
POLITECNICO DI MILANO
Scuola di Ingegneria dell'Informazione

POLO TERRITORIALE DI COMO

Master of Science in
Computer Engineering

Classification of Microphones

of Mobile Devices

via Blind Channel Estimation

Supervisor:
Prof. Marco Tagliasacchi

Assistant Supervisor:
Patrick Aichroth

Master Graduation Thesis by:
Luca Cuccovillo

Student Id. Number 764873

Academic Year 2011-2012

to my family, for their endless love, support and trust,

to my friends in Italy, that despite the distance were always close to me

to the e�orts spent so far and to the challenges that make the life so intriguing

Abstract

The present work concerns microphone classi�cation, a research topic still in its
early stages strictly related with audio authenticity and forgery detection. In
this paper we propose a new method of microphone classi�cation based on a
recent single-microphone blind channel estimation algorithm, focusing on audio
recordings from mobile devices: this method aims to correctly identify the source
device with high accuracy, even if the sample audio �le was compressed at
extremely low bit-rates. A Support Vector Machine (SVM) was used in order
to perform closed-set identi�cation experiments, and to assess the performance
of the algorithm.

I

Acknowledgments

I would like to acknowledge and express a special thank to my thesis advisor
and professor, Marco Tagliasacchi, for his assistance throughout the work, and
for believing in me from the start. I would also like to acknowledge Patrick
Aichroth and Christian Dittmar for inviting me in Germany, for their advises,
help and constant support. Being in Germany has been both a motivation
and an encouragement: somewhere else, and without the collaboration with the
Fraunhofer Institute for Digital Media Technology all of this would not have
been possible.

It is my very pleasure to extend a very special thank to the entire team
of the Media Management and Delivery group of the Fraunhofer IDMT, that
supplied me with every resource that I needed in order to conduct my research.
I spent a very pleasant time with them: their kindness, their patience and their
friendliness are priceless. In particular a sincere thank goes to Peggy Walther
and Patrick Rönsch, for their help during the recording sessions.

Last, but certainly not least, I am pleased to extend an heartfelt thank to
Sebastian Mann, for his valuable and continuous presence. Sebastian helped me
constantly, provided me with comments and suggestions, and thanks to him I
was able to enjoy even more the time spent at the Fraunhofer.

I could not have completed this thesis without each and every one of the
peoples mentioned here, and for that I'm grateful beyond words.

III

Contents

Abstract I

Acknowledgements III

1 Introduction 1

2 Problem Statement 5

2.1 Use Cases . 5
2.1.1 Mobile Recording with Smart-Phones 5
2.1.2 Skype Interview . 5
2.1.3 Built-in Microphones and Headset Microphones 6

2.2 Process Flow . 6
2.2.1 Process Flow of the Mobile Recording 6

2.2.1.1 Audio Source . 7
2.2.1.2 Environment . 7
2.2.1.3 A/D Conversion 7
2.2.1.4 Source Encoding 8
2.2.1.5 Storage . 8

2.2.2 Process Flow of the Skype Interview 8
2.2.2.1 Primary Audio Source: De�nition 9
2.2.2.2 Primary Audio Source: Environment 10
2.2.2.3 Primary Audio Source: A/D Conversion 10
2.2.2.4 Secondary Audio Source: De�nition 10
2.2.2.5 Secondary Audio Source: Environment 11
2.2.2.6 Secondary Audio Source: A/D Conversion . . . 11
2.2.2.7 Secondary Audio Source: Source Encoding . . . 11
2.2.2.8 Secondary Audio Source: Channel Encoding . . 12
2.2.2.9 Secondary Audio Source: Transmission 12
2.2.2.10 Secondary Audio Source: Channel Decoding . . 12
2.2.2.11 Secondary Audio Source: Source Decoding . . . 12
2.2.2.12 Mixed Recordings: De�nition 13
2.2.2.13 Mixed Recordings: Source Encoding 13
2.2.2.14 Mixed Recordings: Storage 13

2.2.3 Source Encoding Options 13
2.2.3.1 Mobile Recording 13
2.2.3.2 Skype Interview 14

V

VI Contents

3 State of the Art on Microphone and Environment Classi�cation 15
3.0 A Context Model for Microphone Forensics 16

3.0.1 Loudspeaker Stage . 16
3.0.2 Environment Stage . 16
3.0.3 Microphone Stage . 17
3.0.4 Transmission and A/D Conversion Stages 17

3.1 Microphone Classi�cation Techniques 18
3.1.1 General Strategies . 18
3.1.2 Statistical Pattern Recognition Based Approach 18

3.1.2.1 Veri�er-Tuple for Audio Forensic 19
3.1.2.2 Inter-Device Statistical Approach 19
3.1.2.3 Intra-Device Statistical Approach 20

3.1.3 Fourier Coe�cients Based Approach 22
3.1.3.1 Concept . 22
3.1.3.2 Feature Extraction and Experimental Results . . 22

3.1.4 Mel-Frequency Cepstrum Based Approach 24
3.1.4.1 Device Characterization 24
3.1.4.2 Classi�er Training and Experimental Results . . 24

3.2 Environment Classi�cation Techniques 25
3.2.1 Statistical Pattern Recognition Based Approach 25
3.2.2 Audio Reverberation Time Based Approach 25

3.2.2.1 Mathematical Model 26
3.2.2.2 Experimental Results 26

3.2.3 Blind De-Reverberation Based Approach 27
3.2.3.1 General Outline 27
3.2.3.2 Classi�er Training and Experimental Results . . 28

3.3 Editing/Tampering Detection 29
3.3.1 Electrical Network Frequency 29
3.3.2 Local Noise Level Estimation 30
3.3.3 Blind Channel Identi�cation 30
3.3.4 Future Works . 31

4 Proposed Method 33
4.1 Logical Design . 33

4.1.0 Outline . 33
4.1.1 Training of GMMs for Clean Speech 35
4.1.2 Blind Estimation of the Channel Response 40
4.1.3 Feature Vector Computation 43
4.1.4 Clustering . 46
4.1.5 Classi�cation . 48

4.2 Implementation Details . 49
4.2.1 Training of the GMM of the Clean Speech 50
4.2.2 Blind Estimation of the Channel Response 52
4.2.3 Feature Vector Computation 54
4.2.4 Clustering . 54
4.2.5 Classi�cation . 54

4.2.5.1 Dimension Normalization 54
4.2.5.2 SVM Parameter Selection 55
4.2.5.3 Feature Selection 56
4.2.5.4 Cross-Validation 57

Contents VII

5 System Evaluation 61

5.1 Test Speci�cations . 61
5.1.1 Training Content for the GMM of the Clean Speech . . . 61
5.1.2 Test Content for the Framework Evaluation 61
5.1.3 Devices Involved in the Testing Phase 62
5.1.4 Sampling Frequency . 62

5.2 Clustering Result: Summary and Evaluation 63
5.2.1 Clustering with Two Devices 63

5.2.1.1 Full Test Set . 64
5.2.1.2 Built-in Test Set 65
5.2.1.3 Headset Test Set 66

5.2.2 Clustering with Three Devices 67
5.2.2.1 Full Test Set . 67
5.2.2.2 Built-in Test Set 68
5.2.2.3 Headset Test Set 68

5.2.3 Clustering with Four Devices 68
5.2.3.1 Full Test Set . 69
5.2.3.2 Built-in Test Set 69
5.2.3.3 Headset Test Set 69

5.2.4 Final Considerations . 69
5.3 Classi�cation Result: Summary and Evaluation 70

5.3.1 Device Classi�cation . 70
5.3.1.1 Full Test Set . 71
5.3.1.2 Built-in Test Set 79
5.3.1.3 Headset Test Set 86
5.3.1.4 Final Considerations 92

5.3.2 Model Classi�cation . 96
5.3.2.1 Full Test Set . 96
5.3.2.2 Built-in Test Set 100
5.3.2.3 Headset Test Set 104
5.3.2.4 Final Considerations 107

5.4 Feature Vector In�uence on the Classi�cation 108
5.5 Skype Processing Considerations 110

6 Summary and Future Work 113

Glossary 115

Bibliography 117

A Implementation Framework 121

A.1 Octave . 121
A.2 Mp3 Encoder . 121
A.3 AAC Encoder . 121
A.4 AMR Encoder . 122

VIII Contents

B Clustering Results 123
B.1 Test Content . 123
B.2 Feature Vector Evolution . 127

B.2.1 Version 1: Standard RASTA-MFCCs 127
B.2.1.1 Version 1.0 . 127
B.2.1.2 Version 1.1 . 128
B.2.1.3 Version 1.2 . 128

B.2.2 Version 2: Spectral Clustering 130
B.2.3 Version 3: RASTA-HTK-MFCCs 131
B.2.4 Clustering Feature-Set . 131

B.2.4.1 First Derivative 131
B.2.4.2 Second Derivative 131
B.2.4.3 Magnitude Response of the Channel Estimate . 131
B.2.4.4 Channel-Dependent Gain 132
B.2.4.5 Feature Vector Components 132

B.3 Complete Results . 133
B.3.1 PCM, MP3 96 kbps . 133
B.3.2 MP3 192 kbps, MP3 128 kbps, MP3 64 kbps, MP3 32 kbps136

C Classi�cation Results 141
C.1 Test Content . 141
C.2 Complete Results . 145

C.2.1 Device Classi�cation . 145
C.2.1.1 Feature Selection JselectAAC 145
C.2.1.2 Feature Selection JselectAMR 146
C.2.1.3 Feature Selection JselectDEFAULT 147
C.2.1.4 Feature Selection JselectMERGE 147
C.2.1.5 Feature Selection JselectMP3 148
C.2.1.6 Feature Selection JselectPCM 149

C.2.2 Model Classi�cation . 150
C.2.2.1 Feature Selection JselectAAC 150
C.2.2.2 Feature Selection JselectAMR 150
C.2.2.3 Feature Selection JselectDEFAULT 151
C.2.2.4 Feature Selection JselectMERGE 151
C.2.2.5 Feature Selection JselectMP3 152
C.2.2.6 Feature Selection JselectPCM 152

C.3 Baseline Framework . 153
C.3.1 Device Classi�cation . 153
C.3.2 Model Classi�cation . 154

List of Figures

2.1 Mobile Recording - Process Flow 6
2.2 Skype Interview - Process Flow 9

3.1 Recording Process Pipeline . 16

4.1 HTK-MFCCs: Windowing . 35
4.2 HTK-MFCCs: Magnitude Spectrum Computation 36
4.3 HTK-MFCCs: Filter Bank . 36
4.4 HTK-MFCCs: MFCCs computation 36
4.5 HTK-MFCCs: HTK cepstral liftering 37
4.6 ẐS computed from our Self-Produced Speech Corpus 39
4.7 ẐS computed from the NOIZEUS Speech Corpus 39
4.8 Single Channel Estimate from a Dell Latitude D630 41
4.9 Multiple Channel Estimates from a Dell Latitude D630 42
4.10 Multiple Channel Estimates from an iPhone 3gs 42
4.11 Comparison of Feature f1, f2, and f3 46
4.12 RASTA �ltering without the initial condition IS 50
4.13 RASTA �ltering with the initial condition IS 51
4.14 ZX,norm and Z̃X,norm in Gupta et al. [13] 52
4.15 ZSelectionX,norm and Z̃SelectionX,norm in our proposal 53

5.1 Clustering with Two Devices - Full Test Set 64
5.2 Clustering with Two Devices - Built-in Test Set 66
5.3 Clustering with Two Devices - Headset Test Set 67
5.4 Intra-Device Classi�cation - Test Set 74
5.5 Intra-Device Classi�cation - Full Test Set 77
5.6 Intra-Device Classi�cation - Full Test Set: Accuracy Vs Encoding 77
5.7 Inter-Device Classi�cation - Full Test Set: Accuracy Vs Encoding 78
5.8 Intra-Device Classi�cation - Built-in Test Set 81
5.9 Intra-Device Classi�cation - Built-in Test Set 84
5.10 Intra-Device Classi�cation - Built-in Test Set:

Accuracy Vs Encoding . 85
5.11 Inter-Device Classi�cation - Built-in Test Set:

Accuracy Vs Encoding . 86
5.12 Intra-Device Classi�cation - Headset Test Set 89
5.13 Intra-Device Classi�cation - Headset Test Set 92
5.14 Intra-Device Classi�cation - Headset Test Set:

Accuracy Vs Encoding . 93

IX

X List of Figures

5.15 Inter-Device Classi�cation - Headset Test Set:
Accuracy Vs Encoding . 94

5.16 Model Classi�cation - Full Test Set 99
5.17 Model Classi�cation - Full Test Set: Accuracy Vs Encoding . . . 99
5.18 Model Classi�cation - Built-in Test Set 103
5.19 Model Classi�cation - Built-in Test Set: Accuracy Vs Encoding . 103
5.20 Model Classi�cation - Headset Test Set 106
5.21 Model Classi�cation - Headset Test Set: Accuracy Vs Encoding . 108
5.22 Baseline Framework - Intra-Device Classi�cation 109
5.23 Baseline Framework - Intra-Device Classi�cation 109

B.1 Discriminating Power of the Feature Vector (1/2) 132
B.2 Discriminating Power of the Feature Vector (2/2) 133

Chapter 1

Introduction

During the last years multimedia contents have spread all over the world: the
duplication of a digital object has become quite a straightforward procedure, as
well as its coding and decoding, transmission, editing and storage. Although
some sources provide us with authentic information, many others contain forged
content: concerns regarding how to validate multimedia data constantly arise,
highlighting the need of methods and tools to assess their authenticity and
quality.

A research topic still in its early stages strictly related with audio authentic-
ity and forgery detection is the microphone classi�cation: the goal of microphone
classi�cation is to blindly identify the microphone device involved during the
recording. This is possible thanks to the presence of some traces embedded in
the audio �les, created by the unique physical characteristics of the recording
device involved.

The �rst attempt in this direction dates back to 2007 thanks to the e�orts
of Kraetzer, Oermann, Dittmann and Lang [1]: this research can be considered
the source of all the following proposals, since it demonstrated at once the
feasibility of microphone classi�cation. In the following years, thanks to the
e�orts of several groups the accuracy of microphone classi�cation improved a
lot from that �rst attempt, but the research in this �eld is far from being
�nished. Another consequence of the �rst attempt by Kraetzer's group was also
the environment classi�cations - whose goal is to blindly identify the place where
a recording has been made - which we will not discuss in this context.

Our work is meant to be a proposal for a completely new classi�cation al-
gorithm, based on a recent work by Gupta et al. [13]. We chose not to use a
purely statistical approach or a model based directly on spectral or perceptual
audio features, in favor of an higher-level representation. This high-level rep-
resentation is built on top of Gupta's proposal, i.e. an algorithm for the blind
estimation of the magnitude response of a channel, using the observations from
a single microphone.

The frequency response of the recording device can be considered as a chan-
nel on its own: starting from its estimate we searched for a feature vector that
could lead us to a correct classi�cation. Moreover, from the start we chose to
focus our attention not only on PCM encoded audio �les, but also on sources
that underwent compression, i.e. AAC, MP3 or AMR encoding.

This happened because of the possible application of a highly reliable mi-

1

2 Chapter 1. Introduction

crophone classi�cation framework: authenticity issues often concern recordings
from cellphones and smartphones, as well as conversations that took place on
Skype. On each and every one of this use cases the hypothesis of handling
a PCM encoded audio source is unrealistic, and thus requires a possibly high
robustness toward compression.

Moreover, this robustness must hold also when extremely-low target bitrates
are chosen for the encoding, as happening with the Adaptive Multi-Rate (AMR)
compression scheme: the bitrates o�ered by the AMR range from a maximum
of 12.2 kbps to a minimum of a 4.75 kbps, and this encoder is present as the
default encoding options on most of the cellphones available on the market.
On the other hand, both the MP3 and the AAC encoding are well-known and
extremely di�used, to the point that is reasonable to expect them to be involved
in a recording.

Our �rst opinion when considering the impact of the encoding on the classi-
�cation was that it would have caused a great loss in accuracy, by crushing any
useful information about the channel of the recording device. However, as we
will extensively show throughout the entire work, this is not true: our algorithm
is able to handle MP3 and AAC compressed audio �le, up to the point that is
possible to correctly identify the single device with only an extremely small
in�uence from the target bitrate. With AMR compressed audio �le, instead,
the identi�cation of the single device is still possible, but not reliable enough;
however we are already able to classify the general model of the device involved,
despite the low bitrate and the clearly perceivable great lost in terms of quality
of the recording.

For the sake of clarity, we chose to devote each of the following chapters
to a di�erent aspect of the algorithm that we are going to expose. The reader
will notice several references between di�erent chapters: this has been done in
order not to consider each of them a monolithic block and to underline the re-
lationships between each di�erent level of the framework, that was built by a
continuous process of constant re�nements, driven both by theoretical consid-
erations and by practical evaluations of the results.

In Chapter 2 we will state the problem by the means of the use cases consid-
ered in our work. We will also underline how these use cases a�ect our micro-
phone classi�cation framework, and how they have been addressed. Moreover,
we will provide the process �ow of each use case, with a description of each stage
involved, and with practical considerations about the processing steps directly
in�uencing or framework.

In Chapter 3 we will expose the state of the art on microphone classi�cation.
Due to microphone classi�cation still being in its early stages, we provided a
critic overview of each algorithm proposed in the past: this was done both for
the sake of completeness and in order to allow the reader to critically compare
our algorithm with the previous one by exposing both pros and cons of each
proposal. In the �nal section we tried to show the connection between micro-
phone classi�cation and other audio authenticity related �elds, as well as works
that we can reasonably suppose to be emerging in the near future.

In Chapter 4 our proposal is described thoroughly, starting from the blind
channel identi�cation on which we rely on, and ending with a complete descrip-
tion of the �nal classi�cation algorithm. For the sake of clarity, in this chapter
we chose to expose in two di�erent sections the logical design and the imple-
mentation choices that are not due to the algorithm itself: the logical design

Chapter 1. Introduction 3

is meant to be a reference for the implementation details, and we believe that
this choice re�ects the continuous process of practical evaluation of theoretical
considerations that has been the real constant during the research work

In Chapter 5 we will expose the results achieved. In the �rst section of the
chapter the test content is de�ned. Each following section of the chapter is
organized with the same scheme: �rst the di�erent test sets are di�erentiated;
afterward for each test set the result are exposed; �nally some considerations
about the results are made, with complete references and critic comparisons
with the best results from the state of the art.

In Chapter 6 we will make a brief summary of the results achieved, we will
consider possible improvements of the framework, and we will discuss a possible
applications of this work in the �eld of tampering detection.

Interested readers in the appendices will �nd details about the implementa-
tion framework with references to the software involved, the complete numerical
results, and some of the listings of the octave implementation. The appendix
B.2, in particular, reports the early research stages of the feature vector, and
clearly shows the existing dualism between theory and evaluations.

Chapter 2

Problem Statement

In this chapter we will focus on the use cases involved in our work. We will also
underline how these use cases a�ect our microphone classi�cation framework,
and how they have been addressed.

2.1 Use Cases

Several use cases could be related to the recordings from mobile devices, but
we chose to focus on two of them, i.e. mobile recording with smart-phones and
Skype interview: these two use cases are the ones where recently the authenticity
has been an issue, and for which the possibility to perform a correct microphone
classi�cation could be a great help in the near future.

2.1.1 Mobile Recording with Smart-Phones

This use case concerns recordings made by a single mobile device, with one audio
source as the input. On smart-phones usually several recording applications are
available: depending on the application, there's the possibility to control the
sampling rate, the audio encoder, or both.

�Audio source� in this context is intentionally an ambiguous term: in prin-
ciple, due to the algorithm underlying our work, the �audio source� we refer
to is one speaker, or more than one, whose voice is been recorded. However,
we cannot ensure that this assumption holds: the �audio source� could be the
playback of the loudspeaker, as well as prolonged silence or noise

2.1.2 Skype Interview

This use case concerns recordings made by at least two mobile devices, with two
di�erent audio sources as the input, e.g. a conversation between a journalist and
a politician. The recording is made on one of the two sides and contains both
the content by the �primary� audio source and the content by the �secondary�
audio source. With the term �primary� audio source we mean the audio source
which is interacting with the device that is recording the conversation, and that
has not undergone any kind of transmission; on the other hand, the �secondary�
audio source present in the recording has been sent on the network from another

5

6 Chapter 2. Problem Statement

location and - as we will in the process �ow description - has undergone a much
longer processing chain than the other one.

The �nal audio �le is a mixture of the primary and the secondary audio
source which has been encoded and stored. Again, the term �audio source�
must retain his ambiguity in order to accommodate any possible sound signal
acquired by the microphone.

2.1.3 Built-in Microphones and Headset Microphones

Nowadays most of the mobile devices can be equipped with headset microphones
of several di�erent types. Regardless of the use case, we need to consider both
the possibility of a recording from the built-in microphone of a mobile device,
and from an headset microphone plugged in.

Since the headsets are often provided directly by the same manufacturer
of the mobile device, not only we should expect similarities between di�erent
instances of the same model, but also similarities between headsets microphones
and built-in microphones which are akin1: a situation that makes our task more
di�cult, as well as more interesting.

2.2 Process Flow

We will now provide the process �ow of the use case, with a description of each
stage involved. Our process �ows will follow an outline somehow similar to the
one previously stated by Kreatzer et al. [4], but that enriches their description
and properly address our two use cases. Each stage of each �ow will be described
thoroughly.

2.2.1 Process Flow of the Mobile Recording

Figure 2.1: Mobile Recording - Process Flow

1e.g. between the original headset microphone of an iPhone 3gs and the built-in microphone
of an iPhone 3gs.

Chapter 2. Problem Statement 7

As shown in Figure 2.1 the mobile recording use case can be represented by a
�ve-stage pipeline:

2.2.1.1 Audio Source

From now on, we will denote with si(t) an audio signal in time-domain; thus
Si(f) , its representation in frequency-domain, can be easily achieved by a
Fourier transformation. The following holds:{

Si (f) = F (si (t))
si (t) = F−1 (Si (f))

; ∀i

where F(·) denotes the Fourier Transform, and F−1(·) the inverse Fourier Trans-
form.

Let s1(t) be the audio source in Figure 2.1; then, if the audio source is
created by a single loudspeaker with multiple drivers2 which is playing an audio
signal s0(t) we can model the process with:

S1(f) =
∑

Ndriver

ˆ u

l

Fdriver(f) · S0(f) df +Nls(f) (2.1a)

In ideal circumstances the upper and lower frequency values u and l, and the
amplifying function Fdriver(f) could be simpli�ed into a constant amplifying fac-
tor, and the thermal noise Nls(f) generated in the playback by the loudspeaker
ls is constant and negligible. Otherwise, If there's no loudspeaker present, we
can simply assume that

S1(f) = S0(f), (2.1b)

where s0(t) denotes the audio signal produced by the source.

2.2.1.2 Environment

Before the audio signal is collected by the microphone there are mainly two
possible distortions occurring, as shown in equation 2.2:

S2(f) = S1(f) · Fecho(f) +Nenvi(f), (2.2)

Where, of course, either equation 2.1a or equation 2.1b holds.
The product between S1(f) and Fecho(f) describes the object and the envi-

ronment that re�ect the signal, and is used to simulate the possible distortion
caused by echoes and reverberations3. The possible distortions caused by the
environmental noise are denoted by Nenvi(f).

2.2.1.3 A/D Conversion

The A/D conversion involves both the sampling process and the quantization
process. Let us denote with si [n] the digital counterpart of a signal si(t): si [n]
is the result of a quantization process with nBits bits per sample applied on the
values assumed by si(t) at discrete moments t = n · T ; ∀n ∈ Z, where fs = 1

T
denotes the sampling frequency in Hz.

2e.g. full-range, sub-woofer, woofer, mid-range or tweeter
3when the recording process is accomplished in an anechoic environment, then Fecho(f)

can be considered as a constant value of 1

8 Chapter 2. Problem Statement

The A/D conversion stage can be modeled as follows:

s2[n] = quantization (nBits, sampling (fs, s2 (t))) ,

where s2(t) is the inverse Fourier Transform of S2 (f) stated in 2.2. In this
stage, usually the user is able to control at least the sampling frequency fs.

2.2.1.4 Source Encoding

The source encoding in this context will be de�ned as follows:

s3 [n] = source-encoding (algorithm, bitrate, s2 [n]) .

The input algorithm refers to one of the source encoding algorithms suitable
for audio data, and together with the input bitrate is user-de�ned, with some
limitations due mostly to the recording application involved. More details will
be provided shortly afterward, in Section 2.2.3.

2.2.1.5 Storage

Finally, whatever the chosen encoding , the audio �le is stored on the recording
device. We will assume that any further transmission of s3 [n] will be error-free,
since there are no time-constraint on it.

2.2.2 Process Flow of the Skype Interview

In Figure 2.2 we can see the process �ow of the Skype interview. Is straightfor-
ward to notice how this scenario involves much more steps than the previous one.
Moreover, there are a lot of operations that the users cannot control, because
of Skype in�uence or due to the transmission of the network of the signal.

In the process �ow �gure we have both the source encoding and the channel
encoding: we can di�erentiate the two of them in the following way:

� The source encoding attempts to compress the data in order to transport
it more e�ciently, in a lossless or in a lossy fashion. We can consider the
PCM encoding as the less e�cient compression - i.e. there's no compres-
sion at all. The source encoding mainly addresses the size of the data.

� The channel encoding aims to �nd a code that allows us to transmit the
data e�ciently and safely over a network, where safe means �with as less
errors and corruptions as possible�. Usually, this is done by using Forward
Error Correction codes and Error Detection Codes, with more than one
layer involved. The channel encoding mainly addresses the transmission
of the data.

As we will see in details, both of them are involved in the secondary audio
source processing chain, and their in�uence cannot be considered negligible if
we consider the �nal recording, as we will demonstrate in Chapter 5.

Chapter 2. Problem Statement 9

Figure 2.2: Skype Interview - Process Flow

2.2.2.1 Primary Audio Source: De�nition

From now on, we will denote with sj,i(t) an audio signal in time-domain; thus
Sj,i(f) , its representation in frequency-domain, can be easily achieved by a
Fourier transformation. The following holds:{

Sj,i (f) = F (sj,i (t))
sj,i (t) = F−1 (Sj,i (f))

; ∀i, j

where F(·) denotes the Fourier Transform, and F−1(·) the inverse Fourier Trans-
form. The index j will be used in order to di�erentiate between the primary -
i.e. j = 1 - and secondary - i.e. j = 2 - audio source.

Let s1,1(t) be the primary audio source in Figure 2.2; then, if the audio
source is created by a single loudspeaker with multiple drivers4 which is playing
an audio signal s1,0(t) we can model the process with:

S1,1(f) =
∑

Ndriver

ˆ u

l

F1,driver(f) · S1,0(f) df +N1,ls(f) (2.3a)

4e.g. full-range, sub-woofer, woofer, mid-range or tweeter

10 Chapter 2. Problem Statement

In ideal circumstances the upper and lower frequency values u and l, and the
amplifying function F1,driver(f) could be simpli�ed into a constant amplifying
factor, and the thermal noise N1,ls(f) generated in the playback by the loud-
speaker 1, ls is constant and negligible. Otherwise, If there's no loudspeaker
present, we can simply assume that

S1,1(f) = S1,0(f), (2.3b)

where s1,0(t) denotes the audio signal produced by the source.

2.2.2.2 Primary Audio Source: Environment

Before the primary audio signal is collected by the microphone there are mainly
two possible distortions occurring, as shown in equation 2.4:

S1,2(f) = S1,1(f) · F1,echo(f) +N1,envi(f), (2.4)

Where, once again, either equation 2.3a or equation 2.3b holds.
The product between S1,1(f) and F1,echo(f) describes the object and the en-

vironment that re�ect the signal, and is used to simulate the possible distortion
caused by echoes and reverberations5. The possible distortions caused by the
environmental noise are denoted by N1,envi(f).

2.2.2.3 Primary Audio Source: A/D Conversion

Let us denote with sj,i [n] the digital counterpart of a signal sj,i(t): sj,i [n] is
the result of a quantization process with nBitsj bits per sample applied on the
values assumed by sj,i(t) at discrete moments t = n·Tj ; ∀n ∈ Z, where fs,j = 1

Tj

denotes the sampling frequency in Hz. As before, the index j will be used in
order to di�erentiate between the primary - i.e. j = 1 - and secondary - i.e.
j = 2 - audio source.

The A/D conversion stage can be modeled as follows:

s1,2[n] = quantization (nBits1, sampling (fs,1, s1,2 (t))) ,

where s1,2(t) is the inverse Fourier Transform of S1,2 (f) stated in 2.4.

2.2.2.4 Secondary Audio Source: De�nition

Let s2,1(t) be the secondary audio source in Figure 2.2; then, if the audio source
is created by a single loudspeaker with multiple drivers6 which is playing an
audio signal s1,0(t) we can model the process with:

S2,1(f) =
∑

Ndriver

ˆ u

l

F2,driver(f) · S2,0(f) df +N2,ls(f) (2.5a)

In ideal circumstances the upper and lower frequency values u and l, and the
amplifying function F2,driver(f) could be simpli�ed into a constant amplifying

5when the recording process is accomplished in an anechoic environment, then F1,echo(f)
can be considered as a constant value of 1

6e.g. full-range, sub-woofer, woofer, mid-range or tweeter

Chapter 2. Problem Statement 11

factor, and the thermal noise N2,ls(f) generated in the playback by the loud-
speaker 2, ls is constant and negligible. Otherwise, If there's no loudspeaker
present, we can simply assume that

S2,1(f) = S2,0(f), (2.5b)

where s2,0(t) denotes the audio signal produced by the source.

2.2.2.5 Secondary Audio Source: Environment

Before the secondary audio signal is collected by the microphone there are
mainly two possible distortions occurring, as shown in equation 2.6:

S2,2(f) = S2,1(f) · F2,echo(f) +N2,envi(f), (2.6)

Where, as before , either equation 2.5a or equation 2.5b holds.
The product between S2,1(f) and F2,echo(f) describes the object and the en-

vironment that re�ect the signal, and is used to simulate the possible distortion
caused by echoes and reverberations7. The possible distortions caused by the
environmental noise are denoted by N2,envi(f).

2.2.2.6 Secondary Audio Source: A/D Conversion

The A/D conversion stage can be modeled as follows:

s2,2[n] = quantization (nBits2, sampling (fs,2, s2,2 (t))) ,

where s2,2(t) is the inverse Fourier Transform of S2,2 (f) stated in 2.6.

2.2.2.7 Secondary Audio Source: Source Encoding

The source encoding of the secondary audio source is the �rst stage where the
in�uence of Skype is really high. According to Skype, the default audio codec
for all Skype-to-Skype calls is SILK [29], which was integrated for the �rst time
in version 4.0 beta 3 from January 7, 2009. Previous releases are supposed to
use a proprietary wide-band audio codec, i.e. the internet Speech Audio Codec
(iSAC) [30]. Of course, is possible that other codecs are involved.

What we now for sure, is that Skype seems to adapt its encoding options de-
pending both on the content of the audio input and on the network conditions,
e.g. the bandwidth and the number of transmission errors. Other than switch-
ing between di�erent bitrates, SILK is also supposed to change the sampling
frequency acquired by the sound card and to match the encoding complexity
to the CPU resources available [29]; similar features can be found in the iSAC
codec [30].

We can try to summarize this step with

s2,3 [n] = source-encodingSkype (algorithm (C,N,R) , bitrate (C,N,R) , s2,2 [n]) ,

where algorithm(·) denotes the codec chosen by Skype and bitrate(·) the target
bitrate. Both variables are supposed to depend on the detected content C, on
the network conditions N and on the CPU resources available R.

7when the recording process is accomplished in an anechoic environment, then F2,echo(f)
can be considered as a constant value of 1

12 Chapter 2. Problem Statement

2.2.2.8 Secondary Audio Source: Channel Encoding

We can suppose that, as for the source encoding, the channel encoding involved
is Skype is not negligible: it has to integrate the time-constraints related to the
real-time processing needed by the conversation while relying on the internet
network and its limitations. Unfortunately we don't know the speci�cation of
this algorithm, but we can try to express it on the following way:

s2,4[n] = channel-encodingIP
(
channel-encodingSkype (s2,3[n])

)
.

This formulation, of course, is meant to underline the interaction between the
non real-time Internet Protocol algorithms and the Skype real-time constraints
and algorithms.

2.2.2.9 Secondary Audio Source: Transmission

It would be meaningless to formalize all the transmission procedure herein: we
will just let stransj,i be the signal sj,i after the transmission, i.e.{

stransj,i (t) = sj,i (t−∆t) ; ∀t
stransj,i [n] = sj,i [n] ; ∀n , in ideal conditions.

2.2.2.10 Secondary Audio Source: Channel Decoding

The channel decoding addresses the transmission error overs the network, and
can be formalized as follows:

s2,5[n] = channel-decodingSkype
(
channel-decodingIP

(
strans2,3 [n]

))
.

We can suppose that the Skype channel-encoding/decoding schema is meant to
correct as much missing or corrupted samples as possible, relying on information
about the data structure - which is unknown to the Internet Protocol. It's also
legitimate to suppose that, when an error correction is not feasible, the bits
of the missing or corrupted samples are marked as incorrect data: the source-
decoder of the SILK speech-codec, whose speci�cations are available online, is
errors-aware.

