
POLITECNICO DI MILANO
FACOLTA’ DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Specialistica in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

STUDY AND MODELLING OF AN APPROXIMED
MEMOIZATION SYSTEM FOR FINANCIAL

APPLICATIONS

Relatore: Prof. CHIARA FRANCALANCI
Correlatore:Prof. GIOVANNI AGOSTA

Ing. MARCO BESSI

Tesi di laurea di:
ROBERTO MASSIMINI
Matr. 753025

Anno Accademico 2011 - 2012

A papá che ha sempre creduto in me e che dal
Cielo mi protegge.

A mamma, per tutti i sacrifici che ha fatto.

Ringraziamenti

Il primo ringraziamento va a mia mamma, Mariella, che nonostante tutto quello
che ci é capitato, non mi ha mai fatto mancare la sua fiducia e il suo supporto. Il
secondo ringraziamento va a mio papá Vincenzo, che mi sta guardando dal Cielo
e di sicuro sará molto orgoglioso.

Grazie a Cristina per essermi stata vicino e per avermi sostenuto nei momenti
in cui il traguardo sembrava irraggiungibile.

Un ringraziamento ad Andrea, Marco, Matteo, Pietro e Roberto, gli amici di
una vita, che mi hanno aiutato, supportato (o forse sopportato) in tutto questi
anni universitari.

Voglio inoltre ringraziare la mia relatrice, la prof. Chiara Francalanci, per
avermi offerto l’opportunitá di realizzare questa tesi.

Un grazie anche ai miei correlatori Giampaolo Agosta e Marco Bessi per
avermi seguito in un modo splendido nella realizzazione di questa tesi e per avermi
sempre supportato e aiutato nei problemi che di volta in volta si incontravano.
Un ringraziamento anche all’ing. Eugenio Capra, che mi ha seguito nella prima
parte di tesi per poi affrontare una nuova avventura lavorativa.

Infine un Grazie davvero grande anche a tutti quelli che non sono stati espres-
samente citati ma che mi hanno accompagnato in questi ultimi anni e che hanno
avvicinato un pó questo traguardo.

Grazie.
Roberto.

Abstract

The information comunication and technology sector (ICT) emits each year the
same amount of CO2 as all the word aviation industry. A green ICT can not be
obtained only working on the hardware. The software has an important role in
its entire life cycle, starting from the use phase until the end of the computer
life. The role of the software in the green ICT it is not only on the monitoring
and on the optimization of the resources, but it can going over, allowing, for
example, to satisfy new requirements with the existings infrastructures. In this
thesis is presented an approach based on the memoization in order to improve
the energy and the time efficiency of a function whose goal is to compute the
financing payments for a big Italian bank. It was analyzed the function, doing a
porting from the original coding language (COBOL) to the Java language. It was
applied after the memoization approach, in order to obtain an improvement on
the energy consumptions. This approach was modified introducing the concept
of approximed memoization, in which an output value is taken from a memoized
value if the corrisponding input value belongs to the interval memoized value plus
or minus a Service Level Agreement (SLA), choosen by the users. The results of
the application of this approach are good, finding a timing percentage gain of the
47% in the worst case (high value precision).

Sommario

Il settore informazione, comunicazioni e tecnologia (Ict) emette ogni anno tanta
anidride carbonica quanto tutta l’industria mondiale dell’aviazione e dei trasporti
aerei. Una ICT davvero green non puo’ essere ottenuta intervenendo unicamente
sull’hardware. Il software infatti gioca un ruolo molto importante sull’intero ciclo
di vita: sia nella fase d’uso sia nella fine vita dei computer. Il ruolo del software
nel green ICT non e’ solo monitoraggio e ottimizzazione di risorse, ma puo’ andare
oltre, consentendo ad esempio di soddisfare nuove esigenze con le infrastrutture
esistenti. In questa tesi viene presentato un approccio basato sulla memoizzazione
per migliorare l’efficienza energetica e temporale di una funzione appartenente ad
un grande istituto bancario che effettua il calcolo degli interessi sui mutui. E’ stata
analizzata la funzione, effettuando un porting dal linguaggio originale (COBOL)
al linguaggio Java. Successivamente e’ stato applicato l’approccio della memoiz-
zazione in modo da ottenere un miglioramento riguardante l’efficienza energetica.
Tale approccio e’ stato modificato introducendo il concetto di memoizzazione ap-
prossimata, in cui come valore di output viene preso un valore gia’ memoizzato se
il valore in input appartiene all’intervallo definito da un valore memoizzato piu’ o
meno uno SLA (Service Level Agreement) definito dall’utente. I risultati relativi
all’approccio sono soddisfacenti, trovando un guadagno percentuale del tempo di
esecuzione del 47% nel caso peggiore (precisione dei valori elevata).

Contents

List of figures 13

List of tables 15

1 Introduction 17

2 State of the art 19
2.1 Green IT . 19

2.1.1 Enviromental impact of IT and the origin of Green IT . . 20

2.1.2 Why is Green IT important? 21

2.1.3 How to make the Green IT a multi-level approach 24

2.2 Green Software . 27

2.2.1 The studies in Green Software 29

2.2.2 The meaning of energy efficiency in software 30

2.2.3 Writing energy efficient software 31

2.2.4 Consume optimization at system level: Memoization . . . 32

2.3 Pure function memoization for the energy efficiency: GPF Frame-
work . 34

2.3.1 Proposed approach and software architecture 34

2.3.2 Previsional Model . 38

3 Model and application 43
3.1 Analyzed function . 43

3.1.1 Why this function . 43

3.1.2 Problems found and solutions used for the COBOL-Java
pure functions translation 45

3.1.3 Computation interested parameters 46

12 CONTENTS

3.2 Data analysis . 48
3.2.1 Data distribution . 48
3.2.2 Memory division . 50
3.2.3 Data memory occupation 51

4 Idea: approximated memoization 53
4.1 Data structure: quadtree . 53
4.2 Modified previsional model . 56
4.3 Model mathematical analysis . 58

4.3.1 The definition of f . 59
4.3.2 Curve Fitting . 59
4.3.3 Best curve fitting algorithm analysis and selection 62

5 Results 65
5.1 How the experiments are conducted 65

5.1.1 Pc technical charatteristics 66
5.1.2 How to measure the energy consumpion 68

5.2 Model application in the function 71
5.3 Savings . 75

5.3.1 Time Savings . 76
5.3.2 Energy savings . 83
5.3.3 MIPS savings . 86
5.3.4 Cost saving . 87

6 Conclusions 93
6.1 Conclusions . 93
6.2 Future works . 95

A Java-Cobol 97
A.1 COBOL . 97

A.1.1 History and specification 97
A.1.2 Criticism and defense . 99
A.1.3 Data Types . 100

A.2 Java . 100
A.2.1 Principles . 102

A.3 Cobol to Java . 102

CONTENTS 13

A.3.1 Structures . 102
A.3.2 Control instructions . 104
A.3.3 Statements . 104

Bibliography 107

List of Figures

2.1 Compound annual growth rate of the costs of IT infrastructures.
Source:IDC (2006) . 22

2.2 Ratio between energy and cooling cost vs new server cost. Source:IDC
(2006) . 23

2.3 Power consumption breakdown in a data center. Source:IBM (2007) 25

2.4 XIRR energy consumption . 31

2.5 Power consumption profiles for server hardware components. HD
lines indicate power absorbed by hard disk. CPU the power ab-
sorbed by the processor, and ATX power absorbed by motherboard
and other components. (a) Idle profile. (b) Under load profile. . . 32

2.6 XIRR method source code . 36

2.7 Bytecode instrumentation tool architecture: Java Bytecode is first
analyzed to collect information about pure functions; candidate
pure functions are then instrumented to support memoization . . 37

3.1 Framework analysis of the function 47

3.2 Data Distribution using Consistenza on the x-axis and Tasso on
the y-axis . 48

3.3 Data Distribution with the memoization interval in green 50

4.1 A region quadtree with point data 54

4.2 Graphs from the test with the function y = 40∗e−0,5∗x+rand(size(x)) 63

5.1 Energy meter . 68

5.2 Current Clamp . 69

5.3 Function energy consumption profile vs idle consumption profile . 70

5.4 Memoization area . 74

16 LIST OF FIGURES

5.5 Gain obtained with the memoization approach 83
5.6 Idle consumption of the system. 84
5.7 CO2 Cycle . 86
5.8 TCO Model . 90

List of Tables

2.1 Estimated energy efficiency with respect to the maximal theoretic
efficiency of IT systems divided in logical and infrastructural layers. 26

3.1 Data intervals . 49
3.2 Interval analysis . 49
3.3 Size of variables . 52

4.1 Results of the curve-fitting analysis 64

5.1 Technical characteristics of the system used for the testing 67
5.2 Input data summary table . 79
5.3 Memory data table . 80
5.4 Energy consumption of the normal function execution. 85

A.1 COBOL Data Types . 101

Chapter 1

Introduction

The emission of CO2 of the ICT sector each year is equal to the emission caused
by all the world aviation industry. The ICT causes the 2% of the world CO2

emissions and in the 2020 the previsions are that this value will be the double.
So, the green ICT can not concentrate only its studies on the hardware part or
on the embedded system. It becomes important to study methods that permits
to create a green software, in order to optimize and improve the energy efficiency
of the total system (hardware and software). Recent studies had highlighted that
the CPU is the contributor of the 60 % of the mean consumption of energy in a
server system, more than the disks and the memories. Otherwise, while the power
absorbed by the microprocessor is proportional to its use, the one absorbed by
the memory and the disks is indipendent on the usage, because it depends on the
cyclic update of the dynamic RAM and on the rotation of the disks. From this
observation the idea that becomes more and more relevant is that it is possible to
use the memory instead of the processor to satisfy the functional requirements,
gaining a consistent energy gain. It is possible to apply this approach to some
computation intensive applications using some "memoization" tecniques. The
term memoization was coined by Donald Michie in 1968 and is derived from the
Latin word memorandum (to be remembered), and thus carries the meaning of
turning [the results of] a function into something to be remembered. While mem-
oization might be confused with memorization (because of the shared cognate),
memoization has a specialized meaning in computing. A memoized function "re-
members" the results corresponding to some set of specific inputs. Subsequent
calls with remembered inputs return the remembered result rather than recalcu-

20 Introduction

lating it, thus eliminating the primary cost of a call with given parameters from
all but the first call made to the function with those parameters.

It is not possible to apply to all the functions the memoization approach. This
method can be applied to a set of functions called "pure", whose main charatter-
istics are to be deterministic and they can not produce side-effect.

The goal of this thesis is to analyze a function that computes the financing
payments for a big Italian bank and then apply the memoization approach on
that function. Clearly, the application of the method is possible only if the func-
tion is pure.

In the chapter 2 it is presented the Green IT and the Green Software concepts,
then it is described the state of the art related to the memoization techniques.
After these concepts, is presented the definition of pure function, join to the de-
scription of the framework developed by the Politecnico di Milano, that defines
the model that is the start point of the thesis works.

In the third chapter it is described the financing payments function with the
reasons that have brought to choose it and the parameters that influence the
function behaviour. Then there is an illustration on the problems found and the
solutions adopted during the porting from the COBOL to a Java pure function.
At the end of this chapter it is described the distribution of the input data and
also the memory division adopted for the solution.

The chapter 4 presents the solution idea, the approximated memoization. It
is described first the quadtree, the structure choosen to store the data in the
memory. Then it is described the previsional model, in the modified version, in
order to introduce the concept of the approximed memoization. At the end of the
chapter there is an accurate analysis on the function approximation, specially on
the best curve fitting method.

The fifth chapter presents the results reached with the memoization approach,
speaking first on the how the experiments were conducted, with the presentation
of the devices use for executing and then measure the energy consumptions. Then
it is presented the section in which are illustrated the savings gained with the
application of the memoization.

In the last chapter are shown the conclusions on the works done for the thesis
and then there is a subsection in which are described future works that could be
done for improving the actual status of the project.

Chapter 2

State of the art

This chapter provides an introduction to the basic concepts that will be referred
to throughout all the other chapters. In section 2.1, Green IT main concepts
will be introduced and described. Section 2.2 provides a detailed overview about
the energetic optimization of the software, called Green Software. In particoular,
in this section will be described an approach used to improve the performances
and to decrease the consumption of a software method. This approach is called
memoization. To use memoization the function analyzed has to be pure and in
section 2.3 will be presented the definition of pure function and will be described
the overall project on which this thesis work is based.

2.1 Green IT

The information systems, that nowadays are common in our lifes, have an en-
viromental impact that can’t be overlooked. The computer production needs
electricity, chemical products and other things, becaming a cause of pollution.
Some studies [23] underline the fact that IT infrastructures are responsible for
2% of the CO2 world emissions, with an impact equal to the aeronautic industry.
Each PC,indeed, generates 1 ton of CO2 per year, and a server needs the energy
that causes the emission of the same quantity of CO2 coming from a SUV run-
ning for 25 km [25]. The strong evolution in the recent years have brought to the
market smaller and more powerful processors, with the consequent increment of
the processing dissipated power. The common Intel R© Core processors dissipate
110 W on the average, with a consumption increment of 110% related to the old

22 State of the art

486, that had the incredible consumption of 10W on the average. To get a more
concrete idea about the energy consumption of the IT systems, we can consider
that a modern server blade uses up to 1 kW, the same as a regular refrigerator
at home. It is easy to see that a rack of blade servers, with 5 shelves and 8
units each, will need 40 kW, the same as an appartment building. Given this
consideration, a medium datacenter will need 250 kW, like a district, while big
data centers, like the one that big banks or ISP have and maintain, will need
something like 10MW, the same as an entire town.

2.1.1 Enviromental impact of IT and the origin of Green IT

Green IT is an expression that includes many smaller concepts under it, but
generally speaking it addresses all problems related to the environmental impact
of the energy consumption related to the IT infrastructures.
We can identify three big macro areas behind it:

• IT energy efficiency

• environment friendly management of the IT lifecycle

• IT usage as a way of improving business process efficiency

The first area is related to the IT energy efficiency, which can be improved focus-
ing on the design and management of the infrustructures and data centers and
by changing the companies attitude and way of working.

The second area includes all the actions that are related to an environment
friendly management of the IT life cycle, from the production to the disposal.
The pollution that the IT industry is responsible for is not only caused by the en-
ergy consumption, but includes also the toxicants dispersed in the environment.
Some studies have discovered that the 70% of the ground pollution caused by
lead, cadmium and mercury comes from, directly or indirectly, the IT.
The "Waste of Electric and Electronic Equipment" (WEEE), called also "e-
waste", are special type of waste that derive from any type of electric or electronic
equipment that is disused because is broken or obsolete. That waste is toxic and
not biodegradable and it is going to be an higher risk for the enviroment. In
order to address the problem the European Union has delivered some guidelines
(WEEE 2002/95/CE) which state some rules for the gathering and the reuse of

2.1 Green IT 23

those IT waste.The studies on Green IT on this field have the goal to decrease
the polluting parts during all IT life cycle. It starts from the production process,
for instance trying to optimize the packaging process, and it goes till the end of
the life-cycle, trying to elaborate way of gathering and reusing old or broken IT
components.

The last area focuses the usage of IT as a instrument of governance, measuring
and monitoring the "green" parameters (like the power consumption, tempera-
ture, paper usage,. . .) of all the business processes, IT or not IT. Recent studies
[25] have proved that 86% of ICT departments in Great Britain do not know their
CO2 emissions and 80% of companies do not know the electric bill. A research
study from Politecnico di Milano [7] considered 140 Italian small and medium
companies and revealed that 89% of IT administrators have no idea of the con-
sumption of their IT infrastructure. As a matter of fact it is hardly impossible to
improve what it is not even known; moreover it is quite hard that an IT admin-
istrator is interested in investing in lowering its energy consumptions when these
consumptions are not even assigned to the IT infrastructures.

