
POLITECNICO DI MILANO
Corso di Laurea MAGISTRALE in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

CASTLE:
Map Generation and Navigation

Relatore: Prof. Pier Luca Lanzi

Tesi di Laurea di:

Faverio Luca, matricola 771462

Anno Accademico 2011-2012

Ringraziamenti

Ringraziamenti

Vorrei ringraziare il prof. Pier Luca Lanzi per la disponibilitá e
l’aiuto fornito durante lo svolgimento del lavoro di tesi. Desidero
inoltre ringraziare la prof.ssa Manuela Cantoia per averci dato la
possibilitá di sviluppare il video game CASTLE. Grazie inoltre ad
Alessandro e Valentina per averci fornito gli indovinelli e i quiz
presenti nel gioco. Vorrei inoltre ringraziare Davide e Roberto
per i 5 anni passati assieme e per i pomeriggi passati a lavorare a
questa tesi. Grazie anche alla mia famiglia e a tutti i miei amici
per avermi sempre sostenuto in questi anni.

Contents

1 Introduction 1

1.1 Procedural Content Generation and Video Games . 2
1.2 Path-finding and A* Search 3
1.3 CASTLE . 4

2 CASTLE 5

2.1 Gameplay . 6
2.2 Quiz Types . 8

3 State of the Art 11

3.1 Procedural Content Generation 11
3.1.1 Binary Space Partitioning for Dungeon Gen-

eration . 13
3.1.2 Cellular Automata for Cave-Like Structure 14
3.1.3 Lindenmayer System for Plant Generation . 16
3.1.4 Perlin Noise for Texture Creation 17
3.1.5 PCG in Commercial Application 18

3.2 The A* algorithm 20
3.2.1 Tree Search Strategy 20
3.2.2 Breadth First Algorithm 22

i

CONTENTS ii

3.2.3 Depth First Algorithm 22
3.2.4 A* Algorithm 25

4 Implementation 27

4.1 The Cocos2d-x Framework 27
4.1.1 Framework Description and Features 28

4.2 CASTLE Implementation 32
4.2.1 Map Generation 32
4.2.2 Furniture and Quiz 34
4.2.3 Player Movements with A* 35

5 Conclusion 40

5.1 PCG: Evaluation 40
5.2 A* Search: Evaluation 41
5.3 Further Works . 41

Bibliography 42

List of Figures

2.1 World Map . 6
2.2 Reward Screen and Treasure Chest 7
2.3 Different Types of Quizzes 9
2.4 Different Types of Quizzes 10

3.1 BSP Iteration . 13
3.2 BSP Final result 14
3.3 Cellular Automata: initial state and final result . . 15
3.4 L-System example: 16
3.5 Perlin noise: Effects generation 17
3.6 Perlin noise: Height map generation 17

4.1 Cocos2d-x Logo 27
4.2 Cocos2d-x Architecture 28
4.3 An example of scene work-flow 30
4.4 Two Different Maps generated by the Algorithm . 33
4.5 Different Room Furniture 34
4.6 Triangle inequality 37

iii

Abstract

Procedural Content Generation (PCG) is a promising field for the
design, art and production of video games, allowing real-time gen-
eration of game contents instead of relying on pre-generated ones.
In this thesis, we will discuss our implementation of a procedural
generation method for 2D maps and a navigation algorithm based
on A*. The map generator is structured in two phases: the first
one deals with the map layout while the second one with object
placement. Both algorithms have been implemented in the video
game CASTLE, a game developed in collaboration with Univer-
sitá Cattolica del Sacro Cuore di Milano to support research about
lateral thinking.

iv

Sommario

La Generazione Procedurale dei Contenuti (PCG) é un campo
promettente per il design, la grafica e la produzione dei video-
giochi, permettendo la generazione in tempo reale di contenuti, al
posto di utilizzarne di pre-generati. In questa tesi, discuteremo
l’implementazione di un metodo per la generazione procedurale di
mappe 2D e di un algoritmo di navigazione basato sul metodo di
ricerca A*. Il generatore di mappe é strutturato in due fasi: la
prima si occupa del layout della mappa mentre la seconda della
disposizione degli oggetti al suo interno. Entrambi gli algoritmi
son stati implementati nel videogioco CASTLE, un gioco svilup-
pato in collaborazione con l’Universitá Cattolica del Sacro Cuore
di Milano con l’obbiettivo di supportare la ricerca sul pensiero
laterale.

v

Chapter 1

Introduction

After the release of iOS in 2007 and Android a year later, the
mobile game market is continuously growing in the last few years.
8 billion dollars of the total 56 billion dollars earned from mobile
application came from the games sector. In both AppStore and
Google Play, in 2011 [2] game is the most successfully category.
The low barrier to enter the market and limited production costs
that a new company has to face are probably the principal causes
of success in the mobile gaming market.CASTLE started from
a proposal of Universitá Cattolica del Sacro Cuore di Milano to
create a game to develop lateral thinking in players through dif-
ferent types of puzzles. The game has been developed in about six
month using the Cocos2d-x framework and then play-tested with
students. This thesis discuss the procedural generation of maps
and the navigation of the player in the video game CASTLE.

