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Abstract

Autonomous rotorcraft in a confined environment that is preventing it to use a global
localization system will end up with wrong estimates of velocity and position after a
short time of dead reckoning initialization due to the inherent and external noise on
the inertial sensors. Extracting corners from an image that is taken from an onboard
camera and tracking them in subsequent images can be used as a velocity reference for
state estimation algorithm. Scale ambiguity that is present in a monocular camera can
be removed by using a fixed baseline stereo camera system. A measurement model
using this setup with relative positional measurements is described in the first part of
this thesis. The noise in the pixel measurements are back projected into three dimen-
sional space and after calculation of the distance travelled during image acquisition
interval, the weight of each feature point for the measurement update is characterized
by the covariance matrix. This matrix obtained by algebraic combination of uncertain-
ties in horizontal and vertical projection uncertainty of left and right cemeras. Extended
Kalman Filtering with state equations for position in fixed frame,velocity in body frame
and quaternion is used. Covariance representation for attitude representation is handled
by a body fixed error approach described using Gibbs vector. Assertive simulation re-
sults are presented showing the improvement of velocity state vector. The second part
discusses the mapping with known poses problem for a robotic vehicle. This is half of a
more general problem called Simultaneous Localization and Mapping (SLAM). Occu-
pancy grid mapping for vehicles moving on a two dimensional planar space is explained
by many authors. An algorithm using this technique and utilizing dense disparity maps
from a stereo camera is described for three dimensional mapping for a vehicle with six
degrees of freedom. The algorithm generates random particles with probability distri-
bution functions in accordance with the unertainty presented in the vehicle pose and
vision sensors. The ratio of points collected in voxels to the total number of particles
scattered for the measurement instant is used for a recursive Bayesian update. The
validity of the approach is presented with simulation results.
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Nomenclature

a Acceleration

B Body reference frame

C Camera reference frame

E Fixed reference frame

E Essential matrix

eH , eV , eF Camera frame unit vectors

eN , eE , eD Fixed frame unit vectors

eX , eY , eZ Body frame unit vectors

F Fundamental matrix

F System dynamics matrix

f Focal length

G State-noise coupling matrix

g Gravitational acceleration vector

H Measurement sensitivity matrix

I Identity matrix

K Kalman gain matrix

m Occupancy grid

mi Occupancy grid cell

mk Occupancy grid at instant k

K Camera calibration matrix
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P Point in three dimensional space

P State covariance matrix

p Position

p Projection of a point on two dimensional image plane

P (x) Probability of x

p(x) Probability density function of x

q̄ Quaternion

Q Process noise covariance matrix

R Measurement noise covariance matrix

RBA Rotation matrix from frame A to frame B

v Velocity

x State vector

xk Pose at instant k

z Measurement vector

zk Measurement at instant k

zk Measurement at instant k

θ Rotation vector

ρ Gibbs vector

Σ Covariance matrix

ω Angular velocity
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CHAPTER1
Introduction

High flying unmanned air vehicles are free from static obstacles that can prevent them
navigating safely during their missions. Meanwhile, the standard approach for estimat-
ing the vehicle state is fusing inertial sensor data with GPS signal. Although there are
different techniques for fusion of these two, an UAV design for high flying missions
always starts with this template for state estimation.

Rotary wing unmanned vehicles offer an alternative possible mission range with
their vertical flight capabilities for scattered environments. These include search and
rescue, law enforcement, examination and intervention in hazardous zones. These mis-
sions requires a complete or partial flight path which is proximate to obstacles. As a
result, a safe flight becomes a more complicated problem for these vehicles with two
reasons.

Firstly, the vehicle must identify a safe space to fly during its course. This can be
possible with a map supplied to the navigation planner of the system before the flight.
In that case, the vehicle knows where it is flyable and creates its path to be followed
with an optimization of flight parameters.

Afterward, the localization problem exists. A flight path within a scattered environ-
ment means at least a degradation of the global positioning signal or a complete loss
of it. In this case, the integration of inertial sensors accumulates the errors and a drift
occurs from the actual path. Especially with cheaper strap-down sensors used in small
UAVs, this error grows quickly, and the position data become useless. As a result, even
the system has a very precise map of the surroundings, a safe navigation is not possible.

The aim of this thesis is to define and validate a framework for generating three
dimensional occupancy grids which have just enough resolution to aid path planning
and exploration tasks of a robotic rotorcraft. The rotorcraft is assumed to depend on its
inertial sensors and vision information from an on-board stereo camera setup for state

3
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Chapter 1. Introduction

estimation and map construction.
The problem to be addressed in this thesis can be described as follows: Using strap-

down inertial measurements and an on-board stereo camera with a fixed baseline and
position with respect to the airframe, localize the aircraft accurately with sufficient
metric precision locally on the correct branch of a topological map description with a
crude distance calculation to the nodes. Meanwhile construct three dimensional metric
grids supplying unoccupied space information relative to the nodes which can be used
for local path planning and obstacle avoidance.

The framework to be constructed is based on the following assumptions

• The air vehicle is an autonomous rotary wing robotic aircraft with onboard avion-
ics capable of processing and storing adequent information in real time.

• The aircraft moves in a quasistatic manner, such that acceleration measurements
can be used to estimate roll and pitch angles. Also the aircraft does not move in an
agile manner, thus allowing use of image information for motion estimation. This
smooth behaviour also dictates a limited roll and pitch angle during all phases of
the operation.

The aim of the study is to design the system such that

• The mapping and localization algorithm runs on a limited sensor capability and
computational sources.

• The aircraft can make a robust localization within a given map

• The aircraft can build a sufficiently dense three dimensional occupancy grid with
stereo camera measurements

1.1 Contributions

This thesis deals with two important aspects in the navigation problem of an autonomous
vehicle: state estimation and mapping. In particular case, a rotorcraft equipped with in-
ertial measurement unit and a stereo camera setup, vision can be utilized in order to
fulfill these two functions. The main contributions of the thesis actualized as stated in
the following paragraphs:

• A detailed analysis of the state estimation algorithm which is using visual features
as velocity measurements based on Extended Kalman Filtering technique is pre-
sented. Problems occurring due to the unobservable position and velocity states
are explained and decoupling of the state vector is proposed as a solution. Uncer-
tainty characteristics of velocity measurements gathered from visual features that
are defined as ratio of two normally distributed random variables are approximated
again as normally distributed using Rao’s procedure.

• A three dimensional occupancy grid mapping algorithm using disparity maps as
measurements are developed. The algorithm is based on random sampling of
particles into the three dimensional space and the density of particles per voxel is
used to calculate the probability of the occupation of the voxels according to the
instant measurement. Instant probabilities are applied to the occupancy grid map
in the regular recursive occupancy grid mapping algorithm.

4
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CHAPTER2
System Description

The STAR (Simulation and testbed for Autonomous Rotorcraft) project in the Depart-
ment of Aerospace of Politecnico di Milano aims for a system with full autonomy of
operation within a scattered environment like urban canyons or indoors by using rela-
tively inexpensive hardware setup. The evaluation of the system can be traced in the
PhD theses of Savini and Leonello [29, 37]. Savini’s work describes the experimental
test-bed with on board software and following the initial piloting test, simulation envi-
ronment plant model, navigation, control algorithms and sensor fusion are explained.
A non-linear model predictive controller proposition for the helicopter flight concludes
this study. Leonello’s work includes a mechanical improvement of the connection be-
tween the on-board computer and the helicopter fuselage in order to reduce vibrations
transferred to the sensors. A vision based sensor fusion algorithm for state estimation
is explained and simulation results that are done using synthetic points as features are
followed by results using features extracted from images obtained from Gazebo robot
simulator program. The study concludes with a path planning algorithm regarding the
helicopter flight dynamics and flight envelope protection. Increase in the sensor weight
required the base helicopter model changed. In this chapter, the current status of the
experimental model will be explained with details of the sensors that are the related to
the study that is done in this thesis.

2.1 Experimental Test-Bed

The test-bed consists of a model helicopter with a classical single main an tail rotor
configuration, an on-board computer equipped with sensors and a ground control sta-
tion. Since the last system description made by Leonello, some updates have been done
both on the helicopter and on-board computer.

5
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Chapter 2. System Description

The model helicopter used is a Vario Benzin Trainer with a maximum take off weight
around 11 kg [1]. It has a modified landing gear in order to provide room for the on-
board computer box.

Onboard computer includes a PC104 industry standard computer using a CPU of 1.6
GHz clock rate. The architecture of the CPU is equivalent to a Pentium III. A Diamond-
MM-16-AT data acquisition card is used for analog sensors. These sensors include a
three dimensional accelerometer (Xbow - CLX10LP3) and three one axis gyroscopes
(Silicon Sensing - CRS05 ) which are used in the homemade inertial measurement unit,
a three dimensional magnetometer (CXM113) and the sonar sensor (Senscomp 6500).
A Thales Navigation-A12 receiver supplies GPS position and velocity solution to the
computer with an active antenna over serial communication port. Peripherals on the
PCI bus are an Ethernet card, an IEEE 1394 interface and an RS232 expansion card. A
MultimediaCard is used as a storage medium.

External communication with the ground computer is provided by a router which
has a WiFi antenna. QGroundControl runs on the ground control station which is a
laptop computer equipped with WiFi adapter [3].

Two sets of stereo camera used interchangeably for visual sensing. First one is a
Bumblebee XB3 which is a three sensor multi-baseline camera systems supplying a
single image per trigger including all sensor data at once. Its widest baseline is 24
centimeters. The other one is a home built system which includes two Unibrain Fire-
i board pro VGA cameras with a baseline equalized to the widest XB3 baseline [5].
Both cameras communicate with the on-board computer over IEEE 1394 interface.
Synchronization between two cameras in the later setup is realized using a broadcast
software trigger over the IEEE1394 interface.

