence of iterations it is shown in Table 6.1, while the final optimal
cost function is

Jopt = 2.606× 101.

In Figure 6.1a it is shown the sequence of iterations made by the MASRE
algorithm: the optimal matrix turns out to be A1(x), and this, remembering
the results obtained in section 4.2.1 by solving the problem with the orig-
inal ASRE routine, confirms that the algorithm is able to detect the best
factorization in terms of controllability and thus cost function. The same
pattern can obviously be observed, in Figure 6.1b, by looking at the control
input stemming from the approximate solutions of the MASRE algorithm.
Lastly, it is important to underline that the final solution of the MASRE
algorithm is very close to the actual optimal solution found with the BVP
solver, meaning that only a refinement occurs, rather than a completely
different solution; still, the refinement makes clear that the approximate
solution is not optimal, but rather sub-optimal. Figures 6.1c and 6.1d clearly
illustrate this refinement in terms of both phase-space solution and control.

6.1.2 Benchmark problem 2

Given the dynamic system

ẋ1 = x2
1x2 + x2,

ẋ2 = x1x2 + u,
(6.4)
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Figure 6.1: Solution of the first benchmark problem
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with boundary conditions

x(ti) =

{
2
1

}
, ti = 0,

x(tf ) =

{
4
1

}
, tf = 5,

it is required to find the control u(t) that minimizes the cost function

J =
1

2

∫ tf

ti

[
x2

1 + x2
2 + u2

]
dt. (6.5)

The factorized form is again that of equation (6.3) with

B =

[
0
1

]
, Q =

[
1 0
0 1

]
, R =

[
1
]
,

and the algorithm has been provided with four different factorizations of the
uncontrolled dynamics

A1(x) =

[
x1x2 1

0 x1

]
, A2(x) =

[
0 x2

1 + 1
0 x1

]
,

A3(x) =

[
x1x2 1
x2 0

]
, A4(x) =

[
0 x2

1 + 1
x2 0

]
.

All of the four factorization are both consistent with the initial boundary
conditions

A1(xi) =

[
2 1
0 2

]
, A2(xi) =

[
0 5
0 2

]
,

A3(xi) =

[
2 1
1 0

]
, A4(xi) =

[
0 5
1 0

]
,

and always controllable

Kc1(x) =

[
0 1
1 x1

]
Kc2(x) =

[
0 x2

1 + 1
1 x1

]
Kc3(x) =

[
0 1
1 0

]
Kc4(x) =

[
0 x2

1 + 1
1 0

]

⇒

⇒

⇒

⇒

det [Kc1(x)] = −1 ∀x,

det [Kc2(x)] = −x2
1 − 1 ≤ −1 ∀x,

det [Kc3(x)] = −1 ∀x,

det [Kc4(x)] = −x2
1 − 1 ≤ −1 ∀x.

Differently from the previous problem, where two factorizations were evidently
not “natural” representations of the uncontrolled dynamics, this problem is
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Table 6.2: Iterations of the MASRE algorithm for the second benchmark
problem, CPU time 231.9 s

Error σmin J Matrix

1 2.000 1.739× 107 1.444× 101 A4

2 1.376 2.978× 103 7.876 A4

3 1.121 1.355× 104 1.086× 101 A2

4 7.010× 10−1 1.615× 104 9.327 A2

5 2.423× 10−1 1.313× 104 9.798 A2

6 9.391× 10−2 1.480× 104 9.767 A2

7 6.236× 10−2 1.495× 104 9.643 A2

8 2.657× 10−2 1.434× 104 9.708 A2

9 9.479× 10−3 1.443× 104 9.710 A2

10 6.504× 10−3 1.452× 104 9.696 A2

11 2.838× 10−3 1.449× 104 9.701 A2

12 9.442× 10−4 1.449× 104 9.701 A2

13 6.624× 10−4 1.449× 104 9.701 A2

14 3.024× 10−4 1.449× 104 9.701 A2

15 9.275× 10−5 1.449× 104 9.701 A2

16 6.779× 10−5 1.449× 104 9.701 A2

17 3.273× 10−5 1.449× 104 9.701 A2

18 9.125× 10−6 1.449× 104 9.701 A2

19 6.971× 10−6 1.449× 104 9.701 A2

20 3.465× 10−6 1.449× 104 9.701 A2

21 9.011× 10−7 1.449× 104 9.701 A2

expressed naturally with four factorizations, so that one would not know a
priori which factorizations should be used with the original ASRE algorithm.
As before, the algorithm is initialized having set the termination tolerance
to 10−6.

The iterations of the MASRE algorithm are shown in Table 6.2, and after
the refinement operated with the BVP solver, the optimal value of the cost
function is

Jopt = 9.413.

The graphical representations of the approximate and optimal solutions
are presented as before in Figure 6.2; as before, the consistent refinement
shows that the approximate solution is not optimal but only sub-optimal. In
order to test the quality of this solution, the problem has been solved with
the classical ASRE algorithm, employing the four different factorizations
separately, and it has been confirmed that the the best solution is the one
related to factorization A2(x); not only, because, even though all of the four
factorizations are consistent with the initial boundary conditions and always
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Figure 6.2: Solution of the second benchmark problem

controllable, the classical ASRE solver is not able to provide a solution using
A1(x) or A3(x): the former factorization yields a sequence of iterations
whose error stably oscillates, without converging to any solution, while the
latter is not even able to continue the routine since transition matrix becomes
singular after a certain number of iterations. First of all, those results imply
that controllability and consistency are at most necessary conditions for
a converging factorization, but the above discussion also stresses the fact
that the optimization of the controllability seems to allow to dodge those
factorizations that would not lead to any solution.

After having tested the MASRE algorithm with the previous benchmark
problem, in the next sections it will be shown how the MASRE routine can
be effective when dealing with physical control problems, in particular those
that refer to the astrodynamics issues.
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6.2 Rendez-vous

A space rendez-vous is an orbital manoeuvre that aims at having two objects,
i.e., spacecraft, namely a “target” and a “chaser”, at the same location, at
the same time and with the same velocity. Historically, the first documented
attempts of putting two objects on the same orbit were made by Russians,
who launched pairs of spacecraft from the same launchpad one or two days
apart (Vostok 3 and 4 in 1962 and Vostok 5 and 6 in 1963), but the objects
could not achieve a rendez-vous, since the orbit adjustments were very rough.
By 1965, US astronaut Jim McDivitt attempted to manoeuvre his Gemini 4
craft to meet the spent Titan II upper stage, but, even though the capsule
was equipped with the necessary actuators, the target was not approached
since the underling orbital mechanics’ principles were not clear enough. Only
a few months later, US astronaut Wally Schirra was able to manoeuvre his
Gemini 6 within 30 cm of its sister craft Gemini 7.

The main difficulties related to rendez-vous are the strong nonlinearities
of the dynamics, along with the strict requirements in terms of precision.
For this reason, it is interesting to study whether the MASRE algorithm can
deal with such a control problem.

6.2.1 Derivation of the dynamics

As stated by Newton in his Philosophiæ Naturalis Principia Mathematica,
every point mass attracts any other point mass with a force that is pro-
portional to the product of the two masses and inversely proportional to
the square of the distance between the two masses; this force acts along
the direction that connects the two masses, e.g., being the two masses m1

and m2 and their positions inside an inertial frame R1 and R2, the position
vector r of m2 relative to m1 will be

r = R2 −R1, (6.6)

that can be rewritten as the product of the magnitude r = ‖r‖ with the unit
vector pointing from m1 towards m2

îr =
r

r
. (6.7)

Then, the force exerted on m2 by m1 is

F21 =
Gm1m2

r2

(
−îr

)
= −Gm1m2

r2
îr, (6.8)

and subsequently, remembering Newton’s third law of motion,

F12 = −F21 =
Gm1m2

r2
îr. (6.9)
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Finally, introducing Newton’s second law of motion, it is possible to write
the equations of motion for the two masses

m1R̈1 = F12 =
Gm1m2

r2
îr, (6.10)

m2R̈2 = F21 = −Gm1m2

r2
îr. (6.11)

Let us now multiply both sides of equation (6.10) by m2 and both sides of
equation (6.11) by m1

m1m2R̈1 =
Gm1m

2
2

r2
îr, (6.12)

m1m2R̈2 = −Gm
2
1m2

r2
îr, (6.13)

and subtract equation (6.12) from equation (6.13)

m1m2

(
R̈2 − R̈1

)
= −Gm1m2 (m1 +m2)

r2
îr. (6.14)

Dividing by m1m2 and enforcing equation (6.6) and equation (6.7) yields

r̈ = − µ
r3

r, (6.15)

where µ is the gravitational parameter defined as

µ = G (m1 +m2) . (6.16)

Equation (6.15) governs the relative motion of two bodies only acted upon
by the mutual gravitational attraction. By introducing a control acceleration,
the dynamical system is complete

r̈ = − µ
r3

r + u. (6.17)

In order to solve a rendez-vous related optimal control problem, which typ-
ically involves very small variations of the position vector expressed in a
Sun-centered polar reference, it is advisable to cast equation (6.17) in a
different form, shifting to a non-inertial reference frame that is rotating at
constant speed on a circular orbit around the origin of the inertial reference
frame. The origin of this new reference frame represents the “target” space-
craft, to which the “chasing” spacecraft is approaching. To do this, let us
assume that the new reference frame’s origin is located at a distance R from
the origin of the inertial reference frame, and it is rotating at a constant
angular velocity ω. The new reference frame’s unit vectors are defined as
follows:

î is directed along the radial direction;
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ĵ is directed along the transversal direction;

k̂ is directed along the normal to the orbital plane.

