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“An idea is like a virus.

Resilient.

Highly contagious.

And even the smallest seed

of an idea can grow.

It can grow to define

or destroy you.”

Cobb - Inception





Abstract

In the last few years, with the rapid proliferation of inexpensive hardware

devices that enable the acquisition of audio-visual data, many types of mul-

timedia digital objects (audio, images and videos) can be readily created,

stored, transmitted, modified and tampered with. In case of legal trials,

proving the authenticity of multimedia evidences, such as pictures or audio

recordings, may be vital.

In order to solve some of these problems, many multimedia forensic de-

tectors have been studied. Typically they rely on the detection of footprints

left by tampering operations. However, a simple yet effective method to

remove these footprints and fool many detectors consists in re-capturing

the multimedia object (e.g., taking a picture of a still image projected on

a screen). For this reason, being able to detect re-capturing is an import-

ant task for a forensic analyst. As it regards re-capture detection, some

algorithms have been proposed for still images and videos. However not

much has been done for audio.

The goal of this work is then to propose a method to identify audio re-

captured tracks, often known as bootlegs. This detector is based on tools

developed and studied in the Multimedia Information Retrieval field, based

on the analysis of audio features.

More specifically, we use classic features together with others derived

from the analysis of bootleg tracks, and we perform a comparison between

different feature selection methods to choose the one that best fits our needs.

In this way we are able to train a classifier using the most significant features.

We validate our system by means of a set of experiments performed on

a dataset that we built to accommodate different bootleg definitions. The

results achieved are promising, showing a high bootleg detection accuracy.
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Sommario

Negli ultimi anni, con la rapida proliferazione di dispositivi hardware a basso

costo che consentono l’acquisizione di dati audiovisivi, molti tipi di contenuti

digitali multimediali (audio, immagini e video) possono essere facilmente

creati, memorizzati, trasmessi, modificati e alterati. In caso di studi legali,

dimostrare l’autenticità di prove multimediali, come immagini o registrazioni

audio, può essere di vitale importanza.

Per risolvere alcuni di questi problemi, sono stati studiati alcuni de-

tector multimediali forensi. Si basano tipicamente sul rilevamento di im-

pronte lasciate dalle operazioni di manomissione. Tuttavia, un metodo sem-

plice ma efficace per rimuovere queste impronte e quindi ingannare molti

detector, consiste nel ricatturare nuovamente l’oggetto multimediale (ad es-

empio, scattare una foto di un fermo immagine proiettata su uno schermo).

Per questo motivo, essere in grado di rilevare questa ricattura è un compito

importante per un analista forense. A tale scopo, sono stati proposti alcuni

algoritmi per immagini e per video. Tuttavia, sono stati effettuati pochi

studi per l’audio.

L’obiettivo di questo lavoro è quindi quello di proporre un metodo in

grado di identificare tracce audio registrate nuovamente, spesso conosciute

come bootleg. Questo detector utilizza strumenti già sviluppati e studiati

nel campo della Multimedia Information Retrieval, basandosi sull’analisi dei

descrittori audio.

Più in particolare, introduciamo a quelli classici alcuni descrittori basati

sull’analisi dei singoli bootleg, effettuando poi un confronto tra diversi met-

odi che selezionano i descrittori ritenuti significativi, in modo da scegliere

quello che meglio si adatta alle nostre esigenze. Siamo cos̀ı in grado di

allenare un classificatore, utilizzando le caratteristiche più significative.

Abbiamo validato poi il nostro sistema attraverso una serie di esperi-

menti, eseguiti su un set di dati che abbiamo costruito appositamente per

includere definizioni diverse di bootleg. I risultati ottenuti sono promettenti,

con un’alta precisione di rilevamento dei bootleg.
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Introduction

Investigating the past history of objects, either natural or man-made, given

just a few clues collected at the present time is a challenging research topic

in many fields of science. A typical example is that of geology, where it is

customary to analyse rock fragments and their metamorphoses to determine

their origins. Another example is computer science, where software products

may be reverse-engineered by dissecting their components with the goal of

obtaining the original source code from the compiled executables. In the

last few years, with the rapid proliferation of inexpensive hardware devices

that enable the acquisition of audio-visual data, many types of multimedia

digital objects (audio, images and videos) can be readily created, stored,

transmitted, modified and tampered with. The need of methods and tools

that enable reverse engineering of this kind of content is therefore more

of an urgent necessity. For example, in case of legal trials, proving the

authenticity of multimedia evidences, such as pictures or audio recordings,

may be vital. Of equal importance is the ability of automatically recognize

illegally distributed material over the web.

In order to solve some of these problems, many multimedia forensic de-

tectors have been proposed for both audio and visual data [1, 2]. These tools

usually rely on the fact that every non-invertible processing operation on a

multimedia object leaves some distinctive imprints on the data, as a sort

of digital footprint. Therefore, the analysis of such footprints permits de-

termining the origin of image, video, or audio data, and to establish digital

content authenticity.

In this thesis, we deal with the forensic problem of automatically recog-

nize audio re-captured data. More specifically, our goal is that of building

a detector capable of discriminating between audio tracks that have been

professionally processed and released by artists, from tracks that have been

illegally recorded and distributed, known as bootlegs. In doing so, we first

propose an audio classification tool that is general enough to be applied even



2

to other classification problems. Then we propose how to modify it in order

to target the specific problem of audio bootleg detection. In particular, this

classification tool makes use of concepts from both Multimedia Information

Retrieval (MIR) (i.e., acoustic features extraction), and machine learning

(i.e., Support Vector Machine and Gaussian Mixture Model classifiers). In

order to specialize the tool to target the bootleg detection problems, some

concepts from audio forensics are then used.

In the forensic literature, the most part of the works concerning re-

capture detection is specialized to images and videos. As it regards still-

images, in [3] the authors show how to detect if an image has been re-

acquired from a screen by looking at characteristic artefacts on sharp edges.

Furthermore, works on camera artefacts introduced by CCD/CMOS sensors

that are left during the acquisition pipeline have been proposed. These

artefacts are named Photo-Response Non-Uniformity (PRNU ) noise. PRNU

has been exploited both for digital camera identification [4] and for image

integrity verification [5], and it proves to be a reliable trace also when an

image is compressed using the JPEG codec. As it regards video, in [6]

projected videos recaptured with a camera placed off-axis with respect to

the screen are identified by detecting inconsistencies in the camera intrinsic

parameters. In [7], the authors show how to detect whether a sequence has

been recaptured by analysing the high-frequency jitter introduced by, e.g.,

a hand-held camcorder.

Forensic analyses related to audio recorded signals usually target in-

stead slightly different problems. As an example, in [8] the authors try to

determine the microphone model used to record a given audio sample. The

persistence of sound, due to multiple reflections from various surfaces in a

room, causes temporal and spectral smearing of the recorded sound. This

distortion is referred to as audio reverberation time and some works related

to the room detection have been proposed [9]. In [10] the authors have

presented a system for identifying the room in an audio or video recording

based on Mel Frequency Cepstral Coefficient related acoustical features.

We focused on audio bootleg detection because this problem has never

been addressed before. It can be considered related to classification problems

already developed and studied in the MIR field, based on the analysis of

audio features. This kind of analysis is usually done to discriminate between

musical instruments, musical genres, and between variations of speech, non-

speech and music. As an example, Tzanetakis and Cook in [11] explore the

problem of automatic classification of audio signal between musical genres

using feature sets representing timbral texture, rhythmic content and pitch

content. Other works, as [12], use features of higher level to analyse the
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user’s mood and preferences to automatic create a play-list.

We have introduced the task of classification, i.e., the task of assigning

an object to a class on the basis of currently available information, but what

is a class? It is important to know the nature of the classes and their defin-

ition. A class is a collection of objects that can be unambiguously defined

by a property that all its members share. Classes depend on foundational

context: they could be labels for different populations (e.g., dogs and cats

form separate classes) and the membership of a class is determined by an

independent authority (Supervisor). The properties, that all members of

a class share, are in general called features. The features may variously

be categorical (e.g. “A”, “B”, “AB” or “O”, for blood type), ordinal (e.g.

“large”, “medium” or “small”), integer-valued (e.g. the number of occur-

rences of a part word in an email) or real-valued (e.g. a measurement of

blood pressure).

Since in our problem we want to discriminate between bootlegs and

other audio tracks, we can consider it as a classification problem. More

specifically, we can define a bootleg class, that contains audio considered

as bootlegs, and a second class including official live and studio recorded

songs. In order to implement this type of audio classification, we analyse a

set of acoustical features. We have created a large dataset of files for this

purpose. In order to solve our problem, we extract a lot of features from each

audio in the dataset. Then, we find, through different methods, a subset of

these features with discriminative characteristics. Finally, we can train now

a classifier to distinguish songs belongs to different classes based on these

feature values.

We have first built a general classification tool. This tool is modular, so

it is possible to make in any moment any changes. It is composed by three

phases i) Training Phase, ii) Validation Phase and iii) Test Phase. Through

different methods, we find several feature subsets considered significant. In

order to find the optimal one, we train the tool by each of these. In this

case, Support Vector Machine (SVM) and Gaussian Mixture Model (GMM)

classifiers have been utilised to train the tool with vectors of features. In the

Validation phase the best subset of feature and the best classifier between

GMM and SVM are found. Then, considering only this subset and the best

classifier, the tool can perform the classification, predicting a class label for

unclassified observations.

The general classification tool has been then modified, with the addition

of new features and a new feature selection method regarding the special

purpose of Bootleg Detection problem. We have then performed tests with

all the possible combinations of feature selection methods and classifiers, in
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order to show the accuracy achieved for the Bootleg detection purpose.

The results achieved are satisfactory, since we have reached a good level

of bootleg detection accuracy. As expected, the tool has better performance

in distinguish bootlegs from audio recorded in studio than bootlegs from of-

ficial live releases. Anyway, the accuracy in this last case is high, in average

only few percentage points lower than the bootleg from studio case.

The rest of the thesis is structured as follows. Chapter 1 focuses on the

background of our work, analysing the State of the Art of the works related

to ours, and describing the principal tools that we used (i.e., features, feature

selection/reduction methods and classifiers). In Chapter 2, we present the

general version of the audio classification tool. In particular we describe

how to perform the training and test phases, and how to select the features

that most suit a specific classification problem. In Chapter 3, we analyse

in detail the problem of Audio Bootleg Detection. To this purpose, we first

clarify what we mean by audio bootleg and then we explain how to modify

the classification tool. We propose a set of new features derived from the

analysis of bootleg tracks, both in time and frequency domain. In Chapter

4 we validate our system by means of a set of experiments. We explain how

we built the used audio database and perform some statistical analyses on

the results obtained. Finally, in the last Chapter we draw some conclusions

about the proposed work, and present some possible future extensions to

improve our tool performances.



Chapter 1

State of the art

This Chapter aims to provide the background knowledge needed to introduce

and understand the rest of the work. To this purpose, we first focus on the

forensics techniques related to audio and to multimedia re-capture, then we

describe more in depth the tools typically used for music genre classification,

here adapted to our work. More specifically, in the latter part, we focus on

feature extraction, feature selection, and classification tools.

1.1 Multimedia Forensics

The broad availability of tools for the acquisition and processing of mul-

timedia signals has recently led to the concern that audio signals, images

and videos cannot be considered a trustworthy evidence, since they can be

altered rather easily. This possibility raises the need to verify whether a

multimedia content, which can be downloaded from the internet or acquired

by any recording device, is original or not. The versatility of the digital

support allows copying, editing and distributing the multimedia data with

little effort. As a consequence, the authentication and validation of a given

content have become more and more difficult, due to the possible diverse

origins and the potential alterations that could have been operated.

From these premises, a significant research effort has been recently devoted

to the forensic analysis of multimedia data [1].

Image Forensics

A large part of the research activities in forensics are devoted to the analysis

of still images, since digital photographs are largely used to provide object-

ive evidence in legal, medical, and surveillance application. In particular,
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several approaches target the possibility of validating, detecting alterations,

and recovering the chain of processing steps operated on digital images [13].

There are several studies dealing with performing image authentication.

An image recapture detector is described in [3], where the authors are able

to automatically identify the devices used for first and second capture when

sharp edges are present in the image.

Many source identification techniques in image forensics exploit the PRNU

noise introduced by the sensor. Although not being the only kind of sensor

noise [4] [5], PRNU has proven to be the most robust feature. Indeed, being

a multiplicative noise, it is difficult for device manufacturers to remove it.

If the image has been compressed, in [14] the authors propose a method

capable of identifying the used encoder. Finally, a method to infer the

quantization step used for a JPEG compressed image is shown in [15].

Video Forensics

All the potential modifications concerning digital images can be operated

both on the single frames of a video sequence and along the temporal dimen-

sion. With the increasing availability of small, inexpensive video recording

devices, casual movie making is now within everyone’s reach. It is then

easy for everyone to put these video sequences on-line. As it regards video

forensics, bootleg detection (or re-capture detection) is an important forensic

task for two main application scenarios: the detection of illegally distributed

movie copies, and the detection of the use or re-capturing as anti-forensic

technique. The former scenario is related to the problem of identification

of videos re-captured at the cinema and made available on-line. The lat-

ter scenario is related to the use of anti-forensics. Indeed, when a video

is maliciously modified, a common technique to hide the traces left by the

tampering operation is to re-capture the sequence using a camera. The re-

captured video is visually similar to the original one, but traces left by the

editing step are mostly removed. Detecting re-capturing is then a precious

hint for a forensic analyst.

The possibility of distinguishing between original and recaptured se-

quences is then of great help for a forensic analyst: a positive recapture

test for a video sequence is a strong indicator of tampering activity having

taken place. To this end, several methods have been proposed in the lit-

erature. In [6], projected videos recaptured with a camera placed off-axis

with respect to the screen are identified by detecting inconsistencies in the

camera intrinsic parameters. In [7], the authors show how to detect whether

a sequence has been recaptured by analysing the high-frequency jitter intro-

duced by, e.g., a hand-held camcorder.
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Audio Forensics

The other works that have received some interest in the last few years are

about audio forensics. In this section we present a small overview of the

most relevant audio forensic techniques. Audio forensics [2] refers to the ac-

quisition, analysis, and evaluation of audio recordings that may ultimately

be presented as admissible evidence in a court of law or some other official

venues. Audio forensic evidence is typically obtained as part of a civil or

criminal law enforcement investigation or as part of the official inquiry into

an accident or other civil incident. The principal concerns of audio forensics

are establishing the authenticity of audio evidence performing enhancement

of audio recordings to improve speech intelligibility and the audibility of

low-level sounds and interpreting and documenting sonic evidence, such as

identifying talkers, transcribing dialogues, and reconstructing crime or acci-

dent scenes and time lines.

In addition to the above-mentioned techniques, it is worth noticing that

some interesting forensic-related algorithms are often used in different fields.

An example is that of robotic navigation, in which environmental sounds are

recognized in order to understand a scene or context surrounding an audio

sensor [16]. Another one is that of event detection [17], in which the authors

have created an audio event detection system which automatically classifies

an audio event as ambient noise, scream or gunshot.

A possible way to determine the authenticity of an audio track is to

extract information about the room in which the audio track has been re-

corded. To this purpose there are systems that identify the room in an audio

or video recording through the analysis of acoustic properties. In order to

extract information from a reverberant audio stream, the human auditory

system is well adapted. Based on accumulated perceptual experiences in dif-

ferent rooms, we can often recognize a specific environment just by listening

to the audio content of a recording. In [10], the authors propose a system for

identifying the room in an audio or video recording through the analysis of

acoustical properties, e.g., distinguishing a recording made in a reverberant

church from a recording captured in a conference room. While in [9], the

authors estimate the reverberation time from the recorded track and use it

as a clue for estimating the room dimension.

Another way to verify the authenticity of a recorded audio is to determine

the originating device of a signal. There are works, like [8], that provide a

paradigm to determine the microphone model used to record a given audio

sample. In criminology and forensics, recognizing the microphone type and

model of a given alleged accidental or surveillance recording of a committed

crime can help determining the authenticity of that record. Furthermore
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microphone forensics can be useful also to determine if the audio of a video

recording is original and taken with the integrated microphone of the device

used, or if the audio has been tempered with or even completely replaced.

There are some works in audio forensics that meet Music Information Re-

trieval, in particular they are related to Music-plagiarism. Music-plagiarism

is the use or close imitation of another author’s music without proper ac-

knowledgement. Given the large number of new musical tracks released each

year, automated approaches to plagiarism detection are essential to help us

track potential violations of copyright. Most current approaches to plagi-

arism detection are based on musical similarity measures, which typically

ignore the issue of polyphony in music. In [18], the authors present an ap-

proach that tackles the problem of polyphony, presenting a novel feature set

derived from signal separation based on compositional models.