A redundant inertial measurement unit was added to the system in order to be able
to have a comparison between the home-made unit and the commercial one and XSend
MTi was chosen for this purpose [6]. It can supply calibrated acceleration, angular
rate and magnetic field measurements or as an Attitude Heading Reference System it
gives attitude information using its internal Extended Kalman Filtering algorithm. In
the following sections, output from this IMU was utilized within the test results, so its
specifications can be seen in Table2.1 and 2.2.

Table 2.1: XSens Mti Technical Specifications as an AHRS

Specification
Static accuracy (roll/pitch) <0.5 deg
Static accuracy (heading) <1 deg

Dynamic accuracy 2 deg RMS
Angular resolution 0.05 deg

Table 2.2: XSens Mti Technical Specifications for inertial sensors

Specification
Acceleration range ±50m/s2

Acceleration measurement noise ±0.002m/s2/
√

Hz
Angular rate range ±300 deg/s
Gyroscope noise ±0.05 deg/s/

√
Hz

6
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2.2. Data Acquisition

Figure 2.1: STAR Experimental testbed

Figure 2.2: Multi thread on-board sotware data flow diagram

The onboard computer mounted on the helicopter can be seen in Figure 2.1.

2.2 Data Acquisition

Tests results obtained in this thesis depend on off-line processing of recorded data from
on-board sensors and images taken from the cameras. In order to gather this data, a
multi-threading software was coded whose data flow diagram is shown in Figure 2.2.
The onboard computer has a Debian distribution Linux operating system. The kernel
of the operating system was patched with Real Time Application Interface (RTAI) in
order to have deterministic time intervals for periodic tasks [4].

During data acquisition, some problems were encountered related to data flow from
computer random access memory (RAM) to disk and from camera to RAM. The first
problem is related to the writing speed of the MMC card, and will be called as write
congestion and the second is related to interrupts caused by the load in the PCI bus and
will be called as image tearing. A brief description will be made for both them in the
following paragraphs

7
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Chapter 2. System Description

2.2.1 Disk write congestion

The first hardware constraint in the implementation is that, when images are desired to
be saved on the MMC card on the computer, the write cache allocated by the operating
system was choked because of the data acquisition speed was exceeding disk writing
speed. Linux, which is the operating system used during the study, uses a disk cache
in order to be able to deal with fast write requests by keeping the data in an allocated
space in the random access memory. When the cache is about to become filled or after a
time interval has passed since the last write request, the data is written onto the physical
disk. During this operation, write operations are rejected and data send for writing can
be lost.

This operational bottleneck prevented acquisition of images with full camera frame
rate available, because when the flush operation starts, images was lost and offline pro-
cessing cannot be done for these segments. Linux has kernel parameters related to the
size of the disk write cache and percentage value for starting to flush the data to the
disk. Nevertheless, changes in these parameters did not end in the desired solution be-
cause of the hardware limitation. At the end, the disk was mounted not in asynchronous
mode, instead in synchronous mode. This mode prevents the operating system using a
cache as an intermediate step and write operations are directed to the disk immediately.
With this configurations 4 images of 640 x 480 pixel resolution were saved to the disk
per second. For a stereo pair, this means a 2 Hz image acquisition rate, which is used
as a base for the tests.

2.2.2 Image tearing

Another difficulty encountered during the tests is the image tearing problem. The symp-
tom is observed as a termination of one image acquisition prematurely and the remain-
ing part of the image is filled with the next image taken. It is seen as a horizontal line
separating two non-complete subsequent images as seen in Figure 2.3.

This problem is described in the technical note of the camera manufacturer [35] .
This note relates the problem to an intense interrupt generation on the shared PCI bus.
1394 card on this bus is affected by this intensity and the image transfer over the 1394
cable is terminated before all the pixels in the camera frame is transferred to the PC.

Result quality of algorithms using image processing techniques depends on the con-
sistency of scene projection. The problem described spoils the projection both in space
and time. Feature points obtained from this image will evidently result in a faulty
traction and disparity maps generated will have a wrong occupancy sense. With this
manner, torn images must be identified and rejected before feeding it to the algorithm.
It is also important to minimize this problem as much as possible.

Image tearing is easily recognizable by human eye with a distinct separation. But
for computer vision, it needs another processing step in order to detect the occurrence
of the problem. But with a limited computational power and constrained time, it is
not wise to go on this way. One observation made during the tests is that, when this
problem occurs, image transfer is not completed in the usual expected time. As this
happens, the current image cannot be acquired and it is evident that the next image will
be corrupt one. By using this diagnostic, faulty images are safely removed from the
image stream.

8
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2.3. Computing Performance

Figure 2.3: Image tearing problem

As told before, the problem depends on the shared bus configuration on the hard-
ware and our experience directed us to the communication hardware as the source of
the problem. When the amount of data being transferred to the ground is large, Ether-
net card holds the bus busy and its interrupts prevents the 1394 card working healthy.
Reducing the amount of data that is periodically transferred over the wireless commu-
nication made the returned torn image rate a scarce one.

2.3 Computing Performance

In order to prove that the image processing algorithms can run on the on-board com-
puter with a reasonable rate, a code including a series of operations are executed. Re-
sults obtained for image acquisition, remapping for camera distortion removal, feature
tracking, dense disparity mapping, motion estimate with RANSAC and image write
operations can be seen on Figure 2.4 for a series of images with 320x240 pixels resolu-
tion. Average cycle time was obtained around 350 milliseconds for this test. The peak
in the middle of the graph is the result of disk write congestion problem mentioned
earlier.

2.4 Image Rectification

Camera lenses are a product of camera design for a sharper image with a high amount
of light allowed inside the aperture. Unless a well optimized rectilinear camera lens is
used, images taken from a camera will have a distortion, warping straight lines with a
curvature. Especially cameras with a basic lens setup or with a wide field of view, the
distortion becomes more evident. In order to be able to use a pinhole camera model

9
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Chapter 2. System Description

Figure 2.4: Time elapsed for a series of image operations on the on-board computer

for scene reconstruction or motion estimation, this distortion must be removed before-
hand. The radial distortion model explained in [41] is used and parameters for our own
setup was determined using Camera Calibration Toolbox for Matlab [10] . In order
to minimize the computational cost relating to image rectification, a look up table was
generated for rectification operation instead of using the calibration formula. Remap
function from OpenCV library with linear interpolation was used for the final rectifica-
tion [11].

10
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2.4. Image Rectification

Figure 2.5: Image rectification and camera calibration

11
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CHAPTER3
EKF for Visual Odometry Using Stereo Vision

In order to fulfill a spatial map that can be used for guidance and obstacle avoidance,
a robotic vehicle needs to know its pose within a certain degree of uncertainty. A 6
degrees of freedom pose consists of the position in R3 and orientation in SO (3). An
autonomous rotorcraft includes an inertial measurement unit, which outputs accelera-
tion and angular rates, and its measurements can be integrated to calculate velocity and
orientation. A second integration on velocity results in position.

Low cost MEMS inertial sensors that are used in mini robotic air vehicles are noisy
and commercial grade accelerometers and gyroscopes have bias stability greater than
50 milli g and 1 deg/s respectively [7]. As a result, noise in their measurement is
observed as a random walk in their integrations and an unbounded error accumulates in
state variables .

For outdoor applications, where sky is visible enough, measurements from satellite
based navigation systems like Global Positioning System (GPS) and Global Navigation
Satellite System (GLONASS) can be fused to the inertial measurements in order to
bound these errors using Extended Kalman Filtering (EKF). With this technique, it is
also possible to estimate time varying inertial sensor characteristics like bias and scale
factor. The integration of these two systems can be realized either using a position
and velocity solution from GPS or directly taking pseudo-ranges to the satellites [38].
Simply using navigation satellite codes gives a positioning accuracy of less than 15
meters, which can be reduced to sub-meter accuracy using Differential GPS (DGPS)
and even sub-decimeter range with Real Time Kinematic (RTK) systems [40].

In cluttered environments, urban canyons or indoors, performance of the satellite
based systems degrades as the number of visible satellites diminish in contrary to in-
creasing obstacles to be avoided. Several sensors can be used to detect surrounding
objects relative to a robotic vehicle including sonar, radar and lidar rangers. Sophisti-

13
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Chapter 3. EKF for Visual Odometry Using Stereo Vision

cated algorithms utilizing these sensors are demonstrated to achieve simultaneous lo-
calization and mapping (SLAM) solutions. While sonar and radar sensors offer range
information of the nearest object within its measurement cone, lidars supply a point-
wise sensing. Arrangement of multiple sensors in a regular pattern allows a wider
perception. Scanning lidar systems allows a very high resolution of reconstruction of
the environment being examined.

Optical cameras, contain a rich amount of information about objects in its field of
view. Several techniques are proposed to be used for navigation, guidance and control
of autonomous vehicles using vision. The practice spans almost all kind of robotic
applications including autonomous airborne, underwater and terrain vehicles. Points,
lines, planes and patterns in the image frames are used as features to be tracked. Po-
sition and orientation change rates can be detected from subsequent frames and pre-
viously visited places can be recognized from identified features by using advanced
algorithms.

Because of the two-dimensional projection of three-dimensional space, scale am-
biguity problem prohibits direct sensing of metric distances. This ambiguity can be
overcome by using a pair of camera with known baseline and relative orientation. A
common configuration of two cameras with identical orientation and coincident plane
perpendicular to the image plane is called a stereo camera system. Dense disparity
maps acquired by processing images taken at the same instant from a stereo set pro-
vides depth information to a degree. The uncertainty arises because of optical and
electrical noise and discrete pixelization of digital camera sensors.

In this section, Extended Kalman Filtering technique will be used to estimate veloc-
ity of a vehicle with 6 degrees of freedom in body frame using measurements acquired
from inertial sensors and a stereo camera system. This system is assumed to have
a fixed baseline and parallel focal lines and projection planes with a pinhole camera
model.