According to this new reference frame, its position vector from the origin
of the inertial reference frame will be R = Rî, its angular velocity will be
ω = ωk̂ and the position of the spacecraft from the origin of the rotating
reference frame will be δr = [x y z]T . It follows that the distance of the
spacecraft from the origin of the inertial reference frame is expressed as

r = R + δr

= Rî + x̂i + yĵ + zk̂,

= (R+ x) î + yĵ + zk̂ (6.18)

and the derivatives of this position vector are

ṙ = ωRĵ + ẋ̂i + ωxĵ + ẏĵ− ωyî + żk̂, (6.19)

r̈ = −ω2Rî + ẍ̂i + ωẋĵ + ωẋĵ− ω2x̂i + ÿĵ− ωẏî− ωẏî− ω2yĵ + z̈k̂,

=
[
ẍ− 2ωẏ − ω2 (R+ x)

]
î +
[
ÿ + 2ωẋ− ω2y

]
ĵ + z̈k̂. (6.20)

Substituting equations (6.18) and (6.20) inside equation (6.15), it is possible
to write the following expression

ẍ− 2ωẏ − ω2 (R+ x) = − µ
r3

(R+ x) + ux, (6.21)

ÿ + 2ωẋ− ω2y = − µ
r3
y + uy, (6.22)

z̈ = − µ
r3
z + uz, (6.23)

where r is the scalar distance of the spacecraft from the origin of the inertial
reference frame, defined as

r =

√
(R+ x)2 + y2 + z2, (6.24)

and ux, uy and uz are the components of the control acceleration along
the three directions. The differential system (6.21)-(6.22)-(6.23) describes
the deviations of the spacecraft from the origin of the rotating reference
frame, and it is a natural way of expressing the underlying dynamics of
a rendez-vous. In the following it will be neglected the component of the
dynamics transversal to the orbital plane represented by (6.23), by assuming
that the initial position and velocity have no transversal component, so that,
defining x1 = x, x2 = y, x3 = ẋ, x4 = ẏ, u1 = ux and u2 = uy the resulting
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state-space form of the system will be

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = 2ωx4 +
(
ω2 − µ

r3

)
(R+ x1) + u1,

ẋ4 = −2ωx3 +
(
ω2 − µ

r3

)
x2 + u2,

(6.25)

and also taking into account the algebraic equation (6.24), modified to take
into account the lack of transversal component

r =

√
(R+ x1)2 + x2

2. (6.26)

6.2.2 Problem set-up

The following problem is taken from [28], where it has been solved in its
HCP formulation relying on generating functions, and the results obtained
there will be used to verify the effectiveness of the MASRE solution. The
problem considered can be simplified by employing as unit length the radius
R, as unit time 1/ω and a unit mass that makes µ = 1, so that the system
can be rewritten as

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = 2x4 +

(
1− 1

r3

)
(1 + x1) + u1,

ẋ4 = −2x3 +

(
1− 1

r3

)
x2 + u2,

(6.27)

The cost function to be minimized is

J =
1

2

∫ tf

ti

uTudt, (6.28)

and the boundary conditions applied are

x1 = 0.2,
x2 = 0.2,
x3 = 0.1,
x4 = 0.1,


t=0

x1 = 0,
x2 = 0,
x3 = 0,
x4 = 0,


t=1

that define a HCP; leaving the final conditions unspecified and defining a
weighting matrix S(xf ) of the final state

S(xf ) =


25 0 0 0
0 15 0 0
0 0 10 0
0 0 0 10

 , (6.29)
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on the other hand, yields a SCP. The differential equations (6.27) have been
first factorized in the most natural form

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1(

1− 1
r3

) (
1 + 1

x1

)
0 0 2

0
(
1− 1

r3

)
−2 0


︸ ︷︷ ︸

A1(x)


x1

x2

x3

x4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

B

{
u1

u2

}
,

(6.30)
while the cost function has been rewritten in factorized form by setting
Q = 04×4 and R = I2×2. In order to test the ability of the MASRE
algorithm of selecting the best factorization, the uncontrolled dynamics have
been manipulated to obtain more factorizations. The term(

1− 1

r3

)
(1 + x1) (6.31)

can be rewritten as(
1− 1

r3

)
(1 + x1) =

(
1− 1

r3

)
x1 +

(
1− 1

r3

)
, (6.32)

and the first term of the RHS is easily expressed as

(
1− 1

r3

)
x1 =

{
1− 1

r3
0 0 0

}
x1

x2

x3

x4

 . (6.33)

The second term of the RHS can be decomposed applying the equality(
a3 − b3

)
= (a− b)

(
a2 + ab+ b2

)
, (6.34)

so that

1− 1

r3
=
r3 − 1

r3
=
r − 1

r3

(
r2 + r + 1

)
. (6.35)

Recalling equation (6.26)

r − 1

r3

(
r2 + r + 1

)
=
r − 1

r3

[
(1 + x1)2 + x2

2 + r + 1
]

=
r − 1

r3

[
x2

1 + 2x1 + x2
2 + r + 2

]
, (6.36)

so that it is possible to factorize the uncontrolled dynamics as

A2(x) =


0 0 1 0
0 0 0 1

c1
r − 1

r3
x2 0 2

0
r3 − 1

r3
−2 0

 ,
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where

c1 =
r − 1

r3

[
x1 + 2 +

1

x1
(r + 2)

]
+
r3 − 1

r3
,

or as

A3(x) =


0 0 1 0
0 0 0 1
c2 c3 0 2

0
r3 − 1

r3
−2 0

 ,
where

c2 =
r − 1

r3
(x1 + 2) +

r3 − 1

r3
, c3 =

r − 1

r3

[
x2 +

1

x2
(r + 2)

]
.

The MASRE algorithm has been initialized with a termination tolerance of
10−6.

6.2.3 Results

The MASRE algorithm is not able to solve the HCP, and this failure is due
to the inconsistency of the factorizations with final conditions: factorizations
A1(x) and A2(x) are not defined for x1 = 0, while A3(x) is not defined for
x2 = 0; actually, factorization A1(x) has been successfully used in [13], with
the same set of boundary conditions, so that this is a good proof of how the
inconsistency with final conditions is not a necessary condition, but still a
critical point. By modifying the final boundary conditions to

x1 = 10−7,
x2 = 10−7,
x3 = 10−7,
x4 = 10−7,


t=1

(6.37)

the MASRE algorithm solves the HCP within five iterations, that are pre-
sented in Table 6.3. In this case, all of the three factorizations are both
always controllable and consistent with the boundary conditions, and the
optimal one turns out to be A1(x). This is already a good proof that, when
the consistency with boundary conditions is respected, the optimization
process selects the best factorization, since it has been shown in [13] that the
ASRE solution associated to the factorization (A1(x),B) yields the same
results that are obtained in [28]. Going further, the stand-alone solutions
obtained with the factorizations A2(x) and A3(x) show that actually the
best solution in terms of cost function is the one related to A2(x), but the
difference with the solution obtained with the MASRE algorithm is minimal
and also the controllability figures are very similar. The representations of
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Table 6.3: Iterations of the MASRE algorithm for the rendez-vous HCP,
computational time 26.2 s

Error σmin J Matrix

1 4.790× 10−1 4.140× 10−2 9.582× 10−1 A3

2 7.179× 10−3 3.721× 10−2 9.586× 10−1 A1

3 7.029× 10−5 3.723× 10−2 9.587× 10−1 A1

4 6.290× 10−6 3.723× 10−2 9.587× 10−1 A1

5 5.408× 10−7 3.723× 10−2 9.587× 10−1 A1

Table 6.4: Iterations of the MASRE algorithm for the rendez-vous SCP,
computational time 9.8 s

Error σmin J Matrix

1 3.420× 10−1 4.140× 10−2 5.599× 10−1 A3

2 7.106× 10−3 3.923× 10−2 5.662× 10−1 A1

3 9.771× 10−5 3.925× 10−2 5.661× 10−1 A1

4 3.433× 10−6 3.925× 10−2 5.661× 10−1 A1

5 5.844× 10−8 3.925× 10−2 5.661× 10−1 A1

the state-space solutions and of the control are shown in Figure 6.3, while
the optimal cost function after the refinement is

JHCPopt = 9.594× 10−1,

making clear that not always the optimal refinement leads to a decrease of
the cost function. This particular example highlights the criticality of using
factorizations that are not consistent with final conditions, even though in
some cases it is still possible to use those factorization to solve the optimal
control problem.