2.2.2.11 Secondary Audio Source: Source Decoding

The source decoding can be formalized simply as

s2,6[n] = source-decodingSkype (s2,5[n]) .

s2,6[n] is a digital audio �le of sampling frequency fs,Skype: a priori we cannot
assume that fs,2 = fs,Skype, especially when the network conditions are bad.
Moreover, we know that the perceived quality of s2,6[n] is time-variant, and that
when to many errors occur some samples of s2,6[n] are missing. In other terms,
we can assume that

s2,6[n] 6= source-decodingSkype (s2,3 [n]) , in general.

Chapter 2. Problem Statement 13

2.2.2.12 Mixed Recordings: De�nition

After the decoding of the secondary audio source, we are �nally able to mix
together the two signals in a single audio �le. This cannot be done directly, since
most likely fs,Skype 6= fs,1: the program used in order to record the conversation
�rst needs to resample both the audio streams to a common sampling frequency
fs,1+2, i.e. s1,3 = resampling(s1,2, fs,1+2)

s2,7 = resampling(s2,6, fs,1+2)
s1+2,0[n] = s1,3[n] + s2,7[n]

.

Usually fs,1+2 is de�ned by the user of the recording application.

2.2.2.13 Mixed Recordings: Source Encoding

The source encoding will be de�ned again as follows:

s1+2,1 [n] = source-encoding (algorithm, bitrate, s1+2,0 [n]) .

The input algorithm refers to one of the source encoding algorithms suitable
for audio data, and together with the input bitrate is user-de�ned, with some
limitations due to the recording application involved. Important details about
this source encoding will be provided shortly afterward, in Section 2.2.3.

2.2.2.14 Mixed Recordings: Storage

As we did for the process �ow of the mobile recording, also for the Skype inter-
view use case we can assume that at the end, whatever the encoding speci�ed,
the audio �le is stored on the recording device. We will also assume again
that any further transmission of s1+2,1 [n] will be error-free, since there are no
time-constraint on it.

2.2.3 Source Encoding Options

As we know several audio codecs exists, and of course it's possible to apply a
further source encoding after the storage step. We will now consider the speci�c
case addressed in our process �ows, i.e. the encoding options available when
the source encoding is performed during the recording itself.

2.2.3.1 Mobile Recording

Depending on the recording application, there are several options available:
usually it's possible to select between PCM encoding, MP3 encoding and AAC
encoding, with di�erent bitrates and sampling frequency. However, this is not al-
ways the default, even for smart-phones: the default source-encoding algorithm
- for most of the simple mobile phones but also for some of the smart-phones
default recording applications - is the Adaptive Multi-Rate coding (AMR), a
compression scheme proposed by 3GPP [31, 32].

The AMR codec consists of eight source codecs with bit-rates of 12.2, 10.2,
7.95, 7.40, 6.70, 5.90, 5.15 and 4.75 kbit/s and is based based on the Code-Excited
Linear Predictive (CELP) coding model: in this CELP model, for each 20 ms
frame 10 Lineal Predictive (LP) �lter coe�cients, together with the gains and

14 Chapter 2. Problem Statement

the indexes of two excitation vectors from an adaptive and �xed codebooks are
computed; after their transmission, at the decoder the speech is synthesized by
�ltering the reconstructed excitation signal - i.e. the sum of the two excitation
vectors - through the LP synthesis �lter.

2.2.3.2 Skype Interview

As for the mobile recording, also in the Skype interview use case it's possible to
select between PCM encoding, MP3 encoding and AAC encoding, with di�erent
bitrates and sampling frequency, depending on the speci�c application involved
during the process. Whatever the encoding, it's important to remember that the
audio data coming from the secondary audio source has been already encoded,
transmitted and decoded with the processing steps stated in Section 2.2.2.

For this use case, on the other end, we believe that the presence of an AMR
source-encoding is really unlikely.

Chapter 3

State of the Art on

Microphone and Environment

Classi�cation

In the last years multimedia contents have spread all over the world: the du-
plication of a digital object has become quite a straightforward procedure, as
well as its coding and decoding, transmission, editing and storage. Although
some sources provide us with authentic information, many others contain forged
content: concerns regarding how to validate multimedia data constantly arise,
highlighting the need of methods and tools to assess their authenticity and qual-
ity.

Recently Gupta et al. gave a general survey on current developments and fu-
ture trends in detecting the forgery of digital audio �les [2], while the REWIND
consortium provided a comprehensive overview of multimedia footprint detec-
tion and footprint parameter estimation, regarding both image, video and audio
data [3].

The aim of this chapter is to point out the state-of-the art on microphone/de-
vice and environment classi�cation: for the sake of clarity, in Section 3.0 we
provide a context model for microphone forensics proposed by Kreatzer et al.
[4], in order to highlight the di�erent stages of the recording process pipeline,
and how each of them alters the original source.

In Section 3.1 and Section 3.2 we discuss both microphone/device classi�ca-
tion and environment classi�cation techniques, each of them relying on a speci�c
stage of the recording pipeline previously de�ned.

Lastly, in Section 3.3 we discuss possible approaches to editing/tampering
detection, that exploit microphone/device and environment classi�cation, to-
gether with di�erent forgery detection techniques.

15

16 State of the Art

3.0 A Context Model for Microphone Forensics

Recording Process Pipeline

In the following sections of this chapter we will refer to the context model
introduced by Kreatzer et al. [4], which describes all the recording process by
using the �ve-stage pipeline shown in Fig. 3.1.

Figure 3.1: Recording Process Pipeline

Let a function S(t) denote the original audio signal in time-domain; thus
S(f) , its representation in frequency-domain, can be easily achieved by a Fourier
transformation:

S(f) = F(S(t))

In Figure 3.1 S1(f), S2(f), S3(f) and S4(f) denote the analogue audio signals
after each processing segment, while S

′
(f) denotes the �nal digital audio sig-

nal achieved; obviously the time domain counterpart of S
′
(f) is computed via

inverse Fourier transform as S
′
(t) = F−1(S

′
(f)).

This process pipeline clearly is the one that we extended in the previous
chapter: it presents both some similarities and some important di�erences that
we will mention in the following sections.

3.0.1 Loudspeaker Stage

The loudspeaker in�uence is always present, and modeled explicitly by the
means of Equation 3.1

S1(f) =
∑

Ndriver

ˆ u

l

Fdriver(f) · S(f) df +Nls(f) (3.1)

that is equivalent to Equation 2.1a. The main di�erence with our model where
the loudspeaker is modeled as a special case - is that in this context model the
loudspeaker is considered to be always present inside the pipeline.

3.0.2 Environment Stage

The environment stage is shown in equation 3.2:

S2(f) = S1(f) ∗ Fecho(f) +Nenvi(f) (3.2)

The main di�erence with the nearly-equivalent Equation 2.4 is the convolution
of S1(f) and Fecho(f) instead of their product. The consistency of this stage
is the characteristic exploited by environment-based classi�cation techniques
proposed by Malik et al. [5, 6], that we are going to discuss in depth in Section
3.2.

State of the Art 17

3.0.3 Microphone Stage

Equation 3.3 simulates the process of a microphone collecting the signal:

S3(f) =

ˆ
spectrum

Fmic(f) · S2(f) df +Nmic(f) +NENF (f) (3.3)

Fmic(f) denotes the frequency response function of the microphone, Nmic(f)
denotes the thermal noise that the microphone generates, and NENF (f) denotes
the electric network frequency (ENF) in�uence1.

Microphone/device classi�cation techniques based on statistical pattern recog-
nition [4, 1], that we are going to discuss thoroughly in Section 3.1, attempt to
detect intrinsic �ngerprint traces left by Fmic(f), assuming that the speci�city
of a microphone comes from the unique vibration behavior of its diaphragm,
as well as the diaphragm's interaction with the other parts. Other in�uences
to be considered are the orientation of the microphone to sound sources, the
microphone mounting and the aging phenomena of the microphone, modeled as
multiplicative in�uences O (orientation), M (mounting) and A (aging):

Fmic(f) = Finf (O,M,A) · Fdiaphragm(DiaphCharacteristics)

Usually Nmic(f) can be considered as constant and negligible during the
classi�cation, since its in�uence is rather minor compared to the on coming
from Fmic(f). On the other hand, while it seems that orientation and aging
phenomena have no impact at all on microphone classi�cation accuracy, the
mounting can have a strong in�uence if it a�ects the reverberation behavior2.

Our own classi�cation method, as we will see, is based on an hi-level model
of the transfer function Fmic(f).

3.0.4 Transmission and A/D Conversion Stages

Equation 3.4 and 3.5 model the transmission of the signal from the microphone
to the A/D conversion device, and the process of storing the audio as an audio
�le:

S4(f) =

ˆ
spectrum

Ftran(f) · S3(f) df +Ntran(f) (3.4)

S′(f) =

ˆ fN

0

Fsamp(f) · S4(f) df +Nquant(f) +Nthermal(f) (3.5)

In equation 3.4 Ftran(f) denotes the distortion coming from the transmission of
the signal, while Ntran(f) denotes the thermal noise coming from the transmis-
sion environment. In equation 3.5 fN denotes the Nyquist frequency, Nquant(f)
denotes the quantization noise, and Nthermal(f) the thermal noise of the A/D
device. None of the microphone/device and environment classi�cation tech-
niques proposed so far exploited these stages.

We can notice that both these two stages are modeled in a completely dif-
ferent way than in our own pipeline, and that the encoding is not addressed at
all.

1Further details in Section 3.3
2e.g. if the microphone is lying on a table

18 State of the Art

3.1 Microphone Classi�cation Techniques

In this section we will discuss di�erent microphone classi�cation techniques: in
order to assess advantages and disadvantages of each of them the general outline
is provided, as well as test setup and experimental results. Before starting
our discussion, we will also provide some information about general adoptable
strategies.

All the classi�cation techniques that we are going to introduce in this section
rely only on the microphone stage of the context model previously proposed3.

3.1.1 General Strategies

We are able to identify two main aspects concerning microphone classi�cation
strategies: the classi�cation technique is supervised or unsupervised, and either
an inter-device analysis or an intra-device is performed.

Supervised Classi�cation In supervised classi�cation di�erent models4 can
be applied. Each of them passes a so-called supervised learning algorithm,
that is a procedure to infer a function starting from supervised (i.e. la-
beled) data. The inferred function is called classi�er, and should be able
to identify the actual class of any input between those involved during the
training.

Unsupervised Classi�cation The goal of unsupervised classi�cation tech-
niques5 is the partitioning of data into groups while the group a�liation
of the data is not known in advance (i.e. clustering). Since - hopefully
- data belonging to a group share common or similar traits, usually the
partitioning is de�ned by a distance measure of some sort.

Inter-Device Analysis Inter-device analysis refers to a classi�cation performed
between di�erent models of microphones, usually from di�erent manufac-
turers. Although this case seems simpler, it's possible that microphones
share the same transducer technology, hence leading to misclassi�cation.

Intra-Device Analysis Intra-device analysis refers to a classi�cation performed
between microphones of the same model and manufacturer. It's mainly
possible thanks to the unique vibration behavior of each microphone's
diaphragm.

Within microphone classi�cation supervised classi�ers outperform clustering al-
gorithms, hence most of the methods relies to a supervised classi�er. Conversely,
both inter-device and intra-device classi�cation were investigated and enhanced.

3.1.2 Statistical Pattern Recognition Based Approach

In 2005 Oermann et al. presented a new concept for audio classi�cation and
analysis [7], based on an introduced Veri�er-Tuple which enables a detailed
analysis of every kind of media. Their proposal led Kraetzer et al. to a statistical

3see Subsection 3.0.3 of Section 3.0
4e.g. decision trees, regression analysis, support vector machines, Naive Bayes
5e.g. k-means, mixture models, hierarchical clustering

State of the Art 19

pattern recognition based approach [4, 1], in order to determine whether inter-
device and intra-device classi�cation are possible, both with unsupervised and
supervised techniques.

3.1.2.1 Veri�er-Tuple for Audio Forensic

�A speaker environment is determined through its characteristic background
sounds and the used microphone�. Starting from this statement Oerman et al.
[7], in order to specify the actual speaker's environment, developed a concept
for a detailed analysis of room and device characteristics. The fundamental
assumption was that the extraction of background features of an audio stream
can provide an informative basis for determining its origin location6 and the
used microphone.

The Veri�er-Tuple consists of four parts: the syntax, the executive seman-
tic, the functional semantic and the interpretative semantic. Since each of them
refers to a di�erent level this multilayer structure enables a more detailed anal-
ysis and classi�cation of information, thus providing a new powerful approach
for audio forensic.

Even if this work was only theoretic, in the following years it led many other
researches to evaluate the discriminative power for microphone and environment
classi�cation of di�erent known statistical features: it provided the basis for
the concept of microphone/device and environment classi�cation, as well as a
concept scalable also for other media such as text, image, video or 3d-complexes.

3.1.2.2 Inter-Device Statistical Approach

In 2007 Kraetzer et al. proposed a �rst approach for digital media forensic to
determine both the used microphones and the environments of recorded digital
audio samples [1]. Starting from the concept of the Veri�er-Tuple, the main
idea of this work is that from syntactical audio features additional higher level
semantic features can be derived up, hence allowing a microphone/device and
environment classi�cation that was never done before.

Based from this idea, the work proposes three hypotheses and evaluates them
with many tests:

1. Is it possible to correctly classify the microphone used for the generation
of a recording?

2. Is it possible to correctly classify the location where the recording was
made?

3. Does feature selection (feature reduction) improve the classi�cation accu-
racy?

We will focus for now on hypotheses 1 and 3: further discussion about hypothesis
2 will be held in Subsection 3.2.1 of Section 3.2.

The test set is composed of 10 di�erent audio �les, recorded for the inter-
device classi�cation as mono audio data by 4 microphones from di�erent man-
ufacturers in 10 di�erent rooms7.

6e.g. a quiet room, a noisy street, an airport or a train station
7i.e. 400 audio �les of 18.5 sec with 44.1 kHz sampling rate and 16 bit quantization

20 State of the Art

The genre of the recorded audio �les is variable: there are music �les, speech
data, noise, arti�cial sounds, silence and instrumental records. Both Naive
Bayes classi�ers and K-means clustering algorithm are tested, in a feature space
composed by the complete feature set8 of AMSL Audio Steganalysis Toolset.

Average results for the Naive Bayes classi�er are in the range [61.37%,75.99%]
depending on the room, while those obtained by K-means clustering are in
the range [30.13%, 43.57%]. In order to correctly evaluate these results it's
important to notice that, since it's a 5-class classi�cation problem (recordings
from the four microphones and the original data), just �guessing� the result
would be equal to a 20% performance. Moreover, the choice to record �les of
variable genres makes the classi�cation much harder, since complex signals mask
the peculiar coloring e�ect of each microphone.

In the case of Naive Bayes classi�er the increasing of the number of feature
vectors per �le results in an increasing classi�cation accuracy on microphones,
while the results of the K-means clustering seem to be independent of the num-
ber of feature vector supplied for the tests. Unfortunately the classi�cation
accuracy is reduced by feature selection: every reduction of the feature space
adversely a�ects performances, both for supervised and unsupervised classi�ca-
tion.

The small size of the test set implies that a generalization based on these re-
sults is not possible. Nevertheless, this �rst investigation demonstrated at once
that microphone classi�cation starting from multiple low-level features is possi-
ble, and it's been a reference for many following researches. Despite the decrease
in accuracy due to feature reduction it's interesting to notice the importance
of Mel-cepstrum domain based features even in this �rst and somehow �rough�
attempt: more recent works have made an extensive use of these features, as we
will see.

3.1.2.3 Intra-Device Statistical Approach

In 2011 Kraetzer et al. proposed a second work, this time concerning intra-
device classi�cation [4]. After the formalization of the context model reported
in Section 3.0, they made an attempt to correctly classify two well distinct set
of microphones9; the recorded material used for the practical investigations has
been generated by the same reference �les proposed in [1]. A total of 590 features
per frame were computed by AMSL Audio Feature Extractor, including both
time domain based features, frequency domain based features and Mel-cepstrum
domain based features10.

This work focused on two empirical investigation, about

1. The identi�cation of suitable classi�cation algorithms for statistical pat-
tern recognition based classi�cation, evaluating 74 supervised classi�ers
and 8 clustering algorithms

2. The determination of suitable features for the pattern recognition, and the
impact of feature selection to the classi�cation accuracy

8i.e. 7 time domain based features and 56 Mel-cepstrum domain based features
9i.e. an homogeneous set of four Røde NT6 condenser microphones and another homoge-

neous set of four Beyerdynamic Opus 69 dynamic microphones
10Including 2nd order derivative MFCCs and FMFCCs, that were not present in the previous

work

State of the Art 21

3. The determination of the in�uence of changes in the microphone orienta-
tion and mounting on the classi�cation performance

4. The performance achieved in using the statistical pattern recognition based
microphone classi�cation for the detection of audio signal composition

We will now discuss only points 1, 2 and 4, since results for point 3 have been
reported previously in Subsection 3.0.3 of Section 3.0.

As well as in [1] supervised classi�ers outperformed clustering algorithms: in
a 5-class problem none of the clustering algorithms was able to show an accuracy
better than 32.675%, with a further decrease of the maximum classi�cation
accuracy to 27.6% after a reduction to the 20 most signi�cant features. On
the other hand supervised classi�ers achieved a maximum accuracy of 75.88%
for Røde microphones, and of 82.51% for Beyer microphones11; if only the 20
best features are used the accuracy drops in average for about 7.11%, but the
average computation time is reduced by factor 32.7.

The best features were uncovered by a principle component analysis, that
highlighted 187 components out of 590 being responsible for 95% of the sample
variance. Global features showed no signi�cance in intra-device microphone
classi�cation, while the second order derivative FMFCCs clearly outperformed
every other class of features: within the top 30 features, Mel-cepstrum domain
based ones occupy 23 ranks.

In order to correctly evaluate the performance of the statistical pattern recog-
nition based microphone classi�cation for the detection of audio signal compo-
sition, four di�erent cases were inspected:

1. Microphone recordings of one known12 microphone made in di�erent lo-
cations composed into one stream

2. One known microphone pasted into a stream of a completely di�erent
known microphone

3. One unknown microphone pasted into a stream of a completely di�erent
known microphone

4. One unknown microphone pasted into a stream of a completely di�erent
unknown microphone

Classi�ers involved in these tests were Naive Bayes, SMO, RandomCommittee
and RandomForest. In cases 1,2 and 3 RandomCommittee and RandomForest
achieved outstanding results, while Naive Bayes classi�er's performances were
really poor, and SMO's ones were signi�cant, but surely less than optimal: in
case 3, that is the most likely in recording authentication, accuracy reported
was 51% for Naive Bayes, 84% for SMO, 96% for RandomForest and 97% for
RandomCommittee. Results for test 4 showed, as expected, that supervised
classi�ers are unsuited for unknown sources.

Unfortunately also in this work the small size of the test set implies that a
generalization based on this results is not possible. However, this paper high-
lights that intra-device classi�cation is possible, and both the great relevance of

11a detailed listing of the classi�er ranking is present on http://omen.cs.uni-
magdeburg.de/itiamsl/mitarbeiter/christiankraetzer/ publications.html

12i.e. used during the training of the classi�er

22 State of the Art

microphone classi�cation in audio forgery detection and the great need of un-
supervised microphone classi�cation techniques, since supervised ones are poor
in audio �les containing only unknown sources. To have put so much emphasis
on the importance of Mel-cepstrum domain based features will surely be useful
in the near future, since they could be a starting point for further researches.

3.1.3 Fourier Coe�cients Based Approach

In 2009 Buchholz et al. investigated whether is possible to identify the micro-
phone model used in making a certain audio recording by using only Fourier co-
e�cients [8]. Since this work was focused on microphone model classi�cation as
opposed to microphone identi�cation, only inter-device analysis was performed,
with several supervised classi�ers.

3.1.3.1 Concept

The purpose of this paper was to investigate about the following questions:

1. Is it possible to determine a microphone model relying only on Fourier
coe�cient characteristics of a recording made using that microphone?

2. Which classi�er is the most accurate one for this peculiar classi�cation
setup?

Fourier coe�cients are usually characteristic for the sounds recorded, and not
for the device recording it: in order to achieve a suitable description of the
microphone involved Fourier coe�cients have to be computed only in near-
silence segments of the audio �les, since it's likely for them to contain mostly
noise.

Other parameters taken in account were both the size of FFT windows and
the amplitude value for near-silence threshold: by increasing the size of FFT the
frequency resolution is higher and the model is more detailed, but the number
of selected windows is lower; by increasing the amplitude value for the threshold
the number of selected windows is higher, but portions of audible audio signal
are selected together with noise.

3.1.3.2 Feature Extraction and Experimental Results

Since the basic idea was to classify the microphone for each recorded �le by
relying only on the FFT coe�cients of the noise portion of the audio recordings,
the feature extraction is made by several steps:

1. Each audio �le f is divided into equally-spaced non-overlapping windows
Wf with size 2n samples13

2. Each windows is selected only if the maximum amplitude does not exceed
a variable14 near-silence threshold t and thus is assumed to contain no
content but background noise

13n ∈ {256, 2048}
14for n = 256 t ∈ {0.01, 0.025, 0.05, 0.1, 0.2, 0.225, 0.25, 0.5, 0.1}

for n = 2048 t ∈ {0.01, 0.025, 0.05, 0.1, 0.25, 0.35, 0.4, 0.5, 0.1}

State of the Art 23

3. Selected windows are transformed in the frequency domain using the FFT,
and the amplitude portion of the complex valued Fourier coe�cients is
computed

4. For each �le the amplitudes of the Fourier coe�cients are aggregated sum-
ming up the amplitudes representing the same harmonic in di�erent win-
dows, and the resulting feature vector is normalized

After the feature extraction each �le is characterized by a unique �xed-length
feature vector, regardless of its length.

For the actual classi�cation task the WEKA machine learning tool was used:
from it's broad range of classi�cation algorithms Naive Bayes, SMO, Simple
Logistic, J48 decision tree, IB1 and IBk15 were selected. The parameter k for
IBk was set equal to 2, and all classi�cation tests were performed with a 10-fold
strati�ed splitting strategy: the sample set was divided into ten subsets of equal
size, all containing about the same number of samples from each microphone
class, and each subset was used as the test set in turn, while the remaining nine
subsets were combined and used as the training set.

As well as in works by Kreatzer et al. [4] the genre of the recorded audio
�les is variable: there are music �les, speech data, noise, arti�cial sounds, silence
and instrumental records.

Seven di�erent microphones were classi�ed, and the classi�cation accuracy
changed depending both on thresholds and FFT lengths, as expected: for n =
2048 accuracy is higher, but less windows are selected, while for n = 256 overall
accuracy decreases, but more windows were selected. Best classi�cation results
are obtained with the Simple Logistic classi�er, with about 93.5% (n = 2048)
and 90.6% (n = 256).

Unfortunately these results are not totally reliable: the initial assumption
was to capture the intrinsic characteristics of each microphone using only the
Fourier coe�cients computed from the noise present in near-silent segments.
Despite this, in order not to reject too many windows, the threshold has to be
set not lower than 0.1 of the maximum amplitude: a value at which portions
of audible audio signal are de�nitely selected together with noise. Furthermore,
these results also contains windows for which a feature vector was not present,
that were classi�ed by guessing16.

There is clearly room for improvement: for instance, overlapping-windows
would increase the number of FFT windows selected, thus reducing the e�ect of
randomness on the frequency histogram and decreasing the number of samples
that are not within a selected window; if an original version of the signal could be
obtained, it should be feasible to subtract the original signal from the recording
one, thus achieving only the distortions and noise introduced by the microphone;
furthermore, other features could be used in order to better characterize near-
silence segments.

However, this work showed that it is indeed feasible to determine the micro-
phone model based on audio recording, also only by using a simple but really
fast feature extraction method such as the one proposed, even it the actual
implementation of the concept model appears unsuited.

15i.e. 1-nearest neighbor and k-nearest neighbor
16to the point that for very small thresholds the percentage of correctly classi�ed samples

actually exceeds the percentage of samples that can be classi�ed

24 State of the Art

3.1.4 Mel-Frequency Cepstrum Based Approach

In 2010 Garcia-Romero and Epsy-Wilson presented a study on the automatic
identi�cation of the acquisition device when only access to the output speech
recordings is possible [9]. They introduced a supervised inter-device micro-
phone classi�cation algorithm, relying on an only-means adapted Universal
Background Model - Gaussian Mixture Model (UBM-GMM) trained on an Mel-
Frequency Cepstral Coe�cients (MFCCs) characterization of the speech record-
ings, and on a Support Vector Machine (SVM) classi�er. Also Linear-Frequency
Cepstral Coe�cients (LFCCs) were tested, but since their average identi�cation
rate despite the higher dimensionality was identical to that of MFCCs, we will
focus on the second ones.

3.1.4.1 Device Characterization

In order to achieve a blind-passive mechanism for device characterization, since
the signals available not only contain information about the device but also
about the speech content variability, a probabilistic characterization that could
overcome speakers' characteristics was required.

The solution proposed was the adoption of an only-means adapted UBM-
GMM architecture with 2048 mixtures and diagonal covariance matrices: for
each recording a GMM was built, where the frequency content information
was represented by either 23 MFCCs or 38 LFCCs, and all the discriminant
information of the models was captured by the means of the GMM thanks to
a MAP adaptation process that only updates the means of the speaker's GMM
with respect to the UBM. After this process a Gaussian supervector (GSV) was
built by stacking the means of the mixture components, thus representing each
speech recording with a point in a high-dimensional vector space.

This procedure resulted in a �xed-length 17 template to represent variable-
length speech recordings: a desirable property, since in principle the intrinsic
�ngerprint of a device should be independent of the amount of data acquired.

3.1.4.2 Classi�er Training and Experimental Results

GSVs computed from each �le were used in order to train a SVM classi�er: a
two-fold cross-validation setup resulted in an average of 280 positive GSV ex-
emplars and 7 times as much negative GSV exemplars to train the SVM models
for each partition, starting from the ICSI subset of the NIST 2006 Speaker
Recognition Evaluation Database.

Classi�er performance in microphone classi�cation were outstanding: the
average accuracy across microphones is 99.0%, with no apparent confusion pat-
terns observable. A similar test was performed also for landlines telephone
handset, obtaining an average accuracy of 93.2%, and with most of the errors
remaining within the same transducer class.

Results achieved in this work show a great improvement compared to those
reported by Kraetzer et al., and are more general since the number of record-
ings and microphone involved is much bigger. However, this GSV-SVM system
should be tested also for intra-device microphone classi�cation, in order to eval-

17GSV dimension is equal to the number of mixtures times the number of MFCCs

State of the Art 25

uate possible degradations of the performances due to the strict correlation
between microphones of the same model and manufacturer.

3.2 Environment Classi�cation Techniques

In this section we will discuss di�erent environment classi�cation techniques: as
in Section 3.1, in order to assess advantages and disadvantages of each of them
the general outline is provided, as well as test setup and experimental results.

The classi�cation techniques that we are going to introduce in this section
rely mainly on the environment stage of the context model previously pro-
posed18.

3.2.1 Statistical Pattern Recognition Based Approach

We will now report the actual results concerning environment identi�cation of
the approach proposed by Kraetzer et al. [1] in 2007, whose general outline and
test setup has been already provided in Subsection 3.1.2.2 of Section 3.1.

In particular, we are going to discuss their answer to the following:

Is it possible to correctly classify the location where the recording
was made?

Since a set of 10 rooms was considered, a random correct classi�cation of the
rooms would occur with a likelihood of 10%. Average results for the Naive Bayes
classi�er are in the range of [23.97%,41.54%] depending on the microphone, while
those obtained by K-means clustering are in the range of [10.99%, 26.49%], when
100 feature vectors per �le were used; the accuracy dropped when increasing
the number of feature vectors per �le.

The results for the clustering algorithm are lower than the results for the
Naive Bayes classi�er: while the best classi�cation accuracy of 26.49% could
still be considered signi�cant, the lowest result of 10.99% is close to just �guess-
ing� the room. More precise information is need about results of Naive Bayes
classi�er: the confusion matrix reported by the authors highlights that in seven
cases out of ten the highest classi�cation result is achieved for the room the
recording was made in; only three rooms out of ten were �totally� misclassi�ed.

It's not surprising that within this paper the environment identi�cation was
less accurate than the microphone identi�cation, since the �ltering e�ect of a
microphone is probably much stronger and more unique than the �ltering e�ect
of a room environment. However, these results are positive, since the feature
vectors were the same both in microphone classi�cation and in environment
classi�cation despite the di�erent stages in the recording pipeline.

3.2.2 Audio Reverberation Time Based Approach

In 2010 Malik and Farid proposed a technique to model and estimate the amount
of reverberation in an audio recording [5]: since reverberation depends on the
shape and composition of a room, di�erences in the estimated reverberation
time can be used in an environment classi�cation setting.

18see Subsection 3.0.2 of Section 3.0

26 State of the Art

3.2.2.1 Mathematical Model

Within this work, the decay of an audio signal x(t) is modeled with a multi-
plicative decay and additive noise:

y(t) = d(t) · x(t) + n(t),

where
d(t) = exp(−t/τ).

The decay parameter τ embodies the extent of the reverberation, and can be
estimated using a maximum likelihood estimator. This can be done assuming
that the signal x(t) is a sequence of N independently and identically-distributed
(iid) zero mean and normally distributed random variables, and that this signal
is uncorrelated to the noise n(t), which is also a sequence of N iid zero mean and
normally distributed random variables with variance σn. with this assumption
y(t) - the observed signal19 - is a random variable with its probability density
function Py(t)(·) and likelihood function L(·).

The decay parameter τ is estimated by maximizing the log-likelihood func-
tion L(·), by setting its partial derivatives equal to zero and solving for the
desired τ :

∂L
∂σ

= −N
σ

+
1

σ3

N−1∑
k=0

y2(k)

γ2(k)
(3.6)

∂L
∂τ̃

= −
N−1∑
k=0

kτ̃2k−1

γ2(k)

(
y2(k)

γ2(k)
− 1

)
(3.7)

where
γ(t) =

√
exp(2t/τ) + σ2

n)

τ̃ = exp(−1/τ)

Although equation 3.6 can be solved analytically, τ̃ in equation 3.7 cannot:
an iterative non-linear minimization is required, consisting in two primary steps.
In the �rst step σ is estimated by setting equation 3.6 equal to zero and solving
for σ, and in the second one τ̃ is estimated by maximizing the log-likelihood
function L(·) using a standard gradient descent. A previous estimate of σn is
required, and it's achieved from the noise �oor following the signal.

3.2.2.2 Experimental Results

The mathematical method was tested in three di�erent experiments:

1. Digital generated audio data, built according to the iid zero mean and
normally distributed assumption

2. Audio recordings with digital reverberation simulated with an image-
source model

3. Human speech recorded in four di�erent environments20

19y(t) = F−1 (S1(f) ∗ Fecho(f)), see equation 3.2
20i.e. outdoors, in a small o�ce, in a large o�ce, and in a stairwell

State of the Art 27

Since we are interested both in environment classi�cation and in audio forensic
let's focus on the third experiment, in which the same speaker read the same
text in all the recordings: the audio was recorded using a commercial-grade
microphone, and each recording was previously pre-processed with a speech
enhancement �lter, because of the considerable background noise. Then, the
reverberation time was estimated from fourteen positions in each of the recorded
audio segments, manually selecting them considering that the speech in those
positions decayed to the noise �oor. The mean and standard deviation estimates
for the reverberation time τ were meaningful, and were con�rmed by a one-way
analysis of variance.

Despite the individual estimates of the reverberation decay time can't fully
characterize a speaker's environment, an abrupt variation between them could
be a strong clue while trying to detect a forgery: the contribution of this re-
search has been relevant, and provided a simple - yet powerful - model to detect
a feature produced by the environment stage of the recording pipeline, that until
now was not included explicitly in the statistical pattern recognition based ap-
proach previously proposed. However, this techniques has some disadvantages:
for instance, the manual selection of the positions suitable for the reverberation
time estimation, the negative in�uence of a noisy environment, and the number
of frames suitable for the estimation, that could be too low.

3.2.3 Blind De-Reverberation Based Approach

In 2012 Malik and Zhao proposed a supervised environment classi�cation algo-
rithm relying on blind de-reverberation [6]: the feature extraction is made not
on the microphone signal, but on the estimate of the reverberant signal, that is
fully characterized from the geometric properties of the environment.

3.2.3.1 General Outline

As we saw in the context model previously proposed, during the environment
stage the acoustic environment leaves its �ngerprint in the �nal recording, due
to the shape and the composition of the room. A common way to express the
combined e�ect of direct signal, re�ected signals and background noise is the
following21:

x̃(t) = s(t) + hRIR(t) ∗ s(t) + η(t)

where s(t) denotes the direct signal, hRIR(t) denotes the room impulse response,
and η(t) denotes the background noise.