3.1 Frames of Reference

In this study, three frames of reference is used. A Cartesian fixed frame E , which has
origin at an arbitrary point on Earth and defined by orthogonal unit vectors eN pointing
to true North, eE pointing to East and eD pointing down parallel to the normal of Earth
surface at origin defined by WGS84 ellipsoid [13]. This frame of reference is widely
used in air vehicle state estimation for flight routes that are small enough for neglecting
the non-planar surface and variable gravitational field of the Earth.

Body frame B has its origin on the center of mass of the vehicle. Unit vectoreX
directs toward the point where the nose of the air vehicle points to. eY is aligned with
starboard direction and eZ conforms to the right hand rule and points down with respect
to the vehicle. This is the common definition in aviation.

Camera frame C is defined in accordance with the definition in the computer vision
literature. eH and eV defines the horizontal and vertical components in image frame
and eF extends from the focus of the camera to the depth of the scene. The image plane
is defined to be in the field of view of the camera. All frames of reference mentioned
are shown in Figure3.1.

For the system being analyzed, C is fixed with respect to the B. Transformations
between E , B and C are done using direction cosine matrices. They can also be called

14
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Figure 3.1: Frames of reference

as rotation matrices. For instance, pre-multiplying a vector defined in E with RBE results
in the same vector with its definition in B. The inverse transformation is realized using
pre-multiplication with REB which is the transpose of RBE . As stated before RBC =(
RCB
)T

= constant is assumed in this thesis. Whenever a stereo set is used, both left
and right cameras are oriented in C. The origin of the C will be the left camera focus.

3.2 Rotation Formalism

According to Euler’s theorem, a rotation can be identified using just three parameters.
Euler angles and Rodrigues parameters are three parameter definitions, but some con-
figurations yield singular cases for them. Rotation matrices, another form of rotation
representation, are free from this defect, but 9 parameter definition constrained with
orthonormal column and row requirements makes it a less preferred formalism.

Unit quaternions, on the other hand, are 4 parameter definitions without singular-
ity problem. The unit magnitude constraint can be kept in numerical computations
easier than a rotation matrix representation. Also consecutive rotations are calculated
using quaternion algebra with less computational cost compared to rotation matrices.
Because of these advantages, unit quaternions are generally the preferred rotation rep-
resentation in state estimation problems.

Using Euler-Rodrigues parameters, a rotation can be described by a single rotation
around an axis. If this axis is defined as a unit vectoreθ and the amount of rotation is θ
, then the rotation vector θ is

θ = θeθ. (3.1)

Another similar form is defined as

ρ = tan

(
θ

2

)
eθ (3.2)

whereρ is Gibbs vector. This form has some advantages while being used in Extended
Kalman Filtering and it will be explained in following subsections.

Unit quaternion representation has a simple arithmetic for rotational transformations
and does not suffer from discontinuity problems. While there are four components in a

15
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quaternion, the unit magnitude constraint dictates the number of indepentent variables
to three. The algorithms using this representation must be implemented considering
this constraint. . Unit quaternion representation q̄ can be related to the rotation vector
by (3.3).

q̄ =


q0

q1

q2

q3

 =


cos (θ/2)

q1 sin (θ/2)

q2 sin (θ/2)

q3 sin (θ/2)

 (3.3)

If the result of n successive rotations are to be calculated, then quaternion multipli-
cation defined in the Appendix A can be applied as

q̄ = q̄[1] ⊗ q̄[2] ⊗ ...⊗ q̄[n] (3.4)

If q̄ represents the orientation of the vehicle in fixed frame, then rotation matrix
transforming vectors from E to B can be calculated using:

RBE =
(
REB
)T

=

 q20 + q21 − q22 − q23 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)
2 (q1q2 − q0q3) q20 + q22 − q21 − q23 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) q20 + q23 − q21 − q22


(3.5)

If rotation matrices are to be used for calculating n successive rotations, then later
rotations must pre-multiply its predecessors:

R = R[n]...R[2]R[1] (3.6)

3.3 Inertial Navigation

Inertial navigation solely depends on the accelerometer and gyroscope measurements.
Earlier inertial measurement units (IMU) used a gimbal platform to hold accelerometers
aligned with an inertial frame, and corrections to this alignment were made according
to the angular rates sensed. Low cost MEMS systems of today are strap-down systems,
in which inertial sensors are fixed on the body frame. Because the accelerometers move
with the body frame, one must transform the acceleration vector to the fixed frame.

As the vehicle will sit on the ground or will be held in the air by the aerodynamic
lift force, the gravity field will not be sensed and the reaction force from the ground or
the lift force will be sensed as an acceleration in opposite direction of the gravity field.
In order to calculate exact acceleration with respect to the fixed frame E , gravitational
accelerationg must be added to the measurements. If the acceleration sensed by a strap-
down accelerometer is denoted byãB, the acceleration in fixed frame will be

aE = REBã
B + gE , (3.7)

or it can be expressed in body frame as

aB =ãB + RBEg
E , (3.8)
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3.3. Inertial Navigation

For sole inertial navigation, the change of orientation over time can be described
using quaternions as

d

dt
q̄ (t) =

1

2
q̄ (t)⊗

[
0

ω

]
. (3.9)

Here ω represents the angular rate of the body frame. For small time increments τ ,
ω can be assumed to be constant over sampling time and exact solution to 3.9 is given
as [28]

q̄ (t+ τ) =

[
cos

(
|ωτ |

2

)
I4×4 +

τ

|ωτ |
sin

(
|ωτ |

2

)
Ω (ω)

]
q̄ (t) . (3.10)

where I is the identity matrix and Ω(ω)is defined as

Ω (ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 . (3.11)

A first order Euler integration can also be used instead of 3.10 like

q̄ (t+ τ) = q̄ (t) + τ

[
1

2

[
0

ωτ

]
⊗ q̄ (t)

]
. (3.12)

In both cases, renormalization of quaternion is required in order to prevent numerical
error accumulation on the quaternion state.

The error in the orientation estimation will emerge because of the noise in the an-
gular rate measurements. As a result REB will not reflect the real orientation of the
body. Considering the magnitude of gravitational acceleration being around 9.81m/s2, it
is seen that the orientation error will project part of this acceleration onto wrong axes.
In order to prevent this, external references like gravity and magnetic field, can be used
to correct orientation estimates [23, 33]. Even in the case of a perfect orientation esti-
mation, accelerometer noise will be integrated twice and will affect both velocity and
position estimates.

Velocity in body frame is more important than the velocity in fixed frame, because
motion of a robotic vehicle is generally driven by the velocity command input. A closed
loop control system needs the velocity output in body frame. For aerial vehicles, air
velocity is more important than the absolute velocity of the vehicle. But in case of a
rotary wing vehicle in a confined environment, absolute velocity becomes as important
because of a crash possibility to an obstacle. Rate of change of the velocity in body
frame can be expressed as

v̇B = ãB + RBEg
E − ω × vB. (3.13)

Rate of change of the position in fixed frame can be simply obtained by transforming
the velocity vector from body frame to the fixed frame:

ṗE = REBv
B. (3.14)
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3.4 Visual Odometry

Egomotion of a vehicle can be judged according to the motion of features in the envi-
ronment projected onto an image plane fixed to the body frame. This process is called
visual odometry. Techniques using single cameras, omnidirectional cameras and multi-
camera setups have been shown to be feasible.

Motion estimation depends finding position of the camera between two time steps.
This can be realized by identifying and matching correspondent feature points between
the images gathered at these time instants. For the general case, the points projected
onto camera frames from two different views as p′ and p onto a pinhole camera will
satisfy the equation

p′Fp = 0 (3.15)

Here F is fundamental matrix with size 3×3. p′ and p are described in homogenous
coordinates [24]. This equation does not depend on the intrinsic camera calibration
parameters and can be used with different camera parameters for the former and later
point values. If a single camera is used with fixed calibration parameters during time,
essential matrix E can be used instead of F. Relation between Fand E is given as

F = K′EK (3.16)

where camera calibration matrix is defined as

K =

 fx α cx

0 fy cy

0 0 1

 . (3.17)

Camera calibration matrix includes focal lengths fx , fy, skewness α and projec-
tion plane center cx,cy. For a digital camera with square pixels with no skewness and
projection plane center at origin will have its calibration matrix as

K =

 f 0 0

0 f 0

0 0 1

 . (3.18)

In order to extract fundamental matrix from a given set of matched feature points
at least 7 points are needed. But in practical applications mismatches in the acquired
feature point set can lead a wrong solution or result in no solution at all. Outliers in the
feature matches must be discarded before using these points in feature point extraction.
Most used technique for filtering out outliers is Random Sample Consensus abbreviated
as RANSAC [18]. One of the RANSAC derivatives that is using match quality values
named Progressive Sample Consensus can be found in Chum’s work [14]. Outlier
detection phase can be followed by a guided matching for rearranging the match set
and increasing correct matches.

For a vehicle with a motion estimation prior to image matching, guided matching
can be initiated without using feature points. For fixed camera calibration, fundamental
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matrix can be calculated using the displacement and rotation with respect to the older
frame using the relation

F = K−T
[
R
C(t+τ)
C(t) cC(t)

]
R
C(t+τ)
C(t) K−1 (3.19)

where c is the distance from the camera center in the former time step to the later one.
Fundamental matrix can be decomposed in order to get rotation and displacement

values between camera centers in subsequent time frames with scale ambiguity. This
ambiguity can be resolved either by using the feature point positions in three dimen-
sional space as unknowns [27] or using a fixed baseline stereo camera setup [26].