Regarding the SCP, which is more representative of a station-keeping
procedure rather than a rendez-vous, the approximate solution is again
obtained within five iterations, that are shown in Table 6.4, but this time
the refinement is very marked, with a relative variation of the cost function
of more than 6%. This strong modification is also noticeable in Figures 6.4d,
6.4f and 6.4b. On the other hand, the relaxation associated with a SCP is
apparent in comparing its optimal cost function with that of the HCP

JSCPopt = 6.017× 10−1,
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Figure 6.3: Solution of the rendez-vous HCP
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Figure 6.4: Solution of the rendez-vous SCP
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6.3 Orbital transfer

One of the classical problems of astrodynamics is that of determining how to
transfer a spacecraft from a given orbit to another. A simple way to deal with
this kind of problem makes use of impulsive manoeuvres, i.e., the problem is
solved by resorting to a number of discrete velocity impulses ∆V that change
the transfer trajectory. For example, considering a simple two-body problem,
it is possible to bring a spacecraft from a circular orbit to a larger circular
orbit that shares its centre with a couple of tangential impulses, one applied
during the coast on the initial orbit and one applied when the spacecraft
reaches the final orbit: this is known as the energy-efficient Hohmann transfer,
depicted in Figure 6.5. When using this kind of manoeuvres, it is actually
made the assumption that the velocity impulse is instantaneous, or at least
that the distance covered by the spacecraft during the firing is very small
compared to the complete transfer. Since the variation of linear momentum
m∆V is the product of a thrust T and the duration time of the firing

m∆V = T∆t, (6.38)

it is necessary for the thrust to be very intense. If not, the efficiency
would decrease because part of the impulse ∆V would be radial rather than
tangential. This is why the typical apogee thrusters are solid-fuel motors,
that possess the proper characteristics (see [7]). One of the problems of
impulsive manoeuvres is that they require a great amount of fuel, i.e., the
thrust per unit mass of expellant is quite low. To overcame this limitation,
that strongly bounds the possible applications of impulsive manoeuvres, it has
been resorted to low-thrust propulsion; since the total ∆V depends mostly
on the initial and final orbit, instead of employing intense thrusting for a
limited time, it is possible to apply a small thrust, as small as of few mN, for
a prolonged time, ideally even for the whole duration of the transfer. In this
case, the thrusters are typically based on electric and magnetic propulsion,
that ensure a good specific thrust, and so allow for long firings without the
need of a critical amount of expellant. This kind of propulsion has very
different technological bases from those of the well developed thermochemical
propulsion, and it is also very interesting from the control point of view: in
general, it is required a continuous regulation of the magnitude and direction
of the thrust, and the dynamics involved are typically nonlinear. In the
following sections it will be used the MASRE algorithm to solve the nonlinear
optimal control problem that stems from low-thrust transfers.

6.3.1 Two-body problem

The first kind of orbital transfer that will be analysed is the one that takes
into account only two bodies in relative motion under the action of their
mutual gravitational attraction and of the control action. First, starting from
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Figure 6.5: Hohmann transfer

equation (6.17), it will be written the system of equations representing the
controlled dynamics, then the resulting nonlinear problem will be factorized,
solved and lastly will follow a presentation of the results.

Derivation of the dynamics

The equation representing the controlled motion of a spacecraft orbiting
around a certain celestial body is

r̈ = − µ
r3

r + u. (6.39)

The dynamics of this system are vectorial: a straightforward way to deal
with this problem can rely on simply decomposing the system in its cartesian
components

r =

{
r cos θ
r sin θ

}
, (6.40)

but actually it is more sensible to stick to the natural polar representation
of the problem, using as states not the projections of the position vector and
their derivatives, but rather the magnitude of the relative distance r and the
angle θ, formed with an inertial reference. According to this representation,
the position vector is expressed as

r = rîr, (6.41)
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where îr is the unit vector associated with r; as a consequence, the derivatives
of the position vector are

ṙ = ṙîr + rθ̇îθ, (6.42)

r̈ = r̈îr + ṙθ̇îθ + ṙθ̇îθ + rθ̈îθ − rθ̇2îr

= r̈îr + 2ṙθ̇îθ + rθ̈îθ − rθ̇2îr

=
(
r̈ − rθ̇2

)
îr +

(
2ṙθ̇ + rθ̈

)
îθ. (6.43)

Substituting equation (6.41) and equation (6.43) in equation (6.39) and
decomposing the control acceleration into a radial acceleration ur îr and a
transverse acceleration uθ îθ yields(

r̈ − rθ̇2
)

îr +
(

2ṙθ̇ + rθ̈
)

îθ = − µ
r2

îr + ur îr + uθ îθ, (6.44)

that can be easily split into radial and transverse dynamics

r̈ − rθ̇2 = − µ
r2

+ ur, (6.45)

2ṙθ̇ + rθ̈ = uθ. (6.46)

By defining x1 = r, x2 = θ, x3 = ṙ and x4 = θ̇, it is possible to cast the
problem into the classical state-space form

ẋ1 = x3

ẋ2 = x4

ẋ3 = x1x
2
4 −

µ

x2
1

+ ur

ẋ4 = −2
x3x4

x1
+
uθ
x1

(6.47)

Problem set-up

System (6.47) is able to represent any two-body controlled problem. In
our specific case, it will be studied a transfer between Earth orbit and
Mars orbit in a Sun-centered polar reference; for the sake of simplicity, the
problem will be written with scaled coordinates, where the unit length is one
astronomical unit (1 ua), the time unit is such that the Earth period is 2π
and the gravitational parameter of the Sun µSun is equal to 1. The orbits of
the planets are assumed to be circular. Initially, the spacecraft is coasting
on the Earth orbit, so that r(ti) = 1 and ṙ(ti) = 0, while, recalling that the
velocity of circular orbits is

vθ = rθ̇ =

√
µ

r
, (6.48)
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the initial value of the angular velocity is θ̇(ti) = 1; the initial angle is
arbitrarily fixed to zero. Regarding the final conditions, the distance of Mars
from the Sun is r(tf ) = 1.52, the radial component of velocity must be again
null (ṙ(tf ) = 0) and the angular velocity, making use of equation (6.48), is

θ̇(tf ) = 1.52−
3
2 ; the final angle can be chosen freely, or it can be even left as

a free parameter, to be select by the optimal control. The cost function to
be minimized is

J =
1

2

∫ tf

ti

uTudt, (6.49)

where uT =
[
ur uθ

]
.

The uncontrolled dynamics have been factorized in three different ways

A1 = A1(x) =


0 0 1 0

0 0 0 1

− 1

x3
1

0 0 x1x4

0 0 −2
x4

x1
0

 ,

A2 = A2(x) =


0 0 1 0

0 0 0 1

x2
4 −

1

x3
1

0 0 0

0 0 −2
x4

x1
0

 ,

A3 = A3(x) =


0 0 1 0

0 0 0 1

0 0 0 x4x1 −
1

x4x2
1

0 0 −2
x4

x1
0

 ,

while the rest of the matrices is

B = B(x) =


0 0
0 0
1 0

0
1

x1

 , Q = 04×4, R = I2×2.

The problem has been solved for two different sets of boundary conditions:
the first defines an hard constrained problem

x1 = 1,
x2 = 0,
x3 = 0,
x4 = 1,


t=0

x1 = 1.52,
x2 = π,
x3 = 0,

x4 = 1.52−
3
2 ,


t=π

(6.50)
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where all the states are specified both at initial and final time, while the
second set is that of a mixed constrained problem, with the final angle left
unspecified

x1 = 1,
x2 = 0,
x3 = 0,
x4 = 1,


t=0

x1 = 1.52,
x3 = 0,

x4 = 1.52−
3
2 .


t=π

(6.51)

The mixed constrained problem requires a modification of the cost function
in order to take into account a possible weighting of the final condition,
introduced with a matrix S(xf )

J =
1

2
xTf S(xf )xf +

1

2

∫ tf

ti

uTudt. (6.52)

Since the only unspecified final state is x2, this will be the only state to be
weighted, accordingly, by a scalar S(xf ); actually, the final angle is not a
term that directly influences the quality of the overall solution, so it will be
excluded from the cost function by choosing

S = 0. (6.53)

In both cases, the algorithm has been initialised by setting the termination
tolerance to 10−6.