The proposed system estimates the reverberation signal

r(t) = hRIR(t) ∗ hMic(t) ∗ s(t)

from the �nal audio recording22 y(t), assuming �at microphone response and
negligible distortions in order to get rid or microphone impulse response, micro-
phone distortion and transcoding distortion:

y(t) = s(t) + r(t) = s(t) + hRIR(t) ∗ s(t)
21x̃(t) = F−1 (S2(f)), see equation 3.2
22hence the presence of the microphone impulse response hMic(t)

28 State of the Art

The process of separating r(t) from y(t) is called de-reverberation: usually
hRIR(t) can be modeled by a �nite impulse response (FIR) �lter, provided
that the �lter is of su�cient length. However, under blind de-reverberation it
is not possible to measure or derive FIR �lter response directly: to overcome
this limitation a perceptually relevant estimate of the FIR �lter clock is used,
in order to estimate both the dry signal s̃(t) and the reverberant signal r̃(t).

The estimated reverberant signal is then used for feature extraction: the
proposed scheme used Mel-Frequency Cepstral Coe�cients (MFCCs) and Log-
arithmic Mel-Spectral Coe�cients (LMSCs) in order to build a 48-dimensional
feature space able to characterize the acoustic reverberation.

3.2.3.2 Classi�er Training and Experimental Results

Performance of the proposed scheme has been tested using a data set con-
taining 284 speech recording in nine di�erent environments, made with four
di�erent microphones23: the input signal has been pre-emphasized before the
de-reverberation. Then for each audio-frame of the estimated reverberant signal
a 48-dimension feature vector is extracted and used for training and testing of
a SVM classi�er: 50% of recordings from each category were randomly selected
for the training phase, and the rest 50% were used to verify the performance of
the proposed scheme.

In the �rst experiment microphone dependent performance was tested: the
SVM classi�er was trained and tested using feature vectors extracted from the
recording captured using the same microphone type. The average classi�cation
accuracy were between 92% and 94%, so the accuracy is actually independent
from the microphone type.

In the second experiment microphone independent blind performance was
tested: the SVM classi�er was trained using feature vectors coming with a
microphone, then tested with recordings coming from a completely di�erent
microphone, obtaining only a negligible (<1%) performance loss.

In the third experiment a blind environment classi�cation was tested: the
SVM classi�er was trained on a data set containing registration made in a small
o�ce, in a restroom, in an hallway and outdoors, and then tested on a data set
containing the same acoustic environments, but not recorded in the same places
of the training data set. Apart form large misclassi�cation of the hallway to
the restroom, both complex and concrete structures, all the other environments
were correctly labeled.

In the fourth and last experiment the performance gain due to the de-
reverberation were investigated: the SVM was trained and tested using feature
vectors extracted from the unprocessed speech recordings: the average classi�-
cation accuracies for with (and without) de-reverberation based identi�cation
systems were 94% (84%), 92% (86%), 93% (86%), 92% (86%).

This approach highlights the importance of the environment stage in the
recording process, and the need to exploit it in actual environment classi�ca-
tion. The system has yet to be tested with non-speech signal and with more
microphone models in order to generalize these results; an unsupervised classi-
�er should be tested in order to assess if this algorithm works with unknown
acoustic environments.

23i.e. M1&M2 were Behringer ECM8000, while M3&M4 were left and right built-in Mic
of ZOOM R16 Recorder

State of the Art 29

3.3 Editing/Tampering Detection

In this section �rst we will provide a brief overview of some audio forgery de-
tection techniques, then we are going to introduce possible hybrid approaches
concerning audio forensic that exploit both microphone and environment clas-
si�cation for editing/tampering detection.

3.3.1 Electrical Network Frequency

When an electronic equipment is used to record audio data, usually it captures
not only the sound, but also the implicit electric characteristics of the device; if
the recording device is AC-powered, it's not uncommon for it to record also the
Electrical Network Frequency (ENF) due to the coupling of the powered circuit
and the capturing circuit.

ENF is the distributed electricity generated by the power plants: power
plants generates electricity, and the transmission of electricity from these power
plants to the end-users is typically organized as a number of grids, in which
power cables are directly connected. Since electricity is generated by mechani-
cal devices the variations in source, pressure and the rotation speed of the coils
a�ect the generated frequency and current: each power plant generates electric-
ity with a designated utility frequency, and in order to provide almost-constant
electric frequency to the users each power plant has to monitor and regulate the
generated frequency. The inevitable adaptation delay induces a time-varying,
slowly and slightly deviation around the speci�ed utility frequency, that is dis-
tributed to the electrical grid. This variation makes the ENF suitable for audio
forensics:

� The ENF is distributed only on the connected grids: this property can be
used to localize the location of a recording device

� The ENF is time-varying. This property can be used to localize the time
duration of the recorded audio clip

� The ENF is generated by the power plants: they can be trusted sources
to provide ENF histories, and this makes matching the ENF in a given
audio clip meaningful

� Even without the trusted ENF history for matching, the phase continuity
of the ENF in the given audio clip can be used to detect whether the clip
has been manipulated

According to the above characteristics, the typical usage is to match the ex-
tracted ENF components with the trusted ENF components: it they are not
matched, either the time/location is wrong or the audio clip is tampered. Some-
times ENF cannot be matched because the ENF history for the speci�c power
grid is missing; when this happens tampering can be detected with a certain
probability with further analysis.

As shown by Nicolalde and Apolinario [10], a possible forgery detection
approach could be to exploit the phase properties of the ENF in order to detect
tampering or editing. When a tampering is made it is very unlikely that a
person in the urge of forging an evidence - even with technical background -
would be able not to introduce a slight discontinuity in the ENF.

30 State of the Art

This is especially true because even a well-trained ear would fail to recognize
these slight variation, so without prior expertise in this subject, it's likely to
ignore this very speci�c detail. The weakness of ENF based approaches is that
ENF is not present in every recording, for instance in ones made by portable
devices or electret microphones: in other cases where is not possible to extract
the ENF even if it's present in the recording, because it's masked by other
components of the audio stream .

3.3.2 Local Noise Level Estimation

In 2012 Pan et al. proposed an e�ective forgery detection method that detects
splicing thanks to the estimation of local noise level [11].

This method relies on the audio kurtosis, which represents the peakedness
of the distribution of the signal sampling values. Except for a few outliers, most
of the kurtosis values in authentic audio �les fall into a narrow range around
the mean value: thanks to this property, a better estimate of signal noise level
can be achieved.

In order to detect splicing, both a global noise level estimation and a local
noise level estimation are needed: in splicing regions the local noise level gets
higher, hence revealing a possible tampering.

This method has been tested both in a synthetic audio splicing forgery and
in a realistic one. In the �rst test the signal spliced into the original �le was
an Average withe Gaussian Noise (AWGN): the true SNR values were 10 dB,
15 dB, 20 dB and 30 dB; the estimated means (and standard deviations) were
10.04 (0.13) dB, 15.01 (0.24) dB, 20.00 (0.41) dB and 30.73 (3.53) dB.

In the second test some words were substituted from an audio �le into an-
other one, and during the manipulation process the tampering section was care-
fully chosen so that the resulting sentence were still meaningful. Furthermore
both volume and speed of the splicing audio components were tuned, in order
to make the forged audio signal realistic: the detection results demonstrate that
the individual splicing segments in the forged audio signal exhibit signi�cant
noise level di�erences, thus providing strong evidence of tampering.

Even if this method has to be further deployed in order to be totally reliable,
this fast and blind local noise level estimation algorithm can be really useful in
forgery detection, and has the advantage of not to require speci�c knowledge of
the recording device or the �le format.

3.3.3 Blind Channel Identi�cation

In 2009 Gaubitch et al. proposed an algorithm that can identify accurately the
magnitude spectrum of an unknown channel in noise-free conditions [12]. Even
if this work was not devoted to forgery detection or audio authentication, it still
provide a method that could be tested both in microphone and environment
classi�cation.

The objective of blind channel identi�cation is to estimate the magnitude re-
sponse of an unknown channel starting only from the recorded �le. The method
proposed relies on the Long Term Average Speech Spectrum (LTASS), so in a
forensic contest it could be useful to validate court evidence. Within this work
LTASS has been found by measurement from the complete training set of the

State of the Art 31

TIMIT database, and the average between male and female LTASS has been
used, instead of the approximate formula de�ned in the ITU-T recommendation.

First experiments has been made on digitally generated channels, both in
noise-free condition and with di�erent kinds of noise24. Unfortunately, the esti-
mation accuracy was reduced, and the degradation varied largely depending on
the long term spectral characteristics of the noise.

Last experiments, instead, were made with real measured channels: the
�rst one was a microphone in noise-free conditions, whose frequency response
was estimated obtaining a 3.87 dB spectral distance; the second one was a
noisy telephone network from NTIMIT, and the spectral distance between the
estimated frequency response and the real one was 36.13 dB. In the second test
it's interesting to see how the large estimation error can be attributed to the
high frequency portion (≥ 4 kHz), that usually is buried in noise on telephone
networks.

In 2011, after two years, Gaubitch et al. proposed a second algorithm de-
voted to blind channel identi�cation [13], somehow similar to the previous one,
but based on a Gaussian Mixture Model (GMM) instead that on the LTASS.
This approach requires less data in order to work, and at the same time pro-
vides a better estimate of the channel: the variation in estimation accuracy for
di�erent utterances is greatly reduced, and also the overall accuracy is improved
by about 2 dB. Moreover, the GMM-based algorithm is more robust to noise
compared to the LTASS-based one, especially for what concerns withe Gaussian
Noise (WGN).

Blind channel identi�cation algorithms such as the ones proposed by Gaubitch
et al. [12, 13] could be e�ectively applied both on microphone classi�cation and
environment classi�cation: the channel involved could be either the microphone
coloring e�ect or the environment reverberant property, and the actual estimate
could be adapted to be a feature vector.

3.3.4 Future Works

Future works in audio forgery detection should try to use di�erent layers in
order to perform a reliable tampering/editing detection: right now ENF based
techniques and local noise level estimation based technique are able to perform
splicing detection, but can only highlight possible suspect regions by the means
of their borders.

A strong contribution could come from unsupervised microphone/device and
environment classi�cation systems: they could be used to validate a local splic-
ing detection by checking the neighbor of the detected boundary for inconsisten-
cies about the microphone or the environment. Equally, if microphone/device
and environment classi�cation is used as the main core of tampering detection,
ENF based techniques and local noise level estimation based techniques could
be used locally in order to re�ne the boundary within the region belonging to a
source and the other one.

As we saw, apart from the �rst attempt by Kreatzer et al. [1], there's
never been a study focusing on both microphone/device classi�cation and en-
vironment classi�cation, despite their correlation. A possible �rst step in this
direction could be to evaluate how de-reverberation a�ects microphone classi�ca-

24i.e. babble noise, car noise and withe Gaussian Noise (WGN)

32 State of the Art

tion: it's true that the coloring e�ect of the microphone is usually stronger than
the environment contribution, but it's possible that a previous de-reverberation
could enhance the microphone classi�cation accuracy, as well as provide useful
information about the environment.

Chapter 4

Proposed Method

In the following chapter we will provide a complete description of our proposal
for a new microphone classi�cation algorithm.

For the sake of clarity, we will keep the logical design as much unrelated as
possible from the implementation choices, which are not due to the algorithm
itself: Section 4.1 is about the logical design, and is meant to be a reference for
Section 4.2, which concerns our Octave implementation.

4.1 Logical Design

The classi�cation framework is composed of several phases, each one related to
the other one: in order to fully understand the relationship between them a
general outline is provided, followed by in-depth details about each single phase
previously stated.

4.1.0 Outline

Our strategy strongly relies on the last, recent work by Gupta et al. [13]:
their research provides an algorithm for the blind estimation of the magnitude
response of a channel, using the observations from a single microphone. Their
proposal is meant to give a meaningful estimate of the channel present during
the recording: in our work the channel is the microphone frequency response
itself.

Our e�orts were devoted to e�ectively exploit this estimates in order to
achieve the desired microphone classi�cation: we had to �nd a robust way to
successfully classify di�erent recording devices, relying only on the estimates
provided by the channel estimation algorithm.

Even if until now clustering algorithms showed almost no e�ectiveness in the
�eld of microphone classi�cation, at �rst we focused on the k-means algorithm:
this choice led us to create a feature vector which could successfully discriminate
between pairs of devices with an high accuracy; a feature vector which was the
starting point for the one used in the �nal classi�cation algorithm.

33

34 Chapter 4. Proposed Method

The whole process can be split into several phases, that we will now describe
brie�y:

1. Training of a Gaussian Mixture Model of the Clean Speech:
in order to successfully obtain a meaningful channel estimate, we need to
train a GMM. This GMM provides a general model for the clean speech
signal1, starting from noiseless recordings of sentences produced by female
and male speakers.

2. Blind Estimation of the Magnitude Response of the Acquisition Device:
once the GMM has been obtained, we exploits its parameters in order to
re-build the possible clean speech which originated the recording under
examination; then, we achieve an estimate of the magnitude response by
subtracting the power spectrum of this possible clean speech from the
power spectrum of the actual recording.

3. Feature Vector Computation:
once obtained all the channel estimates of the recordings in the testing
set we have to compute a meaningful feature vector for each recording.
The feature vector must be able to deal both with the noise from the
environment and with the noise due to the content variability a�ecting
the channel estimates; moreover, it must provide valuable information,
even for compressed audio �les.

4. Clustering or Classi�cation:

(a) Clustering: once the feature vectors are built, we are able to partition
the test set into clusters: we associate each cluster to a single record-
ing device, and it's �nally possible to discriminate between them.
In this context the range of each feature could be highly related to
the �nal result, e.g when the mean squared distance is used with no
normalization of each feature component: the larger the range of a
single feature, the bigger its in�uence on the �nal distance and on
the outcome of the clustering procedure.

(b) Classi�cation: as for the clustering, it's strictly related to the feature
vector computation phase. In our framework the classi�cation is also
based on a closed-set assumption.

Our method proved to be e�ective both for the clustering and for the classi�ca-
tion, and works on real recordings where also environmental noise and music are
sometimes present, despite the assumption from [13] of a noiseless speech-only
content. Moreover, it's been tested also with encoded2 audio �les, and proved
to be su�ciently robust even against lossy processing.

Further in-depth details about each single phase of the outline are provided
in the following sections.

1i.e. an ideal speech signal which has not undergone any spectral modi�cation
2i.e. AMR, MP3, AAC

Chapter 4. Proposed Method 35

4.1.1 Training of GMMs for Clean Speech

Our training set is made of several sentences produced by two male and two
female speakers. The sentences were acquired by an hi-quality microphone in a
noiseless environment, and were originally sampled at 48 kHz.

Afterward, the recordings were down-sampled to 8 kHz; as we will see in
Section 4.1.2, this sampling frequency is really important for us, since all the
test recordings will be also down-sampled to 8 kHz.

In order to train the GMM, we tried to follow as much as possible the algo-
rithm proposed by Gupta et al. [13]. The modi�ed algorithm is the following:

1. HTK-MFCCs Computing:
the �rst step is the computation of the Hidden Markov Model Toolkit
(HTK) Mel-Frequency Cepstral Coe�cients (MFCCs) [15, 16] instead of
the classic MFCCs3. Let s(n) denote one our training recording:

(a) Pre-emphasis �ltering of the speech content: s̃(n) = s(n)−α·s(n−1),
where α denotes the pre-emphasis coe�cients. We put α = 0, since
in [13] no mention were made about pre-emphasis4.

(b) Windowing: sl(n) = windowing (s̃(n), 32ms, 50%, hanning). The
speech content is split in frames sl(n) of length 32ms, with an over-
lap of 50%, using an hanning window5.

Figure 4.1: HTK-MFCCs: Windowing

3this operation allows the computation of smoother channel estimates, as noticed during
the development and reported in appendix B.2.

4moreover, RASTA �ltering integrates the speech pre-emphasis by itself [17]
5hanning(n) = 0.5 ·

(
1− cos

(
2πn
N−1

))
, where N denotes the window length

36 Chapter 4. Proposed Method

(c) Magnitude spectrum computation: MAGl(k) = |Sl(k)| = |F (sl(n))|,
where F (·) denotes the Fourier transform.

Figure 4.2: HTK-MFCCs: Magnitude Spectrum Computation

(d) Triangular �lter bank application to the �rst half of the magni-

tude spectrum: FBEl = htriang ·MAGl

(
k ∈

[
1 ;

Nfft

2 + 1
])
, where

htriang denotes a triangular �lter bank with uniformly spaced �lters
on Mel scale, and Nfft the number of points in the Fourier transform.

Figure 4.3: HTK-MFCCs: Filter Bank

(e) Conversion of the logarithm of the �lter bank output into 13 MFCCs:
MFCCl = dct−1 (log(FBEl)).

Figure 4.4: HTK-MFCCs: MFCCs computation

Chapter 4. Proposed Method 37

(f) HTK cepstral liftering of MFCCs with cepstral liftering parameter
L = 22: HTK-MFCCl(k) = MFCCl(k) ·

(
1 + 1

2L · sin
(
(k − 1) πL

))

Figure 4.5: HTK-MFCCs: HTK cepstral liftering

2. RASTA �ltering of the HTK-MFCCs:
the time series of the k-th HTK-MFCCs is RASTA �ltered in the frequency
domain itself, i.e.

RASTA-HTK-MFCC(k) = HTK-MFCC(k) ∗RASTAfilter

where ∗ denotes the convolution operation and

HTK-MFCC(k) =
[
HTK-MFCC1(k), . . . , HTK-MFCCNframes

(k)
]
.

RASTAfilter is the �lter de�ned in the z-domain by the following transfer
function:

HRASTAfilter (z) = 0.1 · 2 + z−1 − z−3 − 2z−4

1− 0.94z−1
.

3. Training of a 1024-mixture Gaussian Mixture Model:
the GMM is trained using as feature vectors all the RASTA-HTK-MFCCs
computed excluding the coe�cients corresponding to k = 0.
Let us denote with rastaS,l the RASTA-HTK-MFFCs of the l-th frame of
the training �le S; with the training we obtain

(a) the GMM parameters, i.e. the priors πi, the means µi and the diag-
onal covariances Σi of each mixture.

(b) the relative mixture probability6 of all the frames of each training
�le, de�ned as

p (zi = 1|rastaS,l) =
πi·N (rastaS,l|µi,Σi)∑M

m=1 πm·N (rastaS,l|µm,Σm)

where zi = 1 denotes that the i-th mixture is generating the current
frame.
The relative probabilities of the LS frames available from the whole
training set7 are used to build the matrix PS ∈ RM×LS , where M =
1024 denotes the number of mixtures.

6i.e.the probability that the feature vector rastaS,l belongs to the i-th mixture
7LS 6= Nframes , since Nframes refers to a single audio �le.

38 Chapter 4. Proposed Method

4. Computation of a normalized log power spectrum of each frame:
we normalize the log power spectrum of each training recording by sub-
tracting its mean:

ZS,l = log (|Sl|)−
1

Nfft

Nfft∑
k=1

log (|Sl(k)|) , ∀l

and compress all the normalized log power spectra in the matrix ZS , where
ZS ∈ RLS×Nfft .

5. Computation of the average log spectrum of the speech:
�nally, we combine both the relative mixture probabilities and the nor-
malized log power spectra into a weighted average:

ẐS = PS · ZS .

In the average log spectrum of the speech matrix ẐS ∈ RM×Nfft the i-th
row represents the average log-spectrum corresponding to the i-th mixture
of the GMM.

The average log spectrum of the speech ẐS that we obtained starting from the
speech corpus previously described is shown in Figure 4.6.

The choice of the speech corpus used in order to train the GMM is highly
relevant: e.g., in Figure 4.7 is shown the average log spectrum of the speech that
we can obtain starting from the clean subset of the NOIZEUS speech corpus [14],
a speech corpus that contains 30 IEEE sentences produced by three male and
three female speakers. The thirty sentences are selected from the IEEE database
so as to include all phonemes in the American English language; moreover, the
sentences were originally sampled at 25 kHz and then down-sampled to 8 kHz.
Finally, a pass-band �ltering was performed, in order to simulate the common
channel response present in everyday telephone lines.

Chapter 4. Proposed Method 39

Figure 4.6: ẐS computed from our Self-Produced Speech Corpus

Figure 4.7: ẐS computed from the NOIZEUS Speech Corpus

40 Chapter 4. Proposed Method

The average log spectrum of the speech ẐS is a reference of an ideal speech
signal which has not undergone any spectral modi�cation: the RASTA �ltering
makes the HTK-MFCC independent from the channel8, and allows us to build a
GMM that represents every possible phoneme that could be present in a speech
recording. In Figure 4.6 and 4.7 each row9 represents the spectrum of a speci�c
phoneme, while each column represents a speci�c frequency bin.

4.1.2 Blind Estimation of the Channel Response

The channel estimation of the magnitude of the channel response relies both on
the parameters (πi, µi,Σi) of the Gaussian Mixture Model previously trained,
and on the average log spectrum of the speech ẐS . In order to estimate the mag-
nitude response of the channel present, we have to process the testing recording
x(n) as follows:

1. (optional) Re-sampling of the test recording down to Fs=8000: in order
to be able to compare our model of the ideal speech with a recording, �rst
we have to down-sample the recording - if needed, of course - to the same
sampling frequency of the audio recordings present in the training set, i.e
8000 Hz. The resampled version of x(n) is x̃(n)

2. Windowing: xl(n) = windowing (x̃(n), 32ms, 50%, hanning). The record-
ing is split in frames sl(n) of length 32ms, with an overlap of 50%, using
an hanning window, as in the training phase.

3. RASTA-HTK-MFCCs Computing: following the same steps shown in Sec-
tion 4.1.1, in order to obtain the correct feature vector rastaX,l of each
frame we have to

(a) Compute the 13 HTK-MFCCs.

(b) RASTA �lter the time series of each HTK-MFCC.

(c) Drop the 0-th RASTA-HTK-MFCCs

4. Computation of a normalized log power spectrum of each frame: as before,
we normalize the log power spectrum of the recording by subtracting its
mean

ZX,l = log (|Xl|)−
1

Nfft

Nfft∑
k=1

log (|Xl(k)|) , ∀l

and compress all the normalized log power spectra in the matrix ZX ∈
RLx×Nfft . Xl = F (xl), where F (·) denotes the Fourier transform of
length Nfft.

5. Computation of the relative mixture probability of each frame: using the
parameters (πi, µi,Σi) of the Gaussian Mixture Model previously trained,
we compute the probability that the feature vector rastaX,l belongs to the
i-th mixture with

p (zi = 1|rastaX,l) =
πi·N (rastaX,l|µi,Σi)∑M

m=1 πm·N (rastaX,l|µm,Σm)

8e.g. the speaker's gender and peculiar timbre, the microphone involved, the environment
reverberation

9i.e. each GMM mixture

Chapter 4. Proposed Method 41

and compress this information into the matrix PX ∈ RM×LX , where LX
denotes the number of frames of the initial recording x(n).

6. Estimate of the real power spectrum of the recording: using the relative
mixture probability matrix PX as a selection matrix on the average log
spectrum of the speech ẐS , we are able to estimate the non-�ltered ideal
speech source of the test recordings

Z̃X = P tX · ẐS

where the superscript t denotes the matrix transpose.

7. Computation of the Channel Estimate: we can retrieve our desired es-
timate by subtracting the real normalized log power spectrum from the
estimate of its real source. In order to to that, we have to

(a) Normalize between 0 and 1 both Z̃X and ZX , applying
Z̃X,norm = norm

[0,1]
(Z̃X)

ZX,norm = norm
[0,1]

(ZX)
, norm

[0,1]
(·) =

(·)−min(·)
max(·)−min(·)

(4.1)

(b) Compute the estimate ĥ of the magnitude response of the original
channel h, by applying

ĥ =

(
ZX,norm − Z̃X,norm

)t
· 1

LX
(4.2)

where 1 is a LX × 1 vector with all elements equal to one.

A possible estimate of the magnitude response of the channel is shown in Figure
4.8:

Figure 4.8: Single Channel Estimate from a Dell Latitude D630

42 Chapter 4. Proposed Method

Of course, the algorithm for the blind channel estimation is still a�ected by
the content: as reported in [12, 13] this happens because the speakers involved
in the recordings of the GMM are di�erent from those involved in the test
recording, and when the recordings are a�ected by some noise; moreover, as we
will see in Chapter 5, the content of our test recordings is intentionally far from
being the ideal one, thus enhancing the di�erences between channel estimates
from di�erent recordings of the same device.

In Figure 4.9 and 4.10 we can see how, despite such a noise in the channel
estimates, several amplitude responses from a single device present a unique
pattern regardless of the content, and how the general shape - i.e. the peculiar
coloring e�ect of a single device - changes for di�erent device:

Figure 4.9: Multiple Channel Estimates from a Dell Latitude D630

Figure 4.10: Multiple Channel Estimates from an iPhone 3gs

Chapter 4. Proposed Method 43

4.1.3 Feature Vector Computation

Since we want to be able to di�erentiate between di�erent devices, we have to
compute a meaningful feature vector for each recording, starting from the in-
formation available. The description below concerns the feature vector involved
during the following SVM classi�cation: for a similar description concerning
the feature vector developed through the clustering attempts please refer to the
appendix B.

In order to achieve a robust classi�cation algorithm, for each audio �le x we
compute three multidimensional features, denoted in the following as f1, f2 and
f3.

These three features, despite being similar to each other, have di�erent mean-
ings: in f1 we keep all the information obtained by the channel estimation al-
gorithm; f2 is meant to be a descriptor of the correlation between the channel
estimate and the original spectrum of the audio �le; �nally, f3 de�nes the prop-
erties of the approximated spectrum of the audio �le x.

Let ZX,norm be the normalized power of x de�ned in equation 4.1, ĥ the
channel estimate of x de�ned in 4.2, K the number of frequency bins on the
positive axis and

p̂ =
(ZX,norm)

t · 1
LX

,

where 1 is a LX × 1 vector with all elements equal to one. f1 is processed
in order to fully enhance the information obtained by the channel estimation
algorithm, as follows:

1. Apply a variable gain on the sum between the channel estimate of x and
the average value of the approximated normalized power of x, dependent
on the power of ĥ:

h1 =
ĥ+ (p̂)∥∥∥ĥ∥∥∥2 ,

where (p̂) denotes the average value of p̂, and ‖·‖denotes the l2-norm.

2. Compute the �rst derivative h
′

1 of h1, as the inter-sample di�erence of h1:

h
′

1(k) = h1(k)− h1(k − 1) , ∀k ∈ [2,K] .

3. Compute the second derivative h
′′

1 of h1, as the inter-sample di�erence of
h
′

1:

h
′′

1 (k) = h
′

1(k)− h
′

1(k − 1) , ∀k ∈ [3,K] .

4. Build the feature f1 by collecting the processed data:

f1 =
[
h1 , h

′

1 , h
′′

1

]
.

44 Chapter 4. Proposed Method

In order to compute f2 we follow a slightly di�erent procedure, that is meant
to fully enhance the description of the correlation between the channel estimate
and the original spectrum of the audio �le:

1. Compute h0, as the entry-wise division10 between the channel estimate of
x and the approximated normalized power of x:

h0 = ĥ ./p̂. (4.3)

2. Apply a variable gain on h0, dependent on its power:

h2 =
h0

‖h0‖2
.

3. Compute the �rst derivative h
′

2 of h2, as the inter-sample di�erence of h2:

h
′

2(k) = h2(k)− h2(k − 1) , ∀k ∈ [2,K] .

4. Compute the second derivative h
′′

2 of h2, as the inter-sample di�erence of
h
′

2:
h
′′

2 (k) = h
′

2(k)− h
′

2(k − 1) , ∀k ∈ [3,K] .

5. Apply a variable gain on h
′

2 and h
′′

2 , dependent on the power of each
vector:

h̃
′
2 =

h
′
2

‖h′2‖2

h̃
′′
2 =

h
′′
2

‖h′′2 ‖2

.

6. Build the feature f2 just by collecting the processed data:

f2 =
[
h2 , h̃

′
2 , h̃

′′
2

]
.

f3 de�nes the properties of the approximated spectrum of the audio �le x.
Other than to ehnhace its descriptive power, the processing of f3is also meant to
eliminate as much as possible redundant information between f1 and f3, and to
reduce the noise due to the content of the recording: p̂, that is an approximation
of the spectrum, is generated both by the microphone frequency response and
by the content, and we must ensure that this in�uence is not strong enough to
a�ect by any means the outcome of the classi�cation. The procedure can be
described as follows:

1. Apply a variable gain on the sum between the approximated normalized
power of x and the average value of the channel estimate of x, dependent
on the power of P̂ :

h3 =
p̂+

(
ĥ
)

‖p̂‖2
.

where
(
ĥ
)
denotes the average value of ĥ, and ‖·‖denotes the l2-norm.

10C = A ./B =⇒ C(i, j) = A(i, j)/B(i, j) ∀(i, j), A,B,C ∈ RI×J .

Chapter 4. Proposed Method 45

2. Normalize h3 between 0 and 1:

h3,norm = norm
[0,1]

(h3) .

where norm
[0,1]

(·) is the same function de�ned in equation 4.1.

3. Compute the �rst derivative h
′

3 of h3, as the inter-sample di�erence of
h3,norm:

h
′

3(k) = h3,norm(k)− h3,norm(k − 1) , ∀k ∈ [2,K] .

4. Compute the second derivative h
′′

3 of h3, as the inter-sample di�erence of
h
′

3:

h
′′

3 (k) = h
′

3(k)− h
′

3(k − 1) , ∀k ∈ [3,K] .

5. Compute h4, which contains the absolute value of each component of h
′′

3 :

h4(k) = |h3(k)| .

6. Apply a variable gain on h
′

3 and h4, dependent on the power of each vector:
h̃
′
3 =

h
′
3

‖h′3‖2

h̃4 = h4

‖h4‖2

7. Normalize between 0 and 1 both h
′

3 and h4:
h̃
′
3

′

,norm = norm
[0,1]

(
h̃
′
3

)
.

h̃4,norm = norm
[0,1]

(h4) .

8. Build the feature f2 just by collecting the processed data:

f3 =

[
h3,norm , h̃

′
3

′

,norm , h̃4,norm

]
.

The �nal feature vector f , of course, is computed by collecting together the
three features:

f = [f1 , f2 , f3] . (4.4)

A visual comparison of the three features is present in Figure 4.11, where the
x-axis represents the dimension index; the features reported refer to the audio
�le whose channel estimate is showed in Figure 4.8.

46 Chapter 4. Proposed Method

Figure 4.11: Comparison of Feature f1, f2, and f3

4.1.4 Clustering

As told in Section 4.1.0, before focusing on the classi�cation we tried to partition
the feature vectors from each test recording into clusters. This has been both
a key point for the development of the �nal feature vector and a very hard
task, and required also a strong assumption, i.e. the previous knowledge of the
number of recordings from each device.

Our clustering is accomplished by a variation of the well-known k-means
clustering algorithm, and uses two alternative feature vectors f

′

3 and f
′

4, whose
evolution is reported in appendix B. Let us denote with f

′

3,i and f
′

4,i the feature

vectors f
′

1 and f
′

2 of the i-th recording, with Nk the number of recordings from
the k-th device, with Ntest the total number of test recordings, with Nkmeans
the total number of repetition of the k-means, and with IDX ∈ R1×Ntest the
vector containig the clustering labels returned by the kmeans. The clustering
algorithm is the following:

1. Build the data-set F1 =
{
f
′

1,1 , f
′

1,2 , . . . , f
′

1,Ntest

}
.

2. Let j represent the number of repetitions past the current one; ue to the
kmeans being sensitive to the initial positions of the centroids we chose to
alternate between complete random initializations and initializations from
sampled starting points:

[IDX , kmeans score] =

{
kmeans(F1, randomstarting point) j is even

kmeans(F1, sampled starting point) else

3. If IDX is a possible con�guration, i.e. each cluster k has the correct
number of elements NK - a condition that doesn't imply the correctness
of the classi�cation - then

(a) if IDX is a new11 con�guration, set score(IDX) = kmeans score
and votes(IDX) = 1.

11e,g IDX = [1, 2, 2, 1] and IDX = [2, 1, 1, 2] are the same, like IDX = [1, 3, 2] and
IDX = [3, 1, 2], but IDX = [1, 1, 2, 2] and IDX = [1, 2, 2, 1] are di�erent

Chapter 4. Proposed Method 47

(b) else, set votes(IDX) = votes(IDX) + 1.

4. If j < Nkmeans ∧
∑
i votes(IDXi) <

Nkmeans

10 repeat from point 2.

5. If
∑
i votes(IDXi) 6= 0, i.e. the feature vector f

′

1 was able to �nd a valid
data partitioning, skip forward to point 10.

6. Build the data-set F2 =
{
f
′

2,1 , f
′

2,2, . . . , f
′

2,Ntest

}
.

7. Let j represent the number of repetitions past the current one:

[IDX , kmeans score] =

{
kmeans(F2, randomstarting point) j is even

kmeans(F2, sampled starting point) else

8. If IDX is a possible con�guration, then

(a) if IDX is a new con�guration, set score(IDX) = kmeans score and
votes(IDX) = 1.

(b) else, put votes(IDX) = votes(IDX) + 1.