3.5 Extended Kalman Filtering (EKF)

Extended Kalman Filtering (EKF) technique is a very common used form of state esti-
mation technique for navigation and control problems. After the introduction of linear
Kalman Filter by Rudolf Emil Kalman in 1960, Stanley F. Schmidt applied this to the
nonlinear problem of trajectory estimation in Apollo project [22]. Since then it became
the preferred method for estimation problems in aerospace beside many other appli-
cations. The most common form of EKF used in aerospace applications is INS/GPS
integration [38].

EKF is also used in Simultaneous Localization and Mapping (SLAM) problems.
In EKF-SLAM, the state vector of the robotic system is augmented with the feature
positions and they are estimated concurrently with the pose of the vehicle.

For the purpose of this thesis, EKF is used to fuse information gathered from inertial
sensors, with the known reference vector of gravity and visual odometry information.
The state vector solely includes the pose of the vehicle with respect to the starting pose
of the vehicle and feature positions are not included in the state vector. Features are just
tracked in consecutive image frames and an average velocity is calculated regarding to
the visual flow of these points. This technique was used by Leonello and it was shown
that the visual information helped to improve accuracy of state variables and a better
estimation in case of

3.5.1 System Description

The state vector of the system is defined by combining position and velocity vectors
with the quaternion. As it can be seen, the vector consists of only the state of the body
frame and does not contain any calibration parameters like accelerometer and gyro
biases. Position will be defined in fixed frame E , whereas velocity will be in the body
frame B. The state vector can be written in mathematical form as:

x =

 pE

vB

q̄

 . (3.20)

Equations 3.9, 3.13 and 3.14 with white noise terms for accelerometer and angular
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rate sensors can be put together to obtain the system of equations as: ṗE

v̇B

˙̄q

 =


REBv

B

ãB − νa + RBEg
E − (ω̃ − νω)× vB.

1
2
q̄ (t)⊗

[
0

ω̃ − νω

]
 (3.21)

The system is nonlinear due to the dependence between velocity and quaternion
variables with RBE term. Time change rate of error variables representing the difference
between true state variables and estimated ones can be defined as: δṗE

δv̇B

δ ˙̄q

 =


REBδv

B

ãB − νa + RBEg
E − (ω̃ − νω)× δvB.

1
2
δq̄ (t)⊗

[
0

ω̃ − νω

]
 (3.22)

Using four component quaternion representation in EKF with state vector given as
(3.22) causes numerical singularity problems in the gain calculation step. This is due
to the fact that quaternion norm is unity and magnitude change in time is equal to zero.
This problem is stated in [28] and three different methods to handle this problem is
presented. All three technique relies on reducing the covariance matrix dimensions to
three which related to the orientation. These approaches can be briefly defined as

1. A prescribed method to reduce covariance matrix dimensions from four to three,

2. Using only three of quaternion components, and using unit norm constraint to get
the fourth one,

3. Body fixed covariance representation.

These methods are further discussed in [31], and the first two methods are concluded to
have theoretical and performance problems. The third option is the preferred solution
to represent orientation estimation uncertainty for the filtering process. Quaternion
estimation error δq̄ can be defined such that it corrects the estimated value to the real
one by quaternion multiplication.

q̄ = ˆ̄q ⊗ δq̄ (3.23)

The error variable for the quaternion is defined as twice the Gibbs vector ag = 2ρ . The
error quaternion can be calculated from

δq̄ (ag) =
(
4 + ‖ag‖2

)−1/2
[

2

ag

]
(3.24)

The error magnitude in quaternion estimation is assumed to be small, so instead of
(3.24), the following can be used:

δq̄ (ag) =

[
1− ‖ag‖

2
ag

2

]
. (3.25)
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Time propagation of the ag parameter is given as

ȧg = − [ω̃]× ag (3.26)

where [ω]× is defined as the cross product matrix

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.27)

The system with error variables can be rewritten replacing ag with δq̄ in (3.22) δṗE

δv̇B

ag

 =

 REBδv
B

ãB − νa + RBEg
E − (ω̃ − νω)× δvB.
− [ω̃]×

 (3.28)

3.5.2 System Linearization

The system given in (3.28) can be linearized for time instant t as

d

dt
∆x = F∆x + Gw (3.29)

where F (t) is given as

F (t) =

 03×3 F12 F13

03×3 − [ω̃]× F23

03×3 03×3 − [ω̃]×

 (3.30)

and G (t) can be written in the following form:

G (t) =

 03×3 03×3

−I3×3 − [ω̃]×
03×3 −I3×3

 . (3.31)

Here F12, F13 , and F23 are Jacobien matrices with respect to the δvB and ag vari-
ables,

F12 =
∂
[
REBδv

B]
∂δvB

∣∣∣∣∣
ag=0

(3.32)

F13 =
∂
[
REBδv

B]
∂ag

∣∣∣∣∣
ag=0

(3.33)

F23 =
∂
[
RBEg

E]
∂ag

∣∣∣∣∣
ag=0

(3.34)

The process noise covariance matrix is defined by the placing the accelerometer and
gyro variances in the matrix diagonal as
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Q = diag
([
σ2
a σ2

ω

]T)
. (3.35)

3.5.3 Covariance Propagation

Change of state covariance matrix P is given as a matrix Riccati equation in the fol-
lowing form:

d

dt
P = PF + FPT + GQGT . (3.36)

For small time steps, rate of change of the covariance matrix is assumed to be small
and first order Euler integration is applied for the propagation of the covariance matrix
as

Pk = Pk−1 + τ
(
Pk−1F + FPT

k−1 + GQk−1G
T
)
. (3.37)

3.5.4 Visual Measurements

Two subsequent frames of a stereo camera setup containing points with known corre-
spondences supplies the linear displacement and angular rotation measurement within
the time interval of these two snapshots. As the motion is sensed not in a global frame
but relatively within two time instants, this information can be translated to an average
velocity measurement. For a stereo camera setup with xy planes overlapping and with a
baseline of b, a point projected onto the left camera frame at time t,

[
xL (t) yL (t)

]T ,
and its correspondence on the right camera

[
xR (t) yR (t)

]T can be combined as a
three parameter measurement

[
xL (t) yL (t) d (t)

]Twhere d = xL − xR representing
disparity value. If measurement noise and pixelization is omitted, the position of the
point in left camera frame can be gathered as:

ZC =
fb

d
(3.38)

XC =
xLb

d
(3.39)

Y C =
yLb

d
. (3.40)

The position of the point in camera frame is then

xC =

 XC

Y C

ZC

 . (3.41)

(3.41) can be transformed to the fixed frame by

xE = RECx
C + cE . (3.42)

For two subsequent frames, the following equality shows the relation of the point
coordinates in the C at two different time instants
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REC(t)x
C(t) + cE (t) = REC(t+τ)x

C(t+τ) + cE (t+ τ) (3.43)

yielding
cE (t+ τ)− cE (t) = REC(t)x

C(t) −REC(t+τ)x
C(t+τ) (3.44)

In equation (3.44), the displacement of the camera is defined using a feature point
projection on both frames which is observed, and orientation of the camera between
two time steps. Since REC represents the orientation of the camera with respect to the
fixed frame, estimated state variable q̄ (t) at time instants t and (t+ τ) can be used to
calculate this matrix. The measurement obtained between two frames can be found as

∆pC(t) = xC(t) −R
C(t)
E REC(t+τ)x

C(t+τ). (3.45)

The projection error model of the feature points onto the left and right camera frames
are assumed to be equal in both horizontal and vertical axes of the image plane normally
distributed with a variance of σ2

p . Since the sum of two random variables with normal
distribution result in a normal distribution with the mean and variance equal to the sum
of the mean and variance of its components, the disparity value d will have a variance
of σ2

d = 2σ2
p .

Covariance matrix of the measurement acquired from a single feature point can be
obtained using the random variable divisions in (3.41). For XC , Y C and ZCcan be
used as the expectation of the ratio of two normally distributed random variables. Us-
ing Rao’s procedure, the variances of (3.39), (3.40) and (3.38) can be obtained by the
following formula [20],

Var
(
X

Y

)
=
σ2
xµ

2
x + σ2

yµ
2
y

µ4
y

(3.46)

3.5.5 Measurement Update and Reset

Measurement vector for n feature points and the current orientation is defined as

z̃ =



z̃fp1
z̃fp2

...
z̃fpn
03×1

 (3.47)

Measurement sensitivity matrix is defined then as

H =



I3×3 03×3 03×3

I3×3 03×3 03×3
...

...
...

I3×3 03×3 03×3

03×3 03×3 I3×3

 (3.48)

Measurement covariance matrix is calculated using (3.46) for position measurements
and a diagonal tiny matrix for the last term for rotation reset. This ensures that the

23



i
i

“kay_phd_thesis_2013” — 2013/3/22 — 7:09 — page 24 — #32 i
i

i
i

i
i

Chapter 3. EKF for Visual Odometry Using Stereo Vision

body velocity estimation is realized between acquired image measurements by keeping
the uncertainty in the orientation small. This is not valid for the global orientation
estimate, but this is applied in order to reset the orientation variable locally for the last
image taken before the current image being processed. Kalman gain is calculated using

Kk = P−k HT
k

[
Rk + HkP

−
k HT

k

]−1
(3.49)

and the correction will be

∆x = K (z̃− ẑ) . (3.50)

Quaternion update is applied using the twice of the Gibbs vector found at the end of the
error state vector calculation as

ˆ̄qunnorm (+) = ˆ̄q (−)⊗
[

2

ag

]
(3.51)

and a renormalization required like

ˆ̄q (+) =
ˆ̄qunnorm (+)∥∥ˆ̄qunnorm (+)

∥∥ . (3.52)

Position and velocity corrections are applied linearly as

p̂E (+) = p̂E (−) + ∆pE (3.53)

v̂B (+) = v̂B (−) + ∆vB (3.54)

Covariance matrix update is realized using Joseph form in order to avoid numerical
roundoff errors that can spoil the symmetric properties of the covariance matrix:

Pk = [I−KkHk]P
−
k [I−KkHk]

T + KkRkK
T
k (3.55)

3.6 Results

3.6.1 Simulation with synthetic points

A simulation was performed in order to see the performance of this approach for ve-
locity updates in body frame. A path with a closed loop pattern was traversed with a
target body velocity of 2m/s by the model defined for STAR robotic helicopter. The
trajectory was calculated by the path planning algorithm described in Leonello’s the-
sis [29]. The path travelled is shown in Figure (3.2) with a sample instant for left
camera field of view pyramid showing tracked points in the last frame. Variance values
for the accelerometers are taken as 0.001m2/s4 and for the gyros as 0.3 × 10−4rad2/s2

. These values were obtained from the stagnant measurement taken from XSens-MTi
attitude heading reference system device. Timestep for the inertial measurements and
integration is 10 milliseconds.