1.2 Audio Classification

Researches in audio classification are mostly related to Musical Genre clas-

sification [11]. This is the study of automatic classification of audio signals

into a hierarchy of musical genres. Musical genres are categorical labels

created by humans to characterize pieces of music. A musical genre is char-

acterized by the common characteristics shared by its members. These char-

acteristics typically are related to the instrumentation, rhythmic structure,

and harmonic content of the music. Genre hierarchies are commonly used

to structure large collections of music available on the Web. In [12], the

authors implement a system for dynamic play-list generation analysing low-

level and high-level features representing the user’s mood and preferences.

Typically, in order to solve a general audio classification problem, the solu-

tion can be obtained in two steps: feature extraction and classification.

1.2.1 Features

The goal of feature extraction is to give a formal description of an audio sig-

nal, i.e., providing numerical values of its characteristics. These descriptors,

that are able to characterize the audio signals, are called features. Many

common audio analysis methods make use of acoustic features to describe

and classify audio excerpts. A typical example is that of audio genre clas-

sification. There are sets of features that can be formalized and described

in a hierarchy going from lower level, related to sound signals, to the higher

level, which is related to the perception of sound. There are three main

levels of features:
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• Low-Level Features: they are low-complexity content-based descriptors

extracted directly from the signal using signal processing techniques.

They are used to characterize any type of sound.

• Mid-Level Features: they introduce a first level of semantics and

they intend to fill the gap between audio signal and music annota-

tion description. They combine the Low-Level features with musical

knowledge and they refer to structural components of music such as

Harmony and Rhythm.

• High-Level Features: they carry a high degree of abstraction in the

semantics, which makes them easily understandable by humans. They

are related to cognitive aspects.

In our thesis we have used only features belonging to the first two levels (low

and mid).

We have introduced a further division of the features used, on the basis of

the operation needed to extract their values [19]. In Figure 1.1 a schema of

this subdivision is shown.

Figure 1.1: Division of the features in 5 groups: we have highlighted in red the Low-

Level Features, in green the Mid-Level Features
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In order to present the definition of the features used in this work, let

us define a common notation:

• x is a mono-dimensional discrete signal of size N (number of samples).

xn corresponds to the value of n-th sample of the signal, with n =

0, 1, ..., N − 1.

• considering x divided into T frames, let xt denote the t-th frame of

length N t.

xt
i = xi−tH wi , (1.1)

indicates the value of i-th sample of frame xt, with i = (0, 1, ..., N t −

1). H is the hop size, i.e., the number of samples between adjacent

frames. w is the window function that is zero-valued outside of some

chosen interval with size N t. There are many types of windows, e.g.,

the rectangular window that is constant inside the interval and zero

elsewhere.

• let X denote the spectrum of size K of the signal, computed as

X = FFT (x) , (1.2)

where for FFT we mean the Fast Fourier Transform. Xk is the spec-

trum of the signal x related to k-th bin and fk is the frequency of k-th

bin, with k = (0, 1, ..., K − 1).

1.2.1.1 Basic Features

The Basic Features are Low-Level features that are extracted directly from

the signal in the time domain.

Root Mean Square Energy - RMS

The Root Mean Square is a measure of the energy contained in the signal.

It is defined as the root average of the squared signal samples,

rms =

√

√

√

√

1

N

N−1
∑

n=0

x2
n . (1.3)

Considering the t-th frame of signal, we can compute also the RMS of the

single signal, defined as

rmst =

√

√

√

√

1

N t

Nt−1
∑

n=0

(xt
n)2 . (1.4)
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Zero Crossing Rate - ZCR

The Zero Crossing Rate indicates the number of times that the audio samples

changes of sign, and it can be computed as

zcr =
1

2

N−1
∑

n=1

|yn − yn−1|
Fs

N
, (1.5)

where yn is defined as

yn =







1 if xn ≥ 0

0 otherwise
.

The time-domain zcr provide a rough measure of the noisiness of a signal,

because high noise involves a high zcr value [19]. A clear example is the

simple case of a pure sinusoidal signal with and without noise. Indeed,

a sinusoidal signal of length S seconds and frequency F crosses the y-axis

K times. If we add a Gaussian IID noise to the pure sinusoidal signal, the

ripples generated by the noise itself will increase the number of zero-crossings

considering the same time window of length S seconds (see Figure 1.2).
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(a) Pure sinusoidal signal with frequency 1 Hz.
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(b) Same sinusoidal signal with Gaussian IID noise

Figure 1.2: Zero Crossing Rate: a sinusoidal pure signal cross the y-axis K times, but

with the addition of a Gaussian IID noise, the ripples increase the number of crossings,

and so the zcr value.
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This feature can be also considered as a measure of the dominant fre-

quency of a signal, as it is explained in [20].

Low Energy

The Low Energy feature estimates the percentage of frames with energy

lower than a given threshold. This estimation provides information to see if

the temporal distribution of energy remains constant throughout the signal,

or if some frames are more different than others. Low Energy is defined as

the percentage of frames showing the rms value smaller than the average

rms along the whole piece, and it can be computed as

LE =
1

T

T
∑

t=1

lt , (1.6)

where lt is the variable used to control if the rms of the t-th frame is lower

than rms of the signal

lt =







1 if rmst ≤ rms

0 otherwise
, (1.7)

Figure 1.3 shows a visual example of how this feature is computed.
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Figure 1.3: Low Energy computation example. The first signal (top) has a Low Energy

value of 0.54, in-fact an high number of frames has RMS lower than the signal RMS.

The second signal (bottom), on the contrary, has a Low Energy of 0.018, in-fact very

few frames have RMS lower than signal RMS.
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Waveform - WF

The Waveform describes simply the shape and form of a signal. We consider

as feature the maximum and the minimum values of the WF in a frame of

the signal x. Let us consider xt as the t-th frame of the signal, so the

Waveform feature values are

W F t
max = max

(

xt
)

, (1.8)

W F t
min = min

(

xt
)

. (1.9)

1.2.1.2 Spectral Features

Spectral Features are Low-Level features highly related to the Timbre. This

makes them good descriptors in MIR applications. Spectral Features are

computed through the analysis of the Spectrum of the signal x, so the FFT

is needed.

Spectral Roll-Off

The Spectral Roll-Off is defined as the frequency below which 85% of the

magnitude distribution is concentrated [11]. It can be computed as

sroll = min







fKroll
|

Kroll−1
∑

k=0

Xk ≥ 0.85 ·
K−1
∑

k=0

Xk







, (1.10)

where Kroll is the spectral roll-off frequency bin and fKroll
is the frequency

associated to that bin. The roll-off is another measure of spectral shape.

Figure 1.4: Spectral roll-off, graphic illustration

Spectral Brightness

The Brightness is the result of the ratio between the amount of the spectral

energy for frequencies higher than 1500Hz and the total amount of spectrum
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energy. It can be computed as

sbright =

∑K−1
k=Kc

|Xk|
∑K−1

k=0 |Xk|
, (1.11)

where Kc is the bin corresponding to a frequency of 1500Hz.

Figure 1.5: Spectral Brightness, graphic illustration

Spectral Flux

Spectral flux is a measure of how quickly the power spectrum of a signal is

changing [11]. It is computed as the Euclidean distance between the spectral

distributions of two adjacent frames,

sfluxt =

√

√

√

√

K−1
∑

k=0

(

Xt
k − Xt−1

k,

)2
, (1.12)

where Xk,t is the magnitude of k-th bin of the spectrum of the t-th frame of

x and Xk,t−1 is the magnitude of k-th bin of the spectrum of the previous

frame t − 1.

Spectral Entropy

The Spectral Entropy is the Shannon’s entropy of the signal spectrum,

sentr = −

∑K−1
k=0 Xk · log(Xk)

log(K)
. (1.13)

The presence of log(K) at the denominator makes the feature independent

from the window’s length.

Spectral Flatness

The Spectral Flatness is a measure of how tone-like a sound is. A sound is

noise-like if the spectrum is flat (i.e., it is white noise, with similar amount

of power in all spectral bands), whereas it is considered tone-like in presence
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of peaks or resonant elements. If it approaches to 0, it indicates that the

spectral power is concentrated in small number of bands. The spectral

flatness is calculated by dividing the geometric mean of the power spectrum

by the arithmetic mean of the power spectrum,

sflat =

K

√

∏K−1
k=0 Xk

∑K−1

k=0
Xk

K

. (1.14)

Spectral Irregularity

The Irregularity of the spectrum is a measure of the variation of successive

peaks of the spectrum. A peak is defined as a local maximum of the mag-

nitude spectrum. The Spectral Irregularity is computed as the sum of the

squared differences of adjacent peaks,

sirr =

∑M−2
m=0 (pm − pm+1)2

∑M−1
m=0 p2

m

, (1.15)

where pm is the m-th peak amplitude and M the number of the peaks. The

approach used for the irregularity computation is the one described in [21].

Roughness

The Roughness is an estimation of sensory dissonance [22] related to the

beating phenomenon perceived when two sinusoids are close in frequency.

According to the MIRToolBox [23] which provides an implementation of this

feature, the peaks of the spectrum are first computed and then the average

dissonance between all the possible pairs of peaks is taken, as proposed in

[24]. For all the pairs of frequency peaks (i, j), we define pi,pj as i-th and

j-th peak amplitudes, and fi, fj as frequencies corresponding to i-th and

j-th frequency peaks. The roughness ri,j is defined as

ri,j =
1

2
×(pipj)

0.1×

(

2pmin

pi + pj

)3.11

×
(

e−3.5Z|fi−fj | − e−5.75Z|fi−fj |
)

, (1.16)

where
pmin = min(pipj) ,

fmin = min(fifj) ,
(1.17)

Z =
0.24

0.0207 × fmin + 2π × 18.96
. (1.18)

It is possible to obtain an estimation of the total roughness of the signal by

taking the average of dissonances between all the possible pairs of peaks.
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Spectral Centroid

According to the view of the Magnitude Spectrum as a distribution function,

the first four statistical moments of the distribution are Spectral Centroid,

Spectral Spread, Spectral Skewness and Spectral Kurtosis. The Spectral Centroid

is the barycentre of the spectrum. It is calculated as the weighted average

between each frequency component, using as weight the spectral magnitude

at that frequency

sc =

∑K−1
k=0 fkXk
∑K−1

k=0 Xk

. (1.19)

The spectral centroid is commonly associated with the measure of the bright-

ness of a sound [25]. Many kinds of music involve percussive sounds, which

introduce high-frequency components that increase the centroid value. [26].

This is real also for a rough ”detection” of other type of noise in our sound

samples. The centroid is also called first moment (mean). In-fact some use

Spectral Centroid to refer to the median of the spectrum, although there

is a difference with the classical statistical first moment, the difference be-

ing essentially the same as the difference between the un-weighted median

and mean statistics. Since both are measures of central tendency, in some

situations they will exhibit some similarity of behaviour.

Spectral Spread

The Spectral Spread is a measure of the standard deviation of the spectrum

with respect to the spectral centroid. It can be computed as

sspread =

√

√

√

√

∑K−1
k=0 Xk (fk − sc)2

∑K−1
k=0 Xk

, (1.20)

where sc is the spectral centroid. It is the second central moment.

Spectral Skewness

The Spectral Skewness is the third central moment and is a measure of

the symmetry/asymmetry of the spectrum related to its mean value. It

is defined as

sskew =

∑K−1
k=0 Xk (fk − sc)3

Kσ3
, (1.21)

where σ is the spectral spread. If the skewness value is zero, the spectrum

is symmetrically distributed.

Spectral Kurtosis

The Spectral Kurtosis is the fourth central moment. It indicates the flatness
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of the spectrum around its mean value. It is defined as

skurt =

∑K−1
k=0 Xk (fk − sc)4

Kσ4
. (1.22)

If the value of the kurtosis is 3, the spectrum behaves as a Gaussian distri-

bution. If the value of kurtosis is higher, the spectral distribution takes a

slower decay and the tails are heavier.

1.2.1.3 Harmonic Features

The Harmonic Features are Mid-Level features computed from the Sinus-

oidal Harmonic Modelling of the signal. SHM represents the signal as the

linear combination of concurrent slow-varying sinusoids, grouped together

under harmonic frequency constraints.

Chroma Features and Chromagram

The Chroma Features provide a representation of audio data according to

note frequency values of the musical octave. Musical octave is an interval

whose highest note has a sound-wave frequency of vibration twice that of

its lowest note. In the chromatic scale an octave is divided by 12 equally

spaced pitches, corresponding to 12 semitones. Chroma features consist in a

redistribution of the spectrum energy along the different 12 pitches classes.

If we consider a signal x divided in several frames, the chroma features of

each frame can be computed using MIRToolBox [23]. An example of chroma

features is shown in Figure 1.6(b). Chromagram is defined as a time-ordered

set of vectors containing chroma features of all frames composing the signal.

An example of chromagram is shown in Figure 1.6(a).

Chromatic Flux

Chromatic flux is computed as the Euclidean distance between the chroma

features vectors belonging to two successive frames of the audio signal,

CF t =

√

√

√

√

12
∑

i=1

(

Ct
i − Ct−1

i

)2
, (1.23)

where Ct
i is the i-th value of Chroma features vector of the frame t and Ct−1

i

is the i-th value of Chroma features vector of the previous frame t − 1.

This descriptor can be helpful to detect the harmonic alteration by measur-

ing the changes from frame to frame.
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Figure 1.6: (a) Chromagram of the entire signal that shows the time distribution of the

12 pitch classes (b) Chroma-Features of a single frame that show how the spectrum

magnitude is distributed into 12 bins, representing the 12 distinct semitones of the

musical octave

Inharmonicity

In music, inharmonicity provides a measure of the amount of partials that

are non-multiples of the fundamental frequency. More precisely, in our situ-

ation the inharmonicity takes into account the ideal and expected positions

of harmonics compared to the actual spectrum harmonics. According to the

MIRToolBox [23], a simple function estimating the inharmonicity of n-th

partial given the fundamental frequency f0 is given by

hn =
|fn − nf0|

nf0
, (1.24)

where fn is n-th succeeding partial, i.e., the n-th frequency of the signal

that is an integer multiple of the fundamental frequency f0.

1.2.1.4 Rhythmic Features

Rhythmic Features are Mid-Level Features that are highly related to the

rhythmic patterns played sequentially on drums. Rhythmic features are
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generally based on the onset note curve, where for onset note we intend a

peak in the time-energy diagram corresponding to the attack time of a note.

Event Density

The Event Density is the temporal average number of acoustic events, i.e.,

the average frequency of notes per second. According to the MIRToolBox

[23], it can be evaluated by counting the number of note onsets per second.

For this purpose it is needed to compute the onset detection curve, than it

is only necessary to count the onset contained by the function [23].

Pulse Clarity

Pulse Clarity estimates the rhythmic clarity, indicating the strength of the

beats. It is related to the listener’s perception of the underlying rhythmic

or metrical pulsation [27]. According to the MIRToolBox [23], it is com-

puted by taking the autocorrelation function of the onset detection curve

and normalizing it to its maximum value.

1.2.1.5 Perceptual Features

Perceptual Features are Low-Level features computed using a human per-

ceptual model. In this case, the spectrum, where the frequency bands are

positioned logarithmically, can better approximate the human auditory sys-

tem’s response.

Mel-Frequency Cepstral Coefficients - MFCC

The Mel Frequency Cepstral Coefficients are a set of features derived from

the speech recognition systems [11]. MFCCs are perceptually motivated fea-

ture and although they were developed at first for speech classification, they

have also been applied to music genre classification [11]. The MFCCs are

widely used due to their ability to represent the spectrum in a very compact

form. The computation of the Mel-Frequency Cepstral Coefficients follows

the schema illustrated in Figure 1.7 [28].

Figure 1.7: Mel-Frequency Cepstral Coefficients computational flow

The signal is divided in windowed frames and for each frame:

• The FFT X(ω) of the frame xt is computed.
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• As shown in Figure 1.8, the amplitude spectrum X is filtered using

a set of, typically, 40 overlapping triangular band-pass filters, based

on Mel-Frequency scale. The Mel-Frequency scale is a scale of pitches

judged by listeners to be perceptually equal in distances one from

another. The following equation is used to compute the Mel for given

frequency f in Hz.

Mel = 1127.0148 log

(

1 +
f

700

)

. (1.25)

1

freq

Energy in

Each Band
... ...

