
POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

Zarathustra: Detecting Banking Trojans

via Automatic, Platform-independent

WebInjects Extraction

Relatore:

Prof. Stefano ZANERO

Correlatori:

Dr. Federico MAGGI

Ing. Claudio CRISCIONE

Studente:

Fabio BOSATELLI

Matr. 746982

Anno Accademico 2011–2012

Table of Contents

1 Introduction 17

2 Background and state of the art 21

2.1 Information-stealing Trojans . 21

2.1.1 The WebInject functionality 22

2.2 The ZeuS Crimeware Toolkit 24

2.2.1 The fraud scheme . 25

2.2.2 Evolution . 26

2.2.3 Components . 30

2.2.4 Infection . 33

2.3 Hooking mechanism . 34

2.4 Banking trojan detection: state of the art 34

2.4.1 Reverse engineering . 36

2.4.2 Classic approaches of anti-malware tools 36

2.4.3 WebInjects detection . 37

2.5 Challenges and goals . 38

3 Zarathustra 41

3.1 Proposed approach . 41

3.2 System overview . 42

3.2.1 Phase 1: DOM collection 43

3.2.2 Phase 2: DOM comparison 43

3.2.3 Phase 3: Fingerprint generation 44

3.3 System details . 44

3.3.1 Phase 1: DOM collection 44

3.3.2 Phase 2: DOM comparison 46

3.3.3 Phase 3: Fingerprint generation 46

3.4 System implementation . 47

3.4.1 Libraries and tools . 47

3

4 TABLE OF CONTENTS

3.4.2 Phase 1: DOM collection 50

3.4.3 Phase 2: DOM comparison 60

3.4.4 Phase 3: Fingerprint generation 68

3.5 Detection scenarios . 70

4 Experimental Evaluation 73

4.1 Challenges in the experimental evaluation of Zarathustra 73

4.2 Datasets construction . 75

4.2.1 Creation of the set of infected VMs 75

4.2.2 Creation of the list of URLs 76

4.2.3 Creation of the ground truth 76

4.3 Environment and deployment 77

4.4 Experiments . 78

4.4.1 Detection capabilities evaluation 78

4.4.2 False positives evaluation 78

4.4.3 Speed and scalability . 80

5 Conclusions 83

5.1 Limitations . 84

5.2 Future work . 84

Bibliography 87

List of Figures

2.1 ZeuS’s dependency tree . 23

2.2 Webinject example . 24

2.3 Diffusion of ZeuS in 2009 . 25

2.4 The fraud scheme . 27

2.5 Example of virtual keyboard . 28

2.6 ZeuS C&C server interface . 32

2.7 Page interception and modification 38

3.1 Server side architecture of Zarathustra 45

3.2 Complete system overview . 48

3.3 Graphical explanation of differences comparison 71

4.1 Samples grouped by number of infected URLs 78

4.2 False positives trend . 80

4.3 Zarathustra scalability . 81

5

List of Tables

2.1 Typical hooked APIs divided by library name 35

4.1 Evaluation dataset overview. 74

4.2 Top ten websites with highest number of differences 79

4.3 Contribution of each heuristic on the detection capabilities 79

7

List of code and log excerpts

2.1 Example of the definition of a WebInject 31

3.1 Analysis of requests parameters in the proxy 51

3.2 Proxy log example . 53

3.3 Crawler log example . 54

3.4 Variables set before running the JAR on the VM 57

3.5 Implementation of the method to execute files on the VM . . . 57

3.6 Instructions to dump the HTML source 58

3.7 MonitorThread implementation 59

3.8 Instructions to extract differences between two DOMs 62

3.9 Instructions to remove differences that we don’t ascribe to ZeuS 62

3.10 JSON file reporting the injections found on a login page of

banesto.es . 64

3.11 Definition of a node injection 66

3.12 Definition of an attribute injection 66

3.13 Definition of an attribute value modification 67

3.14 Definition of a text modification injection 67

3.15 The isFalseDifference method to delete false positives . . . 68

9

Abbreviations

API Application Programming Interface

BYOD Bring Your Own Device

C&C Command and Control

DNS Domain Name System

DOM Document Object Model

HTML Hypertext Markup Language

HTTP(S) Hypertext Transfer Protocol (Secure)

IP Internet Protocol

JAR Java Archive

JSON JavaScript Object Notation

MaaS Malware-as-a-Service

OS Operating System

OTP One-Time Password

P2P Peer-To-Peer

PIN Personal Identification Number

SSL Secure Sockets Layer

URL Uniform Resource Locator

USD United States Dollar

VM Virtual Machine

11

Abstract

Banking trojans are currently the most widespread class of malicious soft-

ware. They are particularly dangerous because they directly impact the vic-

tim’s financial resources. Modern banking trojans are distributed as “kits”

that anyone can customize. The existence of various customizations, often sold

or traded for money, logically lead to a high volume of trojan variants, which

traditional approaches based on manual analysis and signature crafting cannot

possibly handle.

Modern banking trojans such as ZeuS, SpyEye, or Citadel all have a

common, distinctive feature called WebInject, which eases the creation of cus-

tom procedures to inject arbitrary content in a (banking) website page. The

attacker’s goal is to modify the page, typically with additional, legitimate-

looking input fields, which capture sensitive information entered by the victim.

The result is that a web page rendered on an infected client differs from the

very same page rendered on a clean machine. We leveraged this observation

to implement a system to generate cross-platform signatures of any arbitrary

WebInject-based trojan with no reverse-engineering effort required. These fin-

gerprints can be used to determine whether a client is infected or not.

Our evaluation on 56 distinct ZeuS samples and 213 banking websites

shows that our system reaches a good accuracy level and it is able to extract

fingerprints from infected clients with a fully-centralized and server-controlled

infrastructure.

13

Sommario

I cavalli di troia bancari, conosciuti come banking trojans, sono attualmente

la classe più diffusa di software malevolo (malware, in inglese). Sono parti-

colarmente pericolosi in quanto compromettono direttamente le risorse finan-

ziarie della vittima. I moderni cavalli di troia bancari sono distribuiti come

“pacchetti” che chiunque può personalizzare. L’esistenza di molteplici versioni

personalizzate, spesso vendute o commercializzate per soldi, porta chiaramente

ad un alto numero di varianti, che gli approcci tradizionali basati sull’analisi

manuale e la creazione di signature non possono affatto gestire. I moderni tro-

jan bancari come ZeuS, SpyEye o Citadel sono dotati di numerose funzionalità

finalizzate al furto dei dati dai computer degli utenti: attraverso le credenziali

private, infatti, i criminali informatici possono avere accesso al conto banca-

rio delle vittime. Oltre al furto di dati sensibili, i cavalli di troia consentono

anche di controllare le macchine sui quali sono installati, cos̀ı da variare le

tecniche di sottrazione del denaro, rendendo l’attività criminosa più efficace e,

al tempo stesso, più difficile da rilevare. Una funzionalità comune e distintiva

dei recenti trojan bancari è la WebInject, una tecnica che facilita la creazio-

ne di procedure personalizzate per iniettare contenuto arbitrario nella pagina

di un sito (bancario). Lo scopo di questa funzionalità è quello di modificare

la pagina, solitamente con ulteriori campi di input, che sono apparentemente

legittimi, ma che catturano le informazioni sensibili aggiuntive che la vittima

inserisce. Il risultato è che una pagina web caricata su una macchina infetta è

diversa dalla stessa pagina caricata su una macchina pulita. Siamo partiti da

questa osservazione per implementare un sistema che estrae le differenze intro-

dotte in una pagina web da un qualsiasi cavallo di troia che effettua WebInject,

senza adottare alcuna pratica di reverse engineering. Queste differenze, alle

quali ci riferiamo come signature o fingerprint, possono essere utilizzate per

determinare se un client è infetto o no.

Il nostro sistema automatizza l’estrazione delle differenze tra i DOM di

due pagine HTML, delle quali una è ottenuta visitando il sito con una macchina

virtuale pulita, mentre l’altra è ricavata da una macchina virtuale infettata con

15

16 SOMMARIO

ZeuS. Il flusso dell’esecuzione si articola in tre fasi: la prima fase consiste nella

raccolta dei dati, cioè dei DOM, che vengono salvati su file. I dati provengono

da diverse macchine non infette, che indicano come una pagina web dovrebbe

comparire in condizioni normali, e da macchine infettate con diversi campioni

di banking trojan, sulle quali le pagine potrebbero presentare dei campi iniet-

tati da codice malevolo; durante la seconda fase avviene la comparazione dei

DOM ottenuti dalle macchine infette con i corrispondenti DOM ottenuti dalle

macchine pulite; la terza e ultima fase elabora le differenze ottenute nella fase

precedente al fine di eliminare quelle che, essendo dovute a differenze lecite

introdotte lato client o lato server, non sono ascrivibili a ZeuS. Questo viene

fatto ricavando le differenze che intercorrono tra più macchine virtuali pulite

ed eliminando tali differenze dalla lista di quelle ottenute confrontando una

pagina infetta con una pulita. Nella prima e terza fase ci avvaliamo di alcune

euristiche con lo scopo di ridurre le differenze legittime che, in quanto tali,

costituiscono dei falsi positivi.

La nostra valutazione su 56 diversi campioni di ZeuS e 213 indirizzi bancari

mostra che Zarathustra raggiunge un buon livello di accuratezza ed è in grado di

estrarre differenze da client infetti attraverso una infrastruttura completamente

centralizzata e controllata da un server.

Chapter 1

Introduction

The Internet has become the infrastructure of choice for storing, transmitting

and using sensitive personal and business information. A large and diverse pop-

ulation of users accesses online banking services, or performs different kinds of

electronic financial transactions. Unsurprisingly, endpoint devices such as com-

puters, mobile phones and tablets have become easy targets for cyber criminals,

whose current activities include the infection of such devices with malware,

targeted to steal sensitive data, or perform fraudulent monetary transactions

without the owner’s consent.

These “banking trojans” are a widespread, sophisticated threat. The most

successful families (such as ZeuS and SpyEye) make use of obfuscation and

encryption, as well as multiple advanced techniques to hide in users’ systems to

grab credentials and perform transactions. A flourishing, complex underground

ecosystem supports their development and spreading with configuration kits,

web-based administration panels, builders, automated distribution networks,

and easy-to-use customization procedures.

Goncharov [9] recently studied the Russian underground market of cyber

criminals: he estimated a USD 2.3-billion market, responsible for 18% of the

estimated total USD 12.5 billion worldwide cybercrime figure in 2011, accord-

ing to [4]. In this market, malicious goods are a “service” with a price tag,

from distributed denial-of-service attacks to spamming. A spam campaign is

particularly cheap, costing down to USD 10 per million of emails. Anybody

can easily buy a customized trojan or rootkit, or a malware-building toolkit to

create a customized sample. Interestingly, malware authors and their “affiliate”

employees offer paid support and customizations, or sell advanced functionality

packages that the customers can include in their builds, for instance to add new

functionalities, or to target the users of a specific website. The customer can

pay on a per-installation basis, with prices depending on the targeted coun-

17

18 CHAPTER 1. INTRODUCTION

try: 1,000 infected Russian users, for instance, cost approximately USD 100.

This malware-as-a-service (MaaS) phenomenon is alarming, as it turns botnets

into a commodity, and allows traditional crime gangs to enter the cyberfraud

landscape. Unsurprisingly, online banking fraud is one of the fastest growing

segments of cybercrime, amounting to just below USD 1 billion.

The goal of these banking trojans, also commonly referred to as “infor-

mation stealers”, is to intercept credentials such as username, password, and

second factors of authentication such as PINs or token-generated codes. To do

so, as we detail in Section 2.1.1, these malware families rely on web injection

components that manipulate and inject arbitrary content into the data stream

transmitted between an HTTP(S) server and the user browser. Such modules

are placed between the rendering engine of the browser and the network-level li-

braries. Thus, they are able to circumvent any form of transmission encryption

such as SSL, as we describe in Section 2.4. Such manipulations and injections

typically result in changes to the document object model (DOM). This is the

key intuition behind our work.

We hereby propose Zarathustra, an automated system that detects the ac-

tivity of banking trojans that perform WebInjects on the client side. Zarathu-

stra extracts the DOM differences by first rendering a banking website’s page

multiple times in an instrumented browser running on distinct, clean virtual

machines. This builds a model of legitimate differences (e.g., due to ads, A/B

testing, cookies, load balancing, anti-caching mechanisms). Zarathustra re-

peats the same procedure on an infected machine and extracts and generalizes

the differences, which we call “fingerprints”. The fingerprints are generated

on dedicated machines, which operate offline, without any interaction with

real clients. Our system has the advantage of requiring no reverse-engineering

effort: the only requirement is a binary sample of the malware to infect the

controlled machine, which is used to identify differences in web pages generated

by the malware’s web injection techniques.

We evaluated Zarathustra against 213 real, live URLs of banking websites

and 56 distinct samples of ZeuS. In all the cases, our system detected the

injections correctly. We analyzed the low fraction of false positives (about 1%)

and found that most of them were caused by legitimate differences found in the

original web pages. These are mitigated by Zarathustra with specific heuristics,

which can be safely enabled under certain, realistic conditions, as detailed in

Section 4.

We measured the system’s performances in terms of time and number of

processed URLs and observed that it scales well: it can process 1 URL in less

than 3 seconds (the time required to match the fingerprints are negligible) on

19

our limited infrastructure. Furthermore, as fingerprint generation and match-

ing can be performed independently on samples and URLs, the process is fully

parallelizable and capacity scales directly according to available resources. In

summary, Zarathustra gives a contribution in the detection of trojans that in-

ject fields in HTML pages as a data-stealing technique. It is not meant to be

an alternative to existing antiviruses, as it focuses on a specific feature that

not all banking trojans may implement. Its goal is to propose a new approach

that leads to their detection, relying on a very lightweight and little invasive

methodology.

Chapter 2

Background and state of the art

This chapter provides information about different aspects of banking trojans.

First, we talk about infostealers in general, explaining what they do (Sec-

tion 2.1) and focusing on WebInjects (Section 2.1.1).

Next we concentrate on the ZeuS crimeware toolkit (Section 2.2): after

showing how cyber criminals use it for their malicious purposes and how it

evolved during its history, we talk about the components in the toolkit and

how the malware infects the system.

After this, we detail the hooking mechanism of trojans in Section 2.3.

In Section 2.4 we describe the state of the art, discussing the limitations

of current techniques and mentioning what has been done for the detection of

WebInjects (Section 2.4.3).

Last, we set the goal of our work and introduce the challenges we faced

when we started to work on it (Section 2.5).

2.1 Information-stealing Trojans

State-of-the-art malware is very sophisticated. From a technical point of view

ZeuS and SpyEye are a masterpiece of complexity (e.g. encryption, advanced

credential grabbers. Figure 2.1 shows the structural complexity of ZeuS); this

aspect reveals a mature malware development industry. In this regard, Lindor-

fer et al. [17] recently measured that these trojans are actively developed and

maintained by the authors. Indeed, both malware families live in a complex en-

vironment with development kits, web-based administration panels, builders,

automated distribution networks, and easy-to-use customization procedures.

The most alarming consequence is that anyone can buy a malware builder

from underground marketplaces and create a customized sample. Interestingly,

cyber criminals also offer paid support and customizations, or sell advanced

21

22 CHAPTER 2. BACKGROUND AND STATE OF THE ART

configuration files that the end users can include in their custom builds, for

instance to extract information and credentials of specific (banking) websites.

Malware families that follow the same approach of ZeuS and SpyEye usually

include data-stealing functionalities. For instance, since version 1.0.0, SpyEye

features a so-called “FormGrabber” module, which can be arbitrarily config-

ured to intercept the data that the victim types into (legitimate) websites’

forms. This type of trojans are often referred to as “infostealers”, in jargon.

Unsurprisingly, the main goal of money-motivated criminals that rent or op-

erate information-stealing campaigns is to retrieve valid, full credentials from

infected systems. Online-banking websites credentials are among the most tar-

geted ones. Typically, these credentials comprise both the usual username and

password, and a second factor of authentication such as a PIN or a token.