The dead reckoning results at (3.3), (3.4) and (3.5) shows the clear divergence in
velocity values calculated in the body frame. This is directly reflected to the position
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calculation and a position error more than 1000 meters is obtained. Because there is
no measurement except the inertial sensors in ths configuration, there is no feedback
to the system in order to correct the state variables according to the reference. Euler
angle calculations does not show a big error, mostly due to the low noise and single
integration step.

Proposed EKF solution is applied with points to be projected onto a 640 × 480
image with a variance of 0.1 pixels. The discretization due to the pixel structure of
a digital camera is also applied. Images are assumed to be taken at 500 milliseconds
intervals. Stereo baseline is taken as 0.24 meters and field of view for the cameras are
taken as 66 degrees. These are the values obtained from the Bumblebee XB3 stereo
camera system which is used in the STAR helicopter. 20 and 100 points are tracked in
two simulations.

Both 20 and 100 feature points tracking EKF solution gives a very good corrections
on the body velocity vector of the vehicle. These results can be shown from Figure
(3.6) to (3.11). Albeit the simulation is a relatively clean configuration with respect to a
real world application, graphs shown proves the concept to be feasible. One important
point to take into account is the requirement of a relatively accurate rotation estimation
between image frames. These simulations relied gyro data between two time instants.
Inthe case of a noisy environment, a fundamental matrix obtained using RANSAC can
be used for this purpose.In this case another step must be added between the state
propagation and measurement corrections in order to get a reliable rotation estimation.
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Figure 3.2: Simulation trajectory
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Figure 3.3: Euler angles at the end of dead-reckoning solution
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Figure 3.4: Position in the fixed frame at the end of dead-reckoning solution
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Figure 3.5: Velocity in the body frame at the end of dead reckoning solution
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Figure 3.6: Euler angles at the end of proposed EKF solution with 20 feature points tracked
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Figure 3.7: Position in fixed frame at the end of proposed EKF solution with 20 feature points tracked
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Figure 3.8: Velocity in body frame at the end of proposed EKF solution with 20 feature points tracked
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Figure 3.9: Euler angles at the end of proposed EKF solution with 100 feature points tracked
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Figure 3.10: Position in fixed frame at the end of proposed EKF solution with 100 feature points tracked
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Figure 3.11: Velocity in body frame at the end of proposed EKF solution with 100 feature points tracked

3.6.2 Experimental test

The experimental test is conducted by carrying the on-board computer of the STAR3
vehicle by hand while it is operational and recording inertial measurements, GPS data
and camera images. After real time acquisition of the data, it is processed off-line in
order to see the effectiveness of the algorithm proposed in this chapter.

Data from XSens inertial unit was preferred because it also supplies orientation data
using its magnetic sensors as well and processing the data with its internal Kalman
filter. Acquisition was made in 100 Hz rate. At the beginning of the test, the box was
set static, so the bias values of the gyroscopes were calculated using the average of
angular velocity measurements. The average of accelerometer readings were used as
initial roll and pitch of the system.

GPS measurements were made in 1 Hz, which is a limitation of the sensor itself.
Its results were used for velocity calculation. Position measurements were not reliable
in terms of precision, as a drift was observed in the altitude variable around 30 meters
which was around 1 meters above the ground during the test.

For feature extraction and matching BRISK descriptor was preferred because of its
lower computational cost [2, 30]. Outliers that exist in the feature point match set was
removed using the gyroscope measurements between time instants of image acquisi-
tion. After the orientation change is calculated using angular velocities, displacement
estimation of the left camera center is calculated using all the feature point matches and
their disparity values. Median of the direction of estimates is taken as reference and el-
ements that are not close enough to the median value are discarded from the match set.
This step can be seen from Figure 3.12.

Figure 3.13 shows the divergence of the velocity variables as a result of sole inertial
navigation. Non-realistic values are quickly reached and it is evident that velocity state
estimation with dead reckoning for this system can not promise any good results. Al-
though, results seen in Figure 3.14 shows a much better solution with velocity values
close to the GPS velocity solution. The evident discrepancy between the visual aided
solution and GPS solution is thought to be as a result of the less frequent measurements
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3.6. Results

Figure 3.12: Outlier removal using displacement vector orientation

taken from the camera. Figure 3.15 shows the number of points tracked for each update
step.
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Figure 3.13: Velocity in the body frame at the end of dead reckoning solution
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Figure 3.14: Velocity in body frame at the end of proposed EKF solution
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Figure 3.15: Number of points tracked during the test
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CHAPTER4
Three Dimensional Occupancy Grid Mapping

Using occupancy grids with probability of occupation to represent surrounding of a
robot was first offered by Elfes and the technique became widespread [17]. The idea is
to assume the map construction as a Markov process and the measurement updates are
applied recursively. In his work Elfes used sonar sensor and stereo camera system for
creating maps. Many authors described systems and results using other sensors as well.
These sensors include lidar scanners, radar sensors and a variety of camera setups. The
recursive update methodology is shown in Figure4.1.

In most cases, the robot is assumed to be moving in an unprepared environment for
absolute pose measurement, so mapping becomes a part of a more complicated problem
called Simultaneous Localization and Mapping (SLAM). Beside using other references
for localization, uncompleted occupancy grids can also be used as a reference and the
pose of the vehicle can be extracted from the instant measurements collected.

If the pose of a vehicle is exactly known and uncertainty only exists in measure-
ments, this problem is called “mapping with known poses”. While this is relatively
easier one compared to the SLAM problem, there are some points that need to be con-
sidered while implementing a map update algorithm. These include:

• Sensor limitations like range, resolution, ambient factors,

• Space discretization and incorporating several measurements within discrete space
elements,

• Fusing multiple sensor data and resolution of inconsistencies between measure-
ments with different characteristics.

This section starts with a the problem statement and a brief introduction to occupancy
grid mapping. Most of the work previously done using occupancy grids are formed
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Chapter 4. Three Dimensional Occupancy Grid Mapping

Figure 4.1: The main idea of occupancy grid mapping, recursive update

in two dimensional planar problems and some researchers focused on using the same
concept for the three dimensional case. A literature survey about the three dimensional
work is presented following the basics. Afterward, a novel algorithm is presented for
creating three dimensional occupancy grid mapping with Cartesian form. The algo-
rithm takes into account the uncertainty that exists in the pose estimation result as a six
dimensional vector with Gaussian distribution. The algorithm explained is combined
with a stereo camera sensor model and it is explained consecutively.

Probability calculation and updates are realized using particles generated according
to the statistics of the uncertainty that is present in pose estimation and measurement.
Computational aspects are discussed and subsequently results from simulation and ex-
periment are presented.

4.1 Problem Statement

The environment around a robotic vehicle can be divided into two subsets that rep-
resent occupied and empty space. In order to solve a path planning problem in this
environment, empty space can be used as the solution domain and the boundary be-
tween occupied and free space can be defined as the constraint for the calculation of
optimal paths from a source to a destination. This representation is continuous and the
solution is sought in an infinite set.

A grid representation of the spatial environment around the vehicle allows a met-
ric measurement which can be accommodated in navigational optimization problems.
With this regard, the problem can be divided into cells mi , which form a grid with a
fixed origin in a reference frame other than the vehicle itself. The grid elements can
be in any non-overlapping shape form covering all the space represented, but mostly
Cartesian or radial structured cells are preferred .The map m is the assembly of all the
cells together.

m =
⋃
i

mi (4.1)

For a known environment, mi can be either occupied or free. By assigning 1 to oc-
cupied cells and 0 to empty cells, a finite binary map m is constructed. If the map is to
be generated, these values are not known a priori and updated according to the measure-
ments taken. If the obstacles around the vehicle are sensed using range measurements
from on-board sensors, these measurements will be corrupted by pose estimation and
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4.1. Problem Statement

Figure 4.2: Conditional dependency of map, measurement and pose

measurement errors. Thus it is not possible to simply assign binary occupancy values
to the individual cells.

The uncertainty encountered enforces using a probabilistic map instead of a binary
representation. In this manner, one can not talk about the occupancy of a cell, instead
of occupancy probability of it. The whole map is then the sum of the occupancy prob-
ability of individual cells.