Figure 1.8: Mel-Frequency Filter Bank

• MFCCs are obtained as the coefficients of the Discrete Cosine Trans-

form (DCT) applied to the reduced Power Spectrum. The reduced

Power Spectrum derived as the log-energy of the spectrum is meas-

ured within the pass-band of each filter of a Mel-filter bank. The m-th

MFFC coefficient is finally formalized as

MFFCm =
J−1
∑

j=0

{

log (Ej) cos

[

m
π

J

(

j −
1

2

)]}

, (1.26)

0 ≤ m ≤ L − 1 ,

where L is the number of Mel filters and J is the number of MFCCs

derived for each frame. Ej is the spectral energy measured in the

critical band of the m-th Mel filter.

• The averaged MFCCs of all frames in a music piece are used as feature

of the whole file.

The Mel scale is used because it approximates the human auditory system’s

response more closely than the linearly-spaced frequency bands. The DCT

is used in place of the (inverse) Fourier transform because it has a strong

compactness, since the signal information are normally concentrated in a

few low-frequency components of the DCT. This is also why typically only

13 coefficients are used.
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Octave-Based Spectral Contrast - OSC

The Octave-based Spectral Contrast coefficients consider the peak and the

valley of the spectrum and the difference in each sub-band. Typically in

music strong spectral peaks roughly correspond with harmonic components,

while non-harmonic components (noise) often appear at spectral valleys [29].

The MFCCs average the spectral distribution in each sub-band and thus lose

relative spectral information. The OSC computational flow is very similar

to the MFCCs one, as shown in Figure 1.9.

Figure 1.9: Octave-Based Spectral Contrast computational flow

• The FFT is performed on the digital samples of the signal.

• The frequency domain is divided in sub-bands by several Octave-scale

filters, which are more suitable than Mel-scale for music processing. An

example of these sub-bands is given in [29], where the authors divide

the frequency domain into six Octave-scale sub-bands: 0Hz ∼ 200Hz

(we can see with refer to Table 1.1 that this first sub-band includes

two octaves), 200Hz ∼ 400Hz, 400Hz ∼ 800Hz, 800Hz ∼ 1.6kHz,

1.6kHz ∼ 3.2kHz, 3.2kHz ∼ 8kHz (another octave out of the bound

indicated in Table 1.1).

• The strength of spectral peaks and valleys can be estimated in each

sub-band. In order to ensure the steadiness of the feature, the strength

of spectral peaks and spectral valleys are estimated by the average

value in the small neighbourhood around maximum and minimum

value respectively, instead of the exact maximum and minimum value

themselves. Thus, neighbourhood factor α is introduced to describe

the small neighbourhood. α is set to 0.02 (typically is set between

0.02 and 0.2, but it does not affect the performance significantly).

The FFT of each of the j-th sub-band of the signal is returned as

a vector, than is sorted in descending order of magnitude, such that

Xj,1 > Xj,2 > ... > Xj,K , where K is the total number of FFT bins.

The strength of spectral peaks and spectral valleys are estimated as

Peakj =
1

αK

αK
∑

i=1

Xj,i , (1.27)
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V alleyj =
1

αK

αK
∑

i=1

Xj,K−i+1 . (1.28)

• Applying the log-scaling, the Spectral Contrast of j-th sub-band is

given by

SCj = log

(

Peakj

V alleyj

)

. (1.29)

• Finally, the Karhunen-Loeve transform can be performed in order to

map the Spectral Contrast coefficients into an orthogonal space, ob-

taining the final uncorrelated OSC coefficients.

Table 1.1: Frequencies relative to the notes of the first six octaves. Each octave is

divided into 12 notes. Each note, in a certain octave, has a frequency value twice that

of the same note of the previous octave (Oct).

Note Oct=1 Oct=2 Oct=3 Oct=4 Oct=5 Oct=6

A 55.00 110.00 220.00 440.00 880.00 1,760.00

A♯/B♭ 58.27 116.54 233.08 466.16 932.33 1,864.66

B 61.74 123.47 246.94 493.88 987.77 1,975.53

C 65.41 130.81 261.63 523.25 1,046.50 2,093.01

C♯/D♭ 69.30 138.59 277.18 554.37 1,108.73 2,217.46

D 73.42 146.83 293.67 587.33 1,174.66 2,349.32

D♯/E♭ 77.78 155.56 311.13 622.25 1,244.51 2,489.02

E 82.41 164.81 329.63 659.26 1,318.51 2,637.02

F 87.31 174.61 349.23 698.46 1,396.91 2,793.83

F♯/G♭ 92.50 185.00 370.00 739.99 1,479.98 2,959.96

G 98.00 196.00 392.00 783.99 1,567.98 3,135.96

G♯/A♭ 103.83 207.65 415.31 830.61 1,661.22 3,322.42

1.2.2 Classifiers

In machine learning, classification is the problem of identifying to which

classes an observation belongs. Classes correspond to labels for different

populations (e.g., dogs and cats form separate classes). Classification has

two distinct meanings:

• on the basis of data containing observations whose class is known, the

classifier defines a rule whereby a new observation can be classified

into one of the existing classes.



1.2. Audio Classification 23

• given a set of unlabelled observations, the classifier establishes the

existence of classes or clusters in the data.

The first method is known as Supervised Learning, while the second is called

Unsupervised Learning (or Clustering) [30].

The classifier is an algorithm with features as input, and the output is usually

a label, but it can contain confidence values [31]. In supervised learning, the

set of data containing objects whose class is known, is called training set,

in which the classifier uses feature vectors to estimate a model describing a

class, provided that there are enough good samples available. Through this

model, a new object can be categorized into one of the classes analysed. In

unsupervised learning, the data are not labelled and the classifier, according

to some rules, tries to find clusters and form classes.

Since in our problem we assume that a training set is available, we have used

only supervised classifiers, and, more specifically, Gaussian Mixture Model

and Support Vector Machine [32].

1.2.2.1 Gaussian Mixture Model - GMM

Bayesian classification is based on probability theory and on the principle

of choosing the most probable option. let us assume that we need to classify

some observed data into C different classes. Each observation s is charac-

terised by a feature vector of size D. The probability that s belongs to class

wc is p(wc|s), and it is often referred to as a posteriori (or posterior) prob-

ability. The classification of the observations is done according to posterior

probabilities or decision risks calculated from the probabilities.

The posterior probabilities can be computed with the Bayes formula

p(wc|s) =
p(s|wc)p(wc)

p(s)
, (1.30)

where p(s|wk) is the probability density function of class wc in the feature

space and p(wc) is the a priori probability, which is the probability of the

class wc without any knowledge on the feature values. If prior probabilities

are not actually known, they can be estimated by the class proportions in

the training set. The divisor

p(s) =
C
∑

c=1

p(s|wc)p(wc) (1.31)

is merely a scaling factor to assure that posterior probabilities are really

probabilities, i.e., their sum is one.
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Choosing the class of with highest posterior probability produces the min-

imum error probability. The major problem in the Bayesian classifier is

estimating the class-conditional probability density function p(s|wc), that

describes the distribution of feature vectors in the feature space inside a

particular class.

GMM approach assumes that the class-conditional probability density of

the observed process can be modelled as a weighted sum of G multivariate

Gaussian probability density functions

p(s|θ) =
G
∑

g=1

αgbg(s) , (1.32)

where s is a vector of size D, αg is the weight corresponding to the g-th

component. bg(x) is a g-th Gaussian density function, that is defined as

bg(s) =
1

2πD/2|
∑

|1/2
e

− 1

2
(x−µg)⊤

(

∑

g

)

−1

(x−µg)
, (1.33)

where µg is the mean vector and
∑

g is the covariance matrix of s. The

parameter list θ defines a particular Gaussian mixture probability density

function

θ =
{

α1, µ1,
∑

1
, α2, µ2,

∑

2
, ..., αG, µG,

∑

G

}

. (1.34)

Figure 1.10: An example surface of a two-dimensional Gaussian mixture PDF

In Figure 1.10 is shown an example of 2-dimensional Gaussian probab-

ility density function. In construction of a Bayesian classifier, the class-

conditional probability density functions need to be determined. The initial

model selection can be done for example by visualizing the training data,
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but the adjustment of the model parameters requires some measure of good-

ness, i.e., how well the distribution fits the observed data. Data likelihood

is a such goodness value. Let us assume that there are M independent ob-

servations s = [s1, s2, ..., sM ]⊤ drawn from a single distribution described by

a probability density function p(s|θ), a likelihood function is defined as

L(s|θ) =
M
∏

m=1

p(sm|θ) . (1.35)

This function supplies the likelihood of the samples with respect to the

distribution. The goal is to find θ̂ that maximize the likelihood as

θ̂ = arg max
θ

L(s|θ) . (1.36)

Usually this function is not maximized directly, but the logarithm

L(s|θ) = ln L(s|θ) =
M
∑

m=1

ln p(sm|θ) , (1.37)

called the log-likelihood function, is analytically easier to handle. Because

of the monotonicity of the logarithm function the solution to Eq. 1.36 is the

same using L(s|θ) or L(s|θ).

Depending on p(s|θ), it might be possible to find the maximum analytically

by setting the derivatives of the log-likelihood function to zero and solving

θ. It can be done for a Gaussian probability density function, which leads to

the intuitive estimates for a mean and variance, but usually the analytical

approach is intractable. In practice an iterative method such as the Expect-

ation Maximization(EM) algorithm is used. EM algorithm is employed to

estimate the GMM parameters that maximize the likelihood of a set of M

data vectors. Assuming the use of diagonal covariance matrices, the process

iteratively updates the searched parameters as expressed by the following

equations

µnew
g =

∑M
m=1 p(g|sm, θ)sm
∑M

m=1 p(g|sm, θ)
, (1.38)

∑new

g
=

∑M
m=1 p(g|sm, θ)(sm − µg)⊤(sm − µg)

∑M
m=1 p(g|xm, θ)

, (1.39)

αnew
g =

1

M

M
∑

m=1

p(g|sm, θ). (1.40)

The element p(g|sm, θ) is computed as

p(g|sm, θ) =
αgbg(sm)

∑G
g=1 cgbg(sm)

. (1.41)
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The weight αg of a component is the portion of samples belonging to that

component. It is computed by approximating the component-conditional

probability density function with the previous parameter estimates and tak-

ing the posterior probability of each sample point belonging to the compon-

ent g. The component mean µg and the covariance matrix
∑

g are estimated

in the same way. The samples are weighted with their probabilities of be-

longing to the component, and then sample mean and sample covariance

matrix are computed.

It is worth to note that so far the number of Gaussian components G is

assumed to be known, and the output is calculated depending on an initial

guess of the parameters to be maximized.

1.2.2.2 Support Vector Machine - SVM

SVM is a machine learning instrument defined as a binary classifier, meaning

that is able to infer the boundary that separates elements belonging to two

different classes. It essentially searches for an appropriate hyperplane able

to separate the classes within the feature space, i.e., able to maximize its

distance from the closest training points. Given M training vectors in the

D-dimension space, the m-th observation sn is associated to a binary class

ym ∈ {1, −1}. Assuming that data are linearly separable, it is then possible

to delineate the separation hyperplane between the two dataset groups, in

the form

β⊤s + β0 = 0 , (1.42)

where β is the vector normal to the plane, β0 is the offset, β0

||β|| is the distance

from the hyperplane to the origin.

For each sm,

• if β⊤sm + β0 ≥ 0, sm belongs to the positive class, so ym = +1 .

• if β⊤sm + β0 < 0, sm belongs to the negative class, so ym = −1 .

More precisely, the operation of the SVM algorithm is based on finding

the optimal separating hyperplane, which separates data belonging to two

classes and maximizes the distance to the closest observations from either

class. Not only does this provide a unique solution to the separating hyper-

plane problem, but, maximizing the margin between the two classes on the

training data, this leads to better classification performance on test data.

As shown in Figure 1.11, the margin is equal to 2
||β|| , so SVM wants to min-

imize ||β||. Since it’s difficult to solve this optimisation problem because

||β|| involves a square root, SVM training process substitutes the equation



1.2. Audio Classification 27

margin

Figure 1.11: Support vector classifier. The decision boundary, represented by the solid

blue line, separates the observations belonging to different classes. Broken lines bound

the shaded maximal margin of width 2

||β||

without changing the solution, and solves the following quadratic program-

ming optimization through Lagrange multipliers

minimize
β,β0

1

2
||β||2 ,

subject to ym(β⊤sm + β0) ≥ 1, ∀m ∈ M .

(1.43)

An example of SVM applied to audio classification can be observed in [33].

Most of the practical problems addressed through SVM present observations

that are not separable by a hyperplane, since the edges between the classes

are not linear. In this case it is possible to turn a non-linear problem to a

linear one by using Kernel functions x → φ. The input vectors, which the

kernel function is applied on, are projected into a transformed feature space

where the data are linearly separable (Figure 1.12).

Figure 1.12: A Kernel function projects the input data into a new space where a

hyperplane can be used to separate the classes

Given a finite set of observations, it is always possible to find a dimen-

sion where all the data points are separated by a hyperplane. Hence, after

mapping the input elements to a sufficiently high-dimensional space, it is
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possible to employ the linear SVM training approach in order to find the

optimal separating plane. The SVM is a binary classifier, but there are

several approaches to classify problems with three or more classes. The

dominant approach is to reduce the single multi-class problem into multiple

binary classification problems. Building binary classifiers which distinguish

between one of the labels and the rest (one-versus-all) or between every

pair of classes (one-versus-one). Classification of new instances for the one-

versus-all case is done by a winner-takes-all strategy, in which the classifier

with the highest output function assigns the class. For the one-versus-one

approach, classification is done by a voting strategy, in which every clas-

sifier assigns the instance to one of the two classes, then the vote for the

assigned class is increased by one vote, and finally the class with the most

votes determines the instance classification. We have used the one-versus-

one approach.

1.2.3 Feature Selection and Feature Reduction

Since not all features or attributes are relevant to a problem, we need a way

to recognize important features and assign a larger weight to information

provided by them [34]. Indeed some features prove to be highly discriminat-

ive when used to solve a specific problem, but they may interfere and reduce

accuracy for another problem. In addition, dealing with a large number of

features is costly, so using approaches to reduce features number are use-

ful also to improve performances. In this section we introduce the feature

selection and feature reduction methods used in our work.

1.2.3.1 Feature Selection Methods

A first approach used to reduce feature number is called Feature Selection,

which aims to select a subset of the existing features without applying any

transformation on the set. More specifically, given a set s = [s1, s2, ..., sD]⊤

of size D, feature selection aims to find a subset ŝ of size D̂, with D̂ < D,

that maximizes an objective function J (̂s) and so has the greatest ability

to discriminate between classes.

The quality of a particular feature subset is evaluated using an objective

function. There are two type of objective functions: filters and wrappers.

Filters rate feature based on general characteristics, such as interclass dis-

tance or statistic independence, without employing any mining algorithm.

Wrappers, on the other hand, evaluate subsets based on their predictive ac-

curacy when employing a particular classifier. Filters are advantageous for

their speed and for more general solutions, but they tend to create larger
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subsets. Wrappers are slower but typically do not suffer from the problem

of over-fitting, and also tend to result in subsets with higher classification

accuracy because they are trained to work with a specific classifier.

Filters select features independently of the used learning machine, using a

relevance criterion, while wrappers select feature subsets on the basis of how

well a learning machine performs. We focused on wrappers methods, and

the object function chosen is based on K Nearest Neighbour (K-NN). K-NN

is a method for classifying objects based on closest training examples in the

feature space: an object is classified by a majority vote of its neighbours,

assigning it to the most common class among its K nearest neighbours. In

our case k = 1, then the object is simply assigned to the class of its nearest

neighbour. Given a subset of features, KNN is firstly performed, then the

number of correct classified object can be computed. The subset with the

highest number of correct classifications is considered the best.

Forward Feature Selection - FWD

Forward Feature Selection is a greedy search algorithm that determines an

optimal set of features by starting from an empty set and sequentially adding

a single feature to the set if it increases the value of the chosen objective

function. The problem with this sequential approach is that it gravitates

toward local minima due to the inability to re-evaluate the usefulness of

features that were previously added. The goodness of a particular feature

subset is evaluated using an objective function, J
(

ŝD̂

)

.

Starting from the empty set, forward sequentially adds a feature s+ that

maximizes J
(

ŝi + s+
)

when combined with the features ŝi that have already

been selected [35]. The steps performed by FWD are given in Algorithm 1.