This (one-time) authentication element is normally used only when performing

money transfers or other sensitive operations. As a security measure, many

banking websites use separate forms, and do not ask for login credentials along

with the second factor of authentication.

2.1.1 The WebInject functionality

As of version 1.1.0, SpyEye incorporates the WebInject module, which can

be used to manipulate and inject arbitrary content into the data transmitted

between an HTTP(S) server and the browser. We said in Chapter 1 that

the WebInject module is placed between the browser’s rendering engine and

the HTTP(S) API functions and, for this reason, the trojan has access to the

decrypted data, if any encryption is used (e.g., SSL).

In the case of information stealers, the WebInject module is leveraged to

selectively inject the HTML code that is necessary to steal the target infor-

mation. For example, as shown in Figure 2.2, the WebInject module inserts

an additional input field in the main login form of an online banking website.

The goal is to lure the victim such that he or she believes that the web page

is legitimately asking for the second factor of authentication up front. In fact,

the victim will notice no suspicious signs (e.g. invalid SSL certificate) because

the page is modified “on the fly” (see Section 2.3) right before display, directly

on the local workstation. WebInjects effectively allow attackers to modify only

the portion of page they need by means of site-specific content-injection rules.

Additionally, at runtime, the malware polls the botnet command-and-control

(C&C) server for further configuration options—including new injection rules.

Differently from phishing, which requires the attacker to host and maintain

a spoofed web page, WebInjects do not require any external resource. There-

2.1. INFORMATION-STEALING TROJANS 23

vncmouse.cpp

core.h

debug .h

defines.h

vncserver .h

gui .h

core.cpp

sync.h

repor t .h

userhook.h

corehook.h

sof twaregrabber .h

localconfig.h

process .h

nspr4hook.h

str .h

mem.h

cryptedstr ings.h

coreinstall.h

winapi tables .h

coreinject.h

wsocket .h

corecontrol .h

wahook .h

backconnectbot .h

registry.h

ht tpgrabber .h

dynamicconfig.h

wininethook.h

sockethook.h

peimage.h

mscab.h

comlibrary.h

xmlparser.h

winsecurity.h

localsettings.h

osenv.h

fs.h

tcpserver .h

cer t s torehook.h

baseoverlay.h

disasm.hwinapitables.cpp

screenshot .cpp

sc reensho t .h

userhook.cpp

wininethook.cpp

wininet .h

ht tpgrabber .cpp

ht tp tools .h

corehook.cpp

localsettings.cpp

remotescript .cpp

remotescr ip t .h

vncpaint.cpp

softwaregrabber.cpp

m a t h . h

osenv.cpp

common.cpp

sync.cpp

mem.cpp

wahook.cpp

comlibrary.cpp

str.cpp

mscab.cpp

ucl.cpp

time.cpp

crypt.cpp

binstorage.cpp

httptools .cpp

wsocket .cpp

wininet .cpp

peimage.cpp

process.cpp

registry.cpp

gdi.cpp

winsecurity.cpp

gui.cpp

disasm.cpp

debug.cpp

math .cpp

xmlparser.cpp

malwaretools .cpp

fs.cpp

baseoverlay.cpp

threadsgroup.cpp

backconnect.cpp

httpinject .cpp

windowsta t ion.cpp

windowsta t ion .h

tcpserver.cpp

socks5server.h

nspr4hook.cpp

vncserver.cpp

rfb.h

gdi.h

sockethook.cpp

localconfig.cpp

corecontrol.cpp

backconnectbot .cpp

backconnect .h

coreinstall.cpp

t ime.h

cer ts torehook.cpp

dynamicconfig.cpp

report .cpp

coreinject.cpp

rfb.cpp

socks5server.cpp

filesearch.cpp

filesearch.h

vnckeyboard.cpp

cryptedstrings.cpp

Figure 2.1: The dependency graph of ZeuS gives an idea of its structural com-
plexity.

24 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 2.2: Example of a real WebInject found on a page
of extranet.banesto.es, performed by a ZeuS variant (MD5
15a4947383bf5cd6d6481d2bad82d3b6).

fore, they reduce the upkeep effort for the attacker and also remove a point of

failure (i.e., the external web page). Unfortunately, unlike phishing, which is

indeed affected by take-down actions [20], the targeted organizations can do

little to protect infected clients, because the injection itself is only visible on

the client side.

Because of their effectiveness and flexibility, WebInjects have gained a lot

of popularity in the underground economy, and contributed to the MaaS phe-

nomenon. The focus thus shifted from malware toolkit itself to the configura-

tion files, which embody the actual value of an information stealer. The content

of these files consists in a list of URLs with custom HTML code to inject. The

syntax to define WebInjects follows simple rules, as shown in Section 2.2.3. In

the case of ZeuS, the WebInjects configuration file is named webinjects.txt.

Configuration files, and in particular webinjects.txt files, are traded1 or sold2

on underground marketplaces.

2.2 The ZeuS Crimeware Toolkit

Among the different banking trojans circulating nowadays, the prevailing one is

ZeuS [2], also known as Zbot. Its first detection can be dated back to 2007, but

it spread massively in 2009, when the first commercial version came out. During

its history, ZeuS captured media attention especially when police operations

led to the arrest of botmasters that had stolen tens of millions of dollars from

bank accounts. One of the biggest operations was accomplished by the FBI

along with other international law enforcement in 2010: they discovered a theft

ring running ZeuS botnets that allowed felons to steal USD 70 million from

companies, towns and churches [1], with a potential loss of USD 220 million.

In January 2013, the 24-year old Algerian Hamza Bendelladj was arrested with

1http://trackingcybercrime.blogspot.it/2012/08/high-quality-webinject-for-banking-bot.

html
2https://www.net-security.org/malware_news.php?id=2163

2.2. THE ZEUS CRIMEWARE TOOLKIT 25

Figure 2.3: The world map showing ZeuS diffusion in 2009 (source: [8])

the charge of having stolen USD 10 to USD 20 million from bank accounts,

running a ZeuS botnet [16].

In 2011, ZeuS v2 source code was leaked and this resulted in the creation of

several variants, among which Gameover, an evolution of ZeuS that uses P2P

communication to send data to botmasters, needs to be mentioned. In Septem-

ber 2012, researchers at F-Secure found that nearly the 10% of Gameover-

infected PCs were located in Italy3.

Today ZeuS can infect many versions of Microsoft’s operating systems,

including Windows Seven, as reported on the malware’s user manual. Sup-

ported browsers are Internet Explorer and Mozilla Firefox, but recent variants

of ZeuS and trojans that perform web injections also target Google Chrome

and Opera[15]. An alarming phenomenon is represented by the increasing dif-

fusion of malware versions for mobile phones: as explained in Section 2.2.2.3,

they allow attackers to effectively steal session tokens that banks send users as

an additional security measure.

2.2.1 The fraud scheme

The fraud miscreants put in practice comprise different phases and different

actors, as shown in Figure 2.4. It all starts from the malware writers that

create the code to implement the malware or the toolkit. Once the binary is

configured either for third-party customers or for the creators themselves, it is

delivered to infect victims. The ways this is done are mainly three:

3http://www.f-secure.com/weblog/archives/00002424.html

26 CHAPTER 2. BACKGROUND AND STATE OF THE ART

• The first one is by the so-called “drive-by download”: a user is brought

to visit a website that hosts malicious content. Without the user’s aware-

ness, or consent, a malware sample is delivered and installed on the vic-

tim’s machine. The ways a user may land on a malicious website are

many and vary from a short link the user clicks on, to redirection chains

that, starting from a website, bring the user to the final infected web-

site. The exploitation of the browser’s vulnerabilities, or its plugins and

extensions, can be sold as a service as well. The most popular toolkit to

do this is called Blackhole [10].

• The second way to deceive a user to download ZeuS is using spamming

campaigns. They consist in a massive dispatch of e-mails to users’ mail-

boxes pretending to be from trusted institutions or websites. The message

of these mails usually requires users to login at suitably disguised web-

sites with a graphics that recalls the one of the original website. Users

may also be required to run executables that supposedly increase pro-

tection measures.Therefore the user deliberately downloads and installs

malicious software.

• The third common way ZeuS is installed on a victim’s PC or device is

using fake tools. A fake tool is an executable that is presented as a

benign application, while it actually conceals a malware that executes

malicious code. Thus, when a user runs a fake tool, he/she is not aware

that a malicious application is infecting the system. In addition to its

malicious code, a fake tool may implement the actual functionalities the

user downloaded it for.

While the infection keeps on spreading, botmasters exploit their botnet to

carry out criminal actions. The stolen money is kept on bank accounts that

are not in the criminals’ name, but they’re property of another actor, called

“money mule”. Money mules are in charge for withdrawing the cash from

the accounts used as destination for stolen money and for moving it to the

criminals’ real accounts, keeping part of the sum for themselves as a reward.

Relying on money mules means adding another layer between the victims and

the criminals, making it very hard to identify the mastermind behind a botnet

that may involve thousands of infected machines located in different continents.

2.2.2 Evolution

One of ZeuS’ strong points has always been its thrust toward new attacking

techniques. This continuous evolution was aimed at bypassing the countermea-

2.2. THE ZEUS CRIMEWARE TOOLKIT 27

Money Mules

Victims

Malware
Exploiters

Malware coders develop
malicious software that is
sold on the black market.

Malware exploiters purchase malware and use it to
steal victim banking credentials. They launch
attacks from compromised machines that allow them
to transfer stolen funds and deter any tracking of
their activities.

Money mule networks are comprised of
individuals engaged in the transfer of stolen
funds who retain a percentage for their
services.

Victims include individuals,
businesses, and financial institutions.

Cyber Theft Ring

Victims are both
financial
institutions and
owners of infected
machines.

Money mules
transfer stolen
money for criminals,
shaving a small
percentage for
themselves.

Criminals come in
many forms:
Malware coder
Malware exploiters
Mule organization

3. Banking
credentials
siphoned

4. Hacker
retrieves
banking
credentials

Targeted
victim

6. Hacker logs into victim’s online bank account

Victim bank
Money mules

7. Money
transferred
to mule

8. Money
transferred from
mule to organizers

2. Victim infected
with credential-
stealing malware

Hacker

Compromised
collection server

5. Remote
access to
compromised
computer

1. Malware coder writes malicious
software to exploit a computer
vulnerability and installs a trojan

Malware coder

Compromised
proxy

Fraudulent
company

How the Fraud Works

Hacker

Global Reach

Total FBI cases: 390
Attempted loss: $220 million

Actual loss: $70 million

United States: 92 charged and 39 arrested
United Kingdom: 20 arrested and eight search warrants

Ukraine: Five detained and eight search warrants

Law Enforcement
Response To Date:

victims

mule organization
malware coder/exploiters

Figure 2.4: The fraud scheme (source: http://www.fbi.gov/news/stories/

2010/october/cyber-banking-fraud)

28 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 2.5: A detail of the login page on the website of Banco Santander: the
virtual keyboard can be used to insert data.

sures adopted by banks in an attempt to thwart the malware’s functionalities.

2.2.2.1 Keylogging and formgrabbing

When it first appeared, ZeuS implemented several information-stealing tech-

niques. The most effective one was keylogging that consists in storing to file

each keystroke the user inputs. The file with the recorded keystrokes is then

sent to the botmaster. The drawback of this technique, from the point of view

of an attacker, is that there are situations in which input data can not be inter-

cepted (e.g., when a user copies and pastes data from a file or when an options

menu does not require users to type data on keyboard). Another feature was

form-grabbing, already mentioned in Section 2.1.

2.2.2.2 Screenshotting, clickgrabbing and WebInjects

The way banks tried to mitigate the keylogging problem was using on-screen

keyboards written in JavaScript: the user was no more required to insert his

or her username by typing it on the physical keyboard, but he or she needed

to type login credentials by clicking on the letters of a virtual keyboard that

appeared on the bank’s website. In 2009, ZeuS’s authors answered back by

enhancing their malware with more advanced attacking modules: screenshot-

ting, clickgrabbing and WebInjects. The first one allows the attacker to take

screenshots of the victim’s PC when performing login operations. The second

one records the clicks the user does, allowing the attacker to know the position

of mouse clicks and their sequence. Last, WebInjects, as previously mentioned,

2.2. THE ZEUS CRIMEWARE TOOLKIT 29

are custom code added to the webpage, and they can be scripts, input fields or

whatever element the attacker wishes to add to the page.

2.2.2.3 ZeuS in the mobile

To hinder this new malicious practice, banks introduced two-factor authenti-

cation. This type of authentication comprises, along with the normal online

registration routine, the use of a one time password (OTP) sent to the cus-

tomer’s mobile phone by SMS. Being only usable once and often within a

limited time span, the OTP should protect the user even from web injections:

stealing a token that has already been used or that has expired is totally use-

less. It is under these circumstances that, in 2011, the mobile version of ZeuS

made its appearance. Zitmo, an acronym that stands for “ZeuS in the mo-

bile”, works in tandem with a PC version of ZeuS and it has been designed to

defeat the new authentication method: it can access all the information in the

user’s phone, including SMS with sensitive information, and send it to its C&C

server to complete malicious actions. The diffusion of mobile banking malware

is even more dangerous when concerning companies that adopt the bring your

own device (BYOD) policy, thus allowing employees to use their devices to

do job-related tasks. In August 2012, an attack using the Citadel trojan (a

ZeuS variant) targeted the employees of a major international airport to steal

credentials for the internal VPN, gaining access to airport applications [14].

Coupling a PC-based version of the malware with one that runs on the mobile

is a much more invasive way to steal valid OTPs with respect to the real-time

notification feature ZeuS was already equipped with. This last module, an

add-on costing $500 [25] in the underground market, sent an instant message

through Jabber, so that the botmaster was notified about ongoing operations

by the user on a monitored website.

2.2.2.4 The Automatic Transfer System

In 2012 a new threat made the scene: it is the automatic transfer system (ATS).

The ATS consists in de facto WebInjects, but they’re far more sophisticated

than the previous ones. It relies on JavaScript code written to perform two

operations: one is the automatic transfer of money from the user’s account to

the attacker’s one, the other is the automatic data modification, to deceive the

user and make him/her believe that the amount of money has been transferred

to the specified recipient. The truth is that the ATS changed both the amount

and the recipient on-the-fly without the user even realized it. In some cases,

30 CHAPTER 2. BACKGROUND AND STATE OF THE ART

the ATS takes advantage of a lenient discretionary control of the banks when

authorizing and confirming operations.

2.2.3 Components

The ZeuS toolkit is delivered with a user manual that explains how to setup

the different components, giving a description of the available features and of

the options that can be enabled.

The toolkit includes the following components:

The builder is written in C++ and it is the program that botmasters use

to configure the bot and create the executable. The encryption key and

other static configuration parameters listed below are hardcoded into

the bot executable, so each customer that uses the builder obtains an

executable that is different from that of other customers [26]. The builder

also encrypts the configuration file that is uploaded to the C&C server.

Compiling a custom bot is as simple as clicking on a button.

The configuration file is divided in two parts:

• the StaticConfig part of the file contains the information needed to

communicate with the server and directives about what to do dur-

ing the installation. This information will be embedded into the

executable at compilation time. Static data include: a 4-character

name to identify the botnet, the time intervals to communicate with

the server, the URL from where to download the configuration file,

the key to encrypt and decrypt the configuration file and the traffic

to and from the server, and instructions about removing the cer-

tificates from the victim’s storage and disabling the TCP server to

prevent warnings from the Windows Firewall. All these data are

embedded in the bot when it is compiled;

• the DynamicConfig part of the file stores information that is saved in

a separate file, which will be encrypted with the chosen key and pro-

vided to the bot when it contacts the C&C. Dynamic data include:

the URL where an up-to-date version of the binary is, the URL to

send collected data to, the location on disk of the webinjects.txt

file, used to retrieve WebInjects information to embed in the file

when it is created and encrypted, alternate URLs for updated con-

figuration files, the list of websites to monitor with, optionally, regu-

lar expressions to identify session parameters to steal data from, fake

web pages to redirect requests to when the botmaster enables this

2.2. THE ZEUS CRIMEWARE TOOLKIT 31

option, DNS servers URLs to hijack requests, a list of URLs from

which to steal transaction authentication numbers (TAN), which are

a form of OTP used by banks to authorize financial transactions.