P (m) =
∑
i

P (mi) (4.2)

Measurements taken from range sensors are conditionally dependent on the pose
and the environment. If xk is the pose of the vehicle at instant k, then

P (zk | xk,mk) (4.3)

relates the measurement zk to the pose of the vehicle and the map that is sought.
Here the measurement is represented as a probability instead of an equivalence of

the measurement with a function of state like zk = f (xk), simply because every sensor
system contains some amount of error within their obtained measurements. If one
wants to extract the map information from a measurement, this will yield an inverse
sensor probability such as:

P (mk | xk, zk) (4.4)

The mapping problem with known poses and measurement data is defined as if x is
the pose of the vehicle, and z is the measurement, find the posterior probability of the
map m can be represented as:

P (mk | x1...k, z1...k) (4.5)

Here mk represents the map at the end of the kth measurement and x1...k and z1...k
represents all the pose and measurement data from the first to the kthmeasurement.
Here a sequential update of the map is assumed and the map can contain no data at
the beginning of the construction, or there can be an initial map. Figure 4.2 shows the
relation between map, poses and measurements.
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4.2 Three Dimensional Mapping with Occupancy Grids

In many applications, a planar robotic vehicle is used and the world for the robotic
vehicle is a two dimensional planar surface. In this case, the pose state of the robotic
vehicle is composed of just three variables that are two translational and one heading.
An extension to this algorithm is using elevation maps that assign an elevation value
for every grid element. Occupancy in this case is defined by the elevation of the cell.
This technique is implemented for robotic air vehicles and used with path optimization.
While elevation maps seem just an extension to the two dimensional problem, utiliza-
tion of three dimensional sensor models and 6 degrees of freedom (DOF) of the vehicle
are required to be integrated into the algorithm.

Three dimensional occupancy grids have also found application for both land, ma-
rine and air vehicles. For land vehicles that do not have to move on a planar surface, 6
DOF motion model must be used. Beside this, a two dimensional map representation
will be insufficient to describe the environment. It is evident that marine and air vehi-
cles that moves close to the objects should have the environment information in a three
dimensional form and avoid obstacles while planning their route to a defined point.

Because of the more degrees of freedom involved, the size and complexity of the
problems grows while extending the two dimensional occupancy grid concept to the
three dimensional form. Applying an inverse sensor model for calculating occupancy
requires using a proper rotation formalism and more computation. If a fine map is
required, memory resources must be considered for the excess amount of information
to be held.

A two dimensional occupancy grid generally uses two position and a heading vari-
able for pose. The map represents the environment as a two dimensional planar surface.
Assignment of height values to cells is used for terrain mapping by some researchers.
In that case, 6 degrees-of-freedom of the robotic vehicle must be considered in order to
apply the sensor model measurements to the map. A full implementation of occupancy
grid concept to the three dimensional case requires dividing the spatial environment into
non overlapping subsets like cubic voxels as done in the general case. The increment in
both pose variables and grid elements brings additional burden for computational cost
and required memory. Following are some of the work related to three dimensional oc-
cupancy grid mapping with different spatial representation, sensor models and update
methods.

4.3 Previous Work

An example of using elevations over a two dimensional occupancy grid is implemented
by Marks et al [32]. The occupancy map is produced as part of the SLAM problem,
which uses a Rao-Blackwellized particle filter. Statistics of point positions observed
from stereo camera that are binned into a rectangular with the same alignment of oc-
cupancy grid are used to update the estimate of the height in each grid element in this
study.

Ryde and Hu used a multi resolution voxel list to represent a moderately large office
environmnet in centimeter resolution [36]. They used the number of observations for
voxels observed as occupied in a list to determine their occupancy status. A list ap-
proach instead of a complete occupancy grid supplied a resolution with less resources.
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Another approach described by Dryanovski et al is using a two dimensional grid as a
base and define interleaved rectangular volumes in maps representing the occupied and
free cells and called the method “multi-level occupancy grid” [16]. They used laser
scans to construct maps and use entry and exit points of laser scannings to generate
volumes over the two dimensional map. Triebel et al used a similar concept but called
the name [39]

Braillon et al fused stereo disparity mapping with optical flow using occupancy grid
framework to detect obstacles in front of the sensor system [12]. The sensor model used
for the stereo camera assigns a decreasing probability of occupancy with height above
ground for measured disparity. The measurement is projected onto a two dimensional
occupancy grid with the maximum probability in the three dimensional measurement
above the grid elements.

A diverse setup using two omnidirectional camera in a stereo setup is explained
in Correra and Okamoto’s work [15]. Feature points extracted from two images are
correlated with each other and disparity values of sparse features are used to update the
two dimensional occupancy grid. Their sensor model is empirically adjusted bimodal
normal distribution and in the vicinity of the camera occupied cells are updated with the
normal distribution and other cells are updated with a small probability value. Farther
cells are updated with a half probability that represents the low observability. Instant
measurement is applied to the map with Bayes rule.

Gahouzani et al described an algorithm that is calculating the probability of each
voxel in a three dimensional occupancy grid using an disparity maps acquired from a
stereo camera [21]. The algorithm uses the distance between the voxel center, all pixel
triangulation results and triangulation errors to define an observation function for each
voxel. This instant observation depends on an emprical constant. State of a voxel is
updated according to the age of the observation and state of the neighboring voxels in
order to prevent hanging single occupied pixels. The three dimensional map is then
projected on a two dimensional one in order to lower computational cost for mapping
large areas.

Hu and Mordohai used two seperate three dimensional maps representing the belief
of occupied and free cells seperately [25]. Their algorithm projects the boundaries of
voxels onto the image plane as a rectangular window. Each voxel was allowed to update
either the occupied or free belief map. The decision was made with comparison of the
calculated disparity value of the cell of the voxel and measured disparity values in the
window. The conflict arising from existence of disparity values both smaller or larger
than the voxel center disparity value was resolved with a threshold value for the ratio
of these controversial voters.

Another similar approach to Hu and Mordohai was explained by Pirker et al [34].
The algorithm they presented projects each voxels front and back plane according to
camera and constructs a pyramid. The log odd value for a grid element is determined
according to the inverse model generated by the pixels witin the pyramid. the The
implementation used graphical processor unit (GPU) to parallelize and fasten the com-
putation.
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4.4 Spatial Resolution and Sensor Model

Spatial resolution of a map is adjusted according to the application considered. If the
vehicle position can be computed very precisely, then smaller grid elements are helpful
for a path planning algorithm in order to find the optimal path to be traversed for a
certain target. If the size of the vehicle is large compared to the characteristic grid
element length, very high resolution makes less sense unless one is more interested in
the map of the environment instead of the navigation of the vehicle itself.

Another topic that needs to be considered while generating these grids are the reso-
lution of the onboard range sensor that is used to update the map. While sensors with
wide field-of-view cone like sonars are more suitable for detecting free space, point
measurement sensors like laser range arrays are good for finer representations.

Range measurements are essential for mapping. For a robotic system in an unpre-
pared environment, range measurements can be done either by sending a signal from
the robot itself and receiving it, or signals originated from another source can be pro-
cessed [19]. Sonar, radar or lidar are examples of the first type of range measurement
techniques. Stereo imaging is an instant of the latter. Monocular imaging has scale
ambiguity , so unless assisted by another measurement or correlated with motion infor-
mation, can not be used for absolute range sensing alone.

Sonar sensors are useful when one needs to be sure of an unoccupied space in the
measurement cone of the sensor. As it can be seen from Figure 4.3, a Sonar senses the
fastest return of its own dissipated sound burst which is interpreted as the nearest re-
flecting surface. This information is geometrically crude, not picturing the surrounding
well, but a good measure of empty space. This rough information can also result in an
incoherent map.

Radar sensors are similar to sonar sensors, but instead of sound waves, they use radio
waves. They possesses the same geometric limitations but outperforms the former in
terms of update rates.

Finer range sensing can be done using a lidar sensor. These sensors emit lights and
use arrival time of the reflected signal as the measurements. Generally laser is used as
the light source. Almost point ranging is available for a single laser beam. In robotic
vehicle systems, a laser beam is oriented along a scanning pattern during its operation
in order to acquire ranges within a field of view. An accurate representation of the
environment can be obtained by this method. One difficulty to be encountered while
using this type of sensor is the amount of data acquired. Processing this data can be
cumbersome for systems with limited computational resources. The ranging pattern of
a laser sensor is shown in Figure 4.4.

With fine resolution of a three dimensional occupancy grid, voxels will be effected
mostly with a single pixel of the digital image plane. In that case, it is easy to apply
the sensor model of a stereo camera by calculating the probability of occupancy of
a voxel with the corresponding pixel and after traversing all pixels, the instantaneous
measurement is applied to the map with Bayes rule. Although it is a straightforward
method, mapping bigger volumes become problematic as the computational burden and
memory requirements compels available limits. Because of this limitations, methods
proposed are applied into smaller volumes, limited to single instants of measurement or
aided by a two dimensional map with bigger coverage. Techniques showing complete
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Measurement Cone

Object Detected

Measured Range

Max sensor range

Sonar or Radar Sensor

(a) (b)

Figure 4.3: a) An object detected in the measurement cone of a sonar or radar sensor. b) Instant
measurement update in the occupancy grid

Measurement Cone

Object Detected

Measured Range

Max sensor range

Laser Scanner Sensor

(a) (b)

Figure 4.4: a) An object detected in the measurement cone of a laser scanner sensor. b) Instant mea-
surement update in the occupancy grid

three dimensional results for larger volumes generally required offline data processing
or computers with highly parallelized subsystems or specialized hardware.

A useful three dimensional mapping technique proposed in this thesis introduces a
more coarse discretization of the space with larger voxels. This helps reducing com-
puting resource and memory requirements and renders it possible of a real time ap-
plication. The problem encountered with a coarse grid structure is that, a sufficiently
accurate calculation of probabilities is essential for the voxels affected by many pix-
els in the disparity image. A numerical solution for the probability in a voxel that is
effected by many pixels, measured at a pose with uncertainty require calculation of
intersections of many rectangular pyramids with voxels and the prevalent probabilities
within these intersections. In order to avoid computational complexity that can help
identifying the occupancy probabilities with an over refined correctness, an algorithm
using randomly generated particles representing a uniform probability of occupancy in
its residing cell is used with a much more simpler implementation.

4.5 Stereo Camera Inverse Sensor Model

Parallel focal line stereo camera systems offer the advantage of epipolar lines being
paralel. This allows one to use this information to seek for correspondences between
two image data. In this case, all feature matching will be done through scanlines.