As already mentioned, in order to obtain a greener IT, there must be a strate-
gic view of the company and ther must be some cultural and management changes
following it. The enviromental impact of a company should be monitored through
appropriate "green" KPI (Key Performance Indicator), that can be used by the
company decision makers to monitor and improve the energy efficiency of an
industrial process. So the IT can be used in two ways:

• To misure the green parameters using sensors or smart networks able to
sample and to analyze the data

• To analyze and summarize the data using data mining tools to support the
company decisions

2.1.2 Why is Green IT important?

There are at least three good reasons that can explain why the Green IT is
important:

• The IT has an important enviromental impact

• The IT energy consumption costs

24 State of the art

• The energy need is a limit to the IT scalability

The paragraph before talked about how the IT has an important enviromental
impact both for the energy consumption, and so the emission of greenhouse gas,
the first cause of global warming, and for the release of polluting substances in
the environment. These gas emissions can cause respiratory diseases, acid rains
and global climate changes. The only way of stopping these effects is to reduce
global emissions and this can be done also by reducing electric power consump-
tion. Therefore talking about Green IT is first of all a social responsability that
nowadays can’t be omitted.

The CIO and IT responsible interest on Green IT is increasing because the
cost of the energy used by the IT systems is becoming a significant part of the
Total Cost of Ownership (TCO) . The figure 2.1 shows the data related to the

Figure 2.1: Compound annual growth rate of the costs of IT infrastructures.
Source:IDC (2006)

servers world cost in the last years. While the hardware cost in the last 12 years
is slightly grown, the cost of power and cooling is grown four times. Nowadays,
power and cooling cost represent the 60% of the total spending for new IT in-

2.1 Green IT 25

Figure 2.2: Ratio between energy and cooling cost vs new server cost. Source:IDC
(2006)

frastructures, with a big impact on the Total Cost of Ownership (as is shown in
the Figure 2.2). This proportion is expected to rise even more in the next years,
also because of the continuous growth of energy unit cost.

Even if the cost of energy is continuously growing and has a significant impact
on the energy consumption of a company, in most of the cases energy costs are
not charged to the IT budget, which means that the costs of IT power consump-
tion are not yet included in the TCO of IT infrastructures.

In addition, the higher energy consumption of IT equipment is becoming a
limit to the data centers scalability of medium and big companies located in
higher density living areas. The electric power need grows 8/10% each year and
for the electric suppliers grows the risk to be unable to supply that amount of
energy in a restricted urban area. To increase the capability of computation
in the actual data centers is going to be necessary building new structrures in
low-density living areas, with a further enviromental and cost impact.

26 State of the art

2.1.3 How to make the Green IT a multi-level approach

Up to now the main focus of this introduction has been on Green IT and on
the impact of IT infrastructures on power consumption. Now the focus will be
on the reason why IT infrastructures consume so much energy. As a matter of
fact it is the transmission of the information itself that consumes energy. One
bit, which represent the minimum quantity of information, keeps its information
by associating it to the state of a physical system (for instance bits can be kept
in a persistent manner on a magnetic storage device such as magnetic tape or
disc). In order to make the bit change its state, the state of the physical system
associated to must be changed, and this needs energy.

Recent studies conducted at MIT (Massachusetts Institute of Technology) [17]
found a lower bound for the power consumption needed to commute a bit from
one state to another at a given speed. This bound is due to quantum physic laws
and can only be reached when every bit is strictly associated to only one quantum
electronic spin. This particular kind of bit commutation can only be reproduced
with quantum computers, which are still under study. These computers exploit
quantum properties of materials and they require 10−25J in order to commute
one bit at 1GHz. Traditional computers only reach 10−16J. Anyway these energy
values are still lower then the power consumption discussed before. This differ-
ence comes from the fact that a bit commutation is the lowest level of a computer
system; over it there are a lot of different infrastructural layers which multiply,
also for a factor of 30, the single energy required by one bit commutation.

Figure 2.3 [13] shows the energy consumption distribution for a typical data
center (note that the distribution may vary due to different computational load
and due to hardware characteristics of the system). From the figure it comes out
that Green IT has to be faced from different infrastructural levels of the data
center (CPU usage, load distribution on the different servers, cooling . . .) since
every single components contributes significantly to the overall power consump-
tion. In order to improve energy efficiency of the entire system all the layers
must be considered, especially the lower ones, since the power consumption of
these layers is amplified by the upper layers. The guideline towards this kind of
improvement must be software efficiency, considered in this case as the number of
commutation executed by the processor. A non energy efficient software requires
a higher number of processor operations, which means more commutation. In

2.1 Green IT 27

Figure 2.3: Power consumption breakdown in a data center. Source:IBM (2007)

addition it also requires more memory space and it needs to be cooled more.
The energy efficiency of an IT system has been estimated not to be higher

the 50% of the theoretic maximal efficiency. As it has been sketched in Table
2.1, different layers in IT systems are characterized by different energy efficiency
estimates. Analyzing each layer in detail it comes out the fact that these results
are due to many small inefficiencies in widely different areas of an IT system.

At the infrastructural layer there are mainly two inefficiencies: UPSs and
cooling systems, which usually cannot be configured and run at the maximum
power possible. In order to make them more efficient it should be possible to
dynamically adjust them in order to cool down the system only when and where
it is needed, with the respect to the real workload of data center.
In addition the placement of shelves and air vents should be driven by thermo-
dynamic studies of the environment; this would lead to gain in efficiency.

At the system layer efficiency improvements can be obtained by using virtu-

28 State of the art

Level Estimated energy efficiency
Infrastructure 50%

System 40%
Server 60%

Processor 0,001%
Software 20%
Network 10%
Database 60%
IT use 30%

Table 2.1: Estimated energy efficiency with respect to the maximal theoretic efficiency
of IT systems divided in logical and infrastructural layers.

alization, which allows to balance workload between the different servers.
At the server layer it is possible to obtain high efficiency improvements. As

a matter of fact a lot of power is dissipated from the peripheral components;
by trying to optimize each of them it is possible to obtain a global gain. For
instance, reducing energy consumption by making fans not continuously run but
by making them run according to the cooling needs; this approach can make the
fans power consumption reduce to 50 %. Other improvements can be obtained
by dividing the cache in segments, where each of them must only be powered if
it is really used, or by substituting hard disks with solid state memory.

One of the main things responsibile for power dissipation is the conversion
from alternate power to continue power. This conversion is typically done in
each server, because they have their own power supply. If the conversion is done
only by one bigger power supply, energy efficiency would be much higher and the
heat dispersion much lower.

Processor is the component for which the efficiency is the smallest one. As
mentioned before, today’s processor architectures are far from reaching the power
consumption lower bound imposed by the quantum physics. Beyond their archi-
tectural limits, today’s processors do not exploit their potential enough and they
are not used in an energy efficient way. It has been proved that lowering the clock
frequency and use multi-core processors can reduce power consumption by 50%
[23].

The operations executed by the processor are driven by the software, that it
implies different layers: from the operating system, through the middleware layer

2.2 Green Software 29

to the user applications layer. Usually software engineers and programmers do
not take into consideration software efficiency enough and sometimes software
power consumption is not even considered in the trade-off between costs, quality
and performances. Recent studies had taken in consideration how are the internal
software parts that have also an impact with its energy efficiency. In the next
section will be presented the green software concept.

At network layer, efficiency can be improved thinking about green routing
algorithms or optimizing hardware network infrastructures.

Also the database efficiency can have a consistent impact on power efficiency.
Data quality is an important aspect since poor quality data can lead to more
transactions and more operations, with a consequent power loss. Database data
structures, engines and parameters must be tuned in a way to minimize the re-
quired operations, therefore to minimize the overall power consumption.

Last but not least there is the way IT is used, which can be the cause of con-
sistent power losses. Recent studies [12] have proved that the correct use of power
management technology already available also on personal computers, like screen
savers or turn off the system when it is not used, can lower energy consumption
by 60%. There are little things that can be done easily but that can save a lot of
energy, like allowing the standby on the systems.

There is the need of a more radical change, able to modify deeply companies’
cultures and the way of thinking towards IT systems. Both the system admin-
istrators and the end users need to change their habits and understand how to
behave more "green". Every person involved with the IT system must be cor-
rectly instructed and must understand the problems related to energy efficiency.
The investment that needs to be done in order to acquire a "green" computer is
15- 20$ more then a regular one, but the power consumption reduction is around
30W given the actual power costs, which makes the investment repaid in less then
2 years, without even considering the reduction of cooling costs [6].

2.2 Green Software

The Green IT is now in the heart of attention both at accademic and at industrial
level [3]. Speaking about Green IT, it is possible to point out different fields of
actions, like:

30 State of the art

• Workspace

• Data Center

• Green Hardware

• Green Software

The section before talked about the first three points. From now on the focus
will be on the software, which is the first responsible of the energy consumption
caused by the hardware. The software "drives" the hardware and it selects the
basic instructions that have to be executed.
The "green software" studies the procedures according to the software has an
influence on the energy needs of IT and how to optimize them.

To understand the area of green software can be useful an example with the
motor world. If you want to use less fuel to go from Milan to Turin the first thing
that you have to do is choosing a car that covers more km with 1 litre of fuel.
In the IT world this is the same as using an efficient hardware, that can do a
lot of basic operation with 1 Wh of energy. But there are many others solutions
that can be used to use less fuel. First of all you can try to travel full load. For
example, if you have to do the travel with other 8 people, you can use a minibus
instead two cars. This is the equivalent to balance the workloads and using the
virtualization, all things that are in the area of green data center. Then you can
travel at the speed that minimize the fuel consumption, that usually is different
to the maximum speed of the car, otherwise you can choose the best path that
minimize the total amount of km. This two latest types of action corrispond in
the IT world to the green software. One application can be evaluated in base
of its energy efficiency, and not only in base with the other classical parameters,
like the response time. In addition, a "well" written application can satisfy the
functional requirements with the less number of possible basic operations and, as
a consequence, with less energy.

While different studies were done on the hardware, on embedded systems [14]
and on data centers, the energy efficiency theme on software is new and unex-
plored. The software development cycle and the related metholodogies don’t care
about energy efficiency as a goal. Even the software engineering literature doesn’t
give the metrics on how to measure the energy efficiency of software.

2.2 Green Software 31

Most of the IT managers think that the software has a limited impact on the
energy consumptions, in particular in the classical transactional systems, like the
bank softwares or the Enterprise Resource Planning (ERP) [11]. It is common
knowledge that the operating systems have an influence on performances and on
energy consumption [28], but not the applications.

The green software possible saving is high. Therefore, in most of the data
centers the percentage of incoming energy, used for the computation, is low be-
cause of the inefficiencies of the different infrastructure levels: for each Watt of
energy used for computation are necessary 5 or more Watts. So the savings at the
software level can be amplified by the infrastructural levels above. If are executed
less basic operations, less heat is produced, so the energy needed for cooling is
lower.

2.2.1 The studies in Green Software

There are three main topics to consider speaking about application optimization.
First of all, it is necessary measuring the software energy efficiency, using

appropriate metrics. It is important to underline that the concept of efficiency
is different from the concept of consumption, because it is the expression of the
consumption of energy needed to execute the work done. A set of metrics for the
energy efficiency is useful both for selecting the software that has to be choosen
and for the inhouse evaluation of the product and the development team. They
can be a good tool for comparing two different system in order to do benchmark-
ing.

If the goal is the energy efficiency improvement, the possible ways that can be
chosen can be grouped in two big categories. The first one is the code optimiza-
tion: a code written better has an effect on the application energy performaces.
This tecniques can be traslated in methodologies, guide lines, development tools
and also in guide lines for the business levels, to show the developers abilities and
their training path. Unfortunately, they are appliable only on inhouse software.

Improving the efficiency optimizing the code is not always feasible or econom-
ical. It can be a good idea rewriting and optimizing the code of the routine that
are the most executed in the system, but it is not possible thinking to analyze
and optimize the entire code of a bank information system or the effort necessary
to do this operation can be more expensive than the savings obtained. For this

32 State of the art

reason it is suitable developing level system optimization tools, applicable with-
out working at level code. At this level there are a lot of tools and actions that
can be developed, like a wise selection of the stack, considering the interaction
between the operating system and the application on the total consumption.

2.2.2 The meaning of energy efficiency in software

At different levels can be found some metrics useful for the energy efficiency mea-
sure. For example, the Power Usage Effectiveness (PUE) [3] is commonly used
to evaluate the efficiency at infrastructural level, including cooling systems and
UPS. To evaluate the load balacing and the virtualization level can be used met-
rics like the mean percentage of the processor usage. In processor and server levels
can be used metrics like W/tpm (Watt for transaction per minute), FLOP/Wh
(Floating Point Operations for Wh) or MIPS/W (Millions of Instruction Per Sec-
ond for W) in the mainframes.

However there are not generally and reliable metrics to measure the energy
efficiency of the software. The difficulty in defining these metrics is how to mea-
sure the "work" done by an application related to one energy unit. In the motor
world example, the efficiency of a car can be measured as distance in kilometers
with one litre of gas, in the green software area it is easy to know how many gas
litres have been consumed (the energy), but it is difficult to measure the distance.

So the problem is defining standard transaction and workloads and then exe-
cute them with an application in order to measure the efficiency. Some institutes,
like TPC 1, have define standard workloads that can be used, but in most of the
cases this benchmarks analyze the entire system, and not the final application.
For others applications is easy to define transactions (like the DBMS2), but for
others there are different types of transactions, and so there are different types of
efficiency metrics. The different transactions are related to different modules and
code portions of the application, and it is reasonable using different metrics. The
goal is to reach a single metric for the entire application, maybe a mean of the
different metrics with their use frequency. It is obvious that the definition and the
computation of this metrics is more difficult than for the others infrastructural
levels.

1Transaction Processing Performance Council
2DataBase Management Systems

2.2 Green Software 33

An alternative solution may be identifying others metrics based on the code,
in some ways correlated with the energy efficiency, and using like proxys. These
metrics could be a convenient solution because they could be easy measurable
using appropriate software tools that analyze the code without executing it. How-
ever, the studies haven’t now reach a good result on this type of metrics.

2.2.3 Writing energy efficient software

Applications that have the same functional requirements, but a different struc-
ture, may have different energy consumptions.

Writing a good code has an heavy influence on the efficiency as can be no-
ticed from an analysis of the function XIRR, used by some Italian banks. XIRR
computes the investment return rate and it requires the computation of the poly-
nomial zeros. There are different algorithms to do this operation, with a different
impact on the energy consumption (Fig. 2.4). Optimizing the implementation

Figure 2.4: XIRR energy consumption

of the function using the most efficient algorithm can reduce three times the en-
ergy consumption. This reduction requires developers with deep knowing of the
domain and the algorithms. Using this type of developers increases the devel-
opment costs and can also increase the maintenance costs due to the difficult

34 State of the art

interpretation. A good choice is optimize the 20% of the code responsible of the
80% of the consumption using specialized developers.

For big pre-existent code bases, the maintenance cost may be a critical fac-
tor. In this case there are different types of optimization methodologies, maybe
semi-automatic, appliable at system level. The idea is setting the optimization
parameters instead of modifying manually the code.

2.2.4 Consume optimization at system level: Memoization

Analyizing the typical power consumption profiles of the different hardware com-
ponents of a server (Fig. 2.5), namely the hard disk, the motherboard and the
CPU, it is possibile to note that:

• The processor is responsible for the bulk part of power absorbtion (approx-
imately 60% when fully loaded)

• The energy consumption of the processor is a function of the load, while
hard disk and memory have an energy consumption that is almost indepen-
dent of load.

Figure 2.5: Power consumption profiles for server hardware components. HD lines
indicate power absorbed by hard disk. CPU the power absorbed by the processor, and
ATX power absorbed by motherboard and other components. (a) Idle profile. (b)
Under load profile.

In fact, all the other components, except for the CPU, consume almost the same
amount of power under load, Fig. 2.5(b), and in idle, Fig. 2.5(a). This is partially

2.2 Green Software 35

explained by the fact that most of the power of traditional HD drives is used for
spinning, and not for reading and writing operations. Similarly, dynamic RAM
banks are periodically refreshed irrespective of reading and writing operations.