The webinjects.txt file stores all the WebInjects that have been defined by

the attacker, as explained in Section 2.1.1. The definition of a single

WebInject rule is very simple:

• set url specifies the URL the WebInject refers to. Special char-

acters (called “masks”) and additional parameters can be used to

specify under which conditions the injection should be enabled;

• data before specifies the hooking point inside the page, i.e. the

HTML code after which the injection is located. The same special

characters used to set the URL can be used here as well, so to create

regular expressions that increase chances for a successful injection;

• data inject is the actual code to inject;

• data after is another way to specify a hooking point;

• data end is used to close each code part.

Listing 2.1 shows how a WebInject is defined in the webinjects.txt file.

set_url https ://online -offshore.lloydstsb.com/* GP

data_before

To log on , enter your User ID

data_end

data_inject

, Password and Memorable Word.

data_end

data_after

</p>

data_end

data_before

name=" Password "*</tr>

data_end

data_inject

<tr align="left">

<td bgcolor ="# ceefe7" align="left" valign =" middle">

<div class=" entries3">

Memorable Word

</div >

</td >

<td bgcolor ="# ceefe7"><img src="img/space.gif" width ="3"

height ="30" border ="0"></td>

<td bgcolor ="# ceefe7">

<div class=" entries">

32 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 2.6: A screenshot of the control panel of ZeuS (source: abuse.ch)

<input type=" password" name=" MemorableWord" size ="15"

maxlength ="15">

</div >

</td >

<td valign ="top" bgcolor = "# ceefe7"><img src="img/space.

gif" width ="1" height ="40" border ="0"></td>

</tr >

data_end

data_after

data_end

Listing 2.1: Example of the definition of a WebInject

The C&C control panel tool is a management backend (written in PHP)

that is installed on the C&C server. Through this interface, bot herders

communicate with the installed bots, send commands and receive stolen

data, which is stored into a MySQL database. The C&C control panel

provides:

• Statistics about the botnet, such as connected bots, their OS version

and service packs installed.

• A way to interact with the bots, by searching for infected machines

that meet some given parameters (e.g., country, online status, host

2.2. THE ZEUS CRIMEWARE TOOLKIT 33

name) and by creating scripts to launch on the specified machines.

Scripts can be easily written using the commands explained in the

toolkit user manual and also in the control panel. They allow to

perform any functionality a bot master may think of: rebooting or

shutting down the remote OS, stealing files, updating the bot and its

configuration file, enabling or disabling some of its features. From

the server it is also possible to enable or disable BackConnect, a

feature that allows to use an infected machine as a SOCKS proxy,

circumventing firewalls and NAT restrictions.

• Reports about the activity that bots themselves sent to the server at

defined time intervals, including login credentials and screenshots.

• Information about the server system status.

2.2.4 Infection

The installation routine performed during the injection is rather complex:

1. the malware executable creates a directory and copies itself in there.

Since ZeuS version 2, both the directory and file names are randomly

generated;

2. by inserting registry keys, ZeuS ensures that winlogon.exe spawns it at

the next startup and lowers the security settings of Internet Explorer;

3. it injects malicious code into other processes (e.g., winlogon.exe), cre-

ating a thread to execute its custom code, so that the main process can

terminate but the malicious code still runs, hooking APIs in the target

processes. Then it creates new folders to store the dynamic configuration

file downloaded from the server and the stolen information, which will be

sent to the server. Since ZeuS version 2, the configuration file is stored

in the Windows registry [26];

4. a new code injection in svchost.exe is performed: this part of code is

responsible for network communications and Internet-related APIs hook-

ing (see Section 2.3). The communication between injected processes is

made possible through mutexes and pipes;

5. it harvests credentials (e.g., certificates, cookies, FTP, Windows Mail,

Outlook Express;

6. it downloads the configuration file from the server and processes it;

34 CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.3 Hooking mechanism

WebInjects are currently implemented by hooking into the Windows API func-

tions, a technique also adopted by so-called “userland rootkits”. To perform

WebInjects, malware executables inject control code into the web browser pro-

cess when it starts (see Section 2.2.4); ZeuS and SpyEye inject malicious code

into all the other user processes as well. They hook the API functions in

system libraries, in order to intercept APIs calls to filesystem, registry and

process control functions [6]. In the case of web browsers processes, ZeuS

hooks into the ntdll.dll and Wininet.dll libraries, which define functions

(e.g. HttpSendRequest, InternetReadFile, in the second case) that are used

by browsers to handle web traffic, as summarized in Figure 2.7: this allows to

process all the network data, including HTML pages, to and from the browser.

We already mentioned in Chapter 1 that hooking network APIs gives access to

the information exchanged by the browser before it is encrypted outbound, or

after it has already been deciphered inbound.

Trojans adopt different types of hooks:

Inline hooks overwrite the first five bytes of an API function code, redirecting

the execution flow to custom code.

Import address table hooks replace the address associated to API func-

tions in the import address table, which is used by processes to retrieve

the location of dynamically loaded functions. This table is filled by the

Windows loader when an executable is loaded into memory.

Export address table hooks replace the address associated to API func-

tions in the export address table. Each module has its own export address

table, which is used to locate the functions that the module dynamically

loaded.

Other hooking techniques are used to perform the aforementioned hooks

in child processes spawned by infected parents.

A list of typical API hooks is given in Table 2.1.

2.4 Banking trojan detection: state of the art

From the malware analysis point of view, the threat landscape described in

Section 2.1 translates into an increased volume of distinct samples. In fact, not

only the malware binaries can be packed and obfuscated with a wide array of

options (e.g., packing method, encryption key), also the custom configuration

2.4. BANKING TROJAN DETECTION: STATE OF THE ART 35

Library API

ntdll.dll NtCreateThread (pre Vista)
ntdll.dll NtCreateUserProcess (Vista and later)
ntdll.dll LdrLoadDll
kernel32.dll GetFileAttributesExW
wininet.dll HttpSendRequest
wininet.dll HttpSendRequestEx
wininet.dll InternetCloseHandle
wininet.dll InternetReadFile
wininet.dll InternetReadFileEx
wininet.dll InternetQueryDataAvailable
wininet.dll HttpQueryInfo
ws2 32.dll closesocket
ws2 32.dll send
ws2 32.dll WSASend
user32.dll GetCursorPos
user32.dll OpenInputDesktop
user32.dll SwitchDesktop
user32.dll DefWindowProc
user32.dll DefDlgProc
user32.dll DefFrameProc
user32.dll DefMDIChildProc
user32.dll CallWindowProc
user32.dll RegisterClass
user32.dll RegisterClassEx
user32.dll BeginPaint
user32.dll EndPaint
user32.dll GetDCEx
user32.dll GetDC
user32.dll GetWindowDC
user32.dll ReleaseDC
user32.dll GetUpdateRect
user32.dll GetUpdateRgn
user32.dll GetMessagePos
user32.dll SetCursorPos
user32.dll SetCapture
user32.dll ReleaseCapture
user32.dll GetCapture
user32.dll GetMessage
user32.dll PeekMessage
user32.dll TranslateMessage
user32.dll GetClipboardData
crypt32.dll PFXImportCertStore
nspr4.dll PR OpenTCPSocket
nspr4.dll PR Close
nspr4.dll PR Read
nspr4.dll PR Write

Table 2.1: Typical hooked APIs divided by library name

36 CHAPTER 2. BACKGROUND AND STATE OF THE ART

files are encrypted, and embedded in the final executable. This characteristic,

combined with the evolving nature of modern trojans such as ZeuS, makes it

very difficult to create automatic mechanisms that, for instance, extract the

configuration files from a sample or, more simply, detect the activity of an

infected machine.

2.4.1 Reverse engineering

Both the static and dynamic configuration files are encrypted, and thus can-

not be extracted trivially or automatically—beside, of course, through time-

consuming reverse engineering efforts, or in the lucky case that the malware

itself exposes some vulnerabilities (e.g., SQL injection, weak cryptography).

An example of such approaches was presented in Riccardi et al. [22], where the

authors leverage a vulnerability of the encryption routines to create a chosen-

plaintext attack against the ciphered stream that flows between ZeuS (1.x and

2.x) and its C&C. The chosen plaintext is a combination of the information

from the analysis of the malware toolkit and the data collected while running a

sample in a controlled environment (e.g. cookies, user credentials, or computer

hostname). Other approaches on how to decrypt ZeuS’ configuration files have

been proposed, like that by Shevchenko [23], where the encryption mechanism

introduced in ZeuS version 2 is explained and a tool to perform the decryption

routine is made available.

With particular attention to ZeuS and SpyEye, many technical analysis

can be found. Among these, Sood et al. [24] give a detailed overview of the

components of SpyEye, including its development kit, and describe how SpyEye

integrates in the whole criminal ecosystem. Binsalleeh et al. [5] performed a

similar study on the ZeuS crimeware toolkit.

On the one hand, such approaches that revolve around an initial, in-depth

reverse engineering of a malware binary are useful to identify vulnerabilities

or patterns of activities that can be exploited as detection criteria. On the

other hand, the generality of these approaches is likely to decrease quickly

from one release to another and to drop significantly between different families

of malware.

2.4.2 Classic approaches of anti-malware tools

Classic approaches adopted by anti-malware tools, such as the generation of

static binary signatures are easily evaded by packing and obfuscation, as shown

by Buescher et al. [6, Section 5.2]. Additionally, they are also not very effec-

tive on unknown variants or configuration files and this is particularly true

2.4. BANKING TROJAN DETECTION: STATE OF THE ART 37

in the case of malware compiled with dedicated toolkits: Wyke [26] explains

that ZeuS customers use to pack the executable with their own packing tools

in addition to that ZeuS already provides, populating the scene with malware

packed through different packing techniques. Dynamic, behavioral signatures

seem a more promising research direction, although they present some draw-

backs when the malware adopts anti-analysis techniques. For example, a sam-

ple may refuse to expose its true malicious behavior when it detects the action

of well-known debugging tools or analysis environments. These techniques aim

at slowing down, or in the worst case making it impossible, to automate the

extraction of signatures to recognize the typical behavior of a malware. There

are two research lines that partially mitigate this problem: one consists in

finding efficient ways for running the malware on bare metal (see the work

by Kirat et al. [13]), thus reducing the chances that the malware can realize

that it is being analyzed; another line leverages hybrid static-dynamic anal-

ysis techniques to automatically derive polymorphic-resilient static signatures

of dynamic behaviors (see the work by Comparetti et al. [7]).

Another recent work on malware analysis, by Lindorfer et al. [17], is par-

ticularly related to ours, because, as part of their evaluation, the authors ana-

lyze the ZeuS and GenericTrojan families. Their system, which monitors the

dynamic behavior and the respective static code for changes, detected an in-

teresting evolution in these two and other families. This finding supports the

importance of forward-looking detection methods such as Zarathustra, which

are less dependent on the current or past characteristics of the targeted mal-

ware.

2.4.3 WebInjects detection

The detection of the WebInject functionality has been tackled by Buescher et al.

[6] to identify information stealers. Their key intuition is that WebInjects are

currently implemented by hooking into the Windows API functions. The au-

thors analyzed all the possible hooking mechanisms that could be implemented

in the Windows OS and, from them, they derived behavioral fingerprints to de-

tect information stealers that work in userspace. Basically, they look for extra

code sections in the basic Windows libraries, by comparing the version stored

on disk to the version loaded in the process memory. Extra code sections are

a sign of code injection due to hooking.

The weakness of this and other previous work based on an initial reverse-

engineering of the malware is that the effectiveness of detection is dependent

on the version of the trojan, as future versions might change which functions

38 CHAPTER 2. BACKGROUND AND STATE OF THE ART

<html>
...
...

</html>

Browser

Network APIs

<html>
...

</html>

<input />

<input />
WebInject

<input />...

...

U
se

r s
pa

ce
K

er
ne

l s
pa

ce

90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
8bff [MOV EDI, EDI] (FUNCTION ENTRY)
55 [PUSH EBP]
8bec [MOV EBP, ESP]

INFECTED CLIENT SERVER

O
rig

in
al

 p
ag

e

HTTPS

Hooking

Figure 2.7: The HTML source code produced by the banking website transits
encrypted over the Internet. When it reaches the OS and thus the Wininet.dll
library, the source code is decrypted and intercepted. ZeuS modifies it on the
fly and sends it through the same pipeline, up to the browser rendering engine.

are hooked. Additionally, the whole approach is OS and browser dependent.

Browsers other than Internet Explorer (e.g. Firefox, which, as described in [3],

is already targeted by current versions of this class of malware) use different

libraries, and OSs other than Windows have different userland APIs. Indeed,

as highlighted in the latest ENISA Threat Landscape [19], the popularity of

cross-platform malware increased in 2011–2012 (the most notable example is

the Flashback botnet, which was reported that contained more than 600,000

Apple Macs).

The approach proposed by Heiderich et al. [11] protects the browser from

malicious websites that perform dynamic changes of the DOM. Although not

designed specifically to target information stealers, it could be applied to recog-

nize WebInjects. The system instruments the ECMA script layer by proxying

its functions so to profile their execution and recognize malicious patterns.

However, the authors mention that their method can detect dynamic changes

of the DOM, whereas WebInjects work at the source-code level.

2.5 Challenges and goals

We showed in Section 2.4 the limitations that current detection techniques are

subject to: when common approaches loose effectiveness, new solutions need

to be found. The goal of our work is to propose a novel approach that relies

2.5. CHALLENGES AND GOALS 39

on a peculiar feature of some malware families, called WebInject. Working at

a high level, i.e., at the top of the browser, allows to abstract our solution from

deep system-related aspects, but, at the same time, we don’t take advantage

of lower level information that possibly reveals incontrovertible evidence of the

presence of malware. Moreover, comparing DOMs to extract differences is a

conceptually intuitive approach, but, as we explain in Section 3.1, it deals with

highly variable documents, making its implementation much harder than it

theoretically looks.

It is important to remark that WebInjects detection at the browser-level is

not a replacement for antiviruses, but it can help in the detection of trojans

when antiviruses fail or when the system is not properly protected.

Chapter 3

Zarathustra

This chapter is devoted to the description of the system. We will follow a

top-down approach divided into three sections, adding technical details as we

proceed in the dissertation.

Section 3.1 introduces the properties Zarathustra, mentioning some of the

challenges in the comparison of website pages.

Section 3.2 explains how the system works in general terms. It introduces

the three phases that characterize the workflow and that will guide the descrip-

tion also in the following sections.

Section 3.3 introduces the components that intervene in the workflow, ex-

plaining their function at each step of the computation.

Section 3.4 gives technical details about how the above-mentioned compo-

nents have been implemented.

Last, Section 3.5 suggests possible scenarios to detect WebInjects using the

signatures extracted with Zarathustra.

3.1 Proposed approach

Zarathustra recognizes the behavior of any WebInject-based information stealer

by looking for evidence of WebInjects in the targeted websites (e.g. an online

banking website). Zarathustra does not leverage any system-specific compo-

nent or vulnerability to observe this malware behavior; consequently, it is flex-

ible and very general. From hereinafter we use the term “WebInject” in its

most general interpretation to refer to any mechanism used by malware to

inject arbitrary content in the (decrypted) data that transits between the net-

work layer and the rendering engine of a browser (see Figure 2.7). Therefore,

our approach is by no means limited to SpyeEye and ZeuS (although we use

various ZeuS samples as a use case). It applies to (possibly unknown) software

41

42 CHAPTER 3. ZARATHUSTRA

that may implement an in-the-browser injection mechanism.

To remove the dependence on a specific (version of the) OS, browser, and

malware, we lift the detection of WebInjects at a higher level in userland.

In particular, we position the observation point of Zarathustra on top of the

process space of the browser. Specifically, by generalizing the sample WebInject

in Figure 2.2, we observe that the source code of a website rendered on an

infected client differs from the source code of the very same page rendered on a

clean machine. Performing the comparison between these two different versions

allows to extract their differences, hence obtaining the WebInjects in the page

on the infected client.