Algorithm 1 FWD algorithm

1: Start with the empty set ŝ0 = {∅}

2: Select the best feature s+ : arg maxs/∈ŝi
J (̂si + s)

3: if J
(

ŝi + s+
)

> J (̂si) then

4: Update ŝi+1 = ŝi + s+;

5: Got to 2

6: end if

Backward Feature Selection - BWD

Backward feature selection is similar to FWD but works in the opposite

direction. At the beginning, all the features are included into set of con-
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sidered features. At each step, the feature s− that improves the objective

function J (̂s − s−) is removed from the set. As FWD, BWD is a greedy

algorithm that gravitates toward local minima due to the inability to re-

evaluate the usefulness of features that were previously discarded[35]. The

steps performed by BWD are given in Algorithm 2.

Algorithm 2 BWD algorithm

1: Start with the full set ŝ0 = s

2: Select the worst feature s− : arg maxs∈ŝi
J (̂si − s)

3: if J (̂si − s−) > J (̂si) then

4: Update ŝi+1 = ŝi − s−;

5: Go to 2

6: end if

Stepwise Feature Selection - SW

Stepwise selection is a mixed method between forward and backward selec-

tion. The problem with this sequential approaches is that they gravitate

toward local minima due to the inability to re-evaluate the usefulness of

features that were previously added or discarded. Stepwise selection starts

from an empty set and sequentially adds a single feature to the subset if

it increases the value of the chosen objective function. The added features

can be removed if its elimination from the subset improves the objective

function [35]. The steps performed by SW are given in Algorithm 3.

Algorithm 3 SW algorithm

1: Start with the empty set ŝ = {∅}

2: Select the best feature s+ : arg maxs/∈ŝi
J (̂si + s)

3: if J
(

ŝi + s+
)

> J (̂si) then

4: Update ŝi+1 = ŝi + s+;

5: end if

6: Select the worst feature* s− : arg maxs∈ŝi
J (̂si − s)

7: if J (̂si − s−) > J (̂si) then

8: Update ŝi+1 = ŝi − s−;

9: Go to 3

10: else

11: Go to 2

12: end if

∗ Notice that you’ll need a condition to avoid infinite loops.
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Genetic Algorithm - GA

Genetic Algorithms are a general adaptive optimization search methodology

based on a direct analogy to Darwinian natural selection and genetics in

biological systems. It has been proved to be a promising alternative to

conventional heuristic methods. Based on the Darwinian principle of survival

of the fittest, GA works with a set of candidate solutions called a population

and obtains the optimal solution after a series of iterative computations [36].

A population is composed by group individuals with different chromosomes.

As shown in Figure 1.13, a chromosome is long as the feature number, which

contains zeros and ones. One stand for the presence of the feature, zero for

the absence of the feature.

1 1 1 1 10 0 0 0

D-dimensional original feature set

“1” represents that feature 1 is included in the subset

“0” represents that feature 2 is not included in the subset

...

Figure 1.13: GA Chromosome for GA-based Feature Selection

GA evaluates each individual’s fitness, i.e., the quality of the solution,

through a fitness function. Individual’s fitness indicates the goodness of the

present features. Several methods have been proposed as fitness function,

and we choose the ratio of within-class scatter and between-class scatter [37].

The within-class scatter SW and between-class scatter SB are described as

follow

SB =
C
∑

c=1

(µc − µ) (µc − µ)⊤ , (1.44)

SW =
C
∑

c=1

1

Mc

Mc
∑

m=1

(sc
m − µc) (sc

m − µc)
⊤ , (1.45)

where µ is the overall mean of the data-cases, µc is the mean of the class

c. C is the overall number of classes, Mc indicates the number of points

belonging to class c and sc
m represents the m-th value of feature vector of

class c.

GA finds the optimal solution, and then the optimal features, after several

evolutions of the population. The crossover and mutation functions are the

main operators that randomly transform the chromosomes and finally im-

pact their fitness value. The evolution will not stop until acceptable results

are obtained. Crossover, the critical genetic operator that allows new solu-

tion regions in the search space to be explored, is a random mechanism for

exchanging genes between two chromosomes using the one point crossover,
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two point crossover, or homologue crossover. In mutation the genes may

occasionally be altered, for example, changing the gene value from 0 to 1

or vice versa in a binary code chromosome. The fitter chromosomes have

higher probability to be kept in the next generation or be selected into the

recombination pool using the tournament selection methods. If the fittest

individual or chromosome in a population cannot meet the requirement, suc-

cessive populations will be reproduced to provide more alternate solutions.

The principal steps of GA algorithm are the following:

1. Create an initial population of certain size.

2. Calculate the fitness value of each individual in the initial population

and rank them according to their fitness.

3. Select a certain number of individuals with high fitness value as elitism

of the population and retain them in the next generation.

4. Check whether the termination conditions are satisfied. If so, the evol-

ution stops and the optimal result represented by the best individual is

returned. Otherwise, the evolution continues and the next generation

is produced. The termination conditions can be either a predefined

fitness threshold or number of generation evolved.

5. If the population continues to evolve, the next generation is produced

following the procedure below. First, a certain number of individuals

are selected randomly to compete the mating right. Two individuals

of the highest fitness values are selected as a pair of parents. Crossover

is operated on their chromosomes to produce two children individuals.

Location of the crossover point on the chromosomes is also randomly

determined; second, a floating-point number in the range of 0.0 to 1.0

is generated randomly. If it is less than the predefined mutation pos-

sibility, mutation is operated for the two children individuals; Repeat

these steps to produce all the children individuals (except the elitism

individuals) in the new generation.

6. Go to step 2.

Feature Selection with RELIEF algorithm - RE

This method addresses the feature selection problem by proposing a two-

step algorithm [38]: the first step uses a variation of the well-known Relief

algorithm to remove irrelevance; the second step clusters features using K-

means to remove redundancy. Relief is a feature weight based algorithm
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inspired by instance-based learning. Given training data, and a threshold

of relevancy r, Relief detects those features which are statistically relevant

to the target concept. Taken at random an instance s, the nearest element,

according to the Euclidean distance, of the same class and the nearest one

of the another class are picked. If the features values of instances that

belong to different classes are far, their weights are increased, otherwise

if the values of instances of the same class are different, their weights are

decreased. Differences of feature values between two instances s1 and s2 are

defined by the following function

diff (s1,d, s2,d) =
s1,d − s2,d

s1,d + s2,d
, (1.46)

where s1,d and s2,d are the values of d-th feature of s1 e s2.

We show in Algorithm 4, the pseudo-code of the RELIEF algorithm [39],

where D is the total amount of features and only two classes are considered.

Algorithm 4 RE algorithm

1: Separate S into

S1 = {instances of first class}

S2 = {instances of second class}

2: W = 0D

3: for m = 1 to M do

4: Pick at random an instance s ∈ (S1)

5: Pick the instance closest to s, z1 ∈ S1

6: Pick the instance closest to s, z2 ∈ S2

7: if s ∈ (S1) then

8: Near-hit = z1; Near-miss= z2

9: else

10: Near-hit = z2; Near-miss= z1

11: update-weight (W, s, Near-hit, Near-miss)

12: end if

13: end for

14: for d = 1 to D do

15: if Wd ≥ r then

16: fd is a relevant feature

17: else

18: fd is an irrelevant feature

19: end if

20: end for
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where update-weight is defined in Algorithm 5.

Algorithm 5 Update-Weight

1: for d = 1 to D do

2: Wd = Wd − diff(sd, Near-hitd)2 + diff(sd, Near-missd)2

3: end for

If Wd ≤ 0, then the d-th feature is irrelevant, otherwise it is significant.

The second step is a redundancy filter that uses the k-means algorithm to

cluster features according to how well they correlate to each other. When

feature clusters are discovered, only the feature with the highest Relief score

is kept; the other features in the cluster are removed from the feature set.

This is an unusual application of K-means clustering, in which features are

clustered (instead of samples). There is a partition of D features into k

clusters in which each feature belongs to the cluster with the nearest mean.

1.2.3.2 Feature Reduction Methods

A second approach used to reduce feature number is called Feature Reduc-

tion. Feature reduction aims to create a subset of new features by combin-

ations of the existing features. Let us consider a vector s = (s1, s2, ..., xD)⊤

∈ RD containing all the D features. Feature Reduction finds a mapping

s̃ = [s̃1, s̃2, ..., s̃D̃]⊤ with D̃ < D such that the transformed feature vector

s̃ ∈ RD̃ preserves (most of) the information or structure in RD. In general,

the optimal mapping will be a non-linear function, but since there is no

systematic way to generate non-linear transforms, the selection of a partic-

ular subset of transforms is problem dependent. For this reason, feature

extraction is commonly limited to linear transforms:
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(1.47)

where αd̃,d is the weight associated to sd.

Principal Component Analysis - PCA

Principal component analysis is an unsupervised method that involves a

mathematical procedure transforming a number of (possibly) correlated vari-

ables into a (smaller) number of uncorrelated variables called principal com-

ponents, which present the relevant characteristic of being uncorrelated with



1.2. Audio Classification 35

respect to each other. In particular, the largest variance of any projection of

the data lies on the first variable, the second largest variance on the second

variable, and so on (Figure 1.14).

Usually, PCA is used to discover or reduce the dimensionality of the data

set, or to identify new meaningful underlying variables. Principal compon-

ents are found by extracting the eigenvectors and eigenvalues of the cov-

ariance matrix of the data. These components are the eigenvectors, which

describe an orthonormal basis that is effectively a rotation of the original

Cartesian basis [40].

In order to reduce the dimensionality of the space, principal compon-

ents associated to small eigenvalues can be discarded. Indeed they bring

a smaller amount of information than principal components associated to

high eigenvalues.

Figure 1.14: PCA transformation in 2 dimensions. The variance of the data in the

Cartesian space x, y is best captured by the basis vectors v1 and v2 in a rotated space.

The main steps of the PCA algorithm are shown in Algorithm 6.

Algorithm 6 PCA algorithm

1: Computing covariance matrix

2: Computing eigenvalues and eigenvectors of the covariance matrix

3: Ordering the eigenvalues σ1 > σ2 > ... > σn

4: If exists σk ≪ σ1 then we can eliminate the eigenvalue and relative

eigenvectors from k to n
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The principal components are the eigenvectors that are not discarded. As

said in [41], a slight increase in recognition accuracy can be obtained using

PCA of the MFCC.

Linear Discriminant Analysis - LDA

Linear Discriminant Analysis, sometimes known as Fisher’s linear discrim-

inant, seeks to reduce dimensionality while preserving as much of the class

discriminatory information as possible and maximise class separability. Let

us consider the problem separating two classes (C = 2) of points described

by the feature vectors s. LDA aims to estimate the function:

f (s) = β⊤s + β0 (1.48)

such that f (s) > 0 for points belonging to the first class, and f (s) < 0 for

s belonging to the second class. This function is called linear discriminant

function in statistical literature. The decision boundary is given by a set of

points satisfying f (s) = 0, which is the separating the classes.

LDA compute vector β maximizing the following objective[42]:

J (β) =
s⊤SBβ

s⊤SWβ
(1.49)

where SB is the between classes scatter matrix and SW is the within classes

scatter matrix, defined in Equation 1.44 and in Equation 1.45.

The final solution of β is given:

β ∼= S−1
w (µ1 − µ2) (1.50)

where µ1 and µ2 are the mean vectors of two classes. In a problem of C

classes, LDA produces at most C − 1 feature projections.

(b)(a)

Figure 1.15: (a) Points mixed when projected onto a line. (b) Points separated when

projected onto optimal line
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Chapter Conclusions

In this Chapter we have presented a brief overview of forensic works related

to ours, and the main tools used to solve our classification problem. In the

next Chapter we will show how to use these tools for our purpose.
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Chapter 2

Classification Tool

In this Chapter we describe in details how we developed a classification tool

that exploits the strengths of the discussed audio classification methods.

This tool can be used for any type of audio signals classification, with no

limitations due to the number of classes. As we have specified in Section

1.2.2, we have used GMM and SVM classifiers. The aim of the tool is to

automatically find the best method of feature selection and classification

using a small set of training data. For this purpose 13 different subsets of

features have been created, using 13 methods of feature selection/reduction,

and they have been used to parallel train the tool. Every subset is then

analysed with both GMM and SVM. Considering only the best subset of

features and the best classifier, the tool performs the classification. In the

first section we show the initialization process that is performed on each

audio excerpt. This initialization is necessary in order to correctly extract

the features needed to do the classification. The second part of the Chapter

is composed by three sections that describe the phases needed to perform

the classification once the features are available. In general, a classification

problem is divided in two phases, the first is training of the tool with a set

of data with known class and the second is testing on new files. We also

make use of an additional phase, called Validation. To sum up, the three

phases that compose our tool are:

• Training Phase: we use here a small part of the whole dataset (e.g.,

10%) as Train Set. The two classifiers (GMM and SVM) are both

trained for each feature selection/reduction method.

• Validation Phase: in this phase the tool tests, with the trained classi-

fiers, another subset of all dataset, called Validation Set, with double

length compared to the train set. This phase aims to decide which
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feature selection/reduction method gives the most relevant features

and which is the best type of classifier (relative to the best feature

selection method).

• Test Phase: now the tool is ready to test any file with the methods

selected in the validation phase.

We describe out tool starting from the classical composition of a classifica-

tion tool, then we introduce the details on the Validation Phase.

2.1 Files Initialization

The classification occurs when all the necessary features have been extrac-

ted from the audio excerpts. In order to correctly extract all features, an

initialization phase is required.

2.1.1 Normalization

The first step is to reduce audio files in stereo (2 channels, so 2 parallel set

of samples) to mono signal. This is simply done averaging the two channels

sample by sample: in this way also signal with one channel can be processed.

The second, a very important step, is the normalization, that is required

since it is possible to find signals with very low or very high sample amplitude

(i.e., see Figure 2.1 and 2.2), when this happens, features extracted from such

an audio excerpt may be distorted and thus not valid.
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Figure 2.1: Two audio signals with very different amplitude
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Figure 2.2: The same audio signal as figure 2.1 after the normalization have been

performed on each file.

Audio normalization is the application of a constant amount of gain to an

audio signal to bring the average or peak amplitude to a target level (the

norm). Because the same amount of gain is applied across the given range,

the signal-to-noise ratio and relative dynamics are generally unchanged. We

have forced the signal to have unitary peak amplitude (maximum peak with

amplitude 1 in absolute value). The gain applied to each signal considered

is variable and it depends on the signal itself. The equation of the normal-

ization is:

x =
xo

max |xo|
, (2.1)

where xo is the original signal before normalization.

2.1.2 Frame Division

Once the normalization has been applied, the signal is subdivided in frames.

This division has been performed because some features need to be extracted

for frames of signal. Anyway, there are some features extracted for the

global signal and others that are extracted in both cases. The frames can

have constant or variable length. We have divided each excerpt in a variable

number of frames where the length of each frame depends on the energy that

it contains. This decision has been made to avoid the presence of frames

containing silence, or too much noise. The energy contained in each frame is

constant and the amount of audio information carried is somehow equalized.

The effect is that part of signal with low amplitude causes the creation of

longer frames, while short frames are created in case of part rich in energy.
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Figure 2.3: An example of frame division on the basis of frame energy. We show only

the first three frames. The first part of the signal is near-silence, in-fact the first frame

is really long. The other two frames are very shorter.

Each frame is than windowed with an Hamming Window (figure 2.4):

wn = α − β cos

(

2πn

N − 1

)

, (2.2)

with α = 0.54 and β = 1 − α, where N is the length of the window, i.e.,

length of the frame.
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Figure 2.4: Hamming Window and its transform example
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2.1.3 Feature Extraction

After the first two phases, the signal is ready and the features can be ex-

tracted. Features are extracted both from each frame and from the entire

signal. What we obtain is a set of 14 features for each frame (Frame Fea-

tures) and 20 for the entire signal (Global Features). We have then grouped

the features in different sets, as it is shown in Table 2.1. This subdivision is

used to train the tool in two different cases, with all the features in a single

macro-set and with the features divided in groups. The creation of different

groups of features is inspired by [43] and the groups are formed following

principally the division explained in Section 1.2.1. This decision has been

made mainly to isolate some features as the MFCC, which are statistically

very significant and can mask the information derived from other features.

Table 2.1: Subdivision of features in groups. Frame and Global indicate if a feature is

extracted frame by frame, from the global file or in both cases. Numbers in parenthesis

indicate features composed by multiple values, e.g., the MFCCs have 13 coefficients.

Features Group Feature Name Frame Global

Basic

RMS X X

ZCR X X

WF (2) X

Low Energy X

Spectral

S. Roll-Off X X

S. Brightness X X

S. Flux X X

S. Entropy X X

S. Flatness X X

S. Irregularity X X

S. Roughness (2) X

Centroidal

S. Centroid X X

S. Spread X X

S. Skewness X X

S. Kurtosis X X

Harmonic
S. Inharmonicity X

Chromatic Flux (2) X

Rhythmic
Event Density X

Pulse Clarity X

MFCC MFCC (13) X X

OSC OSC (8) X
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In the following sections we explain more in detail how the feature subdivi-

sion is used in the classification. The tool we have built potentially support

multi-class, but for our purpose we have used only two classes. So, also

to simplify the exposition, from now on we consider only the classification

between two classes (A and B).