Results

The iterations relative to the HCP are shown in Table 6.5, and the corre-
sponding solution are shown in Figure 6.6a, along with the approximate
control profiles in Figures 6.6c and 6.6e. The optimal cost function is

Jopt = 1.830× 10−1,

showing a consistent decrement if compared to the approximate solution;
this is confirmed by Figures 6.6d and 6.6f, where the optimal controls are
quite different from the approximate ones. It is interesting to notice that
the factorization associated to matrix A1(x) it is discarded because of its
non-controllability, but it has been verified that if matrix A1(x) is fed to the
original ASRE, the algorithm is able to converge to an approximate solution
whose cost function is

Japprox = 2.602× 10−1.

This implies that a factorization is not required to be always controllable in
order to produce a converging sequence of approximation, i.e., controllability
is not a necessary condition for the ASRE algorithm, so that the exclusion
of those factorizations that are not always controllable is a very conservative
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Table 6.5: Iterations of the MASRE algorithm for the two-body hard con-
strained optimal control problem, CPU time 60.1 s. The first iteration shows
no convergence to any of the two matrices A1 or A2. Notice that the cost
function’s value of the last iteration is lower than the one relative to the
non-controllable matrix

Error σmin J Matrix

1 3.142 4.058× 10−1 1.674× 10−1 NO
2 1.760× 10−1 3.519× 10−1 3.956× 10−1 A2

3 5.618× 10−2 3.095× 10−1 1.940× 10−1 A2

4 3.565× 10−2 3.082× 10−1 2.423× 10−1 A2

5 1.179× 10−2 3.040× 10−1 2.184× 10−1 A2

6 5.335× 10−3 3.049× 10−1 2.279× 10−1 A2

7 1.939× 10−3 3.046× 10−1 2.244× 10−1 A2

8 6.792× 10−4 3.048× 10−1 2.258× 10−1 A2

9 2.533× 10−4 3.047× 10−1 2.253× 10−1 A2

10 8.548× 10−5 3.047× 10−1 2.255× 10−1 A2

11 3.057× 10−5 3.047× 10−1 2.254× 10−1 A2

12 1.074× 10−5 3.047× 10−1 2.254× 10−1 A2

13 3.699× 10−6 3.047× 10−1 2.254× 10−1 A2

14 1.320× 10−6 3.047× 10−1 2.254× 10−1 A2

15 4.567× 10−7 3.047× 10−1 2.254× 10−1 A2
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Figure 6.6: Solution of the two-body HCP
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Table 6.6: Iterations of the MASRE algorithm for the two-body mixed
constrained optimal control problem, CPU time 19.9 s. The first iteration
shows no convergence to any of the two matrices A1 or A2

Error σmin J Matrix

1 2.409 4.058× 10−1 1.047× 10−1 NO
2 5.237× 10−2 3.434× 10−1 3.297× 10−2 A2

3 4.522× 10−2 3.146× 10−1 4.924× 10−2 A2

4 8.627× 10−3 3.126× 10−1 4.652× 10−2 A2

5 2.728× 10−3 3.127× 10−1 4.801× 10−2 A2

6 5.133× 10−4 3.129× 10−1 4.839× 10−2 A2

7 3.166× 10−4 3.131× 10−1 4.845× 10−2 A2

8 1.568× 10−4 3.132× 10−1 4.846× 10−2 A2

9 5.434× 10−5 3.132× 10−1 4.845× 10−2 A2

10 1.475× 10−5 3.132× 10−1 4.845× 10−2 A2

11 3.045× 10−6 3.132× 10−1 4.845× 10−2 A2

12 1.325× 10−6 3.132× 10−1 4.845× 10−2 A2

13 7.700× 10−7 3.132× 10−1 4.845× 10−2 A2

choice, but, comparing the cost function’s values of the two approximate
solutions, it is apparent that the factorization that is always controllable
yields better results.

The problem has also been solved enforcing the set of boundary conditions
(6.51), that defines a MCP. The sequence of iterations of the MASRE
algorithm is shown in Table 6.6, and Figure 6.7 shows the various solutions
in the orbit plane and the control profiles. The optimal cost function found
is

Jopt = 3.695× 10−2.

As it would have been expected, by letting the algorithm determine by itself
the final angle, the MCP’s optimal cost function is lower than the optimal
cost function of the HCP’s solution, but also the approximate cost function is
decreased, and even the convergence is faster, since the algorithm can exploit
the additional degree of freedom provided by the unspecified value of the
final angular position. The solution can be confronted with the one found in
[1], section 2.5, where it is solved a similar problem, i.e., to determine the
thrust-direction history for a minimum-time orbital transfer between Earth’s
and Mars’ orbits. Albeit with proper differences, the thrust profile is similar,
with the radial component monotonically decreasing from a positive to a
negative value, and the transversal component switching from positive to
negative and then again positive.

In conclusion, this example shows how the automatic selection of the
proper factorization leads to better factorization; otherwise, it would be

76



Astrodynamics applications and other examples

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

MASRE iterations − Orbit plane

 

 
q = 1
q = 2
q = 13

(a) MASRE orbit plane iterations

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

Orbit plane solutions

 

 

Approximate solution
Optimal solution

(b) Orbit plane solutions

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

C
on

tr
ol

MASRE iterations − u
r

 

 
q = 1
q = 2
q = 3
q = 13

(c) MASRE control iterations - ur

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Control effort − u
r

Time

C
on

tr
ol

 

 

Initial solution
Optimal solution

(d) Solutions for the control - ur

0 0.5 1 1.5 2 2.5 3 3.5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

C
on

tr
ol

MASRE iterations − uθ

 

 

q = 1
q = 2
q = 3
q = 13

(e) MASRE control iterations - uθ

0 0.5 1 1.5 2 2.5 3 3.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Control effort − uθ

Time

C
on

tr
ol

 

 
Initial solution
Optimal solution

(f) Solutions for the control - uθ

Figure 6.7: Solution of the two-body MCP
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necessary to verify one by one which factorization yields the best results in
terms of cost function.

6.3.2 Restricted three-body problem

The two-body problem is a simplified model that can be satisfactory when
dealing with orbits that are very close to a single attractor, or when the
solution that is looked for does not need to be refined, as it happens during
the preliminary phases of a project; on the other hand, if the problem
considered is actually referring to a more complex situation that needs to
be analysed in detail, it is sensible to resort to a more realistic model, that
takes into account the effects of more than one attractor. In the following,
it will be presented the so called Circular Restricted Three-Body Problem
(CRTBP), that deals with a system of three bodies, two of which are massive
attractors (primaries) moving under the mutual force of gravity on circular
orbits, while the third has negligible mass, not influencing the motion of the
attractors; the CRTBP consists in describing the motion of this third body.

The solution of this problem leads to the identification of five equilibrium
points or lagrangian points; three of them, called eulerian or collinear, are
aligned with the primaries, while the other two, called triangular or lagrangian
in a strict sense, are located on the vertices of the equilateral triangles formed
by the primaries. Those equilibrium points can be exploited to linearise
the dynamical system, thus obtaining informations about the solutions, i.e.,
orbits, around those equilibrium points: the collinear points are unstable,
while the triangular ones are stable. Actually, the orbits around collinear
points can be made periodic by properly selecting the initial conditions, and
this, taking into account the fact that the stable equilibrium points require
an higher level of energy to be reached, makes the orbits around collinear
points very interesting. In order to reach those periodic orbits, it is possible
to exploit the stable manifolds (see [14]) associated, i.e., trajectories that
asymptotically reach a periodic orbit around a collinear point. The next
section will focus on selecting the optimal control that allows to reach a
stable manifold associated to a periodic orbit around the L1 point of the
Earth-Moon system.