Although this method is in principle quite simple when applied at a small

scale (e.g. by manual analysis of a handful of target websites and samples, as

shown in an example by Ormerod [21]), streamlining the generation of these

fingerprints for detecting information stealers in the large scale presents two

main issues:

• websites, by their own nature, vary legitimately. This can be due to

several factors, including server-side caching, web-replication mechanisms

adopted by Internet service providers or content-delivery networks and,

mainly, upgrades of the (banking) web application. As noted by Maggi

et al. [18], these changes are very frequent in real-world web applications.

The unfortunate side effect is that protection tools based on anomaly

models yield false detections, because they confuse legitimate changes

with tampered HTTP interactions.

• The rendering of a legitimate web page can vary depending on the inclu-

sion of external resources performed on the client side (e.g. mashups),

which is a common practice in websites nowadays (e.g. advertising, asyn-

chronous content).

Both these issues yield false positives (i.e., differences); we address them in

four ways as detailed in Sections 3.3.1.1 and 3.3.3.1.

3.2 System overview

The way Zarathustra works is this: it renders a (banking) website in an instru-

mented browser running on a clean machine; it repeats the same procedure on

an infected machine; finally, it extracts and generalizes the differences, which

we call “fingerprints”.

Zarathustra performs these operations in three phases:

3.2. SYSTEM OVERVIEW 43

The DOM collection phase is when Zarathustra visits the webpage on both

the clean and infected machines and store their DOMs;

The DOM comparison phase consists in comparing the DOMs obtained

from clean machines with those from infected machines, extracting the

differences;

The fingerprint generation phase is the last step. All the differences pre-

viously extracted are definitively filtered and processed here.

We will now walk through these three different phases, providing a high-

level explanation of what Zarathustra does in each of them.

3.2.1 Phase 1: DOM collection

In this phase, Zarathustra processes a list of URLs to analyze and visits each

of them on several infected VMs, specified by the user when the system starts.

The same list of URLs is analyzed also on a clean VM, which will be used

as the reference for the comparison, and on a number of other clean VMs: as

explained in Section 3.4.3.2, the reason why we also run different clean VMs

is to allow the elimination of legitimate differences that occur between two or

more clean VMs.

When this phase terminates, we have one folder for each VM that executed

and, inside it, one file for each URL that was visited and successfully dumped

by the VM. One file stores the DOM of a single page.

3.2.2 Phase 2: DOM comparison

For each URL correctly processed in phase 1, the comparison stage outputs

a list of differences detected when comparing the DOM from the clean VM

with the DOM from the infected VM. From this list we perform the first filter-

ing operation, discarding those differences we are not interested into. In this

phase, DOMs from clean VMs are compared as well and the resulting legitimate

differences are provided as a separate output. The comparison of the DOMs

dumped from an infected machine begins when the machine itself terminates

the DOM collection phase: this means that while some of the VMs are busy

collecting DOMs, some others may be already at the comparison phase, hence

parallelizing the workflow for separate machines.

44 CHAPTER 3. ZARATHUSTRA

3.2.3 Phase 3: Fingerprint generation

This last stage of the workflow is when the differences extracted from the

previous phase are processed and filtered to keep only those that are ascribable

to ZeuS.

This phase is extremely important to identify and discard legitimate dif-

ferences that would otherwise be labeled as actual fingerprints and that would

therefore increase the number of false positives.

3.3 System details

This section gives a more detailed explanation of the system: we introduce the

components that take part to the different phases; their implementation will

be discussed in Section 3.4. Figure 3.1 shows which operations are performed

in the different phases. Figure 3.2 gives a graphical representation of what is

explained here, showing which components contribute to the different stages of

the execution.

3.3.1 Phase 1: DOM collection

When the system starts, a specific folder is checked for ZeuS executables and

all the files found are added to a queue. This is done by the FolderScanner

component. Executables can be put in the folder by hand or downloaded by a

crawler that can be optionally started. In the meanwhile, a number of threads

in charge for handling the VM, called VMThreads, waits for a queue to be filled

with the samples found: as soon as one is added, a free thread pops it and

begins to process it. In this way each sample is dispatched to one thread.

A VMThread starts the component that runs on the VM and that interacts

with the browser to obtain and store the DOM dumps. This component is

the dumper.jar. When a thread is done with processing, we obtain a folder

with the serialized DOM representations of the URLs that have been analyzed.

Before the VMThread takes a new sample from the queue, it pushes the just-

processed sample into a new queue of completed tasks, hence signaling that

the sample can undergo the next analysis step.

3.3.1.1 Heuristics applications in the DOM collection phase

The greatest part of legitimate differences between two versions of the same

page, rendered either in different time instants or in different VMs, are due

to client and server-side code that dynamically modifies the static structure of

the page. To deal with this, we introduced two heuristics:

3.3. SYSTEM DETAILS 45

Phase 3
(Fingerprint generation)

Phase 1
(DOM collection)

Phase 2
(DOM comparison)

Clean VM 1

VM images

Infected VM

Clean VM 2

Clean VM n

. . .

DOM
injection

DOMn

DOM2

DOM1

DOM

Heuristics

D
O

M
 V

AR
IA

N
TS

M
AL

IC
IO

U
S

D
O

M

h
tt

p
:/

/w
w

w
.b

a
n

ki
n

g
.s

it
e

Trojan
sample

Figure 3.1: Server side architecture of Zarathustra, which is in charge of analyz-
ing a given URL against a given trojan. The detection phase is not visualized:
We detail it in Section 3.5.

Heuristic 1: Disabling Client-side Code. Our system can work in “no-

script mode” by disabling the JavaScript interpreter. This heuristic helps at

reducing the false positive differences due to client-side code manipulations

(e.g. advertisement networks). At a first glance, this heuristic may lead to

excluding malicious DOM modifications caused by the malware. However, our

attacker model considers the WebInjects, which always result in at least one

static code injection. As we discuss in Section 5.1, even in the corner case of a

malware that injects code inside an existing <script /> with client-side code

that performs the actual DOM manipulation, Zarathustra still detects the text

injection in the first place.

Heuristic 2: Caching Server Responses. From our experiments, we ob-

serve that the DOM Comparison phase needs at least n = 30 clean VMs

in order to correctly distinguish between legitimate and malicious differences.

46 CHAPTER 3. ZARATHUSTRA

However, visiting or rendering the same site n times may not be feasible (e.g.

banning, hardware restrictions). By caching the server responses—using the

URL as the caching key—we reduce the false positive differences due to dy-

namic code on the server side, which may insert, for instance, a unique identifier

in each response (e.g. to avoid cross-site request forgery or caching).

Most of the work to improve the performances of the system was done

disabling these heuristics, as we wanted to alter real-case conditions as little as

possible.

Results in Section 4, however, show that the best reliability is achieved

when these heuristics are enabled.

3.3.2 Phase 2: DOM comparison

The DOM Comparison phase is where the “malicious DOM”, and the “clean”

DOMi ∈ [1, n] are compared and the resulting differences processed at a first

stage. It is at this point that the comparer launcher steps in: a variable number

of ComparerThreads waits for new samples to be added to the queue of com-

pleted tasks; each thread pops one element from the queue, reads the name of

the associated sample, looks for the folder containing its dumps and starts the

comparer.jar. This component performs the comparison between the DOMs

from the infected VM and the DOMs from one or more clean virtual machines,

performing also a first filtering step.

3.3.3 Phase 3: Fingerprint generation

The fingerprint generation part is entirely performed by the comparer.jar.

These processing and filtering operations are carried out in two consecutive

steps, i.e. removal of benign differences, that occur also when comparing clean

DOMs, and application of heuristics derived from manual inspection of the

results. The output we obtain at the end of this path is a set of JSON files

divided by sample. A JSON file stores information about every single difference

that has been detected and not discarded as legit. Given that a file is created

only for those URLs on which non legitimate differences were found, we may

have empty sets for samples that do not supposedly perform WebInjects. When

also the fingerprint generation is done and the comparer.jar terminates, the

ComparerThread is freed and goes back to waiting for new elements to fill the

queue.

3.4. SYSTEM IMPLEMENTATION 47

3.3.3.1 Heuristics application in the fingerprint generation phase

We already discussed the use of heuristics during the DOM collection part

in Section 3.3.1.1. In the fingerprint generation part we considered useful to

adopt heuristics as well. We managed to identify false differences with common

properties that often occurred in the output and we arranged the following

heuristics (to refer to specific heuristics, the numbering resumes from the list

of those in Section 3.3.1.1):

Heuristic 3: Filtering Special Attributes. Several attributes can be safely

ignored, because they would not lead to new DOM nodes. We assume that if

a malware attempts to forcefully inject a DOM node (e.g. <input />) into an

attribute value, this would lead to parsing errors, and thus to a useless DOM

node. Specifically, we ignore value, style, class, width, height, sizset,

sizcache, and alt. The style atribute may be used maliciously, to inject

JavaScript code. However, Heuristic 1 prevents this case.

Heuristic 4: Filtering Text Nodes. We ignore all the text nodes, unless

they are children of <script /> tags. Text nodes are harmless, because they

can only contain pure text.

3.4 System implementation

This section gives a technical explanation about how the components intro-

duced in Section 3.3 are implemented. We will do so after a brief overview of

the libraries we used to develop our system.

3.4.1 Libraries and tools

The languages we used to implement Zarathustra are two: Python and Java.

We used Python to automate and optimize the workflow. The main goal

of this part is to take care of everything that deals with the virtualized en-

vironment, that is creation, snapshotting, starting and powering off the VMs,

files transfer from and to the host operating system, programs execution on the

VM. This part was implemented on top of the virtualization software package

Oracle VirtualBox.

Java was used to implement the two JARs we mentioned in Section 3.3, i.e.

the dumper.jar and the comparer.jar. Among the Java libraries Zarathustra

uses, there are two that are particularly important: WebDriver and XMLUnit.

WebDriver is part of a suite of tools by Selenium. We employ it to start

the browser, load an URL and get the source code as processed by the browser

48 CHAPTER 3. ZARATHUSTRA

ComparerThreads

FolderScanner

bots_repo

samples_queue

completed_tasks_queue

shared_folders
with DOM dumps

every 60'

VMThreads

Proxy

Internet

dumper.jar

comparer.jar

JSON differences files

Phase 1
(DOM collection)

Phase 2
(DOM comparison)

Phase 3
(Fingerprint generation)

Figure 3.2: Graphical representation of the complete workflow of the system.
Components are introduced in Section 3.3

3.4. SYSTEM IMPLEMENTATION 49

engine. Being able to read the HTML code as processed by the browser is

an important feature, in particular if we’re interested in modifications applied

when JavaScript is enabled: the HTML page handled by the browser might be

different from the one sent by the server because of client-side code that runs

during the page rendering. WebDriver can be used in two different ways: one

by interacting with the browser locally, without any server on the guest VM. In

this case, we only need to compile a single JAR: when started, it takes care of

performing all the needed operations to interact with the browser and fetch the

information. The other way is to run a server on the VM (Selenium Server or

the Internet Explorer Driver Server) and to communicate with it remotely. This

second solution requires a control point (the remote part), from which com-

mands are sent, and a server running on the VM. We first adopted the second

solution, but we soon had to abandon it due to several technical problems we

experienced. In particular, it always happened that, after a variable range of

time, it was no more possible to communicate with the server. Possible fixes

required heavy modifications of WebDriver’s code. We then switched to the

first solution, moving the control part completely to the automation system, as

explained in Section 3.4.2.4. We refer to the WebDriver component that is used

to handle the interaction with the browser as driver, as we call it in source

code. We wrapped it in a class we called LocalWebdriverWorker to perform

additional control operations and to merge methods invocations for repetitive

tasks into a single class method. We refer to the component of this class as

worker.

XMLUnit is a project aimed at supporting JUnit and NUnit testing for

XML. It relies on a set of classes that we use to perform diffing. As we will

later use XMLUnit’s terminology, some basic notions are needed to understand

the topic. When comparing two nodes, we call control node the one we use as

the reference i.e. the node we have in the first document and that we expect to

find also in the second one; we call test node the second term of comparison

that is the actual node we find in the second document. Similarly, we call

control DOM the model we use as the reference, test DOM the other one.

As control DOM, we use the one dumped from a clean VM, while test DOMs

are the ones obtained from infected VMs. It is important to stick to this

arbitrary assignment of control and test node/DOM to define the direction

of the difference: for instance, if a field on the test node is missing in the

control node that may be a WebInject. If it’s the other way round that is a

removed node. The classes that are most important to us are the Diff class

and one of its subclasses, DetailedDiff. The first one walks through the

control DOM and stops as soon as it finds a difference, returning a boolean

50 CHAPTER 3. ZARATHUSTRA

value when queried about DOMs structural equality; when one difference is

found, no more processing is required to state whether two DOMs are equal.

Instances of the second class, on the other hand, go on with the comparison

even after the first difference has been found, collecting all the differences in the

remaining part of the document. These differences are stored in a Java List

of Difference objects, containing all the information to uniquely identify a

difference introduced by ZeuS in the HTML page.

We left the other settings of the library unchanged. We only tried to modify

the ElementQualifier component, but we noticed it didn’t bring any benefit

to the correctness of the detection and we rolled back to the default one. The

ElementQualifier performs a preliminary verification to determine whether it

is reasonable to compare two elements. The meaning of “reasonable” depends

on one’s needs: for example, if we don’t care about nodes position as far as

they have the same name and they are at the same depth, we can set it in

the ElementQualifier. Our current qualifier allows the comparison between

nodes in different positions at the same level, even if in a different order and

with different attributes.

3.4.2 Phase 1: DOM collection

The entry part of the automation framework is in charge for initializing the

environment, spawning the different threads and waiting for the completion of

the operations before terminating the execution. In order to achieve a correct

synchronization among threads, it is not required to have any fancy centralized

control mechanism; as a matter of fact, Python’s Queue objects (and variants)

are enough to guarantee a reliable synchronization.

3.4.2.1 The proxy

This component does not participate to the automation process but it can be

optionally enabled to carry out tests. We wrote and deployed a simple proxy to

test one of the heuristics described in Section 3.3.1.1. In particular, we wanted

to see if removing a possible source of differences, that is pages dynamically

generated by the server, we were able to obtain a significant reduction also

in detected differences. Results obtained from this test are shown in Chap-

ter 4. The proxy tool was developed using the libmproxy library1. The main

requirements we needed in our proxy were:

• a caching mechanism to give all clients the same page content;

1https://github.com/cortesi/mitmproxy by Aldo Cortesi

3.4. SYSTEM IMPLEMENTATION 51

• the SSL support to decrypt incoming packets, store their content and en-

crypt them again outbound. Nowadays all bank websites use the HTTPS

protocol to communicate with the clients and this capability is essential.

The libmproxy library allows to customize the management of the caching mech-

anism at a very low level, but at the same time it’s really handy and easy to use.