These observations suggest that computational approaches that make a more
intense use of the storage in place of the CPU may have a beneficial impact on
energy efficiency. For example, reading a precomputed value inside memory is
faster and more energy efficient than computing it. This approach, known as
memoization [27, 20], has been already applied (mostly in functional languages)
to optimize the response time of software applications such as parsing, scientific
applications and dynamic programming. Such an approach is usually feasible as
the typical parameter range is wide, but finite.

The studies done in this thesis refers to use the memoization for the software
energy efficiency, basing the approach on automatic identification of functions
that are convinient to tabulate, which are a subset of the pure functions of an
application. In fact, memoizing a function leads to energy savings only if the
function is invoked several times with the same parameters, so that the results
can be read from the memory rather then re-computed. This depends on the
scope of the function and on the number of parameters, as the hit-rate probability
decreases geometrically with the number of parameters.

Every time that one of these functions is called, a software module called
energy manager takes control. This module knows whether the output of the
function has been computed before or not. If the result is new, it is stored in the
memory. If the required result has already been computed, the module reads the
value stored in memory instead of computing it.

As hinted above, memoization techniques involve energy tradeoffs. First,
memory is limited, and additional memory banks involve additional fixed power
abortion. Accordingly, the total number of values that can be stored is limited.
If more than one function needs to be optimized, available memory should be
allocated to different functions so that the overall energy saving is maximized.
Second, reading instead of computing involves an overhead due to the execution
of the energy manager module. These trade-offs are influenced by the range and
distribution of the input parameters of the functions to be tabulated. If the values
of these parameters have a Gaussian or Pareto distribution, i.e. the functions are
often called with the same input parameters, the approach can be effective. On

36 State of the art

the other hand, if the range of the input parameters is too wide the approach
could be ineffective.

2.3 Pure function memoization for the energy ef-

ficiency: GPF Framework

In order to evaluate these trade-offs and to efficiently choose which functions
to memoize according to the available resources, a statistical previsional model
has been developed [4]. This model is based on the assumption that power
consumption is strictly related with execution time.

2.3.1 Proposed approach and software architecture

In this section is presented the proposed approach to exploit memoization of pure
functions for power efficiency. Memoization is a programming technique to reuse
computed values across a program by storing them in memory. Stored values must
be indexed by the function and the input parameters that generate them. The
focus is on Java programs. In general, Java is not commonly used for computation
intensive applications. However, this is often the case in the financial domain.
Moreover, the outcome of interviews to the executives at large European banks
is that while currently only 7-8% of the codebase of their instructions is written
in Java (the larger part is still in COBOL), Java tends to be used for most of the
newly developed applications.

Pure function definition

Pure Functions are those functions (or, equivalently, methods or procedures,
depending on the language) that have no side effects (i.e. they have no effect
besides producing a return value) and are deterministic (i.e. the return value is
determined uniquely by the values of input parameters). This definitions is often
referred to as strong purity [30].

From the strong purity definition, several weaker definitions can be derived
that are useful in applications - a popular one in the context of the Java language
is to identify as pure functions those methods that do not modify any pre-exixting
object, but may create new objects. For the thesis purposes, however, such a

2.3 Pure function memoization for the energy efficiency: GPF Framework37

definition is not appropriate: the newly created object must be different at each
invocation, thus preventing a successful memoization.
Definition. A Java method m is a pure function if the following conditions hold:

• Its signature does not include object parameters, except:

- this parameter;

- array parameters, if the base type is primitive;

• Its return type is a primitive type;

• All methods invoked within m are pure functions;

• For all instructions composing the body of m, the following conditions hold:

- The instruction does not read or modify static variables;

- The instruction does not read or modify variables that are not declared
within the function;

- The instruction does not modify array values;

It is worth noting that, contrary to the most common definitions of pure function,
this definition does not prevent the generation or catching of exceptions, since
these events interrupt the normal flow of execution, but either do not affect the
external results or prevent the generation of a return value (thus ensuring that no
value is read from the memoization cache if the corresponding input parameter
tuple generates an exception). Moreover, it is possible to allocate objects within
a pure function, if and only if such objects are not alive at the end of the function.

An example of purity analysis

For instance, consider the source code of the XIRR method reported in the figure
2.6. The XIRR method computes the annualized internal rate of return of a
cash flow at arbitrary points in time. The analysis is conducted on the bytecode,
which is not shown for the sake of brevity. Initially the analysis assumes the
target method to be pure.

The XIRR method takes as input two arrays, respectively of double and
int, representing the cash flow in terms of values and dates, and a guess of the
solution used to initialize the algorithm (a double). At the bytecode level, the

38 State of the art

Figure 2.6: XIRR method source code

method signature is ([D[ID)D, where [D represents an array of double. Since
the array is composed of elements of primitive type, it does not cause impurity
according to the definition of pure function, and the same goes for the other two
parameters. Each element of the arrays will be treated as an individual parameter
for memoization purposes.

Line 2-4 declare variables of primitive types, and therefore do not change
purity. Then, the analysis proceeds on to two for loops. It checks the data
accesses, both in read and write. The analyzed method only writes to local
variables of primitive type, and acccesses both array parameters only for reading.
By the definition of pure functions, the XIRR method is therefore pure, assuming
that signAdrd() is a pure function (which is the case).

Software architecture of GPF Framework

The memoization has been exploited in two steps: a compile-time analysis and in-
strumentation step, and the run-time automatic memoization step [20]. As shown
in figure 2.7, in the first step Java bytecode methods are statically analyzed to
detect whether they are pure functions or not. Code is analyzed by means of
BCEL [8], a Java library for bytecode inspection, in order to identify bytecode
instructions classified as impure, i.e. which make the method impure. Impure
instructions have been defined according to the criteria proposed above. Meth-
ods identified as pure functions are classified according to heuristic criteria to
remove small methods for which memoization would not provide a benefit, as the

2.3 Pure function memoization for the energy efficiency: GPF Framework39

Figure 2.7: Bytecode instrumentation tool architecture: Java Bytecode is first ana-
lyzed to collect information about pure functions; candidate pure functions are then
instrumented to support memoization

overhead of the energy memory module would be larger than the savings. These
criteria are mainly based on a threshold size of the method, which is empirically
tuned. The threshold is set based on the number of instructions contained in the
function weight by their complexity. In fact, if the execution time of the function
is lower than time to access memory, according to the performance model that
will be discussed later, that approach will be always inefficient even if hit-rate is
100%. Obviously, this does not take into account the fact that the execution is
dynamic and that execution time could be deeply influenced by cycles. However,
this threshold permits to preliminary eliminate from the analysis functions that
are evidently too simple, such as additions and void functions. The remaining
methods are candidates for memoization.

Then, the candidate methods are instrumented, wrapping them in the code

40 State of the art

needed to perform the second step.
At runtime, when a candidate method is invoked, the wrapper code is exe-

cuted first. Each candidate method has an associated data structure (hash table)
that contains pairs of parameter tuples and return values. If the current actual
parameter tuple produces a match in the hash table, then the corresponding value
is returned, skipping the rest of the wrapper code as well as the original method
body. Otherwise, the value must be computed using the original method, which
is immediately invoked. Before returning the result, however, a trade-off func-
tion is invoked to decide whether to cache the computed value or not - this may
involve, if there is no available memory, a decision to replace another hash table
entry.

Memory is allocated to maximize the overall effectiveness of the approach.
The effectiveness of the memoization of a given function depends on the statis-
tic distribution of the input parameters, and on the comparative saving that is
obtained when accessing the memory rather than executing the function. To
estimate the effectiveness of the memoization, a performance model has been
developed.

2.3.2 Previsional Model

The performance model estimates the effectiveness of the approach based on
execution time and is used during the function characterization phase.

Performance model

The effectiveness of the approach depends on:

• The energy required by the function for a computation compared with the
energy required to read a memorized value.

• The hit rate of the stored values.

The hit rate depends on the variance of the input parameters of the function
and on the size of the memory available for the memoization. The developed
model allows to estimate the effectiveness of the approach taking the execution
time as a proxy of energy consumption. The execution time has been taken into
consideration because it is easier to assess the time performance of a function by

2.3 Pure function memoization for the energy efficiency: GPF Framework41

means of profiler tools rather than to evaluate its energy consumption, and en-
ergy consumption is directly related to execytion times for computation intensive
applications. The memoization effectiveness is defined as:

η =
T

Te
(2.1)

where T is the average time required to satisfy a function call through the ap-
proach and Te is the time required to execute the function and compute the result.
If α is the hit rate then:

T = αThit + (1− α)Tmiss (2.2)

Thit = Tm (2.3)

Tmiss = Tm + Te + βTt (2.4)

where Tm is the time to read a memoized value that is stored in the memory, and
Tt is the time required to execute the trade-off module that decides wheter or not
to store the new value of the function. Initially, the trade-off module will allow to
allocate the available memory to the different functions in order to maximize total
energy efficiency as estimated by means of the performance model described in
this section. After this initial tuning, the trade-off module is invoked with a given
frequency (β) to retune the memory allocation. In fact, a continuous execution
would deeply affect performances. Eq. 2.2 combined with 2.4 and 2.3 leads to:

η =
Tm
Te

+ (1− α)
(
1 + β

Tt
Te

)
(2.5)

Eq. 2.5 shows that the maximum effectiveness of the memoization approach,
obtainable when the trade-off module is not executed (β = 0) and when all the
input values of the function are stored in memory (α = 1), is given by the ratio
of the time to access the memory divided by the time to execute the function.
As Tm and Te can be easily measured, this result can be used to identify a priori
the set of functions that are worth being memoized.

The hit rate depends on the number of stored values and on the statistical

42 State of the art

distribution of the input parameters with which the function is invoked. Suppos-
ing that the approach has been applied to the function y = f(x), that is invoked
with a Gaussian distribution of the input parameters x, with mean µ and stan-
dard deviation σ. If x is a continuous variable, a sampling unit τ will have to
be determined. The sampling unit should be decided according to the precision
needed by the final users. If Sm is the size of the total available memory and Sd

is the size of memory necessary to store a pair (x, y) the number of values that
can be memoized is:

Nd =
Sm

Sd

(2.6)

The probability that the function f is invoked with a value of the input
parameter x that is tabulated as:

α = erf

(
Ndτ/2

σ
√
2

)
(2.7)

where erf is the error function defined as:

erf =
2

π

∫ x

0

e−t2dt (2.8)

Equation 2.5 combined with 2.6 and 2.7 allows to estimate the effectiveness of
the approach for a given function with a specific variance of the input parameter
σ according to the available memory Sm.

Memory allocation policy

Memory is allocated to memoized methods in order to maximize the overall ef-
fectiveness of the approach. This is measured as gain factor obtained for each
function (Gi = 1/ηi) weighted by the frequence of occurrence of that specific
function:

Gtot =
∑
i

Gi ∗ fi (2.9)

where fi is the frequence of occurrence of function i. It has been developed a
memory calibration algorithm that defines the portion of memory to be assigned
to each method that maximizes Gtot. This algorithm favors the methods that
have a higher hit rate (α), based on the statistical distribution of their input
parameters. It allocates the available memory incrementally to each function by

2.3 Pure function memoization for the energy efficiency: GPF Framework43

blocks of Sd,i bytes. Sd,i values are specific for each function i, according to the
size of the input parameters and results to be stored for each function. The al-
gorithm incrementally explores the possible allocation options of a new block of
memory and identifies the function that would lead to the highest effectiveness
gain if got assigned of that memory block. This is estimated by Gi/ (Sm,i + Sd,i),
where Sm,i is the memory already allocated to function i.

When the memoized application starts, the functions candidate for memoiza-
tion are known as they had been identified by the pure function analysis module.
Their frequences of occurrence, and the mean and standard deviation values of
their input parameters are estimated based on previous domain knowledge. A
first run of the algorithm defines the initial allocation of the available memory
space among the different functions. As long as the application runs, memory
is allocated to memoized functions as the invocations happen, until the estab-
lished portion of memory for each function is consumed. The trade-off module
is invoked with a given frequence (β) in order not to create a time and power
overhead. When it is invoked, first it runs the memory calibration algorithm with
the new values of frequence of occurrence, mean and standard deviation. This
leads to a new allocation of the available memory space. Then it eliminates the
low-frequency entries in order to re-equilibrate the space according to the new
allocation.

Chapter 3

Model and application

This chapter provides a detailed description about the reasons that are the cause
of the realization of the thesis project. In the section 3.1 will be described the
function chosen for the project, with the problems and the solutions adopted for
the trasformation in pure function. It also provides a detailed description of the
parameters interested in the computation. In the section 3.2 will be described
the data used for the computation of the function.

3.1 Analyzed function

The investigation is in the financial domain because banks are traditionally among
the largest IT-consuming organizations. Most financial institutions are worried
about IT energy consumption both for cost and scalability reason [16]. In the
specific case of financial computation, energy savings have been demostrated in
recent works [22].

3.1.1 Why this function

The function chosen for the project belongs to the set of financial functions used
by a big Italian bank. From interviews to IT administrators it cames out that
the function that did the computation of the financing payments had several
problems and so it was a perfect candidate for the project.

The function has three main problems:

46 Model and application

• Is MIPS1 intensive

• Its execution time is too high

• It consume a lot of energy

Analyzing all the three reasons that have brought to select the function, it is easy
to say that they are correlated.

As the function is written in COBOL, its execution is done using mainframes2

and for this type of computers the metric used for measuring the cost of com-
puting is MIPS. Also the contract with the supplier of this technology is based
on the MIPS consumed. The supplier sell to organizations the amount of MIPS
necessary for the computation.

The function analyzed is MIPS intensive. It requires a big amount of MIPS
and this quantity is growing. As a consequence, the cost of the contract has
grown too.

The increase of the consumed MIPS generates another increment on the exe-
cution time. The function has been developed to work when the bank is closed,
and the mainframes are dedicated to compute only this function. The idea was
that the computation ended before the opening time. This condition has been
expired and now there is the problem that the mainframe works in the opening
time too. This is a cause of delays or, in the worst case, stops of the terminals
used in the filials. These stops or delays are a critical problem for the bank,
because they create also inefficiencies to the clients.

The third problem, related to the first and to the second, is the high energy
consumption. This is due to the mainframe computation of the function, that
clearly has a consumption higher than in the idle phase of the mainframe. This
is not the only cause of the energy consumption. All the other components used
with the mainframe, like UPS and coolers, have energy needs and they added
to the mainframe consumption. As the mainframe, also the components energy
needs change in base of the level of the computation.

In addition, the increment of the execution time causes also an increment of

1Million of Instruction Per Second
2Mainframe computers are computers used primarily by corporate and governmental organiza-

tions for critical applications, bulk data processing, industry and consumer statistics, enterprise
resource planning, and transaction processing[9]

3.1 Analyzed function 47

the energy consumption because the mainframe and all the components have to
work more.

3.1.2 Problems found and solutions used for the COBOL-

Java pure functions translation

To analyze the function that computes the financing payments it has been neces-
sary to translate that function from the COBOL language to the Java, because
also the framework described in the previous chapter is written in Java.

The translation was done in two phases: the first was the translation from
the COBOL to the Java language. The second was re-designing the function in
order to have pure functions.

The first translation of the function has some problems due to the differences
of the two languages. In COBOL the definition of the variables is totally different
from the one used in the modern programming languages: after the type there is
the definition of the size of the variable. If the variable is composed of characters
this is not an important problem, because there is always the possibility to use
the method sizeof(), but if the variable is referring to a number, it has to be
setted with the correct number of elements (in particular the decimals), other-
wise the computation results will be wrong. To accomplish this, the Java class
DecimalFormat has been used. In particular the code in the listing 3.1 is the one
used in the function.

Another stylistic solution adopted was the creation of objects with variables
and relative getters/setters. This is useful for the code interpretation and for
the data saving, but in the second step of the translation the solution has to be
deleted because pure functions use only primitive types.