2.2 Training Phase

When all the features are extracted, the tool can switch to the classification

phase, which begins with the Training Phase. This phase aims to train the

classifiers that the tool will use in the test phase. Starting from all the

dataset, the tool randomly choose a small percentage of files with known

class membership. It is very important that in the creation of the Training

Set the number of files belonging to each classes is the same; otherwise the

risk is to train the tool with a significant amount of bias. The parameters,

needed from the classifiers in the Test Phase to recognize the membership

classes, are then computed. Motivated by [43], we trained the classifiers with

both features taken all together, and features divided into groups (defined in

Table 2.1). We show now a flow chart (Figure 2.5) of the steps of Training

Phase for the case of features taken as macro-set. In case of features grouped

in different sets the flow is the same, but each block is further subdivided.

Figure 2.5: Training Phase Flow Chart
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To better understand the following description of the Training Phase, make

reference to Figure 2.5. Once the training set is chosen, the tool can train the

classifiers (GMM and SVM). The values of the features extracted for each

frame of files in training set are examined by a method of feature selection,

which selects only discriminant features. Each method has different way to

consider which features are significant and which can be discarded because

of their correlation to other features. When the features are considered as

a macro-group, feature selection is applied to all the set together, while in

case of features divided in groups, the same feature selection is applied inside

each group.

2.2.1 Feature Selection and Reduction Methods

Since we extract a lot of features, some of these can be useless for a particular

classification. So we want to find an optimal subset of features that contains

the most significant ones to be used during the test. For this purpose, we

use different types of feature selection and reduction methods.

In particular we made use of the following methods that have been presented

in Section 1.2.3:

• Forward Feature Selection (FWD)

• Backward Feature Selection (BWD)

• Stepwise Feature Selection (SW)

• Genetic Algorithm Selection (GA)

• Relieff Algorithm Selection (RE)

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

and we combined them in 13 different methods. Each method considers as

significant a different subset of feature. Note that most of the computational

time is due to the extraction of the features. So testing a high number of

feature selection/reduction methods does not contribute to highly increment

the tool computational time and complexity.

NO feature selection method applied

In this case, we make use of all the features, without using any feature

selection method. It is expected that analysing all the features, the classific-

ation accuracy is worse than that obtained after selecting a subset of these

features.
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FWD selection

A subset of features is obtained by FWD selection algorithm. Starting from

an empty set, a single feature is sequentially added in the set if the object

function increases, until the optimal subset is found. The object function

chosen is based on 1-NN.

BWD selection

A subset of features is obtained by BWD selection algorithm. Starting

from the full set, a single feature is removed if its elimination increases or

minimally worsens the objective function, in order to obtain the best subset

of features. In this case, the object function used is based on 1-NN.

SW selection

A subset of features is obtained by SW selection algorithm. Starting from an

empty set, a single feature is sequentially added to the subset if it increases

the value of the chosen objective function. The added features can be re-

moved subsequently if its elimination from the subset improves the objective

function. The object function used is based on 1-NN.

GA selection

A subset of features is obtained by GA selection algorithm. It is charac-

terized by a heuristic search that mimics the process of natural evolution,

obtaining the optimal subset using techniques such as mutation, selection,

and crossover.

RE + FWD selection

A subset of features is obtained by a combination between RE and FWD

selection algorithms. RE tries to remove irrelevance and redundancy in the

set, and FWD selects the features that considers significant. This method

is efficient for large data sets with lots of irrelevant and redundant features.

RE + BWD selection

A subset of features is obtained by a combination between RE and BWD

selection algorithms. RE tries to remove irrelevance and redundancy in the

set, and BWD selects the features that considers significant. This method

is efficient for large data sets with lots of irrelevant and redundant features.

RE + SW selection

A subset of features is obtained by a combination between RE and SW

selection algorithms. RE tries to remove irrelevance and redundancy in the
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set, and SW selects the features that considers significant. This method is

efficient for large data sets with lots of irrelevant and redundant features.

PCA

An orthogonal transformation is used to convert a set of possibly correlated

features into a set of values of linearly uncorrelated features called principal

components. The number of principal components is less than or equal to

the number of original features.

PCA + FWD selection

A subset of features is obtained by a combination between PCA and FWD

selection algorithms. First of all, PCA transforms the original features in

uncorrelated features. Then FWD selects the features that considers signi-

ficant.

PCA + BWD selection

A subset of features is obtained by a combination between PCA and BWD

algorithms. First of all PCA transforms the original features in uncorrelated

features. Then BWD selects the features that considers significant.

PCA + SW selection

A subset of features is obtained by a combination between PCA and SW

algorithms. First of all PCA transforms the original features in uncorrelated

features. Then SW selects the features that considers significant.

LDA

A linear combination of features is used in order to preserve as much of

the class discriminatory information as possible, projecting objects from the

same class very close to each other and, at the same time, objects from

different classes as farther apart as possible.

PCA Group

This method can be used only if the features extracted are divided in groups.

The basic idea is to find the feature group that has the best discriminative

power. Analysing the classification results obtained using all the features

without any selection method, the features group with the best accuracy

can be found. The best group is momentarily put aside and the other fea-

tures groups are combined and transformed by PCA. Then the final optimal

subset is composed by the principal components computed in PCA with the

addition of the most discriminant feature group previously found [44].
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2.2.2 Training Steps

Once the feature selection/reduction is applied, we obtain a subset of all

features. The tool trains the classifiers relatively to the features subset.

The classifiers are separately trained both for frames and global features,

and also the global features are previously selected with the same method

used for frames feature selection. The same procedure is then applied to the

SVM classifier, also in this case separately for frames and global features.

We obtain four classifiers, two for the GMM case and two for the SVM one,

trained for each method of feature selection/reduction. We must specify

that in case of groups of feature, we have trained a GMM and a SVM for

each group and for both Frame Features and Global Features.

In the next section we explain how the classification is done.

2.3 Test Phase

Once the train is performed, the tool is ready to test a new file and to classify

it. We specify now how the tool merges the results derived from the decision

taken over different frames. As we said, the tool considers each frame as

different signal with no correlation between frames derived from same files,

then, once a decision has been made for the frames, the tool merge the

results. Let us now analyse more in depth how the finale decision is taken.

The test is performed using both the global and frame-wise features. In

particular, if we consider a single song, we split the classification phase in

three steps (as shown in Figure 2.6):

Figure 2.6: Decision merging flow
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• first we independently classify every frame (using the features extrac-

ted frame-wise);

• then the global features are used to classify the whole song;

• finally results from the previous steps are merged to take the final

decision.

In the case of features divided in groups, the followed schema is the same,

but an additional step is involved: for each frame we compute the mean of

the decisions taken singly for each feature group 2.7(a). The same we can

say for the features obtained for the global signal 2.7(b). The two blocks

created (Frame t Decision and Global File Decision) are the same blocks

that appear in 2.6.

(a) Decision combination for groups of features. Each Frame Decision is the decision taken

for a single frame.

(b) Decision combination for groups of features. Global Decision

Figure 2.7: Combination of results in case of training and validation with feature groups.

Let us now consider a single feature selection method. Assuming that a

file is subdivided in T frames, we can explain in details how the final clas-

sification is computed. Note that in the case of groups of features, the first

step is the one shown in Figure 2.7, then the steps are exactly the following.

The GMM/SVM trained with the features selected gives to each frame a

probability of belonging to a class. Note that GMM provides directly prob-

abilities, but SVM simply returns the class membership of an observation.
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From SVM results we can obtain the distance of the observation from sep-

arating hyperplane. We have assigned a percentage of membership of an

observation to a class according to its distance from the hyperplane. Given,

e.g., a set of MA observations belonging to class A, we give to the observation

with maximum distance from the hyperplane a probability of membership

of 100%. The probabilities of other observations are directly proportional

to their distance from the hyperplane. Computed the percentages of each

frame, we take the average of the frame probabilities. Frame probabilities

are stored then in a matrix.

F =













f1,A f1,B

f2,A f2,B
...

...

fT,A fT,B













, (2.3)

where ft,A is the probability of the t-th frame to belong to class A, and ft,B

is the probability of the t-th frame to belong to class B.

The Frame Mean Decision F is the decision derived by the combination of T

frames and it is defined as the average of the probabilities of the frame-wise

decision,

F =
[

fA fB

]

=
1

T
F⊤1T , (2.4)

where 1T is a column vector of ones of length T . The GMM trained for the

global features takes separately his decision

g =
[

gA gB

]

, (2.5)

where gA is the probability that a file belongs to class A considering only the

global feature. Then, averaging the results, the final membership is given.

The probability for an audio object to belong to class A or B is given by

p =
[

pA pB

]

, (2.6)

where

pA =
gA + fA

2
,

pB =
gB + fB

2
.

(2.7)

The object is then assigned to the class with the higher probability.

These steps are repeated for all the feature selection methods and both in

case of GMM and SVM classifier. When the tests with all the combina-

tion are computed, we can also compare the results of each combination.

However, we have introduced an intermediate pre-test phase that compares

the method combinations before the Test Phase, in order to choose the best

classification method beforehand (see Figure 2.8).
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Figure 2.8: Tool Work Flow: the Training Phase is repeated for each Feature Se-

lection/Reduction, each combination is validated and the Test is computed using the

information derived from the Validation Phase.

2.4 Pre-Test: Validation Phase

Since we trained many classifiers, we want to be able to choose the one

that best fits our needs. In particular, if we want to classify some audio

excerpts, we need to know which classifier to use. The Validation Phase
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is then introduced to solve this problem. This phase is inserted between

Training and Test phase and can also be considered as a Pre-Test. Indeed,

a Validation Set of audio excerpts is tested using all the classifiers trained

during the training phase. The Validation Set is composed by twice the

number of tracks than the Training Set, and it contains files whose class is

known. This way we evaluate the configuration of feature selection method

and classifier that maximize the accuracy in our classification problem. A

file is considered both as divided in frame and global, as in the Train Phase.

The frames are tested separately and singly, then the average of the results

is taken and further averaged with the result obtained with the classification

of the global features.

The entire Validation Set is tested, obtaining a final decision for each

file both for GMM and SVM. Now, since in the Validation Set we have files

with known class, we can evaluate some statistical parameter to determine

which configuration is the best one for the classification problem considered.

To do that, we use the combination of three parameters. The first para-

meter is the accuracy, that is defined as

accuracy =
TA + TB

TA + TB + FA + FB
, (2.8)

where TA and TB (True member of a class) are the number of files re-

spectively of the first and second classes correctly classified, while FA (False

member of a class) are the number files of the first class classified as files of

the second class and FB is the vice-versa. Since it may happen that the same

accuracy level is achieved by different methods, we have introduced also the

class recall and a sort of precision indicator. The recall is the fraction of

elements of a class that are correctly classified, that is, for class A and class

B

recallA =
TA

TA + FB
,

recallB =
TB

TB + FA
.

(2.9)

When two methods have the same accuracy, we consider as best method the

one with lower differences between recalls. This means that the percentage

between the recall of the classes is more similar. We have chosen this solution

because is preferable to have recall percentages of 78% and 82% respectively

for two classes than have percentages of 70% and 90%. Indeed, the second

case may indicate that the tool is biased towards one of the classes.

Another parameter considered is what we have called strictness, that

is the percentage with which the classifier make a good decision. We said
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that for each file the tool return two percentages. If a result is pA = 75%

and pB = 25% it means that the considered file belongs at 75% to class A.

The strictness is the average of all the percentage of the files that have been

correctly classified in the validation phase.

Once the tool has detected which combination between macro-set of

features or groups of features, feature selection (reduction) and classifiers

(GMM-SVM) is the best, the Test Phase begins.

The procedure is the same as the one presented in before, but a file is now

tested only with the best combination (see Figure 2.9).

Figure 2.9: Test Phase Flow Chart: the classification is determined by the best com-

bination of feature selection and classifier choose in the Validation Phase

The test phase can be used both to analyse a new file and to validate the

pre-test. In this second case we obviously need a set of files with a known

class membership, then the same parameters used to evaluate the methods

combinations in the Validation Phase can be computed.

Chapter Conclusions

We have so designed a tool with the purpose of classifying audio signals,

without any restriction on the type of classification that can be carried out.

The tool is general because the features extracted are several and standard.

In the next section we present the changes and the addition made to the

tool in order to improve the results for the special case of Bootleg Detection.
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Chapter 3

Bootleg Detection

Application

In the last few years the quality of audio bootleg available on-line is in-

creased, thanks to the development of new technologies. Indeed, nowadays,

every smart-phone and camera come equipped with an integrated micro-

phone. A typical example of bootleg availability is given by the huge amount

of user-generated music-related videos on websites such as YouTube. In this

case, even if the video quality may be poor, audio quality is often pretty

good. It is worth to note that the definition of bootleg is pretty wide. In-

deed both audio files directly recorded at a concert with a hand-held camera,

and songs professionally mixed and published without authorization may be

considered bootleg. For this reason, in order to cope with this situation,

a more in depth analysis of what can be considered bootleg is in order.

We define audio bootlegs as all those audio files that are recorded directly,

e.g., at a concert, from public with some device, like a smart-phone, video-

camera or microphone. In the case that a song is recorded and mixed with

professional instruments and then published without the authorization of

the owners of the song, we can’t be able to recognize the difference.

We can see in Figure 3.1 and Figure 3.2 the flow charts representing the

two main possible chains of operations that might lead to bootleg genera-

tion. Figure 3.1 shows the case of studio recording. In this situation we

can consider as bootleg audio files taken directly in the recording room with

a microphone or the audio signal after the first phase of mixing. In the

second situation we have an output from the mixer, but it is not already

been processed to obtain a perfectly clean audio without noises and with

some post-processing add as, e.g., particular reverberation or other effect
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that can be directly recorded before being processed, e.g., to remove noise

or apply audio effects such as reverberation.

Figure 3.1: Studio Recording Flow Chart

Figure 3.2 shows the live performance case. In this situation we can consider

as bootleg a signal recorded directly with some device such as smart-phone,

video-camera, voice-recorder, etc. However, we can also consider the files

directly taken from the mixer and not post-processed. In this second case is

much more difficult to find differences between such a bootleg and an official

released live performance. However, this kind of bootleg is pretty rare.

Figure 3.2: Live Performance Flow Chart

In this Chapter we explain in details how to adapt the classification tool

described in Chapter 2 to work with the particular case of Audio Bootleg

Detection. As we said, the classification tool that we implemented is modular

and highly configurable. E.g., it is possible to add new features or new

methods of feature selection and reduction.

In order to solve the Audio Bootleg Detection problem, we propose three

specific improvements:

• a pre-processing phase;

• new Bootleg-related features;

• a new feature selection method.
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In the following we explain which kind of pre-processing we propose,

what are the new features introduced and how the new method of feature

selection works.

3.1 Pre-Processing: Filter Bank

This Pre-Processing phase is meant to be applied between the normaliza-

tion of the signal and its subdivision in frames (see Section 2.1). The mono

signal is processed by a Filter-Bank that creates other 10 versions. We ad-

ded this filter-bank because the Bootlegs generally have background noises

higher that Official files. We expect a better classification accuracy consid-

ering features derived from critical bands, where noises are more relevant.

So, the goal of the pre-processing phase is to extract features not only from

the original audio signal, but also for its filtered versions. As filter-bank,

we have used 10 different Finite Impulse Response (FIR) filters with Kaiser

window [45], chosen experimentally as good compromise between computa-

tional speed and precision in the band filtering.

z
–1

z
–1

z
–1

Figure 3.3: A discrete-time FIR filter of order N.

The filter is designed with the Window Method, that is the creation of an

ideal IIR (Infinite Impulse Response) and then the application of the window

function. The result is the convolution between the frequency response

of the IIR filter and the frequency response of the window function. The

parameters of the Kaiser Window are setted to obtain a side-lobe attenuation

of 80 dB.