1

Chapter 1. Introduction 2

1.1 Procedural Content Generation and Video

Games

Procedural Content Generation1 (PCG) consists of ad-hoc algo-
rithms to create different types of content. PCG can create every
kind of video game content in a faster way, automatically gener-
ating it in real-time. Procedural generation methods have been
applied in every field, from graphics [3] and level design [6][9], to
music[4] or models and character animation[13]. PCG is a promis-
ing field for video games industry. In the ’80s, PCG was used for
the distribution of large quantity of content in a very little space,
because it was necessary to save on disk only the algorithm pa-
rameters. For example Elite2 (dated 1984) offers the player over
2000 different planets to explore in a floppy-disk size. Today video
games use PCG to produce large amount of content which can’t
be simply pre-generated by a designer, saving time during the
development phase. It is the case of the creatures in Spore 3 or
the weapons in Borderlands 4. Our goal in CASTLE is to offer
different content to the player at each new game. Being an explo-
ration game, different level means an higher replay value. Since
was practically impossible for us to provide such a large amount
of different maps, we have implemented an algorithm composed
by two different methods. In CASTLE a map is composed by
rooms arranged in different layouts. The first method deals with

1pcg.wikidot.com
2www.iancgbell.clara.net/elite/
3www.spore.com
4www.borderlandsthegame.com

Chapter 1. Introduction 3

the generation of the layout of the level while the second with the
placement of objects inside rooms.

1.2 Path-finding and A* Search

Path-finding is a critical problem for many application, including
video games. Given a map, path-finding objective is to calculate
the best cost to travel from one point to another. To achieve this,a
grid is superimposed over a region and graph search algorithms
are used. One of the most used is A*[14]. First described in 1968
by Hart, Nilsson and Raphael it is an algorithm used to navigate
graph in a more efficient way using a heuristic function. Firstly
used for mobile robot navigation[10], it has been used for unit
path-finding in video games, especially in strategy games, only in
recent years[16]. In our game we needed a way to navigate rooms,
from a starting point to a goal point, in an efficient way as well as
taking into account obstacles. A* is the most suited algorithm for
this task. The heuristic function makes the A* performs better
than a standard tree search, while ensuring the optimality of the
solution. In our case the Manhattan distance has been chosen
considering the matrix representation of the room.

Chapter 1. Introduction 4

1.3 CASTLE

CASTLE is a 2D multi-platform, dungeon crawling video game de-
veloped with Cocos2d-x in collaboration with Universitá Cattolica
del Sacro Cuore di Milano. Maps are generated through procedu-
ral methods and navigation through A*. The goal of the project
is to support research about lateral thinking. A mechanism for
sessions recording has been implemented to provide information
about how video game can train lateral thinking and how different
platform can effect players performance.

Chapter 2

CASTLE

Creative Activities Strengthening Thoughtful Lateral Experiences
(CASTLE) is a 2D multi-platform video game developed for a
mid-school audience in association with Universitá Cattolica del
Sacro Cuore. It aims to provide a tool to research lateral think-
ing, i.e. the ability to solve problems through an indirect and
creative approach. CASTLE is a dungeon-crawling video game,
but instead of battling monsters the player is called to solve differ-
ent types of quizzes to obtain access to new areas and challenges.
Our hero is a student who is called by the king of a realm, cursed
by an evil sorcerer, which has left all of its inhabitants without
creativity. Our task is to defeat the sorcerer solving the quizzes
on our path.

5

Chapter 2. CASTLE 6

2.1 Gameplay

When the game start the player is taken to the main menu, where
can choose to start a new game, load a saved one or change the
game options. When starting a new game the player has to pro-
vide his name and sex, after that the world map is shown, as in
Figure 2.1. From here we can decide from which castle our ad-
venture will start. There are four castles: Three of them consist
of twenty-five rooms and are available from the beginning while
the forth castle consists of five rooms, is available only after the
player collects all the letters needed to compose the key for it.
During our adventure we will encounter different types of quizzes,

Figure 2.1: World Map

divided in three main categories: verbal,visual and spatial quizzes.
In verbal quizzes the layer is asked to answer a question, like in a
riddle. Visual quizzes require interaction with an image to find a

Chapter 2. CASTLE 7

(a) Reward Screen (b) Treasure Chest

Figure 2.2: Reward Screen and Treasure Chest

solution. In the last case, the player has to rearrange objects in a
target structure. Reward for solving quizzes is a certain amount of
"creativity" based on how many hints have been used for solving
it. Quizzes may give keys as reward, which can open closed areas
or treasure chest scattered around the castles. Figure 2.2a shows
the reward screen when a key is obtained, while Figure 2.2b one
of the treasure chest. It is not necessary to solve all the quizzes,
only a part of them are required to proceed with the story.

Chapter 2. CASTLE 8

2.2 Quiz Types

There are seven types of quizzes in CASTLE: riddle, associations,
sequence, detail ,ambiguous image, find it and matchstick.

RIDDLE

The player has to provide an unique answer to it. For each riddle
the player has three attempts. Once finished the quiz cannot
be tried again. The player can also receiving hints using the hint
button. The number of hints depend on the length of the solution.

ASSOCIATION

Similar to the riddle, instead of a sentence we have three words
and we have to guess what word connect them like in Figure 2.3b.
Hint and attempts rule are the same as the riddle.

SEQUENCE

In this type of quiz the player has to guess the solution starting
from a short description of it (Figure 2.3c). If the player fails
another sentence will appear, but the creativity gained is lower.
If the player fails five times the quiz cannot be tried again.