DecimalFormat format1 = new DecimalFormat ("#.##");

String numberString = format1.format(number);

number = Double.parseDouble(numberString);

Listing 3.1: DecimalFormat code example: transforms the variable number in a double
with only two elements in the decimal position

The second step of the translation has product a total re-design of the function.
As the definition of pure function says, all methods invoked within the function

48 Model and application

candidate to be pure have to be pure. Following this condition, the first step is
trying to modify the internal functions.The way to make a function pure is, first of
all, having only one value to return and, in particular, it has to be primitive. With
this condition all the objects created and mentioned above have to be substituted
with a set of variables that represent all the object’s fields.

Speaking about the signature of the method, all the data used inside of it
have to be in the parameters section of the signature, or they have to be declared
inside of the function. There is no possibility to use variables declered outside
the function and not in the signature as a parameter, or to use global variables.

Also the parameter types have to be modified to be primitive. The Calendar
type cannot be used, and for all the dates the solution adopted was using three
int variables, one for the day of month, one for the month and the last for the
year value.

The System class is considered not pure. So all the System.out.println()

instructions, used for the error warning, have to move in the external methods,
in particular in the one that is unpure. The same action has to be taken for the
System.exit instructions, used for exit from the fuction execution after an error.

Clearly, is impossible to make pure all the functions, because of the presence
of the System instruction mentioned before. But it is not the only cause of the
non purity of the entire function. The class DecimalFormat is not pure, and it is
not possible deleting these instructions, because are useful to set the decimals in
the numbers used for the computation. Where possible this instructions can be
moved outside the method, but there are situations that this operation cannot
be executed.

Another reason that cause the non-purity of the entire function is that the
data are taken from an external CVS file3. For the condition "the instruction
does not read or modify variables that are not declared within the function" it
is not allowed to interact with an external file, even if it contains the data useful
for the computation.

3.1.3 Computation interested parameters

The pure functions found with the framework (fig. 3.1) are mainly related to the
computation of the financing payment value. There are different functions that

3Comma-Separated Values, a file that stores tabular data (numbers and text) in plain-text form.

3.1 Analyzed function 49

Figure 3.1: Framework analysis of the function

have the duty to compute the value, depending on the data stored in the CSV
file. Analyzing these functions it has been noted that they have most of the input
parameters in common, and it is possible to highlight them as more important
in relation to the others in the data file.

The most used parameters in the function are:

• Consistenza: the value of the capital on which is calculated the value of
the financing payment.

• Tasso: the value of the interest rate used for the computation of the fi-
nancing payment.

• Periodicitá: number of months in the period between the begin and the
end date.

• N giorni: number of days in the period between the begin and the end
date.

This four variable are the most used in the function and they are the only that
have an impact on the final value of the financing payment. In each of the

50 Model and application

different type of computation of that value, the four parameters written above
are presents.

It is important analyze them in such a way to create a new approach useful for
the application of the memoization method and for the reduction of the energy
consumption.

3.2 Data analysis

In the first section there is an accurate description of the function, but without
data this function is useless.

In this section there is an analysis on the real data used by the big Italian
bank. This analysis will be useful for the creation of the approach used in the
project.

3.2.1 Data distribution

The total number of data is 1.200.000. In the project has been chosen a set of
data that has the parameter "componente" equal to the value 3. This choice was
done by the Italian bank and it selects the data concerning the post-sale interests.
This selection has decreased the number of the data to 408.863.

Doing an analysis on the two parameters Consistenza and Tasso it is possible

Figure 3.2: Data Distribution using Consistenza on the x-axis and Tasso on the y-axis

to note that there is a concentration of the data (fig. 3.2) in the lower part of

3.2 Data analysis 51

the graph, near the axis.
Looking to the data distribution, it is possible to think on the application of

the memoization approach. Most of the data are concentrated in a specific area,
and using memoization can be a possible improvement. Instead of computing
all the data, taking from the memory the result of a precedent computation can
decrease the execution time and so the costs related to it. In fact, reading from
the memory is faster than compute the data. Clearly, to take a data from the
memory, it has to been computed before.

In case of the data is not in the memory (so, it is never beeen computed), the
idea is to compute it and save in the memory, in case of future use.

The idea to use memory instead computing data is good, especially for the
savings. The problem is the fixed size of the memory, that cannot permit the
total saving of the tuples <input,output> .

One possible idea to solve this problem is to memoize the data with an high
frequency of occurrences, and then compute the remaining.

To discover what are the data with an high occurrence frequency it is necessary
analyze the entire set of inputs. In the table 3.1 is shown the interval of the data
taken as input by the function. From these values is possible to create a set that
can cover more than an half of the data. This interval is the one shown in the
table, in the column memoization data interval.

Data analysis
Real data interval Memoization data interval
min max min max

Consistenza 0,26 176510709,30 870,00 50000,00
Tasso 0,00 19,25 0,20 1,00

Table 3.1: Data intervals

Total Values 408863
Values in the interval 220571

Percentage 53,95%

Table 3.2: Interval analysis

The table 3.2 summarize the analysis of the input data. The set chosen can
cover the 53,95% of the data. This is useful for the memoization, because this

52 Model and application

Figure 3.3: Data Distribution with the memoization interval in green

result permits to say that using memoization with this small interval permits to
cover more than the half of the data in input. The figure 3.3 shows the distribu-
tion of the data and the green rettangle is the interval choose for the memoization.

The final project idea is to memoize the tuples <input,output> in the inter-
val, and then to compute the others data input that are not in the memory.
If there is some free space in the memory, the value computed can be stored,
otherwise the value will be computed another time if it will be necessary.

3.2.2 Memory division

The idea to divide in two parts the solution for the computation has been used
to divide also the memory.

The first part of the memory is used for the memoization of the interval. It is
the biggest division and it is used for memoize the data that are in the set defined
above. The values are memoized in the way to cover completely the interval. If
the input data is equal to one saved in the memory, it is not saved, and its result
is taken from the tuple memoized.

The second part of the memory is used for the data that are outside the in-

3.2 Data analysis 53

terval. In this case, the value, after the computation, is saved in the memory if
there is free-space. Otherwise is deleted.

To improve the memory-usage and to enlarge the memoization interval, it is
possible to introduce the concept of SLA (Service Level Agreement).

All the data saved in the memory are precise and they refers to only one
tuple <input,output>. Instead using this data is possible to use and save an
interval, that includes a set of the data. In particular, the idea is to take
the output and create an interval. The boundary values are output + SLA
and output - SLA. The value of the SLA is defined by the user and it is the
highest error that the user wants. Having the output interval, with an in-
verse operation it is possible to have the input interval, and then save the tuple
<input_interval,output_interval>.

With this approach, if the input value is in one of the tuple in the memory,
the output value saved is used as output value of the computation, even if the
input value is not the same data saved in the memory. Adopting this approach
can increase the number of possible values that can be saved in the memory and
increase also the memoization interval.

3.2.3 Data memory occupation

In the previous sections is done a global analysis of the data used as input in the
function.

These data have a defined dimension, based on the variable type declared
in the function. In the table 3.3 is shown the memory occupation of the single
variables.

Using the structure chosen for the memoization (described in the next chap-
ter), the total amount of memory needed for memoize all the data is about 4
billion of gigabytes. This is a huge quantity of memory, therefore the idea of us-
ing an interval of the data mostly used can be ideal because reduces the quantity
of memory needed.

54 Model and application

Variable Type Bit Variable Type Bit
rewc_rc int 32 no_intero_fn_mese boolean 1

data_inizio Calendar 432 si_intero_no_fnmese boolean 1
data_fine Calendar 432 cod_divisa String 48
consistenza Double 64 tipo_calcolo int 32

tasso Double 64 formula int 32
periodicita int 32 importo_calc double 64
intero boolean 1 tasso_calc double 64

si_intero boolean 1 nr_giorni int 32
no_intero boolean 1 divisore int 32
intero boolean 1 gg_calendario int 32

Totale bit 1398 Totale Byte 175

Table 3.3: Size of variables

Chapter 4

Idea: approximated memoization

In this chapter will be described the model created for the thesis project.
In the first section will be provide a detailed description about the structure

used in the memory for the storage of the data.
In the second section will be presented the approximed memoization, with the

description of the previsional model created.
In the third section will be analyzed the best method for curve fitting, used

for the approximed memoization.

4.1 Data structure: quadtree

As said in the previous chapter, the storage of the data for the memoization
approach is done using a particular structure. After some studies, the structure
chosen is the quadtree.

A quadtree is a tree data structure in which each internal node has exactly
four children. Quadtrees are most often used to partition a two dimensional
space by recursively subdividing it into four quadrants or regions. The regions
may be square or rectangular, or may have arbitrary shapes. This data structure
was named a quadtree by Raphael Finkel and J.L. Bentley in 1974. A similar
partitioning is also known as a Q-tree. All forms of Quadtrees share some common
features:

• They decompose space into adaptable cells.

• Each cell (or bucket) has a maximum capacity. When maximum capacity

56 Idea: approximated memoization

Figure 4.1: A region quadtree with point data

is reached, the bucket splits.

• The tree directory follows the spatial decomposition of the Quadtree.

Quadtrees may be classified according to the type of data they represent, includ-
ing areas, points, lines and curves. Quadtrees may also be classified by whether
the shape of the tree is independent of the order data is processed. Some common
types of quadtrees are:

• The region quadtree: represents a partition of space in two dimensions
by decomposing the region into four equal quadrants, subquadrants, and so
on with each leaf node containing data corresponding to a specific subregion
(fig. 4.1). Each node in the tree either has exactly four children, or has no
children (a leaf node). The region quadtree is a type of trie1.
A region quadtree with a depth of n may be used to represent an image
consisting of 2n ∗ 2n pixels, where each pixel value is 0 or 1. The root
node represents the entire image region. If the pixels in any region are

1trie: ordered tree data structure that is used to store a dynamic set or associative array where
the keys are usually strings

4.1 Data structure: quadtree 57

not entirely 0s or 1s, it is subdivided. In this application, each leaf node
represents a block of pixels that are all 0s or all 1s.
A region quadtree may also be used as a variable resolution representation
of a data field. For example, the temperatures in an area may be stored as
a quadtree, with each leaf node storing the average temperature over the
subregion it represents.
If a region quadtree is used to represent a set of point data (such as the
latitude and longitude of a set of cities), regions are subdivided until each
leaf contains at most a single point.

• Point quadtree: is an adaptation of a binary tree used to represent two
dimensional point data. It shares the features of all quadtrees but is a
true tree as the center of a subdivision is always on a point. The tree
shape depends on the order data is processed. It is often very efficient in
comparing two dimensional ordered data points, usually operating in O(log
n) time.

• Node structure for a point quadtree: is similar to a node of a binary
tree, with the major difference being that it has four pointers (one for
each quadrant) instead of two ("left" and "right") as in an ordinary binary
tree. Also a key is usually decomposed into two parts, referring to x and y
coordinates.

• Edge quadtree: are specifically used to store lines rather than points.
Curves are approximated by subdividing cells to a very fine resolution. This
can result in extremely unbalanced trees which may defeat the purpose of
indexing.

The reasons that have brought to choose the quadtree are the easy way to
store and to read the values from this structure.

Having quadrants and regions with equal dimensions directs the data to the
corrisponding subregion and then in the leaf, where the data will be stored. This
way to store the data is useful in case of a not equal distribution of the data. In
this case, if a data is the only one in the region, this will become a leaf. On the
other hand, if a data belongs to an high concentrated set, the tree structure will
be deep.

58 Idea: approximated memoization

The second advantage of using quadtrees is the easy way to search data. On
each level of the quadtree the search is directed to the subregion in which the
data belongs to, with a good decrease of the time to read a value in the memory.

4.2 Modified previsional model

The model estimates the effectiveness of the approach based on execution time
and is used during the function characterization phase.

The effectiveness of the approach depends on:

• The energy required by the function for a computation compared with the
energy required to read a memorized value

• The hit rate of the stored values

The hit rate depends on the variance of the input parameters of the function and
on the size of the memory available for the memoization.

In the chapter 2 the memoization effectivenes (η) was defined as:

η =
Tm
Te

+ (1− α)
(
1 + β

Tt
Te

)
(4.1)

where Tm is the time to read a memoized value that is stored in the memory, Te
is the time required to execute the function and compute the result, α is the hit
rate and β is the trade-off module frequency.

This equation shows that the maximum effectiveness of the memoization ap-
proach, obtainable when the trade-off module is not executed (β = 0) and when
all the input values of the function are stored in the memory (α = 1) is given by
the ratio of the time to access the memory divided by the time to execute the
function.

The hit rate is defined as the probability that the function f is invoked with
a value of the input parameter x that is tabulated as:

α = erf

(
Ndτ/2

σ
√
2

)
(4.2)

where erf is the error function defined as:

erf =
2

π

∫ x

0

e−t2dt (4.3)

4.2 Modified previsional model 59

and Nd is the number of values that can be memoized, and is defined as:

Nd =
Sm

Sd

(4.4)

Equation 4.1 combined with 4.4 and 4.2 allows to estimate the effectiveness of
the approach for a given function with a specific variance of the input parameter
σ according to the available memory Sm.

Analyzing the equation 4.2, it is possible to note that the hit rate α is influ-
enced by some parameters:

• Nd: the number of the values that can be memoized

• τ : the sampling unit

• σ: the standard deviation of the Gaussian distribution of the parameter x

The number of values and the standard deviation are fixed values, so the param-
eter that influences the value of the hit rate is the sampling unit τ .

The sampling unit is related to the input parameter x, if it is a continuous
variable. The sampling unit value is decided according to the precision needed
by the final users.

With the term precision is defined the measure of how close replicated esti-
mates are from each other. This is the same as asking how much error is there
around a mean estimate. In the thesis project, the value of the precision is de-
fined as SLA (Service Level Agreement).

A service-level agreement (SLA) is a part of a service contract where the level
of service is formally defined. In the project, the SLA is defined as the precision
needed by the final users on the value of the financing payment. For example, if
the SLA is setted to the value 0,05 euro, the output value accepted by the user are
included in the set with the boundaries equal to: [realvalue− SLA; realvalue+
SLA].
The mathematical definition of the SLA is:

SLA = f(τ) (4.5)

The service level agreement is a function of the sampling unit. If the sample is
large, the output values are less precise. If the sample is small, the output values

60 Idea: approximated memoization

have an high precision.
As a consequence, the value of the sampling unit τ can be defined as:

τ = f−1(SLA) (4.6)

The problem is now how to define the function f(x) that is unknown.
Of course, given some training data, it is always possible to build a function

that fits exactly the data. But in the presence of limited memory usage, it is not
possible to use all the given sampling units by considering the repetition of same
samples which would lead to a poor performance. The general idea behind the
design of a model is thus to look for a fitted function with memoization method.
Typically, one would look, in a collection of possible models, for the one which
fits well the data. But there is an important question: how many sampling units
(τ) have to be used in order to have an accurate function?

The larger the sample size, the more precise is the estimate. Sample size will
therefore depend largely on the reliability wanted to place in the estimate. If
the request is a very precise estimate, a larger sample of inputs is needed than
if a good approximation is wanted. Statistical methods requiring the collection
of some pilot data, are available for calculating sample sizes necessary to achieve
predetermined levels of precision.

To achieve precision, the idea is saturating memory with input/output data
by executing the program during the tuning phase.

It is needed again to control the memory if the input values are same with a
new input data. In this way, the output value will be the same. Thus, in order to
have good accuracy in the function, the repeated data is not saved in the memory,
letting the other sampling units take place in it.

4.3 Model mathematical analysis

There is now the need to determine which sampling units, out of all those avail-
able, should be used in the project.

To accomplish this task, the first step is define the function f and then how
to obtain this function using some mathematical methods.

4.3 Model mathematical analysis 61

4.3.1 The definition of f

The data known are the input values associated with the corrisponding output
values and that the function y = f(x) is invoked with a Gaussian distribution of
the input parameter x.