We basically intercept every response from the server and index it by URL: if

the key/URL is not present yet, we store the content in a Python dictionary

with the request’s URL as the key; otherwise, we replace in the response the

content we already have. We also store the content to file, so that we can reuse

the cache for further sessions in the future. By analyzing requests from clients

with JavaScript enabled, we observed that many of them contained session

numbers that prevented cached content to be fetched, as no matching values

were found. We added to our proxy some capabilities to flatten parameters dif-

ferences in HTTP(S) requests. To do this, we analyzed logged requests to tune

detection heuristics and to write basic methods to implement them. We don’t

need these methods to be absolutely precise, as their only goal is to mitigate

parameters variability to provide content that is as similar as possible for all

clients. The code snippet 3.1 shows how this feature was implemented.

def analyze_value(self , value):

""" Tries to check if a parameter may be related to a session

using heuristics and returns True if it is

"""

If the parameter ’s value is very long , we assume it’s a

session token

if len(value) > 40:

return True

If the value has 5 numbers (not necessarily in a row),

consider it as a session token

k = 0

for i in range (0, len(value)):

if value[i] >= ’0’ and value[i] <= ’9’:

k += 1

if k > 4:

return True

return False

def adjust_url_parameters(self , url):

""" Takes an URL and strips all parameters that may be session -

related

"""

52 CHAPTER 3. ZARATHUSTRA

Get parameters

parameters = self.get_parameters(url)

If parameters are a lot , we assume they define a session

if len(parameters) > 9:

for parameter in parameters:

try:

name_value = parameter.split(’=’)

if len(name_value) == 1:

url = url.replace(name_value [0], ’’)

else:

url = url.replace(name_value [1], ’’)

except IndexError:

pass

If parameters are not too many , analyze each parameter ’s

value

else:

Get values

for parameter in parameters:

try:

name_value = parameter.split(’=’)

if len(name_value) == 1:

is_session_token = self.analyze_value(

name_value [0])

else:

is_session_token = self.analyze_value(

name_value [1])

if is_session_token:

url = url.replace(parameter , ’’)

except IndexError:

pass

Listing 3.1: Analysis of requests parameters in the proxy

In the same way content of responses is stored into a dictionary, cookies

can be saved and retrieved for a given host. In our implementation they’re

referenced by host IP and port written in the request.

After starting the server, the VMs must be configured to deal with the

proxy. Modifications affect the Local Area Network settings, where the IP of

the server and the port it is listening on must be set accordingly. It is also

necessary to add the proxy’s certificate in the list of Trusted Root Certification

Authorities. This certificate is automatically generated by the library when

the proxy is started the first time and it will be used by the proxy itself to sign

the certificates it generates on the fly for each website that requires encrypted

3.4. SYSTEM IMPLEMENTATION 53

communication. The proxy server keeps track of the requests it receives and

provides a log as output, as shown in Listing 3.2.

The proxy was used for testing purposes and it is not supposed to be a

component of the final system to deploy, at least not at its current version.

Despite it is able to handle pipelined requests from a limited number of VMs,

it is not optimized to support concurrent communication and therefore it does

not scale well. Applying modifications to the underlying library can improve

performances, but, as for the crawler, this does not affect our system for what

concerns the precision of WebInjects detection.

[DEBUG] 2013 -02 -10 22:55:25.069372 , https :// bank.barclays.co.uk/

img/backgrounds/modal -bg.png

[DEBUG] 2013 -02 -10 22:55:25.503200 , http :// franceskellyblooddrive.

org/lubstar/gate.php

[DEBUG] 2013 -02 -10 22:55:25.551036 , https ://www.halifax -online.co.

uk/_mem_bin/

[DEBUG] 2013 -02 -10 22:55:26.498754 , https :// secure.assist.ru/

members

[DEBUG] 2013 -02 -10 22:55:26.542730 , https :// retail.santander.co.uk

/LOGSUK_NS_ENS/BtoChannelDriver.ssobto?dse_operationName=LOGON

[DEBUG] 2013 -02 -10 22:55:29.992772 , http :// www.google.com/webhp

[DEBUG] 2013 -02 -10 22:55:30.049845 , http :// www.google.it/webhp

[DEBUG] 2013 -02 -10 22:55:30.368700 , https ://www.halifax -online.co.

uk/personal/logon/login.jsp

[DEBUG] 2013 -02 -10 22:55:30.664897 , https ://www.halifax -online.co.

uk/personal/unauth/assets/HalifaxRetail/style/global1 -

min121221.css

[DEBUG] 2013 -02 -10 22:55:30.665457 , https ://www.halifax -online.co.

uk/personal/unauth/assets/HalifaxRetail/style/global2 -

min121221.css

Listing 3.2: Proxy log example

3.4.2.2 The crawler

As main source for ZeuS samples we used ZeusTracker2, a service offered by the

Swiss security blog Abuse.ch. This service makes a lot of information available

to users, from statistics about the malware to ready-to-use lists e.g. for IPs

blacklisting. The most useful data for our purpose are ZeuS’ samples that can

be freely downloaded. All these samples are found in the wild and uploaded

as-is to ZeusTracker’s database. An essential requirement to have WebInjects

properly working on the infected VM is that the C&C server the bot contacts

2https://zeustracker.abuse.ch/

54 CHAPTER 3. ZARATHUSTRA

during installation is running and listening on the IP address that is hardcoded

into the bot binary. We explained in Section 2.2.3 how the configuration file

with the information about fields to inject is retrieved from a server, whose IP

or URL is specified when the bot is compiled. The bot itself is not equipped

with information about WebInjects by default and therefore failing to retrieve

the configuration file leads to a complete ineffectiveness of the web injection

functionality. ZeusTracker specifies whether the C&C server and the configu-

ration file of a bot in the database are still reachable or not. If they’re not,

installing the bot may be totally useless. It is necessary to act quickly: as soon

as the C&C server appears to be online, the bot has to be downloaded and

installed straightaway.

Chances to successfully retrieve the configuration file increase when a sam-

ple has just been discovered and stored in the website’s database. For this

reason we wrote and deployed a crawler that checks for new uploaded samples

every 15 minutes, a reasonable time to prevent banning due to a suspicious

number of requests and also to have good probabilities of having the C&C

server still online. If more than one sample has been added to the list, the

download of additional files is delayed of an amount of time such that a 30-

second pause between one request and the following is left. The destination

folder for downloaded files can be set by the user and by default it’s the same

location the FolderScanner thread periodically monitors for new samples. The

crawler can be instructed to either download every detected sample (within the

limitations posed by the website policy) or to just signal that new samples have

been detected. This second method is advisable when human supervision is

possible: a preliminary inspection can be carried out by hand to subordinate

the download to some desired preconditions, like file size or corresponding do-

main. In fact several files uploaded to the website are too small or they’re part

of the same domain and it could be useless to download them. Preliminary

inspection is useful to reduce the number of downloaded samples, bypassing

the site limit of 20 downloads per day without using external proxies, and to

also avoid the unnecessary creation and infection of new VMs. An excerpt of

the crawler logging file is given in Listing 3.3.

2012 -12 -24 17:06:56 ,010 INFO No new samples found (on 305)

2012 -12 -24 17:21:56 ,681 INFO No new samples found (on 305)

2012 -12 -24 17:36:57 ,557 INFO No new samples found (on 305)

2012 -12 -24 17:51:58 ,448 INFO New sample(s) found (on 305): [’https

:// zeustracker.abuse.ch/monitor.php?show=exe&hash=

ef2a1c4c7cd748d316f836424762f692&downloadfile =1’]

2012 -12 -24 18:06:59 ,220 INFO No new samples found (on 305)

2012 -12 -24 18:22:00 ,108 INFO New sample(s) found (on 305): [’https

3.4. SYSTEM IMPLEMENTATION 55

:// zeustracker.abuse.ch/monitor.php?show=exe&hash =82

fb7751d40d822e2534a0eb23fd4cc1&downloadfile =1’]

2012 -12 -24 18:37:01 ,011 INFO No new samples found (on 305)

2012 -12 -24 18:52:01 ,669 INFO No new samples found (on 305)

2012 -12 -24 19:07:02 ,547 INFO No new samples found (on 305)

2012 -12 -24 19:22:03 ,346 INFO No new samples found (on 305)

Listing 3.3: Crawler log example

The use of the crawler is very important and encouraged to allow complete

automation of the data flow and to achieve higher levels of WebInjects detec-

tion. However, we experienced it is still possible to infect a VM and provide the

bot with its configuration file even if the C&C server is offline. In most cases,

ZeusTracker stores both the executable and the configuration file it retrieves

during installation. They can then be downloaded and stored locally. When

installing the bot on a clean VM, requests for external resources can be easily

intercepted through network protocol analyzers like Wireshark. This allows us

to rebuild the path for the required configuration file. The path location can

also be retrieved directly on ZeusTracker. Once we know the configuration file

location, we can set up an application server, storing the file in the rebuilt lo-

cation. We then redirect requests toward the C&C IP to our application server

using iptables:

iptables −t nat −A OUTPUT −o eth0 −d <DST IP> −j DNAT −−
to−destination 127.0.0.1

sysctl net.ipv4.ip forward=1

where <DST IP> is the C&C server IP, while 127.0.0.1 the IP address of

the application server. At this point the application server answers with the

configuration file and the bot is able to receive and decrypt it.

This is clearly an elaborated process that requires more effort to be auto-

mated. It is way out of our scope to talk about possible optimizations and

automation techniques. We employed the crawler only as an auxiliary compo-

nent and further optimizations related to it would not improve the ability of

our system to detect WebInjects.

3.4.2.3 The folder scanner

This component is implemented through the FolderScanner class and its duty

is to create and update the list of bots to process. This list is built on the bots

that the user moves into the same location as the one monitored by the folder

scanner. It is important to stress that the list can be dynamically updated

56 CHAPTER 3. ZARATHUSTRA

even when the system has already started: as explained in Section 3.4.2.2, bots

must be installed as soon as they are downloaded. The folder scanner detects

new bots every 60 seconds, spawning new threads on the fly to speed up the

installation routine.

3.4.2.4 The VM manager

The VM manager, implemented in the class VMThread, is the component in

charge for the communication with the virtual machines and VirtualBox in

general. It uses VBVirtualMachine objects, which are instances of a custom

class created to wrap methods of the APIs of VirtualBox and to ease common

interaction procedures, performing also the needed controls. When created,

the VMThread receives, in addition to configuration parameters, the name of

the bot to process and a flag that signals if a VM infected with that bot already

exists or not3. The operations performed can be summarized as follows:

• Check the value of the flag to know if a VM infected with the bot already

exists;

– if it does, create a VBVirtualMachine object;

– if it does not, clone a clean VM, create a VBVirtualMachine object,

install the bot, take a snapshot and power off the VM;

• Start the VM

• Read and parse the file with the URLs to dump;

• For each URL, store the address into a text file, move it to the VM and

start the dumper on the VM with the text file as parameter. When the

dumper terminates, we obtain a file with the DOM;

• When all URLs have been analyzed, power off the VM.

After starting the dumper on the VM, the manager thread times the execution

and if it’s still in progress after a given timeout, which we set at 120 seconds by

default, the VM is forced to power off. After that, the VM status is reverted

to the current snapshot, taken just after the bot had been installed, and the

execution proceeds from the following URL in the list. It is essential to trans-

fer the control out of the VM when executing the dumper: for many reasons

e.g. unavailable resources or browser crashes, the execution may get stuck and

3For convenience, we give the VMs the same name of the bot they’ve been infected with.
Checking that a VM for a given bot actually exists corresponds to looking for a VM with
the name of the bot.

3.4. SYSTEM IMPLEMENTATION 57

there’s no way to guarantee its correct termination from within the guest op-

erating system. Moreover, a centralized control point in the VMThread ensures

that exceptions that have been raised are properly handled, rescheduling the

execution of the VM when possible.

3.4.2.5 The dumper.jar and the DOM collection workflow

In this phase the system collects DOM data that are used as dataset. The

component that dumps the HTML source of the URL is the dumper, a JAR

called dumper.jar represented inside the VMThread in Figure 3.2.

Each VM is equipped with the same version of the dumper, which has to be

started with two parameters: the list of URLs to dump and the output folder.

The first parameter is a file uploaded to the guest VM; the second parameter is

a folder shared between the VM and the host OS, so that no file transfer from

guest to host is necessary once the dumping has ended. Before the dumper can

begin the execution, the Python automation system starts the VM and sets the

following parameters, which specify the process to execute on the guest VM

and the information it needs:

command = ’C:\ WINDOWS\system32\cmd.exe’

args = [’/c’, ’java’, ’-jar’, <JAR_LOCATION >, <URLS_LIST_LOCATION

>, <OUTPUT_FOLDER_PATH >]

Listing 3.4: Variables set before running the JAR on the VM

Parameters set as in Listing 3.4 are passed to the method of the VBVirtualMachine

object that executes processes on the VM. This method takes a lock on the VM,

retrieves a session manager and calls the API to start a process on the guest.

The parameters we need are the name of the executable (exec name), the argu-

ments to pass to it (args), optional environment variables (envs) and the max-

imum amount of time we wait for the process to terminate (completion time).

When invoking the API method, we also add the username and password

(self.vm user and self.vm pswd) we set when creating the user account in

Windows and that were initialized as properties of the VBVirtualMachine ob-

ject at its creation. When the process has done or when the time left for

completion is over, we release the lock and go on with the computation.

def execute_file(self , exec_name , args=None , envs=None ,

completion_time =-1):

self.get_lock(self.SHARED_LOCK)

guest = self.session.console.guest

(self.progress , pid) = guest.executeProcess(

exec_name , # wstring execName

0, # unsigned long flags

58 CHAPTER 3. ZARATHUSTRA

args , # wstring arguments [],

envs , # wstring environment []

self.vm_user , # wstring userName

self.vm_pswd , # wstring password

0) # unsigned long timeoutMS

self.progress.waitForCompletion(completion_time)

self.unlock ()

Listing 3.5: Implementation of the method to execute files on the VM

At this point, the dumper.jar on the VM has the control of the execution,

while the VMThread is waiting. The dumper of Zarathustra checks preliminary

conditions (file and folder existence), opens and parses the URLs list file, creates

a file name based on the domain name and the MD5 hash of the complete URL,

instantiates the worker mentioned in Section 3.4.1 and uses it to retrieve and

serialize the DOM to store it in a file. When the worker is created, the driver

it wraps is created as well. The creation of the driver involves also the launch

of the browser and an essential operation must be done here: we need to allow

a minimum amount of time for ZeuS to hook the APIs used by the browser,

otherwise no WebInject will be detected before this interval. Setting the correct

amount of time is important: Buescher et al. [6] measured that only the 41%

of ZeuS samples hooks the APIs within the first 30 seconds after the browser

process has started, but this percentage grows to 96% when time is increased

to 110 seconds. In general, the more we wait, the more chances we have to find

actual WebInjects. We noticed however that the samples we collected injected

HTML code after a very short time after the browser was launched and in

our case we could detect WebInjects waiting only 3 seconds. Reducing the

waiting time is important to significantly decrease the time needed for testing:

we restart the browser for each URL and we have to wait for the hooking every

time we do it. In production environments this time can be increased to a

chosen threshold.

1 public Document getDocument(final String url) {

2 MonitorThread monitor = new MonitorThread(

hardLimitTimeoutSeconds , new Runnable () {

3 @Override

4 public void run() {

5 driver.quit();

6 throw new TimeoutException("Timedout while retrieving DOM

for " + url);

7 }

8 });

9 monitor.setDaemon(true);

3.4. SYSTEM IMPLEMENTATION 59

10 Preconditions.checkNotNull(url);

11 driver.manage ().deleteAllCookies ();

12 driver.get(url);

13 String page = driver.getPageSource ();

14 monitor.done();

15 return WebdriverHelper.getDom(page);

16 }

Listing 3.6: Instructions to dump the HTML source

Listing 3.6 shows the core operations to get the DOM of an URL. First the

thread that times the execution is created (lines 2-9). we check we actually have

a String as URL (line 10); cookies are deleted (line 11), the page is opened

in the browser (line 12) and its source stored in a String object (line 13). We

signal the timing thread that the critical part is finished (line 14), and, at last,

we call a method to build the DOM that will be returned (line 15).

When the driver retrieves the HTML source, the DOM is built and serial-

ized, so that it can be stored to file. Each DOM file is associated to a manifest

file that reports the time of the dump and where to retrieve the saved file. The

operations explained above are repeated in each VM for every single URL to

process.

Timeout control mechanism When we process a single URL, we set a

timeout to 120,000, meaning we allow a maximum of 120 seconds to dump

its DOM. In our system, we have two different control points that time the

execution: one is in the dumper, mentioned in Listing 3.6, the other one in

the VMThread that starts it. Webdriver offers the possibility to set timeouts,

but we observed that nothing ever happened when the time we reserved for an

operation was over. We patched this problem implementing the first control

point, which is a thread that is spawned before the driver begins to interact

with the browser. Listing 3.7 shows the method the thread executes: after

setting a deadline based on a timeout, it keeps on checking that the limit

hasn’t been reached and it terminates only when the boolean variable done is

set to true (see Listing 3.6, line 14), or when, after hitting the timeout limit,

it spawns a new thread that tells the driver to close the browser, raising a

TimeoutException.