The projection of a point onto the camera plane can be expressed with the multivari-
ate Gaussian probability distribution of:
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p (p | P) = (2πΣ)−
1/2 exp

(
−1

2
(f (P)− p)T Σ−1 (f (P)− p)

)
(4.6)

Here Σ is the covariance matrix, and f (P) is the ideal projection of the point P
onto the camera plane. This measurement is corrupted by the process noise and mea-
sured as p. The components of the three dimensional position vector of the point are
P =

[
X Y Z

]T, and their two dimensional projection is p =
[
x y

]T . The
covariance matrix can be written as follows:

Σ =

[
σ2
x 0

0 σ2
y

]
. (4.7)

In order to find the probability distribution of a point position P with a given mea-
surement p, the distribution p (P | p) can be found using the Bayes rule:

p (P | p) =
p (p | P) p (P)

p (p)
=

p (p | P) p (P)∫
p (p | P′) p (P′) dP′

(4.8)

Assuming a priori distribution p (P) is uniform within a domainD,
∫
p (p | P′) p (P′) dP′will

yield to p (P)
∫
p (p | P′) dP′ = p (P) resulting a posteriori distribution given in 4.8

as
p (P | p) = p (p | P) (4.9)

Because of the discrete structure of the camera pixel array, a feature defined on a
pixel does not correspond to a single point in the three dimensional space, instead its
correspondence space covers a rectangular pyramid, extending from the focus of the
camera to the infinity passing through the rectangle defined by the pixel boundaries.
The domain D can be defined as this rectangular pyramid, so the equality shown in
(4.9) will be valid within it.

It can also be seen from (4.9) that this inverse probability distribution does not give
any information about the depth of the point P . This is due to the line to point mapping
property of the projective geometry as explained before.

A two view measurement will narrow down this space to the intersection of two rect-
angular pyramids. Moreover, this intersection will be formed as a convex hexahedron
with quadrilateral faces for a parallel focal line camera system.

Σ = diag
([

σ2
xl σ2

yl σ2
xr σ2

yr

])
(4.10)

Σ = diag
([

σ2
x σ2

y σ2
x σ2

y

])
(4.11)

Considering a parallel focal line camera system, p can be defined with three com-
ponents, representing the coordinates of the measurements along the baseline with two
parameters, and a single one perpendicular to the baseline. A perfect measurement on
a pixel will define a probability distribution such that

p (x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
(4.12)
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4.5. Stereo Camera Inverse Sensor Model

p (x) =
1√

2πσ2

∫ xp+wp/2

xp−wp/2

exp

(
−1

2

(x− x′)2

σ2

)
dx′ (4.13)

p(x) =
1

2

{
erf
(

2xp − 2x+ wp

2
√

2σ

)
− erf

(
2xp − 2x− wp

2
√

2σ

)}
(4.14)

Where error function erf (x) is defined as

erf (x) =
2√
π

∫ x

0

exp
(
−x′2

)
dx′ (4.15)

In order to draw samples from this probability distribution, one can use its cumula-
tive distribution. The cumulative distribution function P (x) is defined as

P (x) =

∫ ∞
−∞

p (x) dx (4.16)

This function is nondecreasing the and approaches to zero and one while x approaches
infinities, the inverse function is

P−1(y) = inf (x; F (x) ≥ y) , 0 < y < 1 (4.17)

If a uniform sampling is done such as 0 < y < 1 then P−1(y) will map this distribution
to the desired distribution with cumulative distribution function P (y). For numeri-
cal computation, a table with uniform intervals between zero and one will suffice to
generate this samples using the inverse function.

4.5.1 Particle Generation with Pose and Measurement Uncertainty

Particle generation for representing pose uncertainty must depend on the pose error
covariance matrix which is deduced from the covariance matrix of the state estimator.
Pose error vector is composed of the position and orientation error of the vehicle. The
orientation representation defines the size of the pose error vector and thus the dimen-
sions of the pose covariance matrix. For a vector description of orientation error state,
the pose covariance matrix will be composed of 6× 6 elements.

If all of the pose error variables were uncorrelated, pose covariance matrix would
be diagonal. A number of particles whose statistics are approximately equal to this co-
variance matrix could have been generated by simply generating normally distributed
random values for every pose variable with the corresponding diagonal covariance ma-
trix element. However, time propagation in the state estimation will create a correlation
between the orientation and position states.

In order to generate particles conforming to this statistical distribution, pose covari-
ance matrix can be diagonalized and a random particle vector with the same size of the
pose error vector can be transformed accordingly.

Let Σ be the state covariance matrix of the system including position and orientation
error uncertainties. By definition Σ is symmetric positive-semidefinite matrix and any
principal submatrix of a positive-semidefinite matrix is again a positive-semidefinite
matrix [8]. If rows and columns unrelated to the position and orientation error states
are deleted, pose uncertainty matrix Σpose remains.
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Chapter 4. Three Dimensional Occupancy Grid Mapping

Principal component analysis of the pose covariance matrix can be carried out by
eigenvalue decomposition. This decomposition is denoted by

Σpose = QDposeQ
T (4.18)

where Ddiag represents the diagonal matrix with variance values calculated as the eigen-
values of Σpose and Q is an orthogonal matrix composed of the eigenvectors. 4.18 is
actually a singular value decomposition,

A random pose generation following the eigenvalue decomposition can be realized
as

∆xpose = Qř (4.19)

where ř is the generated random vector of with the same size of the pose error vector.
For current study ∆xpose =

[
∆p̌T ǎTg

]T , and the generated random position p̌and
orientation ˇ̄qare written as

p̌ = p̂ + ∆p̌ (4.20)

ˇ̄qunnorm = ˆ̄q ⊗
[

2

ǎg

]
(4.21)

ˇ̄q =
ˇ̄qunnorm
‖ˇ̄qunnorm‖

. (4.22)

After generating the random pose of the vehicle, measurement uncertainty that is
present in the dense disparity mapping is disposed. It is assumed that the projection
errors on left and right camera are uncorrelated. Also the projection error in horizontal
and vertical components are also uncorrelated. As a result, a principal component anal-
ysis is not required for these variables. If a random back-projection is to be generated
around a measurement in the stereo camera model, ŘEC is calculated from ˇ̄q and the
generated particle with all pose and measurement uncertainty is found as:

p̌fp = p̌ + ŘEC
fb

ď

 x̌L

y̌L

1

 (4.23)

The uncertainty pattern that is being modeled by equation 4.23 is shown in 4.5 by
parts and all combined.

4.5.2 Map Update

A measurement taken from the stereo camera will generate a number of particles ac-
cording to the specific probability distribution as explained in the previous section. If
n particles are generated from a pixel, and these particles are contained in voxels vi,
then the probability of occupancy for these voxels are defined according to the ratio of
the number of points accumulated in a voxel ni to total number of particles generated
which can be expressed in as

P (vi = 1) =
ni
n
. (4.24)

In practical application, one must consider the number of voxels to be checked after
each particle generation for a pixel which is done for several times while processing
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4.5. Stereo Camera Inverse Sensor Model

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Effect of uncertainties in different parameters for the sensor a) Real scene b)Groundtruth
range sensing c) Range sensing with position uncertainty d) Range sensing with orientation uncer-
tainty e) Pixelization uncertainty f) All uncertainties combined
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Chapter 4. Three Dimensional Occupancy Grid Mapping

just one image. Care must be taken in order to make the update step in an efficient
way. For this reason, voxel update is not done just after processing a pixel. While the
particles are being generated, the voxels which they are delivered are marked by the
currently processed pixel identifier. If the last pixel identifier of the voxel is not equal
to the current pixel identifier, it is understood that the number of particles in that voxel
are remains from the previous pixel and immediately the occupancy probability of this
voxel is calculated with respect to the last pixels distribution.

The probability of occupancy of a voxel vi according to the pixels p1 to pn can be
calculated using

P (vi = 1|p1, p2, . . . , pk) = P (vi = 1|p1) · P (vi = 1|p2) · . . . · P (vi = 1|pn) (4.25)

under the assumption of independence of the pixel probabilities.
After every pixel is processed in the image a last check of all voxels in the field of

view is required in order to clear all remnant particles and reflect them in the calcula-
tion. This is a possibility not just for the last pixel processed, but several particles can be
left unaccounted because no other pixel generated at least one particle that falls on that
voxel afterwards. Subsequently, a Bayesian update is applied with the instantaneous
map to the general map. This is done in log-odds form.

4.5.3 Computational Aspects

Computational cost of the mapping algorithm presented depends on two factors. These
are the number of particles generated at each measurement and number of voxels that
are inside the field of view of the stereo camera system and allowed maximum update
range. So ,the number of voxels in the map is not critical, but the size of the voxels are.

Voxel dimensions can be changed according to the resolution desired. Smaller vox-
els will better represent the environment, but as long as the shape of the surrounding is
not important, cubic voxels with edge lengths equal to the maximum dimensions of the
air vehicle can be used for the safe navigation of the air vehicle. Slightly bigger voxels
will increase the safety factor, but if the voxels are too big and the environment is too
cluttered including passages smaller than an edge of a voxel, the map obtained will not
be a useful reference for path planning and navigation.

If two parts of the algorithm, particle generation and map updating are examined
separately, it can be seen that both can be accelerated using parallel computing. If it
is possible to use a computing unit with either a multiple core central processing unit
(CPU) or a graphical processing unit (GPU), the time required to process the map can
be lowered significantly.