9. If j < Nkmeans ∧
∑
i votes(IDXi) <

Nkmeans

10 repeat from point 7.

10. Compute the �nal score:

scorefinal(IDXi) = α· votes(IDXi)∑
k votes(IDXk)

+(1−α)·min(score(IDXi))

score(IDXi)
; ∀i

(4.5)
where α ∈ [0; 1] selects the trade-o� between relying on the number of
classi�cations that chose the i-th possible partitioning, or on its k-means
score.

11. Select the �nal partitioning:

IDXbest = IDXi | score(IDXi) = max
k
{score(IDXk)} .

As we saw, our classi�cation algorithm at �rst tries to work only with the
feature vectors f

′

1: if it's not possible for the feature vector f
′

1to �nd a valid
data partitioning due to the presence of local minima, the same procedure is
held working only with a di�erent feature vector f

′

2.
This is done because, despite the di�erent initialization policies used in or-

der to address the problem of the dependence of the k-means result from the
starting point, sometimes the noise on the high frequency component is simply
too strong, and doesn't allow us to �nd a possible partitioning. If both feature
vectors f

′

1 and f
′

2are not su�cient to achieve a possible classi�cation, we mark
the test set as unlabeled.

Finally, in order to achieve the desired microphone classi�cation, we associate
each cluster to a single recording device, following the content of IDXbest.

48 Chapter 4. Proposed Method

4.1.5 Classi�cation

The classi�cation is performed with a Support Vector Machine (SVM) in a
closed-set fashion. Let us denote with fikk ∈ RNfeatures the feature vector f
of the k-th device computed from its i-th recording as de�ned in equation 4.4,
with Nk the number of recordings from the k-th device, with Ndevice the total
number of devices, with lk the class-label of the k-th device and with Nclass the
number of classes that we desire to classify.

We will now split the training and the testing phase in two distinct parts.
The training phase procedure is the following:

1. Build the data-set and assign the proper labels: Ftraining = {fikk} ;∀ik ∈ {1, Nk}

Ltraining = {lk · 1Nk
}

∀k ∈ {1, Ndevice},

where 1Nk
is a Nk × 1 vector with all elements equal to one.

2. Feature Selection:
let us denote with fjikk the j-th component of the feature vector fikk ∈
RNfeatures ; for each fikk the feature selection

12 returns

fselectikk
= {fjikk} ; ∀j ∈ Jselect ⊆ {1, Nfeatures} .

3. Dimension Normalization:
after the feature selection, we need to perform a normalization of each
dimension of the feature vector, i.e.

fnormjikk
=

fselectjikk
−min

ikk

(
fselectjikk

)
max
ikk

(
fselectjikk

)
−min

ikk

(
fselectjikk

) (b− a) + a; ∀j ∈ Jselect,

where a < b. The most common values of a and b are a = 0, b = 1 and
a = −1, b = 1. The dimension normalization returns the following values:

Fnormtraining =
{
fnormjikk

}
minj = min

ikk

(
fselectjikk

)
maxj = max

ikk

(
fselectjikk

)
atraining = a

btraining = b

; ∀j ∈ Jselect.

4. SVM training:
the SVM training requires to select a proper kernel function and - since

12details about the feature selection speci�c for the �nal implementation can be found in
Section 4.2.5.3.

Chapter 4. Proposed Method 49

we will use a multi-class SVM - to choose between di�erent training al-
gorithms, such as one-versus-rest or one-versus-one. After this we can
perform the training of the SVM, which returns

ModelSVM = training
(
Fnormtraining , Ltraining , kernel , algorithm

)
.

For details about the speci�c settings involved during this last step please
refer to Section 4.2.

The classi�cation phase proceeds in a similar fashion as the previous one:

1. Build the data-set:

Ftesting = {fikk} ;∀ik ∈ {1, Nk} ∀k ∈ {1, Ndevice}.

2. Feature Selection:
let us denote with fjikk the j-th component of the feature vector fikk ∈
RNfeatures ; for each fikk the feature selection returns

fselectikk
= {fjikk} ; ∀j ∈ Jselect ⊆ {1, Nfeatures} .

3. Dimension Normalization:
after the feature selection, we need to perform a normalization of each
dimension of the feature vector, by using the parameters computed during
the training phase

fnormjikk
=
fselectjikk

−minj

maxj −minj
(btraining − atraining) + a; ∀j ∈ Jselect.

This time the normalization phase returns only

Fnormtesting =
{
fnormjikk

}
,

i.e. a set of Ntesting vectors of dimension 1× Jselect.

4. SVM classi�cation:
�nally, the SVM can perform the classi�cation:

Ltesting = training
(
Fnormtesting , ModelSVM

)
.

Where Ltesting is a vector containing the desired label.

4.2 Implementation Details

For each step of the algorithm stated in the previous section we will now focus
on speci�c implementation choices, following the same outline. This implemen-
tation choices, even if somehow related to the logical design, are mainly due
to our general framework, which has been developed in GNU Octave [21], as
reported in appendixA.

50 Chapter 4. Proposed Method

4.2.1 Training of the GMM of the Clean Speech

During the training of the GMM of the clean speech, the most important issue
concerned the RASTA �ltering [17]. The RASTA �lter is an IIR �lter with the
transfer function

HRASTA(z) = 0.1 · z4 · 2 + z−1 − z−3 − 2 · z4

1− 0.94 · z−1
.

The issue arose due to the length of the �lter impulse response: this problem is
known, and is usually overcome by setting the initial state IS of the �lter using

IS = x (1) · (−1 , −1 , 1 , 1)
t
,

where x(1) is the �rst sample of the sequence that we are going to �lter, i.e. for
each i-th HTK-MFCC of the j-th audio �le we have: ISij = HTKMFCCij(1) · (−1 , −1 , 1 , 1)

t

RASTA−HTKMFCCij = filter (HRASTA(z) , HTKMFCCij , ISij)

where the function filter (H(z) , data , IS) �lters the signal data with the trans-
fer function H(z), and with the additional constraint of the initial state IS.

Unfortunately, Octave doesn't allow us to impose such a condition: in Figure
4.12 we can see the RASTA-HTFMFCCs obtained directly applyingHRASTA(z)
with no constraints.

Figure 4.12: RASTA �ltering without the initial condition IS

Chapter 4. Proposed Method 51

Of course such a behavior is undesirable, since there's a huge di�erence between
the �rst frames and the following ones.

In order to overcome this fault without altering neither the content nor the
Octave built-in function - for the sake of portability - we used the following
procedure for the RASTA �ltering:

1. Replicate the i-th HTK-MFCC time series HTKMFCCij of the j-th au-
dio �le 10 times and obtain HTKMFCC_CATij .

2. Apply the RASTA �lter without any constraint on the initial state directly
on the new time series:

R−HTKMFCC_CATij = filter (HRASTA(z) , HTKMFC_CATij) .

3. Select the last LHTKMFCCij
samples of R−HTKMFCC_CATij , where

LMFCCij
is the length of HTKMFCCij , in order to obtain the �nal

coe�cients:

RASTA−HTKMFCCij (k) = R−HTKMFCC_CATij
(
k + 9 · LMFCCij

)
,

where k ∈
[
0 , LMFCCij − 1

]
.

In Figure 4.13 we can the RASTA-HTK-MFCCs obtained with this di�erent
algorithm, which allows us to avoid the faulty behavior which was previously
occurring on the �rst frames, and to correctly apply the �lter regardless of the
frame index:

Figure 4.13: RASTA �ltering with the initial condition IS

52 Chapter 4. Proposed Method

4.2.2 Blind Estimation of the Channel Response

As we saw in equation 4.2, in order to compute our channel estimate we require
to compute the di�erence between ZX,norm and Z̃X,norm. A visual representa-
tion of the two log power spectrum can be found in Figure 4.14:

Figure 4.14: ZX,norm and Z̃X,norm in Gupta et al. [13]

We found that is possible to achieve a less noisy estimation13 by selecting
only a subset of the original frames: let n ∈ [1 , Nframes] = N be the frame index
and k ∈ [1 , Nfft] = K be the frequency bin index, where Nframes and Nfft
are the total numbers of the frames and of the frequency bins. The selection
procedure is the following:

1. Select a subset of frame indexes:

n̄ ∈ Selection ⇐⇒ max
k∈K

(|X (n̄, k)|) ≤ τ ·max
n∈N

max
k∈K

(|X (n, k)|) ,

where X is the STFT of the audio �le x, and τ = 0.1 is a user-de�ned
threshold.

2. Build the matrices ZSelectionX,norm and Z̃SelectionX,norm by using only the frames in
the selection, i.e

z ∈ ZSelectionX,norm ⇐⇒ z(n, k) ∈ ZX,norm ∧ n ∈ Selection

z̃ ∈ Z̃SelectionX,norm ⇐⇒ z̃(n, k) ∈ Z̃X,norm ∧ n ∈ Selection
; ∀n ∈ N , ∀k ∈ K.

13i.e. an estimation with a lower distance between channel estimates from di�erent record-
ings acquired by the same device.

Chapter 4. Proposed Method 53

ZSelectionX,norm and Z̃SelectionX,norm are both matrices of size NSelection × Nfft, where
NSelection is the total number of selected frames. The algorithm stated in Section
4.1.2 is left unchanged except for the equation 4.2, that is replaced by

ĥ =

(
ZSelectionX,norm − Z̃SelectionX,norm

)t
· 1

NSelection
(4.6)

where 1 is a NSelection × 1 vector with all elements equal to one. A visual
representation of the two log power spectrum can be found in Figure 4.15:

Figure 4.15: ZSelectionX,norm and Z̃SelectionX,norm in our proposal

As we can see, our selection algorithm reduces the number of frames where
the speech content is present, so that the channel estimate is computed relying
mostly on the silent parts of the audio �les, where the in�uence of the coloring
e�ect of the microphone is higher14.

We chose not to include this selection in the algorithm discussed in 4.1.2
because we found that the e�ectiveness of this selection is somehow related to
the content: if the content includes not only direct speech but also some play-
back from a loudspeaker, the loudspeaker channel in�uence is so strong that
the �nal classi�cation by the means of the SVM has a noticeable drop in accu-
racy. However, the presence of the loudspeaker violates our original assumption
about the microphone frequency response being the only channel present, and
for sources not involving a loudspeaker our proposed selection procedure is ex-
tremely useful, so that we chose to include it in the �nal version whose results

14i.e. the assumption exploited by [8]

54 Chapter 4. Proposed Method

will be provided in Chapter 5. For information about the performance of the
SVM classi�er without this selection refer to appendix C.

4.2.3 Feature Vector Computation

The feature vector computation proceeds as detailed in 4.1.3. The only slight
di�erence is that, for the sake of numerical stability, 4.3 has been replaced with

h0 = ĥ ./
(
P̂ + ε · 1t

)
,

where 1 is a row vector of the same length of P̂ and ε denotes the machine
epsilon of the system.

4.2.4 Clustering

The most important issue left about the clustering phase is the value of α in
4.5: if α = 0 we rely only on the best k-means score; if α = 1 we select the
solution with most votes.

During the development we noticed that, for our encoded testing audio �les,
the compression increases the noise on the channel estimates and gives birth to
global minima that are the best in terms of kmeans-score, but that are really
hard to reach15: when this happens, if we rely only on the kmeans-score we
are led to select the best result despite a strong hint on a di�erent partitioning,
which is usually given by a massive amount of clustering attempts that select the
sub-optimal - and often correct - result. In order to avoid such an undesirable
behavior in our implementation we set α = 1

2 .
This value of α was not de�ned in Section 4.1.4 because it could be related

to our speci�c test content: hopefully, future researches will be able to ensure
that our assumption on the relationship between the number of votes and the
correctness of the solution holds always.

4.2.5 Classi�cation

The SVM classi�cation involves plenty of settings in order to be fully e�ective.
The algorithm presented in 4.1.5 is totally unrelated to the test content, but
we can't claim this to be true also for the settings that we are now going to
introduce.

4.2.5.1 Dimension Normalization

The dimension normalization in�uences both the SVM parameter selection and
the results of the Feature Selection. Moreover, is known that it can the accuracy
of an SVM can severely degrade if the data is not normalized [23].

In our implementation is possible to choose the normalization between 0 and
1, i.e.

fnormjikk
=

fselectjikk
−min

ikk

(
fselectjikk

)
max
ikk

(
fselectjikk

)
−min

ikk

(
fselectjikk

) ; ∀j ∈ Jselect

15i.e. they have only a few votes.

Chapter 4. Proposed Method 55

or the normalization between -1 and 1, i.e.

fnormjikk
=

fselectjikk
−min

ikk

(
fselectjikk

)
max
ikk

(
fselectjikk

)
−min

ikk

(
fselectjikk

) · 2− 1; ∀j ∈ Jselect.

The normalization is carried out in a di�erent way depending on the input
dataset: if both the training set and the testing set are provided, the procedure
is exactly the one stated in Section 4.1.5. Otherwise, if only the training set is
provided, all the data are normalized at once: we can assume that the in�uence
from a single audio �le is negligible, considering that the whole set is tested in
a leave-one-out fashion16.

4.2.5.2 SVM Parameter Selection

The SVM parameter selection is the most important setting a�ecting the SVM
classi�cation [23]. In our implementation is possible to choose between a linear
kernel function and Radial Basis Function (RBF): for each of them, we found
the best performing parameter selection, computed by an exhaustive coarse-grid
search on the parameter space:

Linear Kernel Function: the parameter selection is performed on the com-
plete PCM encoded training-set, and the best parameter selection is the
one returning the best cross-validation result. For linear kernel function
only the parameter c can be selected, so that the procedure can be for-
malized as follows:

1. ∀c ∈ C =
{

2−5 , 2−4 , 2−3 , . . . , 215
}
compute the cross-validation

value cvc.

2. select c̄ : cvc̄ = max
c

(cvc).

Radial Basic Function: the parameter selection is performed on the complete
PCM encoded training-set, and the best parameter selection is the one
returning the best cross-validation result.

1. ∀ (c, γ) ∈ C×Γ =
{

2−5 , 2−4 , 2−3 , . . . , 215
}
×
{

2−15 , 2−14 , . . . , 23
}

compute the cross-validation value cv(c,γ).

2. select (c̄, γ̄) : cv(c̄,γ̄) = max
(c,γ)

(
cv(c,γ)

)
.

The procedure above, using our test content, returned the following values:

Linear Kernel Function: the best cross-validation is achieved by

cLKF = 25

.

Radial Basis Function: the best cross-validation is achieved by the pair

(cRBF , γRBF) =
(
28, 2−9

)
.

16see Section 4.2.5.4 for further details

56 Chapter 4. Proposed Method

Once selected, these parameters are applied regardless of the test �le encoding,
since in principle we are not aware about the previous encoding: this is the rea-
son why, even in the �nal implementation, we kept both of them as mandatory
- hence editable - inputs.

A second parameter related to the SVM de�nes the selection algorithm for
multi-class problems, i.e. one-vs-one or one-vs-all [18]. Its choice is also left
to the user, and the default value both for the LIBSVM library and for our
implementation is the one-vs-one.

4.2.5.3 Feature Selection

The feature selection (as known as feature reduction) is a procedure meant
to reduce the number of features involved during the classi�cation, possibly
increasing the �nal accuracy, and de�nitely reducing the time complexity of the
classi�cation. It's in�uenced both by the dimension normalization and by the
SVM parameter selection.

As stated in 4.1.5, the feature selection acts as following: let us denote with
fjikk the j-th component of the feature vector fikk ∈ RNfeatures ; for each fikk
the feature selection returns

fselectikk
= {fjikk} ; ∀j ∈ Jselect ⊆ {1, Nfeatures} .

How can we choose the best subset Jselect of features? In order to do so, we
relied on a tool included in the LIBSVM library17, that acts in the following
way:

1. Normalize each dimension of the feature vectors.

2. Compute the F-score of the j-th feature Fj de�ned in [28], and sort all the
features according to this score: The 1 × Nfeatures vector sorting holds
the sorted indexes of the features, i.e.

Fsorting(i) ≥ Fsorting(i+1); ∀i ∈ [1 , Nfeatures − 1] .

3. Start with select = Nfeatures, bestscore = 0, bestindex = 0.

4. Apply the current feature selection:
fselectikk

= {fjikk} ; ∀j ∈ Jselect

Jselect = {sorting (i)} ; ∀i ∈ [1 , select]
.

5. Compute the cross-validation value cvcurrentof the SVM trained with the
current feature selection. then

(a) If cvcurrent > bestscore update the best:{
bestscore = cvcurrent
bestindex = select

.

(b) Else, do nothing.

17see appendix A for further details.

Chapter 4. Proposed Method 57

6. Update the selection by halving the number of elements included:

select =

⌊
select

2

⌋
,

where b·c denotes the largest previous integer of ·.

7. If select > 0 repeat from point 4.

8. Return the selection with the best score, i.e.

Jselect = {sorting (i)} ; ∀i ∈ [1 , bestindex] .

Since our goal is to be able to deal also with compressed audio �les, we applied
the tool on di�erent training sets, obtained with di�erent encoding and rates.
After this preliminary operation, according to our possible previous knowledge
on the test content, we are able to choose between

1. JselectPCM is obtained using as training set the whole test content encoded as
raw PCM.

2. JselectMP3 is obtained using as training set the whole test content encoded
with MP3 at 32 kbps.

3. JselectAAC is obtained using as training set the whole test content encoded
with AAC at 16 kbps.

4. JselectAMR is obtained using as training set the whole test content encoded
with AMR at 4.75 kbps.

5. JselectMERGE is the union between the previous selections, i.e.

JselectMERGE = JselectPCM ∪ JselectMP3 ∪ JselectAAC ∪ JselectAMR .

6. JselectDEFAULT is the selection including all the features, i.e.

JselectDEFAULT = {1 , 2 , 3 , . . . , Nfeatures} .

4.2.5.4 Cross-Validation

When we don't have a testing set a leave-one-out cross-validation is performed on
the training set. This procedure has been used both for the parameter selection
and for the evaluations reported in Chapter 5, and follows an algorithm derived
from the one stated in Section 4.1.5.

Let us denote with fikk ∈ RNfeatures the feature vector f of the k-th device
computed from its i-th recording as de�ned in Equation 4.4, with Nk the number
of recordings from the k-th device, withNdevice the total number of devices, with
lk the class-label of the k-th device and with Nclass the number of classes that
we desire to classify.

Starting from the whole training set, the procedure is the following:

1. Build the data-set and assign the proper labels: F = {fikk} ;∀ik ∈ {1, Nk}

L = {lk · 1Nk
}

∀k ∈ {1, Ndevice},

where 1Nk
is a 1×Nk vector with all elements equal to one.

58 Chapter 4. Proposed Method

2. Feature Selection:
let us denote with fjikk the j-th component of the feature vector fikk ∈
RNfeatures ; for each fikk the feature selection returns

fselectikk
= {fjikk} ; ∀j ∈ Jselect ⊆ {1, Nfeatures} .

3. Dimension Normalization:
after the feature selection, we need to perform a normalization of each
dimension of the feature vector, i.e.

fnormjikk
=

fselectjikk
−min

ikk

(
fselectjikk

)
max
ikk

(
fselectjikk

)
−min

ikk

(
fselectjikk

) (b− a) + a; ∀j ∈ Jselect,

where a < b. The most common values of a and b are a = 0, b = 1 and
a = −1, b = 1. As we can see, this time the normalization involves at
once both the training and the testing set, since we can assume that the
in�uence of the single testing audio �le is negligible.

4. Set the starting values of the evaluation variables:

test_file = 1, Ncorrect = 0, Mconf =

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ RNclass×Nclass ,

where Ncorrect denotes the total number of correct classi�cations, and
Mconf denotes the resulting confusion matrix.

5. Perform all the evaluations:
both Fnorm = {fnormi } and L = {li} are sets of Ntot =

∑Ndevice

k=1 Nk
elements, so we can proceed as follows:

(a) Split the training set and the testing set:
Fnormtesting =

{
fnormtest_file

}
Fnormtraining = Fnorm\Fnormtesting

Ltesting =
{
ltest_file

}
Ltraining = L\Ltesting

.

(b) Train the SVM:

ModelSVM = training
(
Fnormtraining , Ltraining , kernel , algorithm

)
.

(c) Classify the t-th audio �le with the computed model:

lSVM = training
(
Fnormtesting , ModelSVM

)
.

(d) Update the result:
if lSVM 6= ltesting

Mconf

(
lSVM , ltest_file

)
= Mconf

(
lSVM , ltest_file

)
+ 1

Chapter 4. Proposed Method 59

else{
Mconf

(
ltest_file, ltest_file

)
= Mconf

(
ltest_file, ltest_file

)
+ 1

Ncorrect = Ncorrect + 1
.

(e) Update the variable selector:

test_file = test_file+ 1.

(f) If test_file ≤ Ntot repeat from point (a).

6. Compute the �nal accuracy:

accuracy =
Ncorrect
Ntot

.

The confusion matrix Mconf is left unprocessed, since it contains information
both about the total number Ntot of �les involved and about the number of
recordings per class. If the user prefers to transform it in the confusion matrix
with percentages inside the computation is straightforward: let Mconf,sum be
the 1×Nclassvector built by computing the sum of each column of Mconf , i.e.

Mconf,sum =

(
Nclass∑
i=1

M (i, 1) ,

Nclass∑
i=1

M (i, 2) , . . . ,

Nclass∑
i=1

M (i,Nclass)

)
.

Then
Mconf,% = 100% ·Mconf ./

(
1tNclass

·Mconf,sum

)
where ./ denotes the entry-wise division18, and 1Nclass

is a 1 × Nclass vector
with all elements equal to one.

18C = A ./B =⇒ C(i, j) = A(i, j)/B(i, j)∀(i, j), A,B,C ∈ RI×J .

Chapter 5

System Evaluation

In order to provide a valuable evaluation of our framework we will now report
the �nal results obtained with the algorithm de�ned in Chapter 4. Readers
interested in the evolution of the feature vector or in the proceeding of the
development part will �nd further information in appendix B.

5.1 Test Speci�cations

The test speci�cations have di�erent purposes: we chose to apply the algorithm
to realistic recordings, leaving aside unrealistic situations such as anechoic rooms
with no environmental noise, and to address also non-speech-only recordings
from the playback of a loudspeaker, where more than one audio channel is
involved.

All of this, in order to inquire both the applicability degree of this method
and possible �aws due to the restrictions of the blind channel estimation algo-
rithm we rely on.

5.1.1 Training Content for the GMM of the Clean Speech

The training content of the GMM is composed by high quality speech recording,
acquired at 48 kHz. The utterances, both in English and in German, are spoken
by two male and two female speakers and recorded in a low-noise environment,
for a total time of about 30 minutes.

The training content was then subsampled down to 8 kHz, i.e. the sampling
frequency of possible AMR encoded test content, as well as of recordings from
telephone transmissions.

5.1.2 Test Content for the Framework Evaluation

The test content for the framework evaluation is composed by 26 audio �les
per device, and is composed both of sentences spoken by three male and two
female speakers, di�erent from the speakers involved in the recording included
in the training set, and of recordings containing both speech and music content.
For the latter, three di�erent loudspeaker were involved, in order to highlight
possible degradation due to the low quality of the playback device.

61

62 Chapter 5. System Evaluation

The test recordings are acquired in a lossless fashion - i.e. PCM encoded -
and the lossy compression is performed only afterwards1. The recording sessions
took place in a quiet o�ce, and therefore present a low but clearly perceivable
environmental noise.

For each compression we chose di�erent bit-rates:

AAC: 128 kbps, 96kbps, 64 kbps, 48 kbps, 32 kbps, 16 kbps.

AMR: 12.20 kbps, 10.20 kbps, 7.95 kbps, 7.4 kbps, 6.7 kbps, 5.9 kbps,
5.15 kbps, 4.75 kbps.

Mp3: 192 kbps, 128 kbps, 96kbps, 64 kbps, 32 kbps

As we saw in Chapter 4, in order to be able to compute the channel estimates
from an audio �le, we have to ensure that the sampling frequency of the training
set of the GMM and of the test �le are the same; thus, we had to downsample
the original recordings down to 8 kHz.

For the Mp3 and the AAC encoded audio �les the resampling occurred after
the encoding. On the other hand, the AMR encoding requires from the input
audio �les both a sampling frequency of exactly 8 kHz, and a bit depth of 16
bit: the resampling was performed before the encoding - unlike what stated in
our original process �ow.

5.1.3 Devices Involved in the Testing Phase

The testing phase involved 8 model of devices, each one present twice2, for a
total of 16 di�erent devices. Between all of them, we can identify two subsets3:

Built-in Microphone: Dell Latitude D630, Google Phone, iPhone 3GS, iPhone
4S and Samsung Galaxy S II.

Headset Microphone: Logitec QuickCam Pro 9000, Logitec Headset, Sam-
sung Galaxy S II headset, iPhone 3GS headset, iPhone 4S headset.

All the recordings from the same subset are acquired at once, in order to min-
imize possible interferences during the classi�cation due to the environmental
conditions.

5.1.4 Sampling Frequency

As stated in Chapter 4 and in the previous sections of this chapter, ideally we
need each audio �le to be resampled exactly down to 8 kHz. Unfortunately, due
to some limitations of the Octave framework, this was not always possible: �les
whose original sampling frequency was 44100 Hz were resampled down to 8018
Hz.

By doing this we implicitly considered the di�erence of 18 Hz as negligible,
also because the number of STFT frequency bins is the same. Apart from the
AMR encoded audio �les, whose processing involved the Shibatch Sampling
Rate Converter4, rather than relying on an external resampler we chose to use

1See appendix A for details about each encoder involved.
2Or two slightly di�erent models from the same manufacturer
3see Section 2.1.3.
4See appendix A for details and motivations

Chapter 5. System Evaluation 63

the one provided by Octave - that we can fully control - and to tolerate the
approximation 8018 u 8000.

5.2 Clustering Result: Summary and Evaluation

The second section of this chapter is focused on the clustering results: the state
of the art on microphone classi�cation still lacks clustering algorithms able to
discriminate between di�erent devices with a reasonable degree of con�dence5.

Despite this, during the development of our framework, we chose to focus
at �rst on the k-means clustering algorithm. We did this both in order to try
reduce the gap between the clustering and the classi�cation world and in order
to achieve a robust feature vector: in principle, a feature vector strong enough
to blindly di�erentiate between di�erent devices should be able to perform even
better if applied to a supervised classi�cation method.

5.2.1 Clustering with Two Devices

As we stated in Section 4.1, our clustering procedure relies on two assumption:
we know both the number of devices present in the clustering set and the number
of recording per device.

Let A =
{
rAa
}
and B =

{
rBb
}
denote the initial recording sets, where a ∈

[1, NA] and b ∈ [1, NB]. NA denotes the number of recordings of the device
A and NB denotes the number of recordings of the device B. We de�ne the
testing set R = {rk} as follows:

R =
{
rA1 , . . . , r

A
NA
, rB1 , . . . , r

B
NB

}
.

Let lk ∈ {L1, L2} be the clustering label of the test recording rk, where L1 6= L2:
we mark a clustering attempt as correct if and only if

{
lk1 = L1 ∀k1 ∈ {1, . . . , NA}
lk2 = L2 ∀k2 ∈ {NA + 1, . . . , NA +NB}

.

We perform this procedure for all the possible couples of devices: if we have a
total of N devices, then we have

∑N−1
n=1 n = 1

2 (N − 1) ·N couples in total.

In the next sections we will provide a graphical representation of the results
obtained by this procedure while varying the test set: each axis of the �gures
will represent the chosen device and the color found on the corresponding square
will represent the classi�cation outcome - correct (green), or wrong (red).

5see Chapter 3.

64 Chapter 5. System Evaluation

5.2.1.1 Full Test Set

The full test set include all the the test content from all the 16 devices, for a total
of 120 possible couples. A graphical representation of the clustering outcome is
provided in Figure 5.1:

Sub�gure (a) - Accuracy = 92.50%

Sub�gure (b) - Accuracy = 91.67%

Figure 5.1: Clustering with Two Devices - Full Test Set

Figure 5.1 (a) refers to the results obtained starting with audio �les encoded
with PCM or with MP3 at 96 kbps, while Figure 5.1 (b) refers only to MP3

Chapter 5. System Evaluation 65

encoded audio �les, with bitrates 192 kbps, 128 kbps, 64 kbps and 32 kbps.

The devices involved are labeled numerically in both sub�gures as follows:

Label Device

1 Dell1, with the built-in microphone
2 Dell1, with the headset microphone
3 Dell2, with the built-in microphone
4 Dell2, with the headset microphone
5 GooglePhone1, with the built-in microphone
6 GooglePhone1,with the headset microphone
7 GooglePhone2,with the built-in microphone
8 GooglePhone2,with the headset microphone
9 iPhone1, with the built-in microphone
10 iPhone1,with the headset microphone
11 iPhone2,with the built-in microphone
12 iPhone2,with the headset microphone
13 GalaxyS21, with the built-in microphone
14 GalaxyS21,with the headset microphone
15 GalaxyS22,with the built-in microphone
16 GalaxyS22,with the headset microphone

As stated in Section 4.1.4, we avoided the case where recordings from the
same device are present: as a consequence, in both �gures the �rst diagonal is
empty, since DeviceA 6= DeviceB is always true.

5.2.1.2 Built-in Test Set

For the built-in test set the 8 devices involved are labeled as follows:

Label Device

1 Dell1, with the built-in microphone
2 Dell2, with the built-in microphone
3 GooglePhone1, with the built-in microphone
4 GooglePhone2,with the built-in microphone
5 iPhone1, with the built-in microphone
6 iPhone2,with the built-in microphone
7 GalaxyS21, with the built-in microphone
8 GalaxyS22,with the built-in microphone

For a resulting total of 28 possible couples. With this test set the outcome
of the clustering algorithm is the same both for PCM encoded and for MP3
compressed audio �les, and shown in Figure 5.2:

66 Chapter 5. System Evaluation

Accuracy = 92.86%

Figure 5.2: Clustering with Two Devices - Built-in Test Set

From this �gure is clearly visible that the clustering between devices of
the same model and manufacturer is, as we expected, more di�cult than the
clustering performed on devices from di�erent models. More speci�cally, our
modi�ed version of the k-means can't di�erentiate between the two di�erent
iPhonei or between the two di�erent GalaxyS2i.

5.2.1.3 Headset Test Set

In a similar way, for the headset test set the 8 devices involved are labeled as
follows:

Label Device

1 Dell1, with the headset microphone
2 Dell2, with the headset microphone
3 GooglePhone1,with the headset microphone
4 GooglePhone2,with the headset microphone
5 iPhone1,with the headset microphone
6 iPhone2,with the headset microphone
7 GalaxyS21,with the headset microphone
8 GalaxyS22,with the headset microphone

For a resulting total of 28 possible couples. The outcome of the clustering
algorithm is the same both for PCM encoded and for MP3 compressed audio
�les, as happened using the previous test set, and is shown in Figure 5.3:

Chapter 5. System Evaluation 67

Accuracy = 92.86%

Figure 5.3: Clustering with Two Devices - Headset Test Set

Once again the misclassi�cations occur between couples of namely identical
devices, i.e. the two di�erent Delli and the two di�erent GooglePhonei.

5.2.2 Clustering with Three Devices

Let A =
{
rAa
}
, B =

{
rBb
}
and C =

{
rCc
}
denote the initial recording sets,

where a ∈ [1, NA],b ∈ [1, NB] and c ∈ [1, NC]. NA denotes the number of
recordings of the device A, NB denotes the number of recordings of the device
B and NC denotes the number of recordings of the device C. We de�ne the
testing set R = {rk} as follows:

R =
{
rA1 , . . . , r

A
NA
, rB1 , . . . , r

B
NB
, rC1 , . . . , r

C
NC

}
.

Let lk ∈ {L1, L2, L3} be the clustering label of the test recording rk, where
L1 6= L2, L1 6= L3 and L2 6= L3: we mark a clustering attempt as correct if and
only if

lk1 = L1 ∀k1 ∈ {1, . . . , NA}
lk2 = L2 ∀k2 ∈ {NA + 1, . . . , NA +NB}
lk3 = L3 ∀k3 ∈ {NA +NB + 1, . . . , NA +NB +NC}

.

If we have a total of N devices, then we have
(
N
3

)
= N !

3!·(N−3)! triples available
to choose from in order to create the test set.

5.2.2.1 Full Test Set

We didn't perform the clustering with three devices on the full test set, because
the results obtained by using only two devices already show that misclassi�-
cations occur both between namely identical devices and between microphones

68 Chapter 5. System Evaluation

and headsets provided directly by the same manufacturer. Since we had no
other reasonable criteria suitable on order to check the whole test set without,
we chose to investigate on the built-in subset and on the headset subset sep-
arately, and to avoid triples involving devices between which we can expect a
strong relation beforehand.

5.2.2.2 Built-in Test Set

The built-in test set corresponds to a total number of
(

8
3

)
= 56 possible triples.

We didn't use the whole testing set but only 32 triples, i.e. all those triples where
namely identical devices are not present. With this selection we are sure that
the model of the devices involved in each test set is di�erent and we expected
some misclassi�cations occurring with triplets both one Google Phone and one
Galaxy S II, since both are produced by Samsung.