Chapter 2. CASTLE 9

(a) Riddle (b) Association (c) Sequence

Figure 2.3: Different Types of Quizzes

DETAIL

A detail of an object is show and the player has to guess what it is
(Figure 2.4a). If he fails, another one will appear and creativity is
scaled down. After three attempts the quiz cannot be tried again.

AMBIGUOUS IMAGE

Ambiguous image are optical illusion which exploit graphical sim-
ilarities to generate an image being able to provide different, but
stable perception, as in Figure 2.4b. One of the most famous is
Rubin’s Vase. An ambiguous image is shown and the player has
to find the two possible interpretation of it. There are no limit of
attempts in this quiz.

FIND IT

The player has to find all occurrences of a specific object in an
image full of other objects. Figure 2.4c is an example of it. There
are no hint and the player has unlimited attempts, but after a
certain amount of tries the quiz start over.

Chapter 2. CASTLE 10

(a) Detail (b) Ambiguous Image

(c) Find It (d) Matchstick

Figure 2.4: Different Types of Quizzes

MATCHSTICK

Matchstick puzzles implies the re-organization of the initial con-
figuration in one of a different type, moving a fixed number of
sticks. Tries are unlimited but there are no hint. It is also possi-
ble to reset the quiz to the initial configuration. Figure 2.4d show
a possible starting position.

Chapter 3

State of the Art

In this chapter, we overview Procedural Content Generation and
A*.

3.1 Procedural Content Generation

In this chapter we will talk about Procedural content generation
(PCG). Because it can be achieved in different ways and consid-
ering the amplitude of the topic, we will only see some example
of algorithm actually used for generation of different contents.
Procedural content generation refers to the programmatic gener-
ation of content using random or pseudo-random (random func-
tion initialized with a seed) algorithm rather than create them
manually. This results in an unpredictable range of content auto-
matically generated directly by the software. PCG is often used in
video game industry: with it different types of game assets (maps,
textures, sounds, models, animations, etc.) can be created in a
quicker way. PCG has also two more benefits for game developer:

11

Chapter 3. State of The Art 12

it allows the game to react to player choices in real-time in ways
otherwise impossible and allows the developer to reduce the space
on disk for contents, generating them real-time.

Chapter 3. State of The Art 13

3.1.1 Binary Space Partitioning for Dungeon Genera-

tion

This algorithm generates dungeons (maps composed by room con-
nected by corridors) using the Binary Space Partitioning method[17].
Binary Space Partitioning (BSP) is a method studied for recur-
sively subdividing a space into convex sets using hyperplanes.
This subdivision is usually represented by a tree structure known
as BSP tree. For our dungeon generation we start with a maps
filled with only wall cells. First we choose a random starting point
and a random direction for splitting, then, using BSP, the map
is split in several different sub-rooms (still filled with wall cells).
Our dungeon is saved in a BSP tree and each room is in a leaf
of the tree. Figure 3.1 shows the first two iterations of a BSP
algorithm: For each iteration the generated dungeon is on the left
and his tree representation on the right.

Figure 3.1: BSP Iteration

When the split is complete we start to carve a room in each
leaf of the tree. For corridor generation we simply connect each
leaf of the tree (our room) to her sisters, then, we do the same
recursively for each parent node. When the root is reached, all

Chapter 3. State of The Art 14

rooms will be connected to each other.

Figure 3.2: BSP Final result

Figure 3.2 shows the final result: on the left, all rooms have
been created from the tree leafs. On the right, rooms have been
connected and the dungeon is finally completed.

3.1.2 Cellular Automata for Cave-Like Structure

Another example of PCG algorithm used for generating maps is
Cellular Automata[5] which can be used for generating cave-like
structure[7]. Cellular Automata consists of a grid of cells each
in one of a finite number of states (e.g. on and off). For each
cell we define his cell’s neighbourhood (usually it includes the cell
itself) and a function for change its state based on the state of
the neighbourhood. In the beginning the grid is initialized as-
signing a state to every cell. For each iteration, the state of cells
is calculated based on the function and on his neighbourhood.
Usually the update function is unique and is applied to all cells
at the same time. Common 2D cellular automata examples are

Chapter 3. State of The Art 15

Conway’s Game of Life1 and Wireworld 2. Both are Zero-player
games, meaning that the evolution of the system requires no other
input other than the initial state. Cellular automata can be used
in PCG for generating cave-like structure. Starting from a grid
in which cells can either be a wall or empty space the algorithm
evolves using the following rule: for each cell consider a 3x3 ma-
trix centred on it. If the region contains at least 5 walls the cell
will become a wall itself, otherwise it will be empty space. Each
iteration makes the cells more like their neighbours and reduce the
overall noise. Figure 3.3 shows an example of a random starting
state and the final result. The rule can be tuned and changed for
generate more realistic and appealing maps.

Figure 3.3: Cellular Automata: initial state and final result

1en.wikipedia.org/wiki/Conway’s_Game_of_Life
2en.wikipedia.org/wiki/Wireworld

Chapter 3. State of The Art 16

Figure 3.4: L-System example:
Variables: X F
Costants: +− []
Start: X
Rules:
(X → F−[[X]+X]+F [+FX]−X),
(F → FF)
Where + means turn right 25◦, -
turn left 25◦, F draw forward, X con-
trol the evolution of the system and
[] respectively save and load a state.