It is important to analyze how random number generation can effect the accuracy of
the resulting occupancy grid. There are many algorithms that can be implemented and
their performance are measured according to their sequence repeating period, distribu-
tion of the numbers generated and computational cost. Randomly generated numbers
can be produced online with different seeds for different variables subject to uncer-
tainty, or a pre-produced random number table can be used, reducing the time spent to
get a random number from the algorithm sequence cost to just random memory access
with an incremental index.
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4.5.4 Results

The algorithm explained was coded in C language and tested with stereo image sets ac-
quired from images from a simulation . The prepared code is wrapped in an S-Function
which can be used in Simulink. The block is accompanied with several other blocks
that are used for pose virtual simulation environment, image processing algorithms and
can be used easily with a state estimator. The modular block structure of Simulink en-
ables the user to easily use the algorithm for both simulation and real sensor data by
just changing the inputs supplied to the block.

The simulation environment is prepared using OGRE graphics engine. A village
scene that is prepared by Leonello [29] is constructed with geometric meshes and ren-
dering elements . Position and orientation of the vehicle is obtained from the same
work.

The algorithm depicted in [9] results in a adequate dense disparity map for the map-
ping application in this work. A slightly modified version of this algorithm is imple-
mented in legacy module of OpenCV computer vision library [11] and used for acquir-
ing dense disparity maps for feeding the mapping function as an input.

The problem of mapping with known poses was tried in the simulation. Since the
exact pose of the simulator vehicle is know, particle generation can be done with very
small pose covariance matrix. Results obtained from this simulation enables comparing
the results with the groundtruth and shows an insight of how well the sensor model
behaves in multiple passes from the same space. Increasing the covariance matrix of
the pose gives an idea of what can happen when one makes a mapping update in a high
uncertain situation for the pose.

First example is a two dimensional simulation. Camera moves along the lines shown
in Figure4.6. Black areas are obstacles sensd by a stereo-camera-like sensor. The map
generated at the end of this simulation can be seen in Figure 4.7 where blue cells are
highly probable for being free. Red cells are places where obstacles are sensed and
inverse sensor model increased the probability of occupancy of them.

The three dimensional simulation environment and the path of the vehicle which is
carrying the camera is shown in Figure4.8. The groundtruth of this scene can be seen in
Figure 4.9. Incremental updates being applied to the three dimensional map is shown
through Figure 4.10 to Figure 4.12. Comparison of the groundtruth and generated map
can be seen in Figure 4.13. The map results show cells that have a probability of
occupancy over a given threshold. Other cells under this threshold are aither empty
or not sensed yet. For path planning purposes, the occupancy probability values of
these cells can be used for weighing the cost function while seeking for the optimal
paths. The recursive structure of the algorithm makes navigation towards unexplored
cells safer unless the camera is not directed towards to the direction of flight.
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Chapter 4. Three Dimensional Occupancy Grid Mapping

Figure 4.6: Two dimensional simulation with stereo-camera-like sensor model

Figure 4.7: Result of the two dimensional simulation. Blue cells are with high probability of being free,
while red cells are marked to be occupied
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4.5. Stereo Camera Inverse Sensor Model

Figure 4.8: Simulation scene

Figure 4.9: Groundtruth for the simulation scene
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Figure 4.10: Incremental mapping - 1

Figure 4.11: Incremental mapping - 2

48



i
i

“kay_phd_thesis_2013” — 2013/3/22 — 7:09 — page 49 — #57 i
i

i
i

i
i

4.5. Stereo Camera Inverse Sensor Model

Figure 4.12: Completed map

Figure 4.13: Completed map and groundtruth

49



i
i

“kay_phd_thesis_2013” — 2013/3/22 — 7:09 — page 50 — #58 i
i

i
i

i
i



i
i

“kay_phd_thesis_2013” — 2013/3/22 — 7:09 — page 51 — #59 i
i

i
i

i
i

CHAPTER5
Conclusion and Future Prospects

State estimation and situational awareness are two key issues in order to control an au-
tonomous rotorcraft. Controlling the rotorcraft with the desired command and avoiding
possible obstacles around it requires sufficiently accurate algorithms providing state
data and spatial constraints to be obeyed. In a higher control layer, spatial domain to be
navigated and localization of the vehicle inside the given map must be supplied to the
vehicle in order to have a solution for its path planning and possibly optimizing it. In
most cases, this data is not readily and accurately available to the vehicle and it must
construct a representation of the surrounding for the purpose mentioned.

This thesis focused on two navigational problems. Firstly, estimating body velocity
of the vehicle in an environment lacking global localization aids like satellite based so-
lutions. With this manner, visual features tracked by a stereo camera was incorporated
with inertial measurement unit. After that, a three dimensional mapping algorithm was
presented using dense disparity maps obtained from the on-board stereo camera. A
widely used technique for two dimensional planar mapping problem called occupancy
grid mapping was used with an extension to the third dimension. An efficient algo-
rithm was presented that relies on the statistics of randomly generated particles with
probability distribution function defined by the stereo camera sensor model.

Study related to visual aided state estimation relied on Extended Kalman Filtering
technique which has a formulation containing vehicle position in global frame, vehicle
velocity in body frame and orientation with quaternion formalism. Time integration of
frequent inertial sensor data were updated by visual features with much less frequency.
Results obtained from simulation data affirmed this approach and the technique later
tested by visual simulation and real test data. The test was realized by relatively low
cost and proportionally noisy sensors. This application required dealing with image
processing algorithms for feature point extraction, matching and dense disparity map-
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ping. Alreadily available libraries were implemented for image tasks and outlier re-
jection was done using the inertial sensor data between time frames instead of using a
RANSAC based technique which is a common way of estimation of motion between
two different views.

Certainly, velocity correction in body frame helps to reduce the positioning error
in the global frame. Nevertheless a drift will always occur due to the unobservable
position variable. Without a reference positioning signal, this drift can be measured
only by recognition of previously visited points. By referencing that point, the drift in
the current estimate and on the previous path traced can be removed. Implementation
of a possible solution was not included in this study.

The mapping algorithm presented used dense disparity maps obtained from the same
images taken for the feature tracking system. Statistics of accumulated particles which
were generated randomly defines the total measurement of the occupancy for that time
instant. Bayesian update was applied for subsequent measurements according to the
occupancy grid concept. Three dimensional solutions are not very common in the lit-
erature due to the computational burden required for the great number of cells to be
updated for each instant. In order to overcome this difficulty, voxel cells were held big-
ger as the size of the vehicle. The algorithm was also designed to be efficient in order
to realize computations for each voxel in the field of view with minimum pass.

The techniques adverted were shown to be efficient in simulations. In order to prove
its efficiency also in the real world, batch processing on collected data was done with
these algorithms. Some drawbacks encountered during implementation which were
told in the second chapter. Adequacy of the system available was questioned and it was
shown that the system can perform required operations with small size images in infre-
quent intervals. Data transfer problems and their resolution within current limitations
were shown.

5.1 Future Outlook

It is clear that computational power is the bottleneck of the current outdated system.
Realizing described techniques on the onboard system will require a better computing
hardware. There are a number of paths that can be traced which can be enlisted as
follows:

• Using decentralized processing for each task instead of using a single processor,

• Parallel processing of the tasks that are suitable. There are variety of algorithms
ported to be run on Graphical Processing Units (GPU). Also, the mapping algo-
rithm described is sitable for parallelization,

• Implementing purpose-spesific hardware like Field Programmable Gate Arrays
(FPGA). These systems allow designing a computation unit with highly parallel
computation with high rates of input output.

For visual aided state estimation, higher frame rates will allow a better solution for the
body velocity variables. Also, an increase in the number of points tracked will allow
a more precise velocity measurement. For mapping algorithm, smaller voxels make an
improvement towards a better representation of the environment. The aim in this thesis
was stated like to have an algorithms sufficient enough for pat planning and obstacle
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avoidance. Improvement in the computational performance will allow a very good
reconstruction of the objects around the vehicle and can be used for other applications
like real time photogrammetry.

Although the drift in the body velocity variable can be corrected using visual fea-
tures, the position drift is still a problem to be solved. Place recognition will be a
necessity for position correction without an external reference signal. For this purpose,
handling of a database constructed from previously visited placed will be required. The
database can be constructed according to the features like corners, lines, shapes and
they must be labeled with a single descriptor for each. Another alternative is using
semantic image segmentation for identification of objects.

Place recognition can also be realized by using the maps generated during the navi-
gation. In that case mapping will be a part of Simultaneous Localization and Mapping
problem. With that purpose, the maps can be further processed in order to get topolog-
ical data and this can be utilized with feature based maps to get positional infomration
inside the map.
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APPENDIXA
Appendix

A.1 Quaternion Multiplication

Quaternions are composed of a real and three imaginary numbers

q̄ = q0 + q1i + q2j + q3k. (A.1)

The basis elements in (A.1) have multiplication results as follows:

i⊗ i = −1 j⊗ i = k k⊗ i = j

i⊗ j = k j⊗ j = −1 k⊗ j = −i

i⊗ k = −j j⊗ k = i k⊗ k = −1

(A.2)

Considering (A.1) and (A.2), quaternion multiplication can be carried out by either
matrix products

ā⊗ b̄ =


a0 −a1 −a2 −a3
a1 a0 −a3 a2

a2 a3 a0 −a1
a3 −a2 a1 a0

 b̄ (A.3)

ā⊗ b̄ =


b0 −b1 −b2 −b3
b1 b0 b3 −b2
b2 −b3 b0 b1

b3 b2 −b1 b0

 ā (A.4)

The inverse of a quaternion q̄−1 is the one which is premultiplied or post multiplied
by q̄ results in the identity quaternion q̄I =

[
1 0 0 0

]T .
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q̄−1 ⊗ q̄ = q̄I (A.5)

q̄ ⊗ q̄−1 = q̄I (A.6)

Conjugate of a quaternion is defined as

q̄∗ = q0 − q1i− q2j− q3k (A.7)

and the inverse of a quaternion can be calculated as follows

q̄−1 =
q̄∗

‖q̄‖
. (A.8)
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