The �nal results for the built-in test set, however, show a 100% accuracy
across all the triplets: this means that our �nal feature vector with our modi�ed
version of the k-means algorithm is able to correctly separate sets including
recording from three built-in microphones from mobile phones, as long as these
devices are not namely identical.

5.2.2.3 Headset Test Set

The headset test set, as the built-in test set, corresponds to a total number of 56
devices. For the same reasons expressed before we reduced this number down
to 32 triples, where namely identical devices are not present.

Again, we achieved a 100% accuracy across all the triplets, showing that,
also for headset microphones for mobile phones, as long as three devices are not
namely identical we are able to correctly partition them.

5.2.3 Clustering with Four Devices

Let A =
{
rAa
}
, B =

{
rBb
}
, C =

{
rCc
}
andD =

{
rDd
}
denote the initial recording

sets, where a ∈ [1, NA],b ∈ [1, NB], c ∈ [1, NC] and d ∈ [1, ND]. NA denotes
the number of recordings of the device A, NB denotes the number of recordings
of the device B, NC denotes the number of recordings of the device C and ND
denotes the number of recordings of the device D. We de�ne the testing set
R = {rk} as follows:

R =
{
rA1 , . . . , r

A
NA
, rB1 , . . . , r

B
NB
, rC1 , . . . , r

C
NC
, rD1 , . . . , r

D
ND

}
.

Let lk ∈ {L1, L2, L3, L4} be the clustering label of the test recording rk, where
L1 6= L2, L1 6= L3 , L1 6= L4, L2 6= L3, L2 6= L4and L3 6= L4: we mark a
clustering attempt as correct if and only if

lk1 = L1 ∀k1 ∈ {1, . . . , NA}
lk2 = L2 ∀k2 ∈ {NA + 1, . . . , NA +NB}
lk3 = L3 ∀k3 ∈ {NA +NB + 1, . . . , NA +NB +NC}
lk4 = L4 ∀k3 ∈ {NA +NB +NC + 1, . . . , NA +NB +NC +ND}

.

If we have a total of N devices, then we have
(
N
4

)
= N !

4!·(N−4)! quadruples avail-
able to choose from in order to create the test set.

Chapter 5. System Evaluation 69

5.2.3.1 Full Test Set

As we did for the evaluation of our clustering algorithm with three devices, we
chose not to perform any evaluation on the full test set, since we had not a
proper selection criteria between the available quadruples.

5.2.3.2 Built-in Test Set

Once again, we selected only the quadruples where namely identical devices are
not present, i.e. 16 quadruples out of the

(
8
4

)
= 70 possible ones.

Since we have 4 couples of microphones from namely identical devices, this
is also the biggest meaningful test case of our clustering algorithm available
for the built-in test set: we achieved a 100% accuracy, demonstrating that our
clustering algorithm and our feature vector, as long as there's not a strong
correlation between the devices included in the test set, is able to create a
correct partitioning of recordings from built-in microphones of mobile devices.

5.2.3.3 Headset Test Set

As for the built in test set, we selected only the quadruples where namely
identical devices are not present, i.e. 16 quadruples out of the

(
8
4

)
= 70 possible

ones and the biggest meaningful test case of our clustering algorithm available
for the headset test set.

Also on the headset test set we achieved a 100% accuracy, demonstrating
that our clustering algorithm and our feature vector, as long as there's not a
strong correlation between the devices included in the test set, is able to create a
correct partitioning of recordings from headset microphones for mobile devices.

5.2.4 Final Considerations

The clustering algorithm proposed seems to be extremely powerful, if compared
with the previous attempt from Kraetzer et al. [1]. In their work the accuracy is
less than 35% for a 5-device problem: our algorithm would probably outperform
this accuracy if applied to a 5-device problem, since we can not expect such a
huge drop in accuracy.

Regardless of this comparison, these results demonstrate that our algorithm,
thanks to our feature vector, can di�erentiate between recordings from unrelated
devices, when both the number of devices and the number of recordings per
device are known: our initial purpose was met, and the algorithm works both
with PCM encoded �les and with MP3 encoded �les.

For extensive numerical results please refer to appendix B.

70 Chapter 5. System Evaluation

5.3 Classi�cation Result:
Summary and Evaluation

The evaluation of the classi�cation algorithm proposed was performed by the
leave-one-out cross-validation of the data-set de�ned in Section 4.2.5.4.

We have a total of 20 full data-set for this evaluation, each one corresponding
to a di�erent encoding: like this, we are able to evaluate possible degradation of
the algorithm due to the compression, and we are able to see whether our initial
goal of being able to perform a classi�cation robust to low-bitrate compression
- which is likely to be present on mobile devices - was met or not.

In addition to the encoding algorithm and its bitrate, during the evaluations
we also changed the de�nition of class: in the device classi�cation each class
represent the single device as a single instance, i.e.

class (Delli) 6= class (GooglePhonej) 6= class (iPhonek) 6= class (GalaxyS2h)
class (Dell1) 6= class (Dell2)

class (GooglePhone1) 6= class (GooglePhone2)
class (iPhone1) 6= class (iPhone2)

class (GalaxyS21) 6= class (GalaxyS22)

;

in the model classi�cation di�erent instances of a single model belongs to a same
class, i.e.

class (Delli) 6= class (GooglePhonej) 6= class (iPhonek) 6= class (GalaxyS2h)
class (Dell1) = class (Dell2)

class (GooglePhone1) = class (GooglePhone2)
class (iPhone1) = class (iPhone2)

class (GalaxyS21) = class (GalaxyS22)

.

Our feature vector, from the start, was meant to be used on the device classi�ca-
tion. We chose to investigate the model classi�cation in order to understand how
much our feature vector is suitable to such a scenario, where the high-detailed
representation of the channel that we build in order to be able to distinguish
between di�erent instances of the same model could actually become a burden
for the classi�er, due to some over�tting problems.

The results will be presented in a graphical way, by the means of confusion
matrices and of accuracy graphs. Readers interested in the extended text results
will �nd them in appendix C.

5.3.1 Device Classi�cation

During the device classi�cation evaluation for each test set we performed two
kind of classi�cation: the �rst one acts directly on the complete test set, and
we will call it intra-device classi�cation, since di�erent instances of the same
model are present during the classi�cation; the second one, that we will call
inter-device classi�cation, split the data set in several subsets, so that for each
subset one instance of each model is present.

As we saw when considering the clustering problem, in our test we have two
sources of misclassi�cations: the �rst one is the presence of two devices per
model, while the second one is the presence of headsets built from the same
manufacturer of the mobile device they are meant to be used with.

Chapter 5. System Evaluation 71

We will address the �rst problem by using the inter-device classi�cation, and
the second one by performing the same tests on the built-in test set and on the
headset test set, in a disjoint fashion.

All the following results are achieved with RBF kernel functions with pa-
rameters (cRBF , γRBF) =

(
28, 2−9

)
, with the feature selection Jselect = JselectPCM ,

and with a dimension normalization between -1 and 1.

5.3.1.1 Full Test Set

The full test set is composed of 16 di�erent devices, each one representing a
single class, that will be labeled numerically as follows:

Label Device Class

1 Dell1, with the built-in microphone Dellbuilt−in1

2 Dell1, with the headset microphone Dellheadset1

3 Dell2, with the built-in microphone Dellbuilt−in2

4 Dell2, with the headset microphone Dellheadset2

5 GooglePhone1, with the built-in microphone GooglePhonebuilt−in1

6 GooglePhone1,with the headset microphone GooglePhoneheadset1

7 GooglePhone2,with the built-in microphone GooglePhonebuilt−in2

8 GooglePhone2,with the headset microphone GooglePhoneheadset2

9 iPhone1, with the built-in microphone iPhonebuilt−in1

10 iPhone1,with the headset microphone iPhoneheadset1

11 iPhone2,with the built-in microphone iPhonebuilt−in2

12 iPhone2,with the headset microphone iPhoneheadset2

13 GalaxyS21, with the built-in microphone GalaxyS2built−in1

14 GalaxyS21,with the headset microphone GalaxyS2headset1

15 GalaxyS22,with the built-in microphone GalaxyS2built−in2

16 GalaxyS22,with the headset microphone GalaxyS2headset2

The intra-device classi�cation involves all 16 classes in a single classi�cation
task. For each compression algorithm we had several confusion matrices, one per
bitrate: a graphical representation of the confusion matrices of the intra-device
classi�cation is shown in Figure 5.4.

PCM � Accuracy = 92.812 % MP3 (192 kbps) � Accuracy = 92.188 %

72 Chapter 5. System Evaluation

MP3 (128 kbps) � Accuracy = 92.812 % MP3 (96 kbps) � Accuracy = 91.875 %

MP3 (64 kbps) � Accuracy = 91.875 % MP3 (32 kbps) � Accuracy = 88.438 %

AAC (128 kbps) � Accuracy = 92.812 % AAC (96 kbps) � Accuracy = 92.188 %

AAC (64 kbps) � Accuracy = 93.438 % AAC (48 kbps) � Accuracy = 90.625 %

Chapter 5. System Evaluation 73

AAC (32 kbps) � Accuracy = 90.938 % AAC (16 kbps) � Accuracy = 92.812 %

AMR (12.2 kbps) � Accuracy = 80.625 % AMR (10.2 kbps) � Accuracy = 82.188 %

AMR (7.95 kbps) � Accuracy = 75.312 % AMR (7.4 kbps) � Accuracy = 77.5 %

AMR (6.7 kbps) � Accuracy = 75.938 % AMR (5.9 kbps) � Accuracy = 72.5 %

74 Chapter 5. System Evaluation

AMR (5.15 kbps) � Accuracy = 74.375 % AMR (4.75 kbps) � Accuracy = 75.312 %

Figure 5.4: Intra-Device Classi�cation - Test Set

The confusion matrices show the presence of a tight correlation between
namely identical devices, especially between the two iPhones, the two Samsung
Galaxy, and the dell headsets.

In order to remove this dependency and to assess the quality of our classi�ca-
tion method against supposedly unrelated devices the inter-device classi�cation
is performed: during the inter-device classi�cation 8 classes per test subset are
present, and the cross-validation is performed on all the di�erent test con�gu-
rations. The test con�gurations are selected in order to avoid the presence in
the test set of di�erent instances of the same model, i.e. the main source of
misclassi�cation: ∀ (a, b, c, d, e, f, g, h, i) ∈ {1, 2}8

L = {l :
(
l = Dellbuilt−ina

)
∨
(
l = Dellheadsetb

)
∨ . . .(

l = GooglePhonebuilt−ind

)
∨
(
l = GooglePhoneheadsete

)
∨ . . .(

l = iPhonebuilt−inf

)
∨
(
l = iPhoneheadsetg

)
∨ . . .(

l = GalaxyS2built−inh

)
∨
(
l = GalaxyS2headseti

)
}

The cross-validation results from all the possible 256 con�gurations are ag-
gregated together in a single confusion matrix, and the whole procedure is re-
peated for all the available compression algorithms. A graphical representation
of the confusion matrices resulting from the inter-device classi�cation is shown
in Figure 5.5.

PCM � Accuracy = 97.090 % MP3 (192 kbps) � Accuracy = 97.285 %

Chapter 5. System Evaluation 75

MP3 (128 kbps) � Accuracy = 97.197 % MP3 (96 kbps) � Accuracy = 96.796 %

MP3 (64 kbps) � Accuracy = 97.375 % MP3 (32 kbps) � Accuracy = 95.964 %

AAC (128 kbps) � Accuracy = 97.495 % AAC (96 kbps) � Accuracy = 97.041 %

AAC (64 kbps) � Accuracy = 97.139 % AAC (48 kbps) � Accuracy = 97.124 %

76 Chapter 5. System Evaluation

AAC (32 kbps) � Accuracy = 96.216 % AAC (16 kbps) � Accuracy = 96.475 %

AMR (12.2 kbps) � Accuracy = 91.007 % AMR (10.2 kbps) � Accuracy = 91.433 %

AMR (7.95 kbps) � Accuracy = 88.743 % AMR (7.4 kbps) � Accuracy = 88.135 %

AMR (6.7 kbps) � Accuracy = 86.318 % AMR (5.9 kbps) � Accuracy = 84.407 %

Chapter 5. System Evaluation 77

AMR (5.15 kbps) � Accuracy = 86.633 % AMR (4.75 kbps) � Accuracy = 85.884 %

Figure 5.5: Intra-Device Classi�cation - Full Test Set

The results show a clear improvement, as well as the presence of a secondary
source of misclassi�cation: as mentioned when considering the clustering prob-
lem, headsets built from the same manufacturer of the mobile device they are
meant to be used with creates a strong source of misclassi�cations. We can also
notice a dependency between the accuracy and the coding algorithm, which is
summarized in Figure 5.6 and 5.7

Figure 5.6: Intra-Device Classi�cation - Full Test Set: Accuracy Vs Encoding

78 Chapter 5. System Evaluation

Figure 5.7: Inter-Device Classi�cation - Full Test Set: Accuracy Vs Encoding

From the �gures above we can notice that the dependency between the accuracy
and the bitrate of the encoding algorithm is unclear: for the AMR compression
a general decreasing trend is present - as we would have expected - but both the
MP3-encoded and the AAC encoded test sets sometimes have an higher score
that the one obtained by using the PCM encoded test set, which is counterin-
tuitive.

Chapter 5. System Evaluation 79

5.3.1.2 Built-in Test Set

The built-in test set is composed of 8 several devices, that will be labeled nu-
merically as follows:

Label Device Class

1 Dell1, with the built-in microphone Dellbuilt−in1

2 Dell2, with the built-in microphone Dellbuilt−in2

3 GooglePhone1, with the built-in microphone GooglePhonebuilt−in1

4 GooglePhone2,with the built-in microphone GooglePhonebuilt−in2

5 iPhone1, with the built-in microphone iPhonebuilt−in1

6 iPhone2,with the built-in microphone iPhonebuilt−in2

7 GalaxyS21, with the built-in microphone GalaxyS2built−in1

8 GalaxyS22,with the built-in microphone GalaxyS2built−in2

As for the full test set, we performed an intra-device classi�cation at �rst.
A graphical representation of the confusion matrices of the intra-device classi�-
cation is shown in Figure 5.8.

PCM � Accuracy = 95.000 % MP3 (192 kbps) � Accuracy = 92.5 %

MP3 (128 kbps) � Accuracy = 93.75 % MP3 (96 kbps) � Accuracy = 94.375 %

80 Chapter 5. System Evaluation

MP3 (64 kbps) � Accuracy = 92.5 % MP3 (32 kbps) � Accuracy = 89.375 %

AAC (128 kbps) � Accuracy = 92.5 % AAC (96 kbps) � Accuracy = 92.5 %

AAC (64 kbps) � Accuracy = 94.375 % AAC (48 kbps) � Accuracy = 92.5 %

AAC (32 kbps) � Accuracy = 96.25 % AAC (16 kbps) � Accuracy = 98.75 %

Chapter 5. System Evaluation 81

AMR (12.2 kbps) � Accuracy = 83.75 % AMR (10.2 kbps) � Accuracy = 88.75 %

AMR (7.95 kbps) � Accuracy = 81.25 % AMR (7.4 kbps) � Accuracy = 81.25 %

AMR (6.7 kbps) � Accuracy = 85. % AMR (5.9 kbps) � Accuracy = 82.5 %

AMR (5.15 kbps) � Accuracy = 81.25 % AMR (4.75 kbps) � Accuracy = 85 %

Figure 5.8: Intra-Device Classi�cation - Built-in Test Set

82 Chapter 5. System Evaluation

As we can see, the correlation between namely identical devices is clearly ex-
posed: in particular, is extremely di�cult to di�erentiate between the two Sam-
sung Galaxy S2 even from PCM encoded recordings. This problem is addressed,
like before, by performing an inter-device classi�cation; the test con�gurations
are selected as follows: ∀ (a, b, c, d) ∈ {1, 2}4

L = {l :
(
l = Dellbuilt−ina

)
∨
(
l = GooglePhonebuilt−ind

)
∨ . . .(

l = iPhonebuilt−inf

)
∨
(
l = GalaxyS2built−inh

)
}

The cross-validation results from the possible 16 con�gurations are aggre-
gated together in a single confusion matrix, and the whole procedure is repeated
for all the available compression algorithms. A graphical representation of the
confusion matrices resulting from the inter-device classi�cation is shown in Fig-
ure 5.9.

PCM � Accuracy = 99.688 % MP3 (192 kbps) � Accuracy = 99.688 %

MP3 (128 kbps) � Accuracy = 99.688 % MP3 (96 kbps) � Accuracy = 99.844 %

Chapter 5. System Evaluation 83

MP3 (64 kbps) � Accuracy = 99.844 % MP3 (32 kbps) � Accuracy = 100.000 %

AAC (128 kbps) � Accuracy = 99.688 % AAC (96 kbps) � Accuracy = 99.688 %

AAC (64 kbps) � Accuracy = 99.688 % AAC (48 kbps) � Accuracy = 99.844 %

AAC (32 kbps) � Accuracy = 100 % AAC (16 kbps) � Accuracy = 99.766 %

84 Chapter 5. System Evaluation

AMR (12.2 kbps) � Accuracy = 95.703 % AMR (10.2 kbps) � Accuracy = 95.781 %

AMR (7.95 kbps) � Accuracy = 95.625 % AMR (7.4 kbps) � Accuracy = 95.703 %

AMR (6.7 kbps) � Accuracy = 96.25 % AMR (5.9 kbps) � Accuracy = 95.234 %

AMR (5.15 kbps) � Accuracy = 95.469 % AMR (4.75 kbps) � Accuracy = 96.328 %

Figure 5.9: Intra-Device Classi�cation - Built-in Test Set

Chapter 5. System Evaluation 85

The results of the inter-device classi�cation clearly show that in the built-
in test-set is de�nitely is possible to di�erentiate between unrelated devices.
Figure 5.10 exposes an irregular dependency of the accuracy as a function of
the encoding bit-rate during the intra-device classi�cation task:

Figure 5.10: Intra-Device Classi�cation - Built-in Test Set:
Accuracy Vs Encoding

Figure 5.11, on the other end, shows that for the inter-device classi�cation
both the MP3 and the AAC encoding seem not to in�uence - apart for a really
slight increase of the accuracy on the lower bitrates - the results: is possible to
achieve a near to perfect classi�cation, like when using PCM encoded recordings.

The AMR encoding, instead, creates a decrease of the accuracy - due to the
extremely low bitrates - that remains nearly constant despite the decrease of
the bitrate.

86 Chapter 5. System Evaluation

Figure 5.11: Inter-Device Classi�cation - Built-in Test Set:
Accuracy Vs Encoding

5.3.1.3 Headset Test Set

The headset test set is composed of 8 several devices, that will be labeled nu-
merically as follows:

Label Device Class

1 Dell1, with the headset microphone Dellheadset1

2 Dell2, with the headset microphone Dellheadset2

3 GooglePhone1, with the headset microphone GooglePhoneheadset1

4 GooglePhone2,with the headset microphone GooglePhoneheadset2

5 iPhone1, with the headset microphone iPhoneheadset1

6 iPhone2,with the headset microphone iPhoneheadset2

7 GalaxyS21, with the headset microphone GalaxyS2headset1

8 GalaxyS22,with the headset microphone GalaxyS2headset2

The �rst step was the inter-device classi�cation; a graphical representation
of the confusion matrices of the intra-device classi�cation is shown in Figure5.12.

Chapter 5. System Evaluation 87

PCM � Accuracy = 98.750 % MP3 (192 kbps) � Accuracy = 98.750 %

MP3 (128 kbps) � Accuracy = 98.125 % MP3 (96 kbps) � Accuracy = 97.500 %

MP3 (64 kbps) � Accuracy = 98.750 % MP3 (32 kbps) � Accuracy = 98.125 %

AAC (128 kbps) � Accuracy = 98.75 % AAC (96 kbps) � Accuracy = 98.75 %

88 Chapter 5. System Evaluation

AAC (64 kbps) � Accuracy = 98.75 % AAC (48 kbps) � Accuracy = 98.75 %

AAC (32 kbps) � Accuracy = 98.75 % AAC (16 kbps) � Accuracy = 100 %

AMR (12.2 kbps) � Accuracy = 90.625 % AMR (10.2 kbps) � Accuracy = 88.75 %

AMR (7.95 kbps) � Accuracy = 86.875 % AMR (7.4 kbps) � Accuracy = 90 %

Chapter 5. System Evaluation 89

AMR (6.7 kbps) � Accuracy = 89.375 % AMR (5.9 kbps) � Accuracy = 83.75 %

AMR (5.15 kbps) � Accuracy = 83.125 % AMR (4.75 kbps) � Accuracy = 83.125 %

Figure 5.12: Intra-Device Classi�cation - Headset Test Set

Once again, the correlation between namely identical devices is exposed;
however, di�erently from the built-in device, the most di�cult couple is repre-
sented by the headset microphones used with the two Dell laptops. The test
con�gurations for the following inter-device classi�cation were selected as fol-
lows: ∀ (a, b, c, d) ∈ {1, 2}4

L = {l :
(
l = Dellheadseta

)
∨
(
l = GooglePhoneheadsetd

)
∨ . . .(

l = iPhoneheadsetf

)
∨
(
l = GalaxyS2headseth

)
}

The cross-validation results from the possible 16 con�gurations are aggre-
gated together in a single confusion matrix, and the whole procedure is repeated
for all the available compression algorithms. A graphical representation of the
confusion matrices resulting from the inter-device classi�cation is shown in Fig-
ure 5.13.

90 Chapter 5. System Evaluation

PCM � Accuracy = 100 % MP3 (192 kbps) � Accuracy = 100 %

MP3 (128 kbps) � Accuracy = 100 % MP3 (96 kbps) � Accuracy = 100 %

MP3 (64 kbps) � Accuracy = 100 % MP3 (32 kbps) � Accuracy = 99.609 %

AAC (128 kbps) � Accuracy = 100 % AAC (96 kbps) � Accuracy = 100 %

Chapter 5. System Evaluation 91

AAC (64 kbps) � Accuracy = 100 % AAC (48 kbps) � Accuracy = 100 %

AAC (32 kbps) � Accuracy = 100 % AAC (16 kbps) � Accuracy = 100 %

AMR (12.2 kbps) � Accuracy = 98.281 % AMR (10.2 kbps) � Accuracy = 96.641 %

AMR (7.95 kbps) � Accuracy = 96.562 % AMR (7.4 kbps) � Accuracy = 97.422 %

92 Chapter 5. System Evaluation

AMR (6.7 kbps) � Accuracy = 96.797 % AMR (5.9 kbps) � Accuracy = 93.047 %

AMR (5.15 kbps) � Accuracy = 95.234 % AMR (4.75 kbps) � Accuracy = 95.469 %

Figure 5.13: Intra-Device Classi�cation - Headset Test Set

The results of the inter-device classi�cation clearly show that also in the
headset test-set is de�nitely is possible to di�erentiate between unrelated de-
vices. Figure 5.14 exposes a - still existing - irregular dependency of the accuracy
as a function of the encoding bit-rate during the intra-device classi�cation task;
Figure 5.15,instead, shows that also in the headset test-set is true that for the
inter-device classi�cation both the MP3 and the AAC encoding seem not to
in�uence - apart for a really slight increase of the accuracy on the lower bitrates
- the results: really often is possible to achieve a perfect classi�cation, like when
using PCM encoded recordings.

The AMR encoding creates a decrease of the accuracy - due to the extremely
low bitrates - that remains nearly constant until 6.7 kHz, but drops suddenly
at lower bitrates.

5.3.1.4 Final Considerations

The results prove that our channel estimation based algorithm works with an
high accuracy, that can be raised dramatically when avoiding the presence of
highly related devices inside the test set.

Intra-Device Classi�cation: The intra-device classi�cation of the full test
set both for PCM, MP3 and AAC encoded audio �les achieves an average accu-
racy higher then 90%. In particular, the average accuracy is equal to 92.812%

Chapter 5. System Evaluation 93

with PCM encoded audio �les, 91.438% with MP3 encoded audio �les and 92.135
with AAC encoded audio �les. The average accuracy with AMR encoded audio
�les is equal to 76.719% if we consider all the available bitrates, however, if
we consider only the bitrates higher or equal to 7.4 kbps, i.e. the nominal toll
quality bitrate for clean speech only recordings6, the accuracy rises to 78.906%.

The intra-device classi�cation of the built-in test set both for PCM, MP3
and AAC encoded audio �les also achieves an average accuracy higher then 90%.
In particular, the average accuracy is equal to 95% with PCM encoded audio
�les, 92.5% with MP3 encoded audio �les and 94.479 with AAC encoded audio
�les. The average accuracy with AMR encoded audio �les is equal to 83.594%
if we consider all the available bitrates, and rises to 83.75% if we consider only
the bitrates higher or equal to 7.4 kbps.

The intra-device classi�cation of the full test set both for PCM, MP3 and
AAC encoded audio �les achieve an average accuracy higher then 90%. In
particular, the average accuracy is equal to 98.75% with PCM encoded audio
�les, 98.25% with MP3 encoded audio �les and 98.958% with AAC encoded
audio �les. The average accuracy with AMR encoded audio �les is equal to
86.953% if we consider all the available bitrates, and rises to 89.062% if we
consider only the bitrates higher or equal to 7.4 kbps.

Figure 5.14: Intra-Device Classi�cation - Headset Test Set:
Accuracy Vs Encoding

6which is not the test content tested used during this work, see Section 5.1.2

94 Chapter 5. System Evaluation

Figure 5.15: Inter-Device Classi�cation - Headset Test Set:
Accuracy Vs Encoding

The only research so far that dealt with inter-device classi�cation one by
Kraetzer [4]: two intra-device classi�cation task were performed on two dif-
ferent sets of four microphones, and the best accuracy was 75.88% for Røde
microphones and of 82.51% for Beyer microphones. These results were achieved
on PCM encoded audio �les and represent the current state-of-the-art on intra-
device classi�cation. If we consider our worst-case scenario, i.e. the classi�cation
of the full test set, we can see that our algorithm seems to outperform the pre-
vious one on PCM, MP3 or AAC encoded audio �les. Moreover, the average
accuracy achieved on the AMR encoded test set - 76.719% or 78.906% - is in the
same range of the results in [4], even if obtained on bitrates equal to 12.2 kbps
or lower. If we reduce the number of devices involved in the test-set, i.e. we
consider the built-in test set or the headset test set with only 8 devices involved,
our algorithm achieves an higher result with every tested bitrate, despite the
number of devise involved is doubled.

Chapter 5. System Evaluation 95

Inter-Device Classi�cation: The inter-device classi�cation of the full test
set both for PCM, MP3 and AAC encoded audio �les achieves an average accu-
racy higher then 95%. In particular, the average accuracy is equal to 97.090%
with PCM encoded audio �les, 96.924% with MP3 encoded audio �les and 96.915
with AAC encoded audio �les. The average accuracy with AMR encoded audio
�les is equal to 87.829% if we consider all the available bitrates, and rises to
89.847% if we consider only the bitrates higher or equal to 7.4 kbps.

The inter-device classi�cation of the built-in test set both for PCM, MP3
and AAC encoded audio �les achieves an average accuracy higher then 99%. In
particular, the average accuracy is equal to 99.688% with PCM encoded audio
�les, 99.912% with MP3 encoded audio �les and 99.779 with AAC encoded audio
�les. The average accuracy with AMR encoded audio �les is equal to 95.762% if
we consider all the available bitrates, but drops to 95.703% if we consider only
the bitrates higher or equal to 7.4 kbps.

Also the inter-device classi�cation of the full test set both for PCM, MP3
and AAC encoded audio �les achieve an average accuracy higher then 99%. In
particular, the average accuracy is equal to 100% with PCM encoded audio �les,
99.992% with MP3 encoded audio �les and again 100% with AAC encoded audio
�les. The average accuracy with AMR encoded audio �les is equal to 96.182%
if we consider all the available bitrates, and rises to 96.182% if we consider only
the bitrates higher or equal to 7.4 kbps.

The research that represents the state-of-the-art on inter-device classi�cation
is the one by Romero and Wilson [9]: they performed an inter-device classi�ca-
tion on two di�erent sets of 8 devices, achieving an accuracy of 99.0% on the
ICSI subset of the NIST 2006 Speaker Recognition Evaluation database, and of
93.2% on half of the LLHDB subset of the HTIMIT database. The devices in-
cluded in the ICSI subset are totally uncorrelated between them, both regarding
the model and the quality of the recording device, e.g. an ear-wrap microphone,
a condenser microphone, a built-in microphone from a laptop, an hand recorder
and so on. On the other hand, the devices included in the LLHDB can be con-
sidered to have all the same quality - they are all landlines telephone handset -
but di�erent construction properties; the only possibly shared characteristic is
the transducer class - electrect or carbon-button. Our test set is composed each
time by 8 devices that are from di�erent models, that can considered to share
the same quality - since they are all microphones from mobile devices - and
that pairwise show a correlation, as mentioned several times. Both on PCM,
MP3 or AAC encoded audio �les we have an accuracy score slightly higher or
slightly lower then 97%, that is unfortunately di�cult to compare with the tests
performed in [9]. In terms of pure accuracy the results on the ICSI subset are
higher, but this accuracy drops dramatically when the system is applied on the
LLHDB subset. We believe that our classi�cation algorithm could be considered
on par with the one from Romero and Wilson, since the average accuracy also
with MP3 or AAC encoded audio �les drops less then 0.2% - a property that is
not granted by their approach. Moreover, when the devices are not correlated,
i.e. the inter-device classi�cation task on the built-in test set and on the headset
test set, PCM ,MP3 and AAC encoded audio �le are classi�ed with an aver-
age accuracy higher then 99%, and AMR encoded audio �les with an average
accuracy higher then 95%, despite the low bitrates involved.

96 Chapter 5. System Evaluation

5.3.2 Model Classi�cation

During the model classi�cation evaluation we put in the same class namely
identical devices: as a consequence we don't need anymore the concept of intra-
device or inter-device classi�cation. We expect as the main source of misclassi�-
cation the presence of headsets built from the same manufacturer of the mobile
device they are meant to be used with; moreover, it's also possible that our
parametrization of the GMM, as well as the feature selection, are not the opti-
mal ones for this task, since both were set in order to maximize the accuracy of
the device classi�cation.

We will address this problem as we did for the device classi�cation evaluation,
i.e. by performing the test not only on the full test set, but also on the built-in
test set and on the headset test set, where this correlation should vanish.

All the following results were achieved with RBF kernel functions with pa-
rameters (cRBF , γRBF) =

(
28, 2−9

)
, with the feature selection Jselect = JselectMP3 ,

and with a dimension normalization between -1 and 1.

5.3.2.1 Full Test Set

The full test set is composed of 8 classes, that will be labeled numerically as
follows:

Label Devices Class

1 Dell1 and Dell2, with the built-in microphone Dellbuilt−in

2 Dell1 and Dell2, with the headset microphone Dellheadset

3 GooglePhone1 and GooglePhone2, with the built-in microphone GooglePhonebuilt−in

4 GooglePhone1 and GooglePhone2, with the headset microphone GooglePhoneheadset

5 iPhone1 and iPhone2, with the built-in microphone iPhonebuilt−in

6 iPhone1 and iPhone2, with the headset microphone iPhoneheadset

7 GalaxyS21 and GalaxyS22, with the built-in microphone GalaxyS2built−in

8 GalaxyS21 and GalaxyS22, with the headset microphone GalaxyS2headset

Again, for each compression algorithm we had several confusion matrices, one
per bitrate. A graphical representation of the confusion matrices of the intra-
device classi�cation is shown in Figure 5.16.

PCM � Accuracy = 95.625 % MP3 (192 kbps) � Accuracy = 95.3125 %

Chapter 5. System Evaluation 97

MP3 (128 kbps) � Accuracy = 95.3125 % MP3 (96 kbps) � Accuracy = 95.3125 %

MP3 (64 kbps) � Accuracy = 95 % MP3 (32 kbps) � Accuracy = 95.3125 %

AAC (128 kbps) � Accuracy = 95.625 % AAC (96 kbps) � Accuracy = 95.9375 %

AAC (64 kbps) � Accuracy = 95.9375 % AAC (48 kbps) � Accuracy = 96.25 %

98 Chapter 5. System Evaluation

AAC (32 kbps) � Accuracy = 95.3125 % AAC (16 kbps) � Accuracy = 95.3125 %

AMR (12.2 kbps) � Accuracy = 90.9375 % AMR (10.2 kbps) � Accuracy = 90.625 %

AMR (7.95 kbps) � Accuracy = 88.75 % AMR (7.4 kbps) � Accuracy = 88.125 %

AMR (6.7 kbps) � Accuracy = 87.8125 % AMR (5.9 kbps) � Accuracy = 83.125 %

Chapter 5. System Evaluation 99

AMR (5.15 kbps) � Accuracy = 87.1875 % AMR (4.75 kbps) � Accuracy = 86.25 %

Figure 5.16: Model Classi�cation - Full Test Set

Figure 5.17: Model Classi�cation - Full Test Set: Accuracy Vs Encoding

The confusion matrices resemble square block matrices with 2 × 2 blocks,
highlighting a correlation between the pairs (1, 2) , (3, 4) , (5, 6) , (7, 8). The ex-
istence of these pairs, from the labeling stated herebefore, corresponds to a cor-
relation between the classes (Dell built−in, Dellheadset), (GooglePhone built−in,

100 Chapter 5. System Evaluation

GooglePhoneheadset), (iPhone built−in, iPhoneheadset), (SamsungGalaxyS2 built
−in, SamsungGalaxyS2headset).