To collect the output values and try to approximate the function the first
step is setting a tuning phase, where at each execution of f(x) the input and the
output values are saved in the memoy. The period of execution of the tuning
phase is decided by the system administrator.

After the tuning phase the idea is to approximate the function to a third
degree polynomial function, like the following:

f̃ = a0 + a1 ∗ x+ a2 ∗ x2 + a3 ∗ x3 (4.7)

To find the 4.7 there are some mathematical methods, called curve fitting,
that will be described in the following section, with the selection of the best
method that will be used in the thesis project.

4.3.2 Curve Fitting

Curve fitting is the process of constructing a curve, or mathematical function, that
has the best fit to a series of data points, possibly subject to constraints. Curve
fitting can involve either interpolation, where an exact fit to the data is required,
or smoothing, in which a "smooth" function is constructed that approximately
fits the data.

Fitted curves can be used as an aid for data visualization, to infer values of a
function where no data are available, and to summarize the relationships among
two or more variables.

Extrapolation refers to the use of a fitted curve beyond the range of the
observed data, and is subject to a greater degree of uncertainty since it may
reflect the method used to construct the curve as much as it reflects the observed
data.

Curve fitting parameters

Before starting the list of the methods used for the curve fitting is important
explain the parameters used to say that a fit-statistic is good.

62 Idea: approximated memoization

Goodness of Fit-Statistic

To explain how much is good a fit-statistic are used 4 parameters, that are de-
scribed in the following paragraphs.

Sum of Squares due to Error (SSE) This statistic measures the total devi-
ation of the response values from the fit to the response values. It is also called
the summed square of residuals and is usually labelled as SSE.

SSE =
n∑

i=0

wi ∗ (yi − fi)2 (4.8)

where yi is the observed data value and fi is the predicted value from the fit. wi

is the weighting applied to each data point, usually wi = 1.
A value closer to 0 indicates that the model has a smaller random error com-

ponent, and that the fit will be more useful for prediction.

R-Square R2 This statistic measures how successful the fit is in explaining the
variation of the data.

R-square is the square of the correlation between the response values and the
predicted response values. It is also called the square of the multiple correlation
coefficient and the coefficient of multiple determination. It is defined as:

R− square = 1−
∑n

i=1wi ∗ (yi − fi)2∑n
i=1wi ∗ (yi − yav)2

= 1− SSE

SST
(4.9)

Here fi is the predicted value from the fit, yav is the mean of the observed data
and yi is the observed data value. wi is the weighting applied to each data point,
usually wi = 1. SSE is the sum of squares due to error and SST is the total sum
of squares.

R-square can take on any value between 0 and 1, with a value closer to 1
indicating that a greater proportion of variance is accounted for by the model.
For example, an R-square value of 0.8234 means that the fit explains 82.34% of
the total variation in the data about the average.

If you increase the number of fitted coefficients in your model, R-square will
increase although the fit may not improve in a practical sense. To avoid this
situation,the degrees of freedom adjusted R-square statistic described below has

4.3 Model mathematical analysis 63

to be used.

Degrees of Freedom Adjusted R-Square This statistic uses the R-square
statistic defined above, and adjusts it based on the residual degrees of freedom.
The residual degrees of freedom is defined as the number of response values n
minus the number of fitted coefficients m estimated from the response values.

v = n−m (4.10)

v indicates the number of independent pieces of information involving the n data
points that are required to calculate the sum of squares.

The adjusted R-square statistic is generally the best indicator of the fit quality
when you compare two models that are nested - that is, a series of models each
of which adds additional coefficients to the previous model.

adjustedR− square = 1− SSE(n− 1)

SST (v)
(4.11)

The adjusted R-square statistic can take on any value less than or equal to 1,
with a value closer to 1 indicating a better fit. Negative values can occur when
the model contains terms that do not help to predict the response.

Root Mean Squared Error (RMSE) This statistic is also known as the fit
standard error and the standard error of the regression. It is an estimate of the
standard deviation of the random component in the data, and is defined as

RMSE = s =
√
MSE (4.12)

where MSE is the mean square error or the residual mean square.

MSE =
SSE

v
(4.13)

Like SSE, an MSE value closer to 0 indicates a fit that is more useful for predic-
tion.

64 Idea: approximated memoization

4.3.3 Best curve fitting algorithm analysis and selection

In this section will be presented the different tests done to find the best fit-statistic
that will be used in the project, describing the methods used to do the tests.

In the following paragraphs are presented three different algorithms in order
to do the comparison for finding the best one in fitting data.

Gaussian Non Linear Least Squares The Gaussian model fits peaks, and is
given by

y =
n∑

i=1

aie
[−

(
xi−bi

ci

)2
] (4.14)

where a is the amplitude, b is the centroid (location), c is related to the peak
width, n is the number of peaks to fit, and 1 ≤ n ≤ 8. In the experiment n = 3.

Polynomial Linear Least Squares Polynomial models for curves are given by

y =
n+1∑
i=1

pix
n+1−i (4.15)

where n + 1 is the order of the polynomial, n is the degree of the polynomial
and 1 ≤ n ≤ 9 (in the experiment n = 3). The order gives the number of
coefficients to be fit, and the degree gives the highest power of the predictor
variable. Polynomials are often used when a simple empirical model is required.
The main advantages of polynomial fits include reasonable flexibility for data
that is not too complicated, and they are linear, which means the fitting process
is simple. The main disadvantage is that high-degree fits can become unstable.

Cubic Spline Cubic spline is a spline constructed of piecewise third-order poly-
nomials which pass through a set of control points. The second derivative of
each polynomial is commonly set to zero at the endpoints, since this provides
a boundary condition that completes the system of equations. This produces a
so-called "natural" cubic spline and leads to a simple tridiagonal system which
can be solved easily to give the coefficients of the polynomials. However, this
choice is not the only one possible, and other boundary conditions can be used
instead.

4.3 Model mathematical analysis 65

Figure 4.2: Graphs from the test with the function y = 40 ∗ e−0,5∗x + rand(size(x))

The test is done using the MATLAB Curve Fitting Toolbox and the MATLAB
spline tool for the spline cubic interpolation. The functions chosen to do the
analysis are the following:

y = 40 ∗ e−0,5∗x + rand(size(x)) (4.16)

y = 35 ∗ x2 + 4 ∗ x− 90 (4.17)

y = sin(x ∗ rand(size(x))) (4.18)

with x ∈ [0 : 10] with a 0,1 step. While the 4.16 and 4.17 have a path similar to
a function, the 4.18 generates a sort of random data.

Results

For each function is done a test with the methods described above, and, for sake
of brevity, the results are listed in the table 4.1.

As it can be seen from the result table 4.1, the best fitting method is the
cubic spline interpolation. Increasing the randomness of the data, is the only
method that can interpolate all the data without losing informations. In the
project are used data related to a particular function (not random data), so the

66 Idea: approximated memoization

Function y = 40 ∗ e−0,5∗x + rand(size(x))
SSE R-Square Adj R-Square RMSE

Gaussian 8,261 0,9992 0,9991 0,2997
Polynomial 38,09 0,9963 0,9962 0,6266

Spline 0 1 1 0

Function y = 35 ∗ x2 + 4 ∗ x− 90
SSE R-Square Adj R-Square RMSE

Gaussian 8,52e+04 0,9993 0,9992 30,43
Polynomial 1,598e-23 1 1 4,059e-13

Spline 0 1 1 0

Function y = sin(x ∗ rand(size(x)))
SSE R-Square Adj R-Square RMSE

Gaussian 43,92 0,09804 0,01961 0,691
Polynomial 47,95 0,01531 -0,01514 0,7031

Spline 1,2326e-32 1 1 0

Table 4.1: Results of the curve-fitting analysis

spline interpolation is the perfect method to use to fit the data and to find the
approximate function.

Now that the algorithm chosen is a spline interpolation, let know something
about this type of curve-fitting algorithm.

Spline interpolation is a form of interpolation where the interpolant is a special
type of piecewise polynomial called a spline. Spline interpolation is preferred over
polynomial interpolation because the interpolation error can be made small even
when using low degree polynomials for the spline. Spline interpolation avoids
the problem of Runge’s phenomenon which occurs when interpolating between
equidistant points with high degree polynomials.

A spline is a sufficiently smooth polynomial function that is piecewise-defined,
and possesses a high degree of smoothness at the places where the polynomial
pieces connect (which are known as knots). The most commonly used splines are
cubic spline, i.e., of order 3 and is the order used in the test.

Chapter 5

Results

In this chapter will be presented the results obtained applying the model, pre-
sented in the previous chapter, to the function that computes the financing pay-
ments.

In the first section will be described all the devices used and the tecniques
adopted to execute the function and to collect the results. The final goal is to
have results that, after an analysis, can show if there are some reductions on
the total consumptions and also on the time execution that actually is the main
problem. In this section is presented the environment of the function execution
and then it is explained how is measured the energy consumption.

In the second section will be presented the savings obtainable with the ap-
plication of the approach to the function. There are time savings, related to the
execution time of the function, MIPS savings, related to the reduction of the
MIPS necessary to the execution and energy savings, related to the power con-
sumption of the mainframes and all the devices connected.

5.1 How the experiments are conducted

As described in the third chapter the function that computes the financing pay-
ments is executed using mainframes.

There was not the opportunity to use a mainframe for the project, so the ex-
periments were done using a normal personal computer. It is obvious that there
is a big difference from executing the function on a mainframe or on a personal

68 Results

computer. This difference is accentuated because of the difference between the
function original language, COBOL, and the language use for the translation,
Java.

In the next section are described the charatteristics of the personal computer
used and it is presented also the environment of execution of the function.

5.1.1 Pc technical charatteristics

The original function was created to be executed on mainframes.
Mainframe computers are computers used primarily by corporate and govern-

mental organizations for critical applications, bulk data processing such as census,
industry and consumer statistics, enterprise resource planning, and transaction
processing. The term originally referred to the large cabinets that housed the
central processing unit and main memory of early computers. Later, the term
was used to distinguish high-end commercial machines from less powerful units.
Most largescale computer system architectures were established in the 1960s, but
continue to evolve. Modern mainframes can run multiple different instances of
operating systems at the same time. This technique of virtual machines allows
applications to run as if they were on physically distinct computers. In this role,
a single mainframe can replace higher-functioning hardware services available to
conventional servers. While mainframes pioneered this capability, virtualization
is now available on most families of computer systems, though not always to
the same degree or level of sophistication. Mainframes are designed to handle
very high volume input and output (I/O) and emphasize throughput computing.
Since the mid-1960s, mainframe designs have included several subsidiary com-
puters (called channels or peripheral processors) which manage the I/O devices,
leaving the CPU free to deal only with high-speed memory. It is common in
mainframe shops to deal with massive databases and files. Gigabyte to terabyte-
size record files are not unusual. [21] Compared to a typical PC, mainframes
commonly have hundreds to thousands of times as much data storage online, and
can access it much faster.

Mainframe return on investment (ROI), like any other computing platform,
is dependent on its ability to scale, support mixed workloads, reduce labor costs,
deliver uninterrupted service for critical business applications, and several other
risk-adjusted cost factors.

5.1 How the experiments are conducted 69

As there was not the opportunity to use a mainframe to analyze the consump-
tions related to the application of the approach proposed, the computation of the
function is done using a personal computer.

A personal computer (PC) is any general-purpose computer whose size, ca-
pabilities, and original sales price make it useful for individuals, and which is
intended to be operated directly by an end-user with no intervening computer
operator. This contrasted with the batch processing or time-sharing models which
allowed larger, more expensive minicomputer and mainframe systems to be used
by many people, usually at the same time.

The differences of costs and performances between the personal computer
and the mainframe is important. It is insane to compare a mainframe to a per-
sonal computer, but is possible to analyze the data coming from the pc and then
trasform in data related to a mainframe computation.

The technical characteristics of the personal computer used for the computa-
tion of the function are presented in the table 5.1.1. The execution of the function

Table 5.1: Technical characteristics of the system used for the testing

Personal computer technical characteristics
Model MacBook Pro

Processor Name Intel Core i7
CPU velocity 2,7 Ghz
CPU number 1
Core number 2

L2 Cache (for each core) 252 KB
L3 Cache 4 MB
RAM 4 GB DDR 3 1333 MHz

was done using the software environment Eclipse.
Eclipse is a multi-language software development environment comprising an

integrated development environment (IDE) and an extensible plug-in system.

70 Results

Figure 5.1: Energy meter

5.1.2 How to measure the energy consumpion

The increase of the studies on the Green IT makes necessary the execution of ac-
curate measures for monitoring, studying and analyzing the energy consumptions
in order to find tecniques and methods for a reduction that could be efficient.
An information system is a complex architecture, structured on more than one
level. For this reason, the energy consumption are distributed on all the entire
system, from the hardware used (CPU, motherboards, hard disks), to the soft-
ware executed (operating systems, users application). It is important consider
all the components and their related energy need.

The only way to correctly analyze the energy consumptions of different soft-
ware applications and then compare their energy efficiency is to obtain their ac-
tual power consumption in an empirical and direct way. There are many different
solutions able to perform this task, but all of them require one basic operation:
reading the real current absorbed by the computer. Since the voltage is fixed to
the nominal fixed voltage (provided by the national energy providers), the power
consumption can then be obtained using the formula:

Power = I ∗ V ∗ cosϕ [W] = [A][V] (5.1)

This formula expresses the real power. The term cosϕ is called power factor and
varies always between 0 and 1. In the case of processors and computer hardware
usually it is a good assumption to assume the cosϕ to be really close to 1, but
this is still an approximation.

One very simple measurement methodology is to use an energy meter, like

5.1 How the experiments are conducted 71

the one in figure 5.1. An energy meter is a device that measures the amount of
electrical energy supplied to an electrical component.

Another power measurement method is to use a current clamp, like the one

Figure 5.2: Current Clamp

in the figure 5.2, in order to obtain the drained current (and then multiply by
the tension to obtain the wattage) or to obtain directly the wattage. A current
clamp is an electrical device with two jaws which are possible to open in order to
allow clamping around an electrical conductor. This permits to measure the elec-
trical current in the conductor, due to the Hall effect 1, without having to make
physical contact with it, or to disconnect it for insertion through the probe. This
means that the output value is not biased due to some other voltage drops. Some
current clamps have additional functionalities, like support for voltage measure,
which allow to measure wattage, or output, which allow to monitor the current
value over the time.

The latter meets all the requirements to monitor the overall power consump-
tion of the system if it is used paired with a digital multimeter.

A multimeter or a multitester, also known as a VOM (Volt-Ohm meter), is an

1The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical
conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to
the current. It was discovered by Edwin Hall in 1879. The Hall coefficient is defined as the ratio of
the induced electric field to the product of the current density and the applied magnetic field. It is
a characteristic of the material from which the conductor is made, since its value depends on the
type, number, and properties of the charge carriers that constitute the current.

72 Results

Figure 5.3: Function energy consumption profile vs idle consumption profile

electronic measuring instrument that combines several measurement functions in
one unit. A typical multimeter may include features such as the ability to mea-
sure voltage, current and resistance.

The multimeter used in the project had a COM port, that made possible the
connection with a computer in order to record and acquire the instant values over
time. The interface between the computer and the multimeter is a software that
adds the functionalities of record and storage the data.

To acquire the data related to the power consumption, the current clamps
have to be clamped in the copper wire in which flows the current, and this wire
have to be connected to the personal computer used for the computation of the
function.

The measure of the current described is influenced by the idle profile of the
personal computer. A computer processor is defined as in idle phase when it is
not being used by any program. Many programs that use CPU idle time cause
the CPU to always be 100% utilized, so that the time spent where the CPU would
have been idle is instead spent performing useful computations. This generally
causes the CPU to consume more power instead entering in power-safe modes
when they are idle.