Derivation of the dynamics

The primaries and the spacecraft are modelled as point masses, respectively
m1 > m2 � m3, while the distances of the primaries from the centre of
mass are respectively a and b, so that the distance between the primaries
is l = a + b; the equality of centrifugal and gravity forces acting on the
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primaries yields

G
m1m2

l2
= m1an

2, (6.54)

G
m1m2

l2
= m2bn

2, (6.55)

where G is the gravitational constant and n is the angular velocity around
the center of mass; by multiplying both sides of equation (6.54) by m2 and
both sides of equation (6.55) by m1 and adding the resulting equalities, it is
possible to write

G
m1m

2
2

l2
+G

m2
1m2

l2
= m1m2an

2 +m1m2bn
2,

⇓

Gm1m2
m1 +m2

l2
= m1m2 (a+ b)n2 = m1m2ln

2,

⇓

n2 = G
m1 +m2

l3
, (6.56)

so that, substituting expression (6.56) inside equations (6.54) and (6.55), the
distances of the primaries from the centre of mass can be expressed as

a =
m2l

m1 +m2
, (6.57)

b =
m1l

m1 +m2
. (6.58)

In order to avoid the explicit time dependence due to the motion of the
primaries, it is possible to write the dynamics in a synodic reference frame,
i.e., rotating with the primaries, whose origin lies in the centre of mass of the
system, and whose abscissa is aligned with the primaries. In this reference
frame, the coordinates of the spacecraft are x, y and z, so that its position is

r = x̂i + yĵ + zk̂, (6.59)

and the corresponding derivatives are

ṙ = ẋ̂i + xnĵ + ẏĵ− ynĵ + żk̂, (6.60)

r̈ = ẍ̂i + ẋnĵ + ẋnĵ− xn2î + ÿĵ− ẏn̂i− ẏn̂i− yn2ĵ + z̈k̂

=
(
ẍ− 2nẏ − n2x

)
î +
(
ÿ + 2nẋ− n2y

)
ĵ + z̈k̂. (6.61)

The distances of the spacecraft from the primaries are, respectively,

r1 =

√
(x+ a)2 + y2 + z2, (6.62)

r2 =

√
(x− b)2 + y2 + z2, (6.63)
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Decomposing the dynamics on the synodic reference frame yields

ẍ− 2nẏ − n2x = −G
[
m1 (x+ a)

r3
1

+
m2 (x− b)

r3
2

]
, (6.64)

ÿ + 2nẋ− n2y = −G
[
m1y

r3
1

+
m2y

r3
2

]
, (6.65)

z̈ = −G
[
m1z

r3
1

+
m2z

r3
2

]
. (6.66)

Switching to a set of non-dimensional variables

x =
x

l
, y =

y

l
, z =

z

l
,

t = nt?, r1 =
r1

l
, r2 =

r2

l
,

(6.67)

and defining a mass parameter

µ =
m2

m1 +m2
, (6.68)

so that

a =
m2l

m1 +m2
= µl,

b =
m1l

m1 +m2
= (1− µ) l,

allows a simplification of the dynamics

n2lẍ− 2n2lẏ − n2lx = −G
[
m1 (xl + µl)

r3
1l

3
+
m2 (xl − (1− µ) l)

r3
2l

3

]
,

n2lÿ + 2n2lẋ− n2ly = −G
[
m1yl

r3
1l

3
+
m2yl

r3
2l

3

]
,

n2lz̈ = −G
[
m1zl

r3
1l

3
+
m2zl

r3
2l

3

]
,

⇓

ẍ− 2ẏ − x = − G

n2l3

[
m1 (x+ µ)

r3
1

+
m2 (x− 1 + µ)

r3
2

]
,

ÿ + 2ẋ− y = − G

n2l3

[
m1y

r3
1

+
m2y

r3
2

]
,

z̈ = − G

n2l3

[
m1z

r3
1

+
m2z

r3
2

]
.
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Recalling equation (6.56)

ẍ− 2ẏ − x = − 1

m1 +m2

[
m1 (x+ µ)

r3
1

+
m2 (x− 1 + µ)

r3
2

]
,

ÿ + 2ẋ− y = − 1

m1 +m2

[
m1y

r3
1

+
m2y

r3
2

]
,

z̈ = − 1

m1 +m2

[
m1z

r3
1

+
m2z

r3
2

]
,

⇓
ẍ− 2ẏ − x = − m1

m1 +m2

x+ µ

r3
1

− m2

m1 +m2

x− 1 + µ

r3
2

,

ÿ + 2ẋ− y = − m1

m1 +m2

y

r3
1

− m2

m1 +m2

y

r3
2

,

z̈ = − m1

m1 +m2

z

r3
1

− m2

m1 +m2

z

r3
2

,

⇓

ẍ− 2ẏ − x = −(1− µ) (x+ µ)

r3
1

− µ (x− 1 + µ)

r3
2

,

ÿ + 2ẋ− y = −(1− µ) y

r3
1

− µy

r3
2

,

z̈ = −(1− µ) z

r3
1

− µz

r3
2

.

(6.69)

The introduction of a potential

Ω =
1

2

(
x2 + y2

)
+

1− µ
r1

+
µ

r2
+

1

2
µ (1− µ) , (6.70)

where the last term is a constant, further simplifies the dynamics; the partial
derivatives of Ω with respect to x, y and z are

Ωx =
∂Ω

∂x
= x− (1− µ) (x+ µ)

r3
1

− µ (x− 1 + µ)

r3
2

,

Ωy =
∂Ω

∂x
= y − (1− µ) y

r3
1

− µy

r3
2

,

Ωz =
∂Ω

∂z
= −(1− µ) z

r3
1

− µz

r3
2

,

so that the uncontrolled dynamics can be expressed as
ẍ− 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz.

(6.71)

The synodic reference frame allows a formulation that can be used to describe
any CRTBP by simply selecting the proper mass parameter and boundary
conditions.
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Problem set-up

In this example, that follows from [9], it is considered the three-body system
Earth-Moon-Spacecraft, and the analysis will be restricted by assuming that
the spacecraft is bounded to move in the plane of the primaries; the mass
parameter µ is

µ =
mMoon

mEarth +mMoon
= 0.012,

while, regarding the boundary conditions, it is necessary to define what
is the orbital transfer: the transfer to be designed starts from a circular
orbit located at an altitude h = 75 000 km, in particular from the point
lying between the primaries, and its target is to reach a stable manifold
of a periodic orbit around L1 that has semi-amplitudes of 25 400 km and
60 000 km along x and y, respectively. It can be shown that a generic point
of the stable manifold xs = (xs, ys, ẋs, ẏs) is uniquely identified by using
two scalars, i.e., xs (τ1, τ2), where τ1 and τ2 are two time variables. For this
reason, in order to belong to the stable manifold, the final transfer state
xf = (xf , yf , ẋf , ẏf ) must satisfy the final boundary conditions

xf = xs,
yf = ys,
ẋf = ẋs,
ẏf = ẏs.

 (6.72)

In Figure 6.8 it is depicted the stable manifold orbit around L1 in the synodic
reference frame, along with the circular starting orbit and the extremes of
the transfer orbit; the planar dynamics, with the addition of the acceleration
controls u1 and u2,

ẍ− 2ẏ − x = −(1− µ) (x+ µ)

r3
1

− µ (x− 1 + µ)

r3
2

+ u1,

ÿ + 2ẋ− y = −(1− µ) y

r3
1

− µy

r3
2

+ u2,

(6.73)

have been first expressed in the canonical state-space form, with x1 = x,
x2 = y, x3 = ẋ and x4 = ẏ,

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = x1 + 2x4 −
(1− µ) (x1 + µ)

r3
1

− µ (x1 − 1 + µ)

r3
2

+ u1,

ẋ4 = x2 − 2x3 −
(1− µ)x2

r3
1

− µx2

r3
2

+ u2,

(6.74)

and then the system has been factorized taking into account that the initial
conditions prescribe a zero-valued x2 and x3, so that any factorization that
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Figure 6.8: Synodic reference frame with Earth, Moon, lagrangian points, the
circular starting orbit, the stable manifold and the extremes of the transfer
orbit

would have been not consistent has been discarded; the matrices associated
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to the uncontrolled dynamics are

A1 (x) =


0 0 1 0
0 0 0 1

1− c1

x1
− c2

x1
0 0 2

0 c −2 0

 , (6.75)

A2 (x) =


0 0 1 0
0 0 0 1

1− c1

x1
0 0 2− c2

x2
0 c −2 0

 , (6.76)

A3 (x) =


0 0 1 0
0 0 0 1

1− c2

x1
0 0 2− c1

x2
0 c −2 0

 , (6.77)

A4 (x) =


0 0 1 0
0 0 0 1

1 0 0 2− c1

x2
− c2

x2
0 c −2 0

 , (6.78)

A5 (x) =


0 0 1 0
0 0 0 1

1− c1
x1

x2
1 + x2

2

− c2
x1

x2
1 + x2

2

−c1
x2

x2
1 + x2

2

− c2
x2

x2
1 + x2

2

0 2

0 c −2 0

 ,
(6.79)

where

c1 =
(1− µ) (x1 + µ)

r3
1

, (6.80)

c2 =
µ (x1 − 1 + µ)

r3
2

, (6.81)

c = 1− (1− µ)x2

r3
1

− µx2

r3
2

. (6.82)

Regarding the control and the cost function, the associated matrices will be

B =


0 0
0 0
1 0
0 1

 , Q = 04×4, R =

[
1 0
0 1

]
. (6.83)

Initial and final time are set to ti = 0 and tf = 0.5, the termination tolerance
is 10−6.
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Figure 6.9: Approximate and refined solutions obtained with matrix A5,
CPU time 63.5 s