We have subdivided the signal following the octave scale:

• Band 1: Low-Pass filter with stop frequency at 60 Hz

• Band 2: Band-Pass filter between 60 Hz and 230 Hz

• Band 3: Band-Pass filter between 230 Hz and 500 Hz

• Band 4: Band-Pass filter between 500 Hz and 1 kHz

• Band 5: Band-Pass filter between 1 kHz and 2 kHz
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(a) Time Domain (b) Frequency Domain

Figure 3.4: Kaiser Window for different α

• Band 6: Band-Pass filter between 2 kHz and 4 kHz

• Band 7: Band-Pass filter between 4 kHz and 8 kHz

• Band 8: Band-Pass filter between 8 kHz and 12 kHz

• Band 9: Band-Pass filter between 12 kHz and 16 kHz

• Band 10: High-Pass filter with stop frequency at 16 kHz

These 10 bands are referred to 10 parallel filters, applied to the signal. As

output of this filter-bank we have 10 filtered versions of the signal. Even if,

in doing the filtering, the number of features to consider may seem increased

by ten times, we experimentally prove that the number of significant features

kept after feature selection is highly decreased. We must specify that not

all features are extracted for the filtered signal, since some do have sense

for a particular band. For example the Electrical Network Frequency (ENF)

search for information around frequencies of 50 Hz, so is useless to extract it

for all the filtered versions of the signal. In Figure 3.5 we show the complete

initialization applied to the signals in our work on the Bootleg Detection.

From now on we refer to the filtered versions of the signal using

Bands and we call Mono the original signal.

Features are extracted for each band and for the mono signal as described in

Chapter 2. All the versions of the signal are divided in frames on the basis

of their energy, with an overlap of 75%. The features are then extracted

frame by frame and considering the global file for each band and for the

mono signal.
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Figure 3.5: File Initialization Flow Chart for Bootleg Detection

3.2 Bootleg Detection Specific Features

In order to improve classification accuracy, we propose some features spe-

cifically tailored to the bootleg detection problem. The extracted features

are then not only those summarized in Table 2.1, but five new features have

been added. More specifically these features are meant to capture specific

information in the time and frequency domains that can be helpful to char-

acterize fingerprints found in bootlegs.

3.2.1 Bootleg Features

Very Low Spectral Magnitude - VLSM

We call Very Low Spectral Magnitude the sum of the magnitude of the spec-

trum under 2 Hz. We expect Bootlegs to have noises at very low frequencies

due probably to the quality of the recording devices. Noises at these fre-

quencies are not audible to human ear. Experimentally, we have actually

seen that in a Bootleg is quite common to have a value of VLSM at least

double that the one for other files. The VLSM is defined as:

VLSM =
Kl
∑

k=0

Xk , (3.1)



60 Chapter 3. Bootleg Detection Application

where Xk is the spectrum of the signal related to k-th bin. Kl is the fre-

quency bin corresponding to 2 Hz.

High Spectral Magnitude - HSM

The idea beyond the High Spectral Magnitude is the inadequacy of not pro-

fessional microphones to record information at very high frequencies. We

call HSM the sum of the magnitude of the spectrum above 14 kHz.

HSM =
K
∑

k=Kh

Xk , (3.2)

where Xk is the spectrum of the signal related to k-th bin. Kh is the

frequency bin corresponding to 14 KHz.

Band Magnitude - BM

We computed for each Band a value linked to its power. What we expect is

to observe difference between Bootleg files and not Bootleg files, especially

in lower and higher bands. These differences may be caused in Bootlegs,

e.g., due to noises and artefacts introduced during the recording that would

be removed with a post-processing. Anyway we compute this feature for

each band, also if we expect interesting results in some critical bands. This

feature is computed as the sum of the absolute values of the magnitude of

the normalized spectrum.

BMb =
K
∑

k=0

Xk , (3.3)

where Xk is the frequency magnitude of the k-th bin of the spectrum of the

filtered band b.

Saturation - SAT

We said that Bootlegs are not subject to post-processing. Often these signals

have a very high magnitude, i.e., a lot of high peaks and flat waveform. In

Figure 3.6 we show an example of difference between a normal signal and a

saturated one.

We have set a magnitude threshold of 0.90 in absolute value. The saturation

of a signal is simply the number of samples that exceed that threshold.

yn =







1 if |xn| ≥ 0.90

0 otherwise
,
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SAT =
N−1
∑

n=0

yn , (3.4)

where xn is the magnitude of the n-th sample of the signal.
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Figure 3.6: Differences between a normal signal (red) and a saturated one (blue).

Electrical Network Frequency - ENF

This is a feature derived from forensic audio authentication purpose [46].

When digital equipment is used to record an audio signal, it captures also

the 50/60Hz Electrical Network Frequency if the recording device is mains-

powered and used in absence of an ideal voltage regulator. In forensic au-

thentication, the variance of the signal around the critical frequencies is

observed as indicator of manual modification of the signal itself, as cut and

paste of different pieces of signal to create, for example, phrases never uttered

by someone.

In our case this feature is simply used as a detector of noises caused by power

source. The signal is band-pass filtered with a very sharp linear-phase FIR

filter. The band pass filter is centered in 55 Hz and has a bandwidth of 6

Hz. The effect of band passing shows the presence of phase discontinuities

and amplitude variations. If the signal filtered has a large variation of amp-

litude, it means that probably the ENF has been recorded with the signal.

ENF is computed as

ENF =
1

N

N−1
∑

n=0

(xn − µ)2 , (3.5)

where xn is the n-th sample of the signal filtered x, and µ is the mean signal

x. N is the length of the signal.
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3.2.2 Features Summary

With the introduction of these five new features, we have rearranged also the

Feature Groups, creating a new group and adding three features to groups

already created. The summary of the final set of features and their groups

are shown in Table 3.1.

Table 3.1: Subdivision of features in groups. Frame and Global indicate if a feature is

extracted frame by frame, from the global file or in both cases. Mono and Band indicate

if a feature is extracted from the unfiltered signal (Mono) or from its filtered versions

(Band) or both. Numbers in parenthesis indicate features composed by multiple values,

e.g., the MFCCs have 13 coefficients. On bold we have the new features.

Feat. Group Feature Name Frame Global Band Mono

Basic

RMS X X X X

ZCR X X X X

WF (2) X X X

Low Energy X X X

ENF X X

Spectral

S. Roll-Off X X X X

S. Brightness X X X X

S. Flux X X X

S. Entropy X X X X

S. Flatness X X X X

S. Irregularity X X X X

S. Roughness (2) X X

BM X X

Centroidal

S. Centroid X X X X

S. Spread X X X X

S. Skewness X X X X

S. Kurtosis X X X X

Harmonic
S. Inharmonicity X X

Chromatic Flux X X X

Rhythmic
Event Density X X X

Pulse Clarity X X X

MFCC MFCC (13) X X X

OSC OSC (8) X X

Boot

VLSM X X

HSM X X

SAT X X
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3.3 Bootleg Detection Feature Selection

With the introduction of the analysis by band, we add to the previously

considered feature selection methods one that takes this band-division spe-

cifically into account. Analysing the Mono signal and the Bands we obtain

a lot of features, some of which, obviously, are more important than others.

Even if a method of feature selection is applied, some features can still be

more significant than others. Furthermore this reflection is valid for the

bands, because the analysis of some of the bands can be useless, while only

few bands can be significant. The basic idea of this method is showing how

much each band is important, removing not significant bands from the com-

putations. Moreover, some groups of features could be less significant than

others. With this method we also apply a sort of feature group weighing.

Cross-Validation Selection

We implemented a method, according to our specific problem, that allows

to assign importance weights to Bands analysed and to features groups. We

called it Cross-Validation Selection (CVS). Only the Bands and the features

with greater weights are selected, while the others are not considered. This

is done during the pre-test phase. A part of data destined to train the

machine is used as Train Set, the remaining part, called CVS Set, is used

in Pre-Test. The class membership of each file in these sets is known. After

the Pre-Test, classification accuracy is computed. Each Band is considered

separately, so the accuracy of each Band can be computed. CVS selects only

the three bands with greater weights.

Since, when we consider groups of features, we have different GMM/SVM

classifiers for each group, a metric to evaluate the performance of a single

classifier can be computed. This evaluation leads to another set of weights.

In Test Phase, a file is classified according to all the weights derived. In

the case that only the mono signal is analysed, CVS assigns only the weights

to features in the macro-sets or to the groups.

Let us see the steps of the algorithm by means of an example. For the sake

of clarity let us focus on one case. In particular let us consider the case

in which the classifier to be tested is GMM, and features are divided into

groups. For the sake of simplicity let us consider just three groups: i) basic,

ii) spectral iii) and MFCC.

1. The Train Set (TS) and the CVS Set (CS) are chosen.

2. The Train phase can start, training three GMM for each Band and for

the Mono signal:
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Algorithm 7 Groups Training Steps

1: for each Band and the Mono signal do

2: Extract features from the TS

3: Train GMMBasic, GMMSpectral, GMMMF CC

4: end for

3. The Pre-Test can start, evaluating the files of CS. For each group of

features we obtain the classification result (Resultgroup), that indicates

the class membership of the file according to testing group features:

Algorithm 8 Pre-Test steps

1: for each file in CS do

2: for each band and the mono signal do

3: Extract features from the CS

4: Test CS files according to Basic, Spectral and MFCC features

ResultBasic, ResultSpectral, ResultMF CC are obtained

5: end for

6: end for

4. Considering results obtained for every file in CS, we count the number

of correctly classified files for each group (Countergroup). The accur-

acy (Accuracygroup), that is the percentage of correctly classified files

according to group features, can be computed:

Algorithm 9 Accuracy computation

1: cntCS = number of files in CS

2: for each file in CS do

3: for each band and the mono signal do

4: if ResultBasic is correct

5: CounterBasic + +

6: if ResultSpectral is correct

7: CounterSpectral + +

8: if ResultMF CC is correct

9: CounterMF CC + +

10: end for

11: end for

12: AccuracyBasic = CounterBasic/cntCS

13: AccuracySpectral = CounterSpectral/cntCS

14: AccuracyMF CC = CounterMF CC/cntCS
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5. The Weights of each single group of features and of each Band can

now be computed.

W eightgroup indicates the weight of the feature group. W eightband is

the weight of the band. The weights are:

Algorithm 10 Weights computation

1: for each band and the mono signal do

2: W eightBasic = AccuracyBasic

3: W eightSpectral = AccuracySpectral

4: W eightMF CC = AccuracyMF CC

5: W eightBand = WeightBasic + WeightSpectral + WeightMF CC

6: end for

6. Selection of the three bands with the highest weights. The sum of the

weights of these three bands is normalized to 1.

Algorithm 11 Bands Selection

1: Select the three bands with highest weights

2: W eightT OT AL= sum of weights of the three Bands selected

3: for each of the Band selected do

4: W eightBand = W eightBand/W eightT OT AL

5: end for

In the Test phase, each band classifier associated to each group feature is

weighted according to the value of W eightgroup. For each band that isn’t

discarded, W eightBand is considered.

3.4 New Classification Phases

The Bootleg classification tool uses the same principles as the general classi-

fication tool explained in Chapter 2, but the pre-processing phase, the new

features and the new feature selection method are also considered. The clas-

sification is divided in the same three phases as the general machine: Train,

Validation and Test. We need a set of file to create the Training-Set and

the Validation-Set, that are created randomly, but in which the number of

files for each class is the same, to train the machine equally for each class.

The main difference, with respect to the work-flow previously described,

is the introduction of the features extracted from the bands. This cause a

further branching of the work-flow.
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Training Phase

As in the general machine described in the previous chapter, several methods

of feature selection are used in order to find the optimal significant subset

of features that best describes the classification problem. Using the seven

types of selection methods and the new approach described before (CVS),

we have created a combination of twenty feature selection methods. With

the CVS approach, the selected features and the bands are weighted, so that

the tool uses in the test only the significant features and bands. The twenty

methods are the followings:

• NO Feature Selection applied

• Cross-Validation Selection

• Forward Feature Selection

• Forward Feature Selection + Cross-Validation Selection

• Backward Feature Selection

• Backward Feature Selection + Cross-Validation Selection

• Stepwise Feature Selection

• Stepwise Feature Selection + Cross-Validation Selection

• Genetic Algorithm

• Genetic Algorithm + Cross-Validation Selection

• RELIEF Algorithm + Forward Feature Selection

• RELIEF Algorithm + Backward Feature Selection

• Principal Component Analysis

• Principal Component Analysis + Cross-Validation Selection

• Principal Component Analysis + Forward Feature Selection

• Principal Component Analysis + Backward Feature Selection

• Principal Component Analysis + Stepwise Feature Selection

• Linear Discriminant Analysis

• Principal Component Analysis Group
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• Principal Component Analysis Group + Cross-Validation Selection

Note that the last two methods, PCA Group and PCA Group + CVS, can

be applied only when the features are divided in groups.

Training Phase is performed in 2 ways as shown in Figure 3.7, considering

only the Mono signal or the Mono signal together with the Bands. We still

utilize one (combination of) method of feature selection/reduction at time.

In the first case, as in the general machine, a method selects the significant

features only from the Mono signal. In the second case, a method selects

a subset of features for each of the 10 Bands and the Mono signal, each of

which is used separately to train the machine.

Each preliminary division is then further subdivided in turn in other 4 cases

described in the Chapter 2 (Macro-Set or Groups of feature and then GMM

or SVM). Considering that we have 18 or 20 methods of features selection

depending on whether we analyse the features divided in groups or in Macro-

Set, in total we obtain 152 differently training for the machine (76 GMM

and 76 SVM).

Figure 3.7: Combinations of methods in the Training Phase. We obtain 152 method

combination.

The method that use the bands, but also the new features, can obviously

be used for any type of classification, and so be introduced also as modific-

ation of the general machine for purpose different from the Audio Bootleg

detection.

Validation Phase

In this phase the machine performs a Pre-test, comparing all the 152 dif-

ferent combinations with a subset of different files from the one used in the
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Training-Test (and twice as large), in order to decide which one is the best.

So in the end the Validation Phase returns a 4 values decision:

• Only Mono Signal or Mono + Bands

• Macro-Set of features or Groups of features

• Best Feature Selection/Reduction Method

• Best Classifiers (GMM/SVM)

With respect to the general case described in Chapter 2, there is now the

decision about using only the Mono signal or also the Bands. When only

the Mono signal is selected, the method of combining the results of each

step is the same described in Chapter 2 in Figure 2.6. In the case when the

Bands are considered, the flow change as shown in Figure 3.8. When all

Figure 3.8: Decision merging flow in Bands + Mono case. Each Band block contains

the same sub-blocks of the Mono block.

the 10 Bands and the Mono signal are analysed, the tool has to compute

another average since each set of features, extracted from all the version of

the signal, is considered separately. So the steps are:

• average between the decisions taken for each frame (Frame Mean De-

cision);

• for each Band and for the Mono we take the average between the

Frame Mean Decision and the decision taken for the Global file, that

is the Partial Decision;
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• average of all the Partial Decision from the Bands and the Mono to

obtain the Final Decision.

The machine is now ready to perform the test.

Test Phase

The Test Phase consists in the classification of a new file using the machine

trained with the best combination of methods obtained from the Validation

Phase. Note that, since we have specified that the CVS method may com-

pletely exclude some of the filtered version of the file as feature selection,

the number of features that are considered important may be really small.

Chapter Conclusions

In this Chapter we explained in details the proposed modification to the

classification tool, in order to best fit the bootleg classification problem. In

the next Chapter we will explain how we built the dataset, and will present

results from our tests that validate the proposed classification method.
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Chapter 4

Experimental Results

In this Chapter we validate the proposed bootleg detector by means of a

wide set of experimental results. More specifically, we start from describing

the audio dataset that we built for that purpose, and then we show how we

performed the tests. Finally we analyse the obtained results, showing which

the most significant features are. This analysis confirms the hypothesis

made on the distinctive bootleg traits. Moreover, these results show that the

method proposed for combining features from different bands often obtains

the highest accuracy. For the sake of compactness, we analyse in details

only the most significant part of the results. For the complete set of test

results, see the Appendix A.

4.1 Database

The audio dataset used in the proposed work have been built exploiting

both our music library and the wide availability of music on the web.

In total we used 594 different files, split in three main categories:

• Bootleg: 264 files that fit the bootleg definition given in Chapter 3;

Home: sub-set of Bootleg, with audio excerpt expressly created at

home for our purpose.

• Official: 168 audio files recorded from live performance officially re-

leased by the artists on CDs.

• Studio: 162 audio files recorded in studio, released on CDs and taken

directly from original discs.
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In general, we selected files from different musical genres, in a balanced

way. This choice has been made to avoid that the classification focuses

on a specific musical genre and not on Bootleg. While the Official and the

Studio files come directly from official supports, the Bootlegs are taken from

different sources, e.g., YouTube and sharing fans sites. We have considered

as Bootleg also 6 files obtained at a Scorpions concert. Some bands, as the

Scorpions, give at the end of the concert the recording of the performance on

USB support. These files are directly taken from the hall mixer, without any

post-processing (the support is provided instantly at the end of the concert,

there is no time to do any sort of post-processing). These files are officially

released by the artist, so technically they are not Bootleg. However, in

general, audio recorded directly from the mixer during a live performance

and without post-processing is considered as Bootleg and there are also sites

that provided the download of packages of bootleg created with this method.