This con�rms that our assumption of an existing relationship between the
built-in microphones and the corresponding headsets built from the same man-
ufacturer of the mobile device they are meant to be used with holds.

Also in the model classi�cation is straightforward to notice that the encoding
a�ects the accuracy of the classi�cation. It's interesting to notice that the result
of the compression with respect to the PCM encoding is not a monotonically
decrease of the accuracy, as we would expect; moreover, with the AAC compres-
sion sometimes the algorithm performs better on compressed audio �les than
on the PCM encoded ones, which is counterintuitive. The AMR compression is
de�nitely the one which creates the highest drop of accuracy, both due to it's
encoding algorithm and due to the extremely low bitrates, it does not cause a
monotonically decrease of the accuracy, as for MP3 and AAC.

In Figure 5.17 it's possible to �nd a graphical representation of these result.
Unfortunately, we are still not able to completely understand the relationship
between the AAC compression and such a behavior: hopefully in the future it
would be possible to exploit its characteristic in order to enhance the accuracy
of the classi�cation algorithm.

5.3.2.2 Built-in Test Set

The built-in test set is composed of 4 classes, that will be labeled numerically
as follows:

Label Devices Class

1 Dell1 and Dell2, with the built-in microphone Dellbuilt−in

2 GooglePhone1 and GooglePhone2, with the built-in microphone GooglePhonebuilt−in

3 iPhone1 and iPhone2, with the built-in microphone iPhonebuilt−in

4 GalaxyS21 and GalaxyS22, with the built-in microphone GalaxyS2built−in

The confusion matrices of the built-in test set are plotted in �gure 5.18:

PCM � Accuracy = 100 % MP3 (192 kbps) � Accuracy = 100 %

Chapter 5. System Evaluation 101

MP3 (128 kbps) � Accuracy = 100 % MP3 (96 kbps) � Accuracy = 100 %

MP3 (64 kbps) � Accuracy = 100 % MP3 (32 kbps) � Accuracy = 100 %

AAC (128 kbps) � Accuracy = 100 % AAC (96 kbps) � Accuracy = 100 %

AAC (64 kbps) � Accuracy = 100 % AAC (48 kbps) � Accuracy = 100 %

102 Chapter 5. System Evaluation

AAC (32 kbps) � Accuracy = 100 % AAC (16 kbps) � Accuracy = 100 %

AMR (12.2 kbps) � Accuracy = 98.125 % AMR (10.2 kbps) � Accuracy = 96.875 %

AMR (7.95 kbps) � Accuracy = 98.125 % AMR (7.4 kbps) � Accuracy = 98.75 %

AMR (6.7 kbps) � Accuracy = 97.5 % AMR (5.9 kbps) � Accuracy = 98.125 %

Chapter 5. System Evaluation 103

AMR (5.15 kbps) � Accuracy = 97.5 % AMR (4.75 kbps) � Accuracy = 98.125 %

Figure 5.18: Model Classi�cation - Built-in Test Set

Figure 5.19: Model Classi�cation - Built-in Test Set: Accuracy Vs Encoding

On the built-in test set the model classi�cation achieves high performances:
we have no more the correlation between coupled built-in microphones and head-
set microphones and it seems that, thanks to our channel estimate based feature

104 Chapter 5. System Evaluation

vector, the peculiar characteristic of each class were modeled in an extremely
good way.

Moreover, in this scenario our algorithm proved to be strong against com-
pression: both PCM, MP3 and AAC encoded audio �les are classi�ed with a
100% accuracy independently from the bitrate. The AMR encoding creates a
slight decrease of the accuracy, that we can tolerate since the extremely low
target bitrates of this encoding algorithm. A visual summary of the encoding
e�ect can be found in �gure 5.19

5.3.2.3 Headset Test Set

The headset test set is also composed of 4 classes, that will be labeled numeri-
cally as follows:

Label Devices Class

1 Dell1 and Dell2, with the headset microphone Dellheadset

2 GooglePhone1 and GooglePhone2, with the headset microphone GooglePhoneheadset

3 iPhone1 and iPhone2, with the headset microphone iPhoneheadset

4 GalaxyS21 and GalaxyS22, with the headset microphone GalaxyS2headset

The confusion matrices of the headset test set are plotted in �gure 5.20.

PCM � Accuracy = 100 % MP3 (192 kbps) � Accuracy = 100 %

MP3 (128 kbps) � Accuracy = 100 % MP3 (96 kbps) � Accuracy = 100 %

Chapter 5. System Evaluation 105

MP3 (64 kbps) � Accuracy = 100 % MP3 (32 kbps) � Accuracy = 98.75 %

AAC (128 kbps) � Accuracy = 100 % AAC (96 kbps) � Accuracy = 100 %

AAC (64 kbps) � Accuracy = 100 % AAC (48 kbps) � Accuracy = 100 %

AAC (32 kbps) � Accuracy = 100 % AAC (16 kbps) � Accuracy = 99.375 %

106 Chapter 5. System Evaluation

AMR (12.2 kbps) � Accuracy = 98.125 % AMR (10.2 kbps) � Accuracy = 96.25 %

AMR (7.95 kbps) � Accuracy = 95.625 % AMR (7.4 kbps) � Accuracy = 95.625 %

AMR (6.7 kbps) � Accuracy = 96.25 % AMR (5.9 kbps) � Accuracy = 86.87500 %

AMR (5.15 kbps) � Accuracy = 89.375 % AMR (4.75 kbps) � Accuracy = 91.25 %

Figure 5.20: Model Classi�cation - Headset Test Set

Chapter 5. System Evaluation 107

Also with the headset subset the model classi�cation works extremely good:
we achieved a 100 % accuracy on PCM encoded audio �les, on all MP3 encoded
audio �les but those encoded at 32 kbps, and on all AAC encoded audio �les
but those encoded at 16 kbps. The AMR encoded audio �les are still identi�ed
correctly with an high accuracy, apart from bitrates lower than 6 kbps.

If we compare these results with those from the built-in test set we can't avoid
to notice than the drop in accuracy that we su�er due to the AMR encoding is
much more relevant with the headset devices. This should be mainly due to the
noise found on the channel estimate of the magnitude response of the channel
computed on the headset: from the start, the estimates of the headset devices
were not as compact as those from the built-in devices, and it's possible that
this reduces the robustness of out model to the AMR lossy encoding.

A graphical representation of the accuracy as a function of the encoding can
be found in �gure 5.21.

5.3.2.4 Final Considerations

Even if our microphone classi�cation proposal was not meant to carry out model
identi�cation, the results prove that - even with some limitations - our channel
estimation based algorithm works with an extremely high accuracy on sets with
no strong correlations between its member, when applied to model classi�cation.

For the full test set both PCM, MP3 and AAC encoded audio �les are
classi�ed with an accuracy higher than 90%: with the PCM encoding we have
a 95.625% accuracy; on MP3 encoded audio �les we have an average accuracy
of 95.25 %; on AAC encoded audio �les we have an average accuracy of 95.729
%. The average accuracy for the AMR encoded full test set was 87.852%, but
if we consider only the bitrates higher or equal to 7.4 kbps, i.e. the nominal toll
quality bitrate for clean speech only recordings7, the accuracy rises to 89.609
%, that we can consider to be high due to the harshness of the AMR encoding
algorithm.

For the built-in test set both PCM, MP3 and AAC encoded audio �les are
classi�ed with an accuracy of 100%. The AMR average accuracy across all the
available bitrates is 97.891 %, and it's equal to 97.969 % if we consider only the
toll quality bitrates.

For the headset test set PCM encoded audio �les are classi�ed with an
accuracy of 100%, together with all the MP3 or AAC encoded audio �les with
bitrates greater than 32 kbps: the average accuracy on MP3 encoded audio �les
is 99.75 %, and for AAC encoded audio �les is 99.896 %. The AMR average
accuracy across all the available bitrates is 93.672%, and it's equal to 96.406 %
if we consider only the toll quality bitrates.

7which is not the test content tested used during this work, see Section 5.1.2

108 Chapter 5. System Evaluation

Figure 5.21: Model Classi�cation - Headset Test Set: Accuracy Vs Encoding

In conclusion, we provided a model classi�cation algorithm reliable both
with PCM encoded audio �les and with MP3 and AAC encoded audio �les; the
model classi�cation with AMR encoded audio �les is possible, but still needs a
further work due to the peculiarity of their compression scheme.

5.4 Feature Vector In�uence on the Classi�cation

In order to evaluate the in�uence of the feature vector introduced in Section
4.1, we tried to perform the same evaluations considering a baseline framework,
where the channel estimate computed starting from the results by Gaubitch et
al. [13] is used directly as the feature vector for the classi�cation.

The test were performed including intra-device classi�cation, inter-device
classi�cation and model classi�cation using all the three subsets previously de-
�ned. in Figure 5.22 we can visually compare the di�erence for the intra-device
classi�cation of the full test; the normal framework is plotted in red, and the
baseline framework in green.

Chapter 5. System Evaluation 109

Figure 5.22: Baseline Framework - Intra-Device Classi�cation

Figure 5.23: Baseline Framework - Intra-Device Classi�cation

110 Chapter 5. System Evaluation

We can see how, independently of the encoding, the average di�erence in
terms of accuracy is constantly around 10%. The same happens if we consider
the inter-device classi�cation on the full test sets, plotted in Figure 5.23.

The baseline framework never performed better then the normal one, so we
won't discuss it further in this chapter. Readers interested can �nd the complete
results of the best performing baseline framework in Appendix C.

5.5 Skype Processing Considerations

In order to correctly evaluate the in�uence of the Skype processing on the chan-
nel estimates we need to correlate somehow the bandwidth available to the
perceived Quality of Service (QoS) of the Skype calls: intuitively, if the band-
width available is low the source encoding performed by Skype should target a
lower bitrate, thus overcoming the low condition of the network.

The only research investigating the Skype QoS, written by Baset and Schulzrinne
[30] , dates back to 2006: the two authors observed that uplink and downlink
bandwidth of 2 kB/s each were necessary for bare minimum audible call quality,
and that the voice was almost unintelligible at an uplink and downlink band-
width of 1.5 kB/s.

The main change with respect to 2006 according to the o�cial information
form Skype is the introduction of a new audio codec (SILK), whose minimum
bit-rate (6 kbps) is lower than the one (10 kbps) involved during the cited
research (the iSAC codec). When only simple calls are involved, the minimum
speed requirements by Skype are uplink and downlink bandwidth of at least 30
kbps, i.e. 3.75 kB/s each.

We chose to test the two device previously labeled asDellbuilt−in1 andDellbuilt−in2 .
For each device we recorded four short sentences with di�erent bandwidth, i.e.
10 kB/s, 5 kB/s, 2.5 kB/s, 1 kB/s and 0.5 kB/s. The �rst di�erence that we no-
ticed with the research from Baset and Schulzrinne is that, even with an uplink
and downlink bandwidth of 0.5 kB/s each, we were still able to understand the
speech, as long as only one person is talking: if both the speakers talk at once
with a bandwidth of 10 kB/s is already possible to experience packet drops and
severe degradation of the intelligibility.

All the recordings were made by using the software Callburner 1.0.0.83: this
software allows the user to collect in separate �les the speech from the primary
speaker, the speech from the secondary speaker and the mixed version8. Thus,
we were able to acquire each recording before and after the transmission on the
network; and to perform a classi�cation using the same training content and
the same SVM parameters selection of the previous sections.

Unfortunately the outcome of the classi�cation was extremely disappointing,
since only 8 recordings out of 80 were correctly classi�ed. This is understand-
able: when Skype is involved and Callburner is used, the audio source from the
primary speaker is recorded only after the SILK compression of the source, thus
violating the process �ow stated in Section 2.2.2; we can suppose that the SILK
encoding target bitrates is somehow driven by the overall bandwidth availabil-
ity. As for the AMR compression the SILK encoder in�uences a lot the signal,
to the point that - unfortunately for our purposes - the channel estimate can't
be classi�ed with an SVM trained on PCM encoded audio �le. However, we

8See the process �ow of the Skype interview in �gure 2.2.

Chapter 5. System Evaluation 111

believe that, if the SILK encoder in�uence is considered from the start like with
the MP3, AAC and AMR compression algorithm, is indeed possible to achieve
good results also when using speech recordings from Skype.

Chapter 6

Summary and Future Work

The proposed method for microphone classi�cation proved to be extremely re-
liable both on PCM encoded audio �les and on audio �les compressed with the
most popular compression algorithms, i.e. both the MP3 and the AAC. More-
over, as extensively reported in Chapter 5, this reliability holds also when the
audio �les are compressed with the lowest bitrates, despite the perceivable loss
of information that these operations mean. If the AMR compression scheme is
involved the system accuracy unfortunately decreases consistently, both due to
the bitrates involved, ranging from a maximum of 12.2 kbit/s to a minimum
of 4.75 kbit/s, and because of the underlying Code-Excited Linear Predictive
(CELP) coding model, which provides a reliable method for speech coding, but
consistently reduces the information available about the microphone channel.

The results provided in Section 5.3.1 and 5.3.2 clearly shows that, when
the extremely low bitrates available with the AMR compression algorithm are
involved, the classi�cation of the device is still possible up to the nominal toll
quality bitrate of 7.4 kbit/s - with an accuracy higher then 95% - only if in the
test set the devices are not correlated between each other. The same happens if
we are not interested in the single device, but only on its general model. When
considering test sets with strong relations between the recording devices AMR
compressed audio �les should be avoided, while both MP3, AAC and PCM
encoded audio �les can be classi�ed with an high consistency of the result,
up to be considered on par with the current state of the art on microphone
classi�cation.

As far as we know lossy compressed audio �les were never involved in research
papers about microphone classi�cation: due to the overwhelming presence of
encoded audio �les on the network and in contest when the authenticity the
content is an issue - e.g. when the audio �le is presented in a courtyard - the
robustness of the algorithm can be considered an highly desirable feature and
represents a precedent.

This framework relies on the recent work by Gupta et al. [13], that provides
an algorithm for the blind estimation of the magnitude response of a channel
using the observations of a single microphone. Their research can be consid-
ered still in its early stages, and every enhancement on the single-microphone
blind channel estimation will positively in�uence the accuracy of our proposal.
Another possible improvement could derive from a pre-processing of the input
audio �les with a de-reverberation algorithm: this operation in theory would

113

114 Chapter 6. Summary and Future Work

lessen the in�uence of the environment on the recording, thus enhancing the
discriminant power of the magnitude response of the microphone channel and
consequently of our algorithm.

Finally, it's possible to combine our proposal with a tampering/editing de-
tection algorithm in order to enhance its reliability: at the present ENF based
techniques and local noise level estimation based technique are able to perform
splicing detection, but can only highlight possible suspect regions by the means
of their borders. This strong hint can be double-checked by our algorithm by
searching for inconsistencies regarding the device involved in the suspect regions.

Glossary

AAC Advanced Audio Coding

AMR . . . Adaptive Multi-Rate Coding

AWGN . Additive White Gaussian Noise

ENF Electric Network Frequency

FFT Fast Fourier Transform

FIR Finite Impulse Response

FMFCCs Filtered Mel-Frequency Cepstral Coe�cients

GMM . . . Gaussian Mixture Model

GSV Gaussian Super Vector

HE-AAC High-E�ciency Advanced Audio Coding

HTK . . . Hidden Markov Model Toolkit

IIR In�nite Impulse Response

LFCCs . Linear-Frequency Cepstral Coe�cients

LMSCs . Logarithmic Mel-Spectral Coe�cients

LTASS . . Long Term Average Speech Spectrum

MFCCs . Mel-Frequency Cepstral Coe�cients

RASTA . RelAtive SpeTrAl

RBF Radial Basis Function

SNR Signal to Noise Ratio

STFT . . Short Time Fourier Transform

SVM . . . Support Vector Machine

UBM . . . Universal Background Model

WGN . . . White Gaussian Noise

115

Bibliography

[1] C. Kraetzer et al. Digital Audio Forensics: A First Practical Evaluation on
Microphone and Environment Classi�cation. Int'l Conf. Multimedia Con-
ference, Proc. 9th Workshop Multimedia & Security, ACM Press, 2007, pp.
6374.

[2] Gupta, Cho, Kuo. Current Developments and Future Trends in Audio Au-
thentication. Multimedia in Forensics, Security and Intelligence, p. 50-59,
2012.

[3] REWIND Consortium. Deliverable D3.1: State-of-the-art on Multimedia
Footprint Detection. 2011.

[4] C. Kraetzer, K. Qian, M. Schott, J. Dittmann. A Context Model for Micro-
phone Forensics and Its Application in Evaluations. SPIE Conference on
Media Watermarking, Security, and Forensics, 2011.

[5] H. Malik and H. Farid. Audio Forensics From Acoustic Reverberation.
Proveedings of the IEEE International Conference on Acoustics Speech and
Signal Processing (ICASSP), no. iid, 2010, pp. 1710-1713.

[6] H. Malik and H. Zhao. Recording Environment Identi�cation Using Acous-
tic Reverberation. IEEE International Conference on Acoustic Speech and
Signal Processing (ICASSP), 2012.

[7] A. Oermann. Veri�er-Tuple for Audio-Forensic to Determine Speaker En-
vironment. MM&Sec '05: Proceedings of the 7th workshop on Multimedia
and security, New York, NY, USA, 2005, pp. 57-62.

[8] R. Buchholz, C. Kraetzer, J. Dittman. Microphone Classi�cation Using
Fourier Coe�cients. Information Hiding, LNCS 5806, Springer, 2009, pp.
235.246.

[9] D. Garcia-Romero and C. Y. Espy-Wilson. Automatic Acquisition Device
Identi�cation from Speech Recordings. IEEE International Conference on
Acoustic Speech and Signal Processing (ICASSP), 2010, pp. 1806-1809.

[10] D. Nicolalde and J. Apolinario Evaluating digital audio authenticity with
spectral distances and ENF phase change. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2009.

[11] X. Pan, X. Zhang, S. Lyu. Detecting Splicing in Digital Audios Using Local
Noise Level Estimation. IEEE International Conference on Acoustic Speech
and Signal Processing (ICASSP), 2012.

117

118 Bibliography

[12] Nikolay D. Gaubitch, Mike Brookes, Patrick A. Naylor. Blind Channel Iden-
ti�cation in Speech Using the Long-Term Average Speech Spectrum. Proc.
European Signal Processing Conference (EUSIPCO), Glasgow, Aug. 2009.

[13] Nikolay D. Gaubitch, Mike Brookes, Patrick A. Naylor, Dushyant Sharma.
Single-Microphone Blind Channel Identi�cation in Speech using Spectrum
Classi�cation. Proc. 17th European Signal Processing Conf. (EUSIPCO-
11), Barcelona, Spain, Aug., 2011.

[14] Y. Hu and P. Loizou. Subjective evaluation and comparison of speech en-
hancement algorithms. Speech Communication, 49, 588-601, 2007.

[15] Hidden Markov Model Toolkit. O�cial website: http://htk.eng.cam.ac.uk/.

[16] Kamil Wojcicki. HTK MFCCs. Sep. 2011. Avaible online at
http://www.mathworks.com/matlabcentral/�leexchange/authors/39321

[17] H. Hermansky and N. Morgan. RASTA processing of speech. IEEE Trans.
Speech Audio Process., vol. 2, no. 4, pp. 578�589, Oct. 1994.

[18] R Rifkin and A Klautau. In defense of one-vs-all classication. Journal of
Machine Learning Research Vol. 5, pp- 101-141.

[19] M. Slaney. Auditory Toolbox v2. Avaible online at
https://engineering.purdue.edu/~malcolm/interval/1998-010/.

[20] U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Com-
puting Vol. 17 Issue 4, pp. 395-416, December 2007.

[21] GNU Octave. Sofware available online at
http://www.gnu.org/software/octave/index.html.

[22] Sylvain Calinon. Gaussian Mixture Model (GMM) - Gaussian Mixture Re-
gression (GMR). 2009. Avaible online at
http://www.mathworks.com/matlabcentral/�leexchange/authors/30869.

[23] Chang and Lin. LIBSVM : a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology Vol. 2 Issue 3, 2011.
Software available online at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[24] LAME Ain't an MP3 Encoder (LAME). Software available online at
http://lame.sourceforge.net/index.php.

[25] Nero AAC Codec. Software available online at
http://www.nero.com/enu/technologies-aac-codec.html.

[26] OpenCORE Adaptive Multi Rate (AMR) Speech Codec. Software available
online at http://lame.sourceforge.net/index.php.

[27] Naoki Shibata. Shibatch Audio Tools - Quality Audio Tools and More. Soft-
ware available online at http://shibatch.sourceforge.net/.

[28] Y.W. Chen and C.J. Lin. Combining SVMs with various feature selection
strategies. 2005.

Bibliography 119

[29] Skype Developer website. SILK: Super Wideband Audio Codec. 2009. Doc-
umentation available online at https://developer.skype.com/silk.

[30] S.A. Baset and H.G. Schulzrinne. An Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol. INFOCOM, 2006.

[31] 3GPP. 3GPP TS 26.090 - Mandatory Speech Codec speech processing func-
tions; Adaptive Multi-Rate (AMR) speech codec; Transcoding functions.
2010.

[32] 3GPP. 3GPP TS 26.071 - Mandatory speech CODEC speech processing
functions; AMR speech Codec; General description. 2010.

Appendix A

Implementation Framework

A.1 Octave

The algorithm has been completely implemented under GNU Octave 3.4.3 [21],
installed on a machine running the Fedora 16 x86-64 GNU/Linux OS.

Our work also includes some external routines, namely

� Kamil Wojcicki's algorithm for the computation of the HTK MFCCs [16].

� Malcolm Slaney's implementation of the RASTA �ltering, part of the Au-
ditory Toolbox v2 [19].

� Sylvain Calinon's implementation of the GMM training [22].

� LIBSVM library for the SVM classi�cation [23].

A.2 Mp3 Encoder

The MP3 compression involved the LAME Mp3 Encoder v 3.99.5 [24]. For the
encoding we used the following parameter selection:

1 . / lame −b bitrate input_file . wav output_file . mp3

where lame is the encoder executable and bitrate is the target bit-rate in kbps of
the mp3 �le. The lame encoder with this setting tries to achieve a constant bit-
rate with its own default algorithm: we avoid a thin control of the encoder since,
in principle, we don't know the settings used during an on-the-�y encoding that
could occur on a mobile device recording, that are the target of our algorithm.

A.3 AAC Encoder

The AAC compression involved the Nero AAC Encoder 1.5.1.0 [25], mainly
because it implements also the High-E�ciency Advanced Audio Coding (HE-
AAC) compression scheme, i.e. has the possibility to reach a bit-rate of 16 kbps.

121

122 Appendix A. Implementation Framework

The encoding uses the following parameter selection:

1 . / neroAacEnc −br bitrate −if input_file . wav −of output_file . aac

where neroAacEnc is the encoder executable and bitrate is the target bit-rate in
bps of the AAC �le. Again, we tried to control the encoder as less as possible.

A.4 AMR Encoder

The AMR compression involved the OpenCORE Adaptive Multi Rate (AMR)
Speech Codec [26], an implementation of the 3GPP TS 26.073 speci�cation for
the AMR encoding. The encoder doesn't accept every audio �les, but only those
compliant to the input speci�cation, i.e. a sampling frequency of 8000 kHz and
a bit depth of 16 bit. In order to ensure both of them, we resampled each input
audio �le by using the Shibatch Sampling Rate Converter [27] just before the
encoding:

1 . / ssrc −−rate 8000 input_file . wav −−bits 16 input_file_resampled .←↩
wav

2 . / amrnb−enc −r bitrate input_file_resampled . wav output_file . amr

where ssrc is the resampler executable, amrnb-enc is the AMR encoder exe-
cutable and bitrate is one of the 8 target bit-rate in bps allowed by the 3GPP-
speci�cations.

Appendix B

Clustering Results

B.1 Test Content

The clustering results refer to the following test content:

*** Count (from 1 to 5) , English
1. male, 2. female

*** Count (from 1 to 5) , German
1. male, 2. female

*** Dialogue (English)
/w small pauses between the sentences
1. male, 2. female

1. In the play's climactic scene, all three men reveal their secrets,
and each spy attempts to convince Möbius to come with him.
2. It is he, however, who is successful in convincing them.
1. He persuades them that the secrets he has discovered are too
terrible for man to know and assures them that their e�orts are in
vain because he recently burned all the papers that he developed
during his time in the sanatorium.
2. After much debate, the three men �nally agree that they are
content to protect mankind by living out the rest of their lives in
captivity, while furthering and serving physics.
1. However, these noble plans are thwarted by the play's �nal plot
twist.
2. Fräulein Doktor Mathilde von Zahnd, head of Les Cerisiers, en-
ters the drawing room and reveals to the three men that she has
eavesdropped on their entire conversation.
1. Furthermore, she has known about Möbius for years and has been
secretly copying his documents and using his scienti�c discoveries to

123

124 Appendix B. Clustering Results

construct an international empire.
2. She believes that King Solomon is speaking to her, and she be-
lieves that with his guidance and Möbius' discoveries she can become
the most powerful woman on earth.
1. The story ends with a sense of impending doom.
2. Möbius, "Newton", and "Einstein" have been outmaneuvered and
trapped.
1. "Those things which were thought can never be unthought."
2. The play ends with each of the three men speaking directly and
pitiably to the audience, emphasizing their plight and the plight of
all mankind.

*** Dialogue German)
/w small pauses between the sentences
1. male, 2. female

1. Johann Wilhelm Möbius
1. Er hat als Physiker mehrere groÿe Entdeckungen gemacht und
"das System aller möglichen Er�ndungen", die einheitliche Feldthe-
orie als Weltformel entwickelt.
2. Da er sich der fatalen Folgen seiner Er�ndungen bewusst ist
und die Verantwortung dafür nicht übernehmen kann, stellt er sich
wahnsinnig und lässt sich ins Irrenhaus einliefern, um die Menschheit
nicht zu gefährden.
1. Er gibt vor, seine Er�ndungen von Salomo o�enbart zu bekom-
men, der sich für ihn vom ehemals weisen Psalm-Dichter des Hohen-
liedes zum "armen König der Wahrheit" gewandelt hat und "nackt
und stinkend in seinem Zimmer kauert".
2. Der Psalm, den Möbius in einem umgedrehten Tisch hockend
vorträgt, zeichnet ein düsteres Bild von den möglichen apokalyptis-
chen Folgen wissenschaftlicher Erkenntnis.
1. Beim Abschiedsbesuch seiner Ex-Frau Lina (die nun mit dem
Missionar Rose verheiratet ist) gibt Möbius vor, sie und die drei
gemeinsamen Söhne nicht zu erkennen, um es ihnen dadurch zu er-
leichtern, ihn zu vergessen.
2. Wie sehr Möbius sich zur Rettung der Menschheit aufopfert, wird
auch darin deutlich, dass er das Heiratsgesuch von Schwester Monika
ablehnt, die sein Spiel durchschaut hat.
1. Obwohl er sie ebenfalls liebt, bringt er sie um, um nicht in "Frei-
heit" zu kommen und somit die Menschheit zu retten. 2. Da er
fürchtet, von verschiedenen Mächten ausspioniert zu werden, ver-
brennt er seine wissenschaftlichen Manuskripte, ohne zu ahnen, dass
die Anstaltsleiterin Fräulein Doktor von Zahnd bereits heimlich Kopien
davon angefertigt hat.
1. Herbert Georg Beutler, genannt Newton
1.Auch er ist Physiker und gibt vor, verrückt zu sein.
2. Später stellt sich heraus, dass er zugleich Agent eines nicht näher
benannten westlichen Geheimdienstes ist.

Appendix B. Clustering Results 125

1. Um Möbius bespitzeln zu können, musste er eigens Deutsch ler-
nen und sich als Sir Isaac Newton ausgeben.
2. Er versucht Möbius zu überreden, für die Landesverteidigung
seines westlichen Staates zu arbeiten.
1. Er verspricht ihm den Nobelpreis und mahnt ihn an seine P�icht,
seine Entdeckungen der Menschheit zu übergeben.
2. Eine Verantwortung des Wissenschaftlers für seine Entdeckungen
lehnt er ab, stattdessen schiebt er die Verantwortung der Allgemein-
heit zu.

*** Voice (English) Male

The story is set in the drawing room of a sanatorium, an idyllic
home for the mentally ill, run by famed psychiatrist Mathilde von
Zahnd. This drawing room connects to three sick rooms each of
which is inhabited by a single mentally ill patient. These three
men, all physicists by trade, are permitted use of the drawing room,
where they are periodically monitored by the female nurses that are
charged with their care. The �rst patient is Herbert Georg Beutler,
and he believes that he is Sir Isaac Newton. The second patient is
Ernst Heinrich Ernesti, who believes himself to be Albert Einstein.
The third patient is Johann Wilhelm Möbius, and he believes that
he is regularly visited by the biblical King Solomon. When the play
begins, "Einstein" has just killed one of his nurses, and the police
are examining the scene. It is revealed through their discussion that
this is the second slaying of a nurse by one of these three patients in
just three months, the �rst having been committed by "Newton".

*** Voice (English) Female

The motive behind these two murders becomes clear in the play's
second Act, when it is revealed with startling abruptness that none
of the three patients are mad. They are all only faking insanity.
Möbius is actually an incredibly brilliant physicist whose discoveries
include such fabled results as a solution to the problem of gravita-
tion, a "Unitary Theory of Elementary Particles", and the "Principle
of Universal Discovery". Fearing what mankind could do with these
powerful discoveries, Möbius chose not to reveal his work. He in-
stead feigned madness, that he might be committed to a sanatorium
and thus protected along with his knowledge. Möbius failed to avoid
attention. "Einstein" and "Newton" are both spies, representatives
of two di�erent countries, and they have penetrated Les Cerisiers in
order to secure Möbius' documents and, if possible, the man himself.
Each spy murdered a nurse to protect his secrets and to strengthen
his simulation of madness.

126 Appendix B. Clustering Results

*** Voice (German) Male

Es war einmal ein junger Mann, der sehnte sich danach, daÿ sich
sein Wunschtraum erfüllte. Obgleich dies kein ungewöhnlicher An-
fang für eine Geschichte ist (denn jede Geschichte über einen jungen
Mann,ob in der Vergangenheit oder der Zukunft, könnte auf ähnliche
Weise beginnen), war an dem jungen Mann und seinen Erlebnissen
doch viel Seltsames, das nicht einmal er selbst jemals in vollem Um-
fang begri�. Die Geschichte begann - wie viele andere Geschichten -
in Wall. Der kleine Ort Wall liegt heute wie seit sechshundert Jahren
auf einem hohen Granitfelsen mitten in einem kleinen Waldgebiet.
Die Häuser von Wall sind alt und robust, aus grauem Stein, mit dun-
klen Schieferdächern und hohen Schornsteinen. Um auf dem Felsen
jeden Zentimeter Platz zu nutzen, kuscheln sie sich eng aneinander,
eins dicht an das andere gebaut, mit hier und dort einem Busch
oder Baum, der aus einer Gebäudemauer wächst. Aus Wall her-
aus führt nur eine Straÿe, ein verschlungener Pfad, der vom Wald
her steil ansteigt, gesäumt von Felsbrocken und Steinen. Folgt man
ihm weit genug nach Süden, aus dem Wald heraus, wird aus dem
Pfad eine richtige asphaltierte Straÿe; noch ein Stück weiter verbre-
itert sie sich abermals, und auf ihr drängen sich zu jeder Tages- und
Nachtzeit Autos und Lastwagen, die es eilig haben, von einer Stadt
zur anderen zu kommen. Irgendwann schlieÿlich gelangt man auf
der Straÿe nach London, aber dafür ist man von Wall aus eine ganze
Nacht lang unterwegs.

*** Voice (German) Female

Die Einwohner von Wall sind ein wortkarges Völkchen, das sich
grob in zwei Typen unterteilen läÿt: zum einen leben hier die Ure-
inwohner, groÿ und robust wie der Granit, auf dem ihr Städtchen
erbaut wurde, und zum anderen die Zugewanderten, die sich im
Lauf der Jahre in Wall niedergelassen haben, samt ihren Nachfahren.
Unterhalb von Wall im Westen liegt der Wald; im Süden be�ndet
sich ein trügerisch friedlicher See, gespeist von den Bächen aus den
Hügeln im Norden des Dorfes. Auf den Weiden der Hügel grasen
Schafe, und im Osten erstreckt sich ebenfalls Wald. Unmittelbar
östlich von Wall erhebt sich eine hohe graue Steinmauer, von der
das Dorf seinen Namen hat. Diese Mauer ist sehr alt, aus grob
behauenen Granitbrocken aufgeschichtet; sie kommt aus dem Wald
und führt wieder in ihn zurück. In dieser Mauer gibt es nur eine
einzige Lücke: eine knapp zwei Meter breite Ö�nung, ein Stückchen
nördlich vom Dorf. Durch den Spalt in der Mauer blickt man auf eine
groÿe grüne Wiese, hinter der Wiese liegt ein Bach, hinter dem Bach
sieht man Bäume. Von Zeit zu Zeit kann man zwischen den Bäu-
men in der Ferne Gestalten erkennen. Riesige, seltsame Gestalten
und kleine, schimmernde Erscheinungen, die aufblitzen und leuchten
und dann plötzlich wieder verschwunden sind. Obwohl es hervorra-

Appendix B. Clustering Results 127

gendes Weideland ist, hat noch nie ein Dorfbewohner sein Vieh auf
der Wiese jenseits der Mauer grasen lassen. Auch hat niemand sie
je als Ackerland benutzt.