3.1.3 Lindenmayer System for Plant Generation

L-System (Lindenmayer system, from the name of its inventor,
the biologist Aristid Lindenmayer)[11] is a variant of a formal
grammar composed by an alphabet, a collection of production
rules, used to expand symbols into strings or other symbols, a
starting axioms and a function to translate the generate string into
a geometrical structure. Starting from the axioms the grammar
rules are applied recursively, applying the maximum numbers of
rules in the same iteration. This is the main difference between
an L-system and a formal grammar: applying only one rule at
iteration generate a language, not an L-System. L-Systems are
widely used for generating plants and tree in a procedural way
or to simulate their growth in a more realistic way. Thanks to
its recursive nature which leads to self-similarity, fractal can also
easily be described with an L-system. Figure 3.4 shows a plant
generated by an L-System and its mathematical description

Chapter 3. State of The Art 17

3.1.4 Perlin Noise for Texture Creation

Perlin noise[12] gets his name from his creator Dr. Ken Perlin.
The basic idea behind the Perlin noise is very simple: first we
generate a number of arrays, called octave, each one containing a
coherent noise (a noise without discontinuities). The noise is usu-
ally obtained from the linear interpolation of the points derived by
a seeded random number generator. Then all octaves are blended
together, generating the final image. The main application of Per-
lin noise is textures for natural effects like smoke, fire, water or
clouds. Figure 3.5 shows an example of it. It is also used for dif-
ferent task like generation of height maps for mesh generation(e.g.
Figure 3.6) or objects placement on a grid.

Figure 3.5: Perlin noise: Effects generation

Figure 3.6: Perlin noise: Height map generation

Chapter 3. State of The Art 18

3.1.5 PCG in Commercial Application

PCG have a lot of success in the video game industry allowing de-
velopers to produce a big amount of contents in a very short time.
One of the first video game using PCG is Rougue! 3 dated 1980.
This ASCII video game dynamically generated dungeon later pop-
ulated with pre-created potions, weapons and enemies. During
the years many other games followed the approach of Rougue!,
probably the most famous is Blizzard’s Diablo 4 series which have
pseudo-random generated dungeons. Other examples are: Dun-
geon Siege I 5 and its sequel 6, Angband7, Moria8 and all the
games which fell onto the classification of rougue-like. More re-
cently Edmund Mcmillen’s The Binding of Isaac9, a 2D- dungeon
crawling game, shows use of PCG for almost every aspect of the
game, from the generation of maps to the placement of items, en-
emies and bonuses. PCG is not only limited at the generation of
dungeons but can be used for generating a whole world or even
planets like Electronics Arts Starfligth10 (1986) or Ian Bell and
David Braben Elite 11, two space-exploring game where each space
system and planet is generated through PCG.

3wikipedia.org/wiki/Rogue_(video_game)
4us.blizzard.com/en-us/games/d2/
5www.microsoft.com/games/dungeonsiege/
6www.gaspowered.com/ds2/
7en.wikipedia.org/wiki/Angband_(video_game)
8en.wikipedia.org/wiki/Moria_(video_game)
9en.wikipedia.org/wiki/The_Binding_of_Isaac_(video_game)

10en.wikipedia.org/wiki/Starflight
11www.iancgbell.clara.net/elite/

Chapter 3. State of The Art 19

More recent games like Just Cause12 and Borderlands13 uses PCG
to generate the whole map and, in Borderlands, every weapons in
the game. Not only games use PCG but exist also frameworks
based on it. SpeedTree14 is one of the most famous for procedural
generation and placement of plants. It is currently being used in
more than 70 AAA games.

12www.justcause.com
13www.borderlandsthegame.com
14www.speedtree.com

Chapter 3. State of The Art 20

3.2 The A* algorithm

In this chapter we describe the A* algorithm. A* is an algo-
rithm widely used for path-finding or graph/tree search. Unlike
similar algorithm, A* reaches better performance using a heuris-
tic function.In this way is able to calculate a path faster than
other uninformed strategy approaches like Breadth first or Depth
first. Before considering A* we have to understand how search
strategies, like Breadth First or Depth First, work and then the
improvement made by A* to this algorithms.

3.2.1 Tree Search Strategy

To create a search strategy first we need a model to define our
problem. In Artificial Intelligent field one of the most common
is the state space meta-model. In a more formal way, the state
space meta-model is defined by:

• S = 〈s′, s′′, . . . , sn〉 the non-empty set of states.

• A = 〈′, a′′, . . . , an〉 the non-empty set of actions.

• is_applicable(s,a) a binary function stating if action a is
applicable in state s.

• result(s,a)= s′ a function which return the result state s′

given a state s and an applicable action a.

• cost(s,a,s’)a non-negative function stating the cost of tak-
ing action a in state s to go in state s′.

Chapter 3. State of The Art 21

to formalize a problem we also need to define:

• s0 ∈ S The initial state

• G ⊆ S the subset of goal states.