Furthermore we have introduced in the Bootleg set a list of files that we have

specifically created. Bootlegs recorded with any device directly at a concert

may have high values of noisiness. The Home subset has been composed on

purpose. We have recorded some files from the Studio set, reproduced by a

home Hi-Fi and recorded with different type of microphones. We have used

7 different microphones:

• Shure professional microphone

• Nikon Coolpix (Compact Digital Camera) integrated microphone

• Nikon D5000 (Reflex Digital Camera) integrated microphone

• Dell Laptop integrated microphone

• Samsung Galaxy S2 Smart-phone integrated microphone

• Creative Zen (mp3 player) integrated microphone

• Microphone for web chat

To this purpose we have recorded 18 files for each case (they are already

included in the Bootleg total number).

In order to obtain uniform comparable files and for computational reasons,

each file consists in a minute extracted from the song considered. This

decision does not afflict the results. Furthermore, the file excerpts have been

selected to have the least possible not-musical parts. If a piece contains long

silences (parts with no music played) it is easier to observe ambient noise

such as claps or screams. If the tool had been trained with these files,

Bootleg with fewer parts of “silence” would not have been identified as such.
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4.2 Experimental Test Creation

Using the database that we have created, we tested the bootleg classification

tool. We performed 10 different types of tests, considering different com-

binations of files from our database. In particular we split the database in

sub-databases, each of which has been used to test the classification tool in

a different situation. The sub-databases are divided in categories as follows:

1. All Dataset (Bootleg class A, Official+Studio class B)

2. Bootleg and Official

3. Bootleg and Studio

4. Bootleg Home Made and Corresponding Studio files

4.1 Shure Microphone and Corresponding Studio

4.2 Nikon Coolpix Microphone and Corresponding Studio

4.3 Nikon D5000 Microphone and Corresponding Studio

4.4 Dell Laptop Microphone and Corresponding Studio

4.5 Samsung Galaxy S2 Microphone and Corresponding Studio

4.6 Creative Zen Microphone and Corresponding Studio

4.7 Web Chat Microphone and Corresponding Studio

For each one of these categories, we have used 10% of the tracks as Training-

Set, the 20% of the remaining tracks within the same subset as Validation-

Set and the remaining 70% as files to be tested. This means that we have

always used a Training-Set of 60 files and a Validation-Set of 120 files. Ini-

tially, we performed tests using 10% and 30% of the Database as Training-

Set, and without any Validation Phase. Note that, in the fourth category,

Bootleg Home Made and Corresponding Studio files, we do not have enough

audio excerpts to create a Validation-Set of 60 files. In that case we have

used smaller Train and Validation sets.

Since the classification gave nearly the same results, we have decided to

use 10% of files as Training-Set and 20% of files as Validation-Set, choice

that has improved the results. From this observation, we can also affirm

that, when the number of file in the Training-Set is quite high, incrementing

the Training-Set does not improve the results. We have tested some differ-

ent files combinations with the best methods extracted from the Validation

Phase. The scope of our work is creating a tool that allows to recognizing

Audio Bootleg analysing the optimal subset of features and using the best
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classifier, but we have performed tests also to demonstrate the quality of

our Validation Phase. In-fact we have performed the tests comparing all

feature selection methods and both classifiers. In this way we can show how

many Audio Bootleg files are detected, but also that the decisions made in

the Validation Phase are consistent. In Table 4.1, we show the summary of

the results obtained. For each category, accuracy and the combination of

decision after the Validation Phase are reported.

Table 4.1: Best accuracies obtained for tests of each category. Bo = Bootleg. S =

Studio. O = Official. BH = Bootleg Home Made. Corr = Corresponding Studio.

Acc = accuracy. M/Ba = Mono or Mono+Band. Gr/Mcr = Groups of features or

Macro-set of features. Class = Classifier.

Category Acc % M/Ba Gr/Mcr Feat-S Class

1. Bo vs O + S 85 Ba Mcr FWD + CVS GMM

2. Bo vs O 82 Ba Mcr FWD + CVS GMM

3. Bo vs S 89 Ba Mcr BWD + CVS GMM

4. BH vs Corr 97 Ba Gr SW + CVS GMM

5. Shure VS

Nikon Coolpix VS

Galaxy S2 VS

Corr

96 Ba Mcr FWD GMM

In Table 4.1 we have a summary of the results obtain. As we could

expect, distinguish Studio excerpts from Bootlegs is easier than any other

category of tests. This is due to the fact that Studio are the cleaner excerpts

that we have, recorded in recording studios, while Bootlegs are taken during

live performance, without any sort of cleaning post-processing. We also

expect to have lower accuracies for Bootleg and Official category, since both

sets of files are recorded during live performances.

We now analyse the results for each category of files. We also show an

analysis for some of the most significant features.

4.3 Result Statistics

We graphically show the accuracy obtained in the performed tests. We have

performed each of the 152 type of test 30 times, scrambling each times the

set of songs. In order to ensure that the obtained results are not influenced

by an ill-conditioned dataset, we average the results obtained from the 30

tests.
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4.3.1 Bootleg and Studio

We start the analysis with the easier category of study: Bootleg and Stu-

dio files. What we expect in this category is to have the higher accuracies

with respect to all the other categories. In-fact in this situation we have

Bootleg, that are recorded during live performances, with ambient noises as

screams and claps from public, and Studio files, that are recorded in profes-

sional recording studios, with no background noises. The best combination

of method for this type of test is the Backward plus Cross Validation Selec-

tion, with an accuracy of 88.74%. In Table 4.2 we show the 10 best tests

chosen in the Validation Phase and their corresponding rank once the Test

Phase has been performed. Furthermore we show the accuracy of the worst

combination of methods.

Table 4.2: Combination rank in Bootleg and Studio category. VP Pos is the method

position in the rank of the Validation Phase and VP% Acc is the respective accuracy.

Test Pos and Test% Acc are the position and the accuracy of the methods combination

after the Test Phase. M/B indicates if only Mono signal is taken or Mono+Bands.

Gr/Mcr indicates features divided in Groups or taken as Macro-Set. Feat-S indicates

the selection method applied and Class the classifier used. Only the first 10 and the last

position are shown. The best combination chosen by the Validation Phase is highlighted

in green, while the worst one is highlighted in red.

VP Combinations VP% Test Test%

Pos M/B Gr/Mcr Feat-S Class Acc Pos Acc

1 B Mcr BWD+CVS GMM 87.32 1 88.74

2 B Mcr PCAgr+CVS SVM 87.24 5 87.21

3 B Gr BWD+CVS GMM 87.06 7 86.59

4 B Gr SW+CVS SVM 86.90 12 86.30

5 B Mcr SW SVM 86.82 15 85.87

6 B Gr PCAgr SVM 86.71 3 87.11

7 B Gr FWD+CVS SVM 86.65 4 86.75

8 B Mcr SW+CVS SVM 86.59 2 87.21

9 B Gr BWD+CVS SVM 86.41 6 86.69

10 B Gr SW+CVS GMM 84.25 16 85.86

...

152 M Mcr RE+BWD SVM 51.90 147 58.80

We can see from the Table that the accuracy difference between the

best and the worse combination of methods is 30 percentage points. This

supports the idea of adding the Validation Phase to use only the best com-
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bination of methods to perform the tests. In this case, the method selected

from the Validation has obtained the higher accuracy also in the Test Phase.

We can see that, anyway, the differences between the first ten positions are

very low. Furthermore, we can see that the best combinations use always

the features extracted from the Mono and the Bands. That means that also

the addition of the Bands has provided improvements.

In Figures 4.1 and 4.2, two 3D histograms show respectively which

are the Global and the Frame features that have been mostly selected by

BWD+CVS method and their percentage occurrences. These histograms

have been built considering the 30 test repetitions on different training set.

The shown features are a subset of all the extracted features, since the less

significant ones have already been discarded.
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Figure 4.1: Frame feature occurrences referring to Backward + Cross Validation feature

selection in Bootleg and Studio category.

Features with higher occurrences have been selected more times on the

30 tests performed, so these features are stable and not related to the com-

position of the dataset. On the contrary, features that have been selected

only few times are more related to the Training Set used. As we can see, not

all bands are shown because CVS method selects only the most significant

bands. Note that, as said in Section 3.3, the CVS method selects only the

three most significant bands. In the graph more than three bands are shown

because the best bands considered may be different in each of the 30 test.
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Figure 4.2: Global feature occurrences referring to Backward + Cross Validation feature

selection in Bootleg and Studio category.

Figure 4.3 shows the average weights assigned to each Band by the CVS.

Bands 9 and 10 are the most significant.
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Figure 4.3: Percentage of weight values assigned to each Band and to the Mono signal

by the Cross Validation Selection in Bootleg and Studio category.

The same considerations on significance of the features can be done for

the features extracted only from the Mono signal (Figure 4.4). Also in this

figures only the subset of most significant features is shown.



78 Chapter 4. Experimental Results

0

50

100

M
FC

C
9 

 

M
FC

C
8 

 

M
FC

C
7 

 

M
FC

C
6 

 

M
FC

C
5 

 

M
FC

C
4 

 

M
FC

C
3 

 

M
FC

C
2 

 

M
FC

C
13

  

M
FC

C
12

  

M
FC

C
11

  

M
FC

C
10

  

M
FC

C
1 

 

O
SC

8 
 

O
SC

7 
 

O
SC

6 
 

O
SC

5 
 

O
SC

4 
 

O
SC

3 
 

O
SC

2 
 

O
SC

1 
 

O
cc

u
rr

e
n

ce
s 

(%
)

(a) Frame features
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(b) Global features

Figure 4.4: Feature occurrences referring to Backward + Cross Validation selection in

Bootleg and Studio category. These graphs refers to features extracted from the Mono.

It is interesting to see that in this category the number of significant

features, referring in particular to Figures 4.1 and 4.2, is low. This means

that the differences between the two classes are quite evident, and the clas-

sification tool needs a lower number of information to distinguish between

the classes.

As example, we can refer to what we said on the ZCR. This feature can

be an approximative indicator of the noise level of a signal. This feature has

been selected as high significant in all the Bands considered. It is quite clear

that is due to the ambient noise present in the Bootlegs opposed to the clean

recording made with the Studio files. In this case, the ZCR is significant for

all the Bands considered.

From the graphs relative to the features extracted from the Mono sig-

nal, we can analyse the differences of the High Spectral Magnitude for this

category (Figures 4.5 and 4.6). We have selected this feature because it is

one of the features proposed for our particular purpose.

It is evident that the Bootlegs have an average HSM lower that the Studio

files, because not professional microphones do not capture high frequency

very well.
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Figure 4.5: Mono, Global, High Spectral Magnitude: distribution of HSM values for

Bootleg and Studio files.
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Figure 4.6: Mono, Global, High Spectral Magnitude: HSM values for each file and

mean values for Bootleg and Studio files.

4.3.2 All Dataset

This test considers all the files in the Dataset, dividing them in two classes:

Bootleg and Official+Studio. The best method selected by the Validation

Phase is the Forward plus Cross Validation feature selection (FWD+CVS),

when Bands and Mono are considered and the features are analysed in

macro-set. The average accuracy is equal to 85%, i.e., 85% of files have

been correctly classified.

We said in the analysis of the precedent category, with the Validation

Phase we select the best combination of methods and classifier to use in

the Test Phase, i.e., we can perform only 1 test and not 152. In Table

4.3 we show the 10 best tests chosen in the Validation Phase and their

corresponding rank once the Test Phase has been performed. We also show

the worse accuracy obtained.
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Table 4.3: Combination rank in All Dataset category. VP Pos is the method position

in the rank of the Validation Phase and VP% Acc is the respective accuracy. Test

Pos and Test% Acc are the position and the accuracy of the methods combination

after the Test Phase. M/B indicates if only Mono signal is taken or Mono+Bands.

Gr/Mcr indicates features divided in Groups or taken as Macro-Set. Feat-S indicates

the selection method applied and Class the classifier used. Only the first 10 and the last

position are shown. The best combination chosen by the Validation Phase is highlighted

in green, while the worst one is highlighted in red.

VP Combinations VP% Test Test%

Pos M/B Gr/Mcr Feat-S Class Acc Pos Acc

1 B Mcr FWD+CVS GMM 85.41 2 85.05

2 B Mcr LDA SVM 85.27 5 84.75

3 B Gr PCAgr+CVS SVM 85.04 1 85.24

4 B Mcr BWD GMM 84.91 9 84.37

5 B Mcr PCAgr SVM 84.90 3 84.88

6 B Mcr FWD GMM 84.81 7 84.61

7 B Mcr BWD+CVS SVM 84.65 32 83.07

8 B Mcr BWD+CVS GMM 84.39 20 83.40

9 B Mcr SW+CVS GMM 84.31 24 83.03

10 B Gr BWD GMM 84.25 6 84.72

...

152 M Mcr RE*BWD SVM 53.60 152 47.80

We can see that the best combination chosen by the Validation is not the

best combination in the Test Phase, but it is in second position, with an

odds of 0.19% from the first one. The accuracy difference between the first

ten positions is less than 1%. We can so consider as best the combination

given by the Validation Phase.

In Figures 4.7 and 4.8, we show the Global and Frame features that have

been mostly selected by FWD+CVS method.

With reference to the precedent category analysed, we can see that

the number of features selected is higher. This means that the differences

between the classes considered are lower. Furthermore, we can see that the

features extracted in each frame are more often selected than global ones.

This means that there are not global features that are really characterizing,

since each of the 30 tests (more or less) selects different features. The situ-

ation is the opposite for features selected frame-wise, where some features

prove to be characterizing.
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Figure 4.7: Percentage of occurrences of Global feature referring to Forward + Cross

Validation feature selection in All Dataset category, averaged on the 30 test performed.
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Figure 4.8: Percentage of occurrences of Frame feature referring to Forward + Cross

Validation feature selection in All Dataset category, averaged on the 30 test performed.

As we said, some features have been extracted only for the Mono signal.

We can analyse these features. Figure 4.9 shows the Global and Frame

features selected from the Mono signal with their occurrences.
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(a) Global Mono feature occurrences
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(b) Frame Mono feature occurrences

Figure 4.9: Global and Frame feature occurrences referring to Forward feature selection

in All Dataset category. These graphs refer to the features extracted only for the Mono.

We have also said the CVS assign more significance only to three Bands

each time. Figure 4.10 shows the average weights assigned to each Band by

the CVS. Bands 9 and 10 are the most significant.
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Figure 4.10: Percentage of weight values assigned to each Band and to the Mono signal

by the Cross Validation Selection in All Dataset category.

Considering only the most significant Bands, we can see that there are

features that in some Bands are more selected than in others. E.g., we can

consider the Zero Crossing Rate, that has been selected all the time in the

10-th Band. We expected the ZCR value to be higher in Bootleg files due

to some noise components. Referring to the ZCR extracted from frames of

the 10-th Band, we can analyse why this feature have been selected always

by the Forward feature selection.
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In Figure 4.11 the distribution of ZCR values is represented for bootleg e

not-bootleg files.

Figure 4.11: Band 10, Frame, Zero Crossing Rate: distribution of ZCR values for

Bootleg and not-Bootleg files.

As we can see, most of Bootleg files have a high ZCR value, while most of

not-Bootleg files have a lower value. Figure 4.12 shows the values of the

ZCR for each file and its mean value for Bootleg and not-Bootleg.
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Figure 4.12: Band 10, Frame, Zero Crossing Rate: ZCR values for each file and value

means for Bootleg and not-Bootleg files.

From these two figures is quite clear that the distribution of values of this

feature is very different in the two classes. This means that the ZCR (espe-

cially for the considered Band) is very characterizing.

We can analyse also from the Mono signal one of the most significant

feature. We show as example the Electrical Network Frequency, that is one

of the feature added in Chapter 3 for the Bootleg Detection problem. The

ENF shows a high value when some post-processing has been applied to a

file. In Figure 4.13, we show the distribution of Electrical Network Frequency
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values. We make some considerations about the ENF distribution. In rare

cases, Bootlegs are recorded with device connected to the electricity network,

so the ENF value of Bootleg files is lower. Furthermore, is probable that

the higher cleanness of Studio files permit to individuate more easily jitters

(not necessarily bounded to the electrical network) around the 50 Hz, and

so the ENF values of Studio files is higher.