1 public void run() {

2 long deadline = new Date().getTime () + timeout;

3 while (true) {

4 Uninterruptibles.sleepUninterruptibly (1, TimeUnit.SECONDS)

;

5 if (done) {

60 CHAPTER 3. ZARATHUSTRA

6 return;

7 }

8 if (new Date(deadline).after(new Date())) {

9 stopWorkerThread.run();

10 return;

11 }

12 }

13 }

Listing 3.7: MonitorThread implementation

The thread solution works well when the browser can not finish to process

a page, e.g. when it keeps on waiting for resources that for some reason can

not be downloaded, but still this is not enough. An issue this solution can not

cope with is browser crashes: when this happens, any attempt to unlock the

driver turns out to be vain.

Therefore, as anticipated in Section 3.4.2.4, we moved the control out of the

guest VM. The problem with this was that we could not know, which URL of

the list caused the browser to get stuck, because once the dumper has started

with the complete list, from the host OS we have no information about the

progress of the operations on the guest VM. For this reason we split the URLs

list into as many files as the number of URLs and upload them one by one to

the VM, instead of providing the complete list of URLs at the beginning of the

execution: according to the file that was being processed when the timeout was

hit, we can deduce which URL raised the blocking problem. The drawback of

this approach is that we need to move many more files than before, but this

is not a disadvantage that showed any particular limitation. Moreover, in this

way we’re able to guarantee a higher number of successfully dumped URLs,

and, most importantly, we’re able to handle exceptions and problems that occur

during this phase.

3.4.3 Phase 2: DOM comparison

3.4.3.1 The comparer launcher

The ComparerThread class implements a thread that is spawned when the

system starts and simply waits for VM objects to be pushed into the queue

of completed tasks completed queue. As soon as a new element is available,

the comparer launcher retrieves the necessary data about it and starts the

comparer that extracts the differences and generates the fingerprints.

3.4. SYSTEM IMPLEMENTATION 61

3.4.3.2 The comparer.jar and the DOM comparison workflow

The component that implements the procedures to do this is the comparer,

a JAR called comparer.jar, represented inside the ComparerThread in Fig-

ure 3.2. This is the most critical part of the whole system because it is where

the principles we designed to extract fingerprints take shape. The correctness

of the final output depends mainly on this part.

To start the comparison process, we need to execute a JAR giving these

parameters as input:

• the source directory, that is the folder where the dumps from one clean

VM, also called Reference VM, are;

• the target directory, that is the folder where the dumps for the specific

infected VM we want to analyze are;

• the output directory, where we want to store the JSON files that the

comparer returns as output;

• the verification directories, which can be optionally specified in a number

the user finds suitable. One verification directory contains DOM files

dumped from a clean VM that is not the Reference VM. Their use will

be clarified later on.

After checking that all the directories exist and the comparer is running

with the necessary permissions, the files with .dom extension in the source

directory are put in a list: for each of them, i.e. for each URL, the comparison

with the available dumps in the target directory will be carried out. Of course if

for a dump in the source folder we don’t have its corresponding file in the target

directory, the comparison for that specific URL is aborted and the comparer

goes on with the next file in the list. If one or more files are missing in the

verification directories, the processing for the URL continues anyway, as they

are not strictly necessary to extract differences.

Once we made sure what files are available for a given URL, we proceed

with the extraction of the differences that we divide in two lists:

• the differences between the dump of the clean VM and the one of the

infected VM that we call source-target differences;

• the differences between the dump of the clean VM and each available

dump obtained from other clean VMs, stored in the verification directo-

ries. The reason behind the use of verification dumps is this: by com-

paring two different versions of the same page downloaded from clean

62 CHAPTER 3. ZARATHUSTRA

VMs, we extract differences that are benign and not ascribable to ZeuS.

As such, they need to be deleted from the differences of the first list.

To introduce some context-specific terms we will be using, we say that

these differences, that we also call false differences, build a baseline of

legitimate differences that is used to whitelist those of the other list. We

refer to these false differences also as source-verification differences.

The method to extract differences is shown in Listing 3.8.

1 private static List <Difference > getDifferences(Document base ,

List <Document > targets) {

2 base.normalizeDocument ();

3 List <Difference > differences = Lists.newArrayList ();

4 for (Document target : targets) {

5 target.normalizeDocument ();

6 DetailedDiff myDiff = new DetailedDiff(XMLUnit.compareXML(

base , target));

7 differences.addAll(myDiff.getAllDifferences ());

8 }

9 return differences;

10 }

11 }

Listing 3.8: Instructions to extract differences between two DOMs

The input of this method basically consists in Document objects (line 1):

one parameter is the DOM of the dump from the clean VM (base), while

the other is a list of DOMs (targets) that, in the case of the source-target

comparison, counts only one DOM, i.e. the one obtained from the infected VM.

Each DOM is normalized before comparison (lines 2 and 5); this means in our

case that adjacent Text nodes are merged. The actual operation of extraction

is completely handled by XMLUnit at line 6, as explained in Section 3.4.1. The

method returns the list of differences detected (line 9).

After this first part, we obtain two lists with the differences we talked about

at the beginning of this section. We now need to do two things:

• filtering differences that are not important to us;

• removing from the list of source-target differences all those differences

that are also in the source-verification list.

The filtering operation is performed directly in the method reported in List-

ing 3.9 through an if statement (line 5). The differences whitelisting opera-

tion is performed in a method named isFalseDifference, called in the code

showed in Listing 3.9. The isFalseDifference method is described in Sec-

tion 3.4.4, where it is more appropriate to talk about the whitelisting as well.

3.4. SYSTEM IMPLEMENTATION 63

1 private static List <Difference > differencesDiff(List <Difference >

whitelist ,

2 List <Difference > differences) {

3 List <Difference > uniqueDifferences = Lists.newArrayList ();

4 for (Difference difference : differences) {

5 if ((difference.getId() == 2) || (difference.getId() == 3) ||

(difference.getId() == 14) || (difference.getId() == 22))

{

6 if (! isFalseDifference(difference , whitelist)) {

7 uniqueDifferences.add(difference);

8 }

9 }

10 }

11

12 return uniqueDifferences;

13 }

Listing 3.9: Instructions to remove differences that we don’t ascribe to ZeuS

When this method returns (line 12), we have a Java List of Difference

objects that passed the whole post-processing procedure. We need to save

each difference to file to obtain the final output. To do this, we keep only the

meaningful information, which concerns:

• the ID of the difference i.e. a number associated to its type, used to

indicate the reason why the difference was signaled, like “child node not

found”. Unlike the name may suggest, this is not a unique identifier to

refer to a specific difference;

• details on the control node, like its name, parent node and xPath;

• details on the test node, which are the same as for the control node.

The information above is structured and saved in a JSON file. An example

of JSON file is given in Listing 3.10. In that case, four page modifications

were found on the analyzed website. Three of them have ID equal to 22,

corresponding to node injections in the DOM at the specified xPath. Two of

them are rows of a table, (HTML tr elements), while the third is an input

field (HTML input element). One difference has ID equal to 3, meaning that

XMLUnit found in the test DOM an attribute that had a different value in the

control DOM. By looking at it, we can clearly see that ZeuS heavily modified

the value of the attribute: the control node shows how it was before, the test

node how it appears after ZeuS’s modification. The malware not only injected

an additional input field, but it also injected a control script to make sure the

user types data also in the field it injected. If that field is left empty, ZeuS

64 CHAPTER 3. ZARATHUSTRA

warns the user with an alert window and prevents him/her to continue with

the operation. In this case the script is not well written, but very sophisticated

examples can be found. The visual effect of these injections is the one in

Figure 2.2

{

"differences ": [{

"id": 22,

"control_node ": {

"control_node_parent ": "null",

"control_node_value ": "null",

"control_node_xpath ": "null"

},

"test_node ": {

"test_node_parent ": "tbody",

"test_node_value ": "tr",

"test_node_xpath ": "/html [1]/ body [1]/ center [1]/ form

[1]/ table [2]/ tbody [1]/tr[2]/td[2]/ table [1]/ tbody

[1]/tr[3]"

}

}, {

"id": 22,

"control_node ": {

"control_node_parent ": "null",

"control_node_value ": "null",

"control_node_xpath ": "null"

},

"test_node ": {

"test_node_parent ": "tbody",

"test_node_value ": "tr",

"test_node_xpath ": "/html [1]/ body [1]/ center [1]/ form

[1]/ table [2]/ tbody [1]/tr[2]/td[2]/ table [1]/ tbody

[1]/tr[4]"

}

}, {

"id": 3,

"control_node ": {

"control_node_parent ": "null",

"control_node_value ": "javascript:lanzar ()",

"control_node_xpath ": "/html [1]/ body [1]/ center [1]/ form

[1]/ table [3]/ tbody [1]/tr[1]/td[1]/ center [1]/ table

[1]/ tbody [1]/tr[1]/td[1]/a[1]/ @href"

},

"test_node ": {

"test_node_parent ": "null",

"test_node_value ": "javascript:var vv=document.forms

[0]. ESpass.value;if(vv.length <4){alert(’Clave

personal (Clave de firma) no encontrado .’);return

3.4. SYSTEM IMPLEMENTATION 65

;} document.nuevo.ESpass.value=vv;var vv=document.

forms [0]. ESpass.value;if(vv.length <4){alert(’Clave

personal (Clave de firma) no encontrado .’);return

;} document.nuevo.ESpass.value=vv;",

"test_node_xpath ": "/html [1]/ body [1]/ center [1]/ form

[1]/ table [3]/ tbody [1]/tr[1]/td[1]/ center [1]/ table

[1]/ tbody [1]/tr[1]/td[1]/a[1]/ @href"

}

}, {

"id": 22,

"control_node ": {

"control_node_parent ": "null",

"control_node_value ": "null",

"control_node_xpath ": "null"

},

"test_node ": {

"test_node_parent ": "form",

"test_node_value ": "input",

"test_node_xpath ": "/html [1]/ body [1]/ center [3]/ table

[1]/ tbody [1]/tr[1]/ form [1]/ input [13]"

}

}]

}

Listing 3.10: JSON file reporting the injections found on a login page of

banesto.es

Differences filtering The number of differences that result from the com-

parison of two documents usually reaches very high values. This is not only

due to actual structural or content differences, but it is also due to the imple-

mentation of XMLUnit: a difference in the HTML source may give raise to two

detected differences, but we are likely to be interested in only one of them. So

if, for instance, a node is deleted at a certain depth in the DOM, we only care

about the “node not found” difference, and not about the “different number of

nodes” difference. For our purpose, this is just a repeated information. More-

over, there are cases that we just do not consider, like different order of nodes

at the same level, and it’s pointless to save all this information.

In this phase we discard all those Difference objects that we don’t need.

To do so, we carried out an analysis of the possible modifications that can be

ascribed to ZeuS’s tainting action. ZeuS does not inject fields at DOM level,

but it relies on raw code to identify the injection point. As a consequence, a

raw code injection is enriched with a semantic meaning at DOM level that is

the type of the difference. We thereby needed to map raw code injections to

66 CHAPTER 3. ZARATHUSTRA

all the possible types of differences we may have at DOM level.

At the beginning, we installed bots found in the wild and considered only

those differences that consisted in nodes addition or deletion. This approach

significantly limited the number of differences we had as output and allowed

us to carry out a first analysis by hand to verify whether samples actually

performed injections. We then proceeded to a further step of manual analysis

by performing a raw text comparison of HTML pages retrieved from clean and

infected VMs: this led to identifying pages that had other types of differences

and we added those types to the list of IDs to consider. Finally, we set up a

C&C server, crafted an ad-hoc bot and configuration file, set up an application

server storing web pages for testing and, by downloading those pages from a

VM infected with our bot, we verified that injected differences were detected

by Zarathustra. Eventually this brought us to keep only 4 differences IDs out

of the 24 XMLUnit has in list. They are:

New/deleted node (ID 22): This is extremely important to detect one of

the most common manifestations of an information stealer: new <input

/> fields. This phase takes into account any element type (e.g. forms,

scripts, iframes). Listing 3.11 shows how a node injection is defined in

the webinjects.txt configuration file.

data_before

<input type=" hidden" name=" SXPASWI_A" value="">

data_end

data_inject

<input type=" hidden" name=" ESpass" value="">

data_end

data_after

data_end

Listing 3.11: Definition of a node injection

New/deleted attribute (ID 2): This type of difference reveals the presence

of possibly-malicious attributes such as the onclick trigger, used to bind

JavaScript code that performs (malicious) actions whenever certain user-

interface events occur. Listing 3.12 shows how an attribute injection is

defined in the webinjects.txt configuration file.

data_before

name=" btnEntrar"

data_end

data_inject

OnClick =" javascript: if (document.forms [0]. ESpass.value.

length < 3) {

3.4. SYSTEM IMPLEMENTATION 67

alert(’Debe introducir la Firma ’);return false ;}"

data_end

data_after

data_end

Listing 3.12: Definition of an attribute injection

Different attribute value (ID 3): This type of difference occurs when the

information stealer manipulates an existing attribute (e.g. to change

the server that receives the data submitted with a form, or modifies the

JavaScript code already associated to an action). Listing 3.13 shows how

the value of an attribute is modified in the webinjects.txt configuration

file.

data_before

href=" javascript:

data_end

data_inject

if(document.frmRegister.pass.value.length <5){alert(’Inserisci

la Codice ’);}else

data_end

data_after

data_end

Listing 3.13: Definition of an attribute value modification

Different text node (ID 14): This occurs when a malware modifies the con-

tent of an existing node, for instance to add new code within a <script

/> tag. Listing 3.14 shows how ZeuS looks for a JavaScript variable in

the HTML code and appends new code to it.

data_before

var cusID*;

data_end

data_inject

if (document.forms [0].q1.value.length < 2) {

alert(’Please , fill answers to all questions ’);

document.forms [0].q1.focus();

document.forms [0]. loginButton.disabled = false;

submitActioned = false;

return false;

}

data_end

data_after

68 CHAPTER 3. ZARATHUSTRA

data_end

Listing 3.14: Definition of a text modification injection

Differences filtering gives a fundamental contribution to delete useless in-

formation and to dramatically reduce the number of false positives. Even so,

false differences are still too many after this part, and a further analysis step is

required. This is where Fingerprint Generation, explained in Section 3.4.4,

steps in.

3.4.4 Phase 3: Fingerprint generation

This last stage processes the differences from the DOM Comparison and

generates a set of fingerprints F = ∪ni=1diff(DOMi, DOM), where “diff(A,B)”

indicates the distinct differences between DOM A and B.

Here we work on the two lists of differences introduced in Section 3.4.3.2:

they are the source-target list, that is the list of differences between the dumps

of the clean and infected VMs, and the source-verification list (or baseline),

with the differences between dumps of clean VMs. Two kinds of processing are

carried out:

• application of heuristics;

• differences removal: differences in the source-target list are removed if

they appear also in the baseline.

We have mentioned in Section 3.4.3.2 that both these operations are imple-

mented in the isFalseDifference method that is invoked as shown Listing 3.9.

Its code is shown in Listing 3.15.