Starting from these definitions, every search strategy to work need
to build a search tree where every node represent a state s ∈ S.
The root of the tree is the starting state s0 while the goal states
G are in the leaves of the tree. Connections between nodes rep-
resent the actions A and are generated using the is_applicable
and result functions.
A Search strategy can be a tree or a graph search, can be parallel
or sequential and can be informed or uninformed. In a Tree search
the algorithms does not check if the state represented by the node
as already been processed instead, in a graph search, this check
is done and appropriate actions are made. A parallel strategy
carry on the search in all possible directions, while a sequential
one only follows one direction and resume the search along other
directions only when it is required. Every strategy must have ac-
cess at least at the description of the problem. If it does not rely
on other information then is an uninformed strategy otherwise is
called informed. The informations available to an informed strat-
egy are not used to optimize the solution itself but for optimizing
the process of finding a solution. Breadth First and Depth First
Algorithm where both used for tree/graph search but, unlike A*,
they both lack of an Heuristic function

Chapter 3. State of The Art 22

3.2.2 Breadth First Algorithm

A Breadth first strategy (BF Strategy) generates all node at level
K before generates node at level K + 1. It is a parallel unin-
formed strategy and can be implemented for both graph and tree
search.The breadth first algorithm is complete because any solu-
tion has some finite length d thus, the solution will be discovered
when the algorithm expands the level d. Breadth first is also op-
timal for uniform cost problems. Optimal solution is the shortest
one and breadth first return always the shortest solution. This is
not true if the actions cost are not identical. The uniform cost
strategy (UC strategy) is a modification of the BF which is opti-
mal even if the costs are not identical. To obtain this result UC
expand node not based on the level (like BF) but based on the
sum of cost of the action from the root to the node, in a non-
decreasing order. In this way the first solution returned by the
algorithm is the optimal one. If the costs are identical the UC
produces the same tree of the BF.

3.2.3 Depth First Algorithm

A Depth First strategy (DF Strategy) expands the most recently
generated node first. This strategy is uninformed, sequential and,
like BF, can be implemented for both graph and tree search. This
strategy is complete because if the tree has no infinite branches it
has a maximum length m and so the solution will always be dis-
covered. Unlike BF, DF is not optimal. There are no guarantees
that the first solution found is the optimal one, even if the costs

Chapter 3. State of The Art 23

are uniform.

Algorithm 1 Tree Search Algorithm
1: function treeSearch(s0, A,G)
2: frontier . Initially empty queue
3: node . Node representing the current state
4: solution . Set of Actions representing the solution
5: frontier.push(s0)
6: loop
7: if isEmpty(frontier) then return Failure
8: end if
9: node← frontier.pop()
10: if node ∈ G then return solution
11: end if
12: frontier.push(expandNode(node, A))
13: end loop
14: end function
15: function ExpandNode(node, A)
16: for all a ∈ A do
17: if a⇒ isApplicable(node) then
18: newNode← newnode()
19: succesorList.push(newNode)
20: end if
21: end for
22: return successorList
23: end function

Chapter 3. State of The Art 24

Algorithm 2 Graph Search Algorithm
1: function graphSearch(s0, A,G)
2: frontier . Initially empty queue
3: node . Node representing the current state
4: solution . Set of Actions representing the solution
5: explored . Set of states alredy visited
6: frontier.push(s0)
7: loop
8: if isEmpty(frontier) then return Failure
9: end if
10: node← frontier.pop()
11: explored.add(node)
12: if node ∈ G then return solution
13: end if
14: frontier.push(expandNode(node, A, explored))
15: end loop
16: end function
17: function ExpandNode(node, A, explored)
18: for all a ∈ A do
19: if a⇒ isApplicable(node) then
20: newNode← newnode()
21: if newNode /∈ explored then
22: succesorList.push(newNode)
23: end if
24: end if
25: end for
26: return successorList
27: end function

Algorithm 1 and algorithm 2 show a possible implementation
of a tree search and a graph search strategy. They can be used
for both BF and DF algorithm, changing how the frontier queue
works: FIFO for BF and LIFO for DF.

Chapter 3. State of The Art 25

3.2.4 A* Algorithm

A* is a variant of UC where the total cost is not only the sum
from the root to the current node, but also the estimation of the
cost from the current node to the goal. Defining the function g(n)

as the total cost from the root node to the current node, we can
express the UC total cost of current node as:
UC Total Cost = g(n)

For A* instead, we consider a bit different cost function:
A* Total cost = g(n) + h(n)

where h(n) is an heuristic function, representing the total cost
from current node to goal node and must be defined based on the
current problem. Because is practically impossible to obtain such
function h(n), an estimation h(n)′ of it is usually used. The new
total cost is:
A* Total cost = g(n) + h(n)′

The algorithm execution is identical to the UC (if h(n)′ is equal
to 0 we obtain the UC algorithm) excepts the values are ordinate
for non-decreasing costs.

A* Optimality

For A* to be optimal we have to consider an admissible heuristic,
namely that never overestimate the cost to reach the goal. So,
the following condition must be satisfied: h(n)′ ≤ h(n). Another
condition needed for graph search is monotonicity. The cost h(n)′

must not be greater than the cost from n to n′ (where n′ is a
successor of n) plus h(n′)′:

Chapter 3. State of The Art 26

h(n)′ ≤ cost(n, n′) + h(n′)′

This two conditions guarantee the optimality of A*.