Results

The algorithm is not able to converge to any solution; this is caused by the
singularities that arise during the first iteration: by solving the problem with
matrix A5, it is easy to notice that both components of the position and
velocity vectors change sign during the transfer; this means that the matrices
A1, A2, A3 and A4 become not-definite, preventing the algorithm from
integrating the STM. In Figure 6.9 it is shown the refined solution obtained
by solving the problem using only matrix A5; this example makes clear that
singularities can arise without being able to detect them a priori, so that
the factorizations must be computed bearing this in mind, e.g., matrix A5

becomes not defined only in the origin of the synodic reference frame, so
that it is safe to assume that it will not be critical. Furthermore, it must be
made an annotation about the quality of the solution found: the problem has
been originally solved using direct transcription (see [9]), and for that case
the solution was a spiral, associated to a cost function much lower than the
one found with the MASRE algorithm; this is due to the intrinsic necessity
of direct transcription of a starting guess (that can be exploited to select a
desired solution), while the ASRE method has no flexibility from this side,
providing a solution that is maybe the most “simple”, but not the optimal
one.
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6.4 Station-keeping

Once a spacecraft, typically a satellite, has been successfully injected on
its nominal orbit, it is still necessary to counteract those disturbances that
would lead the spacecraft to drift away from the desired path. Among the
possible disturbances acting on the keplerian motion, the main effects are
due to the third body effects, the non-spherical shape of the main attractor,
the solar pressure, the magnetic field of the main attractor, the atmospheric
drag. . . The kinds of disturbance to be taken into account depend on the
nominal orbit, i.e., some disturbances can be neglected when the associated
effect is much smaller than the others, or in general when the effects are
not perceptible. In the following example it will be assumed a geostationary
orbit: these orbits are exploited because of the apparent null longitudinal
motion and the consequent small need of tracking procedures, a feature
that is particularly appreciated when dealing with telecommunications or
meteorological observations. This has determined a rapid growth of the
number of satellites on the geostationary orbit, and, in parallel, a increased
precision over the reduced tolerance requested. The control manoeuvres can
be actuated employing chemical thrusters pulsing cyclically, but, in order to
increase the efficiency and thus the lifetime, it is possible to use low-thrust
actuators continuously; this is when intervenes nonlinear control, allowing a
fine regulation of the station-keeping procedure.

In the following it will be presented a derivation of the dynamics in a
proper reference frame, along with the models of the different perturbations
considered.

6.4.1 Derivation of the dynamics

First of all, the reference frame adopted is called Earth-Centered Earth-Fixed
(ECEF), i.e., a cartesian frame rotating jointly with the planet, whose origin
lies in the center of the Earth, whose x and y axes lie in the equatorial
plane and whose z axis points toward the North pole. Shifting to a spherical
coordinates system, the λ and ϕ coordinates represent longitude and latitude,
respectively, while the r coordinate identifies the distance from the origin.
The relation between the cartesian and the spherical system is

x
y
z

 =


r cosϕ cosλ
r cosϕ sinλ
r sinϕ

 . (6.84)

It is sensible to use the ECEF frame since it is easy to express the deviations
of the spacecraft from the nominal position, but also because the perturbing
accelerations can be computed recurring to potentials. The dynamics are
obtained starting from the Lagrangian L of the system, defined as

L = L (q, q̇) = T (q, q̇)− V (q, q̇) , (6.85)
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where T and V are the kinetic and potential energy of the system, respectively,
and with q have been expressed the generalized coordinates. The equation
of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi, (6.86)

where the generalized vector Q has been added to take into account the
non-conservative forces acting on the system, yields the dynamics; for the
specific case being studied, the Lagrangian is

L =
1

2

[
ṙ2 + r2ϕ̇2 +

(
r2 cos2 ϕ

) (
λ̇+ ω

)2
]
−W (r, λ, ϕ) , (6.87)

where ω is the angular velocity of the reference system and W is the potential
associated to the conservative forces. Applying equation (6.86) to (6.87)
yields

r̈ − rϕ̇2 − r cos2 ϕ
(
λ̇+ ω

)2
=
∂W

∂r
,

d

dt

[
r2 cos2 ϕ

(
λ̇+ ω

)]
=
∂W

∂λ
,

d

dt

(
r2ϕ̇
)

+ r2 sinϕ cosϕ
(
λ̇+ ω

)2
=
∂W

∂ϕ
.

(6.88)

Actually, the partial derivatives of the potential with respect to λ and ϕ
are not accelerations, and looking at the gradient operator in spherical
coordinates

∇ (·) =
∂ (·)
∂r

r̂ +
1

r cosϕ

∂ (·)
∂λ

λ̂+
1

r

∂ (·)
∂ϕ

ϕ̂, (6.89)

makes clear that, in order to maintain dimensional consistency, it is sufficient
to multiply by r cosϕ the accelerations along λ and by r the accelerations
along ϕ; taking into account the accelerations ã that do not stem from a
potential, the dynamics become

r̈ − rϕ̇2 − r cos2 ϕ
(
λ̇+ ω

)2
= wr + ãr,

d

dt

[
r2 cos2 ϕ

(
λ̇+ ω

)]
= (wλ + ãλ) r cosϕ,

d

dt

(
r2ϕ̇
)

+ r2 sinϕ cosϕ
(
λ̇+ ω

)2
= (wϕ + ãϕ) r.

(6.90)

Up to now, the longitude has been expressed with λ, but it is sensible to
define a nominal longitude λn that will be constant, since the reference frame
is rotating jointly with the Earth, so that the actual longitude will be

λ = λn + ε, (6.91)
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where ε is the deviation from the nominal longitude; of course, since λn is
a constant, the variation of the longitude will be λ̇ = ε̇. Furthermore, it is
possible to split the radial component of potential in two terms

wr = − µ
r2

+ w̃r, (6.92)

separating the effect of the main attractor, i.e., the Earth, from those of
the other conservative forces; taking into account the last two remarks, and
computing the time derivatives, the dynamics results to be

r̈ − rϕ̇2 − r cos2 ϕ (ε̇+ ω)2 = −µ/r2 + ar,

2rṙ cos2 ϕ (ε̇+ ω)− 2r2ϕ̇ sinϕ cosϕ (ε̇+ ω) + r2 cos2 ϕε̈ = aεr cosϕ,

2rṙϕ̇+ r2ϕ̈+ r2 sinϕ cosϕ (ε̇+ ω)2 = aϕr,

(6.93)

having defined

ar = ar (r, ε, ϕ) = w̃r + ãr,

aε = aε (r, ε, ϕ) = wλ + ãλ,

aϕ = aϕ (r, ε, ϕ) = wϕ + ãϕ.

(6.94)

Simplifying, the dynamics are finally written as

r̈ − rϕ̇2 − r cos2 ϕ (ε̇+ ω)2 + µ/r2 = ar (r, ε, ϕ) ,

2ṙ cosϕ (ε̇+ ω)− 2rϕ̇ sinϕ (ε̇+ ω) + r cosϕε̈ = aε (r, ε, ϕ) ,

2ṙϕ̇+ rϕ̈+ r sinϕ cosϕ (ε̇+ ω)2 = aϕ (r, ε, ϕ) .

(6.95)

Regarding the perturbations, it has been chosen to take into account only
the effects due to the non-spherical shape of the Earth, following the method
presented in [30]; first, the perturbation is expressed as a potential, in this
case a gravitational potential in a reference frame centred in the centre of
mass of the attractor from which it has already been subtracted the first
order term

Ug = Ug (r, λ, ϕ) =
µ

r

∞∑
l=2

l∑
m=0

(
R

r

)l 1

2ll!

(
1− sin2 ϕ

)m/2
d[l+m]

d (sinϕ)[l+m]

(
sin2 ϕ− 1

)l
(Cl,m cosmλ+ Sl,m sinmλ) , (6.96)

where R is the Earth’s radius, and Cl,m and Sl,m are the coefficients of the se-
ries expansion. The components of the acceleration in the spherical reference
frame are obtained by applying the gradient operator to the potential

ag =
∂U

∂r
r̂ +

1

r cosϕ

∂U

∂λ
λ̂+

1

r

∂U

∂ϕ
ϕ̂. (6.97)
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It has been decided to limit the series expansion to the third order, neglecting
the terms C21 and S21 that are considerably smaller than the others, thus
obtaining the following expressions for the perturbing accelerations:

agr =− 3
µR2

r4

[(
3

2
sin2 ϕ− 1

2

)
C20 +

(
3 cos2 ϕ

)
(C22 cos 2λ+ S22 sin 2λ)