*** Music playback
1. English radio Podcast, 2. German radio Podcast , 3. Music-only

*** Silence / Noise
1. Silence in quiet o�ce, 2. Noise (fan, cars passing by)

The test content was recorded twice: the �rst time by using the built-in mi-
crophones of the mobile device; the second time by using the corresponding
headset microphones. Afterward, as speci�ed in chapter 5, from the original
PCM encoding each recording was lossy-compressed with all the desired MP3
bitrates, i.e.192 kbps, 128 kbps, 96kbps, 64 kbps, 32 kbps. Nor AAC or AMR
compression were involved during the clustering evaluation.

B.2 Feature Vector Evolution

Before reporting the numerical results of the clustering algorithm, we are going
to brie�y recall the evolution of the feature vector used for the clustering.

This evolution, other then revealing the strong correlation between theoreti-
cal considerations and evaluations always present during the development phase,
can also help to understand the composition of the feature vector adopted during
the classi�cation.

B.2.1 Version 1: Standard RASTA-MFCCs

B.2.1.1 Version 1.0

The GMM is trained with 12 RASTA-MFCCs, obtained using the standard
approach found in literature. The training set is the whole clean subset of the
NOIZEUS speech corpus [14].

We �rst compute 13 MFCCs and 13 RASTA-MFCCs for each frame of each
recording in the training set, then we drop the �rst RASTA-MFCCs, obtaining
the �nal training set for the GMM., but this choice lead us to a really noisy
estimation.

The clustering algorithm is the classic K-means, and for each pair of device
the whole speech testing set is given. The �nal result is the one with the best
score within 10 repetition of k-means, each one with 100 replicas.

Results show two main issues:

1. German speech: the recordings in German are not identi�ed correctly. In
principle, this could be due to the training set used for the GMM - that
contains only English sentences - hence leading to a bad estimate of the
clean speech used in order to achieve the channel.

128 Appendix B. Clustering Results

2. Loudspeaker: the recordings of the loudspeaker playback are not identi�ed
correctly. Probably, this is due to the loudspeaker's channel, which has
a strong impact on the recording, and lead to an estimate too far from
those from a real speaker.

B.2.1.2 Version 1.1

The GMM is trained with RASTA-MFCCs, obtained using the standard ap-
proaches found in literature. The training set is the whole clean subset of the
NOIZEUS speech corpus and some of it's corrupted versions: we used the ver-
sions corrupted with bubble-noise, car-noise, street-noise and train-noise, with
SNR=0dB.

The di�erent training set was chosen in order to overcome some limitation
inherent the blind channel identi�cation algorithm: the method should work
only with recordings of clean speech. This is not our case, since in our record-
ings there are both the original environment noise and the noise introduced by
the resampling phase. Hence, the idea to train a more �robust� GMM: envi-
ronment noise is a�ected by the microphone's frequency response, so a GMM
trained also with noisy speech should be able to exploit also noisy frames in
order to achieve a better channel estimate.

Results highlight the following:

1. Loudspeaker: the recordings of the loudspeaker playback are always iden-
ti�ed together as a single cluster, hence leading to misclassi�cation.

2. No classi�cation gain: also dropping the recordings from the loudspeaker,
there's no gain in the classi�cation accuracy.

Starting from these results, we chose to keep the standard training of the GMM.

B.2.1.3 Version 1.2

Version 1.2 works on the same training set and channel estimates of Version 1.0,
but use a di�erent policy regarding the k-means clustering.

Most of the misclassi�cations in version 1.0 were due to a tiny di�erence
between the wrong result and the correct one, e.g.:

1 −−−
2 WRONG

3 IDX = 2 2 2 2 2 1 2 1 1 1
4 sumD = 1.635 3 .0012
5 | sumD (1)−sumD (2) |=1.3662
6 totSum = 4.6362
7 −−−
8 CORRECT

9 IDX = 1 1 1 1 1 2 2 2 2 2
10 sumD = 1.648 3 .0018
11 | sumD (1)−sumD (2) |=1.3538
12 totSum = 4.6498
13 −−−
14 | totSum (WRONG)−totSum (CORRECT) |=0.0136
15 −−−

Appendix B. Clustering Results 129

16 CORRECT

17 IDX = 1 1 1 1 1 2 2 2 2 2
18 sumD = 2.3046 2 .4587
19 | sumD (1)−sumD (2) |=0.1541
20 totSum = 4.7633
21 −−−
22 WRONG

23 IDX = 2 2 2 2 1 1 1 1 1 1
24 sumD = 3.276 1 .4643
25 | sumD (1)−sumD (2) |=1.8117
26 totSum = 4.7402
27 −−−
28 | totSum (WRONG)−totSum (CORRECT) |=0.0231
29 −−−

In the �rst test case the wrong result has score totSum = 4.6362, while the
correct one has score totSum = 4.6498: if we just follow the k-means algorithm
we select the wrong classi�cation, that is smaller by 0.0136.

The same happens in the second test case: the wrong result has score
totSum = 4.7402, while the correct one has score totSum = 4.7633, and we
select the wrong one, that is smaller by 0.0231.

In both cases even if totSum is decreasing, the di�erence between the intra-
cluster distances is increasing when we select the best - but wrong - result: in
the �rst test case |sumD(1)− sumD(2)| goes from 1.3538 (correct) to 1.3662
(wrong), while in the second test case |sumD(1)− sumD(2)| goes from 0.1541
(correct) to 1.8117 (wrong).

Hence, we chose to change the standard behavior of the k-means, and to
consider also the di�erence between the intra-cluster distances as a function to
minimize. Obviously, we couldn't just choose not to consider the total distance,
since this would've lead to an incorrect behavior, e.g.:

1 −−−
2 WRONG

3 IDX = 2 2 2 2 2 1 1 1 1 2
4 sumD = 3.2628 2 .9801
5 | sumD (1)−sumD (2) |=0.2827
6 totSum = 6.2429
7 −−−
8 CORRECT

9 IDX = 2 2 2 2 2 1 1 1 1 1
10 sumD = 3.7395 2 .1079
11 | sumD (1)−sumD (2) |=1.6316
12 totSum = 5.8474
13 −−−
14 | totSum (WRONG)−totSum (CORRECT) |=0.3955
15 −−−
16 CORRECT

17 IDX = 2 2 2 2 2 2 1 1 1 1 1 1
18 sumD = 4.8157 2 .9755
19 | sumD (1)−sumD (2) |=1.8202
20 totSum = 7.7911
21 −−−
22 WRONG

23 IDX = 2 2 2 2 2 2 1 2 1 1 1 1
24 sumD = 3.6871 4 .272
25 | sumD (1)−sumD (2) |=0.5849

130 Appendix B. Clustering Results

26 totSum = 7.9591
27 −−−
28 | totSum (WRONG)−totSum (CORRECT) |=0.1680
29 −−−

The �nal decision was to keep the total sum of distances as the primary
function to minimize and to use the di�erence between cluster distances only
when tiny variations occur, in order to validate the new best result.

This change of the standard behavior of the k-means clustering led to the
following:

1. A general increment in terms of total number of correct classi�cations.

2. The loss of some previously correct classi�cation.

The trade-o� between the the increment and the loss is driven by the threshold
value - set used in order to select when to apply the second object function1.

B.2.2 Version 2: Spectral Clustering

The really poor results achieved with version 1.x led us to change the classi�-
cation phase, which in version 2 is performed by a spectral clustering algorithm
[20].

Unfortunately, due to the nature of our data-set, this algorithm is un�t.
However, the strong reduction in terms of dimension of the data-set allowed us
to speed up the prototype testing, both in terms of the GMM training phase
and in terms of clustering-features tuning.

Version 2.0 highlighted the following:

1. A naive normalization of the channel estimates makes the data-set much
more noisy, hence creating an abrupt decrease in terms of performances.

2. A naive biasing of the channel estimates reduces the inter-cluster distance,
hence decreasing the performances.

3. RASTA-HTK-MFCCs overall performances are higher than those obtained
by the use of standard RASTA-MFCCs.

4. Increasing the number of dimensions of the GMM training seems not to
increase the classi�cation performances

Observation 3. was the starting point for the third version of the prototype, as
we'll see.

1i.e., the threshold values states which variations are �tiny� and which are not.

Appendix B. Clustering Results 131

B.2.3 Version 3: RASTA-HTK-MFCCs

The GMM is trained with 12 RASTA-HTKMFCCs, obtained with a RASTA �l-
tering in the mel-spectral domain of MFCCs computed using the same approach
present in the Hidden Markov Model Toolkit (HTK) [15, 16]. The training set
is the whole clean subset of the NOIZEUS speech corpus .

As in version 1.0 we �rst achieved 13 HTK-MFCCs and 13 RASTA-HTK-
MFCCs for each frame of each recording in the training set, then we drop the
�rst RASTA-HTK-MFCCs, obtaining the �nal training set for the GMM, and
this choice lead us to a less noisy estimation.

The clustering algorithm is the classic k-means and for each pair of device
the English speech testing set is given. The �nal result is the one with the best
score within 10 repetition of k-means, each one with 100 replicas.

In version 3 we added a strong assumption on the testing phase, that is
a previous knowledge of the number of recordings for each device. We also
change the clustering feature-set, as we will see in the following section, in order
to overcome the noise inherent the channel estimates.

These choices allowed us to achieve, for the PCM test case, an inter-device
classi�cation for the headphones subset, and promising results for the built-in
microphone subset.

B.2.4 Clustering Feature-Set

Our �rst clustering attempts were performed on the direct channel estimates,
and led us to insu�cient clustering results. In order to overcome the noise
present in these estimates, which is the source of many incorrect classi�cation,
we have to rely also on something else than their amplitude. In the following
sections we'll report which choices has been made in order to tune the clustering
feature-set.

B.2.4.1 First Derivative

Despite the noise, it's straightforward to notice that all the recordings from
the same device share a common pattern between them. We chose to express
this common behavior with the �rst derivative of the channel estimate: �rst
derivatives are much less spread then the channel estimates and are able to
clearly identify the position of peculiar spikes in the frequency response of a
speci�c recording device. Starting from these properties, we chose to further
investigate higher order derivatives.

B.2.4.2 Second Derivative

The second derivative showed to be meaningful, and to share the same proper-
ties of the �rst derivative: spike detection and small variance. From the third
derivative on, however, the small variance property is lost: that's why there's
no further derivation of the channel estimate included in the feature vector.

B.2.4.3 Magnitude Response of the Channel Estimate

Due to the spike-detection property of the �rst and second derivative, we were
able to drop all the middle frequency and the high frequency of the magnitude

132 Appendix B. Clustering Results

response, preserving only the high-detailed representation of the low frequencies
(0-781.25 Hz).

This operation has been done because mid and high frequency magnitude
response of di�erent devices often overlaps: apart from peculiar spikes, they
seem not to contain any meaningful information. Hence, in order to avoid local
minima and to ease the burden of having an high numbers of dimensions, we
chose to drop them and we managed to achieve a greater number of correct
classi�cations.

B.2.4.4 Channel-Dependent Gain

Since a normalization was not possible2 we chose to apply a gain factor to each
channel, depending of its power: the goal of this operation was an enhancement
of inter-class di�erences, and it's done both directly on the magnitude response
of the channel estimate - in order to a�ect both the �rst and the second order
derivative - and on the complete clustering feature vector, which is a concate-
nation of the low-frequency magnitude response, of the �rst derivative and of
the second derivative.

In Fig.B.1 we can see the result of these operations:

Figure B.1: Discriminating Power of the Feature Vector (1/2)

The red line denotes the feature vector of the built-in microphone of a Dell
Laptop, while the blue line denotes the feature vector of the built-in microphone
of an iPhone 3gs. It's straightforward to notice how the classi�cation, in this
particular test case, is mainly possible due to the presence of the derivatives.

B.2.4.5 Feature Vector Components

In the previous section, we saw how e�ective the derivatives are in terms of
discriminating power: it's important to stress that the magnitude response can't

2it cripples the peculiar shape of each device and makes the channel estimates more noisy

Appendix B. Clustering Results 133

allow by itself good results, but also that the derivatives alone aren't powerful
enough to discriminate every test case:

Figure B.2: Discriminating Power of the Feature Vector (2/2)

In Fig.B.2 the red line denotes the feature vector of the built-in microphone
of a Samsung Galaxy-S2, while the blue line denotes the feature vector of its
headset: it's straightforward to notice how the classi�cation, in this particular
test case, can't rely only on the derivatives, which are really close, but needs
also the presence of the magnitude response of the channel estimate.

B.3 Complete Results

B.3.1 PCM, MP3 96 kbps

As anticipated in chapter 5, audio �les encoded in PCM and in MP3 96 kbps
share the same classi�cation outcome. We will now report the direct result for
PCM-encoded �les:

1 −−−−−−−−−−−−−−−−−− dell_hss/
2 dell_hss_skype/ CORRECT (0 .8962 , 0 .023378)
3 dell_sld/ CORRECT (0 .9785 , 0 .016558)
4 dell_sld_skype/ CORRECT (1 , 0 .022168)
5 G2_A_sld/G2_A_direkt/ CORRECT (0 .9965 , 0 .019373)
6 G2_A_sld/G2_A_headset/ CORRECT (0 .998 , 0 .023089)
7 G2_B_sld/G2_B_direct/ CORRECT (1 , 0 .020784)
8 G2_B_sld/G2_B_headset/ CORRECT (0 .9975 , 0 .022541)
9 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .017747)

10 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .015566)
11 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .016475)
12 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .018058)
13 s2_ath/S2_ath_direct/ CORRECT (0 .992 , 0 .016846)
14 s2_ath/S2_ath_headset/ CORRECT (0 .999 , 0 .018555)
15 s2_kht/S2_kht_direct/ CORRECT (0 .989 , 0 .017422)

134 Appendix B. Clustering Results

16 s2_kht/S2_kht_headset/ CORRECT (0 .997 , 0 .020888)
17

18

19 −−−−−−−−−−−−−−−−−− dell_hss_skype/
20 dell_sld/ CORRECT (0 .9995 , 0 .020722)
21 dell_sld_skype/ w (0 .9975 , 0 .018567)
22 G2_A_sld/G2_A_direkt/ CORRECT (0 .9265 , 0 .023537)
23 G2_A_sld/G2_A_headset/ CORRECT (0 .987 , 0 .027253)
24 G2_B_sld/G2_B_direct/ CORRECT (1 , 0 .024948)
25 G2_B_sld/G2_B_headset/ CORRECT (0 .9775 , 0 .026706)
26 iPhone_3gs/iPhone_3gs_direct/ CORRECT (0 .9945 , 0 .021912)
27 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .01973)
28 iPhone_4s/iPhone_4s_direct/ CORRECT (0 .999 , 0 .02064)
29 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .995 , 0 .022223)
30 s2_ath/S2_ath_direct/ CORRECT (0 .963 , 0 .02101)
31 s2_ath/S2_ath_headset/ CORRECT (0 .996 , 0 .022719)
32 s2_kht/S2_kht_direct/ CORRECT (0 .9975 , 0 .021586)
33 s2_kht/S2_kht_headset/ CORRECT (0 .998 , 0 .025053)
34

35

36 −−−−−−−−−−−−−−−−−− dell_sld/
37 dell_sld_skype/ CORRECT (1 , 0 .019513)
38 G2_A_sld/G2_A_direkt/ CORRECT (0 .999 , 0 .016718)
39 G2_A_sld/G2_A_headset/ CORRECT (0 .987 , 0 .020434)
40 G2_B_sld/G2_B_direct/ CORRECT (0 .999 , 0 .018129)
41 G2_B_sld/G2_B_headset/ CORRECT (0 .8485 , 0 .019886)
42 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .015092)
43 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .012911)
44 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .01382)
45 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .015403)
46 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .01419)
47 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .0159)
48 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .014767)
49 s2_kht/S2_kht_headset/ CORRECT (0 .9475 , 0 .018233)
50

51

52 −−−−−−−−−−−−−−−−−− dell_sld_skype/
53 G2_A_sld/G2_A_direkt/ CORRECT (0 .9945 , 0 .022328)
54 G2_A_sld/G2_A_headset/ CORRECT (0 .9995 , 0 .026044)
55 G2_B_sld/G2_B_direct/ w (0 .69083 , 0 .024447)
56 G2_B_sld/G2_B_headset/ CORRECT (0 .9995 , 0 .025496)
57 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .020702)
58 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .018521)
59 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .01943)
60 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .021013)
61 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .019801)
62 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .02151)
63 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .020377)
64 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .023843)
65

66

67 −−−−−−−−−−−−−−−−−− G2_A_sld/G2_A_direkt/
68 G2_A_sld/G2_A_headset/ CORRECT (0 .71501 , 0 .023249)
69 G2_B_sld/G2_B_direct/ CORRECT (1 , 0 .020944)
70 G2_B_sld/G2_B_headset/ CORRECT (0 .9925 , 0 .022701)
71 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .017907)
72 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .015725)
73 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .016635)
74 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .9925 , 0 .018218)
75 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .017005)
76 s2_ath/S2_ath_headset/ CORRECT (0 .9915 , 0 .018714)
77 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .017582)

Appendix B. Clustering Results 135

78 s2_kht/S2_kht_headset/ CORRECT (0 .9995 , 0 .021048)
79

80

81 −−−−−−−−−−−−−−−−−− G2_A_sld/G2_A_headset/
82 G2_B_sld/G2_B_direct/ CORRECT (0 .9975 , 0 .02466)
83 G2_B_sld/G2_B_headset/ w (0 .7705 , 0 .02109)
84 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .021623)
85 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .019442)
86 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .020351)
87 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .021934)
88 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .020721)
89 s2_ath/S2_ath_headset/ CORRECT (0 .995 , 0 .022431)
90 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .021298)
91 s2_kht/S2_kht_headset/ CORRECT (0 .9685 , 0 .024764)
92

93

94 −−−−−−−−−−−−−−−−−− G2_B_sld/G2_B_direct/
95 G2_B_sld/G2_B_headset/ CORRECT (0 .995 , 0 .024112)
96 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .019318)
97 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .017136)
98 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .018046)
99 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .019629)

100 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .018416)
101 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .020126)
102 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .018993)
103 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .022459)
104

105

106 −−−−−−−−−−−−−−−−−− G2_B_sld/G2_B_headset/
107 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .021075)
108 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .018894)
109 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .019803)
110 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .999 , 0 .021386)
111 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .020174)
112 s2_ath/S2_ath_headset/ CORRECT (0 .994 , 0 .021883)
113 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .02075)
114 s2_kht/S2_kht_headset/ CORRECT (0 .9575 , 0 .024216)
115

116

117 −−−−−−−−−−−−−−−−−− iPhone_3gs/iPhone_3gs_direct/
118 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .0141)
119 iPhone_4s/iPhone_4s_direct/ w (0 .8102 , 0 .012463)
120 iPhone_4s/iPhone_4s_headset/ w (0 .74843 , 0 .013858)
121 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .01538)
122 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .017089)
123 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .015956)
124 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .019422)
125

126

127 −−−−−−−−−−−−−−−−−− iPhone_3gs/iPhone_3gs_headset/
128 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .012828)
129 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .014411)
130 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .013198)
131 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .014907)
132 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .013775)
133 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .017241)
134

135

136 −−−−−−−−−−−−−−−−−− iPhone_4s/iPhone_4s_direct/
137 iPhone_4s/iPhone_4s_headset/ w (0 .95134 , 0 .012811)
138 s2_ath/S2_ath_direct/ CORRECT (0 .951 , 0 .014108)
139 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .015817)

136 Appendix B. Clustering Results

140 s2_kht/S2_kht_direct/ CORRECT (0 .9985 , 0 .014684)
141 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .01815)
142

143

144 −−−−−−−−−−−−−−−−−− iPhone_4s/iPhone_4s_headset/
145 s2_ath/S2_ath_direct/ CORRECT (0 .996 , 0 .015691)
146 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .0174)
147 s2_kht/S2_kht_direct/ CORRECT (0 .9985 , 0 .016267)
148 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .019733)
149

150

151 −−−−−−−−−−−−−−−−−− s2_ath/S2_ath_direct/
152 s2_ath/S2_ath_headset/ w (1 , 0 .016816)
153 s2_kht/S2_kht_direct/ w (1 , 0 .013504)
154 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .018521)
155

156

157 −−−−−−−−−−−−−−−−−− s2_ath/S2_ath_headset/
158 s2_kht/S2_kht_direct/ w (0 .75507 , 0 .016776)
159 s2_kht/S2_kht_headset/ CORRECT (0 .901 , 0 .02023)
160

161

162 −−−−−−−−−−−−−−−−−− s2_kht/S2_kht_direct/
163 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .019097)

Where the number on the left is the total score of the chosen clustering
con�guration

scorefinal(IDXBEST) = α · votes(IDXBEST)∑
k votes(IDXk)

+ (1− α) ·
min
i

(score(IDXi))

score(IDXBEST)

and the number of the right is its k-mean score score(IDXBEST). For further
information refer back to section 4.1.4 and 4.2.4.

B.3.2 MP3 192 kbps, MP3 128 kbps, MP3 64 kbps, MP3
32 kbps

All the other encoding rates can be represented by the direct result for the MP3
192 kbps-encoded audio �les:

1 −−−−−−−−−−−−−−−−−− dell_hss/
2 dell_hss_skype/ CORRECT (0 .881 , 0 .02342)
3 dell_sld/ CORRECT (0 .9835 , 0 .016917)
4 dell_sld_skype/ CORRECT (1 , 0 .022663)
5 G2_A_sld/G2_A_direkt/ CORRECT (0 .9975 , 0 .019553)
6 G2_A_sld/G2_A_headset/ CORRECT (0 .998 , 0 .023475)
7 G2_B_sld/G2_B_direct/ CORRECT (1 , 0 .021423)
8 G2_B_sld/G2_B_headset/ CORRECT (0 .997 , 0 .023232)
9 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .017991)

10 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .015614)
11 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .016722)
12 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .018333)
13 s2_ath/S2_ath_direct/ CORRECT (0 .992 , 0 .01686)
14 s2_ath/S2_ath_headset/ CORRECT (0 .9985 , 0 .018648)
15 s2_kht/S2_kht_direct/ CORRECT (0 .994 , 0 .017449)
16 s2_kht/S2_kht_headset/ CORRECT (0 .995 , 0 .021368)

Appendix B. Clustering Results 137

17

18

19 −−−−−−−−−−−−−−−−−− dell_hss_skype/
20 dell_sld/ CORRECT (0 .9995 , 0 .02101)
21 dell_sld_skype/ w (0 .9985 , 0 .019119)
22 G2_A_sld/G2_A_direkt/ CORRECT (0 .9355 , 0 .023646)
23 G2_A_sld/G2_A_headset/ CORRECT (0 .984 , 0 .027568)
24 G2_B_sld/G2_B_direct/ CORRECT (1 , 0 .025516)
25 G2_B_sld/G2_B_headset/ CORRECT (0 .9875 , 0 .027325)
26 iPhone_3gs/iPhone_3gs_direct/ CORRECT (0 .994 , 0 .022084)
27 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .019707)
28 iPhone_4s/iPhone_4s_direct/ CORRECT (0 .9995 , 0 .020815)
29 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .9935 , 0 .022426)
30 s2_ath/S2_ath_direct/ CORRECT (0 .9675 , 0 .020953)
31 s2_ath/S2_ath_headset/ CORRECT (0 .9985 , 0 .022742)
32 s2_kht/S2_kht_direct/ CORRECT (0 .9965 , 0 .021542)
33 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .025461)
34

35

36 −−−−−−−−−−−−−−−−−− dell_sld/
37 dell_sld_skype/ CORRECT (1 , 0 .020253)
38 G2_A_sld/G2_A_direkt/ CORRECT (0 .9975 , 0 .017143)
39 G2_A_sld/G2_A_headset/ CORRECT (0 .959 , 0 .021065)
40 G2_B_sld/G2_B_direct/ CORRECT (0 .9975 , 0 .019013)
41 G2_B_sld/G2_B_headset/ CORRECT (0 .77 , 0 .020822)
42 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .015581)
43 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .013204)
44 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .014312)
45 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .015923)
46 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .01445)
47 s2_ath/S2_ath_headset/ CORRECT (0 .9955 , 0 .016239)
48 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .015039)
49 s2_kht/S2_kht_headset/ CORRECT (0 .928 , 0 .018958)
50

51

52 −−−−−−−−−−−−−−−−−− dell_sld_skype/
53 G2_A_sld/G2_A_direkt/ CORRECT (0 .9965 , 0 .022888)
54 G2_A_sld/G2_A_headset/ CORRECT (1 , 0 .02681)
55 G2_B_sld/G2_B_direct/ w (0 .74879 , 0 .025471)
56 G2_B_sld/G2_B_headset/ CORRECT (0 .9975 , 0 .026567)
57 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .021327)
58 iPhone_3gs/iPhone_3gs_headset/ CORRECT (0 .9995 , 0 .018949)
59 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .020057)
60 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .997 , 0 .021668)
61 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .020196)
62 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .021984)
63 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .020785)
64 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .024704)
65

66

67 −−−−−−−−−−−−−−−−−− G2_A_sld/G2_A_direkt/
68 G2_A_sld/G2_A_headset/ w (0 .7105 , 0 .023088)
69 G2_B_sld/G2_B_direct/ CORRECT (1 , 0 .021649)
70 G2_B_sld/G2_B_headset/ CORRECT (0 .9915 , 0 .023457)
71 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .018217)
72 iPhone_3gs/iPhone_3gs_headset/ CORRECT (0 .999 , 0 .015839)
73 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .016947)
74 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .9925 , 0 .018559)
75 s2_ath/S2_ath_direct/ CORRECT (0 .82829 , 0 .017086)
76 s2_ath/S2_ath_headset/ CORRECT (0 .9925 , 0 .018874)
77 s2_kht/S2_kht_direct/ CORRECT (0 .97557 , 0 .017675)
78 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .021594)

138 Appendix B. Clustering Results

79

80

81 −−−−−−−−−−−−−−−−−− G2_A_sld/G2_A_headset/
82 G2_B_sld/G2_B_direct/ CORRECT (0 .992 , 0 .025571)
83 G2_B_sld/G2_B_headset/ w (0 .768 , 0 .021717)
84 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .022139)
85 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .019761)
86 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .020869)
87 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .02248)
88 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .021008)
89 s2_ath/S2_ath_headset/ CORRECT (0 .995 , 0 .022796)
90 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .021597)
91 s2_kht/S2_kht_headset/ CORRECT (0 .963 , 0 .025516)
92

93

94 −−−−−−−−−−−−−−−−−− G2_B_sld/G2_B_direct/
95 G2_B_sld/G2_B_headset/ CORRECT (0 .9865 , 0 .025328)
96 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .020087)
97 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .01771)
98 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .018818)
99 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .020429)

100 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .018956)
101 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .020745)
102 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .019545)
103 s2_kht/S2_kht_headset/ CORRECT (0 .9995 , 0 .023464)
104

105

106 −−−−−−−−−−−−−−−−−− G2_B_sld/G2_B_headset/
107 iPhone_3gs/iPhone_3gs_direct/ CORRECT (1 , 0 .021896)
108 iPhone_3gs/iPhone_3gs_headset/ CORRECT (1 , 0 .019518)
109 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .020626)
110 iPhone_4s/iPhone_4s_headset/ CORRECT (0 .9975 , 0 .022237)
111 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .020765)
112 s2_ath/S2_ath_headset/ CORRECT (0 .9925 , 0 .022553)
113 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .021354)
114 s2_kht/S2_kht_headset/ CORRECT (0 .937 , 0 .025273)
115

116

117 −−−−−−−−−−−−−−−−−− iPhone_3gs/iPhone_3gs_direct/
118 iPhone_3gs/iPhone_3gs_headset/ CORRECT (0 .9995 , 0 .014278)
119 iPhone_4s/iPhone_4s_direct/ w (0 .81126 , 0 .012683)
120 iPhone_4s/iPhone_4s_headset/ w (0 .80498 , 0 .014107)
121 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .015524)
122 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .017313)
123 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .016113)
124 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .020032)
125

126

127 −−−−−−−−−−−−−−−−−− iPhone_3gs/iPhone_3gs_headset/
128 iPhone_4s/iPhone_4s_direct/ CORRECT (1 , 0 .013008)
129 iPhone_4s/iPhone_4s_headset/ CORRECT (1 , 0 .014619)
130 s2_ath/S2_ath_direct/ CORRECT (1 , 0 .013147)
131 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .014935)
132 s2_kht/S2_kht_direct/ CORRECT (1 , 0 .013736)
133 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .017655)
134

135

136 −−−−−−−−−−−−−−−−−− iPhone_4s/iPhone_4s_direct/
137 iPhone_4s/iPhone_4s_headset/ w (0 .93985 , 0 .013168)
138 s2_ath/S2_ath_direct/ CORRECT (0 .925 , 0 .014255)
139 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .016043)
140 s2_kht/S2_kht_direct/ CORRECT (0 .998 , 0 .014844)

Appendix B. Clustering Results 139

141 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .018763)
142

143

144 −−−−−−−−−−−−−−−−−− iPhone_4s/iPhone_4s_headset/
145 s2_ath/S2_ath_direct/ CORRECT (0 .9915 , 0 .015866)
146 s2_ath/S2_ath_headset/ CORRECT (1 , 0 .017654)
147 s2_kht/S2_kht_direct/ CORRECT (0 .9925 , 0 .016455)
148 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .020374)
149

150

151 −−−−−−−−−−−−−−−−−− s2_ath/S2_ath_direct/
152 s2_ath/S2_ath_headset/ * w (0 .83929 , 0 .0022892)
153 s2_kht/S2_kht_direct/ w (1 , 0 .013431)
154 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .018901)
155

156

157 −−−−−−−−−−−−−−−−−− s2_ath/S2_ath_headset/
158 s2_kht/S2_kht_direct/ w (0 .75 , 0 .016606)
159 s2_kht/S2_kht_headset/ CORRECT (0 .9025 , 0 .02069)
160

161

162 −−−−−−−−−−−−−−−−−− s2_kht/S2_kht_direct/
163 s2_kht/S2_kht_headset/ CORRECT (1 , 0 .01949)

Appendix C

Classi�cation Results

C.1 Test Content

The classi�cation results refer to all the test content involved in the clustering
results, plus the following one:

*** Count (from 6 to 10) , English
1. male, 2. female

*** Count (from 6 to 10) , German
1. male, 2. female

*** Dialogue (English)
/w small pauses between the sentences
1. male, 2. female

1. You're late.
2. Sorry?
1. I said, you're late.
2. Sorry if I held you up, you in a hurry?
1. Time is certainly of the essence, but no, I am not in a hurry. I
was merely concerned that you would not make the plane.
2. That was kind of you.
1. Kind my ass. I've got a job for you, Shadow. Aren't you going
to ask me what kind of job?
2. How do you know who I am?
1. Oh, it's the easiest thing in the world to know what people call
themselves. A little thought, a little luck, a little memory. Ask me
what kind of job.
2. No.
1. Why not?
2. I'm going home. I've got a job waiting for me there. I don't want

141

142 Appendix C. Classi�cation Results

any other job.
1. You don't have a job waiting for you at home,You have nothing
waiting for you there. Meanwhile, I am o�ering you a perfectly legal
job - good money, limited security, remarkable fringe bene�ts. Hell,
if you live that long, I could throw in a pension plan. You think
maybe you'd like one of them?
2. You could have seen my name on my boarding pass. Or on the
side of my bag. Whoever you are, you couldn't have known I was
going to be on this plane. I didn't know I was going to be on this
plane, and if my plane hadn't been diverted to St. Louis, I wouldn't
have been. My guess is you're a practical joker. Maybe you're hus-
tling something. But I think maybe we'll have a better time if we
end this conversation here.