If the goal is to measure only the consumption caused by the function execu-

5.2 Model application in the function 73

tion, it is important to know what is the value of the energy need during the idle
phase. Knowing this value, it is possible to subctract it from the consumption
measured during the computation. It is possible to see the energy consumption
profile of the function in the figure 5.3, where it is shown the difference of the
consumptions in the idle phase and during the function execution.

5.2 Model application in the function

The first test done is the application on the function of the modified model de-
scribed in the fourth chapter. To accomplish this task it was necessary to search
and then analyze all the libraries that implement the cubic spline interpolation,
finding the one that best fits with the requirements of the model.

The best library that accomplishes the cubic spline interpolation is the one
developed by Michael Thomas Flanagan. This class includes all the methods
useful for the interpolation and also has the possibility to do the multidimen-
sional spline interpolation. In fact, the first problem of the project was to find an
algorithm that permits to have an approximation of a function that is influenced
by different indipendent input parameters, not by only a single parameter. The
tests done in the beginning were based on two parameters, consistenza and tasso,
as said in the section 3.1.1, then it was introduced a third input value, n_giorni.

The general class in the flanagan library that performs the multi-dimensional
spline interpolation is called PolycubicSpline. It contains the constructor and
the methods for performing a multi-dimensional cubic spline interpolation, i.e. an
interpolation within a n-dimensional array of data points, y = f(x1, x2, x3 . . . xn),
using a natural cubic splines and where n may take any integer value. The inter-
polation procedure is recursive.

If the number of dimension, n, of the data array, y = f(x1, x2, x3 . . . xn),
is less than five it is suggested to use other classes, like CubicSpline [n=1],
BiCubicSpline [n=2], TriCubicSpline [n=3] or QuadriCubicSpline [n=4]

more convenient and slightly more efficient. The test were done using first the
BiCubicSpline, that contains the constructor and methods for performing an
interpolation within a two dimensional array of data points, y = f(x1, x2), using
natural bicubic spline. The returned interpolated value is the mean of the values
obtained by an interpolation of the originally entered two dimensional array of

74 Results

tabulated data function values, y = f(x1, x2), and by an interpolation of the
transpose of this two dimensional array, y = f(x2, x1). Then, with the addition
of the third parameter, the class used was the TriCubicSpline, that contains
the constructor and methods for performing an interpolation within a three di-
mensional array of data points, y = f(x1, x2, x3), using a natural tricubic spline.
The inner interpolations at the bicubic spline level are obtained as the mean of
the values obtained for the two dimensional tabulated values submatrix and for
its transpose. At higher levels the only interpolations performed are on the data
as entered.

To test the interpolation class it was necessary to create a training set, useful
to train the class in such a way to create the function approximation. The train-
ing set was created initially selecting the first 50 data coming from the input file,
then that number was increased, until it was reached the memory saturation.

Meanwhile it was also created a test set, used for the evaluation of the spline
interpolation created with the training set using the flanagan libraries. The cre-
ation of the approximed function using the cubic spline interpolation it was done
using the constructor shown in the list 5.1, where x1 and x2 are the array of the
input parameters, and y is the matrix of the output values.

public BiCubicSpline(double [] x1,double [] x2,double [][] y)

Usage: BiCubicSpline aa = new BiCubicSpline(x1, x2, y);

Listing 5.1: Constructor of the interpolation function

The result of this interpolation are unsatisfactory. The approximeted func-
tion created with the spline interpolation class produces values not accettable for
the project. The problems of this results are maybe attributable to two different
causes.

The first reason it is related to the input data. For the creation of the inter-
polated function, the spline class requires as a parameter three input parameters:
two double arrays containing the input parameters and a matrix that contains
the output values. The two arrays have to be in ascending order, while the matrix
is created as the output values coming from the combination of the two arrays,
using as indexes the row and the column of the matrix. The construction of the
output matrix is shown in the listing 5.2.

In the project, this type of data management creates a sparse matrix, a ma-
trix populated primarily with zeros as elements of the table. The presence of

5.2 Model application in the function 75

this type of matrix influences the computation of the cubic spline, causing an
increment of the difference from the real value and the value obtained with the
approximated function given by the spline interpolation.

for(int i=0; i<x1.length; i++){

for(int j=0; j<x2.length; j++)

yValues[i][j] = ’read statement ’ or ’

calculation of f(x1, x2)’;

}

}

Listing 5.2: Construction of the matrix y

The second reason of the bad results obtained with the approach is the presence
of overfitting.

Overfitting occurs when a statistical model describes random error or noise
instead of the underlying relationship. Overfitting generally occurs when a model
is excessively complex, such as having too many parameters relative to the num-
ber of observations. A model which has been overfit will generally have poor
predictive performance, as it can exaggerate minor fluctuations in the data. The
possibility of overfitting exists because the criterion used for training the model
is not the same as the criterion used to judge the efficacy of a model. In par-
ticular, a model is typically trained by maximizing its performance on some set
of training data. However, its efficacy is determined not by its performance on
the training data but by its ability to perform well on unseen data. Overfitting
occurs when a model begins to memorize training data rather than learning to
generalize from trend. As an extreme example, if the number of parameters is the
same as or greater than the number of observations, a simple model or learning
process can perfectly predict the training data simply by memorizing the training
data in its entirety, but such a model will typically fail drastically when making
predictions about new or unseen data, since the simple model has not learned to
generalize at all. In the project, after the creation of the approximed function,
the next operation was to verify how good was the interpolation obtained. To
accomplish this task it became necessary the adoption the test set, described
previously, with the goal to obtain output values near to the real values of the
function. The instruction defined in the class to execute the interpolation of new

76 Results

incoming data is shown in the list 5.3

public double interpolate(double xx1 , double xx2)

Usage: y1 = aa.interpolate(xx1 , xx2);

Listing 5.3: Interpolation method

The results obtained from the computation of the interpolation given new data
are not good for the goal of the project. When the input data are equal or similar
to values used in the training set, the interpolation function gives good output
value, with an irrelevant difference from the real value computed. On the other
hand the interpolation function, using input data never processed before, pro-
cesses an awful output value, maybe due to the overfitting present in the input
data used for the creation of the function.

With these results it was necessary to reanalyze the entire function using
another approach, in order to confirm that the application of the memoization
techniques in the project creates an advantage respect to the present situation.

The new analysis was executed in order to have a complete knowledge about

Figure 5.4: Memoization area

the behaviour of the function when there is a little change in the input data.
The change in the input data was the presence of τ added or subctructed to each

5.3 Savings 77

parameter (different value of τ for different parameters). Then it was calculated
the output value executing the function and saving the results. In order to have
a deep knowledge on the behaviour of the financing payments function it was
necessary to repeat the execution using different values of τ , covering all the user
accettable areas.

While the initial idea was adding (or subctracting) a SLA value to the output
value and then calculate, with an inverse function, the values of the τ related
to every single input parameter, the new idea permits to know the maximum
(or minumum) value of the SLA in base of the τ choosen on each single input
parameter. In this way, if the SLA found is satisfactory, according to the users
requirements, all the input values that are inside of the area, that has as bound-
aries the combination of the input parameters and τ (shown in the figure 5.4),
can be memoized.

5.3 Savings

In this section are described the results of the project, presented as savings ob-
tained with the application of the approximed memoization approach described
in this thesis.

The idea is to divide the section in four parts, where in each one division is
presented a different type of saving obtained.

The first part contains the description of the time enhancements gained from
the procedure optimization, with all the data related to the application of the
approximend memoization approach. The time savings are an important goal of
the project, because the present situation creates a great inconvenience both for
the employees and for the clients. In the second part are described the energy
savings, related to the consumption during the function execution of all the de-
vices used in the computation. As third saving gained, there is the reduction
of the MIPS used in the computation, with the consequent renegoziation of the
MIPS supplier contract. Last but not least, ther is the decription of the cost
savings, with a good analysis on the term TCO (Total Cost of Ownership).

78 Results

5.3.1 Time Savings

In the third chapter of this document it was mentioned that one of the big prob-
lems, or maybe the biggest problem, created by the financing payments function
computation, was the high execution time. This is due to the increase of the data
to compute during the night, when the mainframes are dedicated to execute only
this function. Currently the execution doesn’t end before the opening of all the
filials, so it blocks the terminal used by the employees, with the relative ineffi-
ciency for all the clients. Reducing the execution time has also some advantages
in terms of the energy consumption and also on the MIPS used for the execution.

The project has the goal to improve the computation in order to decrease
the time require to complete the function execution. To accomplish this task,
the first solution adopted was the introduction of the memoization approach,
i.e. reading a precomputed value inside the memory instead computing it. The
studies done in this thesis refers to use the memoization for the software energy
efficiency, basing the approach on the automatic identification of functions that
are convinient to tabulate. Memoizing a function leads to energy savings only
if the function is invoked several times with the same parameters, so that the
results can be read from the memory rather then re-computed.

The second improvement was introducing the concept of Service Level Agree-
ment (SLA) into the memoization concept, in order to have less elements in the
memory and to reduce the time to search and then read an element from the
memory. Basing on the distribution of the input data the memory was divided in
two different parts. The first one, that is the bigger, is used for saving the values
that are in the memoization interval. In this part all the values are memoized in
order to cover completely the memoization interval respecting the output SLA
defined.

The second part is used to save the values that are outside the memoization
interval, memorizing them precisely.

The last improvement done is the use of the quadtree as data structure in
the memory. A quadtree is a tree data structure in which each internal node has
exactly four children.

5.3 Savings 79

Consumption model

In order to analyze the timing savings that the three actions described above have
brought, it was created a consumption model. The application of this model gives
the percentage of the execution time reduction.

The goal is to have a profit using the memoization instead of executing the
function. It is possible to write this sentence in this way (5.2):

TORIG > TMEMO (5.2)

where TORIG is the execution time of the function, defined in the 5.3, and TMEMO

is the memoization time.

TORIG =
n∑
1

Te (5.3)

where Te is the execution time of the single input value and n is the number of
the input values and is defined as the sum of three values

n = m+ c+ x (5.4)

where m is the number of the input data memoized, c is the number of the input
value calculated and x is the number of the copies of the input value memoized,
so they don’t afflict the memory space.

The memoization time is defined as:

TMEMO =
m+x∑
1

Tm +
c∑
1

(Tm + Te + β ∗ Tt) (5.5)

where Tm is the time to read a memoized value that is stored in the memory, β is
the frequency value of the invocation of the trade-off module, and Tt is the time
required to execute the trade-off module. This module is executed few times a
month, so it is possible to set the value of β equal to zero. So, the formula of the
memoization time is:

TMEMO =
m+x∑
1

Tm +
c∑
1

(Tm + Te) (5.6)

80 Results

Substituting in the 5.2 the definitions of the memoization and the execution time
(5.3 and 5.6), the new formula is the one described in the 5.7

n∑
1

Te >
m+x∑
1

Tm +
c∑
1

(Tm + Te) (5.7)

Doing some calculation on the 5.7 is possible to find a simple formula that can be
used for the calculation of the gain obtained with the application of the approach
discussed in this thesis.

n∑
1

Te >

m+x∑
1

Tm +
c∑
1

Tm +
c∑
1

Te (5.8)

m+x∑
1

Te >

n∑
1

Tm (5.9)

m+x∑
1

Te −
n∑
1

Tm > 0 (5.10)

From the 5.10 is possible to write the formula that expresses the percentage gain.

G% =

∑m+x
1 Te −

∑n
1 Tm∑n

1 Te
∗ 100 (5.11)

With the 5.11 it is possible to obtain the value of the time percentage gain
caused by the application of the memoization approach on the function execu-
tion. The interesting terms in the formula are:

• m e x, that are the indexes of the sum. Their value depends on the quantity
of memory allocated for the memoization approach.

• Te, it is the execution time of the function without the application of the
memoization approach. It is calculated experimentally using the code in
the list 5.4.

• Tm, it is the time to read a memoized value. Its value it was estimated.

The execution time data capture was repeated several times, in order to use
for the analysis the mean values. This can assure that the data analyzed are

5.3 Savings 81

coming from different execution in the same conditions.

inizio = System.nanoTime ();

tempo = System.nanoTime()-inizio;

Listing 5.4: Code for the evaluation of the execution time. The first instruction is
inserted before the reading of the input values used for the function execution, the
second is inserted at the end of the execution, before the new reading of the input
values.

As done with the energy consumption measures, all the programs that were
running in the idle phase were killed, in order to have only the data related to
the function and not infected by some other executions.

Results

Real Interval Memoized Interval
Parameters Min Max Min Max
Consistenza 0,26 176.510.709,30 870,00 50.000,00

Tasso - 19,25 0,20 1,00

Total rows 408.863 # parameters 2
Total rows in the interval 202.571 # cell divisions 4
% rows in the interval 53,9% Mem. access time 10

Time [ns]
Max Execution Cost 28.643.217.000
Min Execution Cost 1.000
Mean Execution Cost 31.419.508

Table 5.2: Input data summary table

In the table 5.2 it is possible to see all the informations related to the input
data. In particular it is possible to see the statistics of the memoization interval
choosen. With that interval, that is little considering the entire interval of the

82 Results

input data, is possible to cover over the 50% of the entire set of data, making the
approach of the memoization a good solution. Futhermore this data distribution
allows the application of the approximed memoization approach, in order to save
some memory space.

Still in the same table are indicated the values of the execution time measured.
In particular it is shown the maximum, the minimum and the mean value coming
from the various experiment conducted. In the analysis is used the mean value,
because it is possible to see that the distance between the maximum value and
the mean value is huge. This means that the maximum value can not rappresent
the set of the input data better than the mean value. For the same reason it is
not used the minimum value.

The latest informations coming from the table 5.2 are the values of the pa-
rameters of the function. In particular, it is shown the number of the input
parameters that have an influence on the behaviour of the execution, the number
of the division cell of the quadtree (calculated as 2#parameters and the time to
access to the memory.

TAU
(EURO)

Quad-
Tree
depth

Cells
Memory
Space
(GB)

Tm
Interval
Depth

Memoi-
zation
(GB)

Consistenza
Tasso

0,5
0,00002

28
20 24.019.198.012.642.600 4.197.354.853 560 17 1.000,73

Consistenza
Tasso

1
0,00005

27
19 6.004.799.503.160.660 1.049.338.713 540 16 250,18

Consistenza
Tasso

2
0,0001

26
18 1.501.199.875.790.160 262.334.678 520 15 62,55

Consistenza
Tasso

5
0,0005

25
15 375.299.968.947.541 65.583.670 500 13 3,91

Consistenza
Tasso

10
0,001

24
14 93.824.992.236.885 16.395.917 480 12 0,98

Consistenza
Tasso

20
0,002

23
13 23.456.248.059.221 4.098.979 460 11 0,24

Table 5.3: Memory data table

Using the parameters listed in the table 5.2 is possible to do the analysis,

5.3 Savings 83

beginning from the construction of the quadtree structure, used for memoizing
the data in the memory. It is possible to see the data related to this analysis
in the table 5.3. For each of the two input parameters (tasso and consistenza)
it was calculated the depth of the quadtree, finding a different values because
of the τ values assigned to the parameters are not the same. The reason of this
difference is the domain of the two parameters. Tasso belongs to the set of values
between 0 and 20, so its τ value has to be a decimal number. On the other hand,
Consistenza belongs to a set of values bigger than the one described before, so it
is a good idea to use an integer τ value.

The formula of the calculation of the depth of the quadtree structure is:

depth = log2(
√
τinput) (5.12)

The second data in the table is the number of cells that the quadtree has to have
if the approach choosen is to memorized all the values in the memory using that
structure and the following column converts that number into the memory space
required. To accomplish these calculation the formulas adopted are:

#cell =
(#cell_divisionsmax(depth)−1 − 1)

3
+#cell_divisionsmax(depth)−1 (5.13)

MemorySpace =
#cell ∗ byte_dimension

109
(5.14)

The latter one is the important data that permits to have a comparison between
the classical theory of store the data in the memory and the new approach of
the memoization. It also explains the need to have a method that improves the
actual situation, because, with the highest value of τ , the memory space required
is over the 4 billion of GB.