A* in Commercial Application

A* is first described in 1968[10] when N. Nilsson suggest an heuris-
tic approach for the path-finding algorithm for Shakey the Robot.
Successive improvement made by B. Raphael and P.E. Hart lead
to the current version of A*. Today A* and its dynamic version
D*[15](which behaves like A*, but the cost on the arc can change
during the executions of the algorithm) are still widely used for
path-finding, especially with grid-based maps. Some relevant ex-
ample of A* applications came from video games industry, espe-
cially from strategy games, where it is used to calculate the path
of units around the battlefield. Age of Empires 15 uses a square
grid to represent the map currently played and an implementation
of A* for units movement. Despite theoretically perfect the path
generated was not always the best one and sometimes units get
stuck in obstacles, like forest, during their journey. Even more re-
cent implementation suffers the same problems like in Civilization
V 16 (which uses a Hexagonal grid instead of a square one). An-
other relevant application is path-finding for mobile robotic unit
which can uses A* or its modification for path-finding in discov-
ered maps or partially known environment[8].

15www.ageofempires.com
16www.civilization5.com/

Chapter 4

Implementation

In this chapter, we describe the detail of the implementation of
A* and Procedural generation of contents algorithms.

4.1 The Cocos2d-x Framework

Figure 4.1: Cocos2d-x Logo

Cocos2d-x is a cross-platform open source 2D game engine. It is
written in C++ and based on the Cocos2d framework for iPhone.
Cocos family includes a lot of different branches, supporting a
large number of platforms.

27

Chapter 4. Map Generation and Navigation 28

4.1.1 Framework Description and Features

We decided to develop our game using Cocos2d-x mainly for the
great number of platform which supports, from Windows to iOS,
allowing us to develop the game on a platform (e.g. Windows with
Visual Studio) and with little or no modification have it running
on a portable device (e.g. an iPad passing through MacOSX and
Xcode) second, Cocos2d-x is specifically designed for creating 2D
video games with specific and useful features for this job. Figure
4.2 shows the Cocos2d-x architecture. Cocos2d-x framework is a
middle-ware which uses a set of module, each one with a specific
function, to provide the developer with a single API on different
operating systems.

Figure 4.2: Cocos2d-x Architecture

Two-Phases Constructor and Memory management

Cocos2d-x uses two phases constructor in a way similar to Objective-
C, Symbian and Bada SDK. The process consist in two phases:

Chapter 4. Map Generation and Navigation 29

in the first phase the standard C++ constructor is called: in it
there are no programming logic but only variable initialization.
In the second phase, a function containing the programming logic
is called returning a Boolean value stating the outcome of the
operation. In Cocos2d-x this two function are wrapped in the
static ::create() method which is used for every non singleton
class. For memory management Cocos2d-x uses a reference count
method. Every object contains a counter indicates the number of
references of other objects to it, when this counter reach 0 the ob-
ject is destroyed. Cocos2d-x wrap this method in an auto-release
pool object similar to iOS NSAutorelesePool, so all objects in-
stantiated by Cocos2d-x are auto-released in an automatically way
unless using the retain() function, in this case the object is not
released till a release()function is called.

Scenes and Layers

Cocos2d-x uses a scene approach for managing the program flow.
A Scene is an independent part of the program work-flow, even
if usually a program is composed by different scenes, at a given
time only one can be active as shown in Figure 4.3. A scene is
composed by different layers of the size of the drawable area one
on top of each other; they can be semitransparent allow seeing
the layers behind it. A layer contains sprites and other drawable
objects, furthermore it handles all input requests from the user
and know how to draw itself, so there is no need to call a draw()

function for each layer. Transitions between scenes are managed

Chapter 4. Map Generation and Navigation 30

by a CCDirector a singleton object which knows the current scene
and manage the scene call stack.

Figure 4.3: An example of scene work-flow

Actions

Actions are transformation applied to an Object derived from the
class CCNode. Actions can change scale, rotation, opacity, colour,
etc. of the objects and can be divided in two main groups: In-
tervalAction if the attribute is modified over a time interval or
InstantAction if the object attributes are modified in a single ac-
tion. In Cocos even scenes are subclasses of CCNode so they can
be transformed with actions.

Chapter 4. Map Generation and Navigation 31

Title Maps

In certain type of games, like the one we have developed, the play-
ing area is composed by small rectangular image called Tile. This
procedure is useful to generate large maps with little art resources.
Cocos2d-x support the use of tile for creating Orthogonal/Isomet-
ric/Hexagonal maps; the tilesets (the sets of all image needed to
draw a map) are created with an external program (Tiled) and
saved in .tmx format. Then the framework provides all the func-
tion needed for an easy use of tiled maps inside our application.