Figure 4.13: Mono, Global, Electrical Network Frequency: distribution of ENF values

for Bootleg and not-Bootleg files.

As for the ZCR, in Figure 4.14 ENF values of each file and the means of the

two separated classes are represented.
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Figure 4.14: Mono, Global, Electrical Network Frequency: ENF values for each file and

value means for Bootleg and not-Bootleg files.
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4.3.3 Bootleg and Official

In the first category analysed, we have considered Bootleg and Studio files.

The Studio files have, obviously, less noise both of the Bootleg and the

Official ones. We have so performed these tests, to obtain results with only

live excerpt, where there is the presence of ambient noise (clasp, scream,

etc.). We expect to have results lower than the Bootleg and Official category.

Anyway, we obtained an average accuracy percentage of 81.80% in the best

case (Forward Feature Selection), that is only 3% percentage points less than

the All Dataset category. In Table 4.4, as done for precedent categories, we

show the different accuracies between Validation and Test phases.

Table 4.4: Combination rank in Bootleg and Official category. VP Pos is the method

position in the rank of the Validation Phase and VP% Acc is the respective accuracy.

Test Pos and Test% Acc are the position and the accuracy of the methods combination

after the Test Phase. M/B indicates if only Mono signal is taken or Mono+Bands.

Gr/Mcr indicates features divided in Groups or taken as Macro-Set. Feat-S indicates

the selection method applied and Class the classifier used. Only the first 10 and the last

position are shown. The best combination chosen by the Validation Phase is highlighted

in green, while the worst one is highlighted in red.

VP Combinations VP% Test Test%

Pos M/B Gr/Mcr Feat-S Class Acc Pos Acc

1 B Mcr FWD+CVS SVM 83.70 3 81.80

2 B Gr PCA SVM 83.30 2 82.00

3 B Mcr PCAgr SVM 83.10 1 82.50

4 B Gr GA GMM 82.90 9 81.30

5 B Mcr LDA GMM 82.00 16 80.80

6 B Mcr SW GMM 81.90 10 81.10

7 B Gr GA+CVS GMM 81.80 18 80.60

8 B Gr LDA SVM 81.70 6 81.60

9 B Gr SW+CVS GMM 81.50 9 81.30

10 B Mcr SW+CVS SVM 81.40 4 81.70

...

152 M Mcr RE+FWD SVM 49.90 152 50.80

We show the significant feature for this case in Figure 4.15 and Figure

4.16. The main consideration about specific features and bands weights are

more or less the same that we have done before. Indeed, the most significant

features (i.e., those with many occurrences) are those computed frame-wise

and finally aggregated.
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Figure 4.15: Frame feature occurrences referring to Forward + Cross Validation selec-

tion in Bootleg and Official category.
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Figure 4.16: Global feature occurrences referring to Forward + Cross Validation selec-

tion in Bootleg and Official category.

Anyway, we can show an example of significant feature for these tests. In

figure 4.17 we show the values of the Band Magnitude of each signal for the

Band 9. As we can see, the Bootlegs have lower values of Band Magnitude



4.3. Result Statistics 87

respect to the Officials. This can be the consequences of a band-pass filter

present in the integrated microphones, that cuts the higher frequencies.
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Figure 4.17: Values of the Band Magnitude of each file for Band 9 and relative average

for Bootlegs and Officials.

As for the precedent categories, we can see in the end the feature occur-

rences for features extracted only from Mono signal (Figure 4.18).
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(a) Frame features
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(b) Global features

Figure 4.18: Global and Frame feature occurrences referring to Forward feature selection

in Bootleg and Official category. These graphs refer to the features extracted only for

the Mono.

4.3.4 Multi-class Results Example

We analyse now another significant category of tests. In this case we try a

4-class classification, utilising home-made bootlegs. We compare here three

home-made categories with their corresponding studio versions. The best

combination of method for these type of test is the Forward feature selection,



88 Chapter 4. Experimental Results

with an accuracy of 97%. In this case all Bands are analysed. We can deduce

that this test case is more oriented to microphone source detection.

In Table 4.5, we show the 10 best tests chosen in the Validation Phase

and their corresponding rank once the Test Phase has been performed.

Table 4.5: Combination rank in Multi-class category. VP Pos is the method position

in the rank of the Validation Phase and VP% Acc is the respective accuracy. Test

Pos and Test% Acc are the position and the accuracy of the methods combination

after the Test Phase. M/B indicates if only Mono signal is taken or Mono+Bands.

Gr/Mcr indicates features divided in Groups or taken as Macro-Set. Feat-S indicates

the selection method applied and Class the classifier used. Only the first 10 and the last

position are shown. The best combination chosen by the Validation Phase is highlighted

in green, while the worst one is highlighted in red.

VP Combinations VP% Test Test%

Pos M/B Gr/Mcr Feat-S Class Acc Pos Acc

1 B Mcr FWD GMM 95.83 1 95.83

2 B Mcr BWD SVM 95.83 2 94.44

3 B Mcr PCAgr SVM 95.83 3 94.44

4 B Mcr PCAgr+CVS SVM 94.44 6 93.06

5 B Mcr SW GMM 94.44 11 90.28

6 B Mcr LDA GMM 94.44 7 93.06

7 B Gr BWD SVM 93.06 4 94.44

8 B Gr LDA SVM 93.06 5 94.44

9 B Gr SW GMM 88.89 8 93.06

10 B Mcr FWD GMM 88.89 16 88.89

...

152 M Mcr RE*BWD GMM 17.20 148 19.10

We can see from Figure 4.19 that also in the Multi-class category some

features are quite different between classes, and so are significant.

As we can see in Figure 4.20 and in Figure 4.21, fewer features are

selected. However, CVS is not used, so all Bands are considered. The

reason is the need to analyse all bands in order to distinguish 4 classes.

In Figure 4.22 frame features extracted from Mono signal are shown.
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Figure 4.19: Distribution of ZCR values of Band 10 Multi-class example.
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Figure 4.20: Frame feature occurrences referring to Forward plus Cross Validation

Selection in Multi-class category.
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Figure 4.21: Global feature occurrences referring to Forward plus Cross Validation

Selection in Multi-class category.

0

20

40

60

80

100

M
FC

C
9 

 

M
FC

C
8 

 

M
FC

C
7 

 

M
FC

C
6 

 

M
FC

C
5 

 

M
FC

C
4 

 

M
FC

C
3 

 

M
FC

C
2 

 

M
FC

C
13

  

M
FC

C
12

  

M
FC

C
10

  

M
FC

C
1 

 

O
SC

1 
 O

cc
u

rr
e

n
ce

s 
(%

)

Figure 4.22: Frame feature occurrences referring to Forward feature selection in Multi-

class category. These graphs refer to the features extracted only for the Mono.
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4.3.5 Bootlegs Home Made and Corresponding Studio Files

In the end, since we have re-recorded some files at home, we have done some

tests between the original excerpts and their re-captured version. As said in

Section 4.1, we created the Home Made Bootlegs re-capturing with different

microphones some Studio excerpts. We have performed tests considering

only excerpts recorded by one microphone at time. We so expected to have

an high accuracy, since one class contains only audio tracks recorded with

the same device. Indeed, we can see from Table 4.6 that the accuracies are

very high.

Table 4.6: Combination rank in Home-Made Bootlegs and Corresponding Studio Files.

VP Pos is the method position in the rank of the Validation Phase and VP% Acc is the

respective accuracy. Test Pos and Test% Acc are the position and the accuracy of the

methods combination after the Test Phase. M/B indicates if only Mono signal is taken

or Mono+Bands. Gr/Mcr indicates features divided in Groups or taken as Macro-Set.

Feat-S indicates the selection method applied and Class the classifier used. Only the

first 10 and the last position are shown. The best combination chosen by the Validation

Phase is highlighted in green, while the worst one is highlighted in red.

VP Combinations VP% Test Test%

Pos M/B Gr/Mcr Feat-S Class Acc Pos Acc

1 B Gr SW+CVS GMM 97.22 1 97.22

2 B Mcr FWD+CVS GMM 97.22 3 97.22

3 B Gr PCAgr+CVS SVM 97.22 2 97.22

4 B Gr BWD+CVS GMM 97.22 5 94.44

5 B Gr FWD+CVS GMM 94.44 4 94.44

6 B Mcr LDA GMM 94.44 3 94.44

7 B Mcr GA+CVS GMM 94.44 7 94.44

8 B Gr GA+CVS GMM 94.44 8 94.44

9 B Mcr SW+CVS GMM 94.44 9 94.44

10 B Gr PCAgr SVM 94.44 10 94.44

...

152 M Mcr RE*FWD GMM 43.80 148 65.40

Chapter Conclusions

In this Chapter we have shown the results related to our work. We can

observe some constant and interesting conclusions.

First of all, the tests with the higher accuracies consider always both the
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Mono signal and the Bands. This means that, for our specific purpose,

information extracted from particular sections of frequencies are more rel-

evant than information extracted from the not-processed file. Furthermore

we can observe that not all the Bands carry relevant information. In-fact

only some Bands are considered from our Cross Validation selection and,

in general, features derived from the extreme bands have higher weights.

The lower Bands (1 and 2) and the higher Bands (8, 9 and 10) are the most

considered. The central Bands from 3 to 7 are never considered. This means

that the central frequencies (from 230 Hz to 8 kHz) do not carry relevant

information, or probably that the information carried by these Bands are

the same retrieved from the Mono signal.

We have obtained a high accuracy of Bootleg detection in every category

of test (i.e., higher than 80%). In particular, as we expected, experimental

results show that some features characterize bootlegs much better than oth-

ers. Among these, we found that features that capture noise characteristics

(such as ZCR, ENF or features related to high-frequency bands) can be

essential to solve the problem.

Analysing the results that we obtained, we can conclude that the low-

est and the highest considered frequency bands are the most significant to

solve the bootleg detection problem. The importance of the low frequencies

analysis is explained by the rumbling phenomenon, i.e., an excess of low

frequency noise that can be present in a recording environment. On the

other hand, recording an audio track in a particularly crowdy place (typ-

ical of concert halls) may give rise to a high frequency absorption. This

phenomenon is given by the reflections, refractions and diffractions due to

the presence of the bodies of people that cause a sort of confusion in the

registration. For this reason, high frequency components in a bootleg may

result less clear than in studio songs.



Chapter 5

Conclusions and Future

works

In this work we presented a method to solve the audio bootleg detection

problem, which is a problem of interest in the forensic community. Indeed,

with the increasing diffusion of portable recording devices, such as integrated

microphones in photo-cameras, mp3 players and many more, it is nowadays

easy for everyone to create and share bootlegs. For this reason, a tool that

allows to automatically detect bootlegs may be helpful to prevent copyright

infringements, e.g., on multimedia sharing platforms.

The detector that we propose starts from a classification tool that is as

general and modular as possible. It is based on audio features extraction

and classifiers such as GMMs and SVMs. However, additional features, fea-

tures selection methods, and classifiers can be added at any moment. The

classification procedure that we propose is then developed to automatically

select the best combination of features and classifiers to maximize the clas-

sification accuracy using a small set of training data and comparing many

different feature selection methods.

To tune this tool in order to solve the bootleg detection problem, we

have considered an additional set of features and a feature selection method

that allows fusing information from different frequency bands of the signal.

To test the detector, we have built a Dataset of nearly 600 audio excerpts.

We have divided the Dataset in Bootleg, Home Made Bootleg, Official and

Studio excerpts. Bootlegs are files obtained mainly from the web, they are

illegally distributed. Home Made Bootlegs are excerpts created on purpose

re-capturing some original Studio-recorded audio. Officials and Studios are

files officially release by artists, respectively recorded in live performances
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and in recording studios. By using such different audio excerpts, we have

been able to test the tool in different situations, obtaining a high accuracy

of Bootleg detection in every case (i.e., higher than 80%). In particular,

as we expected, experimental results show that some features characterize

bootlegs much better than others. Among these, we found that features

that capture noise characteristics (such as ZCR or features related to high-

frequency bands) can be essential to solve the problem.

Even if results are promising, the detector could still be improved. As an

example, a set of high-level features could be inserted into the pool of tested

features. Moreover, more in depth studies on the presence of characteristic

reverberations on bootlegs could be carried on to improve the robustness

of the detector. Another idea could be the texture analysis of the chroma-

gram. Indeed, we used the chromagram as a feature without any processing.

However, using it as a picture and compute a feature that characterizes its

texture could be an interesting addition.

From a slightly different point of view, another interesting future work

may be the study of an anti-forensic technique. Indeed, since it is now pos-

sible to discriminate between bootlegs and non-bootlegs, it would interesting

to analyse the possibility of fooling this detector applying some kinds of au-

dio post-processing operations aiming to remove bootlegs footprints without

affecting the sound quality.
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Appendix A

Other Test Results

We show now some other graphs relative to tests described in Chapter 4.

We can see, in the following histograms, the accuracies related to all the 152

combinations of methods for each category of test. For each category, the

first two graphs indicate the case where only Mono signal in considered, and

respectively where the features are analysed in Macro-set and in Groups.

The last two indicate the case where Mono signal and Bands are considered,

respectively with the features analysed in Macro-set and in Groups.

A.1 Bootleg and Studio

In this category of tests we consider Bootleg and Studio excerpts. We have

Bootleg, that are recorded during live performances, with ambient noises

as screams and claps from public, and Studio files, that are recorded in

professional recording studios, with no background noises.
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Figure A.1: Test results for Bootleg and Studio category: accuracy for each (combin-

ation of) method of feature selection/reduction both for GMM and SVM classifiers.

Only features from the Mono signal are used.



A.1. Bootleg and Studio 103

0

20

40

60

80

100

A
C

C
U

R
A

C
Y

 (
%

)

N
O

 F
.S

.

C
V

S

FW
D

FW
D

 +
 C

V
S

B
W

D
B

W
D

 +
 C

V
S SW

SW
 +

 C
V

S G
A

G
A

 +
 C

V
S

R
E 

+
 F

W
D

R
E 

+
 B

W
D

PC
A

PC
A

 +
 C

V
S

PC
A

 +
 F

W
D

PC
A

 +
 B

W
D

PC
A

 +
 S

W

LD
A

PC
A

 G
ro

u
p

PC
A

 G
ro

u
p

 +
 C

V
S

 

 

GMM

SVM

(a) Features divided in groups

0

10

20

30

40

50

60

70

80

90

100

A
C

C
U

R
A

C
Y

 (
%

)

N
O

 F
.S

.

C
V

S

FW
D

FW
D

 +
 C

V
S

B
W

D
B

W
D

 +
 C

V
S

SW

SW
 +

 C
V

S G
A

G
A

 +
 C

V
S

R
E 

+
 F

W
D

R
E 

+
 B

W
D

PC
A

PC
A

 +
 C

V
S

PC
A

 +
 F

W
D

PC
A

 +
 B

W
D

PC
A

 +
 S

W

LD
A

 

 

GMM

SVM

(b) Macro-set of features

Figure A.2: Test results for Bootleg and Studio category: accuracy for each (combin-

ation of) method of feature selection/reduction both for GMM and SVM classifiers.

Features both from Band and Mono signal are used.



104 Appendix A. Other Test Results

A.2 All Dataset

This test considers all the files in the Dataset, dividing them in two classes:

Bootleg and Official+Studio.
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Figure A.3: Test results for All Dataset category: accuracy for each (combination

of) method of feature selection/reduction both for GMM and SVM classifiers. Only

features from the Mono signal are used.
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(a) Features divided in groups
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Figure A.4: Test results for All Dataset category: accuracy for each (combination of)

method of feature selection/reduction both for GMM and SVM classifiers. Features

both from Band and Mono signal are used.
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A.3 Bootleg and Official

We have performed these tests to obtain results with only live excerpt, where

there is the presence of ambient noise (clasp, scream, etc.).
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Figure A.5: Test results for Bootleg and Official category: accuracy for each (combin-

ation of) method of feature selection/reduction both for GMM and SVM classifiers.

Only features from the Mono signal are used.
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Figure A.6: Test results for Bootleg and Official category: accuracy for each (combin-

ation of) method of feature selection/reduction both for GMM and SVM classifiers.

Features both from Band and Mono signal are used.
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A.4 Multi-class Result

In this category we analyse a 4-class classification, utilising home made

bootlegs.
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Figure A.7: Test results for Multi-class category: accuracy for each (combination of)

method of feature selection/reduction both for GMM and SVM classifiers. Only features

from the Mono signal are used.
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Figure A.8: Test results for Multi-class category: accuracy for each (combination of)

method of feature selection/reduction both for GMM and SVM classifiers. Features

both from Band and Mono signal are used.