]
+

− 4
µR3

r5

{(
5

2
sin3 ϕ− 3

2
sinϕ

)
C30+

+

(
15

2
sin2 ϕ cosϕ− 3

2
cosϕ

)
(C31 cosλ+ S31 sinλ) +

+
(
15 sinϕ cos2 ϕ

)
(C32 cos 2λ+ S32 sin 2λ) +

+
(
15 cos3 ϕ

) [
C33 cosλ

(
1− 4 sin2 λ

)
+ S33 sinλ

(
4 cos2 λ− 1

)]}
(6.98)

agλ = +
µR2

r4

(
3 cos2 ϕ

)
(2S22 cos 2λ− 2C22 sin 2λ) +

+
µR3

r5 cosϕ

{(
15

2
sin2 ϕ cosϕ− 3

2
cosϕ

)
(S31 cosλ− C31 sinλ) +

+
(
15 sinϕ cos2 ϕ

)
(2S32 cos 2λ− 2C32 sin 2λ) +

+
(
15 cos3 ϕ

) [
C33

(
12 sin3 λ− 9 sinλ

)
+ S33

(
12 sin3 λ− 9 sinλ

)]}
(6.99)

agϕ = +
µR2

r4
[(3 sinϕ cosϕ)C20 + (6 sinϕ cosϕ) (C22 cos 2λ+ S22 sin 2λ)] +

+
µR3

r5

{(
15

2
sin2 ϕ cosϕ− 3

2
cosϕ

)
C30+

+

[
3

2
sinϕ+

15

2

(
2 sinϕ cos2− sin3 ϕ

)]
(C31 cosλ+ S31 sinλ) +

+
(
15 cos3 ϕ− 30 sin2 ϕ cosϕ

)
(C32 cos 2λ+ S32 sin 2λ) +

+
(
−45 sinϕ cos2 ϕ

) [
C33 cosλ

(
1− 4 sin2 λ

)
+

+S33 sinλ
(
4 cos2 λ− 1

)]}
(6.100)

It is apparent that the variables λ and ϕ are always used inside trigonometric
functions, and this fact would severely limit the possibility of factorizing the
dynamics; to overcome this, the trigonometric functions have been expanded
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as Taylor series around the nominal position (λn, ϕn = 0) and truncated to
the second order, providing a good starting point for the factorization process;
the reader is directed to [30] for the complete Taylor series associated to the
perturbations.

6.4.2 Problem set-up

The dynamics of the previous section have been already written in dimen-
sionless units, so that the gravitational parameter of the Earth is µ = 1, the
nominal distance of the satellite from the centre of the Earth is rn = 1 and
the angular velocity is ω = 1. The state-space form of the problem, having
set x1 = r, x2 = ε, x3 = ϕ, x4 = ṙ, x5 = ε̇ and x6 = ϕ̇, is

ẋ1 = x4,

ẋ2 = x5,

ẋ3 = x6,

ẋ4 = − 1

x2
1

+ x1x
2
6 + x1 (x5 + 1)2 cos2 x3 + ar,

ẋ5 = 2x6 (x5 + 1) tanx3 − 2
x4

x1
(x5 + 1) +

1

x1 cosx3
aε +

1

x1 cosx3
uε,

ẋ6 = −2
x4

x1
x6 − (x5 + 1)2 sinx3 cosx3 +

1

x1
aϕ +

1

x1
uϕ,

(6.101)
where have been introduced the control accelerations uε and uϕ. In order to
maintain the nominal state vector

xTn =
{

1 0 0 0 0 0
}
, (6.102)

it is necessary to set the final condition x1(tf = π) = 1, otherwise the control
would tend to decrease the state vector to zero.The remaining states are left
unspecified, to guarantee an optimality in terms of control magnitude, and
thus, fuel consumption. To complete the definition of the MCP, the initial
condition will be

xTi =
{

1 0.05° 0.05° 0 0 0
}
, (6.103)

corresponding to a corner of the typical tolerance window of a geostationary
satellite. The unperturbed dynamics have been factorized as

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a41 0 0 0 a45 a46

0 0 0 a54 a55 a56

a61 0 0 a64 a65 a66

 , (6.104)
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with

a41 = − 1

x3
1

+ k1x
2
6 +

(
k2x

2
5 + 2k3x5 + 1

)
cos2 x3a,

a45 = [(1− k2)x1x5 + 2 (1− k3)] cos2 x3,

a46 = (1− k1)x1x6,

a54 = − 2

x1
− 2 (1− k5)

x5

x1
,

a55 = 2k4x5 tanx3 − 2k5
x4

x1
,

a56 = 2 [1 + (1− k4)x5] tanx3,

a61 = −sin 2x3

2x1
,

a64 = −2 (1− k6)
x6

x1
,

a65 = −
(

1

2
x5 + 1

)
sin 2x3,

a66 = −2k6
x4

x1
.

The parameters 0 ≤ ki ≤ 1 allow to write many factorizations of the
nonlinear dynamics; the 26 = 64 factorizations stemming from assigning
to the parameters only the values 0 or 1 will be used to solve the problem.
Regarding the perturbations, it is only necessary to sum those 64 factorization
with a matrix Ap that expresses a single factorization of the perturbations;
details are given in [30]. The remaining matrices are

B =



0 0
0 0
0 0
0 0
1

x1 cosx3
0

0
1

x1


, S =


100 0 0 0 0
0 10 0 0 0
0 0 100 0 0
0 0 0 10 0
0 0 0 0 10

 , (6.105)

while Q = 06×6 and R = I2×2. The initial time is set to ti = 0 and the
termination tolerance to 10−6.

6.4.3 Results

Of the 64 factorizations employed, 32 two of them result to be always
controllable. This is very interesting, since the lack of control along the
radial direction could led to a non-controllable system; the issue is tackled by
providing a good pool of possible factorizations, among which the algorithm
can choose in order to guarantee controllability. The iterations of the
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Table 6.7: Iterations of the MASRE algorithm for the station-keeping optimal
control problem, CPU time 1529.4 s

Error σmin J Matrix

1 5.150× 10−3 7.400× 10−11 1.539× 10−7 A1

2 5.794× 10−3 1.270× 10−8 1.731× 10−7 A1

3 3.057× 10−3 1.338× 10−8 1.750× 10−7 A1

4 7.544× 10−4 2.245× 10−9 1.691× 10−7 A1

5 1.211× 10−4 3.496× 10−9 1.707× 10−7 A1

6 1.891× 10−5 3.316× 10−9 1.708× 10−7 A1

7 3.618× 10−6 3.326× 10−9 1.706× 10−7 A1

8 9.429× 10−7 3.327× 10−9 1.707× 10−7 A1

approximate solution are shown in Table 6.7: the sequence converges toward
the factorization associated with matrix A1 from the beginning, and the
algorithm stops after only eight iterations, even though the optimization
process is very demanding. Regarding the refinement procedure, it must be
noticed that the optimal solution is rather different from the approximate
one, especially because the MCP’s boundary conditions only provide a final
value for the radial coordinate; the other coordinate are not specified, so
that the basin of attraction of an optimal solution can be quite broad, with
the consequence of having a considerable variation of the solution after the
refinement. The trajectories of the approximate and optimal solutions are
shown in Figure 6.10. The optimal cost function

Jopt = 1.324× 10−6,

is greater than the approximate one, meaning that the approximate solution
was violating some of the constraints; the refined solution recovers the
consistency, in spite of having a worse cost function.

This example has shown the potentiality of the MASRE algorithm:
without the need of providing a starting guess of the solution in terms of
state and co-state, the problem has been solved even with the lack of radial
control; this criticality could not be resolved without the optimization process,
as documented in [30].
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(c) MASRE control iterations - uλ
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(e) MASRE control iterations - uϕ
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Figure 6.10: Solution of the geostationary station-keeping
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Conclusions

This thesis has been focused on analysing and trying to develop the ASRE
algorithm, starting from the theoretical definition of the method; in fact,
the practical use of the algorithm is subject to the understanding of its
potentialities, that it is interesting to exploit in order to make the most out
of the algorithm.

7.1 Main properties

The most interesting aspect of the ASRE algorithm is related to the multiple
factorizations that can be obtained starting from a nonlinear vector field;
it has been made clear that the solution of the optimal control problem to
which the algorithm converges is strongly dependent on the the selected
factorization. This fact poses the problem of how to decide which factorization
should be used to solve the problem, and, consequently, which are the
properties that are looked for when selecting a particular factorization. On
the other hand, the ASRE method becomes critical when the procedure
encounters singularities, i.e., when the factorization is not defined for some
states, or when the pseudo-linear system looses controllability. The multiple-
factorizations feature of nonlinear systems has been exploited to tackle those
critical aspects, discarding those factorizations that are not consistent with
the boundary conditions or not always controllable, and combining linearly
the remaining factorizations in order to optimize the controllability at each
step of the iteration. The results are quite interesting, showing a correlation
between controllability and optimality; still, the resulting method is only able
to provide sub-optimal solutions, as confirmed by refining the approximate
solution using a fourth-order collocation method. The intrinsic nature of
BVPs is of having multiple solutions, and the approximate method, instead
of relying on a starting guess to identify a solution, proceeds from a particular
factorization out of many possible. As said before, the role played by the
starting guess of a classical BVP solver is transferred to the choice of the

95



Chapter

factorization, and optimizing this choice produces solutions that are “optimal”
in a broader sense, due to the characteristic limitations of any approximate
method.