Chapter 4. Map Generation and Navigation 32

4.2 CASTLE Implementation

4.2.1 Map Generation

All maps in our application are procedurally generated. Figure
4.4 shows two different maps from the same castle. Each level of
our game is created by the software in an automatic way, except
for some fixed object needed for the plot’s development. In our
game castles can be generated by one of four pre-generated seed or
by a random one. A seed is an alphanumeric string which is used
to initialize a random function. If a random function is initialized
with a seed, then every time we use that function with that seed
the output result is the same. This is particular useful if we want
to reproduce the same map, quiz disposition and furniture across
different game sessions. From a logical point of view the map is
an acyclic graph, limited by a maximum number of rooms. Each
node of the graph represent a room which can have a maximum
of 4 connections with other nodes, except for the root node which
can have a maximum of 3 connections. One side of the root node
is always used for the entrance door which brings the player to the
world map. The map is enclosed in a boolean matrix structure
which limits his expansion in the vertical and horizontal directions
as well as helps us to identify the room position on the screen
when drawing the map. Starting from a root node with a pseudo-
random choice we create a new room in one of the four possible
cardinals directions (north, south, east, west), next we move in
the newly created room and repeat the room creation step. When

Chapter 4. Map Generation and Navigation 33

a room has no expansion slots we move back to the previous room
and call the room creation function, if this has no expansion slots
we move to the previous one and so on. A room has no possible
expansion slots if each new possible rooms falls under one of these
conditions:

(i) Exceed the boundaries of the matrix

(ii) It is adjacent to a room which is not connected to

The algorithm terminates when the maximum number of rooms
has been reached.

Figure 4.4: Two Different Maps generated by the Algorithm

Graph Search

Since the map is represented by a graph we have implemented a
depth-first tree search algorithm to scan it (see Chapter 3.2.3).
It is a recursive implementation, starting from the root node the
algorithm scans each room expanding first the leftmost node if it
is possible. If the room is a leaf then it came back to the previous
room and expands the second node in the list.

Chapter 4. Map Generation and Navigation 34

Figure 4.5: Different Room Furniture

4.2.2 Furniture and Quiz

Furniture and quiz disposition in CASTLE are procedurally gen-
erated too. Once the map is created, we scan it and add furniture
to each room. There is a finite number of furniture divided in dif-
ferent categories (floor furniture, wall furniture, decorations) for
each one, we choose one or more objects and add it to the room.
In Figure 4.5 the different types of furniture can be seen in three
different rooms. The choice is based on the random function, ini-
tialized with a seed. Between different categories some constrains
may applied, e.g. we cannot add a library in the middle of the
room if a table was already added. Once the room is furnished
the following step is quiz placement. Based on the furniture dis-
position the quizzes are placed in such a way that they can be
always reachable by the player and they do not block the access
to the other rooms. Then, quizzes are chosen randomly from a
pool and loaded in the game through an xml file containing all
possible quizzes.

Chapter 4. Map Generation and Navigation 35

4.2.3 Player Movements with A*

When the player click on a point on the map, the character should
move from its position to the new one following the shortest path
on the map, considering obstacles. In our application, we use A*
to do this. We implemented it following the state of the art algo-
rithm explained in Chapter 3.2. In our case the input parameters
are: the starting position (e.g. the current position of the player
on the map), the goal position (e.g. where we want to send him)
and the matrix representation of the current room.

Grid Representation

Each room of CASTLE is represented by a 8x6 binary matrix data
structure where the blocking object are represented by ones. On
the screen it is composed by 8x6 tile each one of 128x128 pixel
summing up in 1024x768 total resolution. It has been chosen
because it is the native resolution on iPad. Each object rendered
on the screen occupies one or more tiles in the room and can
be blocking or non-blocking for the player. With this type of
representation the player can only move in a discrete way from
square to square (the player can not move itself from the centre
to the edge of a square, but it can only move from the centre to
the centre of another square)

Heuristic Function

Considering our problem and his matrix data structure repre-
sentation, we have chosen the Manhattan distance[1] (or taxicab

Chapter 4. Map Generation and Navigation 36

metric) as heuristic function. The Manhattan distance in an Eu-
clidean Plane is defined as:

f((x1, y1), (x2, y2)) =| x1 − x2 | + | y1 − y2 |

were x1 and y1 are the starting coordinates and x2 and y2 the
final coordinates of the player. As previously described in Chap-
ter 3.2.4, heuristic used by A* must be admissible and monotone
to satisfy optimality. Manhattan distance is admissible since it
calculates the path assuming that the player can go straight to its
goal position ignoring obstacles. Accordingly, the estimated path
can never be greater than the actual path. For demonstration of
consistency we use the "triangle inequality" theorem [18]."triangle
inequality" state that an edge of a triangle can not be greater than
the sum of the remaining edges. We can consider consistency a
form of "triangle inequality". Consider the vertices of a trian-
gle as node in our map and edges the cost function between the
nodes, as shown in figure 4.6. "triangle inequality" holds in taxi-
cab geometry so, we can applied it to our triangle obtaining the
equation: h(start) ≤ cost(start, n) + h(n). This equation is the
same of 3.2.4 so, the consistency condition is satisfied.

Chapter 4. Map Generation and Navigation 37

Figure 4.6: Triangle inequality

Implementation Description

Algorithm 4.1 shows our implementation of A*. Variable aNode

represent the current node which we are considering. List frontier
is an ordered list containing nodes waiting to be expanded. In
the beginning it will only contains the player position (CCPoint
start). List explored contains the states already processed. this
is used to implement the algorithm in his graph search version.
The first step is the expansion of the player position node, through
the graphExpandNode(...) function. When a node is expanded
the algorithm considers all squares near him (only the ones that
can be reached by a single movement, not diagonal.) then, the
available ones, the ones that are not occupied by any object,
are put into the frontier which is sort based on the node total
cost from the lowest to the highest. The sorting is done in the
insertList(...) function. Starting from a node n, the generic
expanded node n′ total cost is:

Chapter 4. Map Generation and Navigation 38

cost(n′) = cost(n) + 1 + f(n′, goal)

where f(n′, goal) is the Manhattan distance from n′ to the goal.
The state of the node is also inserted in the explored list, so the
same state is not processed twice. Since the algorithm expands
always the first node in the frontier it is always the one with the
lowest total cost. The algorithm is repeated until the goal node is
reached or the frontier is empty. When the goal node is reached
the function buildPath(...) computes a list of actions to actu-
ally move the player.