*** Dialogue German)
/w small pauses between the sentences
1. male, 2. female

1. Zwölf Jahre vergangen, die ganze Welt durchstreift und doch
nirgends echte Freude, nirgends wahrer Genuss. Wenn ich meinte,
es wäre Gold, so war es billiger Flitter. Der schäumende Becher
der Lust hatte bittere Hefe. Und für solchen leeren Schein hab ich
die ewige Seligkeit verscherzt. Wie glücklich war ich hier in diesem
Städtchen, als ich ein Kind war und noch glauben und beten konnte.
2. Was ist mit Euch? Seid Ihr krank? Oder wollt Ihr Mönch werden.
1. Störe mich nicht. Ich habe nichts mehr zu scha�en mit dir.
2. Zu spät, Faust. Lass das Beten, es hilft nichts, du hast dem, zu
dem du betest, längst abgeschworen. Oder hast du unseren Vertrag
vergessen? Habe ich dir nicht treu gedient?
1. Pah! Alle Genüsse, die du mir verscha�t hast, waren �üchtig, leer
und nichtig. Betrug war alles!
2. Du Narr! Was hast du vom Teufel, von dem jedes Kind weiÿ,
dass er der Vater aller Lügen ist, anderes erwartet? Aber du bist
noch weit mehr betrogen, als du denkst. Deine Zeit ist um. Schlag
Mitternacht bist du mein.
1. Was sagst du? Mir bleiben doch noch zwölf Jahre!
2. Du Narr! Wer mit der Hölle Verträge schlieÿt, muss höllisch gut
rechnen können. Habe ich dir nicht auch die Nächte hindurch gedi-
ent, und du willst nur die Tage zählen? In zwölf Jahren hast du die
vierundzwanzig Jahre meines Dienstes verbraucht.
1. Noch sind wir auf Erden, da gilt euer teu�isches Höllenrecht nicht.
2. Du Narr! Willst du vom Teufel Gerechtigkeit verlangen? Unrecht,
Lug und Trug - das ist des Teufels Handwerk!
1. O Himmel hilf!
2. Gott verschworen, Ewig verloren!

Appendix C. Classi�cation Results 143

*** Voice (English) Male

There was a boy who was miserable at home, although they did
not beat him. He did not �t well, not his family, his town, nor even
his life. He had two older brothers, who were twins, older than he
was, and who hurt him or ignored him, and were popular. They
played football: some games one twin would score more and be the
hero, and some games the other would. Their little brother did not
play football. They had a name for their brother. They called him
the Runt.They had called him the Runt since he was a baby, and
at �rst their mother and father had chided them for it. The twins
said, "But he is the runt of the litter. Look at him. Look at us."
The boys were six when they said this. Their parents thought it was
cute. A name like the Runt can be infectious, so pretty soon the
only person who called him Donald was his grandmother, when she
telephoned him on his birthday, and people who did not know him.
Now, perhaps because names have power, he was a runt: skinny and
small and nervous. He had been born with a runny nose, and it had
not stopped running in a decade. At mealtimes, if the twins liked
the food, they would steal his; if they did not, they would contrive
to place their food on his plate and he would �nd himself in trouble
for leaving good food uneaten.

*** Voice (English) Female

Their father never missed a football game, and would buy an ice
cream afterward for the twin who had scored the most, and a con-
solation ice cream for the other twin, who hadn't. Their mother
described herself as a newspaperwoman, although she mostly sold
advertising space and subscriptions: she had gone back to work full-
time once the twins were capable of taking care of themselves. The
other kids in the boy's class admired the twins. They had called him
Donald for several weeks in �rst grade, until the word trickled down
that his brothers called him the Runt. His teachers rarely called him
anything at all, although among themselves they could sometimes
be heard to say that it was a pity the youngest Covay boy didn't
have the pluck or the imagination or the life of his brothers. The
Runt could not have told you when he �rst decided to run away, nor
when his daydreams crossed the border and became plans. By the
time that he admitted to himself he was leaving he had a large Tup-
perware container hidden beneath a plastic sheet behind the garage
containing three Mars bars, two Milky Ways, a bag of nuts, a small
bag of licorice, a �ashlight, several comics, an unopened packet of
beef jerky, and thirty-seven dollars, most of it in quarters. He did
not like the taste of beef jerky, but he had read that explorers had
survived for weeks on nothing else; and it was when he put the packet
of beef jerky into the Tupperware box and pressed the lid down with
a pop that he knew he was going to have to run away.

144 Appendix C. Classi�cation Results

*** Voice (German) Male

Es war einmal ein junger Mann, der sehnte sich danach, daÿ sich
sein Wunschtraum erfüllte. Obgleich dies kein ungewöhnlicher An-
fang für eine Geschichte ist (denn jede Geschichte über einen jungen
Mann,ob in der Vergangenheit oder der Zukunft, könnte auf ähnliche
Weise beginnen), war an dem jungen Mann und seinen Erlebnissen
doch viel Seltsames, das nicht einmal er selbst jemals in vollem Um-
fang begri�. Die Geschichte begann - wie viele andere Geschichten -
in Wall. Der kleine Ort Wall liegt heute wie seit sechshundert Jahren
auf einem hohen Granitfelsen mitten in einem kleinen Waldgebiet.
Die Häuser von Wall sind alt und robust, aus grauem Stein, mit dun-
klen Schieferdächern und hohen Schornsteinen. Um auf dem Felsen
jeden Zentimeter Platz zu nutzen, kuscheln sie sich eng aneinander,
eins dicht an das andere gebaut, mit hier und dort einem Busch
oder Baum, der aus einer Gebäudemauer wächst. Aus Wall her-
aus führt nur eine Straÿe, ein verschlungener Pfad, der vom Wald
her steil ansteigt, gesäumt von Felsbrocken und Steinen. Folgt man
ihm weit genug nach Süden, aus dem Wald heraus, wird aus dem
Pfad eine richtige asphaltierte Straÿe; noch ein Stück weiter verbre-
itert sie sich abermals, und auf ihr drängen sich zu jeder Tages- und
Nachtzeit Autos und Lastwagen, die es eilig haben, von einer Stadt
zur anderen zu kommen. Irgendwann schlieÿlich gelangt man auf
der Straÿe nach London, aber dafür ist man von Wall aus eine ganze
Nacht lang unterwegs.

*** Voice (German) Female

Die Einwohner von Wall sind ein wortkarges Völkchen, das sich
grob in zwei Typen unterteilen läÿt: zum einen leben hier die Ure-
inwohner, groÿ und robust wie der Granit, auf dem ihr Städtchen
erbaut wurde, und zum anderen die Zugewanderten, die sich im
Lauf der Jahre in Wall niedergelassen haben, samt ihren Nachfahren.
Unterhalb von Wall im Westen liegt der Wald; im Süden be�ndet
sich ein trügerisch friedlicher See, gespeist von den Bächen aus den
Hügeln im Norden des Dorfes. Auf den Weiden der Hügel grasen
Schafe, und im Osten erstreckt sich ebenfalls Wald. Unmittelbar
östlich von Wall erhebt sich eine hohe graue Steinmauer, von der
das Dorf seinen Namen hat. Diese Mauer ist sehr alt, aus grob
behauenen Granitbrocken aufgeschichtet; sie kommt aus dem Wald
und führt wieder in ihn zurück. In dieser Mauer gibt es nur eine
einzige Lücke: eine knapp zwei Meter breite Ö�nung, ein Stückchen
nördlich vom Dorf. Durch den Spalt in der Mauer blickt man auf eine
groÿe grüne Wiese, hinter der Wiese liegt ein Bach, hinter dem Bach
sieht man Bäume. Von Zeit zu Zeit kann man zwischen den Bäu-
men in der Ferne Gestalten erkennen. Riesige, seltsame Gestalten
und kleine, schimmernde Erscheinungen, die aufblitzen und leuchten
und dann plötzlich wieder verschwunden sind. Obwohl es hervorra-

Appendix C. Classi�cation Results 145

gendes Weideland ist, hat noch nie ein Dorfbewohner sein Vieh auf
der Wiese jenseits der Mauer grasen lassen. Auch hat niemand sie
je als Ackerland benutzt.

*** Music playback
1. English radio Podcast, 2. German radio Podcast

The test content was recorded twice: the �rst time by using the built-in micro-
phones of the mobile device; the second time by using the corresponding headset
microphones. Afterward, as speci�ed in chapter 5, from the original PCM en-
coding each recording was lossy-compressed with all the desired bitrates and
coding, i.e. MP3 192 kbps, 128 kbps, 96kbps, 64 kbps, 32 kbps, AAC 128 kbps,
96kbps, 64 kbps, 48 kbps, 32 kbps, 16 kbps, and AMR 12.20 kbps, 10.20 kbps,
7.95 kbps, 7.4 kbps, 6.7 kbps, 5.9 kbps, 5.15 kbps, 4.75 kbps.

C.2 Complete Results

We are now going to present all the result of the classi�cation via SVM. In order
to be both exhaustive and concise, as made when presenting the clustering result
we will provide only the summary results. In particular, we will provide the
summary results while varying the feature selection Jselect discussed in section
4.1.5 and 4.2.5.

All the result reported were achieved with the best performing SVM tuning
(cRBF , γRBF) =

(
28, 2−9

)
and with feature normalization between -1 and 1.

We will split in two sections results concerning device classi�cation and results
concerning model classi�cation.

C.2.1 Device Classi�cation

The results for the device classi�cation present at once the outcome of the
intra-device classi�cation and of the inter-device classi�cation, As a remainder,
in the inter-device classi�cation we avoid test sets where two nominally identical
devices are present.

C.2.1.1 Feature Selection JselectAAC

1 −−−P C M

2

3 A _ f u l l 91.25

4 A _ i n t e r 96.816

5 A _ b u i l t−i n _ f u l l 91.875

6 A _ b u i l t−i n _ i n t e r 99.375

7 A _ h e a d s e t _ f u l l 99.375

8 A _ h e a d s e t _ i n t e r 100

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 80 79.688 75 76.562

16 A _ i n t e r 90.583 89.893 88.848 87.769

17 A _ b u i l t−i n _ f u l l 82 .5 87 .5 80 81.25

18 A _ b u i l t−i n _ i n t e r 95.625 95.234 95.312 95.547

19 A _ h e a d s e t _ f u l l 91.25 86.25 88.125 88.75

20 A _ h e a d s e t _ i n t e r 98.516 96.719 96.328 96.797

146 Appendix C. Classi�cation Results

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 74.375 72.812 73.125 73.125

28 A _ i n t e r 86.426 84.485 85.518 85.547

29 A _ b u i l t−i n _ f u l l 85.625 83.125 82 .5 83.125

30 A _ b u i l t−i n _ i n t e r 96.172 95.156 95.469 96.172

31 A _ h e a d s e t _ f u l l 86.25 83.75 82 .5 81 .25

32 A _ h e a d s e t _ i n t e r 96.172 93.359 95.547 94.453

33

34

35 −−−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 90.938 91.562 92.188 90.938 85.938

40 A _ i n t e r 96.763 97.002 96.848 96.917 95.718

41 A _ b u i l t−i n _ f u l l 91.25 92 .5 92 .5 93.125 87 .5

42 A _ b u i l t−i n _ i n t e r 99.453 99.375 99.688 99.609 99.844

43 A _ h e a d s e t _ f u l l 99.375 98.75 97 .5 98.125 97 .5

44 A _ h e a d s e t _ i n t e r 100 100 99.844 100 99.766

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 90.312 91.25 92.188 90 90.625 94.062

52 A _ i n t e r 96.497 96.76 96.855 96.914 95.938 97.009

53 A _ b u i l t−i n _ f u l l 91.875 91.25 92 .5 92 .5 96 .25 98.75

54 A _ b u i l t−i n _ i n t e r 99.375 99.375 99.531 99.844 100 99.766

55 A _ h e a d s e t _ f u l l 99.375 99.375 99.375 98.75 98.125 100

56 A _ h e a d s e t _ i n t e r 100 100 100 100 100 100

C.2.1.2 Feature Selection JselectAMR

1 −−−P C M

2

3 A _ f u l l 89.062

4 A _ i n t e r 96.631

5 A _ b u i l t−i n _ f u l l 92 .5

6 A _ b u i l t−i n _ i n t e r 99.688

7 A _ h e a d s e t _ f u l l 97 .5

8 A _ h e a d s e t _ i n t e r 99.844

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 81.562 79.062 74.688 80.625

16 A _ i n t e r 90.046 89.678 87.92 89.299

17 A _ b u i l t−i n _ f u l l 83.75 85.625 78.125 81.875

18 A _ b u i l t−i n _ i n t e r 94.844 95.703 93.828 94.766

19 A _ h e a d s e t _ f u l l 93.125 90 89.375 91.875

20 A _ h e a d s e t _ i n t e r 98.438 96.484 97.031 96.797

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 78.75 73.75 74.688 73.438

28 A _ i n t e r 87.034 85.168 86.228 87.097

29 A _ b u i l t−i n _ f u l l 86.875 83.75 82 .5 83.125

30 A _ b u i l t−i n _ i n t e r 95.312 95.469 94.531 94.922

31 A _ h e a d s e t _ f u l l 91.25 88.125 91.25 85

32 A _ h e a d s e t _ i n t e r 96.406 94.922 96.953 94.141

33

34

35 −−−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 90.312 90 90.625 89.375 88.125

40 A _ i n t e r 96.707 96.829 96.863 96.907 95.925

41 A _ b u i l t−i n _ f u l l 92 .5 93.125 93.75 93.75 90

42 A _ b u i l t−i n _ i n t e r 99.688 99.688 99.766 100 100

43 A _ h e a d s e t _ f u l l 97 .5 97 .5 95.625 95.625 98.125

44 A _ h e a d s e t _ i n t e r 100 100 99.688 99.844 99.453

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 91.25 89.062 89.062 90.312 90.938 92.188

52 A _ i n t e r 96.785 96.704 96.274 97.068 96.621 96.277

53 A _ b u i l t−i n _ f u l l 93.125 93.125 92 .5 91 .25 95.625 98.125

Appendix C. Classi�cation Results 147

54 A _ b u i l t−i n _ i n t e r 99.688 99.688 99.766 100 100 99.844

55 A _ h e a d s e t _ f u l l 98.125 98.125 98.125 98.125 98.125 98.125

56 A _ h e a d s e t _ i n t e r 100 100 100 100 99.688 99.297

C.2.1.3 Feature Selection JselectDEFAULT

1 −−−P C M

2

3 A _ f u l l 94.375

4 A _ i n t e r 97.732

5 A _ b u i l t−i n _ f u l l 93.125

6 A _ b u i l t−i n _ i n t e r 99.844

7 A _ h e a d s e t _ f u l l 99.375

8 A _ h e a d s e t _ i n t e r 100

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 77 .5 76.875 72.812 76.562

16 A _ i n t e r 89.426 88.982 88.313 88.262

17 A _ b u i l t−i n _ f u l l 77 .5 84.375 80 80

18 A _ b u i l t−i n _ i n t e r 95.859 95.859 95.703 95.078

19 A _ h e a d s e t _ f u l l 88.75 88.125 84.375 87 .5

20 A _ h e a d s e t _ i n t e r 97.812 96.328 96.562 97.344

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 72.188 69.688 69.062 68.75

28 A _ i n t e r 86.089 83.491 84.211 84.299

29 A _ b u i l t−i n _ f u l l 80.625 80.625 80 81.875

30 A _ b u i l t−i n _ i n t e r 95.938 95 94.688 96.016

31 A _ h e a d s e t _ f u l l 85 81.25 77 .5 78 .75

32 A _ h e a d s e t _ i n t e r 96.484 92.812 93.203 93.281

33

34

35 −−−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 94.375 92.812 92.188 92 .5 85.312

40 A _ i n t e r 97.632 97.109 97.251 97.725 95.623

41 A _ b u i l t−i n _ f u l l 93.75 93.75 91.875 91.25 86.875

42 A _ b u i l t−i n _ i n t e r 99.844 99.844 99.844 100 100

43 A _ h e a d s e t _ f u l l 99.375 99.375 98.75 98.75 97 .5

44 A _ h e a d s e t _ i n t e r 100 100 100 100 99.766

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 93.125 94.062 92.812 92 .5 91 .25 91.875

52 A _ i n t e r 97.361 97.49 97.458 96.917 97.063 96.619

53 A _ b u i l t−i n _ f u l l 93.75 93.75 90 91.875 95 99.375

54 A _ b u i l t−i n _ i n t e r 99.844 99.688 99.844 100 100 100

55 A _ h e a d s e t _ f u l l 99.375 99.375 98.75 98.75 98.75 99.375

56 A _ h e a d s e t _ i n t e r 100 100 100 100 99.766 99.844

C.2.1.4 Feature Selection JselectMERGE

1 −−−P C M

2

3 A _ f u l l 92 .5

4 A _ i n t e r 97.08

5 A _ b u i l t−i n _ f u l l 94.375

6 A _ b u i l t−i n _ i n t e r 99.688

7 A _ h e a d s e t _ f u l l 98.125

8 A _ h e a d s e t _ i n t e r 99.688

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 79.688 81.25 73.438 76.562

16 A _ i n t e r 90.42 90.188 88.232 88.237

17 A _ b u i l t−i n _ f u l l 83.125 87 .5 80.625 81.25

18 A _ b u i l t−i n _ i n t e r 95.703 95.156 95.469 95.156

19 A _ h e a d s e t _ f u l l 91.25 86.25 86.25 86.25

20 A _ h e a d s e t _ i n t e r 98.359 96.562 96.016 97.344

148 Appendix C. Classi�cation Results

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 73.438 71.562 72.188 73.75

28 A _ i n t e r 86.277 83.992 85.64 85.72

29 A _ b u i l t−i n _ f u l l 83.125 83.125 81.25 84.375

30 A _ b u i l t−i n _ i n t e r 95.938 94.844 95.234 96.328

31 A _ h e a d s e t _ f u l l 85 81.25 80 80.625

32 A _ h e a d s e t _ i n t e r 96.484 93.047 94.844 94.297

33

34

35 −−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 93.125 92.188 91.875 92.812 88.438

40 A _ i n t e r 97.141 97.063 97.217 97.366 96.184

41 A _ b u i l t−i n _ f u l l 93.125 94.375 92 .5 93 .75 88.125

42 A _ b u i l t−i n _ i n t e r 99.766 99.766 99.844 99.844 99.844

43 A _ h e a d s e t _ f u l l 98.75 99.375 98.125 98.125 98.75

44 A _ h e a d s e t _ i n t e r 100 100 100 100 100

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 92 .5 91.875 92.812 91.25 91.875 93.75

52 A _ i n t e r 96.926 96.912 97.134 97.18 96.768 96.843

53 A _ b u i l t−i n _ f u l l 93.75 93.75 95 93.125 95.625 98.75

54 A _ b u i l t−i n _ i n t e r 99.531 99.375 99.531 100 100 99.844

55 A _ h e a d s e t _ f u l l 99.375 99.375 99.375 98.75 98.75 100

56 A _ h e a d s e t _ i n t e r 100 100 100 100 99.844 99.844

C.2.1.5 Feature Selection JselectMP3

1 −−P C M

2

3 A _ f u l l 93.125

4 A _ i n t e r 97.28

5 A _ b u i l t−i n _ f u l l 93.125

6 A _ b u i l t−i n _ i n t e r 99.688

7 A _ h e a d s e t _ f u l l 98.125

8 A _ h e a d s e t _ i n t e r 99.922

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 79.688 81.875 75.312 77.188

16 A _ i n t e r 90.73 90.723 88.96 87.988

17 A _ b u i l t−i n _ f u l l 83.75 88.125 82 .5 80

18 A _ b u i l t−i n _ i n t e r 95.938 95.312 95.703 95.625

19 A _ h e a d s e t _ f u l l 90.625 87 .5 86.875 89.375

20 A _ h e a d s e t _ i n t e r 98.359 96.719 96.797 96.406

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 77.188 71.562 74.062 74.375

28 A _ i n t e r 86.299 84.766 86.436 85.415

29 A _ b u i l t−i n _ f u l l 83.75 82 .5 79.375 83.125

30 A _ b u i l t−i n _ i n t e r 95.938 95.391 95.469 96.016

31 A _ h e a d s e t _ f u l l 88.125 82 .5 83.125 80.625

32 A _ h e a d s e t _ i n t e r 96.172 93.438 95.234 93.672

33

34

35 −−−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 91.562 92 .5 90 92.188 87.812

40 A _ i n t e r 97.151 97.388 96.672 97.146 96.501

41 A _ b u i l t−i n _ f u l l 93.125 94.375 93.125 94.375 88.75

42 A _ b u i l t−i n _ i n t e r 99.688 99.688 99.688 99.844 99.844

43 A _ h e a d s e t _ f u l l 98.75 98.75 97 .5 98.125 98.125

44 A _ h e a d s e t _ i n t e r 100 100 100 100 99.609

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 91.25 92.812 92.188 90.938 91.25 92.812

52 A _ i n t e r 97.402 97.429 97.217 96.956 96.531 96.377

53 A _ b u i l t−i n _ f u l l 92 .5 91.875 94.375 94.375 96.875 98.75

Appendix C. Classi�cation Results 149

54 A _ b u i l t−i n _ i n t e r 99.688 99.609 99.531 99.922 100 99.766

55 A _ h e a d s e t _ f u l l 98.75 98.75 99.375 99.375 98.125 100

56 A _ h e a d s e t _ i n t e r 100 100 100 100 100 100

C.2.1.6 Feature Selection JselectPCM

1 −−−P C M

2

3 A _ f u l l 92.812

4 A _ i n t e r 97.09

5 A _ b u i l t−i n _ f u l l 95

6 A _ b u i l t−i n _ i n t e r 99.688

7 A _ h e a d s e t _ f u l l 98.75

8 A _ h e a d s e t _ i n t e r 100

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 80.625 82.188 75.312 77 .5

16 A _ i n t e r 91.077 91.433 88.743 88.135

17 A _ b u i l t−i n _ f u l l 83.75 88.75 81.25 81.25

18 A _ b u i l t−i n _ i n t e r 95.703 95.781 95.625 95.703

19 A _ h e a d s e t _ f u l l 90.625 88.75 86.875 90

20 A _ h e a d s e t _ i n t e r 98.281 96.641 96.562 97.422

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 75.938 72 .5 74.375 75.312

28 A _ i n t e r 86.318 84.407 86.633 85.884

29 A _ b u i l t−i n _ f u l l 85 82 .5 81 .25 85

30 A _ b u i l t−i n _ i n t e r 96.25 95.234 95.469 96.328

31 A _ h e a d s e t _ f u l l 89.375 83.75 83.125 83.125

32 A _ h e a d s e t _ i n t e r 96.797 93.047 95.234 95.469

33

34

35 −−−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 92.188 92.812 91.875 91.875 88.438

40 A _ i n t e r 97.285 97.197 96.797 97.375 95.964

41 A _ b u i l t−i n _ f u l l 92 .5 93 .75 94.375 92 .5 89.375

42 A _ b u i l t−i n _ i n t e r 99.688 99.688 99.844 99.844 100

43 A _ h e a d s e t _ f u l l 98.75 98.125 97 .5 98.75 98.125

44 A _ h e a d s e t _ i n t e r 100 100 100 100 99.609

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 92.812 92.188 93.438 90.625 90.938 92.812

52 A _ i n t e r 97.495 97.041 97.139 97.124 96.216 96.475

53 A _ b u i l t−i n _ f u l l 92 .5 92 .5 94.375 92 .5 96 .25 98.75

54 A _ b u i l t−i n _ i n t e r 99.688 99.688 99.688 99.844 100 99.766

55 A _ h e a d s e t _ f u l l 98.75 98.75 98.75 98.75 98.75 100

56 A _ h e a d s e t _ i n t e r 100 100 100 100 100 100

150 Appendix C. Classi�cation Results

C.2.2 Model Classi�cation

In the model classi�cation nominally identical devices are considered part of the
same class.

C.2.2.1 Feature Selection JselectAAC

1 −−−P C M

2

3 A _ f u l l 94.062

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 100

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 90.312 90.625 88.125 87.812

13 A _ b u i l t−i n 97 .5 98.125 97 .5 98.125

14 A _ h e a d s e t 97 .5 97 .5 93.75 95.625

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 87.812 84.688 87.188 84.062

22 A _ b u i l t−i n 98.125 96.875 97 .5 97 .5

23 A _ h e a d s e t 93.125 89.375 89.375 89.375

24

25

26 −−−M P 3

27

28 192 128 96 64 32

29

30 A _ f u l l 95.625 96.562 94.062 95 93.125

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 100 100 100 100 99.375

33

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 94.375 94.688 95 95.625 94.688 95

40 A _ b u i l t−i n 100 100 100 100 100 100

41 A _ h e a d s e t 100 100 100 100 99.375 99.375

C.2.2.2 Feature Selection JselectAMR

1 −−−P C M

2

3 A _ f u l l 94.375

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 99.375

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 88.75 89.688 86.562 90.625

13 A _ b u i l t−i n 96.875 96.875 97 .5 98 .75

14 A _ h e a d s e t 98.125 96.25 93.75 94.375

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 86.875 83.125 85.625 85.312

22 A _ b u i l t−i n 97 .5 97 .5 98.125 98.75

23 A _ h e a d s e t 95 92 .5 90.625 91.25

24

25

26 −−−M P 3

27

28 192 128 96 64 32

29

30 A _ f u l l 95.625 94.688 95.938 94.688 93.438

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 99.375 100 100 100 99.375

33

Appendix C. Classi�cation Results 151

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 95 95.312 95.312 95.312 95.312 93.75

40 A _ b u i l t−i n 100 100 100 100 100 100

41 A _ h e a d s e t 100 99.375 100 100 99.375 98.75

C.2.2.3 Feature Selection JselectDEFAULT

1 −−−P C M

2

3 A _ f u l l 96.875

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 100

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 89.062 87.812 87 .5 89.062

13 A _ b u i l t−i n 97 .5 98.125 96.875 96.875

14 A _ h e a d s e t 98.125 94.375 93.75 96.25

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 87.812 82.812 84.062 83.438

22 A _ b u i l t−i n 96.25 96.25 95.625 98.75

23 A _ h e a d s e t 95.625 85.625 85 86.25

24

25

26 −−−M P 3

27

28 192 128 96 64 32

29

30 A _ f u l l 96.562 95.938 95.938 95.938 93.75

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 100 100 100 100 99.375

33

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 96.25 96.875 95.312 97 .5 94.688 93.438

40 A _ b u i l t−i n 100 100 100 100 100 100

41 A _ h e a d s e t 100 100 100 100 99.375 98.75

C.2.2.4 Feature Selection JselectMERGE

1 −−−P C M

2

3 A _ f u l l 96.25

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 99.375

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 89.375 88.75 88.75 90

13 A _ b u i l t−i n 98.125 96.875 98.125 98.125

14 A _ h e a d s e t 98.75 93.75 95 95.625

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 88.438 84.688 87 .5 84.062

22 A _ b u i l t−i n 97 .5 96.875 97 .5 98.125

23 A _ h e a d s e t 95 86.875 87 .5 88.75

24

25

26 −−−M P 3

27

28 192 128 96 64 32

29

30 A _ f u l l 95.625 95.625 95.625 95.312 94.375

152 Appendix C. Classi�cation Results

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 100 100 100 100 99.375

33

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 95 95 94.688 95.312 94.688 94.688

40 A _ b u i l t−i n 100 100 100 100 100 100

41 A _ h e a d s e t 100 100 100 100 100 99.375

C.2.2.5 Feature Selection JselectMP3

1 −−−P C M

2

3 A _ f u l l 95.625

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 100

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 90.938 90.625 88.75 88.125

13 A _ b u i l t−i n 98.125 96.875 98.125 98.75

14 A _ h e a d s e t 98.125 96.25 95.625 95.625

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 87.812 83.125 87.188 86.25

22 A _ b u i l t−i n 97 .5 98.125 97 .5 98.125

23 A _ h e a d s e t 96.25 86.875 89.375 91.25

24

25

26 −−−M P 3

27

28 192 128 96 64 32

29

30 A _ f u l l 95.312 95.312 95.312 95 95.312

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 100 100 100 100 98.75

33

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 95.625 95.938 95.938 96.25 95.312 95.312

40 A _ b u i l t−i n 100 100 100 100 100 100

41 A _ h e a d s e t 100 100 100 100 100 99.375

C.2.2.6 Feature Selection JselectPCM

1 −−−P C M

2

3 A _ f u l l 95.312

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 100

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 90.312 90 88.125 88.75

13 A _ b u i l t−i n 98.75 98.125 98.125 98.125

14 A _ h e a d s e t 98.125 95.625 95.625 95

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 87 .5 85 85.312 85.938

22 A _ b u i l t−i n 98.125 98.125 97 .5 98.125

23 A _ h e a d s e t 94.375 88.125 88.125 90.625

24

25

26 −−−M P 3

27

Appendix C. Classi�cation Results 153

28 192 128 96 64 32

29

30 A _ f u l l 95.312 95.625 95.312 95.625 93.75

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 100 100 100 100 98.75

33

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 95.625 95 95.938 96.562 94.375 95

40 A _ b u i l t−i n 100 100 100 100 100 100

41 A _ h e a d s e t 100 100 100 100 100 99.375

C.3 Baseline Framework

In this section we are going to present the result of the classi�cation via SVM
by using directly the channel estimate as the feature vector, instead of the one
de�ned in Chapter 4. Once again, we will split in two sections results concerning
device classi�cation and results concerning model classi�cation.

C.3.1 Device Classi�cation

The results for the device classi�cation present at once the outcome of the
intra-device classi�cation and of the inter-device classi�cation, As a remainder,
in the inter-device classi�cation we avoid test sets where two nominally identical
devices are present.

1 −−−P C M

2

3 A _ f u l l 81.51

4 A _ i n t e r 90.212

5 A _ b u i l t−i n _ f u l l 89.062

6 A _ b u i l t−i n _ i n t e r 99.023

7 A _ h e a d s e t _ f u l l 93.229

8 A _ h e a d s e t _ i n t e r 97.07

9

10

11 −−−A M R

12

13 12 .2 10 .2 7 .95 7 .4

14

15 A _ f u l l 66.406 67.448 66.146 64.844

16 A _ i n t e r 81.23 80.042 79.732 78.642

17 A _ b u i l t−i n _ f u l l 77.604 77.604 73.438 76.042

18 A _ b u i l t−i n _ i n t e r 92.578 92.969 92.448 91.471

19 A _ h e a d s e t _ f u l l 78.125 76.042 71.875 76.042

20 A _ h e a d s e t _ i n t e r 92.578 90.625 91.667 90.885

21

22

23

24

25 6 .7 5 .9 5 .15 4 .75

26

27 A _ f u l l 63.281 63.281 65.885 63.021

28 A _ i n t e r 78.658 77.236 78.158 77.842

29 A _ b u i l t−i n _ f u l l 72.396 71.354 72.396 72.396

30 A _ b u i l t−i n _ i n t e r 91.732 91.341 89.909 89.909

31 A _ h e a d s e t _ f u l l 72.396 76.042 73.438 75

32 A _ h e a d s e t _ i n t e r 89.714 89.974 89.714 89.779

33

34

35 −−−M P 3

36

37 192 128 96 64 32

38

39 A _ f u l l 81.51 81.771 82.552 81.25 79.167

40 A _ i n t e r 90.019 89.777 90.263 89.807 88.552

41 A _ b u i l t−i n _ f u l l 88.021 88.021 87 .5 88.542 82.812

42 A _ b u i l t−i n _ i n t e r 98.828 98.958 98.698 98.828 98.828

43 A _ h e a d s e t _ f u l l 93.75 94.271 94.271 94.792 93.229

44 A _ h e a d s e t _ i n t e r 97.005 96.549 96.615 96.289 97.461

45

46

47 −−−A A C

48

49 128 96 64 48 32 16

50

51 A _ f u l l 81.771 82.292 82.292 82.031 84.375 85.156

154 Appendix C. Classi�cation Results

52 A _ i n t e r 90.47 90.312 90.059 89.832 91.258 91.801

53 A _ b u i l t−i n _ f u l l 88.021 89.583 89.062 89.062 92.708 95.312

54 A _ b u i l t−i n _ i n t e r 98.958 98.893 98.828 99.219 99.089 98.958

55 A _ h e a d s e t _ f u l l 93.75 93.75 94.792 94.792 93.75 93.75

56 A _ h e a d s e t _ i n t e r 97.07 96.81 96.745 96.81 97.591 97.07

C.3.2 Model Classi�cation

In the model classi�cation nominally identical devices are considered part of the
same class.

1 −−−P C M

2

3 A _ f u l l 90.365

4 A _ b u i l t−i n 100

5 A _ h e a d s e t 97.917

6

7

8 −−−A M R

9

10 12 .2 10 .2 7 .95 7 .4

11

12 A _ f u l l 83.333 87 .5 82.292 83.594

13 A _ b u i l t−i n 98.958 98.958 98.438 97.396

14 A _ h e a d s e t 89.583 91.146 88.542 89.062

15

16

17

18

19 6 .7 5 .9 5 .15 4 .75

20

21 A _ f u l l 82.031 80.208 79.427 79.167

22 A _ b u i l t−i n 97.396 97.396 98.438 96.875

23 A _ h e a d s e t 88.542 84.896 85.417 87 .5

24

25

26 −−−M P 3

27

28 192 128 96 64 32

29

30 A _ f u l l 91.406 90.104 90.885 90.365 88.802

31 A _ b u i l t−i n 100 100 100 100 100

32 A _ h e a d s e t 99.479 97.396 97.396 97.396 96.354

33

34

35 −−−A A C

36

37 128 96 64 48 32 16

38

39 A _ f u l l 91.667 90.625 90.365 89.062 90.104 89.583

40 A _ b u i l t−i n 100 100 100 99.479 100 100

41 A _ h e a d s e t 97.917 97.396 96.875 97.396 98.438 96.875