7.2 Critical issues

If, on one hand, the identification of a factorization is a simpler task than
providing a starting guess of the solution, on the other hand, the selection of a
starting guess allows to finely specify the “kind” of solution that is looked for,
e.g., the example in section 6.3.2 shows that the MASRE algorithm is only
able to find a very “simple” solution, while direct transcription, employing a
specific starting guess, solves the same problem providing a trajectory that
is much better from any point of view. The MASRE algorithm simplifies the
preliminary task at the cost of loosing insight on the solution that is looked
for. Furthermore, even though the factorizations that are not consistent with
the boundary conditions are discarded from the start, it is still possible to
encounter singularities along the state-space trajectory, and, since it is not
known a priori, there is no way to overcome this issue, that causes the failure
of the integration. Lastly, a limitation of the solver is that only control affine
system can be treated.

7.3 Future developments

The main improvement that is missing is the possibility of optimizing not
only the choice of the factorization of the uncontrolled dynamics, but also the
control part, i.e., the matrix B; actually, the methodology would be similar
to the one used for optimizing matrix A, and this would allow to consider
also those problems that are not control affine, constituting the majority of
the cases.

Another possible improvement would be the possibility of managing
boundary conditions that are not explicit, i.e., nonlinear boundary conditions,
expressed with the general form

χ (xi, ti) = 0,

ψ (xf , tf ) = 0.

This implementation would be useful since it frequently happens that the
boundary conditions are expressed as nonlinear equation, whose solution is
hard or even impossible to express in closed form.

Lastly, a good control system should also take into account the unavoid-
able limit posed by the actuators in terms of maximum control effort; the
saturation of the control, as well as any other path constraint on the state
variables, implies the introduction of a saturation function

h (x(t),u(t), t) ≤ 0.
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User guide to the complete
solver

In this appendix it is explained how to use the MATLAB algorithm that
has been developed in parallel with this thesis. The main aspects that are
covered involve the setting up of the problem’s structure and the calibration
of the algorithm’s settings.

A.1 Problem structure

The data of the problem have to be stored into a single MATLAB function
file, whose declaration is

function [dyn fun, A, B, Q, R, S, n, m, k, xi, xf, ti, tf, N, ...
tol] = Problem

where Problem identifies the problem file. Next, it is necessary to define
the various outputs of this MATLAB function: dyn fun is a string that
contains the vectorial expression of the system’s uncontrolled dynamics, B
is the unique, state-dependent control matrix of the control-affine system,
Q and R are the state-dependent weighting matrices of state and control
respectively, and S is the weighting matrix of the unconstrained final states;
e.g., consider the soft-constrained problem

ẋ1 = x2

ẋ2 = x1x2 + u
(A.1)

with cost function

J =
1

2
x2

1f +
1

2

∫ tf

ti

(
2x2

1 + x2
2 + u2

)
dt. (A.2)

The file should then contain the following definitions

97



Appendix A

dyn fun = '[x2;x1*x2]';
B = '[0;1]';
Q = '[2 0;0 1]';
R = '1';
S = '[1 0;0 0]';

The string S will be ignored for hard constrained problem. Concerning A, it
is a cell array containing strings that represent the possible factorizations
of the uncontrolled dynamics found by the user; referring to equation (A.1),
possible factorizations are

A1(x) =

[
0 1
0 x1

]
, A2(x) =

[
x2 1− x1

0 x1

]
,

A3(x) =

[
0 1
x2 0

]
, A4(x) =

[
x2 1− x1

x2 0

]
,

so that the file should contain

A1 = '[0 1;0 x1]';
A2 = '[x2 1−x1;0 x1]';
A3 = '[0 1;x2 0]';
A4 = '[x2 1−x1;x2 0]';
A = {A1 A2 A3 A4};

The provision of factorizations it is actually optional, but still it is advisable to
try and compute analytically some of the factorizations for the system. Then,
the definition of the problem requires some further data: n is the number of
states, m is the number of control inputs, ti and tf are the initial and final
times. Regarding the boundary conditions, the initial one xi must be always
and completely assigned while the definition of final condition xf depends
on the kind of problem to be solved: hard constrained requires a completely
assigned final condition, soft constrained problem requires no final condition
and thus xf should be left empty, while for mixed constrained problems xf
should contain NaN entries for those states that are not prescribed at final
time. k is the minimum number of factorizations (consistent and controllable)
requested to be used inside the algorithm: the factorizations provided by the
user will be checked for consistency and controllability, and, if the remaining
number of factorizations is less than k, the algorithm will try to compute
other factorizations. N is the number of points on the discrete time grid over
which will be provided the approximate solution and tol is the termination
tolerance of the ASRE algorithm. Below it is shown an example of the
complete code for the definition of the problem.
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function [dyn fun, A, B, Q, R, S, n, m, k, xi, xf, ti, tf, N, ...
tol] = Problem

k = 4; N = 101; tol = 1e−6;
ti = 0; tf = 5;
xi = [2;1]; xf = [4;1];
n = 2; m = 1;

dyn fun = '[x2;x1*x2]';
A1 = '[0 1;0 x1]';
A2 = '[x2 1−x1;0 x1]';
A3 = '[0 1;x2 0]';
A4 = '[x2 1−x1;x2 0]';
A = {A1 A2 A3 A4};
B = '[0;1]';
Q = '[2 0;0 1]';
R = '1';
S = '[1 0;0 0]';

end

The file must then be saved inside a Problems sub-folder of the main folder
containing the algorithm.

A.2 Algorithm execution and options

Once the problem has been defined and saved in the proper location, it is
necessary to open the file SolveProblem.m and modify it accordingly: the
string TheProblem must contain the name of the problem definition file, e.g.,
TheProblem = 'Problem'. Next, there are a few options that can be set:

• flag start is a string that can be set either to cold or to warm; a cold
start will execute the whole algorithm, while a warm start will only
execute the TPBVP solver starting from a previously stored solution
of the ASRE algorithm.

• flag check is a string that can be set to on, cons, ctrb or off: with
flag check = 'on' the algorithm will check both the consistency and
the controllability of the factorizations; with flag check = 'cons'

the algorithm will only check for consistency; with flag check ...

= 'ctrb' the algorithm will only check for controllability; with with
flag check = 'off' the algorithm will check neither for consistency
nor for controllability.

• bvp solver is a string that allows to select either a fourth-order solver
(bvp solver = 'bvp4c') or a fifth-order solver (bvp solver = ...

'bvp5c').

During the execution of the algorithm, the command window shows different
informations: the results of the consistency and controllability checks, how
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many factorizations have been automatically computed and a table that,
for each iteration, contains the error, the minimum singular-value of the
controllability gramian, the cost function and the matrices toward which the
optimization has converged.

A.3 Warnings and errors

Warnings are shown whenever happens any of the following:

• The origin is not an equilibrium point of the uncontrolled dynamics, so
Bass algorithm cannot be used and it is adopted “brute force method”,
which consists in bringing out the states directly

• Bass algorithm is not able to compute a factorization of the uncontrolled
dynamics, so that it is adopted the “brute force method”.

• The algorithm is not able to find factorizations that are consistent
and/or controllable.

• The algorithm can find a number of factorizations that are consistent
and controllable that is less than what requested by the user.

• Only one factorization is available, so that no optimization process is
possible.

Error messages will be displayed and the algorithm will stop for any of the
following cases:

• The flag check string has not been assigned properly.

• No factorization is available.

A.4 Outputs

The output of the function CompleteSolver.m consists of four elements:

• sol approx is a structure that contains the solution of the ASRE
algorithm in terms of states, co-states, controls and diagnostics.

• sol BVP is a structure that contains the “raw” solution of the BVP
solver, i.e., the solution of the problem

ż = f(z, t), (A.3)

over the interval [a, b] subject to two-point boundary value conditions

g (z(a), z(b)) = 0, where zT =
{
x λ

}T
.
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• sol opt is a structure that contains the solution of the BVP solver in
terms of states, co-states, controls and diagnostics.

• warmstart is a structure that contains the data needed for a warm
start.
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Acronyms

ASRE Approximating Sequence of Riccati Equation.

BVP Boundary Value Problem.

CRTBP Circular Restricted Three-Body Problem.

HCP Hard Constrained Problem.

IVP Initial Value Problem.

LQR Linear Quadratic Regulator.

LTV Linear Time-Variant.

MASRE modified ASRE.

MCP Mixed Constrained Problem.

NLP Nonlinear Programming.

ODE Ordinary Differential Equation.

SCP Soft Constrained Problem.

SDC State Dependent Coefficient.

SDRE State Dependent Riccati Equation.

STM State-Transition Matrix.

TPBVP Two-Point Boundary Value Problem.
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