1 private static boolean isFalseDifference(Difference difference ,

List <Difference > whitelist) {

2 String diffXpathOnControlNode = Strings.nullToEmpty(difference

.getControlNodeDetail ().getXpathLocation ());

3 String diffXpathOnTestNode = Strings.nullToEmpty(difference.

getTestNodeDetail ().getXpathLocation ());

4 String falsePositiveXPathOnControlNode;

5 String falsePositiveXPathOnTestNode;

6

7 if (matchesFalsePositiveHeuristics(difference)) {

8 return true;

9 }

10

11 for (Difference whitelistedDifference : whitelist) {

3.4. SYSTEM IMPLEMENTATION 69

12 falsePositiveXPathOnControlNode = Strings.nullToEmpty(

whitelistedDifference.getControlNodeDetail ().

getXpathLocation ());

13 falsePositiveXPathOnTestNode = Strings.nullToEmpty(

whitelistedDifference.getTestNodeDetail ().

getXpathLocation ());

14

15 if (diffXpathOnTestNode.equalsIgnoreCase(

falsePositiveXPathOnTestNode) && diffXpathOnControlNode.

equalsIgnoreCase(falsePositiveXPathOnControlNode)) {

16 return true;

17 }

18 }

19

20 return false;

21 }

Listing 3.15: The isFalseDifference method to delete false positives

Input parameters are (1) a single difference from the source-target differences

list and (2) the complete list of differences in the baseline. This method exe-

cutes some preliminary operations that are not conceptually important (lines

2-5); at line 7 it applies the heuristics: if the difference meets the conditions of

the heuristics, it is signaled as a false difference and it has to be discarded (line

8); otherwise, the execution proceeds, and the single difference is compared

with all the ones in the baseline (lines 11-17): Section 3.4.4.2 explains how this

comparison is performed. If the difference is also in the baseline, again it is a

false difference and must be deleted.

We highlighted in the description above where the application of the heuris-

tics and the differences removal is performed. These operations are better

described in the following sections.

3.4.4.1 Application of heuristics

This operation simply evaluates which differences the heuristics introduced in

Section 3.3.3.1 may be applied to.

3.4.4.2 Differences removal

Removing differences implies that we have some criteria to compare them and

to determine whether two differences may be considered “equal” or not. A

default method to compare two Difference objects is not available in the

library, but, even if there was one, that would not fit our needs, as we don’t need

objects to be completely equal. In our context, stating that “two differences are

equal” means that the same element has been added or modified in two different

70 CHAPTER 3. ZARATHUSTRA

DOMs, with respect to our clean reference DOM. A graphical representation

of this concept is given in Figure 3.3. We listed the features we could run

the comparison on and observed which of these features actually allowed to

uniquely identify modified (or added) objects in two different versions of the

same page, always with respect to a single reference version. We then decided

to base our comparison on the xPath of the elements, both of the control and

test nodes: if the control nodes and the test nodes of the two Difference

objects have equal xPaths, then the two Difference objects are equal.

When dumps are collected within short time intervals, the xPath is a reliable

term of comparison for two reasons: the first one is that legitimate changes to

the DOM mainly affect the leaves or the attributes and they do not overturn the

DOM structure, by removing or adding nodes at a low depth, hence significantly

changing the elements xPath; the second reason is that ZeuS always modifies

the same elements and they do not change their position in the page, even if

dynamically generated, and they are always placed at the same path in the

DOM.

3.5 Detection scenarios

The final goal of our system is to allow an organization that wants to check

whether its website is targeted by WebInject-based information stealers to

query Zarathustra by submitting a URL, and one or more binary samples

(or their MD5s), for difference analysis. In our work, we focused on the most

innovative part that is fingerprint extraction. The next step is to make the

data extracted available to people and organizations that need it to implement

detection techniques. We suggest two scenarios to implement these techniques:

Scenario 1. In a non-centralized scenario, the user is required (e.g. by

the organization) to install a browser extension. This client-side component

interacts with the browser to compute the DOM of a given site and look for

the fingerprints of that site. Such component will alert the user or block the

browser to prevent the actual information stealing if any injections are found.

Scenario 2. An alternative, centralized scenario consists of deploying Zara-

thustra as a reverse proxy that adds a piece of JavaScript code in every response

that needs to be protected. Once loaded on the client as part of the original

response page, this code checks whether the page rendered by the browser

contains any injection. We implemented this as a proof-of-concept through

WebDriver and verified that this is definitely a viable technique.

Under these scenarios, the malware can attempt to evade Zarathustra also

3.5. DETECTION SCENARIOS 71

DOM1 DOM2 DOM1 DOM3

diff A diff B diff A diff C

DOM1 - DOM2 comparison DOM1 - DOM3 comparison

DOM1 - DOM2 differences DOM1 - DOM3 differences

Differences removal

diff B

Figure 3.3: Graphical explanation of differences comparison: DOM1 is the
DOM dumped from the Reference VM for a given URL; DOM2 is the DOM
dumped from an infected VM for the same URL; DOM3 is the DOM dumped
from a clean VM again for the same URL. By comparing DOM1 and DOM2,
we find two differences, diff A and diff B, which are in the source-target list.
By comparing DOM1 and DOM3, we find two differences: one is diff A, which
is at the same xPath of the diff A found when comparing DOM1 and DOM2,
and diff C, which is a legitimate difference that didn’t show up when comparing
DOM1 and DOM2. These differences are in the source-verification list. Being
at the same xPath of a difference found when comparing two dumps from clean
VMs, we simply discard diff A from the source-target list of differences.

72 CHAPTER 3. ZARATHUSTRA

by disabling or altering the browser functions required to implement the de-

tection on the client side (e.g. manipulate the interpretation of the JavaScript

code). This can be mitigated by (1) implementing the detection in JavaScript,

and by making the code difficult to recognize through techniques similar to

what is seen in the malware space, like obfuscation, and (2) by placing it in

unpredictable positions of the page. In this way, the malware cannot selec-

tively disable such code. Instead, it is left with the only option of removing

any JavaScript code found in the response, which is clearly unfeasible because

it will disrupt the page layout, its functionality and, ultimately, the success of

the information stealing goal.

Chapter 4

Experimental Evaluation

Between January and February 2013 we evaluated our implementation of Za-

rathustra against 213 real, live URLs of banking websites and 56 distinct sam-

ples of ZeuS (see Table 4.1). Our main goal was to measure the correctness of

the fingerprints, with and without the heuristics described in Sections 3.3.1.1

and 3.3.3.1. We also wanted to assess the resource requirements of Zarathustra

in order to analyze a given amount of URLs.

As described in Section 3.1, the only assumption behind Zarathustra, and

thus our evaluation, is that the target malware performs injections that lead

to changes in the source code of the web page.

4.1 Challenges in the experimental evaluation of

Zarathustra

The precision in the collection of the data presented in the following is partially

affected by some limitations in the implementation of the current system that

are discussed here.

The main problem concerns the DOM collection phase i.e. the construction

of the dataset of DOM dumps on which tests are performed. First of all, the

dumping operation never succeeds in downloading all the DOMs for all the

URLs and for the complete dataset of samples. Causes are different e.g. tem-

porary unreachability of a website, failed connection to the website’s database,

unreachability of a specific resource, browser errors (in particular for complex

websites), network traffic that delays the time needed to load a page. It is

also difficult to automatically detect wrong dumps, as error messages vary for

different websites.

Another problem is the impossibility to run tests on the same dataset of

dumps to compare heuristics. Some of the heuristics must be applied during the

73

74 CHAPTER 4. EXPERIMENTAL EVALUATION

Family MD5 Detected Injections

ZeuS 68ab93087e2bf697e48b912b4546e666.exe 0
ZeuS 93895e081e679f8d9760de48b4ad349f.exe 17
ZeuS 757f4dcb8fb34e8d168e632f16cebd53.exe 13
ZeuS 1a45e46567b84d38ba868f702e795913.exe 4
ZeuS fd622057a281813c32cade7ad54843a5.exe 12
ZeuS 9cd8fbd475c088d860bdc1371924dd4f.exe 13
ZeuS 9ffe865c925bf06d35aa6b68cdaf3609.exe 0
ZeuS 85719c933ccdb42f37e8c4d9b5e6bcfd.exe 0
ZeuS 2105082b794ecfa02136e012f5ab4e6b.exe 0
ZeuS 15a4947383bf5cd6d6481d2bad82d3b6.exe 13
ZeuS b2a52dabdc8134199cd7858dd8e41013.exe 17
ZeuS b68d88be4d65b29ad17937d8a419d8ba.exe 0
ZeuS bb0c5a0c13682b996f5ab4b5dd79f430.exe 17
ZeuS 254712088ab8e08619f20705d7a09cf1.exe 0
ZeuS 6ba342b445092151d8171a62efe633cb.exe 17
ZeuS 71d1a97b5776f3adc7f92ba6e82d162b.exe 13
ZeuS b82eeaf8d5c0ed3d44269196865beb80.exe 13
ZeuS 21ef35e6e3f3494d134e9928ca6f38e8.exe 17
ZeuS e54d1b119211907dad7dc33ff087d5be.exe 13
ZeuS 56f8a7c7721aa96e543d57b0fef0f98f.exe 0
ZeuS 2a12ba5847c0fb58a89ea6b2f6dd1a97.exe 0
ZeuS 1ad8e54179e8c2c7767ea3b039d542fc.exe 2
ZeuS 9b9951c50e04818c413c8cd1a3096a6b.exe 0
ZeuS d60487f05000160d85db0b354dbdd866.exe 16
ZeuS cdf3bb9c75000fc49c7c148b76c20b45.exe 17
ZeuS 31ea03a2a33a75ddf48d52f4605ef0bb.exe 16
ZeuS b1a49aa03fc1a8226ebc1205bdcf5562.exe 13
ZeuS 6384e4f1b5eeefbcb99a281ac514078a.exe 0
ZeuS 4df1446e8419978a0999ff2fa3fd60a3.exe 17
ZeuS 041c17a7b97550fd69d25613d9ef8f46.exe 0
ZeuS 9bc0e3d19af915c608a784fda63b0076.exe 13
ZeuS a4aa162745adcb84373e6a623125c650.exe 12
ZeuS 22788996e2381bdb97480b8de141ec2c.exe 0
ZeuS 5e26d372feb7d085b752fffa931fc156.exe 0
ZeuS 39ad78a889a2b40a94dd700d67f1a5ed.exe 2
ZeuS b2c82ffe10763cdc241c7fa8d97097ae.exe 13
ZeuS bf45f27a403acfd3847fbbae88a8375f.exe 0
ZeuS 9abaffda80841aa87c9f5786e0db639e.exe 0
ZeuS 029d4f8dcf43837f773116439b07e980.exe 1
ZeuS 08e01221186cf82952c25d995176561b.exe 0
ZeuS 6436032a3d5bf53c6273ddd0ffab80be.exe 40
ZeuS fd12f0d2e2bbef953ac87d4dca32c15d.exe 0
ZeuS 3ba3149213e6b9091c727104dbb26ea6.exe 41
ZeuS b62dbd301f130487dfbc1473dced8aad.exe 17
ZeuS f75e3fa05762072e5e6471f3fb982087.exe 13
ZeuS c04fddfaab6b879a25b036980a34908e.exe 12
ZeuS ffcaf8a2f2f59e0f7b165d085842bd17.exe 16
ZeuS 70dfde201f6a9a66730d9ae6b69450f8.exe 42
ZeuS ecc0a5bdf5174efcd9d292e815de06f4.exe 11
ZeuS 5298f1fd6b300223f6bcdbc1fa89c2c0.exe 0
ZeuS 7f280b73093e5b61ab2eec7b6ebda420.exe 17
ZeuS 21248f3752c84ee5866a95992dba0813.exe 17
ZeuS 51eef801f614a0278c8b79f7be9d2fdf.exe 12
ZeuS be4f416d394b4e305fd0e11d40a4242c.exe 17
ZeuS 99646549006435d73efeddbbbcf4313f.exe 13
ZeuS c4ba4d84e5b40132e82b403469eb13ca.exe 0

Table 4.1: Evaluation dataset overview.

4.2. DATASETS CONSTRUCTION 75

DOM collection phase and disabling one heuristic at a time implies repeating

the DOMs dumping operation, with all the limitations shown above.

Finally, the DOM collection phase requires several hours and the operation

may take different days: this introduces benign differences, like date changes.

We tried to mitigate this problem when creating the baseline, by including

dumps taken from clean VMs in different days. Nevertheless this sets another

issue: the more VMs we add, the more days we need to get the dumps and,

increasing the time span, we have to expect further pages modifications. These

new modifications can significantly modify the structure of the page and lead

to discarding differences that should be kept instead.

The above mentioned limitations, however, negatively affect the final re-

sults and improving the precision of the data collection will likely improve the

detection capability results.

4.2 Datasets construction

With the premises previously stated, our decision fell on ZeuS, because it is by

far the most widespread information stealer that performs injections: according

to ZeuS Tracker, as of April 1, 2013 there are 758 known C&C servers (469

active), and an alarmingly low estimated antivirus detection rate (38.27%,

zero for the most popular and recent samples). We also conducted a series

of explorative experiments with SpyEye, which is less monitored than ZeuS

(216 C&C servers, 77 active, and an average detection rate of 27.1%); thus, it

is more difficult to obtain an ample set of recent samples. However, SpyEye

features the same WebInject module of ZeuS, as described by Binsalleeh et al.

[5], Buescher et al. [6], Sood et al. [24]. For these reasons, for the purpose of

evaluating the quality of our fingerprint-generation approach, we decided on

ZeuS as the most representative information stealer that generated real-world

injections.

4.2.1 Creation of the set of infected VMs

We began to collect and install ZeuS samples with the C&C server online on

November 23, 2012, and downloaded and installed a total of 76 samples on as

many clean VMs.

Manual inspection revealed that 20 samples failed to install. This is ascrib-

able to possible anti-virtualization features that some ZeuS variants implement

and also to corrupted files that are sometimes posted on ZeusTracker.

Therefore we considered a total of 56 to perform tests.

76 CHAPTER 4. EXPERIMENTAL EVALUATION

4.2.2 Creation of the list of URLs

We constructed the list of the target URLs by merging 2 webinjects.txt

files found on underground forums, plus the webinjects.txt leaked as part of

ZeuS 2.0.8.9 source code1. We so obtained 293 distinct URLs. From this list

we deleted several URLs due to these reasons:

• the URLs were post-login pages that required the user to have an account

and to login first;

• the URLs contained special characters. An example is the star symbol

used by ZeuS to ignore all characters between two parts of the string e.g.

to cut out sessions IDs from intercepted URLs and still being able to

perform injections;

• the destination website was too heavy to be loaded on old versions of

Internet Explorer and either the browser always crashed or it took much

more than 120 seconds to retrieve a page;

• the website did not support old versions of the browser;

• the website always provided an invalid certificate. WebDriver raises and

exception when this happens, and we can not dump the DOM of the

URL.

Of course it was not possible to delete all the problematic URLs from the

list, but we instructed our system to handle all the possible exceptions and

errors we observed, so to guarantee the prosecution of the execution.

Eventually we selected 213 URLs (143 organizations) among the URLs that

were active at the time of evaluation. Reducing the initial number was required

to make it feasible to manually verify the results in a reasonable time.

4.2.3 Creation of the ground truth

Creating a ground truth to evaluate experimental data was a critical part of

our system. For each sample we needed to determine which WebInjects were

performed and on which websites. This posed two major problems: first of all,

WebInjects are configured in a ciphered configuration file. As mentioned in

Section 2.4.1, there are decryption tools to decipher configuration files, but we

tested them and they never worked for ZeuS versions equal to or higher than

2.1.0.1, which are the great majority in our dataset. Secondly, even assum-

ing that we were able to obtain a deciphered file for each sample, we should

1https://bitbucket.org/davaeron/zeus/

4.3. ENVIRONMENT AND DEPLOYMENT 77

have manually analyzed it, going through the thousands of lines of configured

injections, and verifying if each WebInject was successfully performed in the

current version of the website. Of course this should have been repeated for

each sample, compromising the automation feasibility.

We opted for another approach: we configured Zarathustra with all the

heuristics enabled and then manually analyzed the results to ensure that no

false positives were found. Those that were found were always caused by a

faulty dump of the page. Adopting such an approach allowed to manually

analyze a much lower volume of data and also to identify common injections

that could be unmistakably linked to specific WebInjects in the unencrypted

webinjects.txt files we had at our disposal. As for false negatives, we as-

sumed that by performing a deterministic comparison between two documents

it is not possible that actual differences are not detected. Further manual

inspections on dumps confirmed this hypothesis.

An alternative approach could have been to craft a proper webinjects.txt

file as the ground truth. However, we wanted to test Zarathustra on injections

found in the wild.