To execute the comparison it is necessary to compute the data coming from
the application of the memoization approach. The first one is the time to read a
memoized data, that consist on the time to access into the memory and then the
time to search and than read the value stored in the quadtree structure. These
actions can be written in a formula like the one that follows:

MemoizationT ime =MemAccessT ime ∗#Parameters ∗ (QuadtreeDepth)
(5.15)

84 Results

where the QuadtreeDepth is the bigger one between the depth values of the two
parameters.

The depth of the quadtree created using the approximed memoization ap-
proach is calculated with this formula:

IntervalDepth = log2

(
Range√
2 ∗ τ

)
(5.16)

where with range is indicated the range of the interval (table 5.2). The value
of the depth with the application of the memoization interval is choosen as the
maximum value between the two one generated by the two different parameters.
As it is possible to see from the table 5.3, the depth, in the case of the most
precise input (where the τ values are the smallest one), is decreased from the
value 28 to the value 17. This implies that with the approach of the approximed
memoization it is more faster access and read a value in the memory.

The other value that can be useful to compare is the one related to the memory
occupation. In the case of the approximed memoization approach that value is
calculated with the same one formula written for the normal approach, that it
is indicated in the 5.14. Despite of the same formula, the results are totally
different. It is possible to see that with the approximed memoization the interval
of data is saved in 1 TB (TeraByte). This is an optimum result, because it saves
a lot of memory space.

With all of these data, it is possible to compute and then analyze the overall
gain that the approximed memoization approach gives to the function in order
to reduce the execution time.

The table 5.5 shows the values of the gain obtained with the approach of
the memoization method to the function execution. With the label output_sla it
is indicated the mean error committed using the memoization approach instead
executing the function. In the worst case the difference from the two values it
is 1,60 Euro, that is a good result analyzing the context of the execution. From
this table it is possible to see that the memoization approach has pointed out an
elevated reduction on the execution time of the function. In particular, there is
a reduction of about the 47% using the maximum precision on the output (0,02
Euro).

This reached goal permits to assert that the application of the memoization

5.3 Savings 85

Figure 5.5: Gain obtained with the memoization approach

approach improves the performances and the consumptions comparing to the
normal function execution. This is a good start for propose and then apply the
memoization approach to other financial applications.

5.3.2 Energy savings

Before starting with the execution of the test, it was done a monitoring of the
system, waiting for an equilibrium condition with a costant idle. This approach
makes possible the comparison between the instant values of the consumptions
during the function execution and the consumptions during the idle phase, even
in different sessions, but executed using a similar system. Due to the high vari-
ability during the idle phase, the real data on the consumption are not directly
comparable outside the same session, even if they are executed on the same sys-
tem. It is non realistic to mantain a hardware and a software system equivalent
during the time. The daily use, without the installation of new software, brings
anyway variations. All the values reported in this section are obtained using the
mean values of the different tests results. In particular, in order to have the
scientific prove of the derived data, the tests are done with the goal to having a
confidency below of the 5%.

86 Results

To give an indication of the scale of the overall consumption of the system
used during the test (5.1.1) in the figure 5.6 is shown one of the consumptions
trend during the idle phase. The instant mean value of the energy need, during
an idle phase (90 s of observation), it is 93,867 W , with an integral consumption
of 18374,70 J (about 5,10 Wh).

Figure 5.6: Idle consumption of the system.

The analysis of the energy consumption during the function execution are
shown in the table 5.4. All the values in that table are computed as a mean value
of the different analysis, and the number of the analysis one is associated to a
value of confidence under the 5%.

The second column of the table is related to the set of data with the parameter
formula equal to 251 or 254, while the third column is the total amount of the
data in the input file. The data were measured for the second column and then
it was computed the relative field on the third column. The J of the function was
trasformed in kWh using this formula:

kWhfunction = Jfunction/3600/1000 (5.17)

Then, with this data was possible to compute the annual value of the kWh con-
sumed by the function execution and then the total cost of that operation. For
the data related to costs was used the ratio euro/kWh setted to 0,189, as a normal
contract between the energy supplier and a private citizen.

5.3 Savings 87

To have, finally, the data of the global consumption during the function execu-
tion, it was used the definition presented in the second chapter (2.3), multiplying
the total consumption of the function for the factor 28, that helps to include the
energy consumption of all the devices connected or used in order to make the
system works.

As the main topic of the thesis is the Green ICT, this number were trasformed
in something related to the green area, like the quantity of CO2 emissions and
the number of trees planted in order to label the function as a "Zero Emissions
Function". The conversion between the total amount of kWh and the Kg of CO2

realesed in the air is 0,55 g for Wh. Then, the last conversion, from g to kg
convertible by the trees is setted with the default value of 20 kg/year. This is
the minimum value of absorption potential that a tree can does in a natural con-
test with a good growth factor. In this environment the value of the absorption
potential ranges from the 20 to the 45 kgCO2/year, in a time range between the
20 and the 30 years (it is possible to see the CO2 cycle in the image 5.7).

Energy Consumption
N 408.863 1.200.000%

Mean function J 2.492.350,63 7.314.970 %
Mean function kWh 0,69 2 %
Annual Function kWh 252,70 742 %
Annual Cost (Euro) 47,76 140 %

Total kWh 7.075,51 20.766,39 %
Total Costs (Euro) 1.337,27 3.924,85%

CO2 Emission 3.891,53 11.421,51 %
Trees 194,58 571,08 %

Table 5.4: Energy consumption of the normal function execution.

The reduction of the energy need caused by the application of the memoization
approach is not a data known, because of the part of the storage on the quadtree
structure, at the writing moment, is not done yet. What it is possible to say is
that, if we have at minimum a 47% of the timing saving, so the devices are used
less than during the normal execution. Maybe the use of this devices has a value
decreased more or less about the same percentage of the time saving.

In this scenario the remaining time can be used for the execution of some
others operations that maybe in the actual context are not done or they are

88 Results

Figure 5.7: CO2 Cycle

postponed to moments in which the load is low.

5.3.3 MIPS savings

The function that computes the financing payments was created in order to be
executed on mainframes. Generally speaking, the supplier of the hardware and
the software used to run the mainframes stipulates a contract related to the load
on the system created by the execution of the function.

It is common to analyze this load and so stipulating the contract between
the two parts using the MIPS (Million of Instruction Per Second) as a reference

5.3 Savings 89

value.
The MIPS is the unit of measurement of the frequency of instruction executed

done by a microprocessor. The instructions are the assembly ones of the proces-
sor in exam. These instructions are, in general, simple (like a single sum or a
single test to evaluate a condition). A normal computer program is composed
by thousands or million of this instructions, automatically created by a compiler.
The number of the instruction that a processor can execute in one second, ex-
pressed in millions, is its MIPS.

The formula for computing the MIPS value is

MIPS =
Ni

CPUT ime ∗ 106
(5.18)

where Ni is the number of instructions executed by the microprocessor in a time
period or on a program, CPUtime is the time in milliseconds to execute the Ni

instructions, and 106 is the ratio between seconds and milliseconds.
Analyzing that there is a big reduction on the execution time, it is possible to

assert that also the number of the MIPS is decreased, because the introduction
of the memoization approach permits to delete some function execution cycles
introducing some reads from memory instructions, that are faster and less MIPS
consuming in contrast to the normal function execution.

With this reduction, it is possible to redefine the new contract with the sup-
plier, based on the new quantity of MIPS required for the execution of the func-
tion. The new agreement permits to lowering the costs sustained by the client of
the system. On the contrary it is possible to maintain the same contract, using
the remaining MIPS for the execution of some others functions, reaching anyway
a reduction of the amount of money related to all the function executions.

5.3.4 Cost saving

All the results obtained, shown in the subsections before, are now analyzed in
order to evaluate their impact on the total cost of ownership (TCO). It will be
defined the TCO of the analyzed system, including the evaluation of the hardware
components on which it affects directly the memoization approach.

The total cost of ownership (TCO) is a financial estimate whose purpose is to
help consumers and enterprise managers determine direct and indirect costs of a

90 Results

product or system. It is a management accounting concept that can be used in
full cost accounting or even ecological economics where it includes social costs.
For manufacturing, as TCO is typically compared with doing business overseas,
it goes beyond the initial manufacturing cycle time and cost to make parts. TCO
includes a variety of cost of doing business items, for example, ship and re-ship,
opportunity costs, while it also considers incentives developed for an alternative
approach. Incentives and other variables include tax credits, common language,
expediated delivery, customer oriented supplier visits.

TCO, when incorporated in any financial benefit analysis, provides a cost
basis for determining the total economic value of an investment.

A TCO analysis includes total cost of acquisition and operating costs. A TCO
analysis is used to gauge the viability of any capital investment. An enterprise
may use it as a product/process comparison tool. It is also used by credit markets
and financing agencies. TCO directly relates to an enterprise’s asset and/or
related systems total costs across all projects and processes, thus giving a picture
of the profitability over time.

TCO analysis was popularized by the Gartner Group in 1987 [2].The roots
of this concept date at least back to the first quarter of the twentieth century.
Many different methodologies and software tools have been developed to analyze
TCO. TCO tries to quantify the financial impact of deploying an information
technology product over its life cycle. These technologies include software and
hardware, and training.

Technology deployment can include the following as part of TCO:

• Computer hardware and programs

– Network hardware and software

– Server hardware and software

– Workstation hardware and software

– Installation and integration of hardware and software

– Purchasing research

– Warranties and licenses

– License tracking - compliance

– Migration expenses

5.3 Savings 91

– Risks: susceptibility to vulnerabilities, availability of upgrades, patches
and future licensing policies, etc.

• Operation expenses

– Infrastructure (floor space)

– Electricity (for related equipment, cooling, backup power)

– Testing costs

– Downtime, outage and failure expenses

– Diminished performance (i.e. users having to wait, diminished money-
making ability)

– Security (including breaches, loss of reputation, recovery and preven-
tion)

– Backup and recovery process

– Technology training

– Audit (internal and external)

– Insurance

– Information technology personnel

– Corporate management time

• Long term expenses

– Replacement

– Future upgrade or scalability expenses

– Decommissioning

Comparing the TCO of existing versus proposed solutions, the consideration
should put towards costs required to maintain the existing solution that may
not necessarily be required for a proposed solution. Examples include cost of
manual processing that are only required to support lack of existing automation,
and extended support personnel.

All the voices mentioned above can be grouped into six macro-factors of the
TCO cost.

92 Results

• Hardware purchase costs

• Software developmant and maintenance costs

• Energy and cooling costs

• Hardware maintenance costs

• Server room management costs

• Hardware decommissioning costs

According to some studies of the Politecnico di Milano based on the impact of
the energy costs on the total cost of the ICT [5], each euro invested for acquiring
new servers needs 0,7 euro for the annual energy cost for supply and cooling all the
devices, with a ratio of 0,7:1. In addition the cost of the hardware maintenance is
correlated to the acquiring costs, with a ratio of 2:3. Supposing that the software
development and maintenance costs are proportional to the hardware ones with
a ratio of 3:1, and knowing that the software maintenance requires over that the
50% of the development costs, it is possible to draw a model of the TCO cost,
subdivided by the six macro-factors, like the one shown in the figure 5.8.

Figure 5.8: TCO Model

Obviously the costs for the hardware purchase and for the software develop-
ment have to be considered only in the initial phase of the project. On the other

5.3 Savings 93

hand, the costs of the hardware decomissioning are present only at the end of the
work lifecycle. The cooling and the energy need of the devices costs are present
during all the lifecycle of the machines, so the software mainteinance, thinking
about not only to corrective or adaptative operations, but also preventive or im-
provement one.

The use of the memoization approach for the energy efficiency not only has
an effect on the cooling or electricty costs, but also on some other voices of the
TCO model presented before, with suitable weights. In particular, the savings
gained have a direct incidence on the hardware purchase and mainteinance costs,
because to satisfy the computational load required the number of the devices
used is less than the one used in the actual situation.

For example, what two servers, at the 100% usage, can do, it can be done with
only one of this machine, because, in the worst case, the memoization introduces
a timing saving of the 47% of the actual execution time.

On the other hand, the energy efficiency is not affected by the software de-
velopment and mainteinance costs. New implementations or changes don’t have
big variations on the costs.

Chapter 6

Conclusions

In this chapter are presented the conclusions related to the project done in this
thesis. There is an initial part that describes the works done and then the results
obtained with the application of the approximed memoization method.

In the second section are then presented some possible future works, that can
be done in order to improve the method presented in this thesis.

6.1 Conclusions

In this thesis work it was analyzed the problem of the optimization of the energy
consumptions generated by the software, with a particular focus on the improve-
ment on the execution time.

In particular, the studies were done on a particular function, the one that
computes the financing payments. This choice was done because a big Italian
bank has the problem that this function takes too much time on its execution
and so it finish its computation after the fillials opening, causing some problems
on the terminals.

Analyzing the context of that function, the solution choosen was to apply the
concept of the memoization in order to have an improvement on the consump-
tions and on the execution time. The memoization is an optimization technique
used primarily to speed up computer programs by having function calls avoid
repeating the calculation of results for previously processed inputs. A memoized
function "remembers" the results corresponding to some set of specific inputs.
Subsequent calls with remembered inputs return the remembered result rather

96 Conclusions

than recalculating it, thus eliminating the primary cost of a call with given pa-
rameters from all but the first call made to the function with those parameters.

To "remember" the input parameters and then the output generated using
that values, the solution chose was to store the value in the memory, in particular
adopting a specific memory structure, called quadtree. A quadtree is a tree data
structure in which each internal node has exactly four children. Quadtrees are
most often used to partition a two dimensional space by recursively subdividing
it into four quadrants or regions.

The next idea in order to save some memory space and also to reduce more
the execution time was to modify the memoization approach. The new proposal
was to use an approximation of the function, reducing the set of the input-output
values saved in the memory. This operation was executed adding a value, called
Service Level Agreement (SLA) to the output values stored.The SLA is a part of
a service contract where the level of service is formally defined. In the project,
the SLA is defined as the precision needed by the final users on the value of the
financing payment. From this value was compute the relative input values and
the distance from the real input value and the one compute with the SLA value
was called τ .

The idea was to memoized some input values with their τ (clearly also the
output value with their SLA) and if the next input value was not inside of the
intervals stored in the memory its output value is computed using the approxi-
mated function. Otherwise, if it is inside of one of the input intervals memoized,
its output value is read from the memory, avoiding all the computing operations.

The approximation method chosen was the spline interpolation and in partic-
ular, it was found a Java library that implements this type of interpolation using,
as input, more than one parameter. The task of this library was to create an
approximated function that, after a training session, it creates the approximated
function, that it will be used instead computing the original one.

This goal was not reached, because the data used as input values creates a
matrix too sparse and then it is impossible for the library to create a good inter-
polated function. With this problem, the output created by the Java library was
a function afflicted by an overfitting problem.

In order to validate the approach proposed, the idea changed and, instead
processing the input given an ouput with the SLA, it was inverted the flow of

6.2 Future works 97

computation. It was added to the input parameters a τ value and then it was
computed the output with the relative SLA. This operation was useful to under-
stand how the approach can cover the input set and how much savings generates.

The results of the application of the last method descripted were good. It
was discovered that the memoization approach on the case study of the financing
payments function generates an higher gain on the execution times. The reduc-
tion, using the maximum precision on the outputs (0,02 euro), it is about of the
47%.

Related to this reduction, there is an improvement on the energy consumption
of the system and so an economical save for the bank.

It is possible to say that, the generality of the approach and its automation
permit to apply this method on other financing applications, and this is one of
the part described in the next section.

6.2 Future works

The results reached applying the memoization on the financing payments function
permits to consider some future works in order to improve the method and maybe
extend it to some other applications.

The first future work that have to be done is to apply the memoized function
to all the set of the input values. In the thesis, the set was reducted to the
parameters that have in the field formula the values 251 and 254. Then it
is important to analyze and then introduce an approximation method that can
substitute the original function and it can also generates excellent results.