Chapter 4. Map Generation and Navigation 39

Listing 4.1: A* Implementation

1 CCArray *MovementUtilities :: graphSearch(CCPoint goal , int
wallMap[WIDTH][HEIGHT], CCSprite *sprite , CCPoint start)

2 {
3 // Declarations
4 while(! frontier.empty ())
5 {
6 iterations ++;
7

8 aNode = frontier.front();
9 frontier.pop_front ();

10 explored.push_front(aNode ->currentState);
11

12 if(aNode ->currentState.x == goal.x && aNode ->
currentState.y == goal.y)

13 {
14 CCArray *solution = buildPath(aNode ,

iterations , sprite);
15 lastPoint = aNode ->parentNode ->

currentState;
16 return solution;
17 }
18 // Expand current node and sort the frontier

based on the total cost
19 frontier = insertList(graphExpandNode(aNode ,

wallMap , explored), frontier);
20 }
21 return NULL;
22 }

If the path is too long, for performance reason, it is split in two
different sub-path. First the path between the start and a mid-
point is calculated, then from the mid-point to the goal point. The
mid-point is calculated as the midpoint of a line segment starting
in (0, 0) and ending in the goal node.

Chapter 5

Conclusion

In this work, we illustrated our implementation of map generation
and player navigation, in video game CASTLE.

5.1 PCG: Evaluation

The two algorithms for content generation performed well to-
gether, overall maps geometry result appealing to the player while
the room are furnished in a pleasant way, and the quizzes are al-
ways placed in reachable spots. The introduction of a new con-
strain during map generation (a new room cannot be near a room
which is not connected to) helped us to have more branches re-
sulting in more fun to explore maps. Furthermore we can generate
castles with an arbitrary number of rooms or add new furniture to
it simply tuning certain parameters on the algorithms. PCG has
saved us time, speeding up the process of level creation. From a
performance point of view the algorithms are fast enough to gen-
erate 4 castles, for a total of 80 furnished rooms, at the startup

40

Chapter 5. Conclusion 41

with acceptable loading times.

5.2 A* Search: Evaluation

We have found some minor problems during the implementation
of A* especially regarding performance. While normal path were
calculate in an acceptable time, certain pair of start-goal position
yielded to execution times too long to be acceptable. This problem
has been fixed calculating the total length of the path and splitting
it if it was too long. Other problems were found were too many
input were dispatched or permitted goal position was unreachable.
All this problems have been fixed and now the algorithm works
as intended.

5.3 Further Works

Since the game is completed our top priority is to release it to
iTunes marketplace. Our current release works on iPad, so, all test
on this platform have already be made. Subsequently a porting
for other platform like Android or Windows phone 8 is desirable.
Thanks to cocos2d-x the code can be ported easily on different
platform but a new testing phase on different devices must be
done.

Bibliography

[1] M. Barile. Taxicab metric, 2010.

[2] T. Cross. All the world’s a game. The Economist, 2011.

[3] D. Peachey K. Perlin S. Worley D.S. Ebert, F.K. Musgrave.
Texturing and Modeling. A Procedural Approach. Morgan
Kaufmann, third edition, 2002.

[4] A. Farnell. An introduction to procedural audio and its ap-
plication in computer games., 2007.

[5] A. Ilachinski. Cellular Automata: A Discrete Universe.
World Scientific, 2001.

[6] P. L. Lanzi L. Cardamone, D. Loiacono. Interactive evolution
for the procedural generation of tracks in a high-end racing
game, 2011.

[7] J. Togelius L. Johnson, G. N. Yannakakis. Cellular automata
for real-time generation of infinite cave levels, 2010.

[8] P. Muntean. Mobile robot navigation on partially known
maps using the a* algorithm, 2012.

42

Bibliography 43

[9] P. Pasquier N. Sorenson. Towards a generic framework for
automated video game level creation, 2010.

[10] B. Raphael P. E. Hart, N. J. Nilsson. A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transaction of Systems Science and Cybernetics, SSC-4(2),
1968.

[11] A. Lindenmayer P. Prusinkiewicz. The Algorithmic Beauty
of Plants. Springer-Verlag, second edition, 1996.

[12] K. Perlin. Improving noise, 2002.

[13] F. Phillips F. Scheepers S. F. May, W. E. Carlson. Al: A
language for procedural modeling and animation, 2007.

[14] P. Norvig S. Russell. Artificial Intelligence - A Modern Ap-
proach. Prentice-Hall, third edition, 2010.

[15] Anthony Stentz. The focussed d* algorithm for real-time re-
planning. In In Proceedings of the International Joint Con-
ference on Artificial Intelligence, 1995.

[16] Bryan Stout. Smart move: Intelligent path-finding. Game
Developer Magazine, 1996.

[17] C. D. Toth. Binary space partitions: Recent developments,
2005.

[18] E. W. Weisstein. Triangle inequality, 2010.