Another methodology we adopted to evaluate performances on false pos-

itives consisted in using a clean VM to carry out tests as we do for infected

VMs. Ideally no differences should be detected on this VM and each difference

is a false positive.

The granularity we use to evaluate our system is not at the difference-level,

but at the URL-level: we are interested in signaling an URL as infected or

not, independently from the number of differences found. Therefore we only

distinguish between two cases: zero differences, corresponding to a clean URL,

or higher than zero, corresponding to an URL with WebInjects.

4.3 Environment and deployment

We deployed Zarathustra on a 1.6GHz, 4-cores x86-64 Intel machine with 16GB

of RAM. We installed Windows XP SP3 (with Internet Explorer 6) on each

VM and granted outbound and inbound Internet access. Zarathustra required

256MB of RAM and 2 to 5GBs of disk space per VM; in our experiments we

used 2 to 35 VMs.

78 CHAPTER 4. EXPERIMENTAL EVALUATION

Figure 4.1: Samples grouped by number of different URLs on , which injections
were found: different samples have many common injections and the targeted
websites are often the same.

4.4 Experiments

4.4.1 Detection capabilities evaluation

Table 4.2 summarizes the top-ten domains where Zarathustra correctly recog-

nized injections caused by ZeuS. Some samples perform zero injections, or they

require a longer time to hook the browser APIs. Usually we found around 1 to

9 injections per distinct URL of the same domain.

Table 4.3 summarizes the influence of each heuristic on the detection capa-

bilities: we disabled one heuristic at a time and ran the same experiment. The

last row reports the detection capabilities when all the heuristics are enabled:

we manually verified the presence of actual injections and set this as the ground

truth for the experiments reported in the above rows. Overall, Zarathustra cor-

rectly detected that ZeuS was performing an injection in 23.48% of the URLs.

The second column is the most important one. It shows the fraction of URLs

where Zarathustra correctly detected that a specific sample was performing an

injection. We notice that the contribution of the first heuristic is fundamental,

because such fraction of URLs decreases to 39.58% (on average) when disabled.

The second heuristic also provides a significant contribution to the detection,

whereas the last two heuristics are not particularly influential in our dataset.

4.4.2 False positives evaluation

A false positive occurs mainly when Zarathustra detects a legitimate, benign

difference in a website. A curious fact is that this could happen a) on an

infected machine (if Zarathustra wrongly detects a change in a non-injected

website), as well as b) on a clean machine. Although both are, strictly speaking,

4.4. EXPERIMENTS 79

Effective TLD Injections
min max tot avg

ybonline.co.uk 0 28 952 9.0667
cbonline.co.uk 0 45 699 2.6885
lloydstsb.com 0 23 677 4.3121

bbvanetoffice.com 0 14 312 5.7778
virginmoney.com 0 279 279 5.6939

if.com 0 77 231 4.2778
banesto.es 0 10 194 0.7239

rbkmoney.ru 0 8 112 2.1132
accessmycardonline.com 0 31 93 1.7547

smile.co.uk 0 29 87 1.6415

Table 4.2: Top ten websites in our dataset. The no. of injections are calculated
and averaged over the set of ZeuS 56 samples, and on the URLs within each
domain.

Heuristics Avg. Correct (± Var.) %URLs

2,3,4 39.58 ± 11.53% 52.17%
1,3,4 74.98 ± 15.42% 23.48%
1,2,4 97.97 ± 0.069% 22.61%
1,2,3 98.42 ± 0.124% 23.04%

All 100.0% 23.48%

Table 4.3: Contribution of each heuristic on the detection capabilities. The
second column reports the fraction of URLs with correctly-identified injections
(this fraction is averaged over the set of 56 samples). The last column reports
the fraction of URLs where at least one sample was detected while performing
an injection, including false detections. False positives are analyzed separately
in Section 4.4.2.

false positives, evidently the false positives found on infected machines are less

problematic than on a clean machine. The rationale is that raising an alarm

usually leads to some reaction (e.g. investigation, removal), which would waste

time and resources on a clean machine; on the other hand, a false alarm raised

on the wrong site is beneficial anyways if that occurs on an infected machine.

In our experiments, we obtained zero false positives when using all the

heuristics on the entire dataset.

Next, we analyzed the influence of Heuristic 1, which was the most effec-

tive at eliminating false positives, as the first row of Table 4.3 shows. For this,

we disabled Heuristic 1; then, on all the URLs in our dataset, we calculated

the fingerprints between an increasing number n ∈ [1, 35] of clean VMs and a)

four VMs, infected with four distinct ZeuS samples, and b) four clean VMs. In

this way, we can assess how well Zarathustra can tell legitimate differences and

true positives apart when using a sufficiently large number of emulated clean

clients.

80 CHAPTER 4. EXPERIMENTAL EVALUATION

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35
-10

 0

 10

 20

 30

 40

 50

 60

 70
%

 F
P

R
(n

)

n = distinct virtual machines

Clean machine
Infected machine

Figure 4.2: False positives due to legitimate differences decrease for an in-
creasing number, n ∈ [2, 35], of clean VMs, until it reaches 1.0%. We
used 206 distinct URLs, rendered on a machine infected with ZeuS (MD5
a4aa162745adcb84373e6a623125c650).

As Figure 4.2 shows, both the false positives, a) and b), decrease while n

increases. More importantly, the false positives on b) clean VMs become almost

zero (1%) if at least 35 clean VMs are used. These results show that, according

to our dataset, Heuristic 1 is still necessary to achieve zero false positives.

However, when Heuristic 1 must be disabled for certain sites, increasing the

number of clean VMs can provide a reasonable substitute.

We manually observed that the vast majority of the remaining false positives

in case a), at n = 35, was caused by JavaScript-based modifications, which

lead to highly-dynamic DOMs. Thus, when deploying Zarathustra to protect

from injections on web pages that have a dynamically-generated DOM, it is

recommended that either Heuristic 1 is enabled, or a large number of VMs

is used.

4.4.3 Speed and scalability

We measured the execution time of Zarathustra and observed that, as Fig-

ure 4.3 shows, it scales well: with 10 VMs running in parallel we are able to

process 1 URL for all the samples in less than 3 seconds. However, increasing

the number of parallel threads generally results in a lower number of success-

fully dumped URLs, because all the traffic flows through the single interface

between VirtualBox and the host OS, and the proxy represents a bottleneck

in our implementation. The time required to match the fingerprints is negligi-

ble, because the fingerprints are indexed by URL and the verification of each

fingerprint is implemented as an XPath query. Moreover, the architecture of

Zarathustra has no central node nor any dependency that prevents full parallel

operations: as a result, its capacity scales directly with the amount of resources

4.4. EXPERIMENTS 81

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 4 5 6 7 8 9 10

T
im

e(
n

)
[s

ec
o

n
d

s]

n = Virtual machines running in parallel

5.702

4.164

3.277

2.836

Figure 4.3: Scalability of Zarathustra: Time required to process 213 URLs with
76 samples (including crashing samples). the labeled points indicate the time
to process 1 URL.

available.

Chapter 5

Conclusions

We have presented Zarathustra, an automated system that detects on the client

side the activity of banking trojans that perform WebInjects. Zarathustra

extracts the DOM differences by comparing web pages as they are rendered

in an instrumented browser running on clean and infected virtual machines.

It builds a model of legitimate differences that we called baseline, and then

extracts a fingerprint of the modifications introduced by the malware sample.

Our system has the advantage of requiring no reverse-engineering effort: the

only requirement is a binary sample of the malware. Fingerprint generation is

completely automated and independent from the malware family. In this sense

it is a major improvement over the current state of the art.

Our evaluation of Zarathustra against 213 real, live URLs of banking web-

sites and 56 distinct samples of ZeuS show that, in all the cases, our sys-

tem detected all the injections correctly. The false positives (about 1%) were

caused by legitimate differences in the original web pages. We have devel-

oped specific heuristics, which can be safely enabled under realistic conditions

that can reduce such false positives to zero. Zarathustra scales well, and can

generate fingerprints for 1 URL in less than 3 seconds on average (the time

required to match the fingerprints is negligible) even on our modest infrastruc-

ture. Furthermore, as fingerprint generation and matching can be performed

independently on samples and URLs, the process is fully parallelizable and

scales directly with the available resources.

We believe that the approach implemented in Zarathustra, that is the ob-

servation of differences in clean vs. infected machines, can be applied to other

data that the information stealers need to manipulate. Although simple, our

approach has the great advantage of being completely agnostic with respect to

the source of the differences: as long as the manipulated data is observable, our

approach can be generalized to create further “difference modeling” techniques

83

84 CHAPTER 5. CONCLUSIONS

that can be used to characterize the activity of an information stealer from

other observation points.

5.1 Limitations

Our current implementation of Zarathustra assumes that the banking website

is an oracle. For reasons that fall outside our attacker model (e.g. client-

side malware), an injection may match exactly with a benign difference. For

example, this happens if the banking website is updated with a new form input

that has the very same DOM representation of an injection. Not only this is

very unlikely to happen, it is also very easy to remedy, by leveraging feedback

from the bank whenever their site is updated, or possibly by requesting an

update of the fingerprints for that domain. It is indeed reasonable to imagine

Zarathustra deployed within a bank information system: this use case would

erase most, if not all, the venues for false positives as a full up-to-date model

of the clean website would always be available.

Another obstacle that Zarathustra has to face are evasion mechanisms em-

ployed by the malware to fool dynamic analysis. However, we do not rely on

debugging or introspection tools, against which modern malware adopt spe-

cific countermeasures (e.g. refusing to execute). We rely on virtual machines

solely for ease of implementation and flexibility during evaluation: Zarathustra

works perfectly, and even faster, on bare metal. Hence, this obstacle is easily

circumvented by adopting the method proposed by [13] to obtain a virtual-

machine-equivalent snapshots on physical hardware. In this way, no malware

can possibly recognize that it is running in a controlled environment.

5.2 Future work

As described in Kharouni [12], some attackers are shifting toward more ad-

vanced uses of WebInjects, operating more subtle changes, which do not result

in user-visible DOM modifications. Although some of these usages can be di-

rectly detected using the approach described in this paper, some interact at a

lower level with the libraries of the malware, resulting in advanced manipula-

tions of the HTTP requests to divert monetary transactions to a bank account

under the attacker’s control. The respective HTTP responses (e.g. page that

confirms the result of a transaction), and all the subsequent interactions with

the banking website, are also modified such that the true recipient of mali-

cious wire transfers is masqueraded (e.g. replaced with the intended recipient’s

name). This threat will require modifications to Zarathustra, because the in-

5.2. FUTURE WORK 85

jections may occur in pure text nodes. Thus, the set of heuristics will need to

be refined to cope with these corner cases.

In Zarathustra we showed that the DOM is a simple yet effective observation

point. However, we believe that other aspects of the browser behavior can be

observed and compared on infected vs. clean clients, to assess whether the

information stealers cause side effects in the browser that can be used as a

detection criteria.

Bibliography

[1] Cyber Banking Fraud. Global Partnerships Lead to Major Arrests, Jan-

uary 2010. URL http://www.fbi.gov/news/stories/2010/october/

cyber-banking-fraud.

[2] Banking trojans: Understanding their impact and how to defend

your institution against trojan-aided fraud. Technical report,

Symantec Corporation, 2011. URL https://www4.symantec.com/

mktginfo/whitepaper/user_authentication/21195180_WP_GA_

BankingTrojansImpactandDefendAgainstTrojanFraud_062611.pdf.

[3] Reversal and Analysis of Zeus and SpyEye Banking Trojans. Technical

report, IOActive, 2012.

[4] State and trends of the “russian” digital crime market 2011. Techni-

cal report, Group IB, 2012. URL http://group-ib.com/images/media/

Group-IB_Report_2011_ENG.pdf.

[5] H Binsalleeh, T Ormerod, A Boukhtouta, P Sinha, A Youssef, M Debbabi,

and L Wang. On the analysis of the zeus botnet crimeware toolkit. In

Privacy Security and Trust, pages 31–38. IEEE, 2010.

[6] A Buescher, F Leder, and T Siebert. Banksafe information stealer de-

tection inside the web browser. In RAID ’11, pages 262–280. Springer,

2011.

[7] Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens Kol-

bitsch, Christopher Kruegel, Stefano Security Zanero, and Privacy SP

2010 IEEE Symposium on. Identifying Dormant Functionality in Mal-

ware Programs. Security and Privacy (SP), 2010 IEEE Symposium on,

2010.

[8] Nicolas Falliere and Eric Chien. Zeus: King of the bots. Technical report,

Symantec Corporation, 2009.

87

88 BIBLIOGRAPHY

[9] Max Goncharov. Russian underground 101. Technical report,

Trend Micro Inc., 2012. URL http://www.trendmicro.com/

cloud-content/us/pdfs/security-intelligence/white-papers/

wp-russian-underground-101.pdf.

[10] C Grier, L Ballard, J Caballero, N Chachra, C J Dietrich, K Levchenko,

P Mavrommatis, D McCoy, A Nappa, and A Pitsillidis. Manufacturing

Compromise: The Emergence of Exploit-as-a-Service. In ACM conference

on Computer and Communications Security, 2012.

[11] Mario Heiderich, Tilman Frosch, and Thorsten Holz. Iceshield: Detection

and mitigation of malicious websites with a frozen dom. In RAID ’11,

pages 281–300. Springer, 2011.

[12] Loucif Kharouni. Automating Online Banking Fraud. Technical report,

Trend Micro Incorporated, 2012.

[13] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. BareBox: effi-

cient malware analysis on bare-metal. In ACSAC ’11: Proceedings of the

27th Annual Computer Security Applications Conference. ACM Request

Permissions, December 2011.

[14] Amit Klein. Citadel Trojan Targets Airport Employees with

VPN Attack, August 2012. URL http://www.trusteer.com/blog/

citadel-trojan-targets-airport-employees-with-vpn-attack.

[15] Brian Krebs. SpyEye Targets Opera, Google Chrome Users,

April 2011. URL http://krebsonsecurity.com/2011/04/

spyeye-targets-opera-google-chrome-users/.

[16] Brian Krebs. Police Arrest Alleged ZeuS Botmaster ”bx1”,

January 2013. URL http://krebsonsecurity.com/2013/01/

police-arrest-alleged-zeus-botmaster-bx1/.

[17] Martina Lindorfer, Alessandro Di Federico, Paolo Milani Comparetti, Fed-

erico Maggi, and Stefano Zanero. Lines of Malicious Code: Insights Into

the Malicious Software Industry. In Annual Computer Security Applica-

tions Conference, October 2012.

[18] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni

Vigna. Protecting a Moving Target: Addressing Web Application Con-

cept Drift. In International Symposium on Recent Advances in Intrusion

Detection. Springer-Verlag, October 2009.

BIBLIOGRAPHY 89

[19] Louis Marinos and Andreas Sfakianakis. ENISA Threat Landscape. Tech-

nical report, ENISA, September 2012.

[20] Tyler Moore and Richard Clayton. Examining the impact of website take-

down on phishing. In the anti-phishing working groups 2nd annual eCrime

researchers summit, pages 1–13, New York, New York, USA, 2007. ACM

Press.

[21] T Ormerod. An Analysis of a Botnet Toolkit and a Framework for a

Defamation Attack. 2012.

[22] M Riccardi, R Di Pietro, and J A Vila. Taming Zeus by leveraging its

own crypto internals. In eCrime Researchers Summit, 2011.

[23] Sergei Shevchenko. Config decryptor for zeus 2.0. Technical report,

ThreatExpert, 2010. URL http://blog.threatexpert.com/2010/05/

config-decryptor-for-zeus-20.html.

[24] Aditya K Sood, Richard J Enbody, and Rohit Bansal. Dissecting Spy-

Eye – Understanding the design of third generation botnets. Computer

Networks, August 2012.

[25] Kevin Stevens and Don Jackson. Zeus banking trojan report. Technical

report, Dell SecureWorks Counter Threat Unit, 2010. URL http://www.

secureworks.com/cyber-threat-intelligence/threats/zeus/.

[26] James Wyke. What is Zeus? Technical report, SophosLabs UK, 2011.