All the results in the thesis were theorical because the part of the storage
in the quadtree was not realized yet. So the next step, to analyze how really
the memoization approach can reduce the execution time of the function, it is
to implement and then test the quadtree structure and all the methods use to
save and read in the memory. After this operations a first program pilot can be
realized.

If the results coming from the realization of the pilot are good enough it is
possible to think that the memoization approach can be extended to some others
applications that belong to the economy world, reducing drastically their total
energy consumptions.

Appendix A

Java-Cobol

In this chapter it will be presented a kind of manual for the porting from the
COBOL language to the Java.

In the firsts sections are presented the two languages, with their own charac-
teristics. Then there will be a detailed section on the conversion from the COBOL
to the Java. This section is subdivided into three categories: structures, control
instructions and statements.

A.1 COBOL

COBOL is one of the oldest programming languages, primarily designed by Grace
Hopper. Its name is an acronym for COmmon Business-Oriented Language,
defining its primary domain in business, finance, and administrative systems for
companies and governments.[18]

A.1.1 History and specification

The COBOL specification was created by a committee of researchers from private
industry, universities, and government during the second half of 1959. The specifi-
cations were to a great extent inspired by the FLOW-MATIC language invented
by Grace Hopper, commonly referred to as "the mother of the COBOL lan-
guage." The IBM COMTRAN language invented by Bob Bemer was also drawn
upon, but the FACT language specification from Honeywell was not distributed
to committee members until late in the process and had relatively little impact.

100 Java-Cobol

FLOW-MATIC’s status as the only language of the bunch to have actually been
implemented made it particularly attractive to the committee.[24]

The scene was set on April 8, 1959 at a Conference on Data Systems Lan-
guages (CODASYL) for computer manufacturers, users, and university people,
at the University of Pennsylvania Computing Center. The United States Depart-
ment of Defense subsequently agreed to sponsor and oversee the next activities.
A meeting chaired by Charles A. Phillips was held at the Pentagon on May 28 and
29 of 1959 (exactly one year after the Zurich ALGOL 58 meeting); there it was
decided to set up three committees: short, intermediate and long range (the last
one was never actually formed). It was the Short Range Committee, chaired by
Joseph Wegstein of the US National Bureau of Standards, that during the follow-
ing months created a description of the first version of COBOL. The committee
was formed to recommend a short range approach to a common business lan-
guage. The committee was made up of members representing six computer man-
ufacturers and three government agencies. The six computer manufacturers were
Burroughs Corporation, IBM, Minneapolis-Honeywell (Honeywell Labs), RCA,
Sperry Rand, and Sylvania Electric Products. The three government agencies
were the US Air Force, the Navy’s David Taylor Model Basin, and the National
Bureau of Standards (now National Institute of Standards and Technology). The
intermediate-range committee was formed but never became operational. In the
end a sub-committee of the Short Range Committee developed the specifications
of the COBOL language. This sub-committee was made up of six individuals:

• William Selden and Gertrude Tierney of IBM

• Howard Bromberg and Howard Discount of RCA

• Vernon Reeves and Jean E. Sammet of Sylvania Electric Products [29]

The decision to use the name "COBOL" was made at a meeting of the commit-
tee held on 18 September 1959. The subcommittee completed the specifications
for COBOL in December 1959. The first compilers for COBOL were subse-
quently implemented in 1960, and on December 6 and 7, essentially the same
COBOL program ran on two different computer makes, an RCA computer and
a Remington-Rand Univac computer, demonstrating that compatibility could be
achieved.

A.1 COBOL 101

A.1.2 Criticism and defense

Lack of structurability

In his letter to an editor in 1975 titled "How do we tell truths that might
hurt?" which was critical of several programming languages contemporaneous
with COBOL, computer scientist and Turing Award recipient Edsger Dijkstra
remarked that "The use of COBOL cripples the mind; its teaching should, there-
fore, be regarded as a criminal offense."[10]

In his dissenting response to Dijkstra’s article and the above "offensive state-
ment," computer scientist Howard E. Tompkins defended structured COBOL:
"COBOL programs with convoluted control flow indeed tend to ’cripple the
mind’," but this was because "There are too many such business application
programs written by programmers that have never had the benefit of structured
COBOL taught well..."[26]

Additionally, the introduction of OO-COBOL has added support for object-
oriented code as well as user-defined functions and user-defined data types to
COBOL’s repertoire.

Compatibility issues after standardization

COBOL 85 was not fully compatible with earlier versions, resulting in the "ce-
sarean birth" of COBOL 85. Joseph T. Brophy, CIO, Travelers Insurance, spear-
headed an effort to inform users of COBOL of the heavy reprogramming costs
of implementing the new standard. As a result the ANSI COBOL Committee
received more than 3,200 letters from the public, mostly negative, requiring the
committee to make changes. On the other hand, conversion to COBOL 85 was
thought to increase productivity in future years, thus justifying the conversion
costs.[15]

Verbose syntax

COBOL syntax has often been criticized for its verbosity. However, proponents
note that this was intentional in the language design, and many consider it
one of COBOL’s strengths. One of the design goals of COBOL was that non-
programmers-managers, supervisors, and users-could read and understand the
code. This is why COBOL has an English-like syntax and structural elements-

102 Java-Cobol

including: nouns, verbs, clauses, sentences, sections, and divisions. Consequently,
COBOL is considered by at least one source to be "The most readable, under-
standable and self-documenting programming language in use today. [...] Not
only does this readability generally assist the maintenance process but the older
a program gets the more valuable this readability becomes."[1] On the other
hand, the mere ability to read and understand a few lines of COBOL code does
not grant to an executive or end user the experience and knowledge needed to
design, build, and maintain large software systems.

Other defenses

Additionally, traditional COBOL is a simple language with a limited scope of
function (with no pointers, no user-defined types, and no user-defined functions),
encouraging a straightforward coding style. This has made it well-suited to its
primary domain of business computing-where the program complexity lies in the
business rules that need to be encoded rather than sophisticated algorithms or
data structures. And because the standard does not belong to any particular
vendor, programs written in COBOL are highly portable. The language can be
used on a wide variety of hardware platforms and operating systems. And the
rigid hierarchical structure restricts the definition of external references to the
Environment Division, which simplifies platform changes in particular.[1]

A.1.3 Data Types

Standard COBOL provides the data types described in the table A.1.

A.2 Java

Java is a general-purpose, concurrent, class-based, object-oriented computer pro-
gramming language that is specifically designed to have as few implementation
dependencies as possible. It is intended to let application developers "write once,
run anywhere" (WORA), meaning that code that runs on one platform does not
need to be recompiled to run on another. Java applications are typically com-
piled to bytecode (class file) that can run on any Java virtual machine (JVM)
regardless of computer architecture. Java is, as of 2012, one of the most popu-

A.2 Java 103

Data type Sample declaration Notes

Character PIC X(20) Alphanumeric and alphabetic-only
PIC A(4)9(5)X(7) Single-byte character set (SBCS)

Edited character PIC X99BAXX Formatted and inserted characters

Numeric fixed-point
binary

Binary 16, 32, or 64 bits (2, 4, or
PIC S999V99 8 bytes). Signed or unsigned.
[USAGE] Conforming compilers limit the
COMPUTATIONAL maximum value of variables based
or on the picture clause and not
BINARY the number of bits

reserved for storage.
Numeric fixed-point
packed decimal

PIC S999V99 1 to 18 decimal digits (1 to 10
PACKED-DECIMAL bytes). Signed or unsigned

Numeric fixed-point
zoned decimal

1 to 18 decimal digits
PIC S999V99 (1 to 18 bytes)
[USAGE DISPLAY] Signed or unsigned.Leading or

trailing sign, overpunch or separate
Numeric floating-point PIC S9V999ES99 Binary floating-point

Edited numeric
PIC +Z,ZZ9.99 Formatted characters and digits
PIC \$***,**9.99CR

Group (record)
01 CUST-NAME.

05 CUST-LAST PIC X(20). Aggregated elements.
05 CUST-FIRST PIC X(20).

Table (array) OCCURS 12 TIMES Fixed-size array

Variable-length table)
OCCURS 0 to 12 TIMES Variable-sized array
DEPENDING ON
CUST-COUNT

Table A.1: COBOL Data Types

lar programming languages in use, particularly for client-server web applications,
with a reported 10 million users. Java was originally developed by James Gosling
at Sun Microsystems (which has since merged into Oracle Corporation) and re-
leased in 1995 as a core component of Sun Microsystems’ Java platform. The
language derives much of its syntax from C and C++, but it has fewer low-level
facilities than either of them.

The original and reference implementation Java compilers, virtual machines,
and class libraries were developed by Sun from 1991 and first released in 1995.
As of May 2007, in compliance with the specifications of the Java Community
Process, Sun relicensed most of its Java technologies under the GNU General

104 Java-Cobol

Public License. Others have also developed alternative implementations of these
Sun technologies, such as the GNU Compiler for Java and GNU Classpath.

A.2.1 Principles

There were five primary goals in the creation of the Java language:[19]

• It should be "simple, object-oriented and familiar"

• It should be "robust and secure"

• It should be "architecture-neutral and portable"

• It should execute with "high performance"

• It should be "interpreted, threaded, and dynamic"

A.3 Cobol to Java

In this section are presented the major traductions from the COBOL to Java
adopted in the project, subdividing into three different parts. The first one is the
one related to the structures. In the second are described the control instructions,
like the conditional and the loop ones. In the last part are described some others
instructions normally used when programming.

A.3.1 Structures

In this section are presented the conversions of the structures and the data types.

Date Cobol code:

01 dt-inizio

05 FILLER REDEFINES dt-inizio.

10 dt-ini -ssaa PIC 9(04)

10 FILLER REDEFINES dt-ini -ssaa.

15 dt-ini -ss PIC 9(02).

15 dt-ini -aa PIC 9(02).

10 dt-ini -mm PIC 9(02)

10 dt-ini -gg PIC 9(02)

A.3 Cobol to Java 105

Java Code:

Calendar dt_inizio;

Numbers - Double Cobol code:

05 consistenza PIC S9(15)V9(3).

Java Code:

double consistenza;

In the program, in order to have the same number of decimals, there were used
two statements. The first defines the format of the number (with the number
of decimals wanted) and the second assigns the new format to the interested
variable.

DecimalFormat formato = new DecimalFormat ("#.#######");

importo_calc = Double.parseDouble(formato.format(importo_calc));

Numbers - Integer Cobol code:

05 tipo -calcolo PIC 9(03).

Java Code:

int tipo_calcolo;

Boolean Cobol code:

01 intero PIC X(01).

05 si-intero VALUE ’S’.

05 no-intero VALUE ’N’.

Java Code:

boolean intero;

String Cobol code:

01 divisa PIC X(03).

Java Code:

String divisa;

106 Java-Cobol

A.3.2 Control instructions

Conditional statements Cobol code:

IF <condition >[AND][OR][<condition >]

statements

[ELSE]

[END -IF]

Java Code:

if (<condition >[& || <condition >]){

statements

}[else][elseif <condition >]

Case Cobol code:

EVALUATE TRUE

WHEN <condition >[OR][AND][<condition >]

[WHEN OTHER]

END -EVALUATE

Java Code:

switch (variable) {

case <value >: statement [{ statements }]; break;

.....

default: statement [{ statements }]; break;

}

A.3.3 Statements

Function call Cobol code:

PERFORM function_name.

CALL function_name USING variable

The first is a normal function call, while the second is used importing a variable.
Java Code:

function_name ();

function_name(variable);

A.3 Cobol to Java 107

Assignment Cobol code:

MOVE variable1 TO variable2.

Java Code:

variable2 = variable1;

Operation computation Cobol code:

COMPUTE variable3 [ROUNDED]= variable1 + [- * /] variable2

ROUNDED is used for replacing the real value by another one that is approx-
imately equal but has a shorter, simpler, or more explicit representation. Java
Code:

variable3 = variable1 + [- * /] variable2 ..;

Cobol code:

ADD variable1 TO variable2.

Java Code:

variable 2 = variable2 + variable1;

Cobol code:

DIVIDE variable1

BY value

GIVING quotient

REMAINDER remainder

END -DIVIDE.

Java Code:

quotient = variable1 / value.

remainder = variable1 % value.

Bibliography

[1] Cobol tutorial - introduction to cobol.

[2] Tco definition.

[3] Capra E. Agosta G. Green software. anche le applicazioni consumano ener-
gia. Mondo Digitale, (1), Marzo 2011.

[4] Agosta G. Bessi M. Capra E. Francalanci C. Automatic memoization for en-
ergy efficiency in financial application. Sustainable Computing: Informatics
and Systems, 2012.

[5] F. Merlo A. Poli C. Francalanci, P. Giacomazzi. Green ict: tecniche di
riduzione di costo e problemi aperti. Politecnico di Milano, Maggio 2009.

[6] E. Capra. Green ict: scenario tecnico e socio-economico. Technical report,
-, 2008.

[7] Francalanci C. Capra E. Green it. sfide e opportunita. Mondo Digitale, 2008.

[8] Haase E. Dahm M., van Zyl J. The bytecode engineering library (BCEL).

[9] Oxford English Dictionary. mainframe, n. on -line edition,.

[10] Dijkstra. E.W. Dijkstra Archive: How do we tell truths that might hurt?
University of Texas at Austin, 2006.

[11] Katz D.M. Cios called clueless about extra costs. CFO, 2010.

[12] US Environmental Protection Agency (EPA). Energy conservation: Past &
present projects: Green computing guide. Technical report, University of
Colorado at Boulder, USA, 2005.

110 BIBLIOGRAPHY

[13] Renzi F. Scenari evolutivi nei sistemi e nella tecnologia e loro impatti sui
ced e sui loro consumi energetici. Technical report, IBM, 2007.

[14] Sciuto D. e Silvano C. Fornaciari W., Gubian P. Power estimation of em-
bedded systems: A hardware/software codesign approach. IEEE Trans. On
VL-SI Systems, 6(2):266–275, 1998.

[15] J. Garfunkel. The COBOL 85 example book. New York: Wiley, 1987.

[16] Brown E.G. Lee C. Topic overview: Green it. Forrester Reasearch, 2007.

[17] Levitin L.B. Margolus N. The maximum speed of dynamical evolution.
Phisica D120, pages 188–195, 1998.

[18] Rui Oliveira. The power of Cobol. BookSurge Publishing, 2006.

[19] Oracle. Design goals of the java programming language, 1999.

[20] Norvig P. Techniques for automatic memoization with applications to
context-free parsing. Computer Linguistic, 1991.

[21] Retrieved. Largest commercial database in winter corp. topten survey tops
one hundred terabytes. Press release., 2008.

[22] Capra E. Formenti G. Francalanci C. Gallazzi S. The impact of mis soft-
ware on it energy consumption. Technical report, European Conference of
Information Systems, 2010.

[23] Murugesan S. Harnessing green it: Principles and practices. IT professional,
10(1):24–33, 2008.

[24] Jean Sammet. The early history of cobol. ACM SIGPLAN Notices, pages
121–161, January 2010.

[25] Restorik T. An inefficient truth. Technical report, Global Action Plan
Report, www.globalactionplan.org.uk/research.aspx, 2007.

[26] Howard E. Tompkins. In defense of teaching structured COBOL as Computer
Science. ACM SIGPLAN Notices, 1983.

BIBLIOGRAPHY 111

[27] Robert Harper Umut A. Acar, Guy E. Blelloch. Selective memoization. Tech-
nical report, Proceeding of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, New York, NY, USA, 2003.

[28] Ellis C.S. Vahdat A., Lebeck A. Every joule is precius: the case for revisit-
ing operating system design for energy efficiency. ACM SIGOPS European
Workshop, pages 31–36, 2000.

[29] Richard Wexelblat. History of Programming Languages. Boston: Academic
Press, 1981.

[30] Verbrugge C. Xu H., Pickett C.J.F. Dynamic purity analysis for java pro-
grams. Technical report, Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, New
York, NY, USA, 2007.

